-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbench.py
146 lines (115 loc) · 3.44 KB
/
bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from __future__ import annotations
import gc
import pickle
import traceback
from dataclasses import dataclass
from io import BytesIO
from time import perf_counter
import msgpack
import msgpack_numpy
import numpy as np
from safetensors.numpy import load as st_load
from safetensors.numpy import save as st_save
from numbin import NumBin
from numbin.msg_ext import NumBinMessage
nb = NumBin()
nbm = NumBinMessage()
@dataclass(frozen=True)
class Data:
arr: np.ndarray | dict
msg: str
epoch: int
def generate_data():
return (
Data(
{"msg": "long message" * 1000, "vec": np.random.rand(1024)},
"long message with 1024 vector",
10000,
),
Data(
{
"int": 233,
"float": 3.14,
"vec": np.random.rand(1024),
"matrix": np.random.rand(64, 1024),
},
"int, float, vector and matrix",
100,
),
)
def generate_np_data():
return (
Data(np.random.rand(1), "scalar", 10000),
Data(np.random.rand(1024), "vector", 10000),
Data(np.random.rand(64, 1024), "matrix", 1000),
Data(np.random.rand(3, 1024, 1024), "image", 100),
Data(np.random.rand(64, 3, 1024, 1024), "batch of images", 5),
)
def pickle_serde(data: Data):
pickle.loads(
pickle.dumps(data.arr, fix_imports=False, protocol=pickle.HIGHEST_PROTOCOL),
fix_imports=False,
)
def safets_serde(data: Data):
st_load(st_save({"": data.arr}))[""]
def numbin_serde(data: Data):
nb.loads(nb.dumps(data.arr))
def nbmsg_serde(data: Data):
nbm.loads(nbm.dumps(data.arr))
def numpy_serde(data: Data):
fp = BytesIO()
np.save(fp, data.arr, allow_pickle=False, fix_imports=False)
fp.seek(0)
np.load(fp, allow_pickle=False, fix_imports=False)
def msg_np_serde(data: Data):
msgpack.unpackb(
msgpack.packb(data.arr, default=msgpack_numpy.encode),
object_hook=msgpack_numpy.decode,
)
def time_record(func, data: Data, threshold=1):
res = []
total_sec = 0
while total_sec < threshold:
for _ in range(data.epoch):
t0 = perf_counter()
try:
func(data)
except Exception:
print(traceback.format_exc())
finally:
res.append(perf_counter() - t0)
total_sec += res[-1]
return res
def display_result(func, data):
gc_flag = gc.isenabled()
gc.disable()
try:
t = time_record(func, data)
finally:
if gc_flag:
gc.enable()
size = data.arr.size if isinstance(data.arr, np.ndarray) else "<unknown>"
print(
f"{func.__name__}\tsize: {size:9}\ttimes: "
f"min({np.min(t):.5})\tmid({np.median(t):.5})\tmax({np.max(t):.5})\t"
f"95%({np.percentile(t, 0.95):.5})\tStd.({np.std(t):.5})",
)
def benchmark():
print(">>> benchmark for numpy array")
for data in generate_np_data():
print("=" * 120)
for func in [
pickle_serde,
numbin_serde,
numpy_serde,
safets_serde,
msg_np_serde,
]:
display_result(func, data)
print(">>> benchmark for normal data mixed with numpy array")
for data in generate_data():
print("=" * 120)
for func in [pickle_serde, nbmsg_serde]:
display_result(func, data)
if __name__ == "__main__":
benchmark()