-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
130 lines (108 loc) · 5.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import numpy as np
import random
from collections import namedtuple, deque, Counter
from scipy.optimize import minimize
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_iv_weights(variances):
'''
Returns Inverse Variance weights
Params
======
variances (numpy array): variance of the targets
'''
weights = 1/variances
(weights)
weights = weights/np.sum(weights)
(weights)
return weights
def compute_eff_bs(weights):
# Compute original effective mini-batch size
eff_bs = 1/np.sum([weight**2 for weight in weights])
#print(eff_bs)
return eff_bs
def get_optimal_xi(variances, minimal_size, epsilon_start):
minimal_size = min(variances.shape[0] - 1, minimal_size)
if compute_eff_bs(get_iv_weights(variances)) >= minimal_size:
return 0
fn = lambda x: np.abs(compute_eff_bs(get_iv_weights(variances+np.abs(x))) - minimal_size)
epsilon = minimize(fn, 0, method='Nelder-Mead', options={'fatol': 1.0, 'maxiter':100})
xi = np.abs(epsilon.x[0])
xi = 0 if xi is None else xi
return xi
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, opt, action_size, seed, device, mask=False):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.opt = opt
self.action_size = action_size
self.memory = deque(maxlen=opt.buffer_size)
self.batch_size = opt.batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
self.device = device
self.mask = mask
def add(self, state, action, reward, next_state, done, mask=None):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self, sample_size=None):
"""Randomly sample a batch of experiences from memory."""
if sample_size is None:
sample_size = self.batch_size
if sample_size > len(self.memory):
sample_size = len(self.memory)
experiences = random.sample(self.memory, k=sample_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(self.device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(self.device)
if self.mask:
if self.opt.mask == "sampling":
effective_batch_size = self.opt.batch_size*self.opt.mask_prob
masks = np.zeros((self.opt.batch_size, self.opt.num_nets))
for i in range(self.opt.num_nets):
masks[:effective_batch_size, i] = 1
random.shuffle(masks[:, i])
masks = torch.from_numpy(masks).to(self.device).bool()
else:
masks = torch.from_numpy(np.vstack([e.mask for e in experiences if e is not None])).to(self.device).bool()
return (states, actions, rewards, next_states, dones, masks)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
class MaskReplayBuffer(ReplayBuffer):
def __init__(self, opt, action_size, seed, device):
super().__init__(opt, action_size, seed, device)
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done", "mask"])
def add(self, state, action, reward, next_state, done, mask=None):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done, mask)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(self.device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(self.device)
masks = torch.from_numpy(np.vstack([e.mask for e in experiences if e is not None])).bool().to(self.device)
return (states, actions, rewards, next_states, dones, masks)