-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathextract_rankings_coco.py
91 lines (76 loc) · 3.22 KB
/
extract_rankings_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
PCME
Copyright (c) 2021-present NAVER Corp.
MIT license
"""
import datetime
import fire
import torch
from logger import PythonLogger
from config import parse_config
from datasets import prepare_coco_dataloaders
from engine import COCOEvaluator
from engine import COCORetrievalEngine
@torch.no_grad()
def main(config_path,
dataset_root,
model_path,
dump_to,
vocab_path='datasets/vocabs/coco_vocab.pkl',
cache_dir='/home/.cache/torch/checkpoints',
dump_features_to=None,
split='te',
topk=-1,
**kwargs):
dt = datetime.datetime.now()
config = parse_config(config_path,
strict_cast=False,
model__cache_dir=cache_dir,
**kwargs)
logger = PythonLogger()
logger.log('preparing data loaders..')
dataloaders, vocab = prepare_coco_dataloaders(config.dataloader,
dataset_root, vocab_path)
engine = COCORetrievalEngine()
engine.set_logger(logger)
evaluator = COCOEvaluator(eval_method='matching_prob',
verbose=True,
eval_device='cuda',
n_crossfolds=5)
engine.create(config, vocab.word2idx, evaluator)
engine.load_models(model_path,
load_keys=['model', 'criterion'])
engine.set_gallery_from_dataloader(dataloaders[split])
if dump_features_to:
torch.save({
'images': engine.image_features,
'captions': engine.caption_features,
'image_ids': engine.image_ids,
'image_sigmas': engine.image_sigmas,
'image_classes': engine.image_classes,
'caption_ids': engine.caption_ids,
'caption_sigmas': engine.caption_sigmas,
'caption_classes': engine.caption_classes,
}, dump_features_to)
i2t_retrieved_items = engine.retrieve_from_features(engine.image_features,
q_modality='image',
q_ids=engine.image_ids,
q_sigmas=engine.image_sigmas,
topk=topk,
batch_size=config.dataloader.eval_batch_size,
)
t2i_retrieved_items = engine.retrieve_from_features(engine.caption_features,
q_modality='caption',
q_ids=engine.caption_ids,
q_sigmas=engine.caption_sigmas,
topk=topk,
batch_size=config.dataloader.eval_batch_size,
)
data = {
'i2t': i2t_retrieved_items,
't2i': t2i_retrieved_items,
}
torch.save(data, dump_to)
logger.log('takes {}'.format(datetime.datetime.now() - dt))
if __name__ == '__main__':
fire.Fire(main)