-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathrnn_iq.py
executable file
·156 lines (128 loc) · 5.8 KB
/
rnn_iq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import print_function, division
import os
import torch
from torch import nn
import numpy as np
from torch.utils.data import Dataset, DataLoader
import torch.utils
from sklearn.metrics import confusion_matrix
import itertools
from utils import get_meta, get_len, save_checkpoint, count_parameters
from utils import SignalDataset_iq
from models import RNN, GRU, LSTM
from models import eval_RNN_Model
import argparse
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='Signal Prediction Argument Parser')
parser.add_argument('--arch', dest='arch', type=str)
parser.add_argument('--bidirection', action='store_true')
parser.add_argument('--path', dest='path', type=str, default='/projects/rsalakhugroup/datasets/dl_sginal_datasets/iq/')
parser.add_argument('--batch_size', dest='batch_size', type=int)
parser.add_argument('--hidden_size', dest='hidden_size', type=int, default=200)
parser.add_argument('--fc_hidden_size', dest='fc_hidden_size', type=int, default=200)
parser.add_argument('--num_layers',dest='num_layers',type=int, default=2)
parser.add_argument('--dropout',dest='dropout',type=float, default=0.0) # applicable to: 'nn', 'gru'
parser.add_argument('--learning_rate',dest='learning_rate',type=float, default=0.05)
parser.add_argument('--momentum', dest='momentum', type=float, default=0.0)
parser.add_argument('--weight_decay', dest='weight_decay', type=float, default=0) # applicable to: 'nn','gru'
parser.add_argument('--epoch', type=int, default=1000) # applicable to: 'nn','gru'
parser.add_argument('--time_step', type=int, default=20)
parser.add_argument('--input_size', type=int, default=160) # applicable to: 'nn','gru'
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
args = parser.parse_args()
print(args)
params_dataloader = {
'batch_size' : int(args.batch_size),
'shuffle' : True,
'num_workers': 4
}
params_model = {
'input_size' : int(args.input_size),
'hidden_size': int(args.hidden_size),
'fc_hidden_size': int(args.fc_hidden_size),
'num_layers' : int(args.num_layers),
'dropout' : float(args.dropout),
'bidirectional': args.bidirection
}
params_op = {
'lr' : float(args.learning_rate),
'momentum' : float(args.momentum),
'weight_decay': float(args.weight_decay)
}
path = args.path
time_step = args.time_step
input_size = args.input_size
arch = args.arch
# load data
training_set = SignalDataset_iq(path, train=True)
train_loader = torch.utils.data.DataLoader(training_set, **params_dataloader)
test_set = SignalDataset_iq(path, train=False)
test_loader = torch.utils.data.DataLoader(test_set, **params_dataloader)
# get num_classes from training data set
num_classes = training_set.num_classes
# init model
if arch == "rnn":
model = RNN(**params_model, output_size=num_classes).to(device=device)
elif arch == "gru":
model = GRU(**params_model, output_size=num_classes).to(device=device)
elif arch == "lstm":
model = LSTM(**params_model, output_size=num_classes).to(device=device)
else:
raise Exception("Only 'rnn', 'gru', and 'lstm' are available model options.")
print("Model size: {0}".format(count_parameters(model)))
criterion = nn.NLLLoss()
op = torch.optim.SGD(model.parameters(), **params_op)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
op, patience=4, factor=0.5, verbose=True)
# resume from checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# training
best_acc_train = -1
best_acc_test = -1
for epoch in range(args.epoch):
print("Epoch %d" % epoch)
model.train()
for data_batched, label_batched in train_loader:
cur_batch_size = len(data_batched)
data_batched = data_batched.reshape(cur_batch_size, time_step, input_size) # (batch_size, feature_dim) -> (batch_size, time_step, input_size)
data = data_batched.float().to(device=device)
label = np.argmax(label_batched, axis=1).long().view(-1).to(device=device) # (batch_size)
_, pred_label = model(data)
loss = criterion(pred_label, label)
op.zero_grad()
loss.backward()
op.step()
train_compressed_signal, _, acc_train = eval_RNN_Model(train_loader, time_step, input_size,
model, num_classes, criterion, "train", path)
test_compressed_signal, loss_test, acc_test = eval_RNN_Model(test_loader, time_step, input_size,
model, num_classes, criterion, "test", path)
# anneal learning
scheduler.step(loss_test)
if acc_train > best_acc_train:
save_path = os.path.join(path, 'compressed_train_GRU')
np.save(save_path, train_compressed_signal)
if acc_test > best_acc_test:
save_path = os.path.join(path, 'compressed_test_GRU')
np.save(save_path, test_compressed_signal)
is_best = acc_test > best_acc_test
best_acc_train = max(acc_train, best_acc_train)
best_acc_test = max(acc_test, best_acc_test)
save_checkpoint({
'epoch': epoch + 1,
'arch': arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc_test,
'optimizer' : op.state_dict(),
}, is_best)