-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel_TFNet_training.py
411 lines (356 loc) · 15.1 KB
/
model_TFNet_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from argparse import ArgumentParser
import os
# FILTER WARNINGS
from numba.core.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
warnings.simplefilter("ignore", category=NumbaDeprecationWarning)
warnings.simplefilter("ignore", category=NumbaPendingDeprecationWarning)
import numpy as np
import torch
from torch.utils.data import DataLoader
from torch.nn import BCELoss
from torch.optim import Adam
from optimizer.lookahead import Lookahead
from optimizer.ralamb import Ralamb
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning import Trainer, seed_everything, loggers
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning import loggers as pl_loggers
from albumentations import Compose, ShiftScaleRotate, GridDistortion, Cutout
from utils.metrics import accuracy, compute_macro_auprc, compute_micro_auprc, compute_micro_F1, mean_average_precision
import pandas as pd
from prepare_data.urbansound8k import UrbanSound8K_TALNet
from prepare_data.esc50 import ESC50_TALNet
from prepare_data.sonycust import SONYCUST_TALNet
from models.TFNet import TFNet, Cnn
from losses.DCASEmaskedLoss import *
import config
def mixup_data(x, y, alpha=1.0, use_cuda=True):
"""Returns mixed inputs, pairs of targets, and lambda"""
if alpha > 0:
lam = np.random.beta(alpha, alpha)
else:
lam = 1
batch_size = x.size()[0]
index = torch.randperm(batch_size)
mixed_x = lam * x + (1 - lam) * x[index, :]
y_a, y_b = y, y[index]
return mixed_x, y_a, y_b, lam
class TFNetClassifier(LightningModule):
def __init__(self, hparams, fold):
super().__init__()
# Save hparams for later
self.hparams = hparams
self.fold = fold
if self.hparams.dataset == "US8K":
self.dataset_folder = config.path_to_UrbanSound8K
self.nb_classes = 10
self.input_size = (162, 64)
self.best_scores = [0] * 5
elif self.hparams.dataset == "ESC50":
self.dataset_folder = config.path_to_ESC50
self.nb_classes = 50
self.input_size = (200, 64)
self.best_scores = [0] * 5
elif self.hparams.dataset == "SONYCUST":
self.dataset_folder = config.path_to_SONYCUST
self.nb_classes = 31
self.input_size = (400, 64)
self.best_scores = [0] * 10
else:
None
if self.hparams.dataset == "SONYCUST":
self.activation = "sigmoid"
else:
self.activation = "softmax"
#
# Settings for the SED models
model_param = {"classes_num": self.nb_classes, "activation": self.activation, "input_size": self.input_size}
self.model = TFNet(**model_param)
if self.hparams.dataset != "SONYCUST":
self.loss = BCELoss(reduction="none")
else:
self.loss_c = BCELoss(reduction="none")
self.loss_f = Masked_loss(BCELoss(reduction="none"))
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument("--alpha", type=float, default=1.0)
parser.add_argument("--batch_size", type=int, default=42)
parser.add_argument("--shuffle", type=bool, default=True)
parser.add_argument("--init_lr", type=float, default=1e-3)
parser.add_argument("--num_mels", type=int, default=64)
parser.add_argument("--dataset", type=str, default="SONYCUST", choices=["US8K", "ESC50", "SONYCUST"])
return parser
def forward(self, x):
x = x.unsqueeze(1)
x = self.model(x)
return x
def prepare_data(self):
# Dataset parameters
# Creating dataset
if self.hparams.dataset == "US8K":
data_param = {
"dataset_folder": self.dataset_folder,
"fold": self.fold,
}
self.dataset = UrbanSound8K_TALNet(**data_param)
(self.train_dataset, self.val_dataset) = self.dataset.train_validation_split()
elif self.hparams.dataset == "ESC50":
data_param = {
"dataset_folder": self.dataset_folder,
"fold": self.fold,
}
self.dataset = ESC50_TALNet(**data_param)
(self.train_dataset, self.val_dataset) = self.dataset.train_validation_split()
elif self.hparams.dataset == "SONYCUST":
data_param = {
"sonycust_folder": self.dataset_folder,
"mode": "both",
"cleaning_strat": "DCASE",
}
self.dataset = SONYCUST_TALNet(**data_param)
self.train_dataset, self.val_dataset, _ = self.dataset.train_validation_test_split()
else:
None
def train_dataloader(self):
return DataLoader(
self.train_dataset, batch_size=self.hparams.batch_size, shuffle=self.hparams.shuffle, num_workers=4
)
def val_dataloader(self):
return DataLoader(self.val_dataset, batch_size=self.hparams.batch_size, num_workers=4)
def configure_optimizers(self):
"""
optim_param = {
'lr': self.hparams.init_lr
}
optimizer = Adam(self.model.parameters(), **optim_param)
"""
base_optim_param = {"lr": self.hparams.init_lr}
base_optim = Ralamb(self.model.parameters(), **base_optim_param)
optim_param = {"k": 5, "alpha": 0.5}
optimizer = Lookahead(base_optim, **optim_param)
return optimizer
def training_step(self, batch, batch_idx):
if self.hparams.dataset != "SONYCUST":
data, target = batch["input_vector"].float(), batch["label"].float()
data, target_a, target_b, lam = mixup_data(data, target, self.hparams.alpha)
output = self.forward(data)
loss = (lam * self.loss(output, target_a)).mean() + ((1 - lam) * self.loss(output, target_b)).mean()
else:
data, target_c, target_f = (
batch["input_vector"].float(),
batch["label"]["coarse"].float(),
batch["label"]["full_fine"].float(),
)
target = torch.cat([target_c, target_f], 1)
data, target_a, target_b, lam = mixup_data(data, target, self.hparams.alpha)
target_a_c, target_a_f = torch.split(target_a, [8, 29], 1)
target_b_c, target_b_f = torch.split(target_b, [8, 29], 1)
output = self.forward(data)
outputs_c, outputs_f = torch.split(output, [8, 23], 1)
loss = (
lam
* torch.cat(
[self.loss_c(outputs_c, target_a_c).mean(0), self.loss_f(outputs_f, target_a_f),], 0,
).mean()
+ (1 - lam)
* torch.cat(
[self.loss_c(outputs_c, target_b_c).mean(0), self.loss_f(outputs_f, target_b_f),], 0,
).mean()
)
return {"loss": loss, "log": {"1_loss/train_loss": loss}}
def validation_step(self, batch, batch_idx):
if self.hparams.dataset != "SONYCUST":
data, target = batch["input_vector"].float(), batch["label"].float()
output = self.forward(data)
# Compute loss of the batch
loss = self.loss(output, target)
else:
data, target_c, target_f = (
batch["input_vector"].float(),
batch["label"]["coarse"].float(),
batch["label"]["full_fine"].float(),
)
target = torch.cat([target_c, target_f], 1)
output = self.forward(data)
outputs_c, outputs_f = torch.split(output, [8, 23], 1)
# Compute loss of the batch
loss = torch.cat([self.loss_c(outputs_c, target_c).mean(0), self.loss_f(outputs_f, target_f),], 0,)
return {
"val_loss": loss,
"output": output,
"target": target,
}
def validation_epoch_end(self, outputs):
val_loss = torch.cat([o["val_loss"] for o in outputs], 0).mean()
all_outputs = torch.cat([o["output"] for o in outputs], 0).cpu().numpy()
all_targets = torch.cat([o["target"] for o in outputs], 0).cpu().numpy()
if self.hparams.dataset == "SONYCUST":
# Logic for SONYCUST
X_mask = ~torch.BoolTensor(
[
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
]
)
outputs_split = np.split(all_outputs, [8, 31], 1)
all_outputs_coarse, all_outputs_fine = outputs_split[0], outputs_split[1]
all_targets = all_targets[:, X_mask]
targets_split = np.split(all_targets, [8, 31], 1)
all_targets_coarse, all_targets_fine = targets_split[0], targets_split[1]
accuracy_c = accuracy(all_targets_coarse, all_outputs_coarse)
f1_micro_c = compute_micro_F1(all_targets_coarse, all_outputs_coarse)
auprc_micro_c = compute_micro_auprc(all_targets_coarse, all_outputs_coarse)
auprc_macro_c = compute_macro_auprc(all_targets_coarse, all_outputs_coarse)
map_coarse = mean_average_precision(all_targets_coarse, all_outputs_coarse)
accuracy_f = accuracy(all_targets_fine, all_outputs_fine)
f1_micro_f = compute_micro_F1(all_targets_fine, all_outputs_fine)
auprc_micro_f = compute_micro_auprc(all_targets_fine, all_outputs_fine)
auprc_macro_f = compute_macro_auprc(all_targets_fine, all_outputs_fine)
map_fine = mean_average_precision(all_targets_fine, all_outputs_fine)
if accuracy_c > self.best_scores[0]:
self.best_scores[0] = accuracy_c
if f1_micro_c > self.best_scores[1]:
self.best_scores[1] = f1_micro_c
if auprc_micro_c > self.best_scores[2]:
self.best_scores[2] = auprc_micro_c
if auprc_macro_c > self.best_scores[3]:
self.best_scores[3] = auprc_macro_c
if map_coarse > self.best_scores[4]:
self.best_scores[4] = map_coarse
if accuracy_f > self.best_scores[5]:
self.best_scores[5] = accuracy_f
if f1_micro_f > self.best_scores[6]:
self.best_scores[6] = f1_micro_f
if auprc_micro_f > self.best_scores[7]:
self.best_scores[7] = auprc_micro_f
if auprc_macro_f > self.best_scores[8]:
self.best_scores[8] = auprc_macro_f
if map_fine > self.best_scores[9]:
self.best_scores[9] = map_fine
log_temp = {
"2_valid_coarse/1_accuracy@0.5": accuracy_c,
"2_valid_coarse/1_f1_micro@0.5": f1_micro_c,
"2_valid_coarse/1_auprc_micro": auprc_micro_c,
"2_valid_coarse/1_auprc_macro": auprc_macro_c,
"2_valid_coarse/1_map_coarse": map_coarse,
"3_valid_fine/1_accuracy@0.5": accuracy_f,
"3_valid_fine/1_f1_micro@0.5": f1_micro_f,
"3_valid_fine/1_auprc_micro": auprc_micro_f,
"3_valid_fine/1_auprc_macro": auprc_macro_f,
"3_valid_fine/1_map_fine": map_fine,
}
tqdm_dict = {
"val_loss": val_loss,
"m_auprc_c": auprc_macro_c,
}
else:
# Logic for ESC50 and US8K
accuracy_score = accuracy(all_targets, all_outputs)
f1_micro = compute_micro_F1(all_targets, all_outputs)
auprc_micro = compute_micro_auprc(all_targets, all_outputs)
_, auprc_macro = compute_macro_auprc(all_targets, all_outputs, True)
map_score = mean_average_precision(all_targets, all_outputs)
if accuracy_score > self.best_scores[0]:
self.best_scores[0] = accuracy_score
if f1_micro > self.best_scores[1]:
self.best_scores[1] = f1_micro
if auprc_micro > self.best_scores[2]:
self.best_scores[2] = auprc_micro
if auprc_macro > self.best_scores[3]:
self.best_scores[3] = auprc_macro
if map_score > self.best_scores[4]:
self.best_scores[4] = map_score
log_temp = {
"2_valid/1_accuracy0.5": accuracy_score,
"2_valid/1_f1_micro0.5": f1_micro,
"2_valid/1_auprc_micro": auprc_micro,
"2_valid/1_auprc_macro": auprc_macro,
"2_valid/1_map": map_score,
}
tqdm_dict = {
"val_loss": val_loss,
"acc": accuracy_score,
}
log = {
"step": self.current_epoch,
"1_loss/val_loss": val_loss,
}
log.update(log_temp)
return {"progress_bar": tqdm_dict, "log": log}
def main(hparams, fold):
seed_everything(hparams.seed)
MAIN_DIR = os.path.join(config.path_to_summaries, "TFNetAllDatasets/")
model = TFNetClassifier(hparams, fold)
tb_logger = pl_loggers.TensorBoardLogger(os.path.join(MAIN_DIR, "logs"))
if hparams.dataset != "SONYCUST":
early_stopping = EarlyStopping("2_valid/1_accuracy0.5", patience=50, mode="max")
else:
early_stopping = EarlyStopping("2_valid_coarse/1_auprc_macro", patience=30, mode="max")
trainer = Trainer.from_argparse_args(
hparams,
default_root_dir=MAIN_DIR,
logger=tb_logger,
early_stop_callback=early_stopping,
# fast_dev_run=True,
checkpoint_callback=None,
gpus=1,
)
trainer.fit(model)
with open(os.path.join(MAIN_DIR, "logs/report.txt"), "a") as file:
if hparams.dataset != "SONYCUST":
file.write(hparams.dataset + " fold : " + str(fold) + "\n")
else:
file.write(hparams.dataset + "\n")
file.write(str(model.best_scores) + "\n")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser = TFNetClassifier.add_model_specific_args(parser)
parser = Trainer.add_argparse_args(parser)
hparams = parser.parse_args()
if hparams.dataset == "US8K":
for i in range(1, 11):
main(hparams, i)
elif hparams.dataset == "ESC50":
for i in range(1, 6):
main(hparams, i)
elif hparams.dataset == "SONYCUST":
main(hparams, 1)