-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTUDY_MASSIV
211 lines (158 loc) · 6.06 KB
/
STUDY_MASSIV
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
Original code created by DFRobot for their probes,
adapted by haze5@icloud.com Mysensors for the project.
*/
#include <SPI.h>
#include <MySensor.h>
#include <DallasTemperature.h>
#include <OneWire.h>
#include "Vcc.h" // https://github.com/Yveaux/Arduino_Vcc
static const float VccMin = 0.0; // Minimum expected Vcc level, in Volts. (0.6V for 1 AA Alkaline)
static const float VccMax = 3.3; // Maximum expected Vcc level, in Volts. (1.5V for 1 AA Alkaline)
static const float VccCorrection = 3.29 / 3.31; // Measured Vcc by multimeter divided by reported Vcc
Vcc vcc(VccCorrection);
#define CHILD_ID_PH 0
#define ArrayLenth 10 // times of collection
#define PH_SENSOR_ANALOG_PIN A0 // pH meter Analog output to Arduino Analog Input 0
#define LED_DIGITAL_PIN 13
#define Offset 0.00 //deviation compensate
#define CHILD_ID_TEMP 1
#define COMPARE_TEMP 1 // Send temperature only if changed? 1 = Yes 0 = No
#define ONE_WIRE_BUS 3 // Pin where dallase sensor is connected
#define MAX_ATTACHED_DS18B20 16
unsigned long SLEEP_TIME = 30000; // Sleep time between reads (in milliseconds)
OneWire oneWire(ONE_WIRE_BUS); // Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
DallasTemperature sensors(&oneWire); // Pass the oneWire reference to Dallas Temperature.
unsigned long lastSend = 0;
static const unsigned long SEND_FREQUENCY = 30000; // Minimum time between send (in milliseconds)
MySensor gw;
float lastPhHValue;
static const float deltaPhValue = 0.5;
float lastTemperature[MAX_ATTACHED_DS18B20];
int numSensors=1;
boolean receivedConfig = false;
boolean metric = true;
MyMessage msgPH(CHILD_ID_PH, V_VAR1);
MyMessage msg(CHILD_ID_TEMP,V_TEMP);
void setup()
{ // Startup up the OneWire library
sensors.begin();
// requestTemperatures() will not block current thread
sensors.setWaitForConversion(false);
//gw.begin(NULL, 100, false); //deze gebruiken, 100 is de node_id, die weer gebruiken in pimatic
gw.begin();
//Serial.print("0;0;3;0;2;");Serial.print(LIBRARY_VERSION);
pinMode(LED_DIGITAL_PIN, OUTPUT);
numSensors = sensors.getDeviceCount();
// Send the Sketch Version Information to the Gateway
gw.sendSketchInfo("pHmeter", "1.0");
// Register all sensors to gw (they will be created as child devices)
gw.present(CHILD_ID_PH, S_WATER);
// Present all sensors to controller
for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {
gw.present(i+CHILD_ID_TEMP, S_TEMP);
}
}
void loop()
{
// By calling process() you route messages in the background
gw.process();
read_PH();
read_TEMP();
gw.sleep(SLEEP_TIME);
}
void read_PH(){
unsigned long now = millis();
bool sendTime = now - lastSend > SEND_FREQUENCY;
if (sendTime)
{
lastSend = now;
// float v = vcc.Read_Volts();
// Serial.print("VCC = " );
// Serial.print(v);
// Serial.println(" Volts" );
int batteryPcnt = (int)vcc.Read_Perc(VccMin, VccMax);
// Serial.print("VCC = " );
// Serial.print(batteryPcnt);
// Serial.println(" %" );
gw.sendBatteryLevel(batteryPcnt);
}
// Read PH_SENSOR_ANALOG_PIN in phValue
float voltage = analogReadAverage(PH_SENSOR_ANALOG_PIN, 10) * 5.0 / 1024;
// convert the millivolt into pH value
float PhValue = 3.5 * voltage+Offset;
if (sendTime || abs(PhValue - lastPhHValue) > deltaPhValue)
{
Serial.print(" pH:");
Serial.print(PhValue, 2);
Serial.println(" ");
gw.send(msgPH.set(PhValue, 2)); // envoi au reseau avec deux decimales
digitalWrite(LED_DIGITAL_PIN, digitalRead(LED_DIGITAL_PIN) ^ 1);
lastPhHValue = PhValue;
}
}
void read_TEMP(){
sensors.requestTemperatures();
// query conversion time and sleep until conversion completed
int16_t conversionTime = sensors.millisToWaitForConversion(sensors.getResolution());
// sleep() call can be replaced by wait() call if node need to process incoming messages (or if node is repeater)
gw.sleep(conversionTime);
// Read temperatures and send them to controller
for (int i=0; i<numSensors && i<MAX_ATTACHED_DS18B20; i++) {
// Fetch and round temperature to one decimal
float temperature = static_cast<float>(static_cast<int>((gw.getConfig().isMetric?sensors.getTempCByIndex(i):sensors.getTempFByIndex(i)) * 10.)) / 10.;
// Only send data if temperature has changed and no error
#if COMPARE_TEMP == 1
if (lastTemperature[i] != temperature && temperature != -127.00 && temperature != 85.00) {
#else
if (temperature != -127.00 && temperature != 85.00) {
#endif
// Send in the new temperature
gw.send(msg.setSensor(i).set(temperature,1));
// Save new temperatures for next compare
lastTemperature[i]=temperature;
}
}
}
double analogReadAverage(uint8_t pin, unsigned long ms)
{
double average = 0;
int buffer[ArrayLenth];
for (int i = 0; i < ArrayLenth; i++)
{
buffer[i] = analogRead(PH_SENSOR_ANALOG_PIN);
delay(ms);
}
if (ArrayLenth < 5)
{
// less than 5, calculated directly statistics
for (int i = 0; i < ArrayLenth; i++)
{
average += buffer[i];
}
average = average / ArrayLenth;
}
else
{
// Sort the values from small to large
for (int i = 0; i < ArrayLenth; i++)
{
for (int j = i + 1; j < 10; j++)
{
if (buffer[i] > buffer[j])
{
int temp = buffer[i];
buffer[i] = buffer[j];
buffer[j] = temp;
}
}
}
// take the average value of center sample
for (int i = 2; i < ArrayLenth - 2; i++)
{
average += buffer[i];
}
average = average / (ArrayLenth - 4);
}
return average;
}