-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathPrototype_Estimation.py
138 lines (115 loc) · 5.49 KB
/
Prototype_Estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import random
from pathlib import Path
import time
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torch
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from utils.printing import bcolors
class dset(Dataset):
def __init__(self,n_centroids):
super(dset, self).__init__()
self.l = n_centroids
def __getitem__(self, item):
return item
def __len__(self):
return self.l
def l2_norm(input,axis=1):
norm = torch.norm(input,2,axis,True)
output = torch.div(input, norm)
return output
def uniform_loss(x, t=2):
return torch.pdist(x.T, p=2).pow(2).mul(-t).exp().mean().log()
class uniform_weights(torch.nn.Module):
def __init__(self,nclass,embedding_dim):
super(uniform_weights, self).__init__()
self.ar_batch = torch.arange(0,nclass)
self.register_buffer("w",tensor=torch.normal(0, 0.01, (embedding_dim,nclass)))
self.w.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
self.w = torch.nn.Parameter(self.w)
def forward(self,idx,optimizer):
kernel_norm = l2_norm(self.w[:,idx], axis=0)
loss = uniform_loss(kernel_norm)
return loss
def print_score(self):
with torch.no_grad():
kernel_norm = l2_norm(self.w, axis=0)
scores = torch.mm(kernel_norm.T, kernel_norm)
return scores.mean().item()
def print_max_score(self):
with torch.no_grad():
kernel_norm = l2_norm(self.w, axis=0)
scores = torch.mm(kernel_norm.T, kernel_norm)
ar = torch.arange(scores.shape[0])
scores[ar, ar] = 0
max_similarity = torch.max(scores, axis=1)[0]
return torch.max(max_similarity).item(), max_similarity.mean().item()
def plt_w(self,title):
kernel = l2_norm(self.w, axis=0)
plt.scatter(kernel[0,self.ar_batch].detach().cpu().numpy(),kernel[1,self.ar_batch].detach().cpu().numpy())
plt.title(title)
plt.show()
def parse_args():
parser = argparse.ArgumentParser(description="Hyperspherical Prototype Estimation")
parser.add_argument("--seed", dest="seed", default=0, type=int)
parser.add_argument("--num_centroids", dest="num_centroids", default=100, type=int)
parser.add_argument("--batch_size", dest="batch_size", default=100, type=int)
parser.add_argument("--space_dim", dest="space_dim", default=3, type=int)
parser.add_argument("--num_epoch", dest="num_epoch", default=100, type=int)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device("cuda")
# set random seed
random.seed(args.seed)
np.random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
# logging
log_dir = Path("Estimated_prototypes") / f'd{args.space_dim}_e{args.num_epoch}' / f'C{args.num_centroids}'
print('=> creating: {}'.format(log_dir))
log_dir.mkdir(parents=True, exist_ok=True)
summary_writer = (SummaryWriter(log_dir=os.path.join(log_dir, "tensorboard")))
# initialize prototypes
start = time.time()
prototypes = uniform_weights(nclass=args.num_centroids, embedding_dim=args.space_dim).cuda()
max_cos, mean_max_cos = prototypes.print_max_score()
print(f'{bcolors.OKBLUE} before training ==> mean cos {prototypes.print_score():.6f}, mean max cos:{mean_max_cos:.6f}, max cos:{max_cos:.6f}{bcolors.ENDC}')
if args.space_dim == 2:
max_cos, mean_max_cos = prototypes.print_max_score()
prototypes.plt_w(f'before training ==> mean cos {prototypes.print_score():.6f}, mean max cos:{mean_max_cos:.6f}, max cos:{max_cos:.6f}')
# for name, param in prototypes.named_parameters():
# print(param.requires_grad, name)
optim = torch.optim.SGD(params=prototypes.parameters(), lr=0.1)
data = dset(n_centroids=args.num_centroids)
dloader = DataLoader(data, batch_size=args.batch_size, shuffle=True)
# optimiziation Equations 4, 5
for i in range(args.num_epoch):
loss_cumulative = 0
for batch_idx in dloader:
optim.zero_grad()
loss = prototypes(optimizer=optim, idx=batch_idx.cuda())
loss_cumulative += loss.item()
loss.backward()
optim.step()
max_cos, mean_max_cos = prototypes.print_max_score()
summary_writer.add_scalar('max cos', max_cos, i)
summary_writer.add_scalar('mean max cos', mean_max_cos, i)
summary_writer.add_scalar('loss', loss_cumulative, i)
summary_writer.add_scalar('time', time.time() - start, i)
if i % 10 == 0:
max_cos, mean_max_cos = prototypes.print_max_score()
print(f'epoch {i} ==> mean cos: {prototypes.print_score():.4f}, mean max cos:{mean_max_cos:.6f}, max cos:{max_cos:.6f}')
if args.space_dim == 2:
max_cos, mean_max_cos = prototypes.print_max_score()
prototypes.plt_w(f'after training ==> mean cos: {prototypes.print_score():.6f}, mean max cos:{mean_max_cos:.6f}, max cos:{max_cos:.6f}')
max_cos, mean_max_cos = prototypes.print_max_score()
print(f'{bcolors.OKBLUE}after training ==> mean cos {prototypes.print_score():.6f}, mean max cos:{mean_max_cos:.6f}, max cos:{max_cos:.6f} {bcolors.ENDC}')
torch.save(prototypes.state_dict(),os.path.join(log_dir,f'{args.num_centroids}centers_{args.space_dim}dim.pth'))