-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscpt_prepare_plotting_main.py
435 lines (355 loc) · 17.1 KB
/
scpt_prepare_plotting_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import mayavi
import abagen
import neuromaps
import fcn_megfmri
import numpy as np
import pandas as pd
import seaborn as sns
import sklearn.metrics
import scipy.stats as stats
import matplotlib.pyplot as plt
from statsmodels.stats import multitest
from neuromaps.parcellate import Parcellater
from sklearn.preprocessing import MinMaxScaler
# path to ready-to-plot data
outpath = '../../data/figures_data/'
# load data
megdata = np.load('../../data/groupFCmeg_aec_orth_schaefer400.npy.npz')
avgFCmeg = megdata['megfc']
bands = megdata['bands']
avgFCmri = np.load('../../data/groupFCmri_schaefer400.npy')
# load schaefer info
schaeferpath = '../../data/schaefer/'
lhlabels = (schaeferpath + 'HCP/fslr32k/gifti/' +
'Schaefer2018_400Parcels_7Networks_order_lh.label.gii')
rhlabels = (schaeferpath + 'HCP/fslr32k/gifti/' +
'Schaefer2018_400Parcels_7Networks_order_rh.label.gii')
labelinfo = np.loadtxt(schaeferpath + 'HCP/fslr32k/gifti/' +
'Schaefer2018_400Parcels_7Networks_order_info.txt',
dtype='str', delimiter='tab')
rsnlabels = []
for row in range(0, len(labelinfo), 2):
rsnlabels.append(labelinfo[row].split('_')[2])
# load coordinates and estimate distance
coor = np.loadtxt(schaeferpath + '/Schaefer_400_centres.txt', dtype=str)
coor = coor[:, 1:].astype(float)
distance = sklearn.metrics.pairwise_distances(coor)
# get custom colormaps
cmap_seq, cmap_seq_r, megcmap, megcmap2, categ_cmap = fcn_megfmri.make_colormaps()
plt.rcParams['svg.fonttype'] = 'none'
plt.rcParams['font.sans-serif'] = ['Myriad Pro']
plt.rcParams['font.size'] = 18.0
####################################
# save connectivity data as excel and csv files
####################################
# save band-limited MEG connectivity as different sheets of the same excel file
excelFilePath = outpath + 'Fig1/Fig1_A_B_groupFCmeg_aec_orth_schaefer400.xlsx'
# creat list of names for regions
regionList = [f'region {i}' for i in np.arange(400)+1]
# write meg connectivity to excel
with pd.ExcelWriter(excelFilePath) as writer:
for n, megFC in enumerate(avgFCmeg):
df_meg = pd.DataFrame(megFC, index=regionList, columns=regionList)
df_meg.to_excel(writer, sheet_name=bands[n])
# save list of bands
bands_ordering = pd.DataFrame(bands, columns=['bandOrder'])
bands_ordering.to_csv(outpath + 'Fig1/Fig1_A_bands_ordering.csv', index=False)
# save fMRI connectivity as csv file
df_fmri = pd.DataFrame(avgFCmri, index=regionList, columns=regionList)
df_fmri.to_csv(outpath + 'Fig1/Fig1_A_B_groupFCmri_schaefer400.csv')
####################################
# linear regression
####################################
# regional model
rsq, full_pred_fc, corrVal = fcn_megfmri.regional_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
# save predicted fc with regional model
df_pred_fc = pd.DataFrame(full_pred_fc, index=regionList, columns=regionList)
df_pred_fc.to_csv(outpath + '/Fig1/Fig1_C_predicted_fc_regional.csv')
# save R2 from regional model
df_rsq = pd.DataFrame(rsq, columns=['rsq'])
df_rsq.to_csv(outpath + '/Fig1/Fig1_E_rsq_regional.csv', index=False)
df_rsq.to_csv(outpath + '/Fig2/Fig2_A_rsq_regional.csv', index=False)
# save upper triangles of predicted FC from regional model and empirical FC
nnode = full_pred_fc.shape[0]
masku = np.mask_indices(nnode, np.triu, 1)
df_pred_fc_uppertri = pd.DataFrame(full_pred_fc[masku],
columns=['predictedFC_regional'])
df_pred_fc_uppertri['empiricalFC'] = avgFCmri[masku]
df_pred_fc_uppertri.to_csv(outpath +
'Fig1/Fig1_C_predicted_fc_regional_uppertri.csv',
index=False)
# global model
rsq_g, full_pred_fc_g, corrVal_g = fcn_megfmri.global_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
# save predicted fc with regional model
df_pred_fc = pd.DataFrame(full_pred_fc_g, index=regionList, columns=regionList)
df_pred_fc.to_csv(outpath + 'Fig1/Fig1_D_predicted_fc_global.csv')
# save R2 from regional model (this is only one value)
with open(outpath + 'Fig1/Fig1_E_rsq_global.txt', 'w') as f:
f.write('%f' % rsq_g)
# save upper triangles of predicted FC from regional model and empirical FC
nnode = full_pred_fc_g.shape[0]
masku = np.mask_indices(nnode, np.triu, 1)
df_pred_fc_uppertri = pd.DataFrame(full_pred_fc_g[masku],
columns=['predictedFC_global'])
df_pred_fc_uppertri['empiricalFC'] = avgFCmri[masku]
df_pred_fc_uppertri.to_csv(outpath +
'Fig1/Fig1_D_predicted_fc_global_uppertri.csv',
index=False)
####################################
# functional hierarchy
####################################
# use fmri data from same subjects to get fc gradient
grads, lambdas = fcn_megfmri.get_gradients(avgFCmri, ncomp=10)
ncomp = 0
fcgrad = grads[:, ncomp]
df_fcgrad = pd.DataFrame(fcgrad, columns=['fMRI FC Grad1'])
df_fcgrad['rsq'] = rsq
df_fcgrad.to_csv(outpath + '/Fig2/Fig2_B_fcgrad1_rsq.csv', index=False)
####################################
# intrinsic networks
####################################
network_labels = rsnlabels
network_score = pd.DataFrame(data={'R-squared': rsq,
'rsn': network_labels})
network_score.to_csv(outpath + 'Fig2/Fig2_C_intrinsic_network_rsq.csv',
index=False)
####################################
# BigBrain profile intensity
####################################
# load BigBrain data and normalize them
profileIntensity = np.load('../../data/profileIntensity_schaefer400.npy')
scaler = MinMaxScaler()
profileIntensity_norm = 1-scaler.fit_transform(profileIntensity.T)
df_profileIntensity_norm = pd.DataFrame(profileIntensity_norm)
df_profileIntensity_norm.to_csv(outpath +
'Fig2/Fig2_D_normalized_intensity_profile.csv',
index=False)
# correlate normalized intensity profile data and regional R2 (spin test)
corr_rsq_intensity = np.zeros((1, 50))
pvalspin_rsq_intensity = np.zeros((1, 50))
for surf in range(50):
x = stats.zscore(profileIntensity_norm[:, surf])
y = rsq
corr = stats.spearmanr(x, y)
pvalspin = fcn_megfmri.get_spinp(x, y, corrval=corr[0], nspin=10000,
corrtype='spearman',
lhannot=lhlabels, rhannot=rhlabels)
corr_rsq_intensity[0, surf] = corr[0]
pvalspin_rsq_intensity[0, surf] = pvalspin
# obtain FDR corrected p-values
multicomp = multitest.multipletests(pvalspin_rsq_intensity.squeeze(),
alpha=0.05, method='fdr_bh')
profileintensity_corr = pd.DataFrame(corr_rsq_intensity.flatten(),
columns=['corrVal'])
profileintensity_corr['pvalSpin'] = pvalspin_rsq_intensity.flatten()
profileintensity_corr['fdr_pvalSpin'] = multicomp[1]
profileintensity_corr.to_csv(outpath + 'Fig2/Fig2_D_profileintensity_rsq_corr.csv',
index=False)
####################################
# NPY1R gene
####################################
# to load the data without running abagen
npy1r_exp = np.load('../../data/npy1r_exp.npy')
df_npy1r = pd.DataFrame(npy1r_exp, columns=['NPY1R'])
df_npy1r['rsq'] = rsq
df_npy1r.to_csv(outpath + 'Fig2/Fig2_E_npy1r_expression.csv', index=False)
####################################
# dominance analysis
####################################
# estimate band-specific contribution to R2 for each node
percentDominance_adj = fcn_megfmri.get_percent_dominance(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
# percent dominance boxplots
for n, band in enumerate(bands):
if n == 0:
bandContrib = pd.DataFrame(data={'percent': percentDominance_adj[:, n],
'band': [band] * 400})
else:
temp = pd.DataFrame(data={'percent': percentDominance_adj[:, n],
'band': [band] * 400})
bandContrib = pd.concat([bandContrib, temp], axis=0)
bandContrib['percent'] = bandContrib['percent'].astype(float)
bandContrib.to_csv(outpath + 'Fig3/Fig3_A_bandContribution_dominanceAnalysis.csv',
index=False)
bands_ordering = pd.DataFrame(bands, columns=['bandOrder'])
bands_ordering.to_csv(outpath + 'Fig3/Fig3_A_bands_ordering.csv', index=False)
df_percentDominance_adj = pd.DataFrame(percentDominance_adj, columns=bands)
df_percentDominance_adj.to_csv(outpath + 'Fig3/Fig3_D_percentDominance.csv',
index=False)
####################################
# percent dominance in intrinsic networks
####################################
percentDominancrsn = pd.DataFrame(percentDominance_adj, columns=bands)
percentDominancrsn['rsn'] = rsnlabels
percentDominancrsn.to_csv(outpath + 'Fig3/Fig3_B_bandContribution_rsn.csv',
index=False)
bandrsncontrib = []
for band in bands:
banddata = percentDominancrsn[band]
tempdf = pd.DataFrame(banddata, columns=[band])
tempdf['rsn'] = percentDominancrsn['rsn']
meanrsnContrib = tempdf.groupby(['rsn']).mean()
bandrsncontrib.append(meanrsnContrib)
orig_order = list(meanrsnContrib.index)
bandrsncontrib = np.array(bandrsncontrib).squeeze()
new_order = ['Default', 'Cont', 'Limbic', 'SalVentAttn', 'DorsAttn',
'SomMot', 'Vis']
new_order_idx = [orig_order.index(rsnname) for rsnname in new_order]
reordered_bandrsncontrib = bandrsncontrib[:, new_order_idx]
df_reordered_bandrsncontrib = pd.DataFrame(reordered_bandrsncontrib, index=bands,
columns=new_order)
df_reordered_bandrsncontrib.to_csv(outpath + 'Fig3/Fig3_B_bandContribution_rsn.csv')
####################################
# maximum contributing band
####################################
# identify maximum contributing band for each node
nnode = len(percentDominance_adj)
maxContrib = []
for node in range(nnode):
maxContrib.append(bands[np.argmax(percentDominance_adj[node, :])])
maxContribidx = np.zeros((nnode, 1))
for n, band in enumerate(bands):
idx = np.where(np.array(maxContrib) == band)[0]
maxContribidx[idx] = n
maxContribBand = pd.DataFrame(maxContrib, columns=['band'])
maxContribBand['bandIdx'] = maxContribidx
maxContribBand.to_csv(outpath + 'Fig3/Fig3_C_maximumContributingBand.csv',
index=False)
####################################
# linear regression: distance-dependant CV
####################################
# regional model with distance dependent cross-validation
train_corr, test_corr = fcn_megfmri.regional_lreg_cv(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
coor=coor,
correct_dist=False,
train_pct=0.75,
verbose=True)
distance_dep_cv = pd.DataFrame(train_corr, columns=['trainCorr'])
distance_dep_cv['testCorr'] = test_corr
distance_dep_cv.to_csv(outpath + 'Fig4/Fig4_A_regional_cv.csv', index=False)
####################################
# linear regression: subj-level (leave-one-subject out)
####################################
# subject data are not public
subjFCmri = np.load('../../data/subjFCmri_schaefer400.npy')
subjFCmeg = np.load('../../data/subjFCmeg_aec_orth_schaefer400.npy')
train_corr, test_corr = fcn_megfmri.regional_lreg_subj(subjmegdata=subjFCmeg,
subjfmridata=subjFCmri,
distance=distance,
correct_dist=False,
verbose=True)
subj_cv = pd.DataFrame(train_corr, columns=['trainCorr'])
subj_cv['testCorr'] = test_corr
subj_cv.to_csv(outpath + 'Fig4/Fig4_B_subj_cv.csv', index=False)
####################################
# linear regression: distance correction
####################################
# load data
megdata = np.load('../../data/groupFCmeg_aec_orth_schaefer400.npy.npz')
avgFCmeg = megdata['megfc']
bands = megdata['bands']
# regional model
rsq_new, _, _ = fcn_megfmri.regional_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=True,
adjusted_rsq=True)
df_distcorrect = pd.DataFrame(np.array(rsq), columns=['orig_rsq'])
df_distcorrect['new_rsq'] = rsq_new
df_distcorrect['fcgrad'] = fcgrad
df_distcorrect.to_csv(outpath + 'Fig4/Fig4_C_distcorrect.csv', index=False)
####################################
# linear regression: without spatial leakage correction
####################################
# load data
megdata = np.load('../../data/groupFCmeg_aec_schaefer400.npy.npz')
avgFCmeg = megdata['megfc']
bands = megdata['bands']
# regional model
rsq_new, _, _ = fcn_megfmri.regional_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
df_noleakage = pd.DataFrame(np.array(rsq), columns=['orig_rsq'])
df_noleakage['new_rsq'] = rsq_new
df_noleakage['fcgrad'] = fcgrad
df_noleakage.to_csv(outpath + 'Fig4/Fig4_D_noleakagecorrection.csv', index=False)
####################################
# linear regression: sLoreta source reconstruction
####################################
# load data
megdata = np.load('../../data/groupFCmeg_aec_orth_schaefer400_sloreta.npy.npz')
avgFCmeg = megdata['megfc']
bands = megdata['bands']
# regional model
rsq_new, _, _ = fcn_megfmri.regional_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
df_sloreta = pd.DataFrame(np.array(rsq), columns=['orig_rsq'])
df_sloreta['new_rsq'] = rsq_new
df_sloreta['fcgrad'] = fcgrad
df_sloreta.to_csv(outpath + 'Fig4/Fig4_E_sloreta.csv', index=False)
####################################
# linear regression: PLV connectivity
####################################
# load data
megdata = np.load('../../data/groupFCmeg_plv_schaefer400.npy.npz')
avgFCmeg = megdata['megfc']
bands = megdata['bands']
# regional model
rsq_new, _, _ = fcn_megfmri.regional_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
df_plv = pd.DataFrame(np.array(rsq), columns=['orig_rsq'])
df_plv['new_rsq'] = rsq_new
df_plv['fcgrad'] = fcgrad
df_plv.to_csv(outpath + 'Fig4/Fig4_F_plv.csv', index=False)
####################################
# linear regression: Schaefer-200 parcellation
####################################
# load data and calculate everything for Schaefer-200
megdata = np.load('../../data/groupFCmeg_aec_orth_schaefer200.npy.npz')
avgFCmeg = megdata['megfc']
bands = megdata['bands']
avgFCmri = np.load('../../data/groupFCmri_schaefer200.npy')
# load schaefer info
schaeferpath = '../../data/schaefer/'
lhlabels = (schaeferpath + 'HCP/fslr32k/gifti/' +
'Schaefer2018_200Parcels_7Networks_order_lh.label.gii')
rhlabels = (schaeferpath + 'HCP/fslr32k/gifti/' +
'Schaefer2018_200Parcels_7Networks_order_rh.label.gii')
# load coordinates and estimate distance
coor = np.loadtxt(schaeferpath + '/Schaefer_200_centres.txt', dtype=str)
coor = coor[:, 1:].astype(float)
distance = sklearn.metrics.pairwise_distances(coor)
# regional model
rsq_new, _, _ = fcn_megfmri.regional_lreg(megdata=avgFCmeg,
fmridata=avgFCmri,
distance=distance,
correct_dist=False,
adjusted_rsq=True)
# use fmri data from same subjects to get fc gradient
grads, lambdas = fcn_megfmri.get_gradients(avgFCmri, ncomp=10)
ncomp = 0
fcgrad = grads[:, ncomp]
df_schefer200= pd.DataFrame(rsq_new, columns=['new_rsq'])
df_schefer200['fcgrad'] = fcgrad
df_schefer200.to_csv(outpath + 'Fig4/Fig4_G_schaefer200.csv', index=False)