forked from birdumbrella/nano-ID
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural.network.R
87 lines (43 loc) · 2.04 KB
/
neural.network.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
### prewd ###
prewd = file.path(getwd(),"...")
### libraries ###
library(foreach)
library(doParallel)
library(rhdf5)
library(keras)
library(dplyr)
### setwd ###
setwd(file.path(prewd,"..."))
### number of cores ###
mc.cores = detectCores()
### basic objects ###
basic.objects = c(ls(),"basic.objects","fast5.file","fast5.files")
### load objects ###
load(file.path("...","fast5.files.RData"))
objects = list.files(file.path(prewd,"BasicObjects"))
for (object in objects){source(file.path(prewd,"BasicObjects",object))}
### gather data for neural network ###
dir.create(file.path("..."))
load(file.path("...","read.based.mismatch.identification.RData"))
load(file.path("...","traces.RData"))
load(file.path("...","traces.add.on.RData"))
traces = cbind(traces,traces.add.on[rownames(traces),])
load(file.path("...","raw.signal.RData"))
load(file.path("...","raw.signal.five.mers.RData"))
load(file.path("...","raw.signal.five.mers.add.on.RData"))
raw.signal.five.mers = cbind(raw.signal.five.mers,raw.signal.five.mers.add.on[rownames(raw.signal.five.mers),])
read.based.parameters = cbind(read.based.mismatch.identification,traces[rownames(read.based.mismatch.identification),],raw.signal[rownames(read.based.mismatch.identification),],raw.signal.five.mers[rownames(read.based.mismatch.identification),])
colnames(read.based.parameters) = paste0("P",substr(rep("0000",ncol(read.based.parameters)),1,4-nchar(1:ncol(read.based.parameters))),1:ncol(read.based.parameters),"-",colnames(read.based.parameters))
save(read.based.parameters,file=file.path("...","read.based.parameters.RData"))
rm(list = setdiff(ls(),basic.objects))
gc()
### neural network ###
load(file.path("...","read.based.parameters.RData"))
read.based.parameters[is.na(read.based.parameters)] = 0
train.model = load_model_hdf5(filepath = file.path("...","NeuralNetwork","train.model.h5"))
dir.create(file.path("..."))
# classification
pred = predict_classes(train.model,read.based.parameters)
names(pred) = rownames(read.based.parameters)
rm(list = setdiff(ls(),basic.objects))
gc()