-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
63 lines (58 loc) · 2.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import numpy as np
from options.test_options import TestOptions
from data import CreateDataLoader
from models import create_model
from util import util
from util.visualizer import save_images
from util import html
from data import warping_cloth_test_dataset
from torch.utils.data import DataLoader
import torchvision
import torch
from PIL import Image
if __name__ == '__main__':
opt = TestOptions().parse()
# hard-code some parameters for test
opt.num_threads = 1 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
opt.no_dropout = True
opt.display_id = -1 # no visdom display
# data_loader = CreateDataLoader(opt)
# dataset = data_loader.load_data()
test_set = warping_cloth_test_dataset.WarpingClothTestDataset(opt)
dataset = DataLoader(test_set, batch_size=1, shuffle=True)
dataset_size = len(dataset)
print('#test images = %d' % dataset_size)
model = create_model(opt)
model.setup(opt)
# create a website
# web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.epoch))
# webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch))
# test with eval mode. This only affects layers like batchnorm and dropout.
# pix2pix: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode.
# CycleGAN: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout.
if opt.eval:
model.eval()
for i, data in enumerate(dataset):
if i >= opt.num_test:
break
model.set_input(data)
model.test()
# visuals = model.get_current_visuals()
# img_path = model.get_image_paths()
# if i % 5 == 0:
# print('processing (%04d)-th image... %s' % (i, img_path))
img_path = os.path.join('./results/experiment_name/test_latest/images', f'test_{i}_realimagemask.png')
tensor_to_pil = torchvision.transforms.ToPILImage()(model.real_image_mask.cpu().squeeze_(0))
tensor_to_pil.save(img_path)
img_path = os.path.join('./results/experiment_name/test_latest/images', f'test_{i}_clothmask.png')
tensor_to_pil = torchvision.transforms.ToPILImage()(model.real_cloth.cpu().squeeze_(0))
tensor_to_pil.save(img_path)
img_path = os.path.join('./results/experiment_name/test_latest/images', f'test_{i}_warpedimage.png')
tensor_to_pil = torchvision.transforms.ToPILImage()(model.warped_cloth.cpu().squeeze_(0))
tensor_to_pil.save(img_path)
# save the website
# webpage.save()