Skip to content

PyTorch implementation of Monte Carlo policy gradient reinforcement

Notifications You must be signed in to change notification settings

naivoder/REINFORCE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

REINFORCE

Overview

This repository contains a PyTorch implementation of Monte Carlo policy gradient reinforcement (REINFORCE) for discrete action spaces.

🚧 🛠️👷‍♀️ 🛑 Under construction...

Setup

Required Dependencies

Install the required dependencies using the following command:

pip install -r requirements.txt

Running the Algorithm

You can run the algorithm on any supported Gymnasium environment. For example:

python main.py --env 'LunarLander-v2'

CartPole-v1

MountainCar-v0

Acrobot-v1

LunarLander-v2

Asteroids-v5

Breakout-v5

BeamRider-v5

Centipede-v5

DonkeyKong-v5

Frogger-v5

KungFuMaster-v5

MarioBros-v5

SpaceInvaders-v5

Tetris-v5

Gopher-v5

MsPacman-v5

Pong-v5

Seaquest-v5

Acknowledgements

Special thanks to Phil Tabor, an excellent teacher! I highly recommend his Youtube channel.

Releases

No releases published

Packages

No packages published

Languages