-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm.neural_network.html
55 lines (41 loc) · 2.47 KB
/
m.neural_network.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
<!DOCTYPE html>
<html>
<head>
<title>m.neural_network toolset - GRASS GIS manual</title>
<meta name="Author" content="mundialis team">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta http-equiv="content-language" content="en-us">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="grassdocs.css" type="text/css">
</head>
<body bgcolor="white">
<div id="container">
<a href="https://grass.osgeo.org/grass-stable/manuals/index.html"><img src="grass_logo.png" alt="GRASS logo"></a>
<hr class="header">
<h2>NAME</h2>
<em><b>m.neural_network</b></em> - GRASS GIS addons to train and apply a neural network.
<h2>KEYWORDS</h2>
<a href="https://grass.osgeo.org/grass-stable/manuals/raster.html">raster</a>, <a href="https://grass.osgeo.org/grass-stable/manuals/vector.html">vector</a>
<!-- meta page description: addons for Regionalverband Ruhr (RVR) related geodata processing -->
<h2>DESCRIPTION</h2>
The <em>m.neural_network</em> toolset consists of several modules.
<ul>
<li><a href="m.neural_network.preparedata.html">m.neural_network.preparedata</a>: Prepares and exports tiles for the label process</li>
<li><a href="m.neural_network.preparedata.worker_export.html">m.neural_network.preparedata.worker_export</a>: Worker for parallel processing for exporting for <b>m.neural_network.preparedata</b></li>
<li><a href="m.neural_network.preparedata.worker_nullcells.html">m.neural_network.preparedata.worker_nullcells</a>: Worker to analyse the number of null cells in parallel for <b>m.neural_network.preparedata</b></li>
<li><a href="m.neural_network.preparetraining.html">m.neural_network.preparetraining</a>: Prepares imagery and labelled data for training and application of a neural network.</li>
<li><a href="m.neural_network.preparetraining.worker.html">m.neural_network.preparetraining</a>: Worker to rasterize labelled data in parallel for <b>m.neural_network.preparetraining</b><</li>
</ul>
<h2>REQUIREMENTS</h2>
The following Python libraries are needed.
<ul>
<li>grass-gis-helpers>=2.2.0</li>
<li>GDAL/OGR and Python bindings</li>
</ul>
<h2>AUTHORS</h2>
Anika Weinmann, <a href="https://www.mundialis.de/">mundialis GmbH & Co. KG</a>, weinmann at mundialis.de
<p>Guido Riembauer, <a href="https://www.mundialis.de/">mundialis GmbH & Co. KG</a>, riembauer at mundialis.de</p>
<p>Victoria-Leandra Brunn, <a href="https://www.mundialis.de/">mundialis GmbH & Co. KG</a>, brunn at mundialis.de</p>
</div>
</body>
</html>