-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsparseB_G_diff_SNR_N.R
192 lines (157 loc) · 4.93 KB
/
sparseB_G_diff_SNR_N.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
library(mvtnorm)
library(iGREX)
# set.seed(1)
rm(list=ls())
gc()
set.seed(1)
n1 <- 1000
n2 <- 4000
p1 <- 100 #number of SNPs in each gene
p2 <- 200 #number of genes
sparsityB <- 0.5
sparsityG <- 0.8
r <- 0 #number of overlapped snps in each gene
p <- (p1-r)*(p2-1)+p1
n_block <- 50
block_cut <- c(0,(1:n_block)*(p%/%n_block),p) #block cutoff
sb2_true <- 0.3
sy2_true <- 0.7
sg2_true <- 0.2
sa2_true <- 0.3
# sz2_true <- 0.2
m <- 500
n_rep <- 50
# out <- matrix(0,n_rep,4)
# out_se <- matrix(0,n_rep,4)
# colnames(out) <- colnames(out_se) <- c("PVE_G", "PVE_A","PVE_G_ss", "PVE_A_ss")
out <- matrix(0,n_rep,12)
for(i in 1:n_rep){
cat(i,"-th loop\n")
# sigma <- 0.3^(abs(outer(1:p, 1:p, "-")))
# X <- rmvnorm(n1+n2,mean=rep(0,p),sigma=sigma)
X <- matrix(rnorm((n1+n2)*p),n1+n2,p)
X <- scale(X)
Y0 <- matrix(0,n1+n2,p2)
for(g in 1:p2){
nonzero <- rbinom(p1,1,sparsityB)
if(sum(nonzero)==0) nonzero[1] <- 1
beta <- rnorm(p1,0,sqrt(sb2_true/sum(nonzero)))
beta[nonzero==0] <- 0
Y0[,g] <- X[,((g-1)*(p1-r)+1):((g-1)*(p1-r)+p1)] %*% beta
}
Y <- Y0[1:n1,] + matrix(rnorm(n1*p2,0,sqrt(sy2_true)),n1,p2)
X1 <- X[1:n1,]
X2 <- X[(n1+1):(n1+n2),]
t <- mean(diag(Y0[(n1+1):(n1+n2),]%*%t(Y0[(n1+1):(n1+n2),])))
nonzero <- rbinom(p2,1,sparsityG)
if(sum(nonzero)==0) nonzero[1] <- 1
alpha <- as.matrix(rnorm(p2,0,sqrt(sg2_true/t*p2/sum(nonzero))))
alpha[nonzero==0] <- 0
z0 <- Y0[(n1+1):(n1+n2),] %*% alpha
gamma <- as.matrix(rnorm(p,0,sqrt(sa2_true/p)))
z1 <- X2%*%gamma
z <- z0 + z1 + rnorm(n2,0,sqrt(var(z0+z1)))
med_H_true <- var(z0)/var(z)
z_score <- rep(0,p)
for(j in 1:p){
fit_lm <- lm(z~.,data = data.frame(z,X2[,j]))
z_score[j] <- summary(fit_lm)$coefficients[2,3]
}
# Data: gene expr Y, phenotype z, genotype1 X1, genotype2 X2
# fit LMM for step 1 and get K_g for each gene
K <- K0 <- Km <- Km0 <- 0
# K_diag <- vector("numeric",0)
Km_diag <- vector("numeric",0)
idx <- sample(1:n2,m,replace = F)
q1_vec <- rep(0,p2)
for(g in 1: p2){
cat(g,"/",p2," gene\n")
y_g <- Y[,g]
X1tmp <- X1[,((g-1)*(p1-r)+1):((g-1)*(p1-r)+p1)]
X2tmp <- X2[,((g-1)*(p1-r)+1):((g-1)*(p1-r)+p1)]
ztmp <- z_score[((g-1)*(p1-r)+1):((g-1)*(p1-r)+p1)]
W1 <- matrix(1,n1,1)
W2 <- matrix(1,n2,1)
fit_g <- iGREX_Kg(y_g,X1tmp,X2tmp,W1,1e-5,500)
K <- K + fit_g$K_g
K0 <- K0 + fit_g$K_g0
q1_vec[g] <- t(ztmp/sqrt(n2))%*%fit_g$weight%*%ztmp/sqrt(n2) / p1
fitrd_g <- iGREX_Kg(y_g,X1tmp,X2tmp[idx,],W1,1e-5,500)
Km <- Km + fitrd_g$K_g
Km0 <- Km0 + fitrd_g$K_g0
Km_diag <- c(Km_diag,sum(diag(fitrd_g$K_g)))
}
q2_vec <- (z_score/sqrt(n2))^2
mdiag <- mean(diag(K))
K <- K/mdiag
mdiagm <- mean(diag(Km))
Km <- Km/mdiagm
# X2s <- scale(X2)
Ka <- X2 %*% t(X2) / ncol(X2)
Xm <- scale(X2[idx,])
Kma <- Xm %*% t(Xm) / ncol(Xm)
# REML
REML <- REML_3var(K,Ka,z)
out[i,1:2] <- REML$PVE[1,1:2]
out[i,7:8] <- REML$PVE[2,1:2]
# exact estimate by MoM
MoM <- MoM_3var(K,Ka,z)
out[i,3:4] <- MoM$PVE[1,1:2]
out[i,9:10] <- MoM$PVE[2,1:2]
# MoM using summary statisitcs
trK1 <- sum(diag(Km))
trK2 <- sum(diag(Kma))
trK12 <- sum(Km^2)
trK22 <- sum(Kma^2)
trK1K2 <- sum(Km*Kma)
c <- 1
S <- matrix(0,2,2)
S[1,1] <- (trK12-trK1^2/(m-c))/(m-c)^2
S[1,2] <- S[2,1] <- (trK1K2-trK1*trK2/(m-c))/(m-c)^2
S[2,2] <- (trK22-trK2^2/(m-c))/(m-c)^2
q_ss <- c(sum(q1_vec)/mdiagm - 1/n2, sum(q2_vec)/p - 1/n2)
invS <- solve(S)
med_H_ss <- invS%*%q_ss
group1 <- rep(0,p2)
group2 <- rep(0,p)
idx_group <- 1
n_block <- length(block_cut)-1
for(j in 1:n_block){
tmp1 <- rep(FALSE,p2)
tmp2 <- rep(FALSE,p)
for(g in 1: p2){
# cat(g,"/",p2," gene\n")
gstart <- (g-1)*(p1-r)+1
gend <- (g-1)*(p1-r)+p1
if(gstart>=(block_cut[j]+1) & gend<=block_cut[j+1]){
tmp1[g] <- TRUE
}
}
tmp2[(block_cut[j]+1):block_cut[j+1]] <- TRUE
if(sum(tmp1!=0)&sum(tmp2!=0)){
group1[tmp1] <- idx_group
group2[tmp2] <- idx_group
idx_group <- idx_group+1
}
}
ngroup <- idx_group-1
qj <- sapply(1:ngroup,function(j){
tmp1 <- group1==j
tmp2 <- group2==j
q1 <- sum(q1_vec[tmp1])
q2 <- sum(q2_vec[tmp2])
c(q1,q2,sum(Km_diag[tmp1])/m,sum(tmp2))
})
t1 <- sum(Km_diag[group1!=0])/m
pp <- sum(group2!=0)
q_j <- (c(sum(q1_vec[group1!=0]),sum(q2_vec[group2!=0])) - qj[1:2,])/(c(t1,pp)-qj[3:4,]) - 1/n2
var_h <- invS %*% var(t(q_j)) %*% invS * (ngroup-1)
out[i,5:6] <- med_H_ss
out[i,11:12] <- sqrt(diag(var_h))
}
out <- data.frame(out)
names(out) <- c("PVEg_REML", "PVEa_REML","PVEg_MoM", "PVEa_MoM","PVEg_ss", "PVEa_ss",
"se_PVEg_REML", "se_PVEa_REML","se_PVEg_MoM", "se_PVEa_MoM","se_PVEg_ss", "se_PVEa_ss")
# setwd("/home/share/mingxuan/prediXcan/medH/simulation")
setwd("/home/mcaiad/iGREX/simulation")
write.table(out,file=paste("sparsityB",sparsityB,"_sparsityG",sparsityG,"_SNRy",sb2_true,"_n",n1,"_",n2,".txt",sep=""),quote = F,col.names = T,row.names = F)