diff --git a/R/demo.R b/R/demo.R index 2fda006..0b61d17 100644 --- a/R/demo.R +++ b/R/demo.R @@ -26,11 +26,7 @@ demo_sc_data <- function() { #' @examples geneinfo_demo <- demo_geneinfo() demo_geneinfo <- function() { - gene1 <- c("A1BG", "A1BG", "A2MP1", "Aco1", "Alb1") - gene2 <- c("A1B", "ABG", "A2MP", "Aco", "Alb") - species <- c("Human", "Human", "Human", "Mouse", "Rat") - geneinfo_demo <- data.frame(symbol = gene1, synonyms = gene2, species = species, stringsAsFactors = FALSE) - return(geneinfo_demo) + return(head(geneinfo)) } #' @title Demo data of mir_info @@ -41,12 +37,7 @@ demo_geneinfo <- function() { #' @examples mir_info_demo <- demo_mir_info() demo_mir_info <- function() { - miRNA <- c("hsa-miR-1", "hsa-miR-1", "hsa-miR-1", "hsa-miR-1", "mmu-miR-105", "rno-miR-106b") - miRNA_mature <- c("hsa-miR-1-5p", "hsa-miR-1-5p", "hsa-miR-1-3p", "hsa-miR-1-3p", "mmu-miR-105", "rno-miR-106b-5p") - gene <- c("MIR1-1", "MIR1-2","MIR1-1", "MIR1-2", "Mir105", "Mir106b") - species <- c("Human", "Human", "Human", "Human", "Mouse", "Rat") - mir_info_demo <- data.frame(miRNA = miRNA, miRNA_mature = miRNA_mature, gene = gene, species = species, stringsAsFactors = FALSE) - return(mir_info_demo) + return(head(mir_info)) } #' @title Demo data of mir2tar @@ -57,10 +48,5 @@ demo_mir_info <- function() { #' @examples mir2tar_demo <- demo_mir2tar() demo_mir2tar <- function() { - miRNA <- c("hsa-miR-1", "hsa-miR-1", "mmu-miR-105", "rno-miR-106b") - miRNA_mature <- c("hsa-miR-1-5p", "hsa-miR-1-3p", "mmu-miR-105", "rno-miR-106b-5p") - target_gene <- c("BDNF", "RBM28", "Abl2", "Mcl1") - species <- c("Human", "Human", "Mouse", "Rat") - mir2tar_demo <- data.frame(miRNA = miRNA, miRNA_mature = miRNA_mature, target_gene = target_gene, species = species, stringsAsFactors = FALSE) - return(mir2tar_demo) + return(head(mir2tar)) } diff --git a/R/methods.R b/R/methods.R index e26d82a..01f1b4c 100644 --- a/R/methods.R +++ b/R/methods.R @@ -135,7 +135,7 @@ find_hvtg <- function(object, pvalue = 0.05, log2fc = 0.5, min_cell_num = 10, nf #' @description Find expressed miRNAs among all cells and generate background distribution for permutation test #' @param object miRTalk object after \code{\link{create_miRTalk}} #' @param mir_info A data.frame of the system data containing information of EV-derived miRNA of \code{'Human'}, \code{'Mouse'} or \code{'Rat'}. see \code{\link{demo_mir_info}} -#' @param mir2tar A data.frame of the system data containing relationship of miRNA and its target genes for \code{'Human'}, \code{'Mouse'} or \code{'Rat'}. see \code{\link{demo_mir2tar}} +#' @param mir2tar A data.frame of the system data containing miRNA-target interactions for \code{'Human'}, \code{'Mouse'} or \code{'Rat'}. see \code{\link{demo_mir2tar}} #' @param min_percent Min percent of expressed cells for target genes of miRNA. Default is \code{0.05} #' @param database Which database of miRNA-target interactions to use, "miRTarBase" and/or "TarBase". Default is the "miRTarBase". It can also be "TarBase" or c("miRTarBase", "TarBase") #' @param resolution Correct to precursor or mature miRNAs. Use 'precursor' or 'mature'. Default is \code{'mature'} @@ -253,7 +253,6 @@ find_miRNA <- function(object, mir_info, mir2tar, min_percent = 0.05, database = #' @param min_percent Min percent of expressed cells for target genes of miRNA. Default is \code{0.05} #' @param pvalue Cutoff of p value. Default is \code{0.05} #' @param if_filter_miRNA Whether to filter the significantly highly expressed miRNAs. Default is FALSE -#' @param if_consider_condition Whether to infer for each condition. Default is TRUE #' @param if_doParallel Use doParallel. Default is TRUE #' @param use_n_cores Number of CPU cores to use. Default is 4 #' @return miRTalk object containing the inferred cell-cell communications mediated by EV-derived miRNAs @@ -262,7 +261,7 @@ find_miRNA <- function(object, mir_info, mir2tar, min_percent = 0.05, database = #' @importFrom correlation correlation #' @export -find_miRTalk <- function(object, min_cell_num = 10, min_percent = 0.05, pvalue = 0.05, per_num = 1000, if_filter_miRNA = FALSE, if_consider_condition = TRUE, if_doParallel = TRUE, use_n_cores = 4) { +find_miRTalk <- function(object, min_cell_num = 10, min_percent = 0.05, pvalue = 0.05, per_num = 1000, if_filter_miRNA = FALSE, if_doParallel = TRUE, use_n_cores = 4) { # check input if (!is(object, "miRTalk")) { stop("Invalid class for object: must be 'miRTalk'!") diff --git a/R/plot.R b/R/plot.R index 1fb9f6a..32a6d55 100644 --- a/R/plot.R +++ b/R/plot.R @@ -928,7 +928,6 @@ plot_miR_bubble <- function(object, condition = NULL, celltype = NULL, miRNA = N #' @param miRNA which miRNAs to use. Default is to plot all inferred miRNAs in senders. #' @param edge_color Colors for the edges from the sender cell type #' @param edge_type Types for the edges from the sender cell type. Default is \code{"circle"}. \code{"big.arrow"} for big arrow, "triangle" for triangle, "ellipse" for ellipse, "curved" for curved. Details see \code{\link[circlize]{chordDiagram}} -#' @param show_type which type of miRNAs to show, \code{"prob"} or \code{"score"} for inferred miRNAs-target interactions. Default is \code{"prob"} #' @param text_size Size of text labels. Default is \code{0.5} #' @param y_scale y_scale to adjust the text. Default is \code{1} #' @param ... parameters pass to \code{\link[circlize]{chordDiagram}}, e.g., link.arr.width, link.arr.length, link.arr.col diff --git a/README.md b/README.md index 0362498..51096d5 100644 --- a/README.md +++ b/README.md @@ -1,5 +1,5 @@ # miRTalk -[![R-CMD-check](https://img.shields.io/badge/R--CMD--check-passing-brightgreen?logo=github)](https://github.com/multitalk/miRTalk/actions/runs/5220129987) [![miRTalkDB](https://img.shields.io/badge/miRTalkDB-v1.0-yellow)](https://github.com/multitalk/miRTalk/tree/main/data) [![miRTalk-tutorial](https://img.shields.io/badge/miRTalk-tutorial-blue)](https://raw.githack.com/multitalk/miRTalk/main/vignettes/tutorial.html) +[![R-CMD-check](https://img.shields.io/badge/R--CMD--check-passing-brightgreen?logo=github)](https://github.com/multitalk/miRTalk/actions) [![miRTalkDB](https://img.shields.io/badge/miRTalkDB-v1.0-yellow)](https://github.com/multitalk/miRTalk/tree/main/data) [![miRTalk-tutorial](https://img.shields.io/badge/miRTalk-tutorial-blue)](https://raw.githack.com/multitalk/miRTalk/main/vignettes/tutorial.html) ### Extracellular vesicle-derived miRNA-mediated cell-cell communication inference for single-cell transcriptomic data diff --git a/man/find_miRNA.Rd b/man/find_miRNA.Rd index 336454f..a0ad366 100644 --- a/man/find_miRNA.Rd +++ b/man/find_miRNA.Rd @@ -24,7 +24,7 @@ find_miRNA( \item{mir_info}{A data.frame of the system data containing information of EV-derived miRNA of \code{'Human'}, \code{'Mouse'} or \code{'Rat'}. see \code{\link{demo_mir_info}}} -\item{mir2tar}{A data.frame of the system data containing relationship of miRNA and its target genes for \code{'Human'}, \code{'Mouse'} or \code{'Rat'}. see \code{\link{demo_mir2tar}}} +\item{mir2tar}{A data.frame of the system data containing miRNA-target interactions for \code{'Human'}, \code{'Mouse'} or \code{'Rat'}. see \code{\link{demo_mir2tar}}} \item{min_percent}{Min percent of expressed cells for target genes of miRNA. Default is \code{0.05}} diff --git a/man/find_miRTalk.Rd b/man/find_miRTalk.Rd index b6198ae..e008427 100644 --- a/man/find_miRTalk.Rd +++ b/man/find_miRTalk.Rd @@ -11,7 +11,6 @@ find_miRTalk( pvalue = 0.05, per_num = 1000, if_filter_miRNA = FALSE, - if_consider_condition = TRUE, if_doParallel = TRUE, use_n_cores = 4 ) @@ -27,8 +26,6 @@ find_miRTalk( \item{if_filter_miRNA}{Whether to filter the significantly highly expressed miRNAs. Default is FALSE} -\item{if_consider_condition}{Whether to infer for each condition. Default is TRUE} - \item{if_doParallel}{Use doParallel. Default is TRUE} \item{use_n_cores}{Number of CPU cores to use. Default is 4} diff --git a/man/plot_miR2tar_chord.Rd b/man/plot_miR2tar_chord.Rd index f2c2911..0030769 100644 --- a/man/plot_miR2tar_chord.Rd +++ b/man/plot_miR2tar_chord.Rd @@ -40,8 +40,6 @@ plot_miR2tar_chord( \item{y_scale}{y_scale to adjust the text. Default is \code{1}} \item{...}{parameters pass to \code{\link[circlize]{chordDiagram}}, e.g., link.arr.width, link.arr.length, link.arr.col} - -\item{show_type}{which type of miRNAs to show, \code{"prob"} or \code{"score"} for inferred miRNAs-target interactions. Default is \code{"prob"}} } \value{ Chord plot of EV-derived miRNAs and target genes diff --git a/vignettes/tutorial.html b/vignettes/tutorial.html index 41faff4..f7979cc 100644 --- a/vignettes/tutorial.html +++ b/vignettes/tutorial.html @@ -7,7 +7,7 @@ - +
plot_miRTalk_sankey()
plot_miRTalk_sankey()
object
miRTalk object after
find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype
which cell types to plot by order. Default is
to plot all cell typesmiRNA
which miRNAs to use. Default is to plot all
@@ -4615,8 +4679,8 @@ plot_miRTalk_sankey()
celltype
, Or use “NO”
to cancel itshow_type
which type of miRNAs to show, “number”,
-“activity”, or “score” for sum of inferred miRNAs number and activity,
-respectively, or “prob” for max probability. Default is “number”if_show_autocrine
Whether to show autocrine. Default is
FALSEedge_alpha
Transparency of edge. Default is 0.5plot_miRTalk_sankey()
...
parameters pass to
networkD3::sankeyNetwork
plot_miRTalk_sankey(object = obj)
plot_miR_heatmap()
plot_miR_heatmap()
object
miRTalk object after
find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype
which cell types to plot. Default is to plot
all cell typesmiRNA
which miRNAs to plot. Default is to plot all
@@ -4650,9 +4718,41 @@ plot_miR_heatmap()
...
parameters pass to
heatmaply::heatmaply
, e.g., grid_color, grid_widthplot_miR_heatmap(object = obj)
plot_target_heatmap()
Parameters of plot_target_heatmap()
see below:
object
miRTalk object after
+find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype
which cell types to plot. Default is to plot
+all cell typestargetgenes
which targetgenes to plot. Default is to
+plot all inferred target genes in receiverslimits
A parameter used in
+heatmaply::heatmaply
, a two dimensional numeric vector
+specifying the data range for the scale. Default is 0-1text_size
Size of text labels. Default is 10if_horizontal
Whether to plot with the horizontal
+direction. Default is TRUE
viridis_option
option in
+viridis::scale_color_viridis
, can be “A”, “B”, “C”, “D”,
+“E”, “F”, “G”, “H”. Default is “D”....
parameters pass to
+heatmaply::heatmaply
, e.g., grid_color, grid_widthplot_miR_bubble()
plot_miR_bubble()
object
miRTalk object after
find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype
which cell types to plot. Default is to plot
all cell typesmiRNA
which miRNAs to plot. Default is to plot all
@@ -4672,8 +4774,10 @@ plot_miR_bubble()
viridis::scale_color_viridis
, can be “A”, “B”, “C”, “D”,
“E”, “F”, “G”, “H”. Default is “D”.plot_miR_bubble(object = obj)
plot_miR2tar_chord()
plot_miR2tar_chord()
object
miRTalk object after
find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype_sender
Name of celltype_sender. One or more
cell typescelltype_receiver
Name of celltype_receiver. One or
@@ -4695,16 +4801,16 @@ plot_miR2tar_chord()
circlize::chordDiagram
show_type
which type of miRNAs to show, “prob” or
-“score” for inferred miRNAs-target interactions. Default is “prob”text_size
Size of text labels. Default is 0.5y_scale
y_scale to adjust the text. Default is 1...
parameters pass to
circlize::chordDiagram
, e.g., link.arr.width
,
link.arr.length
, link.arr.col
plot_miR2tar_chord(obj, celltype_sender = "Tumor", celltype_receiver = "Stromal")
plot_miR2tar_circle()
plot_miR2tar_circle()
object
miRTalk object after
find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype_sender
Name of celltype_sender. One or more
cell typescelltype_receiver
Name of celltype_receiver. One or
@@ -4720,17 +4828,22 @@ plot_miR2tar_circle()
miRNA
which miRNAs to use. Default is to plot all
inferred miRNAsnode_size
Size of node. Default is 3edge_color
Colors for the edges from the sender cell
typetext_size
Size of text labels. Default is 3edge_width
y_scale to adjust the text. Default is
0.5if_show_legend
Whether to show legends. Default is
+FALSEplot_miR2tar_circle(obj, celltype_sender = "Tumor", celltype_receiver = "Stromal")
-plot_miR2tar_circle(obj, celltype_sender = "Tumor", celltype_receiver = "Stromal", celltype_color = "NO")
plot_miR2tar_heatmap()
plot_miR2tar_heatmap()
object
miRTalk object after
find_miRTalk()
condition
which conditions to plot. Default is plot all
+conditionscelltype_sender
Name of celltype_sender. One or more
cell typescelltype_receiver
Name of celltype_receiver. One or
more cell typesmiRNA
which miRNAs to use. Default is to plot all
inferred miRNAsshow_type
which type of miRNAs to show, “prob” or
-“score” for inferred miRNAs-target interactions. Default is “prob”text_size
Size of text labels. Default is 3if_horizontal
Whether to plot with the horizontal
direction. Default is TRUE
plot_miR2tar_heatmap()
...
parameters pass to
heatmaply::heatmaply
, e.g., grid_colorplot_miR2tar_heatmap(obj, celltype_sender = "Tumor", celltype_receiver = "Stromal", grid_color = "black")
get_pathways()
Parameters of get_pathways()
see below:
get_gene2go()
Parameters of get_gene2go()
see below:
get_miRTalk_circulating_score()
.
+Detailed see the wiki
+pageParameters of get_miRTalk_circulating_score()
see
+below:
object
miRTalk object after
find_miRTalk()
gene2go
A data.frame of the system data containing GO
-terms for ‘Human’, ‘Mouse’ or ‘Rat’. see
-demo_gene2go()
if_show_negative
Whether to show the results with
-negative regulation. Default is TRUE.# demo_gene2go
-demo_gene2go()
-#> symbol GO_term species
-#> 1 A1BG molecular_function Human
-#> 2 A1BG extracellular region Human
-#> 3 A1BG extracellular space Human
-#> 4 Zzz3 DNA binding Mouse
-#> 5 Zyx metal ion binding Rat
-
-# get pathways
-<- get_gene2go(obj, gene2go = gene2go)
- obj_gene2go head(obj_gene2go)
-#> symbol evidence qualifier
-#> 2851 DNAJB6 IDA involved_in
-#> 2854 DNAJB6 IEA involved_in
-#> 2865 DNAJB6 IDA involved_in
-#> 2866 DNAJB6 IMP involved_in
-#> 6714 NME6 IBA involved_in
-#> 6715 NME6 IDA involved_in
-#> GO_term
-#> 2851 negative regulation of cysteine-type endopeptidase activity involved in apoptotic process
-#> 2854 negative regulation of transcription, DNA-templated
-#> 2865 negative regulation of inclusion body assembly
-#> 2866 negative regulation of inclusion body assembly
-#> 6714 negative regulation of cell growth
-#> 6715 negative regulation of cell growth
-#> PubMed category species
-#> 2851 11896048 Process Human
-#> 2854 - Process Human
-#> 2865 21231916 Process Human
-#> 2866 20889486 Process Human
-#> 6714 21873635 Process Human
-#> 6715 10618642 Process Human
Nebulosa::plot_density()
Nebulosa::plot_density(object = obj_seurat, features = "MIR24-2")
-sessionInfo()
-#> R version 4.1.1 (2021-08-10)
-#> Platform: x86_64-w64-mingw32/x64 (64-bit)
-#> Running under: Windows 10 x64 (build 19045)
-#>
-#> Matrix products: default
-#>
-#> locale:
-#> [1] LC_COLLATE=Chinese (Simplified)_China.936
-#> [2] LC_CTYPE=Chinese (Simplified)_China.936
-#> [3] LC_MONETARY=Chinese (Simplified)_China.936
-#> [4] LC_NUMERIC=C
-#> [5] LC_TIME=Chinese (Simplified)_China.936
-#>
-#> attached base packages:
-#> [1] parallel stats graphics grDevices utils datasets methods
-#> [8] base
-#>
-#> other attached packages:
-#> [1] miRTalk_1.0 doParallel_1.0.17 iterators_1.0.13 foreach_1.5.1
-#>
-#> loaded via a namespace (and not attached):
-#> [1] circlize_0.4.13 plyr_1.8.6 igraph_1.2.7
-#> [4] lazyeval_0.2.2 sp_1.4-5 splines_4.1.1
-#> [7] crosstalk_1.2.0 listenv_0.8.0 scattermore_0.7
-#> [10] ggplot2_3.3.6 digest_0.6.28 ca_0.71.1
-#> [13] htmltools_0.5.2 viridis_0.6.2 fansi_0.5.0
-#> [16] magrittr_2.0.1 tensor_1.5 cluster_2.1.2
-#> [19] ROCR_1.0-11 limma_3.50.0 globals_0.14.0
-#> [22] graphlayouts_0.7.1 matrixStats_0.61.0 spatstat.sparse_3.0-0
-#> [25] prettyunits_1.1.1 rmdformats_1.0.3 colorspace_2.0-2
-#> [28] ggrepel_0.9.1 xfun_0.30 dplyr_1.0.7
-#> [31] crayon_1.4.2 jsonlite_1.7.2 progressr_0.9.0
-#> [34] spatstat.data_3.0-0 survival_3.2-11 zoo_1.8-9
-#> [37] glue_1.4.2 polyclip_1.10-0 registry_0.5-1
-#> [40] gtable_0.3.0 webshot_0.5.4 leiden_0.3.9
-#> [43] future.apply_1.8.1 shape_1.4.6 abind_1.4-5
-#> [46] scales_1.1.1 pheatmap_1.0.12 DBI_1.1.1
-#> [49] miniUI_0.1.1.1 Rcpp_1.0.7 progress_1.2.2
-#> [52] viridisLite_0.4.0 xtable_1.8-4 reticulate_1.22
-#> [55] spatstat.core_2.3-0 datawizard_0.6.2 htmlwidgets_1.5.4
-#> [58] httr_1.4.2 RColorBrewer_1.1-2 ellipsis_0.3.2
-#> [61] Seurat_4.1.1 ica_1.0-2 pkgconfig_2.0.3
-#> [64] farver_2.1.0 sass_0.4.0 uwot_0.1.10
-#> [67] deldir_1.0-6 utf8_1.2.2 labeling_0.4.2
-#> [70] tidyselect_1.1.1 rlang_0.4.12 reshape2_1.4.4
-#> [73] later_1.3.0 munsell_0.5.0 tools_4.1.1
-#> [76] generics_0.1.1 ggridges_0.5.3 evaluate_0.14
-#> [79] stringr_1.4.0 fastmap_1.1.0 heatmaply_1.4.0
-#> [82] yaml_2.2.1 goftest_1.2-3 knitr_1.36
-#> [85] fitdistrplus_1.1-6 tidygraph_1.2.0 purrr_0.3.4
-#> [88] RANN_2.6.1 dendextend_1.16.0 ggraph_2.0.5
-#> [91] pbapply_1.5-0 future_1.23.0 nlme_3.1-152
-#> [94] mime_0.12 correlation_0.8.3 compiler_4.1.1
-#> [97] plotly_4.10.0 png_0.1-7 spatstat.utils_3.0-1
-#> [100] tibble_3.1.5 tweenr_1.0.2 bslib_0.3.1
-#> [103] stringi_1.7.5 highr_0.9 rgeos_0.5-9
-#> [106] lattice_0.20-44 Matrix_1.3-4 vctrs_0.3.8
-#> [109] pillar_1.6.4 lifecycle_1.0.1 networkD3_0.4
-#> [112] spatstat.geom_3.0-3 lmtest_0.9-38 jquerylib_0.1.4
-#> [115] GlobalOptions_0.1.2 RcppAnnoy_0.0.19 insight_0.18.5
-#> [118] data.table_1.14.2 cowplot_1.1.1 irlba_2.3.3
-#> [121] seriation_1.4.0 httpuv_1.6.3 patchwork_1.1.1
-#> [124] R6_2.5.1 bookdown_0.25 promises_1.2.0.1
-#> [127] TSP_1.2-1 KernSmooth_2.23-20 gridExtra_2.3
-#> [130] parallelly_1.28.1 codetools_0.2-18 MASS_7.3-54
-#> [133] assertthat_0.2.1 SeuratObject_4.1.0 sctransform_0.3.3
-#> [136] bayestestR_0.13.0 hms_1.1.1 mgcv_1.8-36
-#> [139] grid_4.1.1 rpart_4.1-15 tidyr_1.1.4
-#> [142] rmarkdown_2.13 Rtsne_0.15 ggforce_0.3.3
-#> [145] shiny_1.7.1
library(ggplot2)
+# get circulating miRNAs
+res_circulating <- get_miRTalk_circulating_score(obj)
+str(res_circulating)
+#> 'data.frame': 164 obs. of 7 variables:
+#> $ miRNA : chr "hsa-miR-146a-5p" "hsa-miR-146a-5p" "hsa-miR-146a-5p" "hsa-miR-146a-5p" ...
+#> $ tissue_TarBase : chr "Kidney; Pleura; Lymphatic tissue; Cervix; Bone marrow; Umbilical vein; Pancreas; Brain - Motor cortex; Brain - "| __truncated__ "Kidney; Pleura; Lymphatic tissue; Cervix; Bone marrow; Umbilical vein; Pancreas; Brain - Motor cortex; Brain - "| __truncated__ "Kidney; Pleura; Lymphatic tissue; Cervix; Bone marrow; Umbilical vein; Pancreas; Brain - Motor cortex; Brain - "| __truncated__ "Kidney; Pleura; Lymphatic tissue; Cervix; Bone marrow; Umbilical vein; Pancreas; Brain - Motor cortex; Brain - "| __truncated__ ...
+#> $ score : num 0.661 0.661 0.661 0.661 0.661 ...
+#> $ miR_gene : chr "MIR146A" "MIR146A" "MIR146A" "MIR146A" ...
+#> $ celltype_receiver: chr "Tcell" "Tumor" "Bcell" "Bcell" ...
+#> $ target_gene : chr "MYLK" "CD80" "SPP1" "HSPA1A" ...
+#> $ condition : chr "condition" "condition" "condition" "condition" ...
+
+#plotting
+res_circulating$celltype_receiver <- paste0(res_circulating$condition,"_",res_circulating$celltype_receiver)
+res_circulating <- unique(res_circulating[,c("miRNA","score","celltype_receiver")])
+res_cir_plot <- reshape2::dcast(data = res_circulating, formula = miRNA ~ celltype_receiver, value.var = "score", fun.aggregate = mean, fill = 0)
+rownames(res_cir_plot) <- res_cir_plot$miRNA
+res_cir_plot <- res_cir_plot[,-1]
+heat_col <- viridis::viridis(n = 256, alpha = 1, begin = 0, end = 1, option = "D")
+heatmaply::heatmaply(x = as.matrix(res_cir_plot), colors = heat_col, limits = c(0,1),dendrogram = "none", margins = c(60,100,40,20), titleX = FALSE, main = "Circulating potential", branches_lwd = 0.1, fontsize_row = 10, fontsize_col = 10, labCol = colnames(res_cir_plot), labRow = rownames(res_cir_plot), heatmap_layers = theme(axis.line=element_blank()))
sessionInfo()
+#> R version 4.2.1 (2022-06-23)
+#> Platform: x86_64-pc-linux-gnu (64-bit)
+#> Running under: CentOS Linux 7 (Core)
+#>
+#> Matrix products: default
+#> BLAS: /slurm/soft/R/4.2.1/lib64/R/lib/libRblas.so
+#> LAPACK: /slurm/soft/R/4.2.1/lib64/R/lib/libRlapack.so
+#>
+#> locale:
+#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
+#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
+#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
+#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
+#> [9] LC_ADDRESS=C LC_TELEPHONE=C
+#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
+#>
+#> attached base packages:
+#> [1] parallel stats graphics grDevices utils datasets methods
+#> [8] base
+#>
+#> other attached packages:
+#> [1] ggplot2_3.4.2 miRTalk_1.0 doParallel_1.0.17 iterators_1.0.14
+#> [5] foreach_1.5.2
+#>
+#> loaded via a namespace (and not attached):
+#> [1] circlize_0.4.15 plyr_1.8.8 igraph_1.5.0
+#> [4] lazyeval_0.2.2 sp_2.0-0 splines_4.2.1
+#> [7] crosstalk_1.2.0 listenv_0.9.0 scattermore_1.2
+#> [10] digest_0.6.31 ca_0.71.1 htmltools_0.5.5
+#> [13] viridis_0.6.3 fansi_1.0.4 magrittr_2.0.3
+#> [16] tensor_1.5 cluster_2.1.3 ROCR_1.0-11
+#> [19] limma_3.54.2 globals_0.16.2 graphlayouts_1.1.0
+#> [22] matrixStats_1.0.0 spatstat.sparse_3.0-2 prettyunits_1.1.1
+#> [25] rmdformats_1.0.4 colorspace_2.1-0 ggrepel_0.9.3
+#> [28] xfun_0.39 dplyr_1.1.2 crayon_1.5.2
+#> [31] jsonlite_1.8.5 progressr_0.13.0 spatstat.data_3.0-1
+#> [34] survival_3.3-1 zoo_1.8-12 glue_1.6.2
+#> [37] polyclip_1.10-4 registry_0.5-1 gtable_0.3.3
+#> [40] webshot_0.5.5 leiden_0.4.3 future.apply_1.11.0
+#> [43] shape_1.4.6 abind_1.4-5 scales_1.2.1
+#> [46] pheatmap_1.0.12 spatstat.random_3.1-5 miniUI_0.1.1.1
+#> [49] Rcpp_1.0.10 progress_1.2.2 viridisLite_0.4.2
+#> [52] xtable_1.8-4 reticulate_1.30 datawizard_0.12.0
+#> [55] htmlwidgets_1.6.2 httr_1.4.6 RColorBrewer_1.1-3
+#> [58] ellipsis_0.3.2 Seurat_4.3.0.1 ica_1.0-3
+#> [61] pkgconfig_2.0.3 farver_2.1.1 sass_0.4.6
+#> [64] uwot_0.1.14 deldir_1.0-9 utf8_1.2.3
+#> [67] labeling_0.4.2 tidyselect_1.2.0 rlang_1.1.1
+#> [70] reshape2_1.4.4 later_1.3.1 munsell_0.5.0
+#> [73] tools_4.2.1 cachem_1.0.8 cli_3.6.1
+#> [76] generics_0.1.3 ggridges_0.5.4 evaluate_0.21
+#> [79] stringr_1.5.0 fastmap_1.1.1 heatmaply_1.5.0
+#> [82] yaml_2.3.7 goftest_1.2-3 knitr_1.43
+#> [85] fitdistrplus_1.1-11 tidygraph_1.3.0 purrr_1.0.1
+#> [88] RANN_2.6.1 dendextend_1.17.1 ggraph_2.1.0
+#> [91] pbapply_1.7-0 future_1.32.0 nlme_3.1-157
+#> [94] mime_0.12 correlation_0.8.5 compiler_4.2.1
+#> [97] rstudioapi_0.14 plotly_4.10.2 png_0.1-8
+#> [100] spatstat.utils_3.0-5 tibble_3.2.1 tweenr_2.0.2
+#> [103] bslib_0.5.0 stringi_1.7.12 highr_0.10
+#> [106] lattice_0.20-45 Matrix_1.5-4.1 vctrs_0.6.3
+#> [109] networkD3_0.4 pillar_1.9.0 lifecycle_1.0.3
+#> [112] spatstat.geom_3.2-1 lmtest_0.9-40 jquerylib_0.1.4
+#> [115] GlobalOptions_0.1.2 RcppAnnoy_0.0.20 insight_0.20.1
+#> [118] data.table_1.14.8 cowplot_1.1.1 irlba_2.3.5.1
+#> [121] seriation_1.5.4 httpuv_1.6.11 patchwork_1.1.2
+#> [124] R6_2.5.1 bookdown_0.40 promises_1.2.0.1
+#> [127] TSP_1.2-4 KernSmooth_2.23-20 gridExtra_2.3
+#> [130] parallelly_1.36.0 codetools_0.2-18 MASS_7.3-57
+#> [133] assertthat_0.2.1 withr_2.5.0 SeuratObject_4.1.3
+#> [136] sctransform_0.3.5 bayestestR_0.13.2 hms_1.1.3
+#> [139] grid_4.2.1 tidyr_1.3.0 rmarkdown_2.22
+#> [142] Rtsne_0.16 spatstat.explore_3.2-1 ggforce_0.4.1
+#> [145] shiny_1.7.4