forked from 27182812/ChatGLM-LLaMA-chinese-insturct
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataprocess.py
executable file
·62 lines (52 loc) · 2.26 KB
/
dataprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
import json
from tqdm import tqdm
import datasets
import transformers
def format_example(example: dict) -> dict:
context = f"Instruction: {example['instruction']}\n"
if example.get("input"):
context += f"Input: {example['input']}\n"
context += "Answer: "
target = example["output"]
return {"context": context, "target": target}
def preprocess(tokenizer, example, max_seq_length):
prompt = example["context"]
target = example["target"]
prompt_ids = tokenizer.encode(prompt, max_length=max_seq_length, truncation=True)
target_ids = tokenizer.encode(
target, max_length=max_seq_length, truncation=True, add_special_tokens=False
)
input_ids = prompt_ids + target_ids + [tokenizer.eos_token_id]
return {"input_ids": input_ids, "seq_len": len(prompt_ids)}
def read_jsonl(path, max_seq_length, skip_overlength=False):
tokenizer = transformers.AutoTokenizer.from_pretrained(
"THUDM/chatglm-6b", trust_remote_code=True
)
with open(path, "r") as f:
for line in tqdm(f.readlines()):
example = json.loads(line)
feature = preprocess(tokenizer, example, max_seq_length)
if skip_overlength and len(feature["input_ids"]) > max_seq_length:
continue
feature["input_ids"] = feature["input_ids"][:max_seq_length]
yield feature
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default="data/zh-data01.json")
parser.add_argument("--jsonl_path", type=str, default="data/zh-data01.jsonl")
parser.add_argument("--save_path", type=str, default="data/zh-data01")
parser.add_argument("--max_seq_length", type=int, default=320)
parser.add_argument("--skip_overlength", type=bool, default=False)
args = parser.parse_args()
with open(args.data_path) as f:
examples = json.load(f)
with open(args.jsonl_path, 'w') as f:
for example in tqdm(examples, desc="formatting.."):
f.write(json.dumps(format_example(example)) + '\n')
dataset = datasets.Dataset.from_generator(
lambda: read_jsonl(args.jsonl_path, args.max_seq_length, args.skip_overlength)
)
dataset.save_to_disk(args.save_path)
if __name__ == "__main__":
main()