-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab_02.py
177 lines (134 loc) · 3.79 KB
/
lab_02.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from random import randint
def generate_matrix(n, a, b, k):
"""Generate symmetric matrix [n*n] with elements from `a` to `b`.
Main diagonal elements are `sum of the other elements in row * -1` and 10^-k added to `a11`"""
matrix = [[0] * n for i in range(n)]
for i in range(n):
for q in range(i):
matrix[i][q] = matrix[q][i] = randint(a, b)
for i in range(n):
matrix[i][i] = -1 * sum(matrix[i])
matrix1 = [i.copy() for i in matrix]
matrix[0][0] += 10 ** (-1 * k)
matrix1[0][0] += 10 ** (-1 * (k + 1))
return matrix, matrix1
def print_matrix(a):
"""Print matrix"""
n = len(a)
m = len(a[0])
for i in range(n):
for q in range(m):
print(f"{a[i][q]:>10}", end=" &")
print()
def multiply(a, b):
"""Multiply matrix `a` by vector `b`"""
n = len(a)
m = len(b)
x = [0] * n
for i in range(n):
xi = 0
for q in range(m):
xi += a[i][q] * b[q]
x[i] = xi
return x
def LDLt(m):
"""Find LDLt decomposition"""
a = [i.copy() for i in m]
n = len(a)
t = [0] * (n**2)
# transformate matrix A
for k in range(n - 1):
for i in range(k + 1, n):
t[i] = a[i][k]
a[i][k] /= a[k][k]
for j in range(k + 1, i + 1):
a[i][j] -= a[i][k] * t[j]
# find matrix L
l = [[0] * n for i in range(n)]
for i in range(n):
l[i][i] = 1
for i in range(1, n):
for j in range(i):
l[i][j] = a[i][j]
# find matrix D
d = [[0] * n for i in range(n)]
for i in range(n):
d[i][i] = a[i][i]
return (l, d, transpose(l))
def transpose(m):
"""Transpose matrix"""
a = [i.copy() for i in m]
n = len(a)
for i in range(n):
for j in range(i):
a[i][j], a[j][i] = a[j][i], a[i][j]
return a
def solve(a, b):
"""Solve A*x = b using LDLt decomposition"""
l, d, l_t = LDLt(a)
n = len(a)
x = [0] * n
# solve L*Y=b
y = [0] * n
for i in range(n):
y[i] = b[i]
for j in range(i):
y[i] -= l[i][j] * y[j]
# solve D*Lt*x= b
for i in range(n - 1, -1, -1):
x[i] = y[i] / d[i][i]
for j in range(n - 1, i, -1):
x[i] -= l[j][i] * x[j]
return x
def get_norm_of_vector(x):
"""Find the cubic norm of vector"""
return max([abs(el) for el in x])
def get_relative_error(x, x1):
"""Return relative error of x1"""
subtract = [(x[i] - x1[i]) for i in range(len(x))]
return get_norm_of_vector(subtract) / get_norm_of_vector(x)
def main():
n = 5
m = 4
k = 0
# generate matrix
A1, A2 = generate_matrix(n, -4, 0, k)
# generate vector
x = [i for i in range(m, m + n)] # range(m, m+n-1 + 1)
print("Matrix A1: ")
print_matrix(A1)
print("\nMatrix A2: ")
print_matrix(A2)
print(f"\nVector x: {x}")
# find `A * x`
b1 = multiply(A1, x)
b2 = multiply(A2, x)
print(f"\nb1 = A1 * x = {b1}")
print(f"\nb2 = A2 * x = {b2}")
# find LDLt decomposition
l1, d1, l_t1 = LDLt(A1)
l2, d2, l_t2 = LDLt(A2)
print("\nMatrix L1: ")
print_matrix(l1)
print("\nMatrix D1: ")
print_matrix(d1)
print("\nMatrix Lt1: ")
print_matrix(l_t1)
print("\nMatrix L2: ")
print_matrix(l2)
print("\nMatrix D2: ")
print_matrix(d2)
print("\nMatrix Lt2: ")
print_matrix(l_t2)
# find solution
x1 = solve(A1, b1)
x2 = solve(A2, b2)
print(f"\nx1 = {x1}")
print(f"\nx2 = {x2}")
# find relative error
relative_error1 = get_relative_error(x, x1)
print(f"\nRelative error for solution1: {relative_error1}")
relative_error2 = get_relative_error(x, x2)
print(f"Relative error for solution2: {relative_error2}")
if __name__ == "__main__":
main()