-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathrunJetCharge.cc
237 lines (185 loc) · 8.23 KB
/
runJetCharge.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#include <iostream>
#include <chrono>
#include "TFile.h"
#include "TTree.h"
#include "TMath.h"
#include "fastjet/PseudoJet.hh"
#include "fastjet/ClusterSequenceArea.hh"
#include "include/ProgressBar.h"
#include "PU14/EventMixer.hh"
#include "PU14/CmdLine.hh"
#include "PU14/PU14.hh"
#include "include/jetCollection.hh"
#include "include/softDropGroomer.hh"
#include "include/softDropCounter.hh"
#include "include/treeWriter.hh"
#include "include/JetCharge.hh"
using namespace std;
using namespace fastjet;
// This class runs time reclustering with background
// ./runJetCharge -hard PythiaEventsTune14PtHat120.pu14 -nev 1
int main (int argc, char ** argv) {
auto start_time = std::chrono::steady_clock::now();
CmdLine cmdline(argc,argv);
// inputs read from command line
int nEvent = cmdline.value<int>("-nev",1); // first argument: command line option; second argument: default value
//bool verbose = cmdline.present("-verbose");
std::cout << "will run on " << nEvent << " events" << std::endl;
// Uncomment to silence fastjet banner
ClusterSequence::set_fastjet_banner_stream(NULL);
//to write info to root tree
treeWriter trwSig("jetTreeSig");
bool runFull = false;
bool runCharged = true;
//Jet definition
double R = 0.4;
double ghostRapMax = 6.0;
double ghost_area = 0.005;
int active_area_repeats = 1;
fastjet::GhostedAreaSpec ghost_spec(ghostRapMax, active_area_repeats, ghost_area);
fastjet::AreaDefinition area_def = fastjet::AreaDefinition(fastjet::active_area,ghost_spec);
fastjet::JetDefinition jet_def(antikt_algorithm, R);
double jetRapMax = 100.;//3.0;
fastjet::Selector jet_selector = SelectorAbsRapMax(jetRapMax);
JetCharge jetCharge(0.5);
ProgressBar Bar(cout, nEvent);
Bar.SetStyle(-1);
EventMixer mixer(&cmdline); //the mixing machinery from PU14 workshop
// loop over events
int iev = 0;
unsigned int entryDiv = (nEvent > 200) ? nEvent / 200 : 1;
while ( mixer.next_event() && iev < nEvent )
{
// increment event number
iev++;
Bar.Update(iev);
Bar.PrintWithMod(entryDiv);
std::vector<fastjet::PseudoJet> particlesMergedAll = mixer.particles();
std::vector<double> eventWeight;
eventWeight.push_back(mixer.hard_weight());
eventWeight.push_back(mixer.pu_weight());
// extract hard partons that initiated the jets
fastjet::Selector parton_selector = SelectorVertexNumber(-1);
vector<PseudoJet> partons = parton_selector(particlesMergedAll);
// extract hard partons from first splitting
fastjet::Selector parton_selector_split = SelectorVertexNumber(-2);
vector<PseudoJet> partonsFirstSplit = parton_selector_split(particlesMergedAll);
// select final state particles from hard event only
fastjet::Selector sig_selector = SelectorVertexNumber(0);
vector<PseudoJet> particlesSig = sig_selector(particlesMergedAll);
// select final state particles from background event only
fastjet::Selector bkg_selector = SelectorVertexNumber(1);
vector<PseudoJet> particlesBkg = bkg_selector(particlesMergedAll);
vector<PseudoJet> particlesMerged = particlesBkg;
particlesMerged.insert( particlesMerged.end(), particlesSig.begin(), particlesSig.end() );
//charged particles
fastjet::Selector charged_selector = SelectorIsCharged();
vector<PseudoJet> particlesSigCh = charged_selector(particlesSig);
//std::cout << "#particles: " << particlesSig.size() << " of which charged: " << particlesSigCh.size() << std::endl;
//---------------------------------------------------------------------------
// look at first splitting of hard partons
//---------------------------------------------------------------------------
std::vector<double> drsplit;
std::vector<double> tfsplit;
double hbarc = 0.19732697;
double GeVtofm = 1./hbarc; //~5.068;
int id = 0;
for(int ip = 0; ip<partons.size(); ++ip) {
PseudoJet p = partons[ip];
PseudoJet d1 = partonsFirstSplit[id];
PseudoJet d2 = partonsFirstSplit[id+1];
double dr = d1.delta_R(d2);
drsplit.push_back(dr);
double z1 = max(d1.e(),d2.e())/p.e();
double z2 = min(d1.e(),d2.e())/p.e();
tfsplit.push_back(1./(2.*z1*z2*p.e()*GeVtofm*(1-fastjet::cos_theta(d1,d2))));
id+=2;
}
trwSig.addCollection("eventWeight", eventWeight);
trwSig.addPartonCollection("partons", partons);
trwSig.addPartonCollection("partonsFirstSplit", partonsFirstSplit);
trwSig.addDoubleCollection("drSplit", drsplit);
trwSig.addDoubleCollection("tfSplit", tfsplit);
//---------------------------------------------------------------------------
// jet clustering
//---------------------------------------------------------------------------
if(runFull) {
// run the clustering, extract the signal jets
fastjet::ClusterSequenceArea csSig(particlesSig, jet_def, area_def);
jetCollection jetCollectionSig(sorted_by_pt(jet_selector(csSig.inclusive_jets(10.))));
//find closest parton for each jet
std::vector<int> partonmatch;
std::vector<double> partonmatchdr;
std::vector<fastjet::PseudoJet> sigJets = jetCollectionSig.getJet();
for(fastjet::PseudoJet p : sigJets) {
int ipmin = -1;
double drmin = 999.;
for(int ip = 0; ip<partons.size(); ++ip) {
double dr = p.delta_R(partons[ip]);
if(dr<drmin) {
drmin = dr;
ipmin = ip;
}
}
partonmatch.push_back(ipmin);
partonmatchdr.push_back(drmin);
}
jetCollectionSig.addVector("sigJetRecur_partonMatchID", partonmatch);
jetCollectionSig.addVector("sigJetRecur_partonMatchDr", partonmatchdr);
//Calculate jet charge
vector<double> jetChargeSig; jetChargeSig.reserve(jetCollectionSig.getJet().size());
for(PseudoJet jet : jetCollectionSig.getJet()) {
jetChargeSig.push_back(jetCharge.result(jet));
}
jetCollectionSig.addVector("jetChargeSig", jetChargeSig);
trwSig.addCollection("sigJet", jetCollectionSig);
}
if(runCharged) {
// run the clustering, extract the signal charged jets
fastjet::ClusterSequenceArea csSigCh(particlesSigCh, jet_def, area_def);
jetCollection jetCollectionSigCh(sorted_by_pt(jet_selector(csSigCh.inclusive_jets(10.))));
//find closest parton for each charged jet
std::vector<int> partonmatchCh;
std::vector<double> partonmatchdrCh;
std::vector<fastjet::PseudoJet> sigJetsCh = jetCollectionSigCh.getJet();
for(fastjet::PseudoJet p : sigJetsCh) {
int ipmin = -1;
double drmin = 999.;
for(int ip = 0; ip<partons.size(); ++ip) {
double dr = p.delta_R(partons[ip]);
if(dr<drmin) {
drmin = dr;
ipmin = ip;
}
}
partonmatchCh.push_back(ipmin);
partonmatchdrCh.push_back(drmin);
}
jetCollectionSigCh.addVector("sigJetChRecur_partonMatchID", partonmatchCh);
jetCollectionSigCh.addVector("sigJetChRecur_partonMatchDr", partonmatchdrCh);
//Calculate jet charge
vector<double> jetChargeSigCh; jetChargeSigCh.reserve(jetCollectionSigCh.getJet().size());
for(PseudoJet jet : jetCollectionSigCh.getJet()) {
jetChargeSigCh.push_back(jetCharge.result(jet));
}
jetCollectionSigCh.addVector("jetChargeSigCh", jetChargeSigCh);
//---------------------------------------------------------------------------
// write tree
//---------------------------------------------------------------------------
//Give variable we want to write out to treeWriter.
//Only vectors of the types 'jetCollection', and 'double', 'int', 'fastjet::PseudoJet' are supported
trwSig.addCollection("sigJetCh", jetCollectionSigCh);
}
trwSig.fillTree();
}//event loop
Bar.Update(nEvent);
Bar.Print();
Bar.PrintLine();
TFile *fout = new TFile("JetToyHIResultJetCharge.root","RECREATE");
trwSig.getTree()->Write();
fout->Write();
fout->Close();
double time_in_seconds = std::chrono::duration_cast<std::chrono::milliseconds>
(std::chrono::steady_clock::now() - start_time).count() / 1000.0;
std::cout << "runFromFile: " << time_in_seconds << std::endl;
}