-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrefs.bib
682 lines (613 loc) · 24.3 KB
/
refs.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
@book{newman2018networks,
title={Networks},
author={Newman, Mark E. J.},
year={2018},
publisher={Oxford University Press}
}
@article{zachary1977information,
title={An information flow model for conflict and fission in small groups},
author={Zachary, Wayne W},
journal={Journal of Anthropological Research},
volume={33},
number={4},
pages={452--473},
year={1977},
publisher={University of New Mexico}
}
@article{mitzenmacherBriefHistoryGenerative2004,
title = {A {{Brief History}} of {{Generative Models}} for {{Power Law}} and {{Lognormal Distributions}}},
author = {Mitzenmacher, Michael},
year = {2004},
month = jan,
journal = {Internet Mathematics},
volume = {1},
number = {2},
pages = {226--251},
issn = {1542-7951, 1944-9488},
doi = {10.1080/15427951.2004.10129088},
urldate = {2024-07-10},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/ZYD3YSRD/Mitzenmacher - 2004 - A Brief History of Generative Models for Power Law.pdf}
}
@article{clausetPowerLawDistributionsEmpirical2009,
title = {Power-{{Law Distributions}} in {{Empirical Data}}},
author = {Clauset, Aaron and Shalizi, Cosma Rohilla and Newman, Mark E. J.},
year = {2009},
month = nov,
journal = {SIAM Review},
volume = {51},
number = {4},
pages = {661--703},
issn = {0036-1445, 1095-7200},
doi = {10.1137/070710111},
urldate = {2023-09-04},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/E4ZX6WAW/Clauset et al. - 2009 - Power-Law Distributions in Empirical Data.pdf}
}
@article{barabasiEmergenceScalingRandom1999,
title = {Emergence of {{Scaling}} in {{Random Networks}}},
author = {Barab{\'a}si, Albert-L{\'a}szl{\'o} and Albert, R{\'e}ka},
year = {1999},
month = oct,
journal = {Science},
volume = {286},
number = {5439},
pages = {509--512},
issn = {0036-8075, 1095-9203},
doi = {10.1126/science.286.5439.509},
urldate = {2023-05-01},
abstract = {Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/E227Q37M/Barabási and Albert - 1999 - Emergence of Scaling in Random Networks.pdf}
}
@inproceedings{overgoorChoosingGrowGraph2019,
title = {Choosing to {{Grow}} a {{Graph}}: {{Modeling Network Formation}} as {{Discrete Choice}}},
shorttitle = {Choosing to {{Grow}} a {{Graph}}},
booktitle = {The {{World Wide Web Conference}}},
author = {Overgoor, Jan and Benson, Austin and Ugander, Johan},
year = {2019},
month = may,
pages = {1409--1420},
publisher = {ACM},
address = {San Francisco CA USA},
doi = {10.1145/3308558.3313662},
urldate = {2023-09-04},
isbn = {978-1-4503-6674-8},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/8C4EDBE7/Overgoor et al. - 2019 - Choosing to Grow a Graph Modeling Network Formati.pdf}
}
@article{broidoScalefreeNetworksAre2019,
title = {Scale-Free Networks Are Rare},
author = {Broido, Anna D. and Clauset, Aaron},
year = {2019},
month = mar,
journal = {Nature Communications},
volume = {10},
number = {1},
pages = {1017},
issn = {2041-1723},
doi = {10.1038/s41467-019-08746-5},
urldate = {2024-08-30},
abstract = {Abstract Real-world networks are often claimed to be scale free,~meaning that the fraction of nodes with degree k follows a power law k - {$\alpha$} , a pattern with broad implications for the structure and dynamics of complex systems. However, the universality of scale-free networks remains controversial. Here, we organize different definitions of scale-free networks and construct a severe test of their empirical prevalence using state-of-the-art statistical tools applied to nearly 1000 social, biological, technological, transportation, and information networks. Across these networks, we find robust evidence that strongly scale-free structure is empirically rare, while for most networks, log-normal distributions fit the data as well or better than power laws. Furthermore, social networks are at best weakly scale free, while a handful of technological and biological networks appear strongly scale free. These findings highlight the structural diversity of real-world networks and the need for new theoretical explanations of these non-scale-free patterns.},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/VYKVBI5U/Broido and Clauset - 2019 - Scale-free networks are rare.pdf}
}
@article{holmeRareEverywherePerspectives2019,
title = {Rare and Everywhere: {{Perspectives}} on Scale-Free Networks},
shorttitle = {Rare and Everywhere},
author = {Holme, Petter},
year = {2019},
month = mar,
journal = {Nature Communications},
volume = {10},
number = {1},
pages = {1016},
issn = {2041-1723},
doi = {10.1038/s41467-019-09038-8},
urldate = {2024-08-30},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/NNINIQ3E/Holme - 2019 - Rare and everywhere Perspectives on scale-free ne.pdf}
}
@article{yuleMathematicalTheoryEvolution1925,
title = {A Mathematical Theory of Evolution, Based on the Conclusions of {{Dr}}. {{J}}. {{C}}. {{Willis}}, {{F}}. {{R}}. {{S}}},
author = {Yule},
year = {1925},
month = jan,
journal = {Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character},
volume = {213},
number = {402-410},
pages = {21--87},
issn = {0264-3960, 2053-9266},
doi = {10.1098/rstb.1925.0002},
urldate = {2024-08-30},
abstract = {The following work is founded on that conception of evolution, the most recent and precise formulation of which is due to Dr. J. C. Willis, and represents an attempt to develop the quantitative consequences of the conception. By his statistical studies of distribution Dr. Willis was led to two conclusions:--- (1) Species occupying large areas are, on the whole , older than those occupying small areas, provided that allied forms are compared.},
copyright = {https://royalsociety.org/journals/ethics-policies/data-sharing-mining/},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/LV77BWFN/1925 - II.—A mathematical theory of evolution, based on t.pdf}
}
@article{simonClassSkewDistribution1955,
title = {On a {{Class}} of {{Skew Distribution Functions}}},
author = {Simon, Herbert A.},
year = {1955},
journal = {Biometrika},
volume = {42},
number = {3-4},
pages = {425--440},
issn = {0006-3444, 1464-3510},
doi = {10.1093/biomet/42.3-4.425},
urldate = {2024-08-30},
langid = {english}
}
@article{price1976general,
title = {A General Theory of Bibliometric and Other Cumulative Advantage Processes},
author = {Price, Derek de Solla},
year = {1976},
journal = {Journal of the American society for Information science},
volume = {27},
number = {5},
pages = {292--306},
publisher = {Wiley Online Library}
}
@article{bollobasDegreeSequenceScale2001,
title = {The Degree Sequence of a Scale-free Random Graph Process},
author = {Bollob{\'a}s, B{\textasciiacute}ela and Riordan, Oliver and Spencer, Joel and Tusn{\'a}dy, G{\'a}bor},
year = {2001},
month = may,
journal = {Random Structures \& Algorithms},
volume = {18},
number = {3},
pages = {279--290},
issn = {1042-9832, 1098-2418},
doi = {10.1002/rsa.1009},
urldate = {2024-08-30},
abstract = {Abstract Recently, Barab{\'a}si and Albert [2] suggested modeling complex real-world networks such as the worldwide web as follows: consider a random graph process in which vertices are added to the graph one at a time and joined to a fixed number of earlier vertices, selected with probabilities proportional to their degrees. In [2] and, with Jeong, in [3], Barab{\'a}si and Albert suggested that after many steps the proportion P ( d ) of vertices with degree d should obey a power law P ( d ){$\alpha$} d -{$\gamma$} . They obtained {$\gamma$}=2.9{\textpm}0.1 by experiment and gave a simple heuristic argument suggesting that {$\gamma$}=3. Here we obtain P ( d ) asymptotically for all d {$\leq$} n 1/15 , where n is the number of vertices, proving as a consequence that {$\gamma$}=3.{$\quad\copyright$} 2001 John Wiley \& Sons, Inc.{$\quad$}Random Struct. Alg., 18, 279--290, 2001},
copyright = {http://onlinelibrary.wiley.com/termsAndConditions\#vor},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/HUUMRPT3/Bollobás et al. - 2001 - The degree sequence of a scale‐free random graph p.pdf}
}
@article{musae,
author = {Rozemberczki, Benedek and Allen, Carl and Sarkar, Rik},
title = {{Multi-Scale Attributed Node Embedding}},
journal = {Journal of Complex Networks},
volume = {9},
number = {2},
year = {2021},
}
@article{chung2002connected,
title={Connected components in random graphs with given expected degree sequences},
author={Chung, Fan and Lu, Linyuan},
journal={Annals of Combinatorics},
volume={6},
number={2},
pages={125--145},
year={2002},
publisher={Springer}
}
@article{milgram1967small,
title={The small world problem},
author={Milgram, Stanley},
journal={Psychology Today},
volume={2},
number={1},
pages={60--67},
year={1967},
publisher={New York}
}
@article{milgram1963behavioral,
title={Behavioral study of obedience.},
author={Milgram, Stanley},
journal={The Journal of Abnormal and Social Psychology},
volume={67},
number={4},
pages={371},
year={1963},
publisher={American Psychological Association}
}
@article{breiger1986cumulated,
title={Cumulated social roles: The duality of persons and their algebras},
author={Breiger, Ronald L and Pattison, Philippa E},
journal={Social networks},
volume={8},
number={3},
pages={215--256},
year={1986},
publisher={Elsevier}
}
@article{kamada1989algorithm,
title={An algorithm for drawing general undirected graphs},
author={Kamada, Tomihisa and Kawai, Satoru},
journal={Information Processing Letters},
volume={31},
number={1},
pages={7--15},
year={1989},
publisher={Citeseer}
}
@book{horn2012matrix,
title={Matrix analysis},
author={Horn, Roger A and Johnson, Charles R},
year={2012},
publisher={Cambridge university press}
}
@article{keener1993perron,
title={The Perron--Frobenius theorem and the ranking of football teams},
author={Keener, James P},
journal={SIAM review},
volume={35},
number={1},
pages={80--93},
year={1993},
publisher={SIAM}
}
@article{katz1953new,
title={A new status index derived from sociometric analysis},
author={Katz, Leo},
journal={Psychometrika},
volume={18},
number={1},
pages={39--43},
year={1953},
publisher={Springer}
}
@article{langville2005survey,
title={A survey of eigenvector methods for web information retrieval},
author={Langville, Amy N and Meyer, Carl D},
journal={SIAM review},
volume={47},
number={1},
pages={135--161},
year={2005},
publisher={SIAM}
}
@article{boldi2014axioms,
title={Axioms for centrality},
author={Boldi, Paolo and Vigna, Sebastiano},
journal={Internet Mathematics},
volume={10},
number={3-4},
pages={222--262},
year={2014},
publisher={Taylor \& Francis}
}
@article{bavelas1950communication,
title={Communication patterns in task-oriented groups},
author={Bavelas, Alex},
journal={The journal of the acoustical society of America},
volume={22},
number={6},
pages={725--730},
year={1950},
publisher={AIP Publishing}
}
@article{beauchamp1965improved,
title={An improved index of centrality},
author={Beauchamp, Murray A},
journal={Behavioral science},
volume={10},
number={2},
pages={161--163},
year={1965},
publisher={Wiley Online Library}
}
@article{freeman1977set,
title={A set of measures of centrality based on betweenness},
author={Freeman, Linton C},
journal={Sociometry},
volume = {40},
pages = {35--41},
year={1977}
}
@article{erdHos1960evolution,
title={On the evolution of random graphs},
author={Erd{\H{o}}s, Paul and R{\'e}nyi, Alfr{\'e}d},
journal={Publ. Math. Inst. Hung. Acad. Sci},
volume={5},
number={1},
pages={17--60},
year={1960}
}
@article{watson1875probability,
title={On the probability of the extinction of families},
author={Watson, Henry William and Galton, Francis},
journal={The Journal of the Anthropological Institute of Great Britain and Ireland},
volume={4},
pages={138--144},
year={1875},
publisher={JSTOR}
}
@article{watts1998collective,
title={Collective dynamics of ‘small-world’networks},
author={Watts, Duncan J and Strogatz, Steven H},
journal={nature},
volume={393},
number={6684},
pages={440--442},
year={1998},
publisher={Nature Publishing Group}
}
@article{riordan2010diameter,
title={The diameter of sparse random graphs},
author={Riordan, Oliver and Wormald, Nicholas},
journal={Combinatorics, Probability and Computing},
volume={19},
number={5-6},
pages={835--926},
year={2010},
publisher={Cambridge University Press}
}
@article{bollobas1980probabilistic,
title={A probabilistic proof of an asymptotic formula for the number of labelled regular graphs},
author={Bollob{\'a}s, B{\'e}la},
journal={European Journal of Combinatorics},
volume={1},
number={4},
pages={311--316},
year={1980},
publisher={Elsevier}
}
@article{fosdick2018configuring,
title={Configuring random graph models with fixed degree sequences},
author={Fosdick, Bailey K and Larremore, Daniel B and Nishimura, Joel and Ugander, Johan},
journal={Siam Review},
volume={60},
number={2},
pages={315--355},
year={2018},
publisher={SIAM}
}
@misc{luxburgTutorialSpectralClustering2007,
title = {A {{Tutorial}} on {{Spectral Clustering}}},
author = {von Luxburg, Ulrike},
year = {2007},
month = nov,
number = {arXiv:0711.0189},
eprint = {0711.0189},
primaryclass = {cs},
publisher = {arXiv},
urldate = {2024-10-09},
abstract = {In recent years, spectral clustering has become one of the most popular modern clustering algorithms. It is simple to implement, can be solved efficiently by standard linear algebra software, and very often outperforms traditional clustering algorithms such as the k-means algorithm. On the first glance spectral clustering appears slightly mysterious, and it is not obvious to see why it works at all and what it really does. The goal of this tutorial is to give some intuition on those questions. We describe different graph Laplacians and their basic properties, present the most common spectral clustering algorithms, and derive those algorithms from scratch by several different approaches. Advantages and disadvantages of the different spectral clustering algorithms are discussed.},
archiveprefix = {arXiv},
keywords = {Computer Science - Data Structures and Algorithms,Computer Science - Machine Learning},
file = {/Users/philchodrow/Zotero/storage/B9NU254F/Luxburg - 2007 - A Tutorial on Spectral Clustering.pdf;/Users/philchodrow/Zotero/storage/BZ95M9P5/0711.html}
}
@inproceedings{gleich2016mining,
title={Mining Large Graphs.},
author={Gleich, David F and Mahoney, Michael W},
booktitle={Handbook of Big Data},
editors = {Peter B\:uhlmann, Petros Drineas, Michael Kane, Mark van der Laan},
year={2016}
}
@inproceedings{wagner1993between,
title={Between min cut and graph bisection},
author={Wagner, Dorothea and Wagner, Frank},
booktitle={Mathematical Foundations of Computer Science 1993: 18th International Symposium, MFCS'93 Gda{\'n}sk, Poland, August 30--September 3, 1993 Proceedings 18},
pages={744--750},
year={1993},
organization={Springer}
}
@article{shi2000normalized,
title = {Normalized Cuts and Image Segmentation},
author = {Shi, Jianbo and Malik, Jitendra},
year = {2000},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume = {22},
number = {8},
pages = {888--905},
publisher = {Ieee}
}
@article{fournet2014contact,
title={Contact patterns among high school students},
author={Fournet, Julie and Barrat, Alain},
journal={PloS one},
volume={9},
number={9},
pages={e107878},
year={2014},
publisher={Public Library of Science San Francisco, USA}
}
@article{newman2004finding,
title={Finding and evaluating community structure in networks},
author={Newman, Mark E.J. and Girvan, Michelle},
journal={Physical Review E},
volume={69},
number={2},
pages={026113},
year={2004},
publisher={APS}
}
@article{zhang2014scalable,
title={Scalable detection of statistically significant communities and hierarchies, using message passing for modularity},
author={Zhang, Pan and Moore, Cristopher},
journal={Proceedings of the National Academy of Sciences},
volume={111},
number={51},
pages={18144--18149},
year={2014},
publisher={National Acad Sciences}
}
@article{girvan2002community,
title={Community structure in social and biological networks},
author={Girvan, Michelle and Newman, Mark EJ},
journal={Proceedings of the National Academy of Sciences},
volume={99},
number={12},
pages={7821--7826},
year={2002},
publisher={National Acad Sciences}
}
@article{chodrow2020moments,
title={Moments of uniform random multigraphs with fixed degree sequences},
author={Chodrow, Philip S},
journal={SIAM Journal on Mathematics of Data Science},
volume={2},
number={4},
pages={1034--1065},
year={2020},
publisher={SIAM}
}
@article{delvenne2010stability,
title={Stability of graph communities across time scales},
author={Delvenne, J-C and Yaliraki, Sophia N and Barahona, Mauricio},
journal={Proceedings Of The National Academy Of Sciences},
volume={107},
number={29},
pages={12755--12760},
year={2010},
publisher={National Acad Sciences}
}
@article{newman2016equivalence,
title={Equivalence between modularity optimization and maximum likelihood methods for community detection},
author={Newman, Mark EJ},
journal={Physical Review E},
volume={94},
number={5},
pages={052315},
year={2016},
publisher={APS}
}
@article{peel2017ground,
title={The ground truth about metadata and community detection in networks},
author={Peel, Leto and Larremore, Daniel B and Clauset, Aaron},
journal={Science Advances},
volume={3},
number={5},
pages={e1602548},
year={2017},
publisher={American Association for the Advancement of Science}
}
@article{brandes2007modularity,
title={On modularity clustering},
author={Brandes, Ulrik and Delling, Daniel and Gaertler, Marco and Gorke, Robert and Hoefer, Martin and Nikoloski, Zoran and Wagner, Dorothea},
journal={IEEE transactions on knowledge and data engineering},
volume={20},
number={2},
pages={172--188},
year={2007},
publisher={IEEE}
}
@article{shannon1948mathematical,
title={A mathematical theory of communication},
author={Shannon, Claude Elwood},
journal={The Bell system technical journal},
volume={27},
number={3},
pages={379--423},
year={1948},
publisher={Nokia Bell Labs}
}
@book{cover2006elements,
title={Elements of information theory},
author={Cover, Thomas M. and Thomas, Joy A},
year={2006},
publisher={Wiley-Interscience}
}
@article{peixoto2019bayesian,
title={Bayesian stochastic blockmodeling},
author={Peixoto, Tiago P},
journal={Advances in network clustering and blockmodeling},
pages={289--332},
year={2019},
publisher={Wiley Online Library}
}
@article{brin1998anatomy,
title = {The Anatomy of a Large-Scale Hypertextual Web Search Engine},
author = {Brin, Sergey and Page, Lawrence},
year = {1998},
journal = {Computer Networks and ISDN Systems},
volume = {30},
number = {1-7},
pages = {107--117},
publisher = {{Elsevier}}
}
@article{bak2021stewardship,
title={Stewardship of global collective behavior},
author={Bak-Coleman, Joseph B and Alfano, Mark and Barfuss, Wolfram and Bergstrom, Carl T and Centeno, Miguel A and Couzin, Iain D and Donges, Jonathan F and Galesic, Mirta and Gersick, Andrew S and Jacquet, Jennifer and others},
journal={Proceedings of the National Academy of Sciences},
volume={118},
number={27},
pages={e2025764118},
year={2021},
publisher={National Acad Sciences}
}
@inproceedings{liben2003link,
title={The link prediction problem for social networks},
author={Liben-Nowell, David and Kleinberg, Jon},
booktitle={Proceedings of the twelfth international conference on Information and knowledge management},
pages={556--559},
year={2003}
}
@book{sahimi2023applications,
title={Applications of Percolation Theory},
author={Sahimi, Muhammad},
year={2023},
publisher={Springer}
}
@article{porter2016dynamical,
title={Dynamical systems on networks},
author={Porter, Mason A and Gleeson, James P},
journal={Frontiers in Applied Dynamical Systems: Reviews and Tutorials},
volume={4},
pages={29},
year={2016},
publisher={Springer}
}
@article{Landry_XGI_2023,
author = {Landry, Nicholas W. and Lucas, Maxime and Iacopini, Iacopo and Petri, Giovanni and Schwarze, Alice and Patania, Alice and Torres, Leo},
title = {{XGI: A Python package for higher-order interaction networks}},
doi = {10.21105/joss.05162},
journal = {Journal of Open Source Software},
publisher = {The Open Journal},
year = {2023},
month = may,
volume = {8},
number = {85},
pages = {5162},
url = {https://doi.org/10.21105/joss.05162},
}
@incollection{dijkstra2022note,
title={A note on two problems in connexion with graphs},
author={Dijkstra, Edsger W},
booktitle={Edsger Wybe Dijkstra: his life, work, and legacy},
pages={287--290},
year={1956}
}
@book{rosen2011discrete,
title={Discrete Mathematics and Its Applications (7th Edition)},
author={Rosen, Kenneth H},
publisher={William C Brown Publishing},
year={2011}
}
@article{newmanModularityCommunityStructure2006,
title = {Modularity and Community Structure in Networks},
author = {Newman, Mark E. J.},
year = {2006},
month = jun,
journal = {Proceedings of the National Academy of Sciences},
volume = {103},
number = {23},
pages = {8577--8582},
issn = {0027-8424, 1091-6490},
doi = {10.1073/pnas.0601602103},
urldate = {2025-02-21},
abstract = {Many networks of interest in the sciences, including social networks, computer networks, and metabolic and regulatory networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure is one of the outstanding issues in the study of networked systems. One highly effective approach is the optimization of the quality function known as ``modularity'' over the possible divisions of a network. Here I show that the modularity can be expressed in terms of the eigenvectors of a characteristic matrix for the network, which I call the modularity matrix, and that this expression leads to a spectral algorithm for community detection that returns results of demonstrably higher quality than competing methods in shorter running times. I illustrate the method with applications to several published network data sets.},
langid = {english},
file = {/Users/philchodrow/Zotero/storage/PRY494E9/Newman - 2006 - Modularity and community structure in networks.pdf}
}
@article{fire2012organization,
title={Organization mining using online social networks},
author={Fire, Michael and Puzis, Rami},
journal={Networks and Spatial Economics},
pages={1--34},
year={2012},
publisher={Springer}
}
@article{ramani2019coin,
title={Coin-flipping, ball-dropping, and grass-hopping for generating random graphs from matrices of edge probabilities},
author={Ramani, Arjun S and Eikmeier, Nicole and Gleich, David F},
journal={SIAM Review},
volume={61},
number={3},
pages={549--595},
year={2019},
publisher={SIAM}
}