-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
283 lines (247 loc) · 9.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Copyright (c) NAAMII, Nepal.
# For more information, visit https://www.naamii.org.np.
# Licensed under the GNU General Public License v3.0 (GPL-3.0).
# See https://www.gnu.org/licenses/gpl-3.0.html for details.
"""
script to train various architectures on given dataset
(defined by training and validation filepaths).
"""
import argparse
import os
import sys
from pathlib import Path
import monai.data.meta_obj as monai_meta_obj
import numpy as np
import pytorch_lightning as pl
import torch
from monai.utils.misc import set_determinism
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers.wandb import WandbLogger
from torch.optim import Adam
from torch.utils.data.dataloader import DataLoader
import wandb
import XrayTo3DShape
from XrayTo3DShape import (
AutoencoderExperiment,
BaseExperiment,
CustomAutoEncoder,
TLPredictorExperiment,
anatomy_resolution_dict,
get_anatomy_from_path,
get_dataset,
get_loss,
get_model,
get_model_config,
get_transform_from_model_name,
model_experiment_dict,
printarr,
)
np.set_printoptions(precision=2, suppress=True)
torch.set_printoptions(precision=2, sci_mode=False)
def parse_training_arguments():
"""reads various options from commandline
Returns:
dict: (key,value) pairs of option and corresponding value
"""
parser = argparse.ArgumentParser()
parser.add_argument("trainpaths")
parser.add_argument("valpaths")
parser.add_argument("--model_name")
parser.add_argument("--loss")
parser.add_argument("--size", type=int)
parser.add_argument("--res", type=float)
parser.add_argument("--batch_size", type=int)
parser.add_argument("--lr", type=float)
parser.add_argument("--epochs", type=int, default=-1)
parser.add_argument("--steps", default=5000, type=int)
parser.add_argument("--visualize", action="store_true", default=False)
parser.add_argument("--debug", default=False, action="store_true")
parser.add_argument("--tags", nargs="*")
parser.add_argument("--wandb-project", default="2d-3d-benchmark")
parser.add_argument("--lambda_bce", default=1.0)
parser.add_argument("--lambda_dice", default=1.0)
parser.add_argument("--make_sparse", default=False, action="store_true")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--accelerator", default="gpu")
parser.add_argument("--num_workers", default=4, type=int)
parser.add_argument("--dropout", default=False, action="store_true")
parser.add_argument("--load_autoencoder_from", default="", type=str)
parser.add_argument('--load_model_from', default=None,type=str)
parser.add_argument("--top_k_checkpoints", default=3, type=int)
parser.add_argument("--precision", default=32, type=int)
args = parser.parse_args()
if args.precision == 16:
args.precision = "bf16"
return args
def update_args(args):
"""update sensible values for remaining arguments using
the argument values provided. Perform sanity check of arguments.
Args:
args (dict): (option,value) pair
"""
args.anatomy = get_anatomy_from_path(args.trainpaths)
# add dropout to tag if exists
# if args.dropout:
# args.tags.append('dropout')
if 'dropout' in args.tags:
args.dropout = True
# # assert the resolution and size agree for each anatomy
# orig_size, orig_res = anatomy_resolution_dict[args.anatomy]
# assert int(args.size * args.res) == int(
# orig_size * orig_res
# ), f"({args.size},{args.res}) does not match ({orig_size},{orig_res})"
args.experiment_name = model_experiment_dict[args.model_name]
args.precision = 16 if args.gpu == 0 else 32 # use bfloat16 on RTX 3090
if __name__ == "__main__":
args = parse_training_arguments()
update_args(args)
# print commandline arguments: all print outputs are logged by wandb
print(sys.argv)
print(args)
SEED = 12345
lr = args.lr
NUM_EPOCHS = args.epochs
IMG_SIZE = args.size
ANATOMY = args.anatomy
LOSS_NAME = args.loss
IMG_RESOLUTION = args.res
BATCH_SIZE = args.batch_size
WANDB_PROJECT = args.wandb_project
model_name = args.model_name
experiment_name = args.experiment_name
WANDB_EXPERIMENT_GROUP = args.model_name
WANDB_TAGS = [WANDB_EXPERIMENT_GROUP, ANATOMY, LOSS_NAME, *args.tags]
set_determinism(seed=SEED)
seed_everything(seed=SEED)
train_transforms = get_transform_from_model_name(
model_name, image_size=IMG_SIZE, resolution=IMG_RESOLUTION
)
train_loader = DataLoader(
get_dataset(args.trainpaths, transforms=train_transforms),
batch_size=BATCH_SIZE,
num_workers=args.num_workers,
shuffle=True,
drop_last=True,
)
val_loader = DataLoader(
get_dataset(args.valpaths, transforms=train_transforms),
batch_size=BATCH_SIZE,
num_workers=args.num_workers,
shuffle=False,
drop_last=False,
)
model = get_model(
model_name=args.model_name, image_size=IMG_SIZE, dropout=args.dropout
)
loss_function = get_loss(
loss_name=LOSS_NAME,
anatomy=ANATOMY,
image_size=IMG_SIZE,
lambda_bce=args.lambda_bce,
lambda_dice=args.lambda_dice,
device=f"cuda:{args.gpu}",
)
optimizer = Adam(model.parameters(), lr)
# load pytorch lightning module
experiment: BaseExperiment = getattr(XrayTo3DShape.experiments, experiment_name)(
model, optimizer, loss_function, BATCH_SIZE
)
if experiment_name == CustomAutoEncoder.__name__:
experiment.make_sparse = args.make_sparse
if experiment_name == TLPredictorExperiment.__name__:
ae_model = get_model(model_name=CustomAutoEncoder.__name__, image_size=IMG_SIZE)
if Path(args.load_autoencoder_from).exists():
checkpoint = torch.load(args.load_autoencoder_from)
else:
raise ValueError(
f"autoencoder checkpoint {args.load_autoencoder_from} does not exist"
)
for key in list(checkpoint["state_dict"].keys()):
# model.layer1.conv1 -> layer1.conv1
modified_key = key.replace("model.", "")
value = checkpoint["state_dict"].pop(key)
checkpoint["state_dict"][modified_key] = value
if "loss_function.pos_weight" in checkpoint["state_dict"]:
checkpoint["state_dict"].pop("loss_function.pos_weight")
ae_model.load_state_dict(checkpoint["state_dict"])
experiment.set_decoder(ae_model) # type: ignore
if args.load_model_from:
if Path(args.load_model_from).exists():
checkpoint = torch.load(args.load_model_from)
experiment.load_state_dict(checkpoint['state_dict'])
print(f'loaded model checkpoint from {args.load_model_from}')
else:
raise ValueError(f'could not load model checkpoint from {args.load_model_from}')
# run a sanity check
batch = next(iter(train_loader))
if args.experiment_name != AutoencoderExperiment.__name__:
seg_meta_dict = experiment.get_segmentation_meta_dict(batch)
batch_input, batch_output = experiment.get_input_output_from_batch(batch)
pred_logits = experiment.model(*batch_input)
if experiment_name == AutoencoderExperiment.__name__:
pred_logits, latent_vec = pred_logits
if experiment_name == TLPredictorExperiment.__name__:
pred_logits = ae_model.latent_vec_decode(pred_logits) # type: ignore
loss = experiment.loss_function(pred_logits, batch_output).item() # type: ignore
input_zero = batch_input[0]
printarr(pred_logits, batch_output, input_zero, loss)
print(
f"training samples {len(train_loader.dataset)} validation samples {len(val_loader.dataset)}"
)
print(f"Track meta data : {monai_meta_obj.get_track_meta()}")
if args.debug:
sys.exit()
# loggers
wandb_logger = WandbLogger(
save_dir="runs/",
project=WANDB_PROJECT,
group=WANDB_EXPERIMENT_GROUP,
tags=WANDB_TAGS,
)
wandb_logger.watch(model, log_graph=False)
MODEL_CONFIG = get_model_config(model_name, IMG_SIZE)
# save hyperparameters
HYPERPARAMS = {
"IMG_SIZE": IMG_SIZE,
"RESOLUTION": IMG_RESOLUTION,
"BATCH_SIZE": BATCH_SIZE,
"LR": lr,
"SEED": SEED,
"ANATOMY": ANATOMY,
"MODEL_NAME": model_name,
"LOSS": LOSS_NAME,
"EXPERIMENT_NAME": experiment_name,
}
HYPERPARAMS.update(MODEL_CONFIG)
wandb_logger.log_hyperparams(HYPERPARAMS)
CHECKPOINT_FILENAME = (
"epoch={epoch}-step={step}-val_loss={val/loss:.2f}"
if experiment_name == CustomAutoEncoder.__name__
else "epoch={epoch}-step={step}-val_dice={val/dice:.2f}"
)
checkpoint_callback = ModelCheckpoint(
# dirpath=f'runs/{WANDB_PROJECT}/',
monitor="val/loss",
mode="min",
save_last=True,
save_top_k=args.top_k_checkpoints,
filename=CHECKPOINT_FILENAME,
auto_insert_metric_name=False,
)
trainer = pl.Trainer(
accelerator=args.accelerator,
precision=args.precision,
max_epochs=NUM_EPOCHS,
devices=[args.gpu],
deterministic=False,
log_every_n_steps=1,
auto_select_gpus=True,
logger=[wandb_logger],
callbacks=[checkpoint_callback],
enable_progress_bar=True,
enable_checkpointing=True,
max_steps=args.steps,
)
trainer.fit(experiment, train_loader, val_loader)
wandb.finish()