-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrainer.py
94 lines (65 loc) · 3.91 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import tensorflow as tf
import model
from simulation_data import data_handler
import numpy as np
class trainer(object):
def __init__(self, epochs = 10, batch_size = 128, validation_split = 0.2, tune_model = True, L2NormConst = 0.001, left_and_right_images = False, left_right_offset = 0.2, root_path = '', test_root_path ='',stop_gradient_at_conv = False, test_left_and_right_images = False):
self.handler = data_handler(validation_split = validation_split, batch_size = batch_size, root_path = root_path, left_and_right_images = left_and_right_images, left_right_offset = left_right_offset, test_root_path = test_root_path, test_left_and_right_images = False)
self.validation_split = validation_split
self.LOGDIR = './save'
self.sess = tf.InteractiveSession()
self.L2NormConst = L2NormConst
self.train_vars = tf.trainable_variables()
self.loss = tf.reduce_mean(tf.square(tf.sub(model.y_, model.y))) + tf.add_n([tf.nn.l2_loss(v) for v in self.train_vars]) * L2NormConst
self.train_step = tf.train.AdamOptimizer(1e-4).minimize(self.loss)
self.epochs = epochs
self.batch_size = batch_size
self.sess.run(tf.initialize_all_variables())
self.saver = tf.train.Saver()
if(tune_model):
self.saver.restore(self.sess, "save/model_trained_on_game.ckpt")
if(stop_gradient_at_conv):
model.h_fc1 = tf.stop_gradient(model.h_fc1)
def train(self):
# train over the dataset
for epoch in range(self.epochs):
batches_handled = 0
for X_train, y_train in self.handler.generate_train_batch():
self.train_step.run(feed_dict={model.x: X_train, model.y_: y_train, model.keep_prob: 0.8})
if not os.path.exists(self.LOGDIR):
os.makedirs(self.LOGDIR)
checkpoint_path = os.path.join(self.LOGDIR, "model_trained_on_game.ckpt")
filename = self.saver.save(self.sess, checkpoint_path)
batches_handled = batches_handled + 1
if(batches_handled>self.handler.num_train_batches()):
break
avg_train_loss = 0
batches_handled = 0
for X_train, y_train in self.handler.generate_train_batch():
avg_train_loss = (avg_train_loss*batches_handled + self.loss.eval(feed_dict={model.x: X_train, model.y_: y_train, model.keep_prob: 1.0}))/(batches_handled+1)
batches_handled = batches_handled + 1
if(batches_handled>self.handler.num_train_batches()):
break
avg_val_loss = 0
batches_handled = 0
for X_val, y_val in self.handler.generate_validation_batch():
avg_val_loss = (avg_val_loss*batches_handled + self.loss.eval(feed_dict={model.x: X_val, model.y_: y_val, model.keep_prob: 1.0}))/(batches_handled+1)
batches_handled = batches_handled + 1
if(batches_handled>self.handler.num_val_batches()):
break
print("Model saved in %s. Metrics::: Epoch: %d, Loss: %g, Validation_loss: %g" % (filename, epoch, avg_train_loss, avg_val_loss))
print("Run the command line:\n" \
"--> tensorboard --logdir=./logs " \
"\nThen open http://0.0.0.0:6006/ into your web browser")
def test(self):
avg_test_loss = 0
batches_tested = 0
for X_test, y_test, num_batches in self.handler.generate_test_batch():
avg_test_loss = (avg_test_loss*batches_tested + self.loss.eval(feed_dict={model.x: X_test, model.y_: y_test, model.keep_prob: 1.0}))/(batches_tested+1)
batches_tested = batches_tested + 1
if(batches_tested>num_batches):
break
print("Test_loss: %g" % (avg_test_loss))
def set_root_image_path(self,path):
self.handler.set_root_image_path(path)