-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_data.py
105 lines (89 loc) · 2.61 KB
/
graph_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import sqlite3
import matplotlib.pyplot as plt
import math
import datetime
import time
sqlite_date_format = "%Y-%m-%d %H:%M:%S"
def get_data():
conn = sqlite3.connect('bebe')
cur = conn.cursor()
cur.execute('select * from bela order by datetime(time) asc')
rows = cur.fetchall()
conn.close()
return rows
def gaussian(x, mu, sigma):
a = 1/(sigma*(2*math.pi)**0.5)
return a*math.exp(-(((x-mu)**2)/(2*(sigma**2))))
def graph_data(rows):
dates = [
datetime.datetime.strptime(i[1],sqlite_date_format)
for i in rows]
lines = []
# kv
# values = [i[2] if i[2]!="" else None for i in rows]
# lines.append(plt.plot(dates, values, label="kv"))
# bv
# values = [i[3] if i[3]!="" else None for i in rows]
# lines.append(plt.plot(dates, values, label="bv"))
window_size = 7
values = []
for i in range(len(rows)):
smoothed_values = 0
# truncate division
sigma = window_size/2
for j in range(-sigma,sigma+1):
total = 0
row = rows[min(len(rows)-1, i+j)]
if row[2] is not None and row[2] != '':
total += int(row[2])
if row[3] is not None and row[3] != '':
total += int(row[3])
smoothed_values += total*gaussian(j, 0, sigma)
values.append(smoothed_values)
# total
# values = []
# for row in rows:
# value = 0
# if row[2] is None or row[2] == "":
# pass
# else:
# value += int(row[2])
# if row[3] is None or row[3] == "":
# pass
# else:
# value += int(row[3])
# values.append(value)
# print values
print len(dates)
print len(values)
lines.append(plt.plot(dates, values, label="total"))
plt.axis([min(dates), max(dates), min(values), max(values)])
plt.legend(loc="upper left")
plt.show()
def plot_histogram(rows):
pass
dates = [int(datetime.datetime.strftime(
datetime.datetime.strptime(i[1],sqlite_date_format),
"%s"
)) for i in rows]
lines = []
# this is necessary because any value may be None
values = []
for row in rows:
value = 0
if row[2] is None or row[2] == "":
pass
else:
value += int(row[2])
if row[3] is None or row[3] == "":
pass
else:
value += int(row[3])
values.append(value)
lines.append(plt.hist(values, bins=20, label="total"))
plt.legend(loc="upper left")
plt.show()
if __name__ == "__main__":
data = get_data()
graph_data(data)
#plot_histogram(data)