-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
257 lines (198 loc) · 10.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import logging
import os
import sys
import math
import yaml
import json
import torch
import numpy as np
from datetime import datetime
from torch.utils.tensorboard import SummaryWriter
from torch.autograd import Variable
import monai
from monai.data import decollate_batch
from monai.inferers import sliding_window_inference
from monai.visualize import plot_2d_or_3d_image
from transforms import post_trans
from transforms import (
train_trans_d_aug,
val_trans_d_aug
)
from data_loader import (
data_loader_d
)
from load_models import load_model
from loss_functions import get_loss_function
from metrics import get_metric
from optimizers import get_optimizer
#load configs
with open('./config/train_config.yaml', 'r') as config_file:
config_params = yaml.safe_load(config_file)
model_config = json.dumps(config_params)
def main():
#init configs
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
base_dir = config_params["base_dir_path"]["base_dir"]
train_img_dir = config_params["data_dir_path"]["train_img_dir"]
train_msk_dir = config_params["data_dir_path"]["train_msk_dir"]
val_img_dir = config_params["data_dir_path"]["val_img_dir"]
val_msk_dir = config_params["data_dir_path"]["val_msk_dir"]
train_batch_size = config_params["training_params"]["train_batch_size"]
val_batch_size = config_params["training_params"]["val_batch_size"]
learning_rate = config_params["training_params"]["learning_rate"]
loss_function_name = config_params["training_params"]["loss_function"]
eval_metric_name = config_params["training_params"]["eval_metric"]
optim_name = config_params["training_params"]["optim"]
num_classes = config_params["training_params"]["num_classes"]
val_interval = config_params["training_params"]["val_interval"]
grad_accumulation_interval = config_params["training_params"]["grad_accumulation_interval"]
min_epoch = config_params["training_params"]["min_epoch"]
max_epoch = config_params["training_params"]["max_epoch"]
device_type = config_params["training_params"]["device_type"]
tensorboard_log_dir = config_params["logs_params"]["tensorboard_logs_params"]["tb_log_dir"]
model_save_dir = config_params["model_params"]["model_save_dir"]
model_name = config_params["model_params"]["model_name"]
model_backbone_network = config_params["model_params"]["model_backbone_network"]
last_checkpoint = config_params["model_params"]["model_last_checkpoint_path"]
use_last_checkpoint = config_params["model_params"]["use_last_checkpoint"]
remarks = config_params["remarks"]
checkds = monai.utils.misc.first(data_loader_d(train_trans_d_aug(), train_batch_size, os.path.join(base_dir, train_img_dir), os.path.join(base_dir, train_msk_dir)))
training_name = str(model_name) + "_" + str(model_backbone_network) + "_" + str(loss_function_name) + "_" + str(optim_name) + "_" + str(learning_rate) + "_" + str(train_batch_size * grad_accumulation_interval) + "_" + str(remarks) + str(datetime.now()).replace(' ', '-')
if not os.path.exists(base_dir + model_save_dir + training_name):
os.mkdir(base_dir + model_save_dir + training_name )
with open(base_dir + model_save_dir + training_name + "/" + training_name + ".json", "w") as outfile:
outfile.write(model_config)
#set device
if device_type == "gpu":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
if device == torch.device("cuda"):
print("Training running in device: " + torch.cuda.get_device_name())
elif device == torch.device("cpu"):
print("Training running in device: cpu")
else:
print("Device is neither cpu nor gpu")
#load model
model, source = load_model(model_name, model_backbone_network, device)
#training parameters
loss_function = get_loss_function(loss_function_name)
optimizer = get_optimizer(optim_name, model, float(learning_rate))
eval_metric = get_metric(eval_metric_name)
best_metric= -1
best_metric_epoch = -1
best_n_metric = [-1, -1, -1, -1, -1]
best_n_metric_epoch = [-1, -1, -1, -1, -1]
epoch_loss_values = list()
metric_values = list()
training_metric = 0
flag_train = 1
epoch = 0
count = 0
previous_metric = -math.inf
writer = SummaryWriter(base_dir + tensorboard_log_dir + training_name + '/')
if use_last_checkpoint:
checkpoint= torch.load(os.path.join(base_dir, "checkpoints/" + last_checkpoint))
epoch= checkpoint["epoch"]
model.load_state_dict(checkpoint["model_state"])
optimizer.load_state_dict(checkpoint["optim_state"])
train_loader= data_loader_d(train_trans_d_aug(), train_batch_size, os.path.join(base_dir, train_img_dir), os.path.join(base_dir, train_msk_dir))
val_loader= data_loader_d(val_trans_d_aug(), val_batch_size, os.path.join(base_dir, val_img_dir), os.path.join(base_dir, val_msk_dir))
y_threshold = Variable(torch.Tensor([0.5]).to(device))
#training loop
while (epoch < max_epoch and flag_train):
print("-" * 25)
print(f"epoch {epoch + 1}/{max_epoch}")
model.train()
epoch_loss = 0
step = 0
for batch_data in train_loader:
step += 1
inputs, masks = batch_data["img"].to(device), batch_data["msk"].to(device)
if (step - 1) % grad_accumulation_interval == 0:
optimizer.zero_grad()
outputs = model(inputs)
if source == "torch":
outputs = list(outputs.items())[0][1]
loss = loss_function(outputs, masks)
loss.backward()
if (step - 1) % grad_accumulation_interval == 0:
optimizer.step()
epoch_loss += loss.item()
eval_metric((torch.sigmoid(outputs) >= y_threshold).float() * 1, masks)
epoch_len = 1800 // train_loader.batch_size
print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
writer.add_scalar("train_loss", loss.item(), epoch_len * epoch + step)
epoch_loss /= step
epoch_loss_values.append(epoch_loss)
writer.add_scalar("train_loss_per_epoch", epoch_loss, epoch + 1)
training_metric = eval_metric.aggregate().item()
eval_metric.reset()
writer.add_scalar("train mean dice", training_metric, epoch + 1)
print(f"epoch {epoch + 1} average loss: {epoch_loss: .4f}")
if (epoch + 1) % val_interval == 0:
model.eval()
with torch.no_grad():
k = 0
for val_data in val_loader:
val_images, val_masks = val_data["img"].to(device), val_data["msk"].to(device)
if source == "monai":
roi_size=(480, 480)
sw_batch_size=2
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
val_outputs = [post_trans
()(i) for i in decollate_batch(val_outputs)]
elif source == "torch":
val_outputs = model(val_images)
val_outputs = post_trans()(list(val_outputs.items())[0][1])
# compute metric for current iteration
eval_metric(y_pred=val_outputs, y=val_masks)
k = k + 1
# plot the last model output as GIF image in TensorBoard with the corresponding image and label
plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag="image")
plot_2d_or_3d_image(val_masks, epoch + 1, writer, index=0, tag="label")
plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag="output")
# aggregate the final mean dice result
metric = eval_metric.aggregate().item()
# reset the status for next validation round
eval_metric.reset()
metric_values.append(metric)
# check_metric sees if the new validation score is greater than any of the best n scores
check_metric = np.multiply(metric > np.array(best_n_metric), 1)
if np.sum(check_metric) >= 1:
break_flag = 0
for best_val_idx in range(0, len(best_n_metric)):
if metric >= best_n_metric[best_val_idx] and break_flag == 0:
for i_bv in range(best_val_idx, len(best_n_metric) - 1):
curr_idx = len(best_n_metric) + best_val_idx - i_bv
best_n_metric[curr_idx - 1] = best_n_metric[curr_idx - 2]
best_n_metric_epoch[curr_idx - 1] = best_n_metric_epoch[curr_idx - 2]
if os.path.exists(base_dir + model_save_dir + training_name + "/" + training_name + "_best_" +str(curr_idx - 2) + ".pth"):
os.rename(base_dir + model_save_dir + training_name + "/" + training_name + "_best_" + str(curr_idx - 2) + ".pth", base_dir + model_save_dir + training_name + "/" + training_name + "best" + str(curr_idx - 1) + ".pth")
best_n_metric[best_val_idx] = metric
best_n_metric_epoch[best_val_idx] = epoch + 1
best_metric = best_n_metric[0]
best_metric_epoch = best_n_metric_epoch[0]
torch.save({"model_state": model.state_dict(), "model_config":model_config,"epoch": epoch+1, "optim_state": optimizer.state_dict()}, base_dir + model_save_dir + training_name + "/" + training_name + "best" + str(best_val_idx) + ".pth")
print("saved new best metric model")
break_flag = 1
count = 0
if metric <= previous_metric:
count += 1
previous_metric = metric
torch.save({"model_state": model.state_dict(), "model_config":model_config,"epoch": epoch + 1, "optim_state": optimizer.state_dict()}, base_dir + model_save_dir + training_name + "/" + training_name + "_checkpoint.pth")
print("saved last checkpoint")
print(
"current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}".format(
epoch + 1, metric, best_metric, best_metric_epoch
)
)
writer.add_scalar("val_mean_dice", metric, epoch + 1)
writer.add_scalar("best_val_mean_dice_epoch", best_metric, epoch + 1)
writer.add_scalar("best_val_mean_dice_epoch", best_metric_epoch, epoch + 1)
epoch += 1
print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
writer.close()
if __name__ == "__main__":
main()