-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtraining_system1.py
282 lines (245 loc) · 12.3 KB
/
training_system1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from argparse import ArgumentParser
import os
# FILTER WARNINGS
from numba.core.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter('ignore', category=NumbaDeprecationWarning)
warnings.simplefilter('ignore', category=NumbaPendingDeprecationWarning)
import torch
from torch.utils.data import DataLoader
from torch.nn import BCELoss
from optimizer.lookahead import Lookahead
from optimizer.ralamb import Ralamb
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning import Trainer, seed_everything, loggers
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from albumentations import Compose, ShiftScaleRotate, GridDistortion, Cutout
from albumentations.pytorch import ToTensor
from utils.metrics import *
import pandas as pd
from utils.metrics_dcase import evaluate, micro_averaged_auprc, macro_averaged_auprc
from prepare_data.sonycust import SONYCUST_TALNet
from models.TALNet import TALNetV2_meta, TALNetV2
from losses.DCASEmaskedLoss import *
import config
def mixup_data(x, meta, y, alpha=1.0, use_cuda=True):
'''Returns mixed inputs, pairs of targets, and lambda'''
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
mixed_meta = lam * meta + (1 - lam) * meta[index, :]
y_a, y_b = y, y[index]
return mixed_x, mixed_meta, y_a, y_b, lam
class DCASETALNetClassifier(LightningModule):
def __init__(self, hparams):
super().__init__()
# Save hparams for later
self.hparams=hparams
self.num_classes_dict = {'coarse':8,
'fine':23,
'both':31
}
# To avoid calling prepare_data 2 times
self.data_prepared = False
self.prepare_data()
num_meta = len(self.dataset[0]['metadata'])
# Model parameters
model_param = {
'n_conv_layers':hparams.n_conv_layers,
'kernel_size':(3,3),
'n_pool_layers':hparams.n_pool_layers,
'embedding_size':hparams.embedding_size,
'norm':'GN',
'conv_pool_strat':'max',
'conv_activation':hparams.conv_activation,
'pooling':hparams.pooling,
'dropout':hparams.dropout,
'n_head':hparams.n_head,
'd_kv':hparams.d_kv,
'dropout_transfo':hparams.dropout_transfo,
'num_meta':num_meta,
'meta_emb':hparams.meta_embedding_size,
'num_mels':hparams.num_mels,
'num_classes':self.num_classes_dict[self.hparams.output_mode]
}
self.model = TALNetV2_meta(**model_param)
self.loss_c = BCELoss(reduction='none')
self.loss_f = Masked_loss(BCELoss(reduction='none'))
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--output_mode', type=str, default='both', choices=['coarse', 'fine', 'both'])
parser.add_argument('--dropout', type = float, default = 0.0)
parser.add_argument('--pooling', type = str, default = 'att', choices = ['max', 'ave', 'lin', 'exp', 'att', 'auto'])
parser.add_argument('--n_conv_layers', type=int, default=10)
parser.add_argument('--kernel_size', type = str, default = '3')
parser.add_argument('--n_pool_layers', type=int, default=5)
parser.add_argument('--embedding_size', type = int, default = 1024)
parser.add_argument('--meta_embedding_size', type = int, default = 128)
parser.add_argument('--batch_norm', type = bool, default = True)
parser.add_argument('--conv_activation', type = str, default = 'mish', choices = ['relu', 'prelu', 'leaky_relu', 'mish'])
parser.add_argument('--n_head', type = int, default = 8)
parser.add_argument('--d_kv', type = int, default = 128)
parser.add_argument('--dropout_transfo', type = float, default = 0.0)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--init_lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=1e-5)
parser.add_argument('--alpha', type = float, default = 0.5)
parser.add_argument('--start_mixup', type=int, default=-1)
parser.add_argument('--num_mels', type = int, default = 64)
parser.add_argument('--path_to_SONYCUST', type=str, default=config.path_to_SONYCUST)
parser.add_argument('--metadata', nargs='+', default=["latitude","longitude","week","day","hour"])
parser.add_argument('--consensus_threshold', type=float, default=0.0)
parser.add_argument('--one_hot_time', type=bool, default=False)
parser.add_argument('--cleaning_strat', type = str, default = 'DCASE', choices = ['DCASE', 'Relabeled'])
parser.add_argument('--relabeled_name', type = str, default = 'best2.csv')
return parser
def forward(self, x, meta):
x = self.model(x, meta)
return x
def prepare_data(self):
# To avoid calling prepare_data 2 times
if self.data_prepared:
return True
transformation_list = [
ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, rotate_limit=0.5),
GridDistortion(),
Cutout()
]
albumentations_transform = Compose(transformation_list)
# Dataset parameters
data_param={
'mode':self.hparams.output_mode,
'transform':albumentations_transform,
'metadata':self.hparams.metadata,
'one_hot_time':self.hparams.one_hot_time,
'consensus_threshold':self.hparams.consensus_threshold,
'cleaning_strat':self.hparams.cleaning_strat,
'relabeled_name':self.hparams.relabeled_name,
}
# Creating dataset
self.dataset = SONYCUST_TALNet(self.hparams.path_to_SONYCUST, **data_param)
self.train_dataset, self.val_dataset, self.test_dataset = self.dataset.train_validation_test_split()
self.data_prepared = True
def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.hparams.batch_size, shuffle=True, num_workers=4)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.hparams.batch_size, num_workers=4)
def configure_optimizers(self):
base_optim_param = {'lr':self.hparams.init_lr}
base_optim = Ralamb(self.model.parameters(), **base_optim_param)
optim_param = {'k':5,
'alpha':0.5}
optimizer = Lookahead(base_optim, **optim_param)
return optimizer
def training_step(self, batch, batch_idx):
# Get input vector and labels, do not forget float()
data, meta, target_c, target_f = batch['input_vector'].float(), batch['metadata'].float(), batch['label']['coarse'].float(), batch['label']['full_fine'].float()
target = torch.cat([target_c, target_f],1)
# Do mixup if current epoch >= start mixup
if self.current_epoch >= self.hparams.start_mixup:
data, meta, target_a, target_b, lam = mixup_data(data, meta, target, self.hparams.alpha)
target_a_c, target_a_f = torch.split(target_a, [8,29],1)
target_b_c, target_b_f = torch.split(target_b, [8,29],1)
# Forward pass
output, frame_prob = self.forward(data, meta)
outputs_c, outputs_f = torch.split(output, [8,23],1)
# Compute loss of the batch
if self.current_epoch >= self.hparams.start_mixup:
loss = lam * torch.cat([self.loss_c(outputs_c, target_a_c).mean(0), self.loss_f(outputs_f, target_a_f)], 0).mean() + \
(1 - lam) * torch.cat([self.loss_c(outputs_c, target_b_c).mean(0), self.loss_f(outputs_f, target_b_f)], 0).mean()
else:
loss = torch.cat([self.loss_c(outputs_c, target_c).mean(0), self.loss_f(outputs_f, target_f)], 0).mean()
return {'loss':loss, 'log': {'1_loss/train_loss': loss}}
def validation_step(self, batch, batch_idx):
# Get input vector and labels, do not forget float()
filename, data, meta, target_c, target_f = batch['file_name'], batch['input_vector'].float(), batch['metadata'].float(), batch['label']['coarse'].float(), batch['label']['full_fine'].float()
target = torch.cat([target_c, target_f],1)
# Forward pass
output = self.forward(data, meta)[0]
outputs_c, outputs_f = torch.split(output, [8,23],1)
# Compute loss of the batch
loss = torch.cat([self.loss_c(outputs_c, target_c).mean(0), self.loss_f(outputs_f, target_f)], 0)
return {'val_loss':loss, 'output':output, 'target':target, 'filename': filename}
def validation_epoch_end(self, outputs):
val_loss = torch.cat([o['val_loss'] for o in outputs], 0).mean()
all_outputs = torch.cat([o['output'] for o in outputs], 0)
all_outputs_c, all_outputs_f = torch.split(all_outputs, [8,23],1)
all_outputs_c, all_outputs_f = all_outputs_c.cpu().numpy(), all_outputs_f.cpu().numpy()
all_targets = torch.cat([o['target'] for o in outputs], 0)
all_targets_c, all_targets_f = torch.split(all_targets, [8,29],1)
all_targets_c, all_targets_f = all_targets_c.cpu().numpy(), all_targets_f.cpu().numpy()
filename_array = [f for o in outputs for f in o['filename']]
# Trick to use DCASE metrics : we save a csv file
pred_df = pd.DataFrame(columns=['audio_filename']+self.dataset.idlabel_dict['coarse']+self.dataset.idlabel_dict['full_fine'])
pred_df['audio_filename'] = filename_array
pred_df[self.dataset.idlabel_dict['coarse']] = all_outputs_c
pred_df[self.dataset.idlabel_dict['fine']] = all_outputs_f
pred_df.to_csv(os.path.join(config.path_to_SONYCUST, "temp.csv"), index = False, header=True)
log = {'1_loss/val_loss': val_loss}
for mode in ['coarse', 'fine']:
df_dict = evaluate(os.path.join(config.path_to_SONYCUST, "temp.csv"),
config.path_to_annotation,
config.path_to_taxonomy,
mode)
if mode == 'coarse':
auprc_micro_c, eval_df = micro_averaged_auprc(df_dict, return_df=True)
auprc_macro_c, auprc_classes = macro_averaged_auprc(df_dict, return_classwise=True)
thresh_0pt5_idx = (eval_df['threshold'] >= 0.5).to_numpy().nonzero()[0][0]
F1_micro_c = eval_df["F"][thresh_0pt5_idx]
log_temp = {'2_valid_coarse/1_auprc_macro':auprc_macro_c,
'2_valid_coarse/2_auprc_micro':auprc_micro_c,
'2_valid_coarse/3_F1_micro':F1_micro_c}
else:
auprc_micro_f, eval_df = micro_averaged_auprc(df_dict, return_df=True)
auprc_macro_f, auprc_classes = macro_averaged_auprc(df_dict, return_classwise=True)
thresh_0pt5_idx = (eval_df['threshold'] >= 0.5).to_numpy().nonzero()[0][0]
F1_micro_f = eval_df["F"][thresh_0pt5_idx]
log_temp = {'2_valid_fine/1_auprc_macro':auprc_macro_f,
'2_valid_fine/2_auprc_micro':auprc_micro_f,
'2_valid_fine/3_F1_micro':F1_micro_f
}
log.update(log_temp)
tqdm_dict = {'auprc_macro_c':auprc_macro_c, 'auprc_macro_f':auprc_macro_f,
'val_loss': val_loss}
return {'progress_bar':tqdm_dict, 'log': log}
def main(hparams):
seed_everything(hparams.seed)
# 'TALNetV2_LOSS_TRYHARD/'
MAIN_DIR = os.path.join(config.path_to_summaries,'system1/')
model = DCASETALNetClassifier(hparams)
early_stop_callback = EarlyStopping(
monitor='auprc_macro',
mode='max',
patience=25,
strict=False,
verbose=False)
trainer = Trainer.from_argparse_args(hparams,
early_stop_callback=early_stop_callback,
checkpoint_callback=False,
default_root_dir=MAIN_DIR,
logger=True,
#fast_dev_run=True,
#train_percent_check=0.001,
num_sanity_val_steps=0,
)
# Have to declare here checkpoint_callback because of a bug
checkpoint_callback_1 = ModelCheckpoint(
monitor='auprc_macro_c',
mode='max',
filepath=os.path.join(MAIN_DIR,'checkpoints/{epoch}-{auprc_macro_c:.3f}')
)
trainer.checkpoint_callback = checkpoint_callback_1
trainer.fit(model)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--seed', type = int, default = 42)
parser = DCASETALNetClassifier.add_model_specific_args(parser)
parser = Trainer.add_argparse_args(parser)
hparams = parser.parse_args()
main(hparams)