-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
525 lines (397 loc) · 19.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Imports for data preprocessing
from tensorflow import data as tf_data
from tensorflow import image as tf_image
from tensorflow import io as tf_io
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import cv2
import tensorflow as tf
import os
from tqdm import tqdm
import shutil
import xml.etree.ElementTree as ET
import keras
def read_image(image_path, mask=False, resize_img=True, new_image_size=512):
image = tf_io.read_file(image_path)
if mask:
n_channels= 1
else:
n_channels = 3
image = tf_image.decode_png(image, channels=n_channels)
if resize_img:
image.set_shape([None, None, n_channels])
image = tf_image.resize(images=image, size=[new_image_size, new_image_size])
'''
if mask:
image = tf_image.decode_png(image, channels=1)
image.set_shape([None, None, 1])
image = tf_image.resize(images=image, size=[image_size, image_size])
else:
image = tf_image.decode_png(image, channels=3)
image.set_shape([None, None, 3])
image = tf_image.resize(images=image, size=[image_size, image_size])
'''
return image
def load_data(image_list, mask_list):
image = read_image(image_list)
mask = read_image(mask_list, mask=True)
return image, mask
def load_data_noresize(image_list, mask_list):
image = read_image(image_list, resize_img=False)
mask = read_image(mask_list, mask=True, resize_img=False)
return image, mask
def augment(image, mask, prob=0.5):
should_augment = tf.random.uniform([]) > prob
if should_augment:
p_bright = tf.random.uniform([])
p_contrast = tf.random.uniform([])
p_hue = tf.random.uniform([])
p_saturation = tf.random.uniform([])
p_flip_lr = tf.random.uniform([])
p_flip_ud = tf.random.uniform([])
p_noise = tf.random.uniform([])
p_random_crop = tf.random.uniform([])
p_rotate = tf.random.uniform([])
if p_bright > prob:
image = tf.image.random_brightness(image, 0.2)
if p_contrast > prob:
image = tf.image.random_contrast(image, 0.8, 1.2)
if p_hue > prob:
image = tf.image.random_hue(image, 0.2)
if p_saturation > prob:
image = tf.image.random_saturation(image, 0.8, 1.2)
if p_noise > prob:
image =tf.clip_by_value(image + tf.random.normal(shape=tf.shape(image), mean=0.0, stddev=0.1), 0.0, 255.0)
concat_data = tf.concat([image, mask], axis=-1)
if p_flip_lr > prob:
concat_data = tf.image.flip_left_right(concat_data)
if p_flip_ud > prob:
concat_data = tf.image.flip_up_down(concat_data)
if p_random_crop > prob:
concat_data = tf.image.random_crop(concat_data, size=[512, 512, 4])
if p_rotate > prob:
concat_data = tf.image.rot90(concat_data, k=tf.random.uniform([], minval=0, maxval=4, dtype=tf.int32))
image_aug = concat_data[:, :, :3]
mask_aug = concat_data[:, :, 3:]
return image_aug, mask_aug
else:
return image, mask
# def data_generator(image_list, mask_list, batch_size):
# dataset = tf_data.Dataset.from_tensor_slices((image_list, mask_list))
#
# dataset = dataset.map(load_data, num_parallel_calls=tf_data.AUTOTUNE)
# dataset = dataset.map(augment, num_parallel_calls=tf_data.AUTOTUNE)
# dataset = dataset.batch(batch_size, drop_remainder=True)
# return dataset
def data_generator(image_list, mask_list, batch_size, augment_data=True, resize_image=True):
dataset_original = tf.data.Dataset.from_tensor_slices((image_list, mask_list))
if resize_image:
dataset_original = dataset_original.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
else:
dataset_original = dataset_original.map(load_data_noresize, num_parallel_calls=tf.data.AUTOTUNE)
if augment_data:
dataset_augmented = tf.data.Dataset.from_tensor_slices((image_list, mask_list))
if resize_image:
dataset_augmented = dataset_augmented.map(load_data, num_parallel_calls=tf.data.AUTOTUNE)
else:
dataset_augmented = dataset_augmented.map(load_data_noresize, num_parallel_calls=tf.data.AUTOTUNE)
dataset_augmented = dataset_augmented.map(augment, num_parallel_calls=tf.data.AUTOTUNE)
dataset = dataset_original.concatenate(dataset_augmented)
else:
dataset = dataset_original
if resize_image == False:
dataset = dataset.batch(1, drop_remainder=True).prefetch(tf.data.AUTOTUNE)
else:
dataset = dataset.batch(batch_size, drop_remainder=True).prefetch(tf.data.AUTOTUNE)
return dataset
def infer(model, image_tensor):
predictions = model.predict(np.expand_dims((image_tensor), axis=0), verbose=0)
predictions = np.squeeze(predictions)
predictions = np.argmax(predictions, axis=2)
return predictions
def decode_segmentation_masks(mask, colormap, n_classes=11):
colormap = [patch for patch in colormap.values()]
colormap = np.array(colormap) * 100
colormap = colormap.astype(np.uint8)
r = np.zeros_like(mask).astype(np.uint8)
g = np.zeros_like(mask).astype(np.uint8)
b = np.zeros_like(mask).astype(np.uint8)
for l in range(0, n_classes):
idx = mask == l
r[idx] = colormap[l, 0]
g[idx] = colormap[l, 1]
b[idx] = colormap[l, 2]
rgb = np.stack([r, g, b], axis=2)
# rgb = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8)
# for l in range(0, n_classes):
# idx = mask == l
# rgb[idx] = colormap.get(str(l), [0, 0, 0]) # Use .get() to handle missing keys gracefully
return rgb
def get_overlay(image, mask):
image = Image.fromarray((image * 255).astype(np.uint8))
image = np.array(image).astype(np.uint8)
overlay = cv2.addWeighted(image, 0.35, mask, 0.65, 0)
return overlay
def plot_samples_matplotlib(display_list, figsize=(5,3)):
_, axes = plt.subplots(nrows=1, ncols=len(display_list), figsize=figsize)
for i in range(len(display_list)):
if display_list[i].shape[-1] == 3:
axes[i].imshow(display_list[i])
else:
axes[i].imshow(display_list[i])
plt.show()
def plot_predictions(images_list,image_size, colormap,model,n_classes=11):
for image_file in images_list:
image = Image.open(image_file)#.resize((image_size, image_size))
image_tensor = np.array(image)
prediction_mask = infer(model, image_tensor)
prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, n_classes=n_classes)
overlay = get_overlay(image_tensor, prediction_colormap)
plot_samples_matplotlib([image_tensor, prediction_colormap, overlay], figsize=(18,14))
def get_unique_colors(image_path):
"""
Get a set of unique colors from an image
"""
with Image.open(image_path) as img:
img = img.convert("RGB") # Ensure image is in RGB format
colors = img.getcolors(maxcolors=2 ** 24) # Get all colors from the image
unique_colors = {color[1] for color in colors} if colors else set()
return unique_colors
def unique_colors_in_folder(folder_path):
"""
Get a combined set of unique colors from all images in a folder
"""
all_colors = set()
for filename in tqdm(os.listdir(folder_path)):
if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
image_path = os.path.join(folder_path, filename)
unique_colors = get_unique_colors(image_path)
all_colors.update(unique_colors)
return all_colors
def focal_loss_multiclass(alpha=0.25, gamma=2.0, num_classes=2, alpha_tensor=None):
"""
Focal loss for multicos.path.join(model_folder, model_namelass segmentation using logits.
Args:
- alpha (float or list of floats): Balancing factor for each class.
- gamma (float): Modulating factor.
- num_classes (int): Number of classes.
- alpha_tensor (tf.Tensor): Tensor of shape (num_classes,) specifying alpha values for each class (overrides alpha).
Returns:
- loss (function): A loss function taking (y_true, y_logits).
"""
if alpha_tensor is None:
if isinstance(alpha, list):
alpha_tensor = tf.convert_to_tensor(alpha, dtype=tf.float32)
else:
alpha_tensor = tf.fill((num_classes,), alpha)
def focal_loss_fixed(y_true, y_logits):
ce_loss = tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_logits)
p_t = tf.nn.softmax(y_logits, axis=-1)
modulating_factor = tf.pow(1.0 - p_t, gamma)
alpha_t = tf.gather(alpha_tensor, tf.argmax(y_true, axis=-1))
focal_loss = tf.reduce_sum(alpha_t * modulating_factor * ce_loss, axis=-1)
return tf.reduce_mean(focal_loss)
return focal_loss_fixed
def read_masks_and_compute_weights(directory, normalize=True, background_increase=0.1):
class_counts = {}
total_pixels = 0
for filename in tqdm(os.listdir(directory)):
if filename.endswith('.png'):
filepath = os.path.join(directory, filename)
with Image.open(filepath) as img:
mask = np.array(img)
for class_value in np.unique(mask):
if class_value not in class_counts:
class_counts[class_value] = 0
class_counts[class_value] += np.sum(mask == class_value)
total_pixels += mask.size
cw = {}
if normalize:
max_weight = 0
for class_value, count in class_counts.items():
cw[class_value] = total_pixels / (len(class_counts) * count)
if cw[class_value] > max_weight:
max_weight = cw[class_value]
for class_value in cw:
cw[class_value] /= max_weight
cw[0] += background_increase
for class_value in cw:
cw[class_value] += 1
return cw
def load_and_preprocess_image(image_path,image_size=448):
image = Image.open(image_path)
image = image.resize((image_size, image_size))
image_array = np.array(image)
return image_array
def save_segmented_image(predictions, save_path):
mask = np.array(predictions != 0)
segmented_image = np.zeros_like(predictions)
segmented_image[mask] = 255
image = Image.fromarray(segmented_image.astype('uint8'))
image.save(save_path)
def save_image(image_array, save_path):
image = Image.fromarray(image_array)
image.save(save_path)
def fill_holes(predictions, close_iterations=4, erode_iterations=2):
mask = predictions != 0
mask = mask.astype(np.uint8) * 255
close_kernel = np.ones((10, 10), np.uint8)
erode_kernel = np.ones((7, 7), np.uint8)
closed_mask = mask
for _ in range(close_iterations):
closed_mask = cv2.morphologyEx(closed_mask, cv2.MORPH_CLOSE, close_kernel)
eroded_mask = closed_mask
for _ in range(erode_iterations):
eroded_mask = cv2.morphologyEx(eroded_mask, cv2.MORPH_ERODE, erode_kernel)
return eroded_mask
def apply_mask_to_image(original_image, mask):
if len(mask.shape) == 2:
mask = np.stack([mask]*3, axis=-1)
masked_image = original_image * (mask.astype(original_image.dtype) // 255)
return masked_image
def remove_background(dataset_dir, output_dir, model, image_size, close_iterations=5, erode_iterations=5):
for split in ['Train', 'Test', 'Valid']:
for condition in ['Real', 'Fake']:
input_dir = os.path.join(dataset_dir, split, condition)
output_split_dir = os.path.join(output_dir, split, condition)
os.makedirs(output_split_dir, exist_ok=True)
for image_name in tqdm(os.listdir(input_dir), desc=f"Segmenting {split} {condition} images"):
image_path = os.path.join(input_dir, image_name)
save_path = os.path.join(output_split_dir, image_name)
image_tensor = load_and_preprocess_image(image_path, image_size)
predictions = infer(model, image_tensor)
filled_predictions = fill_holes(predictions, close_iterations=close_iterations, erode_iterations=erode_iterations)
original_image = load_and_preprocess_image(image_path, image_size)
masked_image = apply_mask_to_image(original_image, filled_predictions)
save_image(masked_image, save_path)
def process_dataset_by_class(dataset_dir, output_dir, model, image_size, num_classes):
"""Process a dataset by class, segmenting each image
and saving it in the corresponding class folder."""
for class_id in range(num_classes):
class_dir = os.path.join(output_dir, f"Dataset_{class_id}")
for split in ['Train', 'Test', 'Valid']:
for condition in ['Real', 'Fake']:
os.makedirs(os.path.join(class_dir, split, condition), exist_ok=True)
for split in ['Train', 'Test', 'Valid']:
for condition in ['Real', 'Fake']:
input_dir = os.path.join(dataset_dir, split, condition)
for image_name in tqdm(os.listdir(input_dir), desc=f"Processing {split} {condition} images"):
image_path = os.path.join(input_dir, image_name)
image_tensor = load_and_preprocess_image(image_path, image_size)
predictions = infer(model, image_tensor)
for class_id in range(num_classes):
class_predictions = (predictions == class_id).astype(np.uint8)
filled_mask = fill_holes(class_predictions)
original_image = load_and_preprocess_image(image_path, image_size)
masked_image = apply_mask_to_image(original_image, filled_mask)
save_path = os.path.join(output_dir, f"Dataset_{class_id}", split, condition, image_name)
save_image(masked_image, save_path)
import os
import zipfile
from tqdm import tqdm
def zip_files_with_string_in_name(directory_path, search_string):
parent_directory = os.path.dirname(directory_path)
zip_file_path = os.path.join(parent_directory, "filtered_files.zip")
files_to_add = []
for foldername, subfolders, filenames in os.walk(directory_path):
for filename in filenames:
if search_string in filename:
file_path = os.path.join(foldername, filename)
files_to_add.append(file_path)
with zipfile.ZipFile(zip_file_path, 'w') as zipf, tqdm(total=len(files_to_add), desc="Adding files") as pbar:
for file_path in files_to_add:
zipf.write(file_path, os.path.relpath(file_path, directory_path))
pbar.update(1)
print(f"Created ZIP file at: {zip_file_path}")
def reorganize_dataset(dataset_dir, xml_file):
"""Reorganize mut1ny dataset into separate 'images' and 'masks' folders, following the paths in the included XML file."""
images_dir = os.path.join(dataset_dir, 'images')
masks_dir = os.path.join(dataset_dir, 'masks')
os.makedirs(images_dir, exist_ok=True)
os.makedirs(masks_dir, exist_ok=True)
tree = ET.parse(xml_file)
root = tree.getroot()
image_index = 0
mask_index = 0
items = list(root.findall('.//srcimg')) + list(root.findall('.//labelimg')) # Cerca elementi direttamente nel root
for child in tqdm(items, desc="Processing images and masks"):
original_path = os.path.join(dataset_dir, child.attrib['name'].replace('\\', '/'))
if child.tag == 'srcimg':
folder = images_dir
new_file_name = f'{image_index:04d}.png'
image_index += 1
else:
folder = masks_dir
new_file_name = f'{mask_index:04d}.png'
mask_index += 1
if not os.path.exists(original_path):
print(f"File not found: {original_path}")
continue
new_file_path = os.path.join(folder, new_file_name)
try:
with Image.open(original_path) as img:
img.convert('RGB').save(new_file_path, 'PNG')
except Exception as e:
print(f"Failed to convert {original_path} to PNG: {e}")
print("All files have been reorganized.")
from sklearn.model_selection import train_test_split
def create_dataset_structure(src_directory, dest_directory, train_size=0.7, valid_size=0.2, test_size=0.1):
"""
Starting from a dataset of tpye:
-Dataset/
--Fake/
--Real/
Organizes it into train, validation, and test directories with a specified split ratio, giving:
-Dataset/
--Test/
---Fake/
---Real/
--Train/
---Fake/
---Real/
--Valid/
---Fake/
---Real/
Args:
src_directory (str): Path to the source directory containing 'Fake' and 'Real' subdirectories.
dest_directory (str): Base path to create 'Train', 'Valid', and 'Test' directories.
train_size (float): Proportion of the dataset to be used as training data.
valid_size (float): Proportion of the dataset to be used as validation data.
test_size (float): Proportion of the dataset to be used as test data.
Raises:
ValueError: If the sum of train_size, valid_size, and test_size does not equal 1.
"""
if not (train_size + valid_size + test_size == 1):
raise ValueError("The sum of train_size, valid_size, and test_size must be 1")
categories = ['Fake', 'Real']
splits = ['Train', 'Valid', 'Test']
ratios = [train_size, valid_size, test_size]
# Create the directory structure for Train, Valid, and Test
for split in splits:
for category in categories:
os.makedirs(os.path.join(dest_directory, split, category), exist_ok=True)
# Process each category ('Fake', 'Real')
for category in categories:
full_category_path = os.path.join(src_directory, category)
files = [os.path.join(full_category_path, f) for f in os.listdir(full_category_path)]
# Split files according to the specified ratios
train_files, test_files = train_test_split(files, train_size=train_size + valid_size, test_size=test_size,
random_state=42)
train_files, valid_files = train_test_split(train_files, train_size=train_size / (train_size + valid_size),
valid_size=valid_size / (train_size + valid_size), random_state=42)
# Function to copy files to a specific split
def copy_files(files, split):
for file in tqdm(files, desc=f"Copying {category} files to {split}", unit='files'):
shutil.copy(file, os.path.join(dest_directory, split, category))
# Copy files to the respective directories
copy_files(train_files, 'Train')
copy_files(valid_files, 'Valid')
copy_files(test_files, 'Test')
# Usage:
# create_dataset_structure('Dataset_stylegan3_only', 'Dataset_stylegan3_only', train_size=0.7, valid_size=0.2, test_size=0.1)
# xml_file_path = os.path.join(dataset_dir, 'training.xml')#
# reorganize_dataset(dataset_dir, xml_file_path)
# directory_path = '/homeRepo/tanfoni/Dataset_stylegan3_only/Fake'
# search_string = 'stylegan3'
# zip_files_with_string_in_name(directory_path, search_string)