-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathrunSoftDrop.cc
184 lines (140 loc) · 8.01 KB
/
runSoftDrop.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include <iostream>
#include <chrono>
#include "TFile.h"
#include "TTree.h"
#include "TMath.h"
#include "fastjet/PseudoJet.hh"
#include "fastjet/ClusterSequenceArea.hh"
#include "include/ProgressBar.h"
#include "PU14/EventMixer.hh"
#include "PU14/CmdLine.hh"
#include "PU14/PU14.hh"
#include "include/jetCollection.hh"
#include "include/softDropGroomer.hh"
#include "include/softDropCounter.hh"
#include "include/treeWriter.hh"
using namespace std;
using namespace fastjet;
// This class runs soft drop for signal jets (no background subtraction)
// ./runSoftDrop -hard PythiaEventsTune14PtHat120.pu14 -nev 1
int main (int argc, char ** argv) {
auto start_time = std::chrono::steady_clock::now();
CmdLine cmdline(argc,argv);
// inputs read from command line
int nEvent = cmdline.value<int>("-nev",1); // first argument: command line option; second argument: default value
//bool verbose = cmdline.present("-verbose");
std::cout << "will run on " << nEvent << " events" << std::endl;
// Uncomment to silence fastjet banner
ClusterSequence::set_fastjet_banner_stream(NULL);
//to write info to root tree
treeWriter trwSig("jetTreeSig");
//Jet definition
double R = 0.4;
double ghostRapMax = 6.0;
double ghost_area = 0.005;
int active_area_repeats = 1;
fastjet::GhostedAreaSpec ghost_spec(ghostRapMax, active_area_repeats, ghost_area);
fastjet::AreaDefinition area_def = fastjet::AreaDefinition(fastjet::active_area,ghost_spec);
fastjet::JetDefinition jet_def(antikt_algorithm, R);
double jetRapMax = 3.0;
fastjet::Selector jet_selector = SelectorAbsRapMax(jetRapMax);
ProgressBar Bar(cout, nEvent);
Bar.SetStyle(-1);
EventMixer mixer(&cmdline); //the mixing machinery from PU14 workshop
// loop over events
int iev = 0;
unsigned int entryDiv = (nEvent > 200) ? nEvent / 200 : 1;
while ( mixer.next_event() && iev < nEvent )
{
// increment event number
iev++;
Bar.Update(iev);
Bar.PrintWithMod(entryDiv);
std::vector<fastjet::PseudoJet> particlesMerged = mixer.particles();
std::vector<double> eventWeight;
eventWeight.push_back(mixer.hard_weight());
eventWeight.push_back(mixer.pu_weight());
// cluster hard event only
std::vector<fastjet::PseudoJet> particlesBkg, particlesSig;
SelectorIsHard().sift(particlesMerged, particlesSig, particlesBkg); // this sifts the full event into two vectors of PseudoJet, one for the hard event, one for the underlying event
//---------------------------------------------------------------------------
// jet clustering
//---------------------------------------------------------------------------
// run the clustering, extract the signal jets
fastjet::ClusterSequenceArea csSig(particlesSig, jet_def, area_def);
jetCollection jetCollectionSig(sorted_by_pt(jet_selector(csSig.inclusive_jets(10.))));
//---------------------------------------------------------------------------
// Soft Drop for the signal jets
//---------------------------------------------------------------------------
//Using soft drop grooming class with classical grooming (zcut=0.1, beta=0.0), CA ordering
softDropGroomer sdgSigZ01B00(0.1, 0.0, R);
sdgSigZ01B00.setReclusteringAlgo(0);//0 = CA 1 = AKT 2 = KT
std::vector<fastjet::PseudoJet> groomedJets_SigZ01B00 = sdgSigZ01B00.doGrooming(jetCollectionSig);
jetCollection jetCollectionSigSDZ01B00(groomedJets_SigZ01B00);
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00zg", sdgSigZ01B00.getZgs());
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00ndrop", sdgSigZ01B00.getNDroppedSubjets());
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00dr12", sdgSigZ01B00.getDR12());
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00logdr12", sdgSigZ01B00.getLogDR12());
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00logztheta", sdgSigZ01B00.getLogZgDR12());
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00mass", sdgSigZ01B00.getSubJetMass());
jetCollectionSigSDZ01B00.addVector("sigJetSDZ01B00leadingtrack_pt", sdgSigZ01B00.getSubJetLeadingTrackPt());
softDropGroomer sdgSigZ01B00KT(0.1, 0.0, R);
sdgSigZ01B00KT.setReclusteringAlgo(2);//0 = CA 1 = AKT 2 = KT
std::vector<fastjet::PseudoJet> groomedJets_SigZ01B00KT = sdgSigZ01B00KT.doGrooming(jetCollectionSig);
jetCollection jetCollectionSigSDZ01B00KT(groomedJets_SigZ01B00KT);
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTzg", sdgSigZ01B00KT.getZgs());
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTndrop", sdgSigZ01B00KT.getNDroppedSubjets());
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTdr12", sdgSigZ01B00KT.getDR12());
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTlogdr12", sdgSigZ01B00KT.getLogDR12());
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTlogztheta", sdgSigZ01B00KT.getLogZgDR12());
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTmass", sdgSigZ01B00KT.getSubJetMass());
jetCollectionSigSDZ01B00KT.addVector("sigJetSDZ01B00KTleadingtrack_pt", sdgSigZ01B00KT.getSubJetLeadingTrackPt());
//---------------------------------------------------------------------------
// Recursive Soft Drop for signal jets
//---------------------------------------------------------------------------
softDropCounter sdcSig(0.0,0.0,R,0.0);
sdcSig.setRecursiveAlgo(0);//0 = CA 1 = AKT 2 = KT
sdcSig.run(jetCollectionSig);
jetCollectionSig.addVector("sigJetRecur_jetpt", sdcSig.getPts());
jetCollectionSig.addVector("sigJetRecur_z", sdcSig.getZgs());
jetCollectionSig.addVector("sigJetRecur_dr12", sdcSig.getDRs());
jetCollectionSig.addVector("sigJetRecur_erad", sdcSig.getErads());
jetCollectionSig.addVector("sigJetRecur_logdr12", sdcSig.getLog1DRs());
jetCollectionSig.addVector("sigJetRecur_logztheta", sdcSig.getLogzDRs());
jetCollectionSig.addVector("sigJetRecur_tf", sdcSig.getTfs());
jetCollectionSig.addVector("sigJetRecur_nSD", sdcSig.calculateNSD(0.0));
jetCollectionSig.addVector("sigJetRecur_zSD", sdcSig.calculateNSD(1.0));
softDropCounter sdcSigKT(0.0,0.0,R,0.0);
sdcSigKT.setRecursiveAlgo(2);//0 = CA 1 = AKT 2 = KT
sdcSigKT.run(jetCollectionSig);
jetCollectionSig.addVector("sigJetRecurKT_jetpt", sdcSigKT.getPts());
jetCollectionSig.addVector("sigJetRecurKT_z", sdcSigKT.getZgs());
jetCollectionSig.addVector("sigJetRecurKT_dr12", sdcSigKT.getDRs());
jetCollectionSig.addVector("sigJetRecurKT_erad", sdcSigKT.getErads());
jetCollectionSig.addVector("sigJetRecurKT_logdr12", sdcSigKT.getLog1DRs());
jetCollectionSig.addVector("sigJetRecurKT_logztheta", sdcSigKT.getLogzDRs());
jetCollectionSig.addVector("sigJetRecurKT_tf", sdcSigKT.getTfs());
jetCollectionSig.addVector("sigJetRecurKT_nSD", sdcSigKT.calculateNSD(0.0));
jetCollectionSig.addVector("sigJetRecurKT_zSD", sdcSigKT.calculateNSD(1.0));
//---------------------------------------------------------------------------
// write tree
//---------------------------------------------------------------------------
//Give variable we want to write out to treeWriter.
//Only vectors of the types 'jetCollection', and 'double', 'int', 'fastjet::PseudoJet' are supported
trwSig.addCollection("eventWeight", eventWeight);
trwSig.addCollection("sigJet", jetCollectionSig);
trwSig.addCollection("sigJetSDZ01B00",jetCollectionSigSDZ01B00);
trwSig.addCollection("sigJetSDZ01B00KT",jetCollectionSigSDZ01B00KT);
trwSig.fillTree(); //signal jets
}//event loop
Bar.Update(nEvent);
Bar.Print();
Bar.PrintLine();
TFile *fout = new TFile("JetToyHIResultSoftDrop.root","RECREATE");
trwSig.getTree()->Write();
fout->Write();
fout->Close();
double time_in_seconds = std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now() - start_time).count() / 1000.0;
std::cout << "runFromFile: " << time_in_seconds << std::endl;
}