diff --git a/docs/changelog-released.md b/docs/changelog-released.md index 5b3c84bdcf..79b64934eb 100644 --- a/docs/changelog-released.md +++ b/docs/changelog-released.md @@ -60,7 +60,7 @@ detailed information in the following sections: [`UnsafePointer`](/mojo/stdlib/memory/unsafe_pointer/UnsafePointer) instead. Functions that previously took a `DTypePointer` now take an equivalent `UnsafePointer`. For more information on using pointers, see [Unsafe - pointers](/mojo/manual/pointers) in the Mojo Manual. + pointers](/mojo/manual/pointers/unsafe-pointers) in the Mojo Manual. - There are many new standard library APIs, with new features for strings, collections, and interacting with the filesystem and environment. Changes are @@ -518,7 +518,7 @@ detailed information in the following sections: - `DTypePointer`, `LegacyPointer`, and `Pointer` have been removed. Use [`UnsafePointer`](/mojo/stdlib/memory/unsafe_pointer/UnsafePointer) instead. For more information on using pointers, see [Unsafe - pointers](/mojo/manual/pointers) in the Mojo Manual. + pointers](/mojo/manual/pointers/unsafe-pointers) in the Mojo Manual. Functions that previously took a `DTypePointer` now take an equivalent `UnsafePointer`. A quick rule for conversion from `DTypePointer` to @@ -1013,7 +1013,7 @@ Big themes for this release: - New Mojo Manual pages on [Control flow](/mojo/manual/control-flow), [Testing](/mojo/tools/testing) and using - [unsafe pointers](/mojo/manual/pointers). + [unsafe pointers](/mojo/manual/pointers/unsafe-pointers). ### Language changes diff --git a/docs/changelog.md b/docs/changelog.md index c1ff0ac449..3cb4fdee64 100644 --- a/docs/changelog.md +++ b/docs/changelog.md @@ -288,9 +288,23 @@ what we publish. memory allocation and performance. These options allow for optimized memory usage and reduced buffer reallocations, providing flexibility based on application requirements. -- A new `StringLiteral.from_string[someString]()` method is available. It +- A new `StringLiteral.get[some_stringable]()` method is available. It allows forming a runtime-constant StringLiteral from a compile-time-dynamic - `String` value. + `Stringable` value. + +- `Span` now implements `__reversed__`. This means that one can get a + reverse iterator over a `Span` using `reversed(my_span)`. Users should + currently prefer this method over `my_span[::-1]`. + +- `StringSlice` now implements `strip`, `rstrip`, and `lstrip`. + +- Introduced the `@explicit_destroy` annotation, the `__disable_del` keyword, + the `UnknownDestructibility` trait, and the `ImplicitlyDestructible` keyword, + for the experimental explicitly destroyed types feature. + +- Added associated types; we can now have aliases like `alias T: AnyType`, + `alias N: Int`, etc. in a trait, and then specify them in structs that conform + to that trait. ### 🦋 Changed @@ -321,6 +335,24 @@ what we publish. release of Mojo, but will be removed in the future. Please migrate to the new syntax. +- Similarly, the spelling of "named functions results" has switched to use `out` + syntax instead of `-> T as name`. Functions may have at most one named result + or return type specified with the usual `->` syntax. `out` arguments may + occur anywhere in the argument list, but are typically last (except for + `__init__` methods, where they are typically first). + + ```mojo + # This function has type "fn() -> String" + fn example(out result: String): + result = "foo" + ``` + + The parser still accepts the old syntax as a synonym for this, but that will + eventually be deprecated and removed. + + This was [discussed extensively in a public + proposal](https://github.com/modularml/mojo/issues/3623). + - More things have been removed from the auto-exported set of entities in the `prelude` module from the Mojo standard library. - `UnsafePointer` has been removed. Please explicitly import it via @@ -357,7 +389,7 @@ what we publish. `String.write`. Here's an example of using all the changes: ```mojo - from utils import Span + from memory import Span @value struct NewString(Writer, Writable): @@ -453,6 +485,19 @@ what we publish. for more information and rationale. As a consequence the `__lifetime_of()` operator is now named `__origin_of()`. +- `Origin` is now a complete wrapper around the MLIR origin type. + + - The `Origin.type` alias has been renamed to `_mlir_origin`. In parameter + lists, you can now write just `Origin[..]`, instead of `Origin[..].type`. + + - `ImmutableOrigin` and `MutableOrigin` are now, respectively, just aliases + for `Origin[False]` and `Origin[True]`. + + - `Origin` struct values are now supported in the brackets of a `ref [..]` + argument. + + - Added `Origin.cast_from` for casting the mutability of an origin value. + - You can now use the `+=` and `*` operators on a `StringLiteral` at compile time using the `alias` keyword: @@ -566,6 +611,18 @@ what we publish. fn take_imm_slice(a: ImmStringSlice): ... ``` +- Added `PythonObject.__contains__`. + ([PR #3101](https://github.com/modularml/mojo/pull/3101) by [@rd4com](https://github.com/rd4com)) + + Example usage: + + ```mojo + x = PythonObject([1,2,3]) + if 1 in x: + print("1 in x") + +- `Span` has moved from the `utils` module to the `memory` module. + ### ❌ Removed - The `UnsafePointer.bitcast` overload for `DType` has been removed. Wrap your @@ -607,6 +664,12 @@ what we publish. - [Issue #3815](https://github.com/modularml/mojo/issues/3815) - [BUG] Mutability not preserved when taking the union of two origins. +- [Issue #3829](https://github.com/modularml/mojo/issues/3829) - Poor error + message when invoking a function pointer upon an argument of the wrong origin + +- [Issue #3830](https://github.com/modularml/mojo/issues/3830) - Failures + emitting register RValues to ref arguments. + - The VS Code extension now auto-updates its private copy of the MAX SDK. - The variadic initializer for `SIMD` now works in parameter expressions. diff --git a/docs/manual/decorators/implicit.md b/docs/manual/decorators/implicit.md new file mode 100644 index 0000000000..1e9cd07e0b --- /dev/null +++ b/docs/manual/decorators/implicit.md @@ -0,0 +1,40 @@ +--- +title: '@implicit' +description: Marks a constructor as eligible for implicit conversion. +codeTitle: true + +--- + +You can add the `@implicit` decorator on any single-argument constructor to +identify it as eligible for implicit conversion. + +For example: + +```mojo +struct MyInt: + var value: Int + + @implicit + fn __init__(out self, value: Int): + self.value = value + + fn __init__(out self, value: Float64): + self.value = int(value) + + +``` + +This implicit conversion constructor allows you to pass an `Int` to a function +that takes a `MyInt` argument, or assign an `Int` to a variable of type `MyInt`. +However, the constructor that takes a `Float64` value is **not** an implicit +conversion constructor, so it must be invoked explicitly: + +```mojo +fn func(n: MyInt): + print("MyInt value: ", n.value) + +fn main(): + func(Int(42)) # Implicit conversion from Int: OK + func(MyInt(Float64(4.2))) # Explicit conversion from Float64: OK + func(Float64(4.2)) # Error: can't convert Float64 to MyInt +``` diff --git a/docs/manual/decorators/index.mdx b/docs/manual/decorators/index.mdx index 2a65a9f213..058580e41e 100644 --- a/docs/manual/decorators/index.mdx +++ b/docs/manual/decorators/index.mdx @@ -9,6 +9,7 @@ listing: contents: - always-inline.md - copy-capture.md + - implicit.md - nonmaterializable.md - parameter.md - register-passable.md diff --git a/docs/manual/images/owned-pointer-diagram-dark.png b/docs/manual/images/owned-pointer-diagram-dark.png new file mode 100644 index 0000000000..db8049790a Binary files /dev/null and b/docs/manual/images/owned-pointer-diagram-dark.png differ diff --git a/docs/manual/images/owned-pointer-diagram.png b/docs/manual/images/owned-pointer-diagram.png new file mode 100644 index 0000000000..ef82f349bf Binary files /dev/null and b/docs/manual/images/owned-pointer-diagram.png differ diff --git a/docs/manual/index.md b/docs/manual/index.md index ba52bcd6c4..7d152a1b2b 100644 --- a/docs/manual/index.md +++ b/docs/manual/index.md @@ -56,7 +56,8 @@ feedback](https://www.modular.com/community). - **Pointers** - - [Unsafe pointers](/mojo/manual/pointers) + - [Intro to pointers](/mojo/manual/pointers/) + - [Unsafe pointers](/mojo/manual/pointers/unsafe-pointers) - **Python** diff --git a/docs/manual/lifecycle/life.mdx b/docs/manual/lifecycle/life.mdx index 91646caa5f..c852c4c700 100644 --- a/docs/manual/lifecycle/life.mdx +++ b/docs/manual/lifecycle/life.mdx @@ -153,12 +153,16 @@ struct MyPet: Mojo supports implicit conversion from one type to another. Implicit conversion can happen when one of the following occurs: -* You assign a value of one type to a variable with a different type. -* You pass a value of one type to a function that requires a different type. +- You assign a value of one type to a variable with a different type. +- You pass a value of one type to a function that requires a different type. In both cases, implicit conversion is supported when the target type -defines a constructor that takes a single required, non-keyword argument of the -source type. For example: +defines a constructor that meets the following criteria: + +- Is declared with the `@implicit` decorator. +- Has a single required, non-keyword argument of the source type. + +For example: ```mojo var a = Source() @@ -170,7 +174,9 @@ Mojo implicitly converts the `Source` value in `a` to a `Target` value if ```mojo struct Target: - fn __init__(out self, s: Source): ... + + @implicit + fn __init__(out self, s: Source): ... ``` With implicit conversion, the assignment above is essentially identical to: @@ -179,26 +185,22 @@ With implicit conversion, the assignment above is essentially identical to: var b = Target(a) ``` +In general, types should only support implicit conversions when the conversion +lossless, and ideally inexpensive. For example, converting an integer to a +floating-point number is usually lossless (except for very large positive and +negative integers, where the conversion may be approximate), but converting a +floating-point number to an integer is very likely to lose information. So +Mojo supports implicit conversion from `Int` to `Float64`, but not the reverse. + The constructor used for implicit conversion can take optional arguments, so the following constructor would also support implicit conversion from `Source` to `Target`: ```mojo struct Target: - fn __init__(out self, s: Source, reverse: Bool = False): ... -``` - -Implicit conversion also occurs if the type doesn't declare its own constructor, -but instead uses the [`@value` decorator](#value-decorator), *and* the type -has only one field. That's because Mojo automatically creates a member-wise -constructor for each field, and when there is only one field, that synthesized -constructor works exactly like a conversion constructor. For example, this -type also can convert a `Source` value to a `Target` value: -```mojo -@value -struct Target: - var s: Source + @implicit + fn __init__(out self, s: Source, reverse: Bool = False): ... ``` Implicit conversion can fail if Mojo can't unambiguously match the conversion to @@ -209,41 +211,39 @@ convert the values: ```mojo struct A: - fn __init__(out self, s: Source): ... + @implicit + fn __init__(out self, s: Source): ... struct B: - fn __init__(out self, s: Source): ... + @implicit + fn __init__(out self, s: Source): ... -struct Target: - fn __init__(out self, a: A): ... - fn __init__(out self, b: B): ... +struct OverloadedTarget: + @implicit + fn __init__(out self, a: A): ... + @implicit + fn __init__(out self, b: B): ... -# Fails -var t = Target(Source()) +var t = OverloadedTarget(Source()) # Error: ambiguous call to '__init__': each + # candidate requires 1 implicit conversion ``` -In this case, removing either one of the target type's constructors will fix the -problem. - -If you want to define a single-argument constructor, but you **don't** want -the types to implicitly convert, you can define the constructor with a -[keyword-only argument](/mojo/manual/functions#positional-only-and-keyword-only-arguments): +In this case, you can fix the issue by explicitly casting to one of the +intermediate types. For example: ```mojo -struct Target: - # does not support implicit conversion - fn __init__(out self, *, source: Source): ... - -# the constructor must be called with a keyword -var t = Target(source=a) +var t = OverloadedTarget(A(Source())) # OK ``` -:::note +Mojo applies at most one implicit conversion to a variable. For example: -In the future we intend to provide a more explicit method of declaring whether -a constructor should support implicit conversion. +```mojo +var t: OverloadedTarget = Source() # Error: can't implicitly convert Source + # to Target +``` -::: +Would fail because there's no direct conversion from `Source` to +`OverloadedTarget`. ## Copy constructor diff --git a/docs/manual/parameters/index.mdx b/docs/manual/parameters/index.mdx index be9066c974..fae5e5f72c 100644 --- a/docs/manual/parameters/index.mdx +++ b/docs/manual/parameters/index.mdx @@ -3,11 +3,24 @@ title: "Parameterization: compile-time metaprogramming" description: An introduction to parameters and compile-time metaprogramming. --- -Many languages have facilities for *metaprogramming*: that is, for writing code that generates or modifies code. Python has facilities for dynamic metaprogramming: features like decorators, metaclasses, and many more. These features make Python very flexible and productive, but since they're dynamic, they come with runtime overhead. Other languages have static or compile-time metaprogramming features, like C preprocessor macros and C++ templates. These can be limiting and hard to use. - -To support Modular's work in AI, Mojo aims to provide powerful, easy-to-use metaprogramming with zero runtime cost. This compile-time metaprogramming uses the same language as runtime programs, so you don't have to learn a new language—just a few new features. - -The main new feature is *parameters*. You can think of a parameter as a compile-time variable that becomes a runtime constant. This usage of "parameter" is probably different from what you're used to from other languages, where "parameter" and "argument" are often used interchangeably. In Mojo, "parameter" and "parameter expression" refer to compile-time values, and "argument" and "expression" refer to runtime values. +Many languages have facilities for *metaprogramming*: that is, for writing code that +generates or modifies code. Python has facilities for dynamic metaprogramming: features +like decorators, metaclasses, and many more. These features make Python very flexible +and productive, but since they're dynamic, they come with runtime overhead. Other +languages have static or compile-time metaprogramming features, like C preprocessor +macros and C++ templates. These can be limiting and hard to use. + +To support Modular's work in AI, Mojo aims to provide powerful, easy-to-use +metaprogramming with zero runtime cost. This compile-time metaprogramming uses the same +language as runtime programs, so you don't have to learn a new language—just a few new +features. + +The main new feature is *parameters*. You can think of a parameter as a +compile-time variable that becomes a runtime constant. This usage of "parameter" +is probably different from what you're used to from other languages, where +"parameter" and "argument" are often used interchangeably. In Mojo, "parameter" +and "parameter expression" refer to compile-time values, and "argument" and +"expression" refer to runtime values. In Mojo, you can add parameters to a struct or function. You can also define named parameter expressions—aliases—that you can use as runtime constants. @@ -104,9 +117,9 @@ repeat[count=2](42) This updated function takes any `Stringable` type, so you can pass it an `Int`, `String`, or `Bool` value. -You can't pass the `count` as a positional keyword without also specifying `MsgType`. -You can put `//` after `MsgType` to specify that it's always inferred by the argument. Now -you can pass the following parameter `count` positionally: +You can't pass the `count` as a positional keyword without also specifying +`MsgType`. You can put `//` after `MsgType` to specify that it's always inferred +by the argument. Now you can pass the following parameter `count` positionally: ```mojo fn repeat[MsgType: Stringable, //, count: Int](msg: MsgType): @@ -173,8 +186,8 @@ use a parameterized struct. In this case, when you create an instance of passing in this case is a *type*. That's OK: a Mojo type is a valid compile-time value.) -You'll see that `ElementType` is used throughout the struct where you'd usually see a -type name. For example, as the formal type for the `elements` in the +You'll see that `ElementType` is used throughout the struct where you'd usually +see a type name. For example, as the formal type for the `elements` in the constructor, and the return type of the `__getitem__()` method. Here's an example of using `GenericArray`: @@ -216,10 +229,10 @@ The method returns an instance of `GenericArray[Float64]`. When creating a generic struct, you might want to define some methods that require extra features. For example, consider a collection like `GenericArray` -that holds instances of `CollectionElement`. The `CollectionElement` trait -only requires that the stored data type be copyable and movable. This -imposes a lot of limitations: you can't implement a `sort()` method because -you can't guarantee that the stored type supports the comparison operators; you can't +that holds instances of `CollectionElement`. The `CollectionElement` trait only +requires that the stored data type be copyable and movable. This imposes a lot +of limitations: you can't implement a `sort()` method because you can't +guarantee that the stored type supports the comparison operators; you can't write a useful `__str__()` or `__repr__()` dunder method because you can't guarantee that the stored type supports conversion to a string. @@ -293,9 +306,9 @@ floating point numbers, so it's not practical to define all of the possible SIMD variations. Mojo's [`SIMD`](/mojo/stdlib/builtin/simd/SIMD) type (defined as a struct) -exposes the common SIMD operations through its methods, and makes the SIMD data type -and size values parametric. This allows you to directly map your data to the -SIMD vectors on any hardware. +exposes the common SIMD operations through its methods, and makes the SIMD data +type and size values parametric. This allows you to directly map your data to +the SIMD vectors on any hardware. Here's a cut-down (non-functional) version of Mojo's `SIMD` type definition: @@ -365,7 +378,7 @@ struct MyInt: """A type that is implicitly convertible to `Int`.""" var value: Int - @always_inline("nodebug") + @implicit fn __init__(out self, _a: Int): self.value = _a @@ -590,8 +603,8 @@ fn use_defaults() raises: ``` Recall that when a parametric function is called, Mojo can infer the parameter values. -That is, it can use the parameter values attached to an argument value (see the `sqrt[]()` -example above). If the parametric function also has a default value defined, +That is, it can use the parameter values attached to an argument value (see the +`sqrt[]()` example above). If the parametric function also has a default value defined, then the inferred parameter type takes precedence. For example, in the following code, we update the parametric `speak[]()` function @@ -661,9 +674,9 @@ you can't leave it out of the parameter list and let Mojo infer it from `value`: dependent_type[Float64(2.2)]() # Error! ``` -Infer-only parameters are a special class of parameters that are **always** -inferred from context. Infer-only parameters are placed at the **beginning** of -the parameter list, set off from other parameters by the `//` sigil: +Infer-only parameters are a special class of parameters that are **always** either +inferred from context or specified by keyword. Infer-only parameters are placed at the +**beginning** of the parameter list, set off from other parameters by the `//` sigil: ```mojo fn example[type: CollectionElement, //, list: List[type]]() @@ -688,8 +701,25 @@ Because infer-only parameters are declared at the beginning of the parameter list, other parameters can depend on them, and the compiler will always attempt to infer the infer-only values from bound parameters or arguments. -If the compiler can't infer the value of an infer-only parameter, compilation -fails. +There are sometimes cases where it's useful to specify an infer-only parameter by +keyword. For example, the [`StringSlice`](/mojo/stdlib/utils/string_slice/StringSlice) +type is parametric on [origin](/mojo/manual/values/lifetimes): + +```mojo +struct StringSlice[is_mutable: Bool, //, origin: Origin[is_mutable]]: ... +``` + +Here, the `StringSlice` `is_mutable` parameter is infer-only. The value is usually +inferred when you create an instance of `StringSlice`. Binding the `is_mutable` +parameter by keyword lets you define a new type that's constrained to an +immutable origin: + +```mojo +alias ImmutableStringSlice = StringSlice[is_mutable=False] +``` + +If the compiler can't infer the value of an infer-only parameter, and it's not +specified by keyword, compilation fails. ## Variadic parameters @@ -757,7 +787,8 @@ print('result type:', x.element_type, 'length:', len(x)) result type: float32 length: 4 ``` -Note that the resulting length is the sum of the input vector lengths, and this is expressed with a simple `+` operation. +Note that the resulting length is the sum of the input vector lengths, and this is +expressed with a simple `+` operation. ### Powerful compile-time programming @@ -797,11 +828,11 @@ print("Elements sum:", reduce_add(x)) Elements sum: 10 ``` -This makes use of the [`@parameter`](/mojo/manual/decorators/parameter) decorator to create a parametric if condition, which is an `if` statement that -runs at compile-time. It requires that its condition be a valid parameter -expression, and ensures that only the live branch of the `if` statement is -compiled into the program. (This is similar to use of the `@parameter` decorator -with a `for` loop shown earlier.) +This makes use of the [`@parameter`](/mojo/manual/decorators/parameter) decorator to +create a parametric if condition, which is an `if` statement that runs at compile-time. +It requires that its condition be a valid parameter expression, and ensures that only +the live branch of the `if` statement is compiled into the program. (This is similar to +use of the `@parameter` decorator with a `for` loop shown earlier.) ## Mojo types are just parameter expressions @@ -960,9 +991,27 @@ MyType["Hello", *_] MyType["Hello", _, _, _] ``` -When a parameter is explicitly unbound with the `_` or `*_` expression, you -**must** specify a value for that parameter to use the type. Any default value -from the original type declaration is ignored. +The `*_` expression specifically matches any parameters that can be specified by +position (positional-only or positional-or-keyword). To unbind keyword-only parameters, +use the double-star-underscore expression, `**_`, which matches any parameters that can +be specified by keyword (positional-or-keyword or keyword-only). + +```mojo +@value +struct KeyWordStruct[pos_or_kw: Int, *, kw_only: Int = 10]: + pass + +# Unbind both pos_or_kw and kw_only parameters +fn use_kw_struct(k: KeyWordStruct[**_]): + pass + +def main(): + use_kw_struct(KeyWordStruct[10, kw_only=11]()) +``` + +When a parameter is explicitly unbound with the `_`, `*_`, or `**_` expressions, you +**must** specify a value for that parameter to use the type. Any default value from the +original type declaration is ignored. Partially-bound and unbound parametric types can be used in some contexts where the missing (unbound) parameters will be supplied later—such as in @@ -1025,11 +1074,11 @@ parameterized. The `vec` argument takes an argument of type `SIMD[*_]`. This is an [unbound parameterized type](#fully-bound-partially-bound-and-unbound-types)—that is, it doesn't specify any parameter values for the type. Mojo treats the unbound parameters -on `vec` as implicit parameters on the function. This is roughly equivalent to -the following code, which includes *explicit* input parameters: +on `vec` as infer-only parameters on the function. This is roughly equivalent to +the following codes: ```mojo -fn print_params[t: DType, s: Int](vec: SIMD[t, s]): +fn print_params[t: DType, s: Int, //](vec: SIMD[t, s]): print(vec.type) print(vec.size) ``` @@ -1084,7 +1133,23 @@ print(c) [1, 0, 2, 0, 3, 0, 4, 0] ``` -As shown in the example, you can use the magic `__type_of(x)` call if you just want to match the type of an argument. In this case, it's more convenient and compact that writing the equivalent `SIMD[v1.type, v1.size]`. +As shown in the example, you can use the magic `__type_of(x)` call if you just want to +match the type of an argument. In this case, it's more convenient and compact that +writing the equivalent `SIMD[v1.type, v1.size]`. + +### Automatic parameterization of parameters + +You can also take advantage of automatic parameterization in a function's +parameter list. For example: + +```mojo +fn foo[value: SIMD](): + pass + +# Equivalent to: +fn foo[type: DType, size: Int, //, value: SIMD[type, size]](): + pass +``` ### Automatic parameterization with partially-bound types diff --git a/docs/manual/pointers/index.mdx b/docs/manual/pointers/index.mdx new file mode 100644 index 0000000000..075fa33ea5 --- /dev/null +++ b/docs/manual/pointers/index.mdx @@ -0,0 +1,272 @@ +--- +title: Intro to pointers +sidebar_position: 1 +description: An overview of accessing memory using Mojo's pointer types. +--- + +A pointer is an indirect reference to one or more values stored in memory. The +pointer is a value that holds an address to memory, and provides APIs to store +and retrieve values to that memory. The value pointed to by a pointer is also +known as a _pointee_. + +The Mojo standard library includes several types of pointers, which provide +different sets of features. All of these pointer types are _generic_—they can +point to any type of value, and the value type is specified as a parameter. For +example, the following code creates an `OwnedPointer` that points to an `Int` +value: + +```mojo +var ptr: OwnedPointer[Int] +ptr = OwnedPointer(100) +``` + +The `ptr` variable has a value of type `OwnedPointer[Int]`. The pointer *points +to* a value of type `Int`, as shown in Figure 1. + + +
+ +![](../images/owned-pointer-diagram.png#light) +![](../images/owned-pointer-diagram-dark.png#dark) + +
Figure 1. Pointer and pointee
+
+ +Accessing the memory—to retrieve or update a value—is called +_dereferencing_ the pointer. You can dereference a pointer by following the +variable name with an empty pair of square brackets: + +```mojo +# Update an initialized value +ptr[] += 10 +# Access an initialized value +print(ptr[]) +``` + +## Pointer terminology + +Before we jump into the pointer types, here are a few terms you’ll run across. Some +of them may already be familiar to you. + +- **Safe pointers**: are designed to prevent memory errors. Unless you use one + of the APIs that are specially designated as unsafe, you can use these + pointers without worrying about memory issues like double-free or + use-after-free. + +- **Nullable pointers**: can point to an invalid memory location (typically 0, +or a “null pointer”). Safe pointers aren’t nullable. + +- **Smart pointers**: own their pointees, which means that the value they point + to may be deallocated when the pointer itself is destroyed. Non-owning + pointers may point to values owned elsewhere, or may require some manual + management of the value lifecycle. + +- **Memory allocation**: some pointer types can allocate memory to store their + pointees, while other pointers can only point to pre-existing values. Memory + allocation can either be implicit (that is, performed automatically when + initializing a pointer with a value) or explicit. + +- **Uninitialized memory**: refers to memory locations that haven’t been + initialized with a value, which may therefore contain random data. + Newly-allocated memory is uninitialized. The safe pointer types don’t allow + users to access memory that’s uninitialized. Unsafe pointers can allocate a + block of uninitialized memory locations and then initialize them one at a time. + Being able to access uninitialized memory is unsafe by definition. + +- **Copyable types**: can be copied implicitly (for example, by assigning a + value to a variable). Also called *implicitly copyable types*. + + ```mojo + copied_ptr = ptr + ``` + + *Explicitly copyable* types require the user to request a copy, using a + constructor with a keyword argument: + + ```mojo + copied_owned_ptr = OwnedPointer(other=owned_ptr) + ``` + +## Pointer types + +The Mojo standard library includes several pointer types with different +characteristics: + +- [`Pointer`](/mojo/stdlib/memory/pointer/Pointer) is a safe pointer that points + to a single value that it doesn’t own. + +- [`OwnedPointer`](/mojo/stdlib/memory/owned_pointer/OwnedPointer) is a smart + pointer that points to a single value, and maintains exclusive ownership of + that value. + +- [`ArcPointer`](/mojo/stdlib/memory/arc/ArcPointer) is a reference-counted + smart pointer that points to an owned value with ownership potentially shared + with other instances of `ArcPointer`. + +- [`UnsafePointer`](/mojo/stdlib/memory/unsafe_pointer/UnsafePointer) points to + one or more consecutive memory locations, and can refer to uninitialized + memory. + +Table 1 summarizes the different types of pointers: + +
+ +| | `Pointer` | `OwnedPointer` | `ArcPointer` | `UnsafePointer` | +| --- | --- | --- | --- | --- | +| Safe | Yes | Yes | Yes | No | +| Allocates memory | No | Implicitly 1 | Implicitly 1 | Explicitly | +| Owns pointee(s) | No | Yes | Yes | No 2 | +| Copyable | Yes | No 3 | Yes | Yes | +| Nullable | No | No | No | Yes | +| Can point to uninitialized memory | No | No | No | Yes | +| Can point to multiple values (array-like access) | No | No | No | Yes | + +
Table 1. Pointer types
+
+ +1 `OwnedPointer` and `ArcPointer` implicitly allocate memory when you +initialize the pointer with a value. + +2 `UnsafePointer` provides unsafe methods for initializing and +destroying instances of the stored type. The user is responsible for managing +the lifecycle of stored values. + +3 `OwnedPointer` is explicitly copyable, but explicitly copying an +`OwnedPointer` copies the *stored value* into a new `OwnedPointer`. + +The following sections provide more details on each pointer type. + +## `Pointer` + +The [`Pointer`](/mojo/stdlib/memory/pointer/Pointer) type is a safe pointer that +points to a initialized value that it doesn’t own. Some example use cases for a +`Pointer` include: + +- Storing a reference to a related type. For example, a list’s iterator object +might hold a `Pointer` back to the original list. + +- Passing the memory location for a single value to external code via +`external_call()`. + +- Where you need an API to return a long-lived reference to a value. (Currently +the iterators for standard library collection types like `List` return +pointers.) + +You can construct a `Pointer` using the `address_of()` static method: + +```python +ptr = Pointer.address_of(some_value) +``` + +You can also create a `Pointer` by copying an existing `Pointer`. + +A `Pointer` carries an [`origin`](/mojo/manual/values/lifetimes) for the stored +value, so Mojo can track the lifetime of the referenced value. + +## `OwnedPointer` + +The [`OwnedPointer`](/mojo/stdlib/memory/owned_pointer/OwnedPointer) type is a +smart pointer designed for cases where there is single ownership of the +underlying data. An `OwnedPointer` points to a single item, which is passed in +when you initialize the `OwnedPointer`. The `OwnedPointer` allocates memory and +moves or copies the value into the reserved memory. + +```python +o_ptr = OwnedPointer(some_big_struct) +``` + +An owned pointer can hold almost any type of item, but the stored item must be +either `Movable`, `Copyable`, or `ExplicitlyCopyable`. + +Since an `OwnedPointer` is designed to enforce single ownership, the pointer +itself can be moved, but not copied. + +Note: Currently, you can’t create an `Optional[OwnedPointer[T]]` because the +`Optional` type only works with types that are both movable and copyable. This +restricts some use cases that would otherwise be a natural fit +for`OwnedPointer`, including self-referential data structures like linked lists +and trees. (Until this use case is supported for `OwnedPointer`, it’s possible +to use`ArcPointer` where you need a smart pointer that can be `Optional`.) + +## `ArcPointer` + +An [`ArcPointer`](/mojo/stdlib/memory/arc/ArcPointer) is a reference-counted +smart pointer, ideal for shared resources where the last owner for a given value +may not be clear. Like an `OwnedPointer`, it points to a single value, and it +allocates memory when you initialize the `ArcPointer` with a value: + +```python +attributesDict = Dict[String, String]() +attributes = ArcPointer(attributesDict) +``` + +Unlike an `OwnedPointer`, an `ArcPointer` can be freely copied. All instances +of a given `ArcPointer` share a reference count, which is incremented whenever +the `ArcPointer` is copied and decremented whenever an instance is destroyed. +When the reference count reaches zero, the stored value is destroyed and the +allocated memory is freed. + +You can use `ArcPointer` to implement safe reference-semantic types. For +example, in the following code snippet `SharedDict` uses an `ArcPointer` to +store a dictionary. Copying an instance of `SharedDict` only copies the +`ArcPointer`, not the dictionary, which is shared between all of the copies. + +```python +from memory import ArcPointer +from collections import Dict + +struct SharedDict: + var attributes: ArcPointer[Dict[String, String]] + + fn __init__(out self): + attributesDict = Dict[String, String]() + self.attributes = ArcPointer(attributesDict) + + fn __copyinit__(out self, other: Self): + self.attributes = other.attributes + + def __setitem__(inout self, key: String, value: String): + self.attributes[][key] = value + + def __getitem__(self, key: String) -> String: + return self.attributes[].get(key, default="") + +def main(): + thing1 = SharedDict() + thing2 = thing1 + thing1["Flip"] = "Flop" + print(thing2["Flip"]) +``` + +Note: The reference count is stored using an +[`Atomic`]([/mojo/stdlib/os/atomic/Atomic](https://docs.modular-staging.com/mojo/stdlib/os/atomic/Atomic)) +value to ensure that updates to the reference count are thread-safe. However, +Mojo doesn’t currently enforce exclusive access across thread boundaries, so +it’s possible to form race conditions. + +## UnsafePointer + +[`UnsafePointer`](/mojo/stdlib/memory/unsafe_pointer/UnsafePointer) is a +low-level pointer that can access a block of contiguous memory locations, which +might be uninitialized. It’s analogous to a raw pointer in the C and C++ +programming languages. `UnsafePointer` provides unsafe methods for initializing +and destroying stored values, as well as for accessing the values once they’re +initialized. + +As the name suggests, `UnsafePointer` doesn’t provide any memory safety +guarantees, so you should reserve it for cases when none of the other pointer +types will do the job. Here are some use cases where you might want to use an +`UnsafePointer`: + +- Building a high-performance array-like structure, such as `List` or `Tensor`. + A single `UnsafePointer` can access many values, and gives you a lot of + control over how you allocate, use, and deallocate memory. Being able to + access uninitialized memory means that you can preallocate a block of memory, + and initialize values incrementally as they are added to the collection. + +- Interacting with external libraries including C++ and Python. You can + use`UnsafePointer` to pass a buffer full of data to or from an external + library. + +For more information, see [Unsafe +pointers](/mojo/manual/pointers/unsafe-pointers). diff --git a/docs/manual/pointers.mdx b/docs/manual/pointers/unsafe-pointers.mdx similarity index 85% rename from docs/manual/pointers.mdx rename to docs/manual/pointers/unsafe-pointers.mdx index 57482a3781..a2a5f04acd 100644 --- a/docs/manual/pointers.mdx +++ b/docs/manual/pointers/unsafe-pointers.mdx @@ -3,26 +3,24 @@ title: Unsafe pointers description: Using unsafe pointers to access dynamically-allocated memory. --- -The [`UnsafePointer`](/mojo/stdlib/memory/unsafe_pointer/UnsafePointer) type -creates an indirect reference to a location in memory. +The [`UnsafePointer`](/mojo/stdlib/memory/unsafe_pointer/UnsafePointer) type is +one of several pointer types available in the standard library to indirectly +reference locations in memory. + You can use an `UnsafePointer` to dynamically allocate and free memory, or to point to memory allocated by some other piece of code. You can use these pointers to write code that interacts with low-level interfaces, to interface -with other programming languages, or to build certain kinds of data structures. +with other programming languages, or to build array-like data structures. But as the name suggests, they're inherently *unsafe*. For example, when using unsafe pointers, you're responsible for ensuring that memory gets allocated and freed correctly. -:::note - -In addition to unsafe pointers, Mojo supports a safe -[`Pointer`](/mojo/stdlib/memory/pointer/Pointer) type. See -[`UnsafePointer` and `Pointer`](#unsafepointer-and-pointer) for a brief -comparison of the types. +In general, you should prefer safe pointer types when possible, reserving +`UnsafePointer` for those use cases where no other pointer type works. +For a comparison of standard library pointer types, see [Intro to +pointers](/mojo/manual/pointers/). -::: - -## What is a pointer? +## Unsafe pointer basics An `UnsafePointer` is a type that holds an address to memory. You can store and retrieve values in that memory. The `UnsafePointer` type is *generic*—it can @@ -40,8 +38,8 @@ ptr.init_pointee_copy(100)
-![](./images/pointer-diagram.png#light) -![](./images/pointer-diagram-dark.png#dark) +![](../images/pointer-diagram.png#light) +![](../images/pointer-diagram-dark.png#dark)
Figure 1. Pointer and pointee
@@ -69,20 +67,20 @@ structures. For details, see At any given time, a pointer can be in one of several states: -* Uninitialized. Just like any variable, a variable of type `UnsafePointer` can +- Uninitialized. Just like any variable, a variable of type `UnsafePointer` can be declared but uninitialized. ```mojo var ptr: UnsafePointer[Int] ``` -* Null. A null pointer has an address of 0, indicating an invalid pointer. +- Null. A null pointer has an address of 0, indicating an invalid pointer. ```mojo ptr = UnsafePointer[Int]() ``` -* Pointing to allocated, uninitialized memory. The `alloc()` static method +- Pointing to allocated, uninitialized memory. The `alloc()` static method returns a pointer to a newly-allocated block of memory with space for the specified number of elements of the pointee's type. @@ -93,7 +91,7 @@ At any given time, a pointer can be in one of several states: Trying to dereference a pointer to uninitialized memory results in undefined behavior. -* Pointing to initialized memory. You can initialize an allocated, uninitialized +- Pointing to initialized memory. You can initialize an allocated, uninitialized pointer by moving or copying an existing value into the memory. Or you can use the `address_of()` static method to get a pointer to an existing value. @@ -113,7 +111,7 @@ At any given time, a pointer can be in one of several states: ptr[] = newValue ``` -* Dangling. When you free the pointer's allocated memory, you're left with a +- Dangling. When you free the pointer's allocated memory, you're left with a *dangling pointer*. The address still points to its previous location, but the memory is no longer allocated to this pointer. Trying to dereference the pointer, or calling any method that would access the memory location results @@ -127,8 +125,8 @@ The following diagram shows the lifecycle of an `UnsafePointer`:
-![](./images/pointer-lifecycle.png#light) -![](./images/pointer-lifecycle-dark.png#dark) +![](../images/pointer-lifecycle.png#light) +![](../images/pointer-lifecycle-dark.png#dark)
Figure 2. Lifecycle of an UnsafePointer
@@ -293,8 +291,8 @@ ptr += 1
-![](./images/pointer-offset.png#light) -![](./images/pointer-offset-dark.png#dark) +![](../images/pointer-offset.png#light) +![](../images/pointer-offset-dark.png#dark)
Figure 3. Pointer arithmetic
@@ -353,7 +351,7 @@ from memory import UnsafePointer def share_array(): np = Python.import_module("numpy") arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) - ptr = arr.__array_interface__["data"][0].unsafe_get_as_pointer[DType.int64]() + ptr = arr.ctypes.data.unsafe_get_as_pointer[DType.int64]() for i in range(9): print(ptr[i], end=", ") @@ -364,11 +362,10 @@ share_array() 1, 2, 3, 4, 5, 6, 7, 8, 9, ``` -NumPy arrays implement the -[array interface protocol](https://numpy.org/doc/stable/reference/arrays.interface.html), -which defines the `__array_interface__` object used in the example, where -`__array_interface__["data"][0]` is a Python integer holding the address of the -underlying data. The `unsafe_get_as_pointer()` method constructs an +This example uses the NumPy +[`ndarray.ctype`](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ctypes.html#numpy.ndarray.ctypes) +attribute to access the raw pointer to the underlying storage +(`ndarray.ctype.data`). The `unsafe_get_as_pointer()` method constructs an `UnsafePointer` to this address. ### Working with C/C++ pointers @@ -459,8 +456,8 @@ you want to access just the red values, you can use a strided load or store.
-![](./images/strided-load-storage.png#light) -![](./images/strided-load-storage-dark.png#dark) +![](../images/strided-load-storage.png#light) +![](../images/strided-load-storage-dark.png#dark)
Figure 4. Strided load
@@ -496,35 +493,14 @@ from (pointer address) + offset[n]. Unsafe pointers are unsafe for several reasons: -* Memory management is up to the user. You need to manually allocate +- Memory management is up to the user. You need to manually allocate and free memory, and be aware of when other APIs are allocating or freeing memory for you. -* `UnsafePointer` values are *nullable*—that is, the pointer +- `UnsafePointer` values are *nullable*—that is, the pointer is not guaranteed to point to anything. And even when a pointer points to allocated memory, that memory may not be *initialized*. -* Mojo doesn't track lifetimes for the data pointed to by an `UnsafePointer`. +- Mojo doesn't track lifetimes for the data pointed to by an `UnsafePointer`. When you use an `UnsafePointer`, managing memory and knowing when to destroy objects is your responsibility. - -## `UnsafePointer` and `Pointer` - -The [`Pointer`](/mojo/stdlib/memory/pointer/Pointer) type is essentially a -safe pointer type. Like a pointer, you can derference a `Pointer` using the -dereference operator, `[]`. However, the `Pointer` type has several -differences from `UnsafePointer` which make it safer: - -* A `Pointer` is *non-nullable*: it always points to something. -* You can't allocate or free memory using a `Pointer`—only point to an - existing value. -* A `Pointer` only refers to a single value. You can't do pointer arithmetic - with a `Pointer`. -* A `Pointer` has an associated *origin*, which connects it back to an - original, owned value. The origin ensures that the value won't be destroyed - while the pointer exists. - -The `Pointer` type shouldn't be confused with the immutable and mutable -references used with the `read` and `mut` argument conventions. Those -references do not require explicit dereferencing, unlike a `Pointer` or -`UnsafePointer`. diff --git a/docs/manual/values/lifetimes.mdx b/docs/manual/values/lifetimes.mdx index 39c2402f43..5dc05d799a 100644 --- a/docs/manual/values/lifetimes.mdx +++ b/docs/manual/values/lifetimes.mdx @@ -80,23 +80,23 @@ struct to specify an origin with parametric mutability: struct ParametricRef[ is_mutable: Bool, //, - origin: Origin[is_mutable].type + origin: Origin[is_mutable] ]: pass ``` -Note that `Origin` *isn't an origin value*, it's a helper for specifying a +Note that `Origin` isn't an origin **value**, it's a helper for specifying a origin **type**. Origin types carry the mutability of a reference as a boolean parameter value, indicating whether the origin is mutable, immutable, or even with mutability depending on a parameter specified by the enclosing API. The `is_mutable` parameter here is an [infer-only -parameter](/mojo/manual/parameters/#infer-only-parameters). It's never -specified directly by the user, but always inferred from context. The -`origin` value is often inferred, as well. For example, the following code -creates a [`Pointer`](/mojo/stdlib/memory/pointer/Pointer) to an existing -value, but doesn't need to specify an origin—the `origin` is inferred from -the variable passed in to the `address_of()` method. +parameter](/mojo/manual/parameters/#infer-only-parameters). It can't be passed +as a positional parameter—it's either inferred from context or specified by +keyword. The `origin` value is often inferred, as well. For example, the +following code creates a [`Pointer`](/mojo/stdlib/memory/pointer/Pointer) to an +existing value, but doesn't need to specify an origin—the `origin` is inferred +from the variable passed in to the `address_of()` method. ```mojo from memory import Pointer @@ -114,15 +114,15 @@ A final type of origin value is an `OriginSet`. As the name suggests, an Most origin values are created by the compiler. As a developer, there are a few ways to specify origin values: -* Static origin. The `StaticConstantOrigin` - alias is an origin value representing immutable values that that last for the - duration of the program. String literal values have a `StaticConstantOrigin`. -* Derived origin. The `__origin_of()` magic function returns the origin associated - with the value (or values) passed in. -* Inferred origin. You can use inferred parameters to capture the origin - of a value passed in to a function. -* Wildcard origins. The `ImmutableAnyOrigin` and `MutableAnyOrigin` aliases - are special cases indicating a reference that might access any live value. +* Static origin. The `StaticConstantOrigin` alias is an origin value + representing immutable values that that last for the duration of the program. + String literal values have a `StaticConstantOrigin`. +* Derived origin. The `__origin_of()` magic function returns the origin + associated with the value (or values) passed in. +* Inferred origin. You can use inferred parameters to capture the origin of a + value passed in to a function. +* Wildcard origins. The `ImmutableAnyOrigin` and `MutableAnyOrigin` aliases are + special cases indicating a reference that might access any live value. #### Static origins @@ -138,8 +138,15 @@ static origin. #### Derived origins -Use the `__origin_of(value)` operator to obtain a value's origin. The -argument to `__origin_of()` can take an arbitrary expression: +Use the `__origin_of(value)` operator to obtain a value's origin. An argument +to `__origin_of()` can take an arbitrary expression that yields one of the +following: + +- An origin value. + +- A value with a memory location. + +For example: ```mojo __origin_of(self) @@ -148,7 +155,7 @@ __origin_of(foo()) ``` The `__origin_of()` operator is analyzed statically at compile time; -The expression passed to `__origin_of()` is never evaluated. (For example, +The expressions passed to `__origin_of()` are never evaluated. (For example, when the compiler analyzes `__origin_of(foo())`, it doesn't run the `foo()` function.) @@ -166,10 +173,19 @@ struct BoxedString: fn __init__(out self, value: String): self.o_ptr = OwnedPointer(value) - fn as_ptr(self) -> Pointer[String, __origin_of(self.o_ptr)]: + fn as_ptr(mut self) -> Pointer[String, __origin_of(self.o_ptr)]: return Pointer.address_of(self.o_ptr[]) ``` +Note that the `as_ptr()` method takes its `self` argument as `mut self`. If it +used the default `read` argument convention, it would be immutable, and the +derived origin (`__origin_of(self.o_ptr)`) would also be immutable. + +You can also pass multiple expressions to `__origin_of()` to express the union +of two or more origins: + +`__origin_of(a, b)` + #### Inferred origins The other common way to access an origin value is to *infer* it from the @@ -180,7 +196,7 @@ has an associated `origin`: struct Span[ is_mutable: Bool, //, T: CollectionElement, - origin: Origin[is_mutable].type, + origin: Origin[is_mutable], ](CollectionElementNew): """A non owning view of contiguous data. ``` @@ -229,9 +245,17 @@ to use a `ref` argument: The syntax for a `ref` argument is: -ref [origin_specifier] arg_name: arg_type +ref arg_name: arg_type + +Or: -The origin specifier passed inside the square brackets can be either: +ref [origin_specifier(s)] +arg_name: arg_type + +In the first form, the origin and mutability of the `ref` argument is inferred +from the value passed in. The second form includes an origin clause, consisting +of one or more origin specifiers inside square brackets. An origin +specifier can be either: * An origin value. @@ -244,22 +268,24 @@ The origin specifier passed inside the square brackets can be either: ref [self] ``` -* An underscore character (`_`) to indicate that the origin is *unbound*. You - can think of the underscore as a wildcard that will accept any origin: +* An [`AddressSpace`](/nightly/mojo/stdlib/memory/pointer/AddressSpace) value. + +* An underscore character (`_`) to indicate that the origin is *unbound*. This + is equivalent to omitting the origin specifier. ```mojo - def add_ref(ref a: Int, b: Int) -> Int: + def add_ref(ref a: Int, b: Int) -> Int: return a+b ``` You can also name the origin explicitly. This is useful if you want to specify -an `ImmutableOrigin` or `MutableLOrigin`, or if you want to bind to +an `ImmutableOrigin` or `MutableOrigin`, or if you want to bind to the `is_mutable` parameter. ```mojo def take_str_ref[ is_mutable: Bool, //, - origin: Origin[is_mutable].type + origin: Origin[is_mutable] ](ref [origin] s: String): @parameter if is_mutable: @@ -282,8 +308,14 @@ Mutable: Goodbye ### `ref` return values Like `ref` arguments, `ref` return values allow a function to return a mutable -or immutable reference to a value. Like a `read` or `mut` argument, these -references don't need to be dereferenced. +or immutable reference to a value. The syntax for a `ref` return value is: + +-> ref [origin_specifier(s)] + arg_type + +Note that you **must** specify an origin specifier for a `ref` return value. The +values allowed for origin specifiers are the same as the ones listed for +[`ref` arguments](#ref-arguments). `ref` return values can be an efficient way to handle updating items in a collection. The standard way to do this is by implementing the `__getitem__()` @@ -432,3 +464,18 @@ Diana Without parametric mutability, you'd need to write two versions of `__getitem__()`, one that accepts an immutable `self` and another that accepts a mutable `self`. + +#### Return values with union origins + +A `ref` return value can include multiple values in its origin specifier, which +yields the union of the origins. For example, the following `pick_one()` +function returns a reference to one of the two input strings, with an origin +that's a union of both origins. + +```mojo +def pick_one(cond: Bool, ref a: String, ref b: String) -> ref [a, b] String: + if cond: + return a + else: + return b +``` diff --git a/docs/manual/variables.mdx b/docs/manual/variables.mdx index 6b77b88f0f..9247ff5c9f 100644 --- a/docs/manual/variables.mdx +++ b/docs/manual/variables.mdx @@ -183,7 +183,7 @@ its own type. For example, if you assign an integer to a variable that has a floating-point type, it converts the value instead of giving a compiler error: ```mojo -var number: Float64 = 1 +var number: Float64 = Int(1) ``` ```output @@ -191,8 +191,13 @@ var number: Float64 = 1 ``` As shown above, value assignment can be converted into a constructor call if the -target type has a constructor that takes a single argument that matches the -value being assigned. So, this code uses the `Float64` constructor that takes an +target type has a constructor that meets the following criteria: + +- It's decorated with the `@implicit` decorator. + +- It takes a single required argument that matches the value being assigned. + +So, this code uses the `Float64` constructor that takes an integer: `__init__(out self, value: Int)`. In general, implicit conversions should only be supported where the conversion @@ -200,7 +205,7 @@ is lossless. Implicit conversion follows the logic of [overloaded functions](/mojo/manual/functions#overloaded-functions). If the destination -type has a single-argument constructor that takes an argument of the source +type has a viable implicit conversion constructor for the source type, it can be invoked for implicit conversion. So assigning an integer to a `Float64` variable is exactly the same as this: @@ -215,7 +220,8 @@ implicitly convert to the required type (using one of the type's overloaded constructors). For example, you can pass an `Int` to a function that expects a `Float64`, -because `Float64` includes a constructor that takes an `Int`: +because `Float64` includes an implicit conversion constructor that takes an +`Int`: ```mojo fn take_float(value: Float64): diff --git a/examples/life/magic.lock b/examples/life/magic.lock index 9c78b39352..c3b6a5b2ae 100644 --- a/examples/life/magic.lock +++ b/examples/life/magic.lock @@ -8,29 +8,28 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.11.9-py312h178313f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/alsa-lib-1.2.13-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aom-3.9.1-hac33072_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.1-h166bdaf_1.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda @@ -44,22 +43,22 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/cairo-1.18.0-hebfffa5_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/dav1d-1.2.1-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/dbus-1.13.6-h5008d03_3.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/expat-2.6.4-h5888daf_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/fluidsynth-2.3.7-hd992666_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 @@ -70,28 +69,28 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gettext-0.22.5-he02047a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gettext-tools-0.22.5-he02047a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/graphite2-1.3.13-h59595ed_1003.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/harfbuzz-9.0.0-hda332d3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/httptools-0.6.4-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-75.1-he02047a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/jack-1.9.22-h7c63dc7_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda @@ -100,10 +99,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libasprintf-0.22.5-he8f35ee_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libasprintf-devel-0.22.5-he8f35ee_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libavif16-1.1.1-h1909e37_2.conda @@ -111,7 +110,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlienc-1.1.0-hb9d3cd8_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.71-h39aace5_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.9.0-25_linux64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libcrc32c-1.1.2-h9c3ff4c_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.10.1-hbbe4b11_0.conda @@ -125,10 +124,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libflac-1.4.3-h59595ed_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-14.2.0-h77fa898_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-14.2.0-h69a702a_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-lib-1.11.0-hb9d3cd8_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-0.22.5-he02047a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgettextpo-devel-0.22.5-he02047a_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-14.2.0-h69a702a_1.conda @@ -142,94 +138,92 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-devel-5.6.3-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libmad-0.15.1b-h0b41bf4_1001.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libogg-1.3.5-h4ab18f5_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libopus-1.3.1-h7f98852_1.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsndfile-1.2.2-hc60ed4a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h2774228_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libvorbis-1.3.7-h9c3ff4c_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/mpg123-1.32.9-hc50e24c_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multiprocess-0.70.15-py312h98912ed_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/opusfile-0.12-h3358134_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pcre2-10.44-hba22ea6_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/portaudio-19.6.0-h7c63dc7_9.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/portmidi-2.0.4-h7c63dc7_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/protobuf-5.28.2-py312h2ec8cdc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pulseaudio-client-17.0-hb77b528_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pygame-2.6.1-py312h4fcb14b_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyinstrument-5.0.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -240,52 +234,54 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/regex-2024.11.6-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/safetensors-0.4.5-py312h12e396e_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/sdl2-2.30.7-h3ed165c_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/sdl2-2.30.10-h63c27ac_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/sdl2_image-2.8.2-h06ee604_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/sdl2_mixer-2.6.3-h8830914_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/sdl2_ttf-2.22.0-h08b1b5d_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/svt-av1-2.3.0-h5888daf_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/uvloop-0.21.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/watchfiles-1.0.0-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/websockets-14.1-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/wrapt-1.17.0-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libice-1.1.1-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libsm-1.2.4-he73a12e_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxext-1.3.6-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-5.6.3-hbcc6ac9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-gpl-tools-5.6.3-hbcc6ac9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-tools-5.6.3-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zlib-1.3.1-hb9d3cd8_2.conda @@ -293,29 +289,28 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda linux-aarch64: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aiohttp-3.11.9-py312hcc812fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/alsa-lib-1.2.13-h86ecc28_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aom-3.9.1-hcccb83c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/attr-2.5.1-h4e544f5_1.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-common-0.10.3-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-compression-0.3.0-h4c7db1d_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-sdkutils-0.2.1-h4c7db1d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-checksums-0.2.2-h4c7db1d_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-core-cpp-1.14.0-h1887c18_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-identity-cpp-1.10.0-h47b0b28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-blobs-cpp-12.13.0-h185ecfd_1.conda @@ -329,22 +324,22 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/cairo-1.18.0-hdb1a16f_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/cffi-1.17.1-py312hac81daf_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/dav1d-1.2.1-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/dbus-1.13.6-h12b9eeb_3.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/expat-2.6.4-h5ad3122_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/fluidsynth-2.3.7-h4f58cef_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 @@ -355,28 +350,28 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/frozenlist-1.5.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gettext-0.22.5-h0a1ffab_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gettext-tools-0.22.5-h0a1ffab_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gflags-2.2.2-h5ad3122_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/glog-0.7.1-h468a4a4_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/graphite2-1.3.13-h2f0025b_1003.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/harfbuzz-9.0.0-hbf49d6b_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/httptools-0.6.4-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/icu-75.1-hf9b3779_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/jack-1.9.22-h5c6c0ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda @@ -385,10 +380,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libabseil-20240722.0-cxx17_h5ad3122_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libasprintf-0.22.5-h87f4aca_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libasprintf-devel-0.22.5-h87f4aca_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libavif16-1.1.1-h3b0c220_2.conda @@ -396,7 +391,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlienc-1.1.0-h86ecc28_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libcap-2.69-h883460d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libcap-2.71-h51d75a7_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libcblas-3.9.0-25_linuxaarch64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libcrc32c-1.1.2-h01db608_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libcurl-8.10.1-h3ec0cbf_0.conda @@ -410,10 +405,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libflac-1.4.3-h2f0025b_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-14.2.0-he277a41_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcc-ng-14.2.0-he9431aa_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-1.11.0-h8af1aa0_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-devel-1.11.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-lib-1.11.0-h86ecc28_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-tools-1.11.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgettextpo-0.22.5-h0a1ffab_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgettextpo-devel-0.22.5-h0a1ffab_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libgfortran-14.2.0-he9431aa_1.conda @@ -427,25 +419,27 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libiconv-1.17-h31becfc_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libjpeg-turbo-3.0.0-h31becfc_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-devel-5.6.3-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libmad-0.15.1b-hb4cce97_1001.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnghttp2-1.64.0-hc8609a4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libogg-1.3.5-h0b9eccb_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libopus-1.3.1-hf897c2e_1.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libprotobuf-5.28.2-h029595c_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libre2-11-2024.07.02-h18dbdb1_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsndfile-1.2.2-h79657aa_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsodium-1.0.20-h68df207_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libssh2-1.11.1-ha41c0db_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsystemd0-256.7-hd54d049_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsystemd0-256.9-hd54d049_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libthrift-0.21.0-h154c74f_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libutf8proc-2.9.0-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuv-1.49.2-h86ecc28_0.conda @@ -453,68 +447,64 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lz4-c-1.9.4-hd600fc2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/mpg123-1.32.9-h65af167_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multidict-6.1.0-py312hcc812fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multiprocess-0.70.15-py312hdd3e373_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.4-py312h470d778_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/opusfile-0.12-hf55b2d5_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/orc-2.0.3-h90de224_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pandas-2.2.3-py312ha2895bd_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pcre2-10.44-h070dd5b_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py312h5ab5af3_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.43.4-h2f0025b_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.44.2-h86a87f0_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/portaudio-19.6.0-h5c6c0ed_9.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/portmidi-2.0.4-h5c6c0ed_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/protobuf-5.28.2-py312h6f74592_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pulseaudio-client-17.0-h729494f_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-18.1.0-py312h8025657_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-core-18.1.0-py312h66f7834_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pydantic-core-2.27.1-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pygame-2.6.1-py312hb2c8110_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyinstrument-5.0.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-xxhash-3.5.0-py312h52516f5_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -525,79 +515,80 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/readline-8.2-h8fc344f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/regex-2024.11.6-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/s2n-1.5.9-h636ded1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/safetensors-0.4.5-py312h8cbf658_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2-2.30.7-h2a74887_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2-2.30.10-h93e764a_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2_image-2.8.2-hd95cb85_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2_mixer-2.6.3-h422cae6_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2_ttf-2.22.0-h680d130_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/svt-av1-2.3.0-h5ad3122_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py312h52516f5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/uvloop-0.21.0-py312hb2c0f52_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/watchfiles-1.0.0-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/websockets-14.1-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/wrapt-1.17.0-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libice-1.1.1-h57736b2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libsm-1.2.4-hbac51e1_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.9-he755bbd_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.10-hca56bd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxext-1.3.6-h57736b2_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.11-h57736b2_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-xorgproto-2024.1-h86ecc28_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxfixes-6.0.1-h57736b2_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.11-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xxhash-0.8.2-h31becfc_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.6.3-h2dbfc1b_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-gpl-tools-5.6.3-h2dbfc1b_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-tools-5.6.3-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yaml-0.2.5-hf897c2e_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zeromq-4.3.5-h5efb499_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zlib-1.3.1-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstandard-0.23.0-py312hb698573_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda osx-arm64: - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.11.9-py312h998013c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aom-3.9.1-h7bae524_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-common-0.10.3-h5505292_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-compression-0.3.0-h5d7ee29_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-sdkutils-0.2.1-h5d7ee29_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-checksums-0.2.2-h5d7ee29_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-core-cpp-1.14.0-hd50102c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-identity-cpp-1.10.0-hc602bab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-blobs-cpp-12.13.0-h7585a09_1.conda @@ -608,23 +599,23 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/c-ares-1.34.3-h5505292_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ca-certificates-2024.8.30-hf0a4a13_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cairo-1.18.0-hb4a6bf7_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cairo-1.18.2-h6a3b0d2_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py312h0fad829_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/dav1d-1.2.1-hb547adb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/fluidsynth-2.3.7-h80fea77_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-dejavu-sans-mono-2.37-hab24e00_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/font-ttf-inconsolata-3.000-h77eed37_0.tar.bz2 @@ -635,37 +626,37 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/fonts-conda-forge-1-0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/freetype-2.12.1-hadb7bae_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/frozenlist-1.5.0-py312h0bf5046_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gettext-0.22.5-h8414b35_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gettext-tools-0.22.5-h8414b35_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gflags-2.2.2-hf9b8971_1005.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/glog-0.7.1-heb240a5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/graphite2-1.3.13-hebf3989_1003.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/harfbuzz-9.0.0-h997cde5_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/httptools-0.6.4-py312hea69d52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lame-3.100-h1a8c8d9_1003.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lcms2-2.16-ha0e7c42_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lerc-4.0.0-h9a09cb3_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libabseil-20240722.0-cxx17_hf9b8971_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libasprintf-0.22.5-h8414b35_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libasprintf-devel-0.22.5-h8414b35_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libavif16-1.1.1-h45b7238_2.conda @@ -676,7 +667,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcrc32c-1.1.2-hbdafb3b_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.10.1-h13a7ad3_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libdeflate-1.22-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20191231-hc8eb9b7_2.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda @@ -697,88 +688,85 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libintl-devel-0.22.5-h8414b35_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libjpeg-turbo-3.0.0-hb547adb_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-25_osxarm64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libmad-0.15.1b-h1a8c8d9_1001.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.64.0-h6d7220d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libogg-1.3.5-h99b78c6_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.28-openmp_hf332438_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopus-1.3.1-h27ca646_1.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libpng-1.6.44-hc14010f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libprotobuf-5.28.2-h8f0b736_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libre2-11-2024.07.02-h2348fd5_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsndfile-1.2.2-h9739721_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h9cc3647_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libthrift-0.21.0-h64651cc_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libutf8proc-2.9.0-h5505292_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libuv-1.49.2-h7ab814d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libvorbis-1.3.7-h9f76cd9_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libwebp-base-1.4.0-h93a5062_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxcb-1.17.0-hdb1d25a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-hbbdcc80_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lz4-c-1.9.4-hb7217d7_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312ha0ccf2a_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mpg123-1.32.9-hf642e45_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multidict-6.1.0-py312hdb8e49c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multiprocess-0.70.15-py312h02f2b3b_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h7bae524_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py312h8442bc7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjpeg-2.5.2-h9f1df11_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.4.0-h39f12f2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/opusfile-0.12-h5643135_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/orc-2.0.3-h121fd32_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.2.3-py312hcd31e36_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pcre2-10.44-h297a79d_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pillow-11.0.0-py312haf37ca6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pixman-0.43.4-hebf3989_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pixman-0.44.2-h2f9eb0b_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/portaudio-19.6.0-h13dd4ca_9.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/portmidi-2.0.4-h13dd4ca_2.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/protobuf-5.28.2-py312hf02c72a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-18.1.0-py312h1f38498_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-core-18.1.0-py312hc40f475_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pydantic-core-2.27.1-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pygame-2.6.1-py312hb14fe3b_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyinstrument-5.0.0-py312h0bf5046_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-xxhash-3.5.0-py312h024a12e_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -789,35 +777,35 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h92ec313_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/regex-2024.11.6-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/safetensors-0.4.5-py312he431725_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2-2.30.7-hf9b8971_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2-2.30.10-h994913f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2_image-2.8.2-h376e2e1_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2_mixer-2.6.3-h4fe3bdc_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2_ttf-2.22.0-hda0f12e_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/svt-av1-2.3.0-hf24288c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h5083fa2_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.4.2-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/uvloop-0.21.0-py312h0bf5046_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/watchfiles-1.0.0-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/websockets-14.1-py312hea69d52_0.conda @@ -825,9 +813,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxau-1.0.11-hd74edd7_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxdmcp-1.1.5-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xxhash-0.8.2-hb547adb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h3422bc3_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zlib-1.3.1-h8359307_2.conda @@ -883,18 +870,19 @@ packages: - kind: conda name: aiohappyeyeballs version: 2.4.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda - sha256: 4282838f468f75f0c1746cbc6cdd3365b9f6d449bf5af8a74b234e396d847bf0 - md5: 8d6f8a679aa0272ba8d6092ce4824870 + url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda + sha256: 95d4713e49ea92ae50cf42393683ede706b7875af5f7cb14c253438180afa732 + md5: 296b403617bafa89df4971567af79013 depends: - python >=3.9 license: PSF-2.0 license_family: PSF - size: 19310 - timestamp: 1733135584059 + size: 19351 + timestamp: 1733332029649 - kind: conda name: aiohttp version: 3.11.9 @@ -970,19 +958,20 @@ packages: - kind: conda name: aiosignal version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - sha256: 575c742e14c86575986dc867463582a970463da50b77264cdf54df74f5563783 - md5: d1e1eb7e21a9e2c74279d87dafb68156 + url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + sha256: 9c7b639ea0cc796ef46c57fa104ec1f2ed53cd11c063518869a5a9d7d3b0b2db + md5: d736bd1b8904d7593dce4893e58a7881 depends: - frozenlist >=1.1.0 - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 12730 - timestamp: 1667935912504 + size: 13157 + timestamp: 1733332198143 - kind: conda name: alsa-lib version: 1.2.13 @@ -1015,41 +1004,42 @@ packages: - kind: conda name: annotated-types version: 0.7.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - md5: 7e9f4612544c8edbfd6afad17f1bd045 + url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + sha256: e0ea1ba78fbb64f17062601edda82097fcf815012cf52bb704150a2668110d48 + md5: 2934f256a8acfe48f6ebb4fce6cde29c depends: - - python >=3.7 + - python >=3.9 - typing-extensions >=4.0.0 license: MIT license_family: MIT - size: 18235 - timestamp: 1716290348421 + size: 18074 + timestamp: 1733247158254 - kind: conda name: anyio - version: 4.6.2.post1 + version: 4.7.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - sha256: 4b54b7ce79d818e3cce54ae4d552dba51b7afac160ceecdefd04b3917a37c502 - md5: 688697ec5e9588bdded167d19577625b + url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + sha256: 687537ee3af30f8784986bf40cac30e88138770b16e51ca9850c9c23c09aeba1 + md5: c88107912954a983c2caf25f7fd55158 depends: - exceptiongroup >=1.0.2 - idna >=2.8 - python >=3.9 - sniffio >=1.1 - - typing_extensions >=4.1 + - typing_extensions >=4.5 constrains: - - uvloop >=0.21.0b1 - trio >=0.26.1 + - uvloop >=0.21 license: MIT license_family: MIT - size: 109864 - timestamp: 1728935803440 + size: 112730 + timestamp: 1733532678437 - kind: conda name: aom version: 3.9.1 @@ -1095,23 +1085,6 @@ packages: license_family: BSD size: 3250813 timestamp: 1718551360260 -- kind: conda - name: asgiref - version: 3.8.1 - build: pyhd8ed1ab_1 - build_number: 1 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - sha256: c8d51a32f3530e3ca176d8f7bf5621c68c7c1c03fe9cc5c3c49d8ba4a1248f43 - md5: 21187c8276f87b6aedfe63c267a6eed7 - depends: - - python >=3.9 - - typing_extensions >=4 - license: BSD-3-Clause - license_family: BSD - size: 26436 - timestamp: 1733215704904 - kind: conda name: attr version: 2.5.1 @@ -1145,122 +1118,120 @@ packages: - kind: conda name: attrs version: 24.2.0 - build: pyh71513ae_0 + build: pyh71513ae_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - sha256: 28dba85a7e0f7fb57d7315e13f603d1e41b83c5b88aa2a602596b52c833a2ff8 - md5: 6732fa52eb8e66e5afeb32db8701a791 + url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + sha256: 8488a116dffe204015a90b41982c0270534bd1070f44a00b316d59e4a79ae8c7 + md5: 2018839db45c79654b57a924fcdd27d0 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 56048 - timestamp: 1722977241383 + size: 56336 + timestamp: 1733520064905 - kind: conda name: aws-c-auth version: 0.8.0 - build: h9b725a8_10 - build_number: 10 + build: h35eccd0_12 + build_number: 12 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - sha256: 63cb8c25e0a26be4261d4271de525e7e33aefe9d9b001b8abfa5c9ac69c3dab3 - md5: 17c90d9eb8c6842fd739dc5445ce9962 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + sha256: 40ca48aee5f3ff0d3ffd64625dacb019104a9a2ee24cd54052cde6fe4cbc8349 + md5: 1109d5293b724ca16b61452accfdb442 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 license: Apache-2.0 license_family: Apache - size: 92355 - timestamp: 1731733738919 + size: 92279 + timestamp: 1733611476546 - kind: conda name: aws-c-auth version: 0.8.0 - build: hac900a4_10 - build_number: 10 + build: h89ba3c0_12 + build_number: 12 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - sha256: 85c8500ae0570f0d39e6661a120c653e43f0f5f984e2954c44fd358a87776892 - md5: 9ecaef75ebd666dda7caa79154183b02 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + sha256: 021451014fb5ee24601052d84db8d5babbce5085959ba777b540db4e33bde360 + md5: c0e2e6c3aa8c309af0ba09fc7d949407 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 111853 - timestamp: 1731733547677 + size: 112242 + timestamp: 1733611425746 - kind: conda name: aws-c-auth version: 0.8.0 - build: hb88c0a9_10 - build_number: 10 + build: ha4f867e_12 + build_number: 12 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - sha256: d2837a84e6bd7d993a83e79f9e240e1465e375f3d57149ea5b1927c6a4133bcc - md5: 409b7ee6d3473cc62bda7280f6ac20d0 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + sha256: b9355bedf43c857a2d1986ebe7d61e615218f2171d163b509633d6c0c988d2dc + md5: d889de56d3be691063b71eb826470e29 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 107163 - timestamp: 1731733534767 + size: 107663 + timestamp: 1733611397256 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h35473ba_2 - build_number: 2 + version: 0.8.1 + build: h35473ba_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda - sha256: 3327a9e65ec531b0c55d17bbcdc436b4e641af1f293d1c2f50e0f16aa79fde60 - md5: 48dc0b3576513622673d3f5f3d163b62 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda + sha256: c2d59d74e167b6df3c1a7addf0d37080b69a6b3dee2a30b3f2171a5d26c5a691 + md5: 97c0ccb4d43d880b38f237e746c29ead depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 49714 - timestamp: 1731678553709 + size: 49808 + timestamp: 1732038238504 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h5d7ee29_2 - build_number: 2 + version: 0.8.1 + build: h5d7ee29_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda - sha256: 2a8c09b33400cf2b7d658e63fd5a6f9b6e9626458f6213b904592fc15220bc92 - md5: 92734dad83d22314205ba73b679710d2 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda + sha256: 42d5e9fb695bc3b280ed7e625dcda110b6780ee471e227f1b92afce71ae4972c + md5: fc51a61831a676fe6f922450f51ab6af depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 39966 - timestamp: 1731678721786 + size: 40047 + timestamp: 1732038304022 - kind: conda name: aws-c-cal - version: 0.8.0 - build: hecf86a2_2 - build_number: 2 + version: 0.8.1 + build: hecf86a2_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda - sha256: 220a37955c120bf2f565fbd5320a82fc4c8b550b2449294bc0509c296cfcb9fa - md5: c54459d686ad9d0502823cacff7e8423 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda + sha256: 12cc2087503f4f0d3a5db84e791fb5e585866da728f888aa76e14330a092a681 + md5: 8350795be14a92d68847c0d4f3c1d59f depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 @@ -1268,8 +1239,8 @@ packages: - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 47477 - timestamp: 1731678510949 + size: 47569 + timestamp: 1732038156682 - kind: conda name: aws-c-common version: 0.10.3 @@ -1365,291 +1336,294 @@ packages: - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h13ead76_7 - build_number: 7 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - sha256: 386965fab5f0bed4a6109cdba32579f16bee1b0f76ce1db840ce6f7070188f9f - md5: 55a901b6d4fb9ce1bc8328925b229f0b + build: h873f81a_8 + build_number: 8 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + sha256: 589f9a04c4c7a919410dde75ce93a6986efad6ed522ecd8e5c9c587ac18f0d34 + md5: 32bdd50b43fcc435a8dc5a3c66aafef0 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 47528 - timestamp: 1731714690911 + size: 54020 + timestamp: 1731839177415 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h1ffe551_7 - build_number: 7 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - sha256: 3b780d6483baa889e8df5aa66ab3c439a9c81331cf2a4799e373f4174768ddd9 - md5: 7cce4dfab184f4bbdfc160789251b3c5 + build: h8ec3972_8 + build_number: 8 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + sha256: 81b98fc39e64d090af23b11621e467b4f943a19f61dda0fed5ad6397f06de5c7 + md5: ced9c97ddf61e4222d548e8bcc863b87 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 53500 - timestamp: 1731714597524 + size: 47491 + timestamp: 1731839300212 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h9bacb8c_7 - build_number: 7 + build: hba6c15e_8 + build_number: 8 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - sha256: 2b7bb475330942d94bc359171df19d0cf8b326f15c0c7903a59da54a8add621e - md5: 694020125b66632d6577456d2d9d3c74 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + sha256: d3b74580045ee9d54a134ab1e5e00082d5d8a466980e94acc153188ee7375d08 + md5: 102f8b54630d79aff5e0c489f40f926e depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 55054 - timestamp: 1731714599360 + size: 55354 + timestamp: 1731839242373 - kind: conda name: aws-c-http - version: 0.9.1 - build: hab05fe4_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - sha256: 90a325b6f5371dd2203b643de646967fe57a4bcbbee8c91086abbf9dd733d59a - md5: fb409f7053fa3dbbdf6eb41045a87795 + version: 0.9.2 + build: h48c6dea_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + sha256: cb68d557af1bdcbef668574836fbf39c4df0e4f377258e4d5bd14196acf9b992 + md5: a28dd36a1da76042bfb5579005cc6728 depends: - - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __osx >=11.0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 - - libgcc >=13 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 196945 - timestamp: 1731714483279 + size: 152660 + timestamp: 1732110368931 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf483d09_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - sha256: fca9ed0f0895bab9bf737c8d8a3314556cb893d45c40f0656f21a93502db3089 - md5: d880c40b8fc7d07374c036f93f1359d2 + version: 0.9.2 + build: h697be72_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + sha256: 4d6557a00e74649301da78d7de7d108882ce89eb9d6c87efce30789b53a617cf + md5: a8b1a2c11a93e615f6e8f33175ff8ff0 depends: - - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 + - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 153315 - timestamp: 1731714621306 + size: 190344 + timestamp: 1732110425530 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf4e072c_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - sha256: b9a262451fc91d2fd4ccfcb6dc11ac61d0152c0db765bfe8d089e3e1b70c2150 - md5: fddc197912c16cb95276077f6c7917c5 + version: 0.9.2 + build: ha5a3ca8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + sha256: 8ecb3d8411f58db4686635aedfe5d60b2b8870f9f9cafb471f3878dc61d21596 + md5: b2e017f8a4781ad3af9166edf10b65a8 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 190363 - timestamp: 1731714613945 + size: 197338 + timestamp: 1732110324356 - kind: conda name: aws-c-io - version: 0.15.2 - build: h10eb1bc_2 - build_number: 2 + version: 0.15.3 + build: h0155602_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - sha256: b8e4206ee1fa58453535c1c08c6aca5bdc92cde026bf7ec20d038786f813239b - md5: 7cdf478bb4feae1a93319f6e3381b8a9 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + sha256: 7b8d97d51e5bb80191e07f16cac6f59068be30bf5906925a8f4159b3aab9093c + md5: 431c201b11eee90fd120844557a62b02 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 162624 - timestamp: 1731702570075 + size: 161664 + timestamp: 1732097310449 - kind: conda name: aws-c-io - version: 0.15.2 - build: h39f8ad8_2 - build_number: 2 + version: 0.15.3 + build: h30cefa2_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - sha256: b14e32f024f6be1610dccfdb6371e101cba204d24f37c2a63d9b6380ac74ac17 - md5: 3b49f1dd8f20bead8b222828cfdad585 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + sha256: d6f8d42259ca11507bd912b3cd3ff1a65d6d8c7ff67ae9ee9df1686c9bebbbcc + md5: 8b8dc361de09e5b6227165a876e55cb7 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 license: Apache-2.0 license_family: Apache - size: 137610 - timestamp: 1731702839896 + size: 136662 + timestamp: 1732097382517 - kind: conda name: aws-c-io - version: 0.15.2 - build: hdeadb07_2 - build_number: 2 + version: 0.15.3 + build: ha35c7d9_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - sha256: 1636136a5d882b4aaa13ea8b7de8cf07038a6878872e3c434df9daf478cee594 - md5: 461a1eaa075fd391add91bcffc9de0c1 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + sha256: 2e9e13ed54f6da22ee5d06622f4165bcca253411997dad62225aecc54b25c0db + md5: 97960f380abe1ba3157fe63312e35b07 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 159368 - timestamp: 1731702542973 + size: 158012 + timestamp: 1732097264673 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h28a5e6a_8 - build_number: 8 + build: h2cca791_9 + build_number: 9 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - sha256: aad8c9a5c24953cdebf17efa7ec06b5639e14072d4fa70c5c0607d7ad913ba88 - md5: 5250ce3b5154c0347b7576015a7c6cef + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + sha256: c0ad176bab176a2983fb052de71037fc9357afd13b073511a7a440c1a8c6eff2 + md5: 090674d608454e979ce77bc8ee735868 depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 169040 - timestamp: 1731734203264 + size: 169690 + timestamp: 1733688313938 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h68a0d7e_8 - build_number: 8 + build: h3aaadf4_9 + build_number: 9 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - sha256: 837c24c105624e16ace94b4b566ffe45231ff275339c523571ebd45946926156 - md5: 9e3ac70d27e7591b1310a690768cfe27 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + sha256: 3cc99239c8dadfe55e4b9ba37d03c5d3308ddd8fe00792fab7c6b47c97655c07 + md5: ddb5dc7ac1ae424ca2b7a847765a0cb9 depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 134573 - timestamp: 1731734281038 + size: 135051 + timestamp: 1733688394116 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h7bd072d_8 - build_number: 8 + build: h56e9cca_9 + build_number: 9 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - sha256: 51d3d87a47c642096e2ce389a169aec2e26958042e9130857552a12d65a19045 - md5: 0e9d67838114c0dbd267a9311268b331 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + sha256: c93c29b58482ca72d3f9a5710ad92194e809a9de988bcdcbae9ddd0f8ed484a6 + md5: f75642fe24ae4131f554cbacd6df53e3 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 194447 - timestamp: 1731734668760 + size: 194705 + timestamp: 1733688770217 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h29aef15_0 + version: 0.7.5 + build: h3c51cf6_2 + build_number: 2 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda - sha256: 57aa8b28890efd82c479e902125ea8a37782b163f13ae0856b259ec527a52879 - md5: e09cd76e50ce09ec14c17109da5c6502 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda + sha256: 98a2df8a5068183e55b4c6914a3513d403300be20c960842a9a229546b8e8e52 + md5: e326ddae95b3ec96a31aded04c834175 depends: - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 117467 - timestamp: 1733098782199 + size: 117896 + timestamp: 1733694002769 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h3a84f74_0 + version: 0.7.5 + build: h6ad95d4_2 + build_number: 2 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda - sha256: db17a15e5e01f19700bf9be961e1c4e002ccf8dc4d9caa3a24a0ab54f00f2c2d - md5: 171850b890600458ae6c990e78f1fa23 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda + sha256: 103a478b18ead8f79aae9a4966b2879e9fbcfb0aa3b2e6c9b2811a76ba34610e + md5: 682c079ec089d47bb7142f12b3275e4f depends: - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 113536 - timestamp: 1733098705479 + size: 113741 + timestamp: 1733693956970 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h840aca7_0 + version: 0.7.5 + build: hca3a6f1_2 + build_number: 2 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda - sha256: 18972a91f32f6b0edb58eb71cb2f5b56654183fd6ba611b3b0d6cc484017aeff - md5: 893e668d99fa4b31eef9dc5b19c21b9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda + sha256: 53c4dc6e360ed6e1242c20fa43f7bfe67a41215e51cafab27dbd8aa91333040c + md5: 0b4e647cae3ce85ec991c6e3b8d12bda depends: - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 license: Apache-2.0 license_family: Apache - size: 97145 - timestamp: 1733098874599 + size: 97530 + timestamp: 1733694097526 - kind: conda name: aws-c-sdkutils version: 0.2.1 @@ -1750,118 +1724,118 @@ packages: timestamp: 1731687193373 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: h7939e66_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - sha256: 3d0b1996d28a2647ced83ed8052ee331df70b2c1a68fb6db0fe4e743a88be54d - md5: 5e573a52a1cd20f81d7fdf1db4f4583a + version: 0.29.7 + build: h318f0b1_3 + build_number: 3 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + sha256: 35100ad81adf31aa4e73ac2956e9a8ff277cc57d0db2db2f0e9c51012175eadd + md5: 9748d0527695a64aa2eb45e891ea188d depends: + - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 283670 - timestamp: 1733150929992 + size: 355045 + timestamp: 1733744656604 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: ha226bf8_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - sha256: f645e2a8015d8e71ed785c81a14a202ebce2f5dcca8982cd7ec5f8000f9be5c3 - md5: 81da0b5f65ab08e3919d6eadf08b5776 + version: 0.29.7 + build: hacb6b83_3 + build_number: 3 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + sha256: 6c0ece3ca494c2220fc052e608d52ea52bb361e536a14a1b3b36ebeede9de8b9 + md5: 27ce3ed5b7e55370a9fea2dda2b3245a depends: - - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 236505 - timestamp: 1733151090562 + size: 283993 + timestamp: 1733744571881 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: hdec8b0f_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - sha256: cd09f1d5d854607ce7acafc76c74e864f296d296e60b54054a10f757ecc3d2dd - md5: 40647232fad98f92be8c6050a7e0c2bd + version: 0.29.7 + build: hc2c2bbc_3 + build_number: 3 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + sha256: 6a519151e7fa71fbc9d1cd3a526ea7591638af058a6cc0534e1cd418fd48b354 + md5: 5450324f7b48dff1f6ed5484bf830972 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 354710 - timestamp: 1733150818238 + size: 236331 + timestamp: 1733744737078 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h3b64406_4 - build_number: 4 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda - sha256: 10ce9c203d31229432421a841d8d135d3e942637571aae4bb2d3c7d5242e7f05 - md5: f9e46a4bb5a04cbca08355f166ce87c8 + version: 1.11.458 + build: h5e41cbe_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda + sha256: b45305787a78f2bf7ecabc401b5bfe451509b434dd041a0a554572a70302d2f3 + md5: 1861b1fb86b336f1f53faaac5a76046c depends: - - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2722689 - timestamp: 1732812825640 + size: 2910575 + timestamp: 1733576378398 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h5558e3c_4 - build_number: 4 + version: 1.11.458 + build: hac138a2_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda - sha256: 4881f7b4f5e3c797332cffb990df246a422346b220a9c16014f274beb2a276f5 - md5: ba7abdc93b0ade11d774b47aaab84737 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda + sha256: fdb9c94d7524c52837643428b1aab4f35bed3ba2862a57e1b03e63038c7c146f + md5: bbdd9589b1a32a80b0e3f98a2a482542 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - libgcc >=13 - libstdcxx >=13 @@ -1869,31 +1843,31 @@ packages: - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2945541 - timestamp: 1732812288219 + size: 3071464 + timestamp: 1733576251149 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h7085e57_4 - build_number: 4 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda - sha256: 0908a82e7c50c51d5ee0ca543dbe70cbe1963e6e8f80ffa58ea6d26e5c68251e - md5: feec198cb18a5e90aa36c97328567d63 + version: 1.11.458 + build: he4d6490_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda + sha256: 61abc03dfbe372b258b8b6790bf3ad3a3265e02ce24b6b22bfe8f2fcab94954a + md5: 2941213b750689ace0862a6d695bb740 depends: + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2813856 - timestamp: 1732812337182 + size: 2847256 + timestamp: 1733576733615 - kind: conda name: azure-core-cpp version: 1.14.0 @@ -2372,30 +2346,6 @@ packages: license: ISC size: 158482 timestamp: 1725019034582 -- kind: conda - name: cairo - version: 1.18.0 - build: hb4a6bf7_3 - build_number: 3 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/cairo-1.18.0-hb4a6bf7_3.conda - sha256: f7603b7f6ee7c6e07c23d77302420194f4ec1b8e8facfff2b6aab17c7988a102 - md5: 08bd0752f3de8a2d8a35fd012f09531f - depends: - - __osx >=11.0 - - fontconfig >=2.14.2,<3.0a0 - - fonts-conda-ecosystem - - freetype >=2.12.1,<3.0a0 - - icu >=75.1,<76.0a0 - - libcxx >=16 - - libglib >=2.80.3,<3.0a0 - - libpng >=1.6.43,<1.7.0a0 - - libzlib >=1.3.1,<2.0a0 - - pixman >=0.43.4,<1.0a0 - - zlib - license: LGPL-2.1-only or MPL-1.1 - size: 899126 - timestamp: 1721139203735 - kind: conda name: cairo version: 1.18.0 @@ -2457,6 +2407,30 @@ packages: license: LGPL-2.1-only or MPL-1.1 size: 983604 timestamp: 1721138900054 +- kind: conda + name: cairo + version: 1.18.2 + build: h6a3b0d2_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/cairo-1.18.2-h6a3b0d2_0.conda + sha256: fe941b50a60edb664f22de5fe48251c8b9fd2e844f6e35d7535e28a5d4f4f894 + md5: 830793d58ec68f117c51e1d8d6e2133a + depends: + - __osx >=11.0 + - fontconfig >=2.15.0,<3.0a0 + - fonts-conda-ecosystem + - freetype >=2.12.1,<3.0a0 + - icu >=75.1,<76.0a0 + - libcxx >=18 + - libexpat >=2.6.4,<3.0a0 + - libglib >=2.82.2,<3.0a0 + - libpng >=1.6.44,<1.7.0a0 + - libzlib >=1.3.1,<2.0a0 + - pixman >=0.43.4,<1.0a0 + - zlib + license: LGPL-2.1-only or MPL-1.1 + size: 894944 + timestamp: 1733698883301 - kind: conda name: certifi version: 2024.8.30 @@ -2530,49 +2504,52 @@ packages: - kind: conda name: charset-normalizer version: 3.4.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - md5: a374efa97290b8799046df7c5ca17164 + url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + sha256: 63022ee2c6a157a9f980250a66f54bdcdf5abee817348d0f9a74c2441a6fbf0e + md5: 6581a17bba6b948bb60130026404a9d6 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 47314 - timestamp: 1728479405343 + size: 47533 + timestamp: 1733218182393 - kind: conda name: click version: 8.1.7 - build: unix_pyh707e725_0 + build: unix_pyh707e725_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - md5: f3ad426304898027fc619827ff428eca + url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + sha256: 1cd5fc6ccdd5141378e51252a7a3810b07fd5a7e6934a5b4a7eccba66566224b + md5: cb8e52f28f5e592598190c562e7b5bf1 depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 84437 - timestamp: 1692311973840 + size: 84513 + timestamp: 1733221925078 - kind: conda name: colorama version: 0.4.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - md5: 3faab06a954c2a04039983f2c4a50d99 + url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + sha256: ab29d57dc70786c1269633ba3dff20288b81664d3ff8d21af995742e2bb03287 + md5: 962b9857ee8e7018c22f2776ffa0b2d7 depends: - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 25170 - timestamp: 1666700778190 + size: 27011 + timestamp: 1733218222191 - kind: conda name: datasets version: 2.14.4 @@ -2679,19 +2656,20 @@ packages: - kind: conda name: deprecated version: 1.2.15 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda - sha256: 48182a27a8fd855db3a402ed914823802f94c3344c87b0d074facc51411296ee - md5: ca75e235b44ab995655fae392f99595e + url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda + sha256: a20ebf2c9b02a6eb32412ceb5c4cffaae49417db7e75414a76417538293a9402 + md5: eaef2e94d5bd76f758545d172c1fda67 depends: - - python >=2.7 + - python >=3.9 - wrapt <2,>=1.10 license: MIT license_family: MIT - size: 14182 - timestamp: 1731836933516 + size: 14297 + timestamp: 1733662697343 - kind: conda name: dill version: 0.3.7 @@ -2710,58 +2688,61 @@ packages: - kind: conda name: dnspython version: 2.7.0 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - sha256: 3e2ea1bfd90969e0e1f152bb1f969c56661278ad6bfaa3272027b1ff0d9a1a23 - md5: 0adf8f63d500d20418656289249533f9 + url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + sha256: 3ec40ccf63f2450c5e6c7dd579e42fc2e97caf0d8cd4ba24aa434e6fc264eda0 + md5: 5fbd60d61d21b4bd2f9d7a48fe100418 depends: - - python >=3.9.0,<4.0.0 + - python >=3.9,<4.0.0 - sniffio constrains: - - cryptography >=43 + - aioquic >=1.0.0 - wmi >=1.5.1 - - h2 >=4.1.0 + - httpx >=0.26.0 - trio >=0.23 + - cryptography >=43 - httpcore >=1.0.0 - - aioquic >=1.0.0 - - httpx >=0.26.0 - idna >=3.7 + - h2 >=4.1.0 license: ISC license_family: OTHER - size: 172740 - timestamp: 1728178868478 + size: 172172 + timestamp: 1733256829961 - kind: conda name: email-validator version: 2.2.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - sha256: ea9e936ed7c49ea6d66fa3554afe31ba311f2a3d5e384d8c38925fda9e37bdb9 - md5: 3067adf57ee658ddf5bfad47b0041ce4 + url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + sha256: b91a19eb78edfc2dbb36de9a67f74ee2416f1b5273dd7327abe53f2dbf864736 + md5: da16dd3b0b71339060cd44cb7110ddf9 depends: - dnspython >=2.0.0 - idna >=2.0.0 - - python >=3.7 + - python >=3.9 license: Unlicense - size: 44157 - timestamp: 1718984716782 + size: 44401 + timestamp: 1733300827551 - kind: conda name: email_validator version: 2.2.0 - build: hd8ed1ab_0 + build: hd8ed1ab_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - sha256: 2cbbbe9e0f3872214227c27b8b775dd2296a435c90ef50a7cc69934c329b6c65 - md5: 0214a004f7cf5ac28fc10a390dfc47ee + url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + sha256: e0d0fdf587aa0ed0ff08b2bce3ab355f46687b87b0775bfba01cc80a859ee6a2 + md5: 0794f8807ff2c6f020422cacb1bd7bfa depends: - email-validator >=2.2.0,<2.2.1.0a0 license: Unlicense - size: 6690 - timestamp: 1718984720419 + size: 6552 + timestamp: 1733300828176 - kind: conda name: exceptiongroup version: 1.2.2 @@ -2810,13 +2791,13 @@ packages: timestamp: 1730967212801 - kind: conda name: fastapi - version: 0.115.5 - build: pyhff2d567_0 + version: 0.115.6 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda - sha256: da2833cc2ea5789abc2a6899be02ba0a769386d4913ff182bd1a9458bea40c34 - md5: cfe0f8cd904ab19c36ba50eb5179ebe0 + url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda + sha256: d7826d537c667093c9de96411a09585a8d620c84a830a0195e58e9a0df45f018 + md5: 1b1e0c97830cdf75f1f371bd467ab657 depends: - email_validator >=2.0.0 - fastapi-cli >=0.0.5 @@ -2830,8 +2811,8 @@ packages: - uvicorn-standard >=0.12.0 license: MIT license_family: MIT - size: 73541 - timestamp: 1731452895466 + size: 73084 + timestamp: 1733362427885 - kind: conda name: fastapi-cli version: 0.0.5 @@ -2853,17 +2834,18 @@ packages: - kind: conda name: filelock version: 3.16.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + sha256: 18dca6e2194732df7ebf824abaefe999e4765ebe8e8a061269406ab88fc418b9 + md5: d692e9ba6f92dc51484bf3477e36ce7c depends: - - python >=3.7 + - python >=3.9 license: Unlicense - size: 17357 - timestamp: 1726613593584 + size: 17441 + timestamp: 1733240909987 - kind: conda name: fluidsynth version: 2.3.7 @@ -3175,18 +3157,19 @@ packages: - kind: conda name: fsspec version: 2024.10.0 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda - sha256: 40bb76981dd49d5869b48925a8975bb7bbe4e33e1e40af4ec06f6bf4a62effd7 - md5: 816dbc4679a64e4417cd1385d661bb31 + url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda + sha256: 790a50b4f94042951518f911a914a886a837c926094c6a14ed1d9d03ce336807 + md5: 906fe13095e734cb413b57a49116cdc8 depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 134745 - timestamp: 1729608972363 + size: 134726 + timestamp: 1733493445080 - kind: conda name: gettext version: 0.22.5 @@ -3462,36 +3445,38 @@ packages: - kind: conda name: h11 version: 0.14.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085 - md5: b21ed0883505ba1910994f1df031a428 + url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + sha256: 622516185a7c740d5c7f27016d0c15b45782c1501e5611deec63fd70344ce7c8 + md5: 7ee49e89531c0dcbba9466f6d115d585 depends: - - python >=3 + - python >=3.9 - typing_extensions license: MIT license_family: MIT - size: 48251 - timestamp: 1664132995560 + size: 51846 + timestamp: 1733327599467 - kind: conda name: h2 version: 4.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a - md5: b748fbf7060927a6e82df7cb5ee8f097 + url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + sha256: 843ddad410c370672a8250470697027618f104153612439076d4d7b91eeb7b5c + md5: 825927dc7b0f287ef8d4d0011bb113b1 depends: - hpack >=4.0,<5 - hyperframe >=6.0,<7 - - python >=3.6.1 + - python >=3.9 license: MIT license_family: MIT - size: 46754 - timestamp: 1634280590080 + size: 52000 + timestamp: 1733298867359 - kind: conda name: harfbuzz version: 9.0.0 @@ -3559,18 +3544,19 @@ packages: - kind: conda name: hpack version: 4.0.0 - build: pyh9f0ad1d_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 - sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8 - md5: 914d6646c4dbb1fd3ff539830a12fd71 + url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda + sha256: ec89b7e5b8aa2f0219f666084446e1fb7b54545861e9caa892acb24d125761b5 + md5: 2aa5ff7fa34a81b9196532c84c10d865 depends: - - python + - python >=3.9 license: MIT license_family: MIT - size: 25341 - timestamp: 1598856368685 + size: 29412 + timestamp: 1733299296857 - kind: conda name: httpcore version: 1.0.7 @@ -3645,13 +3631,13 @@ packages: timestamp: 1732707871414 - kind: conda name: httpx - version: 0.28.0 + version: 0.28.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - sha256: cb7895446cd93091300accea6afbc8d9811a3c5899922ccfeeff97d9b55909dc - md5: 22878824a87f1af2ad48665f9d5bfcc8 + url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + sha256: cd0f1de3697b252df95f98383e9edb1d00386bfdd03fdf607fa42fe5fcb09950 + md5: d6989ead454181f4f9bc987d3dc4e285 depends: - anyio - certifi @@ -3660,17 +3646,17 @@ packages: - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 63183 - timestamp: 1732831049776 + size: 63082 + timestamp: 1733663449209 - kind: conda name: huggingface_hub - version: 0.26.3 + version: 0.26.5 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - sha256: 66ffed967463e4a25f1dc4ca699d85dd55d1d150fed214c6380f11a981e0acb7 - md5: 997fc223fbc616c262f2a32a22d433a4 + url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + sha256: bdbf614d87155c7f9b8fe9c3d039528298119832e9f52959b15c522a9841eef7 + md5: 37236111cd92068e5af2f98cbb476642 depends: - filelock - fsspec >=2023.5.0 @@ -3682,24 +3668,24 @@ packages: - typing-extensions >=3.7.4.3 - typing_extensions >=3.7.4.3 license: Apache-2.0 - license_family: APACHE - size: 274858 - timestamp: 1733170279930 + size: 274900 + timestamp: 1733637007500 - kind: conda name: hyperframe version: 6.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 - sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330 - md5: 9f765cbfab6870c8435b9eefecd7a1f4 + url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + sha256: e91c6ef09d076e1d9a02819cd00fa7ee18ecf30cdd667605c853980216584d1b + md5: 566e75c90c1d0c8c459eb0ad9833dc7a depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14646 - timestamp: 1619110249723 + size: 17239 + timestamp: 1733298862681 - kind: conda name: icu version: '75.1' @@ -3818,40 +3804,42 @@ packages: - kind: conda name: jinja2 version: 3.1.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 + url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + sha256: 85a7169c078b8065bd9d121b0e7b99c8b88c42a411314b6ae5fcd81c48c4710a + md5: 08cce3151bde4ecad7885bd9fb647532 depends: - markupsafe >=2.0 - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 111565 - timestamp: 1715127275924 + size: 110963 + timestamp: 1733217424408 - kind: conda name: jupyter_client version: 8.6.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - md5: a14218cfb29662b4a19ceb04e93e298e + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda + sha256: 19d8bd5bb2fde910ec59e081eeb59529491995ce0d653a5209366611023a0b3a + md5: 4ebae00eae9705b0c3d6d1018a81d047 depends: - importlib-metadata >=4.8.3 - jupyter_core >=4.12,!=5.0.* - - python >=3.8 + - python >=3.9 - python-dateutil >=2.8.2 - pyzmq >=23.0 - tornado >=6.2 - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 106055 - timestamp: 1726610805505 + size: 106342 + timestamp: 1733441040958 - kind: conda name: jupyter_core version: 5.7.2 @@ -4180,30 +4168,32 @@ packages: - kind: conda name: libarrow version: 18.1.0 - build: h654e1bb_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - sha256: 925dcb034f36536eed21d9323f096bf2ebf1111d14c61e1ae0b90e5de131f1e1 - md5: e69934ff9dd8745fea8927028d1603ee + build: h3b07799_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + sha256: 8837dc6e60522eef63554654c45d18143006324c43391c6e8dc5d2b20997466d + md5: 27675c7172667268440306533e4928de depends: - - __osx >=11.0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 + - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libcxx >=18 + - libgcc >=13 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 + - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -4212,41 +4202,40 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: - - arrow-cpp <0.0a0 - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 5475725 - timestamp: 1732947802614 + size: 8793521 + timestamp: 1733607374384 - kind: conda name: libarrow version: 18.1.0 - build: hc7b0e1d_2_cpu - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - sha256: 3201944d1f97b9207e566ccf388c8376bb2ce7e461534cda63a28975b6790901 - md5: 4a46bd0be8e7f56a217d26b79d290a0e + build: h86d57b8_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + sha256: fe6b5eb4d6e71418343b62a0d322ede7be69999b28d9e492164c12e613cf3fa0 + md5: 23431b3fdbb32858d1533da5bc8fcc86 depends: - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __osx >=11.0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 - - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libgcc >=13 + - libcxx >=18 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -4255,26 +4244,25 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: + - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu - arrow-cpp <0.0a0 - - parquet-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8026783 - timestamp: 1732950110265 + size: 5482797 + timestamp: 1733605365656 - kind: conda name: libarrow version: 18.1.0 - build: he15abb1_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - sha256: afc81af2e533cc35295aebae4fb382e770310d9b1ac31837456b440d35c54cf7 - md5: bd3e35a6f3f869b4777488452f315008 + build: ha2aff55_4_cpu + build_number: 4 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + sha256: 795950b73029fd4d3b7fee3427c39c7357287fd94244dd5a125ac0931d31aaa3 + md5: c4d60278cb00053df1a4f0600fd2ac2a depends: - - __glibc >=2.17,<3.0.a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 @@ -4291,7 +4279,7 @@ packages: - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - libstdcxx >=13 - - libutf8proc >=2.8.0,<2.9.0a0 + - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - orc >=2.0.3,<2.0.4.0a0 @@ -4300,189 +4288,189 @@ packages: - zstd >=1.5.6,<1.6.0a0 constrains: - parquet-cpp <0.0a0 - - arrow-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8780597 - timestamp: 1732863546099 + size: 8035987 + timestamp: 1733607600970 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - sha256: 3de5719a7035baad7e665116dce7bb3d069f0c1916e163c553e2e491bbe8b614 - md5: 6197dcb930f6254e9b2fdc416be56b71 + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + sha256: fe8cb6feeed0858cb8e7cc8889ae20165527934778adb8f7b1f2f5d1f7ade16d + md5: e4ed6162593fbb01f4d742db4215f70c depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libgcc >=13 - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libcxx >=18 license: Apache-2.0 license_family: APACHE - size: 611272 - timestamp: 1732863586114 + size: 483574 + timestamp: 1733605591770 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - sha256: e6c8988d1d79163d6d13dda21f9e401f5df4b3af7e0d221718522c600894adcf - md5: 14fede66c995f3cf958797e9fb567e22 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + sha256: 9e88f04409da9ca2fedc5f7bf0987ff28e96d08742e59672f744ec4624a4c991 + md5: d532c42abe13841806d97f4d9cd6dcf5 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 577510 - timestamp: 1732950190684 + size: 578174 + timestamp: 1733607685962 - kind: conda name: libarrow-acero version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - sha256: cfe32f1b0712b77d2c792a839fe4ea2790cabd99d47cd8e1b20ba2d3c8b113b2 - md5: 60351279d7dfd7c254c46aabf9aa35a6 + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + sha256: b3b4ddb2718c96c93d9b50dbf8f66265af9198b55852b4d3424c13a79ec3f84d + md5: 82bcbfe424868ce66b5ab986999f534d depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libcxx >=18 + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 483362 - timestamp: 1732948000606 + size: 610772 + timestamp: 1733607505368 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - sha256: 7b3db3d5a7e411f8897e8d74403c1d871f3054300f5009c4bdf75da011bc3f42 - md5: 77501831a2aabbaabac55e8cb3b6900a + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + sha256: 862fb21b871666495b4bb5e63f5fcb66b93c08893e92412b01e2717e081836eb + md5: bb940b4c583e4c8e5a9f193fabdb5840 depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libgcc >=13 - - libparquet 18.1.0 h6bd9018_1_cpu - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libcxx >=18 + - libparquet 18.1.0 hf4cc9e7_4_cpu license: Apache-2.0 license_family: APACHE - size: 585458 - timestamp: 1732863686753 + size: 489457 + timestamp: 1733607417337 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - sha256: 53cdae2150c22ef9b5d6de8d0ee8ac52eeacc50fdfa2fa3ea644b52436d1eeb1 - md5: c54d83f012a40fef8a2dc4856e4340a0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + sha256: 4a9ffedc5570ce57a6864e46dcf36ec108557791b50fd43e82eb739f3717ff2f + md5: 1a6c409f45857d30f581a1a53abb2298 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu - libgcc >=13 - - libparquet 18.1.0 h23a96eb_2_cpu + - libparquet 18.1.0 h34a048e_4_cpu - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 559143 - timestamp: 1732950272727 + size: 561495 + timestamp: 1733607973097 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - sha256: eeae9e8d382c482076f4739455b53f16851d7f99be219b6f96dd4e765132b446 - md5: b5fcaddabf47aa15e50feff072a55ada + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + sha256: 9c898ab7377953b8c7218347fdb63376d4f977cabfb8fa6bd1b421a75b8cb335 + md5: fa31464c75b20c2f3ac8fc758e034887 depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libcxx >=18 - - libparquet 18.1.0 h5168bdf_2_cpu + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libgcc >=13 + - libparquet 18.1.0 hf4f6db6_4_cpu + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 489769 - timestamp: 1732949732423 + size: 585517 + timestamp: 1733607943984 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h14ec2bd_2_cpu - build_number: 2 + build: h3644d33_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda - sha256: e8923d62cfaadc4a8af1735e717fd4980cad693419e63aed04380566d9fd46df - md5: 4fd0103449cf40214fd348643aa78fff + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda + sha256: ac053b3efd1a2701e6f34195d90a0da21dca22d70916ae6b10a019c2be6cd44c + md5: ce3062cd5caa0bdafa7976535862e648 depends: - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu - - libarrow-dataset 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu + - libarrow-dataset 18.1.0 h512cd83_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 515352 - timestamp: 1732950311471 + size: 513745 + timestamp: 1733608111290 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h5c8f2c3_1_cpu - build_number: 1 + build: had74209_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda - sha256: e77a354bfc0ba7b04c856f1bb16e7b08950bcde54026087bafec46090380fcc1 - md5: 5d47bd2674afd104dbe2f2f3534594b0 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda + sha256: 29e44d6070d64cd4b357e02afeae233d2e90d917a008a2724c9cd463015f0319 + md5: bf261e5fa25ce4acc11a80bdc73b88b2 depends: - __glibc >=2.17,<3.0.a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libarrow-dataset 18.1.0 h5888daf_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libarrow-dataset 18.1.0 h8bbc2ab_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 520681 - timestamp: 1732863726954 + size: 519919 + timestamp: 1733608152065 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h9b432b6_2_cpu - build_number: 2 + build: hf3d3107_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda - sha256: 6dde802134bd2e78581eb838c049b2e7e378899706b471f7072222a6b1284b90 - md5: 49e7c0460532a73f34bd127fff009224 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda + sha256: 9d9ebd042b9e8561b64f057d2adb24d331a772ccf1af3ed2d8b5b1566729f236 + md5: c093b05dc6d1b6057342d3dd6f3bd0d8 depends: - __osx >=11.0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libarrow-dataset 18.1.0 h605b82c_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libarrow-dataset 18.1.0 h1dc2043_4_cpu - libcxx >=18 - libprotobuf >=5.28.2,<5.28.3.0a0 license: Apache-2.0 license_family: APACHE - size: 451127 - timestamp: 1732950194322 + size: 451982 + timestamp: 1733607898511 - kind: conda name: libasprintf version: 0.22.5 @@ -4842,34 +4830,35 @@ packages: timestamp: 1725268003553 - kind: conda name: libcap - version: '2.69' - build: h0f662aa_0 + version: '2.71' + build: h39aace5_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.69-h0f662aa_0.conda - sha256: 942f9564b4228609f017b6617425d29a74c43b8a030e12239fa4458e5cb6323c - md5: 25cb5999faa414e5ccb2c1388f62d3d5 + url: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.71-h39aace5_0.conda + sha256: 2bbefac94f4ab8ff7c64dc843238b6c8edcc9ff1f2b5a0a48407a904dc7ccfb2 + md5: dd19e4e3043f6948bd7454b946ee0983 depends: + - __glibc >=2.17,<3.0.a0 - attr >=2.5.1,<2.6.0a0 - - libgcc-ng >=12 + - libgcc >=13 license: BSD-3-Clause license_family: BSD - size: 100582 - timestamp: 1684162447012 + size: 102268 + timestamp: 1729940917945 - kind: conda name: libcap - version: '2.69' - build: h883460d_0 + version: '2.71' + build: h51d75a7_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libcap-2.69-h883460d_0.conda - sha256: c0944a372d2d2d961cb86726fad17950219f10837bed281ac22127cb3889b06d - md5: fd395b538afc08d28c0db275a42c8078 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libcap-2.71-h51d75a7_0.conda + sha256: 2b66e66e6a0768e833e7edc764649679881ec0a6b37d9bf254b1ceb3b8b434ef + md5: 29f6092b6e938516ca0b042837e64fa5 depends: - attr >=2.5.1,<2.6.0a0 - - libgcc-ng >=12 + - libgcc >=13 license: BSD-3-Clause license_family: BSD - size: 103105 - timestamp: 1684162437148 + size: 106877 + timestamp: 1729940936697 - kind: conda name: libcblas version: 3.9.0 @@ -5034,18 +5023,18 @@ packages: timestamp: 1726659794676 - kind: conda name: libcxx - version: 19.1.4 + version: 19.1.5 build: ha82da77_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda - sha256: 342896ebc1d6acbf022ca6df006a936b9a472579e91e3c502cb1f52f218b78e9 - md5: a2d3d484d95889fccdd09498d8f6bf9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda + sha256: 7918cc0bb7a6554cdd3eee634c3dc414a1ab8ec49faeca1567367bb92118f9d7 + md5: 3c7be0df28ccda1d193ea6de56dcb5ff depends: - __osx >=11.0 license: Apache-2.0 WITH LLVM-exception license_family: Apache - size: 520678 - timestamp: 1732060258949 + size: 519819 + timestamp: 1733291654212 - kind: conda name: libdb version: 6.2.32 @@ -5468,69 +5457,6 @@ packages: license_family: GPL size: 54104 timestamp: 1729089444587 -- kind: conda - name: libgcrypt - version: 1.11.0 - build: h8af1aa0_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-1.11.0-h8af1aa0_2.conda - sha256: 21bfc7b12d374f613929f639c481bb7320470bc32210aaff0d7608c251777e90 - md5: 024bf127a7fd791500446d7a70296d00 - depends: - - libgcrypt-devel 1.11.0 h86ecc28_2 - - libgcrypt-lib 1.11.0 h86ecc28_2 - - libgcrypt-tools 1.11.0 h86ecc28_2 - license: LGPL-2.1-or-later AND GPL-2.0-or-later - size: 6233 - timestamp: 1732523338946 -- kind: conda - name: libgcrypt - version: 1.11.0 - build: ha770c72_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-1.11.0-ha770c72_2.conda - sha256: 2a6e2416db13816609541fd3fa680f1ff41dccb968ef22de2b0168e32e5902f2 - md5: 92aaf7c067a5e63ac7f035bbd8864415 - depends: - - libgcrypt-devel 1.11.0 hb9d3cd8_2 - - libgcrypt-lib 1.11.0 hb9d3cd8_2 - - libgcrypt-tools 1.11.0 hb9d3cd8_2 - license: LGPL-2.1-or-later AND GPL-2.0-or-later - size: 6177 - timestamp: 1732523212730 -- kind: conda - name: libgcrypt-devel - version: 1.11.0 - build: h86ecc28_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-devel-1.11.0-h86ecc28_2.conda - sha256: cee9c75b3b25b4fddc8fc62089285109d90a8ecc7198f1fce437051a224c0642 - md5: 2b22f46eedf64d42060359f4c9c635bf - depends: - - libgcc >=13 - - libgcrypt-lib 1.11.0 h86ecc28_2 - license: LGPL-2.1-or-later - size: 106573 - timestamp: 1732523326670 -- kind: conda - name: libgcrypt-devel - version: 1.11.0 - build: hb9d3cd8_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-devel-1.11.0-hb9d3cd8_2.conda - sha256: 5e066ca7a3dc6b44ecfee25b92a6941e38393f5ee82528b76ff299963f16c66a - md5: bf888b6a37286e9ae3749a114f878a6e - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - libgcrypt-lib 1.11.0 hb9d3cd8_2 - license: LGPL-2.1-or-later - size: 106099 - timestamp: 1732523199857 - kind: conda name: libgcrypt-lib version: 1.11.0 @@ -5562,41 +5488,6 @@ packages: license: LGPL-2.1-or-later size: 586185 timestamp: 1732523190369 -- kind: conda - name: libgcrypt-tools - version: 1.11.0 - build: h86ecc28_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libgcrypt-tools-1.11.0-h86ecc28_2.conda - sha256: 4c9af6dade7b1216d5765fbe368b67963e88c60e05a56a43e3ebcae69cbc47f5 - md5: 9db2cfeedb9eff8f1ff1bae1cd014ba2 - depends: - - libgcc >=13 - - libgcrypt-lib 1.11.0 h86ecc28_2 - - libgpg-error >=1.51,<2.0a0 - license: GPL-2.0-or-later - license_family: GPL - size: 35981 - timestamp: 1732523336202 -- kind: conda - name: libgcrypt-tools - version: 1.11.0 - build: hb9d3cd8_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libgcrypt-tools-1.11.0-hb9d3cd8_2.conda - sha256: 6adba58f3f4eb3f2ba07d5f309748499989f71f55ba46acdf7f643f8da18ed9d - md5: 342389a8c9eef45fd8bb144b7522e28d - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - - libgcrypt-lib 1.11.0 hb9d3cd8_2 - - libgpg-error >=1.51,<2.0a0 - license: GPL-2.0-or-later - license_family: GPL - size: 33257 - timestamp: 1732523208992 - kind: conda name: libgettextpo version: 0.22.5 @@ -6300,6 +6191,80 @@ packages: license_family: BSD size: 15823 timestamp: 1729643275943 +- kind: conda + name: liblzma + version: 5.6.3 + build: h39f12f2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda + sha256: d863b8257406918ffdc50ae65502f2b2d6cede29404d09a094f59509d6a0aaf1 + md5: b2553114a7f5e20ccd02378a77d836aa + depends: + - __osx >=11.0 + license: 0BSD + size: 99129 + timestamp: 1733407496073 +- kind: conda + name: liblzma + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda + sha256: d1cce0b7d62d1e54e2164d3e0667ee808efc6c3870256e5b47a150cd0bf46824 + md5: eb08b903681f9f2432c320e8ed626723 + depends: + - libgcc >=13 + license: 0BSD + size: 124138 + timestamp: 1733409137214 +- kind: conda + name: liblzma + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda + sha256: e6e425252f3839e2756e4af1ea2074dffd3396c161bf460629f9dfd6a65f15c6 + md5: 2ecf2f1c7e4e21fcfe6423a51a992d84 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: 0BSD + size: 111132 + timestamp: 1733407410083 +- kind: conda + name: liblzma-devel + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-devel-5.6.3-h86ecc28_1.conda + sha256: 6e9ca2041f89c7df63d7ceba31a46b8f9ab28e88ce39f9f5c30b1fd0c629111c + md5: ca1606232471b17724ab99904cf90195 + depends: + - libgcc >=13 + - liblzma 5.6.3 h86ecc28_1 + license: 0BSD + size: 376914 + timestamp: 1733409269260 +- kind: conda + name: liblzma-devel + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/liblzma-devel-5.6.3-hb9d3cd8_1.conda + sha256: ca17f037a0a7137874597866a171166677e4812a9a8a853007f0f582e3ff6d1d + md5: cc4687e1814ed459f3bd6d8e05251ab2 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - liblzma 5.6.3 hb9d3cd8_1 + license: 0BSD + size: 376794 + timestamp: 1733407421190 - kind: conda name: libmad version: 0.15.1b @@ -6579,61 +6544,61 @@ packages: - kind: conda name: libparquet version: 18.1.0 - build: h23a96eb_2_cpu - build_number: 2 + build: h34a048e_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda - sha256: 83b8fa4a90e214fcd6018f890947666f055f79563fff2b7c3d5f37d894f3a000 - md5: ce205782960a580fa43cfcccca22ad8d + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda + sha256: 488d82356fc4e6dfd6c10a4100c36af17db1b7eb72cce0bd8973014220dc3066 + md5: 46db27c16b29f48a37a40e3b2c9dcfe3 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1115906 - timestamp: 1732950250848 + size: 1117278 + timestamp: 1733607904359 - kind: conda name: libparquet version: 18.1.0 - build: h5168bdf_2_cpu - build_number: 2 + build: hf4cc9e7_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda - sha256: 454487d113974b923b4214a65aab780fd90c4914390d0b1f4640b1bf60537bff - md5: f995df7ee206617a3e858fd932d7bd2d + url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda + sha256: ccadab6395090b3cbc54243fcf5c6e49eaee46aaaa4221ca8ca7803a34bdc25d + md5: b462d962b5254923c5f65ce1c68dfc17 depends: - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu - libcxx >=18 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 872333 - timestamp: 1732949558028 + size: 873584 + timestamp: 1733607239103 - kind: conda name: libparquet version: 18.1.0 - build: h6bd9018_1_cpu - build_number: 1 + build: hf4f6db6_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda - sha256: 0df119f4c1a2387d910e132c670b29ee5b29dd79384549de6f1a43067515c8ba - md5: 1054909202f86e38bbbb7ca1131b8471 + url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda + sha256: f957b6ea5c4023448891f63f7b184a663d85aa5b2717b0e0ebfbfcf97b542751 + md5: f18b10bf19bb384183f2aa546e9f6f0a depends: - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1203523 - timestamp: 1732863665743 + size: 1204859 + timestamp: 1733607834047 - kind: conda name: libpng version: 1.6.44 @@ -6899,50 +6864,47 @@ packages: timestamp: 1716828607917 - kind: conda name: libsqlite - version: 3.47.0 - build: hadc24fc_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda - sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 - md5: b6f02b52a174e612e89548f4663ce56a + version: 3.47.2 + build: h3f77e49_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda + sha256: f192f3c8973de9ec4c214990715f13b781965247a5cedf9162e7f9e699cfc3c4 + md5: 122d6f29470f1a991e85608e77e56a8a depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 + - __osx >=11.0 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 875349 - timestamp: 1730208050020 + size: 850553 + timestamp: 1733762057506 - kind: conda name: libsqlite - version: 3.47.0 - build: hbaaea75_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda - sha256: 5a96caa566c11e5a5ebdcdb86a0759a7fb27d3c5f42e6a0fd0d6023c1e935d9e - md5: 07a14fbe439eef078cc479deca321161 + version: 3.47.2 + build: h5eb1b54_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda + sha256: 885a27fa84a5a73ed9779168c02b6c386e2fc7a53f0566b32a09ceca146b42b4 + md5: d4bf59f8783a4a66c0aec568f6de3ff4 depends: - - __osx >=11.0 + - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 837683 - timestamp: 1730208293578 + size: 1042182 + timestamp: 1733761913736 - kind: conda name: libsqlite - version: 3.47.0 - build: hc4a20ef_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda - sha256: 73e143fdb966b61cd25ab804d416d87dfce43ac684e0fac3ad8b1450796331ab - md5: a6b185aac10d08028340858f77231b23 + version: 3.47.2 + build: hee588c1_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda + sha256: 48af21ebc2cbf358976f1e0f4a0ab9e91dfc83d0ef337cf3837c6f5bc22fb352 + md5: b58da17db24b6e08bcbf8fed2fb8c915 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 1041855 - timestamp: 1730208187962 + size: 873551 + timestamp: 1733761824646 - kind: conda name: libssh2 version: 1.11.1 @@ -7053,43 +7015,41 @@ packages: timestamp: 1729089498541 - kind: conda name: libsystemd0 - version: '256.7' - build: h2774228_1 - build_number: 1 + version: '256.9' + build: h2774228_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.7-h2774228_1.conda - sha256: fa9cfbacaa2f14072b07ff9c832a8750627755346a1472f116a94aecea28f08e - md5: ad328c530a12a8798776e5f03942090f + url: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-256.9-h2774228_0.conda + sha256: a93e45c12c2954942a994ff3ffc8b9a144261288032da834ed80a6210708ad49 + md5: 7b283ff97a87409a884bc11283855c17 depends: - __glibc >=2.17,<3.0.a0 - - libcap >=2.69,<2.70.0a0 + - libcap >=2.71,<2.72.0a0 - libgcc >=13 - - libgcrypt >=1.11.0,<2.0a0 + - libgcrypt-lib >=1.11.0,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: LGPL-2.1-or-later - size: 411535 - timestamp: 1729786797378 + size: 410424 + timestamp: 1733312416327 - kind: conda name: libsystemd0 - version: '256.7' - build: hd54d049_1 - build_number: 1 + version: '256.9' + build: hd54d049_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsystemd0-256.7-hd54d049_1.conda - sha256: 6deceabf4a4109293aacba77a61a83d5bdef028b879b29d3b819937c80de8909 - md5: c44e82f6be3d65cf0589f1182e162ce8 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsystemd0-256.9-hd54d049_0.conda + sha256: d04ea4fa1b3282029039ec28054f53b0c5b3ef044303450e5684e2a690e7aa52 + md5: 9ee06ecb3e342bf03e163af5080acd9f depends: - - libcap >=2.69,<2.70.0a0 + - libcap >=2.71,<2.72.0a0 - libgcc >=13 - - libgcrypt >=1.11.0,<2.0a0 + - libgcrypt-lib >=1.11.0,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: LGPL-2.1-or-later - size: 430774 - timestamp: 1729786916983 + size: 430930 + timestamp: 1733311785480 - kind: conda name: libthrift version: 0.21.0 @@ -7148,86 +7108,70 @@ packages: - kind: conda name: libtiff version: 4.7.0 - build: he137b08_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 - md5: 63872517c98aa305da58a757c443698e + build: ha962b0a_2 + build_number: 2 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda + sha256: d9e6835fd189b85eb90dbfdcc51f5375decbf5bb53130042f49bbd6bfb0b24be + md5: 8e14b5225c593f099a21971568e6d7b4 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - lerc >=4.0.0,<5.0a0 + - libcxx >=18 - libdeflate >=1.22,<1.23.0a0 - - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 - - libstdcxx >=13 + - liblzma >=5.6.3,<6.0a0 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 428156 - timestamp: 1728232228989 + size: 370387 + timestamp: 1733443310502 - kind: conda name: libtiff version: 4.7.0 - build: hec21d91_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda - sha256: 14ecb9e129b1b5ffd6d4bee48de95cd2cd0973c712e1b965d3ef977cca23936d - md5: 1f80061f5ba6956fcdc381f34618cd8d + build: hc4654cb_2 + build_number: 2 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + sha256: 18653b4a5c73e19c5e86ff72dab9bf59f5cc43d7f404a6be705d152dfd5e0660 + md5: be54fb40ea32e8fe9dbaa94d4528b57e depends: + - __glibc >=2.17,<3.0.a0 - lerc >=4.0.0,<5.0a0 - libdeflate >=1.22,<1.23.0a0 - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 464938 - timestamp: 1728232266969 + size: 429018 + timestamp: 1733443013288 - kind: conda name: libtiff version: 4.7.0 - build: hfce79cd_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda - sha256: 97ba24c74750b6e731b3fe0d2a751cda6148b4937d2cc3f72d43bf7b3885c39d - md5: b9abf45f7c64caf3303725f1aa0e9a4d + build: hca96517_2 + build_number: 2 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda + sha256: d736d840d1f2446234195adfcb51b132c85797730b6f42ebf058d350fa9d20e8 + md5: 278dcef6d1ea28c04109c3f5dea126cb depends: - - __osx >=11.0 - lerc >=4.0.0,<5.0a0 - - libcxx >=17 - libdeflate >=1.22,<1.23.0a0 + - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 + - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 366323 - timestamp: 1728232400072 -- kind: conda - name: libutf8proc - version: 2.8.0 - build: hf23e847_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda - sha256: 104cf5b427fc914fec63e55f685a39480abeb4beb34bdbc77dea084c8f5a55cb - md5: b1aa0faa95017bca11369bd080487ec4 - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - license: MIT - license_family: MIT - size: 80852 - timestamp: 1732829699583 + size: 464857 + timestamp: 1733443105529 - kind: conda name: libutf8proc version: 2.9.0 @@ -7258,6 +7202,22 @@ packages: license_family: MIT size: 81526 timestamp: 1732868466862 +- kind: conda + name: libutf8proc + version: 2.9.0 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda + sha256: 9794e6388e780c3310d46f773bbc924d4053375c3fcdb07a704b57f4616db928 + md5: 1e936bd23d737aac62a18e9a1e7f8b18 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + size: 81500 + timestamp: 1732868419835 - kind: conda name: libuuid version: 2.38.1 @@ -7505,58 +7465,61 @@ packages: - kind: conda name: libxml2 version: 2.13.5 - build: hb346dea_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-hb346dea_0.conda - sha256: 8c9d6a3a421ac5bf965af495d1b0a08c6fb2245ba156550bc064a7b4f8fc7bd8 - md5: c81a9f1118541aaa418ccb22190c817e + build: h178c5d8_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda + sha256: d7af3f25a4cece170502acd38f2dafbea4521f373f46dcb28a37fbe6ac2da544 + md5: 3dc3cff0eca1640a6acbbfab2f78139e depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - icu >=75.1,<76.0a0 - - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 689626 - timestamp: 1731489608971 + size: 582898 + timestamp: 1733443841584 - kind: conda name: libxml2 version: 2.13.5 - build: hbbdcc80_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-hbbdcc80_0.conda - sha256: 936de9c0e91cb6f178c48ea14313cf6c79bdb1f474c785c117c41492b0407a98 - md5: 967d4a9dadd710415ee008d862a07c99 + build: h2e0c361_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda + sha256: dc0e86d35a836af6e99d18f50c6551fc64c53ed3a3da5a9fea90e78763cf14b4 + md5: 63410f85031930cde371dfe0ee89109a depends: - - __osx >=11.0 - icu >=75.1,<76.0a0 + - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 583082 - timestamp: 1731489765442 + size: 732155 + timestamp: 1733443825814 - kind: conda name: libxml2 version: 2.13.5 - build: hf4efe5d_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda - sha256: bb5033bd79371e82886f9e83ef86babae8e0f50b77d7f9302210345b9205d939 - md5: 5650ac8a6ed680c032bdabe40ad19ee0 + build: h8d12d68_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h8d12d68_1.conda + sha256: c3b05bdc40d27a9249f0bb60f3f71718f94104b8bcd200163a6c9d4ade7aa052 + md5: 1a21e49e190d1ffe58531a81b6e400e1 depends: + - __glibc >=2.17,<3.0.a0 - icu >=75.1,<76.0a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 734453 - timestamp: 1731489860751 + size: 690589 + timestamp: 1733443667823 - kind: conda name: libzlib version: 1.3.1 @@ -7611,20 +7574,20 @@ packages: timestamp: 1727963148474 - kind: conda name: llvm-openmp - version: 19.1.4 + version: 19.1.5 build: hdb05f8b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda - sha256: dfdcd8de37899d984326f9734b28f46f80b88c068e44c562933a8b3117f2401a - md5: 76ca179ec970bea6e275e2fa477c2d3c + url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda + sha256: e7ba0d8b718925efdcf1309f5e776e3264cc172d3af8d4048b39627c50a1abc0 + md5: f2c2e187a1d2637d282e34dc92021a70 depends: - __osx >=11.0 constrains: - - openmp 19.1.4|19.1.4.* + - openmp 19.1.5|19.1.5.* license: Apache-2.0 WITH LLVM-exception license_family: APACHE - size: 281554 - timestamp: 1732102484807 + size: 281120 + timestamp: 1733376089600 - kind: conda name: lz4-c version: 1.9.4 @@ -7672,27 +7635,29 @@ packages: - kind: conda name: markdown-it-py version: 3.0.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - sha256: c041b0eaf7a6af3344d5dd452815cdc148d6284fec25a4fa3f4263b3a021e962 - md5: 93a8e71256479c62074356ef6ebf501b + url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + sha256: 0fbacdfb31e55964152b24d5567e9a9996e1e7902fb08eb7d91b5fd6ce60803a + md5: fee3164ac23dfca50cfcc8b85ddefb81 depends: - mdurl >=0.1,<1 - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 64356 - timestamp: 1686175179621 + size: 64430 + timestamp: 1733250550053 - kind: conda name: markupsafe version: 3.0.2 - build: py312h178313f_0 + build: py312h178313f_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda - sha256: 15f14ab429c846aacd47fada0dc4f341d64491e097782830f0906d00cb7b48b6 - md5: a755704ea0e2503f8c227d84829a8e81 + url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda + sha256: 4a6bf68d2a2b669fecc9a4a009abd1cf8e72c2289522ff00d81b5a6e51ae78f5 + md5: eb227c3e0bf58f5bd69c0532b157975b depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 @@ -7702,16 +7667,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 24878 - timestamp: 1729351558563 + size: 24604 + timestamp: 1733219911494 - kind: conda name: markupsafe version: 3.0.2 - build: py312h74ce7d3_0 + build: py312h74ce7d3_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_0.conda - sha256: 997baf7f46bce112f6e0390efaa7fbb892b8f31567d3c554f08ac636774d74f7 - md5: 8992b90e8374193d53118f7651db0b73 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda + sha256: 1d500158262f30b9c23e37d1c861fe76e127a3926d69b3b38c25d20d3faa6f9f + md5: bc8607ab678073a0441808a31465f4fb depends: - libgcc >=13 - python >=3.12,<3.13.0a0 @@ -7720,16 +7686,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 25013 - timestamp: 1729352489213 + size: 25079 + timestamp: 1733220639175 - kind: conda name: markupsafe version: 3.0.2 - build: py312ha0ccf2a_0 + build: py312h998013c_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312ha0ccf2a_0.conda - sha256: 360e958055f35e5087942b9c499eaafae984a951b84cf354ef7481a2806f340d - md5: c6ff9f291d011c9d4f0b840f49435c64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda + sha256: 4aa997b244014d3707eeef54ab0ee497d12c0d0d184018960cce096169758283 + md5: 46e547061080fddf9cf95a0327e8aba6 depends: - __osx >=11.0 - python >=3.12,<3.13.0a0 @@ -7739,80 +7706,80 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 24495 - timestamp: 1729351534830 + size: 24048 + timestamp: 1733219945697 - kind: conda name: max - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - sha256: 2aae2a8286dca29453e8cc8cfe13511aa016a521ac0c9201ceb24d1ba6c4138e - md5: 9c25081ace6ad2c13675cf0123109cb9 - depends: - - max-core ==24.6.0.dev2024120306 release - - max-python >=24.6.0.dev2024120306,<25.0a0 - - mojo-jupyter ==24.6.0.dev2024120306 release - - mblack ==24.6.0.dev2024120306 release + url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + sha256: 37a6103a6b2c7886ed5837d41a819f1a127eef7e810b2b5ecfb03f7caf263514 + md5: b13d61319f43570ce681408a1b27d9d5 + depends: + - max-core ==24.6.0.dev2024120905 release + - max-python >=24.6.0.dev2024120905,<25.0a0 + - mojo-jupyter ==24.6.0.dev2024120905 release + - mblack ==24.6.0.dev2024120905 release license: LicenseRef-Modular-Proprietary - size: 9929 - timestamp: 1733209293577 + size: 9911 + timestamp: 1733721408716 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - sha256: a82534696c6e078fb4e14b4b0f058336ffd0a647f7404e85aaee18eec25be067 - md5: c249d77d8e5885dd0eacd9028131413f + url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + sha256: 0f94138601ceab2c8b277c7d175d762840072cfdfd0ead7264fbd1ff9f70442d + md5: 00617be1a2fef13b5630d9cbe92f9d3c depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 254711372 - timestamp: 1733209193854 + size: 247639885 + timestamp: 1733721408714 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - sha256: bd0858a3e2069a86cd71370322e7ac26ad3948225e4f0811e4fbf8771d44d0ea - md5: e5b6ae7316dc2b08a52cee8f27b4f484 + url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + sha256: 1aaf2ffb09d6a2aa6b65d76c381476eb88947470580a0d56909bfd578d5eb385 + md5: c7ff53814f0c254c75dc7ab8f0c66b38 depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 258488596 - timestamp: 1733209293575 + size: 251498878 + timestamp: 1733721396377 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - sha256: 88b5f2cbb2724067d33b10515613ec845f134c3758fd063852ac191a276d7812 - md5: 05acbd2d9cf25aa913a979aa9802c194 + url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + sha256: 00cc8ce6adc131b858df51423201b8f028aa944ac09e56c563a1108c22eaccd2 + md5: 71554a4c0e81a1034908bc1cb716b30b depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 220248523 - timestamp: 1733209020078 + size: 212030191 + timestamp: 1733721567995 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 78dc00af885799e8c1f92185a505aee022f2ffd7191d24fa94ef428457f53e15 - md5: 4bdce0c1dd562e22566551d578103d2f + url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 43245b47050208329e85a69f2af24d42c622e92e1542334a6106eaadb6cbf0ff + md5: 9a6037de6672120d1d6d53673b699d5b depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -7822,7 +7789,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -7835,18 +7801,18 @@ packages: arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 128537272 - timestamp: 1733209193862 + size: 123751303 + timestamp: 1733721408724 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 3910ceb9135f2258df30dd7a5d87b8f80a284645d6da48daa0e9bb145a49744e - md5: e7d3ebeaaeb2bd99167fda861a7e7aba + url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: fdedbc8a2ca34d0593e8b2175ca07c07d6d0564f138f535ebff02975ef463f55 + md5: bc9f6ce493d2beb1089e1e409bb373ba depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -7856,7 +7822,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -7869,18 +7834,18 @@ packages: arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 132223349 - timestamp: 1733209293584 + size: 127400047 + timestamp: 1733721396388 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: ddafa4f7201fca06f38e8a0232cdbbb918d6a24c03cb25a0137d4fcc0ca9f354 - md5: 9859f8c88c81c18baaddd15be03d259c + url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 0cd6b2e3bdc78483665045e91b8db7a8a3d6c85fbf4b8a44d6eb742a46361af1 + md5: c1b7eb7d1a43e28224bf41220ece9b58 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -7890,7 +7855,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -7903,17 +7867,17 @@ packages: arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 119113363 - timestamp: 1733209020082 + size: 112450493 + timestamp: 1733721567998 - kind: conda name: mblack - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - sha256: 35b22caab89b65a52b9e7877762a58bba8cd21137ac1383e268b8a2ae45173ac - md5: f77eafd932de3ae309643ea716ba3c3a + url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + sha256: e302e262a58592b5b8614829237760967d685cb20a44e54981916eb6c2b6b7a2 + md5: b34a59910660011ad1f42bfc1ae4ae54 depends: - python >=3.9,<3.13 - click >=8.0.0 @@ -7923,40 +7887,41 @@ packages: - platformdirs >=2 - python license: MIT - size: 130649 - timestamp: 1733209293580 + size: 130740 + timestamp: 1733721408720 - kind: conda name: mdurl version: 0.1.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - sha256: 64073dfb6bb429d52fff30891877b48c7ec0f89625b1bf844905b66a81cce6e1 - md5: 776a8dd9e824f77abac30e6ef43a8f7a + url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + sha256: 78c1bbe1723449c52b7a9df1af2ee5f005209f67e40b6e1d3c7619127c43b1c7 + md5: 592132998493b3ff25fd7479396e8351 depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14680 - timestamp: 1704317789138 + size: 14465 + timestamp: 1733255681319 - kind: conda name: mojo-jupyter - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda - sha256: dd1fcd4298ef08be4507931babe70d6b335dc28d5ead602460747edc4f10c2dc - md5: 8bb40dfabe84757d93d3053fdf4b0a58 + url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda + sha256: bb71277508a55875b6011651bc825599e26a47145ab1e9c4e7c2abd853200a00 + md5: 4fc85c9cb1efe841b69d339d4da5b3a1 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python >=3.9,<3.13 - jupyter_client >=8.6.2,<8.7 - python license: LicenseRef-Modular-Proprietary - size: 22940 - timestamp: 1733209293581 + size: 11366 + timestamp: 1733721408720 - kind: conda name: mpg123 version: 1.32.9 @@ -8115,18 +8080,19 @@ packages: - kind: conda name: mypy_extensions version: 1.0.0 - build: pyha770c72_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda - sha256: f240217476e148e825420c6bc3a0c0efb08c0718b7042fae960400c02af858a3 - md5: 4eccaeba205f0aed9ac3a9ea58568ca3 + url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda + sha256: 1895f47b7d68581a6facde5cb13ab8c2764c2e53a76bd746f8f98910dc4e08fe + md5: 29097e7ea634a45cc5386b95cac6568f depends: - - python >=3.5 + - python >=3.9 license: MIT license_family: MIT - size: 10492 - timestamp: 1675543414256 + size: 10854 + timestamp: 1733230986902 - kind: conda name: ncurses version: '6.5' @@ -8339,21 +8305,21 @@ packages: - kind: conda name: opentelemetry-api version: 1.28.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda - sha256: e267ed59ea8f357c3471defef796ce4f4555eacd9ee0ed2d47d3dd539ee7ee2f - md5: f1307fb38a8fd2220def45ec1691a21c + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda + sha256: 780dbc942a6075db7bdbaf556023be50c34a6111a99e465878d7bab0e5e0d7f4 + md5: a06f1e9d97c98d26f06675236c9ea554 depends: - deprecated >=1.2.6 - importlib-metadata >=6.0.0,<7.1.0 - - python >=3.8 + - python >=3.9 - setuptools >=16.0 license: Apache-2.0 - license_family: APACHE - size: 44014 - timestamp: 1731985724169 + size: 44242 + timestamp: 1733734361129 - kind: conda name: opentelemetry-exporter-otlp-proto-common version: 1.28.2 @@ -8412,68 +8378,8 @@ packages: size: 14721 timestamp: 1695214221489 - kind: conda - name: opentelemetry-instrumentation - version: 0.49b2 - build: pyhff2d567_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - sha256: ee20ad159bc040642fcbce1b25f8a9fc1d788b53c6bf593a0891bf7887ec7c5f - md5: 13d714acd504cd0141688c908521c0b9 - depends: - - opentelemetry-api ~=1.4 - - opentelemetry-semantic-conventions 0.49b2 - - packaging >=18.0 - - python >=3.9 - - setuptools >=16.0 - - wrapt <2.0.0,>=1.0.0 - license: Apache-2.0 - license_family: APACHE - size: 31616 - timestamp: 1732070359772 -- kind: conda - name: opentelemetry-instrumentation-asgi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - sha256: 7b2b4da037baa506a82c5e3e711905f34448441e069a6e3affb0e4917b3ee5e0 - md5: 482ad6cdc507689d5c33eb22aa16d83e - depends: - - asgiref ~=3.0 - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 23749 - timestamp: 1732086813641 -- kind: conda - name: opentelemetry-instrumentation-fastapi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - sha256: e853f62b4c56e308f349a3f360cf4d6aa814a9dc926e727c25effcf4121af68c - md5: 59c01fcead989ba58c5dc79e3ac3aab3 - depends: - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-instrumentation-asgi 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 20288 - timestamp: 1732093785486 -- kind: conda - name: opentelemetry-proto - version: 1.28.2 + name: opentelemetry-proto + version: 1.28.2 build: pyhff2d567_0 subdir: noarch noarch: python @@ -8509,35 +8415,20 @@ packages: - kind: conda name: opentelemetry-semantic-conventions version: 0.49b2 - build: pyh10f6f8f_0 + build: pyh3cfb1c2_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - sha256: 5e3869ad66082b16d56bab8219fad0c8c09090ec93eb866327eed788fe5c9340 - md5: d95dd6e8a70417e394bb16dad5cff408 + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda + sha256: 28180ffa6611f117c782c7d72066b50332c1df0bdcfed0dea4e446a20c4b7d10 + md5: e0ada55d18e6bd5a8e61943b4b5d3a8f depends: - deprecated >=1.2.6 - opentelemetry-api 1.28.2 - python >=3.9 license: Apache-2.0 - license_family: APACHE - size: 81534 - timestamp: 1732067304518 -- kind: conda - name: opentelemetry-util-http - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda - sha256: 73bb1cbb640b0732c1a04764a9704bb048ab77d6cb9c6439eb50ec0ecf926ede - md5: f267c60fc629a9bd1aa388f6ed8ea0ab - depends: - - python >=3.8 - license: Apache-2.0 - license_family: APACHE - size: 19241 - timestamp: 1732081026829 + size: 81099 + timestamp: 1733749104727 - kind: conda name: opusfile version: '0.12' @@ -8746,18 +8637,19 @@ packages: - kind: conda name: pathspec version: 0.12.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - sha256: 4e534e66bfe8b1e035d2169d0e5b185450546b17e36764272863e22e0370be4d - md5: 17064acba08d3686f1135b5ec1b32b12 + url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + sha256: 9f64009cdf5b8e529995f18e03665b03f5d07c0b17445b8badef45bde76249ee + md5: 617f15191456cc6a13db418a275435e5 depends: - - python >=3.7 + - python >=3.9 license: MPL-2.0 license_family: MOZILLA - size: 41173 - timestamp: 1702250135032 + size: 41075 + timestamp: 1733233471940 - kind: conda name: pcre2 version: '10.44' @@ -8886,63 +8778,63 @@ packages: timestamp: 1729065920347 - kind: conda name: pixman - version: 0.43.2 - build: h59595ed_0 + version: 0.44.2 + build: h29eaf8c_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.43.2-h59595ed_0.conda - sha256: 366d28e2a0a191d6c535e234741e0cd1d94d713f76073d8af4a5ccb2a266121e - md5: 71004cbf7924e19c02746ccde9fd7123 + url: https://conda.anaconda.org/conda-forge/linux-64/pixman-0.44.2-h29eaf8c_0.conda + sha256: 747c58db800d5583fee78e76240bf89cbaeedf7ab1ef339c2990602332b9c4be + md5: 5e2a7acfa2c24188af39e7944e1b3604 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 license: MIT - license_family: MIT - size: 386826 - timestamp: 1706549500138 + size: 381072 + timestamp: 1733698987122 - kind: conda name: pixman - version: 0.43.4 - build: h2f0025b_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.43.4-h2f0025b_0.conda - sha256: e145b0d89c800326a20d1afd86c74f9422b81549b17fe53add46c2fa43a4c93e - md5: 81b2ddea4b0eca188da9c5a7aa4b0cff + version: 0.44.2 + build: h2f9eb0b_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/pixman-0.44.2-h2f9eb0b_0.conda + sha256: 28855d4cb2d9fc9a6bd9196dadbaecd6868ec706394cec2f88824a61ba4b1bc0 + md5: fa8e429fdb9e5b757281f69b8cc4330b depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __osx >=11.0 + - libcxx >=18 license: MIT - license_family: MIT - size: 295064 - timestamp: 1709240909660 + size: 201076 + timestamp: 1733699127167 - kind: conda name: pixman - version: 0.43.4 - build: hebf3989_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/pixman-0.43.4-hebf3989_0.conda - sha256: df0ba2710ccdea5c909b63635529797f6eb3635b6fb77ae9cb2f183d08818409 - md5: 0308c68e711cd295aaa026a4f8c4b1e5 + version: 0.44.2 + build: h86a87f0_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/pixman-0.44.2-h86a87f0_0.conda + sha256: 289c88d26530e427234adf7a8eb11e762d2beaf3c0a337c1c9887f60480e33e1 + md5: 95689fc369832398e82d17c56ff5df8a depends: - - libcxx >=16 + - libgcc >=13 + - libstdcxx >=13 license: MIT - license_family: MIT - size: 198755 - timestamp: 1709239846651 + size: 288697 + timestamp: 1733700860569 - kind: conda name: platformdirs version: 4.3.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - md5: fd8f2b18b65bbf62e8f653100690c8d2 + url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + sha256: bb50f6499e8bc1d1a26f17716c97984671121608dc0c3ecd34858112bce59a27 + md5: 577852c7e53901ddccc7e6a9959ddebe depends: - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 20625 - timestamp: 1726613611845 + size: 20448 + timestamp: 1733232756001 - kind: conda name: portaudio version: 19.6.0 @@ -9043,73 +8935,70 @@ packages: timestamp: 1693881734349 - kind: conda name: prometheus_client - version: 0.21.0 + version: 0.21.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - sha256: 01f0c3dd00081637ed920a922b17bcc8ed49608404ee466ced806856e671f6b9 - md5: 07e9550ddff45150bfc7da146268e165 + url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + sha256: bc8f00d5155deb7b47702cb8370f233935704100dbc23e30747c161d1b6cf3ab + md5: 3e01e386307acc60b2f89af0b2e161aa depends: - - python >=3.8 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 49024 - timestamp: 1726902073034 + size: 49002 + timestamp: 1733327434163 - kind: conda name: propcache - version: 0.2.0 - build: py312h024a12e_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda - sha256: 0f3a04675c6c473398f0aaa95c259e0a085d5ec106b4fa89a7efeb7cc73d5dd2 - md5: 6693e523bc43c38508efe14ab3374f0c + version: 0.2.1 + build: py312h66e93f0_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda + sha256: 5771311fb5ded614ca349c92579a0b752af55a310f40b71fc533e20625965391 + md5: 55d5742a696d7da1c1262e99b6217ceb depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 - python >=3.12,<3.13.0a0 - - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 47796 - timestamp: 1728545963127 + size: 52747 + timestamp: 1733391916349 - kind: conda name: propcache - version: 0.2.0 - build: py312h66e93f0_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda - sha256: be7aa0056680dd6e528b7992169a20dd525b94f62d37c8ba0fbf69bd4e8df57d - md5: 2c6c0c68f310bc33972e7c83264d7786 + version: 0.2.1 + build: py312hb2c0f52_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda + sha256: c7f62c11ed929ccf1f3d4a1e200e28be01e8d0e0786bf8f76c5893f2ea681e1b + md5: 50ab8953e7ff1333a4a47cda32e68123 depends: - - __glibc >=2.17,<3.0.a0 - libgcc >=13 - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53498 - timestamp: 1728545927816 + size: 52484 + timestamp: 1733391993461 - kind: conda name: propcache - version: 0.2.0 - build: py312hb2c0f52_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda - sha256: 50dad7604b6c20440baf081700b5d6829097121e65f34fd1a15508b20fbecc07 - md5: 8a258196d6f79ad32d3ea4dd4572f721 + version: 0.2.1 + build: py312hea69d52_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda + sha256: f8c266c494aa1e4cfb8bf0b6fca060044b2f3d65afe4c5062ebeea382e77aa6d + md5: c84e3dd97fe25a17322c4a0f670c6750 depends: - - libgcc >=13 + - __osx >=11.0 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53507 - timestamp: 1728546155066 + size: 48225 + timestamp: 1733392308901 - kind: conda name: protobuf version: 5.28.2 @@ -9404,13 +9293,13 @@ packages: timestamp: 1733195786147 - kind: conda name: pydantic - version: 2.10.2 + version: 2.10.3 build: pyh3cfb1c2_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda - sha256: 47368f0eeb63b2dd4c9c54ff35b216d01ae1c27b90d3c7a2066ef8e005f32103 - md5: e661b732b4d7514ace55a01873f03201 + url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda + sha256: cac9eebd3d5f8d8a497a9025d756257ddc75b8b3393e6737cb45077bd744d4f8 + md5: 194ef7f91286978521350f171b117f01 depends: - annotated-types >=0.6.0 - pydantic-core 2.27.1 @@ -9419,8 +9308,8 @@ packages: - typing_extensions >=4.12.2 license: MIT license_family: MIT - size: 316818 - timestamp: 1732689481710 + size: 317037 + timestamp: 1733316963547 - kind: conda name: pydantic-core version: 2.27.1 @@ -9585,18 +9474,19 @@ packages: - kind: conda name: pygments version: 2.18.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - md5: b7f5c092b8f9800150d998a71b76d5a1 + url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda + sha256: 0d6133545f268b2b89c2617c196fc791f365b538d4057ecd636d658c3b1e885d + md5: b38dc0206e2a530e5c2cf11dc086b31a depends: - - python >=3.8 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 879295 - timestamp: 1714846885370 + size: 876700 + timestamp: 1733221731178 - kind: conda name: pyinstrument version: 5.0.0 @@ -9651,107 +9541,110 @@ packages: - kind: conda name: pysocks version: 1.7.1 - build: pyha2e5f31_6 - build_number: 6 + build: pyha55dd90_7 + build_number: 7 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - md5: 2a7de29fb590ca14b5243c4c812c8025 + url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + sha256: ba3b032fa52709ce0d9fd388f63d330a026754587a2f461117cac9ab73d8d0d8 + md5: 461219d1a5bd61342293efa2c0c90eac depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 18981 - timestamp: 1661604969727 + size: 21085 + timestamp: 1733217331982 - kind: conda name: python - version: 3.12.7 - build: h5d932e8_0_cpython + version: 3.12.8 + build: h1683364_1_cpython + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda - sha256: 25570873d92d4d9490c6db780cc85e6c28bd3ff61dc1ece79f602cf82bc73bc1 - md5: e6cab21bb5787270388939cf41cc5f43 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda + sha256: 85573582d5b0f79923fed0a8365d3d74d21eee9f0a5fa1b9345f191e006363ab + md5: 09ec612ea05370989eaa3d81abf0f369 depends: - bzip2 >=1.0.8,<2.0a0 - ld_impl_linux-aarch64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libsqlite >=3.47.0,<4.0a0 - libuuid >=2.38.1,<3.0a0 - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 13762126 - timestamp: 1728057461028 + size: 13760816 + timestamp: 1733407890896 - kind: conda name: python - version: 3.12.7 - build: h739c21a_0_cpython - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda - sha256: 45d7ca2074aa92594bd2f91a9003b338cc1df8a46b9492b7fc8167110783c3ef - md5: e0d82e57ebb456077565e6d82cd4a323 + version: 3.12.8 + build: h9e4cc4f_1_cpython + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda + sha256: 3f0e0518c992d8ccfe62b189125721309836fe48a010dc424240583e157f9ff0 + md5: 7fd2fd79436d9b473812f14e86746844 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.6.3,<3.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.47.0,<4.0a0 + - libuuid >=2.38.1,<3.0a0 + - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 12975439 - timestamp: 1728057819519 + size: 31565686 + timestamp: 1733410597922 - kind: conda name: python - version: 3.12.7 - build: hc5c86c4_0_cpython - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda - sha256: 674be31ff152d9f0e0fe16959a45e3803a730fc4f54d87df6a9ac4e6a698c41d - md5: 0515111a9cdf69f83278f7c197db9807 + version: 3.12.8 + build: hc22306f_1_cpython + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda + sha256: 7586a711b1b08a9df8864e26efdc06980bdfb0e18d5ac4651d0fee30a8d3e3a0 + md5: 54ca5b5d92ef3a3ba61e195ee882a518 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - bzip2 >=1.0.8,<2.0a0 - - ld_impl_linux-64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libgcc >=13 - - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 - - libuuid >=2.38.1,<3.0a0 - - libxcrypt >=4.4.36 + - liblzma >=5.6.3,<6.0a0 + - libsqlite >=3.47.0,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 31574780 - timestamp: 1728059777603 + size: 12998673 + timestamp: 1733408900971 - kind: conda name: python-dateutil version: 2.9.0.post0 @@ -9766,23 +9659,25 @@ packages: - python >=3.9 - six >=1.5 license: Apache-2.0 + license_family: APACHE size: 222505 timestamp: 1733215763718 - kind: conda name: python-dotenv version: 1.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - sha256: 2d4c80364f03315d606a50eddd493dbacc078e21412c2462c0f781eec49b572c - md5: c2997ea9360ac4e015658804a7a84f94 + url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + sha256: 99713f6b534fef94995c6c16fd21d59f3548784e9111775d692bdc7c44678f02 + md5: e5c6ed218664802d305e79cc2d4491de depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 24278 - timestamp: 1706018281544 + size: 24215 + timestamp: 1733243277223 - kind: conda name: python-json-logger version: 2.0.7 @@ -9801,33 +9696,35 @@ packages: - kind: conda name: python-multipart version: 0.0.19 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - sha256: ff5964cd5eafc118f9d9a15fd31cd88a7ecc756ef83b6095c69b1891a53e2177 - md5: fe524346d3a9aa0aaf353dc39f7d1715 + url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + sha256: e6f6bc3d2a51f45ca26d556c5a416efdacf49a918fefcd0b7c340121e608aa5f + md5: c74333aa447ed2b94d49e5db23da5de6 depends: - python >=3.9 license: Apache-2.0 license_family: Apache - size: 27780 - timestamp: 1733062326577 + size: 27768 + timestamp: 1733323160772 - kind: conda name: python-tzdata version: '2024.2' - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda - sha256: fe3f62ce2bc714bdaa222ab3f0344a2815ad9e853c6df38d15c9f25de8a3a6d4 - md5: 986287f89929b2d629bd6ef6497dc307 + url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda + sha256: 57c9a02ec25926fb48edca59b9ede107823e5d5c473b94a0e05cc0b9a193a642 + md5: c0def296b2f6d2dd7b030c2a7f66bb1f depends: - - python >=3.6 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 142527 - timestamp: 1727140688093 + size: 142235 + timestamp: 1733235414217 - kind: conda name: python-xxhash version: 3.5.0 @@ -10268,26 +10165,28 @@ packages: constrains: - chardet >=3.0.2,<6 license: Apache-2.0 + license_family: APACHE size: 58723 timestamp: 1733217126197 - kind: conda name: rich version: 13.9.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - sha256: c009488fc07fd5557434c9c1ad32ab1dd50241d6a766e4b2b4125cd6498585a8 - md5: bcf8cc8924b5d20ead3d122130b8320b + url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + sha256: 06a760c5ae572e72e865d5a87e9fe3cc171e1a9c996e63daf3db52ff1a0b4457 + md5: 7aed65d4ff222bfb7335997aa40b7da5 depends: - markdown-it-py >=2.2.0 - pygments >=2.13.0,<3.0.0 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0.0,<5.0.0 license: MIT license_family: MIT - size: 185481 - timestamp: 1730592349978 + size: 185646 + timestamp: 1733342347277 - kind: conda name: s2n version: 1.5.9 @@ -10378,53 +10277,55 @@ packages: timestamp: 1725632294079 - kind: conda name: sdl2 - version: 2.30.7 - build: h2a74887_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2-2.30.7-h2a74887_0.conda - sha256: 6c21954d98a915d7617c0944440167e5ac695117ca7410f37eea4af0a9f0821c - md5: 719245709dd47dbc3f93ce85fa544f43 + version: 2.30.10 + build: h63c27ac_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/sdl2-2.30.10-h63c27ac_0.conda + sha256: 639325326d51cd70f56a55ffd3c1fa778e61751f16d66d0baea155375f1a139c + md5: 5cecf6d327e4f8c5dfafc71b4a8556e7 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libstdcxx >=13 - pulseaudio-client >=17.0,<17.1.0a0 - - xorg-libx11 >=1.8.9,<2.0a0 - - xorg-libxext >=1.3.4,<2.0a0 + - xorg-libx11 >=1.8.10,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxfixes >=6.0.1,<7.0a0 license: Zlib - size: 1317383 - timestamp: 1725255076176 + size: 1352990 + timestamp: 1733624788165 - kind: conda name: sdl2 - version: 2.30.7 - build: h3ed165c_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/sdl2-2.30.7-h3ed165c_0.conda - sha256: 80691a3ce313f0f7908480c0af216520d655e9480e036feb489c2095ad37950a - md5: be75875082c99c7a9f9fe930a1bd2bb1 + version: 2.30.10 + build: h93e764a_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/sdl2-2.30.10-h93e764a_0.conda + sha256: 8f03f2abcb4227e95d19b28124e0a5428f634b084b92ab91f3af7c825b626403 + md5: bcbf24da778bbdd20b09cf6ed52cefc2 depends: - - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libstdcxx >=13 - pulseaudio-client >=17.0,<17.1.0a0 - - xorg-libx11 >=1.8.9,<2.0a0 - - xorg-libxext >=1.3.4,<2.0a0 + - xorg-libx11 >=1.8.10,<2.0a0 + - xorg-libxext >=1.3.6,<2.0a0 + - xorg-libxfixes >=6.0.1,<7.0a0 license: Zlib - size: 1391142 - timestamp: 1725255009793 + size: 1277076 + timestamp: 1733624829558 - kind: conda name: sdl2 - version: 2.30.7 - build: hf9b8971_0 + version: 2.30.10 + build: h994913f_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2-2.30.7-hf9b8971_0.conda - sha256: d86b4f39c09efb6febd5e2e5a2c0894c82f7ac4b8b4aebb24e4fbd9acf797d60 - md5: 33f5451441cbc0ce083b3d37c181519e + url: https://conda.anaconda.org/conda-forge/osx-arm64/sdl2-2.30.10-h994913f_0.conda + sha256: 7ff3167b6482c5fe7389c6c1836343c280a0eeb160524888e661f0f991708bd8 + md5: 4001ae6f1b1886583e82ab0dac5b575b depends: - __osx >=11.0 - - libcxx >=17 + - libcxx >=18 license: Zlib - size: 1256184 - timestamp: 1725254933792 + size: 1251116 + timestamp: 1733624861414 - kind: conda name: sdl2_image version: 2.8.2 @@ -10631,94 +10532,99 @@ packages: - kind: conda name: shellingham version: 1.5.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - sha256: 3c49a0a101c41b7cf6ac05a1872d7a1f91f1b6d02eecb4a36b605a19517862bb - md5: d08db09a552699ee9e7eec56b4eb3899 + url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + sha256: 0557c090913aa63cdbe821dbdfa038a321b488e22bc80196c4b3b1aace4914ef + md5: 7c3c2a0f3ebdea2bbc35538d162b43bf depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 14568 - timestamp: 1698144516278 + size: 14462 + timestamp: 1733301007770 - kind: conda name: six - version: 1.16.0 - build: pyhd8ed1ab_1 - build_number: 1 + version: 1.17.0 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - sha256: 761b96fe7bea080b9c35dd2f87f788eb94b61d462645bd16f361e80ae0ff017c - md5: a516da6cfe1ec0a55e49737f017b4965 + url: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + sha256: 41db0180680cc67c3fa76544ffd48d6a5679d96f4b71d7498a759e94edc9a2db + md5: a451d576819089b0d672f18768be0f65 depends: - python >=3.9 license: MIT license_family: MIT size: 16385 - timestamp: 1733216901349 + timestamp: 1733381032766 - kind: conda name: snappy version: 1.2.1 - build: h1088aeb_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - sha256: 79f5d0a9098acf2ed16e6ecc4c11472b50ccf59feea37a7d585fd43888d7e41f - md5: e4ed5b015f525b56f95c26d85a4ea208 + build: h8bd8927_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + sha256: ec91e86eeb2c6bbf09d51351b851e945185d70661d2ada67204c9a6419d282d3 + md5: 3b3e64af585eadfb52bb90b553db5edf depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 42888 - timestamp: 1720003817527 + size: 42739 + timestamp: 1733501881851 - kind: conda name: snappy version: 1.2.1 - build: ha2e4443_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - sha256: dc7c8e0e8c3e8702aae81c52d940bfaabe756953ee51b1f1757e891bab62cf7f - md5: 6b7dcc7349efd123d493d2dbe85a045f + build: h98b9ce2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + sha256: 4242f95b215127a006eb664fe26ed5a82df87e90cbdbc7ce7ff4971f0720997f + md5: ded86dee325290da2967a3fea3800eb5 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __osx >=11.0 + - libcxx >=18 license: BSD-3-Clause license_family: BSD - size: 42465 - timestamp: 1720003704360 + size: 35857 + timestamp: 1733502172664 - kind: conda name: snappy version: 1.2.1 - build: hd02b534_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - sha256: cb7a9440241c6092e0f1c795fdca149c4767023e783eaf9cfebc501f906b4897 - md5: 69d0f9694f3294418ee935da3d5f7272 + build: hd4fb6f5_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + sha256: c4a07ae5def8d55128f25a567a296ef9d7bf99a3bc79d46bd5160c076a5f50af + md5: 2fcc6cd1e5550deb509073fd2e6693e1 depends: - - __osx >=11.0 - - libcxx >=16 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 35708 - timestamp: 1720003794374 + size: 43032 + timestamp: 1733501964775 - kind: conda name: sniffio version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda - sha256: bc12100b2d8836b93c55068b463190505b8064d0fc7d025e89f20ebf22fe6c2b - md5: 490730480d76cf9c8f8f2849719c6e2b + url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda + sha256: c2248418c310bdd1719b186796ae50a8a77ce555228b6acd32768e2543a15012 + md5: bf7a226e58dfb8346c70df36065d86c9 depends: - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 15064 - timestamp: 1708953086199 + size: 15019 + timestamp: 1733244175724 - kind: conda name: sse-starlette version: 2.1.3 @@ -10740,20 +10646,21 @@ packages: - kind: conda name: starlette version: 0.41.3 - build: pyh7900ff3_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda - sha256: 33986032cb0515f7e9f6647d07006b7dc49b3f373b73d5a1826e6979c661b27a - md5: 0889c5a3e95d8c382cff7556757aedb0 + url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda + sha256: b74fc76107487eb26624c01fc55bfab7eed03ae82e003333c86d8a1eeac53672 + md5: 0207dac04ae2200701fab697f0aaaac4 depends: - anyio >=3.4.0,<5 - python >=3.9 - typing_extensions >=3.10.0 license: BSD-3-Clause license_family: BSD - size: 59069 - timestamp: 1732037161800 + size: 58838 + timestamp: 1733344472634 - kind: conda name: svt-av1 version: 2.3.0 @@ -10848,12 +10755,12 @@ packages: timestamp: 1699202167581 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312h8360d73_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda - sha256: 7b59759739b5426e17825b26d6ce9df487d1dc254d4e6a92b14a97107eb6daca - md5: 035c6de3c821559bf1af5ec072593bfd + url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda + sha256: 4f504a5e9d77c6d88a8f735c4319429d8bf40b742384f908a2efe0a09acc3cc5 + md5: f953aa733207f3d37acf4a3efbedba89 depends: - __glibc >=2.17,<3.0.a0 - huggingface_hub >=0.16.4,<1.0 @@ -10866,16 +10773,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2259332 - timestamp: 1732657962717 + size: 2258007 + timestamp: 1732734202127 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312ha0d6ea1_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda - sha256: 6dbb7e5f3f152210817e8658bc454056e464dee16fd9757508f2417edd44d8b8 - md5: b135e3d9178b255993ea4d72741192f8 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda + sha256: ef0f4d4e2c798b1821187ea0ba4c86484e48abaa0e9a19fe68030fa7ff5dde84 + md5: 077f48c9e0c08a30d842e15c51df4143 depends: - huggingface_hub >=0.16.4,<1.0 - libgcc >=13 @@ -10888,16 +10795,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2330899 - timestamp: 1732658129796 + size: 2331194 + timestamp: 1732734303196 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312hf3e4074_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda - sha256: fd86f8a5d41622e8f5092913dea48f41de86258583ee449045905a725672fdc2 - md5: 40e8bc575721b4da76712e90e4a9b7fa + url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda + sha256: 5d395333fcb22dc611140286c1f2ea8b3fa220a4931c583587cb612238091555 + md5: 4c732c74b485ef7ac8ec1c548dd45e8e depends: - __osx >=11.0 - huggingface_hub >=0.16.4,<1.0 @@ -10909,8 +10816,8 @@ packages: - __osx >=11.0 license: Apache-2.0 license_family: APACHE - size: 1933005 - timestamp: 1732658406859 + size: 1931389 + timestamp: 1732734727624 - kind: conda name: tornado version: 6.4.2 @@ -10979,27 +10886,28 @@ packages: - kind: conda name: traitlets version: 5.14.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - md5: 3df84416a021220d8b5700c613af2dc5 + url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + sha256: f39a5620c6e8e9e98357507262a7869de2ae8cc07da8b7f84e517c9fd6c2b959 + md5: 019a7385be9af33791c989871317e1ed depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 110187 - timestamp: 1713535244513 + size: 110051 + timestamp: 1733367480074 - kind: conda name: transformers - version: 4.46.3 + version: 4.47.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - sha256: 6ae73c0d1197812d8fd6a2c64309fe9abe822feb66b2d330cc61ce9fa60dee0c - md5: 457af723774f077a128515a6fdd536a2 + url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + sha256: b9cf6ae5fcd6c78dcaa24ebfd41580a4a10b0649ac726a44d3521f70fdece218 + md5: 495745078b8e18fe2dcc3267f4baae0d depends: - datasets !=2.5.0 - filelock @@ -11011,66 +10919,66 @@ packages: - regex !=2019.12.17 - requests - safetensors >=0.4.1 - - tokenizers >=0.20,<0.21 + - tokenizers >=0.21,<0.22 - tqdm >=4.27 license: Apache-2.0 license_family: APACHE - size: 3622494 - timestamp: 1731981383171 + size: 3721837 + timestamp: 1733708797762 - kind: conda name: typer - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - sha256: 4d7f1c77b928a66ae3b0089e288e7fdeb826bf0dabba9799488017e6a9b84f38 - md5: 9eb8a3f5d36ca3e7f686e7a5d85aff72 + url: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + sha256: ef695490e895c2ad552c77ec497b899b09fd4ad4ab07edcf5649f5994cf92a35 + md5: 170a0398946d8f5b454e592672b6fc20 depends: - python >=3.9 - - typer-slim-standard 0.14.0 hd8ed1ab_0 + - typer-slim-standard 0.15.1 hd8ed1ab_0 license: MIT license_family: MIT - size: 54637 - timestamp: 1732848384457 + size: 56175 + timestamp: 1733408582623 - kind: conda name: typer-slim - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - sha256: 883969c10b9837bb18a340ffb01a984ef6b4655fc72ff05aeb7bc659c9a1229d - md5: 3674a4cd7fd8e8a7277af2b30965925d + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + sha256: d4965516f35e0805199de6596c4ac76c4ad3d6b012be35e532102f9e53ecb860 + md5: 0218b16f5a1dd569e575a7a6415489db depends: - click >=8.0.0 - python >=3.9 - typing_extensions >=3.7.4.3 constrains: - - shellingham >=1.3.0 - rich >=10.11.0 - - typer >=0.14.0,<0.14.1.0a0 + - typer >=0.15.1,<0.15.2.0a0 + - shellingham >=1.3.0 license: MIT license_family: MIT - size: 43504 - timestamp: 1732848371202 + size: 43592 + timestamp: 1733408569554 - kind: conda name: typer-slim-standard - version: 0.14.0 + version: 0.15.1 build: hd8ed1ab_0 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - sha256: 0e09e393e75028a0e827c7177e0fb1a070c87756e47b5ae6418423e22b10dfac - md5: 9e1e1f9c84add9637ca715f8fb71a83f + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + sha256: f31c56fe98315da8b9ce848256c17e0b9f87896b41a6ccf0c9cc74644dcef20f + md5: 4e603c43bfdfc7b533be087c3e070cc9 depends: - rich - shellingham - - typer-slim 0.14.0 pyhd8ed1ab_0 + - typer-slim 0.15.1 pyhd8ed1ab_0 license: MIT license_family: MIT - size: 49180 - timestamp: 1732848371718 + size: 49531 + timestamp: 1733408570063 - kind: conda name: typing-extensions version: 4.12.2 @@ -11138,44 +11046,46 @@ packages: - kind: conda name: uvicorn version: 0.32.1 - build: pyh31011fe_0 + build: pyh31011fe_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - sha256: a310c494c817a9f6c985fc6d2772acb953a20170d03b0eabfae0e9d8c76c97ee - md5: fa77fc8110207b3bfc5ccc9d316744f4 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + sha256: ad1d8470c629679ea3db52351a522ae44eee0111d8d8b254e8c863c4a292e5c4 + md5: 7832640e5e302059e844d56f410487a6 depends: - __unix - click >=7.0 - h11 >=0.8 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0 license: BSD-3-Clause license_family: BSD - size: 49393 - timestamp: 1732185242260 + size: 49340 + timestamp: 1733332048141 - kind: conda name: uvicorn-standard version: 0.32.1 - build: h31011fe_0 + build: h31011fe_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda - sha256: 52545f7c88a7c779376900de5f9d81ce36738cd8770b543e89592ad7d1003c40 - md5: 49c2820e0f39cb710becd856ff14d683 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda + sha256: 378903c51b2b1136fa48b01c0a2a8dd4634136d038a4a56561c0856fdcbfcabe + md5: 0c233d5c71d398cf01d0281e72194005 depends: - __unix - httptools >=0.5.0 - python-dotenv >=0.13 - pyyaml >=5.1 - - uvicorn 0.32.1 pyh31011fe_0 + - uvicorn 0.32.1 pyh31011fe_1 - uvloop >=0.14.0,!=0.15.0,!=0.15.1 - watchfiles >=0.13 - websockets >=10.4 license: BSD-3-Clause license_family: BSD - size: 7136 - timestamp: 1732185243035 + size: 7094 + timestamp: 1733332049165 - kind: conda name: uvloop version: 0.21.0 @@ -11460,38 +11370,37 @@ packages: timestamp: 1727634669421 - kind: conda name: xorg-libx11 - version: 1.8.9 - build: he755bbd_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.9-he755bbd_2.conda - sha256: bcd9ebdd7ca25d8ab1eb4f3f919113e264a8ad84fa713c48e737e9167a82fb4b - md5: 7acc45f80415e6ec352b729105dc0375 + version: 1.8.10 + build: h4f16b4b_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_1.conda + sha256: f53994d54f0604df881c4e984279b3cf6a1648a22d4b2113e2c89829968784c9 + md5: 125f34a17d7b4bea418a83904ea82ea6 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libxcb >=1.17.0,<2.0a0 - - xorg-xorgproto license: MIT license_family: MIT - size: 863528 - timestamp: 1727352755656 + size: 837524 + timestamp: 1733324962639 - kind: conda name: xorg-libx11 version: 1.8.10 - build: h4f16b4b_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libx11-1.8.10-h4f16b4b_0.conda - sha256: c4650634607864630fb03696474a0535f6fce5fda7d81a6462346e071b53dfa7 - md5: 0b666058a179b744a622d0a4a0c56353 + build: hca56bd8_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libx11-1.8.10-hca56bd8_1.conda + sha256: 5604f295906dfc496a4590e8ec19f775ccb40c5d503e6dfbac0781b5446b5391 + md5: 6e3e980940b26a060e553266ae0181a9 depends: - - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libxcb >=1.17.0,<2.0a0 - - xorg-xorgproto license: MIT license_family: MIT - size: 838308 - timestamp: 1727356837875 + size: 858427 + timestamp: 1733325062374 - kind: conda name: xorg-libxau version: 1.0.11 @@ -11613,71 +11522,69 @@ packages: size: 50060 timestamp: 1727752228921 - kind: conda - name: xorg-libxrender - version: 0.9.11 - build: h57736b2_1 - build_number: 1 + name: xorg-libxfixes + version: 6.0.1 + build: h57736b2_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.11-h57736b2_1.conda - sha256: 50c000a26e828313b668902c2ae5ff7956d9d34418b4fc6fc15f73cba31b45e0 - md5: 19fb476dc5cdd51b67719a6342fab237 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxfixes-6.0.1-h57736b2_0.conda + sha256: f5c71e0555681a82a65c483374b91d91b2cb9a9903b3a22ddc00f36719fce549 + md5: 78f8715c002cc66991d7c11e3cf66039 depends: - libgcc >=13 - xorg-libx11 >=1.8.9,<2.0a0 - - xorg-xorgproto license: MIT license_family: MIT - size: 38052 - timestamp: 1727530023529 + size: 20289 + timestamp: 1727796500830 - kind: conda - name: xorg-libxrender - version: 0.9.11 - build: hb9d3cd8_1 - build_number: 1 + name: xorg-libxfixes + version: 6.0.1 + build: hb9d3cd8_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_1.conda - sha256: f1217e902c0b1d8bc5d3ce65e483ebf38b049c823c9117b7198cfb16bd2b9143 - md5: a7a49a8b85122b49214798321e2e96b4 + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxfixes-6.0.1-hb9d3cd8_0.conda + sha256: 2fef37e660985794617716eb915865ce157004a4d567ed35ec16514960ae9271 + md5: 4bdb303603e9821baf5fe5fdff1dc8f8 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 - xorg-libx11 >=1.8.10,<2.0a0 - - xorg-xorgproto license: MIT license_family: MIT - size: 37780 - timestamp: 1727529943015 + size: 19575 + timestamp: 1727794961233 - kind: conda - name: xorg-xorgproto - version: '2024.1' - build: h86ecc28_1 - build_number: 1 + name: xorg-libxrender + version: 0.9.11 + build: h86ecc28_2 + build_number: 2 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-xorgproto-2024.1-h86ecc28_1.conda - sha256: 3dbbf4cdb5ad82d3479ab2aa68ae67de486a6d57d67f0402d8e55869f6f13aec - md5: 91cef7867bf2b47f614597b59705ff56 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxrender-0.9.11-h86ecc28_2.conda + sha256: 7862c148e87eb8da9c09aafec22bd63bbd1ee222e1437e1df923f1ff838f60e4 + md5: eef57c0c07175e97d976c2cdfd235c43 depends: - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 license: MIT license_family: MIT - size: 566948 - timestamp: 1726847598167 + size: 38333 + timestamp: 1733755940446 - kind: conda - name: xorg-xorgproto - version: '2024.1' - build: hb9d3cd8_1 - build_number: 1 + name: xorg-libxrender + version: 0.9.11 + build: hb9d3cd8_2 + build_number: 2 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xorg-xorgproto-2024.1-hb9d3cd8_1.conda - sha256: 1316680be6edddee0156b86ec1102fc8286f51c1a5440366ed1db596a2dc3731 - md5: 7c21106b851ec72c037b162c216d8f05 + url: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxrender-0.9.11-hb9d3cd8_2.conda + sha256: a2f533fe2374789413a9dfa1369322573910f4b010fd24386cdd1c5cd977a087 + md5: eef3132295d92678c17ffc8b114b8371 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 + - xorg-libx11 >=1.8.10,<2.0a0 license: MIT license_family: MIT - size: 565425 - timestamp: 1726846388217 + size: 37638 + timestamp: 1733755897245 - kind: conda name: xxhash version: 0.8.2 @@ -11720,41 +11627,103 @@ packages: timestamp: 1689951608120 - kind: conda name: xz - version: 5.2.6 - build: h166bdaf_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - md5: 2161070d867d1b1204ea749c8eec4ef0 + version: 5.6.3 + build: h2dbfc1b_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.6.3-h2dbfc1b_1.conda + sha256: b497245803e6753a9d4fe4014eb71fcb94e3fe1c7be9cc54aefcd0d02266b67f + md5: 0ed81af8ecd07369f2ce2533fd904a25 depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 418368 - timestamp: 1660346797927 + - libgcc >=13 + - liblzma 5.6.3 h86ecc28_1 + - liblzma-devel 5.6.3 h86ecc28_1 + - xz-gpl-tools 5.6.3 h2dbfc1b_1 + - xz-tools 5.6.3 h86ecc28_1 + license: 0BSD AND LGPL-2.1-or-later AND GPL-2.0-or-later + size: 23495 + timestamp: 1733409682598 - kind: conda name: xz - version: 5.2.6 - build: h57fd34a_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - sha256: 59d78af0c3e071021cfe82dc40134c19dab8cdf804324b62940f5c8cd71803ec - md5: 39c6b54e94014701dd157f4f576ed211 - license: LGPL-2.1 and GPL-2.0 - size: 235693 - timestamp: 1660346961024 + version: 5.6.3 + build: hbcc6ac9_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.6.3-hbcc6ac9_1.conda + sha256: 9cef529dcff25222427c9d90b9fc376888a59e138794b4336bbcd3331a5eea22 + md5: 62aae173382a8aae284726353c6a6a24 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - liblzma 5.6.3 hb9d3cd8_1 + - liblzma-devel 5.6.3 hb9d3cd8_1 + - xz-gpl-tools 5.6.3 hbcc6ac9_1 + - xz-tools 5.6.3 hb9d3cd8_1 + license: 0BSD AND LGPL-2.1-or-later AND GPL-2.0-or-later + size: 23477 + timestamp: 1733407455801 - kind: conda - name: xz - version: 5.2.6 - build: h9cdd2b7_0 + name: xz-gpl-tools + version: 5.6.3 + build: h2dbfc1b_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - sha256: 93f58a7b393adf41fa007ac8c55978765e957e90cd31877ece1e5a343cb98220 - md5: 83baad393a31d59c20b63ba4da6592df + url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-gpl-tools-5.6.3-h2dbfc1b_1.conda + sha256: 025f53e2f269b55ab46a627afa47e7288e5199c9d6752ac079c91c22d2a18c07 + md5: 5987f52add76f6fe246fcb2a554ee206 depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 440555 - timestamp: 1660348056328 + - libgcc >=13 + - liblzma 5.6.3 h86ecc28_1 + license: 0BSD AND LGPL-2.1-or-later AND GPL-2.0-or-later + size: 33218 + timestamp: 1733409548701 +- kind: conda + name: xz-gpl-tools + version: 5.6.3 + build: hbcc6ac9_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/xz-gpl-tools-5.6.3-hbcc6ac9_1.conda + sha256: 4e104b7c75c2f26a96032a1c6cda51430da1dea318c74f9e3568902b2f5030e1 + md5: f529917bab7862aaad6867bf2ea47a99 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - liblzma 5.6.3 hb9d3cd8_1 + license: 0BSD AND LGPL-2.1-or-later AND GPL-2.0-or-later + size: 33354 + timestamp: 1733407444641 +- kind: conda + name: xz-tools + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-tools-5.6.3-h86ecc28_1.conda + sha256: c4d136b10ba6d2afe133bc5bc2c6db6ec336793932b6ff1e166b5b1790abe1c5 + md5: 5d1bedf30d9b471b6f880351cec41bf0 + depends: + - libgcc >=13 + - liblzma 5.6.3 h86ecc28_1 + license: 0BSD AND LGPL-2.1-or-later + size: 95924 + timestamp: 1733409414633 +- kind: conda + name: xz-tools + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/xz-tools-5.6.3-hb9d3cd8_1.conda + sha256: 6e80f838096345c35e8755b827814c083dd0274594006d6f76bff71bc969c3b8 + md5: de3f31a6eed01bc2b8c7dcad07ad9034 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - liblzma 5.6.3 hb9d3cd8_1 + license: 0BSD AND LGPL-2.1-or-later + size: 90354 + timestamp: 1733407433418 - kind: conda name: yaml version: 0.2.5 @@ -11800,64 +11769,64 @@ packages: timestamp: 1641347626613 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312h66e93f0_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda - sha256: 8a1e51303ecac64f10dd0ec548d472c49954c3e2f38023ef28899191580795e1 - md5: 601d2b19a54fd9346ba18c07c2516339 + url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda + sha256: a0d93c3bef723e384cff8a29a82a2c6b7a73b39328088f3a2d97c901f56e9a63 + md5: 91df2efaa08730416bec2a4502309275 depends: - __glibc >=2.17,<3.0.a0 - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 151247 - timestamp: 1732220988648 + size: 151393 + timestamp: 1733428897813 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hb2c0f52_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda - sha256: 2ead24d5c50a2edd6348be5888677100b12b98921d1b6fe2f4cd980b0b85ffb2 - md5: 7dbbd950a7f762c2c8ab835932b12001 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda + sha256: 470b5b0f3ac89acd143095281167dc2ac1a56d4fa22e1794bd8f3b00bb604540 + md5: 0b3c640697bca798d0ab428f530ed24c depends: - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 149149 - timestamp: 1732221057827 + size: 150004 + timestamp: 1733429056665 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hea69d52_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda - sha256: 4c90de12b1569f85126a12dbbb89f3dc10cee5838335b9c9993ead8bf1594cd3 - md5: f538709098e1642d50f4a01707e7dfdb + url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda + sha256: 69c7863809e11bc90c0d935c16e7f151dcc925add08b3894f06059263a8cb9ba + md5: f32f9b16361866a62d6e061fcd7eb400 depends: - __osx >=11.0 - idna >=2.0 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 141452 - timestamp: 1732221306526 + size: 141556 + timestamp: 1733429104990 - kind: conda name: zeromq version: 4.3.5 diff --git a/examples/magic.lock b/examples/magic.lock index 2e04f1ffa4..b0d6852f57 100644 --- a/examples/magic.lock +++ b/examples/magic.lock @@ -8,26 +8,25 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.11.9-py311h2dc5d0c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda @@ -40,37 +39,37 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py311hf29c0ef_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py311h9ecbd09_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/httptools-0.6.4-py311h9ecbd09_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda @@ -78,10 +77,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda @@ -106,80 +105,77 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py311h2dc5d0c_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.11release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py311h2dc5d0c_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.11release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py311h2dc5d0c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multiprocess-0.70.15-py311h459d7ec_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py311h64a7726_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py311h7db5c69_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py311h49e9ac3_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py311h9ecbd09_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py311h9ecbd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/protobuf-5.28.2-py311hfdbb021_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py311h38be061_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py311h4854187_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py311h9e33e62_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyinstrument-5.0.0-py311h9ecbd09_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.10-hc5c86c4_3_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.11-h9e4cc4f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py311h9ecbd09_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.11-5_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -189,31 +185,31 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/regex-2024.11.6-py311h9ecbd09_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/safetensors-0.4.5-py311h9e33e62_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py311h182c674_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py311h182c674_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py311h9ecbd09_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/uvloop-0.21.0-py311h9ecbd09_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/watchfiles-1.0.0-py311h9e33e62_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/websockets-14.1-py311h9ecbd09_0.conda @@ -221,35 +217,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py311h9ecbd09_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py311h9ecbd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py311hbc35293_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda linux-aarch64: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aiohttp-3.11.9-py311h58d527c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-common-0.10.3-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-compression-0.3.0-h4c7db1d_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-sdkutils-0.2.1-h4c7db1d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-checksums-0.2.2-h4c7db1d_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-core-cpp-1.14.0-h1887c18_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-identity-cpp-1.10.0-h47b0b28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-blobs-cpp-12.13.0-h185ecfd_1.conda @@ -262,38 +256,38 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ca-certificates-2024.8.30-hcefe29a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/cffi-1.17.1-py311h14e8bb7_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/frozenlist-1.5.0-py311ha879c10_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gflags-2.2.2-h5ad3122_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/glog-0.7.1-h468a4a4_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/httptools-0.6.4-py311ha879c10_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/icu-75.1-hf9b3779_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda @@ -301,10 +295,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libabseil-20240722.0-cxx17_h5ad3122_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h86ecc28_2.conda @@ -329,80 +323,77 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libiconv-1.17-h31becfc_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libjpeg-turbo-3.0.0-h31becfc_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnghttp2-1.64.0-hc8609a4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libprotobuf-5.28.2-h029595c_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libre2-11-2024.07.02-h18dbdb1_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsodium-1.0.20-h68df207_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libssh2-1.11.1-ha41c0db_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libthrift-0.21.0-h154c74f_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libutf8proc-2.9.0-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuv-1.49.2-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lz4-c-1.9.4-hd600fc2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py311ha09ea12_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.11release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py311ha09ea12_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.11release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multidict-6.1.0-py311h58d527c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multiprocess-0.70.15-py311hcd402e7_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.4-py311h69ead2a_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/orc-2.0.3-h90de224_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pandas-2.2.3-py311h848c333_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py311hb2a0dd2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py311ha879c10_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py311ha879c10_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/protobuf-5.28.2-py311h89d996e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-18.1.0-py311hfecb2dc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-core-18.1.0-py311ha6d2531_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pydantic-core-2.27.1-py311h0ca61a2_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyinstrument-5.0.0-py311ha879c10_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.11.10-h5d932e8_3_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.11.11-h1683364_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-xxhash-3.5.0-py311h5487e9b_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.11-5_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -412,31 +403,31 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/readline-8.2-h8fc344f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/regex-2024.11.6-py311ha879c10_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/s2n-1.5.9-h636ded1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/safetensors-0.4.5-py311h0ca61a2_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py311h5e37e04_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py311h5e37e04_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py311h5487e9b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/uvloop-0.21.0-py311ha879c10_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/watchfiles-1.0.0-py311h0ca61a2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/websockets-14.1-py311ha879c10_0.conda @@ -444,34 +435,32 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xxhash-0.8.2-h31becfc_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yaml-0.2.5-hf897c2e_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py311ha879c10_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py311ha879c10_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zeromq-4.3.5-h5efb499_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstandard-0.23.0-py311hd5293d8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda osx-arm64: - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.11.9-py311h4921393_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-common-0.10.3-h5505292_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-compression-0.3.0-h5d7ee29_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-sdkutils-0.2.1-h5d7ee29_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-checksums-0.2.2-h5d7ee29_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-core-cpp-1.14.0-hd50102c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-identity-cpp-1.10.0-hc602bab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-blobs-cpp-12.13.0-h7585a09_1.conda @@ -484,46 +473,47 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ca-certificates-2024.8.30-hf0a4a13_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py311h3a79f62_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/freetype-2.12.1-hadb7bae_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/frozenlist-1.5.0-py311hae2e1ce_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gflags-2.2.2-hf9b8971_1005.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/glog-0.7.1-heb240a5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/httptools-0.6.4-py311h917b07b_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lcms2-2.16-ha0e7c42_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lerc-4.0.0-h9a09cb3_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libabseil-20240722.0-cxx17_hf9b8971_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlicommon-1.1.0-hd74edd7_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlidec-1.1.0-hd74edd7_2.conda @@ -531,7 +521,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcrc32c-1.1.2-hbdafb3b_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.10.1-h13a7ad3_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libdeflate-1.22-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20191231-hc8eb9b7_2.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda @@ -546,76 +536,73 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.17-h0d3ecfb_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libjpeg-turbo-3.0.0-hb547adb_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-25_osxarm64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.64.0-h6d7220d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.28-openmp_hf332438_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libpng-1.6.44-hc14010f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libprotobuf-5.28.2-h8f0b736_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libre2-11-2024.07.02-h2348fd5_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h9cc3647_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libthrift-0.21.0-h64651cc_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libutf8proc-2.9.0-h5505292_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libuv-1.49.2-h7ab814d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libwebp-base-1.4.0-h93a5062_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxcb-1.17.0-hdb1d25a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lz4-c-1.9.4-hb7217d7_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py311h56c23cb_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.11release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py311h4921393_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.11release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multidict-6.1.0-py311h30e7462_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multiprocess-0.70.15-py311heffc1b2_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h7bae524_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py311h7125741_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjpeg-2.5.2-h9f1df11_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.4.0-h39f12f2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/orc-2.0.3-h121fd32_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.2.3-py311h9cb3ce9_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pillow-11.0.0-py311h3894ae9_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py311h460d6c5_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py311h917b07b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/protobuf-5.28.2-py311h6885ffc_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-18.1.0-py311ha1ab1f8_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-core-18.1.0-py311he04fa90_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pydantic-core-2.27.1-py311h3ff9189_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyinstrument-5.0.0-py311hae2e1ce_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.10-hc51fdd5_3_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.11-hc22306f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-xxhash-3.5.0-py311h460d6c5_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python_abi-3.11-5_cp311.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -625,30 +612,30 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h92ec313_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/regex-2024.11.6-py311h917b07b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/safetensors-0.4.5-py311h481aa64_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h5083fa2_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py311h82b0fb8_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py311h82b0fb8_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.4.2-py311h917b07b_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/uvloop-0.21.0-py311hae2e1ce_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/watchfiles-1.0.0-py311h3ff9189_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/websockets-14.1-py311h917b07b_0.conda @@ -656,9 +643,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxau-1.0.11-hd74edd7_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxdmcp-1.1.5-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xxhash-0.8.2-hb547adb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h3422bc3_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py311h917b07b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py311h917b07b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py311ha60cc69_1.conda @@ -713,18 +699,19 @@ packages: - kind: conda name: aiohappyeyeballs version: 2.4.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda - sha256: 4282838f468f75f0c1746cbc6cdd3365b9f6d449bf5af8a74b234e396d847bf0 - md5: 8d6f8a679aa0272ba8d6092ce4824870 + url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda + sha256: 95d4713e49ea92ae50cf42393683ede706b7875af5f7cb14c253438180afa732 + md5: 296b403617bafa89df4971567af79013 depends: - python >=3.9 license: PSF-2.0 license_family: PSF - size: 19310 - timestamp: 1733135584059 + size: 19351 + timestamp: 1733332029649 - kind: conda name: aiohttp version: 3.11.9 @@ -800,193 +787,176 @@ packages: - kind: conda name: aiosignal version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - sha256: 575c742e14c86575986dc867463582a970463da50b77264cdf54df74f5563783 - md5: d1e1eb7e21a9e2c74279d87dafb68156 + url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + sha256: 9c7b639ea0cc796ef46c57fa104ec1f2ed53cd11c063518869a5a9d7d3b0b2db + md5: d736bd1b8904d7593dce4893e58a7881 depends: - frozenlist >=1.1.0 - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 12730 - timestamp: 1667935912504 + size: 13157 + timestamp: 1733332198143 - kind: conda name: annotated-types version: 0.7.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - md5: 7e9f4612544c8edbfd6afad17f1bd045 + url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + sha256: e0ea1ba78fbb64f17062601edda82097fcf815012cf52bb704150a2668110d48 + md5: 2934f256a8acfe48f6ebb4fce6cde29c depends: - - python >=3.7 + - python >=3.9 - typing-extensions >=4.0.0 license: MIT license_family: MIT - size: 18235 - timestamp: 1716290348421 + size: 18074 + timestamp: 1733247158254 - kind: conda name: anyio - version: 4.6.2.post1 + version: 4.7.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - sha256: 4b54b7ce79d818e3cce54ae4d552dba51b7afac160ceecdefd04b3917a37c502 - md5: 688697ec5e9588bdded167d19577625b + url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + sha256: 687537ee3af30f8784986bf40cac30e88138770b16e51ca9850c9c23c09aeba1 + md5: c88107912954a983c2caf25f7fd55158 depends: - exceptiongroup >=1.0.2 - idna >=2.8 - python >=3.9 - sniffio >=1.1 - - typing_extensions >=4.1 + - typing_extensions >=4.5 constrains: - - uvloop >=0.21.0b1 - trio >=0.26.1 + - uvloop >=0.21 license: MIT license_family: MIT - size: 109864 - timestamp: 1728935803440 -- kind: conda - name: asgiref - version: 3.8.1 - build: pyhd8ed1ab_1 - build_number: 1 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - sha256: c8d51a32f3530e3ca176d8f7bf5621c68c7c1c03fe9cc5c3c49d8ba4a1248f43 - md5: 21187c8276f87b6aedfe63c267a6eed7 - depends: - - python >=3.9 - - typing_extensions >=4 - license: BSD-3-Clause - license_family: BSD - size: 26436 - timestamp: 1733215704904 + size: 112730 + timestamp: 1733532678437 - kind: conda name: attrs version: 24.2.0 - build: pyh71513ae_0 + build: pyh71513ae_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - sha256: 28dba85a7e0f7fb57d7315e13f603d1e41b83c5b88aa2a602596b52c833a2ff8 - md5: 6732fa52eb8e66e5afeb32db8701a791 + url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + sha256: 8488a116dffe204015a90b41982c0270534bd1070f44a00b316d59e4a79ae8c7 + md5: 2018839db45c79654b57a924fcdd27d0 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 56048 - timestamp: 1722977241383 + size: 56336 + timestamp: 1733520064905 - kind: conda name: aws-c-auth version: 0.8.0 - build: h9b725a8_10 - build_number: 10 + build: h35eccd0_12 + build_number: 12 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - sha256: 63cb8c25e0a26be4261d4271de525e7e33aefe9d9b001b8abfa5c9ac69c3dab3 - md5: 17c90d9eb8c6842fd739dc5445ce9962 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + sha256: 40ca48aee5f3ff0d3ffd64625dacb019104a9a2ee24cd54052cde6fe4cbc8349 + md5: 1109d5293b724ca16b61452accfdb442 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 license: Apache-2.0 license_family: Apache - size: 92355 - timestamp: 1731733738919 + size: 92279 + timestamp: 1733611476546 - kind: conda name: aws-c-auth version: 0.8.0 - build: hac900a4_10 - build_number: 10 + build: h89ba3c0_12 + build_number: 12 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - sha256: 85c8500ae0570f0d39e6661a120c653e43f0f5f984e2954c44fd358a87776892 - md5: 9ecaef75ebd666dda7caa79154183b02 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + sha256: 021451014fb5ee24601052d84db8d5babbce5085959ba777b540db4e33bde360 + md5: c0e2e6c3aa8c309af0ba09fc7d949407 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 111853 - timestamp: 1731733547677 + size: 112242 + timestamp: 1733611425746 - kind: conda name: aws-c-auth version: 0.8.0 - build: hb88c0a9_10 - build_number: 10 + build: ha4f867e_12 + build_number: 12 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - sha256: d2837a84e6bd7d993a83e79f9e240e1465e375f3d57149ea5b1927c6a4133bcc - md5: 409b7ee6d3473cc62bda7280f6ac20d0 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + sha256: b9355bedf43c857a2d1986ebe7d61e615218f2171d163b509633d6c0c988d2dc + md5: d889de56d3be691063b71eb826470e29 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 107163 - timestamp: 1731733534767 + size: 107663 + timestamp: 1733611397256 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h35473ba_2 - build_number: 2 + version: 0.8.1 + build: h35473ba_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda - sha256: 3327a9e65ec531b0c55d17bbcdc436b4e641af1f293d1c2f50e0f16aa79fde60 - md5: 48dc0b3576513622673d3f5f3d163b62 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda + sha256: c2d59d74e167b6df3c1a7addf0d37080b69a6b3dee2a30b3f2171a5d26c5a691 + md5: 97c0ccb4d43d880b38f237e746c29ead depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 49714 - timestamp: 1731678553709 + size: 49808 + timestamp: 1732038238504 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h5d7ee29_2 - build_number: 2 + version: 0.8.1 + build: h5d7ee29_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda - sha256: 2a8c09b33400cf2b7d658e63fd5a6f9b6e9626458f6213b904592fc15220bc92 - md5: 92734dad83d22314205ba73b679710d2 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda + sha256: 42d5e9fb695bc3b280ed7e625dcda110b6780ee471e227f1b92afce71ae4972c + md5: fc51a61831a676fe6f922450f51ab6af depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 39966 - timestamp: 1731678721786 + size: 40047 + timestamp: 1732038304022 - kind: conda name: aws-c-cal - version: 0.8.0 - build: hecf86a2_2 - build_number: 2 + version: 0.8.1 + build: hecf86a2_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda - sha256: 220a37955c120bf2f565fbd5320a82fc4c8b550b2449294bc0509c296cfcb9fa - md5: c54459d686ad9d0502823cacff7e8423 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda + sha256: 12cc2087503f4f0d3a5db84e791fb5e585866da728f888aa76e14330a092a681 + md5: 8350795be14a92d68847c0d4f3c1d59f depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 @@ -994,8 +964,8 @@ packages: - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 47477 - timestamp: 1731678510949 + size: 47569 + timestamp: 1732038156682 - kind: conda name: aws-c-common version: 0.10.3 @@ -1091,291 +1061,294 @@ packages: - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h13ead76_7 - build_number: 7 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - sha256: 386965fab5f0bed4a6109cdba32579f16bee1b0f76ce1db840ce6f7070188f9f - md5: 55a901b6d4fb9ce1bc8328925b229f0b + build: h873f81a_8 + build_number: 8 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + sha256: 589f9a04c4c7a919410dde75ce93a6986efad6ed522ecd8e5c9c587ac18f0d34 + md5: 32bdd50b43fcc435a8dc5a3c66aafef0 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 47528 - timestamp: 1731714690911 + size: 54020 + timestamp: 1731839177415 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h1ffe551_7 - build_number: 7 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - sha256: 3b780d6483baa889e8df5aa66ab3c439a9c81331cf2a4799e373f4174768ddd9 - md5: 7cce4dfab184f4bbdfc160789251b3c5 + build: h8ec3972_8 + build_number: 8 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + sha256: 81b98fc39e64d090af23b11621e467b4f943a19f61dda0fed5ad6397f06de5c7 + md5: ced9c97ddf61e4222d548e8bcc863b87 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 53500 - timestamp: 1731714597524 + size: 47491 + timestamp: 1731839300212 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h9bacb8c_7 - build_number: 7 + build: hba6c15e_8 + build_number: 8 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - sha256: 2b7bb475330942d94bc359171df19d0cf8b326f15c0c7903a59da54a8add621e - md5: 694020125b66632d6577456d2d9d3c74 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + sha256: d3b74580045ee9d54a134ab1e5e00082d5d8a466980e94acc153188ee7375d08 + md5: 102f8b54630d79aff5e0c489f40f926e depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 55054 - timestamp: 1731714599360 + size: 55354 + timestamp: 1731839242373 - kind: conda name: aws-c-http - version: 0.9.1 - build: hab05fe4_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - sha256: 90a325b6f5371dd2203b643de646967fe57a4bcbbee8c91086abbf9dd733d59a - md5: fb409f7053fa3dbbdf6eb41045a87795 + version: 0.9.2 + build: h48c6dea_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + sha256: cb68d557af1bdcbef668574836fbf39c4df0e4f377258e4d5bd14196acf9b992 + md5: a28dd36a1da76042bfb5579005cc6728 depends: - - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __osx >=11.0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 - - libgcc >=13 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 196945 - timestamp: 1731714483279 + size: 152660 + timestamp: 1732110368931 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf483d09_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - sha256: fca9ed0f0895bab9bf737c8d8a3314556cb893d45c40f0656f21a93502db3089 - md5: d880c40b8fc7d07374c036f93f1359d2 + version: 0.9.2 + build: h697be72_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + sha256: 4d6557a00e74649301da78d7de7d108882ce89eb9d6c87efce30789b53a617cf + md5: a8b1a2c11a93e615f6e8f33175ff8ff0 depends: - - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 + - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 153315 - timestamp: 1731714621306 + size: 190344 + timestamp: 1732110425530 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf4e072c_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - sha256: b9a262451fc91d2fd4ccfcb6dc11ac61d0152c0db765bfe8d089e3e1b70c2150 - md5: fddc197912c16cb95276077f6c7917c5 + version: 0.9.2 + build: ha5a3ca8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + sha256: 8ecb3d8411f58db4686635aedfe5d60b2b8870f9f9cafb471f3878dc61d21596 + md5: b2e017f8a4781ad3af9166edf10b65a8 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 190363 - timestamp: 1731714613945 + size: 197338 + timestamp: 1732110324356 - kind: conda name: aws-c-io - version: 0.15.2 - build: h10eb1bc_2 - build_number: 2 + version: 0.15.3 + build: h0155602_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - sha256: b8e4206ee1fa58453535c1c08c6aca5bdc92cde026bf7ec20d038786f813239b - md5: 7cdf478bb4feae1a93319f6e3381b8a9 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + sha256: 7b8d97d51e5bb80191e07f16cac6f59068be30bf5906925a8f4159b3aab9093c + md5: 431c201b11eee90fd120844557a62b02 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 162624 - timestamp: 1731702570075 + size: 161664 + timestamp: 1732097310449 - kind: conda name: aws-c-io - version: 0.15.2 - build: h39f8ad8_2 - build_number: 2 + version: 0.15.3 + build: h30cefa2_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - sha256: b14e32f024f6be1610dccfdb6371e101cba204d24f37c2a63d9b6380ac74ac17 - md5: 3b49f1dd8f20bead8b222828cfdad585 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + sha256: d6f8d42259ca11507bd912b3cd3ff1a65d6d8c7ff67ae9ee9df1686c9bebbbcc + md5: 8b8dc361de09e5b6227165a876e55cb7 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 license: Apache-2.0 license_family: Apache - size: 137610 - timestamp: 1731702839896 + size: 136662 + timestamp: 1732097382517 - kind: conda name: aws-c-io - version: 0.15.2 - build: hdeadb07_2 - build_number: 2 + version: 0.15.3 + build: ha35c7d9_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - sha256: 1636136a5d882b4aaa13ea8b7de8cf07038a6878872e3c434df9daf478cee594 - md5: 461a1eaa075fd391add91bcffc9de0c1 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + sha256: 2e9e13ed54f6da22ee5d06622f4165bcca253411997dad62225aecc54b25c0db + md5: 97960f380abe1ba3157fe63312e35b07 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 159368 - timestamp: 1731702542973 + size: 158012 + timestamp: 1732097264673 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h28a5e6a_8 - build_number: 8 + build: h2cca791_9 + build_number: 9 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - sha256: aad8c9a5c24953cdebf17efa7ec06b5639e14072d4fa70c5c0607d7ad913ba88 - md5: 5250ce3b5154c0347b7576015a7c6cef + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + sha256: c0ad176bab176a2983fb052de71037fc9357afd13b073511a7a440c1a8c6eff2 + md5: 090674d608454e979ce77bc8ee735868 depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 169040 - timestamp: 1731734203264 + size: 169690 + timestamp: 1733688313938 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h68a0d7e_8 - build_number: 8 + build: h3aaadf4_9 + build_number: 9 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - sha256: 837c24c105624e16ace94b4b566ffe45231ff275339c523571ebd45946926156 - md5: 9e3ac70d27e7591b1310a690768cfe27 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + sha256: 3cc99239c8dadfe55e4b9ba37d03c5d3308ddd8fe00792fab7c6b47c97655c07 + md5: ddb5dc7ac1ae424ca2b7a847765a0cb9 depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 134573 - timestamp: 1731734281038 + size: 135051 + timestamp: 1733688394116 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h7bd072d_8 - build_number: 8 + build: h56e9cca_9 + build_number: 9 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - sha256: 51d3d87a47c642096e2ce389a169aec2e26958042e9130857552a12d65a19045 - md5: 0e9d67838114c0dbd267a9311268b331 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + sha256: c93c29b58482ca72d3f9a5710ad92194e809a9de988bcdcbae9ddd0f8ed484a6 + md5: f75642fe24ae4131f554cbacd6df53e3 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 194447 - timestamp: 1731734668760 + size: 194705 + timestamp: 1733688770217 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h29aef15_0 + version: 0.7.5 + build: h3c51cf6_2 + build_number: 2 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda - sha256: 57aa8b28890efd82c479e902125ea8a37782b163f13ae0856b259ec527a52879 - md5: e09cd76e50ce09ec14c17109da5c6502 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda + sha256: 98a2df8a5068183e55b4c6914a3513d403300be20c960842a9a229546b8e8e52 + md5: e326ddae95b3ec96a31aded04c834175 depends: - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 117467 - timestamp: 1733098782199 + size: 117896 + timestamp: 1733694002769 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h3a84f74_0 + version: 0.7.5 + build: h6ad95d4_2 + build_number: 2 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda - sha256: db17a15e5e01f19700bf9be961e1c4e002ccf8dc4d9caa3a24a0ab54f00f2c2d - md5: 171850b890600458ae6c990e78f1fa23 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda + sha256: 103a478b18ead8f79aae9a4966b2879e9fbcfb0aa3b2e6c9b2811a76ba34610e + md5: 682c079ec089d47bb7142f12b3275e4f depends: - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 113536 - timestamp: 1733098705479 + size: 113741 + timestamp: 1733693956970 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h840aca7_0 + version: 0.7.5 + build: hca3a6f1_2 + build_number: 2 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda - sha256: 18972a91f32f6b0edb58eb71cb2f5b56654183fd6ba611b3b0d6cc484017aeff - md5: 893e668d99fa4b31eef9dc5b19c21b9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda + sha256: 53c4dc6e360ed6e1242c20fa43f7bfe67a41215e51cafab27dbd8aa91333040c + md5: 0b4e647cae3ce85ec991c6e3b8d12bda depends: - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 license: Apache-2.0 license_family: Apache - size: 97145 - timestamp: 1733098874599 + size: 97530 + timestamp: 1733694097526 - kind: conda name: aws-c-sdkutils version: 0.2.1 @@ -1476,118 +1449,118 @@ packages: timestamp: 1731687193373 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: h7939e66_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - sha256: 3d0b1996d28a2647ced83ed8052ee331df70b2c1a68fb6db0fe4e743a88be54d - md5: 5e573a52a1cd20f81d7fdf1db4f4583a + version: 0.29.7 + build: h318f0b1_3 + build_number: 3 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + sha256: 35100ad81adf31aa4e73ac2956e9a8ff277cc57d0db2db2f0e9c51012175eadd + md5: 9748d0527695a64aa2eb45e891ea188d depends: + - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 283670 - timestamp: 1733150929992 + size: 355045 + timestamp: 1733744656604 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: ha226bf8_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - sha256: f645e2a8015d8e71ed785c81a14a202ebce2f5dcca8982cd7ec5f8000f9be5c3 - md5: 81da0b5f65ab08e3919d6eadf08b5776 + version: 0.29.7 + build: hacb6b83_3 + build_number: 3 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + sha256: 6c0ece3ca494c2220fc052e608d52ea52bb361e536a14a1b3b36ebeede9de8b9 + md5: 27ce3ed5b7e55370a9fea2dda2b3245a depends: - - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 236505 - timestamp: 1733151090562 + size: 283993 + timestamp: 1733744571881 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: hdec8b0f_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - sha256: cd09f1d5d854607ce7acafc76c74e864f296d296e60b54054a10f757ecc3d2dd - md5: 40647232fad98f92be8c6050a7e0c2bd + version: 0.29.7 + build: hc2c2bbc_3 + build_number: 3 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + sha256: 6a519151e7fa71fbc9d1cd3a526ea7591638af058a6cc0534e1cd418fd48b354 + md5: 5450324f7b48dff1f6ed5484bf830972 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 354710 - timestamp: 1733150818238 + size: 236331 + timestamp: 1733744737078 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h3b64406_4 - build_number: 4 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda - sha256: 10ce9c203d31229432421a841d8d135d3e942637571aae4bb2d3c7d5242e7f05 - md5: f9e46a4bb5a04cbca08355f166ce87c8 + version: 1.11.458 + build: h5e41cbe_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda + sha256: b45305787a78f2bf7ecabc401b5bfe451509b434dd041a0a554572a70302d2f3 + md5: 1861b1fb86b336f1f53faaac5a76046c depends: - - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2722689 - timestamp: 1732812825640 + size: 2910575 + timestamp: 1733576378398 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h5558e3c_4 - build_number: 4 + version: 1.11.458 + build: hac138a2_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda - sha256: 4881f7b4f5e3c797332cffb990df246a422346b220a9c16014f274beb2a276f5 - md5: ba7abdc93b0ade11d774b47aaab84737 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda + sha256: fdb9c94d7524c52837643428b1aab4f35bed3ba2862a57e1b03e63038c7c146f + md5: bbdd9589b1a32a80b0e3f98a2a482542 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - libgcc >=13 - libstdcxx >=13 @@ -1595,31 +1568,31 @@ packages: - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2945541 - timestamp: 1732812288219 + size: 3071464 + timestamp: 1733576251149 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h7085e57_4 - build_number: 4 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda - sha256: 0908a82e7c50c51d5ee0ca543dbe70cbe1963e6e8f80ffa58ea6d26e5c68251e - md5: feec198cb18a5e90aa36c97328567d63 + version: 1.11.458 + build: he4d6490_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda + sha256: 61abc03dfbe372b258b8b6790bf3ad3a3265e02ce24b6b22bfe8f2fcab94954a + md5: 2941213b750689ace0862a6d695bb740 depends: + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2813856 - timestamp: 1732812337182 + size: 2847256 + timestamp: 1733576733615 - kind: conda name: azure-core-cpp version: 1.14.0 @@ -2171,49 +2144,52 @@ packages: - kind: conda name: charset-normalizer version: 3.4.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - md5: a374efa97290b8799046df7c5ca17164 + url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + sha256: 63022ee2c6a157a9f980250a66f54bdcdf5abee817348d0f9a74c2441a6fbf0e + md5: 6581a17bba6b948bb60130026404a9d6 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 47314 - timestamp: 1728479405343 + size: 47533 + timestamp: 1733218182393 - kind: conda name: click version: 8.1.7 - build: unix_pyh707e725_0 + build: unix_pyh707e725_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - md5: f3ad426304898027fc619827ff428eca + url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + sha256: 1cd5fc6ccdd5141378e51252a7a3810b07fd5a7e6934a5b4a7eccba66566224b + md5: cb8e52f28f5e592598190c562e7b5bf1 depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 84437 - timestamp: 1692311973840 + size: 84513 + timestamp: 1733221925078 - kind: conda name: colorama version: 0.4.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - md5: 3faab06a954c2a04039983f2c4a50d99 + url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + sha256: ab29d57dc70786c1269633ba3dff20288b81664d3ff8d21af995742e2bb03287 + md5: 962b9857ee8e7018c22f2776ffa0b2d7 depends: - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 25170 - timestamp: 1666700778190 + size: 27011 + timestamp: 1733218222191 - kind: conda name: datasets version: 2.14.4 @@ -2246,19 +2222,20 @@ packages: - kind: conda name: deprecated version: 1.2.15 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda - sha256: 48182a27a8fd855db3a402ed914823802f94c3344c87b0d074facc51411296ee - md5: ca75e235b44ab995655fae392f99595e + url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda + sha256: a20ebf2c9b02a6eb32412ceb5c4cffaae49417db7e75414a76417538293a9402 + md5: eaef2e94d5bd76f758545d172c1fda67 depends: - - python >=2.7 + - python >=3.9 - wrapt <2,>=1.10 license: MIT license_family: MIT - size: 14182 - timestamp: 1731836933516 + size: 14297 + timestamp: 1733662697343 - kind: conda name: dill version: 0.3.7 @@ -2277,58 +2254,61 @@ packages: - kind: conda name: dnspython version: 2.7.0 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - sha256: 3e2ea1bfd90969e0e1f152bb1f969c56661278ad6bfaa3272027b1ff0d9a1a23 - md5: 0adf8f63d500d20418656289249533f9 + url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + sha256: 3ec40ccf63f2450c5e6c7dd579e42fc2e97caf0d8cd4ba24aa434e6fc264eda0 + md5: 5fbd60d61d21b4bd2f9d7a48fe100418 depends: - - python >=3.9.0,<4.0.0 + - python >=3.9,<4.0.0 - sniffio constrains: - - cryptography >=43 + - aioquic >=1.0.0 - wmi >=1.5.1 - - h2 >=4.1.0 + - httpx >=0.26.0 - trio >=0.23 + - cryptography >=43 - httpcore >=1.0.0 - - aioquic >=1.0.0 - - httpx >=0.26.0 - idna >=3.7 + - h2 >=4.1.0 license: ISC license_family: OTHER - size: 172740 - timestamp: 1728178868478 + size: 172172 + timestamp: 1733256829961 - kind: conda name: email-validator version: 2.2.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - sha256: ea9e936ed7c49ea6d66fa3554afe31ba311f2a3d5e384d8c38925fda9e37bdb9 - md5: 3067adf57ee658ddf5bfad47b0041ce4 + url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + sha256: b91a19eb78edfc2dbb36de9a67f74ee2416f1b5273dd7327abe53f2dbf864736 + md5: da16dd3b0b71339060cd44cb7110ddf9 depends: - dnspython >=2.0.0 - idna >=2.0.0 - - python >=3.7 + - python >=3.9 license: Unlicense - size: 44157 - timestamp: 1718984716782 + size: 44401 + timestamp: 1733300827551 - kind: conda name: email_validator version: 2.2.0 - build: hd8ed1ab_0 + build: hd8ed1ab_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - sha256: 2cbbbe9e0f3872214227c27b8b775dd2296a435c90ef50a7cc69934c329b6c65 - md5: 0214a004f7cf5ac28fc10a390dfc47ee + url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + sha256: e0d0fdf587aa0ed0ff08b2bce3ab355f46687b87b0775bfba01cc80a859ee6a2 + md5: 0794f8807ff2c6f020422cacb1bd7bfa depends: - email-validator >=2.2.0,<2.2.1.0a0 license: Unlicense - size: 6690 - timestamp: 1718984720419 + size: 6552 + timestamp: 1733300828176 - kind: conda name: exceptiongroup version: 1.2.2 @@ -2346,13 +2326,13 @@ packages: timestamp: 1733208916977 - kind: conda name: fastapi - version: 0.115.5 - build: pyhff2d567_0 + version: 0.115.6 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda - sha256: da2833cc2ea5789abc2a6899be02ba0a769386d4913ff182bd1a9458bea40c34 - md5: cfe0f8cd904ab19c36ba50eb5179ebe0 + url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda + sha256: d7826d537c667093c9de96411a09585a8d620c84a830a0195e58e9a0df45f018 + md5: 1b1e0c97830cdf75f1f371bd467ab657 depends: - email_validator >=2.0.0 - fastapi-cli >=0.0.5 @@ -2366,8 +2346,8 @@ packages: - uvicorn-standard >=0.12.0 license: MIT license_family: MIT - size: 73541 - timestamp: 1731452895466 + size: 73084 + timestamp: 1733362427885 - kind: conda name: fastapi-cli version: 0.0.5 @@ -2389,17 +2369,18 @@ packages: - kind: conda name: filelock version: 3.16.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + sha256: 18dca6e2194732df7ebf824abaefe999e4765ebe8e8a061269406ab88fc418b9 + md5: d692e9ba6f92dc51484bf3477e36ce7c depends: - - python >=3.7 + - python >=3.9 license: Unlicense - size: 17357 - timestamp: 1726613593584 + size: 17441 + timestamp: 1733240909987 - kind: conda name: freetype version: 2.12.1 @@ -2501,18 +2482,19 @@ packages: - kind: conda name: fsspec version: 2024.10.0 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda - sha256: 40bb76981dd49d5869b48925a8975bb7bbe4e33e1e40af4ec06f6bf4a62effd7 - md5: 816dbc4679a64e4417cd1385d661bb31 + url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda + sha256: 790a50b4f94042951518f911a914a886a837c926094c6a14ed1d9d03ce336807 + md5: 906fe13095e734cb413b57a49116cdc8 depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 134745 - timestamp: 1729608972363 + size: 134726 + timestamp: 1733493445080 - kind: conda name: gflags version: 2.2.2 @@ -2629,51 +2611,54 @@ packages: - kind: conda name: h11 version: 0.14.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085 - md5: b21ed0883505ba1910994f1df031a428 + url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + sha256: 622516185a7c740d5c7f27016d0c15b45782c1501e5611deec63fd70344ce7c8 + md5: 7ee49e89531c0dcbba9466f6d115d585 depends: - - python >=3 + - python >=3.9 - typing_extensions license: MIT license_family: MIT - size: 48251 - timestamp: 1664132995560 + size: 51846 + timestamp: 1733327599467 - kind: conda name: h2 version: 4.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a - md5: b748fbf7060927a6e82df7cb5ee8f097 + url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + sha256: 843ddad410c370672a8250470697027618f104153612439076d4d7b91eeb7b5c + md5: 825927dc7b0f287ef8d4d0011bb113b1 depends: - hpack >=4.0,<5 - hyperframe >=6.0,<7 - - python >=3.6.1 + - python >=3.9 license: MIT license_family: MIT - size: 46754 - timestamp: 1634280590080 + size: 52000 + timestamp: 1733298867359 - kind: conda name: hpack version: 4.0.0 - build: pyh9f0ad1d_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 - sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8 - md5: 914d6646c4dbb1fd3ff539830a12fd71 + url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda + sha256: ec89b7e5b8aa2f0219f666084446e1fb7b54545861e9caa892acb24d125761b5 + md5: 2aa5ff7fa34a81b9196532c84c10d865 depends: - - python + - python >=3.9 license: MIT license_family: MIT - size: 25341 - timestamp: 1598856368685 + size: 29412 + timestamp: 1733299296857 - kind: conda name: httpcore version: 1.0.7 @@ -2748,13 +2733,13 @@ packages: timestamp: 1732707937311 - kind: conda name: httpx - version: 0.28.0 + version: 0.28.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - sha256: cb7895446cd93091300accea6afbc8d9811a3c5899922ccfeeff97d9b55909dc - md5: 22878824a87f1af2ad48665f9d5bfcc8 + url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + sha256: cd0f1de3697b252df95f98383e9edb1d00386bfdd03fdf607fa42fe5fcb09950 + md5: d6989ead454181f4f9bc987d3dc4e285 depends: - anyio - certifi @@ -2763,17 +2748,17 @@ packages: - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 63183 - timestamp: 1732831049776 + size: 63082 + timestamp: 1733663449209 - kind: conda name: huggingface_hub - version: 0.26.3 + version: 0.26.5 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - sha256: 66ffed967463e4a25f1dc4ca699d85dd55d1d150fed214c6380f11a981e0acb7 - md5: 997fc223fbc616c262f2a32a22d433a4 + url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + sha256: bdbf614d87155c7f9b8fe9c3d039528298119832e9f52959b15c522a9841eef7 + md5: 37236111cd92068e5af2f98cbb476642 depends: - filelock - fsspec >=2023.5.0 @@ -2785,24 +2770,24 @@ packages: - typing-extensions >=3.7.4.3 - typing_extensions >=3.7.4.3 license: Apache-2.0 - license_family: APACHE - size: 274858 - timestamp: 1733170279930 + size: 274900 + timestamp: 1733637007500 - kind: conda name: hyperframe version: 6.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 - sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330 - md5: 9f765cbfab6870c8435b9eefecd7a1f4 + url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + sha256: e91c6ef09d076e1d9a02819cd00fa7ee18ecf30cdd667605c853980216584d1b + md5: 566e75c90c1d0c8c459eb0ad9833dc7a depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14646 - timestamp: 1619110249723 + size: 17239 + timestamp: 1733298862681 - kind: conda name: icu version: '75.1' @@ -2818,6 +2803,20 @@ packages: license_family: MIT size: 12282786 timestamp: 1720853454991 +- kind: conda + name: icu + version: '75.1' + build: hfee45f7_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda + sha256: 9ba12c93406f3df5ab0a43db8a4b4ef67a5871dfd401010fbe29b218b2cbe620 + md5: 5eb22c1d7b3fc4abb50d92d621583137 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + size: 11857802 + timestamp: 1720853997952 - kind: conda name: idna version: '3.10' @@ -2853,40 +2852,42 @@ packages: - kind: conda name: jinja2 version: 3.1.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 + url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + sha256: 85a7169c078b8065bd9d121b0e7b99c8b88c42a411314b6ae5fcd81c48c4710a + md5: 08cce3151bde4ecad7885bd9fb647532 depends: - markupsafe >=2.0 - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 111565 - timestamp: 1715127275924 + size: 110963 + timestamp: 1733217424408 - kind: conda name: jupyter_client version: 8.6.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - md5: a14218cfb29662b4a19ceb04e93e298e + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda + sha256: 19d8bd5bb2fde910ec59e081eeb59529491995ce0d653a5209366611023a0b3a + md5: 4ebae00eae9705b0c3d6d1018a81d047 depends: - importlib-metadata >=4.8.3 - jupyter_core >=4.12,!=5.0.* - - python >=3.8 + - python >=3.9 - python-dateutil >=2.8.2 - pyzmq >=23.0 - tornado >=6.2 - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 106055 - timestamp: 1726610805505 + size: 106342 + timestamp: 1733441040958 - kind: conda name: jupyter_core version: 5.7.2 @@ -3172,30 +3173,32 @@ packages: - kind: conda name: libarrow version: 18.1.0 - build: h654e1bb_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - sha256: 925dcb034f36536eed21d9323f096bf2ebf1111d14c61e1ae0b90e5de131f1e1 - md5: e69934ff9dd8745fea8927028d1603ee + build: h3b07799_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + sha256: 8837dc6e60522eef63554654c45d18143006324c43391c6e8dc5d2b20997466d + md5: 27675c7172667268440306533e4928de depends: - - __osx >=11.0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 + - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libcxx >=18 + - libgcc >=13 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 + - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -3204,41 +3207,40 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: - - arrow-cpp <0.0a0 - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 5475725 - timestamp: 1732947802614 + size: 8793521 + timestamp: 1733607374384 - kind: conda name: libarrow version: 18.1.0 - build: hc7b0e1d_2_cpu - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - sha256: 3201944d1f97b9207e566ccf388c8376bb2ce7e461534cda63a28975b6790901 - md5: 4a46bd0be8e7f56a217d26b79d290a0e + build: h86d57b8_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + sha256: fe6b5eb4d6e71418343b62a0d322ede7be69999b28d9e492164c12e613cf3fa0 + md5: 23431b3fdbb32858d1533da5bc8fcc86 depends: - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __osx >=11.0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 - - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libgcc >=13 + - libcxx >=18 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -3247,26 +3249,25 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: + - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu - arrow-cpp <0.0a0 - - parquet-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8026783 - timestamp: 1732950110265 + size: 5482797 + timestamp: 1733605365656 - kind: conda name: libarrow version: 18.1.0 - build: he15abb1_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - sha256: afc81af2e533cc35295aebae4fb382e770310d9b1ac31837456b440d35c54cf7 - md5: bd3e35a6f3f869b4777488452f315008 + build: ha2aff55_4_cpu + build_number: 4 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + sha256: 795950b73029fd4d3b7fee3427c39c7357287fd94244dd5a125ac0931d31aaa3 + md5: c4d60278cb00053df1a4f0600fd2ac2a depends: - - __glibc >=2.17,<3.0.a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 @@ -3283,7 +3284,7 @@ packages: - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - libstdcxx >=13 - - libutf8proc >=2.8.0,<2.9.0a0 + - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - orc >=2.0.3,<2.0.4.0a0 @@ -3292,189 +3293,189 @@ packages: - zstd >=1.5.6,<1.6.0a0 constrains: - parquet-cpp <0.0a0 - - arrow-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8780597 - timestamp: 1732863546099 + size: 8035987 + timestamp: 1733607600970 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - sha256: 3de5719a7035baad7e665116dce7bb3d069f0c1916e163c553e2e491bbe8b614 - md5: 6197dcb930f6254e9b2fdc416be56b71 + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + sha256: fe8cb6feeed0858cb8e7cc8889ae20165527934778adb8f7b1f2f5d1f7ade16d + md5: e4ed6162593fbb01f4d742db4215f70c depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libgcc >=13 - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libcxx >=18 license: Apache-2.0 license_family: APACHE - size: 611272 - timestamp: 1732863586114 + size: 483574 + timestamp: 1733605591770 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - sha256: e6c8988d1d79163d6d13dda21f9e401f5df4b3af7e0d221718522c600894adcf - md5: 14fede66c995f3cf958797e9fb567e22 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + sha256: 9e88f04409da9ca2fedc5f7bf0987ff28e96d08742e59672f744ec4624a4c991 + md5: d532c42abe13841806d97f4d9cd6dcf5 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 577510 - timestamp: 1732950190684 + size: 578174 + timestamp: 1733607685962 - kind: conda name: libarrow-acero version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - sha256: cfe32f1b0712b77d2c792a839fe4ea2790cabd99d47cd8e1b20ba2d3c8b113b2 - md5: 60351279d7dfd7c254c46aabf9aa35a6 + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + sha256: b3b4ddb2718c96c93d9b50dbf8f66265af9198b55852b4d3424c13a79ec3f84d + md5: 82bcbfe424868ce66b5ab986999f534d depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libcxx >=18 + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 483362 - timestamp: 1732948000606 + size: 610772 + timestamp: 1733607505368 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - sha256: 7b3db3d5a7e411f8897e8d74403c1d871f3054300f5009c4bdf75da011bc3f42 - md5: 77501831a2aabbaabac55e8cb3b6900a + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + sha256: 862fb21b871666495b4bb5e63f5fcb66b93c08893e92412b01e2717e081836eb + md5: bb940b4c583e4c8e5a9f193fabdb5840 depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libgcc >=13 - - libparquet 18.1.0 h6bd9018_1_cpu - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libcxx >=18 + - libparquet 18.1.0 hf4cc9e7_4_cpu license: Apache-2.0 license_family: APACHE - size: 585458 - timestamp: 1732863686753 + size: 489457 + timestamp: 1733607417337 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - sha256: 53cdae2150c22ef9b5d6de8d0ee8ac52eeacc50fdfa2fa3ea644b52436d1eeb1 - md5: c54d83f012a40fef8a2dc4856e4340a0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + sha256: 4a9ffedc5570ce57a6864e46dcf36ec108557791b50fd43e82eb739f3717ff2f + md5: 1a6c409f45857d30f581a1a53abb2298 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu - libgcc >=13 - - libparquet 18.1.0 h23a96eb_2_cpu + - libparquet 18.1.0 h34a048e_4_cpu - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 559143 - timestamp: 1732950272727 + size: 561495 + timestamp: 1733607973097 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - sha256: eeae9e8d382c482076f4739455b53f16851d7f99be219b6f96dd4e765132b446 - md5: b5fcaddabf47aa15e50feff072a55ada + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + sha256: 9c898ab7377953b8c7218347fdb63376d4f977cabfb8fa6bd1b421a75b8cb335 + md5: fa31464c75b20c2f3ac8fc758e034887 depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libcxx >=18 - - libparquet 18.1.0 h5168bdf_2_cpu + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libgcc >=13 + - libparquet 18.1.0 hf4f6db6_4_cpu + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 489769 - timestamp: 1732949732423 + size: 585517 + timestamp: 1733607943984 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h14ec2bd_2_cpu - build_number: 2 + build: h3644d33_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda - sha256: e8923d62cfaadc4a8af1735e717fd4980cad693419e63aed04380566d9fd46df - md5: 4fd0103449cf40214fd348643aa78fff + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda + sha256: ac053b3efd1a2701e6f34195d90a0da21dca22d70916ae6b10a019c2be6cd44c + md5: ce3062cd5caa0bdafa7976535862e648 depends: - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu - - libarrow-dataset 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu + - libarrow-dataset 18.1.0 h512cd83_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 515352 - timestamp: 1732950311471 + size: 513745 + timestamp: 1733608111290 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h5c8f2c3_1_cpu - build_number: 1 + build: had74209_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda - sha256: e77a354bfc0ba7b04c856f1bb16e7b08950bcde54026087bafec46090380fcc1 - md5: 5d47bd2674afd104dbe2f2f3534594b0 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda + sha256: 29e44d6070d64cd4b357e02afeae233d2e90d917a008a2724c9cd463015f0319 + md5: bf261e5fa25ce4acc11a80bdc73b88b2 depends: - __glibc >=2.17,<3.0.a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libarrow-dataset 18.1.0 h5888daf_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libarrow-dataset 18.1.0 h8bbc2ab_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 520681 - timestamp: 1732863726954 + size: 519919 + timestamp: 1733608152065 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h9b432b6_2_cpu - build_number: 2 + build: hf3d3107_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda - sha256: 6dde802134bd2e78581eb838c049b2e7e378899706b471f7072222a6b1284b90 - md5: 49e7c0460532a73f34bd127fff009224 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda + sha256: 9d9ebd042b9e8561b64f057d2adb24d331a772ccf1af3ed2d8b5b1566729f236 + md5: c093b05dc6d1b6057342d3dd6f3bd0d8 depends: - __osx >=11.0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libarrow-dataset 18.1.0 h605b82c_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libarrow-dataset 18.1.0 h1dc2043_4_cpu - libcxx >=18 - libprotobuf >=5.28.2,<5.28.3.0a0 license: Apache-2.0 license_family: APACHE - size: 451127 - timestamp: 1732950194322 + size: 451982 + timestamp: 1733607898511 - kind: conda name: libblas version: 3.9.0 @@ -3846,18 +3847,18 @@ packages: timestamp: 1726659794676 - kind: conda name: libcxx - version: 19.1.4 + version: 19.1.5 build: ha82da77_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda - sha256: 342896ebc1d6acbf022ca6df006a936b9a472579e91e3c502cb1f52f218b78e9 - md5: a2d3d484d95889fccdd09498d8f6bf9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda + sha256: 7918cc0bb7a6554cdd3eee634c3dc414a1ab8ec49faeca1567367bb92118f9d7 + md5: 3c7be0df28ccda1d193ea6de56dcb5ff depends: - __osx >=11.0 license: Apache-2.0 WITH LLVM-exception license_family: Apache - size: 520678 - timestamp: 1732060258949 + size: 519819 + timestamp: 1733291654212 - kind: conda name: libdeflate version: '1.22' @@ -4678,6 +4679,49 @@ packages: license_family: BSD size: 15823 timestamp: 1729643275943 +- kind: conda + name: liblzma + version: 5.6.3 + build: h39f12f2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda + sha256: d863b8257406918ffdc50ae65502f2b2d6cede29404d09a094f59509d6a0aaf1 + md5: b2553114a7f5e20ccd02378a77d836aa + depends: + - __osx >=11.0 + license: 0BSD + size: 99129 + timestamp: 1733407496073 +- kind: conda + name: liblzma + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda + sha256: d1cce0b7d62d1e54e2164d3e0667ee808efc6c3870256e5b47a150cd0bf46824 + md5: eb08b903681f9f2432c320e8ed626723 + depends: + - libgcc >=13 + license: 0BSD + size: 124138 + timestamp: 1733409137214 +- kind: conda + name: liblzma + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda + sha256: e6e425252f3839e2756e4af1ea2074dffd3396c161bf460629f9dfd6a65f15c6 + md5: 2ecf2f1c7e4e21fcfe6423a51a992d84 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: 0BSD + size: 111132 + timestamp: 1733407410083 - kind: conda name: libnghttp2 version: 1.64.0 @@ -4829,61 +4873,61 @@ packages: - kind: conda name: libparquet version: 18.1.0 - build: h23a96eb_2_cpu - build_number: 2 + build: h34a048e_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda - sha256: 83b8fa4a90e214fcd6018f890947666f055f79563fff2b7c3d5f37d894f3a000 - md5: ce205782960a580fa43cfcccca22ad8d + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda + sha256: 488d82356fc4e6dfd6c10a4100c36af17db1b7eb72cce0bd8973014220dc3066 + md5: 46db27c16b29f48a37a40e3b2c9dcfe3 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1115906 - timestamp: 1732950250848 + size: 1117278 + timestamp: 1733607904359 - kind: conda name: libparquet version: 18.1.0 - build: h5168bdf_2_cpu - build_number: 2 + build: hf4cc9e7_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda - sha256: 454487d113974b923b4214a65aab780fd90c4914390d0b1f4640b1bf60537bff - md5: f995df7ee206617a3e858fd932d7bd2d + url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda + sha256: ccadab6395090b3cbc54243fcf5c6e49eaee46aaaa4221ca8ca7803a34bdc25d + md5: b462d962b5254923c5f65ce1c68dfc17 depends: - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu - libcxx >=18 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 872333 - timestamp: 1732949558028 + size: 873584 + timestamp: 1733607239103 - kind: conda name: libparquet version: 18.1.0 - build: h6bd9018_1_cpu - build_number: 1 + build: hf4f6db6_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda - sha256: 0df119f4c1a2387d910e132c670b29ee5b29dd79384549de6f1a43067515c8ba - md5: 1054909202f86e38bbbb7ca1131b8471 + url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda + sha256: f957b6ea5c4023448891f63f7b184a663d85aa5b2717b0e0ebfbfcf97b542751 + md5: f18b10bf19bb384183f2aa546e9f6f0a depends: - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1203523 - timestamp: 1732863665743 + size: 1204859 + timestamp: 1733607834047 - kind: conda name: libpng version: 1.6.44 @@ -5084,50 +5128,47 @@ packages: timestamp: 1716828607917 - kind: conda name: libsqlite - version: 3.47.0 - build: hadc24fc_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda - sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 - md5: b6f02b52a174e612e89548f4663ce56a + version: 3.47.2 + build: h3f77e49_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda + sha256: f192f3c8973de9ec4c214990715f13b781965247a5cedf9162e7f9e699cfc3c4 + md5: 122d6f29470f1a991e85608e77e56a8a depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 + - __osx >=11.0 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 875349 - timestamp: 1730208050020 + size: 850553 + timestamp: 1733762057506 - kind: conda name: libsqlite - version: 3.47.0 - build: hbaaea75_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda - sha256: 5a96caa566c11e5a5ebdcdb86a0759a7fb27d3c5f42e6a0fd0d6023c1e935d9e - md5: 07a14fbe439eef078cc479deca321161 + version: 3.47.2 + build: h5eb1b54_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda + sha256: 885a27fa84a5a73ed9779168c02b6c386e2fc7a53f0566b32a09ceca146b42b4 + md5: d4bf59f8783a4a66c0aec568f6de3ff4 depends: - - __osx >=11.0 + - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 837683 - timestamp: 1730208293578 + size: 1042182 + timestamp: 1733761913736 - kind: conda name: libsqlite - version: 3.47.0 - build: hc4a20ef_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda - sha256: 73e143fdb966b61cd25ab804d416d87dfce43ac684e0fac3ad8b1450796331ab - md5: a6b185aac10d08028340858f77231b23 + version: 3.47.2 + build: hee588c1_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda + sha256: 48af21ebc2cbf358976f1e0f4a0ab9e91dfc83d0ef337cf3837c6f5bc22fb352 + md5: b58da17db24b6e08bcbf8fed2fb8c915 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 1041855 - timestamp: 1730208187962 + size: 873551 + timestamp: 1733761824646 - kind: conda name: libssh2 version: 1.11.1 @@ -5294,86 +5335,70 @@ packages: - kind: conda name: libtiff version: 4.7.0 - build: he137b08_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 - md5: 63872517c98aa305da58a757c443698e + build: ha962b0a_2 + build_number: 2 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda + sha256: d9e6835fd189b85eb90dbfdcc51f5375decbf5bb53130042f49bbd6bfb0b24be + md5: 8e14b5225c593f099a21971568e6d7b4 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - lerc >=4.0.0,<5.0a0 + - libcxx >=18 - libdeflate >=1.22,<1.23.0a0 - - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 - - libstdcxx >=13 + - liblzma >=5.6.3,<6.0a0 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 428156 - timestamp: 1728232228989 + size: 370387 + timestamp: 1733443310502 - kind: conda name: libtiff version: 4.7.0 - build: hec21d91_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda - sha256: 14ecb9e129b1b5ffd6d4bee48de95cd2cd0973c712e1b965d3ef977cca23936d - md5: 1f80061f5ba6956fcdc381f34618cd8d + build: hc4654cb_2 + build_number: 2 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + sha256: 18653b4a5c73e19c5e86ff72dab9bf59f5cc43d7f404a6be705d152dfd5e0660 + md5: be54fb40ea32e8fe9dbaa94d4528b57e depends: + - __glibc >=2.17,<3.0.a0 - lerc >=4.0.0,<5.0a0 - libdeflate >=1.22,<1.23.0a0 - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 464938 - timestamp: 1728232266969 + size: 429018 + timestamp: 1733443013288 - kind: conda name: libtiff version: 4.7.0 - build: hfce79cd_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda - sha256: 97ba24c74750b6e731b3fe0d2a751cda6148b4937d2cc3f72d43bf7b3885c39d - md5: b9abf45f7c64caf3303725f1aa0e9a4d + build: hca96517_2 + build_number: 2 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda + sha256: d736d840d1f2446234195adfcb51b132c85797730b6f42ebf058d350fa9d20e8 + md5: 278dcef6d1ea28c04109c3f5dea126cb depends: - - __osx >=11.0 - lerc >=4.0.0,<5.0a0 - - libcxx >=17 - libdeflate >=1.22,<1.23.0a0 + - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 + - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 366323 - timestamp: 1728232400072 -- kind: conda - name: libutf8proc - version: 2.8.0 - build: hf23e847_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda - sha256: 104cf5b427fc914fec63e55f685a39480abeb4beb34bdbc77dea084c8f5a55cb - md5: b1aa0faa95017bca11369bd080487ec4 - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - license: MIT - license_family: MIT - size: 80852 - timestamp: 1732829699583 + size: 464857 + timestamp: 1733443105529 - kind: conda name: libutf8proc version: 2.9.0 @@ -5404,6 +5429,22 @@ packages: license_family: MIT size: 81526 timestamp: 1732868466862 +- kind: conda + name: libutf8proc + version: 2.9.0 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda + sha256: 9794e6388e780c3310d46f773bbc924d4053375c3fcdb07a704b57f4616db928 + md5: 1e936bd23d737aac62a18e9a1e7f8b18 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + size: 81500 + timestamp: 1732868419835 - kind: conda name: libuuid version: 2.38.1 @@ -5604,60 +5645,62 @@ packages: - kind: conda name: libxml2 version: 2.13.5 - build: h064dc61_0 + build: h0d44e9d_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda - sha256: 7ab7fb45a0014981d35247cd5b09057fc8ed3c07378086a6c7ad552915928647 - md5: fb16b85a5be1328ac1c44b098b74c570 + url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda + sha256: 306e18aa647d8208ad2cd0e62d84933222b2fbe93d2d53cd5283d2256b1d54de + md5: f5b05674697ae7d2c5932766695945e1 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 constrains: - icu <0.0a0 license: MIT license_family: MIT - size: 689363 - timestamp: 1731489619071 + size: 689993 + timestamp: 1733443678322 - kind: conda name: libxml2 version: 2.13.5 - build: h376fa9f_0 + build: h178c5d8_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda - sha256: d443703d324f3dbd628d58ea498ab0e474c06d5771e7f55baf215fdbc11ceb87 - md5: adea92805465ed3dcf0776b428e34744 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda + sha256: d7af3f25a4cece170502acd38f2dafbea4521f373f46dcb28a37fbe6ac2da544 + md5: 3dc3cff0eca1640a6acbbfab2f78139e depends: - __osx >=11.0 + - icu >=75.1,<76.0a0 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - constrains: - - icu <0.0a0 license: MIT license_family: MIT - size: 582076 - timestamp: 1731489850179 + size: 582898 + timestamp: 1733443841584 - kind: conda name: libxml2 version: 2.13.5 - build: hf4efe5d_0 + build: h2e0c361_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda - sha256: bb5033bd79371e82886f9e83ef86babae8e0f50b77d7f9302210345b9205d939 - md5: 5650ac8a6ed680c032bdabe40ad19ee0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda + sha256: dc0e86d35a836af6e99d18f50c6551fc64c53ed3a3da5a9fea90e78763cf14b4 + md5: 63410f85031930cde371dfe0ee89109a depends: - icu >=75.1,<76.0a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 734453 - timestamp: 1731489860751 + size: 732155 + timestamp: 1733443825814 - kind: conda name: libzlib version: 1.3.1 @@ -5712,20 +5755,20 @@ packages: timestamp: 1727963148474 - kind: conda name: llvm-openmp - version: 19.1.4 + version: 19.1.5 build: hdb05f8b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda - sha256: dfdcd8de37899d984326f9734b28f46f80b88c068e44c562933a8b3117f2401a - md5: 76ca179ec970bea6e275e2fa477c2d3c + url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda + sha256: e7ba0d8b718925efdcf1309f5e776e3264cc172d3af8d4048b39627c50a1abc0 + md5: f2c2e187a1d2637d282e34dc92021a70 depends: - __osx >=11.0 constrains: - - openmp 19.1.4|19.1.4.* + - openmp 19.1.5|19.1.5.* license: Apache-2.0 WITH LLVM-exception license_family: APACHE - size: 281554 - timestamp: 1732102484807 + size: 281120 + timestamp: 1733376089600 - kind: conda name: lz4-c version: 1.9.4 @@ -5773,27 +5816,29 @@ packages: - kind: conda name: markdown-it-py version: 3.0.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - sha256: c041b0eaf7a6af3344d5dd452815cdc148d6284fec25a4fa3f4263b3a021e962 - md5: 93a8e71256479c62074356ef6ebf501b + url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + sha256: 0fbacdfb31e55964152b24d5567e9a9996e1e7902fb08eb7d91b5fd6ce60803a + md5: fee3164ac23dfca50cfcc8b85ddefb81 depends: - mdurl >=0.1,<1 - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 64356 - timestamp: 1686175179621 + size: 64430 + timestamp: 1733250550053 - kind: conda name: markupsafe version: 3.0.2 - build: py311h2dc5d0c_0 + build: py311h2dc5d0c_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py311h2dc5d0c_0.conda - sha256: 364a0d55abc4c60bc575c81a4acc9e98ea27565147d4d4dc672bad4b2d069710 - md5: 15e4dadd59e93baad7275249f10b9472 + url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py311h2dc5d0c_1.conda + sha256: 0291d90706ac6d3eea73e66cd290ef6d805da3fad388d1d476b8536ec92ca9a8 + md5: 6565a715337ae279e351d0abd8ffe88a depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 @@ -5803,16 +5848,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 25591 - timestamp: 1729351519326 + size: 25354 + timestamp: 1733219879408 - kind: conda name: markupsafe version: 3.0.2 - build: py311h56c23cb_0 + build: py311h4921393_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py311h56c23cb_0.conda - sha256: 74bbdf6dbfe561026fed5c7d5c1a123e6dff0fedc5bc7ed0c6e9037c95ca96d7 - md5: be48a4cc178a91af3b1ccd58c14efde2 + url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py311h4921393_1.conda + sha256: 4f738a7c80e34e5e5d558e946b06d08e7c40e3cc4bdf08140bf782c359845501 + md5: 249e2f6f5393bb6b36b3d3a3eebdcdf9 depends: - __osx >=11.0 - python >=3.11,<3.12.0a0 @@ -5822,16 +5868,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 25180 - timestamp: 1729351536390 + size: 24976 + timestamp: 1733219849253 - kind: conda name: markupsafe version: 3.0.2 - build: py311ha09ea12_0 + build: py311ha09ea12_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py311ha09ea12_0.conda - sha256: 8714908e7190f362bc04636e6ff28ae8a3c008bbc92b126839ce7130c0c975f5 - md5: f40833364f9c3e847cc35a94c055f5c2 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py311ha09ea12_1.conda + sha256: 0af0d9357e309876adf6ca61fa574afee74741fb1628755ce1f36028d294e854 + md5: eb3611be0cc15845bf6e5075adc520ee depends: - libgcc >=13 - python >=3.11,<3.12.0a0 @@ -5840,80 +5887,80 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 25805 - timestamp: 1729352296161 + size: 25787 + timestamp: 1733220925299 - kind: conda name: max - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - sha256: 2aae2a8286dca29453e8cc8cfe13511aa016a521ac0c9201ceb24d1ba6c4138e - md5: 9c25081ace6ad2c13675cf0123109cb9 - depends: - - max-core ==24.6.0.dev2024120306 release - - max-python >=24.6.0.dev2024120306,<25.0a0 - - mojo-jupyter ==24.6.0.dev2024120306 release - - mblack ==24.6.0.dev2024120306 release + url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + sha256: 37a6103a6b2c7886ed5837d41a819f1a127eef7e810b2b5ecfb03f7caf263514 + md5: b13d61319f43570ce681408a1b27d9d5 + depends: + - max-core ==24.6.0.dev2024120905 release + - max-python >=24.6.0.dev2024120905,<25.0a0 + - mojo-jupyter ==24.6.0.dev2024120905 release + - mblack ==24.6.0.dev2024120905 release license: LicenseRef-Modular-Proprietary - size: 9929 - timestamp: 1733209293577 + size: 9911 + timestamp: 1733721408716 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - sha256: a82534696c6e078fb4e14b4b0f058336ffd0a647f7404e85aaee18eec25be067 - md5: c249d77d8e5885dd0eacd9028131413f + url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + sha256: 0f94138601ceab2c8b277c7d175d762840072cfdfd0ead7264fbd1ff9f70442d + md5: 00617be1a2fef13b5630d9cbe92f9d3c depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 254711372 - timestamp: 1733209193854 + size: 247639885 + timestamp: 1733721408714 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - sha256: bd0858a3e2069a86cd71370322e7ac26ad3948225e4f0811e4fbf8771d44d0ea - md5: e5b6ae7316dc2b08a52cee8f27b4f484 + url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + sha256: 1aaf2ffb09d6a2aa6b65d76c381476eb88947470580a0d56909bfd578d5eb385 + md5: c7ff53814f0c254c75dc7ab8f0c66b38 depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 258488596 - timestamp: 1733209293575 + size: 251498878 + timestamp: 1733721396377 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - sha256: 88b5f2cbb2724067d33b10515613ec845f134c3758fd063852ac191a276d7812 - md5: 05acbd2d9cf25aa913a979aa9802c194 + url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + sha256: 00cc8ce6adc131b858df51423201b8f028aa944ac09e56c563a1108c22eaccd2 + md5: 71554a4c0e81a1034908bc1cb716b30b depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 220248523 - timestamp: 1733209020078 + size: 212030191 + timestamp: 1733721567995 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.11release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.11release.conda - sha256: fe78fef13dabb20d1a64aa0a0f1abb668a28ba18221f39a659b73236dbae9a60 - md5: 86e43abaa5b98cfd229e964be3a614ce + url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.11release.conda + sha256: 94d3d821551ee202ef270d4fbce8003f35f33d0cc98a92b17f1739caa5623812 + md5: 57061ee2198633af94d4713cdba1ebd7 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.11.* - pillow - fastapi @@ -5923,7 +5970,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -5936,18 +5982,18 @@ packages: arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 128574125 - timestamp: 1733209193860 + size: 123763299 + timestamp: 1733721408721 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.11release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.11release.conda - sha256: ba069825f4ef3ee3eb8079b652666d0a4d80ddf76e0cfe12782bb88f630d181a - md5: d6beb27837f451771445062607b45f38 + url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.11release.conda + sha256: 90b94a041502fd79e408c5ab5c9108e6411228fc761c11eab0a568d4a193ed0c + md5: 920b32c37e877ed3073f6ad94f614e8b depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.11.* - pillow - fastapi @@ -5957,7 +6003,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -5970,18 +6015,18 @@ packages: arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 132245621 - timestamp: 1733209293581 + size: 127444260 + timestamp: 1733721396385 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.11release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.11release.conda - sha256: e9ca73474ecae1d88742e3f38067741ad532bea307d92ef8bbc4b03434e71502 - md5: 7cfbd7cb82332bc7e992f1297d0fb9a3 + url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.11release.conda + sha256: 10ee1c9e5cc1b176238d018234979c15ec95aa8a9795d2917235bc6eda4c730f + md5: 9fb0abe3fe34b82bf8937091140967f0 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.11.* - pillow - fastapi @@ -5991,7 +6036,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -6004,17 +6048,17 @@ packages: arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 119124363 - timestamp: 1733209020081 + size: 112461801 + timestamp: 1733721567997 - kind: conda name: mblack - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - sha256: 35b22caab89b65a52b9e7877762a58bba8cd21137ac1383e268b8a2ae45173ac - md5: f77eafd932de3ae309643ea716ba3c3a + url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + sha256: e302e262a58592b5b8614829237760967d685cb20a44e54981916eb6c2b6b7a2 + md5: b34a59910660011ad1f42bfc1ae4ae54 depends: - python >=3.9,<3.13 - click >=8.0.0 @@ -6024,40 +6068,41 @@ packages: - platformdirs >=2 - python license: MIT - size: 130649 - timestamp: 1733209293580 + size: 130740 + timestamp: 1733721408720 - kind: conda name: mdurl version: 0.1.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - sha256: 64073dfb6bb429d52fff30891877b48c7ec0f89625b1bf844905b66a81cce6e1 - md5: 776a8dd9e824f77abac30e6ef43a8f7a + url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + sha256: 78c1bbe1723449c52b7a9df1af2ee5f005209f67e40b6e1d3c7619127c43b1c7 + md5: 592132998493b3ff25fd7479396e8351 depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14680 - timestamp: 1704317789138 + size: 14465 + timestamp: 1733255681319 - kind: conda name: mojo-jupyter - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda - sha256: dd1fcd4298ef08be4507931babe70d6b335dc28d5ead602460747edc4f10c2dc - md5: 8bb40dfabe84757d93d3053fdf4b0a58 + url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda + sha256: bb71277508a55875b6011651bc825599e26a47145ab1e9c4e7c2abd853200a00 + md5: 4fc85c9cb1efe841b69d339d4da5b3a1 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python >=3.9,<3.13 - jupyter_client >=8.6.2,<8.7 - python license: LicenseRef-Modular-Proprietary - size: 22940 - timestamp: 1733209293581 + size: 11366 + timestamp: 1733721408720 - kind: conda name: multidict version: 6.1.0 @@ -6170,18 +6215,19 @@ packages: - kind: conda name: mypy_extensions version: 1.0.0 - build: pyha770c72_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda - sha256: f240217476e148e825420c6bc3a0c0efb08c0718b7042fae960400c02af858a3 - md5: 4eccaeba205f0aed9ac3a9ea58568ca3 + url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda + sha256: 1895f47b7d68581a6facde5cb13ab8c2764c2e53a76bd746f8f98910dc4e08fe + md5: 29097e7ea634a45cc5386b95cac6568f depends: - - python >=3.5 + - python >=3.9 license: MIT license_family: MIT - size: 10492 - timestamp: 1675543414256 + size: 10854 + timestamp: 1733230986902 - kind: conda name: ncurses version: '6.5' @@ -6394,21 +6440,21 @@ packages: - kind: conda name: opentelemetry-api version: 1.28.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda - sha256: e267ed59ea8f357c3471defef796ce4f4555eacd9ee0ed2d47d3dd539ee7ee2f - md5: f1307fb38a8fd2220def45ec1691a21c + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda + sha256: 780dbc942a6075db7bdbaf556023be50c34a6111a99e465878d7bab0e5e0d7f4 + md5: a06f1e9d97c98d26f06675236c9ea554 depends: - deprecated >=1.2.6 - importlib-metadata >=6.0.0,<7.1.0 - - python >=3.8 + - python >=3.9 - setuptools >=16.0 license: Apache-2.0 - license_family: APACHE - size: 44014 - timestamp: 1731985724169 + size: 44242 + timestamp: 1733734361129 - kind: conda name: opentelemetry-exporter-otlp-proto-common version: 1.28.2 @@ -6466,66 +6512,6 @@ packages: license_family: APACHE size: 14721 timestamp: 1695214221489 -- kind: conda - name: opentelemetry-instrumentation - version: 0.49b2 - build: pyhff2d567_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - sha256: ee20ad159bc040642fcbce1b25f8a9fc1d788b53c6bf593a0891bf7887ec7c5f - md5: 13d714acd504cd0141688c908521c0b9 - depends: - - opentelemetry-api ~=1.4 - - opentelemetry-semantic-conventions 0.49b2 - - packaging >=18.0 - - python >=3.9 - - setuptools >=16.0 - - wrapt <2.0.0,>=1.0.0 - license: Apache-2.0 - license_family: APACHE - size: 31616 - timestamp: 1732070359772 -- kind: conda - name: opentelemetry-instrumentation-asgi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - sha256: 7b2b4da037baa506a82c5e3e711905f34448441e069a6e3affb0e4917b3ee5e0 - md5: 482ad6cdc507689d5c33eb22aa16d83e - depends: - - asgiref ~=3.0 - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 23749 - timestamp: 1732086813641 -- kind: conda - name: opentelemetry-instrumentation-fastapi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - sha256: e853f62b4c56e308f349a3f360cf4d6aa814a9dc926e727c25effcf4121af68c - md5: 59c01fcead989ba58c5dc79e3ac3aab3 - depends: - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-instrumentation-asgi 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 20288 - timestamp: 1732093785486 - kind: conda name: opentelemetry-proto version: 1.28.2 @@ -6564,35 +6550,20 @@ packages: - kind: conda name: opentelemetry-semantic-conventions version: 0.49b2 - build: pyh10f6f8f_0 + build: pyh3cfb1c2_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - sha256: 5e3869ad66082b16d56bab8219fad0c8c09090ec93eb866327eed788fe5c9340 - md5: d95dd6e8a70417e394bb16dad5cff408 + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda + sha256: 28180ffa6611f117c782c7d72066b50332c1df0bdcfed0dea4e446a20c4b7d10 + md5: e0ada55d18e6bd5a8e61943b4b5d3a8f depends: - deprecated >=1.2.6 - opentelemetry-api 1.28.2 - python >=3.9 license: Apache-2.0 - license_family: APACHE - size: 81534 - timestamp: 1732067304518 -- kind: conda - name: opentelemetry-util-http - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda - sha256: 73bb1cbb640b0732c1a04764a9704bb048ab77d6cb9c6439eb50ec0ecf926ede - md5: f267c60fc629a9bd1aa388f6ed8ea0ab - depends: - - python >=3.8 - license: Apache-2.0 - license_family: APACHE - size: 19241 - timestamp: 1732081026829 + size: 81099 + timestamp: 1733749104727 - kind: conda name: orc version: 2.0.3 @@ -6748,18 +6719,19 @@ packages: - kind: conda name: pathspec version: 0.12.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - sha256: 4e534e66bfe8b1e035d2169d0e5b185450546b17e36764272863e22e0370be4d - md5: 17064acba08d3686f1135b5ec1b32b12 + url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + sha256: 9f64009cdf5b8e529995f18e03665b03f5d07c0b17445b8badef45bde76249ee + md5: 617f15191456cc6a13db418a275435e5 depends: - - python >=3.7 + - python >=3.9 license: MPL-2.0 license_family: MOZILLA - size: 41173 - timestamp: 1702250135032 + size: 41075 + timestamp: 1733233471940 - kind: conda name: pillow version: 11.0.0 @@ -6837,42 +6809,42 @@ packages: - kind: conda name: platformdirs version: 4.3.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - md5: fd8f2b18b65bbf62e8f653100690c8d2 + url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + sha256: bb50f6499e8bc1d1a26f17716c97984671121608dc0c3ecd34858112bce59a27 + md5: 577852c7e53901ddccc7e6a9959ddebe depends: - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 20625 - timestamp: 1726613611845 + size: 20448 + timestamp: 1733232756001 - kind: conda name: prometheus_client - version: 0.21.0 + version: 0.21.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - sha256: 01f0c3dd00081637ed920a922b17bcc8ed49608404ee466ced806856e671f6b9 - md5: 07e9550ddff45150bfc7da146268e165 + url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + sha256: bc8f00d5155deb7b47702cb8370f233935704100dbc23e30747c161d1b6cf3ab + md5: 3e01e386307acc60b2f89af0b2e161aa depends: - - python >=3.8 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 49024 - timestamp: 1726902073034 + size: 49002 + timestamp: 1733327434163 - kind: conda name: propcache - version: 0.2.0 - build: py311h460d6c5_2 - build_number: 2 + version: 0.2.1 + build: py311h917b07b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py311h460d6c5_2.conda - sha256: 7e6a656b09d494f0623c8bd0969195d1cd3f62a2ab5a2474a667c88e21cca971 - md5: 8fb75727dfbab541ece9542718cc30f4 + url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py311h917b07b_0.conda + sha256: 7d4185519514a4d357348e7a31974afb713ab6e0d7ea3a9f27a36f3b6515b638 + md5: f0599cb37e2cf8710eaae4b4d85f7759 depends: - __osx >=11.0 - python >=3.11,<3.12.0a0 @@ -6880,17 +6852,16 @@ packages: - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: APACHE - size: 48222 - timestamp: 1728546126843 + size: 48002 + timestamp: 1733392010497 - kind: conda name: propcache - version: 0.2.0 - build: py311h9ecbd09_2 - build_number: 2 + version: 0.2.1 + build: py311h9ecbd09_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py311h9ecbd09_2.conda - sha256: bc2fbbc3f494884b62f288db2f6d53f57a9a1129cc95138780abdb783c487bc4 - md5: 85a56dd3b692fb5435de1e901354b5b8 + url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py311h9ecbd09_0.conda + sha256: 3323f2ed707a9fe89ee142c9ea1adef0cf8f75fb005ec414b50e8cc0381b57f4 + md5: 20d1c4ad24ac50f0941c63e81e4a86b7 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 @@ -6898,17 +6869,16 @@ packages: - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: APACHE - size: 53716 - timestamp: 1728545855994 + size: 53315 + timestamp: 1733391912538 - kind: conda name: propcache - version: 0.2.0 - build: py311ha879c10_2 - build_number: 2 + version: 0.2.1 + build: py311ha879c10_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py311ha879c10_2.conda - sha256: a572848e9540b4d57064adb3db05c6b89deb0d99dab90b82c5cbc7f4f45811fe - md5: 5e6f032fcfccdafc6b2cb5cd87f4d361 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py311ha879c10_0.conda + sha256: 9d6ed4a29efa5ea64b50097c450429944f116d06d883d23e5b5493eab0c68393 + md5: 15d3518828453960069fd7874fe88468 depends: - libgcc >=13 - python >=3.11,<3.12.0a0 @@ -6916,8 +6886,8 @@ packages: - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: APACHE - size: 53090 - timestamp: 1728546060903 + size: 52970 + timestamp: 1733392060312 - kind: conda name: protobuf version: 5.28.2 @@ -7172,13 +7142,13 @@ packages: timestamp: 1733195786147 - kind: conda name: pydantic - version: 2.10.2 + version: 2.10.3 build: pyh3cfb1c2_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda - sha256: 47368f0eeb63b2dd4c9c54ff35b216d01ae1c27b90d3c7a2066ef8e005f32103 - md5: e661b732b4d7514ace55a01873f03201 + url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda + sha256: cac9eebd3d5f8d8a497a9025d756257ddc75b8b3393e6737cb45077bd744d4f8 + md5: 194ef7f91286978521350f171b117f01 depends: - annotated-types >=0.6.0 - pydantic-core 2.27.1 @@ -7187,8 +7157,8 @@ packages: - typing_extensions >=4.12.2 license: MIT license_family: MIT - size: 316818 - timestamp: 1732689481710 + size: 317037 + timestamp: 1733316963547 - kind: conda name: pydantic-core version: 2.27.1 @@ -7269,18 +7239,19 @@ packages: - kind: conda name: pygments version: 2.18.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - md5: b7f5c092b8f9800150d998a71b76d5a1 + url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda + sha256: 0d6133545f268b2b89c2617c196fc791f365b538d4057ecd636d658c3b1e885d + md5: b38dc0206e2a530e5c2cf11dc086b31a depends: - - python >=3.8 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 879295 - timestamp: 1714846885370 + size: 876700 + timestamp: 1733221731178 - kind: conda name: pyinstrument version: 5.0.0 @@ -7335,110 +7306,110 @@ packages: - kind: conda name: pysocks version: 1.7.1 - build: pyha2e5f31_6 - build_number: 6 + build: pyha55dd90_7 + build_number: 7 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - md5: 2a7de29fb590ca14b5243c4c812c8025 + url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + sha256: ba3b032fa52709ce0d9fd388f63d330a026754587a2f461117cac9ab73d8d0d8 + md5: 461219d1a5bd61342293efa2c0c90eac depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 18981 - timestamp: 1661604969727 + size: 21085 + timestamp: 1733217331982 - kind: conda name: python - version: 3.11.10 - build: h5d932e8_3_cpython - build_number: 3 + version: 3.11.11 + build: h1683364_1_cpython + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.11.10-h5d932e8_3_cpython.conda - sha256: 59e53e0773660c6e02209f7efc4e2e7918110153a3a11ae0660b4c2c898ac700 - md5: ce35c787630db2ac26327d64c15943e1 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.11.11-h1683364_1_cpython.conda + sha256: b39a2253510b26213093cb29e27722cb33782aec213c020dfd17cd74d58f68e7 + md5: 7e8786cbe7b83e7011e681a4780c9b7f depends: - bzip2 >=1.0.8,<2.0a0 - ld_impl_linux-aarch64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libsqlite >=3.47.0,<4.0a0 - libuuid >=2.38.1,<3.0a0 - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.11.* *_cp311 license: Python-2.0 - size: 15359622 - timestamp: 1729041715586 + size: 15234582 + timestamp: 1733407838276 - kind: conda name: python - version: 3.11.10 - build: hc51fdd5_3_cpython - build_number: 3 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.10-hc51fdd5_3_cpython.conda - sha256: 95a2c487176867ded825e23eab1e581398f75c5323da0cb7577c3cff3d2f955b - md5: 2a47a0061d7d3030e45b66d23f01d101 + version: 3.11.11 + build: h9e4cc4f_1_cpython + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.11-h9e4cc4f_1_cpython.conda + sha256: b29ce0836fce55bdff8d5c5b71c4921a23f87d3b950aea89a9e75784120b06b0 + md5: 8387070aa413ce9a8cc35a509fae938b depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.6.3,<3.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.47.0,<4.0a0 + - libuuid >=2.38.1,<3.0a0 + - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.11.* *_cp311 license: Python-2.0 - size: 14598065 - timestamp: 1729042279642 + size: 30624804 + timestamp: 1733409665928 - kind: conda name: python - version: 3.11.10 - build: hc5c86c4_3_cpython - build_number: 3 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.11.10-hc5c86c4_3_cpython.conda - sha256: b7fa3bd48e3a3d30f65608e07759cefd27885c6388b3f612af85ce40282e6936 - md5: 9e1ad55c87368e662177661a998feed5 + version: 3.11.11 + build: hc22306f_1_cpython + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.11.11-hc22306f_1_cpython.conda + sha256: 94e198f6a5affa1431401fca7e3b27fda68c59f5ee726083288bff1f6bed8c7f + md5: 8d81dcd0be5bdcdd98e0f2482bf63784 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - bzip2 >=1.0.8,<2.0a0 - - ld_impl_linux-64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libgcc >=13 - - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 - - libuuid >=2.38.1,<3.0a0 - - libxcrypt >=4.4.36 + - liblzma >=5.6.3,<6.0a0 + - libsqlite >=3.47.0,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.11.* *_cp311 license: Python-2.0 - size: 30543977 - timestamp: 1729043512711 + size: 14647146 + timestamp: 1733409012105 - kind: conda name: python-dateutil version: 2.9.0.post0 @@ -7453,23 +7424,25 @@ packages: - python >=3.9 - six >=1.5 license: Apache-2.0 + license_family: APACHE size: 222505 timestamp: 1733215763718 - kind: conda name: python-dotenv version: 1.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - sha256: 2d4c80364f03315d606a50eddd493dbacc078e21412c2462c0f781eec49b572c - md5: c2997ea9360ac4e015658804a7a84f94 + url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + sha256: 99713f6b534fef94995c6c16fd21d59f3548784e9111775d692bdc7c44678f02 + md5: e5c6ed218664802d305e79cc2d4491de depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 24278 - timestamp: 1706018281544 + size: 24215 + timestamp: 1733243277223 - kind: conda name: python-json-logger version: 2.0.7 @@ -7488,33 +7461,35 @@ packages: - kind: conda name: python-multipart version: 0.0.19 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - sha256: ff5964cd5eafc118f9d9a15fd31cd88a7ecc756ef83b6095c69b1891a53e2177 - md5: fe524346d3a9aa0aaf353dc39f7d1715 + url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + sha256: e6f6bc3d2a51f45ca26d556c5a416efdacf49a918fefcd0b7c340121e608aa5f + md5: c74333aa447ed2b94d49e5db23da5de6 depends: - python >=3.9 license: Apache-2.0 license_family: Apache - size: 27780 - timestamp: 1733062326577 + size: 27768 + timestamp: 1733323160772 - kind: conda name: python-tzdata version: '2024.2' - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda - sha256: fe3f62ce2bc714bdaa222ab3f0344a2815ad9e853c6df38d15c9f25de8a3a6d4 - md5: 986287f89929b2d629bd6ef6497dc307 + url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda + sha256: 57c9a02ec25926fb48edca59b9ede107823e5d5c473b94a0e05cc0b9a193a642 + md5: c0def296b2f6d2dd7b030c2a7f66bb1f depends: - - python >=3.6 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 142527 - timestamp: 1727140688093 + size: 142235 + timestamp: 1733235414217 - kind: conda name: python-xxhash version: 3.5.0 @@ -7912,26 +7887,28 @@ packages: constrains: - chardet >=3.0.2,<6 license: Apache-2.0 + license_family: APACHE size: 58723 timestamp: 1733217126197 - kind: conda name: rich version: 13.9.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - sha256: c009488fc07fd5557434c9c1ad32ab1dd50241d6a766e4b2b4125cd6498585a8 - md5: bcf8cc8924b5d20ead3d122130b8320b + url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + sha256: 06a760c5ae572e72e865d5a87e9fe3cc171e1a9c996e63daf3db52ff1a0b4457 + md5: 7aed65d4ff222bfb7335997aa40b7da5 depends: - markdown-it-py >=2.2.0 - pygments >=2.13.0,<3.0.0 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0.0,<5.0.0 license: MIT license_family: MIT - size: 185481 - timestamp: 1730592349978 + size: 185646 + timestamp: 1733342347277 - kind: conda name: s2n version: 1.5.9 @@ -8039,94 +8016,99 @@ packages: - kind: conda name: shellingham version: 1.5.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - sha256: 3c49a0a101c41b7cf6ac05a1872d7a1f91f1b6d02eecb4a36b605a19517862bb - md5: d08db09a552699ee9e7eec56b4eb3899 + url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + sha256: 0557c090913aa63cdbe821dbdfa038a321b488e22bc80196c4b3b1aace4914ef + md5: 7c3c2a0f3ebdea2bbc35538d162b43bf depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 14568 - timestamp: 1698144516278 + size: 14462 + timestamp: 1733301007770 - kind: conda name: six - version: 1.16.0 - build: pyhd8ed1ab_1 - build_number: 1 + version: 1.17.0 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - sha256: 761b96fe7bea080b9c35dd2f87f788eb94b61d462645bd16f361e80ae0ff017c - md5: a516da6cfe1ec0a55e49737f017b4965 + url: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + sha256: 41db0180680cc67c3fa76544ffd48d6a5679d96f4b71d7498a759e94edc9a2db + md5: a451d576819089b0d672f18768be0f65 depends: - python >=3.9 license: MIT license_family: MIT size: 16385 - timestamp: 1733216901349 + timestamp: 1733381032766 - kind: conda name: snappy version: 1.2.1 - build: h1088aeb_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - sha256: 79f5d0a9098acf2ed16e6ecc4c11472b50ccf59feea37a7d585fd43888d7e41f - md5: e4ed5b015f525b56f95c26d85a4ea208 + build: h8bd8927_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + sha256: ec91e86eeb2c6bbf09d51351b851e945185d70661d2ada67204c9a6419d282d3 + md5: 3b3e64af585eadfb52bb90b553db5edf depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 42888 - timestamp: 1720003817527 + size: 42739 + timestamp: 1733501881851 - kind: conda name: snappy version: 1.2.1 - build: ha2e4443_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - sha256: dc7c8e0e8c3e8702aae81c52d940bfaabe756953ee51b1f1757e891bab62cf7f - md5: 6b7dcc7349efd123d493d2dbe85a045f + build: h98b9ce2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + sha256: 4242f95b215127a006eb664fe26ed5a82df87e90cbdbc7ce7ff4971f0720997f + md5: ded86dee325290da2967a3fea3800eb5 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __osx >=11.0 + - libcxx >=18 license: BSD-3-Clause license_family: BSD - size: 42465 - timestamp: 1720003704360 + size: 35857 + timestamp: 1733502172664 - kind: conda name: snappy version: 1.2.1 - build: hd02b534_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - sha256: cb7a9440241c6092e0f1c795fdca149c4767023e783eaf9cfebc501f906b4897 - md5: 69d0f9694f3294418ee935da3d5f7272 + build: hd4fb6f5_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + sha256: c4a07ae5def8d55128f25a567a296ef9d7bf99a3bc79d46bd5160c076a5f50af + md5: 2fcc6cd1e5550deb509073fd2e6693e1 depends: - - __osx >=11.0 - - libcxx >=16 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 35708 - timestamp: 1720003794374 + size: 43032 + timestamp: 1733501964775 - kind: conda name: sniffio version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda - sha256: bc12100b2d8836b93c55068b463190505b8064d0fc7d025e89f20ebf22fe6c2b - md5: 490730480d76cf9c8f8f2849719c6e2b + url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda + sha256: c2248418c310bdd1719b186796ae50a8a77ce555228b6acd32768e2543a15012 + md5: bf7a226e58dfb8346c70df36065d86c9 depends: - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 15064 - timestamp: 1708953086199 + size: 15019 + timestamp: 1733244175724 - kind: conda name: sse-starlette version: 2.1.3 @@ -8148,20 +8130,21 @@ packages: - kind: conda name: starlette version: 0.41.3 - build: pyh7900ff3_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda - sha256: 33986032cb0515f7e9f6647d07006b7dc49b3f373b73d5a1826e6979c661b27a - md5: 0889c5a3e95d8c382cff7556757aedb0 + url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda + sha256: b74fc76107487eb26624c01fc55bfab7eed03ae82e003333c86d8a1eeac53672 + md5: 0207dac04ae2200701fab697f0aaaac4 depends: - anyio >=3.4.0,<5 - python >=3.9 - typing_extensions >=3.10.0 license: BSD-3-Clause license_family: BSD - size: 59069 - timestamp: 1732037161800 + size: 58838 + timestamp: 1733344472634 - kind: conda name: tk version: 8.6.13 @@ -8210,12 +8193,12 @@ packages: timestamp: 1699202167581 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py311h182c674_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py311h182c674_0.conda - sha256: 27006989d4aa4f7d3058ae9d089e0d8c6974ae55bc83d502c00ddee1332fa5ad - md5: c24051d78f982233e6f9fcc313e40a1c + url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py311h182c674_0.conda + sha256: 231ecde88bb291437a8060e4eaee74d87318ee635b4ceac5d74fc82343f137d0 + md5: 7e9304388022ef7f7f21b94953a5181b depends: - __glibc >=2.17,<3.0.a0 - huggingface_hub >=0.16.4,<1.0 @@ -8228,16 +8211,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2260744 - timestamp: 1732658087592 + size: 2264312 + timestamp: 1732734291587 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py311h5e37e04_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py311h5e37e04_0.conda - sha256: 0c40f1b8ff2c5592ab5919ec1f0bb6f7bef8297d8da8b97a777310db7c7e0611 - md5: cb0eccdce4d155ef9050548c319a35c5 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py311h5e37e04_0.conda + sha256: 02fad918a39c9e10feedac2937e3bee619fa49707734ae478e0342a85784fb98 + md5: 833844038ba171a27678bf201c3f4c74 depends: - huggingface_hub >=0.16.4,<1.0 - libgcc >=13 @@ -8250,16 +8233,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2330115 - timestamp: 1732658113825 + size: 2329972 + timestamp: 1732734458949 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py311h82b0fb8_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py311h82b0fb8_0.conda - sha256: 8edbc016a3d33a254b5a6ba67822491a529cfe1206ee304f32bae987b795a8e6 - md5: 70ca9ca07b29c8faac8c1ea0576d0a0c + url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py311h82b0fb8_0.conda + sha256: 8f2a22323b67a75d57192d37bb031fb44a51f013d3232f18a0df3c453ea68ab9 + md5: d1543e49d59c7537c7c97f6d70544b00 depends: - __osx >=11.0 - huggingface_hub >=0.16.4,<1.0 @@ -8271,8 +8254,8 @@ packages: - __osx >=11.0 license: Apache-2.0 license_family: APACHE - size: 1935376 - timestamp: 1732658323422 + size: 1935264 + timestamp: 1732734431057 - kind: conda name: tornado version: 6.4.2 @@ -8341,27 +8324,28 @@ packages: - kind: conda name: traitlets version: 5.14.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - md5: 3df84416a021220d8b5700c613af2dc5 + url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + sha256: f39a5620c6e8e9e98357507262a7869de2ae8cc07da8b7f84e517c9fd6c2b959 + md5: 019a7385be9af33791c989871317e1ed depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 110187 - timestamp: 1713535244513 + size: 110051 + timestamp: 1733367480074 - kind: conda name: transformers - version: 4.46.3 + version: 4.47.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - sha256: 6ae73c0d1197812d8fd6a2c64309fe9abe822feb66b2d330cc61ce9fa60dee0c - md5: 457af723774f077a128515a6fdd536a2 + url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + sha256: b9cf6ae5fcd6c78dcaa24ebfd41580a4a10b0649ac726a44d3521f70fdece218 + md5: 495745078b8e18fe2dcc3267f4baae0d depends: - datasets !=2.5.0 - filelock @@ -8373,66 +8357,66 @@ packages: - regex !=2019.12.17 - requests - safetensors >=0.4.1 - - tokenizers >=0.20,<0.21 + - tokenizers >=0.21,<0.22 - tqdm >=4.27 license: Apache-2.0 license_family: APACHE - size: 3622494 - timestamp: 1731981383171 + size: 3721837 + timestamp: 1733708797762 - kind: conda name: typer - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - sha256: 4d7f1c77b928a66ae3b0089e288e7fdeb826bf0dabba9799488017e6a9b84f38 - md5: 9eb8a3f5d36ca3e7f686e7a5d85aff72 + url: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + sha256: ef695490e895c2ad552c77ec497b899b09fd4ad4ab07edcf5649f5994cf92a35 + md5: 170a0398946d8f5b454e592672b6fc20 depends: - python >=3.9 - - typer-slim-standard 0.14.0 hd8ed1ab_0 + - typer-slim-standard 0.15.1 hd8ed1ab_0 license: MIT license_family: MIT - size: 54637 - timestamp: 1732848384457 + size: 56175 + timestamp: 1733408582623 - kind: conda name: typer-slim - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - sha256: 883969c10b9837bb18a340ffb01a984ef6b4655fc72ff05aeb7bc659c9a1229d - md5: 3674a4cd7fd8e8a7277af2b30965925d + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + sha256: d4965516f35e0805199de6596c4ac76c4ad3d6b012be35e532102f9e53ecb860 + md5: 0218b16f5a1dd569e575a7a6415489db depends: - click >=8.0.0 - python >=3.9 - typing_extensions >=3.7.4.3 constrains: - - shellingham >=1.3.0 - rich >=10.11.0 - - typer >=0.14.0,<0.14.1.0a0 + - typer >=0.15.1,<0.15.2.0a0 + - shellingham >=1.3.0 license: MIT license_family: MIT - size: 43504 - timestamp: 1732848371202 + size: 43592 + timestamp: 1733408569554 - kind: conda name: typer-slim-standard - version: 0.14.0 + version: 0.15.1 build: hd8ed1ab_0 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - sha256: 0e09e393e75028a0e827c7177e0fb1a070c87756e47b5ae6418423e22b10dfac - md5: 9e1e1f9c84add9637ca715f8fb71a83f + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + sha256: f31c56fe98315da8b9ce848256c17e0b9f87896b41a6ccf0c9cc74644dcef20f + md5: 4e603c43bfdfc7b533be087c3e070cc9 depends: - rich - shellingham - - typer-slim 0.14.0 pyhd8ed1ab_0 + - typer-slim 0.15.1 pyhd8ed1ab_0 license: MIT license_family: MIT - size: 49180 - timestamp: 1732848371718 + size: 49531 + timestamp: 1733408570063 - kind: conda name: typing-extensions version: 4.12.2 @@ -8500,44 +8484,46 @@ packages: - kind: conda name: uvicorn version: 0.32.1 - build: pyh31011fe_0 + build: pyh31011fe_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - sha256: a310c494c817a9f6c985fc6d2772acb953a20170d03b0eabfae0e9d8c76c97ee - md5: fa77fc8110207b3bfc5ccc9d316744f4 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + sha256: ad1d8470c629679ea3db52351a522ae44eee0111d8d8b254e8c863c4a292e5c4 + md5: 7832640e5e302059e844d56f410487a6 depends: - __unix - click >=7.0 - h11 >=0.8 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0 license: BSD-3-Clause license_family: BSD - size: 49393 - timestamp: 1732185242260 + size: 49340 + timestamp: 1733332048141 - kind: conda name: uvicorn-standard version: 0.32.1 - build: h31011fe_0 + build: h31011fe_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda - sha256: 52545f7c88a7c779376900de5f9d81ce36738cd8770b543e89592ad7d1003c40 - md5: 49c2820e0f39cb710becd856ff14d683 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda + sha256: 378903c51b2b1136fa48b01c0a2a8dd4634136d038a4a56561c0856fdcbfcabe + md5: 0c233d5c71d398cf01d0281e72194005 depends: - __unix - httptools >=0.5.0 - python-dotenv >=0.13 - pyyaml >=5.1 - - uvicorn 0.32.1 pyh31011fe_0 + - uvicorn 0.32.1 pyh31011fe_1 - uvloop >=0.14.0,!=0.15.0,!=0.15.1 - watchfiles >=0.13 - websockets >=10.4 license: BSD-3-Clause license_family: BSD - size: 7136 - timestamp: 1732185243035 + size: 7094 + timestamp: 1733332049165 - kind: conda name: uvloop version: 0.21.0 @@ -8883,43 +8869,6 @@ packages: license_family: BSD size: 97691 timestamp: 1689951608120 -- kind: conda - name: xz - version: 5.2.6 - build: h166bdaf_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - md5: 2161070d867d1b1204ea749c8eec4ef0 - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 418368 - timestamp: 1660346797927 -- kind: conda - name: xz - version: 5.2.6 - build: h57fd34a_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - sha256: 59d78af0c3e071021cfe82dc40134c19dab8cdf804324b62940f5c8cd71803ec - md5: 39c6b54e94014701dd157f4f576ed211 - license: LGPL-2.1 and GPL-2.0 - size: 235693 - timestamp: 1660346961024 -- kind: conda - name: xz - version: 5.2.6 - build: h9cdd2b7_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - sha256: 93f58a7b393adf41fa007ac8c55978765e957e90cd31877ece1e5a343cb98220 - md5: 83baad393a31d59c20b63ba4da6592df - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 440555 - timestamp: 1660348056328 - kind: conda name: yaml version: 0.2.5 @@ -8965,64 +8914,64 @@ packages: timestamp: 1641347626613 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py311h917b07b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py311h917b07b_0.conda - sha256: d21aeb264716c1f7bfb0f73f489621eebf8d28d951f3885a90ba97369eb2184d - md5: 93d15c4b23a94293511460afeda65445 + url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py311h917b07b_0.conda + sha256: 2df31b9adcd55b29985935d0a23ae6069808e319c2c24bbe212cbd3f3dca71ed + md5: 134c0091a508239d35505d9ac74d4c0f depends: - __osx >=11.0 - idna >=2.0 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.11,<3.12.0a0 - python >=3.11,<3.12.0a0 *_cpython - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: Apache - size: 142545 - timestamp: 1732221235765 + size: 144071 + timestamp: 1733429148299 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py311h9ecbd09_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py311h9ecbd09_0.conda - sha256: 6badcbdfa79e7d85898dadc3f3c8541aeb0328beaf52d8c324f9cfa03827e34b - md5: 6c53a0d074f60e75069133bfcdfdf76f + url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py311h9ecbd09_0.conda + sha256: 4af34cbcf4dda72aad779c8a12eb508aee6f98d0523c26174639a75ae31df180 + md5: 385d54815a5d2e74e68374d77446030b depends: - __glibc >=2.17,<3.0.a0 - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.11,<3.12.0a0 - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: Apache - size: 152353 - timestamp: 1732220979792 + size: 153749 + timestamp: 1733428888714 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py311ha879c10_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py311ha879c10_0.conda - sha256: 8dc821990e5f294fa8e071d472dfa46ad51738dfe9ccce34e6935dde0b9450b8 - md5: 5a62496bee4f8371cf4019957251d8c2 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py311ha879c10_0.conda + sha256: c60d0e75b147dc836b497b2f7c773a2b2998821056614eead6aae84fbedc7416 + md5: 049bc4ea1dd2a1db3a752fadbda1b55c depends: - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.11,<3.12.0a0 - python >=3.11,<3.12.0a0 *_cpython - python_abi 3.11.* *_cp311 license: Apache-2.0 license_family: Apache - size: 151403 - timestamp: 1732221145576 + size: 151968 + timestamp: 1733429000649 - kind: conda name: zeromq version: 4.3.5 diff --git a/examples/notebooks/BoolMLIR.ipynb b/examples/notebooks/BoolMLIR.ipynb index 355dc77909..514770e9e8 100644 --- a/examples/notebooks/BoolMLIR.ipynb +++ b/examples/notebooks/BoolMLIR.ipynb @@ -126,7 +126,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -227,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": { "tags": [] }, @@ -239,6 +239,7 @@ "\n", " # ...\n", "\n", + " @implicit\n", " fn __init__(out self, value: __mlir_type.i1):\n", " self.value = value" ] @@ -288,7 +289,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "tags": [] }, @@ -306,6 +307,7 @@ " fn __init__(out self):\n", " self = OurFalse\n", "\n", + " @implicit\n", " fn __init__(out self, value: __mlir_type.i1):\n", " self.value = value" ] @@ -353,7 +355,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "tags": [] }, @@ -369,6 +371,7 @@ "\n", " # ...\n", "\n", + " @implicit\n", " fn __init__(out self, value: __mlir_type.i1):\n", " self.value = value\n", "\n", @@ -429,7 +432,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -441,6 +444,7 @@ "struct OurBool:\n", " var value: __mlir_type.i1\n", "\n", + " @implicit\n", " fn __init__(out self, value: __mlir_type.i1):\n", " self.value = value\n", "\n", @@ -495,7 +499,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -507,6 +511,7 @@ "struct OurBool:\n", " var value: __mlir_type.i1\n", "\n", + " @implicit\n", " fn __init__(out self, value: __mlir_type.i1):\n", " self.value = value\n", "\n", diff --git a/examples/notebooks/README.md b/examples/notebooks/README.md index 4ee3854595..d94bb7bf4b 100644 --- a/examples/notebooks/README.md +++ b/examples/notebooks/README.md @@ -4,9 +4,7 @@ Mojo supports programming in [Jupyter notebooks](https://jupyter.org/), just like Python. This page explains how to get started with Mojo notebooks, and this repo -directory contains notebooks that demonstrate some of Mojo's features -(most of which we originally published on the [Mojo -Playground](https://playground.modular.com/)). +directory contains notebooks that demonstrate some of Mojo's features. If you're not familiar with Jupyter notebooks, they're files that allow you to create documents with live code, equations, visualizations, and explanatory @@ -67,6 +65,7 @@ If you have [`magic`](https://docs.modular.com/magic) you can run the following command to launch JupyterLab from this directory: ```sh +# Run from an active conda or magic shell environment magic run jupyter lab ``` @@ -74,7 +73,20 @@ After a moment, it will open a browser window with JupterLab running. #### Using conda -Create a Conda environment, activate that enviroment, and install JupyterLab. +Conda allows you to export environments in `.yml` format. (For more +information, see +[Managing environments](https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html) +in the Conda documentation.) + +If you already have a working Jupyter environment on a different computer and +server you can export it using the following command. + +```sh +# Example of exporting environment.yml from a conda environment named `your-env` +conda env export --name your_env > environment.yml +``` + +To create a Conda environment, activate that environment, and install JupyterLab. ``` sh # Create a Conda environment if you don't have one @@ -87,6 +99,19 @@ conda run -n mojo-repo jupyter lab After a moment, it will open a browser window with JupterLab running. +#### Using more magic + +Magic allows you to create an environment from a Conda `environment.yml`. + +```sh +# Create a magic environment if you don't have one +magic init mojo-repo --import environment.yml +# Activate the environment +cd mojo-repo && magic shell +# run JupyterLab +magic run jupyter lab +``` + ### 2. Run the .ipynb notebooks The left nav bar should show all the notebooks in this directory. diff --git a/examples/notebooks/RayTracing.ipynb b/examples/notebooks/RayTracing.ipynb index 66a768da6e..ea37cea474 100644 --- a/examples/notebooks/RayTracing.ipynb +++ b/examples/notebooks/RayTracing.ipynb @@ -1,1020 +1,1022 @@ { - "cells": [ - { - "cell_type": "raw", - "id": "7a924a43", - "metadata": {}, - "source": [ - "---\n", - "title: Ray tracing in Mojo\n", - "description: Learn how to draw 3D graphics with ray-traced lighting using Mojo.\n", - "website:\n", - " open-graph:\n", - " image: /static/images/mojo-social-card.png\n", - " twitter-card:\n", - " image: /static/images/mojo-social-card.png\n", - "---" - ] - }, - { - "cell_type": "markdown", - "id": "e48ca293", - "metadata": {}, - "source": [ - "[//]: # REMOVE_FOR_WEBSITE\n", - "*Copyright 2023 Modular, Inc: Licensed under the Apache License v2.0 with LLVM Exceptions.*" - ] - }, - { - "cell_type": "markdown", - "id": "214584ac", - "metadata": {}, - "source": [ - "[//]: # REMOVE_FOR_WEBSITE\n", - "# Ray tracing in Mojo" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "c4edb2c9-5109-4e00-98c0-3aa92dbca7d1", - "metadata": {}, - "source": [ - "This tutorial about [ray\n", - "tracing](https://en.wikipedia.org/wiki/Ray_tracing_(graphics)) is based on the\n", - "popular tutorial [Understandable RayTracing in\n", - "C++](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing).\n", - "The mathematical explanations are well described in that tutorial, so we'll\n", - "just point you to the appropriate sections for reference as we implement a\n", - "basic ray tracer in Mojo." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "fbd4aa63-a178-41f2-ad66-b017c1c69d2a", - "metadata": {}, - "source": [ - "## Step 1: Basic definitions\n", - "\n", - "We'll start by defining a `Vec3f` struct, which will use to represent a vector\n", - "in 3D space as well as RGB pixels. We'll use a `SIMD` representation for our\n", - "vector to enable vectorized operations. The `SIMD` type is a fixed-size vector,\n", - "and its size must be a power of 2. So we'll use a size of 4 and always pad the\n", - "underlying storage with a 0." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "78a07829-05bc-4a67-8ccc-f2e1537c478c", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from math import isqrt\n", - "\n", - "\n", - "@register_passable(\"trivial\")\n", - "struct Vec3f:\n", - " var data: SIMD[DType.float32, 4]\n", - "\n", - " @always_inline\n", - " fn __init__(out self, x: Float32, y: Float32, z: Float32):\n", - " self.data = SIMD[DType.float32, 4](x, y, z, 0)\n", - "\n", - " @always_inline\n", - " fn __init__(out self, data: SIMD[DType.float32, 4]):\n", - " self.data = data\n", - "\n", - " @always_inline\n", - " @staticmethod\n", - " fn zero() -> Vec3f:\n", - " return Vec3f(0, 0, 0)\n", - "\n", - " @always_inline\n", - " fn __sub__(self, other: Vec3f) -> Vec3f:\n", - " return self.data - other.data\n", - "\n", - " @always_inline\n", - " fn __add__(self, other: Vec3f) -> Vec3f:\n", - " return self.data + other.data\n", - "\n", - " @always_inline\n", - " fn __matmul__(self, other: Vec3f) -> Float32:\n", - " return (self.data * other.data).reduce_add()\n", - "\n", - " @always_inline\n", - " fn __mul__(self, k: Float32) -> Vec3f:\n", - " return self.data * k\n", - "\n", - " @always_inline\n", - " fn __neg__(self) -> Vec3f:\n", - " return self.data * -1.0\n", - "\n", - " @always_inline\n", - " fn __getitem__(self, idx: Int) -> SIMD[DType.float32, 1]:\n", - " return self.data[idx]\n", - "\n", - " @always_inline\n", - " fn cross(self, other: Vec3f) -> Vec3f:\n", - " var self_zxy = self.data.shuffle[2, 0, 1, 3]()\n", - " var other_zxy = other.data.shuffle[2, 0, 1, 3]()\n", - " return (self_zxy * other.data - self.data * other_zxy).shuffle[\n", - " 2, 0, 1, 3\n", - " ]()\n", - "\n", - " @always_inline\n", - " fn normalize(self) -> Vec3f:\n", - " return self.data * isqrt(self @ self)\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "2619eb1b-103b-4453-9725-4480e388452e", - "metadata": {}, - "source": [ - "We now define our `Image` struct, which will store the RGB pixels of our\n", - "images. It also contains a method to convert this Mojo struct into a NumPy\n", - "image, which will be used for implementing a straightforward display\n", - "mechanism. We will also implement a function for loading PNG files from disk." - ] - }, - { - "cell_type": "markdown", - "id": "acd55d71", - "metadata": {}, - "source": [ - "First install the required libraries:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "53266408", - "metadata": {}, - "outputs": [], - "source": [ - "%%python\n", - "from importlib.util import find_spec\n", - "import shutil\n", - "import subprocess\n", - "\n", - "fix = \"\"\"\n", - "-------------------------------------------------------------------------\n", - "fix following the steps here:\n", - " https://github.com/modularml/mojo/issues/1085#issuecomment-1771403719\n", - "-------------------------------------------------------------------------\n", - "\"\"\"\n", - "\n", - "def install_if_missing(name: str):\n", - " if find_spec(name):\n", - " return\n", - "\n", - " print(f\"{name} not found, installing...\")\n", - " try:\n", - " if shutil.which('python3'): python = \"python3\"\n", - " elif shutil.which('python'): python = \"python\"\n", - " else: raise (\"python not on path\" + fix)\n", - " subprocess.check_call([python, \"-m\", \"pip\", \"install\", name])\n", - " except:\n", - " raise ImportError(f\"{name} not found\" + fix)\n", - "\n", - "install_if_missing(\"numpy\")\n", - "install_if_missing(\"matplotlib\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "ca218d22-0578-42af-a906-7f15a91c5bec", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "from python import Python\n", - "from python import PythonObject\n", - "from memory import UnsafePointer\n", - "\n", - "struct Image:\n", - " # reference count used to make the object efficiently copyable\n", - " var rc: UnsafePointer[Int]\n", - " # the two dimensional image is represented as a flat array\n", - " var pixels: UnsafePointer[Vec3f]\n", - " var height: Int\n", - " var width: Int\n", - "\n", - " fn __init__(out self, height: Int, width: Int):\n", - " self.height = height\n", - " self.width = width\n", - " self.pixels = UnsafePointer[Vec3f].alloc(self.height * self.width)\n", - " self.rc = UnsafePointer[Int].alloc(1)\n", - " self.rc[] = 1\n", - "\n", - " fn __copyinit__(out self, other: Self):\n", - " other._inc_rc()\n", - " self.pixels = other.pixels\n", - " self.rc = other.rc\n", - " self.height = other.height\n", - " self.width = other.width\n", - "\n", - " fn __del__(owned self):\n", - " self._dec_rc()\n", - "\n", - " fn _dec_rc(self):\n", - " if self.rc[] > 1:\n", - " self.rc[] -= 1\n", - " return\n", - " self._free()\n", - "\n", - " fn _inc_rc(self):\n", - " self.rc[] += 1\n", - "\n", - " fn _free(self):\n", - " self.rc.free()\n", - " self.pixels.free()\n", - "\n", - " @always_inline\n", - " fn set(self, row: Int, col: Int, value: Vec3f) -> None:\n", - " self.pixels[self._pos_to_index(row, col)] = value\n", - "\n", - " @always_inline\n", - " fn _pos_to_index(self, row: Int, col: Int) -> Int:\n", - " # Convert a (rol, col) position into an index in the underlying linear storage\n", - " return row * self.width + col\n", - "\n", - " def to_numpy_image(self) -> PythonObject:\n", - " var np = Python.import_module(\"numpy\")\n", - " var plt = Python.import_module(\"matplotlib.pyplot\")\n", - "\n", - " var np_image = np.zeros((self.height, self.width, 3), np.float32)\n", - "\n", - " # We use raw pointers to efficiently copy the pixels to the numpy array\n", - " var out_pointer = np_image.__array_interface__[\"data\"][0].unsafe_get_as_pointer[DType.float32]()\n", - " var in_pointer = self.pixels.bitcast[Float32]()\n", - "\n", - " for row in range(self.height):\n", - " for col in range(self.width):\n", - " var index = self._pos_to_index(row, col)\n", - " for dim in range(3):\n", - " out_pointer[index * 3 + dim] = in_pointer[index * 4 + dim]\n", - "\n", - " return np_image\n", - "\n", - "\n", - "def load_image(fname: String) -> Image:\n", - " var np = Python.import_module(\"numpy\")\n", - " var plt = Python.import_module(\"matplotlib.pyplot\")\n", - "\n", - " var np_image = plt.imread(fname)\n", - " var rows = int(np_image.shape[0])\n", - " var cols = int(np_image.shape[1])\n", - " var image = Image(rows, cols)\n", - "\n", - " var in_pointer = np_image.__array_interface__[\"data\"][0].unsafe_get_as_pointer[DType.float32]()\n", - " var out_pointer = image.pixels.bitcast[Float32]()\n", - "\n", - " for row in range(rows):\n", - " for col in range(cols):\n", - " var index = image._pos_to_index(row, col)\n", - " for dim in range(3):\n", - " out_pointer[index * 4 + dim] = in_pointer[index * 3 + dim]\n", - " return image\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "7a7dbe6f-f35f-42c5-ad37-b7400f6262f8", - "metadata": {}, - "source": [ - "We then add a function for quickly displaying an `Image` into the notebook. Our\n", - "Python interop comes in quite handy." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "9a3a8e81-7500-439b-a8d2-8e71ceea3e8b", - "metadata": {}, - "outputs": [], - "source": [ - "def render(image: Image):\n", - " np = Python.import_module(\"numpy\")\n", - " plt = Python.import_module(\"matplotlib.pyplot\")\n", - " colors = Python.import_module(\"matplotlib.colors\")\n", - " dpi = 32\n", - " fig = plt.figure(1, [image.width // 10, image.height // 10], dpi)\n", - "\n", - " plt.imshow(image.to_numpy_image())\n", - " plt.axis(\"off\")\n", - " plt.show()\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "5f42f174-d7d9-4f6c-9b4e-d0d586f8f5ec", - "metadata": {}, - "source": [ - "Finally, we test all our code so far with a simple image, which is the one\n", - "rendered in the [Step 1 of the C++\n", - "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-1-write-an-image-to-the-disk)." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "52005588-38e7-4ef0-affe-6d063b9bf9b7", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAFnCAYAAADjbJN9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAAGG0lEQVR4nO3ZwWoCQRRFQVv8/19+LtyMILjyTMtUbUICCWZ1uP3WzMwNAPi5+9kfAACu4nH8Zq11+ObD108/+/Z1x9/xmfb4+zt+Jv/zHr/z739/x890xf95o9+Z9XpUtnQBIPK+dM/6FABwAZYuAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwAR0QWAiJsuAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwAR0QWAiJsuAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwAR0QWAiJsuAEQsXQCIWLoAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQ8bwMABFLFwAiogsAEc/LABCxdAEgIroAEBFdAIi46QJAxNIFgIjoAkDE8zIARCxdAIiILgBERBcAIm66ABCxdAEgIroAEBFdAIi46QJAxNIFgIjoAkDE8zIARCxdAIiILgBERBcAIm66ABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBERBcAIm66ABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBERBcAIm66ABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBERBcAIm66ABCxdAEgYukCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJAxPMyAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwARz8sAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQER0ASDipgsAEUsXACKiCwARz8sAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiKULABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEc/LABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBEPC8DQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHRBYCImy4ARCxdAIiILgBEPC8DQGTNzJz9IQDgCixdAIiILgBEnv7cEL5KaxYBAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "var image = Image(192, 256)\n", - "\n", - "for row in range(image.height):\n", - " for col in range(image.width):\n", - " image.set(\n", - " row,\n", - " col,\n", - " Vec3f(Float32(row) / image.height, Float32(col) / image.width, 0),\n", - " )\n", - "\n", - "render(image)\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "ef3206b4-0bbb-4108-a592-f748843e5d3d", - "metadata": {}, - "source": [ - "## Step 2: Ray tracing\n", - "\n", - "Now we'll perform ray tracing from a camera into a scene with a sphere. Before\n", - "reading the code below, we suggest you read more about how this works\n", - "conceptually from [Step 2 of the C++\n", - "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-2-the-crucial-one-ray-tracing)." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "778d8339-5b19-47ee-bdc6-a08e4ec5094c", - "metadata": {}, - "source": [ - "We first define the `Material` and `Sphere` structs, which are the new data\n", - "structures we'll need." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "1c4a79de-0b65-48ac-97c9-187b74b96b9f", - "metadata": {}, - "outputs": [], - "source": [ - "from math import sqrt\n", - "\n", - "@register_passable(\"trivial\")\n", - "struct Material:\n", - " var color: Vec3f\n", - " var albedo: Vec3f\n", - " var specular_component: Float32\n", - "\n", - " fn __init__(out self, color: Vec3f, albedo: Vec3f = Vec3f(0, 0, 0),\n", - " specular_component: Float32 = 0):\n", - " self.color = color\n", - " self.albedo = albedo\n", - " self.specular_component = specular_component\n", - "\n", - "alias W = 1024\n", - "alias H = 768\n", - "alias bg_color = Vec3f(0.02, 0.02, 0.02)\n", - "var shiny_yellow = Material(Vec3f(0.95, 0.95, 0.4), Vec3f(0.7, 0.6, 0), 30.0)\n", - "var green_rubber = Material(Vec3f( 0.3, 0.7, 0.3), Vec3f(0.9, 0.1, 0), 1.0)\n", - "\n", - "\n", - "@value\n", - "@register_passable(\"trivial\")\n", - "struct Sphere(CollectionElement):\n", - " var center: Vec3f\n", - " var radius: Float32\n", - " var material: Material\n", - "\n", - " @always_inline\n", - " fn intersects(self, orig: Vec3f, dir: Vec3f, mut dist: Float32) -> Bool:\n", - " \"\"\"This method returns True if a given ray intersects this sphere.\n", - " And if it does, it writes in the `dist` parameter the distance to the\n", - " origin of the ray.\n", - " \"\"\"\n", - " var L = orig - self.center\n", - " var a = dir @ dir\n", - " var b = 2 * (dir @ L)\n", - " var c = L @ L - self.radius * self.radius\n", - " var discriminant = b * b - 4 * a * c\n", - " if discriminant < 0:\n", - " return False\n", - " if discriminant == 0:\n", - " dist = -b / 2 * a\n", - " return True\n", - " var q = -0.5 * (b + sqrt(discriminant)) if b > 0 else -0.5 * (\n", - " b - sqrt(discriminant)\n", - " )\n", - " var t0 = q / a\n", - " var t1 = c / q\n", - " if t0 > t1:\n", - " t0 = t1\n", - " if t0 < 0:\n", - " t0 = t1\n", - " if t0 < 0:\n", - " return False\n", - "\n", - " dist = t0\n", - " return True\n" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "id": "e5ed8e76-efc1-4905-90ea-4cad6df0c553", - "metadata": {}, - "source": [ - "We then define a `cast_ray` method, which will be used to figure out the color\n", - "of a particular pixel in the image we'll produce. It basically works by\n", - "identifying whether this ray intersects the sphere or not." - ] - }, + "cells": [ + { + "cell_type": "raw", + "id": "7a924a43", + "metadata": {}, + "source": [ + "---\n", + "title: Ray tracing in Mojo\n", + "description: Learn how to draw 3D graphics with ray-traced lighting using Mojo.\n", + "website:\n", + " open-graph:\n", + " image: /static/images/mojo-social-card.png\n", + " twitter-card:\n", + " image: /static/images/mojo-social-card.png\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "e48ca293", + "metadata": {}, + "source": [ + "[//]: # REMOVE_FOR_WEBSITE\n", + "*Copyright 2023 Modular, Inc: Licensed under the Apache License v2.0 with LLVM Exceptions.*" + ] + }, + { + "cell_type": "markdown", + "id": "214584ac", + "metadata": {}, + "source": [ + "[//]: # REMOVE_FOR_WEBSITE\n", + "# Ray tracing in Mojo" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "c4edb2c9-5109-4e00-98c0-3aa92dbca7d1", + "metadata": {}, + "source": [ + "This tutorial about [ray\n", + "tracing](https://en.wikipedia.org/wiki/Ray_tracing_(graphics)) is based on the\n", + "popular tutorial [Understandable RayTracing in\n", + "C++](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing).\n", + "The mathematical explanations are well described in that tutorial, so we'll\n", + "just point you to the appropriate sections for reference as we implement a\n", + "basic ray tracer in Mojo." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "fbd4aa63-a178-41f2-ad66-b017c1c69d2a", + "metadata": {}, + "source": [ + "## Step 1: Basic definitions\n", + "\n", + "We'll start by defining a `Vec3f` struct, which will use to represent a vector\n", + "in 3D space as well as RGB pixels. We'll use a `SIMD` representation for our\n", + "vector to enable vectorized operations. The `SIMD` type is a fixed-size vector,\n", + "and its size must be a power of 2. So we'll use a size of 4 and always pad the\n", + "underlying storage with a 0." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "78a07829-05bc-4a67-8ccc-f2e1537c478c", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from math import isqrt\n", + "\n", + "\n", + "@register_passable(\"trivial\")\n", + "struct Vec3f:\n", + " var data: SIMD[DType.float32, 4]\n", + "\n", + " @always_inline\n", + " fn __init__(out self, x: Float32, y: Float32, z: Float32):\n", + " self.data = SIMD[DType.float32, 4](x, y, z, 0)\n", + "\n", + " @implicit\n", + " @always_inline\n", + " fn __init__(out self, data: SIMD[DType.float32, 4]):\n", + " self.data = data\n", + "\n", + " @always_inline\n", + " @staticmethod\n", + " fn zero() -> Vec3f:\n", + " return Vec3f(0, 0, 0)\n", + "\n", + " @always_inline\n", + " fn __sub__(self, other: Vec3f) -> Vec3f:\n", + " return self.data - other.data\n", + "\n", + " @always_inline\n", + " fn __add__(self, other: Vec3f) -> Vec3f:\n", + " return self.data + other.data\n", + "\n", + " @always_inline\n", + " fn __matmul__(self, other: Vec3f) -> Float32:\n", + " return (self.data * other.data).reduce_add()\n", + "\n", + " @always_inline\n", + " fn __mul__(self, k: Float32) -> Vec3f:\n", + " return self.data * k\n", + "\n", + " @always_inline\n", + " fn __neg__(self) -> Vec3f:\n", + " return self.data * -1.0\n", + "\n", + " @always_inline\n", + " fn __getitem__(self, idx: Int) -> SIMD[DType.float32, 1]:\n", + " return self.data[idx]\n", + "\n", + " @always_inline\n", + " fn cross(self, other: Vec3f) -> Vec3f:\n", + " var self_zxy = self.data.shuffle[2, 0, 1, 3]()\n", + " var other_zxy = other.data.shuffle[2, 0, 1, 3]()\n", + " return (self_zxy * other.data - self.data * other_zxy).shuffle[\n", + " 2, 0, 1, 3\n", + " ]()\n", + "\n", + " @always_inline\n", + " fn normalize(self) -> Vec3f:\n", + " return self.data * isqrt(self @ self)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "2619eb1b-103b-4453-9725-4480e388452e", + "metadata": {}, + "source": [ + "We now define our `Image` struct, which will store the RGB pixels of our\n", + "images. It also contains a method to convert this Mojo struct into a NumPy\n", + "image, which will be used for implementing a straightforward display\n", + "mechanism. We will also implement a function for loading PNG files from disk." + ] + }, + { + "cell_type": "markdown", + "id": "acd55d71", + "metadata": {}, + "source": [ + "First install the required libraries:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "53266408", + "metadata": {}, + "outputs": [], + "source": [ + "%%python\n", + "from importlib.util import find_spec\n", + "import shutil\n", + "import subprocess\n", + "\n", + "fix = \"\"\"\n", + "-------------------------------------------------------------------------\n", + "fix following the steps here:\n", + " https://github.com/modularml/mojo/issues/1085#issuecomment-1771403719\n", + "-------------------------------------------------------------------------\n", + "\"\"\"\n", + "\n", + "def install_if_missing(name: str):\n", + " if find_spec(name):\n", + " return\n", + "\n", + " print(f\"{name} not found, installing...\")\n", + " try:\n", + " if shutil.which('python3'): python = \"python3\"\n", + " elif shutil.which('python'): python = \"python\"\n", + " else: raise (\"python not on path\" + fix)\n", + " subprocess.check_call([python, \"-m\", \"pip\", \"install\", name])\n", + " except:\n", + " raise ImportError(f\"{name} not found\" + fix)\n", + "\n", + "install_if_missing(\"numpy\")\n", + "install_if_missing(\"matplotlib\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ca218d22-0578-42af-a906-7f15a91c5bec", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from python import Python\n", + "from python import PythonObject\n", + "from memory import UnsafePointer\n", + "\n", + "struct Image:\n", + " # reference count used to make the object efficiently copyable\n", + " var rc: UnsafePointer[Int]\n", + " # the two dimensional image is represented as a flat array\n", + " var pixels: UnsafePointer[Vec3f]\n", + " var height: Int\n", + " var width: Int\n", + "\n", + " fn __init__(out self, height: Int, width: Int):\n", + " self.height = height\n", + " self.width = width\n", + " self.pixels = UnsafePointer[Vec3f].alloc(self.height * self.width)\n", + " self.rc = UnsafePointer[Int].alloc(1)\n", + " self.rc[] = 1\n", + "\n", + " fn __copyinit__(out self, other: Self):\n", + " other._inc_rc()\n", + " self.pixels = other.pixels\n", + " self.rc = other.rc\n", + " self.height = other.height\n", + " self.width = other.width\n", + "\n", + " fn __del__(owned self):\n", + " self._dec_rc()\n", + "\n", + " fn _dec_rc(self):\n", + " if self.rc[] > 1:\n", + " self.rc[] -= 1\n", + " return\n", + " self._free()\n", + "\n", + " fn _inc_rc(self):\n", + " self.rc[] += 1\n", + "\n", + " fn _free(self):\n", + " self.rc.free()\n", + " self.pixels.free()\n", + "\n", + " @always_inline\n", + " fn set(self, row: Int, col: Int, value: Vec3f) -> None:\n", + " self.pixels[self._pos_to_index(row, col)] = value\n", + "\n", + " @always_inline\n", + " fn _pos_to_index(self, row: Int, col: Int) -> Int:\n", + " # Convert a (rol, col) position into an index in the underlying linear storage\n", + " return row * self.width + col\n", + "\n", + " def to_numpy_image(self) -> PythonObject:\n", + " var np = Python.import_module(\"numpy\")\n", + " var plt = Python.import_module(\"matplotlib.pyplot\")\n", + "\n", + " var np_image = np.zeros((self.height, self.width, 3), np.float32)\n", + "\n", + " # We use raw pointers to efficiently copy the pixels to the numpy array\n", + " var out_pointer = np_image.__array_interface__[\"data\"][0].unsafe_get_as_pointer[DType.float32]()\n", + " var in_pointer = self.pixels.bitcast[Float32]()\n", + "\n", + " for row in range(self.height):\n", + " for col in range(self.width):\n", + " var index = self._pos_to_index(row, col)\n", + " for dim in range(3):\n", + " out_pointer[index * 3 + dim] = in_pointer[index * 4 + dim]\n", + "\n", + " return np_image\n", + "\n", + "\n", + "def load_image(fname: String) -> Image:\n", + " var np = Python.import_module(\"numpy\")\n", + " var plt = Python.import_module(\"matplotlib.pyplot\")\n", + "\n", + " var np_image = plt.imread(fname)\n", + " var rows = int(np_image.shape[0])\n", + " var cols = int(np_image.shape[1])\n", + " var image = Image(rows, cols)\n", + "\n", + " var in_pointer = np_image.__array_interface__[\"data\"][0].unsafe_get_as_pointer[DType.float32]()\n", + " var out_pointer = image.pixels.bitcast[Float32]()\n", + "\n", + " for row in range(rows):\n", + " for col in range(cols):\n", + " var index = image._pos_to_index(row, col)\n", + " for dim in range(3):\n", + " out_pointer[index * 4 + dim] = in_pointer[index * 3 + dim]\n", + " return image\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "7a7dbe6f-f35f-42c5-ad37-b7400f6262f8", + "metadata": {}, + "source": [ + "We then add a function for quickly displaying an `Image` into the notebook. Our\n", + "Python interop comes in quite handy." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9a3a8e81-7500-439b-a8d2-8e71ceea3e8b", + "metadata": {}, + "outputs": [], + "source": [ + "def render(image: Image):\n", + " np = Python.import_module(\"numpy\")\n", + " plt = Python.import_module(\"matplotlib.pyplot\")\n", + " colors = Python.import_module(\"matplotlib.colors\")\n", + " dpi = 32\n", + " fig = plt.figure(1, [image.width // 10, image.height // 10], dpi)\n", + "\n", + " plt.imshow(image.to_numpy_image())\n", + " plt.axis(\"off\")\n", + " plt.show()\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "5f42f174-d7d9-4f6c-9b4e-d0d586f8f5ec", + "metadata": {}, + "source": [ + "Finally, we test all our code so far with a simple image, which is the one\n", + "rendered in the [Step 1 of the C++\n", + "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-1-write-an-image-to-the-disk)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "52005588-38e7-4ef0-affe-6d063b9bf9b7", + "metadata": { + "tags": [] + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 7, - "id": "beeecde1-f365-4be5-a3b1-d8a145810be1", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "fn cast_ray(orig: Vec3f, dir: Vec3f, sphere: Sphere) -> Vec3f:\n", - " var dist: Float32 = 0\n", - " if not sphere.intersects(orig, dir, dist):\n", - " return bg_color\n", - "\n", - " return sphere.material.color\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAFnCAYAAADjbJN9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAAGG0lEQVR4nO3ZwWoCQRRFQVv8/19+LtyMILjyTMtUbUICCWZ1uP3WzMwNAPi5+9kfAACu4nH8Zq11+ObD108/+/Z1x9/xmfb4+zt+Jv/zHr/z739/x890xf95o9+Z9XpUtnQBIPK+dM/6FABwAZYuAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwAR0QWAiJsuAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwAR0QWAiJsuAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwAR0QWAiJsuAEQsXQCIWLoAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQ8bwMABFLFwAiogsAEc/LABCxdAEgIroAEBFdAIi46QJAxNIFgIjoAkDE8zIARCxdAIiILgBERBcAIm66ABCxdAEgIroAEBFdAIi46QJAxNIFgIjoAkDE8zIARCxdAIiILgBERBcAIm66ABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBERBcAIm66ABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBERBcAIm66ABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBERBcAIm66ABCxdAEgYukCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHPywAQsXQBICK6ABARXQCIuOkCQMTSBYCI6AJAxPMyAEQsXQCIiC4ARDwvA0DE0gWAiOgCQER0ASDipgsAEUsXACKiCwARz8sAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQER0ASDipgsAEUsXACKiCwARz8sAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiOgCQMTzMgBELF0AiIguAEREFwAibroAELF0ASAiugAQEV0AiLjpAkDE0gWAiKULABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEdEFgIibLgBELF0AiIguAEQ8LwNAxNIFgIjoAkBEdAEg4qYLABFLFwAiogsAEc/LABCxdAEgIroAEPG8DAARSxcAIqILABHRBYCImy4ARCxdAIiILgBEPC8DQMTSBYCI6AJARHQBIOKmCwARSxcAIqILABHRBYCImy4ARCxdAIiILgBEPC8DQGTNzJz9IQDgCixdAIiILgBEnv7cEL5KaxYBAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "id": "1baec786-664c-4fea-8be1-c2d5f25924e7", - "metadata": {}, - "source": [ - "Lastly, we parallelize the ray tracing for every pixel row-wise." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "var image = Image(192, 256)\n", + "\n", + "for row in range(image.height):\n", + " for col in range(image.width):\n", + " image.set(\n", + " row,\n", + " col,\n", + " Vec3f(Float32(row) / image.height, Float32(col) / image.width, 0),\n", + " )\n", + "\n", + "render(image)\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ef3206b4-0bbb-4108-a592-f748843e5d3d", + "metadata": {}, + "source": [ + "## Step 2: Ray tracing\n", + "\n", + "Now we'll perform ray tracing from a camera into a scene with a sphere. Before\n", + "reading the code below, we suggest you read more about how this works\n", + "conceptually from [Step 2 of the C++\n", + "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-2-the-crucial-one-ray-tracing)." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "778d8339-5b19-47ee-bdc6-a08e4ec5094c", + "metadata": {}, + "source": [ + "We first define the `Material` and `Sphere` structs, which are the new data\n", + "structures we'll need." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1c4a79de-0b65-48ac-97c9-187b74b96b9f", + "metadata": {}, + "outputs": [], + "source": [ + "from math import sqrt\n", + "\n", + "@register_passable(\"trivial\")\n", + "struct Material:\n", + " var color: Vec3f\n", + " var albedo: Vec3f\n", + " var specular_component: Float32\n", + "\n", + " @implicit\n", + " fn __init__(out self, color: Vec3f, albedo: Vec3f = Vec3f(0, 0, 0),\n", + " specular_component: Float32 = 0):\n", + " self.color = color\n", + " self.albedo = albedo\n", + " self.specular_component = specular_component\n", + "\n", + "alias W = 1024\n", + "alias H = 768\n", + "alias bg_color = Vec3f(0.02, 0.02, 0.02)\n", + "var shiny_yellow = Material(Vec3f(0.95, 0.95, 0.4), Vec3f(0.7, 0.6, 0), 30.0)\n", + "var green_rubber = Material(Vec3f( 0.3, 0.7, 0.3), Vec3f(0.9, 0.1, 0), 1.0)\n", + "\n", + "\n", + "@value\n", + "@register_passable(\"trivial\")\n", + "struct Sphere(CollectionElement):\n", + " var center: Vec3f\n", + " var radius: Float32\n", + " var material: Material\n", + "\n", + " @always_inline\n", + " fn intersects(self, orig: Vec3f, dir: Vec3f, mut dist: Float32) -> Bool:\n", + " \"\"\"This method returns True if a given ray intersects this sphere.\n", + " And if it does, it writes in the `dist` parameter the distance to the\n", + " origin of the ray.\n", + " \"\"\"\n", + " var L = orig - self.center\n", + " var a = dir @ dir\n", + " var b = 2 * (dir @ L)\n", + " var c = L @ L - self.radius * self.radius\n", + " var discriminant = b * b - 4 * a * c\n", + " if discriminant < 0:\n", + " return False\n", + " if discriminant == 0:\n", + " dist = -b / 2 * a\n", + " return True\n", + " var q = -0.5 * (b + sqrt(discriminant)) if b > 0 else -0.5 * (\n", + " b - sqrt(discriminant)\n", + " )\n", + " var t0 = q / a\n", + " var t1 = c / q\n", + " if t0 > t1:\n", + " t0 = t1\n", + " if t0 < 0:\n", + " t0 = t1\n", + " if t0 < 0:\n", + " return False\n", + "\n", + " dist = t0\n", + " return True\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "e5ed8e76-efc1-4905-90ea-4cad6df0c553", + "metadata": {}, + "source": [ + "We then define a `cast_ray` method, which will be used to figure out the color\n", + "of a particular pixel in the image we'll produce. It basically works by\n", + "identifying whether this ray intersects the sphere or not." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "beeecde1-f365-4be5-a3b1-d8a145810be1", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "fn cast_ray(orig: Vec3f, dir: Vec3f, sphere: Sphere) -> Vec3f:\n", + " var dist: Float32 = 0\n", + " if not sphere.intersects(orig, dir, dist):\n", + " return bg_color\n", + "\n", + " return sphere.material.color\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "1baec786-664c-4fea-8be1-c2d5f25924e7", + "metadata": {}, + "source": [ + "Lastly, we parallelize the ray tracing for every pixel row-wise." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "80c81118-acf9-4786-9a3a-694fe7f2d08a", + "metadata": { + "tags": [] + }, + "outputs": [ { - "cell_type": "code", - "execution_count": 8, - "id": "80c81118-acf9-4786-9a3a-694fe7f2d08a", - "metadata": { - "tags": [] - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAABKUUlEQVR4nOzde5CddX3H8e85u3t2N9lkc11CCESEXEgD2CRY1KJStNrRabWidAZGOy3qH62O1dE6dRCYsVXqH7ZTW+8WrdVpB2+1DkWQKVQCbeQypSAkQAhJSHYJuWw2ezm7e57+EQ3BAiWw333O7nm9ZpjZk7MhnznJHzl5n9/zVIqiKAIAAAAAAACAKVUtewAAAAAAAADAbCTGAgAAAAAAACRoP/5BrVYrawcAAAAAAADAjFev14997WQsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAgvayBwAAALPP+vWLYuPGpaVu2L59MG69dU+pGwAAAIDWJsYCAABT7sILl8dVV20qdcO3v709/uM/9kRRlDoDAAAAaGFiLAAAcELe8pbT49xzFz/n92zcuCQiKtMz6FmsX78orrxy0zPG2MOHx+Paax+I/fvHpn8YAAAA0DLEWAAA4FlVq08PqpVKxBvesCLe8Y4zS1r0/K1ZsyDWrFnwjM/19w/HD37waBw8WH/G54uicKIWAAAAeNEqRfHUPzHUarUytwAAAE1k9ere+OAHz41arXrcj1Ziw4YlceqpPaXtmgqjoxNx2217Y2ho/Bmf/8Y3tsXNN++e5lUAAADAbFCvP/XhbydjAQCAY+bMaY+2tqOnYU89tSfe/OaV0d09+942dHW1x0UXrXiWZ4u48859sWXLwNFHRcTw8EQ0Go7KAgAAACfGyVgAACAijobYa645/9ilfefN64gzz+z9P5cqbgU7dw7FwMBIREQMDtbjwx++PbZvP1zyKgAAAGAmcDIWAABaXE9PRyxe3PVLP9Ye55yzONavX1TSquZx6qk9xy7FfPDgWJxxRm80GkefGx2diP7+kRLXAQAAADOFk7EAANCCLr74pfHxj2+MiKdOvVYqEUuWdEWt1lbesCbUaBSxb99IjI8ffeu0efPeeN/7fhLj442SlwEAAADNyMlYAABoMd3dbbFu3aLo6KhGRMTZZy+KU06ZG8fHWJ5ZtVqJvr45xx6fccb8OP/8vmNxdseOw7Fnz3BZ8wAAAIAm5mQsAAC0gFWreuOf//n1sWTJ0UsTt7dXo1arhhh74iYnGzE2Nnns8Sc+cVd84Qv3l7gIAAAAaCZOxgIAQIuo1arx2tcuj7VrF8aCBZ0xZ05H2ZNmvLa2asyZUz32eOPGpfH2t58RERHj45Nxyy174sCBsbLmAQAAAE3EyVgAAJjFFi3qjO9+943xK7+yMCqVCCdhp15RFPGLd1WHD9fjd3/3R3HPPfvKHQUAAACUxslYAACYxS666JTYsGFJRER0d7dHX193VCoibJZKpRK/eHm7utrjne9cHa9//SkREbFz55G47rpHYmKiUeJCAAAAoCxOxgIAwCxSqUR88pO/Fu9+97qypxARmzfvjUsuuTGGhyfKngIAAABMk+NPxoqxAAAww51zzqK4/PKzolo9ejxz48alsXr1gnJHERERAwMjccstj8fmzXvj61/fWvYcAAAAYBq4TDEAAMwClUpEZ2dbnH76/LjkkjOjvb1a9iR+SV9fd7z97WdEpRJx3XWPxC8+C1uvN2Jysvh/fjYAAAAw0zkZCwAAM9RLXzo/PvGJ8+K00+bF2rUL3Be2iQ0MjMS2bYciooiiiPjMZ/47/v3fHy97FgAAAJDAyVgAAJjBqtVKLF7cGStXzovzz18Wvb0+VNns+vq6o6+vOyIiiqKIf/3XHfHAAwdi//6xqNcbJa8DAAAAsjgZCwAAM8ySJV3x+c+/Olav7o1ly+ZGW5sTsTNLEQMDo/HEEyPx/vf/JO6558myBwEAAABTyMlYAACYgSqVo5cmXrlyXpx5Zm+cckpP2ZN4QSrR19cd8+d3xNlnL456vREPPXTICVkAAACYhZyMBQCAGaKzsy2++tXXxqtetSzmzu2IatWJ2JmsKIoYHp6InTuH4vd+76bYuXOo7EkAAADAFHAyFgAAZohVq3pj7doFERHR0VGN006bF/PmTdWHKIuIOJGgm/39reCp16RSqcTcuR3R19cdr3/9iti69WDccUd/TEwUz/2/AAAAAGYMJ2MBAKCJfeAD58Sf/dmvHntcrVaiUhE4Z5OiKKLRKOKuu/bF29/+ozh8eLzsSQAAAMCL4GQsAAA0uVWreuM3f/PUeOUrT4q2tmrZc0hUqVSira0SJ588J97znnVx333744YbdkbhgCwAAADMeE7GAgBAE3rrW0+PL37xNe4L24K+//3tcfnlt0SjocYCAADATORkLAAANKmVK3viPe9ZF2vXLgxXI25N5567OD796fPj5pt3xw9/+FjZcwAAAIAXQYwFAIAm0dFRjeXL58Zll62Onp6OsudQkpe8ZH78/u/PjyNHJuLGG3fFxEThlCwAAADMUGIsAAA0gSVLuuLqq8+LM8+cH11dbWXPoQm8+c0rY+3aBfHFL/4sbrppV9lzAAAAgBegWvYAAABoZZVKRG9vLZYvnxsXXLAsNm3qi/Z2f00nYuXKeXHRRafEmjW9sXhxV3R0+HMBAAAAM02lKIpj17uq1WplbgEAgJbT3d0Wn/nMq2LDhiVx2mk90dHhVCzHK2Lv3pEYGBiJj3zk9tiy5YmyBwEAAAD/j3q9fuxrlykGAIASVauVWLmyJ844o7fsKTSlSixbNicWLeqMs85aGAcP1mPHjsNRrzfKHgYAAAA8D65zBQAA0OQ6Oqpx9dXnxde+9huxYkVP2XMAAACA58nJWAAAKMn69YviJS+ZF729nWVPoclVKpWYP78WjUYRF1ywLJYu7Yq77toX4+NOyAIAAEAzc89YAAAoQaUS8bd/e0G89a2nR3t7NarVStmTmAGKooiJiSLuu29/XHzxj+LAgbGyJwEAAAC/xD1jAQCgRBs3LomXvWxJrF69IGq1trLnMINUKpXo6KhEX193XHrpqnjwwYPx4x/vioYDsgAAANCUnIwFAIBp9rGPbYgPfvCcnz9yIpYX4ujbuBtu2BXvfOfNMTGhxgIAAECzcDIWAABKsGHDkvid3zk9zj+/L0RYXhx/fgAAAGAmEGMBAGCanHXWwvijP/qVqFSENKZGpRLR1laJycmIp655BAAAADSLatkDAAAAeGHOPXdxfOlLr4lLL11V9hQAAADgGYixAACQrK2tEvPnd0R3twvTMLVOOmlOvOlNK2PDhqUxf34tajVv8QAAAKCZVIriqYtZ1Wq1MrcAAMCs9Ku/uiT+/M9fHiefPCdOO60n3O+TqfbEEyOxe/eR+Lu/uy++/e1Hyp4DAAAALa1erx/72kfzAQAgSUdHNU4+eU6sWtUbL3vZkujsbCt7ErPU0qXdP/+vq+wpAAAAwHHEWAAASLJ8+Zy49trfiBUr5rp8LAAAAEAL8i9CAACQpK2tGn193bFoUVdUKi5NTL7TT58fr3rVsli0qLPsKQAAAECIsQAAALPGu961Jv7xHy+KTZuWlj0FAAAACJcpBgCAKdfRUY2LLjol1qxZEN3d7hPL9OnoqEal0h5tbT53CwAAAM1AjAUAgCk2Z057fPjDL4tzz10crk4MAAAA0Lp8XBoAABJUKvHz+8SqsUyvarUSF1/80viTPzknTjqpu+w5AAAA0NLEWAAAmEJHI2yECEtZqtVKvOUtp8cf//H66OsTYwEAAKBMLlMMAABTpFqtxHvfe1acd15fnHZaT9lzAAAAACiZGAsAAFOkUol4xSuWxZvetLLsKRAREd3d7dHd3Rajo5NRFGWvAQAAgNbjMsUAAACzUE9PR/zlX54ff/3Xvx4LFnSWPQcAAABakpOxAAAwBXp7a7FgQS26u/0Vm+bQ3l6Ns89eHN3d7dHR4XO4AAAAUAb/UgQAAFPgD/9wbVx22epYurS77CkAAAAANAkfjwYAgCmwcGFnrFw5L+bM8XlHmktXV1uce+7iWLWqNyqVstcAAABAaxFjAQAAZrHly+fGl7/82rjqqk1Rq3kLCAAAANPJO3EAAIBZrFqtRE9Px8/vZ+xoLAAAAEwnMRYAAAAAAAAggRtaAQDAi3DOOYvjwguXx4YNS8ueAgAAAECTEWMBAOBFOO+8pfHxj28Ml38FAAAA4Je5TDEAAEALWL26Nz796fPjkkvOKHsKAAAAtAwxFgAAoAWcfPLcuPTS1fGKVywrewoAAAC0DDEWAAAAAAAAIIF7xgIAwAtQq1Wjt7cW8+Z1lD0FAAAAgCYlxgIAwAuwadPSuOaa82PJku6IqJQ9BwAAAIAm5DLFAADwAsyd2xGrVvVGX1932VPghCxa1Bnr1y+KpUu7yp4CAAAAs54YCwAA0EJe97oV8b3vvTHe9raXlj0FAAAAZj2XKQYAAGghnZ1t0dnZFl1d3g4CAABANidjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABG4SBAAAJ2DZsu64/PKzYu3ahdHW5rONAAAAADw7MRYAAE7AokVd8c53ronFi7vKngIAAABAk/NRfgAAAAAAAIAEYiwAAEAL6u5uiwULatHR4W0hAAAAZPGuGwAAoAVddtnq+O533xgXXHBy2VMAAABg1nLPWAAAgBa0bNmc6Ovrjt7eWtlTAAAAYNZyMhYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAKA0RdkDZoHneg2n+/X1+wkAAAA8nRgLAAClqZQ9YBZ4rtdwul9fv58AAADA04mxAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAC2nKHsAAAAAtAQxFgAAoOVUyh4AAAAALUGMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIEF72QMAAACYfnv2HIm9e0fi4MGxsqcAAADArCXGAgAAtKBvfGNbfO5z98Xw8ETZUwAAAGDWEmMBAABa0OjoZBw6VC97BgAAAMxq7hkLAAAAAAAAkECMBQCAE/Dkk6Px93//QPzwhzticrIoew4AAAAATUyMBQCAE9DfPxKf/OTd8Q//sDUajUbZcwAAAABoYmIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQoL3sAQAAAEyfsbHJGBoaj9HRibKnAAAAwKwnxgIAALSQG2/cGddcc08MDIyUPQUAAABmPZcpBgCAF2BoaDweeOBg9PcPlz0FTsiBA/W4//4DsW/faNlTAAAAYNYTYwEA4AX46U+fiLe97UfxhS/cHxFF2XMAAAAAaEJiLAAAvADj44148snRGBoaL3sKAAAAAE1KjAUAAAAAAABI0F72AAAAAPI9/viRuOmmXbF5c3/ZUwAAAKBliLEAAAAtYNu2Q/HRj/5njI1Nlj0FAAAAWobLFAMAwIvwX/81EFde+dPYvHlv2VMAAAAAaDJOxgIAwItw7737495798dJJ3XHK1+5rOw5AAAAADQRJ2MBAKBlFU32/a3AawgAAACtxMlYAABoWZUm+/5WMP2vYaNRxJEj4zE8PBHiLgAAAEwvMRYAAGAW2737SHzoQ5tjx47DUa83yp4DAAAALcVligEAYArs3z8Wjz46GEeOjJc9BZ5mbGwy7r13fzz00GAUDsYCAADAtBJjAQBgCnzlKz+Lt7zlhrjjjv6ypwAAAADQJFymGAAApsDg4HgcOTIRo6OTZU+BiIiYmGjEffftj61bD8X4uMsTAwAAQBnEWAAAgFloaGg8/vRP74h7790fY2M+JAAAAABlEGMBAGCKFEXEbbftjbGxybjwwuWxcGFX2ZNocaOjk05rAwAAQIncMxYAAKZIo1HEF75wf3z4w7fHY48NlT0HAAAAgJI5GQsAAFOsKJ73d0ZEJXFJK3iu13C6X9/m+P1sNIr43ve2x7337o/+/pGy5wAAAEBLE2MBACBBUUQURRGVSsSzB7ryw93M91yv4XS/vs3x+9loFPGd72yP669/rOwpAAAA0PJcphgAAKbY8PBEfOpTd8fVV/80Dh6slz0HAAAAgJKIsQAAMMXGxxtx44274oc/fCxGRyfLnkMLqdcnY3h4IiYnG2VPAQAAAMJligEAAGaNr33twfje9x6NBx88WPYUAAAAIMRYAABIMznZiL17h6O9vRqLF3dGpdIc9xRl9nr00cNxxx39Zc8AAAAAfs5ligEAIMnu3UfiXe+6OT72sf+Met1lYwEAAABajRgLAABJJiaK2LXrSDz00KG4664nYseOwxFRlD2LWWhgYCTuvPOJGBgYKXsKAAAAcJxKURTH/jWoVquVuQUAAGaltrZKdHe3xyWXnBHXXHO+yxUz5a699oG46qqfxujoZIyPO4UNAAAAZarX68e+ds9YAABINjlZxNDQeIyOTpY9hVlm797h2LJlIO68c18cPjxe9hwAAADgl4ixAAAAM9R///eT8d733hr1utAPAAAAzcg9YwEAYJrcf/+B+Ju/uTe2bBkoewqzRFEcPXlduBUxAAAANCUxFgAApsndd++Lq6++M269dU9EFD//jxfnuV7D6X59p/PX8+cHAAAAZgKXKQYAgGl2/fWPxeOPH4lLL10VGzYsLXvODFd5gc9lmL5f7/HHh+Nzn7svHnzwYExONqbt1wUAAABOjBgLAADT7O6798U99+yLl7+8L9avXxTt7dWoVqc7HDITFUUR4+ON6O8fiW9966E4cGCs7EkAAADAc6gUxVN3F6rVamVuAQCAlrJu3cJYuXJeXHHFxlizZkHZc5gBDh4ciyuv3BIPPngw7r77yZiYcCoWAAAAmk29Xj/2tZOxAABQkvvvPxA7dhyOQ4fWlz2FJlcURQwO1mPPnuHYvLk/HnlksOxJAAAAwPMgxgIAADS58fFGfPzjW+L22/tj166hsucAAAAAz5MYCwAAJWo0iti+/XAsXNgZK1fOi1qtrexJNJUi9uwZjv7+kXjggYPx8MNOxAIAAMBM4p6xAABQsvnzO2LlynnxjW9cFCtW9JQ9h6ZSxBVXbIlvfeuhGBoaj/Fx94gFAACAZueesQAA0EQGB8djz57huOWWPbFqVW9s2LAk2turZc+iZI8+Ohhbtx6KBx88GAcOjJU9BwAAAHgBnIwFAIAm0d5eiU2b+uKf/un10dPTUfYcSvbZz/5PfOITd8bkZCMaDsQCAADAjHH8yVgftwcAgCYxMVHE448fia997cG4+ebdcdznJmkh27cPxle+8rO4447+GB8XYgEAAGAmczIWAACa0Fvfenp88YuviWq1UvYUptn3v789Lr/8lmg0xHgAAACYidwzFgAAmty99z4ZV1zxX3HhhafE6163ouw5TINdu4bi2msfjPvu2+9UNAAAAMwSYiwAADShhx4ajIceuj+6utrjta9dfuzH29oqUak4LTubFEURjUYRe/YMx5e//LM4fHi87EkAAADAFBFjAQCgif3gB4/G1q0HIyKiVqvGhz50bqxbt6jcUUyp/fvH4i/+4q7YuvVQjIxMlD0HAAAAmEJiLAAANLGHHx6Mhx8ejIiIzs62uPjiM2LFip6YO7cj2tqckJ3JiqKII0cmYmBgJH78492xc+dQ2ZMAAACAKVYpjrsZUa1WK3MLAADwHCqViJe8ZF6sXDkv/uqvXhWnntpT9iRehNHRifjIR+6IO+98Ih55ZDDq9UbZkwAAAIApUK/Xj33tZCwAAMwQRRGxffvhGBwcj23bDkZExPLlc52QnXGK6O8fiYGBkfif/9kfDzxwsOxBAAAAQBInYwEAYIapViuxcGFnnH32ovjqVy+M3l5/j59JiqKIj370P+Nf/uXROHBgLMbHnYgFAACA2cTJWAAAmMEajSKefHI0duw4HLfdtjdWruyJdesWRqXihGyz6u8fjq1bD0VRFFEUEdu2HYqBgZGyZwEAAADJnIwFAIAZqlKJqNXa4g1vODW+9KXXRHt7texJPIvrrns4PvCB2+IX777q9UY0GsVz/yQAAABgRnIyFgAAZoGiiBgbm4zt2wfjm9/cduzesZs29cWaNQvKHUdERAwMDMfNNz8et9++N0ZGJsueAwAAAEwzJ2MBAGCW+dSnfi3e/e51Zc8gIjZv3huXXHJjDA9PlD0FAAAAmCZOxgIAwCx2ww07j92PtLu7PS67bHX09XWXvKo1jI5Oxje/uS327DkSERG7dh2Jet2JWAAAAGhVTsYCAMAstmhRZ3z3u2+MdesWRrUaEVEpe9KsUxTFsXvBDg7W421v+1Hcc8++ckcBAAAApTn+ZKwYCwAAs1itVo1Xv/rkWLt2YXzoQ+fG/PnH/52/iBOLs9nfPzNdd93DccMNOyMiYny8ET/5yd44cGCs5FUAAABAWVymGAAAWkS93oibbtodO3YMxR/8wdqoVo/G0Y6OanR2Vk/w/3aiYXV2htjJyUaMjk4eOw1711374jvf2V7uKAAAAKApORkLAAAtoKurLc46a2F0dBwNsL/1W6fF+9+/PmZrMM10551PxFVX/TQmJhoREfHYY0Oxd+9wyasAAACAZuFkLAAAtJjR0cm4++6n7mN66qk9sXPnkad9T7UasXRpd9RqbdM9r6k1GkUMDIzE+PjR+Prww4diy5aBY48BAAAAno2TsQAA0IJ6etpj4cKuX/qxjvj8518d69cvKmlVczp4cCze/e5bYtu2QxERMTo6EU88MVryKgAAAKBZORkLAAAtbmhoIoaGhp72Y3PmtMc99+yLkZGJiIiYN68jVq9ecOw+s61kx47DMTAwEhERg4P1eOSRwdi5c+j/+VkAAAAAT+dkLAAAcEx3d1u0tR29r+zLX94XX//6b0R3d6t9hrOIK67YEl//+tajj4oiRkYmouGqxAAAAMDz4GQsAADwjEZGJiNiMiIidu4ciu9//9Go1arHnq9UIjZuXBqnnTavpIVTY3R0Im69dU8MDY0/4/M/+9mBZ30OAAAA4PlyMhYAAHhW1erTH1cqlfjsZ3893vGOM8sZNEX6+4fjt3/7+njkkcFnfN4pWAAAAOCFcjIWAAB4Xv5vlCzi+ut3xu7dR57z523a1BcXXHBy2q7n44EHDsS//dvOOO7zp8cMDY3H/v1joisAAACQyslYAABgyr3vfevjyis3lbrhO9/ZHu997y3xDC0WAAAAII2TsQAAQKof/3h3HDgwVuqGRx89LMQCAAAApXIyFgAAAAAAAGCKHH8ytlriDgAAAAAAAIBZS4wFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAP63fTs4AQAEYCCG+w9dpzgESSbo/ygAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAIDA2bbXIwAAAAAAAAB+4xkLAAAAAAAAEBBjAQAAAAAAAAIXPgf3yqAAlNMAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "from math import tan, acos\n", - "from algorithm import parallelize\n", - "\n", - "\n", - "fn create_image_with_sphere(sphere: Sphere, height: Int, width: Int) -> Image:\n", - " var image = Image(height, width)\n", - "\n", - " @parameter\n", - " fn _process_row(row: Int):\n", - " var y = -((Float32(2.0) * row + 1) / height - 1)\n", - " for col in range(width):\n", - " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", - " var dir = Vec3f(x, y, -1).normalize()\n", - " image.set(row, col, cast_ray(Vec3f.zero(), dir, sphere))\n", - "\n", - " parallelize[_process_row](height)\n", - "\n", - " return image\n", - "\n", - "\n", - "render(\n", - " create_image_with_sphere(Sphere(Vec3f(-3, 0, -16), 2, shiny_yellow), H, W)\n", - ")\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAABKUUlEQVR4nOzde5CddX3H8e85u3t2N9lkc11CCESEXEgD2CRY1KJStNrRabWidAZGOy3qH62O1dE6dRCYsVXqH7ZTW+8WrdVpB2+1DkWQKVQCbeQypSAkQAhJSHYJuWw2ezm7e57+EQ3BAiWw333O7nm9ZpjZk7MhnznJHzl5n9/zVIqiKAIAAAAAAACAKVUtewAAAAAAAADAbCTGAgAAAAAAACRoP/5BrVYrawcAAAAAAADAjFev14997WQsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAgvayBwAAALPP+vWLYuPGpaVu2L59MG69dU+pGwAAAIDWJsYCAABT7sILl8dVV20qdcO3v709/uM/9kRRlDoDAAAAaGFiLAAAcELe8pbT49xzFz/n92zcuCQiKtMz6FmsX78orrxy0zPG2MOHx+Paax+I/fvHpn8YAAAA0DLEWAAA4FlVq08PqpVKxBvesCLe8Y4zS1r0/K1ZsyDWrFnwjM/19w/HD37waBw8WH/G54uicKIWAAAAeNEqRfHUPzHUarUytwAAAE1k9ere+OAHz41arXrcj1Ziw4YlceqpPaXtmgqjoxNx2217Y2ho/Bmf/8Y3tsXNN++e5lUAAADAbFCvP/XhbydjAQCAY+bMaY+2tqOnYU89tSfe/OaV0d09+942dHW1x0UXrXiWZ4u48859sWXLwNFHRcTw8EQ0Go7KAgAAACfGyVgAACAijobYa645/9ilfefN64gzz+z9P5cqbgU7dw7FwMBIREQMDtbjwx++PbZvP1zyKgAAAGAmcDIWAABaXE9PRyxe3PVLP9Ye55yzONavX1TSquZx6qk9xy7FfPDgWJxxRm80GkefGx2diP7+kRLXAQAAADOFk7EAANCCLr74pfHxj2+MiKdOvVYqEUuWdEWt1lbesCbUaBSxb99IjI8ffeu0efPeeN/7fhLj442SlwEAAADNyMlYAABoMd3dbbFu3aLo6KhGRMTZZy+KU06ZG8fHWJ5ZtVqJvr45xx6fccb8OP/8vmNxdseOw7Fnz3BZ8wAAAIAm5mQsAAC0gFWreuOf//n1sWTJ0UsTt7dXo1arhhh74iYnGzE2Nnns8Sc+cVd84Qv3l7gIAAAAaCZOxgIAQIuo1arx2tcuj7VrF8aCBZ0xZ05H2ZNmvLa2asyZUz32eOPGpfH2t58RERHj45Nxyy174sCBsbLmAQAAAE3EyVgAAJjFFi3qjO9+943xK7+yMCqVCCdhp15RFPGLd1WHD9fjd3/3R3HPPfvKHQUAAACUxslYAACYxS666JTYsGFJRER0d7dHX193VCoibJZKpRK/eHm7utrjne9cHa9//SkREbFz55G47rpHYmKiUeJCAAAAoCxOxgIAwCxSqUR88pO/Fu9+97qypxARmzfvjUsuuTGGhyfKngIAAABMk+NPxoqxAAAww51zzqK4/PKzolo9ejxz48alsXr1gnJHERERAwMjccstj8fmzXvj61/fWvYcAAAAYBq4TDEAAMwClUpEZ2dbnH76/LjkkjOjvb1a9iR+SV9fd7z97WdEpRJx3XWPxC8+C1uvN2Jysvh/fjYAAAAw0zkZCwAAM9RLXzo/PvGJ8+K00+bF2rUL3Be2iQ0MjMS2bYciooiiiPjMZ/47/v3fHy97FgAAAJDAyVgAAJjBqtVKLF7cGStXzovzz18Wvb0+VNns+vq6o6+vOyIiiqKIf/3XHfHAAwdi//6xqNcbJa8DAAAAsjgZCwAAM8ySJV3x+c+/Olav7o1ly+ZGW5sTsTNLEQMDo/HEEyPx/vf/JO6558myBwEAAABTyMlYAACYgSqVo5cmXrlyXpx5Zm+cckpP2ZN4QSrR19cd8+d3xNlnL456vREPPXTICVkAAACYhZyMBQCAGaKzsy2++tXXxqtetSzmzu2IatWJ2JmsKIoYHp6InTuH4vd+76bYuXOo7EkAAADAFHAyFgAAZohVq3pj7doFERHR0VGN006bF/PmTdWHKIuIOJGgm/39reCp16RSqcTcuR3R19cdr3/9iti69WDccUd/TEwUz/2/AAAAAGYMJ2MBAKCJfeAD58Sf/dmvHntcrVaiUhE4Z5OiKKLRKOKuu/bF29/+ozh8eLzsSQAAAMCL4GQsAAA0uVWreuM3f/PUeOUrT4q2tmrZc0hUqVSira0SJ588J97znnVx333744YbdkbhgCwAAADMeE7GAgBAE3rrW0+PL37xNe4L24K+//3tcfnlt0SjocYCAADATORkLAAANKmVK3viPe9ZF2vXLgxXI25N5567OD796fPj5pt3xw9/+FjZcwAAAIAXQYwFAIAm0dFRjeXL58Zll62Onp6OsudQkpe8ZH78/u/PjyNHJuLGG3fFxEThlCwAAADMUGIsAAA0gSVLuuLqq8+LM8+cH11dbWXPoQm8+c0rY+3aBfHFL/4sbrppV9lzAAAAgBegWvYAAABoZZVKRG9vLZYvnxsXXLAsNm3qi/Z2f00nYuXKeXHRRafEmjW9sXhxV3R0+HMBAAAAM02lKIpj17uq1WplbgEAgJbT3d0Wn/nMq2LDhiVx2mk90dHhVCzHK2Lv3pEYGBiJj3zk9tiy5YmyBwEAAAD/j3q9fuxrlykGAIASVauVWLmyJ844o7fsKTSlSixbNicWLeqMs85aGAcP1mPHjsNRrzfKHgYAAAA8D65zBQAA0OQ6Oqpx9dXnxde+9huxYkVP2XMAAACA58nJWAAAKMn69YviJS+ZF729nWVPoclVKpWYP78WjUYRF1ywLJYu7Yq77toX4+NOyAIAAEAzc89YAAAoQaUS8bd/e0G89a2nR3t7NarVStmTmAGKooiJiSLuu29/XHzxj+LAgbGyJwEAAAC/xD1jAQCgRBs3LomXvWxJrF69IGq1trLnMINUKpXo6KhEX193XHrpqnjwwYPx4x/vioYDsgAAANCUnIwFAIBp9rGPbYgPfvCcnz9yIpYX4ujbuBtu2BXvfOfNMTGhxgIAAECzcDIWAABKsGHDkvid3zk9zj+/L0RYXhx/fgAAAGAmEGMBAGCanHXWwvijP/qVqFSENKZGpRLR1laJycmIp655BAAAADSLatkDAAAAeGHOPXdxfOlLr4lLL11V9hQAAADgGYixAACQrK2tEvPnd0R3twvTMLVOOmlOvOlNK2PDhqUxf34tajVv8QAAAKCZVIriqYtZ1Wq1MrcAAMCs9Ku/uiT+/M9fHiefPCdOO60n3O+TqfbEEyOxe/eR+Lu/uy++/e1Hyp4DAAAALa1erx/72kfzAQAgSUdHNU4+eU6sWtUbL3vZkujsbCt7ErPU0qXdP/+vq+wpAAAAwHHEWAAASLJ8+Zy49trfiBUr5rp8LAAAAEAL8i9CAACQpK2tGn193bFoUVdUKi5NTL7TT58fr3rVsli0qLPsKQAAAECIsQAAALPGu961Jv7xHy+KTZuWlj0FAAAACJcpBgCAKdfRUY2LLjol1qxZEN3d7hPL9OnoqEal0h5tbT53CwAAAM1AjAUAgCk2Z057fPjDL4tzz10crk4MAAAA0Lp8XBoAABJUKvHz+8SqsUyvarUSF1/80viTPzknTjqpu+w5AAAA0NLEWAAAmEJHI2yECEtZqtVKvOUtp8cf//H66OsTYwEAAKBMLlMMAABTpFqtxHvfe1acd15fnHZaT9lzAAAAACiZGAsAAFOkUol4xSuWxZvetLLsKRAREd3d7dHd3Rajo5NRFGWvAQAAgNbjMsUAAACzUE9PR/zlX54ff/3Xvx4LFnSWPQcAAABakpOxAAAwBXp7a7FgQS26u/0Vm+bQ3l6Ns89eHN3d7dHR4XO4AAAAUAb/UgQAAFPgD/9wbVx22epYurS77CkAAAAANAkfjwYAgCmwcGFnrFw5L+bM8XlHmktXV1uce+7iWLWqNyqVstcAAABAaxFjAQAAZrHly+fGl7/82rjqqk1Rq3kLCAAAANPJO3EAAIBZrFqtRE9Px8/vZ+xoLAAAAEwnMRYAAAAAAAAggRtaAQDAi3DOOYvjwguXx4YNS8ueAgAAAECTEWMBAOBFOO+8pfHxj28Ml38FAAAA4Je5TDEAAEALWL26Nz796fPjkkvOKHsKAAAAtAwxFgAAoAWcfPLcuPTS1fGKVywrewoAAAC0DDEWAAAAAAAAIIF7xgIAwAtQq1Wjt7cW8+Z1lD0FAAAAgCYlxgIAwAuwadPSuOaa82PJku6IqJQ9BwAAAIAm5DLFAADwAsyd2xGrVvVGX1932VPghCxa1Bnr1y+KpUu7yp4CAAAAs54YCwAA0EJe97oV8b3vvTHe9raXlj0FAAAAZj2XKQYAAGghnZ1t0dnZFl1d3g4CAABANidjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABG4SBAAAJ2DZsu64/PKzYu3ahdHW5rONAAAAADw7MRYAAE7AokVd8c53ronFi7vKngIAAABAk/NRfgAAAAAAAIAEYiwAAEAL6u5uiwULatHR4W0hAAAAZPGuGwAAoAVddtnq+O533xgXXHBy2VMAAABg1nLPWAAAgBa0bNmc6Ovrjt7eWtlTAAAAYNZyMhYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAKA0RdkDZoHneg2n+/X1+wkAAAA8nRgLAAClqZQ9YBZ4rtdwul9fv58AAADA04mxAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAC2nKHsAAAAAtAQxFgAAoOVUyh4AAAAALUGMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIEF72QMAAACYfnv2HIm9e0fi4MGxsqcAAADArCXGAgAAtKBvfGNbfO5z98Xw8ETZUwAAAGDWEmMBAABa0OjoZBw6VC97BgAAAMxq7hkLAAAAAAAAkECMBQCAE/Dkk6Px93//QPzwhzticrIoew4AAAAATUyMBQCAE9DfPxKf/OTd8Q//sDUajUbZcwAAAABoYmIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQoL3sAQAAAEyfsbHJGBoaj9HRibKnAAAAwKwnxgIAALSQG2/cGddcc08MDIyUPQUAAABmPZcpBgCAF2BoaDweeOBg9PcPlz0FTsiBA/W4//4DsW/faNlTAAAAYNYTYwEA4AX46U+fiLe97UfxhS/cHxFF2XMAAAAAaEJiLAAAvADj44148snRGBoaL3sKAAAAAE1KjAUAAAAAAABI0F72AAAAAPI9/viRuOmmXbF5c3/ZUwAAAKBliLEAAAAtYNu2Q/HRj/5njI1Nlj0FAAAAWobLFAMAwIvwX/81EFde+dPYvHlv2VMAAAAAaDJOxgIAwItw7737495798dJJ3XHK1+5rOw5AAAAADQRJ2MBAKBlFU32/a3AawgAAACtxMlYAABoWZUm+/5WMP2vYaNRxJEj4zE8PBHiLgAAAEwvMRYAAGAW2737SHzoQ5tjx47DUa83yp4DAAAALcVligEAYArs3z8Wjz46GEeOjJc9BZ5mbGwy7r13fzz00GAUDsYCAADAtBJjAQBgCnzlKz+Lt7zlhrjjjv6ypwAAAADQJFymGAAApsDg4HgcOTIRo6OTZU+BiIiYmGjEffftj61bD8X4uMsTAwAAQBnEWAAAgFloaGg8/vRP74h7790fY2M+JAAAAABlEGMBAGCKFEXEbbftjbGxybjwwuWxcGFX2ZNocaOjk05rAwAAQIncMxYAAKZIo1HEF75wf3z4w7fHY48NlT0HAAAAgJI5GQsAAFOsKJ73d0ZEJXFJK3iu13C6X9/m+P1sNIr43ve2x7337o/+/pGy5wAAAEBLE2MBACBBUUQURRGVSsSzB7ryw93M91yv4XS/vs3x+9loFPGd72yP669/rOwpAAAA0PJcphgAAKbY8PBEfOpTd8fVV/80Dh6slz0HAAAAgJKIsQAAMMXGxxtx44274oc/fCxGRyfLnkMLqdcnY3h4IiYnG2VPAQAAAMJligEAAGaNr33twfje9x6NBx88WPYUAAAAIMRYAABIMznZiL17h6O9vRqLF3dGpdIc9xRl9nr00cNxxx39Zc8AAAAAfs5ligEAIMnu3UfiXe+6OT72sf+Met1lYwEAAABajRgLAABJJiaK2LXrSDz00KG4664nYseOwxFRlD2LWWhgYCTuvPOJGBgYKXsKAAAAcJxKURTH/jWoVquVuQUAAGaltrZKdHe3xyWXnBHXXHO+yxUz5a699oG46qqfxujoZIyPO4UNAAAAZarX68e+ds9YAABINjlZxNDQeIyOTpY9hVlm797h2LJlIO68c18cPjxe9hwAAADgl4ixAAAAM9R///eT8d733hr1utAPAAAAzcg9YwEAYJrcf/+B+Ju/uTe2bBkoewqzRFEcPXlduBUxAAAANCUxFgAApsndd++Lq6++M269dU9EFD//jxfnuV7D6X59p/PX8+cHAAAAZgKXKQYAgGl2/fWPxeOPH4lLL10VGzYsLXvODFd5gc9lmL5f7/HHh+Nzn7svHnzwYExONqbt1wUAAABOjBgLAADT7O6798U99+yLl7+8L9avXxTt7dWoVqc7HDITFUUR4+ON6O8fiW9966E4cGCs7EkAAADAc6gUxVN3F6rVamVuAQCAlrJu3cJYuXJeXHHFxlizZkHZc5gBDh4ciyuv3BIPPngw7r77yZiYcCoWAAAAmk29Xj/2tZOxAABQkvvvPxA7dhyOQ4fWlz2FJlcURQwO1mPPnuHYvLk/HnlksOxJAAAAwPMgxgIAADS58fFGfPzjW+L22/tj166hsucAAAAAz5MYCwAAJWo0iti+/XAsXNgZK1fOi1qtrexJNJUi9uwZjv7+kXjggYPx8MNOxAIAAMBM4p6xAABQsvnzO2LlynnxjW9cFCtW9JQ9h6ZSxBVXbIlvfeuhGBoaj/Fx94gFAACAZueesQAA0EQGB8djz57huOWWPbFqVW9s2LAk2turZc+iZI8+Ohhbtx6KBx88GAcOjJU9BwAAAHgBnIwFAIAm0d5eiU2b+uKf/un10dPTUfYcSvbZz/5PfOITd8bkZCMaDsQCAADAjHH8yVgftwcAgCYxMVHE448fia997cG4+ebdcdznJmkh27cPxle+8rO4447+GB8XYgEAAGAmczIWAACa0Fvfenp88YuviWq1UvYUptn3v789Lr/8lmg0xHgAAACYidwzFgAAmty99z4ZV1zxX3HhhafE6163ouw5TINdu4bi2msfjPvu2+9UNAAAAMwSYiwAADShhx4ajIceuj+6utrjta9dfuzH29oqUak4LTubFEURjUYRe/YMx5e//LM4fHi87EkAAADAFBFjAQCgif3gB4/G1q0HIyKiVqvGhz50bqxbt6jcUUyp/fvH4i/+4q7YuvVQjIxMlD0HAAAAmEJiLAAANLGHHx6Mhx8ejIiIzs62uPjiM2LFip6YO7cj2tqckJ3JiqKII0cmYmBgJH78492xc+dQ2ZMAAACAKVYpjrsZUa1WK3MLAADwHCqViJe8ZF6sXDkv/uqvXhWnntpT9iRehNHRifjIR+6IO+98Ih55ZDDq9UbZkwAAAIApUK/Xj33tZCwAAMwQRRGxffvhGBwcj23bDkZExPLlc52QnXGK6O8fiYGBkfif/9kfDzxwsOxBAAAAQBInYwEAYIapViuxcGFnnH32ovjqVy+M3l5/j59JiqKIj370P+Nf/uXROHBgLMbHnYgFAACA2cTJWAAAmMEajSKefHI0duw4HLfdtjdWruyJdesWRqXihGyz6u8fjq1bD0VRFFEUEdu2HYqBgZGyZwEAAADJnIwFAIAZqlKJqNXa4g1vODW+9KXXRHt7texJPIvrrns4PvCB2+IX777q9UY0GsVz/yQAAABgRnIyFgAAZoGiiBgbm4zt2wfjm9/cduzesZs29cWaNQvKHUdERAwMDMfNNz8et9++N0ZGJsueAwAAAEwzJ2MBAGCW+dSnfi3e/e51Zc8gIjZv3huXXHJjDA9PlD0FAAAAmCZOxgIAwCx2ww07j92PtLu7PS67bHX09XWXvKo1jI5Oxje/uS327DkSERG7dh2Jet2JWAAAAGhVTsYCAMAstmhRZ3z3u2+MdesWRrUaEVEpe9KsUxTFsXvBDg7W421v+1Hcc8++ckcBAAAApTn+ZKwYCwAAs1itVo1Xv/rkWLt2YXzoQ+fG/PnH/52/iBOLs9nfPzNdd93DccMNOyMiYny8ET/5yd44cGCs5FUAAABAWVymGAAAWkS93oibbtodO3YMxR/8wdqoVo/G0Y6OanR2Vk/w/3aiYXV2htjJyUaMjk4eOw1711374jvf2V7uKAAAAKApORkLAAAtoKurLc46a2F0dBwNsL/1W6fF+9+/PmZrMM10551PxFVX/TQmJhoREfHYY0Oxd+9wyasAAACAZuFkLAAAtJjR0cm4++6n7mN66qk9sXPnkad9T7UasXRpd9RqbdM9r6k1GkUMDIzE+PjR+Prww4diy5aBY48BAAAAno2TsQAA0IJ6etpj4cKuX/qxjvj8518d69cvKmlVczp4cCze/e5bYtu2QxERMTo6EU88MVryKgAAAKBZORkLAAAtbmhoIoaGhp72Y3PmtMc99+yLkZGJiIiYN68jVq9ecOw+s61kx47DMTAwEhERg4P1eOSRwdi5c+j/+VkAAAAAT+dkLAAAcEx3d1u0tR29r+zLX94XX//6b0R3d6t9hrOIK67YEl//+tajj4oiRkYmouGqxAAAAMDz4GQsAADwjEZGJiNiMiIidu4ciu9//9Go1arHnq9UIjZuXBqnnTavpIVTY3R0Im69dU8MDY0/4/M/+9mBZ30OAAAA4PlyMhYAAHhW1erTH1cqlfjsZ3893vGOM8sZNEX6+4fjt3/7+njkkcFnfN4pWAAAAOCFcjIWAAB4Xv5vlCzi+ut3xu7dR57z523a1BcXXHBy2q7n44EHDsS//dvOOO7zp8cMDY3H/v1joisAAACQyslYAABgyr3vfevjyis3lbrhO9/ZHu997y3xDC0WAAAAII2TsQAAQKof/3h3HDgwVuqGRx89LMQCAAAApXIyFgAAAAAAAGCKHH8ytlriDgAAAAAAAIBZS4wFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAAAAAAAAIIEYCwAAAAAAAJBAjAUAAAAAAABIIMYCAAAAAAAAJBBjAQAAAAAAABKIsQAAAAAAAAAJxFgAAAAAAACABGIsAAAAAAAAQAIxFgAAAAAAACCBGAsAAAAAAACQQIwFAAAAAAAASCDGAgAAAAAAACQQYwEAAAAAAAASiLEAAAAAAAAACcRYAAAAAAAAgARiLAAAAAAAAEACMRYAAAAAAAAggRgLAAAAAAAAkECMBQAAAAAAAEggxgIAAAAAAAAkEGMBAAAAAAAAEoixAAAAAAAAAAnEWAAAAAAAAIAEYiwAAAAAAABAAjEWAP63fTs4AQAEYCCG+w9dpzgESSbo/ygAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAIDA2bbXIwAAAAAAAAB+4xkLAAAAAAAAEBBjAQAAAAAAAAIXPgf3yqAAlNMAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "id": "ee9bbf4c-91ad-4787-a332-b509fdc8d512", - "metadata": {}, - "source": [ - "## Step 3: More spheres\n", - "\n", - "This section corresponds to the [Step 3 of the C++\n", - "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-3-add-more-spheres).\n", - "\n", - "We include here all the necessary changes:\n", - "\n", - "- We add 3 more spheres to the scene, 2 of them being of green rubber material.\n", - "- When we intersect the ray with the sphere, we render the color of the closest\n", - " sphere." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "from math import tan, acos\n", + "from algorithm import parallelize\n", + "\n", + "\n", + "fn create_image_with_sphere(sphere: Sphere, height: Int, width: Int) -> Image:\n", + " var image = Image(height, width)\n", + "\n", + " @parameter\n", + " fn _process_row(row: Int):\n", + " var y = -((Float32(2.0) * row + 1) / height - 1)\n", + " for col in range(width):\n", + " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", + " var dir = Vec3f(x, y, -1).normalize()\n", + " image.set(row, col, cast_ray(Vec3f.zero(), dir, sphere))\n", + "\n", + " parallelize[_process_row](height)\n", + "\n", + " return image\n", + "\n", + "\n", + "render(\n", + " create_image_with_sphere(Sphere(Vec3f(-3, 0, -16), 2, shiny_yellow), H, W)\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "ee9bbf4c-91ad-4787-a332-b509fdc8d512", + "metadata": {}, + "source": [ + "## Step 3: More spheres\n", + "\n", + "This section corresponds to the [Step 3 of the C++\n", + "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-3-add-more-spheres).\n", + "\n", + "We include here all the necessary changes:\n", + "\n", + "- We add 3 more spheres to the scene, 2 of them being of green rubber material.\n", + "- When we intersect the ray with the sphere, we render the color of the closest\n", + " sphere." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b4774ada-3cef-4ce3-a573-3fd721fe41b0", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 9, - "id": "b4774ada-3cef-4ce3-a573-3fd721fe41b0", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAACKqklEQVR4nOzdd5hdd30n/ve5d+70plGXbMm2uptcMN00h5YQAtmwIUsNkJBNNgUSkk3IhmUT8sumJ8+PFNLYpW1Ywoaw+2Npxiam2oANuFtuki1ZvY6m3vv7Q0a2cZWlM+fOzOv1PHqYe+femTdn7sx4zvt8vt+i1Wq1AgAAAAAAAMApVas6AAAAAAAAAMBcpIwFAAAAAAAAKEHHg290dnZWlQMAAAAAAABg1puYmDj+tslYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAoQUfVAQAAAACgHRVF0tExO2YZpqaaabWqTgEAwPdTxgIAAADAI9i4cTi//usXpaurXnWUxzQ2NpX3vOebueWWA1VHAQDg+yhjAQAAAJjz6vUig4OdqZ3AoOvq1QN5wQtWpqenvU+hHTkymQ984Nbs2TP2hJ/TbCYHDkyk2TROCwBQpqLVemABk87OziqzAAAAAEApzjhjIH/+58/OyEjXE35Ob29HTj+9P7VaUWKyk9dstnL33Ydz9OjUE37O7t1j+fmfvypbtx4uMRkAwPw0MTFx/O32vqwPAAAAAJ6gBQu6snRpzyO+74wzBrJp03BGRrpnOFX5arUiZ5wxcELP2b17LBs3Dqev75FPD+7YMZr9+yce8X0AADxxJmMBAAAAmBPe8IYN+Y3fuPAR31ev1zI01Nn2U64zpdls5cCBiUxPNx/x/f/lv3wjH/rQrTOcCgBgbjAZCwAAAMCsU6sV2bx5YRYseOSlhs8/fySLFj3yZCwPVasVj3ock1Y2b16Y7dtHH/G9e/eO5brr9qRlu1kAgMdlMhYAAACAWaGrq54PfvCyPPvZyx7x/bVakY6O2gynmpumppppNh+5bb3iinvzhjdcnomJR56qBQCY70zGAgAAANCWFi/uzotffPojlqqNRi2nn96fzs56Bcnml8cqtVevHsjrX78hU1MPlLGtVnLFFffkrrsOz0Q8AIBZw2QsAAAAAG3jKU9ZnH/6pxenv/+xZgjs+1qth0/MTk+38uY3X5FPfvKumY8DANBmTMYCAAAAUKmiSP7Nvzkr55+/8CH3L1vWm87OWhSu7ezhX5uiSF796rW55JIlD7n/zjsP5QMfuCWTk5Y0BgDmJ2UsAAAAADOiKI7t65oc+98Xv/j0/OiPnlVxKk6FWq3IS16y6mH3f+UrO/LRj245vv9ss9lK65G3ogUAmJMsUwwAAADAjHjOc5bnTW/amKJIkiIXXrgoK1f2VR2LEu3ZM5avf31npqePTcb+r/91Z/75n++oOBUAQLksUwwAAABAaYoi6e3tSL1ee8j969cP52UvW52isATxfLFwYXde+tIHJma3bDmYyy+/5yGPabVaOXJkMk0rGQMAc5DJWAAAAABOqf7+Rv7gD56R9euHHnL/yEhXVq3qj/1g568dO0azY8foQ+7bufNo3v72L2f79tFHeRYAwOxiMhYAAACAU2pkpCtDQ8cu9B8c7Mz5549k48YFFaei3Sxb1ptly3ofct99941m7drBdHfXkyRHjkxl586jVcQDADjlTMYCAAAAcNLe8Y4L8oY3rE+SFEWRhQu70mjUK07FbDA93cyePePH95X99Ke35R3v+EqazdbjPBMAoD2ZjAUAAADgSent7ci5546ko+Oh+8Fu3Dic5cv7KkrFbFav17JkSc/x2+vWDeaZz1x6fA/ZLVsO5L77TMoCALOTyVgAAAAAnrCNG4fz0Y++KCMjXQ+5v9GoPayghSdjerqZiYnm8du/9mtfzYc+dGuFiQAATozJWAAAAACekFqtyKWXLs/y5cf2+Vyxoi9DQ53p6ZnJ00qtJMUMfj6qVK/X0tPzvWK/lWc8Y2mmp4/Nk4yNTefyy7fl4MHJ6gICAJwAk7EAAAAAPKrOzlo++MHL8oIXrDx+X1EkylFmyoNOX2bXrrG8/OWfyq23HqgwEQDAYzMZCwAAAMCjeupTlxwvX+v1ImedNZiiUL5SjQe/9vr6OvJTP7UpN920Px/5yK05enS6wmQAAI/PZCwAAAAAxxVF8h/+w7n5z//5kqqjwKO6/vq9ecUr/m/27RtPkjxoeBYAoHIPnoxVxgIAAACQJLnwwkV5y1s2ZdOmBdm8eWHVceBR7d8/niuvvDfj480kyRVX3JN//MctFacCADjGMsUAAAAApCiSrq56arVjy8CuWTOYV73qrNTrtYqTwWMbHu7Kj/zImcdvHzkymU9+8q7jt8fHpzM9bVwWAKieyVgAAACAeWrhwu783u89LcuX9x6/vW7dkP1hmXV27BjNHXccTJJMT7fyu7/7zXztazsrTgUAzFcmYwEAAADmqeHhzvT1NZIkS5f25JJLluT00/srTgUnZ9my3ixbduyigqmpZtauHcrddx/O7t1jmZxsVpwOAJjPTMYCAAAAzCPvfvdT8rKXnZEk6egosnRpbxoNyxIzd7RarezaNZYdO0bzMz/zxdx88/6qIwEA84zJWAAAAIB5YmSkK2ecMZDk2B6x69cPH78Nc1FRFFmypCc9PfVs3rwwfX3HToEeOjSZ2247kJatZAGAGWQyFgAAAGAOe8Urzswf//Ez871tYHt66mk06tWGghnQarUyOjqV6eljpz+//OUdedObvpDxccsWAwDlMhkLAAAAMMeNjHTlGc9Ymqc9bUkGBxspvtfGwjxRFMXx/ZGTZPXqgbzsZWdky5YDufbaPRUmAwDmE5OxAAAAAHPQ0562JP/4jy9MX18jtVqSKGOZ31qtVprNVj70oVvztrd9ueo4AMAcZjIWAAAAYI7p7KzlFa84M0uX9iQ5NgXY1VVPraaEheTYpGy9XuTcc0fyC79wXr785R255ppdVccCAOY4k7EAAAAAc8DAQCMf//iLc9FFi6uOArPC7/zON/Inf/LtqmMAAHOQyVgAAACAOaIokte/fkMuuWRxVq3qrzoOzBo/+IOrjn/PjI1N56/+6obcddehilMBAHONMhYAAABglqnVijQaxfG3n//8FfnhHz6j2lAwy1x00eLjk+SHD0/mk5+8M9u3H8nERLPiZADAXGKZYgAAAIBZ5gd+4LT8+39/9v23ipxzzoIsXtxTaSaYzaanm7nuuj257bYD+a3fujq7do1VHQkAmMUsUwwAAAAwCzUatQwPd2bDhqE897krUhRF1ZFgTqjXa7noosVZurQnK1b0ZXKymQMHJvLAGAsAwJNjMhYAAABglrjkkiX5wz98RhYv7s7SpT1JlLFwKk1ONrN16+F861u784u/+KUcPTpVdSQAYBYyGQsAAAAwi3R11XLGGYM5++wFWb9+KJ2d9aojwZzUaNRy1lmDGR2dzDnnLMiOHaPZtu1I1bEAgFnMZCwAAABAm1uzZjAf/OBlWb68N/39DcsTQ8mmppo5dGgyn/zknXn7279suWIA4ISYjAUAAABoY0WRXHDBoixe3J0kWbmyL0uX9mRgwIX0MBM6OmpZsKAra9cO5UUvOj1bthzIbbcdrDoWADALmYwFAAAAaDMdHUX+4R+enxe+8PQkx8rZer0wEQszrNlsZXq6lT/5k+vyX//rtVXHAQBmCZOxAAAAAG3qmc9cmvPOW5gzzxxMo1GrOg7Ma7VakVqtyMUXL85b3rIpX/zivbnllgNVxwIAZhGTsQAAAABt5Pd+72n5qZ/alMQULLSTVquVn//5q/KRj9xWdRQAoM2ZjAUAAABoM8985tL80A+tztOfvjSKWGhP/+bfnJUNG4bz3/7bzbnjjkNVxwEAZgFlLAAAAECFiuLYUqgXXLAoP/Mz51QdB3gURVHk+c9fmac/fWm+8IV7cvfdhzM93Xr8JwIA85pligEAAAAqdOGFi/JLv3Re1qwZyqZNC6qOAzyO6elmrrlmV7ZsOZj3vOcb2bHjaNWRAIA28+BlimsV5gAAAACYt+r1IkNDnTnrrMG85CWrFLEwS9TrtTztaUtz2WUrs2xZbwYGGimsLA4APAqTsQAAAAAVWLt2MH/8x8/MypX9Wb26P4U2B2aVyclmbr/9YL7znT355V/+Sg4fnqw6EgDQJh48GWvPWAAAAIAZUBTJ8uW96ek5djpm3brhnHvuwgwNuTgeZqNGo5YNG4bTarWydu1QduwYzY4do1XHAgDajMlYAAAAgBnQ2VnLX/7lc/L0py9NcqzIWbCgK7WaiViYzSYnm9m3bzyf/ey2vO1tX8r0dOvxnwQAzGkmYwEAAABm0Lp1Q1m1qj9nnjmYZct6q44DnEKNRi1LlvRk7drBXHrp8tx99+HcfvvBqmMBAG3CZCwAAABAyf7gD56Rf/fv1qazs24SFuao6elmJiebed/7bsy7331N1XEAgAo9eDK2VmEOAAAAgDntnHMW5DWvWZdNm4bT3d2hiIU5rF6vpbu7I+edN5LXvGZd1q8fqjoSANAGTMYCAAAAlOSXfun8/OZvXpSiSBJFLMwPrbRaya/92lfzd393U9VhAIAK2DMWAAAAoERnn70gr3zlmXna05akKJSwML8UKYpWXvKSVVmypCcf/eiWbNliD1kAmK+UsQAAAACnUFEkGzcO55d+6XzLEsO8VeQFL1iZSy9dlq9/facyFgDmMWUsAAAAwCly1lmDedvbzs/atUMxEAsAAChjAQAAAE5SUSQ9PR057bS+vPzlZ6S/v1F1JKAtFOnp6UhfX0eOHp1Ks1l1HgBgphWtVqv1vRudnZ1VZgEAAACYlRYv7s4f/uEzs2bNYNavH0q9Xqs6EtAGWq1Wbr31QO6++3B+7de+mjvvPFR1JABgBkxMTBx/22QsAAAAwJNUFMnixT0544yBXHTRoqxY0Vd1JKCNFEWR9euHs3hxT848cyBjY9PZufNoms3W4z8ZAJgTTMYCAAAAPEk9PfX85V8+JxdfvDhLlvSko8NELPBw09Ot7Np1NDfdtC9vecuV2bdvvOpIAECJTMYCAAAAnKSzzhrMaaf15ayzBk3EAo+pXi+ybFlvxsen85SnLM5ddx3KrbceSMuALADMeSZjAQAAAE5QUSR/+qfPyitfeWa6u+v2iAWekGazlaNHp3LFFffmzW++IpOTzaojAQAlMBkLAAAA8CSdffaCbNq0IOvWDaWvr/EEntFKUpQda44r6xie6Mct+/HzQbscw2q+NrVakb6+Rrq76ym8NABgXlDGAgAAAJyAl7/8jPzyL28+gSJF43LyyjqGJ/pxy378fNAux9DXBgCYGdbQAQAAADgBRXFsuq0w1gY8SWecMZBf/MXzc9llK6uOAgCUTBkLAAAAADCD1qwZyn/8jxfmpS9dVXUUAKBkylgAAACAJ+BpT1uSP/uzZ+XFLz696ijAHPHsZy/Ln//5s/KCF5iQBYC5yp6xAAAAAI+hVksajXo2bBjOa16zzvLEwCmzbt1w1q0bzi23HMjll99TdRwAoATKWAAAAIDHcPbZI/lP/+nirFrVHz0sAABwIpSxAAAAAI+gXi8yMtKVM88cyLOfvSzd3U6jAOUYGGhk6dKe7N8/kfHx6arjAACnUNFqtVrfu9HZ2VllFgAAAIC2cfrp/fnLv7w0q1YNZPny3tRqxmKBcuzePZa9e8fyG7/xtXzhC/dWHQcAOEkTExPH33ZJJwAAAMCD1OtFzjxzMOvWDWXduuEsWtRddSRgjlu0qDsLFnTlnHNGsnPn0dx++8EcPWpCFgDmApOxAAAAAA8yONjIBz5wWc4/f2H6+xsmYoEZ0sqRI1PZu3c8r3vd5/Od7+ytOhAA8CSZjAUAAAD4PkWRXHjhopx55mBWruzL4KCL1oGZVKSvr5Hp6VY6OmpVhwEAThFlLAAAAECSWq3IL/zCeXnpS1elXjcNCwAAnDyXWAEAAADcr1Yr0tFRS1EoY4FqdHbW8qM/emZ+4ifWpq/PLA0AzHZ+mwMAAAAAtInu7o787M+emzvuOJgrrrg3R45MVR0JADgJylgAAABg3vuhH1qV5z53Rc45Z6TqKAAAwByijAUAAADmrVotqddrecYzluXNb95UdRyA44oi6eiopV4vMj3dqjoOAPAkFa1W6/hv8s7OziqzAAAAAMyoF77wtLzpTRuzYcNwVq8eqDoOwHGjo1O55pqd+da3duf3fu9bmZhoVh0JAHiCJiYmjr9tMhYAAACYt04/vT8vetFpSYqqowA8RG9vR57znBWp14vU635GAcBsVas6AAAAAAAAAMBcpIwFAAAA5p2+vo6sXz+UpUt7qo4C8Jh6ezuybt1wli3rrToKAPAk2DMWAAAAmHee85zlee97L83gYGf6+ztimWKgXU1OTufAgYl8/ON35Nd//WtVxwEAngB7xgIAAADzUl9fRy68cFGe8pTFWbKkJx0dFg0D2lujUc+iRT0ZGGhUHQUAeBKUsQAAAMC8cfrp/fmrv3pOFi3qSUeHaVgAAKBcLv8EAAAA5o2iSDo762k0arE0MTCbrF07lDe+cUM2b15YdRQA4AQoYwEAAAC4X2uOf76Z0E7HsJ2yzFbtcwwvuWRx/uiPnpEXvei0GcwDAJwsyxQDAAAAc15vb0fe8IYN2bRpOL29Toc8upmeFp6L08ntdAzbKcts1U7HcC4eXwCY+/z1AQAAAMxpRZH09zfy2teuy8aNC6qOAwAAzCPKWAAAAGDO6ugo8gu/cF4uvnhxVqzoqzoOAAAwzyhjAQAAgDmrVivy9KcvzWWX2WMRmBs6O+sZGGjk6NHpTE01q44DADyOWtUBAAAAAAB4Yl796rX52MdenOc+d3nVUQCAJ8BkLAAAADAnjYx0ZWSkOz09Tn8Ac8eKFX1Ztqw3IyPdVUcBAJ4Af40AAAAAc9LP/uw5+fEfX5uRka6qowAAAPOUZYoBAACAOWl4uCsrVvSlu9u16MDcUhTJ2rWDeepTl2RgoFF1HADgMShjAQAAAABmkaJIfv7nz8sHPvCCbNq0oOo4AMBjcGkoAAAAMKesXz+UzZsXZc2awaqjAJSkSFdXPdPTHanViqrDAACPQRkLAAAAzCk/8AOn5b/8l0uqjgEAAKCMBQAAAOaG9euH8iM/ckae9rSlKQqTYk9OK8lMHruZ/nwzoZ2OYTtlma0cQwDg5ChjAQAAgDlh/frhvOMdF6Rer1UdZRab6RJoLpZO7XQM2ynLbNX+x7Aojv1rtUqIAwCcNH+dAAAAAADMQp2d9bztbefnd37nqVm0qLvqOADAI1DGAgAAALNarZb09NTT2ek0BzC/dHTUctllp+WHf/iM9PU1qo4DADwCyxQDAAAAs9pZZw3md37nqVm1qj+12lxcJhUAAJitlLEAAADArNbf38hTn7okQ0NdVUcBAAB4COv3AAAAAAAAAJTAZCwAAAAwKzUataxbN5QNG4ZTr7veHAAAaD/KWAAAAGBWGhnpynvfe2nWrBlMb69THAAAQPtx2SgAAAAwK9VqRfr7G+nra6QoiqrjPIZW1QHmgLKO4Yl+3LIfPx+0yzGcW1+bnp56LrtsZZ797GXp6Gjnn4cAMP8oYwEAAABKpRg5eWUdwxP9uGU/fj5ol2M4t742CxZ05fd+72n5zd+8OD09VgoAgHbiNzMAAAAwq3R0FPnhHz4jmzYNZ2ios+o4AJUriiL1epFabW6VzAAwFyhjAQAAgFml0ajlJ39yQ571rOVVRwEAAHhMlikGAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEtgzFgAAAJg1+vsbGR7uTKPh+nKA79do1LJwYXeS5NChyYrTAABJUrRardb3bnR2dlaZBQAAAOAxvfOdF+WHfmh1Tj+9L729jarjALSVo0ensnXr4Xz2s9vyrnddnQfO/AIAM2liYuL42y4jBQAAAGaN5ct7s2HDsCIW4BH09HRk/frhrFzZl6Ioqo4DAEQZCwAAAAAAAFAKe8YCAAAAbe/MMweyZs1QVqzoqzoKAADAE6aMBQAAANreK195Zt7xjgvS0WGRLwAAYPZQxgIAAABtr14v0tlZrzoGAADACXE5KQAAAAAAAEAJlLEAAAAAAAAAJbBMMQAAANC2iiKp1YrUakXVUQAAAE6YMhYAAABoW894xrK89a1nZ/36oaqjAAAAnDBlLAAAANC2Vq7syw/+4CqTsQAnoNGoZWioM0ePTmVsbLrqOAAwr9kzFgAAAABgDnnWs5bln/7pxXnd69ZXHQUA5j1lLAAAAADAHDI83JXNmxdm2bLeqqMAwLynjAUAAAAAAAAogT1jAQAAgLYzONjIOeeMZMOGoRS2iwUAAGYpZSwAAADQdjZsGM5/+28vyMBAQxkLAADMWspYAAAAoO3UakV6eurp7KxXHQUAAOBJs2csAAAAAAAAQAmUsQAAAAAAAAAlUMYCAAAAbaUoksJGsQAAwBxgz1gAAACgbSxc2J1f+ZXNWbduaA7tF9tKolw+OY4hp5rXFAAwM5SxAAAAQNvo6+vID/7gqpx2Wn/VUU4hhc/Jcww51bymAICZYZliAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEnRUHQAAAACgo6PIM5+5LOvXD6enx+kKAABgbvDXDQAAAFC57u6O/MZvXJSLL16cmnW8AACAOUIZCwAAALSFokhqtaLqGAAAAKeMa00BAACAWaRVdYAHaacsJ+Kxcs/0/6fZegwfSzsdw3bKMlu10zGci8cXAOY+ZSwAAAAwi7TT5Gw7ZTkRj5V7pv8/zdZj+Fja6Ri2U5bZqp2O4Vw8vgAw9yljAQAAAAAAAEqgjAUAAAAAAAAoQUfVAQAAAID5bXCwM4sWdaXRcM04AAAwtyhjAQAAgMrUasmv/uoFedGLTsvKlX1VxwEAADillLEAAABAhYosX96bNWuGqg4CAABwyln/BwAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAAChBR9UBAAAAgPmpp6ee3t6ONBquFQcAAOYmZSwAAABQide9bn1e85p1Of30/qqjAAAAlEIZCwAAAFRi6dLenHvuwqpjAAAAlMY6QAAAAAAAAAAlUMYCAAAAAAAAlEAZCwAAAAAAAFACZSwAAAAAAABACZSxAAAAAAAAACVQxgIAAAAAAACUoKPqAAAAAAAAnDqtViutVtJqVZ0EAFDGAgAAAADMIddcsyt//dc35Oab91cdBQDmPWUsAAAAAMAccs89R/KJT9yZZtNoLABUzZ6xAAAAAAAAACVQxgIAAAAAAACUQBkLAAAAAAAAUAJlLAAAAAAAAEAJlLEAAAAAAAAAJVDGAgAAAJSqVXWAOcAx5FTzmgIAZoYyFgAAAKBURdUB5gDHkFPNawoAmBkdVQcAAAAAAODkbd9+JB/72O259trdabVM/wJAO1DGAgAAAADMAffeO5o/+qPrcujQZNVRAID7WaYYAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABK0FF1AAAAAAAAnryjR6fy1a/el+9+d2+mpppVxwEAHkQZCwAAAAAwi+3dO55f/dWv5s47D6XZbFUdBwB4EMsUAwAAAADMctPTLUUsALQhZSwAAAAAAABACZSxAAAAAAAAACWwZywAAAAAwKzUytRUK5OT00ksUQwA7UgZCwAAAAAwC42NNfP//D/fzLXX7s7OnUerjgMAPAJlLAAAAADALNRsNnPNNbvy1a/eV3UUAOBR2DMWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAACqxZcvBXH75PbnvvtGqowAAAJRCGQsAAABU4h//8ba87nWfz9e+trPqKAAAAKXoqDoAAAAAMD9NT7fSajXTbLaqjgIwq7Rarfzrv27PjTfus7oAALQ5ZSwAAAAAwCzSaiUf/vBt+Z//c0vVUQCAx2GZYgAAAAAAAIASKGMBAAAAAGaJZrOVZrOVVssS7wAwG1imGAAAAKBUrSRF1SFmubKO4Yl+3LIfPx+0yzGcvV+bT3zijvzzP9+Zb31rd9VRAIAnQBkLAAAAUKrZWfi0l7KO4Yl+3LIfPx+0yzGcvV+bm2/en//9v++qOgYA8ARZphgAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKYM9YAAAAAIA2t3Pn0dx224Fs3Xqk6igAwAlQxgIAAAAAtLkrr7w3b3/7lzMxMV11FADgBChjAQAAgMq0Wq186Us7MjXVzPOfvzILF3ZXHakErSRF1SFmOceQU232vaamppoZHZ2qOgYAcILsGQsAAABUptVK/v7vb8qv/MpXcscdh6qOU5LZVfi0J8eQU81rCgCYGSZjAQAAgMq1WsmxSTUAHuzuuw/lox/dkmuv3VN1FADgSVDGAgAAAAC0qa1bD+dP//TbOXrUXrEAMBtZphgAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAKtdqtbJr11h27BjN9HSz6jgAlZuaambHjtHs3j2WVqvqNADAk1W0Wg/8Ku/s7KwyCwAAADBPFUWydGlvzjprIH/zN8/LsmW9VUcCqNTWrYfzUz91Re6++3B27jyqkAWAWWRiYuL42x0V5gAAAABIkrRayY4do+nsrGVqymQswNRUM9u2Hcl99x2tOgoAcBIsUwwAAAAAAABQApOxAAAAAABtYnKymS9/eUduuWV/jh6dqjoOAHCSlLEAAAAAAG3i6NGpvOc938y3vrU7zaaNYgFgtrNMMQAAAABAG2k2W4pYAJgjlLEAAABAG2rd/4+ZNdPHfC5+jdvpGLZTltnKMQQATo5ligEAAIC2sXfveH77t7+Rc88dyVvfenY6O+tVR5pnijn++WZCOx3DdsoyW83c/6dms5X//t9vzjXX7Mrddx+esc8LAJTLZCwAAADQNg4fnszHPnZ7PvWpuzM11aw6DsCMabVaueKKe/ORj9yWPXvGqo4DAJwiylgAAAAAAACAElimGAAAAACgQocPT+bw4cmMj09XHQUAOMWUsQAAAAAAFXr/+2/Ohz50S+69d7TqKADAKaaMBQAAANrO6OhUbrxxf5Yt68nKlX1JiqojAZxye/eOZceO0dx0077ccsuBquMAACUoWq1W63s3Ojs7q8wCAAAAkCTp6CgyMNCZV7zijPzBHzwjRaGMBeaeD3/41rzrXVdndHQqY2OWKAaAuWJiYuL42yZjAQAAgLYzNdXKvn3jOXx4Kq1WoosF5qLx8ens3TtedQwAoES1qgMAAAAAAAAAzEXKWAAAAKBt3Xbbgfzt396Yb3xjV9VRAE6ZrVsP5+/+7sZcddX2qqMAACWzZywAAADQ9t7xjs35j//xoqpjAJwSn//8trz2tZ/PxESz6igAQAkevGesyVgAAAAAAACAEnRUHQAAAAAAYD5otVqZnj7274H1CgGAuUwZCwAAAAAwA+6550h+93e/mS1bDmZqyhLFADAfKGMBAACAtjc2Np39+8fT29uRzs561XEATkiz2crhw5O5997RfPaz27J373jVkQCAGVK0Wg8siNHZ2VllFgAAAIBHtGRJT5Yt682v/doFeclLVlUdB+CE7N8/nre97cu56aZ92bLlYKanrVEMAHPZxMTE8bdNxgIAAABtb+fOo9m582j27TNNBsw+09Ot3Hrr/txyy4GqowAAM6xWdQAAAAAAAACAuUgZCwAAAMwat9xyIF/60vYcOGBCFmh/zWYr3/3u3nzlK/flyJGpquMAABWwZywAAAAwazQatfT1deSDH7wsz3jGsqrjADymycnp/ORPXpHLL78nExPTadkqFgDmBXvGAgAAALPS5GQz4+PTaTY1GkA7a+Xqq3flhhv25c47D2V8fLrqQABARZSxAAAAAACn2Mc+tiV/+7c3VR0DAKiYPWMBAACAWWVyspkPfODW/Pmffyd7945VHQfgEVmSGABIlLEAAADALDM11cr//J9b8r733ZD9+yce/wkAM6jVaqXZrDoFANAuLFMMAAAAUKpWkqLqELNcWcfwRD9u2Y+fD9rlGJb3tfnc57blox/dkmuv3VPKxwcAZhdlLAAAADArNZutjI5O5ejRqXR311MU7Vp6tWuu2aSsY3iiH7fsx88H7XIMT/3HnZpqZnx8Otdfvy8f//gdp/zjAwCzU9FqPbB7QWdnZ5VZAAAAAJ6wRqOWTZuGc955C/O7v/u09Pc3qo4EzGNf/vKOvOc938y99x7J3XcfrjoOAFChiYkHtlMxGQsAAADMSpOTzXz723tTqxWZnrZBI1CNiYnp7Np1NLfeeiBXX70z09Otx38SADBvKGMBAAAAAJ6kLVsO5q1vvTL33XdUEQsAPEyt6gAAAAAAJ+PIkal861u7c9ttB/Kg3ZgAZsTExHS2bTuS3bvHqo4CALQhZSwAAAAwq23ZcjCve93l+f3fvzbNpjIWAABoH8pYAAAAYFZrNlsZHZ3K7bcfzMc/fke+/e09VUf6Pgrik1fWMTzRj1v24+eDdjmGJ/9xjx6dyqc/vTWXX35PJiftWw0APLKi9aD1ezo7O6vMAgAAAHBSiiL5uZ87N+9+9yVVRwHmuB07RvMjP/KpbNlyMFZIBwAebGJi4vjbHRXmAAAAADilWq3YNxYo1dRUMx//+B258cZ92bt3XBELADwmZSwAAAAwp3yvkC2KJCmqjgPMIa1WK5OTzXzoQ7fkqqt2VB0HAJgF7BkLAAAAzClf+MI9+cVf/JKiBDilWq1WPvzhW/Mrv/KV3HrrgarjAACzhMlYAAAAYE658cb9ufHG/bnwwkV59rOXVx0HmAOmppqZnGzmqqt25KMf3VJ1HABgFlHGAgAAAAA8ho9//PZ8+MO35ZZb9lcdBQCYZZSxAAAAwJx08OBE7rtvNMPDXenqqlcdB5iFxsamcuDARG64YV/+9V+3Vx0HAJiFilar1frejc7OziqzAAAAAJwyixd3Z+HC7vzhHz4jz3jGsqrjALPQpz+9Ne9619XZs2cse/eOVx0HAJglJiYmjr9tMhYAAACYk3btGsu+fRO5/vp9GRrqzFlnDaa726kQ4PEdOTKZO+44lBtu2JfbbjuQB8ZZAABOjMlYAAAAYE7r6+vI0qW9+dCHLsv69cNVxwFmgW98Y1fe+MYvZP/+8YyOTlUdBwCYZR48GVurMAcAAABA6Y4cmcquXUdz5ZX35l//dXsmJqarjgS0uenpZg4cUMQCACdPGQsAAADMeYcOTead7/x6fvM3v55DhyarjgMAAMwTNkoBAACAkg2tG8rwhuEZ/ZyTRyZz31fuy/SYKdDvmZ5uZXq6WXUMoI0dOjSRT3zizlx//b5MTvp5AQCcPGUsAAAAlGzh5oVZ9xPrZvRzjm4fzZ7r9ihjH1UrSVF1CKCttLJv33j+4A+uzbZtR6oOAwDMEcpYAAAAeBIWP2VxFm1e9IQeO7h2sOQ0D9c52Jl1P7HuCZWxk4cnc9f/uSuTh+f+8r07dhzNb//2N7J588K8/vXrU6/bwQlIxsen83d/d2Ouv35f9u+fqDoOADCHKGMBAADgURS14lGHJxdsXJBVP7hqZgOdgI6+jqx8wcon9Nix3WO594v3Zuro1CO+v9VsHRsknQP27RvPBz5wS+65Z2V+/MfXpKsrClmY11qZnm5ldHQq//zPd+Yb39hVdSAAYI4pWq3W8T+nOjs7q8wCAAAAbaPeXc+616xL75LeR3x/38q+9C5/5PfNNs2JZvbfvD/T4488RXvXp+7Knmv3zHCqci1a1J0LLliUF7/49LzpTRtiyWKYn5rNVv7f//e7ueqq7bnmml05cMBULABw8iYmHvhvCpOxAAAAzHu1Ri31rvpD7mv0N7Lw3IXpX9VfUaqZU+usZeS8kUd9/57v7MnB2w4+5L5Ws3VsknaWTszu3j2Wz31uW5Yu7cnevWekt7cj3d1Ok8B8cvToVI4cmco11+zM5z9/T9VxAIA5ymQsAAAA897yS5fnzFec+ZD7inqR3qW9qXVawnZsz1gmDz10P9kj9x7J9X95faZGH3lp49liZKQry5f35md/9ty8+tVrq44DzKD3ve+GfPCDt2Tr1iM5eNBELABw6piMBQAAYF4qakW6F3en1vHQgrX/9P4MnDFQUar2172wO90Lux9yX61RS99pfZk68tAyduLARCYPP7S4bWd7945n797x3HTTvtxyy/6sWNGX/v5G1bGAEoyOTuaee0bzvdmUG2/cl+uv31dxKgBgrjMZCwAAwLzROdiZC371goft9Vrvqqejx/XKJ6I13crk4ck86LRCkuS2j9yWbZ/bVlGqJ6+vryMDA535sz97Vn7gB06rOg5Qgq9+9b689a1XZvz+/bGPHJnK6Cyf7gcA2pPJWAAAAOaNvtP6jk91Nvob6Vnck67hropTzX5FvUjn0MMv6h48azALNy9McqywPbDlQKaPTs90vBN25MhUxsamj5c0wNwxOjqZb31rd77xjd25776jmZxsVh0JAJhHlLEAAADMaatfujorL1t57EaR1Or2gC3TaT9wWla+4Njxnjw8mW/89jdy6K5DFacC5rPt20fzcz93VbZvH83UlCIWAJhZylgAAOCUO/fckVx88eJKM9xxx8F88YvbK83AzOoc6sziixenqBcP3Fkk/av7U2soYGdKUS+Ofw06ejuy9JlLM7R+KEkyvnc8u761K2nTLqTVauULX7gnBw9O5EUvOj0Lv2+fXGB2GR+fzmc+szU33bQ/Bw6MK2IBgEooYwEAgFPu+c9fkf/8n59SaYZ/+qc78q//uj3ft50lc1jPkp5sfNNGe7+2kXpXPWt+bM3x23uu25M9396TZrM9C5FmM/mHf7g5H//4HTn77AXztIxtJSke91Gz9/PNhHY6hu2UZeYdPTqVP/qj6/Kd7+ytOgoAMI/5CxUAADghr3jFmdl8/36Qj+biixel6pOx5547kne96ymPWMYeOjSZ97//puzdOz7zwThlio4ip112WnqW9CRJuhZ0mYBtc73Le7Pu361Lq3nsG3P3N3dn7/XtV5KMjU3nfe+7MRs3DueNb9yQgYGH7407d830z+72Ke5OnXY6hu2UZeY0m6189KNbct11u7Njx2jVcQCAeU4ZCwAAPKpa7aEnVYsiefGLT8u//bdrK0r0xG3YMJwNG4Yf8X333TeaT37yzuzfP/GI72+1WiZq212R1Bq1LL90eRZsWlB1Gp6gniU9OePlZxy/PXVkKntveFAZ2ybfd+Pj0/kf/+O2nHXWYH70R89KX18jtVrSLkUT8OiazVYmJ5v55CfvzP/9v1urjgMAkKLVeuAUQ2fnfLrSEwAAeCzr1w/l7W/fnM7OB08aFrnookU5/fT+ynKdCmNjU/nSl3bk8OHJR3z/Bz94ay6//J4ZTsWJWPWDqzJy7kgWbFqQzkF/y85Wh+46lCP3HkmSNMeb2fKxLRnd3j5TbH19HXnWs5blggsW5W1vOz+dnfWqIwGP4yMfuTWf/vTWXH31LlOxAEBlJiYeuPjbZCwAAHBcb29H6vVjk1+nn96fl71sdXrm4P6b3d0dueyy0x7lva184xu7c/XVO4/daiWjo1NpNttkZG+eKupF6t8rwopkwcYFWfq0pdWG4qQNrB7IwOqBJMnU0ancc8U9mbh/Yr3VbGV6fLrKeDlyZCqf+cy2HDw4mZ/8yY0ZGGikp6ceE7LQfiYmpjM2Np1vfnN3PvnJu6qOAwBwnMlYAAAgybEi9r/+16cfX9p3YKCRtWuHHrZU8Xywdevh7Nx5NEly8OBE3vGOr+SOOw5VnGp+W3zR4qz5t2uO3+5d1pvGQKPCRJxqrWYrR+45kumxYwXsoTsP5ca/uzHNyWbFyZL+/kbWrh3MS1+6Kr/8y5tTFPPv5yK0u3/+5zvy3vd+N9u2HTn+OxwAoComYwEAYJ7r729k4cLu77uvI+efvzDnnjtSUar2cfrp/ceXYt6/fzxr1gyleX8fNDY2lfvuc5K3bEW9SNeCrhT3T2r3nd6XobVDBhLnsKJWpP9BS6AXtSK9y3ozcWAiEwcfeX/nmXL48GSuvXZPTj+9P3feeSgLFnRleLir0kww301MTGfHjqPHV6646ab9+eY3d1ecCgDg4UzGAgDAPPRjP3ZWfuu3Ls6Dm62iSBYt6rYn4vdpNlvZvftoJieP/en05S/vyM///FWZbINpvbmsZ3FPNv/K5nTdX3jVu+tp9JuEnU+ak81MHJzIfV+9Lzf9/U1Vx0lybAWB4eGu/If/cG7e+tazq44D89rNN+/PW95yRQ4cOHaxxuHDk8ffBgComslYAACYZ3p66jn77JE0GrUkyXnnjWTlyr4YM3x8tVqRJUt6j99es2YwT3/6kuPl7F13Hcr27aNVxZtzilqR/lX96TutLz1LetI56KLh+arWqKV7YXf6VvZlwdkLkvsvJT9y75FMVFS4jI5OZXR0KjfcsDdf+cqOJEm9XsumTcMZGPBahZkwOTmd66/flxtu2JetWw/n0KHJqiMBADwmk7EAADAPrFs3lI9+9IVZtOjY0sQdHbV0dtaijD1x09PNjI9PH7/9O7/zzfz1X99QYaK5paOnIxe986IMrhlMvVH3EiWt6VaaU/dPoreS6//q+mz/1+2VZmo0ascvbunt7cgHP3hZLrlkSaWZYL7YvftoXvWqz+aWW/ZnbGz68Z8AAFABk7EAADBPdHbW8rznrcjGjQsyPNyV3l7LvJ6ser2W3t7a8dsXX7w4r3rVmiTHpnWuvHJ79u0bryrerDR41mD6TutLktS76ule2J265bK5X1EvUq8/8HpYcPaCtFqt7P3O3somZCcnm8eXKp+aauZzn9uW++47muc/f0X6+vychTJMT7fypS9tz623HsjOnaOKWABg1jAZCwAAc9jISFf+1/96Sc45Z0GKIjFmeOq1Wq1876+qQ4cm8qM/+plce+3uakPNMutftz5n/siZD9zhZcpjaSXT49P5xnu+kX037Ks6TZJje26fdlpf/uVfXppVqwaqjgNz0vj4dF772s/nC1+4Jw+czQQAaE8mYwEAYA677LKVueiiRUmSnp6OLFnSk6LQbpWlKIp87/B2d3fk9a9fnxe+cGWSZOvWI/nYx27P1PeWWOUhBtcMZvFFizO8cVgByxNXHNtPduXzV2bknJEkyfi+8dx75b1pTlbzvdZqJQcOTOR977shmzYtyKtetSadprvhpH3ta/fli188tiz51FQzd9xxUBELAMw6ylgAAJhDiiJ54QtPy0/91NlVR5mXurrqecMbNhy//eUv78i//MudythHMbR2KGtfvbbqGMxCRb3IyhesPH774JaD2fGVHZWVsUly8OBk/vIvb8hTnrI4L3/5GWk0alYkgCfpewv5ffWr9+X3fu9bFacBADg5likGAIBZ7vzzR/KWt2xKrXbshP/FFy/O+vXD1YYiSbJz59FceeW9+fKXd+S///dbqo7TNvpX9Wf1y1an//T+DHutcgpMHprM7mt3Z/8t+3P3p+5OKpycW7iwO8973oo8/elL88Y3brj/Z3MrStmT5RjOJ9/85q78wz/clOuv35frrttTdRwAgBNmmWIAAJgDiuLYJOaZZw7mx398bTo6alVH4vssWdKTV71qTYoi+djHbj8+6TMx0cz09DxcZ/H+5WV7l/ZmxXNXpOY1yynSGGhk+aXLU++u557L70lzsplWRd9je/aM5Z/+6fZMTjbz4z9+bLniRsNr/eQpYueyVquV8fHp40sQb9lyMP/jf2xJszkPf1cCAHOOyVgAAJilzjprML/zO5dk1aqBbNw4bF/YNrZz59HceuuBJK20Wsmf/Mm3c8UV91Yda8b1LOnJxp/cmJ6lPRlYNaBb4ZSbODiRI9uOZPtV27P101srzbJoUXfWrx/Kq161Jq9//YbHfwLMY7t3H82v//rXsmPH0STHLmq4+eb91YYCADgJJmMBAGAWq9WKLFzYldWrB/L0py/L0JCLKtvdkiU9WbKkJ8mx6Z///b/vyk037cveveOZmJjb+8k2Bhqp3T8V2LOkJws2LUhjoFFxKuaqzsHOdJ7dmcPbDqdrpCtTR6YyPT5dSZbdu8eye/dYzj57JNu3H7n/3iIjI13p6qpXkgnaTavVyt6949m69XC+/vWd2bbtyOM/CQBgljEZCwAAs8yiRd35q796TtavH8qyZX2p140Xzi6t7Nw5ll27juYXfuGqXHvt3N0Lr6gXOfutZ2fk7JEkx5Yo7hrpSlHzmqVck0cmM3lwMrf9j9uy/artlWYZHu7MggVdSY4tLf8nf/KsPPWpSyrNBO3i6NGp/MIvXJWrr96V7duPZGrKssQAwNxgMhYAAGahoji2NPHq1QNZu3YoK1f2Vx2JJ6XIkiU9GRxs5LzzFmZiopnbbjsw5yZkuxd1p2ukK/0r+9O7vLfqOMwzjb5GGn2N9K/uz+C9gxndPpqpo1OVZNm/fyL79x87EdPZWct3v7snvb0dWbt2MN3dTssw/+zYMZodO0aTJGNj07n11gPZuvVwxakAAMpjMhYAAGaJrq56/v7vn5dnPWtZ+voaqZkunNVarVZGR6eydevhvPrVn5tzJ6I3vGFDTvuB01LvqqcwvU1FmhPNTI1N5bo/vi57v7O36jhJkt7ejixf3puPfOQHsmbNUNVxYMb96Z9+O3/2Z99OkrRayejoVKanTcQCAHOLyVgAAJgl1q0bysaNw0mSRqOWVasGMjBwqi6ibCU5kZKs7MfPBw8ck6Io0tfXyJIlPXnhC0/LLbfsz1e/et+sX6Kxd3lvBlYPpH9Vfzp6/clJtWqdtTTqjYycO5J6Zz37bthX2YTs94yOTmX37rF8/vP35Prr9yVJli3ryVOessRFNo+prN8pfheWbc+esXztaw/8fvvOd/bk4MHJilMBAMwck7EAANDGfumXzs9v/MaFx2/XakWKYn6f1J1rWq1Wms1WvvnN3XnVqz6TQ4dm9wnq1S9bnQ1v2HDsdeqlSptoNVuZODCRa959TQ63yRT6g4vXF7/49Lz//c9PR0etwkRQjq98ZUde/erPZXT02IUQrVYrrdl93REAwOMyGQsAAG1u3bqhvOhFp+eZz1yaet3J+bmsKIrU60WWL+/NT//02bn++r359Ke3zroT1b3Le7PkkiVZcM6CFKb7aDNFrUhHT0dWvmBlDt99ONu/tD3NivdpbjYf+Ca//faDee97v5uLLlqcSy9dXmEqOHUOHBjPxz9+R66/fm/Gx6cf8poHAJhPTMYCAEAbeuUrz8z73vdcS1bOQ5/4xB15y1uunHUnrZc8dUku+JUL7A9L2zt89+F8/V1fz2QbLpP6Mz9zdt7znqd+372+p5hNHvjddccdh/Lyl38q9947WmEeAIBqPHgyVhkLAABtZPXq/vz0T5+djRsX5LnPXW5J4nnozjsP5oor7s3ll9+T//N/7q46zuPqXtSd1S9bnf7T+rPogkV6I9re5OHJ7Lx6Zw5uOZitn96aVhtd+HD22Qvy1KcuSZLU60Xe+MYNOfvskYpTwRPTbLbygQ/ckm9/e0+S5NChyXzqU3cfX54YAGA+sUwxAAC0oUajlhUr+vLa165Pf3+j6jhU5IwzBvPGNw7myJGpfPaz2zI11WrbKdmiXqRrQVdWvmBlGn1es8wOjf5GVj5/ZboWdOWeL9yT5kSzbQrZG27Ylxtu2Jck6ego8tznrsjatUNpNGouzqEtTU+3Mj3dPP725z+/bVZcSAQAMJNMxgIAQBtYtKg77373JVm7djAXXLAoHR32iZ3v7rrrUG677UDe974b87nPbas6zsM0+htZ//r16T+tP0NrhyxPzKwzcXAiB28/mF3X7Mrdn2q/8qgokvPOW5gzzxzIu971lKxePVB1JHiYz352a973vhuTJK1WK9/97t7s2jVWcSoAgOqZjAUAgDZRFMngYGdWrOjLpZcuy8qV/VVHok2sXj2Q1av7c+WV9+Zb39qdgwcnMjnZrDrWcbVGLSNnj6R3eW/VUeBJ6RzszKILFmV873g6BzszNTaV5kT7fI+1Wsm3v70nd999KFu3Hk5f37FTOI1GPYODDZOyVGJqqpmDByeOr9hw880Hcvnl91ScCgCgvZmMBQCACvX01PMnf/KsXHTRoqxa1Z9Go151JNpKKzt2HM3OnUfzq7/6lVx99a6qAx3XtaArT/3tpypjmfUmD09mfN947vjEHbn3C/dWHedh6vUip5/en+7uY78fLrlkSX7/95+ezk6/L5h5d9xxMD//81dl377xJMn+/ePZseNoxakAANqPyVgAAGgTtVqR1av7s2bNUNVRaEtFli3rzchIVzZtWpD9+ydy112HMlHl9F6R9CzuSc+SnhQdJvOY/Rr9jTT6Gxk4fSD9p/fn6O6jmT46XXWs46anW7nzzkPHb/f3N3LjjfuOl7FLlvRk4cLuquIxx7VarWzbdiSHD08mSe6441Buumn/8TIWAIDHZzIWAAAq1NfXkY997EV56lOXVh2FNtZqtXLo0GS2bx/Na1/7+dx++8HKstQatWx+++Ys2LQgHX0dKWoKWeaG6bHpTI1N5bvv/W52f3N31XEeVaNRy8BAI99bpfgd77ggP/VTZ1cbijlrcrKZn/3ZL+bKK49NjU9Pt3LgwEQeOJsIAMAjMRkLAABt4NxzR3LGGQMZGuqqOgptriiKDA52ptls5dJLl2Xx4u5885u7Z3wP2f5V/eld1puepT1pDDRm9HND2erd9dQ6axleP5zWVCsHbj2QqaNTVcd6mMnJZvbufWAq8dvf3pvPfW5bkqSjo8iFFy7O0JCL7Xny7r77UG655UCSY3vE3nHHoezZYxIWAODJMhkLAAAVKIrkve+9NK985Znp6KilZrqQJ6DVamVqqpXrr9+bH/uxz8z4MpHn/PtzsuJ5K1Kr1xIvWeao1nQrk4cnc81vX5NDdxx6/CdUrF4vjv8OGRho5KMffWEuvHBxxamYzf76r6/Pu951zfHbU1NNk7AAACfIZCwAAFTo4osX5YILFmX9+uHje/7BE1EURRqNIkuW9OQ1r1mXm2/en89/fluaJQ/IDq4ZzNC6ofSv6k+to1buJ4OKFfUi9e56lj1zWfpP68/Or+/M9Hj77CH7/aanW5mePtaUHTkylU984s588/uWWV67dijPec7yFIWrKHjA6OhU/r//764cODDxkPu/8pX7ZnzlBQCAucxkLAAAzLB3vvOivP3t599/y4lxnoxjf8Z9+tPb8vrXX56pqXJPmp/1Y2dl3U+sK/VzQDsa3T6ar/+nr2d8hqfQT7VXvWpN/uIvLrUKAw+xY8doXv7yT2XLlur2IQcAmKtMxgIAQAUuumhRfuRHzszTn74kSlhOzsy8fgbPHMzyS5dneMPwjHw+oBzXXbc773rX1Tk2GFvkla88MxdeuKjqWMygK6+8N5///LaH3HfkyFT27BmrKBEAwPyhjAUAgBmyadOC/NzPnWOZSE6Zoji2X+T0dErZz6/vtL6c8fIzXDvAvFbUimPfA7N4z8xbbjmQW245cPz2hg3DOf/8kYc9rl4v4ht+bmi1Wmk2H3jRXn31zrz3vddXmAgAYP5SxgIAAMxSmzcvzN/8zXPzmc9szQc/eGvVcWDO6VrQlbN/5uwc3HIwWz62Ja2pWdzIPsjf/d2N+cxntj7kvjPPHMiv/uqF6e11qmguuO22g/mDP7g24/fvd3zrrQce5xkAAJTFf2EDAEDJ6vUifX0d6enxn9+cWkuX9uaHfmh1du8ey7/8y10ZG5vKxMTJ7x9b1IrUu+upd9VPQUqYverd9Sy+aHE6ejpy9/+9O1OjU2megu+xql133Z5cd92eh9x3/vkjectbNmVysvGge4v09NTT2elnQTsaG5s6XrZ+v61bD+dTn7o7o6NTM5wKAIDvV7RaDyxm1dnZWWUWAACYky68cFHe856nZvny3qxa1R9LQHKq7dp1NPfccyR/8RfX55/+6faT/ngDqwey6S2b0r2wOz1Le05BQpjdpo5OZXT7aHZevTNbPrql6jil6O3tyJo1g/cvVfyAX/zF8/Pyl59RTSge09///Y350IceeVWEI0emsmXLwYcsVQwAwMyZmJg4/rZL8wEAoCSNRi3Ll/dm3bqhXHDBonSZMqQkixf33P+v+6Q+TlEv0j3Snb6VfRlcM2gyFu7X0dORwbMGc+jOQ1VHKc3o6FS+8529D7v/5pv35/bbDz7kvs7OY7/f6vXaTMWb1yYnp3PvvaOZnn5osXrjjftz7bV7HuVZAAC0C2UsAACUZMWK3rz//S/Iaaf1pbPTCWvaX9dwVzb/8ub0LO1J3bKkQJK/+Ivv5v3vv+kh961fP5y///vnZ8GCropSzS/33HMkb3zjF7Jr19GH3H/o0GRFiQAAOBHKWAAAKEm9XsuSJT0ZGTm5aUV4os48czDPetay3HjjvuzdO37Czy9qRTqHO9M5aAsbeCRdC7oycu5IRu8bzdiusarjzIiDBydz8OBDS7+urnq+8pUdGXyEnxVFkWzcuCALF/rddyLuvffIwyaQv+eee45k27Yj2bfvxH+uAwBQPXvGAgBASc46azCf/ORLs2xZb9VRmCcmJ5sZG5vKT//0lfnMZ7ad8PN7Fvfkkt++JD2L7RMLj6TVbKU51cyWj27JHf/rjqrjVKYoks7OeopH2AK9o6PIX//1c/OSl6ya+WCz2Pvff1Pe+c6vP+L7Wq1kfHx6hhMBAHAy7BkLAAAlajRqueyyldmwYTg9PZZ6ZeY0GrUURccJ7+NY1IssumBR+k7rS0e3PxPh0RS1IvXOeobWDWXF81dk3w37cvS+o4//xDnmscrBWq3IFVfc+7jT+Zs3L8w554yUEa9t3HDDvlx77e4n9NivfvW+jI0pXAEA5iJ/ZQMAwCnW29uRd7zjgmzevPARp4ag3dQatZz1b87K8IbhqqPArLD0aUuz5JIl+c6ff2delrGPpdls5W/+5sbHfdw733nRnC9jP/e5bXn3u6+pOgYAABVTxgIAQAmKIik0sVSgVivyYz92VjZuHM6HP3xr7nucomjZM5dlcM1guhfZ3xFOhJ/xJ+fKK+99UpOgHR21/Nt/uyZnnDFQQqqHu/vuQ/nHf9ySycnmCT/36qt3lpAIAIDZRhkLAACn0LESNkmcpKcatVqRV7zizDzveSvyuc9te+wytkiWPG1Jlj97+cwFhLmkuP9fq+ogs89VV+3IVVftOOHndXfX87SnLcmqVf0lpHq4rVsP58/+7Ns5etQSwgAAPDnKWAAAOEVqtSJvfeumXHLJzJ0kBqAiRbLqxauy8NyFuf2fb8/ovaNVJ5oXJiaa+dM//XY+/OFbZ+Tz7do1lomJE5+KBQCA71HGAgDAKVIUyTOesSw/9EOrq44CSZKeno709NQzNjad1vdN7hUdRWqNWmr1WjXhYA4Y3jicgTMGsu3ybcrYGdJstvLFL26vOgYAADxhylgAAIA5qL+/kd///afnllsO5Nd+7avZt2/8Ie9f+fyVWfm8leld0VtRQgAAAJj7lLEAAHAKDA11Zni4Mz09/hOb9tDRUct55y1MT09HGo2HT7/2LOnJ8MbhmQ8Gc02RdA13pWukKxP7J9Jq2kAWAAB4gDNFAABwCrz5zRvz2teuz+LFPVVHAWAG1Tvr2fSWTRm9bzTX/fF1Gd8z/vhPAgAA5g1lLAAAnAILFnRl9eqBqmPAw3R317N588Lceeeh3HbbgTQGOtOztCddC7qqjgZzQ5F0LehKa7qVWs0ezAAAwEMpYwEAAOawFSv68rd/+7xcddX2vOlNX8jCixZl05s3pdapNAIAAICy+esbAABgDqvVivT3N+7fz7hIUS/S0duRWoc/B+FUqnXVsvgpizNy3kiKelF1HAAAoE346xsAAADgJHUOdGbjmzdm3avXpdZwugUAADjGMsUAAHASzj9/YZ7//BW56KLFVUeBx9SzpCdn/MgZ6bG3MZSmKIrEUCwAAPAgylgAADgJl1yyOL/1WxfH2XfaXe+y3qz7iXWZbLaqjgJzWxG/EgAAgOOsmwMAADAPrOjtyE+uG8qlS3uqjgJzWu/S3mx686ac9gOnVR0FAABoA8pYAACAeWCkq57nLe/NxuGuqqPAnNY51JmVz1+ZkfNGTMgCAADKWAAAAAAAAIAyKGMBAOBJ6OysZfHi7gwMNKqOAkAbqnfW0zXclXp3veooAABAhZSxAADwJDzlKYvz8Y+/OG996zmxDiUA32/k3JFc8u5L7B0LAADzXEfVAQAAYDbq62tk3bqhNBomnphd+htFVvc3sn9iOgcmmlXHgTmro7cjHb0d6RzqrDoKAABQIZOxAAAA88gFI9155+aFeeaSnqqjAAAAwJxnMhYAAGAeadSKNGpFOmuW1wYAAICymYwFAAAAAAAAKIHJWAAAgDbXbLXyjT1j2TM2fcLP7euo5amLu9NVdy0uVGFozVBW/eCq7P3O3hzeerjqOAAAwAxTxgIAALS56VbyuXtG85194yf83OW9HTlvpCtd9RKCAY9r4eaFWbh5Yb77F99VxgIAwDykjAUAgBOwbFlP3vKWTdm4cUHqJg15Elpp5Uv3Hc3thyaf8HOareTe0akn9fkOTjTzP+84lK76Q/eIveXAxJP6eAAAAMATp4wFAIATMDLSnde/fkMWLuyuOgptqZXp1uM8opVct3c8X7rv6Iwk+v/bu/MYT+/Dvu+fmdmd3eXyECmSK9KkJCuS7MqSE1mu5dqx4xx1GxQNgsZA0ziFkQOF/yhcJ2laFKgTqEFg/ZGihqPYVlLVNpSoSaNETmzZoU2ROiJFoURS9JK7y13uvTOzu3PP776ep3+sNOJKFPfgfueZ4/UCBMz1036wAEnMvOf7fDvjKk8vdLfkzwIAAACuJ8YCAADcIYNJnX95rpXL3de/2/Vc++ZPxQIAAAA7lxgLAABwG0ZVncG3HIPtTaocWx2KrcC32XdwX/bfvT/j3jj1jY7QAwAAu4YYCwAAcBueW+7nt863r/tYVSdXerd3tyuwu739z709j/zYIzn+seNZP7Xe9BwAAGCLiLEAAACvo6rrLA8mGVXXf/xSZ5zzTsACN+nggwcze99sZg7OND0FAADYQmIsAADA6+iO63z0xHrmu9eH10HlMaMAAADA6xNjAQAArlNnvjvJymCSJOmOqyz1x1kbVjd4HQAAAMD1xFgAAIBv8Zn5Tp6c726+P3YKFgAAALgNYiwAALDnLfbHeWl1mG8k1/PtcUYCLAAAAPAGibEAANCYOslU0yN2uNf7O7z5v9/z7VE+dnItE/0VAAAAuIPEWAAAaIwQ+8a93t/hd/5cb1zl6YVuWqNr98Au9MZxEBYobWp6Ko/96cfypne9KRefvJjRxqjpSQAAQGFiLAAAsCfUdb35GOLepM6T891c7o0b3QTsLVMzU3nkxx7JYG2QK//xihgLAAB7gBgLAADsenXqPLXQzbG1YZJkWNVZG04aXgUAAADsdmIsAACwK03qOsNvPHu4Tl5eH+Y/XO01OwoAAADYU8RYAABgVzq2Osy/Ot9K/fUee8UjiQEAAIAtJsYCAAC7yqiqsz6cZK47zqn14eY9sQAAAABbTYwFAAB2lYudUX7l+Fpao0qIBQAAABolxgIAALvCqKpzsTPKmdYoS/3JN++LBQAAAGiIGAsAAOwK68NJfvX4WhaFWAAAAGCbEGMBAIAdqU6dk+ujLPXHSZLWqMrGqBJiAQAAgG1DjAUAAHamOnlyvpMvXem9+kMAAAAA24YYCwAA7DjH1gY5sTbMxfZYgAV2nH0H9+Xx/+LxtC+0M//5+VTDqulJAABAIWIsAACwg9Spk7y4OshvnW83PQbgtswcnMnb/qu3pXW2lStfviLGAgDALibGAgAAO8aJ9WE+t9DL2fao6SkAAAAANyTGAgAA215V1xnXyaXOOJ+73G16DgAAAMBNEWMBAIBt70J7nH9+diNL/UnTUwAAAABumhgLAABsO3VdpzWqMqmvvX+5N87xtWFGVd3sMAAAAIBbIMYCAADbTm9S55+cXM9cZ5wkGVZ1xkIsAAAAsMOIsQAAwLZRp87V3iTLg0kWuuNc7o2bngQAAABw28RYAABg26jq5JPnWnl+eZD+pGp6DgAAAMAbIsYCAADbwsXO6Npp2O443bEQCwAAAOx8YiwAALAtfO5yN//uUie1q2EBAACAXWK66QEAALCTLC/38+u/fiKf/vT5TCaq4Z1U19ceU+xvFQAAANgtxFgAALgFV6708ou/+Hw+/vGTqSqP0r0z6kiwAAAAwG7kMcUAAECjjq8N8x8X+3l5fdj0FAAAAIA7SowFAAAaUdd1JnVyvj3K7891mp4DAAAAcMeJsQAAQCPOtEf5rfPtXOmNm54CAAAAUIQYCwAAbKlJXac3rnOlN8nXlgeZ1O6LBQAAAHYnMRYAANhSV3uT/JOX17I8mKQSYgEAAIBdbLrpAQAAsBO126OcOLGWK1e6TU/ZMSZ1ncu9cS51R7nYGWexP4kUCwAAAOxmYiwAANyGr351MX/hL/x+PvrRY4mkeFM64yofPbGWf3xiPd1x1fQcAAAAgOI8phgAAG7DaFRlebmfdnvU9JRtr6rrnGuPcqU3yfJgko4QCwAAAOwRYiwAAFDUpE7+1blWjq4MM3FHLAAAALCHiLEAAEBxkzoZC7EAAADAHuPOWAAAAAAAAIACxFgAAHgDnnnmav7u3/1qvvSly01P2YbqPLPYy784s5GF7rjpMQAAAABbzmOKAQDgDTh6dCVHj67kyJFD+ZEfeUvTc7aNuq5TJ/nDlUGeWug2PQcAAACgEWIsAADsWXWSqSJf/+zyIP/+SjfnWqPbGQYAAACwK4ixAACwZ91KiL21r1/ojvPMYv8W//8BAAAAdhd3xgIAAAAAAAAUIMYCAMAdsLIyyLlzG+l09vZjefuTKld647THVdNTAAAAABonxgIAwB3wsY8dz5//80/ky1++0vSURh1fG+bvv7Ccz8x3m54CAAAA0Dh3xgIAwB2wsTFKpzNOvz9pekqjhlWdlcEkVd30EoDtqxpXaZ1rpX2+nWriSQIAALCbibEAAAAAW2jcHuelX30pnblOqpEYCwAAu5kYCwAAd0hdJ1/84uUMBpP8yT/5aO6//2DTk7ZMa1TlxdVBXl4fpnYqFuB11alTjSohFgAA9gB3xgIAwB1SVXU++tFj+dt/+z/kwoV203O21GJ/nP/n5Hr+YK4TLRYAAADgGidjAQDgDrv5k6F1kqmCS8rrjat87nIvlzqjDKtaiAUAAAB4FTEWAAAKqOukrutMTSXfObju7BCbJL1JnSfmOrnSGzc9BQAAAGDb8ZhiAAC4w7rdcT784efzoQ99NWtrw6bnAAAAANAQMRYAAO6w0ajKH/zBpXz60xfS70+anlNEnTqjqs5wUqe++ecyAwAAAOwpHlMMAADcsnGVfOL0Rk63RlkbVk3PAQAAANiWxFgAAChkMqly+XI3+/ZN581vPpCpqZ1/R+w3VHWd8+1RXtnwGGaAm1Ynw9Ywg5VBqolfZAEAgL1AjAUAgELm5jr5mZ95Kj/8w0fyy7/8x3PgwEzTkwBoUDWucuLXT2T1+GoGK4Om5wAAAFvAnbEAAFDIeFzn0qVOXnllPc89t5jz51tJ3K8KsJcNVgfpL/ZTT/z3AAAA9gIxFgAACjt6dCV/8S8+mX/0j15M7WfvAAAAAHuGxxQDAEBhk0mddnuUfn/S9JQ3rE6dMxujLPTGaY3cdwgAAADwesRYAADg5tXJH8x38++vdFM55QsAAADwujymGAAAtsixY6v5h//waL7ylatNT3lD6roWYgEAAABughgLAABb5Pnnl/KhDz2bz39+IUn99f/tJDttL8A241+jAACw53hMMQAAbLHf+70LmZ/v5Kd/+l35gR94qOk5N+255UGeW+7n1Mao6SkAO8785+az8tJKOnOdpqcAAABbSIwFAIAt9vzzS/na15byQz/0cN773geyb990pqenmp51Q2dbozw13216BsCOtPLSSuY+M9f0DAAAYIt5TDEAADSgrpOPfOTF/NW/+tmcOrXe9BwAAAAACnAyFgAAGnLs2GrOn29lff29TU8BAAAAoAAnYwEAAAAAAAAKcDIWAAAaVFV1zp5t5f77D+Rtb7sns7MzTU/6Np1xleX+JOvDSdNTAHac4fowg7VBxu1x01MAAIAGTNV1XX/jndnZ2Sa3AADAnnTvvfvztrfdk3/6T/90Hnvs7qbnfJsvX+3lN06tpz+pM6zqG78AgE3nf+d8Tn/ydCb9SapR1fQcAABgCwyHw823PaYYAAAatrExysJCN5/73EKeeeZqxuPt9cP6UVWnNaqEWIDbMBlOMmqNhFgAANijxFgAANgGlpb6+Zt/84v50Ie+mn7f44ABAAAAdgMxFgAAtonxuM78fCe/+Zsv56mn5vKqG0UAAAAA2IHEWAAA2EYuXGjn7/ydr+QTnzgVLRYAAABgZxNjAQBgGzp6dDm/8AvP5MknLzU9BYDbsHF2Iy//5stZfHax6SkAAECD9jU9AAAA+HavvLKRV145loMH9+UnfuLRzY/PzExlampqSzbUqVPVSbUlfxrA7tKZ6+Tcb59LPOUAAAD2NDEWAAC2sd/+7XM5eXItSTI7O52/9bf+aN7znge25M+e64zzqfPtXO6NtQQAAACA2yDGAgDANnb69EZOn95Ikhw4MJOf+qk/ksceuzuHD+/PzEzZE7KtUZXnlvsZTKRYgJtVV3UmvUkmg0nTUwAAgG1AjAUAgB1iOJzkF37hmbztbffkl37pR/P443c3PQmAb9G+2M6xf3wsg5WBRxQDAABiLAAA7BR1nZw928rGxiinTq0lSR599HDxE7IA3LxJf5LWuVYmfSdjAQCAZLrpAQAAwK1ZXR3kZ3/2C/n5n/9i2u1R03MAAAAA+A7EWAAA2GGqqs7ycj/nz7fyxS9ezksvraSuPQsToEnVqMray2vZOLORuvLvZAAA4BoxFgAAdqhz51r563/9s/kH/+CFTCZ+8A/QpOH6MC9+5MWc+I0TqYZV03MAAIBtwp2xAACwQ9V1MhhMcvbsRj7xiVObd8f+4A8+nO/5njc1Ow5gD6pGVeqxX44BAAC+SYwFAIAd7ujRlfyNv/Glzfc//OEPirEAAAAA24AYCwAAu8wTT1zM1au9JMmhQ/vyl//yu/Pww4du+vXtUZWnF7q52Bll7N5DgNdVjavMPz2f1vlWRp1R03MAAIBtRowFAIBd5umn5/P00/NJkgceOJCf/MnH8+CDBzM9nSRTN3x9Z1zliblOVgaTskMBdoF6XGfus3NZO7HW9BQAAGAbmm56AAAAUE67Pcrf+3tfzYc+9NVsbHzriS2nXgEAAABKEmMBAGAXGw6rPPnkXJ544mJWVwdpt0dpt0cZOPUK8IZVoyrj/ji1R7oDAADfgccUAwDAHnDxYjt/7a99Nvv3X/t9zD/7Z9+an/u59zY7CmAnq5MznzqTpeeW0r7UbnoNAACwTYmxAACwB/T7kzz//NLm+48/fncuXuxc9zXT08lDDx3a6mkAO1Z3vpv1U+tNzwAAALYxMRYAAPagJ564kGeeuXrdx+6+e39+7dd+PA/9kXsbWgUAAACwu4ixAACwB7Xb47Tb1z9W86679uVrX1vKke4ow6E7ZQG+k/5SP/3lfoYbw6anAAAA29xUXdf1N96ZnZ1tcgsAANCwQ4dmcviRw3nv//YDOfDAgabnAGxLpz95Omc/dTbVqEo9qW/8AgAAYE8ZDr/5i5tOxgIAAJt6vUnSHeVVv7MJwLeoRlUmfU8QAAAAbmy66QEAAAAAAAAAu5GTsQAAAAA3oXW+lcVnF7N2Yq3pKQAAwA4hxgIAAADchI3TGzn1z041PQMAANhBxFgAAACA19GZ6+T8p8+nfbHd9BQAAGCHEWMBAAAAXkudVOMqvcVe5p6eSzWsml4EAADsMGIsAAAAwGvor/Tz8m+8nO7lbqqREAsAANw6MRYAAADgNVTDKqvHVzNYHTQ9BQAA2KGmmx4AAAAAAAAAsBs5GQsAAADwKnVVp7vQTWeuk2ri8cQAAMDtE2MBAAAAXmXSn+TYR49l4+xGxr1x03MAAIAdTIwFAAAASJI6WX9lPd3L3fSWehl3hVgAAOCNEWMBAAAAktR1nbO/dTZXn7mauqqbngMAAOwCYiwAAACw560eW8366fV05jtCLAAAcMeIsQAAAMCed/UrV3Pu355regYAALDLiLEAAADAnrV6fDWXv3Q5q8dXm54CAADsQmIsAAAAsPfUSV3VaZ1t5cLvXmh6DQAAsEuJsQAAAMCes3FmI6c/eTrdy92mpwAAALuYGAsAAADsGXVVZ9wdp3u5m8VnF1NP6qYnAQAAu5gYCwAAAOwZvSu9vPirL6a/2BdiAQCA4sRYAAAAYNerqzr9xX7al9ppnWtl3Bk3PQkAANgDxFgAAABg1xt3xjn6kaNpX2xn3BViAQCArSHGAgAAALtXnWyc3Uj3Sje9xV5GrVHTiwAAgD1EjAUAAAB2rWpS5ZV/8UqWv7acalw1PQcAANhjxFgAAOA6k+4kC19YyN2P3Z0H3/9gpmammp4EcFtWj6+mfaGd3pWeEAsAADRCjAUAAK4z3Bjm5MdP5v733J8H3vdAZmZmmp4EcFsWvrCQi09cbHoGAACwh4mxAAAAwK6yenw1i88uZu3kWtNTAACAPU6MBQAAAHaHOqnrOmsn13L2U2ebXgMAACDGAgAAALvD+ivrOfc759K51Gl6CgAAQBIxFgAAANjh6qrOZDBJd6GbK1+6krqqm54EAACQRIwFAAAAdrjufDfH/u9j6S/1hVgAAGBbEWMBAACAnaVOBmuDTIaTJElnvpP1V9Yz6U0aHgYAAHA9MRYAAADYUapRleMfO571k+vX3h9XmfSFWAAAYPsRYwEAgNc07o6zdmItBx86mMOPHm56DkCSa6dg+0v9dBe66S/3m54DAADwuqbqut68TGV2drbJLQAAwHYylczMzuSRH3sk3/ez35dMNT0I2PPq5KWPvpSFzy9ce0Sx62EBAIBtaDgcbr7tZCwAAPDa6mQymKQaVU0vAfaw3pVeVl9e3QyvnUudTAYeSQwAAOwMYiwAAACwba2+vJqjv3z0mx9wGhYAANhBxFgAAABg2+kv9TP/+flsnN4QYAEAgB1LjAUAAG6oTp0pl8YCpb0quvYWeznzyTMeSQwAAOxoU3Vdb36rMzs72+QWAABgGzp05FDu/0/uz5EPHsnDP/Rw03OAXaoaVjn7b86me7mbJBmuD7P8wnLqyrFYAABgZxkOh5tvOxkLAAC8rt6VXnpXejn08CExFrij6nGdalIlSSa9SRa/upj1V9YbXgUAAHDniLEAAABAI+aensv8F+aTJPWkTnuu3fAiAACAO0uMBQAAALZENaoyao1Sf/1y2Na5VlZfWm14FQAAQDliLAAAALAl1k+v59ivHUs1uvZo4mFreINXAAAA7GxiLAAAcFMGq4NsnN7IoYcPZf89+5ueA+wAdVWnM99JNbgWX1vnWuksdFKP64aXAQAAbI2puq43vwOanZ1tcgsAALCNTe+fzvTsdN7zP7wnj/zxR5qeA+wAo/Yoz3/4+bTOt5Jcuxd2Mpg0vAoAAKCs4fCbTwFyMhYAALgp1ahKNaqcaANeV+t8K93L3STJpDdJf7mfcXfc8CoAAIBmiLEAAADAHTP31Fwu/O6FJEmdOqkaHgQAANAgMRYAAAC4ZcP1YS5/6XKq0fW1deP0RurKCXoAAIBEjAUAAABuw2BlkFf++SsZtUdNTwEAANi2xFgAAOCWzH12LhtnN/LW//KtueuRu5qeA2yBhS8sZPX46nUfG7VGmQwmDS0CAADYGcRYAADglqwcXcnaybUc+eARMRZ2kXpcX7vj9TUsH13O3GfmtngRAADAzifGAgAAwB43XB/m5MdPZrA2eM3Pty+0t3gRAADA7iDGAgAAt65ORp1RRq1R9h3el6npqaYXwZab9Ce3/JjefYf2ZXp2utCir/v6P5/15LVPub6W/ko/y0eX01/qFxwGAACw90zVdb353dns7GyTWwAAgJ1iKjn00KEcOnIo7/sf35eDDx5sehFsufO/cz6Xnrx0S69513/3rjz8wYcLLbpm3BvnpV95Ke2LN3+atRpX6V3t3VLABQAA4LUNh8PNt52MBQAAbl2d9K72Uk2qVOOq6TXQiOH68JaCZ5K0LraK37U87o3Tvti+5W0AAADceWIsAAAAbJGznzqb858+X/YPqZNxZ1z2zwAAAOCmiLEAAMBtq4ZVVl9azXB9mPveeV+mZtwdy+7XX+6nfb6d7uXuLb920p9k0r+1e2YBAADYudwZCwAAvCFTM1O575335QP/+wey7y6/78nuN/fUXF766EupqzrxlG4AAAC+hTtjAQCAO6ae1KkmihR7R13Vqcf1jb8QAACAPW+66QEAAAAAAAAAu5GTsQAAwBvWX+rn1CdO5b533pdH/8Sjiatj2YW6C91c+sylbJzZaHoKAAAAO4STsQAAwBs2XBvmwu9dyNWvXE01qVLXHuHK7lJXdbpXujn/O+ez/MJy03MAAADYIabqV/2UZHZ2tsktAADADnfggQO575335cgPH7l2QhZ2gf5KP6/8v6+kM9/J2strid81AAAA4HUMh8PNtz2mGAAAuGMGK4NcfeZqDj96uOkpcMdMepMsPreY4drwxl8MAAAAr+IxxQAAAAAAAAAFiLEAAMAdN2qP0l3oZtwdNz0Fbltd1ekv9dNb7KWuPJsYAACAW+fOWAAA4I6bOTiTfXfty7v/+3fn0R93dyw706gzygv/5wtpnWtluDF0VywAAAA3xZ2xAABAUZP+JJP+JK0zraw+uJq733p39t+9v+lZcHPqpH2xne7VbnpXehmuuysWAACA2+NkLAAAUMzUvqnMHJjJH/uf/1je/P1vbnoO3JR6UueF/+uFLD67mGpUORELAADALXEyFgAA2BL1uE6Vyn2b7DjVqEo1rJqeAQAAwA433fQAAAAAAAAAgN3IyVgAAKCouqoz/7n5tM618l1/6rsye6/rUdi+lp5byurLq+nMd5qeAgAAwC4gxgIAAEXVVZ2Fzy9k+b7lPPSBhzJ7z2wy1fQqeA11svj8Yi787oWmlwAAALBLTNV1vXl50+ys31AHAADKmN4/nTf/0Tfn7rfenXf8N+/IvkN+N5TtY+lrS5n/3Hw2Tm+kM+dULAAAALdvOBxuvu3OWAAAYEtUoyqLX13M4lcWM+6MU42qpidB6qrOZDBJ63wrC59fEGIBAAC4o5yMBQAAttTMgZnc/da7c/977s+7f/rdmZrxzGKas3ZiLSc/cTL9xX56V3tNzwEAAGAXePXJWM8FAwAAttRkMMn6qfXsv2d/6rrOlAtkaUA1rjJcH6Yz38naibXUk/rGLwIAAIBbJMYCAACw5/Qu9/LCL72QwcpAiAUAAKAYd8YCAACNGHfGWT+17tGwbKl6Uqd1rpX1M+vpXelluD688YsAAADgNrkzFgAAaMTU9FSmD0zn8f/88XzPz3xP03PYI4brwzz7959N51Ink8Gk6TkAAADsQq++M9bJWAAAoBF1VWfSm6R1oZXLX7ycznyn6UnsYnVVZ+WllVx95moGqwMhFgAAgC3hzlgAAKBRy19bzvILy/nev/K9Ofzo4abnsEvVkzpn/vWZLL+wnLgiFgAAgC0ixgIAAM2rk+UXllONqhz54JHc9chdTS9iF1l6finrp9fTu9wTYgEAANhSYiwAALAtLD67mKXnl3L40cNiLHfUlS9fyaUnLzU9AwAAgD1IjAUAALaNuq5z4d9dyMqLK3n7n3t7Dj54sOlJ7GBLzy/lypevZPX4atNTAAAA2KPEWAAAYPv4+uOK119ZzyM/9khm75u99vGpZHrfdLPb2DHqqk49qbN+et2JWAAAABo1Vdf15o05s7OzTW4BAABIkkzNTOXed9ybfYeu/f7oPd99T971l94lyHJTVl5ayZl/fSa9y710L3ebngMAAMAeMxwON992MhYAANh26kmd9VPrm+9PhpMMVgfZf3h/9t3l2xheWz2pM2qP0p3vZvmF5aS+8WsAAACgJCdjAQCAbW/mwEwOvvlgjvxnR/Kuv/SupuewTbXOtfLir7yYweogg5VB03MAAADYo159MtYzvgAAgG1vMpikM99J+2I7rXOtDNeHN34Re0Y9rtOZ66R1oZXOpY4QCwAAwLbhZCwAALBjTO+fzsyBmbzjp96Rt//Xb296DtvEYGWQ537xuXQvdzPujpueAwAAwB7nzlgAAGBHqkZVqlGV1tlWFp9dzL3ffW8OPHCg6Vk0YOPsRgbL107ADlvD9Ff6QiwAAADbjpOxAADAzjOVTM9M530/97685Uff0vQatlqdHP3I0Sx8YeGbH5rUr/MCAAAA2DpOxgIAADtbnVTjKovPLW7eHztzaCZHfvhI9h3ybc5utn5qPWsn19K+2BZgAQAA2Pb8lAIAANix5j87n/nPzidJDj10KA+89wExdpdbfHYxp//l6aZnAAAAwE3xUwoAAGBXGLVHOf3/nc49b78nj//k45neP930JO6A7uVuLv7+xc1TsGsvrzU7CAAAAG6BGAsAAOwK4944c0/N5U3vflMe/YlHMzU9de0T08nU1FSz47gt9aROb7GXC793IdWwanoOAAAA3LKpuq43L9mZnZ1tcgsAAMAbtv/u/bnv3fdtxti3/Mhb8uifeLThVdyqweogp/7ZqXTmO1k7tZZosQAAAOwQw+Fw820nYwEAgF1l1B5l6bmlzfcPP3I4ow+MMnNgxqOLt7lJf5JqfK269lf6WfraUgarg4ZXAQAAwO1zMhYAANjVZu+bzYH7D+Sd/+078/APPdz0HL6Duqpz8uMns/yHy0mSalSle7m7eVcsAAAA7BROxgIAAHvGcH2Y4fow7YvtHP6uw0mSqZmpHHzwYKb3OSnbpFFnlOHatW9Q66pO63wrrXOthlcBAADAneNkLAAAsCfsu2tfpmevxdcD9x3I+//X9+fQkUMNr9rb5j87n5c//vLm++POONXI5bAAAADsbE7GAgAAe864O066196ux3VWjq3k4JWDSa49yviet96TTDU4cA+Y9CfZOLOxeS/sxpmNzZOxAAAAsBs5GQsAAOxJ0/umN+Prw//pw/n+n//+TM2osSW1L7Xz7P/xbIYb33w0sTthAQAA2G2cjAUAAPa8b5zOTJLOQieXnrqUqalvxtip6am8+fvfnIMPHmxi3q5QV3WW/3A5/aV+kmSwMsioO/IoYgAAAPYMJ2MBAABew9S+qbz/f3l/HvrAQ01P2bGqcZXnP/x8lp5fanoKAAAAbBknYwEAAG6gntSZ/+x81k6sJbl2r+xjf+axzBycaXbYNtW+2M7CFxaSVz11uK7qdOY7zY0CAACAhomxAAAAr6VOLn/p8ua7hx87nLf86FsyfWD6ui+bytTm3bN7Rp3Uuf6u185cJ2c/dTZ15Q5YAAAA+AaPKQYAALgJ+w7tywPveyDT+6+PsY/++KN56Af3zqOMq3GVs586m/bF9nUf7y/3N08RAwAAwF7mMcUAAAC3aNwb5+ozV7/t43e/9e7c/333v+ZrpqanMnNg5z3WuK7qVMMqr/rd3U3VsMryC8tZPb7awDIAAADYWZyMBQAAeAMOPnQwB+4/8Jqfu/e77833/pXv/bbTtNtd63wrJ379RCaDybd/sk46lzoZ98ZbPwwAAAB2ACdjAQAA7pD+Yj/9xf5rf7JKeld6mZ69cYyd3j+d2TfNZmqqzAW01bDKYH2Q3MSVrt2FbtZPrr92jAUAAABumpOxAAAAhUzvn87sfbPJTfTVe99+b973P70v+w6V+Z3Z1ROrefEjL6YaVzf82mpUZbg+vKlwCwAAAFzPyVgAAIAtUI2q9Je+w6nZbzFzYCbrJ9czc7DMHbMbpzfSW+ylHiusAAAAsFWcjAUAANgOppKZ2ZmbOkV7O+qqTjW88alYAAAA4I1xMhYAAGC7qeOOVgAAANhlppseAAAAAAAAALAbibEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABUzVdV03PQIAAAAAAABgt3EyFgAAAAAAAKAAMRYAAAAAAACggP8fjymaWYXEdVMAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "from algorithm import parallelize\n", - "from utils.numerics import inf\n", - "from collections import List\n", - "\n", - "\n", - "fn scene_intersect(\n", - " orig: Vec3f,\n", - " dir: Vec3f,\n", - " spheres: List[Sphere],\n", - " background: Material,\n", - ") -> Material:\n", - " var spheres_dist = inf[DType.float32]()\n", - " var material = background\n", - "\n", - " for i in range(spheres.size):\n", - " var dist = inf[DType.float32]()\n", - " if spheres[i].intersects(orig, dir, dist) and dist < spheres_dist:\n", - " spheres_dist = dist\n", - " material = spheres[i].material\n", - "\n", - " return material\n", - "\n", - "\n", - "fn cast_ray(\n", - " orig: Vec3f, dir: Vec3f, spheres: List[Sphere]\n", - ") -> Material:\n", - " var background = Material(Vec3f(0.02, 0.02, 0.02))\n", - " return scene_intersect(orig, dir, spheres, background)\n", - "\n", - "\n", - "fn create_image_with_spheres(\n", - " spheres: List[Sphere], height: Int, width: Int\n", - ") -> Image:\n", - " var image = Image(height, width)\n", - "\n", - " @parameter\n", - " fn _process_row(row: Int):\n", - " var y = -((Float32(2.0) * row + 1) / height - 1)\n", - " for col in range(width):\n", - " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", - " var dir = Vec3f(x, y, -1).normalize()\n", - " image.set(row, col, cast_ray(Vec3f.zero(), dir, spheres).color)\n", - "\n", - " parallelize[_process_row](height)\n", - "\n", - " return image\n", - "\n", - "var spheres = List[Sphere]()\n", - "spheres.append(Sphere(Vec3f(-3, 0, -16), 2, shiny_yellow))\n", - "spheres.append(Sphere(Vec3f(-1.0, -1.5, -12), 1.8, green_rubber))\n", - "spheres.append(Sphere(Vec3f( 1.5, -0.5, -18), 3, green_rubber))\n", - "spheres.append(Sphere(Vec3f( 7, 5, -18), 4, shiny_yellow))\n", - "\n", - "render(create_image_with_spheres(spheres, H, W))\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAACKqklEQVR4nOzdd5hdd30n/ve5d+70plGXbMm2uptcMN00h5YQAtmwIUsNkJBNNgUSkk3IhmUT8sumJ8+PFNLYpW1Ywoaw+2Npxiam2oANuFtuki1ZvY6m3vv7Q0a2cZWlM+fOzOv1PHqYe+femTdn7sx4zvt8vt+i1Wq1AgAAAAAAAMApVas6AAAAAAAAAMBcpIwFAAAAAAAAKEHHg290dnZWlQMAAAAAAABg1puYmDj+tslYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAoQUfVAQAAAACgHRVF0tExO2YZpqaaabWqTgEAwPdTxgIAAADAI9i4cTi//usXpaurXnWUxzQ2NpX3vOebueWWA1VHAQDg+yhjAQAAAJjz6vUig4OdqZ3AoOvq1QN5wQtWpqenvU+hHTkymQ984Nbs2TP2hJ/TbCYHDkyk2TROCwBQpqLVemABk87OziqzAAAAAEApzjhjIH/+58/OyEjXE35Ob29HTj+9P7VaUWKyk9dstnL33Ydz9OjUE37O7t1j+fmfvypbtx4uMRkAwPw0MTFx/O32vqwPAAAAAJ6gBQu6snRpzyO+74wzBrJp03BGRrpnOFX5arUiZ5wxcELP2b17LBs3Dqev75FPD+7YMZr9+yce8X0AADxxJmMBAAAAmBPe8IYN+Y3fuPAR31ev1zI01Nn2U64zpdls5cCBiUxPNx/x/f/lv3wjH/rQrTOcCgBgbjAZCwAAAMCsU6sV2bx5YRYseOSlhs8/fySLFj3yZCwPVasVj3ock1Y2b16Y7dtHH/G9e/eO5brr9qRlu1kAgMdlMhYAAACAWaGrq54PfvCyPPvZyx7x/bVakY6O2gynmpumppppNh+5bb3iinvzhjdcnomJR56qBQCY70zGAgAAANCWFi/uzotffPojlqqNRi2nn96fzs56Bcnml8cqtVevHsjrX78hU1MPlLGtVnLFFffkrrsOz0Q8AIBZw2QsAAAAAG3jKU9ZnH/6pxenv/+xZgjs+1qth0/MTk+38uY3X5FPfvKumY8DANBmTMYCAAAAUKmiSP7Nvzkr55+/8CH3L1vWm87OWhSu7ezhX5uiSF796rW55JIlD7n/zjsP5QMfuCWTk5Y0BgDmJ2UsAAAAADOiKI7t65oc+98Xv/j0/OiPnlVxKk6FWq3IS16y6mH3f+UrO/LRj245vv9ss9lK65G3ogUAmJMsUwwAAADAjHjOc5bnTW/amKJIkiIXXrgoK1f2VR2LEu3ZM5avf31npqePTcb+r/91Z/75n++oOBUAQLksUwwAAABAaYoi6e3tSL1ee8j969cP52UvW52isATxfLFwYXde+tIHJma3bDmYyy+/5yGPabVaOXJkMk0rGQMAc5DJWAAAAABOqf7+Rv7gD56R9euHHnL/yEhXVq3qj/1g568dO0azY8foQ+7bufNo3v72L2f79tFHeRYAwOxiMhYAAACAU2pkpCtDQ8cu9B8c7Mz5549k48YFFaei3Sxb1ptly3ofct99941m7drBdHfXkyRHjkxl586jVcQDADjlTMYCAAAAcNLe8Y4L8oY3rE+SFEWRhQu70mjUK07FbDA93cyePePH95X99Ke35R3v+EqazdbjPBMAoD2ZjAUAAADgSent7ci5546ko+Oh+8Fu3Dic5cv7KkrFbFav17JkSc/x2+vWDeaZz1x6fA/ZLVsO5L77TMoCALOTyVgAAAAAnrCNG4fz0Y++KCMjXQ+5v9GoPayghSdjerqZiYnm8du/9mtfzYc+dGuFiQAATozJWAAAAACekFqtyKWXLs/y5cf2+Vyxoi9DQ53p6ZnJ00qtJMUMfj6qVK/X0tPzvWK/lWc8Y2mmp4/Nk4yNTefyy7fl4MHJ6gICAJwAk7EAAAAAPKrOzlo++MHL8oIXrDx+X1EkylFmyoNOX2bXrrG8/OWfyq23HqgwEQDAYzMZCwAAAMCjeupTlxwvX+v1ImedNZiiUL5SjQe/9vr6OvJTP7UpN920Px/5yK05enS6wmQAAI/PZCwAAAAAxxVF8h/+w7n5z//5kqqjwKO6/vq9ecUr/m/27RtPkjxoeBYAoHIPnoxVxgIAAACQJLnwwkV5y1s2ZdOmBdm8eWHVceBR7d8/niuvvDfj480kyRVX3JN//MctFacCADjGMsUAAAAApCiSrq56arVjy8CuWTOYV73qrNTrtYqTwWMbHu7Kj/zImcdvHzkymU9+8q7jt8fHpzM9bVwWAKieyVgAAACAeWrhwu783u89LcuX9x6/vW7dkP1hmXV27BjNHXccTJJMT7fyu7/7zXztazsrTgUAzFcmYwEAAADmqeHhzvT1NZIkS5f25JJLluT00/srTgUnZ9my3ixbduyigqmpZtauHcrddx/O7t1jmZxsVpwOAJjPTMYCAAAAzCPvfvdT8rKXnZEk6egosnRpbxoNyxIzd7RarezaNZYdO0bzMz/zxdx88/6qIwEA84zJWAAAAIB5YmSkK2ecMZDk2B6x69cPH78Nc1FRFFmypCc9PfVs3rwwfX3HToEeOjSZ2247kJatZAGAGWQyFgAAAGAOe8Urzswf//Ez871tYHt66mk06tWGghnQarUyOjqV6eljpz+//OUdedObvpDxccsWAwDlMhkLAAAAMMeNjHTlGc9Ymqc9bUkGBxspvtfGwjxRFMXx/ZGTZPXqgbzsZWdky5YDufbaPRUmAwDmE5OxAAAAAHPQ0562JP/4jy9MX18jtVqSKGOZ31qtVprNVj70oVvztrd9ueo4AMAcZjIWAAAAYI7p7KzlFa84M0uX9iQ5NgXY1VVPraaEheTYpGy9XuTcc0fyC79wXr785R255ppdVccCAOY4k7EAAAAAc8DAQCMf//iLc9FFi6uOArPC7/zON/Inf/LtqmMAAHOQyVgAAACAOaIokte/fkMuuWRxVq3qrzoOzBo/+IOrjn/PjI1N56/+6obcddehilMBAHONMhYAAABglqnVijQaxfG3n//8FfnhHz6j2lAwy1x00eLjk+SHD0/mk5+8M9u3H8nERLPiZADAXGKZYgAAAIBZ5gd+4LT8+39/9v23ipxzzoIsXtxTaSaYzaanm7nuuj257bYD+a3fujq7do1VHQkAmMUsUwwAAAAwCzUatQwPd2bDhqE897krUhRF1ZFgTqjXa7noosVZurQnK1b0ZXKymQMHJvLAGAsAwJNjMhYAAABglrjkkiX5wz98RhYv7s7SpT1JlLFwKk1ONrN16+F861u784u/+KUcPTpVdSQAYBYyGQsAAAAwi3R11XLGGYM5++wFWb9+KJ2d9aojwZzUaNRy1lmDGR2dzDnnLMiOHaPZtu1I1bEAgFnMZCwAAABAm1uzZjAf/OBlWb68N/39DcsTQ8mmppo5dGgyn/zknXn7279suWIA4ISYjAUAAABoY0WRXHDBoixe3J0kWbmyL0uX9mRgwIX0MBM6OmpZsKAra9cO5UUvOj1bthzIbbcdrDoWADALmYwFAAAAaDMdHUX+4R+enxe+8PQkx8rZer0wEQszrNlsZXq6lT/5k+vyX//rtVXHAQBmCZOxAAAAAG3qmc9cmvPOW5gzzxxMo1GrOg7Ma7VakVqtyMUXL85b3rIpX/zivbnllgNVxwIAZhGTsQAAAABt5Pd+72n5qZ/alMQULLSTVquVn//5q/KRj9xWdRQAoM2ZjAUAAABoM8985tL80A+tztOfvjSKWGhP/+bfnJUNG4bz3/7bzbnjjkNVxwEAZgFlLAAAAECFiuLYUqgXXLAoP/Mz51QdB3gURVHk+c9fmac/fWm+8IV7cvfdhzM93Xr8JwIA85pligEAAAAqdOGFi/JLv3Re1qwZyqZNC6qOAzyO6elmrrlmV7ZsOZj3vOcb2bHjaNWRAIA28+BlimsV5gAAAACYt+r1IkNDnTnrrMG85CWrFLEwS9TrtTztaUtz2WUrs2xZbwYGGimsLA4APAqTsQAAAAAVWLt2MH/8x8/MypX9Wb26P4U2B2aVyclmbr/9YL7znT355V/+Sg4fnqw6EgDQJh48GWvPWAAAAIAZUBTJ8uW96ek5djpm3brhnHvuwgwNuTgeZqNGo5YNG4bTarWydu1QduwYzY4do1XHAgDajMlYAAAAgBnQ2VnLX/7lc/L0py9NcqzIWbCgK7WaiViYzSYnm9m3bzyf/ey2vO1tX8r0dOvxnwQAzGkmYwEAAABm0Lp1Q1m1qj9nnjmYZct6q44DnEKNRi1LlvRk7drBXHrp8tx99+HcfvvBqmMBAG3CZCwAAABAyf7gD56Rf/fv1qazs24SFuao6elmJiebed/7bsy7331N1XEAgAo9eDK2VmEOAAAAgDntnHMW5DWvWZdNm4bT3d2hiIU5rF6vpbu7I+edN5LXvGZd1q8fqjoSANAGTMYCAAAAlOSXfun8/OZvXpSiSBJFLMwPrbRaya/92lfzd393U9VhAIAK2DMWAAAAoERnn70gr3zlmXna05akKJSwML8UKYpWXvKSVVmypCcf/eiWbNliD1kAmK+UsQAAAACnUFEkGzcO55d+6XzLEsO8VeQFL1iZSy9dlq9/facyFgDmMWUsAAAAwCly1lmDedvbzs/atUMxEAsAAChjAQAAAE5SUSQ9PR057bS+vPzlZ6S/v1F1JKAtFOnp6UhfX0eOHp1Ks1l1HgBgphWtVqv1vRudnZ1VZgEAAACYlRYv7s4f/uEzs2bNYNavH0q9Xqs6EtAGWq1Wbr31QO6++3B+7de+mjvvPFR1JABgBkxMTBx/22QsAAAAwJNUFMnixT0544yBXHTRoqxY0Vd1JKCNFEWR9euHs3hxT848cyBjY9PZufNoms3W4z8ZAJgTTMYCAAAAPEk9PfX85V8+JxdfvDhLlvSko8NELPBw09Ot7Np1NDfdtC9vecuV2bdvvOpIAECJTMYCAAAAnKSzzhrMaaf15ayzBk3EAo+pXi+ybFlvxsen85SnLM5ddx3KrbceSMuALADMeSZjAQAAAE5QUSR/+qfPyitfeWa6u+v2iAWekGazlaNHp3LFFffmzW++IpOTzaojAQAlMBkLAAAA8CSdffaCbNq0IOvWDaWvr/EEntFKUpQda44r6xie6Mct+/HzQbscw2q+NrVakb6+Rrq76ym8NABgXlDGAgAAAJyAl7/8jPzyL28+gSJF43LyyjqGJ/pxy378fNAux9DXBgCYGdbQAQAAADgBRXFsuq0w1gY8SWecMZBf/MXzc9llK6uOAgCUTBkLAAAAADCD1qwZyn/8jxfmpS9dVXUUAKBkylgAAACAJ+BpT1uSP/uzZ+XFLz696ijAHPHsZy/Ln//5s/KCF5iQBYC5yp6xAAAAAI+hVksajXo2bBjOa16zzvLEwCmzbt1w1q0bzi23HMjll99TdRwAoATKWAAAAIDHcPbZI/lP/+nirFrVHz0sAABwIpSxAAAAAI+gXi8yMtKVM88cyLOfvSzd3U6jAOUYGGhk6dKe7N8/kfHx6arjAACnUNFqtVrfu9HZ2VllFgAAAIC2cfrp/fnLv7w0q1YNZPny3tRqxmKBcuzePZa9e8fyG7/xtXzhC/dWHQcAOEkTExPH33ZJJwAAAMCD1OtFzjxzMOvWDWXduuEsWtRddSRgjlu0qDsLFnTlnHNGsnPn0dx++8EcPWpCFgDmApOxAAAAAA8yONjIBz5wWc4/f2H6+xsmYoEZ0sqRI1PZu3c8r3vd5/Od7+ytOhAA8CSZjAUAAAD4PkWRXHjhopx55mBWruzL4KCL1oGZVKSvr5Hp6VY6OmpVhwEAThFlLAAAAECSWq3IL/zCeXnpS1elXjcNCwAAnDyXWAEAAADcr1Yr0tFRS1EoY4FqdHbW8qM/emZ+4ifWpq/PLA0AzHZ+mwMAAAAAtInu7o787M+emzvuOJgrrrg3R45MVR0JADgJylgAAABg3vuhH1qV5z53Rc45Z6TqKAAAwByijAUAAADmrVotqddrecYzluXNb95UdRyA44oi6eiopV4vMj3dqjoOAPAkFa1W6/hv8s7OziqzAAAAAMyoF77wtLzpTRuzYcNwVq8eqDoOwHGjo1O55pqd+da3duf3fu9bmZhoVh0JAHiCJiYmjr9tMhYAAACYt04/vT8vetFpSYqqowA8RG9vR57znBWp14vU635GAcBsVas6AAAAAAAAAMBcpIwFAAAA5p2+vo6sXz+UpUt7qo4C8Jh6ezuybt1wli3rrToKAPAk2DMWAAAAmHee85zlee97L83gYGf6+ztimWKgXU1OTufAgYl8/ON35Nd//WtVxwEAngB7xgIAAADzUl9fRy68cFGe8pTFWbKkJx0dFg0D2lujUc+iRT0ZGGhUHQUAeBKUsQAAAMC8cfrp/fmrv3pOFi3qSUeHaVgAAKBcLv8EAAAA5o2iSDo762k0arE0MTCbrF07lDe+cUM2b15YdRQA4AQoYwEAAAC4X2uOf76Z0E7HsJ2yzFbtcwwvuWRx/uiPnpEXvei0GcwDAJwsyxQDAAAAc15vb0fe8IYN2bRpOL29Toc8upmeFp6L08ntdAzbKcts1U7HcC4eXwCY+/z1AQAAAMxpRZH09zfy2teuy8aNC6qOAwAAzCPKWAAAAGDO6ugo8gu/cF4uvnhxVqzoqzoOAAAwzyhjAQAAgDmrVivy9KcvzWWX2WMRmBs6O+sZGGjk6NHpTE01q44DADyOWtUBAAAAAAB4Yl796rX52MdenOc+d3nVUQCAJ8BkLAAAADAnjYx0ZWSkOz09Tn8Ac8eKFX1Ztqw3IyPdVUcBAJ4Af40AAAAAc9LP/uw5+fEfX5uRka6qowAAAPOUZYoBAACAOWl4uCsrVvSlu9u16MDcUhTJ2rWDeepTl2RgoFF1HADgMShjAQAAAABmkaJIfv7nz8sHPvCCbNq0oOo4AMBjcGkoAAAAMKesXz+UzZsXZc2awaqjAJSkSFdXPdPTHanViqrDAACPQRkLAAAAzCk/8AOn5b/8l0uqjgEAAKCMBQAAAOaG9euH8iM/ckae9rSlKQqTYk9OK8lMHruZ/nwzoZ2OYTtlma0cQwDg5ChjAQAAgDlh/frhvOMdF6Rer1UdZRab6RJoLpZO7XQM2ynLbNX+x7Aojv1rtUqIAwCcNH+dAAAAAADMQp2d9bztbefnd37nqVm0qLvqOADAI1DGAgAAALNarZb09NTT2ek0BzC/dHTUctllp+WHf/iM9PU1qo4DADwCyxQDAAAAs9pZZw3md37nqVm1qj+12lxcJhUAAJitlLEAAADArNbf38hTn7okQ0NdVUcBAAB4COv3AAAAAAAAAJTAZCwAAAAwKzUataxbN5QNG4ZTr7veHAAAaD/KWAAAAGBWGhnpynvfe2nWrBlMb69THAAAQPtx2SgAAAAwK9VqRfr7G+nra6QoiqrjPIZW1QHmgLKO4Yl+3LIfPx+0yzGcW1+bnp56LrtsZZ797GXp6Gjnn4cAMP8oYwEAAABKpRg5eWUdwxP9uGU/fj5ol2M4t742CxZ05fd+72n5zd+8OD09VgoAgHbiNzMAAAAwq3R0FPnhHz4jmzYNZ2ios+o4AJUriiL1epFabW6VzAAwFyhjAQAAgFml0ajlJ39yQ571rOVVRwEAAHhMlikGAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEtgzFgAAAJg1+vsbGR7uTKPh+nKA79do1LJwYXeS5NChyYrTAABJUrRardb3bnR2dlaZBQAAAOAxvfOdF+WHfmh1Tj+9L729jarjALSVo0ensnXr4Xz2s9vyrnddnQfO/AIAM2liYuL42y4jBQAAAGaN5ct7s2HDsCIW4BH09HRk/frhrFzZl6Ioqo4DAEQZCwAAAAAAAFAKe8YCAAAAbe/MMweyZs1QVqzoqzoKAADAE6aMBQAAANreK195Zt7xjgvS0WGRLwAAYPZQxgIAAABtr14v0tlZrzoGAADACXE5KQAAAAAAAEAJlLEAAAAAAAAAJbBMMQAAANC2iiKp1YrUakXVUQAAAE6YMhYAAABoW894xrK89a1nZ/36oaqjAAAAnDBlLAAAANC2Vq7syw/+4CqTsQAnoNGoZWioM0ePTmVsbLrqOAAwr9kzFgAAAABgDnnWs5bln/7pxXnd69ZXHQUA5j1lLAAAAADAHDI83JXNmxdm2bLeqqMAwLynjAUAAAAAAAAogT1jAQAAgLYzONjIOeeMZMOGoRS2iwUAAGYpZSwAAADQdjZsGM5/+28vyMBAQxkLAADMWspYAAAAoO3UakV6eurp7KxXHQUAAOBJs2csAAAAAAAAQAmUsQAAAAAAAAAlUMYCAAAAbaUoksJGsQAAwBxgz1gAAACgbSxc2J1f+ZXNWbduaA7tF9tKolw+OY4hp5rXFAAwM5SxAAAAQNvo6+vID/7gqpx2Wn/VUU4hhc/Jcww51bymAICZYZliAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAAAAAKIEyFgAAAAAAAKAEylgAAAAAAACAEnRUHQAAAACgo6PIM5+5LOvXD6enx+kKAABgbvDXDQAAAFC57u6O/MZvXJSLL16cmnW8AACAOUIZCwAAALSFokhqtaLqGAAAAKeMa00BAACAWaRVdYAHaacsJ+Kxcs/0/6fZegwfSzsdw3bKMlu10zGci8cXAOY+ZSwAAAAwi7TT5Gw7ZTkRj5V7pv8/zdZj+Fja6Ri2U5bZqp2O4Vw8vgAw9yljAQAAAAAAAEqgjAUAAAAAAAAoQUfVAQAAAID5bXCwM4sWdaXRcM04AAAwtyhjAQAAgMrUasmv/uoFedGLTsvKlX1VxwEAADillLEAAABAhYosX96bNWuGqg4CAABwyln/BwAAAAAAAKAEylgAAAAAAACAEihjAQAAAAAAAEqgjAUAAAAAAAAogTIWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAAChBR9UBAAAAgPmpp6ee3t6ONBquFQcAAOYmZSwAAABQide9bn1e85p1Of30/qqjAAAAlEIZCwAAAFRi6dLenHvuwqpjAAAAlMY6QAAAAAAAAAAlUMYCAAAAAAAAlEAZCwAAAAAAAFACZSwAAAAAAABACZSxAAAAAAAAACVQxgIAAAAAAACUoKPqAAAAAAAAnDqtViutVtJqVZ0EAFDGAgAAAADMIddcsyt//dc35Oab91cdBQDmPWUsAAAAAMAccs89R/KJT9yZZtNoLABUzZ6xAAAAAAAAACVQxgIAAAAAAACUQBkLAAAAAAAAUAJlLAAAAAAAAEAJlLEAAAAAAAAAJVDGAgAAAJSqVXWAOcAx5FTzmgIAZoYyFgAAAKBURdUB5gDHkFPNawoAmBkdVQcAAAAAAODkbd9+JB/72O259trdabVM/wJAO1DGAgAAAADMAffeO5o/+qPrcujQZNVRAID7WaYYAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAAAAAACiBMhYAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABK0FF1AAAAAAAAnryjR6fy1a/el+9+d2+mpppVxwEAHkQZCwAAAAAwi+3dO55f/dWv5s47D6XZbFUdBwB4EMsUAwAAAADMctPTLUUsALQhZSwAAAAAAABACZSxAAAAAAAAACWwZywAAAAAwKzUytRUK5OT00ksUQwA7UgZCwAAAAAwC42NNfP//D/fzLXX7s7OnUerjgMAPAJlLAAAAADALNRsNnPNNbvy1a/eV3UUAOBR2DMWAAAAAAAAoATKWAAAAAAAAIASKGMBAAAAAAAASqCMBQAAACqxZcvBXH75PbnvvtGqowAAAJRCGQsAAABU4h//8ba87nWfz9e+trPqKAAAAKXoqDoAAAAAMD9NT7fSajXTbLaqjgIwq7Rarfzrv27PjTfus7oAALQ5ZSwAAAAAwCzSaiUf/vBt+Z//c0vVUQCAx2GZYgAAAAAAAIASKGMBAAAAAGaJZrOVZrOVVssS7wAwG1imGAAAAKBUrSRF1SFmubKO4Yl+3LIfPx+0yzGcvV+bT3zijvzzP9+Zb31rd9VRAIAnQBkLAAAAUKrZWfi0l7KO4Yl+3LIfPx+0yzGcvV+bm2/en//9v++qOgYA8ARZphgAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKYM9YAAAAAIA2t3Pn0dx224Fs3Xqk6igAwAlQxgIAAAAAtLkrr7w3b3/7lzMxMV11FADgBChjAQAAgMq0Wq186Us7MjXVzPOfvzILF3ZXHakErSRF1SFmOceQU232vaamppoZHZ2qOgYAcILsGQsAAABUptVK/v7vb8qv/MpXcscdh6qOU5LZVfi0J8eQU81rCgCYGSZjAQAAgMq1WsmxSTUAHuzuuw/lox/dkmuv3VN1FADgSVDGAgAAAAC0qa1bD+dP//TbOXrUXrEAMBtZphgAAAAAAACgBMpYAAAAAAAAgBIoYwEAAAAAAABKoIwFAAAAKtdqtbJr11h27BjN9HSz6jgAlZuaambHjtHs3j2WVqvqNADAk1W0Wg/8Ku/s7KwyCwAAADBPFUWydGlvzjprIH/zN8/LsmW9VUcCqNTWrYfzUz91Re6++3B27jyqkAWAWWRiYuL42x0V5gAAAABIkrRayY4do+nsrGVqymQswNRUM9u2Hcl99x2tOgoAcBIsUwwAAAAAAABQApOxAAAAAABtYnKymS9/eUduuWV/jh6dqjoOAHCSlLEAAAAAAG3i6NGpvOc938y3vrU7zaaNYgFgtrNMMQAAAABAG2k2W4pYAJgjlLEAAABAG2rd/4+ZNdPHfC5+jdvpGLZTltnKMQQATo5ligEAAIC2sXfveH77t7+Rc88dyVvfenY6O+tVR5pnijn++WZCOx3DdsoyW83c/6dms5X//t9vzjXX7Mrddx+esc8LAJTLZCwAAADQNg4fnszHPnZ7PvWpuzM11aw6DsCMabVaueKKe/ORj9yWPXvGqo4DAJwiylgAAAAAAACAElimGAAAAACgQocPT+bw4cmMj09XHQUAOMWUsQAAAAAAFXr/+2/Ohz50S+69d7TqKADAKaaMBQAAANrO6OhUbrxxf5Yt68nKlX1JiqojAZxye/eOZceO0dx0077ccsuBquMAACUoWq1W63s3Ojs7q8wCAAAAkCTp6CgyMNCZV7zijPzBHzwjRaGMBeaeD3/41rzrXVdndHQqY2OWKAaAuWJiYuL42yZjAQAAgLYzNdXKvn3jOXx4Kq1WoosF5qLx8ens3TtedQwAoES1qgMAAAAAAAAAzEXKWAAAAKBt3Xbbgfzt396Yb3xjV9VRAE6ZrVsP5+/+7sZcddX2qqMAACWzZywAAADQ9t7xjs35j//xoqpjAJwSn//8trz2tZ/PxESz6igAQAkevGesyVgAAAAAAACAEnRUHQAAAAAAYD5otVqZnj7274H1CgGAuUwZCwAAAAAwA+6550h+93e/mS1bDmZqyhLFADAfKGMBAACAtjc2Np39+8fT29uRzs561XEATkiz2crhw5O5997RfPaz27J373jVkQCAGVK0Wg8siNHZ2VllFgAAAIBHtGRJT5Yt682v/doFeclLVlUdB+CE7N8/nre97cu56aZ92bLlYKanrVEMAHPZxMTE8bdNxgIAAABtb+fOo9m582j27TNNBsw+09Ot3Hrr/txyy4GqowAAM6xWdQAAAAAAAACAuUgZCwAAAMwat9xyIF/60vYcOGBCFmh/zWYr3/3u3nzlK/flyJGpquMAABWwZywAAAAwazQatfT1deSDH7wsz3jGsqrjADymycnp/ORPXpHLL78nExPTadkqFgDmBXvGAgAAALPS5GQz4+PTaTY1GkA7a+Xqq3flhhv25c47D2V8fLrqQABARZSxAAAAAACn2Mc+tiV/+7c3VR0DAKiYPWMBAACAWWVyspkPfODW/Pmffyd7945VHQfgEVmSGABIlLEAAADALDM11cr//J9b8r733ZD9+yce/wkAM6jVaqXZrDoFANAuLFMMAAAAUKpWkqLqELNcWcfwRD9u2Y+fD9rlGJb3tfnc57blox/dkmuv3VPKxwcAZhdlLAAAADArNZutjI5O5ejRqXR311MU7Vp6tWuu2aSsY3iiH7fsx88H7XIMT/3HnZpqZnx8Otdfvy8f//gdp/zjAwCzU9FqPbB7QWdnZ5VZAAAAAJ6wRqOWTZuGc955C/O7v/u09Pc3qo4EzGNf/vKOvOc938y99x7J3XcfrjoOAFChiYkHtlMxGQsAAADMSpOTzXz723tTqxWZnrZBI1CNiYnp7Np1NLfeeiBXX70z09Otx38SADBvKGMBAAAAAJ6kLVsO5q1vvTL33XdUEQsAPEyt6gAAAAAAJ+PIkal861u7c9ttB/Kg3ZgAZsTExHS2bTuS3bvHqo4CALQhZSwAAAAwq23ZcjCve93l+f3fvzbNpjIWAABoH8pYAAAAYFZrNlsZHZ3K7bcfzMc/fke+/e09VUf6Pgrik1fWMTzRj1v24+eDdjmGJ/9xjx6dyqc/vTWXX35PJiftWw0APLKi9aD1ezo7O6vMAgAAAHBSiiL5uZ87N+9+9yVVRwHmuB07RvMjP/KpbNlyMFZIBwAebGJi4vjbHRXmAAAAADilWq3YNxYo1dRUMx//+B258cZ92bt3XBELADwmZSwAAAAwp3yvkC2KJCmqjgPMIa1WK5OTzXzoQ7fkqqt2VB0HAJgF7BkLAAAAzClf+MI9+cVf/JKiBDilWq1WPvzhW/Mrv/KV3HrrgarjAACzhMlYAAAAYE658cb9ufHG/bnwwkV59rOXVx0HmAOmppqZnGzmqqt25KMf3VJ1HABgFlHGAgAAAAA8ho9//PZ8+MO35ZZb9lcdBQCYZZSxAAAAwJx08OBE7rtvNMPDXenqqlcdB5iFxsamcuDARG64YV/+9V+3Vx0HAJiFilar1frejc7OziqzAAAAAJwyixd3Z+HC7vzhHz4jz3jGsqrjALPQpz+9Ne9619XZs2cse/eOVx0HAJglJiYmjr9tMhYAAACYk3btGsu+fRO5/vp9GRrqzFlnDaa726kQ4PEdOTKZO+44lBtu2JfbbjuQB8ZZAABOjMlYAAAAYE7r6+vI0qW9+dCHLsv69cNVxwFmgW98Y1fe+MYvZP/+8YyOTlUdBwCYZR48GVurMAcAAABA6Y4cmcquXUdz5ZX35l//dXsmJqarjgS0uenpZg4cUMQCACdPGQsAAADMeYcOTead7/x6fvM3v55DhyarjgMAAMwTNkoBAACAkg2tG8rwhuEZ/ZyTRyZz31fuy/SYKdDvmZ5uZXq6WXUMoI0dOjSRT3zizlx//b5MTvp5AQCcPGUsAAAAlGzh5oVZ9xPrZvRzjm4fzZ7r9ihjH1UrSVF1CKCttLJv33j+4A+uzbZtR6oOAwDMEcpYAAAAeBIWP2VxFm1e9IQeO7h2sOQ0D9c52Jl1P7HuCZWxk4cnc9f/uSuTh+f+8r07dhzNb//2N7J588K8/vXrU6/bwQlIxsen83d/d2Ouv35f9u+fqDoOADCHKGMBAADgURS14lGHJxdsXJBVP7hqZgOdgI6+jqx8wcon9Nix3WO594v3Zuro1CO+v9VsHRsknQP27RvPBz5wS+65Z2V+/MfXpKsrClmY11qZnm5ldHQq//zPd+Yb39hVdSAAYI4pWq3W8T+nOjs7q8wCAAAAbaPeXc+616xL75LeR3x/38q+9C5/5PfNNs2JZvbfvD/T4488RXvXp+7Knmv3zHCqci1a1J0LLliUF7/49LzpTRtiyWKYn5rNVv7f//e7ueqq7bnmml05cMBULABw8iYmHvhvCpOxAAAAzHu1Ri31rvpD7mv0N7Lw3IXpX9VfUaqZU+usZeS8kUd9/57v7MnB2w4+5L5Ws3VsknaWTszu3j2Wz31uW5Yu7cnevWekt7cj3d1Ok8B8cvToVI4cmco11+zM5z9/T9VxAIA5ymQsAAAA897yS5fnzFec+ZD7inqR3qW9qXVawnZsz1gmDz10P9kj9x7J9X95faZGH3lp49liZKQry5f35md/9ty8+tVrq44DzKD3ve+GfPCDt2Tr1iM5eNBELABw6piMBQAAYF4qakW6F3en1vHQgrX/9P4MnDFQUar2172wO90Lux9yX61RS99pfZk68tAyduLARCYPP7S4bWd7945n797x3HTTvtxyy/6sWNGX/v5G1bGAEoyOTuaee0bzvdmUG2/cl+uv31dxKgBgrjMZCwAAwLzROdiZC371goft9Vrvqqejx/XKJ6I13crk4ck86LRCkuS2j9yWbZ/bVlGqJ6+vryMDA535sz97Vn7gB06rOg5Qgq9+9b689a1XZvz+/bGPHJnK6Cyf7gcA2pPJWAAAAOaNvtP6jk91Nvob6Vnck67hropTzX5FvUjn0MMv6h48azALNy9McqywPbDlQKaPTs90vBN25MhUxsamj5c0wNwxOjqZb31rd77xjd25776jmZxsVh0JAJhHlLEAAADMaatfujorL1t57EaR1Or2gC3TaT9wWla+4Njxnjw8mW/89jdy6K5DFacC5rPt20fzcz93VbZvH83UlCIWAJhZylgAAOCUO/fckVx88eJKM9xxx8F88YvbK83AzOoc6sziixenqBcP3Fkk/av7U2soYGdKUS+Ofw06ejuy9JlLM7R+KEkyvnc8u761K2nTLqTVauULX7gnBw9O5EUvOj0Lv2+fXGB2GR+fzmc+szU33bQ/Bw6MK2IBgEooYwEAgFPu+c9fkf/8n59SaYZ/+qc78q//uj3ft50lc1jPkp5sfNNGe7+2kXpXPWt+bM3x23uu25M9396TZrM9C5FmM/mHf7g5H//4HTn77AXztIxtJSke91Gz9/PNhHY6hu2UZeYdPTqVP/qj6/Kd7+ytOgoAMI/5CxUAADghr3jFmdl8/36Qj+biixel6pOx5547kne96ymPWMYeOjSZ97//puzdOz7zwThlio4ip112WnqW9CRJuhZ0mYBtc73Le7Pu361Lq3nsG3P3N3dn7/XtV5KMjU3nfe+7MRs3DueNb9yQgYGH7407d830z+72Ke5OnXY6hu2UZeY0m6189KNbct11u7Njx2jVcQCAeU4ZCwAAPKpa7aEnVYsiefGLT8u//bdrK0r0xG3YMJwNG4Yf8X333TeaT37yzuzfP/GI72+1WiZq212R1Bq1LL90eRZsWlB1Gp6gniU9OePlZxy/PXVkKntveFAZ2ybfd+Pj0/kf/+O2nHXWYH70R89KX18jtVrSLkUT8OiazVYmJ5v55CfvzP/9v1urjgMAkKLVeuAUQ2fnfLrSEwAAeCzr1w/l7W/fnM7OB08aFrnookU5/fT+ynKdCmNjU/nSl3bk8OHJR3z/Bz94ay6//J4ZTsWJWPWDqzJy7kgWbFqQzkF/y85Wh+46lCP3HkmSNMeb2fKxLRnd3j5TbH19HXnWs5blggsW5W1vOz+dnfWqIwGP4yMfuTWf/vTWXH31LlOxAEBlJiYeuPjbZCwAAHBcb29H6vVjk1+nn96fl71sdXrm4P6b3d0dueyy0x7lva184xu7c/XVO4/daiWjo1NpNttkZG+eKupF6t8rwopkwcYFWfq0pdWG4qQNrB7IwOqBJMnU0ancc8U9mbh/Yr3VbGV6fLrKeDlyZCqf+cy2HDw4mZ/8yY0ZGGikp6ceE7LQfiYmpjM2Np1vfnN3PvnJu6qOAwBwnMlYAAAgybEi9r/+16cfX9p3YKCRtWuHHrZU8Xywdevh7Nx5NEly8OBE3vGOr+SOOw5VnGp+W3zR4qz5t2uO3+5d1pvGQKPCRJxqrWYrR+45kumxYwXsoTsP5ca/uzHNyWbFyZL+/kbWrh3MS1+6Kr/8y5tTFPPv5yK0u3/+5zvy3vd+N9u2HTn+OxwAoComYwEAYJ7r729k4cLu77uvI+efvzDnnjtSUar2cfrp/ceXYt6/fzxr1gyleX8fNDY2lfvuc5K3bEW9SNeCrhT3T2r3nd6XobVDBhLnsKJWpP9BS6AXtSK9y3ozcWAiEwcfeX/nmXL48GSuvXZPTj+9P3feeSgLFnRleLir0kww301MTGfHjqPHV6646ab9+eY3d1ecCgDg4UzGAgDAPPRjP3ZWfuu3Ls6Dm62iSBYt6rYn4vdpNlvZvftoJieP/en05S/vyM///FWZbINpvbmsZ3FPNv/K5nTdX3jVu+tp9JuEnU+ak81MHJzIfV+9Lzf9/U1Vx0lybAWB4eGu/If/cG7e+tazq44D89rNN+/PW95yRQ4cOHaxxuHDk8ffBgComslYAACYZ3p66jn77JE0GrUkyXnnjWTlyr4YM3x8tVqRJUt6j99es2YwT3/6kuPl7F13Hcr27aNVxZtzilqR/lX96TutLz1LetI56KLh+arWqKV7YXf6VvZlwdkLkvsvJT9y75FMVFS4jI5OZXR0KjfcsDdf+cqOJEm9XsumTcMZGPBahZkwOTmd66/flxtu2JetWw/n0KHJqiMBADwmk7EAADAPrFs3lI9+9IVZtOjY0sQdHbV0dtaijD1x09PNjI9PH7/9O7/zzfz1X99QYaK5paOnIxe986IMrhlMvVH3EiWt6VaaU/dPoreS6//q+mz/1+2VZmo0ascvbunt7cgHP3hZLrlkSaWZYL7YvftoXvWqz+aWW/ZnbGz68Z8AAFABk7EAADBPdHbW8rznrcjGjQsyPNyV3l7LvJ6ser2W3t7a8dsXX7w4r3rVmiTHpnWuvHJ79u0bryrerDR41mD6TutLktS76ule2J265bK5X1EvUq8/8HpYcPaCtFqt7P3O3somZCcnm8eXKp+aauZzn9uW++47muc/f0X6+vychTJMT7fypS9tz623HsjOnaOKWABg1jAZCwAAc9jISFf+1/96Sc45Z0GKIjFmeOq1Wq1876+qQ4cm8qM/+plce+3uakPNMutftz5n/siZD9zhZcpjaSXT49P5xnu+kX037Ks6TZJje26fdlpf/uVfXppVqwaqjgNz0vj4dF772s/nC1+4Jw+czQQAaE8mYwEAYA677LKVueiiRUmSnp6OLFnSk6LQbpWlKIp87/B2d3fk9a9fnxe+cGWSZOvWI/nYx27P1PeWWOUhBtcMZvFFizO8cVgByxNXHNtPduXzV2bknJEkyfi+8dx75b1pTlbzvdZqJQcOTOR977shmzYtyKtetSadprvhpH3ta/fli188tiz51FQzd9xxUBELAMw6ylgAAJhDiiJ54QtPy0/91NlVR5mXurrqecMbNhy//eUv78i//MudythHMbR2KGtfvbbqGMxCRb3IyhesPH774JaD2fGVHZWVsUly8OBk/vIvb8hTnrI4L3/5GWk0alYkgCfpewv5ffWr9+X3fu9bFacBADg5likGAIBZ7vzzR/KWt2xKrXbshP/FFy/O+vXD1YYiSbJz59FceeW9+fKXd+S///dbqo7TNvpX9Wf1y1an//T+DHutcgpMHprM7mt3Z/8t+3P3p+5OKpycW7iwO8973oo8/elL88Y3brj/Z3MrStmT5RjOJ9/85q78wz/clOuv35frrttTdRwAgBNmmWIAAJgDiuLYJOaZZw7mx398bTo6alVH4vssWdKTV71qTYoi+djHbj8+6TMx0cz09DxcZ/H+5WV7l/ZmxXNXpOY1yynSGGhk+aXLU++u557L70lzsplWRd9je/aM5Z/+6fZMTjbz4z9+bLniRsNr/eQpYueyVquV8fHp40sQb9lyMP/jf2xJszkPf1cCAHOOyVgAAJilzjprML/zO5dk1aqBbNw4bF/YNrZz59HceuuBJK20Wsmf/Mm3c8UV91Yda8b1LOnJxp/cmJ6lPRlYNaBb4ZSbODiRI9uOZPtV27P101srzbJoUXfWrx/Kq161Jq9//YbHfwLMY7t3H82v//rXsmPH0STHLmq4+eb91YYCADgJJmMBAGAWq9WKLFzYldWrB/L0py/L0JCLKtvdkiU9WbKkJ8mx6Z///b/vyk037cveveOZmJjb+8k2Bhqp3T8V2LOkJws2LUhjoFFxKuaqzsHOdJ7dmcPbDqdrpCtTR6YyPT5dSZbdu8eye/dYzj57JNu3H7n/3iIjI13p6qpXkgnaTavVyt6949m69XC+/vWd2bbtyOM/CQBgljEZCwAAs8yiRd35q796TtavH8qyZX2p140Xzi6t7Nw5ll27juYXfuGqXHvt3N0Lr6gXOfutZ2fk7JEkx5Yo7hrpSlHzmqVck0cmM3lwMrf9j9uy/artlWYZHu7MggVdSY4tLf8nf/KsPPWpSyrNBO3i6NGp/MIvXJWrr96V7duPZGrKssQAwNxgMhYAAGahoji2NPHq1QNZu3YoK1f2Vx2JJ6XIkiU9GRxs5LzzFmZiopnbbjsw5yZkuxd1p2ukK/0r+9O7vLfqOMwzjb5GGn2N9K/uz+C9gxndPpqpo1OVZNm/fyL79x87EdPZWct3v7snvb0dWbt2MN3dTssw/+zYMZodO0aTJGNj07n11gPZuvVwxakAAMpjMhYAAGaJrq56/v7vn5dnPWtZ+voaqZkunNVarVZGR6eydevhvPrVn5tzJ6I3vGFDTvuB01LvqqcwvU1FmhPNTI1N5bo/vi57v7O36jhJkt7ejixf3puPfOQHsmbNUNVxYMb96Z9+O3/2Z99OkrRayejoVKanTcQCAHOLyVgAAJgl1q0bysaNw0mSRqOWVasGMjBwqi6ibCU5kZKs7MfPBw8ck6Io0tfXyJIlPXnhC0/LLbfsz1e/et+sX6Kxd3lvBlYPpH9Vfzp6/clJtWqdtTTqjYycO5J6Zz37bthX2YTs94yOTmX37rF8/vP35Prr9yVJli3ryVOessRFNo+prN8pfheWbc+esXztaw/8fvvOd/bk4MHJilMBAMwck7EAANDGfumXzs9v/MaFx2/XakWKYn6f1J1rWq1Wms1WvvnN3XnVqz6TQ4dm9wnq1S9bnQ1v2HDsdeqlSptoNVuZODCRa959TQ63yRT6g4vXF7/49Lz//c9PR0etwkRQjq98ZUde/erPZXT02IUQrVYrrdl93REAwOMyGQsAAG1u3bqhvOhFp+eZz1yaet3J+bmsKIrU60WWL+/NT//02bn++r359Ke3zroT1b3Le7PkkiVZcM6CFKb7aDNFrUhHT0dWvmBlDt99ONu/tD3NivdpbjYf+Ca//faDee97v5uLLlqcSy9dXmEqOHUOHBjPxz9+R66/fm/Gx6cf8poHAJhPTMYCAEAbeuUrz8z73vdcS1bOQ5/4xB15y1uunHUnrZc8dUku+JUL7A9L2zt89+F8/V1fz2QbLpP6Mz9zdt7znqd+372+p5hNHvjddccdh/Lyl38q9947WmEeAIBqPHgyVhkLAABtZPXq/vz0T5+djRsX5LnPXW5J4nnozjsP5oor7s3ll9+T//N/7q46zuPqXtSd1S9bnf7T+rPogkV6I9re5OHJ7Lx6Zw5uOZitn96aVhtd+HD22Qvy1KcuSZLU60Xe+MYNOfvskYpTwRPTbLbygQ/ckm9/e0+S5NChyXzqU3cfX54YAGA+sUwxAAC0oUajlhUr+vLa165Pf3+j6jhU5IwzBvPGNw7myJGpfPaz2zI11WrbKdmiXqRrQVdWvmBlGn1es8wOjf5GVj5/ZboWdOWeL9yT5kSzbQrZG27Ylxtu2Jck6ego8tznrsjatUNpNGouzqEtTU+3Mj3dPP725z+/bVZcSAQAMJNMxgIAQBtYtKg77373JVm7djAXXLAoHR32iZ3v7rrrUG677UDe974b87nPbas6zsM0+htZ//r16T+tP0NrhyxPzKwzcXAiB28/mF3X7Mrdn2q/8qgokvPOW5gzzxzIu971lKxePVB1JHiYz352a973vhuTJK1WK9/97t7s2jVWcSoAgOqZjAUAgDZRFMngYGdWrOjLpZcuy8qV/VVHok2sXj2Q1av7c+WV9+Zb39qdgwcnMjnZrDrWcbVGLSNnj6R3eW/VUeBJ6RzszKILFmV873g6BzszNTaV5kT7fI+1Wsm3v70nd999KFu3Hk5f37FTOI1GPYODDZOyVGJqqpmDByeOr9hw880Hcvnl91ScCgCgvZmMBQCACvX01PMnf/KsXHTRoqxa1Z9Go151JNpKKzt2HM3OnUfzq7/6lVx99a6qAx3XtaArT/3tpypjmfUmD09mfN947vjEHbn3C/dWHedh6vUip5/en+7uY78fLrlkSX7/95+ezk6/L5h5d9xxMD//81dl377xJMn+/ePZseNoxakAANqPyVgAAGgTtVqR1av7s2bNUNVRaEtFli3rzchIVzZtWpD9+ydy112HMlHl9F6R9CzuSc+SnhQdJvOY/Rr9jTT6Gxk4fSD9p/fn6O6jmT46XXWs46anW7nzzkPHb/f3N3LjjfuOl7FLlvRk4cLuquIxx7VarWzbdiSHD08mSe6441Buumn/8TIWAIDHZzIWAAAq1NfXkY997EV56lOXVh2FNtZqtXLo0GS2bx/Na1/7+dx++8HKstQatWx+++Ys2LQgHX0dKWoKWeaG6bHpTI1N5bvv/W52f3N31XEeVaNRy8BAI99bpfgd77ggP/VTZ1cbijlrcrKZn/3ZL+bKK49NjU9Pt3LgwEQeOJsIAMAjMRkLAABt4NxzR3LGGQMZGuqqOgptriiKDA52ptls5dJLl2Xx4u5885u7Z3wP2f5V/eld1puepT1pDDRm9HND2erd9dQ6axleP5zWVCsHbj2QqaNTVcd6mMnJZvbufWAq8dvf3pvPfW5bkqSjo8iFFy7O0JCL7Xny7r77UG655UCSY3vE3nHHoezZYxIWAODJMhkLAAAVKIrkve+9NK985Znp6KilZrqQJ6DVamVqqpXrr9+bH/uxz8z4MpHn/PtzsuJ5K1Kr1xIvWeao1nQrk4cnc81vX5NDdxx6/CdUrF4vjv8OGRho5KMffWEuvHBxxamYzf76r6/Pu951zfHbU1NNk7AAACfIZCwAAFTo4osX5YILFmX9+uHje/7BE1EURRqNIkuW9OQ1r1mXm2/en89/fluaJQ/IDq4ZzNC6ofSv6k+to1buJ4OKFfUi9e56lj1zWfpP68/Or+/M9Hj77CH7/aanW5mePtaUHTkylU984s588/uWWV67dijPec7yFIWrKHjA6OhU/r//764cODDxkPu/8pX7ZnzlBQCAucxkLAAAzLB3vvOivP3t599/y4lxnoxjf8Z9+tPb8vrXX56pqXJPmp/1Y2dl3U+sK/VzQDsa3T6ar/+nr2d8hqfQT7VXvWpN/uIvLrUKAw+xY8doXv7yT2XLlur2IQcAmKtMxgIAQAUuumhRfuRHzszTn74kSlhOzsy8fgbPHMzyS5dneMPwjHw+oBzXXbc773rX1Tk2GFvkla88MxdeuKjqWMygK6+8N5///LaH3HfkyFT27BmrKBEAwPyhjAUAgBmyadOC/NzPnWOZSE6Zoji2X+T0dErZz6/vtL6c8fIzXDvAvFbUimPfA7N4z8xbbjmQW245cPz2hg3DOf/8kYc9rl4v4ht+bmi1Wmk2H3jRXn31zrz3vddXmAgAYP5SxgIAAMxSmzcvzN/8zXPzmc9szQc/eGvVcWDO6VrQlbN/5uwc3HIwWz62Ja2pWdzIPsjf/d2N+cxntj7kvjPPHMiv/uqF6e11qmguuO22g/mDP7g24/fvd3zrrQce5xkAAJTFf2EDAEDJ6vUifX0d6enxn9+cWkuX9uaHfmh1du8ey7/8y10ZG5vKxMTJ7x9b1IrUu+upd9VPQUqYverd9Sy+aHE6ejpy9/+9O1OjU2megu+xql133Z5cd92eh9x3/vkjectbNmVysvGge4v09NTT2elnQTsaG5s6XrZ+v61bD+dTn7o7o6NTM5wKAIDvV7RaDyxm1dnZWWUWAACYky68cFHe856nZvny3qxa1R9LQHKq7dp1NPfccyR/8RfX55/+6faT/ngDqwey6S2b0r2wOz1Le05BQpjdpo5OZXT7aHZevTNbPrql6jil6O3tyJo1g/cvVfyAX/zF8/Pyl59RTSge09///Y350IceeVWEI0emsmXLwYcsVQwAwMyZmJg4/rZL8wEAoCSNRi3Ll/dm3bqhXHDBonSZMqQkixf33P+v+6Q+TlEv0j3Snb6VfRlcM2gyFu7X0dORwbMGc+jOQ1VHKc3o6FS+8529D7v/5pv35/bbDz7kvs7OY7/f6vXaTMWb1yYnp3PvvaOZnn5osXrjjftz7bV7HuVZAAC0C2UsAACUZMWK3rz//S/Iaaf1pbPTCWvaX9dwVzb/8ub0LO1J3bKkQJK/+Ivv5v3vv+kh961fP5y///vnZ8GCropSzS/33HMkb3zjF7Jr19GH3H/o0GRFiQAAOBHKWAAAKEm9XsuSJT0ZGTm5aUV4os48czDPetay3HjjvuzdO37Czy9qRTqHO9M5aAsbeCRdC7oycu5IRu8bzdiusarjzIiDBydz8OBDS7+urnq+8pUdGXyEnxVFkWzcuCALF/rddyLuvffIwyaQv+eee45k27Yj2bfvxH+uAwBQPXvGAgBASc46azCf/ORLs2xZb9VRmCcmJ5sZG5vKT//0lfnMZ7ad8PN7Fvfkkt++JD2L7RMLj6TVbKU51cyWj27JHf/rjqrjVKYoks7OeopH2AK9o6PIX//1c/OSl6ya+WCz2Pvff1Pe+c6vP+L7Wq1kfHx6hhMBAHAy7BkLAAAlajRqueyyldmwYTg9PZZ6ZeY0GrUURccJ7+NY1IssumBR+k7rS0e3PxPh0RS1IvXOeobWDWXF81dk3w37cvS+o4//xDnmscrBWq3IFVfc+7jT+Zs3L8w554yUEa9t3HDDvlx77e4n9NivfvW+jI0pXAEA5iJ/ZQMAwCnW29uRd7zjgmzevPARp4ag3dQatZz1b87K8IbhqqPArLD0aUuz5JIl+c6ff2delrGPpdls5W/+5sbHfdw733nRnC9jP/e5bXn3u6+pOgYAABVTxgIAQAmKIik0sVSgVivyYz92VjZuHM6HP3xr7nucomjZM5dlcM1guhfZ3xFOhJ/xJ+fKK+99UpOgHR21/Nt/uyZnnDFQQqqHu/vuQ/nHf9ySycnmCT/36qt3lpAIAIDZRhkLAACn0LESNkmcpKcatVqRV7zizDzveSvyuc9te+wytkiWPG1Jlj97+cwFhLmkuP9fq+ogs89VV+3IVVftOOHndXfX87SnLcmqVf0lpHq4rVsP58/+7Ns5etQSwgAAPDnKWAAAOEVqtSJvfeumXHLJzJ0kBqAiRbLqxauy8NyFuf2fb8/ovaNVJ5oXJiaa+dM//XY+/OFbZ+Tz7do1lomJE5+KBQCA71HGAgDAKVIUyTOesSw/9EOrq44CSZKeno709NQzNjad1vdN7hUdRWqNWmr1WjXhYA4Y3jicgTMGsu3ybcrYGdJstvLFL26vOgYAADxhylgAAIA5qL+/kd///afnllsO5Nd+7avZt2/8Ie9f+fyVWfm8leld0VtRQgAAAJj7lLEAAHAKDA11Zni4Mz09/hOb9tDRUct55y1MT09HGo2HT7/2LOnJ8MbhmQ8Gc02RdA13pWukKxP7J9Jq2kAWAAB4gDNFAABwCrz5zRvz2teuz+LFPVVHAWAG1Tvr2fSWTRm9bzTX/fF1Gd8z/vhPAgAA5g1lLAAAnAILFnRl9eqBqmPAw3R317N588Lceeeh3HbbgTQGOtOztCddC7qqjgZzQ5F0LehKa7qVWs0ezAAAwEMpYwEAAOawFSv68rd/+7xcddX2vOlNX8jCixZl05s3pdapNAIAAICy+esbAABgDqvVivT3N+7fz7hIUS/S0duRWoc/B+FUqnXVsvgpizNy3kiKelF1HAAAoE346xsAAADgJHUOdGbjmzdm3avXpdZwugUAADjGMsUAAHASzj9/YZ7//BW56KLFVUeBx9SzpCdn/MgZ6bG3MZSmKIrEUCwAAPAgylgAADgJl1yyOL/1WxfH2XfaXe+y3qz7iXWZbLaqjgJzWxG/EgAAgOOsmwMAADAPrOjtyE+uG8qlS3uqjgJzWu/S3mx686ac9gOnVR0FAABoA8pYAACAeWCkq57nLe/NxuGuqqPAnNY51JmVz1+ZkfNGTMgCAADKWAAAAAAAAIAyKGMBAOBJ6OysZfHi7gwMNKqOAkAbqnfW0zXclXp3veooAABAhZSxAADwJDzlKYvz8Y+/OG996zmxDiUA32/k3JFc8u5L7B0LAADzXEfVAQAAYDbq62tk3bqhNBomnphd+htFVvc3sn9iOgcmmlXHgTmro7cjHb0d6RzqrDoKAABQIZOxAAAA88gFI9155+aFeeaSnqqjAAAAwJxnMhYAAGAeadSKNGpFOmuW1wYAAICymYwFAAAAAAAAKIHJWAAAgDbXbLXyjT1j2TM2fcLP7euo5amLu9NVdy0uVGFozVBW/eCq7P3O3hzeerjqOAAAwAxTxgIAALS56VbyuXtG85194yf83OW9HTlvpCtd9RKCAY9r4eaFWbh5Yb77F99VxgIAwDykjAUAgBOwbFlP3vKWTdm4cUHqJg15Elpp5Uv3Hc3thyaf8HOareTe0akn9fkOTjTzP+84lK76Q/eIveXAxJP6eAAAAMATp4wFAIATMDLSnde/fkMWLuyuOgptqZXp1uM8opVct3c8X7rv6Iwk+v/bu/MYT+/Dvu+fmdmd3eXyECmSK9KkJCuS7MqSE1mu5dqx4xx1GxQNgsZA0ziFkQOF/yhcJ2laFKgTqEFg/ZGihqPYVlLVNpSoSaNETmzZoU2ROiJFoURS9JK7y13uvTOzu3PP776ep3+sNOJKFPfgfueZ4/UCBMz1036wAEnMvOf7fDvjKk8vdLfkzwIAAACuJ8YCAADcIYNJnX95rpXL3de/2/Vc++ZPxQIAAAA7lxgLAABwG0ZVncG3HIPtTaocWx2KrcC32XdwX/bfvT/j3jj1jY7QAwAAu4YYCwAAcBueW+7nt863r/tYVSdXerd3tyuwu739z709j/zYIzn+seNZP7Xe9BwAAGCLiLEAAACvo6rrLA8mGVXXf/xSZ5zzTsACN+nggwcze99sZg7OND0FAADYQmIsAADA6+iO63z0xHrmu9eH10HlMaMAAADA6xNjAQAArlNnvjvJymCSJOmOqyz1x1kbVjd4HQAAAMD1xFgAAIBv8Zn5Tp6c726+P3YKFgAAALgNYiwAALDnLfbHeWl1mG8k1/PtcUYCLAAAAPAGibEAANCYOslU0yN2uNf7O7z5v9/z7VE+dnItE/0VAAAAuIPEWAAAaIwQ+8a93t/hd/5cb1zl6YVuWqNr98Au9MZxEBYobWp6Ko/96cfypne9KRefvJjRxqjpSQAAQGFiLAAAsCfUdb35GOLepM6T891c7o0b3QTsLVMzU3nkxx7JYG2QK//xihgLAAB7gBgLAADsenXqPLXQzbG1YZJkWNVZG04aXgUAAADsdmIsAACwK03qOsNvPHu4Tl5eH+Y/XO01OwoAAADYU8RYAABgVzq2Osy/Ot9K/fUee8UjiQEAAIAtJsYCAAC7yqiqsz6cZK47zqn14eY9sQAAAABbTYwFAAB2lYudUX7l+Fpao0qIBQAAABolxgIAALvCqKpzsTPKmdYoS/3JN++LBQAAAGiIGAsAAOwK68NJfvX4WhaFWAAAAGCbEGMBAIAdqU6dk+ujLPXHSZLWqMrGqBJiAQAAgG1DjAUAAHamOnlyvpMvXem9+kMAAAAA24YYCwAA7DjH1gY5sTbMxfZYgAV2nH0H9+Xx/+LxtC+0M//5+VTDqulJAABAIWIsAACwg9Spk7y4OshvnW83PQbgtswcnMnb/qu3pXW2lStfviLGAgDALibGAgAAO8aJ9WE+t9DL2fao6SkAAAAANyTGAgAA215V1xnXyaXOOJ+73G16DgAAAMBNEWMBAIBt70J7nH9+diNL/UnTUwAAAABumhgLAABsO3VdpzWqMqmvvX+5N87xtWFGVd3sMAAAAIBbIMYCAADbTm9S55+cXM9cZ5wkGVZ1xkIsAAAAsMOIsQAAwLZRp87V3iTLg0kWuuNc7o2bngQAAABw28RYAABg26jq5JPnWnl+eZD+pGp6DgAAAMAbIsYCAADbwsXO6Npp2O443bEQCwAAAOx8YiwAALAtfO5yN//uUie1q2EBAACAXWK66QEAALCTLC/38+u/fiKf/vT5TCaq4Z1U19ceU+xvFQAAANgtxFgAALgFV6708ou/+Hw+/vGTqSqP0r0z6kiwAAAAwG7kMcUAAECjjq8N8x8X+3l5fdj0FAAAAIA7SowFAAAaUdd1JnVyvj3K7891mp4DAAAAcMeJsQAAQCPOtEf5rfPtXOmNm54CAAAAUIQYCwAAbKlJXac3rnOlN8nXlgeZ1O6LBQAAAHYnMRYAANhSV3uT/JOX17I8mKQSYgEAAIBdbLrpAQAAsBO126OcOLGWK1e6TU/ZMSZ1ncu9cS51R7nYGWexP4kUCwAAAOxmYiwAANyGr351MX/hL/x+PvrRY4mkeFM64yofPbGWf3xiPd1x1fQcAAAAgOI8phgAAG7DaFRlebmfdnvU9JRtr6rrnGuPcqU3yfJgko4QCwAAAOwRYiwAAFDUpE7+1blWjq4MM3FHLAAAALCHiLEAAEBxkzoZC7EAAADAHuPOWAAAAAAAAIACxFgAAHgDnnnmav7u3/1qvvSly01P2YbqPLPYy784s5GF7rjpMQAAAABbzmOKAQDgDTh6dCVHj67kyJFD+ZEfeUvTc7aNuq5TJ/nDlUGeWug2PQcAAACgEWIsAADsWXWSqSJf/+zyIP/+SjfnWqPbGQYAAACwK4ixAACwZ91KiL21r1/ojvPMYv8W//8BAAAAdhd3xgIAAAAAAAAUIMYCAMAdsLIyyLlzG+l09vZjefuTKld647THVdNTAAAAABonxgIAwB3wsY8dz5//80/ky1++0vSURh1fG+bvv7Ccz8x3m54CAAAA0Dh3xgIAwB2wsTFKpzNOvz9pekqjhlWdlcEkVd30EoDtqxpXaZ1rpX2+nWriSQIAALCbibEAAAAAW2jcHuelX30pnblOqpEYCwAAu5kYCwAAd0hdJ1/84uUMBpP8yT/5aO6//2DTk7ZMa1TlxdVBXl4fpnYqFuB11alTjSohFgAA9gB3xgIAwB1SVXU++tFj+dt/+z/kwoV203O21GJ/nP/n5Hr+YK4TLRYAAADgGidjAQDgDrv5k6F1kqmCS8rrjat87nIvlzqjDKtaiAUAAAB4FTEWAAAKqOukrutMTSXfObju7BCbJL1JnSfmOrnSGzc9BQAAAGDb8ZhiAAC4w7rdcT784efzoQ99NWtrw6bnAAAAANAQMRYAAO6w0ajKH/zBpXz60xfS70+anlNEnTqjqs5wUqe++ecyAwAAAOwpHlMMAADcsnGVfOL0Rk63RlkbVk3PAQAAANiWxFgAAChkMqly+XI3+/ZN581vPpCpqZ1/R+w3VHWd8+1RXtnwGGaAm1Ynw9Ywg5VBqolfZAEAgL1AjAUAgELm5jr5mZ95Kj/8w0fyy7/8x3PgwEzTkwBoUDWucuLXT2T1+GoGK4Om5wAAAFvAnbEAAFDIeFzn0qVOXnllPc89t5jz51tJ3K8KsJcNVgfpL/ZTT/z3AAAA9gIxFgAACjt6dCV/8S8+mX/0j15M7WfvAAAAAHuGxxQDAEBhk0mddnuUfn/S9JQ3rE6dMxujLPTGaY3cdwgAAADwesRYAADg5tXJH8x38++vdFM55QsAAADwujymGAAAtsixY6v5h//waL7ylatNT3lD6roWYgEAAABughgLAABb5Pnnl/KhDz2bz39+IUn99f/tJDttL8A241+jAACw53hMMQAAbLHf+70LmZ/v5Kd/+l35gR94qOk5N+255UGeW+7n1Mao6SkAO8785+az8tJKOnOdpqcAAABbSIwFAIAt9vzzS/na15byQz/0cN773geyb990pqenmp51Q2dbozw13216BsCOtPLSSuY+M9f0DAAAYIt5TDEAADSgrpOPfOTF/NW/+tmcOrXe9BwAAAAACnAyFgAAGnLs2GrOn29lff29TU8BAAAAoAAnYwEAAAAAAAAKcDIWAAAaVFV1zp5t5f77D+Rtb7sns7MzTU/6Np1xleX+JOvDSdNTAHac4fowg7VBxu1x01MAAIAGTNV1XX/jndnZ2Sa3AADAnnTvvfvztrfdk3/6T/90Hnvs7qbnfJsvX+3lN06tpz+pM6zqG78AgE3nf+d8Tn/ydCb9SapR1fQcAABgCwyHw823PaYYAAAatrExysJCN5/73EKeeeZqxuPt9cP6UVWnNaqEWIDbMBlOMmqNhFgAANijxFgAANgGlpb6+Zt/84v50Ie+mn7f44ABAAAAdgMxFgAAtonxuM78fCe/+Zsv56mn5vKqG0UAAAAA2IHEWAAA2EYuXGjn7/ydr+QTnzgVLRYAAABgZxNjAQBgGzp6dDm/8AvP5MknLzU9BYDbsHF2Iy//5stZfHax6SkAAECD9jU9AAAA+HavvLKRV145loMH9+UnfuLRzY/PzExlampqSzbUqVPVSbUlfxrA7tKZ6+Tcb59LPOUAAAD2NDEWAAC2sd/+7XM5eXItSTI7O52/9bf+aN7znge25M+e64zzqfPtXO6NtQQAAACA2yDGAgDANnb69EZOn95Ikhw4MJOf+qk/ksceuzuHD+/PzEzZE7KtUZXnlvsZTKRYgJtVV3UmvUkmg0nTUwAAgG1AjAUAgB1iOJzkF37hmbztbffkl37pR/P443c3PQmAb9G+2M6xf3wsg5WBRxQDAABiLAAA7BR1nZw928rGxiinTq0lSR599HDxE7IA3LxJf5LWuVYmfSdjAQCAZLrpAQAAwK1ZXR3kZ3/2C/n5n/9i2u1R03MAAAAA+A7EWAAA2GGqqs7ycj/nz7fyxS9ezksvraSuPQsToEnVqMray2vZOLORuvLvZAAA4BoxFgAAdqhz51r563/9s/kH/+CFTCZ+8A/QpOH6MC9+5MWc+I0TqYZV03MAAIBtwp2xAACwQ9V1MhhMcvbsRj7xiVObd8f+4A8+nO/5njc1Ow5gD6pGVeqxX44BAAC+SYwFAIAd7ujRlfyNv/Glzfc//OEPirEAAAAA24AYCwAAu8wTT1zM1au9JMmhQ/vyl//yu/Pww4du+vXtUZWnF7q52Bll7N5DgNdVjavMPz2f1vlWRp1R03MAAIBtRowFAIBd5umn5/P00/NJkgceOJCf/MnH8+CDBzM9nSRTN3x9Z1zliblOVgaTskMBdoF6XGfus3NZO7HW9BQAAGAbmm56AAAAUE67Pcrf+3tfzYc+9NVsbHzriS2nXgEAAABKEmMBAGAXGw6rPPnkXJ544mJWVwdpt0dpt0cZOPUK8IZVoyrj/ji1R7oDAADfgccUAwDAHnDxYjt/7a99Nvv3X/t9zD/7Z9+an/u59zY7CmAnq5MznzqTpeeW0r7UbnoNAACwTYmxAACwB/T7kzz//NLm+48/fncuXuxc9zXT08lDDx3a6mkAO1Z3vpv1U+tNzwAAALYxMRYAAPagJ564kGeeuXrdx+6+e39+7dd+PA/9kXsbWgUAAACwu4ixAACwB7Xb47Tb1z9W86679uVrX1vKke4ow6E7ZQG+k/5SP/3lfoYbw6anAAAA29xUXdf1N96ZnZ1tcgsAANCwQ4dmcviRw3nv//YDOfDAgabnAGxLpz95Omc/dTbVqEo9qW/8AgAAYE8ZDr/5i5tOxgIAAJt6vUnSHeVVv7MJwLeoRlUmfU8QAAAAbmy66QEAAAAAAAAAu5GTsQAAAAA3oXW+lcVnF7N2Yq3pKQAAwA4hxgIAAADchI3TGzn1z041PQMAANhBxFgAAACA19GZ6+T8p8+nfbHd9BQAAGCHEWMBAAAAXkudVOMqvcVe5p6eSzWsml4EAADsMGIsAAAAwGvor/Tz8m+8nO7lbqqREAsAANw6MRYAAADgNVTDKqvHVzNYHTQ9BQAA2KGmmx4AAAAAAAAAsBs5GQsAAADwKnVVp7vQTWeuk2ri8cQAAMDtE2MBAAAAXmXSn+TYR49l4+xGxr1x03MAAIAdTIwFAAAASJI6WX9lPd3L3fSWehl3hVgAAOCNEWMBAAAAktR1nbO/dTZXn7mauqqbngMAAOwCYiwAAACw560eW8366fV05jtCLAAAcMeIsQAAAMCed/UrV3Pu355regYAALDLiLEAAADAnrV6fDWXv3Q5q8dXm54CAADsQmIsAAAAsPfUSV3VaZ1t5cLvXmh6DQAAsEuJsQAAAMCes3FmI6c/eTrdy92mpwAAALuYGAsAAADsGXVVZ9wdp3u5m8VnF1NP6qYnAQAAu5gYCwAAAOwZvSu9vPirL6a/2BdiAQCA4sRYAAAAYNerqzr9xX7al9ppnWtl3Bk3PQkAANgDxFgAAABg1xt3xjn6kaNpX2xn3BViAQCArSHGAgAAALtXnWyc3Uj3Sje9xV5GrVHTiwAAgD1EjAUAAAB2rWpS5ZV/8UqWv7acalw1PQcAANhjxFgAAOA6k+4kC19YyN2P3Z0H3/9gpmammp4EcFtWj6+mfaGd3pWeEAsAADRCjAUAAK4z3Bjm5MdP5v733J8H3vdAZmZmmp4EcFsWvrCQi09cbHoGAACwh4mxAAAAwK6yenw1i88uZu3kWtNTAACAPU6MBQAAAHaHOqnrOmsn13L2U2ebXgMAACDGAgAAALvD+ivrOfc759K51Gl6CgAAQBIxFgAAANjh6qrOZDBJd6GbK1+6krqqm54EAACQRIwFAAAAdrjufDfH/u9j6S/1hVgAAGBbEWMBAACAnaVOBmuDTIaTJElnvpP1V9Yz6U0aHgYAAHA9MRYAAADYUapRleMfO571k+vX3h9XmfSFWAAAYPsRYwEAgNc07o6zdmItBx86mMOPHm56DkCSa6dg+0v9dBe66S/3m54DAADwuqbqut68TGV2drbJLQAAwHYylczMzuSRH3sk3/ez35dMNT0I2PPq5KWPvpSFzy9ce0Sx62EBAIBtaDgcbr7tZCwAAPDa6mQymKQaVU0vAfaw3pVeVl9e3QyvnUudTAYeSQwAAOwMYiwAAACwba2+vJqjv3z0mx9wGhYAANhBxFgAAABg2+kv9TP/+flsnN4QYAEAgB1LjAUAAG6oTp0pl8YCpb0quvYWeznzyTMeSQwAAOxoU3Vdb36rMzs72+QWAABgGzp05FDu/0/uz5EPHsnDP/Rw03OAXaoaVjn7b86me7mbJBmuD7P8wnLqyrFYAABgZxkOh5tvOxkLAAC8rt6VXnpXejn08CExFrij6nGdalIlSSa9SRa/upj1V9YbXgUAAHDniLEAAABAI+aensv8F+aTJPWkTnuu3fAiAACAO0uMBQAAALZENaoyao1Sf/1y2Na5VlZfWm14FQAAQDliLAAAALAl1k+v59ivHUs1uvZo4mFreINXAAAA7GxiLAAAcFMGq4NsnN7IoYcPZf89+5ueA+wAdVWnM99JNbgWX1vnWuksdFKP64aXAQAAbI2puq43vwOanZ1tcgsAALCNTe+fzvTsdN7zP7wnj/zxR5qeA+wAo/Yoz3/4+bTOt5Jcuxd2Mpg0vAoAAKCs4fCbTwFyMhYAALgp1ahKNaqcaANeV+t8K93L3STJpDdJf7mfcXfc8CoAAIBmiLEAAADAHTP31Fwu/O6FJEmdOqkaHgQAANAgMRYAAAC4ZcP1YS5/6XKq0fW1deP0RurKCXoAAIBEjAUAAABuw2BlkFf++SsZtUdNTwEAANi2xFgAAOCWzH12LhtnN/LW//KtueuRu5qeA2yBhS8sZPX46nUfG7VGmQwmDS0CAADYGcRYAADglqwcXcnaybUc+eARMRZ2kXpcX7vj9TUsH13O3GfmtngRAADAzifGAgAAwB43XB/m5MdPZrA2eM3Pty+0t3gRAADA7iDGAgAAt65ORp1RRq1R9h3el6npqaYXwZab9Ce3/JjefYf2ZXp2utCir/v6P5/15LVPub6W/ko/y0eX01/qFxwGAACw90zVdb353dns7GyTWwAAgJ1iKjn00KEcOnIo7/sf35eDDx5sehFsufO/cz6Xnrx0S69513/3rjz8wYcLLbpm3BvnpV95Ke2LN3+atRpX6V3t3VLABQAA4LUNh8PNt52MBQAAbl2d9K72Uk2qVOOq6TXQiOH68JaCZ5K0LraK37U87o3Tvti+5W0AAADceWIsAAAAbJGznzqb858+X/YPqZNxZ1z2zwAAAOCmiLEAAMBtq4ZVVl9azXB9mPveeV+mZtwdy+7XX+6nfb6d7uXuLb920p9k0r+1e2YBAADYudwZCwAAvCFTM1O575335QP/+wey7y6/78nuN/fUXF766EupqzrxlG4AAAC+hTtjAQCAO6ae1KkmihR7R13Vqcf1jb8QAACAPW+66QEAAAAAAAAAu5GTsQAAwBvWX+rn1CdO5b533pdH/8Sjiatj2YW6C91c+sylbJzZaHoKAAAAO4STsQAAwBs2XBvmwu9dyNWvXE01qVLXHuHK7lJXdbpXujn/O+ez/MJy03MAAADYIabqV/2UZHZ2tsktAADADnfggQO575335cgPH7l2QhZ2gf5KP6/8v6+kM9/J2strid81AAAA4HUMh8PNtz2mGAAAuGMGK4NcfeZqDj96uOkpcMdMepMsPreY4drwxl8MAAAAr+IxxQAAAAAAAAAFiLEAAMAdN2qP0l3oZtwdNz0Fbltd1ekv9dNb7KWuPJsYAACAW+fOWAAA4I6bOTiTfXfty7v/+3fn0R93dyw706gzygv/5wtpnWtluDF0VywAAAA3xZ2xAABAUZP+JJP+JK0zraw+uJq733p39t+9v+lZcHPqpH2xne7VbnpXehmuuysWAACA2+NkLAAAUMzUvqnMHJjJH/uf/1je/P1vbnoO3JR6UueF/+uFLD67mGpUORELAADALXEyFgAA2BL1uE6Vyn2b7DjVqEo1rJqeAQAAwA433fQAAAAAAAAAgN3IyVgAAKCouqoz/7n5tM618l1/6rsye6/rUdi+lp5byurLq+nMd5qeAgAAwC4gxgIAAEXVVZ2Fzy9k+b7lPPSBhzJ7z2wy1fQqeA11svj8Yi787oWmlwAAALBLTNV1vXl50+ys31AHAADKmN4/nTf/0Tfn7rfenXf8N+/IvkN+N5TtY+lrS5n/3Hw2Tm+kM+dULAAAALdvOBxuvu3OWAAAYEtUoyqLX13M4lcWM+6MU42qpidB6qrOZDBJ63wrC59fEGIBAAC4o5yMBQAAttTMgZnc/da7c/977s+7f/rdmZrxzGKas3ZiLSc/cTL9xX56V3tNzwEAAGAXePXJWM8FAwAAttRkMMn6qfXsv2d/6rrOlAtkaUA1rjJcH6Yz38naibXUk/rGLwIAAIBbJMYCAACw5/Qu9/LCL72QwcpAiAUAAKAYd8YCAACNGHfGWT+17tGwbKl6Uqd1rpX1M+vpXelluD688YsAAADgNrkzFgAAaMTU9FSmD0zn8f/88XzPz3xP03PYI4brwzz7959N51Ink8Gk6TkAAADsQq++M9bJWAAAoBF1VWfSm6R1oZXLX7ycznyn6UnsYnVVZ+WllVx95moGqwMhFgAAgC3hzlgAAKBRy19bzvILy/nev/K9Ofzo4abnsEvVkzpn/vWZLL+wnLgiFgAAgC0ixgIAAM2rk+UXllONqhz54JHc9chdTS9iF1l6finrp9fTu9wTYgEAANhSYiwAALAtLD67mKXnl3L40cNiLHfUlS9fyaUnLzU9AwAAgD1IjAUAALaNuq5z4d9dyMqLK3n7n3t7Dj54sOlJ7GBLzy/lypevZPX4atNTAAAA2KPEWAAAYPv4+uOK119ZzyM/9khm75u99vGpZHrfdLPb2DHqqk49qbN+et2JWAAAABo1Vdf15o05s7OzTW4BAABIkkzNTOXed9ybfYeu/f7oPd99T971l94lyHJTVl5ayZl/fSa9y710L3ebngMAAMAeMxwON992MhYAANh26kmd9VPrm+9PhpMMVgfZf3h/9t3l2xheWz2pM2qP0p3vZvmF5aS+8WsAAACgJCdjAQCAbW/mwEwOvvlgjvxnR/Kuv/SupuewTbXOtfLir7yYweogg5VB03MAAADYo159MtYzvgAAgG1vMpikM99J+2I7rXOtDNeHN34Re0Y9rtOZ66R1oZXOpY4QCwAAwLbhZCwAALBjTO+fzsyBmbzjp96Rt//Xb296DtvEYGWQ537xuXQvdzPujpueAwAAwB7nzlgAAGBHqkZVqlGV1tlWFp9dzL3ffW8OPHCg6Vk0YOPsRgbL107ADlvD9Ff6QiwAAADbjpOxAADAzjOVTM9M530/97685Uff0vQatlqdHP3I0Sx8YeGbH5rUr/MCAAAA2DpOxgIAADtbnVTjKovPLW7eHztzaCZHfvhI9h3ybc5utn5qPWsn19K+2BZgAQAA2Pb8lAIAANix5j87n/nPzidJDj10KA+89wExdpdbfHYxp//l6aZnAAAAwE3xUwoAAGBXGLVHOf3/nc49b78nj//k45neP930JO6A7uVuLv7+xc1TsGsvrzU7CAAAAG6BGAsAAOwK4944c0/N5U3vflMe/YlHMzU9de0T08nU1FSz47gt9aROb7GXC793IdWwanoOAAAA3LKpuq43L9mZnZ1tcgsAAMAbtv/u/bnv3fdtxti3/Mhb8uifeLThVdyqweogp/7ZqXTmO1k7tZZosQAAAOwQw+Fw820nYwEAgF1l1B5l6bmlzfcPP3I4ow+MMnNgxqOLt7lJf5JqfK269lf6WfraUgarg4ZXAQAAwO1zMhYAANjVZu+bzYH7D+Sd/+078/APPdz0HL6Duqpz8uMns/yHy0mSalSle7m7eVcsAAAA7BROxgIAAHvGcH2Y4fow7YvtHP6uw0mSqZmpHHzwYKb3OSnbpFFnlOHatW9Q66pO63wrrXOthlcBAADAneNkLAAAsCfsu2tfpmevxdcD9x3I+//X9+fQkUMNr9rb5j87n5c//vLm++POONXI5bAAAADsbE7GAgAAe864O066196ux3VWjq3k4JWDSa49yviet96TTDU4cA+Y9CfZOLOxeS/sxpmNzZOxAAAAsBs5GQsAAOxJ0/umN+Prw//pw/n+n//+TM2osSW1L7Xz7P/xbIYb33w0sTthAQAA2G2cjAUAAPa8b5zOTJLOQieXnrqUqalvxtip6am8+fvfnIMPHmxi3q5QV3WW/3A5/aV+kmSwMsioO/IoYgAAAPYMJ2MBAABew9S+qbz/f3l/HvrAQ01P2bGqcZXnP/x8lp5fanoKAAAAbBknYwEAAG6gntSZ/+x81k6sJbl2r+xjf+axzBycaXbYNtW+2M7CFxaSVz11uK7qdOY7zY0CAACAhomxAAAAr6VOLn/p8ua7hx87nLf86FsyfWD6ui+bytTm3bN7Rp3Uuf6u185cJ2c/dTZ15Q5YAAAA+AaPKQYAALgJ+w7tywPveyDT+6+PsY/++KN56Af3zqOMq3GVs586m/bF9nUf7y/3N08RAwAAwF7mMcUAAAC3aNwb5+ozV7/t43e/9e7c/333v+ZrpqanMnNg5z3WuK7qVMMqr/rd3U3VsMryC8tZPb7awDIAAADYWZyMBQAAeAMOPnQwB+4/8Jqfu/e77833/pXv/bbTtNtd63wrJ379RCaDybd/sk46lzoZ98ZbPwwAAAB2ACdjAQAA7pD+Yj/9xf5rf7JKeld6mZ69cYyd3j+d2TfNZmqqzAW01bDKYH2Q3MSVrt2FbtZPrr92jAUAAABumpOxAAAAhUzvn87sfbPJTfTVe99+b973P70v+w6V+Z3Z1ROrefEjL6YaVzf82mpUZbg+vKlwCwAAAFzPyVgAAIAtUI2q9Je+w6nZbzFzYCbrJ9czc7DMHbMbpzfSW+ylHiusAAAAsFWcjAUAANgOppKZ2ZmbOkV7O+qqTjW88alYAAAA4I1xMhYAAGC7qeOOVgAAANhlppseAAAAAAAAALAbibEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABYixAAAAAAAAAAWIsQAAAAAAAAAFiLEAAAAAAAAABUzVdV03PQIAAAAAAABgt3EyFgAAAAAAAKAAMRYAAAAAAACggP8fjymaWYXEdVMAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "id": "f53abdf2", - "metadata": {}, - "source": [ - "## Step 4: Add lighting\n", - "\n", - "This section corresponds to the [Step 4 of the C++\n", - "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-4-lighting).\n", - "Please read that section for an explanation of the trick used to estimate the\n", - "light intensity of pixel based on the angle of intersection between each ray\n", - "and the spheres. The changes are minimal and are primarily about handling this\n", - "intersection angle." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "from algorithm import parallelize\n", + "from utils.numerics import inf\n", + "from collections import List\n", + "\n", + "\n", + "fn scene_intersect(\n", + " orig: Vec3f,\n", + " dir: Vec3f,\n", + " spheres: List[Sphere],\n", + " background: Material,\n", + ") -> Material:\n", + " var spheres_dist = inf[DType.float32]()\n", + " var material = background\n", + "\n", + " for i in range(spheres.size):\n", + " var dist = inf[DType.float32]()\n", + " if spheres[i].intersects(orig, dir, dist) and dist < spheres_dist:\n", + " spheres_dist = dist\n", + " material = spheres[i].material\n", + "\n", + " return material\n", + "\n", + "\n", + "fn cast_ray(\n", + " orig: Vec3f, dir: Vec3f, spheres: List[Sphere]\n", + ") -> Material:\n", + " var background = Material(Vec3f(0.02, 0.02, 0.02))\n", + " return scene_intersect(orig, dir, spheres, background)\n", + "\n", + "\n", + "fn create_image_with_spheres(\n", + " spheres: List[Sphere], height: Int, width: Int\n", + ") -> Image:\n", + " var image = Image(height, width)\n", + "\n", + " @parameter\n", + " fn _process_row(row: Int):\n", + " var y = -((Float32(2.0) * row + 1) / height - 1)\n", + " for col in range(width):\n", + " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", + " var dir = Vec3f(x, y, -1).normalize()\n", + " image.set(row, col, cast_ray(Vec3f.zero(), dir, spheres).color)\n", + "\n", + " parallelize[_process_row](height)\n", + "\n", + " return image\n", + "\n", + "var spheres = List[Sphere]()\n", + "spheres.append(Sphere(Vec3f(-3, 0, -16), 2, shiny_yellow))\n", + "spheres.append(Sphere(Vec3f(-1.0, -1.5, -12), 1.8, green_rubber))\n", + "spheres.append(Sphere(Vec3f( 1.5, -0.5, -18), 3, green_rubber))\n", + "spheres.append(Sphere(Vec3f( 7, 5, -18), 4, shiny_yellow))\n", + "\n", + "render(create_image_with_spheres(spheres, H, W))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "f53abdf2", + "metadata": {}, + "source": [ + "## Step 4: Add lighting\n", + "\n", + "This section corresponds to the [Step 4 of the C++\n", + "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-4-lighting).\n", + "Please read that section for an explanation of the trick used to estimate the\n", + "light intensity of pixel based on the angle of intersection between each ray\n", + "and the spheres. The changes are minimal and are primarily about handling this\n", + "intersection angle." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "3ed5bc7c-f335-48c4-abf8-31c75d6e79ad", + "metadata": {}, + "outputs": [], + "source": [ + "@value\n", + "@register_passable(\"trivial\")\n", + "struct Light(CollectionElement):\n", + " var position: Vec3f\n", + " var intensity: Float32" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8b99f641", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 10, - "id": "3ed5bc7c-f335-48c4-abf8-31c75d6e79ad", - "metadata": {}, - "outputs": [], - "source": [ - "@value\n", - "@register_passable(\"trivial\")\n", - "struct Light(CollectionElement):\n", - " var position: Vec3f\n", - " var intensity: Float32" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n" + ] }, { - "cell_type": "code", - "execution_count": 11, - "id": "8b99f641", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAEAAElEQVR4nOzd7a8syX0f9uqZOQ/3aR/uPnKXu3wQRVOk+KDYBkU7kWXHD3IcGVESGIkTJAaSGAaSF3l4nX8pSIDkRWJbQQLDEQwYgS1bgBNHpmSLkiiKS2p3ubv33jOdF33qdFV1dU/PnOl7zr37+QAHM1NdXV0zd2ZI7Hd+VU3btm0AAAAAAAAA4KhWNz0BAAAAAAAAgOeRMBYAAAAAAABgAZv0wenp6U3NAwAAAAAAAOCZ9+jRo6v7KmMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABm5ueAAAAAADcVut1c9NTmOXior3pKQAAUCGMBQAAAICKt966G375lz8XTk5WYbXqQtmmCSGE5vI2l7a1I9loe3kgPd7db6/a+tuurb/t+m23fdt224ZHj7bhb//tfxX+4A8+PvzJAgCwCGEsAAAAAM+91SqEO3c2oWnSUHXaa6/dCT/7sw/D6WkXxjZNqJ7fVAaLwWn+OD+Whq9pSJuGr2kgW4awbduGi4s2fPzxRfiH//AH4aOPnoyGwOUctts2fPLJxWR/AACur2nb/v9ynZ6e3uRcAAAAAGARr756Hv7T//TL4f79k7DZrMJq1YWoMWCNeWpa+Xp6ugqvvHJeVMXOk4evw1B2biAbQhecxnFiSNuFsTGkbcMPf/hJePRom7XHADcNbrfbEB4/vggffPAk/C//y2+HH//40X4vJAAAOz161P9/LJWxAAAAADwX7t/fhBdfPAshDIPT1167E9599/5kGJtWvg7HqAeyfc7ajrSH0LbN1fE8jG2KZYubJIRtrkLVGAbnyxY3WWj7+ut3Qgh9SBsD2O22D2S7MLYNjx51Yeybb94J5+frZJ592PvBB4/Dxx9fTL3cAADMoDIWAAAAgOfCn/2zb4V/79/7Qlitmqu/GLCu1024d69bprisdI3VsGnbIdJgdrgscbw/Fdp256btaQVtuZdser9c2ri2pHFsi6Hshx8+CRcX26vHT5604eJiG5482YZf/dXvhX/0j354+IsBAPAppjIWAAAAgGdO04TwhS88CPfvnwz2bm2aEH7qp14IDx+eXwaxtcrX/pw+dG0GAeycQLa212ofpjaj/boq2dhv2Kc/ni5b3AwepxWy8VheNdvddkFsk4Wx63V3f7NZZRWzMZh98mQb3n33Qfjkk+3VEslpxe1HHz0Jv/d7H+1+kQAAUBkLAAAAwLPh5GQV/pv/5hvhq1996XKp4WH163pd2we2VgkbQi2Inau2PHFsmxqzFuKW4+VVsfF+up9s329XhWztdmop4/j35Mn2slK2+3v8+CJcXLTh448vwr/4F++H//F//G64uBh5MgAAn3IqYwEAAAC4lV544SR861uvhs0mBqvN1TLCm00T3n77brh37+QqhE1vQxiGsGkwmt+/xnrEmcPGKZcr7tr68YZLFjdFCFtWxDaXx/Kq2dr+sjGM7R7nQWw8vl6vwulpt3Rx27bh8eOuivbkZBU+85m74dvffv2qojZW1373u++HH/3oUfm0AAA+1YSxAAAAANwar712J/yH/+GXwv37m3B6us72f02XHi7D1+kq2OvvBzumPubUhdpBn+FSxvF2WHW7T4VsCCFst2mfWhhbVsqmwWwXsrZtCKen3ePz83V48OA0vPvu/asljR89ugiffLIN/9P/9F1hLABAQRgLAAAAwI34znfeCJ///IOw2XQVsKtVE15++TS89NJpODlZhc1mddkesuWI6/u/NrOXIb5uKFtW1e43Xlr5miurZYd7xXbnpyFsfFzbTzaeW1bGpiFsCMMwNi5d3LbhMoztQ9n1urncb7a5XM54FU5OVuHsbBu+/e3Xw5e+9GK4uOj2mn30aBt+9KNH4R//4x9eXQsA4NNGGAsAAADAU9NXtIbwcz/3Svj5n38jnJ2tL/d7XSXBa14Jm1fADu/HMaO0IjZv299Ude11gt1hRWwcrM2Ol6FsbNsdyrZZv+22SW6HYWxcsjhdvni1iiFsDGWbq9vttg2bTRu221W4uGjD17/+8CqEffJkGz766En47d/+MPzGb7wXHj/OnxMAwKdF0yb/L+709PQm5wIAAADAc+xnf/Zh+KVfeudqyeGf+qkXw6uvnl2GsM1gH9jxAHZsOeKuX/543NgSw+P7zPbjT4+x2zCUbLO2/P4wyJxaoji9X/ZL28tK2doyxmNLGPd/fduTJ9vL2/YylL0IH374JPzWb30QnjzpAtrf+I33wm/8xo8Oe9EAAJ4Rjx71WzeojAUAAADg6M7P11kVbAghvPPOvfDtb78eNpsueF2v++WJ6yFsuhRxGb4OQ9dh1er8pHTXHrP5UMfZg7YPV9urMWuBbL2tO6f2OA9oxx+P/TVNer+rhO1vu3+nYSDbXJ23WnWh7GrVhNPTdbh//+Rqb9n33vsk/OZvvp88ly7kffx4q2oWAHguqYwFAAAA4KjOz9fhP//PvxLefvteODnp9n1dr5vwwgun4Y037mRVsMPliOeFsGlbfn88Ia0vMVyvhN21L2wtnJ1nfLne4bLF0xWx6bG077BqdlgNG0K+THG8Haua7Y71yxgPK2X7+3Gf2SdP4u02XFx0tz/+8aPwox89umr7yU+ehPfffxz+7t/9nfDhh0/2eB0BAG4vlbEAAAAAHNWDByfh3r2T0DQh3L27CV/84gvhnXfuh9PT1aAKtr4XbD2M7W5rlar1UDa1axniqYB3zrLHh1TGxv1fy3NjRerlo6uq1Hisu22vAuRhCNvvK9uFqLFStR3cjwFtbcnlGMZ2oWtZVduEGCY3Tden/zcLl1Wz8VgTQthezWu16iplX375LLzwwml4/LhbtvjDDx+HH//4cXj11fNwevo4tG235+xPfiKYBQCeDypjAQAAALi2v/bXvhj+wl/4bFivV2GzacJLL52FzWZ1GcLGJYjrVbBpKFouFzw3HJ0KRneFu+nY08se99evX2fYtmvp3bbSoVYJm7Yfozo27Te2d+zYPrJ5hWxfKRv7xMrY7jaEi4tt2G7jbXtZJdvvK9tVzD4Ojx9fhI8+ehL+v//v/fB3/+7vWLYYAHhmqYwFAAAA4CBnZ6vwzjv3w8nJ6ipgbZoQPv/5B+G11+6EzWYVVqsQ1utVtg9s2jcNY2MAWj4OYX5I2rUNG3cFu+MVsdNVt8O2OQFtnizGoDGdQ9/W9e/3b+3D464trXaN7XFf1/5xuYdsWvkaQqxs7atlh3/xWBwrrazNw+H47xqXPO7mHPeBXYXVqg1NswoXF21omjY0zTZcXIQQwjqs16vw0ktNuLjYhp/8ZBNef/1J+NznHlwFvO+994kljAGAZ5bKWAAAAABme/vte+G/++++EV566Szcu7cJq1UTNpsmnJysw8nJsBK2tgRxLYjdFZam7eNtw4rXY1XFlsePIa167R+Xx7s+w2rZ4Z6yw2rYsgo2v1+vlK1XyW633dixEjYeS/eOTfeQTfeZ7Stk22xf2e62q5Z9/Li9vL0Ijx9vw0cfXYRHjy7Cxx9fhP/9f/9e+Cf/5L0jvOIAAE+HylgAAAAAZmmaEL72tZfDw4fnYb1uwiuvnIdXXjkP9+5twvn5+nI/2FW2F2y/FHF3P4QunO3Gm1qWeHwv2F0Vq7VQdTzoHQted1fglv33k4en6XPK94ztK2C7+/28+srYMKiEjVW0fWVsuKpkTStgQ+iraMvgdqxKtt9jtq+W7fepHe4hm7aVzzn+df1Xl9W028t9ZsPle6kJJyercHKyCl/4woOwXjfh8eNtePx4G37rtz4Ijx5t93ztAQBuhspYAAAAAEZtNk34b//bb4RvfevVcH6+DpvNKluKeLXKq2DjssS7liQOYaxKde6esMPgNB3v0KWJ51x3+nhuuO9pfbniettYRWw/ztQ+softITvcL3afPWTLKtm0MjZWxfZ/3T6ybRvCkyf9frLdnrLbq9tHj7oQ9sMPH4cf//hR+B/+h38R3nuvrzYBALhtVMYCAAAAMOrLX34xfP3rD8NmEysTXwh37mzC6Wm3DHHcD7ZbkjithO0rYMtK2PFq2Klq1OHSwHnf6fB1btg7Vhk7nE9dbb/aEPpq1aJ30ac8p14Rm/aNe7jW2soq175PXvUa28ce7/pL95+NFbHlsXgb95vt3h8hbLfNVSDbNKvLua8u+7RhtWrDatUtaxyD/s2mey7rdRO+/e3Xwx/8wcfhH/2jPwxPnlTSbACAW0QYCwAAAMCVpunC2H/33/1COD/fhJOTvhJ2s1ldBa4xJEuD2HJv2BDSUDaOf+iercOq1mHgOqfydvpac/apHZMuJVwbq1QuTdy1DYPWvm8f0ubnl8HrMGRN28rgNl1KuOwTj9Vu+/C1Sapj89ejC5Tby8C2uQpc+yrq9qqtC2e72+49tr0MZptwcdG9587P1+FP/snXwu/93kfhN37jR+HJkyeTrzEAwE0TxgIAAAAQQgjhp3/6xfBX/sq74XOfux/u3z8JJyersF531bB9ABuK2zyAjeFiHsKOV8PODULHKl93LXk8Z5ni/H59ueKxec1VW4542J6HpOXx8SWL592OVcSmVa398b6aNQ2Ny6rXvFq2O2e1Gp67WjVXSxPH+/k+t+3luTGMbS/3I27DatXtJxvPW61CeOONO+Gv/tV3w6NH3TLG3/3u++Gf/tP3ZvxLAAA8XcJYAAAAgE+x09PVVUD51lt3wy/+4ltJNWxzuTdsrILdtS9sHo7uDka79mh8ieBhxe3Ydcrjsc/wuvmcxuZQ63OI4XLDbdYel/ONbX1Q2ib3myJATcPMvnq2D0aHj2PFa3+NdPniNhkrtufHu6C1vnRxfB7DJZLz4DetxA1hWHWb/jtdXIQQwipst+1ln+52vV6Fr3/9YXj8eBs+/vgiPH68Df/P//Pjy3H7fWoBAG6aMBYAAADgU+qFF07D3/ybPxNeffU8bDZNePHFs3D37uayInG4FPEwhM3vT4em3fG0bao9Ps73ha0HvOPVsWMhbH9uPo/6vGrmBLS7wsDa8bFK2PTxoRWy6f6tadvYnrFdWwxky/vlX1fd2i1tHAPgWO3aL2PcVbi2YbuNbV3fi4ttaNvmMkTtK2TX6y5YjUsXp7frdRNOTtqw2azCN77xMLz11t3w8ccX4ZNPLsKv/dr3w+/+7k+m/wEAAJ4CYSwAAADAp8j9+yfh7GwdmiaEhw/Pwle+8lJ444074eRkdRnCdvvD1vaFre0PG8J4IBuPdbf9HHYFsOV5UxW3c5cnHlsauZxP7XhtfnPkVa+Do1kFbH9OWgnb7w/ba5Pzmqw9jlt/nI6d9hne7/rFKtzY3l5WtcY9YJvB+f3yxDGY7ebfVbN275/+9eirZ2PAWguD+7mnyyOvkorfNoTQhpdfPgv37m3CRx9dhI8+ehIePjwL77//OPzkJ0+uqmkBAG5C07b9/7U5PT29ybkAAAAAsLD/5D/5cvjOd94IJyercHKyCq+/fudyb9gueO1u8/1gx5cl7sbcZ+/W9Njlo0FIuivcnQ5jh6HqdfaJPcYSxande8e2g375/XbQ3oebU4/7c/vAsx3075cZ7s8p2/P75W1/P+4LG9u22/w2XU44Vsh2+8rW/rrq2e02hCdPtqFt2/DkSXf+kyfbcHGxDY8ft+Hx427J4vfeexR+/ONH4X/+n38r/OEffrLfPxIAwDU9evTo6r7KWAAAAIDn2IMHJ+H11+9c7f/6uc/dD2+9dTecnq7DatWEzabfD7avhq0HsF1lY30p4vkVqnl7fk53J1ZQjlfE1gPc2vWHbcP24fzq8zyeqUrNWrVr7Xh5rN/rNa+obUfP7faRrVXU9mOl7U3TVbmmFbKx8jUeS61WZWVsmyxTHEKsli2D39Wq/qLH57ReN2G7DUmlbRNCWIW23YYQuj2QX3zxNJycNOEzn+ne6xcXbXj06CL86EePqmMDACxFZSwAAADAc+w733kj/Bf/xc+Es7NVODlZh7t3N+H0dBU2m7gccb8s8dhSxLU9YkOohaLjIWna1j9Ow9zrLE28XzVuU0xkuiL22GlsX3WatVbbhlWw/f220lZWuw6rYYdt5fFdFbJT1bF5Wxe4ppWweQVsXi1btsc9ZscrZLvbrkK2u91eVco+frwNT5604YMPHodHjy7C++8/Dr/zOx+G//V//Vfh4sKyxQDAslTGAgAAADznXnjhJHz1qy+Hr33t5fDii6fh9HR1uRxxtyRxfVniWAFbC1+brGK1u90/hC0rVueEsGPLFefXy+cxNpep+dSOTyn7jS1BXJx1WXVajlULaaeqZNNxxqtf88rWcq/Z9rI6tuyfV8725wwrZbvjzVWQ2lfIdhWwbdvf9nvDdsfLvWPLZZXHtG187v1r0N2uQghddWzcTzb++CCEEF555Tz89E+/GN5775Pw+7//0fRFAACORBgLAAAA8Bx6++174b/+r78R7t3bhNPTdVivu5A13ubLEc+piC0D0OlwNO031l4uR1yOuzv0nRcCl4HrWMXsZctI+25zzolBY9c3rXzNg+QYMHb326vnNWzv5jzcL3YYcPahZdmnD1TTvun99C+EcFn1mreXIXPs01W/dsfT+9O33TLI8d9+tWrCxUUbVqs2NM3q8rmvLgPg9urYkychrNftZf/t5TW7HyDcvbsJr756Hv7JP/lh+Nt/+3d2/2MBAByBMBYAAADgObDZNOFP/ak3w8OHZ2GzWYU337xzWRW4DptNH8DGithyb9jaHrH1qtR5FapRLSwdVr6Oj3lYINvPoR68jgeuuwLVssq2Jl1eeGz8vEK1DDLb7HFfvZpX0Kbt9erYtH1qT9n+WJxXfFyvhA1ZhWs6Tgix+jVc7Qcbb+M+r/1yxvWK2L5St39fpMFuvE2D6f61XYWLiza07fYytA3h4qLNqnbffvte+Pa3Xw//8l9+EL73vZ+U/0QAAEcljAUAAAB4DpycrMNf/svvhC9/+aVwft5Vwnb7wubVsPND2H32bA1hV/iZVrsOw9hhn/5a/bH0WmMVsbUK3DI/HT6uB6yHVMeOjTdclji2t5W2/rnEYLK/ny9zHMPZGMz2laVle61fmyz122Zjx2rcNDhNq3rTtv7+VFtcmjjtk7825W0awtb/vbeXr9U2NE1zuRfs9iqU7ZZL7ipl423ThPDuu/fDG2/cCf/H//G7wlgAYHHCWAAAAIBnWNOE8Bf/4jvhK195Kbz77v1wfr4Op6ddCLvZrEK5L2wawoYwHsZ2Y++qgt0dgNbG6s8bjl8LZ+dcuwx+y3ml59SODdsOC2jHimK789pBv3RO+RLGw2WI06rapmkv75f7pvaVr3kwWz7uxu3P6QPS2L8PgueGsiHUgtjtNp97ueRxf5vuJVsPZfNjq8tzVqFf0jiGsO1VGLvdds83hrLxPf+1r70cXn75LHzyyUX4+OOL8Ou//sPw/vuPx/9xAQAOIIwFAAAAeMasViGs16vL+0341/61V8N3vvNGOD1dXVXExqWI+79w1ZaGrn0oG8J4der+QWh67lj16+4QtqzIHbaV182vXw9f0/Nqx8fM7TO+SvHYAGMnNBN9xo41WVsezOZLFKehbD5OU9yPx7r2OEZ9meKh1aoLZeNt27Zhu41jNVmwXNvvNi5vHNuGoW/ySlzeX6/L596Ei4sQTk6a0DTdYJ/97L3wxht3wvvvPw4ffvg4/It/8X748MMnVyEuAMAxCGMBAAAAnjHf/OYr4d/6tz4XTk5W4eRkFX7qp14I5+fr6rLEZUVsGsKmQetUGNvdDoPWWvha9i0rYseC2XLM+ljT10wf5/eHx4aP630OMTVGuuxw35ZfO6+Q7ZcXjsfGKmdjWzpmXjE7tkRxvE4zuF9/PB6K1itlxyti0/C6bI8VtXnlb9p3dfUabLd9/+22CU2zvbwNV/vFdssUd6Fw/ExsNt2yxmdn6/ALv/Bm+OEPPwl/7+/9Xvjoo4s5/9QAADsJYwEAAACeEZtNE+7dOwmf/ez98M1vvhLOzlbh9LQewq5WoVoNG9vKcHSsErZejVoPRLv7ebAaKxrnLoM8J4Qdv17ft+w3fDzcS7be7zjygLXJ2mPoOjKbpG8f4uYBbRrullWuaXtbnFtW1OZLH49Xypb369WzcWnhvF/cm7YLRrsq1P7fYrUKV5Wzq1V7Faj2AXb3ntpu28u+fcDc/cig61tW2cb34XodX7Pm8lj3GWqaJrz11t1w9+4mPHhwErbbED75RCALAFxf08afy4UQTk9Pb3IuAAAAAEz4Y3/spfC3/tZXw8OHZ+G11+6EzaYJ6/UqbDZlCLvKql/H9oUt20KYF8BOh6Hj18iPT507Pvau6+f3x0PjvG2B9HWH5D/JJW21x8N9ZtNjtSV6++rYet9av/x+37+831W+TrfHsco9W/N+3W1/LH/c3eb3t9sY1LaXlbBd+8VF36+7393Gx93tNmy3ITx5sg0XF93jJ0+6448eXYSLizZ8/PGT8OjRNnz/+x+F3/3dn4S/83d+Jzx5YsliAGB/jx49urqvMhYAAADgljs5WYU337wbvvCFB+Hdd+9fLkncBbF5NWwMX6eqYIdhaVpJWqs0re29WralgW3+N2/P2HScQ0LY/QLY6fD12JWxtT1kyznk1a1Zz6sx+r1VyxC5vWpLK2bHKl/Ttnyp47TydriXa3nN8YrZfh5xeeR6NW2/Z2ysok0rZPt9ZbvzuvnE93i/322slI3v/VhVG59TdxsrZPvK2PW6u9ZmswohbMPJSbfX8sOHZ+HJk2147bU74YMPHof3339c+4cBAJhFZSwAAADALffWW3fDf//f//Hw6qvn4cUXT8N63QWx6dLETdMtwZqHsH042weh0xWr3f2+f/94PBStBa/9XrR50Dt2vbFlktP5DNvqQXHZPm3Y72mEsePLEg/7lRWt/f12tH2qCjbeDtvaav9h5eyu6tjydvxYWT1bexz7x/ux+jXtk1bLpn+x75Mn/W2slO0qZNvw+PE2bLdtePRoGy4utuHjjy/Co0fb8OMffxL+3//3j8Lf+Tu/M/PfCgCgozIWAAAA4BZrmhC++MUXroLX1167E1599Tw8eHCSVcJ24WsYhK95CJsGn/XgtAxexypT87ax8cbGrVfI5veHVbL1ELa+ZHI51/I1vbw3+dovYaritTcMVmO/vuK1Vtk6rJgd7vka+7bJWHEOY9WzTXHNehVsWkE7HKdWRZsfK/8d456xsZp2tSr3lc33io3nxr1i07l3/UJ2P34m4vlt2+8j292uwmbTvU7375+EV189C1/84oPw3nufhPfe6/+jKgDAXMJYAAAAgFtmtWrCr/zKF8If/+Ovhjt3NmGzWYXz83VYrZpif9hyeeIyjB2vTh0LRWO/7rZWCZueNx3Gju0VOxXApn13z2UqWD28MnZZYxWxtXn0fdNgOj7OlxjO2+ISvulY8fWKlaZpcBsrX7ulhWP//Hhc6rdp2iTM7NvTeZXH87a02rYPZ9M+/Tzj/dinPxZvmyZcLXPcv1ZlFXD/eLsNoWlWoWnay79wuaxxCOt1d3tx0Q3yhS+8EN544274B//g++H/+r++X/k3AgCYJowFAAAAuEW++tWXwxe/+CC88879cOfOJpyfry+XJa6HsGUA2y1TPAxf8yrWMtycDkdr/eqhaz2c7edSPt4VwtYqYPM9YVO7lyZ++lWxQ3NC11rfYeVsH6622etTjtm393vLpv3q+8zWjk9Xyc6riM379fvAttX2sT1ju+cfro7H93wI3VLFafXsdptXycbXsb/fXJ6XLve9ChcXccnkdfjsZ++Fb33rlfDbv/1B+OEPPwkAAHMJYwEAAABuke98543wV/7Ku+HsbB02m1XYbFZhtQqXtzGAjVWw+f6w/f2xqtUQatWw+4SwIdQqbg8PYedVynZ9hvKKzKnjuy0Z1O7aH7a8dq1//5q0bX48D6HLMLVrK6tc0+rZfMy0+jUe7+/Xwtp0jC7YrIWuafVqH7SuVl1FbLzdbvP27ba5ClJDqO2B2ySP89cxBq7x5dluh8tA969LDG7zfWnje/ynfuqF8NnP3g//2//2r4SxAMBehLEAAAAAt8DXvvZy+PmffyN885uvhLOzdTg5WYX1ul+WuKvWS/eJHQawZUg6vjzxdFVqebzss0/gW4awacA6tjdt+Tg3Xhk7L1C9ierYqWuOB69jfcrwtVYtO9wLNm2r96mFsvVK13ysYVgbw9f2MuRsL/drTZci7m5jn7gv7GrVt5eP4/khpCFsN4uu+jUPZPNlkstwv7der0Jcermbd3wtVpevb18d/NWvvhQePjwLv/7rPww/+pE9ZAGA3YSxAAAAADdsvW7Cl770Yvirf/Vz4eRklVTE9iFsH74O94ft7w+D0hCmKmPHq1Brwexq1R3Lb+vXLIPg/v6cOdQqXscCzV3h6nXC10PO3VUFO3WNOfvJDpcf7l6jvr227HBs627rSxMPlyOO1567PHF+vx+rXi3b72PbhjJgXq36QLZ8nL9X+2WKu71g+2rWGODGoDZW2cbnmr5eIYSrHzp0YWy8XhfKxj5f+MIL4c0374bf+q0Pwo9//GhQaQsAUBLGAgAAANygn/7pF8O//+9/Mbzzzr2rpYm7PWK75Ym7qr1QhLJ5GNuHst2YteWD5wagZQibhry7QtjpSth5VbG5uW1zjh3S7xBzx55TEVvrNxbM1tvT17lfnrhcrjj2abPQtgxQY994LPZLlwiOFaZdJWy6bHFZXZtXvna3fVVqus9rXN64e9ydN1Yhm96f+oFBeny9jj80WF29Bt1yxd3j2Df9UcKf/tNvhB/84MXw9//+74cPP3wSAADGCGMBAAAAbsBq1YQ7d9bhrbfuhm9/+/VwdrYO63UXxKb7wqZ7wo5Vv5b7tIawO4itLdlatsVz0nA3vx0GsYdV45aVsPuEsHPCzyXD10PNqYhN+02Ft2PLGPcVr7E93S82DV37kDYGsnH8PpBN+8ZAtOwXw9c8+ByvjM1vw2X42Vzd1sbq+8T59P3S+2N9uuWO43u7D3zjMsfx/b5ex6C3uayO3V7uabsOb799Lzx4cBL+8T/+YXj8eBsePdoGAIAaYSwAAADADfjMZ+6G/+q/+lp4/fW74c6dTdhsmiyMjUumxsrYekXsPssT10LYcjnivi0da7gXbb1ffs00sJ1TCXuMytg5xw/te11zAtep/mWf3VWxtfaxStl++eJ879haYFtWxpZhat+nv3a37G96vNwztg9i27bfHzatfI1/8XF/2/eLVbVpn/5xE0LYXj3OPxsh9JWxzdVzi5WxaSi8Wm1D267DanUW/tJf+mz4/d//KPzqr34vPH4skAUAhoSxAAAAAE/Jw4dn4exsHVarJrzzzr3wUz/1Ynjw4CRsNrEatimqYUPxV1sWuB6Axtu54edYEFuvot21PHE5h2Zwv7zu1Nx2t+86tk+fpUyFqVP9d+0jOxbapksVx/Z2dI/TsjI2/hun1a99QHt5hdEK2mE1a74kcr5nbL58cl4tm441vfzweIVs/x7u+sQlkftj/Z608TMY96kNIVz+OCJcLqccfzTRhtPTEF599Ty0bQgvv3waPvzwiSWLAYABYSwAAADAU7DZNOE//o9/OvzMz7wc7t7dhNPTdXjppdOwXjdhs1ldVcOmoeywIjbft3VsKeBa+Fn2i3aFsGll7NgesfXK2/rSxMmVdzwea7vusSnHCmt3Ba1j15qzj+y+e8iOt/XvjT6cLPePTc8p94hNK2jTQDZWtcY+sfq1q3SN1bVtcduN1e0Z214uBxwrZPNK2K6KNj6OoW1/PM43rZZNHw8rY1eX81hdzad7bbbh4qI73jTb0DSry+fXhrZtw3rdXffNN++EX/7lz4Xvfvf98Ku/+r3RwBsA+HQSxgIAAAAs7K237obXXrsT3nrrXnj11fNw9+4mrNddhV2/N2xcdrgMOssK1f62Nx6OdrfDILbeZ6ridbxStzyeX7NWDXudIPZYIeySVbJzg9ap8/atiI3Hpitl8/fOWBVsWqWazCjZezaeG++n10/b+71p8z1g+yrcdJ/avK0frz8vPoe0KjfdZ7YfJxTnDCtlu790+eG4d2zXd7ttLveUjUsq9/vNxv1k1+smnJyswoMHJ+Hhw7Pw9tv3wvvvPw4//vGj+j8fAPCpI4wFAAAAWNhf/svvhl/8xc+EBw9Ow8nJKpyedksVn5x0YWtZERurXtP9YfNK2GFoOlYZ291OLTXcPcr3op2ugq0HuPU59A4NYK8bvi4Zuu5jbB67QtexPvtUxI611ytly3C1fn5aGZse65cBHlbV9lWwXZ+muO2ramNlbD9eU1TExgrXfnniWMFdq5ZNq2trttuQBMfbIvBdXc5lG2KVbNuuwmrVhu22r5B955374aWXzsKv//oPw6/92vfHLwYAfKoIYwEAAAAW8rnP3Q9f/OIL4fOffxDu3j0JJyersNmssvA1hq7p0sRlEDt128mD1RCmq2FrlbRjoevYsW68sQB430rYfatgdwWs1wlgr3PuIevTXrcaNh6fE74O+6bhZt+Wh7DdsTb5t22zc9J/3rTSNr1OH862Rf/xCtn+WmlFbfojg3itthg7rZYNRXtfDds0faVrVwEbrvaN7apg4xz75ZVXq27cLiwOYb1ehRC2VxWyd+6sw+uvn4cvf/nF8P3vfxR+9CMVsgDwaSeMBQAAAFjIz/3cq+E/+A++FM7P1+H0dBVOTlZhtVpVKmGPXxFbD2Lzx+l4+V60aejaXIVSu6/fPe4dqzp2qn3Xsev03deusXeFteX5c/eHTY/tXxFb65MHsrHProrZscraYYVsbCsrZOPSyOkPB/oK2bQiNvZps2rabqnhGKi22Xs439+20/WN+9heznJwmx5bhW5P23B524amWYXT035/289//kF4/fU74e///d8XxgIAwlgAAACAY3v33fvhT/2pN8JXv/pyODtbJxWxq7BadcsSlxWxZRAbl1zdVaXa9RlWrMb2/rbc03XXdfK2EMJVYDt2/Wj/UHaftjnH9unzNO0KW8f6Ty1TfFhFbNmW/pvloWVaydo97veEDcXjsbA2r5CNgWytQrbf27U235DMtX/fbbf9nrEhhKsgNl22OK3YjdeJPzIIIVwFtzHY7SqC420/0XhOv2dst4Txet0tY3xysgrb7Tpst234/OcfhNPTVfjN33w//NEfPa4+FwDg+SeMBQAAADiipgnhnXfuhX/n3/l8ODtbh7Ozfmni8eWJhxWxc5YLjtcrg9A8hM2Px8d5sLp7qeJ0nLwytgx/962GPXYIe90A9tDzl1qiOO133VB2rC0/NwahZeia9u+XCx4PYcvAdRjmxmrYEPplhfPbdJniPhyeug1FWwjxfR7bu/d+rG7t38uxqrbr016GsOk+tyGs190VYtAblyvebJoQwipsNm1o21Vo23V455174eHD0/D9738sjAWATzFhLAAAAMCRvPnm3fArv/L58NnP3g/n55uritjNJq+ITStjYzVeWqk6J4gtK1zj/SgPocqAdVgZW96OXTsUyxb3lgxhr1she0jffe0a+7pLFJd9ll2muAxp82rWMsAdBrJ5tWw6fn6/XJZ4WBk7vI1Bbb60cfe4W8J4uGdsXEK4C2Hje7/2GoTL/WGHyxWn92OIHMfableXz7vfT/fOne5+F9QCAJ9WwlgAAACAa2qaEE5P1+HVV8/Cz//8G+H+/ZNkaeJ8OeIu2OzDoPTxPhWx3XXLsLW/X97WQ9mmGGc6iC2v3V9jKmidG7oeu0L20L5LmVsFm/bfVS27b6XsrrZhABuD1fg4DWRj8Ng04aqKtAxr8/ZcvmRxP3YasKZBbLmUcf84H69eGduHs+k5/fu7Td7vad/+L+47G69T+zHDxUVzVQV/crIKFxfrcHraLVX+5Mk2C3YBgE8HYSwAAADANb3wwmn4z/6zr4S3374XXnjhNJyersLJSbdH7GZT7g1br4iNy6fOCWRDmKqOHVbIlteI1a1zg9+xQHa/EPYYlbBzQtXrBq+HnL9vwla7xq5K2FqffStld1fA7qqazZctrvWdul8/N+772u//Wj6P8UrYWKEaQr/McHosLqccq2LTAHW77feA7fXnxT1js6OX+8f243bX32yacHERwmazSvp2fb7zndfDV77yUvg//8/ftVwxAHwKCWMBAAAADtQ0Ibz44ml4/fU74UtfeiG8/vqdcHqa7g8bA9CmCF5jqFWGnbVANK9sTfsP7w/nVxujv99kt+VyxMMx8pC3uNq+r97MtrnjHxKiHqtidm64umuMOUsZj/UZO7Z/RWzZllaeZj2yitR4P69ILStk0/OiNDAdLk887Fdet/xs5NW8+fzSitn+WrUfOaR7x8aq2LQiNlbP9j+s6Pp1n/3ttrtt21V45ZXzcHa2Di++eBqePGnDRx89USELAJ8iwlgAAACAA52crMLf+Bt/LHz5yy+GN9+8e7UcaRfG9ksU53vF9hWxfVi7f0VsHqaWlax53/F9aHdXxpbh7OXII/cPeTzWNtW+69gh/Y5t7Lq7lh7e1beZOF6rfB1rrwWyU33y44dWyDZNmwWz41Wz5W0aiIbK43I/2XR/165tuGdsdz/27f/S6th6CN223R6x8TPdV8w2oWlWV+c1TQhnZ+uwWjXhF3/xM+EHP/g4/Oqv/m745JOLAAB8OghjAQAAAA7w5pt3wiuvnIe33roXXn21r4jtg9Z0X9hQDTjH9m4tq1ijtAq2DGJLZYhbq36drsStB66HL1O8q/+c9l3HDun3tI0Fpof03acadu7441WzUxWyaSVq1ycfZ3huDGa791S/X2xZzdrvTTs2VtqvrIwdPqd0n9nh/W68vno2jj/8DLdhteqXPI4/qlitmsvlj/uK+K5CtgkPHpyEJ0/a8OqrZ+GDDx6HH//YksUA8GkgjAUAAADYU9OE8G//258L3/nOG+Gll84u94hdh/W6CZvNKqxW4SqYjQFNba/YuH/rrsrU7prHrIiN1+7DpDRU2hXIPv0Qdk6wemj4eszQdp+1Z+dUwZZ9pyplD90zNrbPC2TrFbL1Y+NVr/39YQDa3cZlf2Nb03RVrGnFbNneBaFpZWysiM2XSo7VsNttm+wf218z/Sv3lY1z6pYi7o+VFbIhrK4C5bgf7vl5G155pQm/8Atvht/5nZ+Ev/f3fi9stwEAeM4JYwEAAAD28NnP3rv6u3//5GpZ4j5wrQWq9cdpEBtCXhFbVqPW24fzG1bX1gPZ2De/DcW5/RjjdoWZc4LYpxnCLlkxu0/AOnbuEqHsIW27KmTTitW+knS4V2teqZq+Z8erYodVtWWlbAxiu2WB22S8fux6GJzPLT6H+LmIc4n9xvZv7v/6CtlyT9kuEI6VseHqxxp37mzC2dl65N8BAHjeCGMBAAAA9vAn/+Rr4Zd/+XPh/v3TcHa2Dqenq7BaNWGzaQZLk8bliocVqmPB53R1ai0krQVHwyrX4fWXr4hdKoTdJ0xdMng99Pq7wrf0nKnliceOjwWtZf/rBbLl4zRUDSEGk8Px0z71CtqxtjIMLn+M0O8Xm1fYpnvHdifEKtjutju3q14NSUVu/Jx0QXIMVlertNq2ueofK2TTvWPX61UIYXt52159V9y9uwnn5+sAAHw6rHZ3AQAAACCKlW2np6urADavjI2Vr2kIOxWMltWp5V6vaUDaV7CWt8Ogd3r54/yaoXJsVyi7RBBbjjv3WK3fTQexY/aZ266++4bZtX+Xff/tyh8HpI/rPxyIPxoYe0/NrUTtx8k/K/04tc9WM7hWfd/k4bVjlXu6rHi51Hf/eY/nNIO/9Tr+dVX0Jyer8PLLZ+Fb33oYPvvZewEAeL4JYwEAAAD2cHKyCufnm3BysgqbTblEcbpUcR/OTAWx4wFUupxxJ6+MHYam/Tm796HNb4fLJY+HrYeHd/3jueHsnGPpmIcGsM01/657zbl99zm2z+t8vX/T/D2aL6mdBqmx73Ap7fy8PrBtquPM/wwN3/P5+eNB7PB436dcjrz8IUYZwqaPN5vue+Phw7Pwx//4q+Fzn7tf+fcAAJ4nlikGAAAAmOErX3kp/Lk/93b48pdfzILY9XqVVMjVK+bKirrpALa/ZhlA9e1Ndnz+Xz7HfIw54et1Qtl92qba5x4/1jnXGXfufqDp+bv2jJ1aunifZYuPt0RxP/9+yeLhcsPd/eEyxf3xuP9ruvdrPJ7uDRvFftlbN/R7yqbLFfdBbz9m+tmKyxGH0H02ymWLu+v0yxt3n6F0uePuAt0yxuFyn9j2as/Y2BZCV10fQginp+vw9tt3w7e//Vr47d/+IPzu734UAIDnjzAWAAAAYELTdOHJO+/cD//mv/l2ODnJq2HHK+aaQcg5VoFaVqKW1YXpXNIKw3h8vNJ1PASemk/y7Gfcn/N4n7ap9l3HjtH/mOaGrOU5z14gG99T/X6rMURNehd9+vY+pO2D2OH84rE+HM2D126/1jZrjwFuGcp2Y8S9X7vrdcf6/t212tHq2a5fGdA22fziDzO6fWW72y6o7Zcr3mxW4Y/+6LEwFgCeU8JYAAAAgAmf+9yD8Nf/+pfCm2/evdwnttsrtt8HMl+atNw/Mr0dBjkxrKvvqZn3zfuFEKphcHre3OWK4xxyh4Syu8aZaptq33XskH5PWzmvXYHrVL+p481E+5y+hweytWukwWoMQMv+aXsa4vZ902NpIJtW1jbZ4+HnJvYJ2XXiZyZWwsbK2K6qNQ1Sw9W8uuMhbLfNZRAbP3tdINy24Sp0DSG9XYWmacPFRff8T07asN2uw8VFG05O7CYHAM8rYSwAAABAxWrVhPv3T8Ibb9wJP/uzD8OdO5vBvpBp9Vst6AyhFrimVah54Br1bc2gvb8/Nu6cPTXzULe8/n7h69h5Y/33CWfnHp/b5zaphaPX6bfkNXc9To4UYWqsPM0rZfvANF2SuK987ZcrTq9ZLmGcVsp218jn0SYD1MPZ/NwyKE4rY+PzSUPdpumrb/vPVK2Stl+uPAa8/T6yq3BysgpnZ+tw5846PHq0vQprAYDngzAWAAAAoOLhw7PwX/6XXwtvvnk33L27KfaJba6WJO5vYzCbVsPuDkb7ar08xC2rYPN9YsuK2/rjeRWx3bUOv197fGifucfmHF/q3Cn7hmi7KmDLflNVstetkL3OksXzwtk0BA3Z3q4hpMsN75pbugxwWuVaq5LNf2hQ7iEbg9SQnVNWxkZxb9h8P9n26rl0t81VwBtvt9tYfdtVxm63bQhhdXkbQtuuw1e/+lJ4++274R/8gz8I3/veT6qvJQDwbBLGAgAAACRWqxDeeONueOutu+Gzn713uadjk1Wz5XvDhtAFOeP7vNaqX2O/YQXtVP+QharpGOXj8tplxW48flj4GiaOHVL5um//Q8LUp1E5OzdcHTt31zlTfcaOHRq+Xuf6w35pNWutLa1w3TXHco/ZONZwL9ryuv2Y6RjlfrLp+bX59p+jPvgtK2TjeGlFbPo5XK3a7Pvk7t1NaJoQXnzxNLz//uPwk588USELAM8JYSwAAABA4uxsE/7G3/hj4YtffBAePjy/qojtlhRNq2Lz5YrLytjh8sW1KtU8WE2rZePjWoXsVGVs3+cmKmLnBrFjweh1KmUP7buUcg5zlwfe1X9XlewxA9ldAe28atnacsUhdMsRD5crro0x1RaXLy73jC1vL89OrlFWxKYhany8WvXX7faGLfeX7a6dVs124WtfIdvvS9uN2e0huwrrdTx3FbbbdQghhK985cXw5pt3wj/8hz8If/RHjydeewDgWSGMBQAAALj0+c8/CG+8cSe89tp5ePDg5KoiNg9Zy3AzBkx5+JZXnabhaq0iNa2ErVWvxvv5HNI+ZTVsfr2puc29X7qNQextCGHHTIWoY/33CUIPaT8kkJ0X2JaVsGN7xsY++R6vwzFr1bDltfLrlVWt49fMPx55KNsFxiHkgW7ap19uOd72n9G+8rb80UTbtoNq+/W6CXfubMKTJ9vLwBYAeB4IYwEAAABCV/H2l/7SZ8PP/dyr4eWXz8Lpab5H7LAqNt8Xtl4Fm//1QU8Z5HZqQWrfPqywnaq8La/VjZOHw4fdP+TxWNtU+65j+/S5TdL5zlkWeKrfbQlkx86thar9/XQf2RiOjs0lXco4/eFCWiVbVsemVa9pUDqsnA1ZKJt/RuP+sF1la14ZG7JwNV4nPrcY5HbVtc1VhWzXv/s+adtV2GzasN2uQtuG8ODBSVI9CwA8D1Y3PQEAAACA2+LsbB3u3t1cLku8yqrW+uWB079hZeyuZYm7Pvl183ApbS/3fx0GrrVrHjeILT2NILaZOLZPnznnX/fvOuaef0hgPTa/ff595ho/P38P5++x4Y8Uwsjx+o8ZhtfKP2djbfnnIp1n/bMaP99lZWx6Tj/f8e+K7scT3W2693RaGbter8LZ2Tq8++798LnP3RfKAsBzQGUsAAAAQAghhCacnq7DnTubcHKyGlTC9qFJuPqrBTjD4KcfP4RayBOy9v5+eqwJ4yHvdDVuep0ykNp9f59jtcdjbYe0zz1+7PP2HXfuMsTl+XOqZPetkN1nrLLtOo/H55NXxnb98orX/tx0ieN0ieLudlgFG6tT08rX9Brp9dNK3Frg21fKNlfVsfk5+bldxWz985fu5dzvLV2GsF217MnJKrTtOnz5yy+GH/3ok/D7v/9RuLi4qL6WAMCzQRgLAAAAfOr9iT/xWvj61x+GL3zhQdhsyhC2thzwWAg7Jygd7glbq/YbjlkPWfOwdXidshpxaCqkXCKInXu9fY4do/+xHBrOzgllp/qMHRsLRucEuPsGsmPn1u+XwWhbbAabL1uch655MBuy8dIxu8A2DX7LsLa8Tn/tbrxy39d07n0gPAxg+3nFZY3TZYrjbRrIbrdN2Gy6pYvPz9fh7Gw98sMOAOBZIowFAAAAPrViQPKVr7wU/sJf+Gw4P1+H9XpVDWLT/WHr4Wu+dPCuIDIPZdP24e0wWB1bTrUfOx0jbRufW9n+NIPYXYnTPonUbUuv5oSsZf99q2uPNeZ1rz1+fi38LLLX4vMwPJ72q+0hGwPXGJKmlbXp3rH5GGlbDGrz68T78a+ryg0hhrrpmLXPZBrk1qpm00A23p6crMLp6Tqs1002DwDg2SOMBQAAAD61vvGNh+HP/bm3w+c//yCcnq7CZjNcnjgGJrHarbZfbD2AqVe2jkmDqPzcvLo2XfK0Xh1bhlrp7XXvz3m8T9tU+65jh/S7SfuEsrv6Th0fO1YLSue0XefxdLjb/3ghr14dOx7FJYrT2zRELa9RBqoxlM1/+JBXuZYVsfnj/NzVqhtvu+0/u7EytrvfTaBWGdu2eSC72axCCCGcnq7Dgwcn4U/8iVfDD37wSfiN33gvbLejLyUAcIsJYwEAAIBPrVdeOQ/f/OYr4fx8kwUiZdgaQrxtskCnDH/mLCmaV7iW1avDILUW5NauW59v2feQ8HXs/LG+gthp+4ayu5YtPvZesXPO2/e6lRGzas8+TE33ji2XLa71G/Yfzq2vaC2vv/t5pOeWlbNl8FyrfO0D5RDKgHe1ai6XMB7++GO1asLp6Sq88cady3lc/zUHAG6GMBYAAAD41FqvV+H8fDOoio1Lg+bhSFoZW1a9Hnuv2No4wzF3Vclejljczr2/z7FjtM05tk+fpzHGdZf0nTPGoYHsPu3XDVunzt99P75dx/aOjUFnery8TcdJx0/75XvF9vvJ1pYnrlXI9tW03ffBdtsmgWo/z3xZ4iarjN1u80rZ9bqrjt1uu/tdZew2nJx0FbJ37mzC2dl65r8DAHAbrW56AgAAAABP29nZOrz11t3w8OHZYEnisaA1rVRNA9R994odU6uYnQpxywrYkVF3Xvd45x72vPfvf93nFP+O4Zhj7brOIceP+e+/7+ORUbP38rC6PO1TWwJ87LZeAT7+GUmrW8c+a+l4eaVrfZ5j9+tLm5c/pBh+58Rli+OSxefnQlkAeBapjAUAAAA+db70pRfC3/pbXw0vvHAaNptV2GxiRezqsgK2uQpMumrYMiypB0X1MHcqgBrer1fV1sOasSBnqKncnwrTjhHE7RvOHho4HvucQ5TX2beqdM45zYw+c887tG3X47Fzx+5ftjQhq1Tt94JN+/SVqekSxemY6VK+sU/aPyT7wqaVsN048dy8IjaeE6ty+4rXUPTtKmD7fWLzOcTPZvf90l7tFRtCXiEbb9MK2VdeOQt/+k+/Ef7lv/ww/ON//MOR1xsAuK2EsQAAAMCnxtnZOnzhCw/Cl770Ynj55bNwdrauLj0cQhqi5lVteYAarvpex3io2wenw+q/9PxhBeDuUHas/XkIYp9WCDt1/X2D0znnzA0/j3W9pycPV9P2bp7DADaENCidGm9q7H7p4VC5TZdAri+HXAuHy++Qfuni9ir4je19v36J4/iDkPh3crIKd+9uwtmZRQ4B4FkkjAUAAAA+NV555Sz8zb/5M+Hll8/C+fn6cp/Yfq/YNAAZW1q0Vpk6rGrNw9wQynC1DGDn7BE7XhUbx+vtqoSdCl/HxpnzeNd4c65x6Fg3HcCW0vnMDT3nVMkeEsjODV6vGyLvXylbCzzT9/KuEDWteo2VremesGWIWo4dq3LHqoL7z22bnN9XxMb55J/5Nns8DFr7PWPjfrGrVXv13ROrZuMesm3bhjt31uH01DLFAPAs8nMqAAAA4FNjtWrC2dn6siI2XYa4DF6H1alj1XO1Stk0iNtVNTusiK3vEbur/7CiN5/HPNcNNMfC2TkVuce+7m1y7PkdMt6hFcxzAvix4/W+Y+/p/H5+bh6C5j9kGLtGfr3yRwnlDynqP6bI94AtP2f1pcrz+dWO1b5v4g9BusdldexmswoPHpyEd9+9F1544aT6nAGA20kYCwAAAHxqNE0IJyery4rYvBo2hiFjQUk8vxbidMfy0La8bnq/r+Qbjpe21Spv02vFMfJAalfANuf+MR7vMtV/KsA9pN9tsM9c5/Q9VsA993U+9Brz3ntjn5vxH0SUIekwAE0/W+WY6ePpueXXLMeoB7LNyF/cjzrv13/vpKFsk1XHbjbd3rE/+7Mvh9dfvzN8sQCAW8syxQAAAMBz7+xsHf7sn30rvPPO/XD37iYJYftwJFaklUFJrWouhHqgMwxp0xBoGD7VqluHFXnjyxOXwdKuQCm3Kwzd5/G+19jn2tftd9s0Yfm9WseuMffa+87xOM+pacLV8sIhTC8fPH+Mvj2EuGRxfnz4+c33hk3HjPe79nwe/WezX6Y4H79fXrlfuji9ny9THG9jKHtysrpcXv1Zfe8DwKeTMBYAAAB4rjVNCOfn6/Bn/sxnwjvv3A937qyvwthhZVpZkZqPU96vVfONnVN/XO41Obz2WCVfrV/yaMb9sf6HqJ2/VBB7zCBq37GOFaIeKxR9GsHuIebNK+7Fmu4LGwPMWt9yn9j0duq6aZ/4OekedyFo7Xr9e6MPZtMx8qA130M2vW7ftw9f43XT4134mrZ1feIPRvowdhM2G4sdAsCzRBgLAAAAPLdWqyb80i99Nnzxiy+E1167EzabVVitVtkyoGWVaW2J4nR54LzidbjEcB+KNsXj3u6q2GHl63hVbj+XypX2vL/r8dzQ9bYGscc+/zpBaB72Tfc7JJDdp31OeFr22fV47jiXrU2sWu37pO/zWgDb3w7HTIPT3ffz6w1v84rWPqDtw9x0TvXPcn/+atWG7TbeD2G7TStkY8V+F+B2QWy4Wq745KRbYh0AeHb4GRUAAADw3FqtQvjpn34xfOtbr4R79+LyxOWSxH1FbBqqdveHlatXRyvh6FilbLpEcRnWpvfTYLUPfobt5fHlHHP8mwxim2ue/7THrV3naZ533XPL8/cbq/Z5232N6THGfhSxe7z0RxX1z/Gc74H8+6Upzhv7UUiTLKPeL1fcBbP1fXYBgNtHGAsAAAA8105O1uHsbB02m9VVkJFWxvbBbJOFILWgJu3XBzO1UHVXIDNVDTsMYsvrjodITZia1+77+wZo4+HV7rbrXmfOOU8zLD30WnPPu+5ruKv/nLZdj69z/TD6ucv7dG1jlejlbfl5rT2O/YefweGPLsYep98d48eGbX11fr5kevodFb+zYnXsF77wIPwb/8ab4fXX78x4rQGAm2aZYgAAAOC5dP/+Sbh/fxPOz9fFssTDitfdIct4pd5+1Wn163bjDAeqVfalQc7+17+OOUHcMULB64556DnH0oTbuY/rTRt7Xea9Xk1T30s2XO6/Gg33ka2PUd6P545fP19GuTs/XVY5hLjUcfm5zpcyTveOzfuMfe+U4ey9e91/0j07U2cDAM8CYSwAAADwXPqLf/Gz4TvfeSO89tr5VVVsPZQt//ox8grYXeHt7jB1rAI2D25qt8PxkpF3tM25v2vM6wSx+7bv2+eQvkvrw7n9zrnO/rH7hp1LhMbHHLMWsvZ7t8ZQswxQY8gaP7tdYBr7dvNLx4lj155Dfr3hjzLGPpvpDyW682PYmt6GsFq1lX1mY7V+XFK9CW0bsiWKT05W4eys+5EJAHD7+fkUAAAA8Fy6d28TXn31/Cq0mFvtWq88jR13hx/7Vsp25+TLrg7HqC9RfLyq2NsY6tzGOS3tus/5ps8/bLypkPMY1537mSl/LDHVv/yhRjn+2HdM/rhepT+cy7BCdr1uwv37J+HFF0/Cev1p/KwAwLNDGAsAAAA8lzabVTg5WQ2qYstK2L6tD1jSfSRDqIUq9fCj7zMMg2p70tbD4Tygre0VW85vfE6HVMjOqYKduk7admhV7L4Vsbc1jDpkbsd8ba5zzti5x3i/7LrG+PEyJM1vx8PR+v3hjyHGrj/87A1D2+7+sJp9rNo9P5ZWxtb3ju2rY1eXe8feD9/85sNw/77FDwHgNvO/1AAAAMBz5TOfuRs+97n74c037yYVseN7xYZQC0THK9uiuZV7ZVgzPuZY8Jtfr7Yc8u5Q9piuO/6xg9hnQRPsIxtC/jrUX5Om2b3fa9mW3kZjfcu2Wt9yzv2er/nyxuU45XW6+93zHFb+5sswd+15W/8jjHSJ43AVzJ6erq/2xAYAbi9hLAAAAPBc+frXH4a/9td+Kpyfr6/2WOz2XgxXezHWKtSmqhjHA9pdFXXxvFrF3tg8htcqqwDjtStX2vP+1PlzHu8ab1/PYxC7hEPC3do5c9uuc/1955oHtjGcLEPXsX1er1qSoLUMSGP74MpNHpyOjZH27ecZLvenzecVg9S4d2x3Tnxe8bPfDj7vq1W43Cu2C3Tj/rGxOnazacLZ2TpcXGyEsQBwywljAQAAgOfCG2/cCd/61ivhZ37m5bDZDJf6LJcCLQPY4dKh+fj1QLU+l+HSpGNtcYD+tt4+vxJ3P0uFOGPjHut6z2L4tGSAeaxzDx1zmcrfPABdrrp4boVsDGpjtWt6bryff87bLASuVfIOq2TzZcn7itj0NmRLFter5QGA20IYCwAAADwX3njjTvilX3on3Lu3Cet1bZ/YeqXp1LLBeTDat1d7TwSz3W29OnUsAM7n2GRjHF4hO2Xe89zd59Ag9tB5PkuOGcgeK5xcLuQ89NrzwtHx8/OxmsuK1RiOxlC1b4/VqmNLKI+FqOPzq58f51MuWxzPGauSTQPYWoWsLBYAbrfVTU8AAAAA4BhWq27ZzpOTdRLE1ipS+2CzD0Br1arzTQexfVhSr5S96p31SSvkhtfYJwQd67Pv81wy8bkNQWyT/D3rrvscbu/55RLC5W35uSnPK9vGQ9H0szh2fv9+qX+XhMFnvx+r/l2QX7vvE/e/jkFsF8auwsnJOnzhC/fDT//0C+HkxH/qBYDbyP9CAwAAAM+0pgnh5GQVTk9X4eRkVQSxeaCRVrvWqlDTx4dXmw2rWPM5DPtPVeiWYW3tWrvmsr9Dq2KXdOzrNcXf2LFju8mw9zYEzWNzmJ7b1OexrHSfc87YONc7p1al2lSOpz8MKb8byram+AFJGtCGsF434dVXz8Prr5+HzeY2/PsCACXLFAMAAADPtNdeuxN+5Vc+H954404RxjZX1WRpiBHCWLXasGq0tjzwdDhaq24rj+eB8FgQnFfVZT1qV91xfKp917E5x5e89jEdcq30nGMt59scaaxjjXMMS82lH7dp4jLB3RLD8XHt+umx8n4I+RLDtbZ8vO5+H6CW1w6Dx/nYcb/XfLnj9Hi8Xy5TvFp1fVerJmy3bVYd2y3H3obz83V49GgTDqnqBwCWJ4wFAAAAnmlnZ6vwxS++EF544TQJYUPIA46Q3O/bL1tnXec6OcdYMNtfOw99l5hD/bpP4/xjTPo2jfE0w8/bFLYurx6KHmXkUO4LOxaejs1rPGgdPk5/jNGOXKSs4B2r7s3HHe5/vVo1YbNZqYoFgFvMMsUAAADAMy3uFXt6WlbFxn0W0wCjGQQf+e2wWnVs6eCp9jwwyatWx+ZRVr+my5nW7aqQndNeO3ZoqHPdqtNjjrvEGOlYn8bga9/3yZxq7RlXHfmszRt7bDny3T9+KD+/aQXrsF//nqj9yGNO8JpXw6ffW91fX+Wf7xvbh7GrI/5YAwA4JmEsAAAA8Exar5vwmc/cDW++eTdsNumyxHnQUi7522nCsEL2OurBaD1oKXpVquBqIfFx5nSIZz3hMf9lx1vO0wgX53wm68fm/cBhGLw2k336H2wM51IutZ4uZbxaPTv/rgDwaWOZYgAAAOCZdO/eJvz1v/6l8Oabd8Pdu5skkA1XVWSrVVqF2kyEorW9XfebT3+NWpjSFP3yUCedXxnWlCFy5cr7TXSRJYpva1XskgFVE663hPB1zz/m+EvPZa5d8xgery8hPLdf3j9+1sb6xTG6z2o7umds+hkv97RNj+XhapudW46TnhN/dNLtGxv3jp2qogcAbpLKWAAAAOCZ1DRNuHt3E+7e3STLEefha60KLR8jv51x1X1neTX+nAC4NrfDws9DU5nyvNscht7maz8PbvfrV1aL15cjXnoO04/H22tzb7LnlH6Hjf3II23fbFbhtdfOw8OHZ0JZALhlhLEAAADAM6lpQjg5WV3uFbvK9ootq2DTqrJ8GdDhnpKHVMR2t/k+sfWlkfNquPT89Pr1kPhYAesxxrztntbzel5fv6Xtft3mB5v5sV2hbO0zPlxCuHbN6R909I/LoDX9QUYZtu6eSy187Stju/b1ugnn5+vwMz/zUvjyl18I67X3JQDcJpYpBgAAAJ4pq1UTvv71h+Gtt+6G+/dPkqWJh2HrWNhxXLsqXOuVrXngMrdKdjhO/f6c/ofY5/xPSwjcLT/79M99Xlz/NZhegnj5cfMq9toJfftw+eJyjK5/07RZEFv2yytju4B2s1kJYgHgFhLGAgAAAM+U9boJ3/nO6+FLX3oxPHhwkixRXO4J2y9RvP9yxPsrK2Lz/SCHlXFpe9KSHRu50jGnfYRxPy3zua2e10D3eM9rLPyc2kM27gkb+9X7x/damx1Pv4f2CXP77602O1armI/fL3GP7NUqhM2mC2QBgNvF/zoDAAAAz5zNplueeGxp4tqSwHkQmi8BOjw+31Sg2l9juDzp9HjHChSvU536aQs1edYMPyZzfsxw7Gseds6uZYrzH5WkFf/l/tj9/bhcOwBwuwhjAQAAgGfOZrMKm82qEsTmFbLR9F6N5RLBU2FGV7GWVsDVTC0vWns8HszMDVYEMHAsuz52uz73SUt2rP49M/xhSNqnrJqth7dNsly77wIAuG2EsQAAAMAzZ73u90fslimOe8bWlvPsz5sfus43FgKnFbFjyyTPr7KrdRw7+XkIY56H5/C0PI9LFA8tUek6VrE6p/9Yhfuuz3htf+j4o4v+tqzqH1+muAtiu7auMvaYlfUAwDEIYwEAAIBnxtnZOty/fxI2m1USUDSX4cN0APG0wpxdfdKK3O5xXiG3XBB5WwKaJedxW54jz4rp4HKfH0Ec0m966fSxx2kQG8/t95BtwslJ90MVAOB22Nz0BAAAAADm+vN//u3wjW88DG+/fS+rii2D2bRSNV/acxhQHLoHZL6fY7nXYxqs1IKTOUscPwthyrMwx9vs01HVels0Tb/EeOVoOOTfY+pzPH69JjRNW6mkr8+l/x5pr46l3zfd8sRdEHv//kn4xjdeDj/4wcfhn//z9/d+PgDA8amMBQAAAJ4ZL710Gt588244O1tnS3vWlv7sLB8Wzl2udNcYtdtKz10jzb/o3p6F4FW4ye2TLlm+u1/t8XDJ4r5P/iOPzaYLZM/P19ebNABwNMJYAAAA4JmRLsG5WpWVsWWVbHfOMNi8fqhY7g+bj50vN1zfZ7Jcovg6AewxHPsaz0JweyzPawB8u57XeEXr8eyqVt9x9sHjlOFq/v1Vr+zPv++aq8rY1aoJp6ersNn4z74AcFtYphgAAAC49V555Sy8+up5eOmls2rwOuawitW4FOgueZ99A5v8vPrJh455fZ+mMPU6bldgmdtnbrf5eRANf2jSL1nc94k/UvEZBoDbQhgLAAAA3Hrf/OYr4c//+bfD/fsnYb1eVfaHzatja6arZedqiuAj3SN2WJlbr267zvX7eVyvj6Dm5s0NQI8dlN624HVsPrdtnlO6/Vz76t3h/rP9jy7aHXvX5uPGcco9Zbv9Y/PvoFgZ260ccPizAQCOy/8sAwAAALfeet2E09N1EcSmPZrB/WMVhnWhyTBYue74++9xK0Cd51kK8T6tbubfaFcAepNLIe/TN/9RSe2HICpjAeA2EcYCAAAAt95q1YTNpkn2ih1WoKYBbRlEHJJLpMFMvD9cUnjXwPvPY5kMRTBzfE8jULxNwfLTncucYHTY5za9XvOMVevH77Cyor/23ZZX4Mf9Y5ecNQCwD/+zDAAAANx6TdMkVbEhdJVgTagtS9w/Titkx8PIGOi0l3dqIVAagNRCk7HliWv9a66/fPLz5rqh2tKh3G0J/W5yHruuvczc5lavzu93W/4tp78Hxr534rE0vLVnLADcLsJYAAAA4FbrqryaLGTIA8/pfWLnGMtjxtp3h6fjSyWPBbXH3VP2pk0FXE8r/FrqOscY96YCwNsTPB7TcfLU8UGWymsP/ZyPfffVfgwCANy8zU1PAAAAAGDMF77wIPzr//qb4Z137oX1ehjEHhpgtm29f2zvj7chDVbnBMCHzKdy9nVOfk70r/3NjpGOdZvGuelr7HPNufOZP++xitZa874/ttjf8V7v+P1TOTJxnSY0TZusFqAyFgBuE2EsAAAAcGu99NJp+NrXXg7n5+skiM3DhqdRUXrda0xVq8lMlnasUPdpu5llgJcfe+Kq7fTj2rz6ZcaPE64eOsbTWe24C10HrZXq2NUqhJOTVbi42Ibt9mnMDQAYY5liAAAA4NZarZqw2ayu9ouNyxWHkAec+1SBzQl4ek1WDVseq/WfQwD7tLVh/4CxDYedt2vMpR3yPG96DhMjHTBUGtBeb9zbtaxzfUni+KOUJvs+fPjwLPzczz0Mb7119wZmCgCkhLEAAADArbZa5aFDCGEiID1u0Dkcqxkcfz73aTz+srLHOe+65gSsxw5gD3HT11/S/s9t/0D2eq/f06lyvY7xL5v4XXRysgoPHpyE8/P1U5wXAFAjjAUAAABuraZpwmq1uqqILUPZrk/tvPp4XcgSk5Z2Yn/J4bFyr9qx6w6D4rHbZ81tXKr3umPX/pa83k2OVTvnOm37HJ9jbIy+vR6S7nftecsZT3831MdL25/uZyX/QUi/t/Zq1YRn9/sGAJ4f9owFAAAAbp2zs3X4zGfuhtdfP88qY6fC0OnK1OG+oW2bn1M+nj/2dP/xMYUk8xxjz9ebtk84d+vLMsPx5jh/nOtWq15/yeLjXOsYxr86+j1l+z22l50LALCbMBYAAAC4dV5//U74j/6jL4X7908uq2KbpOqruw0hZPc79eQhVq/VgokYnDRNCG3bJnsw1udWb989h6kxl1cGmrseL3HNfY8f2ve2OXYQu2uJ5evO4ZjnHnjFtl6Zmh7vbneONDsYna56HfadV2Fbjp+fs1Roe8he2gDAcixTDAAAANw6q1UIp6ercHKyOmhf1v0Dj/FOAo1dnoVKzpty7Ndm6df6umHwMfrvGG10uN3XuU74WQtT97/WcV+Lqa+m53MvawB4NgljAQAAgFunaUJYr5ukKrbJjg0rYmuPa4FIWVE3Fo6U1bHzKl8Ho3zqg5Bj7jX6rIW+Tzu03Lcqdqmlhg+p3B3pPXNp4TQorYem9YH6Cty5lbb7GRvvmNWx5ZLo6VLuAMDtIIwFAAAAbqEugO33i833jA1hLGyYWx03DF92hSLPXrjxrIWXczwrz+lZmefSrr+k8vQPJ9pK+DpsG44xvnzx2LLEY9cfP78t2nYvmbzv0sdj+iXdn7kvLQB4LgljAQAAgFunaUK1Knas7yFq1XRz5vXpMS98WuY6x+z/tB0yv6X2ir1u/6fzWu+qaD1mxerx92ktQ9cDR7nGucPvpb6yXyALADdvc9MTAAAAAIju3t2EX/iFN8Obb9692i82hHxp4vFwoQ0hNKFtY9/ucdajnQpU8/679mOstI6f8Nwbvtbzji1xvZt0E0Hssc47ZB77LFF8vWuPB7bzxpyqgq89Hq+QHZ/fPu1TjlcdCwDcBsJYAAAA4NY4PV2Fr3zlpfDKK+dhvW6SpYnLPVz3Nx3E5sp+go2lHRKu3qZA9mmEpUuO8TTGnT/e3Gr13Xs/d/vCzr3myJGd5+1/7u4li3ddcw7fWwBwO1imGAAAALg1miaE9Xp1GcSGrDJ2zK6KtDIsKSvsYlhzSDhyO5YAPdaSs9cd57rL6B5aVXqTyxZf5/pzX5NDX9d9/p2WrM7dNdacwDJdCnj4ea3dH36e43j7VczW9p9t23YkhG0H5+2e11jbsHFsfmV7/7XUCGQB4BYQxgIAAAC3StznMAadcwPP8ZCjHvakYcfx95Gsy4Of64SXhwSih/S9yaBzHzcxz2fltUktFajOeXzgVXYMM/XDil3LGk+Pff2QvT7+db532uJ2miAWAG4HYSwAAABwizRhvW7CatVchbJXR2YEC334Uqsqq1fG7Rr/uksjH++8pxH+Xfcax6iOvU4Ilv4d27HGn3v+dSqZrxvKH/t9MHep4PryvfXP9WFz7KtJy2AzBrnDOQz7Dq8/VqUaj9Vu8+rf4fn542FF8BRBLADcHsJYAAAA4Nap79l6vHRhV8XcssaXSb2djhnWPc0ne6xQ9pjh7txxrhv2HnvMYzo8RK3dP+T8Ocfmtu2+7rz3T33/2/Flj+cQyALA7SCMBQAAAG6Vrio2/u0fKOShRVtUwfVLF+e3hzlGpV46r0NDl2KkkftzHh96nWONmY5xzAD0On/HcswgdslweE7bsd5H6ecyv99/Fmo/XsiPj+8POz/ELb830nmkx9O55VW25XfMtLTa9rDz5x0TyALAzdvc9AQAAAAAVqsQ3n33fnjttTvh5GS1Z4DQhlrVbAwk0rHatp29B+2xtG2cQz/Pvu3TqP7vdf2+t9WxK1KnxlsiIL/u/MfPv27omB4vA9KubXpp3+GywMcLuWtLDpdz2bdad84xAOD2EcYCAAAAN26zWYU/82c+Ez772fvh3r3NVUXs3MAyD1nb0LbN4Nw0AH26Yeh4oBjnUQts6+c/jXBy1xwOHePQ8Z7lQHaf1Oy6FbH7BrFzq2J39dmnSna6knzunqtzxxse6yvl86rbvCp1uGfsxNDFeXP2vB0PZPN51eZRVvmXlbqp7jvxWf3sAMDzwzLFAAAAwK2wWjVhvW72qlwtQ42xIGSsQu0YlXmVMyaWV91zpMk57htELeFpVVw+a6WA+bKz8/ofo88xr3eMax5yfn2J4uFS42Ofjfrnblel6e4Adnw55Kl51PeCnZ5DWa27z/Llte8eAOBmCWMBAACAW2G1asJq1QWxcwLZsZClrEKrHbt8dMAs69fcdex2LSs6p5Jxn6rJqfZdT3zfwPJWvZAVh8zxGEHsvv82x5rHPlWxRc9K4DjVp2wbW154+PkfHhufx/BYWc06XA65/j0z/r20+7qVWVausfu99uldCh0AbhdhLAAAAHArNE2TLU3c3e5a6na6LV/ys789fjh6WAh1e9zkpA4JL2/bi3jonG4iiD00fD9elWz+Q4k8LC0rSculeacqX8cCz/r3wPwfTkwvj5z2a4uQdRjkzplDbaz6OPnrVVsGWSALADdPGAsAAADcCl0Q2+1xuG+AUO6ZOHf54n3Gn3POIWNePqocGw+gRkbco/+hIeAhFZjHCBzHzrnpUPY6c1gyiH0ajlMlO7dafezzPfeaw0rU8YrZYQAc23eHwuPt03Msv8Pq7eMVxFOVtwDAzRLGAgAAADcuVsSmlbFDw8rWWjiShhbpUqX5kqPXSSrGw5Ty8VhlW61tKlDedy7DY8dMZm5TIBvPe5rB7HWvN/fc6wSx+/wb7RO6zzUVzNZCzvoPKGpBZvrZn1ryd85ywOV3wjCk7dvGlimeE6CW5/djt1lb+hynfpAxrJrN+wliAeB2EcYCAAAAN+rsbBXu3t2E1Wp3Rex1K1wP6T/nvLGquF39x8KYHWfPusb+bkOCc4wQcInncazAd+75NxnE7nu9fcbZf4xdy4rXlvwdWx44P29svOFcdn8+h3OonV8PiOe/t6ZC39q1LVEMALfD5qYnAAAAAHx6NU0I3/726+GLX3whvPLK+dW+sZdHs77D6rFmcKxtQ2ia/ljT9Mfi/bGAoqygm+qXjlXv217Nv96vPz6lbdvLpZuPobzmnDmM9dm3PR4LM685p9+cMW6LfebztILYuWPserzPeGXIWe6xWg9D82N92Lp7Xu3VbVnZWp/H/FB1+JdXrpbnlHOsVwKXFfxpWz722A9AyrkAADdPZSwAAABwo+7fPwkvv3waTk76/0yxa6niKWPLku63/O+8atXp6rr+vKmlUnddI54z77wlKjevE74dcvzQ695WNx3E7tP/kNd8v7B2KkRM7+/+bNWCyX7c8SrU9NrjcyjnsW8VexmI1s6fV20/bIvBcfk6CWEB4HYSxgIAAAA3ar1uwmazquwX24axMHNYkVYLVeK55b6PtWVP9wsx9g1R0rmU/cplVtNquPE5zg3ldgVl1wlvrhMM7hPIDv99b7995z2n76Gv99zQdYkgfvoHBv39vBI0bR+rlh0LJtP+tc97rbq1HHdYhV/OefgZq31uh1Wt+fMdm8/wOdX2nE2vne8/249hnWIAuA2EsQAAAMCNm7sS71S1XC202FWFVgtiho/HAqVh+/NRmLZPKLdUmHvsaz0thwTHc/of+tyP/ZpdJ8yvf17mfWbaQUi5r/Glg6dD2bHvjWF4ms91YiaDOcz5burGzX/UUZuH6lgAuH2EsQAAAMCNWq2asFo1O/dGrYcT9Wq1dDnSPKDYHQiVlbZ5ZVs96NgvzBlW7E2FzOW5Iz1H2mvH5gRqxwhk5wST+4aXbdj/nKfh0BD2GEHsIf8uh7Rd53F+LK8gHVa/jleH55/FWhA5XmlaXmP43TD2XTGsrq893+G1+nPGKndr803b2pHnMB3gxkrZ4WoDAMBNEMYCAAAAt9Ku0GEY3gyrzaYeJ0f2ms+wfff58yvWalVzhwSw+7rpcPOQ6990KHudYHjuObcliN3X7h89VM+a+FFDd3/uZ3W839g16n3KELneli4TXF5/9w8t4rnpe2kqiC4D3GHVsOJYALhdhLEAAADAjeqqt5qsgmssLJkX6NTCkvpYY6HT1DV2hR7D9lqgU7+tVcDN147cn/N413i7zpsab25geWiC1BZ/SznWdea+Foe+pksEscd4P132LELLWqVprb0MIPu2qc/w+LLltf5lVexYRWrtxx/18cpzhnvIjn3+0znV94wt3wOCWAC4rYSxAAAAwA1rRpfSrIWofSXZsCqtVjHWByvTeznuqpbLw6JhWx/89Ncbu0Y9WJm63jAcGl5//PzDHSuQnXM89rnuvMvQdN8xr3v+rnHn9Dv0+KH/Nvtcb7+xxoLVYehYO3f6WBpApssOj3++2uK8/DM7Npcy2E2OZAFrfm7+nVT/rghFn3QOte+PfCnlesgrjQWA20YYCwAAANxq+RKe4/usTlWU7g5ax/tNhSa7xrxupVr93EMH3BWq7RtY7tO+7zWOFYDWxtz1d2z7jPs0g9h9gvYpU++j/Fj5Q4KxStDa+bWQdZ957Q4/621TP/QY+8FGeW5+/ni17tjj2li1v9pzAwBunjAWAAAAuFHdMsX941qoMF5RmgYRaYXseOXb5ZmV88vrtoN+NXlQUlbD5fMcPod6IJY/p/p1y+cyvD/HnED2kJBvV2h4k6Hs07BvuDun700EsfsG+ONzHFZz5sfGQshy3No4terU8lj/WSq/I8auOwxSxz5rY6Fpf53h90L6I5N8z9m02rb2vNrs/Lzvs/hZAYDnnzAWAAAAuBHrdRPOztZhtWpCCPV1iqer2fIAa6wyrBb+XB6pXXHnvMeXDE6vXx+nHi71484fc5+Qb+rxXEuEPPuM+ayEsofMc07/2xjETqu9l3eFmrU+Uz+EqFx1cj718fKlf/PrlgFuPkYtuC2P19pqcynD19pzqv+go5zz6EsAANyQzU1PAAAAAPh0+vKXXwxf/vIL4TOfuTM4Vgsxyvtpv7LatG2b0AUUTWia7rY73h1rmq5vXpGb9puee3luek5s70OadA7dbTy/u+3nlIx21S+OWbvmyOxCHm6Xj+f0D5VzauOM9d11bJ8+tf77nLOk6yRf1w1hp44fO4idM9ZUwNpm9+thZB461oPG4R6xfZiah6NjgWd5jbJatV7dWp9nPk4+tzIg7StZd88rn0u8358/XgmsOhYAbiOVsQAAAMCNuHdvE1555Tycnq4netWDoqnqsUHvParFapV8aTizq2Jtzhzq1YHj/fPr5MFUbS673caw5pA5tcnf03ad684992kEsXNNBa/zxq59ttLAsjZeLTAtr1f/nMTbtnpsGPQO51+7ZhmkltX55fljlaz1vWTr4ezuMcsl2QGA20ZlLAAAAHAjVqsmnJysLpcpHgYVsYp1WP3WhLZtQ9Okx5rk3Cb0Va6xX1p9mvbvQ5WmGauKjWPmVazpfJukZDW2D6tY47n99Ye6a+2qup06d3j/kMdTbWGP9l3Hav3m9J06t3RoBe2xk6254x0awk4dm9te//HDdR7nlbBpYDi2Z2u+Z3I5Tq1KtaxuLW/LH1Xk3yfptafnU59X/j1Se47pHMs9XvO/MHG/nE8bttt6pWw5NwDgZqmMBQAAAG5E04QsxAxhrDKsXvE1r1rukDCiDFTmXLt+3TK42X8e/f2xPlPn73u9ZcY4ZKxjJkjtgX/Hvv7cvocev24Qexy1sDS21/rEfmOf8V2ftfLHGsNjV2eMXqv2eGz/1jIUHZN+/uuV9bXrT4W8af8y8M7DYADgdhHGAgAAADeiaZrLQLZ+fKpyLQ05yvayIi4ZsRrY9CHNWCiTBz7pOWU4k7aV444FRWWYVFYGDkOsw8Pd6cf7th0aEO8TTB47GH1a9p37rr5zjl+3vfb+2PWe2f2eKt/Lw8/GeADZt4/vFRvPK68//r1RjtkOHpfLG49V66bPoTbHMpge2+u1Ns98SfKx8/PK2vy1qP97AABPnzAWAAAAuDF9ENsHP1OhaLyf3vbnD/vXxsrHGAYYY1ln7fpTIdC8MWoBSv28Mkjqz0tPvn54dhy7xt03ZH1WQtmbeF5LBLFzzis/c8Pqzdrnozs2/MyNB531a459Hssgc/AsJr9f6sHwruvUx576Thj7YUg+Zn38YUA89l2363sFAHg6hLEAAADADcr3Wh0GNMPK0FAs+1mvSIsntaEMPvKxpgKbsaBsaknVNuszrOJL5xWK+8MQpgx35oUrS4R746/FdOi3VCh7W1KmNhw2p7n9D319rxvE7hvaD4PZ/n5/WwaY43vI5p+PYTCahq3lZysMjtW+F8rPZz7HMDpW+XyHVbPjFbLDaw73jS3HnN43dvjc4g9cBLEAcHsIYwEAAIAbMwwO6oFMH1TkS5Pm4cmw2qwWqqRBSH5suN/irsqz2nV2Bb/1QGl4jXoIO1ZtOJW87ArWaqHevknOPtcf63PINZ9mOFte75BrHiOEDQceO1YQW/vsVEYpPpfpWMNQtv4dUKuuzT8fte+D+g8g5n0vpG3lMsZTcxv/jtj1vTXePrUkcajcT1+XznZrD1kAuA2EsQAAAMCNGmYFfXhRC23ibVm5Ogws26J92FYLUOrZRW0Ow0rVXaFsPr968Do1Xm3sWng9L1DbZSyo2yfs2+d6u8afe+51Q9NjjDE25ty+hxzf999mbtsu5Xt2rIJ0KgRtR/uk7bUAdmze4z9qiNfaVS2b9+3HGtunOn2utWWI82B0eLz2fVT7fqsFt7XXtg3b7dh3EADwNG1uegIAAAAAu4OFPPho2yY0TRnONBPhZXdOvN80Xd90z9p4PPbpx0uvNzy379sdi9cuj4eQn5vf5tePc+r75/Ppr9Pfr7yqIV0Gev/HY22HtMdjYeL4oX3nuIlEap9rHhqO7zp2nXB2/z5TYWNtafE4Rj2Urf0gIw1i8wA3PycNT2tzKZ7FyHWGgWt5bm0J4XQuY8sU59W7wyWK8+feVbimAWtZHTusgH3vvUfhn/2zH4f3338cAICbJYwFAAAAbqU0eB1Wd9XCyzScjMf7ILUce+yaMfisHxuGp8Ox+zmU49SD2Dy8HTsvvVb5eKxtf8cKZMPIsTnHD+17W+wb/N7GIHbOeWVleB6O5v1rQeYwGK0FpbVj+W39hDzszM/rxxvuN5sGp2NzGOszttR5bfw0iE3nMz6PWoBbn0vbhvDRRxfhe9/7SfW1AQCeLmEsAAAAcKPyirCygqypVMA1WShRVozGStSy6rWsIs0DjSYLOuuBUF6R2/VvQ6yKjeFvWh1bKsPcPPitV8f2zyUNgON1++fd9w/ZmMephh0LRccC2V3Hpsac6pu6DQHtvsHrvucdEsJOHZsbxA6D16nHw6rRvNo1D0THK2HT8fLvgVAdPx17uH9qbQ61AHQsZK2Fnul31fgca8fGAtThX63qNVwtOZxXxoarqtl5/64AwE2wZywAAABwY9KAJn08DHtCFnaU7bUKsXLfxnKc2lzyY8NlRtO51SrS+vY269ufM7x4bZ5Tzz9tm2e/YG28be74+45znUDzpgKn61x77mtye4PYqffj9GcsPTD2+cz71M4tvwumjqXBbdq3dk56zVowO3wO+XPLr52PX1uaOb1Wfs3hD1Pi91E+Xvr9InwFgNtKZSwAAABwg/Lgo7vfL008VbGW7+kaH7fZbVntmu/jGrLrdNWmfdtwnnnFa1rVms6/XEo4FfedjVWxwyWU4/zztnSP2HjNYXVsCIdXxJaPp9rCHu27jpV9on2qXvcJofaZw7EcK9jedfy6IWytffd8ys/u1ZEkWB3eH4altYA1DyPLz38tyKx9nwyvOQw6+3AzD053VbXWKmTHq3XLtr7KNe4LOz5WXxmbV8tut+lrnoazAMBtoTIWAAAAuFFToUkZKpR9i5EG/Yb3a0ue1h/315muiqvtEVkbqw+R8uvVA+fy+QyXIk2DpNp4+wcy+4R2+4yRHps73pLB6NjfUtc7Vt9jBbFzx6i/18c/W/1tLSwdO1Z+Pmvt/TjlcsDjIWk6XjlO+Rmrfb7K51QcGRlv/LmO9a+9BuPfWenr071vx18rAOC2UBkLAAAA3IhhAFnu8djv9Zr3HdszNg0/miSw6Pd0LfdeTcObbr/ZfNx8vmWfco/Y7lp9xWp7OUYb+mrW/pqxSrY7vw1pVWu/d2wcc/j88irfJtvDduQVD8Nq2PJ51s4fayvPnXNszvGyX3Qb9ojd5Zjh9Zw++x6bG9ruPneq6rUMCct9Yuuh7O72YSiZBr5lW22MWsXr2F+5d2s5l10VsbU9sId71+bH8qrZWA3bV852lbDp/fFlk0f+qQGAp05lLAAAAHBD2uR2uJ9i7S+EWlXZrr1d28G4/Tht0m8YYIzNYdinHZxTfcbFc8yvUa9yq12jfC75dYchWXrebtcJ8fa5VjujT63/bUqZ2nD4vJYKYsfmMta2+z1Sq9bsbsc/l/Vz65/z/Jzh8sTpvMr+ZbhaO5bOuZ9DW1yjDGyHr0UthM2PDb+Dhu39fNIxhp/9NtSe167vi6nvHwDgZqiMBQAAAG7MWOiaBw7Dytfudri3at8+PK9tyz1j831p06rZNDSpVcim1y6rVmOla6ycjdWy6T6x3fX6trFrROW8u7Z0HmmFbqjuQzv9uHyewznV28bOn3Os7LOr39g5qSWrZ6+bcO0bPB/z2D7h7HTbWBVsPJaHh8OwMr1f/wFBft1aAFoLXYf9huFoPTAdBqO1ELVcLni8va3MqVZZW/+Lla99ZWy/p2y/X2ybVM3WAuD6sssAwM0QxgIAAAA3Yljd1QeVaRBbBjXpUsGdMhgdLkOchplxueJ+ieDhsXSO8Vh5nelQNgzGiUsUxxB25FUJ6RLEsS32r82ttlxx+tzKsDa9zrSxQDaMnDs15pzr7Rp/jrkJVLoM9NKOFcLuOn78IHa4H/JUEJsHnP05tcA17Ti2PHEtTE3D3XbQVo5Z3o5VwebB7DCEje3p8x2GxWPhcT/fYWjcDv7S5zD2WpTPJfXRRxfhN3/z/fDee59UXhcA4CYIYwEAAIAb0wcwbXa/U+7rmv/FcLM/N6+UHQtha2FtGV7m+U4aJPYBbJ9txrY8SE1Dmy5ALgPRsWukr0u9CjbdI7YMavvXZhg2TweyY+HrPsHrrkA2TBw/tO8hlg5h9x3/aYWwY+37BbHxnDSIrYWtZd+xwLXsU1sqOA99p/ZwHQtiQ3bdsft5lWwf+A6P10PcfI7l65DPrzy3/pzG/mr/Rl0Y+8/+2Y/D48fbAADcDsJYAAAA4EaNV371IWpZYdbdji9f3FWfpsFtv3Rwek65NHEektTG78PRWLUbb/swt72aQxoo9+Fx9uxDLQBNx+orgectV9y318bf9/FY2672MHIsPT7Vp9Z37jk34ZBwd845h4a0ywWx+WdtLHwd9i3vj++3mrbvXp64Nr/aX3/tqSrZPCitn19+P9XC07E+U8sV98sPp0sVl33i8sXb7b7/9gDATVnd9AQAAACAT6d6FVitQixWmI0HH+mYaVCUX6s2h/rein1YUw82xsYfXwZ1WK2XnF3c1oOnPNSaem5lcDbVt/rsRtr2ad91bJ8+Y+fcZOjUhsPnMfecqT67Xve57fsFseU5ZXAZ+4+9Z8v3Xxp05tccjjM2n/y29lmavvb49YffS0mP7LkNr9FWxhpW6g4rXUOhXg073h8AuI1UxgIAAAA3pBYupPebLOzYbtNK1hDSatDuWBNWq9oSxMPlissx8rCkXC44BkB59Wnali4RXAtI8iWE071w61Wo+VLHfb+xKtjhWGlFbW154lCcmz/vetsh7buOlX129Zs6b8y+lbTHTrj2GW9OeL3vsXkh7FQwm4aMZfiZh5HDKtg49li/w/daHWurVdOO9RmrUK19L+VtedVqHpB2x7rq1vI6/Xm1a6dVsWkVbF8NW1+ieKzqFwC4DVTGAgAAADdiKpAog5r0nP7cwYhZn/y88SVOy7HT8cs51EOOXVVqeUAyNY/x516GYrX5lFXC4/Oeev12t03ZFRbOGW9uv7naPf+Ofd19+h96fJ8gtt5v7L2VBqr9seE545Wsw3HLfrve7+OfmfHnN1aNPtyzdRiYjo1bzif+G+fnlZ/z2nMcC3nL5x3HHy5/DAA8O1TGAgAAADdiWFVWCyiaq70R456r/b6vZYVsVz3WVceWwUlzNV53Xr8na+yTVpLGc9K5hqLaNB0r7lGbVsyGrKI1JNdJb+OYXd90D9vLK4epKtQ4Rlo52587eMUvx99VETtnz9jauXOOpcen+pT95vS/SYekY3OD6UOOz22vB/DDAHReRezw/tSxehXtWNVreu1+7GG/WoA7/je/UrasSs0rZMcel20h2Qs2Hbe/Xn+d/txYTRsrZvf7kQoAcNNUxgIAAAA3Ziw4me5bVpD1wUUaLpVjl+OX1xlee1iNVhsrb68vEzoMo2qVuuOVebW28jnUzy2rZXc95/p19g/9dh3bp0/ZP/7dBofMZe45u17b6waxl62V9/XYeWNBbO3c8nMw9jksPwtpeznP9NrTVfXx+6HNrpE+rj33cu7D8co51J/TcC7D74Vh/9r3TZucn86hfF3ycQCA20VlLAAAAHAj8j0Vu6qvWDUa90cMoasgTStLY2Vs7J/uoVruMzsMTGOfNhsrDTH7yts8cIpVsX0VaxvSqtx4m841XFWVxnNiwJJW6O6uhE0rcuv7xKZ98mPDatm5FbJz2qba02Njx8s+U/12nVdznUraY4Zac8fa1e+Q8HteuD5cRrt83J1XBrH1+8NjZfswuBwLPOvVquk1837zbof7uQ6rXuvjj/VNH5fVrvl1Y3Vrej/vV+4Z22Z/5XdOfC3SYwDA7aEyFgAAALgxY4FGGRaV4U3ZXgY1wwq4dLxhJV65V2N+/WFINNa3FjL1x2vVsMPnVJ/nsMJ1eO36cyjnXbte+hqUc5jXFtsPCQv3HWcf7TX+jnntuX139dn32LC9vpRv+l6p3w5D1Px9n96vvZfSc8u5lOOUn8vac8nHql+vdt2peezz2sTPVP07LG8bm0c+p7YYsz5uMfOr8y8u2vD9738U/uAPPhbIAsAtozIWAAAAuBHD8KOvbI3VYF0laV+Rut02YbVqL/eGLfd4jeM0xXj5vqx5qBLDjLxCtt9TNu+b7jUbK1776tZQ7P+aXy/V7xvbn1+reE2rWuM5IQwrgssK2XTu/TXj65RXxMb+5bV3t4VK+9xjY8fH+s7pf9P2TcDmhrSHHJ8frA+D1zJ8HFa8Th1PA8LyBwLjFbLT+8TurlSt9+vH3XVb+2tHqmdre8NOh7LpPrC1yth4nbQKNq2yHdsrNvXJJxfh//6/fxg++ODxaB8A4GaojAUAAABuRBc+5Mt0pgFE7JNXmJXVovUwpT+3/hcqezCmFbnpdcs5p3NI29MAqQyB+nPi+G02XjynHy8PsdK2YXsevA6Xhy2fZxiVP4fsSDa/3e27jqXH54aYbdj/nCUdOp85/ee+dmPHhm3l+ySE4XtiGJ7W3ze1914ZbqZ98/d+/h7N51arAJ9apng8YE0/g/G5lZ/BsfPK13A4j+nPYvndNN6v/8u/B2NbDH3Lz3l5/XYwLwDg9lAZCwAAANyINHgoA4fdQWoI+V6x/eM+VOkrTmOVbFetGkJa+RrPSfdcbdsQYsFoOl5aqZpW2vZ9h4HXeBVsvM1eldDvLRvP76+ZH+/vh6Rqtzw2nM/uCtnu9Uj75PMbGmvvx5+ubJ3TZ+ycmmNU0R4z2Jo71pyQdv6xNHzM29vk+DAIrT2+TkVsGrjmQWb5w4G8vf65D4NzxkLkqfAz/4vXHq+2Hc5rV0Vs2t6HpbGiNq+sHY41Vk1bPh8A4PYTxgIAAAA3os2qwcrq2O5YCCGsVnmlWL88cT1Mqi1TnAay0+d0bd3xWt9y+eA0CG5HlikeBpV9QFsGtdkrlATE+f0ykI39++WNy0C2X/K5Nn7f5zpLFO8KVPcJZaNDQ9WbTqn2uf6cvvuFsOPttUCz1j4exM4Jamt9h+PkFbG19jIk7foMA9jhvPetlh2Gr7XvpN0hbC1cTZc0rt2WAWz/45S0MjZ9XWv/pqpiAeD2skwxAAAAcEPyAKL8u+pVtNWCkMHIO8ZKw530WN5vOH4ZZPXtw0CkNu+0f37bzSm+LuW4tfP7x2NLvtbmnE+8vlRzOf/6azwdAu4KD+cGR23Yr/9N2neuc/pO9Rk/Vv83G6ssrQextQC1Ns6wWnN8CeK837BPeW7Zfzoc3b08cdk/PT4euNbaxkLYse+nsSB26rz8b0zbhnBx0YaLi2fhMwIAn04qYwEAAIAbsd12IUJX/dWFsrFCs237ytim6StIu8rYskK2GyMWdca+sSo2ve1DkbxSNg+cyuWK82V900rbdJniYeiZL5PcV82G7Fh/m+rb8uWNQ6hXwg6XMu7vp+eUx8ceh6JKtjbOVPuuY+nxqT5j/VPHWJJ4rusEXvuEtIccH2+vh7DD92yt31SfstK1v9/3rfXb1acW0E4HpOM/6Ki1j58/dt2x8LR/nC87nF9juDRx/zj9/kuXJM7/8ueUPq+Lizb8+q//MPzhH34SPv74YuQ9AADcJJWxAAAAwI2ZClJqgUq8393WK8b6pvbqNg178jGGgVOsFsznWIZRY9V8w9AkvX79eYy/Fv3xMuiqXS89UF6rfO5l5WTtdWyLx8O2qfPzY3MCxjn9dp17nXHmjHudceb23f947TMT+0+93/rb8cB2bKxh+Jp/9sbCw9q808e1z9buufZzzudWfo7L74R8HsPP4Fhl+vT31HC54nqFbAi18LY29vjnrm3b8Id/+En4gz/4WHUsANxSKmMBAACAG7HdtuHiYptVgHVVr32Q0rYhbLddVWjT1Ctj+71lmyzA2G676zRNvu/sMNBpioCkKfqkj5vktmxLn119r9hoWF3bXp0XsorZ2JadXfRN+7Qj98cel+f2j/t9Z8eqZMu5jbXPPV7rN6f/PuMsbd9rzum/K+iutA7C97Egc07VbBm6DoP+2pjDwLYdnDPWp3Y/n0tbuV79dvh90hZzGKuA7a/dV7a2lQrYftyyMjathI3n5rdplWz9Lw1u83/TYeANANxOKmMBAACAG9GHFTFcGatWa4vH8XgtFCr3WMxva5Wn6XyG184r08rgauz8MiAaziMdpwxy6/3qlaq1x2m/smq3Nu7wdR0+xzwIKv9thnYlRO2MPrX+tzV5OvT5HN6nfP+n7d3t+Pts/Lb+Ph+Olfcvr1F/X+aPh2358sX56zA252FQWbtu7Xpx/vnnNBuhcp38OdYqd/v29Dut//7Jr5tfe+r7qZ/77u8iAOB2URkLAAAA3Ijttg1Pnmwvq2Oby31f476JIdlDtkn2j22ujjdNE5qmvRxrWBnbBRuxf9e369OGWO0ar5GfP6yI3W6bsFrFECSthO33nu2OpxWx/W2/5+v8vWLj/XrVbK1v2ONY/ji+zvk80j59W14lO9Y3bQ8jx+f22XVO6Zh7yB4r6Zo7zpyAduRIJUQfD1fL9lq/8WWJ4zn1+2UgPKciNgzau8r2XXu5Ds8t92Udu01/CFKeGytW+9u+vb43bL7nazwnrYQtK2Tr1bB9xezFRX0Z9vTfIK+cBQBuK5WxAAAAwI348MPH4Q/+4OPw8ccX1XAlhOkwpz8+DGTKtqh/XN8LMh+zq2xL28vbsSVEx8esj9OHTvXnmI9Tr9Kbeo61+Zfzq70m9SrLdnBu7fWqXGXiWNrnuslSe8S/Y81jbt/x42NVk2kleNmetvX/xtMBX/29UI5Vhq/1vmXl7Njnov5erYet6fXLMDW/ft43bS/HL+eez7Et5ldeu/a9Fc9pi3PSa5fPr6zsH74mtTnE5dgBgNtLZSwAAABwI37nd34Svve9j8LZ2Trcv39yWaXaXlXBptWwsXq1u22zxyH0oUSs8KxXzfV9+z59NWw/XpP17UOR4d6xtb5T1bBd5W9f7dqfG6t8m8vH+XmXvS7HSI+HSp+wx7H08f5twyrZsf7lsTDRp9ZvV/+bdkhwOzekHTlSBJ397VgIGyr9p0PWss8wxBwuFd73nVsRW4an02HrMMAc75Nep6y0LatVY5/pyth0H9iyurbcGzYUj8vb/lr1Y/m/Q/lvF0J/7mHvPwDgaRHGAgAAADciDU9iCLFaTQUuMYgoA9Dutgspp//665ZjN1fnp2FiLZiKSyXHIDJd9jiEPCCOYoAaQ9f0ev1147WbbIzYvxsnPTftm/YpX5M0xM3Hi9fsnlMY9EnnGK+RzzsPZfPgqL0KtyfeBVev9Txzw9wlXSf4mnvu+NKztRA2bR+GrtMB63i/8aC1NscyfE3nkI6Ttg3HGAtu02u31fmWn+t0TvWQOD8WRqqTh8FwGUaPBcdt8Xh4PA1z8wB4vDo+fb7f//7H4b33PgkffXQxmDcAcHsIYwEAAIAble+h2CSVr+mesbEqtg9sQ8jD2b5//EurX/tK1bxyNt1ntlYBWz7O95ztg8zhnGKwWoaYubbom7fFkLR2fG6F7LDfMGyth6LDtu68kMyrHsoOn+PVCJXjZZ+pfrvO22VOte4x7TP2VN96ZWt3f34IW/YfD2eHj3cFtVP3a4+HS/jOD2Knq2l33YbB9dIK2BCGFbLD5YjrlbH94+E10tvhvrHp/X51gPI9Uf7bffe774fvfveDAADcbsJYAAAA4EalIUQMWvslPmvVsn0QmIezTSUEyQPZrk9fGTrsG67a+9s8gMwDq7yiND0nD1TL0LUevo61ldWvtUB22GfYL4bbIQyD1b5PvUq2+Fe7HGMslO3/PVLdUswh7A5bDw1nd1kyeD1k/GGQmh0tDswNYdP28YC16zv9eBjE1sPRvG95rLY0cT5m/dzx42Hkuvve1uY0Vu2a359erji298sPt21Z9dpePU77jbwTiufaDt4bAMDtJYwFAAAAblQfTISrULZf1rcPX8vgtA978krW+jkxWIzXrI/Rh48hlGFiHmamgW4MPNvsnPRaZRBbLnWcXGVw3TSkza8xDGTT/sPrh6sxaoFt/jgM2uJzHy6rXAtl+3PSccrz4rm7LRXOXtd+gVgalu4adxiyDscog9OxMLUcZ04wO1YtO3W8nEc57/S8/PM6dp2pELUt+o8Hr2Nj9efnYwznN3a/DGGH3znlddMQt/Z4+O8XBto2hIuLtnoMALh9hLEAAADAjdpu23BxUS7X2VeJxdumiUsVd8Fn97i5Or5aDZccLv/icsdd3z7YzMOStMo0hDQcjZW45dLF8bZt27BadX3juTV5gNVcjXnZGvrwNoQwWjW7634YOTb+uNwPtqySTcethbJTywCPh66HBK1zU6hDQttjJ1zzxpuugu3HmRvMzg9hp4PVsaC2dm7atwxsp6pmy/Z0DlNVrOkyw/k5Y3/D89JAtL48cUj6lhWubWWM/i/vk96G7Mcn6f20Qjf990vn8tu//UH47nc/CD/84ScBALj9hLEAAADAjcrDjX5/2HqwWu7B2oeKZb9aGNNXi5bhYhw7hDSELR/ne62moezU+Ol58Zw06OwD3b4Cdvga5cfzQDjdWzaGnnFe6XLD+bLKZWVuvmxxbLscZTBWv9xx+tz712f4mtRD2SKDDCELL5vBa7GfYwer8687fF4jPWeGsOmx9N9n2DYMV2ttZShato33qc+nDF/TPnnV7PBzOXwu9UrYsXB2/Hm12djlOOXzCUmwnfdP28f71L5z8teoHek/rCROn0vZ9uMfPwr/6l99GACAZ4MwFgAAALhRFxdtePKkq45tmn6Z4r4ytrl83IWAq1VfDRtCCKtVrFhNg9xaMNJcjV2e043TXp7fV8aWj2MA2e1v2y9zHEIMTuI18n1iYzVvXz1bVrtG/TkxOK1XzZZhar1PGabGpZbLoLkMZdNzdrcN29MQtv4ckzObWp9639xNL1V8WNA7Fb72j+uhZrxurX0sJK0FtnOWKR4LYYeBab1v7dhUpWz8HM4LYut9+iV/+9taleuwMnZsyeC8Mjat3i8rXdM+ZYVsrQI2/YsrA9TeU2PBMADw7BDGAgAAADeqDz/aIggZhjYxzOzO6ytA+6CnXhEbj5dVo3nAVdvbtJ9jWYla9s2P5eOVlaLxnFpVbBrIptWztb1i0+vUqmX7a5YVq+USxMNgOK8CHi5dHJ9XOn79uabzDdm5+esWBnOo/VskR4rXd8lwdhiO7nt+PXQtH9evc4wgNp1LbX7lPPLz0hB1fB5xLuV8y+dW65OeW/v8l8+t3qctrjt8PHbueHVrG8afU/p6tMn9udcox56WjgkAPDuEsQAAAMCNurhow+PH2/DkyVhlbB+2dYFjrFaN+8bGkfq2/pxwVUkbb5umuaqCjRWyITSX99Mxm6s9YvvlkWN7P49+D9k8DO72ju2P9W29WDE7vi9sP+ZYhezwfri6ZtxXNz3Wh7J93/Lc3rCtr64d61u2l8dqx/tQtzS+1+xghJn9ljQerE2Fr+XxNPhLH5ehZ/3c+jn7VMOWj8uwNB4fX743D2/z84YVqnn7nIrY+rF5lbFp+9i4+ZjlfrDp+enj4V6w9YrYWAkbb8sQOH3t+tcmr8YFAJ4dwlgAAADgRsVQog9JyqWGmyIwyYPPqDuet8X2dNng2K87lvfrl/MNIQ0vy4CqXB44HzO/XllhGkK+z2q8zcdLK2j3rZAdPv/YL46R7/c6rJLNH8dzavu91itlw2Wla7mvbD+/PthOh8z7pPNP2/epnn0a5gewfduuEHY47vC9mreXYWqtLQ33ps4tA9XaNcfC17xP+VyHSxYP22tB7dj820Hf8vrlcxrOvRbClvOfqnZNrz9W5T9eETv+Hhne/+iji/Dee5+EDz98MjwJALi1hLEAAADAjXr8eBs++eQiPHmyCavVNmy3q6Iytq9W3W775XvL6tbVqgtAY5gbA724bHA8p7Z3bAjpnrP9krl9ZWz3OA2BY5Vtd4000EqrXLv9Yvuq1jYM95XtA56+4ref45wK2TKoTZ9D36983Aeu9eOhaOvb0yWPx/vWj5Xhc/64NkZpOnkd36t2X/stHzve3lbaao+nlzKeCmCHbWP9d4ewafBYnjN2vLw/fFyGn/058XM+Xf1aOz6vMjathE2vM1UZW9tLtqyEjcfHKmTT86b+hkssp/8mfRC83Ybwe7/3Ufi1X/t+tmc2AHD7CWMBAACAG/VHf/QohBDC3bubsNmsLpcUTitk+2AjVnWmVbAxtMyr1posXOmXGY7L99b2lu2rP/OQq39cVr/mfWLA2YeledVqH8jGILbckzWqVaf25+XVrWl7SPZeLc+Jffsq2bzvWFVsP+9eWikbx+73h6211+ZW7htbVs2G4nWsh57DSuD0uR7fVEBbu3atf962fwjb359XCZuOkx4bq36tB6392FNBbPqcyrml18znuasyth3cDkPU8jph4tjY9crq4Lx9uq0MhtOlhUMRFNeeY/3fOH0N4ioCAMCzRRgLAAAA3Kjf+72Pww9+8El47bXzcH6+DtvtKlxchLBe93vHxkrXGE7Eata0gjU+zpc47oPSWKHaV8Y2lX799eqVsSHEcLXfhzYNR9PgNVxec/ic8xBqWDkbj/VVtGFwfHg/TBzLlyWe3hc2f5yGrOOVr7srYuvHasfzvukSx+U59WPLKoPU8WPj50yFr93j6QA2bS8D0OE5tf7j1a9z+kxXyw6XIh4GoLUgdm5FbO0vr2StLQ+8a+/YfG/YWuCaV7KmfdLq2LJaNn88XJZ9+D7IK2XL5w4APHuEsQAAAMCtkC7pGYPSNBzplvDt+saAsA9Y86A29u2D2Sa7Tfd5HQZETRaK5JWx4erccu/WWhCWh7PpcsMxaGmyILevnA1XbXlla7xeCOkyx7tD2H7u8Vi6p+vw3P46c0LZdPzh3rjpfNNz8nCxf9xU+pTGQtqrM+utI7nv2DWmTAVjtX+vQwPY9NgwmO3G3zeEzdvLfvstWzwe0o5VvqbPc6q6NA9O8/77LF88Ht7WgtXy3D5MDVlbGq72Y+TfQ2XAO1yaeFz6mn/wwZPwz//5H4Uf/vDj6ZMAgFtJGAsAAADcuBhwXFy0lxWnfShbr2Ltqk6bpr28TUPXPGSJe8mm1awxJK1VxvYB6lRImy7124RhgJUvRzy1PHHxSoRhGNm11QPVfDni7vqxf0iuHSrnDK8XH6dLJ6dLF6dzGoa58fwQylA2PzYVzMY5lq9l3rc/Vtftnzu0KwA7pG/937B+/ljIWjse/13r7d2xWvuuELbW1gd/40HsrtB2LHwtxxj2mT4+nNN4qDp9my4hnN+Ohbvl/rB5pe1w/OFesHloW+5TW/47l//W3XNvwwcfPA7/9J++Z4liAHhGCWMBAACAW+HiYhuePOkC2S5kDSGELjxtmn6p4hC6MK8LbMPV/rIxsOyXM+6XHY7HumWF26uAtg9y8+WJ06Ak9ulDob5qN+4bm4aLfbiSh7/9ksN9IJsvTxyS+83V9eL56TzSpYxjCJsHq+1lmFqOHWY9jkFsfp20Txg5t2yvHSuPj/UZ6zvnnOubDmPHwrPp86fC1/7xIQHs8LyxIHPfEDbOuxb2lqHirmP1gHYsWJ3b1laC0dqyxPHzPB7S5ucOj/XVrnn4Gs/pQ97xv/R1Tf8d89e7nG8AAJ5hwlgAAADgVqgFF/n+r/mSwmmQ2gcmw2WH60sT90sD9yHIcKnh+m1fOdtVYKaVsf210mP1ythyeeJUHCMkwWh/3fx4HsKmywqnc++vF6p90wrYfAnhdB59yNuPm4e1+fl9lWr/moXs3O5YnzYNl2XOlxdOQ8XyWN/nGEHtMAHbFYrVjs8LYPvrpcdrAeqwTy2Ezc+pBalj54716Y+nY7bV9jRwjWOU7eMVsfXr5vNti/PG2/Nr1ZciHr9fC4ynA+JyueLaeeW/Z/Kvmfzb5XMGAJ5dwlgAAADgVnj8eBsePboI5+fr0DTt1ZKcXfVoCCFZvjZWyeZBXF5BG6tCuwravio1Pu4rZcPVddJK23T8+LjrFyteu6rZPmTt5hgD1vQaMdScrowdVsjGPjEAjQFvfD3icsflefH+MCRN+/XnDccZ9knb+nHTtjR4ja9/HiaX+uumbW2lrR9vOMblLLLDxw2vdoew9Q71cPbq3qBP3n9+ANvf3zfU7B9PBbfDkLZeOVseG6uMnbtc8Zzgs/usjZ+TV8jWlirO76d986rX9C/f47pWDXtx0S+7PrZXbHy9av8WcR5xDADg2SWMhf+fvT+LtSVL7/yw/1qx9z7n3CkzKwdmZmWxKlldZLHZYg9kd5Oi1HRDIyTZpiDoQYAmCGoIEiABhl78IL3YEOwHPRmGX2TDgB/9YFmQpbZlww3J3aAFscnuapPNbtZAZk1ZleMdzzl771jLDyu+tb41xY597rl5p/+POIyIFStWxI493Mr92/9vEUIIIYQQQgh56ngPXF46XFyMuHnTYxhEXLTSsDrVWs8lm88bW87zOnesnic2T3AmoVju8+q4IEq1bCnnTdVJ3joZq0Wr9NfCtTxOJ3Pzc8j1lHPKJnGZxk0SNU+11klaxGss55StU7xJxNUpWn2dKVGcX3v+WPR46XHm13ZImF4nc0nFJQK27HeshNXteuw5oZqWrX71ceUx5fGtvvm+tojN78HScsXtfel8vWPKfu2+9f65benfO3cpf+u0bPZsF9egnwfnPM7P97i4GEEIIYSQ5xfKWEIIIYQQQgghhDx1nPP43vce4MaNATdvrmEtsFpZAA7WAoCdkqoi+LxKigK6DHA5v2xKsYo0THPHaokoZZHlLyVmZX/algRtEqE6ERuO1wnbfN7XJIll7F5CNiVj0+OSMeRx6/SrCJ1wHxDH6aVkpW84l5SFLiWtjC1omVYnavWYdf9WYjbvo9Gljet9vrvvSXFI+B6Sru1t393fkq9pvSVaawHbautLWd8cR+TiXN+WoG2NkUtSxNTnfDI2b+slYg8nZNspWJ2Alfd63l6mY5Etyz7jWKdp289l/YLS1/Tw4R5/62/9BA8e7GOlAEIIIYQ8f1DGEkIIIYQQQggh5Jlgt3O4vDQYRwfnhkmilinXtAREXJRzwUobimNRHJ8nY3WCsxRfur0ttPRcsfkYeXo0nV/KFev0apmQTQlWud4yseozmZrOX6dadZpXzw0rfXvzwuo5Yesx82Prx5u3p+tENV6ZIpbx071si9k5QXoVUXtIuLb79oVqr21ewuZj1q/LWqTqMQ+J2JZYLbfL13l/f5nkbSdvy37leWvpOidx28K1116WKC7fz/W5ysfXTtzmIriVlk0/4kifHb7Yrq9FtkXIMhlLCCGEPN9QxhJCCCGEEEIIIeSZYr/32O8dxtHCGAdrg9QbxzSX6DiGVKnMCyukZGvqm+Z1FQmYxGiaMzaNoZOv5dyxIleCJE6CVISmFo2SnBWpDJWM1fPJeu9j31LIeo+ZZKxOtGoJq+eX1ePGu6TkauqbxKtI1OVJ2SR2S8mr710+P2w+HrIx6rb0HJVytyY//vFoDzA3br2vlpBlv558LfctEbD9/kvKGNcSNheEbQlbS868BHASknnSFUjJWHkf1kL2aonYMu3akqfHzRXbmju2PVdsOWdsEu/1C0HfCy1+ZQxCCCGEPP9QxhJCCCGEEEIIIeSZQgsN50yULdamEsA66RrkpIiMer7YVqo2T7np8cpjwzW1JFaaexZIgrNM1/q4T0vWOiGr70Dqm9KpWvzm/XQSFajnXU3jJer5Xeu5YnvbaUxk55THqxOveTLWq/VUqri+Zq/aysfcenwlfkbULmepyG33a6VAW8e2BWzaPixh6/2HReySssU9Udt6T/REbH6NuaDNH0tqmy9X7IuxUiK21Z4nZufGL9dbf179SSnjQ/3ylG26X6jQ93McPT788BE+/3xLIUsIIYS8AFDGEkIIIYQQQggh5JnBe4/dzk3JWA9jHMZRJ2NT+d6w1MnVfL5Y6ZPmek0p1TA/bEqMyhyxOnkq2zKGrIfEbJKl6Xok7SqPJVwTkCdh9bYIWWkP6GRsKtUs8+SW/cK+fJ7ZlAxO5YzbxwCSgG3PC1vOL9vup8fLjy/7y73JhWmZmk1jzomovnEtJe8xLJOwuahcMsZcWeJ8uyUq6zGOFbD6+KtI2Nb+cr0nbg/NCxv6hGuR96s+pp2abSdl85Srbk/HtNKv6dheMlbSsfqYVjo2JPfHsZ2I1s9lTzjvdg7f+tan+Pjjy/4AhBBCCHluoIwlhBBCCCGEEELIM4P3Ye7Y7dbh9NTBWhsTskGQ+ihOgSAAQxnfvKSwbpeUqxaxUh447QuSNZdTprmdBFSdjNVJziTJcrna2tbJ1vYxModrq9+hdVT7Upo2zQ1b9w1tZaniVj89Xistm6gTs2HbF9t5cjY/T7q2FmUp5DlpWzMvTJtHzArZqwnYsm8pSMvxe3I139cuQVz2ke3Dydh+WWItXMvz1eK2PHfrmP4yP39r2dvXWs+38xLHui0XsaWULa8v3dP0fLeea5HFInUJIYQQ8mJAGUsIIYQQQgghhJBnBu+By8sRq5XBOK6m0sQ+zhcrMlaSoKl0sYlzq6aSxiYeA+i5YJOIlfFElMj+vCxyPh+rlODN5Wu7bHE5D6z0KbfzdjT6lCLnahK2v29u+1Db0vZyX2t/r99cX9WjkLz9sZazTMjWnVrHlTJuqZxdKmZ7ErbcnpOwdR8taOvtnnztj1FL0XTtLcE7J1Pz9lZCNs1Xm4RrmZIt07NpX52O1cI0P0/dr7xP+ba+R+kxyfGEEEIIeXGgjCWEEEIIIYQQQsgzwzg6/PSnF7h1a41bt9YwxmC18rFscJKxQVZIuWFdJjiVHE4li0NfE+VuKilsVAJNHyvlikN7kriSsBUp20vG1qWJpY/34TqAVC5ZPw6Rv3kfXSq5LkkcKEsYI543rcu1pnuYSgTPS1l9TF+ypva8f+sYfdxcn17fEnlcB7odiRZp/f1z7b7RVm/PlTHuC9j8uL5cDddxnIRNx5SiVfct+wHtssTlWC2ZunRfWYq4XZq43adVrlgf3ytbXJcpTv2TRE3naT3fredXP1bnPL797Xv46KMLPHy46x9MCCGEkOcKylhCCCGEEEIIIYQ8MzgH3L27g/dhzsU8bZbEZErB+lheWERL2G+icBGJmsoSl8k6+atLDCfRqkWVLlfcT8ZqATufhPVZCeI0lyzUPn2XkmCVvmV7f70eMx+j3T/0S7LT+1S+WKPLDefnSDKvPG6+9HCvX9FLyeQ5AfY4HBq3fo7ax5T9WoI1bfclbEuuto5pidnDfWopm45N5+4JWz1Geb7D5YKXSNpj+7UlbV6GON/WKdh8nLxMceqbn6d4Jqv7pe+tPueHHz7CBx88BCGEEEJeHChjCSGEEEIIIYQQ8szhnMdu52CtwWqV5hk1xk7rPopB2afFn5Q1lrHCEtMxSYCW8i/NOZvKE6e0bRhQyheLOJXjwjJJUknESiJXJ2F7CVnpL0lgnZpN12qiDNWpYO8lTRv6iOSRY9N6LlPlMcr+sEz3N80Xm0o6637q7mXPifQP60at58elY8pULbLnRz+/+px6X73/8WgLWL+gT1+s9vensXv7WlJ2SdniOekq261jjilJrPvJdkrItuWr7tNf9oXrXEK2VUa4TMRKe52azedu1T8KGccwTm9Zku5deX/z+zGOMkY1BCGEEEKecyhjCSGEEEIIIYQQ8szhPbDfO6xWBs4NmSjJ060yv2s6LsmZPNGq53pNYxh1jBZOZQlixO32nLGlzGonYvV2SqSm9nyJbpuWqildm65NSIlU01hHJnKTcNXbKTmbtvN+6lnLriEX5Om+lAnXtK3Ftqn66NdGec6sJdt/VTPbNmJzoqwnbttitdw+XsKG9ZaILYVrPkZPvB4jYvX1tlOv+fWW5Yrra21dc3ldvQTs0mTsoUSu7+zz1fGlIC63W89l/rjKxwTsdiMuLkaMI20sIYQQ8qJBGUsIIYQQQgghhJBnDuc8zs/3AIDNZohpVWstAAdjbBSF1nqMo51SoTaOIenLcYTqqxOy9Xl12jRPyaaEqfSTZKyWlHqOV9kf5qUN8lLKK4tQlTliJSGby1fEdUnRhvPo69PlkFOKF0jXVCdjy9Srzx57LwGbH4PYL52rnIs2F6uSdE2CNj9WEEnVE7C6b7lPP4/T3nrnEczJVxm/16cvYefEaz1mS7Tq9rZYbbctKUesZerc/jkJW4rJkCSfk6CHpGpKsYbx2ttXT8TmZYdbqdd2WhYxzdqXr7Volj+duv2jP7qHb3/7Hh492tcDEUIIIeS5hjKWEEIIIYQQQgghzxxBxo6w1mIcPYYhlQkV6Zfki5lKB5soDSX5Ws8ZC+h5W7UYkaSsFpe1iMpTsmWKVCRrOCafC1aO14lYXbI4F7F5MlanU9P1aPR5Q4suF1wmY4V63DIZ6wsBC9RzzOZzwsr4+T0BdGK2vM7+sfk50uOp28syx9fPfAnZvowLx/b6Pa6Erdvq/m1he5yIbcnXsl89Rt3eTpDWyd2erE1j+ez886nW3v6yz9wx8nmTL/W19J7T+n6k5+7ycsSDBzt8/vkW9+7tQAghhJAXD8pYQgghhBBCCCGEPHNcXjr84AfneP31Ebdvr2NqMyRIHawVQWhhbUi/WqvnbvUYx7Cu554EQpLNWtOYn7GVOM3TsUIQvD6Omc8Z66cUL+K8r+XcsGVCVtolKauvo27Tc6z207KpPUlVnXzVaVrpK/eun4xtzRWbZG1YT8fLPdHH5LLYFNupT11+OJe5qT2upWfyqtWJm+Mu6dOTcf2+fSnblq9pvS1tl5Qnrrdr6dqSsrKvJ2HLZGyaK7YtQLVQlbbWnLE9iZrvy8XokkSstOtEbLktfXV6NSVk0195H1rPW34ffXat3//+Q/zO73yE/X7BC44QQgghzyWUsYQQQgghhBBCCHkmEfkxjg7jaLJkrEhQETdJjgYp6JxvJmJDUrZMu+V/Mt+rjJUEVp7Ibc8dq9O1Kd16lTlj87lZ9Rytdb/yfHmyFtmx+TgozgXkqVc9Vn6MpjcnbCv1mtr19eXnbSdj2xJTp2njVT4Br9UTr3PnK5OQcwI2bPckbP3YexK21TYnYvPxWsI09T0kYluJXN3eE7FaVOpj83FaZYznShwvScSKCC7Fbl36OBe3Sdj2n6Na0raStvu9w+WlAyGEEEJeXChjCSGEEEIIIYQQ8szinMflpYMxBsNgYK2BTsaGOWShUq4pPTqODoDNyutKWhXQadZ0Pp08lb5hzteUGHUu7y+J2nzM4xKyrTlj5ZgkoFOiVfrpxGuSlSklW84lW+4L1KlX2Zb96hFnbaGfjKvH0ueejvD1HLOCnFdv589NmaDVtCXt46Zjlwjduk9PGC8Xr2m7J28fJxnbEp7LyhXXfXOxqI+Tc6SEbE+EzrVpGRrGL0sDt0oGzydi6zSs7iOfI+WcsWUaVidiDz3XtVROsrcUuoQQQgh5MaGMJYQQQgghhBBCyDPL5aXDJ59c4tVXN1ivrSobGvanZGyaMzbJVDPJjlZCNiVng/Ss03giP2V/kKiIAjWXU+35ZYNAMgjOWI7zk1QuU7RayAKlnC3nka3bymPKdizYF7Z7idb6mLn2XOLWade0oefnTW15yrCmbVv78+pejfY4fZHaa+/PK6q3a5nbTlrW4x4jYct+bVGbS9t2ujW9r+T4w+K2J13nhaxe1mWQlyZidYliLWLLvrnwLf8OS9h+wjhsezx4sMMHHzzET396Xg9ECCGEkBcKylhCCCGEEEIIIYQ8s5yfjzg/P4cxwK1bKwyDzBPrEOSohfcp9aqTreMY7IcstcCVpCmALO2aJ2OTfA1LkbR6Ptl8nlVApEsSvpLo0wlZKW2cp17N9DiCmNSp2bRMJZl1GlZkcJ6wBeYkrE6zln3DPW3ND5tKM+vUaqLum4/Z2leOl+6jmY23ti2oSK+nk4yV9nrHUvmqt48vW7xEwh5Ky7b719u1rG31aUnJOWHanzM2JWT1djkHa1r2E7Hp+LaY7c0Zq/cfuqf186avCbh7d4u//bc/jmMRQggh5MWFMpYQQgghhBBCCCHPPM6FuRWHwU7CMggMa6X0cBKrQiorLEsRo+1yxbKepCvicTJOOGcaS/qGa8zlrCRzk5BNCVlJ8co+LVDz8+YJ2/R4WgnadExZnliXNNb7gHkpK9siUvUYiSSm5PH3JK4+ppSz+XY+dtZyUNKmfsDxUnaJhA39+h3nhNyh/bVgzc83J2BbbdcpYXXfnmQF5L11WL6Gvj35mgvalrDVcrOWr7mobSVi5ySsjNEqT9y6h+oZmH3ceixCCCGEvBxQxhJCCCGEEEIIIeSZxzlgv/dYrRyGIc2fmuaSTDJW2qVPkjBBUqa+JjtGyxKZzzUIVEm2pnLHQJCYSXCVZYsR27WQzb2NHK/njNWk623L117qdVky9urbvbYl7a195f5en7n+NVoMH8ucaM37HWr3jba6zyEBW7fnx7XGakvUuk228+NqadqStC1Bm4/fEpM9OVv+LSlZXEvacl89r6yslyJWy1ItbHUp4/I9XD+nrf3lYxpHNyX2KWQJIYSQlwHKWEIIIYQQQgghhDzz7PcO5+d7WGsmUSpleR1CsjNPWoZ9QXSk8r46tZeSm2VyMpxDpEtLluTlgVtjiTzVc9emtlRyWI6RNKxO5ko54rQEdNniND9uWtcJWDlfuC/pmnUSVvaFpcjrNGdsezs/Jr/vZco2Sel0bL5PJ23Tdi4A6xLGqaGXfF0qVI8lH9bP7Gv370vZ5fJV769labqulmCV7VrSzu9vCVa9ne+rxSuQJ1rLeZ8PlSee365lbJ1yTelXnXj13mMcRZLqPj7bzh9zfe/L+96Sxs4BDx7s8Lu/+wnu39/Ge0AIIYSQFxvKWEIIIYQQQgghhDzzjKPHdutwcuKwXluVjM0FkZQP1vOwln1DnyRp5U+EaBIrKblaCiZJwtbJWC220vyqklaVksPlUqddpX+Qn3op8nNJMjati0idS77K+PUYrf69Nn19aLS3+ucSS+Rvu4+mnKM39q7OLWMcou9u2zt6/VvXOi9g83McK2Hztrx/e7svYnuCVZ9Hv070+6fcrt8zvjl2fo29pOyhlGzeV5cjbgnRtF1K41K+5uI3fw7TPSzvR/lYRQZfXo54+HCPH/3oIS4vaWIJIYSQlwXKWEIIIYQQQgghhDzzPHiwx/n5CGMMhkGSsWE5DEH2DQMAuEnmORhj1VKnOP0kOG0lWLT4szbf1ssw92tqS4nY/rJsEwGbkq2pNLIxaSnH1ilYuYY6Jdtq14lZuQ8p+VqmXvV2utb8nKj6iSjW902na7UYzPvoksLl48ufH52iLZ+7Y8XpUg6J2tb+toBtS9dyf0u+tqVqfcycgJ3rMy9ol5Um7knYJXPIHpeMbZUl1mlXnYQN+yX9midk85RsOxnbez7ytpaU1dd7eenw27/9U3z++SW2W4pYQggh5GWCMpYQQgghhBBCCCHPPOMYxMhuF+Za1BJFzwub5nVNc7+GfQa5ANLbJkvFAsj6JWml069l2+GEbGoTeZnGTyWF66TsdESjLRDka7qOXko2pV/FGqUSy3LtZd88uapLA+cljhN5yrZMvqZzllJLb7SStVMvX/bNSyQ/OfoSNevVFHW+20cLvLl9pVjV47ak6/x2GrPVp1+eOL/OQyI2f+xzIrYlfY9LwuZiVtp6JZNTclbPDavFb16WuH7u58sTt++jcx53725x9+4OhBBCCHm5oIwlhBBCCCGEEELIc8NuF+aOHQYD721MyIZUKQC4aZ8BEJKx1lp4L8t8ntPgS9zU1wOwsFanZn1MwZZLIIlAaTsmGasTr+V2/ddKybbGyNOwIrd0Yra1L7TnSdn8WlPiNW0j65fkbNkGaFlcpmaBJFJb6dmwX78KTGzP99UmdEl54hZzwjXv1+5YNi+TrmF/a18p/MoxryJkewJW+pd9W+K1LVnTeKmMeE+o5hIUqFOwuWjNt8v0a94WtstEbEq/1olYvVx6b+dEs76WcXSLX1eEEEIIebGgjCWEEEIIIYQQQshzw3brcH4+4uRkgLX1vLA65VrPFSsSJSVidWpNp2it9ZB5W0O54DKJlydipU+SN3ru19BetyVqSRP61ctWn0SectX7RZD2ErTo9k3liMvtJFHza9Jj5e36mDwdqyVtLz1bPsZqTzwujnoN8qtMR7b3z7XXArbc7qVnH1/CtvrNida0f4l8Lccox6/3zydk8/MtWbblZ3pfI+ubtnVJ43wc5/R1Y5a5PvoaPv30Evfu7bDfszwxIYQQ8jJCGUsIIYQQQgghhJDnhrt3d7h/f4/NZpjmiw2C0Nok+YbBIIi5EFe11k998qXMHSv9BGuBcUxzxspfKZiAOlWap1/LNGq7rZ2MzeeRTY8xLVtpWedM9pj1+PncsOU6IBJNzymbrqucRzbvkyRtOVYSrLpkcZ2O1aWNa3mZC9ZSQMc91XFPgrY47+0r22qR3JKy7T7HlCs+LFjzY2pB217vS9h2enaZhBU5CmA2GRv6pCRsWWZYJ2XLNknISkI1zRmr9z1OeeJc6Mp17fcO3/rWp/jhDx/Fx0gIIYSQlwvKWEIIIYQQQgghhDxXBLHisNs5rNcWxqSyopKG1WV5hyHtq5e50AzJWp+lbq2V+WgxpebyNhE1IZFbJ2RlPN0m6VqdwG0nYdOcs+k8aY7ZPM0qbXlSt+7TWsfM9tI+S9pb+8r9vT513zo9e8W6xLPUAm0uDVkeOydfw3Zb5payL1+2RGF+vjmB2Be17VSsXu+L13QuKTl8WMTmf/l4rbRrLm7zFKzsk/by+JSM1SJWt/XvUUuU9xLD6fwffXSBTz+9xP37O4pYQggh5CWGMpYQQgghhBBCCCHPHdutwzCMWK9DqlUSsiJgtcSStFsQn8jELZCnRzHNETuOfkrG9gRKXdIXQJS0eo5Vkbj5vKtBAgdpqqVwnYiVa5Tyy1q6ymMMc+fWc8WW7a0+dVK2nYQtyxPLtlxfOq5OzErytUzNpj4mezzpPuk2/fjz9rTvyQmvnoBtCddWfy3x+vvb8jWsLxWwS8oXzyVh0xgtQdsSoYfSsksSsvpHEuX+MgnbSsz25pFtzR1bylhJy/buX4m+H7mI1dcGfPe79/CHf3i3PQghhBBCXhooYwkhhBBCCCGEEPJc4T3w8OEeu53DZjMACDJ2GGwUrsY4GBNEbSlfU59axqa2JEjDdpqX1jWmfUxlgtN2StAaWAsgplx9FKt2qpCcb+s+eUJX0rRJkOZz5krKNiRxUbWX60mCikwzhdRM+0vZqkWrenbic6QFa94u16CFbHou5Lx6fxwlE+71Pn3vH5+2NO2dt91WC9RWn1y66vX6GpYL11a/voSVMXoStp7btS1Vgb6wbQnZdopWi9dS0PbKE/ekbJ6YLUVsmYhtMV+eOL9fMqbIX0IIIYQQylhCCCGEEEIIIYQ8dzx8OOLy0uGVVxyGARhHC8BhGIJMHEdAhImIoVa5Yj1HK5AkbEq4AnlqNc3HGsRLkpetMsVBxOqxEMVqq1xxKGkcxpbSxknO6jQtsn1l+WEtYQFM8rVVYjhJVr1vTsrm27pNH6fHKsVsfkw9Xmt/6teStNmRM8L2GJaItJZ0bR2bb/fla9iuBW4pUvN9tVCdO/awhM3Fak/QttOweV/5cUI/9VofW/bRZYpr+bpUypYiNklT2V8+F737mUvqdnniIGMdSxMTQgghBABlLCGEEEIIIYQQQp5TvAcuL0cAHsNg4b2FtQ4hfRrkbBCpITm73xsMA1SyVIsSN4lESdNiKlOcesi2llZJ5va3U3tdprgsV5z6mEIWt/7y+W7LuXJ16eGyRLEuOZzvS8dpiTpfwhiQeW11Yjbco/xc8ryFvkat+2If4mMQtBzW0qwlZmuRuiQpe1iczQnaUri2+i8Rr2m9J20fLxXbl7K9JGy+71BJ4p6E1cuWdJ2XsX3pWiZle4I2JFV9sWwL9f599Y19dRL3hz98iO985z4+/fQShBBCCCGUsYQQQgghhBBCCHku8d5jt3NxjldjHMbRTOWCU5JVUqmpzHASQ7nE1KWMw3FpvlcRSDIPq6zXidg0Pyy6ZYpzIZaSsbpPXyCmvmUiVsbOU7WyH+o4dPZh5jgc2dZv1/PNto/Lj09yd67vHNeXUGwL2WXyNbTNC9he+5LUZlvClgI19Wnv76Vo6xRo3V6XMq5f77WA7ZUrPpykrUWtTqfKMbW01feivr8t2vc//xtHj+3W4bPPtviTP3kwPyAhhBBCXhooYwkhhBBCCCGEEPJc4hxw9+4Om43FZjPAOTulLUMqVkRn6GuQUp8hIWuMQ0jQApKiBSy8r1OoQC1epA1IfWQOWH1M2aaTnHIuaddpU0niHpOITaWJfTZmOx3bTr+mssyI+3WyNU/25uWXdWJW9olc1o87rafkbHnfUl9TiLJ+35K5csY9Dkm5Q/18saMvaHviNew7Rr622urXaV16WPbNydqeqNUp1yVlinsSVsvYQ3PG1vPA1glZ3UeXItZ/PRE7d5/7ZZnTNfzkJxf4vd/7GA8f7kEIIYQQIlDGEkIIIYQQQggh5Lllt/MwxmO/d1OK1U7zNSa5mCdhU/lfKQ0c5mg1MekaxIpRqdaQVi2TgZKSLY/Tc8ameWHTusx7CmjxpZOsPutbtiNLm9ZtQbL2Uq6H068iaVv7k6BNIreUi2mc9PjyUsZa1pbnyqkTtNJeCtr6OGC5WO1xOC3Z7tAWsL65P1/v9WkJ1zDmYZF4qFzxvKQt9/XEbpleLY/pidgkdeeEbesc6OxPc8K2xG1PxM6Ti9jysY2jx4MHO9y9u8VHH1089uuOEEIIIS8WlLGEEEIIIYQQQgh5rnHO49GjPfb7YZKjHpJ4lZSstWYqL+xUQlYEoYX3DsMQ1kOSVeaezZelzCmXOj3qPSbRKwKzXpZ9yzQu0EvIzs8Xq9O45Zit7bo9T77W6dgkboVeYlYkLlC2p2Na++ptLXPbtuu6JGzJ3Hj5Pt9oK/vVfQ4J2VKA5vtq+Voee0jQlqlPvd6SsYfae4K2J2N72ykdmydlZd7XlnCVZKzMCavniC2fh/L927o3wPxjcM7j88+3+O/+ux/j/HykiCWEEEJIBWUsIYQQQgghhBBCnmu8D/M0GmMwjh7W+rg0Ji+VWs4dq5OyxpiYcA1JWR/lriRgRQQG8aPnlpX9qdRvEltGSR0DFKlZkZGSwpXt1LeXji1TrqktjYtO33w9Cc52WvbQtk7B5v10+jVvV8+gGkMfV4vOum2u//XSkq7tfe3+ZZ9DAjat96WhbpubP3ZO3Jb72/taQlK3t/fPS8z8+Na2fq+VcrY8l0hYPSdsaivvXzsRW0v+/LGWfeXa9nuHhw/32G5dPSghhBBCXnooYwkhhBBCCCGEEPJcM47A/fsj9nuPzcbGsqcAJsET0q7WuqmMcJCjQRKW88amZKy1BsY4lUIVsVqWGRaJY2MyM4wRRKqkY1tzx4brSOlX6VemZ2XM9hyy7UStnGNJMracKza0B8HbS8v2luUcsXlCNkmwvFyxyYRXS6yWsna6808sDdujfZ6e3Cu329I1bc+nX/O2vP+ccJXt+pilMrYlVNNYbeFat83NHdubM7aVlJW2lJDNk7HlXLH5/T6cMC4fm15P5wrr+72LKVxCCCGEkBaUsYQQQgghhBBCCHkh2O99LBO6WlmVjA2WRMqUOhek6zAEkTeOutyvpGYx9ZW5Y1M6FsA0ruxDTNDKOKGfmZKzPiZow7GpxK+1dfo1T6iiSOTm6VmdVE370ny45f5ULjhPx4qcnq5Q7Zvbrtva45R9D+1r7e/1W3LMdVFKvWLvgqRlSwL25KA+fq7tahK23J/3bZUqPiRfgXx+5rAMx5SidU7Q5vI1b5Oka5mQ1ZK2FLZL7nV9n+vnrZbHHrudww9/+BCffbbNfgRCCCGEEKKhjCWEEEIIIYQQQsgLwW7n8dlnO9y+7bFeazmIKeUqctVgGBz2e0DmlA3zxgJB1vi4nZKcqT0JTJlPNkmcPBkb2lMitp0YLROqIlXrVGsSsL35YpME9vGx6/2hrUzA6rlWl8wV2587Vq5fz+uq+6b71ErIliWT8/uTe03TaK9lWJkUXsqSlKO8Lg4dW17fIfHa7jMvFkuB2jtuvkxxX7oC6ccEvQRs6FNL2KvK2L6UTeNJIlWnYMvj1Z1cJGLTPagfo74e5zwuLkb83u99gnv3diCEEEII6UEZSwghhBBCCCGEkBcK59IcsgAm+YooKMfRwXs7pUgdjLEqEVtKJRGYSYKWc7fWUjQdnydiocZAQ3DqZGsaU2SutKV9IlW1nBUpm1KwIlhlv0gpudZ8O60DiCI2T9UCdVo2tGmBrcsT67HCerofad0X+9J+fb/kvO32nCTfllrZwxZ2TtTOiddyu5ea1ZL3kIDV48zLxatI2HLbV2PNlSRut7XLEWthe1jGailby1h9jb3n4tC9S48vfxxyjnH0+O537+Ozzy5xeTmCEEIIIWQOylhCCCGEEEIIIYS8UIyjx3Y7xjRsKAUsc7da7Pcew+AwjinVaUxIxxoT0q4pWepjqeHcnYmQRSFD86Sp7NfSFhD5Y6L80WWFRbBKOeJQ/liuqSxTnNDXLfPUyrXJNYsQPSRl9XouWFPqVRKtuk95PWVCNhe96ZgkVsukcS7HZJz0HLTaWxyWrIcoU5b9fS1hO1eKOI13qH1OuJaidmnZ4lqwtvfpuVfn5Kvu258jtpeIzUsQJ0FbS9kyBZvL2PZ9P3QPy/vXWso8sd/+9j385CfnIIQQQgg5BGUsIYQQQgghhBBCXih2O4eHD0VYiiw0k9B0k6gM5YpT4jOUKzYmlSe2FlHOhm0PY0JMVZcyBtwkfFOKtS5TnCdiwzmgxq7LFev1UjSW5YfLMsVJFJf90jlLOayTu+V6ul5dTjmVMZZzyf0Oyzwh25Oz+phyLC3SSlGrH2PZd47yXi497vAxffGXb/eTmj1pu3zu2FxGzknWer/P2tui9tg5Y9vCVqdj8759AVuWJdZzxMr2nIidv3c+69cupRzO9e1v38OHH57j3r0tCCGEEEKWQBlLCCGEEEIIIYSQF4pxDOnYzcZhtTJYrQyMsVHkjKOf+oVlkKwe4whVJliWUNt5yjRIVBPLrBojKdaQdJWxZQxJq6bSu2XJ2XB8ELtSarjelqUWrDJ23jecQ8tZPSesLitsoqFMEltLw3x/LlZF3CbS+On49Hjr8sR6HNk2lTTFbLp1+eSwV5Gv+hp6x7fae/I13z5GGub9+ynPtoRNbfn+Urjq9bpPS8jWAjNPwYZz53L2+Lli6/a0PXdP8/veuqdz9wrxc2O/9/jww3N897v324MTQgghhDSgjCWEEEIIIYQQQsgLycXFiP0+WKDNRqSljbJUErOCrA9DmmtWkrKSfvXeYBjkOAPn9Haap1ZEZUjgyvhJTLaXfjpHmitW95Ht+i+VH5a+rT+5rrk22dbtZapXl10u+7eW9Xqe3M375KlaTS1njWp/LMN6FFr4tdvbffsytk5mlu2H5Wt+jlKqyjE9WdsTsEBbtgKIP0Jo7S/ngW3tLyVsr1yxpF+1hA0/rLhaWeL+PamvVcvg7373Pr797Xu4e5eJWEIIIYQcB2UsIYQQQgghhBBCXkhE2Oz3QaSuVh5Amit2HEXQ+riekq0inLSEDMJWUn46kSrzuuZJVRP3AYiitU42SqnftF+36e16zli9RNGWxpYyyu2+rXV09rX2H9Om2w/ta+2f69uiPn55meL2jn7isj42F6tl/56ArY8/RsJqQVoeU/ev+9aCtp+EBfL5lFNCtT/faqu9TsEiE63peFnX+/J73n9OyntZ3/NczIb1/d7h4mLEZ59t8eGHnCOWEEIIIcdDGUsIIYQQQgghhJAXEueC3Ly4cFG2rlZ22pcvg3wxqk3miJXSv3bqE8RuSM+a6Rxm6pOSsc4Bw4BYdjgJJUnk9hKySepKqV6drO2lX8u5amWZz+96OBE7n5At54X1xb48Mav7l+NNa6pkci1JdYK2tb/dfkjuXpW2OM16zMjW9v4wblvYLps79pB8le1e/2UJWZGu9bEtQVvK13BsX8r2JGw7IZuP27qH5b1emiKu5XA4z49+9Aj/w//wES4vRxBCCCGEXAXKWEIIIYQQQgghhLyweJ8SsPu9B+AmkeoxDEHujKOPc7uOIwDIHJRpPtgyIetckIXWBmkqydiwHc7tnKRhRSBJ+WPpo5OyJlvqfTJHrN6XL+V6UIyDRn8cWMcR+9Jj0KWC6/levbq2vD3RMq2l9ZxLyfaOuX76MnaJfAXSfar7tUvp9o45XJY47Uv925L2UGliLWXbwlb3y8VtuzxxX+L2U7O6Xd/L3n0vn5PymNZ9lOVu53D37haffnqJe/d2jXEIIYQQQpZBGUsIIYQQQgghhJAXmstLj93Ow9oR63VIpg6Dh0hWkTwiSyUtOwySTA2p1yBWQ0I2lCGWNhf7SBpXyhdLGlaEZRJKQEq/1knZcq5YoN5uzSHbGucqc8YuWV+yXLYvSeVeqlb6LEvHPjn6IjaudfvqPrkw1Ou+0ZYf05Ktve2erG1JV91vXszOtfWSsXlbS9C2krFlSlZfV/s+9e9l6z72rnscPT777BJ/42/8GNstE7GEEEIIeTwoYwkhhBBCCCGEEPLC4xyw2wXRslo5AHZKzHpY6yaxGdpE0gIpxZrK/vpKKlqbkqlpDlk5cxKN5b5QjhjQgkjStGWbCFa9LUud0M2XKZkrpY/La6rXMW2n9SB2DydkE+UxyPrq5KxI6Ryj9uXH1rT6Phly2edn9rX7HhKwur0UrK22x5Wwuu8h+QosKVOsf9iA7JySeK2lrF72pWxLEM/f//qe90Rsfp2Iafn93mG7HadEPSGEEELI1aGMJYQQQgghhBBCyEvBxYXDMIS5XIN0FQEU9ovQS2LVqKWdhKyD9wbDkOaaBZKslfFayVj5ayVFpV2OK9ta23OJ2HLZTsSaSi5fV0J26b56XcvhWrCmJK3gs3v4pKnP0ZJ+7WtpidW03kpxtqXiMYnPcn8tYXNR25szVotQEa29+WBzKevjMX0JG/qMY0vGppLHS+7zUnndE8rjGM652znsdg6EEEIIIdcBZSwhhBBCCCGEEPKEOX3jFKdvngIGMOH/LUPkAXwexPNFm0iU4DTgRge3czj/8Bx+ZKpL4xyw3To456e5Y8vSv6Hc8H5vMAw6GStpzzgSANuVnnO0pGdYplK8Om0r+yT1GvqISDVTujckYNMSaCVlSwGb2gARdjpFm1KsaV9Y+nhd4fF7dR/y1Gx+nB4LQDbnbBpHyMdLQrC8x1rK1eWNjyV/z8xJ3rZ0zcdoC8TDpYp1+1IB2zumFLJLJSxwbCK2LWj1dr5e9vHVseW9WnrP8seeL+vrDtvj6LHdjvje9+7j88+3KuFOCCGEEHJ1KGMJIYQQQgghhJAnzI13b+D1P/c6jA3zg0Y/1PNEpWTV6+VSZIZLf27rsLu/w+XHlxhHzneo8d7j4mLEamWxWtkoaEQkBpkp87gG0Shzx4ZlOGYYgCCJfEzNjmOeVK3Pnc51aBmuJRe0mlbStegBY3xW0ljapLRxLWXT+bSU1eJUjkmCVSdrRW6LqE3tWtamNsTHVj4P8uYQ0Vs+9rwp9dX3edpq3ZwrUUrWel9r21f7y+srZWFYb8nXeeEqy7ytl4jN983NGZtKDvclbEu6tuSsLjncK0dcy9hD97onYvP2+dSvn8oTOzx6tMfv//7nePRoX5+cEEIIIeQKUMYSQgghhBBCCCFX4NbP3sLN927C2CBXY3qvIVpP3zjF+ua6am+iRaxKv+rka1fKurDtNg7DZsDrf/51+L1v9vcuHOP2DuN2xMPvP4R/SeZG9N7COeDiYsR6nQsbaw2cM4WURZSSgIsliqVkcZCeHoCdZKWdhGQYQ4RVmne2Xsr+JGHzPuH6TBxXp2Lnkrgy/6w+97Fli2WfiNM5MZs/rraclWP1Y497VKq23peeJ/1GSine/n0ox2ix5Pi6X1sEtrd70jCNc0i+ttqWliTW60vkbClEtVgNy3CMTreWy3ZCtp2IDb8bSWWJH/d+lvdE1nMBG5b7fZgj9h/8g7v47LNLbLf8EQshhBBCrg/KWEIIIYQQQgghpIdBJk+N2rjx9g186c98CWYwuZCdjjm2HLFPNYmzZSsZC0ziFarNJxlrvYU/9Xjl1iuZeNXpWT96uNFhvBixf7TH+U/O+ynaF8rRhifFOY/dLjxeSb7KOmCx3zt4b2GtA2Bi2V9jLKREsRwzjm6SuEEgjqPPUq2CPJW9MsV6PU/EpoRqa4x07nIJlYxNAjRIYpG5aCRk89LDeQI2l9P1/nSPyxdOXfI4idVWmeL0WE11/3r3tU1Z5vgQ7U69Y+v2fgnisL1MIur9h0sQH5K0x0nYvE8/CbtMvtbbvYRsS8I+zj2Uc+v1WsgGEXt5OeKDDx7gk08u6wsghBBCCHkMKGMJIYQQQgghhJAGdm3x1l9+C5tXNjBDLluNMdi8usHq5iprA3C4BLHg6/VyHlhgRsZqCTutx6WIWqe2p6UuaTy4AcNmwOrGCm/+yptwowtzzHoEWbt3cHuHRz96hO1n26vfzGcQ74FxFFm6h3NDJlMBYBhk20zbIgUtvA+p2GEwk7QFADe9DhycM/A+SFprQ1njlGrVJXjTUq8H2amlqCn2pwRtkqKSvvVTIhYHE7GlFG5tz69radxO/ep+9b78eKGVom3vr0njCo/za4K2HIx7u+JwThbW4+brpVTN+y8VtL1yxT1BKWPMiVcAB5Owoc+xydhcsPbv7XIJqx+zXFN5bePosN97/P2//zl+8pNz3Lu3q09KCCGEEPKYUMYSQgghhBBCCHnpMYOBXdusbTgdcPMrN3H6+insygbhqud8bQlY6DKrfTLpoFaNN7WQVetmSjTG9qKf8Snx6CECz8PY6Tg39ZlkLHx67MNmCHJkTKlZtw1/27tb7B+k+ROj9B0fR3I9bUwUMrsdYG0QqcPgATisViEhK2JWlkEM5slYkYV6flYtLEOflDhN87aGfVKe2LmUcg1lkoEglPISwCJYw3mCrJRyxCEBiyopm14ssm4gskquS86VkrJ5wjWVSZZ1IHsBV4lYLZDr5KxI57Sux0AcK+3Ln7veW02P+zjMSdi0f14g5tvzqde8rde/LWV7SdB6/6GyxLq9vb+dLq239TgtOZsnYvv3sLxHZZ/+fcn3548/nH+7dbi8dPj44wt8+OF5fWJCCCGEkGuAMpYQQgghhBBCyEvPnT91B2/+6ptBtqq/zasb2JUNZYiBvBTxtI24WovZiEgBSQbC5A7HI0pYvc97n7anPsaH7VZi1vtivyzdNL5T7SolK2I1K2k8eriTkJR97Rdfw/j1Mcw/6zzGbShtfO8f3nvOhSymBKvH5aXHfr+H9x6rVbCdq1V4bCH9mpbOmUk+mZiWlTlmgxS1U7LVwlo/HWeyPiIMh0HmqAWs9XG+WhGyxhhY207GJrGryw7r8sN5n7k2IG8P23q9TMQGodtLzrb65PvqtnK9vy0yud3nEGX/Q9K1pBSsvTFyYVgL17ReytM0dku8yvYhOVvvz4WqHielXnX7svLEraTsofLEckz7ntb3bO7ezd+j8trD3LQhEevwR390D9/97n08erQHIYQQQsiTgjKWEEIIIYQQQsjLgwE2d6ayw9M2AJy9eYazt87i/K86AdudB7aSRG0j5L1H8rTTinZJHvDG54JWxKoxsW8UrXpdjvVJ2GopG5fw2bm15I1pW0ypWePhTbhm6yy8Dcna4WxIMvZyhBkM1rfWcHuXyV+3c8+doPXeRAm133sADuMY5oYVMTuODsaEpKxIy5D+A9L8qZJOTWI0l5H5PK6AmdKwIqpkbtpwXJJNKcUKpESstfJCkkRsSsjmCVh02/pJ2DrlKteQXut6n7xmgVReWd+bfHzdltb1mMjGTs+VFrJlW/uYkmPla3muJWMuSXL22mspe5yErdfbglL360nX8NoKfXWZX1keErPtRGx+Pe372b9/5f0o70H5OPW17Pce9+/vMI4Ou53D3btb3L37YpVgJ4QQQsizB2UsIYQQQgghhJCXhuF0wHv/9Hs4ee0Edm2DMJMyvScDYPPka5mCzWRsiW73utlU7T6thD4+ySxpF1kaE7OqhLHxhUD1eR/jpvHKuWNtkrSSlvXOx9LFOjELh1jOOP6tQh+7tlidrbC5vYlzy47bEePFiEc/eoTLjy+PfGaePpJ2BUbspmkjV6tQingYRMgGoeOcxWolydeUjA3LIH/yFKyZ5o5NiVjv7WwyVsSqlRLTMHGO2LDUIjUt64SsTsDWbUCaXzZPv/aSs2lf3jafmtXLVt/efhHDrd869BOx6foel1Y6M+2ba+vJ1npfT7qm5bEJ2cMitpaxrdSsiNQwvl7OzRlbyte0nZ+7vnf1jkMSuydhAVTX65zHRx9d4G/+zQ8xjuFa9nvXvhhCCCGEkGuEMpYQQgghhBBCyAvNyesn2NzeACbI2JPXTrB5ZVOnYEXEAnkidtoOixkZqyn7iDAwSaBmu80kU4skLAzqNOzUP6ZhJezoVR+LPA0ruNRXjtPJ2PjY3SR+p0Sw3A9vgpS1CIlZWMCPHmZvYFZTaedXNpnI3T/cP1dJ2SBcg6TxPghZ791UjthOJYNTOlaOSZI1tfckZBKiucwMwtXHuWPT3Jsmjg2IgErzwdZzxvp4vF6GY1ObyNYwThpbi9qUXK3nl5VrTonYVmo29JFzL503Nq2HsfLt1Ke8v/EI9Zo+1svO+NdGH99oa233Eq9pjFLAttpykVqOW4tW6deXsm1Ru6RE8XwyttendS/nJez8PWk/hrzdY7dz+OijC3z88QXOz/cx7UsIIYQQ8kVAGUsIIYQQQggh5IXmjb/wBl7/R16PslDmgDXW5NJVJ191Mla4atAu85yF+BSZpFKv2TF6qdaz/kqoxjStrE/p1+Y8srJ0+XaWkC3W47yy45SoHUOi1q4s/MZjdboKpYu/4uC2DuPliLt//y72z9F8jLudi8/RauVgDFSpYpnvMqRjvQfGMUhBnYwNy5SIdS7MLSttIcGakrKhTLGJqVhrEeeMlbLFes5YKW2cJ2LzZKsWUnliNu2TMsdyzXo+WUmjtuaNba1fZXmoben2ofbroi1pfbO9J1z1Pi105wSjHmNuu5eW7UlXOc8xArYvY9vJWClpnB5733T3ZfYSCasfb74cR48HD3b4W3/rJ3j0aN95HgkhhBBCnhyUsYQQQgghhJBr5733buL9929nX+Br6i9cW19SLymz2P/y9+7dLX7wg4dP5PGRZ5PhbMDtr90OsnVIc77efPsmhtMhtkUJq2UsUK3HNm1hj5E98rI2yERrTL/KPu+zBGw2D6ykXo0a74CozdqMEsA+tWfzyRqflzqexJ3cI+/UupmkS7m0k6y1U191r09/5hTjxQjvPNylw/bzZ3t+RmstvPdRvA5DSMgOg8hWgxAxDp9tQbJikquAlA4uxVEuQUthKp+V6bOwTIHqtG0uRFOaVkoY63NKUraVxpV9On2rk7tybdJezi8bBHBKrcp+fd3TI4z3Iolj3abvQfq812ldkcNp2+PQvy3lPTxMKQ5nenb2tf49y7d9ta8nYMu2tpBd9u9l2U8k6SH5Kn3n/u1tzRGrjy/vS33Pem3L7lVbxCIm3L///Ye4e3eL7dZRxBJCCCHkqUAZSwghhBBCCLl2/vSffg3/0r/0fkxhyRf3ifqL4/oLXSghgimJlv/J/I37fVjudg7j6LDdOvzDf3iXMvYlY3Nng3f+yjtYna2CfLUmL0VcJGEPSdiwMI+diI3lgn1jn1dzW+q2sj/q9Gw1p6xOxeo5aH06Vidko5B1aZ5ZnZTN1iUhO0zSdQj7nHWhfUrKutHBDCaULrYGdmNx+/3b8KPHuB2x/XyL7d1t9dieJZKMHTGOHsAe42hjOV8AMRUb1kOUehgAwE9pU0nGWgxDEkaSQJUSqUFIWpVENfEzUK+nNG0uXMv1VCo43x+uJ8lJ3Rauo/5rtUub3pfWwy8G5tOwuaxdnorNx673tyh/DHTci07LwP7+XlstEfV2T9guS8PW8jWJyNZ+va9Oysq8qoekrPw7HI7pzwer981x7P3rCevy8en5bMfRY7t1+Ht/71N89tmz/SMQQgghhLzYUMYSQgghhBBCjuIv/sU38bWv3cYgyTejv2QPfd5//zZu3FjBNL4lb30hPJe4kS95W1JWZOxqJUsD5yzWa4ef/dlb+Kt/9d3i+CBuLy9H/OEf3sXl5fgF3jly3Rhr8NovvYbNnQ3s2mJ9e43N7bBu16EUscwD2yxJrGWslq6VDDrOxkYJoYWuV+N6dOeOjSWHdcnicl+0EGn8mHxFSr1m6z7vlyVjrUrIIiRhjTcx6SrrWbniaRt2ejxTMtZYEwTtkFK1xiY5i1cQ5awbHXZ3d9jd3x11f78o8oSsgzFjliYUQrrUTFI2SNgwZ6v0NVOqNpQmTvLVTjLUZVUERL6KKJXPyp5oFXGrZWu4jvYxvba2eNWJXJ2KbUtbWZf+c3I2redz0Jb7wz2r9+VjxC21nuaxvSr1sW2J2msrhWQpUMtj5uRrub1ExvYEbE+8Ajox66OoDYKz9+90W+QeujftfcdJ2PRY8muT/33wve/dxyefXOL8nP/WE0IIIeTpQhlLCCGEEEII6dL60vzP/bnX8eu//jY2GwtrTVG6s/1l+ZIvT9OXqOUy7BsGPVdjT8paOOexXnucnKzwMz9zhnH02O8d9nuHcQwi9sGDPf74jx9gu62/oH2cL+7JF4tZGbzyC6/g5pdvYnW2gh1smBfWhESslNbNkrAiYhvytUrHZiebuZDiNVMmXeV4LWmjhM3dUfs8/sB6IVqrfR0hW/3p+zGJVknLtkoXe+9hjQU84IwLfa1PpY0tkoydSh2vV2sMJwPcPswp+3B8+EzK2CAezfQDjn0mqOSzTvDewlo3SVhMP1SRssZ+SsxKX0DkqzEOujQvkJKq0ldkqe7Tkp66hHF5TP1XlyvO2+qSyPElHcfOx9Dlicv94RgTxaC+trKks5an+phynz5P/pmdp2ev8/O8N1ZPuObbfck4J1+lrS1pl6Zhe/v6Mra3X0tY3Vek7JL71e5z/P1pPVYtYsfR40/+5AF++MNHhy+EEEIIIeQJQxlLCCGEEEIIafLlL9/Eb/3W17DZWAyDnVJWBj/3c3fwyiubKB60mNBf2GuWSFjZVyZttHyV/WVadhwdnAtL78MccWHbYBw91msbZexqZbHZDPjN33wH2+049fXY7Tx2uxHbbZhf7qOPLr6oW02uwJu/+iZuffUWbr13C6ubKwzrAeVcpVVJ4kYiVpZxXtiedO21zwnU6GQnmVSmYHt4dT2oZU8cxyMvW6zKGPfKFJepWCAI07j0CPO+eiSh6n2Wlo0JWT/NEeuUoJ1KGHvnYcbQJqWMpY8bHNzo4NYON969gc0rG7idg9s5nP/kHO7SLbtPXxDDMADwUwl0wPs9Npth+iwa1Nyy4X6Oo5k+lwxWq5CclT8pXazLEweZK2lY+UNs03OsSkUCEeTOhX66rUy/pj89b6x8fofHqNv0etjXSsGm8trz6dg0fkrAzqVk6x/0HNrutS3ZN8chmagla6t/KYlborFVrrgtXvN/R2W7J2cPzRlb/rsLHE7Btn40VZ7r8P1K9+PwfTtWwiL+74Lvfvc+fvjDh/j008v5iyKEEEII+YKgjCWEEEIIIYRETk6GKBTefPMUf+kvvYUbN1ZYrewkB8rSxEpsKeovk5MYSl+ehnYpySn7JC0VkjciDnTCKk9UhX52EhI2bjsXtq0NX86GpFoQCKuVxfvv38Y4Oux2Dvu9x3Y74uJixPn5HnfvbvH559v4JfN+vyDiQ54oxhqYlYni9OZXbuLVb74Ku7JpblgtYSWpLT8W0EJWtsv5YGNXU7X1LwzRK3glGHT7QdGrOSRx9X5fzC3r1f5J1GZzxJZzykqf8sJcPg6cWi+X8riKP2MMHFy8/957WNgofiWxbO4YrG6sMF6MYU7Zz7bwex8l8tOeW1YSss65SVa5+Dkkn4kA4ufmfu8wDCJdAWPk5qXI6ziGFO04+ulHLrmoE6StLUWlFHKY87Ns08fKX7jW/MmTuWvD9Xp13UnchmvRJYp1n7RPrjmJ4XgX5RFln/FhmfqlY+Xac8lXJmHDdqtP+z7m19Jj/gU39zzpMdoJz7Z81e1LBKxslwK23n+MhO1L15ag1cnYQ2i52m5fdp9K+Vw/nlAFY7t1+PjjC3z/+5wznhBCCCHPDsar/4Wz2Wye5rUQQgghhBBCniInJwP+nX/nF/HVr4b5YM/OVnjvvZsxqZXKV4b+5ZferS+fyy+SdanP8kvhsjSipF91Aqdsa5Us1mWL9TKkZ0MC1jmvErEhMRukbPgi9/79LR492mO7dbi4GPGtb32Khw/3T/L2kwPc+fodvP0bb8OsDOxgcfKlE6xvrlM54sHAIMnYQ2WJ5+aIBdo/MmjRmhvxsSmHLGWvL9q9729PwjWuq30iPLX4LNu894BT22UytjWXrLxnp8SoyFW/D/vd6MK+0YdyxfuQinV7h929HdzOYf9oj/35Hhc/uXjqQhZI9805B++TcD07W2G9tjg5GabUfagkIGXc12uLYTDTX2hbrcxU4j38yCUtg/iV8u/GmFjyWH4IU25LxQJZlm2A3lcvRSZL37xscfmZX/8Qp72ejyX70752WylvW6nZ8ti8bckzOd9vydu512euTK+Iz157LWFb7aWM7IvZ46SsvLbbQrYlYcvrbdyNxv1p9CpE7ZyMbj1Guabwb7rH97//AH/4h3fx6NEeFxecJ5YQQgghT5ftdhvXmYwlhBBCCCHkJeTsbMCdO5vsS/OzswHf+MYreP/9O1itkhTIv5g/PHb+JarJvkSVL9nzVEv4k+SrJHAE3a5TWOEYMyVfg0wIyzAXo3OyFLlgp3KiknCzUQBbG06YJMYGN2+ucXGxx/n5iNu31/ExhXlnn60yqi8kFkG2TnL19M1T3HzvZpoXVpKwem5YmDDPaUvCzgjYpnhdGKBbKm1nxy0lhUq+6u1snlkPeBNEqDEmvr2kVG22Lcl000jESkjSp75x6Xy8pzpdK9elyyVn124Q0rSYlkM6RxjOwhsPBwcLmx6fNcAtwO1dOKdFnF/WP+V0ehKHZiqBHj479ns3pe4tADclZB32e4NhSJ8tgbA+jvKZN93HmIw1sb9OtLaTseUyT66mssB++iz03WSsMYh98hRrPo+siLAkXtO2XpfHpvtKAjb1L9vCZ7vcjxJJ0qbtfG7Y0JY/Vz2u+vuJ3g8vyuaeYNTrj1ueWLavKmEBSUXPzw/bFrTVHWjel979qdvmSzjr+1le437v8OjRPs4N//nnW5YmJoQQQsgzCZOxhBBCCCGEvIT84//4O/hX/9VvYLOxWK1Scuu1106wXttMwgKlhDXxC3T9JWzrC+X6i2D9JXD9xbFeb6Vf0hfEeVI2zR2rt8tkbErPlMnYlJB109yxkpIdsd97PHiww27ncHGxxyefXOLv/t1Pr/yFPlnG+s4aX/uffA3r22sMJwOGkyEmYY0tyhGrFGxPxAJK0pSuRvq20M1LnvOeB1ood3vtem7Ysn83CYtiW95nWnYU7YdSsjoJ203KlsnYMfRxowNcWHrnYzpWErLeeYzbEX70GC9HuJ3D7uEO28+2ePSDRwdu4BeDTsg6pxOyA4bB4vQ0T8hKMlZ/zoay7yb+6GW1spPQTanYNHdsnojV6dmUkEWzgkHep5eMBSQ9e9Vk7JIk7OHtdI/b/+6k8+TbrT4tjvzRROcNeVgs1tI2F409Qft4Elb2z8nXOenaXpYCdvk9me9Tl+XuP+b8ceprHEePu3e3+Jt/8yfYbh1CmeLw7zchhBBCyLMAk7GEEEIIIYS8ZGw2Fl/72u0oAb7xjTt4550bWK+TjA1f5udfwgPll+RpPXxJaopt+TI1T8SmOWPDn4wT2uXL1Xw9/0I4JWTDepqTMCVl8+0wZ6zMF+tVW56MBYLETY8vrNtpisdhcADW2O8d1muD3c7j9ddP4xyS5+d7JmWvEwOcvXWG09dPYyni4WRI88KKiJXXqp4bdqmELeXrUk9zqF88TUf6Lhlby1dp9+oxTX0kFavP50PHkFidjtNzwmbJWJ+Ssd759J7S+2dSstm1Tm/+mMBFSuPqhKxcVzVXrzyGEbArC2+D1DXTPKZu67C+vY5lkN02lDl+GuiEbFg3U0IvpO73ewvv3TT3qps+UyzC3LF2OjbNnRoS/S6KU418ppYp2VJgWmviZ5mMKZ+nklotj0/zyubp2WlkyOf20mRsPrcs4udx9cIuttNne3r8OjGr77n8e5L66ftgsrb0fMW7iavQF419oZhv9+Wrbl8iI2W7JWlbEhZozQerf1Agy9S3nYJtz2l8iPqY3r3oP/aWSJYfWH366SU+/3yLhw/3FLCEEEIIeeahjCWEEEIIIeQl4M03z/Af/od/Fl/60glOTwdsNgNOToYoYPPkVF3msScJ0rr+Mtgg//K2FrZhvf2Fcvklcm8u2bSeErF6uz+PbJCwq5WbErI2ljiUpayv1yPG0WO1kqXByckKr7yyxm7ncHk54jvfuY8PPnh49SeHZNiNxVf+ma/gxjs3sDpbBQGrJOxsIhbI07GyXcrRzMNeQZxqGom+3v5ZSokU5ZJv9jHeJGHrizav+qql3i+iVV9jbFP749KEY42b+sjjmiRrOXesXpfUrLU2yNlQ0RfeerghiFUzmiRgZTl6mMFgOBmweWWD8WKM88ju7u0W3tgnQ0irDtM6sN26KBCHIdyjYbAqmW+xWnkMQxCnQaDmc8g6l5Kxsi5LkZWyneaM9dl6mjPWx8/isD8tQ6nlfJnKI6c+WsRKW+jjs38n6n3phzypFHPar7elXxLHug3ZMUAtrPuyte57VXqp0JagTG3t0rth3Vftjy9h56WsFrGlbO3NC7uUOWHd2n9IwOaPO11n+vc9zOX+3//3P8W9e7v4YypCCCGEkGcZylhCCCGEEEJeYNZri1/5lTfw1a/exhtvnOLWrfUkYcMch7qUZVmOUmiJ2Dwh61GnkkzxBWwrEZPLJp2GlbSWPr/MJWttEBKt+QZFygJpDtn02MI8soCb5k6UL53dJC/sJDMkORbGSSWQHbwfMAyhfbcbMQwGX/rSCfZ7j3EMAvfzz7fYP+X5LZ83zt46w8nrJ7CDhd1YnLx6gtXZCnZlAQvYwUYBO1uWuCVhCwHbSmVGjpA3mXgtj9PnWjwgKrkaz5NcVNg9yVA9h2zWFhxcSqhO6/oYnZKNc8KKEHPTfmdistbbScxan88Vq5KyMW2L9L6O90kEscnvi4WFR5g/Fgaw3iaZGxPv+T1Y3wlzCe8e7J7aXLK1eA/b4XPCYLczap5r6WOnzytJlLpJstpCRiEKKN2mE6HhszDcUPlc1H2kn07RSr9e0hYIUlaOy0WsHkv+zSgFLqDTtGGcUsKG8+jt1md+esxGreeCM7+3SQBPj35GEl6dQ/+uldu9ksVtCRnGrF8LfSlbli5O24dkbEvMtq/1ONr3pGzTgnvuselrlR9WffjhOe7d2+HiYqSIJYQQQshzA2UsIYQQQgghLzBnZyv8W//WN/H1r7+CzcbG1FWSsPWcf0AtYIVe0idxSD7Nz4unv4xNJRTrL4ylnGJa+ignQiIt7AtLScQGgWttWqaEWjhG0q8hLRvmgxxH6eMwDKF9tTLY7cJ8kF/96i28/fYZzs/3uLgY8fu//zkePNgfemqI4tVvvoo3f/VNDKcD7NrCri2MNUnCTvNkSmniXiK22kZbyArNJGsPk683E7Xl+HVDohQ4qpxwa3/W5mfa5pa+sQ2kUsJKmGZLj5Salb6yz6W+xptQPlmtR0ns0rY1Ns4tCxv2wSIkaM2UrDVhGxbwq5CQtSuL4SS8RsbLEQ+++wD7/bPxXjMmWOndzkWhOQzhBxw6qS+p2fA5ZKellBpOqVgpHZ8nY02UuSk9Gz73pF9KwKpEs5KrIoglPSsiVcoUh6WWsb74d0LatGjVUjf1l771vy15erbVT/ct2/VxaVtesL3nZ/lzCRwSkW3Re0g26vXrSMe2/u0sBe6ShKw7usJvfe3NXpWkbj3mfJ9cZ6syxn4fKlf8wR98jp/85PzYiyaEEEIIeapQxhJCCCGEEPKC8Rf/4pv45jdfxTBYnJ4OePvtGzg5CXPDphKWRiVigfaX4DVzAvbQl92SfgrrPmvLv1iupan3+ZeyQXaYqc1E0SHJrFSeGNNfmlcWCGk0WQZB4SeJIZLBT0kzM80ZK2lcYBzDY0gy20wpY4PVyuLLX76B8/MRl5cjLi8dPv98O39jXmJuvH0Dd/7UHdz+2m0MpwOGzQCzChJW5oiNidiWjAUyMRu3OwK2kq9LBE1L6urztMY5Yty0qRKk5X6PmGwFkCdTDaJ008fHlKovxvSqv6xbday0eXWsbtPozwOH/Dyu6GPybWMmOTv9WVh44+G8i9fjRw9JyMYxLDD4MIfw6VunGM9H7B6FhOz4aMTTRz4nwjXvdk7JL4/VKkRYJZ2vl+Gzz8BaG39cIqWOg7gVMZnSsEGmmTgHbEqkeuTzt+alimWfJGr1specPdR+aD0t68oHMidt3Vfd2dl/o/SctzPPzqJ/p5b08Y221hjtcsU98Vq2lcI1l7Ptcr75cf0krD7vkse9hLakXiph62t0zuOjjy7w4YePpn/LPR48eLolygkhhBBCrgJlLCGEEEIIIS8Yf/kvv4Xf+q33sdlYDIPFaiXCMC9HXKZigeO+qC6/XJ87Ph2XyhDXX8bmZYpDMtYgpV7TF82pTHEqVywJV+89xjFtl6JWp8PCOWyUseMoY4m0cJN8letB7DMMFtaGUsXrdSh1vNlYvPfeTWy3DvfubXH//g737m2vkDx6Objx7g2884+/E9KwKwuzMlHCGjPJWDRkLFBJ2FLIxjbkbRk9IVrub4nXOck7d84eLQmL6f0h5y+lqggtJWe9CQIzytayPLGSqpl0BYJAFSfWkbLVNRvV7ov23j6o/ciXFiE1a6YkKAB46+PzbayBgYEbHE7fOoXbOuBjYDwfMZ6P9TV+ocg1+6lccbgYmas6fHaFz7Bhem3LUpKy4bPOTVLWwHspq+7iD0LSZ2EuXPP0bC1ltbCVv7xvvb9MyQImK4m8RL7O7S/71vtqSVsep19oxyZgj6UUrXVbKWZrEanbe1K0LV/Tdi1q5bWWxs8FbN52HfSGKWV1LaP7pZjLxK5zHj/5yTm+9a3PruWaCSGEEEKeFpSxhBBCCCGEPOf83M/dwb/wL/wsTk4GrNcWv/RLX8LZ2QqrlVFliXUStiwZWZeALKm/HO99MV4OVH5Z3ZOwoa+sSyIWOFSmWCdkEWVsKNuJTMaGNg+ZnzElxtL+UKoY2O/Deph31itxiyh2w36DYRjj/Lv7fdi32zkYA5ycDPAeuH9/h48/vjz8ZL4knL11hrf+0ls4+5kzDCcqDTuYfF5YvYTalpSqSa/HSsDql2JsOiBny75L5W5r/LlztCiFDpRUbfTR87MeLE081ybiFcV4vT8tWIGsTHEmcycpZHyYd1bPaau3pYSxQ0jEOuNC2eLpMVpjQ0LWTFJ2qkosot6tHE5fO8V4cwzli89H7D5/+sm58DkTyqp6bwE47HaIJYtTuWIL50TGhnLqIQ2blykuyxXrcvPpDyr9mtL7ebuf2sIyfJ6lbV26WM8Nm/7daJcyDo859SlLFef/btRlitttSQDX7fpup/PPPyfLnrtDrrIlM2vhGK7rUHs/IZr6tfq05pFtCdpS3C55fMdSytfyHP3H3U/tjqPHJ59c4tvfvofPP+e/nYQQQgh5/qGMJYQQQggh5DnFGGC9tnj33Rv4J/6JL+PGjRVOT1dYrSyGIUnYXiJWxpjWFgnZep6/dHy+HfCxrGnri2ZTfHGMbF3+JK2V5pCbT3TJOO1kVzBGYWwpC5qSZ+H6w9yP4+hVsixJ4dDuoUtiGhPmhrTWwbkVhsFN88/aKHE//fSy+gL+ZcSsDDavbvClX/4Shk2Y/1NL2KaMNfmyFLJAQ8KWgvSAfI2bC+Xu7LhXSeflb5VcBsvrZkq9xuuS9nRQSLKaJF+yhKwaN8pcWfcmzM86tUc5K/unOV+NK67Lqv12GmeaCxZQ16FLK2shDCWCXepnBhMk7VQm3MLCwcHCQhLA3oUSy/6mh92E9p3dYXdvl8okPxVEJgPeO4TUPQC4KEqD0Axl0MOPOwyMsVPqNFjt8Plpq8+N8NljY0I1nQtZarW3LNf15/ZcmWIp3Z7mjNX7U3u+Lv/m+HhO2a+vq9UWPs+D3def7eVxqW/7g1X6Hvu5O9dfC8ZW30NCdkkydl7G9sVrEObpmC9CvurHUm8fmis+/Ru738sc7x737m3xve/dv96LJ4QQQgh5SlDGEkIIIYQQ8pzy7rs38e/9e7+Ed9+9gddeO8FqZbFeBxErSSk9R6xOwZbJ2JL8y3pTrZd95hDxmtb1F7Embpfr6Utaky2lRHGdiO0nY0PiLJU77gldSchKSjb0TcnY1CckY0V67/fhfu/3Ti1DQnYYDE5OBpydDXj0aI9Hj/a4d2+Hi4uXr3bx5tUNvvLPfgWnXzrF6mwFM5hQnlgErLxW5ySskqMtAVvN7ar3Q0nU4jhgZrxW39Z5inNdiZY48UpY+kbfuTZfr3sU5Yml3Scpmh3rgZh4NcjPNwnUKIpd3lf2xSSsPuf0HHrr4UcPb6ckrCuWNuyDRSxZHNOy09KtXZCbJ0Hw7+7usP3s6c7XHD5bBoyjxziOWK3sNGesi3Nhh/T9MJU7D+lVSceGz5fQFub8lvLoiIlW+bwv07I6Gat/kJP+PcjnkA0/SMnTs0m6hnXnpA+QS1ktUkspC4hMTf/+qB8KAEUffVzeXiZf5bi6bf5N2Ps3a15atqVrq21ujtRDYrK3XUrZ1r7WXLBPivn7cFhAl9ftnMfFxYjf/d1PcH6+h/fA5eWzMAc0IYQQQsj1QBlLCCGEEELIc4a1wCuvnODdd2/gz/7Z13HnzgYnJ3YqmWuLL+RN/OI8Jab0F+A1LQFbylt97DIZm6+3lnUyVkvZJFBb/cMyF7z6+mSeRknEyuNwLiTSZFk+rjTHrJ1kBOIyJGzDPI+AyBEbyxrv9wOMMdjvk30K8/cCFxcjdjsfJfKLzHA6wK4sYICT105w+6u3sb65ziSslq+lgK1ErBYzC6RpWO2IUzn2kNTtCdhizENlUpfgOwJFS+Syj+zT7WWb3m7ty9ol4ar66yUACZDH5wZuGsdOKdmp7Gycs1ZStghpVp3qNS6I+ChyZWzkS7km620odezC2NaF96DfhO21W8NtHcx9E/o8td89yOeHV59jSS6GeWVNnCNWErJyM3Qy1hg3vT9c/IyzMX0s63WpX70Mc8ZKSeL+D2ry1GudhNVSNlx3krIyh7fM9VqmY+WHLyJz82uUa9f90uewlpx1UtbEe6ElZOstecxnbq9veZ7Wv3OlwF2eFG219dbbcrbkcT+a5u9D3DooYfU1liL2wYM9PvroAo8e7R/vYgkhhBBCnkEoYwkhhBBCCHnOuHNng//4P/4L+NrXbuP110+xWoXUVD4/bJKoaSkj1CWJZVvmadXH1F/um+q4OfIvZ3NhWs4bWydkU5vMD2ttnZINsrWeO3YcU7vMGStzNMqX+ZKUlbSZJGMleRaWrkrIjqPMyetjOm0cgzCRpSRlNxs7JZcHnJ2tcHIy4OHDPX760wtcXr64CVljDd75K+/g1lduYXW2gj2x2NzexDliYZGErDExGQs7yTtZahkLpO0lwlTti5uFfC3HbfXJ2hpjVtdwJFGM+saxxXuoNVdslZyVNlUeOB7r82PjepGIjeWLW32muWKTgJuWTqVkTd5HJ2WzZKzxScJOfWTuWL20Nswf641PCVkXHpNZhdeRW4e5Z+3KYn1rjfOfnGN39+nOIRs+Twf1o5DwGQPY+MOO8LnhYxp2tQqf5+OY0rJhaadkflhaK8v0+S9zuqYf5KR/E/LUbPqsP7St06/5vxP9dGxaB0TMauEalkD6N6mdjs1Lwod9+XY4tm5LYx1Pbh+XyMiyTHIrpXpMKlaO0+Kyta91zvIePO6Pfkrp2mrvyebW45DlOHrsdg6/8zsf49NPL3F+ThFLCCGEkBcTylhCCCGEEEKeE4wB3nvvFt599wa+9rXbeOedm9hskoRNpYnlS3dAvtBuSdU0bvrSuy1j0zj58e3xNCndJEmnPL0kElZST1rKplSZTkilvyBQtbyVPuFYEayyXVyZOpccb7JzhPuR35eQWktLPUZIi1kMQ5Asq1UYZLVKc806N8B7j+12gPfA2dkAANhu3WN/Wf6ssb6zxvrWGqdvnuL0jaks8SpJs66IzV6rSYg2k7C97amt5CoStitgW+L1Ks4nHlof7KGkZqPfXBI2axMRWiZiRYxOfbP1IkEb24r7UyVni/H0UpKxWVLWTElZIM4166cfQsBO11hIZXmIxk2vk8GEcsaDD6nZdfgxxuAHrG6s4LYO7tKFlOxTQL+G5McigC59rj9rAWMcxtFO6zJHtcwdK8lYH7dbcrJcyg9PymV+Xv1vRVmqWItQkbLyGV+WJvaNMfW/B3qZErOpvdUm7YjnlzHLe11/lmrxO8+hz+HWvLS1EPVV+xL5mpZzc8XWQjYn//cw2/NYj78tYMvt1uNJbelxScn+ME+sw/37Ozx8SBFLCCGEkBcXylhCCCGEEEKeE9Zri3//3/8z+JVfeQN37mym+Qf1nIB1ognIv/TW29LWT9Hmidq58sa6rfVlbi5M5Ut2U3zxbLJ1+eI2iYM8DWttSsIGKZsSspImkzlj0xyyss9nkkNKDNfJWF8lYofBT/fNTQLcxQTaOIbYYCpVHO7heh3uc5rX1+LGjRHDYHB+vscPfvAIu92LZWPf/JU38fovv4717TXsxmJYD0G8DiafI1ZkrEGUcuWyl4RtJWOFZsngltSdE7T6POU5WoL0MWRsdB0iLGVcX/TR+7WgBGJCtWrT6VgRm5Mkqc4hx05/VZo2ubiAy/vH9OtUQjg7ZlpmSVm1Hp9nO80z6zwspjljp21v0jqAeB4/TtuDD6+rIaSvzdsGm9c2ePjBQ+wfPBuyxzn57HLT82VjUlZ+lBI+QwxWKzfNGZvmjg2fJT7+AEf/GCck/OXzKP+Rjl7qdUCnaEXClv8u6HllAS1d+/9u5H2AIJfDsk7Dln10W90e14rt/MW8REDOsSQRq5Og5b6+mC3To7Wk7QnbA1cc166ajp3r13vcvcdcJmFlLvfvfOce/vAP78b+4/hi/ftHCCGEEFJCGUsIIYQQQsgzzFe+chNf/eptDIPBycmA9967idu3N1ivLVLJybI08VyJYSCli3qlKHsyNj+2R+sLYPnSPZewiOIhJJxSylWnxdIy2BxdpjiMJXO46seFuF+uQYvd8k/66GuWcfR9CulXg2EIET7vHYbBTGk3o8RuKGMM2Pgl83qdSihvNmFSzLOzAcYAt26tcXk54tGjcf7mPgecvHaC0zdPcfbWGVY3V7BrG6SYkq+wiEnYao7YVsJVt5fSFMj6VxK2JW/nxutJWb2vvMbGdTwOWRliJV+z/Y19rdRsKw0rx1X7jMmOi0lYn/r35oyN88TKcdYADnEMnYjNkrLTHLMwaczY16bSx7DxgUVBXMn7KSlrnY1yeBhD+nx9ew1jDPYP908tIVviXPjcHkf5HEyfWSI93VQWOvTx6nPIRREbyren9fyzTsYu2xGTpekzPn0e69RsmWyVZflXy9cyVdte6mP1Pt2Wt+v3eXlMTt6+5A2avzaWydgkIMt9LfGq+y9JyM5dB9B/7Evl6xytlPES8awFs3Mel5cjPvroYvqBFPDZZ1vsdi9uiX5CCCGEkBLKWEIIIYQQQp5h/tF/9G38G//GL+DGjTDP6MlJSFVKEiokYqGkbC5g5Utuva37tVKxoW87FSvjHEP6stY0vnDWbSkNq8+jl3lqVkpZytIXwiCJAT+l8XRZUDmnSI0wL6wk0twkU93U18ZrC1LYwloHY+x0n9KXzkF4hLLDImKlrLFOpK1Woezo6Wm4mAcP9vj+9x/Ga3teufP1O3j3r76L1ekKdmNhV0HEminFbYa8LLGxSpAWYrYrUIG2lFXtsn5QwLZkrR6/JYf15twbYu69UkqOom9Mi8o15J4ulQOe5GqUs74hYY2SsF4dJ5JV1m1Kwer5YqO4DW+JfBkvKfSX45qpW3WdcSnjyPp0bS6Y3JCMlTllpz9rbJordhKwMSlrlSyW+7cyOHv7DOPFiPvfvQ9/+SzIWDN9RoS/kIz1UajKfgBTmtBNP/KQ1H9eoj7ML5v/uzAMdlrKD3b6c8f2krHtygny2Wri519rztj83yO9DxBRG4Sr3m4dE/ql9dA/3y73t5gXt0vkpUjS1jEtManb9bHph0D9hOzsR4u6J9chXdv056RN66UwrueGdc7js8+2+O3f/mn8N/HJXTMhhBBCyLMJZSwhhBBCCCHPIF/5yi382q+9hb/wF97AzZtBxK7XdipRabIv1+svyVF8yZ1L2P4xc4naJV90t2l9WV0mY8MXz3oe15RKLcdKxwSbk5btc6R1bbMCQZ7mc8dOjzguReY6hyg5wngWw+DgvYXM4ziO0scq8WsA2Chqg4AJab39foAxBmdn4T/NvvSlE1xcjHjwjJRTPYaT105w50/dwe2v3cZwMsCubRCvqiyxlq8tCdtcB5oiFShEaE/CIh8z25a+xTi98sez4ndJe9lnLu1WDNJMxzb2xSSr8ZCSwDFtqo5rbXfXzfQ+80hpVbXUCdmYhoUJclfP+aruaUzdTnPExtcEchHcvEfygw15LU1jxzlkvYHFlI6dBO+wCe+5k9dPMJ6P2H6+nb3/XzTeA/t9eOxDuNRqTtc8Keumku1mkrNJzKYkrJu20/zaIY2bp2XTD1bSj1vk34N2ClbPJ1sKWQDI2+VzNP/3KK3PLdO6KsFd7A/b9ef7Vf69KmklQ8v2Xkr2mIRsa6xyXP14Simc7z/2gdfStXcN5eOQtnJeW/kx0nY74vvff4i7d7dTuvvISyOEEEIIeUGgjCWEEEIIIeQZ5Otfv4O/9td+EWdnScQOg8EwhPkCJfHUE6tALlJbCai+xG2NU5cnPiZdlL7AzZM8KR2U1qWvc/UJdB99nJYGspSyxmG9vCfpcer0ayqJaZWYCFIjjC3tbhojiFhjbJQZMieennM2PPaUygpz04Yvq0OibYXVKgjbe/d2z6WMPX3jFO/+j97FcDIEGbtSMtY0ZKzJpawWpM1kLJDvV9vZviUStjHuwdRt+XKUY4q2o9D9tdyY0qy6TaSqHBcljpKRs9JVjp+OjWWCfdofhaval6VcoURrUba4krNKhOrnQCdmo6Qt74FPf9k8uLqfAayfErKDSdujz+4DPILw9aHf6Vun2D/cY3dvF+eZfRYQGRt+tBEuWp5ikbLymSiyK3y+pHlhZV2W8vmlKyjouWVlHlj974IkY2V/KL/uY59wPeHFli9zIduSs6kPsm3970vqD8iLJu3zVZsgx6mWa5Sx9eukLU1zCavbexI2vo2ra60f55ycbV3Hscz92132KVOwoS0lYYOMdXj0aI8/+IPPcXHx/JfgJ4QQQgh5HChjCSGEEEIIeYZ4++0b+Bf/xa/h619/BTdurLDZ1IlYXeq2lrFhHC1T6y/bWxK2n6gtv9Re+gV3XbKxn15tSdaWYJWEqvRLbbXolccjc85qKZsv+1/aD0MQpJJETlI2T8jqZOxqZSYha6OMlTLKgnPh+RAZu997WDtiv18DMNjtHB49ej4Ssuvba7z5q2+GOWJPpzliRcTa/C9LvFolZPUSyPvJNvoSNkrRhnjN0rXl+EeI3uwcJZ3XTyVrJ8qUaxwj+lVTtQGIadd4ndE31mJWyhxnolbSslq2dtalX5aSNUVitZSm3sTywTJvrIwbr8eopCwQ+lsxtUhLNWYzIesADOkxG2PgvMueVysTzZrQ31mHYRxgYHD2zhn2j/bYfrptP3lPCe/D54Ek6zcbKWEsPxax1Y9KwnFhGX4IkiRs+NFH+BFPLmPzf0PyagtJpOp/Y8J15EuRxEmwJtkq44RrrSVsrxxxLl/Ve1K1pW1TbMc70mlfxvKkaC0q0/ryJGgtWn2jPRe0150y7YlXvd6a61bSsPJDpD/+4/v4/PMtnPPY7TznhiWEEEIIAWUsIYQQQgghzwyrlcGbb57in/vnfhZ37mxwcjJgtQoitp4jti1S8/li24nYwzI2Hyct62+z+8mclFQK0jQXpSnZZeIXwLIuZYjlS/2QBpNElJ8SX1JyM6Wqyi+og4SV+RUR75v3ehnGsTYJ4/I6w3WlcwNpDthhkL5hDkdAkrCpz2oVZK3MESvlGwGL9dpOwiUs5UvrcdzA++0zL2ONNVjfWuP1X34dq5thjtiqNHGrPDFqEdtLsMZtIH8JdgRpJV8b4rUsU9w8R0/A6nPNCdoZepJWaMpaKNG6oGRxmYxttWXJ1mJd+sX2SXq2zp2lZW0hZGGCxI1vUMTHoMsUy3Hxvoe3TSpjbBv3TRz0YACnXluSzh0QSxZ752GNxbAOpcE3X9rArEwoV/wMuaLwGWGmH4qEBP1qleaKTVITAEz8MYp83qbSw/LZZjAMbipjLKn8JGTzH7x4lAlZ+QyU8YByvm5Uf4De1gnZsk/9+d0SzXNt5fpc2+NQS1hgqbhska7PFNv1eKVgTvt6IrpNfTl+dv+hZG8pYZ3zGEePH/3oHD/+8aP5iyGEEEIIecmgjCWEEEIIIeQZ4NVXN/hrf+0X8dWv3sZrr51gsxmw2QxTaeJemimXsPJFbC1feynatsTVyaTEVb/ZNlmSqRSmc8lYXVpYErHSXiZjZanHlMemk7H1eQ1CqhWQ5Fn+xb+N4rdd0ljkqYX3bro2O0lekb0exqQJcOU6rHVwbsgSsrIMxwShe+/eDo8ePXslHofTAe/85js4e/MM69tr2I3NSxOXqdj4I4BcynalqXpdNiVs2SavYTVuOcahpO1s+eOm8enfn2b/ia6kkXPp0r3Bf4XjJCnoTbYvS8w2hGs8b1GyOArR9FuH2C7yNUu/Sko2vBWCVHWTtHMpQQuL7Ljp5KlcMEzeLuNBtan7ERO1xmdtsrSwMbUbf/hhPJxxcZ/3Ht76WNZYrhtfAXb3d89cQlbY7Tz2e2C1GmGtwWZjVVng9OOS9NmtU6bIPr/GMf/3If2bkpcyLv+NKf/tOGbe8TD399y/NfozN7wI88/g9r8h6f2VP15NKTyPo5VMRbOtfD/PvffluvolhWvB2ne6tUydk7rdUbI+9XywYRlW5EcC8iMA5zx+8pNzfOc796OcvXv32XwvEUIIIYQ8TShjCSGEEEIIecrcvLnCG2+c4s//+Tfwzjs3cHIyTHPDlhLWzApVoGxvp2jL7XBc/SX5PO39ZQnJum+elM2ti5++eDZZelVsTUqx+iotm77E11/my+P3sYym3mdtSolJskwnZwEzpX5MnBtRxkn9JM1bzqeYlkGuIiabvc+XgJ3Ss8B6HeTvZjPg9DSkjC4uRlxcjFFGPyuYlcGtr9zC6RunGDZDLmBNIxGrhGsp2Wblqz7nEjmrZU25vlTCxk1Tnat7TUdwUNTmb5n8ekS+qn1LUrDS5uGz47K5VaHG01K2SL9ieg+LzNXL9gPWq1NSdlpmbbY+rxwbRWx4y8C4dIwka41VJZD9JJMnMSyS3g4WDg5W3nO313B7FwVt7yE8LdL73mMYPMYxpVnTD07k8xGQzy1APtfkc10+X5PgSz9qkYRqnZTVbSJ9y/NbqQadzRlb9w196m3dXrYJc2297dAm/1YcT+9HE4cEp/yYpr6OdHxPmub/hprqXIc+bo6Xr0BPwIb1JKVTEtZju3VRxt69u8OHH54fPjEhhBBCyEsMZSwhhBBCCCFPkZOTAf/uv/tL+OY3X8WXv3wTZ2dhnlhrDVarVJp4rsQwkCSrlrbSVyedgDzVlCi/4Z37xvd4+dQdSX3B3kvJtv5E2oa5YvMv/ctla85YnZ7VS5G8QSqEKF8uKpwSD4DUUpX1ccwTQ5KU1Wm1dG2hFOk4hoTsMJgoh0UIizA+ObH4XZLkswAA+tlJREFU7LMdtttnx8gaY7A6XWF1FuaJNdbArBYmYgv5erQsbR1j67G6qdiewG20ZedDe9/B9h4NcZKV81VjRjFkUCdjdZJV2mR+WGOifJWSszHpKnPAqrFaydgsQSt9/DRHrPWZ9Mz+nLonrW2ovuikZoEsNSvS1xufyg8P4UcM1ocUrJsOsAjiNaZnx+mejJOsHdK9sRuL7adb7O7uDjxpT4dxDJ9P+334DDo5MdOc1unHHbo8sXzm5589kkQNT3YqcSwl38s5YssqC/m/P4dK3pcVG8J1lCWLTXM9LfNKDfrfPE1fzD7uv1fFG3H2XKGf/vesHueY66o/IFoid3aEGTnbkq66PZUiTuvOeTx4sMPv/d4n2G5DVQnOCUsIIYQQchjKWEIIIYQQQp4ixgDvvnsDP/uzt3B6uqpKEqdSkf2ykDKO9BMRq79Aly+IW8flXwofI2Wbj6jYrr+ADucsv+D2xXo5pm8s9fWLMJVlGCd98S/JVz1HbTg2CE9JdyW5K39hfxhbzz8b9vlMgkhyrJTfkozVf8OARlLWYrXyca7g9XrAycmAcfRYr/cYRzPNN/t02by6wclrJ2mO2EK6VkJUpKmWp2mlLVmnfVm/xjITrijOi3q9JWJ7EvaggC0fy7Gow1oJVbUzXkuWnJ3eDlliVtpkflnpP42hjzc+pVPzyzLZNRmYbBw5Z5aWRd0m54upWf0WRj5OXDepFHI8Rp5DmT9WH6/nqLXTdTiTErGSkrXFcjChrPHKwK4tVmcrjCcjxs0It3fP1DyygZTCB4KcbQk0/RmXl2XPPz9l/lfZltS/yNkkccN+/QOXXkK2/NwMx9d9dXtrvWwr28u2cj21pX8rDqGPb6dR0785XpUR1+JV+sn9bo0Zf2uhTlKmZnvX1euzhHa55ZaABeQxaAn76NEeu52bZOwed+/uKGEJIYQQQo6AMpYQQgghhJCniDHArVtr3LmzwcmJnWRcKxFbplsB+bI3Cb5+MjYc07BNB+XrFSXTUWg7k395D7Tnis0TsmkfUH+pLAlUva+XkM2vwSDMEWswDC5ua7Ewl4zVS2McvE/zxgY566ckbF4uWUogyzV4H+Tsfu9wfj7i7t39UxWyZmXwlX/mK7j9tdvY3Nnkc8SqUsUiyspEbCZqO/JUlt3yw0CaG9Y2xtF9G+uHxs6uQ/dv7QMOt/dQT2MlnXVqTc8Ja0wmbKvE7OSfymRsNyk7iSU9H6z3U18tSv0kVlUpYWPU3KsujRGXU2pWnydLzmK6BiVPpS2KVLkn4e2XcGkpCVeZM9bBAdM0yzJnrL6PXuZyFjFrptfs68BwY8DFTy8wPoPzNAvOARcXkt4HNhuDzcZgtbLZvx1llQD9YxGgJ1LTPK7yIxP5MYreB9Rp15SqTe+l8t8f/aMgvd1aT0tTbOdteXvZVu+ojzOd9vbxuZid76NGbPTp9VV71A8xjmFJieW2tE8iVio8jKPHt771KT766CL2o4glhBBCCDkOylhCCCGEEEKeEt/4xiv48pdv4tVXT+KX6Fqo5onY9pfTeRnJJF/TF96m+LK5MEzN9dZ2id4/JwYbZim25xHANFeeStN5aU+p11ZKVqe3wlhA+rJ+WUK2lhJ+up8yb6yeM3aSOx5VMjbI1FyGhOfWZ8lY76UksVHzytopMesmMe+wXgfJe3IywDlgtRoBeIxPwRWdvXWGk9dOcPr6KdY315V81X9lGrUSn0qgRkop2pKlLUlq1L6yr6nP1S2D3DpnKUnLflnTcdKklUptJWNjyhU+/+2CEjVVclVSr2o7itb67ZfEq0hYPZ+rTynJMi2r07ZVMlaW07XE49W5dRq2nCu2TMxmz/Mkb/W4MSVrTNovYndqi+Wsi4SsHS3sxmJwA4bTAd55uEu3NFj5VNAp2f3eT58pHoDNfmiS0pjpBSLzyrY+T/PP7XIf4v40J23YL3Nv63LIUv5YqP89y0spl9fc+2zXbfrY9LmP4jM+u4p4jO4jidfUHj7XtRDV91X3Cfc0v5YyMRvaTNZH96sfi+y/2ouwPCxt+2xbJ2DDnLAhCfvgwS4K2YcP989UmXxCCCGEkOcNylhCCCGEEEKeAsYA/8q/8qfwT/6T7+HmzVUsS1uWsu2lW6V9GIxappSsns9vOmOxnFtvbc8+miP6CvoL/3I7rev5DeXLbv2nZYB8yd1OyNZt+V/6wr38ktx7YBhCGm0YoL60D3PIpjFNFMj59QSZGtK4DiJKjAkSJSxDyk1khnPDdAXDVBY5zBW5WllcXOxxeQmcn7vqy/YnzVt/6S28/mdfx3A6wK4s7GCT4JqWMQ0rrz8l0KI4VXL0qLlcTT1mto6iHY11PW5D+jblq5Y+epweh/aLpGkb3Zg8rXeZzIlliVl13VGOziVl5UcM6lw6GZslZqWf9/E8VTLWp+PiUpUPzuaXlXvgIW+J2DfeEpWUzVLCcq1T+eHY36H+WMGUjIWPaVnjDeAA62xKyE7XP2CAsQab1zYYzgZc/vQS7jlIAO73Hvs9AIwwBrhxw2O1MlivbfxMCj8S8fHfBv1DEZ16TT8UAbSIlbbwOZd+xKL35yIWSD+U0eWPU7v+gYxI1HKO21zEpn8X8u10L3Jpmz6vc8HZ+MUD0rXoMsOlwGwfV+7P+6RKCqlf3pYfpz/X230aZ89O75vt6d+qUsbmc53vdg7f//4D/IN/cLf57yghhBBCCDkeylhCCCGEEEK+YH7xF1/DN7/5Kt5//w5OTwesVlbNFVuXeizTQukL9HYZY52MnY5UX5zrZbne2u61zdH61tYU+1rbaV2+pNdJLlOlCHOpkL74r1NUkmSVZKsWAHrOWJGhIiJCSqgs0SlyPM0XG2RHOndKvwJlClanZ4chmMKwRCwxGv5k/lgH5yzWawvnPM7OVjBmxH4fykd+EQnZG2/fwI0v38DZz5zV88QW88X2pGlLxEaiR6xfa0tFbCV11XY3CaveEpWELa9pyVtlKb1ji8SotGUJWiUcs8Ss2p/NDTv1r5KyyBOt4dBJ2KJIxqJejw/FqETtdN6YdjXzCdnsPDJO+ZzI45PnURKvRWpWkq5w0/1RyVlYxFLIMRk7qKUH7MqG+WgdMJyEH0PY0/BjA3f57AtZIZSQ9VNa1sXPo9XK4OTExs9MkbAA1Gce4pzYrdLE0pZ/fuef3a3P+Cy93fm3QBKouQSd+9FOawwRzknAStWCcmzpG44zlWxsX0/6t6YtbFFce/o3qJV+bQtOfdxhCdrbX8rZMgULhOd6HB1+/ONz7HYuStlx9Pj0020s508IIYQQQh4fylhCCCGEEEK+YH7jN97Gv/6v/zxOTwes11rE5jI2Lz0MyBe/aU7Y+RRtLV9bMrbcfhzDNDfGnISV7Z6gTV+0yxfYqZxiEqD9hGyrvLCJYyRhmoREWE8yuL1M1yJjAogp5XBtYem9xTAESxQSSGGu2SBhLYYhxARXqzCYnnt2vQ5i6PR0gDEGN2+OWK0MttsRux2+kPlj73z9Dt75zXcwnKRErC5RHOfcFClbzA+blRBuyNJM0kobUp/W/LDHJmP1eHNSNizUtSDfFzeXRtaOoJWGjdcTOtTyFW0pmwnWTltre+l6PFZKDNtJyFqVjBXxWiZkVVliY02Yb7ZMzULJMjc9PlvMLzu9hyUlG0WwSvBmaWKT7pWZ3p/WWTi4UKrYhQ+AYQwJ2eHWAJwjpGOfIzG13U43RxHmJE8/BtGStP7Bj/yApSVa8zZJ24qklDdKTByr9dQHSG+oJcK1FrCpjH0av50OTcdqwZratJRNn+Nz49T7ZKxaurb65bQ/R45Posq/bfUYqVpD2JbS0c55nJ+P+Pt//3M8fLg/9oSEEEIIIeQIKGMJIYQQQgj5gviFX3gVv/mb7+BXfuVNbDY2JmJ1KjbNEdteShI2L0+sj5Uv15WB6srWQxL2cWWT/jZ5TsKW22k9lSieWjxUW0ppzSdkpfymTsYiO9a5fL+kZfW6nEOuQ5Za6AIpISsCXbaDlA3nKxOx+dJgHEPfcbRYrx28t1ivB3gPnJxoOetwefnkorFnb53h1T/9Km5/9TbsehKw0x8MknQt5GtPxLbmfJ0VsaboV46J9nliO9Rx5dhquylhl8jX6/Sxvj5HTLdWpzUp9Vm2Y5mU7W2X63JsuR77FOlXPUbcVyZky20Rsmqffl14O51/krZh9yRlpyRsPFaEL5IcBhD6AvmcsQhS1sKGcaZvSOw6dF7fWMNai/H+2BXlzwv7vceDB/v4b8nZ2YD1Ov0bksoWt+VsWR0gtJef0WE9/5xO7Wkd6P8AZ8l2v89Vpexc/7w9jtJIt9Z9DvN4r6tS2tYliNO/UR9/fIGf/vQC8hyFFKzjXLCEEEIIIV8AlLGEEEIIIYR8Qbz//m38y//yz+HsbJWVJhaJqssO94Ss7q/nhtXHZUbqKCHb2m5x6EvqVr9jvmxvJ2OBJFtln8gBKaeo5at8WR7EqJnkapIHoS2VFZZylmU6zLm0LMt26uRymhMxiXORsiJhU5liEbPhvFrGhvLFFs4Bq5XHfm+xWgGrlYX3HptNkrKhRPGTk7Enr5/grV99K5sjtidge+WCM5Ean0clU3siFvlYc+dpjteRunPn021Ve7Fvrr1VbhnoJF9n3I8+fyZmJeVZStki/VkJV1W6OEpP2e8LCaquV+9rjRfTqEZJUKMSsDoJW2zre6j3xetX7fHapjlm5XWo07GxTLFBStAqoVvJ2KlMsRkMjDMhIbsKMnZ1tmo/N88h4+hxfp7ud5CuQ1YRQEtY+RxNKdkW5We0R5qftZStjydhUwK2TK/OJ2f7/bSUzfvnadmyPT9Pfr05evxiT7P/UnQZ5LxNL1P6VaosfPzxBb797XuPdW5CCCGEEHI1KGMJIYQQQgj5ghgGg9PTFTabAauVnhu0LEuMSsT2ErFybDsJe2iJznavrUevb+/L6taX53Nf2rfkbJIE6cv/Mr0a+soX0ancc5rrVc+TKOv6uoIw1WWJTWwP2+l8eTI2LUW0hr4Gw6BLF/usz2oVDFL4At1Mc8WGPpuNhTHAyYmbkm0rGGMwjh7brcPFxfWnm+xgQ2linYq1xZ8ksnvCtBCgzZLCQN5PC9aZcbWUbSZjZyRsLwXbE7N6u5KtC98u1XG1H+omMPWxVZnizr4lZYmzbRPEZDMla/LyvzGJOpU8jVIUqWSxfi68CSWGJQnrvY+lgqeTpTFNErrZ23+SsMaYmHT1LiVrpS27PSLSfEPCGsB6VabY2zSmMfAnQfievnWK8WLE9tNt9bw8r5yfO2y3en7tMK/snTurrPx9EIr636b0WSkp2vJPkrHpRyvyuZnagdRP79M/isklb74/HRv2C2mu2PTYSrmbyhunfzt0/347suvS1RhkO9zLNE68gux93pO0h9EyuCxJLAlYIMj3hw93+M537sdS9g8e7K52UkIIIYQQ8thQxhJCCCGEEPKECRJ2wNnZqpojtp+CDcemNp2E1aWJk4jNv7xWVgple9mGA229Poe+TdZjlWK2t13ua+8XMQQY9cV9+nJcJ7tKAVCWMJb1+s8Uz4PPnp/UJoIijJXm9y2f05TGFWmc5qo18TolOSt/w2DgXFquViJpg7Q9ObEx4XvVL/grDDBsBtiNhVkpCWuShC2laCVOp+d/VsTqp1gtW4K1KWKTHa2FqhqzmZYtzt2VsPEUnf2PQzmOzx+TpEyzvkpCNdOyPsnMdBqVbI1SS21DHVO8vbO0qx4HxVjqPFk5YknP6rlio7XK70VMxkqyVz8+9Tzp8szyXEtyNv5JKlZSn24qYVwkY2VeW2PTfmMNMABmFQTt6tYqXN8kkQ9+9D0H7Pce+33+QNZrg7OzAcOA6UcjPvuMknlk5cctQf7JD1bS52y7RHH570bxwp3WRZLW+2R/Plds+SbS8rhOscrnivxbkcoV6/69xKy+jjROOr/+d6juV46x5ENES+ZiT5SuLspWLWTHMZSl/vDD8y9kXnFCCCGEEDIPZSwhhBBCCCFPmG984xX8B//Bn8Hbb9/Aem2zEsWlYNXyrhRysmwnYkvZ2lvOrc+1tTjUr5WMbX0RX243DFVT2ObliOv0UkrDilSQUsWAlA1OKVmdlA3rMq+eUVIiHJvm5Utf1OcJWR+fI+dM1jeUIg6TXcq+YQjbq1VYDoOdEr2pzOR6msdysxlgTEhZGwNstw6SVru4CGm3x+XszTN85Z/9Ck5eO4FdT+WJZa5YiyhjEV+vuSjtSlqh8ZI9mH6d24e8XxyvOFfWhsY1qfVM9JY02nqliXssmYO0HPOqidhW29x2a18sGexnErJ6vzcpYTrtg4S3LdJ+LW4LWStp1vgwyvTr9Od9kqzlvsiQHy/97RCSsXba4eHD54LxGNbhveZPw/W5NxzG8xH7+3u8iOz3Hp9+ulX/tgTu3Fnhxo2h+PfKZ8lZoE7KShuQt5c/jknraVunZuW4IFlT3/YyHS/tZVpWi9awrPun9fx8tbzVPwxo39f8h1JC7/1fp2bzBKxX/+Z4fPDBQ/zgB4+qMb0PzydFLCGEEELIswFlLCGEEEIIIU+IYTB4441T/OzP3sI3v/kabtxYoU7E9v7Sl8HhC+46OZsnYoEvVsQuoRSurTbT2N9Lxub7SvmaJGz68lt/4S9fxOdfmNdf7ufHyxf4IgVS8qt+znzxHJWJ29bcs2kcKVMdXiPpuW9JeWtDQjbMJxuSsquVn5Jrj/HluwU2tzY4ef0EN965gdXZKitHrOWnlrCZXEXazkoBl+35s5Bvz4jYTPAqYdpN2ipJo/f1+nclrCk3G8cfgYHJnqpyTtZmIhZF6lW9JbK0qzpHS+AeM3dsOS9s81xFQjaOFd93+Zyyco64jZSIzQSwSdeZvcZ0G/LHoKWufq1IAtYbn35QAIQ0rBbHkp6d+pjBhHT4aGBPLNzu+suBPyuIwJu2Yvt267BalT8gCj8Q0RI0zZudPiOlrXzRatma2uW8rX8n6m39+ZynZUOf9O9CXuZYH5uPH++Ekq2tN3f9b5SWvG0Ofy63Jaz8KMjj4sJFGSvLe/d2uHv3xSmfTQghhBDyokIZSwghhBBCyBPizTdP8R/9R7+Cd9+9gRs36hLF+bx8SdjJ+jDYLBGbxJx8iV3aCXTalq5jQftSWgJWtx/64r1sL4VsKe8wffEf+peliKW8Zj7Ha0rGyraeO1bKCQOpHGcrIZtSSmmcsAzbMh9sOF+aMzacI+9TJmNDOjacO+xLc8fudgMAYLdbwdoRAHB5+XiiaH1zja/+T7+K0y+dYnVjBTuoVGwxV2xTltokKbXszBKrWtCK/NRpRS1bi5KyXUkLdYyWcCj2N7Z7baXUnH1LPO7bRc4hTC/xVnq2l4bV+7QovWpK9uC6miNWjtVlilttcakFKJSYlR9G+CRtYRBeH04tpU3uVZmS9aZKxsY5YwfTTshOc8daYwGHsO4sYIFhnBKyo4ffe+zwcs29ef/+Hg8fjlnbem3wxhsnat7z9G+T/nHJ/A9YwlhLt8O6/mxP40u/dh8gCNPyxzzyuZKOL1Oz8iLKf8Sjt023z1IOzQPrHHB+vse3vvUZtlsH/cIuS00TQgghhJBnE8pYQgghhBBCnhDDYPH666d47bWT+GV16wvpQC5R0xfb+s+oL5DnErElx4jYa7BKcZxjvyTWx7SOL4VsZ5Tsy/nQN4jSurylTtNKm77foS1P9ulryJ9PnQrTz5mp9ovQ1f1SGraeN7b1JxJktTIYx9C2XltsNg67XV3qctEzYA3Wt9ZY3VrFdKCWo5Xz12IUtQjNZCnqMbTkbJYiRrHU5ytfysV4+tiuiJVjdJvu35Ow1/k2ERq/XxCBqOd7rfYblfCb+jRTqkqkzr6V1NilHJX7Vc4RW4rrbgnm6ZxzyVhApVj12Pqay/vfeE1FIa1eMzIuDGLq1lgTJK71YV5ZSc56E5eSkLUri2E9YDgd4PYO/iURYTIHqcYY4OJijD8Yyn9MZHByYuOPiFoSVn9WYnpNyQ9Y5EUp5YXlM1zWpyuIfVPKFtnx5Rus30+uIf17IJ/Pen95T/LrqZOt+vje57EuOXx56XB+vi9K3wcZe3Ex4uJij93u5XjNEUIIIYS8aFDGEkIIIYQQ8oQwBjg7G3ByMsSUazlXbF2qFlV6ttxWZ0Btx9BYzq23tg+19+hYnWyfWbB9bEI2LbXkRExCiQCFmuPVR/Ep2yEZm8vV1JbGdk4nbSU9i6z8sMhUEbayLXPQyrWU6dkwnyymZGyYU1bmmF2tQpxPErLrdUjPbjYulhe9eXPAZmNw9+7+yinZYTOEuTKnOWKzRKxplCxuvAxnZSka7WYSXy0hW5ynm4hV21dJx3YFbOdtkEudx2duDtlmGla9NZakX1ttB7e1kFWStbV+KA0LIMh9jzQ3rOoTH6JN541idXofwSKWE9bjxYc47dcJbXXjsqUZTPZxY7wBBoS5Y124Ru/C3LF+Ha5vOBmA2+E828+32H3+ciVkNfu9xyef9MvjvvXWCW7cWMW5s1N54/DCtVb/mCV9ngJa6mLaTn36idnjlofalm4fS5mCTelXjx//+Bzf/vb93pFT5QdCCCGEEPI8QhlLCCGEEELINbNaGfzqr76F99+/jbOzVVZiuJ0QKtNCImZLaRvGTyWKhUPfDi+VskvHW3Kenpg9RsKW663zpbRqnn7N94UUbFqXL/VzcQuUqdYwVp6IzROw+nlJ7XIN4Xn0MUWVJ8JqEZ8nokVeJBncmkM2zB0r67ZK+y7BWIPb79/G6ZunGE6HSr7qhGG89cXLsCUnq/LE6qmrhCv6AnZO8pbJ2yVp2Gwpxy2QsLMC9ph73nhJy9hZorXxNonJ1MbbRBKm+ncKMSWbXsJJsno1ppa86tyzCVkU7cXj0fPFVtfbePx6Pln9PMXHJf2k3GzjOS2Tr72/ZkJ2krAieSU1G98P0/yxdmPD3+k0h2xewfelYS59f34+Yhx9MzULhM+o09MBJyc27tMl5KVP/nmcz8NdzxOu94XPzXxOcS185Xx54rYUs1J+vrV/yf15+HCPBw92WZvqkQnZzz/fwjkmXwkhhBBCXkQoYwkhhBBCCLlmTk8H/Gv/2jfwC7/wKm7dWmMYbDbXqxasgrSX88gG+ZZEXduKlcueUWpZqFa/66C0SLrdd7Z762Xf1j7VqxCn0qaTVa1kbCnDUzJWvoAPaS6dgBV5Kwlaa4N8CMekMfNkrI/rkozVy5CMDWMMQyhBLKlq74Psl4Ss9x6rlcVq5WNSNt2D5ZiVwdu/8TZuvncTq9NVlohFvC/Ta3YqXdwqH9wUpvLUQfXpiNdjE7GZ7NXXgbxf7N8QrockbHUvr+Ot0hqj89zp+V9bfSoJqksXx1tgqr5RpmpBq0Sr7t9MyIrcKs+vxa56LqqyxHqpkrAxEQtkx2RStnjeshStTddWSVhJ0up7KdUGfDjWwMBMczmbcVoOBhY2zBnrPQY3YHVzBe899vf2cCMjiyX37u0P9nn99Q1ee22j/t0D5HNWf77qH9doGQvUErZsm1uG9RQxL0VsIP/3qvXRqtOuett74Kc/Pcf3vvfg4L0ghBBCCCEvNpSxhBBCCCGEXDshobhe20ZZYtWrkn+pnGO7lHEpWtP58uWh9lafY/e1aAnSlpQ9VsjOtZXiNZ8rUyek6i/i5Qv+dJ15Mlb6a4HbTsaKvJXryJ9bvd2aVxZKzqYEVxC75dyxaU7ZIGwthiHI2NXKwrmQEL55c8BqZfDw4f5gactXvvEKzt4+w+bVDezKJhHbEKIiwUy8XyaTdzr9WqVii/UlAnaRiG28zJemY8tUbXV8Y99ce1Uat0FVjriXFi3Ea0vKlhIVyStVsrWVki2TtEclZI3qVxwr6V19vky4ioj1ScCqmxjHlRRsVa54Wi9lr5a03qbrM1K+3KV5Y8s5Y/W6CNq4HNLSOgu/8rAbi+F0wPjwJY3FXgOPHo1wbquSsEmKyudyLUhD26uvrrHZDNm/n+lY/UMcPU6rLbTP/X7l8tLhk08uq3mYW5Rd7t17eUtZE0IIIYSQBGUsIYQQQggh14wxmNKKOhGrvyQuv2DWKdiUim31nY5AbaB6y/K4ue1e21JKU1Tuuy4hWx5T99Gli3U6Vpcs1l/Wt8td5inaeFbT+5PxWxJWttNzq9Oy8vyXQr5OTJcyNpQpHkdZBiF78+YKm43DxcU4X/bSAHf+1B28+s1Xsb65jiIWFmHezSIZW0rS7OVWtumnCZ1+019Ttoq0VSK3GgNqv3re9HmzpG55THGNiySsHqNHuStzjfU5KgGqxzgkZeUeeSSxOh1fliOuhOx0PXMJ2axvWUJYjzddY2su2Wqe24aAjv2NWvbKK6vXRSVhi20tcaOItUHMxjloRdZ605axImmHkJo1g8GwGQAH7AbKtqtyfj7i/Px4mW0MsNnk5Y+luoD+sQtQf4an93gtYMttEasPH+7wwQcPOGcrIYQQQgi5MpSxhBBCCCGEXBPGAL/1W+/jl37pNbz77o1GKrZOwSbxlovYXOLOmS6ott5ybn2u7aoUFilrv4qQLfe39tX9dDpKzx8YvqBvzxUr8wPmX+DrEsdeHZP/5SWMtSTwsSSx975IwCKTsjohW5atDnPEIpYrFhkbShgH+T+OHs6FpKz3NgriOezaYtgMIRU7iViTvWaT1KrW0RCYUP2QS7FeKrYSrMXYRyViVXsmXcttdWwvIZv1aUjUxRzoa7zJ+kU5Wh7r07X2pGwpPquyxa2ErCmELAqpqs8l16HkZ1a6GErYFr+VmC1X7JUwhUrEemRtgLpeeU4nqdqSsrBIiVidkJ2ErLGpVDI8chk75Es72HA9ow9/G4/17fAjhv2DPfz+cHKSPD7eAx9/fInPPw8iPL1922WEe6nX1mdXi93OUcQSQgghhJDHgjKWEEIIIYSQa8IYg1/+5S/hN37jbdy6tVYJ1/RXHDEdB+SytixP3D0jkiFpCVg02o4VsYe+rD4sRdvjzUnXJePM9BahNclOLWLL8pVpjtX6Lx2frkGna+vnVe8rSyPnZip/rvUS2fEi5EXGOuer+YeDpK3Ts8OAeHyruqaxBmZlYFc2ilgtYbUg1dIik5JzorP55CgRG1//JjtHr6Rw9nKXJi19C6E6K2JLgVs+HrXefLwHHmOTQ28V1ScTip3fK+hEatY+DVYmYsvlrJBFLlWjkJV2XaJ4On8mgpGfo5lyRX6+7G1efLRpIdyUskivhbJ8sdyLTASbfAmDmLit/mS+bpUWN0P4s4OFPbUYMGB8NOaPnzxRHj4cAbBENCGEEEIIeT6gjCWEEEIIIeQaWa0sNpthJhWrE7G9+UBlXUYt7QDUUtPaNydijxWzLcr+h+Rrb4yekSnXj10mWapFqlyXTsjq7VyO1vPN1qlYwDlZJhErz6f3XiVjRaqm57iVkNV/0iavq5SQNTERu1pZ7PcO1loMQ7juL31pg+3W4dNPt1Wy67U/8xpe+9Ov4eY7N2FWJs0Vq0oTV0K2WG+VEq4Eabkux1t1vGkvm+so2lvnkae01YairWjXorja19rOds3unJd18rLVh0iqtUi7ynozJauOzeaDLcdCLjljqtW091dp2TI5iyRHW32bZYsbx5Tp2UrKakFczCcbnzsLwE2CVZKx1ucJWVWeOKZhFyRjnXewKxuSuB4YToZwffHzmhBCCCGEEEJy+J8LhBBCCCGEXAM3b67w5punOD0dlIBNsi5QW50yDQlI/1K+tpgTs2X7kxCxh8451z63PXfdrWP692GuDGWZVi6fp1q8GvXchKUuIS37yuczH8uofSZbttOxrfLWqZS1Xm9J/ZOTAZuNRes+bO5scPPLN7G6uYoCtpSbMSU7Pexemd+DL51SrJbHd8arzi3r2b1tiNOsaeZ1Ub7FivNU11oKz+L/srdt+Vf0ry+qbiqP69273j1opYHLc5f34uB5es9/495UfaqHl15nenx9jZWgLx+vPn/j+ap+ONA4lzH585e992xawiBbGjulY6c/kbiEEEIIIYQQomEylhBCCCGEkGvgn//nv4p/+p9+D++9d/PAXLHpi/4yGasFm81+NjlnhQ4ty/Ul24+LjNdKyXZqrjbHuMo+vT8skyT10xKxPZQwTtt1eWEUx8j+1C9/XnUJ4vbcsXUJYj2HbJK11vq43/uUkJVEbJoz1mIYPFarlJIFHMYRartxlwaT5opVqdhWMjZLycotbrzkulJQpK6WY3qpU7I9gWiKc/QEXUsqtvqo66zEYfkYMNNnKT1ZCcSXs06lxnZ9DTrdeiglqxKx5bhVOhX5vLD6mOz4oixxNp9rIzWrry2WK26kY+P90Y/JpLFapYklyZolYg3grc/ntJXyw3Nzx06P33gTyxEDqBKydrBwCMlYSdHaMXRef2kNe2Gx+3QH33nPEUIIIYQQQl5OmIwlhBBCCCHkGrhzZ4133rmBs7NVlGy9UGYr5RjajTouGKV8jFLKXoWrilhT/F3lXIfOd2jc4x773HPQ7lOmmfsH6+NyIVv2KZ9T2SfPb7qndZq6lPllQhaV1M8Ts2HfMBhsNhbrdTj/cDbgxts3sLm9CZKpkKXx+gphKcu5tHF2j5DGbr5stJBtiNhmuWElRLuJWNNo61/kchG75KVfvk2WvmVMuhaDxuMqtufSq1WbfozZ7rxtUdnm1n0vn5vyuOJ5iMlUFMsyFdu4b63HXb124/sqP2f5emwts7HKP4usf3zOpjlk7drCrvkVCyGEEEIIIaSGyVhCCCGEEEKugdXK4uRkfq5YQYRZkrZGbWt5B8zbnJ516lmaGdvUHXvp/mNSrLqt3L+0f2/ZuAIT9vXSrtLHmJBclfNIyrU8NrWV8rRMzNbrkm51LqVqy2Rskqs+vi6cM1lCdhhQLMOfJGGdCxfsfShR/OabJzg/H/Hxx5e48/4dvPtX3w3liQcTU7GYXn8inTLRFe9jehqaSVZ5ipDGyIQXkuyqys+2+ut0rhKiVTpWnW9RIlYLxM5bZDYJe+jt0aJ3TPnyl3O30rIqOdpLycp1L07I6jljp9RpuS73tZwbtpxnNkuy6rlmjUq3tubGRZ6AjY+hNYesPr96PmMSVpKy1gAOgEWY31UnY+U8Ri2nRC2AlIgtl5KQdTaM7RFSsDJ3bOOxEUIIIYQQQgh/tkkIIYQQQsg1kASryaVV0adMNZbJyVLcds6GeQGLRttSEWtm9h26pqvsO3QtV72O5Qatl2Yt98nxvecoSct8v24vz1ufOx+vfr3Ur6NS/Ou5Y0X2rlZB1gJBKA1nU3lilQTsytXerZu51WX6Ma5r6VoNV0vU6ny9l/TMW6JVmjgmUOdEbOs6r/r2mKM3ppbLvePQeb7QeNy9sVr3vDd26znoXZ5OV5u8f5WCLa9Hn79o1wnX6n3Ye33pe9BLxqJOxuq0bJWatchKe8v8scPZAHvCr1oIIYQQQgghCSZjCSGEEEIIuQYknVgLM0CbACklW5ecTclY6XuU+cj6HGpb0ucqyBhL5ks0C/st6S/7Wn1CmxadbcGa5pBNaVnpH1Ktsp7Sge0/IE/Etuaj7YvWJFTz9GyejHUun29Y/mT+2HGUeWUtjPFYrTxWKxeu2xoM62Ku2CkR20qwamlWSrRMtnbEWLPsK/J9VYlk5MdVctvU69k1mPZ2JgCXyMeyn24++KOJw3ivXq96uCItK0nZ1tytWTq1MY9sNyHb2kZxDFDPH6vmaK2Sspja4bNrlDHKczXvbbnPpDGr45FeA9XcsdNcsfo1UKVpp2SsyNV4T6YkrLfTicSt2vBYzGBg3PSeGQyMN7FE8ea1DcaLEZcfXR73EUcIIYQQQgh5YaGMJYQQQggh5DH4+tfv4M//+Tfw8z//aibUtGXQEvBQMrY8Ztq6wpVdh1y9Tg7JV72/t750zL6U1es9lybPRygbjKl0cS5p9f7W8XJMkq+yT57vsvRx/pfa5TXiG8s0npQ6TiWOpbRxKL08DAYnr2zwxs/cxM33bsUkX0uQdpOFS15S6vhKpioxVqUmO/1KedpKHFf7eiIWDRFrOu3lum6+BgnbGqspZksp64vyvOo3CJmQLc6xWMhOY+ofHVRvHXVdWSnj6sEpYds4d1aaWESrLkvce6z6vOXzWFx3lK36eqQM8iRsWz8WyERuuZRy8jaUNs7SsYOBWZkocwkhhBBCCCEEoIwlhBBCCCHksfjmN1/Fv/lv/gLOzoYs2ZqkLNR2KWLLNjmm9UX+XFtv2WLp2I/DUkl6SNAeO/58vzL5qtvzPvr4JE5zOZsfo0WpTuKWc9CW58wlbKsMcTtJK6WJrRU5a1RbSlrLXLPWGpy+doqzP/cGhtNVFLFNYYq6rXlr9TLb1TheSdVmWeQWxbVk5zb5ejnGokSsFrHlJRTbBwXsMW+hzktXzjErZbXgLM9/ZEK2DJPHRGspX4tx43rxWHR76xozUdq8Aek4LVGbklYn1ctErnpNRKmq5tfN7kXnL6Zt5XhrwmO30/UV5YmlRDE8YFcWbkqhE0IIIYQQQgjAOWMJIYQQQgh5LKQ8cZq3M5d7QlvEmkZbPAJ9w1OaqTkO9b1uEXtd4z6Z6yrTp/p8pXAr+9TpVm1wyn4mrvdKV6c5L9O58/kpe6+RlIYV+apFrE7HpvLFBuZ8h/3vf4rxRw/ifJdQ58jkZ/cGqofbeznFe4NagjZEakvcVn2R79fXmQnb4tzNa1DL6vE2ztkUsZ1rXMSBY5vnbMjhSlQ37k33/CjuU+M57e4v7mdLuGd9tdDvPOdlyjm7hs7+qkS2GjN7/enXlW4rxtd/1VgG4dsTo943ZSJ2+rMri+FkwOa1DYabQ+dJIIQQQgghhLxMUMYSQgghhBDyGOiUYk/Ehn6tRGy/vzpywXpru9d2zH7p8zjm6Riu43obR3VusjwXdXt6XvL99f0v9+vjWsJXn6Ncb7WV+3slrkXOiqCVPiJkjTHA5YjxB/fhP7tsS67WQ1SCbS4d2pK5lcxriL5WKrZqK64zk40LXpJHidjyMdWDXf9boDPmISE7e+3lPWqNh+Je6+ev+dAXPHAtWmf6N/cVwrT1eFuvqUril48HqO+BOq4li3tSVuZXzpLlqmxxTMmuLVa3VhhOKWMJIYQQQgghlLGEEEIIIYQ8FsZIMla3lQLtkEjTSUvgKOtSX9GR7XPjzI21ZLxWn+s2WVdlXoyW+1vyvPUch219bKv0sGmOW//1SlnX46UfBKSkrP4bBoNhsFitLOyQpFIlpaaHHpOXcisyZzcjCQs5Vo7dS79WYqyUZI3r6Mo2U2zrayz7NR5DlUxtib7WvmP+WjT2da9F72/JZrk3rcdd9C2ldJV6Lccs98m4pj4+6zv32lDXMfta0des78l0Xi2TewnXbgLb1m1avLbaW8lYs1LrnDuWEEIIIYQQAspYQgghhBBCrsRqZfDKKxucna0mCdcpZzrRSsaKRcjX22nN6+c6TvKsjPH45PfcNNqW7CvHnHs9HB67lPrla6SWwK2/Mj1rYGdk6ZWfjkKYNVOYWrqhEGrVcDOiz2Qd837lNRV9muddMkZ9gZXAXPp/reMPnXPutVTJyWzX/HHV+Q6du7zu1uMoxOnia+o9r/r1osctX7em0d4aXy116tsgL1NcJmZbZYwr6asFrQjbwTTvAyGEEEIIIeTlYfW0L4AQQgghhJDnkZ//+Vfxb//b38Rbb51lAjVIgFwkhdTiYVmW07IeV+XYY4/pbwD4I8c/lrlzyL7Hvw5jAN8cIh87c1OluzPtPuF14RvyVEt6n6cC4ZUA8o3+6ZhWGtb79HjslNBzLk/RluJMhFQpV7NbgUY7kI8pj6GUWnJsQ2a1ztsVgaWIa1xfMxnakbmLJKwe4zEoU51eXls+61S1GWPg5Qkt9xvAeANvfNaWvTWmZTaOuqZ47HTvvPf5S1+Ol76YzhkaQzt8fs1q3HjejqD13sf+Mq4x6VzyeI2Z9nl1HUZdh76m6TWlt728zwzCujXwzlevydhvml/ZY+rrw9L4tM94AztYOO9gBxuuc20w3Bhw8uYJ9g/22D/Y1w+cEEIIIYQQ8lLAZCwhhBBCCCFX4OxswHvv3cJrr51UCUVNP9B2HVGpGTM2O/5V9z1LXOU6zexzdeUrOfj8G7W+bLywrK1hLX/zJLU+tpb+4c9vR4yfXcBfKDk091LqXSeSRF0sM4/1/OX5pvZSiJbnPzZ9OXde3XYwaTr31z2sIZU71zKbkG0d05PSS5LQ2evquDdMVi64cf7u+TrPT/Me9Z6TQtovuR/NayuO1SnabBwlfY01sdyxMSEVazc2pGMJIYQQQgghLy2UsYQQQgghhFwBYwxWqzAXZ8tTxABbIcLSnxZ4Ji4Xnv3I9qfJF31NV5O0er1Mr4ZlLUPbfspUxzZ7FQKzFLp5eja9jtKxuXC1No2ZkthpW88dO/74IR78Nx9g+717+XXMvKyqdGujTymmMkkl164EbmvZPFenLdun2nrzolYp28bz0BNyWYnh4vEulswzx8TxW2OVfefSwh2xW127Hkc9xkUCtDxPeW29+9G4zqbcLh5T9toqrrF83enHVK635optfzbX5YqjZFWiNaZiG392sLCr8Me5YwkhhBBCCCGUsYQQQgghhFyRJEXKL9p1OdrDacz50Bm/xH9SXGc69pjnqRS6S18Xed+6NHYuc2dKYzsPbEfAqZKxx9yLUoRG52VUl77Imx9ajdESwDPCsXeN3X2H2huP6+B5j6UnTQ9cdzepahrX2znX7P4lfXv3B0V777GUf0uuQb/mZ57HQ6+R7nNaXE95Hl3GuyV3YRDFrZ47lh/jhBBCCCGEvNxQxhJCCCGEEHJFrE1zcba+bS8lWN3WTtX2eR6/0X/S88k+HlV528YtbiVdDz9vWirmYv7wNdXXWErY8jWkt0MKFs15ZCUdu1rZ9Nqd5FWWzOyIttkkY0tQIbVlZV7R6NuTtWV7S0qWMq285sbb9FAitpuGvW6KcbPnYu6wmeuvHrPp34dDx8n6XKninjgvz5elweX1UL4u0Hi9NF4/2fXq12AhYpup6/K1qq63l9aWNGzZp5eOjYlYq85BCCGEEEIIeSlZPe0LIIQQQggh5HlE5FqJ9x6Q9FQpsppfyLfsCL+5f15piduiByQ53T5e9udLD+AHj/a4fzliHD2c8xj3Ds4B+73H6IC9MRitwX5lMQJTHw/rPE7dHsZrWdsQw4e2s10Nkdvq03tZF/KxPG9L2pXnrcYyxVgz4nF2DtSeEJ5j6Vt27rcJJt9vYOCNz48p+hwc50B/Y0z4zOr0MzDTq0/1h8/HR3HdZZ/GOFe6/mJd359sfJP6Zo+v95i1eAXycaS/8ZnQ9sandqQxpL0Us8PJgNWdFcbzEX73bP9AhRBCCCGEEHL9UMYSQgghhBByRXKfM32rj3K+WCgxq0vJmmyc6y2Z+zLQExrHiQ7vvzgxMuv/4utEXkc+E7veA9++t8WPHuwr8ee9iC8Dv7LAAPiVhfcebuewHj1+ZjfCesBaD+cmIavTjJUPPfCCNP2/ZloVB9Zb5yx/z1BsV6nmnhDunK/ZVgrd3nFz7XPoY1ovvSOFbBSL5bFL5GopLKc24wtxulDUHrx+fb7WgOpa5LjmtaBxjsZ42eNCcV4lWgFkUjWK1enHECJutZTV/Yw1SepKiWKfUrHGGAw3BtiNxeXHl9jv9vVjJ4QQQgghhLzQUMYSQgghhBByBK++usE/9U+9h5/7uTsYhjxdqL1eKV1zb9Rqy/c9PZJUXt7/STN3Dr+gT+fIlg9a2Pa4/N0PH+H7d7fwPshU5wH4kGb1PiRfnQe8m1KwzuPhymJ1U/0nnJfrC7IrStnpOO89/ElIxj7cDMA0lqRqd3sH+yf341girrzzWN9Y487X78AM/deCMe1EbNhZ99XJwkzYln/ZMKYtZbsXlZaLyhPPXPO1Sti5ccrXV9HeFLK6e0fIVpIyd/3t69FvfxGMIkRL2YtiX/lYiv7G9x9H9RjLY6EkbUvO6hSrvlajjlciNruWom/808cXIrYpZicpG/fJvLGDgfGG5YoJIYQQQgh5iaGMJYQQQggh5Ahu317jr/7Vd/H666ddqdObW7S1/nwnYq9iKctjvsiSnUvO1e+zRMp6D7hJqo4+bI+TbA3L0P5Hn17i7/74URA2HWlYXc5gsRpsEm9awKKQsSJoXVienwY5Cxf2eeeBvYf/8FEQt87Dj2Hp9g4nr53g9tduh3SiVWVd5XpLRLAq+ZVJV9Uv32ykWVvzj3b6du9bh9nyxL1ztM535LGLS/QeOveB5GvrmkoBelTJ4Na55851ICl79DFz68D84yrPXQj9eG+KfTJOJnZln0rS6rLEmcS1gHEmzjMrpYq99Qdff4QQQgghhJAXE8pYQgghhBBCjsJgGNpzbsp8sYDpSthng0Pp1yXp2McTm9fT/3i8T3+989b72+O02I4O/5e/8zF+cn8H2JT+TP7Uw3vgRxcjVmerw0/DdIwOAGsZW26XKdlSyurt2CYp2jFsu9HBjx6f/L1PpseqJO4YhNIbf/4NnH7ptEqtdud0NWqfbi+PK+kkYjOp1UvBLknQlmP09nfaDsrbRr+mfAw76vZeyrXc30rHtkRmb9m+6OY1SUq1e+1Fn3jtrXNretdcXhNQly+WfdMxVXlhdS3h/Zhfj/FJqEbRKsfD5HPEqmRs2RaXOhWr5o5d+qMBQgghhBBCyIsFZSwhhBBCCCFHEhJPeVtLzrVTUE/y2/ieRF0iV1vHYGa8p8HTOq+6AnUJu9HjfOtS6d/R49F2xD/46BwffHYJu7JJzBTzqBpjYNe2Mb46gfguEU+tbf0H1G0O6by63QRZ5J2PST5vgpS11gIOuPjkIkvM+jGkZmGAV3/+VYy3xpj+i4/RAHZtMWyG+DBKYVmK1FLoZvvKMTpytj70gFg9tv+xSd2SIsEZmhakSEshO1OuuMnSBG05v6qWv6YjP5eer9FWnm92nJ6slnG06NVj6+tWojYbc07cFyL3UN9Df/q9Et+XhBBCCCGEkJcCylhCCCGEEEKOIM0Fq1OWwW7F7+wN8GSk6zFS9TrSr9LvKrSOO2as6xSvh8fqpWFj6LSx83e//wD/+d/5JCTeLIBJ3HwyAuub69AOxHTdwacDStDpJCx8SO6pazEweTK26NdMxqJIyOqSxTo9K0lZN/WRMsbOw46hTPLHf/djmJXJRK0fPcbtiNf/kdfx9l9+uy43rKVrmUSVNiVqMwG7VLzOsGiu2AUi9ljRW/VTcjVs+rzfIZnZSY8unjtW2so5U/VxByRulKCF3NTS9mBatxoUWao1JlK9Khus2oH5ayzH1dcp65KIjUnZ1o8DlJSV13QsTzwlYOW6s4SsJGIHE37sYD3Wr60x3Bxw+fEl3CWNLCGEEEIIIS8LlLGEEEIIIYQcSUw4KZbMJ7qMq6ZYDx1zlXGvytKbcZ2id6Z3s7uf2Z83OO/x0/s7bPcOzgV55pzHD+9t8cHdy6oMqTEGdmWToFpQpzoro6qeKu99KqFaCleo9J/0wySK3HSMS2PBI0jjMklbP+RcXpUJP2ewe7QDHOD2Ls4z6/dBxl58coHLzy5j/5M7J7CbOgU8y5x8nbufpfg+dOsf5y1x1WMXplWfGJ3zz6Zj545ryN7eMXN9F81l25HMrWs1Pk8S63LJWelkGbc4T3Z8Q9B2xX0jDWuMgcH0uQCkH2oQQgghhBBCXgooYwkhhBBCCLkyOhF7TNI09ZNEZu6XdJ/WuDpi9jhf6j8JQduTKT3b19rurT/+teg5Y733lYjNqgRP6w8vR/xv/8YP8YPPLkNpYRPE63b0WN9YZ2k4AEnC6mRn45J0Cjb2LZK4UbBOCddsLk6VghUhK+3e+ly+yqW4JG69nZZFIjaKqEZSVtKyZgj7zRDGs3sbkrMnFvc/uI+HP3oYShoDeP9//D7uvH8nPfDefVL7l6Zdl0rXqjRyNkTjeZrrt+B8B5lLrs6kY4+aOzbrckSJ407y9iiukIDtpnQPrOukbJbYLe+LyS9IlzPWwlVeK+WYrTljY3+L+F7TZbu98Sk5r+aR/cJ+F0MIIYQQQgh5JqCMJYQQQggh5DG4aiK2lLC1kL3yFWFe5M71v45zf5EsFb9Tq+/vK5OyP/jsEh/d38IjyNiPH+1xd+tgp9tl7JR2G0wmcADM386sm6mkkUgpYybRWm5LiWIkmavLucb0bHkRkyjSAlbEnrGmkr9aChuYkLAtw61yCgdgCNsWQcruL/bw+yBxH334KLs/3nusb65x88s361LGM/eru162HfFyXix9e9f0OBwrZNHpe8R5rjxO73pmxPHivuj0PzTeNdMqG10J26K/TtfGRLZ6HWali3UbIYQQQggh5KWCMpYQQgghhJAr4VW60sNPEmvZF+1zadcnSe8cOnJ21XGfxP6lCVl/RJ92vzT3b+Cv//6n+K9//1PYwQIWGD2wurmq5oUEUCc5e7exTMW2LqlYxjk4PfJkrC/66j8gCNLeUgtgn/a1koKxVKudUrXGh9StS/u8D23eefghLM1o4vqPf/vHgAfczsGPHvvzPV79+Vfxi//mL8KsO6lU1TYnTGfn4p0TtnPrvfMs6Hc0x4jG60isHkNxjkw++k6/jnDN5pLtpXRVvyw1C18f05C43dRw8QOILCErT6tKusa/RvpWzxkbE7LIj4uJWDOlz9Ucstl7lBBCCCGEEPLSQBlLCCGEEELIFZBkq6yn9lp4lv3yssZLJeyhfnOi1Szot+QcvWOO3b9Uml5lf9kvLFsJZl2y+Kf3d/jdD+7DTf3+5O4WozFwIloHwIqA7SRh56RhNj+lVxKxk4iFQVYyOOuDThJ2OkaXKZbUa7XU6VhJy5ppHKuuS5Kx+jw9CdyTn3skgYxwTdv7W3z0tz8K1+w87nztDm69d+uwFP2iUoVPIbx4dOL18ID91OpVZe7jpmyXnHdG7vbKMGfHFv1Kibw4haylbO+jukjCyjIKWNTJ2OrzgxBCCCGEEPLCQxlLCCGEEELIkSQZEBKxbTeQ0rL5sfV2KlG8RJxepU99bYvim4v6zLFExLbioceM01s2jvA+E7C6/7c/Osf/5m/8CM4AdjCANRhOhpAIFUGJQqqgaJuj97A7ktMjyVYtWeM6TEi0qoRrbC/bZBz9J2WHdZvg0L+tpr9PUo3eevjRh9SsS8sow6zB9vMtvvNffAd+5zFuR/zcv/hzQcYeQ+O2t4R48/k5woU9sVRsOkFfBs691Y5Jyl71HEv7ZN3n57VdfMzS69FCtGxvyWi1Hn/o0LjeLKVbyFs9B20pXrOErJ3mjFWC9mmIfkIIIYQQQsjThTKWEEIIIYSQK6Clnki+Rq9mejYdP5WwnMRt7oy0MF0qXHvHXEXYSp+rcqyIvcrxC6/E1/f/0XbE/+1bn+Du+QhY4Iefb2HWFtYEWZgJFKBOtwkLb2E8VsmzmHwVETuXhm3NGSvp1zIpq/qkyyhKvtqGpJXrs8W2QShLbEKatitqy5LIRWpQ5pM1PojkAQOccYABPv+Hn2O8HOH3HmYw+PJf+TJOXjtZdo9fIK49Hbv8xI/3dn8SzFxTt2Qy8nvYLIlcSmxZ6r/GtZRSNit5rCWstDeSsjAALLB+ZQ27sdjd28GPz9qNJ4QQQgghhFw3lLGEEEIIIYQcQS5hJSUrQjXvUxw5tfWStIvOjmQSWsslxx5quw6uImJ7CdmrS9ky/eo84J2Hcx6Ptg7/5d/7FD/8/BJ2bWGMgVlbGCVO9LywTRErtG5ruU9LWOSCNexO8igOI4IVqU8lZXVqVvooUSXzvGZLKKGrJa0uYazKE3flays1e+geKSnr4GCNhbEG9753D5//0ecYL0bYtcUbv/wGTl49mR/zSfE05O91pE9l36FSvkdd1hHlh4HqtR/nOD5mrN741+ksyx9UZMHXYh7YVgq3FK96TJWSzX7MIXPGGmB9ew17YrF/sKeMJYQQQggh5CWAMpYQQgghhJAjSWnYVKZY5oFN88HmbVKyuBS2tbgtzdaxwnQuEdsTsmi0H8uxKdcl+5dK2UPLcI//y7/7CX7vg/swg8F29Li7dxhOBpjBBBlrixSsSsnFEqQl5e0t26RdS1gZy9fJV5GrkHSsbMtxSFLWu1zgalkrf94maRvnhZ1ka0zVytyxeunVXLIuiVo4xDZMctt7Hx+Ht1NpYlm6qWTx1Ccup2v3NvQVWSWP5Xv/5fdw450beP9feB/rm+v+PX8M5ub4fWE4VvIeELmZ6Mf1Sd/qtyWtfWUbEEsJHxzP5I/tkBiWvjF1rqRrdmz5YwEtaqdSxsaY/PNkSsdK+p4QQgghhBDy4kMZSwghhBBCyNFo2YpKSGjBqnclOdv6Bj4YA+m/ZBrS5dd6SMhKOzr7lpzjmH1PQtzWjM7jcufgPeC8x//vhw/x//4Hn4ckrDUwg4Fd2eacjpl8LW5Jd47YqbknqLQ0Xdzm0/my0quxxHXRrtd16WIRaEVpYp2SzVB9YDA/j2wrIauElIOD8QbOpyUMYL0NZYo9YAebhK7z+OwPP8P5R+d47zffC7IcBmZlMGyG5r0lzyHXnXZdek5ZbYjnLOnaOtw0RKzaV52nIWdlfdFc04QQQgghhJAXAspYQgghhBBCjsLDOcBJItAniVqmXFtli8u0rKRrwz6vvqDvJWQPLVGs97aByiZk+x6XJWnXcvvQ+lxbvfzbf3wf/9nf+CHMysKuLX58f4vV6QpmmOTrJPlglXw1HalSrLckqpw+O17d+tYcsZKOlRRslpaFSsYqkZolYIuHHtOKeh3I5pPV+yQBC484V2wsVywljV2ektWJ2CopqxOxLh83vkwtAAc468LYg4cbXSjXahHLtu7P9/iD/+MfwBiDcTfijT/7Br7+W1+vngPynKEkbJSbS9Owcx9PKsku78ODSVglTaMsLX9UoF+7uq/8wGH6EUe2rfqVQhZmeo/bmcdCCCGEEEIIeaGgjCWEEEIIIeSKtEsN+yhZdR9Z18u2SG2e6cD+Vr9DQvZJchURe31s9w6fPtrhTz65wO//6CHM2qZyxCuTkrBSFreUsFrQ5Aa2ItuvxasIppbAneSqbs+SsT5P50Wpajr9ZR7ZouRxlPu+TsbGEqxIZYzhwvV656NsysoVyzFa8MrjlsfVuCdyTjOYKG8BRCkOTPPITvfMw8OvQnnjBz94ALd3GC9HnH7pFOcfncehN69ssDrlf9KSI2lI3ceaz7Z3DjV2mYJlMpYQQgghhJCXC/6XKyGEEEIIIUfgfUjFyl9ItgJBwkri1StJK1JWp2HbIlfGCd/Rt6TqsanYpQlZFO1XYU5ktPYtScguTcrmY3334wv8L/+rP8bnFyPWtzdBwtpcwpaptWpOWCU+9fbcw8sEqjf50yD7lSwNu3KBmUnTMjmrzlfN11m2lSlZlb6W7Uyu6kSsLI1Kxvp6HlmdkJU+3oW0rKx752GtDRLW5vPPmtGE+WRVMjbr4zzGYYQdQynpz/7wM/zO/+p3MF6OGLcjfunf/iW88+vvzDwx5LniUPJ1ps/sXLe9lO2h/b7oqxKuck5Ave8b+6UssXzuxB86SDshhBBCCCHkpYAylhBCCCGEkCPJZSsQRGyZkG0lYbWczaWsMalcsTHpmBSeump6dmlCtjQPx/AkROzx59ruHb77yTn+8CeP8JMHO2wdYhJWC1hjG2VEp+2wMP3bMCN2orj1StCo2y2CtUy5hm4NKQvVR503k7rqHCJX051KqVddnjj2VUJW949LmwtYeATRCiVqbUreGmdCmWFZN8hKscbr8Uh/8hh9/liMN8AIWGfh4GBXFm7vsD/fBxl7OeL+H9/H6eunuP2V21jdOP4/bWfny/2iRdk1hjJfOpZI3Os+R/n6mNvWKdlSxFLIEkIIIYQQ8lJAGUsIIYQQQsiRSDrWe0nH6pRrKlOs253zk2Q1qp8+LqURp7NMy17ydS4VW4rVXiJ2Tso+Lr1xlorYpUnZtPz00Q7/yf/9A3x4f4f9YGFXoRSuCNcsEQvUidhCmnRp+Ttt3EUmSl9fyFVdOjgekvrnr4P6oRvfmGezERYuk7HxGCVCRcjq9ihpi6UWpTohK2WVvfVZAjbOJzuGfdaFhKwzLh3jwj45xlkXjjUAhjCWHS1GGxKybuVgBgO7tvjef/U9fPD//AC/8j//Fbz2C6/1n6/niKWlcheX1H3eJW9DtM6mYK/rnNmm+oFCdTH5evnjDnkft+aOZZliQgghhBBCXh4oYwkhhBBCCDmSWsCKXJXUq07FShlj00zKCrp/Py7VE7FLonytPo+Thp07z5L2x0/Heu/x9374EB/eu4SxBncv9ri7ddh6DztYwAaZF2VsqyxxUXI0svSWxASzSqTqOWFFYGqRo9OfphZrWeJVXU8UUOpYfb6stLFO2qokLIBU9lgSrXIvyjlj9VJOZlEnZKcUcBTQDikRW8jfeD7Xls4yhh1suk4DWG9jIljuw3g5wu0cPv47H2N7d4s3/uwbT3YO2SeVmF36llk63JMUlS8R8bW98Hb25p2NKfJyP10sIYQQQgghLw2UsYQQQgghhByBTrqmOWNb6dhS1rb2SYI2GDQpUyxCNniqpcK1l5TFzDaK9ta+JczZita+Q2K21V738QD+87/zU/y//v5nGDYDMJiYmhQJK2nYKhGrJWCRjG2Wrm1enW8n99TxWsDGOSajwVX9HydIPLfstZX7Dnl+6eNSm6RbsxSuaRwHdYydkrLGwxqbUrBj2C9tkpoVOQwAfvBxDDe4sNw7fOc//w5OXj3Br/0vfm25jF36doISyEuOewwWp13TAe31x7mGF1Xktp6zVhGBq4zZSNLqFGzsU/wghDKWEEIIIYSQlwfKWEIIIYQQQo5ERGyekNViti5TnLZN0WaifE1LwBhJf5ppvYhaduVryzCUBmnOQFynjDlWxC6Xsr/7/fv41g8f4HufXcKsLbDK5WtMxNqGhC1LiyYrehRRoippVz4dsaSqdr+mIV87T0WcexZ58hVAPnfsdN4yJStyLUvCSpnkMi3r1PiNP++mcsLlfLMyrjcpFVtKYKe29T0qnotyabxJ1zuGx+vggrT1qrzx3uFP/h9/gtXZCuPliNtfvY0v/5Uvp1TwoZKwByRrd37Zx+WYt9vjvDUPHdvZXwriLN39RfBFuuFDT29nf0yfFxcbk7AdEWyswclrJxgvRmzvbr/Yx0oIIYQQQgj5QqGMJYQQQggh5Eh0GjalY1viNckwLWHDdv4nbUAqa5wnY/X6nJDtXnWjz+PEwg6d69i2ZVJW7tHf/uA+/k///Yewaxv+yrLEdpIkU7lcLWG1nI0cewsaty4rO6xud1PizYk/XY5Yp2ZNvj+Ts0YJ0en6ooRU8nZWytqp3ZlczopIFcmqBW1xzti/lLGm2HbFchLlDi5bipAW4WXDExvmpwXg9g6DH+D3Hn/8X/0xxu2I7b0tvvybX8a7/9i7MMOsYb3aS/+60rFer/ruvkPHHtWnfF4eQwBee4r2SctI/TuVx+ijS3NXx+plua9IxJrBYPOlDcbzEbv7u/BjA0IIIYQQQsgLCWUsIYQQQgghR+C9xziGP52QFSnrnIed0oPOYRK2uah1DjBGtwUDkM8t66eEbC/dWl0Z6lRsz4T1pGxr3xLmJMKx6dhee1j/1o8e4K//waf4hx+fY9gMMENIw5pBJWJbElbEZiFMsrYrUM4DCyCbz1Wfa+k4VYpTSzud8lRCLUrR6WnX4jWmQ0Xs+vzYKFZ9nf6Mc13qNKxaltcn885mSdjWUp6TSWzJn4VNSxvObVxK73oTkoZxnlo77RvC+88M4THe/5P7+N3/9Hfx9q+9jS//5pfze2n05kwJ4mP6HsuxInau/5PmquJ3Qd+rCN0rS+DruG2lrC1fA3NCVtrV55Gx6bOKEEIIIYQQ8uJCGUsIIYQQQsiR6Hlj5+aFDX191pbmhc37i4QVSavPJebHxDRWLxW7ZF22gbYxuE7RcxUR2z7GOWDnHP740wv89T/4NEhY+dPliU2+bEnYroBdEi4u+uoyv7HPFSRdVSpZvwamcsQA8qRrbERelrjc9ml8OSaWT57OHZOwCKlT4021hEctW1VJYhHFHj5J0qJMcnaMR0y4VpJz2h+fVyWaJe0q996ugsAd1kM4v/O4/PQSH/w3H+Dk1RO8/Wtvp/T0sTwJIfs4adTWwYfkpv+CBG7r1HPitBT0zypXle768wgmvTdQvFevJWZNCCGEEEIIeZahjCWEEEIIIeRIxtE1k7Hpz8A5D2MQU7BpGdqDdDUxSQtI2WNM5YllX1hvy9VjhSyQm4XHTcSWHJOQnduu17/98Tn+s9/+EX7yYAe7sSEBa/M5YpsyFuimYoWD84nGK+k/vqvOOztzsiROJdGq9mXLVlsj+dptLx3/3F+ZDCxLEst+JW0lWVv1QRCqOvGaXaMLZYm983Hp4GBtSM3CJJnrBx9E1yoM4lYOsMCH/98P8fkffY5v/MvfwNu/9nZ+DXKfzQHB2hCy4XYVzwvQf/6bjnRerHbbriovfbl5YKAl13Jd51v6GK96TU9R+MqPHcp1nZIlhBBCCCGEvNhQxhJCCCGEEHIEIkyDdEUj+Zqvi2RNS5P1SwnFMhmr29I6IGVqryJkW9u6XTjWDhwjYVttdR/ngbuPdthP8vqHdy/xd370EDvvYYckY2GRkrFAmiu2k4oVlgpYjT5Gz+taPYRrkiutksGt/bq9SsA2tg+t67FimeLyOSrvqZ3EqvO5fLLTGGqu2vi8WMA7n56raa7fKHJV6jbKW3mefVqXRK8dLDw8/Cp0HjYDLj69wMMfPsTbf/ltvPqNV7G5s4FdX09d2CwlmxoXHdfZcZWL+MLISnL39mHm8S07ydX2PS8UH9mPWyadEEIIIYQQ8nxAGUsIIYQQQsiRhGSsg3MO42imlCxUMhYqGRsMgl7qpCwQJJS1rWRsErEhIdsTsGVkcW4dqK1GKwr4OCyNtfW3H13u8b/+69/DH39ygdWNFbbOw1kDa0woN1umYW0SfIASp6bYVm1XQqRgKXM7qdvHPU/c9EV6c1pGIVi2qflc9fyuzbljtfBc+rcgIWtckYhF49jp+cvSsSYd70K0NvaVhGycO3YMA/khX8Y5hAcDu7L47v/1u/jgv/kAf+5/9ufw+i+9Xt3rRelY1O09QV5ypRRq0e7Dk9sfIqtvPnNu315Wz1Wrb+v6Wv1b/Z4gV55HNhvk8YdYhPpMyhLhhBBCCCGEkBcWylhCCCGEEEKOwHuRrZiSsZKE1X86/brkLx0TzgEAfkrFmtgnT8RWV6ba59bROL7XfvTdOWJfe9t74EefX+An97b44LNL/PDeFqudS/PDlmWJJR05yVGditXt086cyqfWSdPqUg/douiAj7+XWfKwCDNnqVx1QSJW47yyBrH0b9wuErCxP9rpWH0fynRs2UeLUg81Z+yUjo3zY4YYYLZtrAEcopAydpLEUyI2zlUr90SWUx/jJgkvr4EhLY0PEhYO8GuP7f0tLu9e4t5372F1tsKt925hOBmq+39wPthee+O5WcxSEXuV8TqHLRnv2uaZfVK/7Xjc45dK5ychadVHOeeMJYQQQggh5MWHMpYQQgghhJAj8B7Y7x32+zBvbEjJ2mk9nzu2TMbWc8bKX5pj1lpJx5rYP7SF9GwSsiWtNGxPwvbs4nVah6URudyIjN7jP/v//BC//d272A4Gqxsr2NVUlngwKQUrc8OKiJPytaWEVbKwkh4dB1IlUFW/svzvIcGb9S1opipnUpmSjIyPTSUay3RsXJZJVJ/3z1Kzbnp96XaP7p+Mk6VzDVJK1uRj6usw3kRBG/9c4/r1PdVLNZ+sXLsIXCC8HqR8tbxuxt2I3/8//D5OXjnBr/8nv45b792qfrOwWMiis+8YFv52oVkeuPy9QCsZulQ26uOvQ0rKayRrSuO3JO/B+XMP/Zajc95nCkl8y48d1I8VCCGEEEIIIS82lLGEEEIIIYQcSS5eoRKxUElXXyVgncNUjrhMzgbro9uM0XPM+kne5pI1r5Q7Y/Fmk7HXZZbK8Q6119vf+ek5Pvj0Aj+8t8Wj0WNY25iGFblWiVgtWU1bwoZFR57O0bhNlTzJgrfHiZW5RFwrJWu8SpnqdpVk1WP3ts30mpJ7F9tNnYgtr7dKyZpiiZSOBcJzJPPI6kSszBWrk8zeTrJZ30eD5tyxIl4NTJ2MVXPJGmdiqtp6i/3lHrsHO/z0d36K84/O8fo/8nqaQ7b3Fuo9TVd96xwShteYzjw4P213d2aD6/3e5z8SWHYxs2MeTUfs6h8pPLOUv5chhBBCCCGEvNBQxhJCCCGEEHIE3nvsdiN2OzelYk2WjB3HPAFbJ2MNjEnpWAAxEavnjHUu7LTWx3VjPKwN3+KXU5bm3+4fkrBzUvY6WWKV0vZ//fc+xv/5d34Ce7rCcDrArvNEbDZHrFq2JGwlZTXHCBB9q7T87AjZ2FQ/Qf1TaGmkxase2yOVFp6kbJROU0linUCNZa2VmIoJWKNSrzKOpEonGZr10UlYaXP5tUVh6pDKC0u/QqaKsI3JWbmfkoxtLbW4mpYWNl6nlDiWe+RHJazlVg6hj9s5fOt/9y3c+dod/GP/6T+GzSsb9WQgK+EcH9/c03ldb52ZNOlsv0NzxRbi9Srlh7vXos/bkqOHPgKK9Wpe3Kve27nj/IL96Mhc32m/AvpHC4QQQgghhJAXG8pYQgghhBBCjuDRoz1+53c+xpe/fBN/4S+8gfU6L00s878mqSqpVq+SsZKSNVlqNkhZH0sSSwljIE/JluI1n0tW28OlUla3PS5Lk7F1mx8MsLYwKwM72FRqtpSuLRGrRF0zoVomWGcfQS5HZ9OwLel65K1sXU9L0uh+1byxB9rKeWDLfbFdCdLW/ngOEawiO0Wc2iCL4xjWw7hUkriVevUIfaqEbDGHbCZ2leA1dkqP65LVHmnu2CGUM7bewq/CQXZlsXuww3f/i+/izvt38M5vvJNKXR+bkL0OrlnELpGNx15T85xzhx/oV5VGXoqfuT/dQ2Y6Lr1XrfUjrz0KWP2RzXQsIYQQQgghLzyUsYQQQgghhBzBgwd7/Lf/7Y/xzW++il/+5S/FVKwWsvmcsSiWPpsPFiiTsSE5m5ZJ2gYpG8RTSsjmgjbJQW2PDklZ3VbyuJHABRLWiyAzGE6GNEes+oNBlYwFCik7J01bgrZDNv9qkcbM5GtH+B6SvZooZsJGGkqlWmVsLbfi41FiqiVrK/EaXy/pHKVojXKzELjZfKrCjJSNQtao12WROhQJKyWHYx9JWuo0bn3zwvPuQzliN7i4LUsLCwcXRKzxoTyyBYazAdv7W/z+//738favv423f/3tJGOnsZsJ2em5uFaWitjysJ7snJGyrfLDs/PFHpKOZcr0wG8xuvPFFueRa5L+0ufg3LiH9nVv2ReQUNW/j5FtHPd5QQghhBDy/2fv335t2fI8sesXMdfa+9wyszKzuu7VTV/cttsPtrrVkhGNhcAW70gI8QAS4m9ASIh3JASCByR44QUEQljAA8iIB8sYVGoZX7pcRbe7qqjKyqqsvJ7Mc/bZ17XmnDF4iMscMWJEzLnW3jPP7fNpLcWMiBEjRsScJ2XXd//GAL6chLEAAPAIKfVTEh8OabaGbD9NcZpNU5xv27aZPo/51OlYM1TG9uHsWCHbDQHXaVrjWgB7rcrYR5StXXy8P/YHP3wZ/88//TT+8Cev+iB2VwSx+Tqx+XYcdq3iMh4WwC60p4/VKY+bIkR55H0WfeRZWZNm+/m6t1MolYWP4zqwfb5bqYwd2lQrY7NpiRfhbHZ+Wuu1G44NVa9TgNtkoW1WvZqfy7+vKYQdpjeOGALadh7E5uOe6bKQPgthIyLa3RDE9uW30TVdtF0b0UTsbnfRNE3cvH8TL37wIn7/f/b78Wv/4Nfid/7Lv5N9Adn3kL//S/6zOaeaKW6EsFsVsbXzMf/tTKH9uf88K+0uDofX2l0S1m53/KA2a+vIPijIrfS3FtheFOQ22X9H+T9yyKv6AQCAryxhLAAAPEJKsVoR209VPE4zfNp2XT5tcQxVrv2xdgizxmPjdX0gG1P4ulUhOx6PiGiaMZzt2/ceWhl7SUpwLohYTzu6FHHsUvz/Pn4d/5c//Hk/NXEZxJYBbK0yNh9qrUL2IY8zNj0XwK5Uxc4Prd/wkgBnbVri/NwUwI7HsorOWbs8WL3w8yw0SvMK1zFUmrZjgJtPS3waxDyIarIgauyrbaZ1aPO1a/O24/ExgI8mpt9J6oppivuBT++k2fVVsmmX+u1N/952T3fx5uM38af/5z+Npm3it/6LvzX9BrOXfxpH+Z0+JJjd+MofOu3uar+p8tvaCHcvmnJ47fravcbTWb+1Z6vdd3Pcl1S4rgXcK8fLKZ5TuiCs3jqWVtrVCGABAOBrRRgLAACPkFKK/b6L/b6Lw6GLw6GN3S7FzU2Ktu0rZCNi2rZD1V9eFduMFXdTsBhxygf6cLWvkO33a+3H6Y/zv/z60+fY2I/ieKycv8TlacYf//RV/G/+o5/Gj57fVytiF9MSl5/z0LUWwj4w8FgNdotj/WYllL3wvrOpkMtr85Arr3TNvtKxajafzniqOk2ntlO7shovrzZt5pWnizZD8N+krGI1W6c1pTSvlG2HttmUxXn4N4XGQ8gbEbMwdQq18r+IU3/5++36oHV6N8PzN00TXeqmaYrHd9J2w3TFT1LEoQ9jxzD3J//hT+L3/nu/F3/rv/a34rf/jd+efy/5e8+/w0qbS9WmDK40mu9uVcTmv5ut8PCSULjsr3L/xfgvDSdTcb4Y12yK4q13ungV6RQSbwWrlWs3XfDvTRZr92bjKP9bBgAAvn6EsQAA8Ah9ZWw3TU2cV8WOn0/VrrH466ciHs+dqmIj8vZ5JWzEqTI2D217pyC3XEd2PBaz/eGq8qkqT7qVLF6SLCzbHLsUL++P8VfP7uL/8/3ncWyiD2ObPkQbQ9jyrxrE5uHomSB2tt5rzSUhbNnH21S41a4dA8Xx5BioZuciYqpUnR3Lq2CzYDIPEKd+hmcZ206fh37ydWWr0xaPx8bph5usenY831xWITt+t4spjCP1U1SPQW/2/Y8Bb358rMqdxpMFxWXVbNM2/TTGN31Qu3uyi9c/fR2f/dln8Rv/+m/M3mvt+5nec/beL3VR5erW8YfdrH7PyALEMqTdClDf1bi2+i/2H1Qx+5h7zU6l+Xso77UWMD/kftl/r4v/NgEAgK8kYSwAADxC16W4uzvGzU0bt7dt3N52sds1cTj0KdHNTYqI/lhERNt2EdFG0/TbiIjjsQ9QmyZN22YMpsbqsBTZVMT9vfPt+NdfH0OgOV+Tdmgd81RgrUzrbapjLytF++Gzu/gf/7s/iJ+92ke3a6Jtm1lV7LhG7GLa2TyQHfeL6tjZk5wLX6eG633N+sg/1vp+TDBbCWpmVXZjpevY/1itWFTA9l1l4eDYT3b9NM3u2E9aqZLtskA/FeFrGcjWKmTHtmWFbBaeT2Fvyl7aSsVkdXrgsV32fbWpPa19OxwfK2PbaCMdU8RNRNf1a8emNsWu69eOHadIjiaivW3n4znzn8T4fVzkcf9+4ewasdPvIj+X/y7KY5Ugtmy3WDt2bc3V4t6L6tm8Te3dbT1XOebsXtM2q4Kt9ZePoRr6XvK+V8a0FRrXAvDpv6sz/3AEAAD4ahHGAgDAI9zfd/Gzn72Jrov44IObanVs2zbDtMSntWFPVbAxWx82pmrEfBsRcWo7fs7bjIlUH+ie9nvZupyzStmYpjx+u/D1Eqf+jl2KH312H9/7xZv43i/exIt91wdfaxWw+fDG45Htv20QWwauF4S8D66Mzc9fmH3n95gFNykbW4pqZezUPi2DnylMzb/6dHquvKI2ImZVtZuBbBQVsmXbpnK/LDAer5u9j/J7b4bnLX8rcaqaTW3qpy3OKminytlx3eW2v6Zp+3fY7Jp+WuObJppjE+1NG3ef3sVnf/5ZfPBrH8TNBzfroWzxvb21lT4uCQYvmp74sdb6vOzfXtSPPTSUroWol9yzOL46NXQW1lbXwV0JbBfTOpfHAAAAQhgLAACP8sMfvop/+9/+s/gH/+Cvxb/1b/123Ny0cXPTxOHQRdNE3Ny0caqM7eJ4bIYq13kCMFa0tm1fKTvmcG0730aczuV5YNuOQexYGVv/K68bjsR6gvGQcq1z4UN//vmbQ/yP/h9/Gd//5E28ir4Csd21p2rYca3YIUzbrIgtA9R4eLXqbNrbONNn2c8Yil54r+r5WsAzBqz5/bMwcArmxorXscp1DEjHStdiTdla1exUMZuvK9v/XPvjbVpU1T6mQjZfMzavcmy6ISQd14sd24zF42NAlv03sNCd3kO+VmxZGTt+jhSnCtmmr5DNnzki4nv/1+/Fn/87fx7/4L//D+LX/+Gv17+vd1nN+JAQtiz8LNcqzT6vVZ0uqmKjqFpNxX55TdH3rPK0vF/K2qz0NYaY5W+k9ryzY+nU1yyMTvNzi8uLStrV6tzsPZRVuJvr5ebPk58r/61MxLv9HQEAAF9YwlgAAHiErkvx+vUx7u6OcTym6W+sju0rYmOqjJ3v9yFZvmbsWEnbB7Tz6tmui4gY16CNqc0Y5vby/0t//n/xLz+PFZOn/fH6eZb5dtVdef8pRfzxT17FD57dx09f7uP5vovdk91UsTiGq7Pgc6sithK6PqRitQxYN6cnLrtdmbb4UWpVsWNYmodh2deXT2Gdf9XlGrJjQDlNVRynUHW8z1T1mq8rm/2EZm2KIHazQjbmFbKL52iKvvO1a8fjTfEu8mrYSuVrvkbtrJK2jWmq5NSeqmTH4007VMbumn7q4psUh9eH6A5d/OKf/SKatolv/0vfjtsPbxffVfU7vNSZ/7wuCWJXQ8va5637nQk8NxVB5GKK4o17XLSO7ca9tvpePfc21z/0vdaM/23l/x0DAABfecJYAAB4C8djivv7Y9ze9pWx+30XTdNXyEa0cTymGCtjIyJbz7WL47EdKlq7aNsmjscUbRtTpWtEDNW0p89jBey47fsc14mdrxdbr4w9tRmvHXo/86QXlHVWpJRif0zxv/69H8V/+Bcvonm6i/a2na0RO60P256CtnI7jXUtNF0bZn6qCHsXoewDK2Pnuw8IaWcZVbbTnM7la7uW7fJq2dnxPHBdOZZPHVyres3vPVbPVkPXtUB2rIxNTV/xmlfGdjEPTdssJB2rZCOrxu2yMDXFVCG7WEN2DOnG++xi9nzjsTba6HZ91Wzb9evLpi5F27SnauB0Wkf2j/53fxQ3H9zEP/qf/KP41t/+Vr3y+h3maavhXCVQ3JxuN4owvxaWVqo/q31XrqlWwpafV4LL1arcxSOm2djKCtjqGrobYW3/j1tWrhn7y6/feMfVKaHL+1f2a9N3N8P/AwAAvtqEsQAA8Ba6LsV+382qY8cK2XGbV8T2VbMxC067rk/d2jZF1/XH27Y/nlfPRizXjB3XnB2ranunksk+tE1TEBtTmNEMoe4pmE2pXnU6nL34ncyq44YA+dg00TVN7NoihM2qHMcQcBbEjopq2YWtPCPre9rPQtaLQ9jZcJrte24p+4k4hUJNEfSMwxgrXccgLKuw65vPA9itdS/LtWTLsZTVrLX+VgPZPPDKc/7sO56qZrOq3UWVbJx+B3lwlVfEzqpl47Rm7HRsnPq4zYLdYerrfFrlSNH/44BuqJDd9RWycR/R3Xfxg3/vB/HZn38Wv/WPfit2T3eXrUf8AJsVkpUgdnW/FsTW7nMmCF2913hs5fpFVezQdmsa4EUgWt5363921rLrtHHvrM0idK6FrNm41qZjrq0du3Dpv3kBAAC+koSxAADwFrouxf19N1XHHg59levh0Jfp9ZWxMW3bNsXxGBGRV6ee2vSVsRGzssgY2zXZdc10XR/ojlWwy+rYPJQd+8nXmc1D2DF4eEzetCg8Gw50KUVz00T7ZF4Rm4dm4/SxterXzSrWvN3sZeUfl4FvNYQtQ9v8frXw9QoFbXmVXC1IqlW/1kLZxbTElfOzKYzH4CoLX/M+zh2bxjNUso5VsbNq2WI64WjjtLbsOL7mVE07hmrTfncKYPOgNVJ/bpqCuAz74hTCprbvv2mbaKPt+4x+HE1qok3tVMHbPmmj23fxR//bP4qPfuej+Gv/2l+L3dNdNTx9SEB7dnratRA01gPDahCb/0S2pj3Otosq2IeuFXtBgDt7jspYynVaF/2U9yvfTf65FvxuBNrn1oKtjXftORb9AQAAX1vCWAAAeAs/+tGr+L3f+3H8K//Kd+Jv/+1vxuGQom27OB67aJoYpidu43jspy1u2zEoTcNasH2gW4ary7VgoxrCjtvl3zyUPbXr+zsFsUOlYNHn/P71cPbUJq0cj/h//9ln8U9/9Cr+6rP9IoidpiceKxyzW06h5EOD2Dw8zc8X/ZShby2EvSSAfdsqydn6r9PBmL+DFIs1XbdC2anqtQzZs6C1v2UloC0/j90X107PXwSy47TGU/AaWRA7VsQ2WaibHYuIU1Cbvf9pv82C6rHStRv6GwPfcX+43xjOzipixyB4CGUjIppjM6+OTW20N/28yN2+i2a3/T2/k/U/17oog8lLgti1sVVCz817l/3nx1bC3qkytbgmP35RWJkHwpV3UKtYrd5ja/rnWlhbXlMLcMcxFPdOkWbbhSv8Aw4AAOCLTxgLAABv4Wc/exM/+9mb+M533ou//tc/isOhi92uX/+1acbK2HG64nH64loYOw9N+2mKx7vkFbGnwHWcurhp+umMT8HtKcDtpyM+VdOO0xL3od0phF2Gs+O9T+fPmeUXKUWXIv7D7z+Pf+c/+3ReFZtPTxynYHTalpWsay4JYov+8vuNbcpwd606drr2krGcM2awRX+L6YPz8LUWyo7TFxcBbL6/CJBTszkd8hh+nh7tNP3wFKaOfWT3mwWueUBbTos8bsdrs/B1CmrzELbYz38rU/A63mdYfza1ab7W7Pi+i1B22t/1lbFN20yfxzC2vel/u6lLpwrc/DnexmNC0LU2aXm8eq8yiJ0Oz38TayHuVmi82D8zjkUgWvZTC5c3X9r6deO1ZVhchqZ5NXA1lM2C17NDWTvfbJwDAAC+coSxAADwDuz3Xbx5c4gnT9pomiZub7tIKeLmpo2ILg6HJiK6IeRso2m6aJp2CkTzKYMj5tvxr+2zoVkoO27H68cgNyKmdWTnUxbPt7McsjklBI8t+BzH/Xt/9ln8u3/0afzpp3fR3DTL6YmHKYnzKtkpMM1D1TJEnQYbi8+z4DYP7SLm94jlua3+z06JfMm5XCUgHY/n91pd1zUPZfPjcQqqHrK/ViFbm5J4Ol9UtObvcDGF8RCYxviPC4ZgtWlP0xlPx8rK2HK64uF7HdeMnaYrHv/6AvTT2rHt6V3OKmGzEHbcb3ftvDrytv/Q3rZx/+w+fv9//vvx7X/x2/F3/5t/tw9qrxGm1QLY7Hi13dq5B1TEbk5PXLlPHtyuVcXm954FnJUXN1W5bq0bW4a32f1q951No1y5dhEEF/u1ZxxqXtfHtXavDaYyBgCArz5hLAAAvANdl2K/7+JwSHE8dsP6r2mokI2pIraveE3Rdc1UEXva9udTOq0BO+6n1AzVtRERzRB6pkiprzocg9eIsd2yfdNkVX0xhh9NNjVxyj5vVIGuyEOZv/zkLv5ff/osdk93fWVhOT3xSnJZVrWuNFp8Xg1i86B1JXSdVcJeGsIWlaMP0sQy0Cnvkb3/2VTG6TTmRfVrOlWpLvazsY4VrbN7FvurFbJjwFX0v6h+HftsTm2n/svxR3asCHfH+07vrPhup2P5vSp/07TF4+9vDGPHtYqzdW3H3+pUJbtr4nh3jJ/8Bz+J7r6L9N+4QnhWCzqL4+WxrSC2emwtCD0XBm6FnGv3rd2rDDjX7lsGxrUx1ELfsV0RNE9j3lB952l+brpnJbRdDWgjTr/tyvcliAUAgK8HYSwAALwDd3fHePFiH0+f7qJpIm5v20gpxW7XRErttG2asWQvIqKN3S6GytgUTdNOUxPnoej4N6+EHQOwcT+KytgxoD0dr1XErm1z5zLZ6tqxbRO7J7tpitfF9MTtKVArt1NAGqdXVZ0athbEtln7Zn7drI+VEPbi6tsH5q+ltQB3FnZW2ubhTXXd2MiCnwv2L62QvaRqdrHNAs7afh5S1daKjYhTZWxENN3p95Ha4tg4FXE2JXEtzFutjN010UYbXer66YqzaYp3t7vomi66YzdV4o6VtsWLP++SMG4rUI3sN7J2fqW6tBYYrlbJ1trUQs58yt9yrdjhmkVwmurnt9Z7HdvX+pqNrXg/iymHs3uWz5VSWr67Sv+ze2dtqmvGFtct1l2WxQIAwNeCMBYAAN6B168P8emn9/Hhh7fx5Ek7Vcb2VbBpWkM2r4odK1f7ytj+2LhWbF4hGzEGoqdq13FK4byCdiwR7Lpm6jefenhZohgxTwOaWeg7npsfW8pnQ32z7+KT14d4fndcBrBZleIYZD14euLCIrQtrp3ONfPPm0HsY0PYc2FcLXgpvoZZFWjlaysrXadxpzhVvDYxW9N1Cj3zitm4rEI2H9cUyNbWpM23WfvZlMZpPrXxFNKm5bHqu8x/Q8PaxmO163g+nxZ5Olf89raOj7/Xpm2mitn877g/xssfv4yn33oaT771JBtac3GwtlUReu74ufC2/G0s+i0D1ZXwc+1+1Yru2v0ueJb1y8f/3cnutRE+T4fysLUSMm+OZesd5cezv8V6s8X5iwlkAQDgK08YCwAA78A//+fP4nvfex7/5r/52/E3/+Y348mT47BmbDes91oGnUOYNIRKfRVrO6332nUxrRN7WjM2zaYVzteHzachbts+GTutHXtqf7r2NGVxHr7mwedj1o39/b96Gf/Lf/zjeN3Faa3Y3SngWoSvtbBz7b5FSFpOTZwHsYsq24eEsE0xnrUxRDGGWvtRmp87Nz1pk07jrFW+zo7ngWvW9pJ1Y9c+j+3W2uTvLq9sncLU6kPNn2EKadsU0c2PTYF0O7yLPCRus2fomtkasdMY2jQFtpFiqpieKqezCtkmmr4idghUm9Qfa3dtpEjR3XbRNm20hzY++7PP4h//D/5x/M5/6Xfi7/13/970POUavmeda57K3WWV5WoIWwSLD6qILfdr11TOL4LQ8ZraWrF5oFlO/VuGmdl1swrayv70ntaedWhbjrsMffOQtXbPRVVtMd7Fd5BrinPF+AEAgK8mYSwAALwD/XqxXdzdHWO/P8bh0EXbNosK2dPffG3XiP7/KN9188rY/G+seI04VcRG5NWSzXCuGapwx+0YOKbZWrDjGrF5wJsnBQ9dNzaliLtjFz9/dYzYNdHetouK1DKEnZ2rqN5/rXK1DGLz48XnqV2lv2oQWwSJi/PnlJntWNlZhJuz0HHYX1Sxjk3KCtVYBrKzY3kQ1Cz7nq3Zmorr87Axze89VrZO2yimK05FYFuuR1v0N45vFh7nv6NUGVf+G8rHlK8tm7XLp7HO15KdqmOHStiU0qxKNh1TvPnFm3j+l8/j53/48/jgNz6I9//a+++uurEWwlaOrwaxRZvqWqaVbXV63jNjWz1e2T+3VuzmP0644N3WpgSuTte81m/lc3VK5MrnxZTE58ab/e4PLw9xfHV8d78fAADgC0kYCwAA79Dr18d4/nwf7713EymVa8fGtL5rnxO0kVIXTdNOla19VWs7hbFt2/+Na8tGNJW1Yk8Vs/lfWRFbWzu2ti0/bx2LGJ/l9Lm9aSLtmsUUr7MgLLJALAs3q2u8DvuzsURxrhKy5efK4DUPbKf7xfLY6dnX0uL64U1jbl4+R4pF6Dm1S0WoOJyfgvXseG0t2bXK17HvaZrgLCidXZMFreO1teC3vN+sArbYn/rJqmrLY/n3Mu03zVQd23RDFWxZIdtm0x+P1bXjO43hfDTzNWRTnILX1EzryKZdii66aG/b6Jou2q6Nn/0nP4uf/Sc/i3/pv/Uvxd/5r/+d6js4azVD3QgRt0LYMmCNZZh46fS9ZbvF2qu1+5Sh64VrxeZ/i/Vja6FxrV3+DlauW9wva19WzC7e85nx5n3Mqm2beV+z13xM8fIvXsbh9UEYCwAAX3HCWAAAeEdSivjxj19F16X44IOb2O2aOBy6aJpxG3E8NrNK2Yhx+uEYgtgxdF2Go+thav9/8S9D2FP1bF/h1we8zaz/sSLxFOyO7ce+TynB1myaz++O8Z/+6FX885+/iahNRxx9qFauFbuYQjhO7U8PP/9cTmk8C2DLMLXSbxms1qYpPnXRbI/nMfLr0/z4OFXuJZWsq5Wlw7nZurGRhatlv1EJYdP4G8kC1/L7r9xr6qf2vGm5v3ielI0zb5uHssVat7UK2Xzt2PGaWhVs/htKTV8FOwa5+bEmzf9RQepSpEOK1KV3EqSdXYu1zF3Xgti1vsqAtewrrbRLZ8aWYnGfRbtKODo/vf4Cx7GsjX1xjxTz4HjjmWsVxYuwei1IjWJ643IcufL3n7WtVfQCAABfPcJYAAB4h/q1Y1/Eb/zGB/HkSRtPn+6GtWP7/4t8256SuKaJ2O2aLCQdz4//h/42q6KthbCn7VhFm4eq5V9+fKu/rc9rfvTZffyv/oOfxOtjivZ2d6qIbU5/ZTi78JCQcyWI3aqIrVbH5vfNQuNLAtiHTOFcmlXOTQdP95pC2cpapLMq2TzE3ApkZzc/3WM2NXB+jzEQLUPP4cB4bXW64qhMU9xkFbB5KDx2X645m4evxfH8+54FyMV6s2tTEEcTi8rYaY3ZFKcq2d3wzweybZva6NquH/RNnMZQeX/zV76a6q1bC07X2qwFp5WAda2/svK6DDMX68TmbfO1W1fWkJ21zQLU/PpF9WstIK1dF8X9y2fI/1b6GtuvVeDWKmwXVbXFO16zOTUzAADwlSKMBQCAdyylFG/eHOLVq0O8917//8m93/cBzhjGnqpSI5omTdMQ9/tdpDQmamPa1kzX5tMPjwFrPq1xLYitV9b295iHsc00jtFW5vhq38W/9yfP4i8/u499iohhmtdZ8Fr+RWX/EllAVwtip34jO1/5PLt/2Xcsj8+G8BYBbK2fWaA1dl0LZccgMp3azSpfzwWyeYiaV8vmYeoYzkbMr8+O1ypzV6crzp8jD4Xze+dhbTTzCtfsHSzG3JzGXA1sxz6KILZWGZv/Y4FFu/EfFQzTFo8h7XiPj//g4+j2Xfzmf+E34xt//RvZoz8yaFvLbC8NYfNz0+teBrG1NWKrgW0ZoNbGWwSus1A2C0JrVaqL91QLNGuha3mf2rTF5TbmQetsf+OZFqFwGehmz701RfFpbe9YvAcAAOCrTRgLAADvWEoRb94c49WrQ3z00TGaJuLJk3aohG2jbVP068P2C1yeAto0hatjKBtxmjK43J6rkF3+ncLXc9Mdj8Y+11LTl3fH+L/901/ET14e4vbD276KsJn/TX3F+JzNbL8WhC7C01wWrs4C17y/Sypi8/7GkDc7NmtSC2Efm8sWAc10uKyWLcPMPJDNj18QyM6GXQSjeUg0BZprx7Prq1MST0ObV8lO98qPpyyATfNrI2JR0buohq2Er2WFbBmwTuvNdmn6fU7TE6dsDdphWuJIcVpDdlxPdtdMz/Pxf/pxfPxPPo6PfuejWRh7sY1QbjX8LPbXqmH7zUYQO2uelvuVMHPWR3mPsl12LO+vWhVb3q927/JcMY6y3eo9K30tKl4r91rkxrV1ZoWsAABAhTAWAADeseOxiz/8w0/iO995Ev/6v/7r8dFHEbe37RCUHiMistC1jabpouv6gGe3a6Jp2ilwbduI3e4Uskb0oW1EM6usPU1zfOp7+TcGUGM/9UA3356kaiDZdRHtTRvtbTtbUzOvjs2nKF4NWc8Fm1lgWq4Z239slveL4n5l6FoLZ2dB9DK0PTfGhVo4U7abwvUimM1D2XHsKeYVpkMgG03MAtgykJ1V5eUhbmTn80Ase6+LisZqLl1MQVx7B8XzlO96Eazm0zHn39k43iyE3prSePru26Zf4zVO10/TFHenoLbphu04XXG+3UW0uza66CK6IZhtT+N6G9XwNX9/xbGLQ9j8+CMqYqfrKp9Xw9FyfOOxcvrgYqyL6tdxm1enlmOo3aMS8s6qdFOa7ZfjOzdN8ewe5bHC4r8J4S0AAHztCGMBAOAd67qIH/3oVbx8uY9/9V89xJMnbez3u2iaJm5u2mjbLto24nhsomm6qTK2m4KiU4Vsv3/qe6xwHcPV/lifBJUh6/h3CmibIZA9hXNjmz7MPU1PfLrnKbwtw6L9McXdoYvYNdHu2imUaprmFJhGzAPU2n5hdSrgMlwrgtby2nNB7FY17FpAuxjP9HF9zJtTseb9ZMfL8DQPNBcVqeP5YlsNZMcAqtbP2H80y2BwPF6EfLXwdbFmbDkdcVPvfzbGyvc0TadcVOyWQXQeNuf/EGBc4zYitqctbrP31p7ukYeyeQVtNBHdvovj3XH6RwmXWg1gI1ZD2H7zDoLYqPw2K32Xa8Pmny+enjgq150JQqvPVwaY+fVR3D8fVy34rD1fef/8HuUYKsesAwsAANQIYwEA4Eq6LsUnn9xFSimePGmj61K0Q9Az/t//u66dbU/rwvYJUts20XVN7HbNcO1YEdtv2zaibdMUpnZds5imuOvGz3llbFkl26dYywB4DHnnAdP+mOJ//09+Fn/2yV18etfNpieehbKVwHSSh6TLW8wD1jyArWzLfh4UxFaC3LXxbIXI1VOpcs0YbpeBWhHKztaVzc/lwWh+7IIpi8s1X/N+ZmvDNpXjWfvFdVGvip2mIx4rUbOK3CmkzdvEaYrhRSjb9GHoLEAd24zfc3tqkwesY7Aa3endprafljiaOAWrKfoq2bHKO2K+TdH/1lMfyEb07f/0//Sn8Vf//l/F3/vv/L346Hc/qvwQLrCW45Uh31qoeC6Eza9NRfuVwHZRETueS8u2U78rUxjXQtbNtW7LqtRI9eNZlWtZsVoGprWq1tlzluFwvu3Sop/FdV1cZLa2LAAA8JUnjAUAgCs5HlM8f34fNzdN/MqvPI22beJw6GK3a+J47IbK2BTHY/9/yd/t0nRdvz31VVvvNQ9bxzZtm7LwNWaVsWMQPFbGRuQVuHn5ZUzTHvefY7r39Gxdiu9/chd/8vGbaa3YWeBafn4HZuvELvLN4v7ZGC4JYovOqvtroer2oIv9lJ+qrAM7XpO3W6mSXYSf5wLZSt8Xq1xXnZK4di6/tgiF86A34sw9mpg/U7am7BRc522L7Wyt2/wdNafx5CFvHvSPQW/qTm2m+zYRL37wIl7/7HUcXh/OvsrJue+hDGFr15wJYqvX1vqN7NiZELfWd3WK3q22+flasLs2/sXrWPa16GN43rJtudbtIiA9d7+x7zGYPfOF5u+o23fR3XcCWQAA+JoQxgIAwJW8eXOM//g//nn82q+9H9/4xpM4HG6GStcUXbeLlE5TE/dBbIq2bYfjzfS32zXTmrH9GrNjJWxeIZuG7TgV8elY1+XbPNhtpsD2FLaeKmcjIgtgT6li0/Tr4ja3beye7PpKwaGScKyGXawNu7YtP5ea4i9rX4ZleUi2GsRWph/eWse2nF75rZV5bjrdu7Zm65Qt1gLVMUTMA6KVQDa/bjFdcaXKdfE5m9I4r5pdPt7KmrFZkLoIXscx5KFsFpCWlbJ5RezaurJNNKdK2La/11QtO1bEtjGtFZtPOTx+Tm3/jvLK2GaYkrtLfTV46vrxNTf93+y5LjXL/y4LX6e2GwHs6vqwtWNFgLmogs2Cy1qIWW1XWWe2Vrlau35rzdbymjLQTZFm7c5VvZbn86rX6a8b2nUxVchOx/K+z0jR9/Xy+y/j/tl9dPsLS2kBAIAvNWEsAABcSUoRr18f4/nzffz0p6/jO995Gu+/fxO7XRO7XRs3NymapqyI7aLrxqq7mIWlKfVpVjusY3la/zWiD1HT7LrxWLlW7Ph5HONpDdmI+Xq1TbaG7ClpSKn/i+YUwG6FrGOguRp6bhiDuLKPxfTEa/ctA7qyzcb6tBcFsZc+y1pQk4WlU3Vm3j4/f2mFbN5X7drK+TWz6t2NZ9mqkq0FwtPnmO9X17Et75OPuwh5Z+vLlmMoA+EU8wrbPNAvtnnVbNluDHkvWiu28mjV5629gguD2LU1Xt86iF2719S8+FxpsxhLeSxVztWCzuxY9V7FM82C1vI91D7Xzq28y8dMOTxWxgIAAF8PwlgAALiyTz65i3//3/9x/J2/88346KPb6LpxzdgUt7e7aJqI3a4PcsYq2H7bZtWxMa0Z22+7YYrifr9tywrZfv3Yfprivu9+m6b9Mag9fY7oA9xx5PnUxPnxPjhumuinJ25jHsqWIelGRrW1BussFItY9J+fm50vPi8C2zKILY9HcXw+4Ac9x2La3NOJap9jpewicByuWa2QrU1PnAep47XZjWfrt6as2jSKe0S9v6nt0Ge5duy0HacHboq1YdNpOuBZuzFQzUPg8V7DM05B6HjvcX+sri0C0/IvNWk+7fCwHux4blz3ONr+r4nmtGbsWAW+y7644XhEJQhec67ZVpBaa7MWwq5MAfzQILYMOvP71apgx6By7G9WUZufL46V58p1XWtVrVvVr2Xbrf1LKnLHCtnFfVdcNIU0AADwlSaMBQCAK0spYr/v4u7uGK9eHaJt+8rY3a4PMA+HPnjd7fo5Vdt2DJjm/xf8PpRos2rViMiCsylbbGKa1nickrgmr5JN6dR23s8prB3v++fP7uOnrw7xfN+dgs5+KFO/W7YC2KzRPMDMA8vy+iKUnV17aRBb9l0Oca1dbdyp3q5c33U4uNLNeuXqWiC7uT2nGM9sKuNKm3wMm1Wxw3Wz4DWl0/Nl96yNtdp32a7yO8mrVhfnm5gFw7PgtxL+19aOHf/xwdR/E5G6FD////487p/fx3f+3ndi92S3/k7WpHL3fAgbsRLE1gLAlSB2dUrj/LraV1weT/Vj1WmOZ01SdVxrz1JdK7boa9FfbcxrIXCsB7LTrR84RfHsOQSyAADwtSKMBQCAX5K7u2N88sldpJSGStaIrutDz37K4pimLO66ZrZ2bB+u9hWxY4VsHyh1w1qyY2XsqTp2rL4t7zWuIVtWw/bh77wC9jT18VD1FxH/3vc+i//gh6+ifbo7VcbmAdZ08SmMPBfQzmRh6logNjtWXJcHqpdWxF4Swl68fuxqTtvMw7C8bR5IDvuzCtFUnCumHR6fa6oMHdrn1a+L67KQdBzfIiAd+x3GMKuErdwvf9apCrYWHGfPOFbDrq0ZOxtDfjz7fsdrZ8+Qv8/iN5WHqGPAOo5tVhm70mYKZNNwrI3oDl38yf/xT+L9v/Z+/MP/4T+M93/1/dn3cy6Am4XOa8FnvrtSCbsIK8vjZTC7FcRW2iyqZ2vnxmuKsLJ2fhF25uei0ia79+yVrVTKPqQi9txfvoZstc8LPHRKYwAA4MtPGAsAAL8kz5/v43vfex6/8zsfxu1tO00XPE5N3LbNNO3wWJHab9uI6Ib27VQh2wel7bSG61jhevp8CmX76Yr7cYzbfE3avBq2ts11ERFtFpJGzMKuab/mTCY7hbpjiFq0n8Ld7MRseuLyunNBbN7XJUHsAzLlqrGb8fvdCmVTcV2R4SzC0JiHpfnYZ9ML5/0V911cX7nv7Jpmvp1dX7tHOYatZy7HXz5zra/ae8nC+zyonaZHzoLeqV2cqmbLtWOn6Y3biKY7TcHcP8qZQLVss9Fu7dxqCDvs19aGXbuuDGIXwezKsSmIzO61CGUrbWrna4HnIoiN7Hhl+uLNaYqjuN/Kc+Vrv15yj4vXis2/h/KdAAAAXwvCWAAA+CX57LN9fPbZPna7Nr75zSex2/Wp6G7XRNelWRjbdWMY2wexKbVDiNrNKmQjumlN2X4q4bFqNg3bmNaGnYez+Xqxefjap1fLUHYIJfq9qTIwD2TzIPRtwsu1tWLPrRlbhrer0ycX1ZeLcT4mhK2d38pb1kLZsk06jWERckY9eKytHzvrtlJVWwtG87VjZ1WqaRn4XqQWBteeZwxG83FVAt1ZhWzqfxtluJ0H9Yt1a/PK3crvqqyeHY83TTZNcZtOgWycjs/CyYdYC3DLvh4Swkaat18LXlPl2rWK2LzfWihba5NXj+bnyzGujacSZp5dKzbrd6tathYUn12PtsvGd6GLA1wAAOArRRgLAAC/ZD/60at48+YQf/fvfit+7dfej7aNePJkF23bxM1NM0xX3Fe83tyk6Lo2bm7SEN6O0xPXt20b0zTF/Zqx4zTFKbpunJp4HtKW0xVHzIPa0T/7+E3804/fxJ+/OiymcV1MGZy7JJCtha1R+RxZQBrzNtXpideC2Ji3L8d6NoS98JlmahlMFsrOQsgzoeVaFensXL6N4ljWblHNWo61dqy4z1ZF7hgOV9eNjdP6sYvwt9bfEDJPYWn+LEUgHU0WIJbPXQv1h89TwDv+I4BheuIxfJ1C2bY5BbHt8Eypif3Lffzx/+GP4xt/4xvxN/6rfyPa2/b0EBfmcNXAbiuAzc8/IoRdrCGbhaiLa4rzl0xTPKs4Lc4/ZHri2bgqAWl5fS14rQWx5XTFs21XtOuWn88Zr3/zszdx/+l9HF8fz18EAAB8ZQhjAQDgl+zTT+/j00/v41d/9b346KPbePJkFxERNzdtpDROUzwGoX1lbNO0kVIXEe0Qss7/ImKamrjvI2ZTF4/TFJfXna7NQ9lYbCMivv/sPn7vL1/Ezfs30d62fSXgVip5QWA5hnHVa2qfy7B2OlwJaLeUFZfZ580g9pIQ9tw9V8Kb6hS/2ec8jJxdV5muuNp3dm11LdfadU0lIC0rWYvgcHOq4/JzLO+9tlZsre0YjM6eZdyuBPuzUDjvO7t/HsrOrh0qY/Oq2Wla42HcxzfH+NHv/She/+x1/O5/5XejvWnjnM1qyUtD2OxztdI0v89GEHvumjKonfpZmaZ4Mc7yfBmMRraNWAakeVA7jKc29XMZyJbVu4tK3TIQXgmG8zbT+7hAihT7z/bx5qdvLmoPAAB8dQhjAQDgc/LHf/ws/uqvXsXf//vfjW9/+2lERNze5hWxKY7HFMdjO0xj3K8X209j3E5ryzbNaXrjPnAdPzdDCHvaRpz2xwA2Yvw8hq/58ZjOp4hob9ppeuJa4DWbNvgBpirEIQhbTFEc2ba4pgzczk1PXKuSnQWx7zqEXesrLY/NpgC+pIq1Ek4u2k2n1teOnYLJPPRdGePU/lwIW55bq47N75XfI+tvbd3YWUVxXhFbPnv2nU/TFUe21mtlSuKpz6EydjrW9veZpipusirftt9O/53EmaA1t9asFvqdC2CLNpeGsJtryFYCzqmvWhAbK8drAezGGrK1v+m6bj6+sq9FJWy3rIyd3bur9NXN73dpNWx17AAAwNeSMBYAAD4nz57t4+XLQ7x4sY/337+Jp0/HCtkuIvq1ZJumG0LSNna7btjGsCZsiqZpp8A0r4odzatmT/sRMbXLq2L7cKqskM3C2Xyd2LJCde3zhq2K1sVatOP5jb7LMLUavC4vqo+lMqbFqTPh82YQtxKmnl2TdS1Mze819lOppM3HfnFQeEn17NimFtquVcdeeI9Z3+W2bJd/HitXyymNi37H33NeDTsdG8LefO3iPABe/ITHgHYMcUuXhnJj+Ll17dsEsYuuLg9iZ2Ms2i3GUIa1w4nVMWT3mk1PPI6p9g4qIexsPGc+T9MU5/ct2pXB8up/O1vfr0AWAAC+loSxAADwOeq6iJ/85HXc3x8j4qN4773dUBnbV8Pe3LRxe5vi9jbFbtcMFbJNHI9jhey47av0druxInZcP7YpKmHLytjTNiI/dtofE4QupWh2zTyQje1AdSHFVEk4tc1Cs+meefg6faxXxS76WhtD2TbbVitiK308tPK3bL8IcLLgcjbOtFHFGtsh62pgmR9bHfCwye6/WMt1vHet39oY14LYPLSNrGJ2fO7xXURRCTuuGxvzMfZdpdkYIuJUedvE8p0087/a2rG1v7Eqtmn7v9QNv+l2uPdYPT6+n1zl/VfD940gtwxOy8+z31kZwpZhan6sDFfHvjZCyVq7ajCajWtt3dZZAFse75btqtcWAetY2bo4N1TJTpWuKfq25X2Gatjp7yFrxWYhcuoq0ykDAABfC8JYAAD4HKWU4uXLfex2TXznO4eIiHjypJ+qeLcbw8kxHG2jaVJWGRtTxWvEqdI1pYi27ROnlGKxZmzeZ23d2XId2TeHFJ/tj/Fi360/yMMyyvVryqrF2nbWpBKijufWqmIX2XG146t4SDXq1rTCj+p7KxTNw83LBne+gveB93+IRbXr2E9+Pn932T2mytVxyuTacxe/w3Gt2LXAv7xf0zTR3Xfx4gcv4umvPI2n33l6/qG23sFWCFvsLyphh88PnpY438/7GD/XAt/xc+X6RQVtEZ7m1631N+urvC7vM3+GSLNza+8hX1d2Ee5ujKUq6z+lFN2+i+PrY6SDMBYAAL6OhLEAAPA5SiniBz94He+9dxdPnrTxzW8+iYiIp0+76LoUt7dtPHmyi+Mxxc1NF7e3u2jbJm5v5xWxNzftrBK2/CvXjl2rjB3XlT1NTxzxR5/cxf/9L17E8aaN5qY9VRBGVkn4WEU14uxYxDL4albuWat6La9bprDL9rX9yMbzDlRD07KKsgwoi/3VytPyXkXQWFbVrga4KxW7i2PFNYupkWtjWzuW9T0Lose+YyWArX1/lfeSB7jTGrbNaVtWw86mJS6PD2szLypjm4hoh39k8cOX8U/+p/8kfu0f/lr8y//tf/n8fyeV9/qg8LU8lyrXXxjC1sLbsxWx+TUrbbYqYhfHulN/5fEyfK1V0U5ty8rYcb87tR2PT5WxXTaGsao1q4xd+85m0ypn59789E28+P6LSEdhLAAAfB0JYwEA4HPWdSnu77v49NP7OB5TfPjhzTBF8bwyNqU2mqYbpiKOSKmJpmmHitj++FgJO+Umwzqyfeh2qqStVcaW58Z7748pXh1StG2KXS0ofaTZtMPD5zIwXV3Hdbx/LXiNjfD0kqrY8pJ3GMTmfZ6tkH1E9emD1oEt7hXxiGrX8doz4WqtzVhNWq1Q3Qp+a8H0cGB1auK87RisVjPoYgwrv6/Z+eb0LNN7bPqA9vDmEMe74/R8q880Pe560Fc7tlWdejaIXR/E+SA2v2dx32pwnObnamNYTE+cB7ErxzefpXwHayHxsE1Rn/Z4bcrli43hsKpYAAD42hLGAgDAF8DhkOJ733sRH310G0+etPHRR7cREfHee10cDn1l7O1tG123m60dO253u3ZaL3bcHo+ndWP7NWSXlbHtWOG3qIzt06qmiTh2KdqbJppdVpH6kHxyCEVmoWZRfZgfm7WJSrvp8DLMrY5rrIptKseKdotLLwx1N61kMKsVsucym6HNZnVsVh1aVqtWpz+u3iYLObOx1q6fzq+FrimdqlHLwDe/ZqyALe9VjmsIVKsBbuU9RRPL8TX1v6lKNus3n6Z4rITNj0/rII/Xtf19213brx9bC0fPqbRbrYIdPq+tJVubmnfWXx5Opsp1lfOzqYKz/WoFbRlkjk3G6tQ8eC3D2yIcrbbbqHZdW1t2VhGbbWvVtWNV7GrYXNlfPBMAAPC1JYwFAIAviJQi7u+P8ZOfvIk3b45xc9PG8XgzVbl2Xf9ht2uHbZ8+tW1f9dp1zVAdW05THMNas80pGBvWg+2nOU5TCNt1Y2VsHsLFqVQ24rIgcgwIK5rh/xUHTx/H0KsMULNzi2tXQtiVAZxvM97r3PWX2Ag9L1nndQovyyDxGgFPrSJ1Leg9M45FkPrA8VfD4K0q3Mp9qmHtue+v+McB0zTF2bk8hJ1+f2P4HVl17rCO8+aznnkPmwHssL8Wwi6uL4/VgtdyfyuIjWW7qd/y2mIsa1P6LsLZWp95aBqntV5Xn3El6J3Wis3+NkPk2njXnkcQCwAADISxAADwBXJ318Vf/MXL+Pa3n8STJ20cDk+GoDXF06e7SCni5qaLiN0Uwo4Vsn3FbBvH46k6dqyUbZqY1pftK2PTtB2D2fo6simOXYqm7SsCFwFlLdgag9i00aasSIx6+Dodr12/ohzj6lTEv4wgtryuEswsAtkHBK3VytEyuDwTgm4GwmtjeUgIe8m1a+8nP157nq17jNs8LB3H15ymRV6EqsN1U6haC3NrlbRZn9FGNF0z/TczVgZvWf0OaofXAths/7EhbNlutXo2vyZVrhmP18LWc+vFxrJNbergMnCdzmcVsuU9qtW1XVTHMfUzfn6Isb9ynVkAAOBrRxgLAABfQK9eHeIv//JVfOc7x9jvu/jmN5/EBx+Ma8m2kVJMa8SOIexu18Rul2K3a+N47Cto2zai69ppeuLxrzZNcRnKRvTbviL3cSnkbK3MiGoV6+oUw0UlYx6QTsHtWpVrWQW5ds/atWseG8S+AxdNLXwupLxCZe3Z4HWl/UWBbUT0jzxfE3Zt6uQYpwjO989NA12rol0JXcdjeaXsNGXyOJ7s956Gf+gw3uOi97TWZMoczwSwleAzoh7M1oLYavA67uft18LXiGXAGvPjaxWqs22sB7GLa+MUlOZTCU9t86mKy6mIy8rYbv43hqllWL32/czGFhH7F/t4/aPXsX+xX7kQAAD4OhDGAgDAF9DdXRc//embSCnFbjdfy/X2tg9Mb27G6YrbaZri/m8MarshsOqiafp24xqzYzg7n6b4NF1xO06v2vSVsWUg9dhg8qIq1a1Q9UyfqxWttb5XjlX7eFdB7GNC0IeErO94PIvwswz78rZ5RW4M/Q79r62Pm68Pe+mYZm0e8L1M429iVq2ah8N5m/ntTmvGju1r0xfPwu58m5+7RBm+rvVxJoSNWAasixB2bFMEjlvrx+ahcC1wrbYpwtTVytczQewsSC3C5PJ5Z23G4HYj2D0XEj9ESimOr4/x6oevHnYhAADwlSOMBQCAL7Bnz/Zxd9fFj3/8Jp48aePv/J1vxre+9SSOx5thTdld7HZtHA5t3Nw0sdu1cXPTRds2cXPTRts2cTz2wdFul6JtYwhjm1koW5ui+Nkxxe+/2MfzocpwbRrhmllFbBmaFdO7XhKQltde1Dbq4e+56WKv7pKpgt9R5eql96+2iQvHsFZxW7vPyr0vqvzd6nNrPM3p2Ooastnvarbma1EJu2if/Y7LMDev3k5dqob8q9WytcN5eFoLxWsBbHb8MVMUlyFsef5cRew0te+FQWyk6KtXs/tvth+qXqfq19r0xJVz5fHpLy0/T+OpfB+1tWoX4wQAAL72hLEAAPAFdn/fxf19nwa0bcSv/dr7cXPTT0l8e5uGNWGH4CP10xan1MZuFxHRDevKttG2fSLadc0QyPZBwTgN8SmQjWkd2Zf7Lv781TG6myZ2T3eLsKpm7HPVamFscwq2LvGAQPZB47hmVewXSHWa4CsEwNM0vg8NWM+0uXia43P3Wgt31/6BQKVitpyyeDZlchORjikOrw/R3rbR3rbLfreePZW7Dw9hZ6HhY4PYvP9aKJtXn9ZC340gdhG6Zvcpg+C1oLNWhTt+vmTMs78oxla844VU+Zwiun0X6SiMBQAAhLEAAPCl0XURf/zHz+L993fxL/6L34oPPriJ/b6L29s2nj7t4uamjdvbdgpr+8rYmCpkd7uxQnZcOzZmFbLlGrKHY4pm2l9Jt8ogolZRmVfBFtbWi51V4dbOVT5XOq9vH+KXGMRWp/LNx1ELDS/Mes6Fl+X6qxcFteeqYB+iVrlansunQa7dqzn9HvIq29mxteep/EamitehQjY/Pq4HO52r/OOAJpqINuLTP/40/uB/8QfxG//534jf+ke/dfY9ra4LWzlWDV+Hz7UAdu2azRC2CFgXbYsAtdp+JYitnuvm/eXHV4/l68KOIWy+fmxtDdgu6hWx3am/auhbCV/z8DilFPuX+3j2z59Fd7dWVgsAAHydCGMBAOBL5PXrYxwOXXz22T66Lg1TFZ8qXCNiWj82Ylxrdq1Ctg9fT5WxKVI6Vch2XRpKZS8YWBnEPnDq4HfR9kvlmtMQ/xKcrUytX7Qd3r5l4HzR/fPtueOV66dpiGeHs2mKU7MIbw+vD3H//D7uP7ufPcvZ9WA3jq+GsPm5Wji7Fsym9XZrQexiDCmW96yErYv2ZTgbMQs3y34W/W3cZ1YZW9ynVn27OL+h+vsf+zmkOLw8qIwFAAAiQhgLAABfOvt9Gipkb+Jv/a2P4v33b+Ib37iN29tdPH16jNvbXdzcNPHkSRtt28btbTOtITuvjG2mNWTn68f2n/cRl00dvBK+TuvG5ueKdTanY1G0qXlsu63zZSXkY5SXfc3yl0cFs5d1vP0u16pp16pey8vHCtdUuX6lintaD7asim3WpylumiaadqjO3QhRa6qBYK0y8/Rhea4SzpbHqvsrgWw1wMzbrbWpbKvnuvX9vAq21s90vljzdap8XVs7Nq+IPab5GKpfzPJdLcYEAAAwEMYCAMCX0H6fom2P8ezZPvb7Lpom4unTLiJuhsrYfm3Kfj3ZdqiMjWGbh7FjIJuyaYr7StljRF8ZG3H5dL1lMPuQYPQa57muz7nCt1apuji/NbVx3jZb/zU7uFoRu9LJdJ8plM0rZTe62KzELE89JIQtzp8LXsvton0esmb3n1WkbgSxqxWx2b1mFbFFf+X9FtWv+Tu54L61v6ra4eJY6lLsn+1j/3wvkAUAACbCWAAA+JK6u+viz//8Rbz//i6++90n8Y1vPIlf+ZUn8d57N/HkSRtPn+6mdWR3uyZub8e1Y/u1ZMftPJg9Vcju2ybiyW4ReI7Tsc72+1LAPnxK6xWxl1hcG29RtXpttWG9q4DySz6V8apLgtGt9XPLPh7ynppYVsLOTmfnysrb/Dech7Tj+rHDfwcpTvuzSvBYCVzPjT0PGGvXlAFoebwWyqaifdm2FsLmoWa2/84qY8dp1rcqY/Nz3emavPp1vGa2xmy+Lmx+bd42XzN2K4QeP+fvdPg73h/j2R89i8Prw1fzv10AAOBRhLEAAPAlllLEft/FixeHOBz6gPZb37qNDz+8mdaU7bpd7HbNtDbszU2a7a+FsYebdjtAHcLX8fM0ResjNZeuT/tFkr+D/Ni76pvLXDqF9drlzbwqdnPq5Uv6zkLbWd8XBK/9ZiN8LfYfFMLGMmRcDV7H/TJYLatU8z7K4LIIXrcqVKf7boW35ZiGa6rTFRf707F8muOuMraa8v0WbVOkZZ8AAAADYSwAAHzJ7fcpPvlkH8Mqr/Gbv/lefOc7T+Ojj7p48mQXh0MXu10bT54sK2TH9WPzdWSnytgUsbIY7HQ4paFKtlmea04fpv23CWsf6pd2r1ogy+dvq2I2r3otpiauTkm8tobs8A8Qpm3Mt+M0xZuVsaOtAK8MabfC2coasZdUwq7ul6Ftea4MayttLl4rduOaaoVsN++vDFzzStfpWHZ89nmjKnb1aymC5qlSFwAAICOMBQCAr5jnzw9xOKT45JP7uL1t49d+7b14+nQX7713Ezc3zTBtcRs3N13sdqdQtmn6ULbbNfHJB7fxZtdcXOA1Tl2cmnk4+1aVsvUE7GJTIPbL8NAMRmbzOO9i6uaHVLbm98x+07N1YPPz+Ta//oI1Y2vnLglfI4qQNw9Py+sfEsKO+7WwNT9XmaZ4beri1SC2tu1O962tD1t+LgPXMiRdTE+c74/Vsiuq6+Rmz5e6FK9++Cr2L/bR7bvVfgAAgK8nYSwAAHzFvHhxiBcvDhERsds18eRJO5u2+OnTXex2XdzctHFz00TbpmHbh7H3N238VdvEsW3jJlayq1o4pDr0rTy4avKLEOh+EcZwqUf8PhdVsmt9jJW2w1q3+Zqxi8rxzGLt0TVb4Wt5Pg9Pi/NldWx1yuKNNouq17zvypTCF1XEPnC71d/seFevjJ0qWLt632eVIXREpGOK1z9+HffP7i/oAAAA+LoRxgIAwFdY16X48Y9fx9Onu/jud5/Gkyd9GHt7209b3Aey7RTG3ty0cXjS9hfnwVMqtuWxtw1iL73+XYe+WX9jiHbV+31OVtc/Hc9vBcHv2hc5wK1VxFbaTGvKjtWyWWhbm6Y4/40tnHkfZ6/JqzVrAWylavZR0xOP5/PAdiWsXUxhPBSLTlMRd6navloRm1e7dsWxbLriWZt8Pw9m0/p29XvIQtq1qtiU0tn/xgAAgK8vYSwAAHyFpdRPW/zmzTHee6+N/b6Nw6FfS7brdnFzk+LmJsXtbR/GHo8puhiyh7UQMsW0zuZsGuAxi2iv9zzvxOcdsNayta1Kx1+yS0KlvM2XOoR64LTHUwib7zd9kDcLaNPsoojoqyePd8dob9po2uUP8EGV0WU4+MgQtlYJuzh/wbTEU9/p1C6/3+yaMWjNA9dyG8vjW1Wym/tlMJuHuikW67wugukigF08zzFFOmyEuQAAwNeeMBYAAL4GDocUP/3pXbRtRNs28dFHN/Gd7zyN29u+Kvbmpo227deTjfdv6rlCGfhkwcQYSj16jdZKQProNV/fImy9enXsYwKbc9c8tM9UBEyX9FM7VwkAr+4d3acMVd+qr3Iq4/z3MlTRRhPx8R98HM/+9Fn89r/x2/Erf/dXLut8K3Qt9lenJi4D2NqxPJQtw9Xi81YIWwas58LU1YC0rIgdQ9MsXM3Xf51VynYxr47NtmN4mve3+d4rgXYZ+r74ixdx9/O7OLw8rHQGAAB83QljAQDgayCliPv7btpv2ybef/8Q+30fxu527XBsF+1Nu16ll8rdLDB9l6HlpR5yz89jfO/Iahh3vRt+pb2zat6m3B3+UUJarjV7/+w+3vz8Texf7msDWh/bRhC+CGDzcytBYq0Sdmua4tUpi2vtxj5WwtezgWws92v9ldfVKmMXlbor41l9Z/m7K4Pm7Pjx1TH2n1W+UwAAgIEwFgAAvoZevuynLu6LQJtomj6g/et//YN4f9dGpIi2OYWsZbBTTk+colJR+g5VK1bPXhSnKWNnw+3DsulYeX6tOjbi8WHuRvb3NlMUb06hWvaXzhxbdj7r/63Xla3df63pL3MN2wstqmmL6tdpzdiUVYk3wztsIpq26acnHqsyt1T+0UPt+Ozrr4Wv+fFLAtlam+Jz2XZaB7YMSiNO679m2+malUA2r4Cdtc0rYsu1YbOq17xCdlortvwrw9q172B6dfVxjvcDAADYIowFAICvoZT6qYuHvYiIaNs+pE3vHeL9Wr6wFgS9owz2wdMdFyHqF9ZDgtjKtVvrgj72vg8aw7k+N8ZVrdy8tO+HZFwP+b0+9h5nNE3Tv8t8zdiV9WM3fxOVgH1tfyvIr4Wwi2vWgtjKGq+LtuVvMw9iyxAz+x1MgWYl4Mz7yfutVsTGmbViiwrZMgBefZf52Ffee6SI45tjHF4fott3AQAAsEUYCwAARERE10X88Iev4+nrLv72oYs2naq+mpRNRTyEoNMUxdcoDBuD1jxwrYSvszFUgtnFurPl2Mv7jbtrlbi1YG3rGbZOr02Jek4RdF2kCOTOtru429MFtWllL+6/FoBt3/h0z4eGrI/8vVbH1sTy91n8ZptmqJBt0rS+7EO/+7PV07XQvvY7KQPZVFy/FsiufF6EqTE/VgtbF9uySrZSETtu8zZlFe1iP/urrS9bf9GV910Gw0Ofr3/8Ol58/8X5KmcAAOBrTxgLAABMUorouiJ2qgR5KaUpoF1Usq4Eo+9sjLE9zfDKRcs2Z647OzVyGcw+IJO5qBo1D9guaDvrtwzZZk2LNit9XdzmIeN6aF9fgpxrmqI4C2LHqYrz30XTDMfWgurBpes1VwPY7PMirF/5jZRVsWWbtZB9c93VC4PY1b9YXl8GsdHF4ty032X9dzG/dvY/ZMXzlu97fMe1MRz7PwAAgHOEsQAAwLpaAJSFlItgdNF8HtQuKlLX7jmEWKnZ7n9x6Ti2so/1AW5X3l66Vu3bBrGV93y2/yvnQJesU7p53fkbXHbNRtD8oPut3Hv1+KXdFlWw+VTF47TbYwXt9N/NWkXvyngWz/iY8LV2LA8+x+srIW31c7FfWzN2qhrN1459SIVsEb5OgWi2HmweuFbXkC3Wit0KnqdtcW72bF2KdEgqYgEAgIsJYwEAgLPyMGKaFnjMIi6crrcaxF7ax0b7c1MVV/uoTVWcnZsdujSQveTWD1if9WzVY3Fss4/5wfqxtNI+Nsb9wDxq7H/a1qbffdvgOX81lf5nUyu/TaKdXTqFrlkgO6uELa+rLDP6oO8qv2YlQN6skr4whC3Pzz6Xa8cWxx89VXEeuhZtZ0FspVo2r4jNj62tE1t7t9Xpnsf7dyn2L/bx5qdv4v6z+zOdAQAA9ISxAADAUh5c1MKkKELKSttZ2HlpUFq79tw418LT8Vy5za57SCAbEY8OZR80Te9GKNqffmBgutHvZsi6emoZEtf6WX2Gt8g/z/W9Nd3sRmfrp4r+yvvmUxRPUxPnv7eYrxk7/uYunaZ6cd+V/xYXY70klC3+m31QCDtel+1PlaIboesscI20WSk7ncuqXstQtqyWnULYcs3YfNwb77H2zGVV7P75Pl58/0UAAABcShgLAACsGoOIJmXVsClOU/8+JFjLQrGUhuvzcDSGcLRp5teM0w3H5dMjL2+9UT07PkNTHKv0/ZBQ9qGB29n92ufaLcpz567Lg6gta6Hm2hjHQ2UYuNJu7fylVcAXP0ft0pUpec/es6m0yYP/PJQdg9syGLzkPsW5akVx9rlWMbsawK7tF8HraghbqYCdhatF6FoGr1vTE0/haq0CNq+QPWbna0Fs5Te0OT1xEcSmlOLw8hAvvv8iDi8Pq18TAABAjTAWAABYKoO3Wkg4BqRDyJSHoymlU4C7kVvOro9KCLs1vjIIu7R9cWy1CndjDA+Zbnh1PKunKuHlmWsvrX68aFyXBpFr40qx7CcqAWHt2jPHVqdu3rj+IVW05TTKi/4q98qrY8d209qxfYP5Xzn+2Di2NtbKf4/V6XWjeO+XhLDjfqrsF+fe1fTE1ZC20rZaEZtdW4a1UwXuBb/j2fvLv+cUkY4pDq8P8erHr6pTTAMAAGwRxgIAAAtp+H+10KXPnSrTAA/XnatYXUxfHFGvSq30n5/P+5nuO/S1mKo4v28Z5DbL62f3Ko+9jTNh5MXrxObHL5wiuOx7a9rW2bqqWbvqb2LrvpUweLFe7Mo7KdcyrQaKZ97noq/yXBZiblbUVsZfm/o6Xzs2oghl4/TfzTSl7wVjL8+tVgpvhK8Ry/ddVrqWxxaVsPl3XwlnV0PYmIeus3O1aYqz0HVWOZsfP1cRe8y+09o72gify6rd45tjPPujZ3F8fRTEAgAAjyKMBQAAlrLgtbofRYB5rq+3GkoWuqaVaYzL+9WGlWI+vfJiqdiNdWrX+nyIS4PYx/Rx7twlrtn3Wl+VcLEaLj+kErkSvm22eei1uWwa4vHzVOk9BrHNvP1miFzcezXcrrVbGfslVdNbQe1iLdkiaN0MYov//diqlB0D6q1wd6sidgq5i/+dWryr2vTE08e0aJMOKe6f3Ud3J4kFAAAeRxgLAADMZcHrYs3Y4XxeATsLZcdzWQI1Bj+zNWbHds3pusm4RmyTVdnmgVc+zqwqcQpax0OV6tjV8HboezbWtXb5OLc8JnB7YNi2ufZoLXyrBVJFILqoSM37rYxnEbqtPdOZoLO6rue5MDK7dlatWfZ17n3lz1t8XguC87B1qngdq2Lz3+zYtskCvq3K2HxcxTOu/T4Wz1Y7Xvs9ZMcX1a7juRTrwWv2W3nQNMXlOrErlbDjdlEhO34+nipkp0rZ2rtae93Fs+V/U7/HynsHAAB4AGEsAACwME1T3O+cjo/hbKU6dVa1mgcbZ0LLRXhbqX4tg9bVgHXtftnx6nTF9YGdP/9YW6Flrc25YOlM0HbxWIsQdjFF8blr8z62xnnmvlttq++jlrGeq6Z9wPc3W0P13HXFPx5oUnNxqNyf2vhNVI49JIStHV+djjiK5873s+uqFaxbQeyZbXlsq//VKtwVq/8IoXbPLuLw8hD7l3thLAAA8FaEsQAAwFKKfn3EIgSZKmSzQGYRkpYhZnZsMRVwFlrVztVC2LyitgyAp2raqXl/g1mFbN5HGeRmYxmPTfd/h9MUX2X62Vq/lWOLMG68x6VBaRnObd17a13YSrg5BXzZ+1+0y7abla7FfVfXQy2vLdtXh376XU3ttv5xQP4TzqbkPWez8jnb31xreCt8za+vfa9F0LkIRos2Z8PYbrhXuVZsvl+phJ2Oj1WxYxVtXhFbew8b/71sVfWmLkV338WzP34W++f7qeIWAADgMYSxAADAUhHKVEPYcQrhrP2ym2K912w6477jyvW1qYjL9tm52rTIq2u/1saWh2f5PWvtyjFc4iEhbHbsoiC21lctZCvvVTuWj28t6Fwb+9YzlseqQ98+f7Gt0Hfr/Nqxreca14htmsV3Na4buzbGi9fAXRnb6vuq/XYuCWHLcdXC10p4mbd5dFVsOT1xWYVcnB/bjKHt2u9w9spqVcL5u8qfo0uxf7aPw6tDHO+OglgAAOCtCWMBAICF2fSgXURq5wHJGDaNIW25vuuskrYSXq4FpmOf0/kxiC1C18WUyBGztuV2bf3YqfJ2LRzOpjbOBnlR2Js/U+Xg5rGLg9hzwetaILd1n61wrwwCy3tnf9XwL5/aNrK+avdd3CZVn6MMDGeBciW0rAXO1fVSY/lci/CvNiVxtm5sXjk7hrZjAFnz0N/K1jqyq+Fr7djKd/bOwtihEnixVmy+X1kztjw+VcWO1bN5Rey5/14q72Xx/XZ9ny++/yLefPym/u4BAAAeSBgLAAAs5cFaRD3oGAKn/Nhi2uK8r2n3FICO7RfTEW+NK4r7jkFtHgZX+tsKZPsuV6pkIxaB8tn1U8+Nf+P4RWvE5sfL0DHv58x1+bGz7fP9Wh8r11YDw7Vx1K5fWfu0/F1V+47Kc+XhYszbzULitb7X1oEdzk1B7NhmDPRr0ySfU3uOjd9GLah/q4rY/PwF4WtEFrBGWk5HXASvZSA7W7e1CGVn0xNnVbFb39XZitg8hE0p7j+5j/tn93F4dRDEAgAA74wwFgAAWBiDkepasWPYmbJAdagAnLZZ+0XYGVkfp9LTk6KyNV8HNr+mul5sPl1xJXxdC2RnfdcC2DKYechUxWfCxtPHSqiUn69VxI7X5ccqYVvt+rPVhGVold9rZTxbIXW1Krb2vLW+Ks+wFrIunqkSNi7GlV9XfF67dqp6bYZK8bECtjZFcf5bS8W7WxnX1vnN61e+27NTF+dtys+1NWTHNl3WVyq247lKRexD1oydhbFdmge+W7/h2rNmzzvefxzD65+9jpd/8XLtWwAAAHgUYSwAADA3BhVdzAKLPMCYwtFIi5B1tb9agDkEKuMUrmOolYe7s6A177+ojp2FqGllGzEPZIt+qsHxyrjfyiJLWwkmx48rQeziva9sF8FUEcytrhVbCTZXx1MEXNXfROXYOJZFSFsei5V+xkAta7OYTjh/znK8tX7LMZbhZ/nbink4u/gtRsRHv/1RfPDrH8R7331vdZri1fvVxpc/U2Xsa0Hlouo1a1cG07WK2HMh7CKQTbE5PXEeuq6GsV2l3crzzd5f5bsux5m6viL29Y9fx/2z+/p7BwAAeAvCWAAAYCYPx6bK2DGcLAK3qQK2CDxnbZpTJeusr4hFdersWMQ8OM3Wb52mOY6sOvb0AMuq2rVAdvnwi/VpF2N9rEq+Vg3Siv2tcLQW4p6dQrl2ejX7y8K4rdDv3L3W7lkGouW9Ku22qlwXfayEjmshXn6/2Xqi+bk8gC2rYGv/HQze+9X34tv/8rfnz7A2hq1nWhtzrD/j1rqp0/7KOz63buxmCPuQULbsr1hDdmy/FrSvPevsN1r871d0EemYYv98Hy9/oCIWAAC4DmEsAACwMAtBhqlBp6Bp+JtNRTwEs9O2rDCtBIa1UHZc+3U6v1blml+TTm2naWPL9WO3AtkybM2DrWY81Sye4bFWA7XKsdUK1LGfWjBatlubina8phZu1kLIyrHqtLbls9bGtfLsswD0kvcTaR4kXvA+ZuMq3k31+vHzVnVsZWxTs6HqO1If/D1KZeyr58+Fkfmx7JmrVbBj28q5dxXClqFrdVrisV3lNz97DWshcyzHm7oU+8/28fzPnvdrxAIAAFyJMBYAAFiYhSmxHqpGxCk4za6drTFbrL06Bq4RMU0/XF3LNYrrslB1FubWpiteFMteUCE7PltlrdhZuPxIDwlhx7GtnX9UEJuPYeueedvadWeeoRqOFuMZ+1uEorU+18Ze+T1uvuOxTVlZmebjmQLe4v4zl1THbjzLJS79vVxcOb32mygDy2ysj14rNgtaZ9dngeosiM2umf0jkLJidu1dbfyjhfx5prZdRHffxeHVId58/OZB3wsAAMBDCWMBAICFdDxVpkUT/eeIU9VpFrrk+2PIugg/0jLInLWvVb6O7aK+duzseMzD3DzwnfopK2SH+06BcxnKjuPKji1Ct82XeOZ8pc3m9LVZaPiY0G22rbRZBFpl+5XArjruKALX2nW1cLJyvDo1bszXiM2vrQWK5TS803iyd7dokwePs689C1+L39L0DwvKgDayoPFC1fCx8r7OTh9d+12kol15rrJfe08XV8d28/21dWLzStiymnbtHdSC2HMVsYdXh/j0n30ax9fHy/47BQAAeAvCWAAAYC4LxGaBa8yPz8LVMrhbW5s1b7cyNfFULRune2xOKbwy7fAU3M4eLQtk164v38Va6Po2IU4tZ9sKYuNM6LY2lpXQbau/2bnyc6ocz++xURU7G0fRbxmUTveqjKe8Z+3aze+mbF+7di3YjJj+QUJqNt770K7sd6u6czGGjeNnv7vKu98KYWdjq30uAtla6FoNYlemJ14NYsvg/Mx3VZtiu3zO2di6iOOrYxxeHGL/fB/pIIkFAACuTxgLAAAspGOK7thF27X9mpdDkDF+LteLjYhToDqsHTuFuEWQk1cPzsKVLCCdgtkxkM0qZ/MgeKp2jexcVuE6Oz9235zGsVYlG7FSKVuO9aKXuXHqIdWP546XgdSs6UoQl7L25ecy0MrvWwvoyvtFVMdW9juburgILBdryBZBYd6uHFMZ6s2mvC2efxH8Fe3z38j4O5wdK5+x0i6l9PmuGVt8F2vh63Su8r4vroQd2wyVwIvAdWvN2GNaPmP5+6r8BsrvtQyOU5eiu+/ik3/6SRxeHgSxAADAL40wFgAAWJjWexxCjbWpiKf9LAgt15CtBXVTmBpZ6DqGufnasWvbrO986uJZWNsU5/Px5FMZV6pkp3cQsayWrTzTQ61WSFZCtrWq0LWK2Or0xGUoWgvvqsNJ83a1pmWAV469cs9qmJg9a21a4c17roSTtWrjxVq4aT72lCpTIK8ZfmO1aYmrY76w27Nr3659fw8MZTdD2CLMLNs8uCK27L8MYsfPa7+Z2vOuPOti7F3E/rN9HF4d4vjmGN2+W/QBAABwLcJYAABgLkV0hy66Y3cKSbrUT8/aNZHaU3CyCGnHwCn7yytiy2BoVrVahqJ5uDpW58Y8+FpdM7YMZCMLZPNqxbUq2Ww8tfCnGtBuvdKt6WnPBbCVEHOz0nHt2Mp10+eVoHIW2o19roWdxfmyXVmZOtvPxlEMehn+leOMU5tawFibunYWIA791KbInaq8x9/gWgA7Hs9+q/kzTKHjGY/+rZTvfOs3ku/n/03WqmDzduV7K7+XtVB2q0K2Nj3xuXdS/O/I4hmKbTqm+OxPP4u7n99V+wcAALgmYSwAADDT7bt48ecv4ul3nsa3/oVvRdPNpySurh+bsrVds2mKx3AqD43KKtUxSB0D1NnasakISYuq2PzYNEVximUgO5wf1/ssg99FlWyl/9xmYHaJtcvzcK1sVwtAa/2kjW0tnCtDzbLt2rFKADbrIg9gV55ls+/x95WdKIPXWXBa66s8v/Hey3OrlcCjMrw/JwslH2Tt+6md3/q91PYrxy4KYSP6EDXSfHtJhWw6hbLl+bNBbPF8lwSx95/cx/75Po6vj4JYAADgcyGMBQAAZo53x/j57/88PvjND+Ibf/Mb0eyWa8bmgcesOrZcUzbiFLJkVaqRYhaUzkKSfO3YIZDNpyLO15FdVNfG6T7l+rKzaYvT/FhEzKtki3Es+n+orRDoXYVttWN5UBVp+7qVtovANg9JywAzO1+9fxbm1SpTy/3FNMIbgd1iquGyKjht9Jf9VQPqsuo1r45t+jbj73TxTvIKzYeGsbX3Wx7Pv8ZLfwsPmZ44v6Z4d2tVsheHsF0xttpzVJ63rKSuTak83uvVj17Fq796tXy3AAAAvyTCWAAAoGqaTnSYSnQKN1MzrSebByCLAHbYThWxlfOzatimWDu2SD2nqYiz6yJiVkE7Bb1lhWyxDu1ibdp8TM0p6FkEs/mzvY0y7Kv1XbYp323Uw7fqd3CmOnJRfVoLPbNjs2mCN6b2XYyn8gy1kLUavtaCw7J6dauf8V1k77MMfmuB49t68o0n8d533oun33761mHsdPhctWh+PA8rx/1rhLFblbEr0xSv/pYf+mzd/DlSl+Luk7u4+/gu9s/29ZcIAADwSyKMBQAAVuVrOkaKxRTEY7VhuXbsVCGYimmKs4BzFrw2WVCbVbZGiu3pistrKtdXA9mI+bTFK33m4c8sHH6L6tjNALbWtgwbx4+V6X83K2JX2izWFq2FmTF/F7MQL4rzlXuthsZF36shaBEozu5bBImzMHk8VguMa/dcefZVF0xVfPvhbXzjP/eNvs/HTFMclXvUvpPs3KPXiy3PZX2drYg9F8YO24tC2Ac+02zq5NSvEXv/7D5efP9FvW8AAIBfImEsAABQN4Ynw1/TDNMFd82ySrY97c+qZCshV0TUpw+OoUo2ZdsxyG2WFbN5iJtiHqxOUw4XFbL97Zb3nYWy2bnZmJs8QXq793ru+EUhbH78IQFcuX8ukMs/l/cpr1sL6vJzWX9lcLp45vL6MpCttC/fQd6+Wvla/C36LcL9aariS6RTODjr74Lrzh1/yLTVi3edt0vzz7Xv6aLvdSWMrVXCnq2CzZ/nzO96Ng30McX+s328+MsXcXh5WHmJAAAAv1zCWAAAYFVeyZZv87B1MQ3xSriVB6d5aJpXx07VspXwtb9JnI6NfTVjqWucrZCNiHmVbNZuWvszinPTy8g+P7Qydiu7KwO2sn1+fitoW3S7ctOV0G6zQrEWjJXj3Lpndi6fGrjWfPZ7K/vNQ7niN1ZOP7wIeivPNRtLNqaHVMWO02yvVskOoWS/zHFzvt+1Zy76nD6uTFm8WiW9Fcjmx4v/fmf/GxAr4WsZypbTFF8SwuZjvWT86fS/U92+i8PLQ7z5yZtKpwAAAJ8PYSwAAFA1VpqlQ4q0G8KmZgg+mnQKmLohWG2L8Gv4m6YwLgKpxfqwq1lgtq5sXhW78jkiVveHnVOVbLO87xQCldWyw7Gh0eOs3avsr2x3LoRN83MProgtgsypbWV/EZTWpgDeqDwtA9VLKmirfQ/nF9Nmb+zX7jdNxd0V94qYfgPTtNuPqI6dKmPzaa8f4tKwMvu8Wk26Emw+JJStvr84vb9qlezWs5TjrjzTVggbKaI79iHsZ3/yWRzvjis3AQAA+HwIYwEAgLoh7BgDranyNSrhXVqpjI1YBCsRcZqmOAu9pumJm6w6tihBzac3ns4PYc1UIZvf68y6s1OVbN4+f/5IpwC5fJbRWpXsRu52adVjxHqYtRrErt145fsog66pTRH41da6nYV4lftOlaZ5OFiOIbJwLYpnLQO4cszl863co7buaVXtHUVW/fpQWZC5WJv43HXTx40wcyN8jZi/s8V7e0wIGzELrVcrYsuA/cxzVp+x8r3nY0spxfHu2P+DkWOKw6tD7J/v51NCAwAAfAEIYwEAgLoUcbw/RrNror1p++rAJiIdhymFh4q4qfK1Vg05rCcbXUTTLiti+6wzWyc2O5dXzV5aFbtVETs7loWyeRBUhr+zdWVLl1bJPuL8ajVhEZDm24vXjM3DuDh9Z4u2K+cW33PUz88C1pU+Llm7dapujaiGhLM2K/vV/lLM/rHB7O8hwevW9MRpWHP5kOZrDj9GcfnZ38jGb2Gr+rkWys7eba0SNnuXq69uNtyVsa+MfzG+rq+GffZHz2L/bB/TtMmCWAAA4AtIGAsAAFR1+y7efPwmnn7raeze2/WBaXcKXsug5lxl7NSurHaNomowRTXgyqtfF+vOlhWyQx9T5WvW5zjlbK0idjZ9cTb2ajXj2+Y+lesXU9/WQrbKtZcEseV3Uq2IjWXb6hTGURlLLVxdu292/RS0jqFtrNwjxeL8ov9y7LVK2EoAWf3djjZ+k2fl9xquXVRwb11+bo3V/Duq/VZW/huc2jwkhL1keuKV31M13C4PrfxuZ2Mc7rV/uY/jm2McXh1MSwwAAHzhCWMBAICq+2f38dN//NP4xt/6Rvz6d3+9Xyd2XCv2GBG7oWHXb6ZK2bY5BTMrlbHjfupSfzyGILVrIrXzati8ovXBVbH5+rCVELh2PL/mdOjyAO0hNsPXYf9Ra4OW7TYqYsvzswAua7dWHVv2nY9rMb6Vv2oV7UqbMhi8pCJ2qlBdW/e0tr7pWvhaTHVdDWrHe3cpumM3q9icBZMPDfnz91u2XQkza9/Dg6cnrr334b/36FbC1nPPU/sNl89R3rfr7/vi+y/izU/enMYAAADwBSaMBQAAVo3rMY4hyBhsNalZhDX5dMWLKtnI2o3VrVnV6ljROpueuGnqla1j8NrE1D4iZhWy+Rq0EbFaJTtel49rFrSN7yEL6R5S2bh4n7VKx/yexf5FoVvt2FYQVwti834qoeJivxxf1k81nK1Vv5bhZ9n/GMTl98jGPgsRIy1Cxeo0vnl/tdBxsFgjtonT1NoXSJGi2TXx5FtP4ub9m3pouFVpe+HxzWdc+Q7KMDbf35oGuhrQRiVM3TIb7kYIm48zRRxeH+L+0/spkD28OghiAQCALw1hLAAAsG1YizG1WSg7VsiOAWlWkdh0Q2g1BljDGo9TZexw3Wxq4Wzd2EkWzpTnL6mQnfaLaYvHMa+tHVsen6lUzT7KRti2NhXxVgg7O74VxNamgF3pdzYlcVktO/axEtZtBXhl9etWu1qlbDWQLf+yZ6hVy569dlT+DjbWhy3tnuziw9/6sK8A31rLtMz2t35exW+1DDMfum5wObXwNPVw7fvMpyW+RCp362OePq5V6HYp7j+5j0//2aeX3RcAAOALRhgLAABsSilFOgxh7K4PVlPTb6Ppw5KpInUIcGpVstPniFlwNE0/nOaB6jS9cGr6qtdxW4S4iwrZ7HgeHi6mKW4qa9UOx8fPeWXtOO5VDwnVijazisu1EDYP2vLjZQhbO1aGqHmb8VgRYlbDu1oQWtxn9XnWQs8yIC3uUwtPt6bZrYasxbnN6YkjHrc+7Pg4xVS+5T8QePCM17NXeUGgmR/LA9ozYWztu128n/K72xx2Zaxb4y3H0KU4vjnG65+8jv3z/WU3BQAA+AISxgIAANtSRHfsojk2U2VstJXAplgzNg9hI52qZKfgdug7r16dTU+c6hWqi/ZlVWxzCnXKqthpP+trrODtBz+/X2rmgdIinC3e0yXvcrrv1rXlGLdC2Lx9KtqXbdcCuayfakVs/jkPTcu24z1q7bKxlSHfIthdC2GjGE825sV+JdBdDRprgexD5UHleK/j6bnfZnrr6RYrVdHTu8mPV34LqyF7lxZtqtXQm4O7/Nzq7zG7b3fs4vDqEC/+/IUpiQEAgC81YSwAALDpzc/fxMf/0cfx0d/4KD76Gx9FatNUERsREbt+k4eyTdOcpiPumlMF7bAu7Dht8RTOdhGpHSpiuyyQHatmszU882MRy0B2bFOem52vhbKDsoI2N4a3FwWv652cPV5dh3MrhI1lwDUL4y4IZTfDupVAdHHdVtiZB7Gx0S6vLN2Y/rhss7V/7l41i3VjLzXet0v9P2JI89/m0PmD+ls7dlG19KWhbJpf96C1YLfGWo4nP5aPYZgO/cVfvojj62NEijjeH98+JAcAAPicCWMBAIBNh5eHePHyRdx+6zY+/N0PT8FJFppGikUl7Hgsr1KdwteI2bTF0zTEcQpsp/0ifB0tpiweKw+L7GacdnixdmwUoWw+rXG2pu10burwXb3Zylg3QtiIlSB2HHPt2FaQ99CK2GJ8i+mAN8Y3bcvP+bHseC2AW10rtri22v9GEJsiq6o9E7Q/JKAdA9nqb2je6UoH549fWh29eHdRfO6y/t7B73vx/W2NbVyHuuunQ7/7+M60xAAAwFeKMBYAALhMF5EOKbq2izbaSMcUqUn9VKwR07ZpmilgSk2Kpm2m0GVWGTt+bvvq2UVlbLusjF1UyKZTcLpaITsGsPmxwVZFbC1026qafYjV9TQrxy6uhB0+n52muGhTBpur64hWwtDVKYS7NDt2SRXsor9LK2S7eZt8f7Uytiv6q2lO6xVvBqPTq+3v07RNPPnmk2h2Tb/WcpNdXPx8zv2eLp3OuvYbWXzntRB2Ldh9G7XfYzaO6V7DOF798FW8+embaf/w6vBuxgEAAPAFIYwFAAAuMlX6dfNQa6pwLUOy4m8MT6dq1rKyNauM7W+Y3TtWKmTLNV7zwHVjndjx/BjUjs+3uHcTs/0pWJoN4S0DtZXjW9WF1Wu2gti00aYM5PJnLT+vBJi1tVynIHY4UU5PvHi28h3nbbO/cix52DftV35/i2raNL/vu9TetP003ONU3vlPZFp2+AFVtnmgeTp4+nhmGuBLwtjFOC9Ve4QyhM3um7oU3X13Cl9fHOL+0/tH3BgAAODLQRgLAABcJB1TdPsumraJtmmjuzlVyHbRH4+IPtAZPzbZ1MNNOp0b1pKdpgQegqumHdaPHSpqx0rDiGUgW64hO34e20bKqm8jlufHY6mZBbLllMRTQBvz49M1D0nzVppWqxK3KgzL45WQ7lwIW11PdiXwnK4p23TZPbPza4F8tW2XZp8X9ykrZMtK2KKPamVsV7TN9iNOU2j3O+vfU83sPQ6/3W7f9RXfkf03MXpAkD/1f9opT/abtcrY8vsuPKrSe3arlbGV4xq/xy7i/rP7+OyPP5vOdfsuAAAAvsqEsQAAwEWOb45x98ldPP32034K1i5FapehWVkl26R5RWxETOHQGISOVanTWq5jFW2xzmxMl2dTEtfWjs3C0ulzimlt2jxwm60pG6fjs4B2PJQHsw8I7NacDWGH/YuC2DwXK/otQ7PVIDaW56ZrzqwdW61izc/lbWN+vPpstSmJy7EXIe9qZWxkAW4U171L429mDHtXQthxv7YWcml1Suva933mWO3+a32etRYMF7/J1PVTD49V9fsX+zi8Plzn/QMAAHwBCWMBAICLvPzLl/Hqh6/iu3//u/HRX/8o2kMbKVJ0u6FCth0Cty5LWZps20ZfSTluxyrZLquMbZqI9hTUjpWxa9Ww+ZTH09qxafl5ClvHtikWFa95VWy+1uyszbtMkGpd5YFW2WbtXFmFWDtWBpnDsdXzxbnNqtnKdutcddvN9zfXiK20qVbGFsema/PjD7T2/U/9Db+XqdozqxDP9yeXFqZeEnyuyX/TtT4fOYZLKrJT11cJP/ujZ/1asGWADgAA8DUgjAUAAC4yTu+ajsPfON3rMDVrGarlFbL537TGbMQswJnC1lSvjJ1Vw5bhbL4u7FgFG/Mq2dn6sc0pbJxNJTuOpzkFkdP6stl4F84FWufCp60QtjxfhLARRag6bKtt14LYvO80H8da1Ww5De7mOGshXP6bGE5sVdeWnxd9royrnLJ47buYTVV8qez++XTIU7X2+DNvst/p7KYPu93svuesrXdc3Hf6b3H1Vtu/yYj5bymlFIeXhzi+Pvbv5Jiiu+siHSSwAADA15MwFgAAeJB0TNEduuiOXV+BeuzXkE3HNJ2PiNMasRGzbdM1p7BzqJBtoonUFtMND+3ytWOrlbERU1VtvlZsRMyqZCPmwdLUJkuVpmA2q3KcgsVFjlZMWbyWadUqCs+0mQVdebCZnatO8bsSwi6C1zxgLatjH1oRW9x3XEv2XNXs4ny3bH/JteM/Alhcm/1jgUjRb7NxRcSD14edyULkcWzdvjtVeG9VxTbF7+fSULasct2aBjn7jdfGPl5z0e8xP7X2Wxrf+zHFqx++itc/er3eCQAAwNeIMBYAAHiQMYxNh9RXxI7Vsrus8rTLwtimr76bAtM2TVMT5yFek4rK2CFsnSpjU70ytjw2fo7IpiaOtAi/ZpWy47ONO01RMVgJ7VKkeQB2Sai31WYrgM3Or62zulkde0EoOws983MrQWxtTFvjXlxf/mX3XJvu+NJpi/N+L62MvVgeQmf7YxCZuux30cSiSjYP+Wdh6VogWwa3kf32pp9r/eKz02pf+i5qv7OuD5/f/PzNInw/vDhc2DEAAMBXnzAWAAB4kO7YRXffRfek66tVj1koO2wjIqIdAs0hmJ0qXLs+mBpDq6katuvbzNpHmkLaaTsGrsV6shFZCLsV0GbBVbUqtnKudv7RVZXVQsRUP1cLwdaO10LY7PgieF0LavO2K0HsoiJ2vE+tXdbHufVjayHqWjg7temy/bG6tivC1/w5H/qlpZXP+fN3MZ/Ce1zDeKy+HivBx997Nn1xLaiNmFe1XlS9XVhb9/hi5Xc7HhuD9y7F4fUhXvz5C1MQAwAAbBDGAgAAD/Lqh69i/3wf3/oXvhXNN5tob9vomi6aYx+MpvZUOZeHUNN2rJbNgteIfj91KaId2mYBWtNklbVZ0DWbnjgqIWwa+k/LaYnLsGormC3P16xVJ1avXeuqbLYSwK4GZWshbLlfCdfK86tVspUpjtcqWWfh3ZkgdgxQz4azXSyC1tl6rbXK2C4LbR+p+h0Of8f7Yxzvj9MU3dP5fHrupvJ7zPbHcL+cYjs/Nn3Hzfwe0285TvdbDfjPP+jp/uM9U4q7j+9i/2I/++10h27+zAAAACwIYwEAgAe5/+Q+9p/t48Pf/jBuPrzpw5ih0nWqjG2ztWHHaYpTmk1FPFsvdgjQZtMRFyHj2rTEW1MVT9MQN6dwaVYpW05HHPO2EbGYynhss8zmHhFKVS6ZBbBlm5UQdrr/WwSx5dqxq0FsOc4i+FwEomWfa+03+rpkeuLaNbVg+V3Jv4du38Xx7tj/A4OIac3Y2RrHQ7i6WL846tXaaxXc5bkp0J0Pbl5le+4fF6z8JvIw++6Tu7j7+K72KgAAANggjAUAAB4uC6B2t7too410k6KLfuriKYjKpmOdQqOxqjVfU3YIVafPeUXtGNC18yHM1pWNU7XhVGmbsntUKhFn+3m/qZkFWVOFYvH8EfOpZB/0+srAteg3369WOF4SwI7H0rLdagg7Xl9eVwlBI+I0JXUliM0rXvN+q9tizdHq9MR55Wxe6VqEr6nr+xv/zlbErk03nb/7tfczjGNaQ7kdfo9DdfgYzk4V4dH/3qbfTTk98dp26/PWsWnolbA2+zw+w6sfvIpu3y3apkhxfH1cvwEAAACrhLEAAMCjdPddHN8co3u/i2gj2q7tw9AxXGvTVP06rgc7bbPq1ylITdlasEVl7Gw77VYqY5t06if7PFa7LiplK5Wx07Sxka3vmd+7DGrfxtrlayFstl+bwviS9WMXbcbPtfA1vyZvU95jY3rhvP+1v7HPzemJy/HHPLgt+5tVx76ttd/gMcVxf4xu3/UhZjv8ZobtFMo2p4C/2fXn838ksJiSOBW/w+x3O72niHkAm+ZVt+m4EUIXv5fUpejuu7h/dh/dfbdyEQAAAI8hjAUAAB4sdSme/fGzuPngJr77978btx/eRnfT9SFPG32lbFZxWq6Lma8dW634q227+TVldW00w9TIkebnU9Z+LfSK07hmAW6kWQg2tpumfX1cYewpDNuqWCz216YvroWrD1ontghsq9MSl4FsWRnbnfpYVMR2K8fz/fH8uB5sNz9XO162GStn8+0sEF7z0Kw2ncby6kev4tVfvYru2M37WfldNE0TT3/1adx842YKaKegtlIVPv5jgOl3cuHvLR1TvPyLl3F8c2E16/BMi6pYAAAA3powFgAAeJQx6On2XaRjOgVkXRaWjWvHjp+HNWObrpkqZ5u2mYWCqxWyg1lFbLGe63Qsv77J+t5amzNrV4ayizHkAW6MzbaTstU1ZWuH87B2JaCtVcaWwerqtnaPvE0lsJ0Ft2v3zP/igs9FAFx7R2OV62xcZz4vnuEh8vdSPGfZprvv4vDq8KDuj2+O0dw28zA24lQ5W05hnJ+75B8BDMH08fXx8jAWAACAqxHGAgAAj5ZSiuObYxxuD9HethGpD1fH0KiNNrpdF23Tn+uafk3ZfArWma3K2LF6sM3Wih0rM9vo751Xy5bXpaJSdlgbdlEtG/3nReDaZGFYpQpyNWytvrhydxnulvtrlbGLALZ2rBKuliHs5rTEReA5tR0rYvNtJSCdrQdbq5Qd99cqY8drxzZdpQI2u3Y6/gDV4LZ4N/m6tOn4uCmQ735xF/ef3D/soodWYKfopykGAADgcyeMBQAAHi11Ke4/vY90THHz/s1p7diumQK0JjVT8NakZlpPdloztkvTNMRjlexYITutJ5utDTtWvE6VruN6sHEKW8vjETFrP4WtYwBbVkNGUemaV83mx2K55uxF720tfD01OH08F8LWjhXVnJvTEtdC2Y0gdtbvcL5WwZsHmGXAW/7V2swC3OL4rK/hHuU0ye9KbT3b490x9p/t4/j6EZWn3alPAAAAvvqEsQAAwKOlfb927JNvPYkn334SN3ET3W5Yd7IZKmPTqTI2NSlSm6I9tn01a8RyO1wbMVS69ulqXxE7horFmrNjRWzTDcHrUB07XZ+KNWPjVAU7W6NzqJaNiFnbMTubKmezY+P4HvbiVg6vBa/l/fJzZeBaHqsFtcXn2fVd0a5SMbsIbC+oiC3Xla1VxJZh61jlOqt67eZ95FNjR1eM+bGy91J+BymluP/FfXz6zz99p6EvAAAAX03CWAAA4O2kiHRM0d130e266J50/fqw7bAubBPTlLGpyypYI04B6BjiDe2qFbLdqf1s3dhi23ebVcOO0xFXzuX7+bHyeO381K5Yt/aiV7YWFtYOp+y+tXB2LYQt91dC2fL8uSC2FuBuBbbl1Mara7tmwewUvq5U1c6mJy4C3a3phteOL95XLfDO7zPeGwAAAM4QxgIAAG8tpRSH14do2ibaJ200TRNd24eybbR9KJti2i7WhI1sf5iyOD/fNM00tXHq0qkSttjOqmEjWyc24mwoOx0bxjeFkk3M2teevfosqy9r+9ws8K2Fr5Hqx4tAcTp2aQhbmfp3K5A9N7XwWkXsovp1Yz3ZWdtxrdgxsM2umU1dfO4dn1NeW4y3O3ZvX3kLAADA14YwFgAAeGvdXRcv/+JlPP3209g93UXTNH1lbNOv5ZnaoSrymPrpiPOwNcu1mnZYU3YMUPNpiiMLXtt5Jex0/bim7FhZmwWx50LZvH3e3yKcHcddazc/eFKcq64ZWsv3zgSwEZUQNhXt10LY8Zri/Gr4WrbZ2G62WalorV03tc2rXvMpi4sK2XMh7CVrtVbfxfA+Dq8O8fIHL2P/Yn+2HwAAAIgQxgIAAO9At+/i9Y9fR+pSvP+b70fTNtHs+kC2a7podkMV6hDKzsLYPJyN7PhYkZpO675Op7shmB1D13aYzjirnh0D3DFkzT+P/UYT83Vks2A2D2xn5yoWIV8RMl9UqTnL/dLiWDWAzY9vhbDj/sb0xWuVsfl15ypjLw1rq5WxXZoHttmYF5WyXeXYpdWqa81SuTt/5tT11d8v/+rl8vcKAAAAK4SxAADAO3P/7D4++cNP4oPf+iA++t2PIpp+muKm7YPZaCKaXRNt085CwtnniOU0xvl0xcN0xHk2uqiSbWMKVKdgtAx4m3Q6noa+8ymHh2PjuMYK3dk487HlA7q0QvPSYHAlfJ36Ko/VQtdy/5IQdqMaNiJmawFP27VANpuCeFYRW6t6LQPavBq2S/N1ZcfgduXdrSrfzXis8nd8c4zP/uSzOLw6CGIBAAB4EGEsAADwznR3Xbz52Zu4/eg2umMXzbGvVk3HLKxrTuHdOA1x0wzTE7d90DZVvMawP4SiYzVsimL92CFQG6tom+40FXG+Nmy5TmweoE7HmtOUw7VpkIsDq20fpHJpNYAdPi/C3JVgdnMK41rYOrYt9qvrxw7XLsLgWhC7skbsLNytfK5dv9gv39XWuz0Tfte+w5RSdIcu3vz8TXT3klgAAAAeRhgLAAC8c92h66sIh/CsaZpoUjMFnSlSRBvRRRdNaqZtk7JpglP0Fa4Rp2B1DErbOFW6ZpWpU5g2HJ8qaaOoqo2YrUc77kfEfN3Y8lxeOTuOc8VUVTs2vWQa3bJJLXgtzxWB7OxeZeg6XlcGrXnbtSmJ8/Yboeu07Sr7keYVrSnmFbPFsVrb/G82trOvdhlur1XFzu55PP1jAgAAAHgoYSwAAPDOdfsu9i/3/bqxN020x7YPVHfpVBnbRD/laxOnStbUV7Wmtg/CZhWu6RS2ThWwcaqETU2awtz8XEQsPo9ttvZrVa9b68ZO1wwurtasnKsFh/nni0LYtf1zoezYfiOIvTiQLbcxv3YxrjIQrVTD1q5/F6Y1YrNOU0pxfHOM45vjO70XAAAAXx/CWAAA4J1787M3cfeLu/jmv/DN+OA3P4imaaLt2r5CtusTyyY10Ua/dmy3Gypj22b6HCn6gDVOFbXRxHw92LJCNhX7Y3XsWAGbrzXbDCHtWAm7sk7trO3YTy2YWzu+Za39LBdN83Yb4etateyla8auTVu8Fb5uVsaWlbARF1XEjmvFblXELkLr2vvcCK9X180d++5SdPddPPvnz2L/fB/d3hTFAAAAPJwwFgAAeOfGqV33z/dx9/Quml/tK1zbrp93OO2GYK7NgtAhzGxSM1XONpGtJZuG/SGEa6JfK7ZJfSVtrRJ2rSL2orVjiyrYPPjbWjv2cS+scp+1YHFlLdlqMLtVKXtJ+BpxPnRdOxfLNvm989C2vH4WuJbVsJGNfeUdLlz43eRjPrw4xOHVIQ6vD4JYAAAAHk0YCwAAXM3Lv3wZr374Kr77r303nn73aTRtE+2ujWgjmrYPaJv2VCEbbUSXuv5cxHxt1hSnqYybZl4hO2qLtWHz9WGHY7W1YmeVs6lSMZtObRdB4NsGsaNKH2vB62wMtYrPtf08gB37eUQIO/VTVL9WQ9luZX+ofp1dW6uITcOardm1D3mf59aKLatix/t99qefxd3Hd1NFLwAAADyGMBYAALieFJGO/XSv3X0X3W1fYdgch1BzqIxNxyLcHLfl1MJtnNaU7fogd7Zm7Lhts2mOm2Kt2TGUrVXHjoFvXgWbmun+KaVYFsWeWUf20ldVW2M2LT/Xpi2+ZGriRfCaVcVO7fM23bzNIpwtr1kJbfMK2LzytBbaVitii8rZ6R1svsyVd1W2Kd9NNo5pPAAAAPAWhLEAAMDVHe+OcXh9iPamnULUZndaC7aL7lQdG3HatsU2xaki9h2uHTtts2ubNIS1TRboZZWzs4C2dC6f3cr4ysCxbFup7twMYM9Vwpafu6yvMgQd133Nq1yHa1YrZCuVsXlFbLku7KJCtotZKHrpOrELReg89VWO7ZgiHTZCXAAAAHgAYSwAAHBdKeLNx2/i8PoQze82cfP+TR/EpqYPZaOJtmmjiy6a1H+OiPn0v3kYWm7zz0VQ27TNqZo1n7Z4rUI2FVMR5+FsWTlbjql45q2K2dXKzo1gsVYRG1EJYCvH8gCyDGHLKtmp6rVL8/Zp/vnsWrJj2FqZnniqfC2nLC6OT+FuZOO80Ga1cMzHn9/37ud3cffpXRxeHS6+FwAAAKwRxgIAAFd39/O72H+2P60be9tGm9ro2i7a1M5CtnF90IiYVbxO675GUeXaRl/NWWafzel4E80sbJ36SfO1YZsmC28jC1RTnNqlmJ9fCWUfEhwuiz0rlZm1sDU/npYBZHUq4vGalRD2XDXsavhaBK3TfYtq2c21Y8eK2LLydu1Vrryjc9MTl886BrFjGPvyBy9XLgYAAICHEcYCAAC/FN2hixfffxG3H97GN/7mN2L3dNcHmMP/X0kTTR/Qpq4PbKON1KV++uKmn8p4qlptUz+NcF4Jm09PPBqnNy7Xny2nLY55SLuowC0+N818vdlZFe/bKEPZcgrkWiBbVn+uVYRWPq+GsNnxS0LYshp2LaC9eHrifA3hMTQ+865Wg9jiGavvpYu4+/guXv3oVew/2y/vBQAAAI8kjAUAAH45UsT9L+6je9PF+7/5fh+I3jZTdes4VfE4TXHq+qB03M6mGY5llWzTNFP4mrp+f9pGmk1HfMk0xdHEVCWbT1EccTqeP9sY0D769dTWnk3Lz4u1ZMuq1/LYWvBaVs3WKmDLytmy6nU8V64le6YSdnZd1v8Y1s7GdUkQu6Z2aVkd3KXoDl3sX+zj9Y9fX9gxAAAAXEYYCwAA/FId3xzj2X/2LJ78ypP45t/+ZqQnp+rE5qYPPZu2OVW8RhaQDpWwKaVTlWxzCleb1PTHK5WwqUnTuelzxCzknX2O4ngU57L9aRrkx+axsxx1Garmn8+GsXn4WlTJLqpgx/ZnKmHXjk8hbDE98UVrxnan6YHLatnVatjynVz6XorP+RjuPr2Lz/7kszi+OdbvBwAAAG9BGAsAAPxSpS7F/vk+mpsmjvfHvvJ014ekbdNGak8BXxPNvDJ20ETTt+v64DalofK1G4LW9lQNO4Z04+exyjW12fmssrW2ZmwZDDZF6joLAh8TyK5VeuZB41oIeUkIW1bBroSsUz9FBex4fW0t18W5rQraPJythb55SPyQ91SeL99N9lzTuS7F8c0xDi8Pcf/p/fm+AQAA4BGEsQAAwOeiu+/izc/fxM2HN/E0nvaVksc+rGt3bYwVsk1q5tvsL9ohtG2bKYRtmmaqnM2rYRcVskOQOKuWjWa9GnZl/djV8PXSUPZMEDvtVqYhnh2/sCJ2umYljK1OV3xurdiiGrYMbtfWil2cv7QaNn+WrYrY/Pnz7THF/uU+PvmDT+J4dxTEAgAAcDXCWAAA4HMxBmJN28Tx/aFCtmkiHVN00U3VrW03zlW80tEwdfFU8Ropmq7ZrpBN/bmImFfLNqc247lpP6t6LacSrq4Xe0mV7FYRaFkhmuafayHkRSHsuF9UzK6tJ3uu0nVz221Xws4qZR8SxK61WXnO2TsZKrP3z/dxeH2IdJDEAgAAcD3CWAAA4HNxfHOM1z98Hd23u4g24vaj20hdil3azSpjx22b+imM27bfNm0Tza6JphsqZPPK2Dadr5BNp0rYzTVkI5ZVszE/v/j8tspwsghi+03aDiHzflYC2tU1YaOvVM2PP2jN2DyE3VorNh9P8fxb72Z6/uJZy3dQjjl1Kbq7Lj75p5/E4eUh0lEQCwAAwHUJYwEAgM9P14ey+2f7aJpm+ovbIYjdRb82bIromi6adKpwnQyFs3mA2kQzBahj0JqaNAtjp2MRfb/D+fzzVPU6Vs0Ot56C26H6dRZ4vk0oW8sGz4SPEWcqYCNmoWs1kI04H75GEb5W2tZC2UUFbFlhe+75195FLaBeqYgdg9i7X9zF4eUhjndHQSwAAAC/FMJYAADgc3V4eYjDy0N0h24K03bdLiIiml2fbE5rxu5OlbLRRh/WdqmvkM1C0yZtrB07hrd5iFtWw55bN3arQrY41pxJZ1crYCvHquvG5lW05ypia+dXKmQvWTN2s0K2m28XFbJloLr9kubv64IgdjYV8rAe8fM/ex53P7+78KYAAADw9oSxAADAF8LhxaEPWqNfNzaaiPam7atld020TT91cZe6PnxNTTTRzKcXXtvmf2m+nVXN5u1jOBfzc2O17WTsK07XRJyOra6FuuHcerFTv8XxPGCd9bNVIbsVwkaaV8x2p2PVYDY/Pk5VXIax5VTKmy8i/7gMnGfvq3zGbGxvPn4T+2f7OL4+XnBTAAAAeHeEsQAAwBfC4cUhDi8O0d62fUXrron0pK9obbqhQnbXRBt9KBu76LeVaYrzCtkpXG1jGcwWf1PQuhLs1sLZMQSc1p+trYGa95XbCiTLMPdcILsSwJYB6KIiNm+zFsJWQteIWE5DXISxeSg77l9kkUXXq2FnzzseLytjuxSvf/w6Xv3VqwtvDgAAAO+OMBYAAPhCuf/kPg6vDhFdxO79XUTqK2RTStHu+iC2afuAttk1pymMm9M2djEPZYcpjGsBbD6F8bjO7Nlpi2PlWG3/sS4IYyNWwteNCtnqdL4R1YrSramJy8DzbIXsuSC2cr46lfFK6FybOvnNx2/i9Y9fx/2n92duDgAAANchjAUAAL5QDi8PEa8jbj686QPY27ZfF7ZtoktdX8E6VshGnMK6vPJ13E/Z8YhqGJtPUzx9TvPPi+mJh6B3CnkjTufK8LApd08HFlMY1wLLskltmt9UBJe1/dpUvrVz4/qvZ8LXqW0tlC0rZLeshbC1c2eC2Gmcwxqx+2d7FbEAAAB8rpqUzen05MmTz3MsAAAAk/a9NtpdG81NE7cf3saHf+PDaG/b2D3Z9WHsTduvKdtmFbK7ZlpjNpqhgrbNPjdNRDsEom1MFbFjEDuGrrNjEbNpivP96fh4Te5tKmRXQtm1KtnV6Ypr4WVROTud6yrH1ypiK2HsLIQt+rrskbcD2MVzjM+eirF0Ke4+uYvnf/Y8Dq8PcXxlnVgAAAB+ue7vTzM0qYwFAAC+kLo3XXTD4qSpS/He6/ciuj5UbaON1KTomi6a1ETbtFMF6+xvUF3rtYtZ6DpOVzxWuDYpWz92rJRNp/1oYlqTdhaGjgFtKoLbS0xZY1ocW7Qp10qNZVh5UQhb7M+C1sjO5SFsZUrg2faSaYmnoZ9/1tqzLcLp4f7Hu2McXhzi7ud3lw0AAAAArkhlLAAA8MXXRuye7OLJt5/EB7/zQexud9HettHetlOVbNP222ijX1s2q4xdVMcOn2cVsZUq2VmlbGTnhs+j6VhxvLbfFAceOlVxLYTdrI4dz6+Er6vTFK9MRVydlng81q08U81Wk0tC2GIs3bGL/fN9fPrPPo3j3TG6u+78GAAAAOAKVMYCAABfLl3E8c0xjq/7qsd4P6awtE3ttLbrWCnbRdeHrbly3djxc7627FgBm68hO1bUjuvGZtWxY1A7HYuYQsMpoF1krWOD5bnSLHgt+yoD2NqxWghbCTKne62FrmuVsLWK2dwFz7j6fBEXBbGp6/8OLw6xf76Pw8tDpONDbgoAAADXozIWAAD48hgqWt/79ffivV99L3bvnSpk212/jSYWa8muVcmOgeu4lmzERqXscP+8zTSmmJ9ffI5lRWzN2SrZlLVLyzbVaYpTsT+cn4WulYC2uu0q+2Ug/BCV685Ov1yMKR1SHN4c4pM/+CQOrw+RDoJYAAAAPl8qYwEAgC+nFJGOKY6vjnH/2X3cdrexe2/XnxvWgG3a5rSWbLSRUjpVyY7BZJ6LtjFfF3ZcJ7ay/uwYwuaVsLPq2SwHnE1dHDGtRXvJM853l9Wv08etytFyvxLQXhLCrlbG5vd/iJVLLp1+eRzD/Wf3cXx97NeJvT/G8e4oiAUAAOALR2UsAADw5dREvPfr78XtN2/j9sPbaG/a2D3dndaQ3Z0qY6cq2abfztaPbYtq2PYUpE4hbl4pG5V1Y8u1ZfNz+aGmcrBQDTgrYezmFMVrFaVl+BoRZ4PXlcrYd2F1GuaNEHacmvjTf/ppvPrRq+W1AAAA8DlTGQsAAHz5pZjWBz2+OkZ728bT7zyN9naohj1moWzbRJPm20h9tWqTmtPasWN1a1P5HNnnfD/frh2LYb3ZsYL2zHP1m0qlaHm+djyleqj5LsLYLOh9rM2wuXy2csxdivtn93H/6X3sX+wFsAAAAHzhCWMBAIAvrcPzQxyeHyIi+nVjn7axe28Xu7SLdtdGpIjmOFTFdtsVsk3bT1E8TlXcNE2ktk/78mPRxBSq5hWyY3i6qJodjNMUn1s7Np0SydrJ08d3NEVxLYhdDWPfpVpV73i8GO9UlduleP3T1/Hiey/e7VgAAADgSoSxAADAV0I6pnjzkzexe28XT77zJNrbftridtdGc9P027aJ5mYIX7thmuLdUCHbnqYqnoLZbghfs5A2ImahbBm+piYtpyzOzz+0nLOcybcMYYfPZRA7ta1VmJYVsmuhbHm/87MsX/wciwC2Mu6UUhxeHeLlX77s16lNEffP7gMAAAC+LISxAADAV0LqUtx/ch/te22077Wxe7Lrj9+kaFMb0UVfFZsq0xYPVbBjIJtSWlbDZp/zqYinQLY8thHIXv5Q9f1a8BpRBKcXBLDTNRth7OZ4HqMWwo7Hi6mT03EIY/9iCGMBAADgS0YYCwAAfKV09128+cmbPmhtm7j91m08+ZW+Ura9aU/ryO6W0xY3TRPRnipfxymMxwB2Op4fi6FidiyQHSply/VhpwraR5hNEXzp9L4Ri8D17PTE+TXjtMuzh3jIoOf9LMZfGesUDHcpjnfHeP6nz/t1gQWxAAAAfEkJYwEAgK+WLuL46jjtNjdN7N7b9eFfNxzrmmhTG6kdqmbb6EPANkWThqB1PJZNYTz7i5X9fLv1+SE2qkn7zSlYjbgsjK0GspVx5mFqky57gNUAtjbm8flSinToq2G7rovj62O8+fhNdPfdRfcEAACALyJhLAAA8JW2f7aPw8tD3H7zNnbv7+Lmg5u+QvZJXyHb3rSnCtk2+8uqZPP1ZFerZCM7PnweNU0zDygfUWE67daqZCtrxi5C17F9Gbzm/TTF/mIoj6hQ3ZhaOZ8iOXUpnv/J87j75K4/3kV0e0EsAAAAX27CWAAA4CstHftqy+Ob4zR1cHvTxk3cRLNrIlI/HfFUIdvGtH7sWCU7rSHbDmvBtjGFsrU1Y2fhbDSLKYvfJoytVsk+pCI2iv0mm4o4v9fjZ1We9TO773jvYVzdvovj/TGi66cm3r/Yx/75/i1uDAAAAF8sTcr+SfSTJ08+z7EAAABcT1bR2uyaePKrT2L3ZBe793Z9hextG+2unVfI7uZrx04VsmWlbCzXkS2nLJ6tGfuYoHOtQnarOrZsU76Pmqbc3R5smievq2Mup0ROKcXrH72Oz/5/n01tukM3TSUNAAAAX1b39/fTZ5WxAADA10NWIZpSiuPrY79G6SFFc9vEzfs3kXapD2Z3w9TF3RDAjtWyqQ9lU5dVyo4hazvcpxnWma0Esotc85JQdiXgrFacVqYCjphPSzyNd60KdjGD8QOnJq7ddwxgjyn2n+0jdf13sH++tyYsAAAAX2nCWAAA4Ouni9h/sp9CyN37u3j6q0/7qthhHdn2JquSLdaTndaSzath276zq1XIXloZG1k1ayX8LdeLbZpmdY3Yi4e2sgZtWQ17eHGIX/zhL05rwb7lfQEAAOCLThgLAAB8fY2h4b4PCqcpiYfw9faj22iftH2FbJNNW7wrpi1umkhNmk1dPB2L+XTG+fqxq6Hp2jhr6WXtUHMKameBcKUadhGk5k2y4Hir3dZ0xHe/uIvuruurke/6amRTEQMAAPB1IYwFAAC+9rp9F/e/uF+e+M2I3Ye7U/iab9v5GrJTCNuepi2egtCVKtmIolL2oZr559r6rmWAO43jgqrUzQC273y5Tu2wn7p+WuKXf/Ey7n5xd/5mAAAA8BUkjAUAAFixf76P45tjH3TeNPHkW0/6IDZllbHtvBp2CmGHNWTzqtj88xieTlWsw7F+00QlV523qUwvnAevtWC2bFPvvtlut7JO7eHlIV7/5PViiuLDq8Pm/QAAAOCrTBgLAACw4vDiFCS2t23cfHATTWqiTW2kJi0qY8upiiPma8lOwes4jXFk7YfjEf00w9X1ZrOAdRa85sHsUPU6nW8imnR59e0lIew0FfH4uYvYv9jHi++/sA4sAAAAZISxAAAAF+iOXbz52Zt5FWxE3H7zNm4+upkFs+PUxNN0wPl+zNeYnc5HnPpNw7qvw7km9X3OAtiUrUObTuvQRiqmPh6D2TyPfUhgWlS6pi7Fyx+8jMPLw6zN8e4oiAUAAICCMBYAAOASXcTx5XFxuLlton3aTuvJRhuzqtnYDdMRD9P5ThWxMZ8SuJweuFYFu1oZW0xJXKtuXZu2uCalfr3XrMN+M6wDe/fzu9h/tr+4PwAAAPi6EsYCAAC8hf2zfR/S5lnn8Hn33i7e+/X3+mmMd6epjKdpjLOK2Ol4zI/PqmmzqYfH7RT0lllrsZ8HvvmxbGfaHl4e4vn3nkfqFovSRoR1YAEAAOBSwlgAAIC3kA4pjodlxWxERHQR3V3XB7HjNMZZEDuGr2NFbXvTntaTzacpbpr6VMTjdMbDsb6zoQq2zFFTiuO+GGdZQJv6dodXh9h/tl+GsQAAAMCDNCml6f/v+smTJ5/nWAAAAL5amohm15wC0uJcbvfeLj743Q+i3bURbSzWps0rZGfXT7tZh1loG9EHrPsX+3jxvReXBaxdRLfvLnlCAAAAoHB/fz99VhkLAABwLamvnO0/nglBm3564Gnt2byKdjjfRBHEZp/X1oQd16o9vDzE8c1xWQ0LAAAAXI3KWAAAgC+Ktn54LWh9iBQpQrErAAAAXJ3KWAAAgC+ilbD0bFUtAAAA8IW08u+uAQAAAAAAAHgbwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAADw/2/fDk4AAAEYiOH+Q9cpDkGSCfo/CgAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmfbXo8AAAAAAAAA+I1nLAAAAAAAAEBAjAUAAAAAAAAIXNpczcumkMt4AAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "fn scene_intersect(\n", - " orig: Vec3f,\n", - " dir: Vec3f,\n", - " spheres: List[Sphere],\n", - " mut material: Material,\n", - " mut hit: Vec3f,\n", - " mut N: Vec3f,\n", - ") -> Bool:\n", - " var spheres_dist = inf[DType.float32]()\n", - "\n", - " for i in range(0, spheres.size):\n", - " var dist: Float32 = 0\n", - " if spheres[i].intersects(orig, dir, dist) and dist < spheres_dist:\n", - " spheres_dist = dist\n", - " hit = orig + dir * dist\n", - " N = (hit - spheres[i].center).normalize()\n", - " material = spheres[i].material\n", - "\n", - " return (spheres_dist != inf[DType.float32]())\n", - "\n", - "\n", - "fn cast_ray(\n", - " orig: Vec3f,\n", - " dir: Vec3f,\n", - " spheres: List[Sphere],\n", - " lights: List[Light],\n", - ") -> Material:\n", - " var point = Vec3f.zero()\n", - " var material = Material(Vec3f.zero())\n", - " var N = Vec3f.zero()\n", - " if not scene_intersect(orig, dir, spheres, material, point, N):\n", - " return bg_color\n", - "\n", - " var diffuse_light_intensity: Float32 = 0\n", - " for i in range(lights.size):\n", - " var light_dir = (lights[i].position - point).normalize()\n", - " diffuse_light_intensity += lights[i].intensity * max(light_dir @ N, 0)\n", - "\n", - " return material.color * diffuse_light_intensity\n", - "\n", - "\n", - "fn create_image_with_spheres_and_lights(\n", - " spheres: List[Sphere],\n", - " lights: List[Light],\n", - " height: Int,\n", - " width: Int,\n", - ") -> Image:\n", - " var image = Image(height, width)\n", - "\n", - " @parameter\n", - " fn _process_row(row: Int):\n", - " var y = -((Float32(2.0) * row + 1) / height - 1)\n", - " for col in range(width):\n", - " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", - " var dir = Vec3f(x, y, -1).normalize()\n", - " image.set(\n", - " row, col, cast_ray(Vec3f.zero(), dir, spheres, lights).color\n", - " )\n", - "\n", - " parallelize[_process_row](height)\n", - "\n", - " return image\n", - "\n", - "\n", - "var lights = List[Light]()\n", - "lights.append(Light(Vec3f(-20, 20, 20), 1.0))\n", - "lights.append(Light(Vec3f(20, -20, 20), 0.5))\n", - "\n", - "render(create_image_with_spheres_and_lights(spheres, lights, H, W))\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAEAAElEQVR4nOzd7a8syX0f9uqZOQ/3aR/uPnKXu3wQRVOk+KDYBkU7kWXHD3IcGVESGIkTJAaSGAaSF3l4nX8pSIDkRWJbQQLDEQwYgS1bgBNHpmSLkiiKS2p3ubv33jOdF33qdFV1dU/PnOl7zr37+QAHM1NdXV0zd2ZI7Hd+VU3btm0AAAAAAAAA4KhWNz0BAAAAAAAAgOeRMBYAAAAAAABgAZv0wenp6U3NAwAAAAAAAOCZ9+jRo6v7KmMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABwlgAAAAAAACABQhjAQAAAAAAABYgjAUAAAAAAABYgDAWAAAAAAAAYAHCWAAAAAAAAIAFCGMBAAAAAAAAFiCMBQAAAAAAAFiAMBYAAAAAAABgAcJYAAAAAAAAgAUIYwEAAAAAAAAWIIwFAAAAAAAAWIAwFgAAAAAAAGABm5ueAAAAAADcVut1c9NTmOXior3pKQAAUCGMBQAAAICKt966G375lz8XTk5WYbXqQtmmCSGE5vI2l7a1I9loe3kgPd7db6/a+tuurb/t+m23fdt224ZHj7bhb//tfxX+4A8+PvzJAgCwCGEsAAAAAM+91SqEO3c2oWnSUHXaa6/dCT/7sw/D6WkXxjZNqJ7fVAaLwWn+OD+Whq9pSJuGr2kgW4awbduGi4s2fPzxRfiH//AH4aOPnoyGwOUctts2fPLJxWR/AACur2nb/v9ynZ6e3uRcAAAAAGARr756Hv7T//TL4f79k7DZrMJq1YWoMWCNeWpa+Xp6ugqvvHJeVMXOk4evw1B2biAbQhecxnFiSNuFsTGkbcMPf/hJePRom7XHADcNbrfbEB4/vggffPAk/C//y2+HH//40X4vJAAAOz161P9/LJWxAAAAADwX7t/fhBdfPAshDIPT1167E9599/5kGJtWvg7HqAeyfc7ajrSH0LbN1fE8jG2KZYubJIRtrkLVGAbnyxY3WWj7+ut3Qgh9SBsD2O22D2S7MLYNjx51Yeybb94J5+frZJ592PvBB4/Dxx9fTL3cAADMoDIWAAAAgOfCn/2zb4V/79/7Qlitmqu/GLCu1024d69bprisdI3VsGnbIdJgdrgscbw/Fdp256btaQVtuZdser9c2ri2pHFsi6Hshx8+CRcX26vHT5604eJiG5482YZf/dXvhX/0j354+IsBAPAppjIWAAAAgGdO04TwhS88CPfvnwz2bm2aEH7qp14IDx+eXwaxtcrX/pw+dG0GAeycQLa212ofpjaj/boq2dhv2Kc/ni5b3AwepxWy8VheNdvddkFsk4Wx63V3f7NZZRWzMZh98mQb3n33Qfjkk+3VEslpxe1HHz0Jv/d7H+1+kQAAUBkLAAAAwLPh5GQV/pv/5hvhq1996XKp4WH163pd2we2VgkbQi2Inau2PHFsmxqzFuKW4+VVsfF+up9s329XhWztdmop4/j35Mn2slK2+3v8+CJcXLTh448vwr/4F++H//F//G64uBh5MgAAn3IqYwEAAAC4lV544SR861uvhs0mBqvN1TLCm00T3n77brh37+QqhE1vQxiGsGkwmt+/xnrEmcPGKZcr7tr68YZLFjdFCFtWxDaXx/Kq2dr+sjGM7R7nQWw8vl6vwulpt3Rx27bh8eOuivbkZBU+85m74dvffv2qojZW1373u++HH/3oUfm0AAA+1YSxAAAAANwar712J/yH/+GXwv37m3B6us72f02XHi7D1+kq2OvvBzumPubUhdpBn+FSxvF2WHW7T4VsCCFst2mfWhhbVsqmwWwXsrZtCKen3ePz83V48OA0vPvu/asljR89ugiffLIN/9P/9F1hLABAQRgLAAAAwI34znfeCJ///IOw2XQVsKtVE15++TS89NJpODlZhc1mddkesuWI6/u/NrOXIb5uKFtW1e43Xlr5miurZYd7xXbnpyFsfFzbTzaeW1bGpiFsCMMwNi5d3LbhMoztQ9n1urncb7a5XM54FU5OVuHsbBu+/e3Xw5e+9GK4uOj2mn30aBt+9KNH4R//4x9eXQsA4NNGGAsAAADAU9NXtIbwcz/3Svj5n38jnJ2tL/d7XSXBa14Jm1fADu/HMaO0IjZv299Ude11gt1hRWwcrM2Ol6FsbNsdyrZZv+22SW6HYWxcsjhdvni1iiFsDGWbq9vttg2bTRu221W4uGjD17/+8CqEffJkGz766En47d/+MPzGb7wXHj/OnxMAwKdF0yb/L+709PQm5wIAAADAc+xnf/Zh+KVfeudqyeGf+qkXw6uvnl2GsM1gH9jxAHZsOeKuX/543NgSw+P7zPbjT4+x2zCUbLO2/P4wyJxaoji9X/ZL28tK2doyxmNLGPd/fduTJ9vL2/YylL0IH374JPzWb30QnjzpAtrf+I33wm/8xo8Oe9EAAJ4Rjx71WzeojAUAAADg6M7P11kVbAghvPPOvfDtb78eNpsueF2v++WJ6yFsuhRxGb4OQ9dh1er8pHTXHrP5UMfZg7YPV9urMWuBbL2tO6f2OA9oxx+P/TVNer+rhO1vu3+nYSDbXJ23WnWh7GrVhNPTdbh//+Rqb9n33vsk/OZvvp88ly7kffx4q2oWAHguqYwFAAAA4KjOz9fhP//PvxLefvteODnp9n1dr5vwwgun4Y037mRVsMPliOeFsGlbfn88Ia0vMVyvhN21L2wtnJ1nfLne4bLF0xWx6bG077BqdlgNG0K+THG8Haua7Y71yxgPK2X7+3Gf2SdP4u02XFx0tz/+8aPwox89umr7yU+ehPfffxz+7t/9nfDhh0/2eB0BAG4vlbEAAAAAHNWDByfh3r2T0DQh3L27CV/84gvhnXfuh9PT1aAKtr4XbD2M7W5rlar1UDa1axniqYB3zrLHh1TGxv1fy3NjRerlo6uq1Hisu22vAuRhCNvvK9uFqLFStR3cjwFtbcnlGMZ2oWtZVduEGCY3Tden/zcLl1Wz8VgTQthezWu16iplX375LLzwwml4/LhbtvjDDx+HH//4cXj11fNwevo4tG235+xPfiKYBQCeDypjAQAAALi2v/bXvhj+wl/4bFivV2GzacJLL52FzWZ1GcLGJYjrVbBpKFouFzw3HJ0KRneFu+nY08se99evX2fYtmvp3bbSoVYJm7Yfozo27Te2d+zYPrJ5hWxfKRv7xMrY7jaEi4tt2G7jbXtZJdvvK9tVzD4Ojx9fhI8+ehL+v//v/fB3/+7vWLYYAHhmqYwFAAAA4CBnZ6vwzjv3w8nJ6ipgbZoQPv/5B+G11+6EzWYVVqsQ1utVtg9s2jcNY2MAWj4OYX5I2rUNG3cFu+MVsdNVt8O2OQFtnizGoDGdQ9/W9e/3b+3D464trXaN7XFf1/5xuYdsWvkaQqxs7atlh3/xWBwrrazNw+H47xqXPO7mHPeBXYXVqg1NswoXF21omjY0zTZcXIQQwjqs16vw0ktNuLjYhp/8ZBNef/1J+NznHlwFvO+994kljAGAZ5bKWAAAAABme/vte+G/++++EV566Szcu7cJq1UTNpsmnJysw8nJsBK2tgRxLYjdFZam7eNtw4rXY1XFlsePIa167R+Xx7s+w2rZ4Z6yw2rYsgo2v1+vlK1XyW633dixEjYeS/eOTfeQTfeZ7Stk22xf2e62q5Z9/Li9vL0Ijx9vw0cfXYRHjy7Cxx9fhP/9f/9e+Cf/5L0jvOIAAE+HylgAAAAAZmmaEL72tZfDw4fnYb1uwiuvnIdXXjkP9+5twvn5+nI/2FW2F2y/FHF3P4QunO3Gm1qWeHwv2F0Vq7VQdTzoHQted1fglv33k4en6XPK94ztK2C7+/28+srYMKiEjVW0fWVsuKpkTStgQ+iraMvgdqxKtt9jtq+W7fepHe4hm7aVzzn+df1Xl9W028t9ZsPle6kJJyercHKyCl/4woOwXjfh8eNtePx4G37rtz4Ijx5t93ztAQBuhspYAAAAAEZtNk34b//bb4RvfevVcH6+DpvNKluKeLXKq2DjssS7liQOYaxKde6esMPgNB3v0KWJ51x3+nhuuO9pfbniettYRWw/ztQ+softITvcL3afPWTLKtm0MjZWxfZ/3T6ybRvCkyf9frLdnrLbq9tHj7oQ9sMPH4cf//hR+B/+h38R3nuvrzYBALhtVMYCAAAAMOrLX34xfP3rD8NmEysTXwh37mzC6Wm3DHHcD7ZbkjithO0rYMtK2PFq2Klq1OHSwHnf6fB1btg7Vhk7nE9dbb/aEPpq1aJ30ac8p14Rm/aNe7jW2soq175PXvUa28ce7/pL95+NFbHlsXgb95vt3h8hbLfNVSDbNKvLua8u+7RhtWrDatUtaxyD/s2mey7rdRO+/e3Xwx/8wcfhH/2jPwxPnlTSbACAW0QYCwAAAMCVpunC2H/33/1COD/fhJOTvhJ2s1ldBa4xJEuD2HJv2BDSUDaOf+iercOq1mHgOqfydvpac/apHZMuJVwbq1QuTdy1DYPWvm8f0ubnl8HrMGRN28rgNl1KuOwTj9Vu+/C1Sapj89ejC5Tby8C2uQpc+yrq9qqtC2e72+49tr0MZptwcdG9587P1+FP/snXwu/93kfhN37jR+HJkyeTrzEAwE0TxgIAAAAQQgjhp3/6xfBX/sq74XOfux/u3z8JJyersF531bB9ABuK2zyAjeFiHsKOV8PODULHKl93LXk8Z5ni/H59ueKxec1VW4542J6HpOXx8SWL592OVcSmVa398b6aNQ2Ny6rXvFq2O2e1Gp67WjVXSxPH+/k+t+3luTGMbS/3I27DatXtJxvPW61CeOONO+Gv/tV3w6NH3TLG3/3u++Gf/tP3ZvxLAAA8XcJYAAAAgE+x09PVVUD51lt3wy/+4ltJNWxzuTdsrILdtS9sHo7uDka79mh8ieBhxe3Ydcrjsc/wuvmcxuZQ63OI4XLDbdYel/ONbX1Q2ib3myJATcPMvnq2D0aHj2PFa3+NdPniNhkrtufHu6C1vnRxfB7DJZLz4DetxA1hWHWb/jtdXIQQwipst+1ln+52vV6Fr3/9YXj8eBs+/vgiPH68Df/P//Pjy3H7fWoBAG6aMBYAAADgU+qFF07D3/ybPxNeffU8bDZNePHFs3D37uayInG4FPEwhM3vT4em3fG0bao9Ps73ha0HvOPVsWMhbH9uPo/6vGrmBLS7wsDa8bFK2PTxoRWy6f6tadvYnrFdWwxky/vlX1fd2i1tHAPgWO3aL2PcVbi2YbuNbV3fi4ttaNvmMkTtK2TX6y5YjUsXp7frdRNOTtqw2azCN77xMLz11t3w8ccX4ZNPLsKv/dr3w+/+7k+m/wEAAJ4CYSwAAADAp8j9+yfh7GwdmiaEhw/Pwle+8lJ444074eRkdRnCdvvD1vaFre0PG8J4IBuPdbf9HHYFsOV5UxW3c5cnHlsauZxP7XhtfnPkVa+Do1kFbH9OWgnb7w/ba5Pzmqw9jlt/nI6d9hne7/rFKtzY3l5WtcY9YJvB+f3yxDGY7ebfVbN275/+9eirZ2PAWguD+7mnyyOvkorfNoTQhpdfPgv37m3CRx9dhI8+ehIePjwL77//OPzkJ0+uqmkBAG5C07b9/7U5PT29ybkAAAAAsLD/5D/5cvjOd94IJyercHKyCq+/fudyb9gueO1u8/1gx5cl7sbcZ+/W9Njlo0FIuivcnQ5jh6HqdfaJPcYSxande8e2g375/XbQ3oebU4/7c/vAsx3075cZ7s8p2/P75W1/P+4LG9u22/w2XU44Vsh2+8rW/rrq2e02hCdPtqFt2/DkSXf+kyfbcHGxDY8ft+Hx427J4vfeexR+/ONH4X/+n38r/OEffrLfPxIAwDU9evTo6r7KWAAAAIDn2IMHJ+H11+9c7f/6uc/dD2+9dTecnq7DatWEzabfD7avhq0HsF1lY30p4vkVqnl7fk53J1ZQjlfE1gPc2vWHbcP24fzq8zyeqUrNWrVr7Xh5rN/rNa+obUfP7faRrVXU9mOl7U3TVbmmFbKx8jUeS61WZWVsmyxTHEKsli2D39Wq/qLH57ReN2G7DUmlbRNCWIW23YYQuj2QX3zxNJycNOEzn+ne6xcXbXj06CL86EePqmMDACxFZSwAAADAc+w733kj/Bf/xc+Es7NVODlZh7t3N+H0dBU2m7gccb8s8dhSxLU9YkOohaLjIWna1j9Ow9zrLE28XzVuU0xkuiL22GlsX3WatVbbhlWw/f220lZWuw6rYYdt5fFdFbJT1bF5Wxe4ppWweQVsXi1btsc9ZscrZLvbrkK2u91eVco+frwNT5604YMPHodHjy7C++8/Dr/zOx+G//V//Vfh4sKyxQDAslTGAgAAADznXnjhJHz1qy+Hr33t5fDii6fh9HR1uRxxtyRxfVniWAFbC1+brGK1u90/hC0rVueEsGPLFefXy+cxNpep+dSOTyn7jS1BXJx1WXVajlULaaeqZNNxxqtf88rWcq/Z9rI6tuyfV8725wwrZbvjzVWQ2lfIdhWwbdvf9nvDdsfLvWPLZZXHtG187v1r0N2uQghddWzcTzb++CCEEF555Tz89E+/GN5775Pw+7//0fRFAACORBgLAAAA8Bx6++174b/+r78R7t3bhNPTdVivu5A13ubLEc+piC0D0OlwNO031l4uR1yOuzv0nRcCl4HrWMXsZctI+25zzolBY9c3rXzNg+QYMHb326vnNWzv5jzcL3YYcPahZdmnD1TTvun99C+EcFn1mreXIXPs01W/dsfT+9O33TLI8d9+tWrCxUUbVqs2NM3q8rmvLgPg9urYkychrNftZf/t5TW7HyDcvbsJr756Hv7JP/lh+Nt/+3d2/2MBAByBMBYAAADgObDZNOFP/ak3w8OHZ2GzWYU337xzWRW4DptNH8DGithyb9jaHrH1qtR5FapRLSwdVr6Oj3lYINvPoR68jgeuuwLVssq2Jl1eeGz8vEK1DDLb7HFfvZpX0Kbt9erYtH1qT9n+WJxXfFyvhA1ZhWs6Tgix+jVc7Qcbb+M+r/1yxvWK2L5St39fpMFuvE2D6f61XYWLiza07fYytA3h4qLNqnbffvte+Pa3Xw//8l9+EL73vZ+U/0QAAEcljAUAAAB4DpycrMNf/svvhC9/+aVwft5Vwnb7wubVsPND2H32bA1hV/iZVrsOw9hhn/5a/bH0WmMVsbUK3DI/HT6uB6yHVMeOjTdclji2t5W2/rnEYLK/ny9zHMPZGMz2laVle61fmyz122Zjx2rcNDhNq3rTtv7+VFtcmjjtk7825W0awtb/vbeXr9U2NE1zuRfs9iqU7ZZL7ipl423ThPDuu/fDG2/cCf/H//G7wlgAYHHCWAAAAIBnWNOE8Bf/4jvhK195Kbz77v1wfr4Op6ddCLvZrEK5L2wawoYwHsZ2Y++qgt0dgNbG6s8bjl8LZ+dcuwx+y3ml59SODdsOC2jHimK789pBv3RO+RLGw2WI06rapmkv75f7pvaVr3kwWz7uxu3P6QPS2L8PgueGsiHUgtjtNp97ueRxf5vuJVsPZfNjq8tzVqFf0jiGsO1VGLvdds83hrLxPf+1r70cXn75LHzyyUX4+OOL8Ou//sPw/vuPx/9xAQAOIIwFAAAAeMasViGs16vL+0341/61V8N3vvNGOD1dXVXExqWI+79w1ZaGrn0oG8J4der+QWh67lj16+4QtqzIHbaV182vXw9f0/Nqx8fM7TO+SvHYAGMnNBN9xo41WVsezOZLFKehbD5OU9yPx7r2OEZ9meKh1aoLZeNt27Zhu41jNVmwXNvvNi5vHNuGoW/ySlzeX6/L596Ei4sQTk6a0DTdYJ/97L3wxht3wvvvPw4ffvg4/It/8X748MMnVyEuAMAxCGMBAAAAnjHf/OYr4d/6tz4XTk5W4eRkFX7qp14I5+fr6rLEZUVsGsKmQetUGNvdDoPWWvha9i0rYseC2XLM+ljT10wf5/eHx4aP630OMTVGuuxw35ZfO6+Q7ZcXjsfGKmdjWzpmXjE7tkRxvE4zuF9/PB6K1itlxyti0/C6bI8VtXnlb9p3dfUabLd9/+22CU2zvbwNV/vFdssUd6Fw/ExsNt2yxmdn6/ALv/Bm+OEPPwl/7+/9Xvjoo4s5/9QAADsJYwEAAACeEZtNE+7dOwmf/ez98M1vvhLOzlbh9LQewq5WoVoNG9vKcHSsErZejVoPRLv7ebAaKxrnLoM8J4Qdv17ft+w3fDzcS7be7zjygLXJ2mPoOjKbpG8f4uYBbRrullWuaXtbnFtW1OZLH49Xypb369WzcWnhvF/cm7YLRrsq1P7fYrUKV5Wzq1V7Faj2AXb3ntpu28u+fcDc/cig61tW2cb34XodX7Pm8lj3GWqaJrz11t1w9+4mPHhwErbbED75RCALAFxf08afy4UQTk9Pb3IuAAAAAEz4Y3/spfC3/tZXw8OHZ+G11+6EzaYJ6/UqbDZlCLvKql/H9oUt20KYF8BOh6Hj18iPT507Pvau6+f3x0PjvG2B9HWH5D/JJW21x8N9ZtNjtSV6++rYet9av/x+37+831W+TrfHsco9W/N+3W1/LH/c3eb3t9sY1LaXlbBd+8VF36+7393Gx93tNmy3ITx5sg0XF93jJ0+6448eXYSLizZ8/PGT8OjRNnz/+x+F3/3dn4S/83d+Jzx5YsliAGB/jx49urqvMhYAAADgljs5WYU337wbvvCFB+Hdd+9fLkncBbF5NWwMX6eqYIdhaVpJWqs0re29WralgW3+N2/P2HScQ0LY/QLY6fD12JWxtT1kyznk1a1Zz6sx+r1VyxC5vWpLK2bHKl/Ttnyp47TydriXa3nN8YrZfh5xeeR6NW2/Z2ysok0rZPt9ZbvzuvnE93i/322slI3v/VhVG59TdxsrZPvK2PW6u9ZmswohbMPJSbfX8sOHZ+HJk2147bU74YMPHof3339c+4cBAJhFZSwAAADALffWW3fDf//f//Hw6qvn4cUXT8N63QWx6dLETdMtwZqHsH042weh0xWr3f2+f/94PBStBa/9XrR50Dt2vbFlktP5DNvqQXHZPm3Y72mEsePLEg/7lRWt/f12tH2qCjbeDtvaav9h5eyu6tjydvxYWT1bexz7x/ux+jXtk1bLpn+x75Mn/W2slO0qZNvw+PE2bLdtePRoGy4utuHjjy/Co0fb8OMffxL+3//3j8Lf+Tu/M/PfCgCgozIWAAAA4BZrmhC++MUXroLX1167E1599Tw8eHCSVcJ24WsYhK95CJsGn/XgtAxexypT87ax8cbGrVfI5veHVbL1ELa+ZHI51/I1vbw3+dovYaritTcMVmO/vuK1Vtk6rJgd7vka+7bJWHEOY9WzTXHNehVsWkE7HKdWRZsfK/8d456xsZp2tSr3lc33io3nxr1i07l3/UJ2P34m4vlt2+8j292uwmbTvU7375+EV189C1/84oPw3nufhPfe6/+jKgDAXMJYAAAAgFtmtWrCr/zKF8If/+Ovhjt3NmGzWYXz83VYrZpif9hyeeIyjB2vTh0LRWO/7rZWCZueNx3Gju0VOxXApn13z2UqWD28MnZZYxWxtXn0fdNgOj7OlxjO2+ISvulY8fWKlaZpcBsrX7ulhWP//Hhc6rdp2iTM7NvTeZXH87a02rYPZ9M+/Tzj/dinPxZvmyZcLXPcv1ZlFXD/eLsNoWlWoWnay79wuaxxCOt1d3tx0Q3yhS+8EN544274B//g++H/+r++X/k3AgCYJowFAAAAuEW++tWXwxe/+CC88879cOfOJpyfry+XJa6HsGUA2y1TPAxf8yrWMtycDkdr/eqhaz2c7edSPt4VwtYqYPM9YVO7lyZ++lWxQ3NC11rfYeVsH6622etTjtm393vLpv3q+8zWjk9Xyc6riM379fvAttX2sT1ju+cfro7H93wI3VLFafXsdptXycbXsb/fXJ6XLve9ChcXccnkdfjsZ++Fb33rlfDbv/1B+OEPPwkAAHMJYwEAAABuke98543wV/7Ku+HsbB02m1XYbFZhtQqXtzGAjVWw+f6w/f2xqtUQatWw+4SwIdQqbg8PYedVynZ9hvKKzKnjuy0Z1O7aH7a8dq1//5q0bX48D6HLMLVrK6tc0+rZfMy0+jUe7+/Xwtp0jC7YrIWuafVqH7SuVl1FbLzdbvP27ba5ClJDqO2B2ySP89cxBq7x5dluh8tA969LDG7zfWnje/ynfuqF8NnP3g//2//2r4SxAMBehLEAAAAAt8DXvvZy+PmffyN885uvhLOzdTg5WYX1ul+WuKvWS/eJHQawZUg6vjzxdFVqebzss0/gW4awacA6tjdt+Tg3Xhk7L1C9ierYqWuOB69jfcrwtVYtO9wLNm2r96mFsvVK13ysYVgbw9f2MuRsL/drTZci7m5jn7gv7GrVt5eP4/khpCFsN4uu+jUPZPNlkstwv7der0Jcermbd3wtVpevb18d/NWvvhQePjwLv/7rPww/+pE9ZAGA3YSxAAAAADdsvW7Cl770Yvirf/Vz4eRklVTE9iFsH74O94ft7w+D0hCmKmPHq1Brwexq1R3Lb+vXLIPg/v6cOdQqXscCzV3h6nXC10PO3VUFO3WNOfvJDpcf7l6jvr227HBs627rSxMPlyOO1567PHF+vx+rXi3b72PbhjJgXq36QLZ8nL9X+2WKu71g+2rWGODGoDZW2cbnmr5eIYSrHzp0YWy8XhfKxj5f+MIL4c0374bf+q0Pwo9//GhQaQsAUBLGAgAAANygn/7pF8O//+9/Mbzzzr2rpYm7PWK75Ym7qr1QhLJ5GNuHst2YteWD5wagZQibhry7QtjpSth5VbG5uW1zjh3S7xBzx55TEVvrNxbM1tvT17lfnrhcrjj2abPQtgxQY994LPZLlwiOFaZdJWy6bHFZXZtXvna3fVVqus9rXN64e9ydN1Yhm96f+oFBeny9jj80WF29Bt1yxd3j2Df9UcKf/tNvhB/84MXw9//+74cPP3wSAADGCGMBAAAAbsBq1YQ7d9bhrbfuhm9/+/VwdrYO63UXxKb7wqZ7wo5Vv5b7tIawO4itLdlatsVz0nA3vx0GsYdV45aVsPuEsHPCzyXD10PNqYhN+02Ft2PLGPcVr7E93S82DV37kDYGsnH8PpBN+8ZAtOwXw9c8+ByvjM1vw2X42Vzd1sbq+8T59P3S+2N9uuWO43u7D3zjMsfx/b5ex6C3uayO3V7uabsOb799Lzx4cBL+8T/+YXj8eBsePdoGAIAaYSwAAADADfjMZ+6G/+q/+lp4/fW74c6dTdhsmiyMjUumxsrYekXsPssT10LYcjnivi0da7gXbb1ffs00sJ1TCXuMytg5xw/te11zAtep/mWf3VWxtfaxStl++eJ879haYFtWxpZhat+nv3a37G96vNwztg9i27bfHzatfI1/8XF/2/eLVbVpn/5xE0LYXj3OPxsh9JWxzdVzi5WxaSi8Wm1D267DanUW/tJf+mz4/d//KPzqr34vPH4skAUAhoSxAAAAAE/Jw4dn4exsHVarJrzzzr3wUz/1Ynjw4CRsNrEatimqYUPxV1sWuB6Axtu54edYEFuvot21PHE5h2Zwv7zu1Nx2t+86tk+fpUyFqVP9d+0jOxbapksVx/Z2dI/TsjI2/hun1a99QHt5hdEK2mE1a74kcr5nbL58cl4tm441vfzweIVs/x7u+sQlkftj/Z608TMY96kNIVz+OCJcLqccfzTRhtPTEF599Ty0bQgvv3waPvzwiSWLAYABYSwAAADAU7DZNOE//o9/OvzMz7wc7t7dhNPTdXjppdOwXjdhs1ldVcOmoeywIjbft3VsKeBa+Fn2i3aFsGll7NgesfXK2/rSxMmVdzwea7vusSnHCmt3Ba1j15qzj+y+e8iOt/XvjT6cLPePTc8p94hNK2jTQDZWtcY+sfq1q3SN1bVtcduN1e0Z214uBxwrZPNK2K6KNj6OoW1/PM43rZZNHw8rY1eX81hdzad7bbbh4qI73jTb0DSry+fXhrZtw3rdXffNN++EX/7lz4Xvfvf98Ku/+r3RwBsA+HQSxgIAAAAs7K237obXXrsT3nrrXnj11fNw9+4mrNddhV2/N2xcdrgMOssK1f62Nx6OdrfDILbeZ6ridbxStzyeX7NWDXudIPZYIeySVbJzg9ap8/atiI3Hpitl8/fOWBVsWqWazCjZezaeG++n10/b+71p8z1g+yrcdJ/avK0frz8vPoe0KjfdZ7YfJxTnDCtlu790+eG4d2zXd7ttLveUjUsq9/vNxv1k1+smnJyswoMHJ+Hhw7Pw9tv3wvvvPw4//vGj+j8fAPCpI4wFAAAAWNhf/svvhl/8xc+EBw9Ow8nJKpyedksVn5x0YWtZERurXtP9YfNK2GFoOlYZ291OLTXcPcr3op2ugq0HuPU59A4NYK8bvi4Zuu5jbB67QtexPvtUxI611ytly3C1fn5aGZse65cBHlbV9lWwXZ+muO2ramNlbD9eU1TExgrXfnniWMFdq5ZNq2trttuQBMfbIvBdXc5lG2KVbNuuwmrVhu22r5B955374aWXzsKv//oPw6/92vfHLwYAfKoIYwEAAAAW8rnP3Q9f/OIL4fOffxDu3j0JJyersNmssvA1hq7p0sRlEDt128mD1RCmq2FrlbRjoevYsW68sQB430rYfatgdwWs1wlgr3PuIevTXrcaNh6fE74O+6bhZt+Wh7DdsTb5t22zc9J/3rTSNr1OH862Rf/xCtn+WmlFbfojg3itthg7rZYNRXtfDds0faVrVwEbrvaN7apg4xz75ZVXq27cLiwOYb1ehRC2VxWyd+6sw+uvn4cvf/nF8P3vfxR+9CMVsgDwaSeMBQAAAFjIz/3cq+E/+A++FM7P1+H0dBVOTlZhtVpVKmGPXxFbD2Lzx+l4+V60aejaXIVSu6/fPe4dqzp2qn3Xsev03deusXeFteX5c/eHTY/tXxFb65MHsrHProrZscraYYVsbCsrZOPSyOkPB/oK2bQiNvZps2rabqnhGKi22Xs439+20/WN+9heznJwmx5bhW5P23B524amWYXT035/289//kF4/fU74e///d8XxgIAwlgAAACAY3v33fvhT/2pN8JXv/pyODtbJxWxq7BadcsSlxWxZRAbl1zdVaXa9RlWrMb2/rbc03XXdfK2EMJVYDt2/Wj/UHaftjnH9unzNO0KW8f6Ty1TfFhFbNmW/pvloWVaydo97veEDcXjsbA2r5CNgWytQrbf27U235DMtX/fbbf9nrEhhKsgNl22OK3YjdeJPzIIIVwFtzHY7SqC420/0XhOv2dst4Txet0tY3xysgrb7Tpst234/OcfhNPTVfjN33w//NEfPa4+FwDg+SeMBQAAADiipgnhnXfuhX/n3/l8ODtbh7Ozfmni8eWJhxWxc5YLjtcrg9A8hM2Px8d5sLp7qeJ0nLwytgx/962GPXYIe90A9tDzl1qiOO133VB2rC0/NwahZeia9u+XCx4PYcvAdRjmxmrYEPplhfPbdJniPhyeug1FWwjxfR7bu/d+rG7t38uxqrbr016GsOk+tyGs190VYtAblyvebJoQwipsNm1o21Vo23V455174eHD0/D9738sjAWATzFhLAAAAMCRvPnm3fArv/L58NnP3g/n55uritjNJq+ITStjYzVeWqk6J4gtK1zj/SgPocqAdVgZW96OXTsUyxb3lgxhr1she0jffe0a+7pLFJd9ll2muAxp82rWMsAdBrJ5tWw6fn6/XJZ4WBk7vI1Bbb60cfe4W8J4uGdsXEK4C2Hje7/2GoTL/WGHyxWn92OIHMfableXz7vfT/fOne5+F9QCAJ9WwlgAAACAa2qaEE5P1+HVV8/Cz//8G+H+/ZNkaeJ8OeIu2OzDoPTxPhWx3XXLsLW/X97WQ9mmGGc6iC2v3V9jKmidG7oeu0L20L5LmVsFm/bfVS27b6XsrrZhABuD1fg4DWRj8Ng04aqKtAxr8/ZcvmRxP3YasKZBbLmUcf84H69eGduHs+k5/fu7Td7vad/+L+47G69T+zHDxUVzVQV/crIKFxfrcHraLVX+5Mk2C3YBgE8HYSwAAADANb3wwmn4z/6zr4S3374XXnjhNJyersLJSbdH7GZT7g1br4iNy6fOCWRDmKqOHVbIlteI1a1zg9+xQHa/EPYYlbBzQtXrBq+HnL9vwla7xq5K2FqffStld1fA7qqazZctrvWdul8/N+772u//Wj6P8UrYWKEaQr/McHosLqccq2LTAHW77feA7fXnxT1js6OX+8f243bX32yacHERwmazSvp2fb7zndfDV77yUvg//8/ftVwxAHwKCWMBAAAADtQ0Ibz44ml4/fU74UtfeiG8/vqdcHqa7g8bA9CmCF5jqFWGnbVANK9sTfsP7w/nVxujv99kt+VyxMMx8pC3uNq+r97MtrnjHxKiHqtidm64umuMOUsZj/UZO7Z/RWzZllaeZj2yitR4P69ILStk0/OiNDAdLk887Fdet/xs5NW8+fzSitn+WrUfOaR7x8aq2LQiNlbP9j+s6Pp1n/3ttrtt21V45ZXzcHa2Di++eBqePGnDRx89USELAJ8iwlgAAACAA52crMLf+Bt/LHz5yy+GN9+8e7UcaRfG9ksU53vF9hWxfVi7f0VsHqaWlax53/F9aHdXxpbh7OXII/cPeTzWNtW+69gh/Y5t7Lq7lh7e1beZOF6rfB1rrwWyU33y44dWyDZNmwWz41Wz5W0aiIbK43I/2XR/165tuGdsdz/27f/S6th6CN223R6x8TPdV8w2oWlWV+c1TQhnZ+uwWjXhF3/xM+EHP/g4/Oqv/m745JOLAAB8OghjAQAAAA7w5pt3wiuvnIe33roXXn21r4jtg9Z0X9hQDTjH9m4tq1ijtAq2DGJLZYhbq36drsStB66HL1O8q/+c9l3HDun3tI0Fpof03acadu7441WzUxWyaSVq1ycfZ3huDGa791S/X2xZzdrvTTs2VtqvrIwdPqd0n9nh/W68vno2jj/8DLdhteqXPI4/qlitmsvlj/uK+K5CtgkPHpyEJ0/a8OqrZ+GDDx6HH//YksUA8GkgjAUAAADYU9OE8G//258L3/nOG+Gll84u94hdh/W6CZvNKqxW4SqYjQFNba/YuH/rrsrU7prHrIiN1+7DpDRU2hXIPv0Qdk6wemj4eszQdp+1Z+dUwZZ9pyplD90zNrbPC2TrFbL1Y+NVr/39YQDa3cZlf2Nb03RVrGnFbNneBaFpZWysiM2XSo7VsNttm+wf218z/Sv3lY1z6pYi7o+VFbIhrK4C5bgf7vl5G155pQm/8Atvht/5nZ+Ev/f3fi9stwEAeM4JYwEAAAD28NnP3rv6u3//5GpZ4j5wrQWq9cdpEBtCXhFbVqPW24fzG1bX1gPZ2De/DcW5/RjjdoWZc4LYpxnCLlkxu0/AOnbuEqHsIW27KmTTitW+knS4V2teqZq+Z8erYodVtWWlbAxiu2WB22S8fux6GJzPLT6H+LmIc4n9xvZv7v/6CtlyT9kuEI6VseHqxxp37mzC2dl65N8BAHjeCGMBAAAA9vAn/+Rr4Zd/+XPh/v3TcHa2Dqenq7BaNWGzaQZLk8bliocVqmPB53R1ai0krQVHwyrX4fWXr4hdKoTdJ0xdMng99Pq7wrf0nKnliceOjwWtZf/rBbLl4zRUDSEGk8Px0z71CtqxtjIMLn+M0O8Xm1fYpnvHdifEKtjutju3q14NSUVu/Jx0QXIMVlertNq2ueofK2TTvWPX61UIYXt52159V9y9uwnn5+sAAHw6rHZ3AQAAACCKlW2np6urADavjI2Vr2kIOxWMltWp5V6vaUDaV7CWt8Ogd3r54/yaoXJsVyi7RBBbjjv3WK3fTQexY/aZ266++4bZtX+Xff/tyh8HpI/rPxyIPxoYe0/NrUTtx8k/K/04tc9WM7hWfd/k4bVjlXu6rHi51Hf/eY/nNIO/9Tr+dVX0Jyer8PLLZ+Fb33oYPvvZewEAeL4JYwEAAAD2cHKyCufnm3BysgqbTblEcbpUcR/OTAWx4wFUupxxJ6+MHYam/Tm796HNb4fLJY+HrYeHd/3jueHsnGPpmIcGsM01/657zbl99zm2z+t8vX/T/D2aL6mdBqmx73Ap7fy8PrBtquPM/wwN3/P5+eNB7PB436dcjrz8IUYZwqaPN5vue+Phw7Pwx//4q+Fzn7tf+fcAAJ4nlikGAAAAmOErX3kp/Lk/93b48pdfzILY9XqVVMjVK+bKirrpALa/ZhlA9e1Ndnz+Xz7HfIw54et1Qtl92qba5x4/1jnXGXfufqDp+bv2jJ1aunifZYuPt0RxP/9+yeLhcsPd/eEyxf3xuP9ruvdrPJ7uDRvFftlbN/R7yqbLFfdBbz9m+tmKyxGH0H02ymWLu+v0yxt3n6F0uePuAt0yxuFyn9j2as/Y2BZCV10fQginp+vw9tt3w7e//Vr47d/+IPzu734UAIDnjzAWAAAAYELTdOHJO+/cD//mv/l2ODnJq2HHK+aaQcg5VoFaVqKW1YXpXNIKw3h8vNJ1PASemk/y7Gfcn/N4n7ap9l3HjtH/mOaGrOU5z14gG99T/X6rMURNehd9+vY+pO2D2OH84rE+HM2D126/1jZrjwFuGcp2Y8S9X7vrdcf6/t212tHq2a5fGdA22fziDzO6fWW72y6o7Zcr3mxW4Y/+6LEwFgCeU8JYAAAAgAmf+9yD8Nf/+pfCm2/evdwnttsrtt8HMl+atNw/Mr0dBjkxrKvvqZn3zfuFEKphcHre3OWK4xxyh4Syu8aZaptq33XskH5PWzmvXYHrVL+p481E+5y+hweytWukwWoMQMv+aXsa4vZ902NpIJtW1jbZ4+HnJvYJ2XXiZyZWwsbK2K6qNQ1Sw9W8uuMhbLfNZRAbP3tdINy24Sp0DSG9XYWmacPFRff8T07asN2uw8VFG05O7CYHAM8rYSwAAABAxWrVhPv3T8Ibb9wJP/uzD8OdO5vBvpBp9Vst6AyhFrimVah54Br1bc2gvb8/Nu6cPTXzULe8/n7h69h5Y/33CWfnHp/b5zaphaPX6bfkNXc9To4UYWqsPM0rZfvANF2SuK987ZcrTq9ZLmGcVsp218jn0SYD1MPZ/NwyKE4rY+PzSUPdpumrb/vPVK2Stl+uPAa8/T6yq3BysgpnZ+tw5846PHq0vQprAYDngzAWAAAAoOLhw7PwX/6XXwtvvnk33L27KfaJba6WJO5vYzCbVsPuDkb7ar08xC2rYPN9YsuK2/rjeRWx3bUOv197fGifucfmHF/q3Cn7hmi7KmDLflNVstetkL3OksXzwtk0BA3Z3q4hpMsN75pbugxwWuVaq5LNf2hQ7iEbg9SQnVNWxkZxb9h8P9n26rl0t81VwBtvt9tYfdtVxm63bQhhdXkbQtuuw1e/+lJ4++274R/8gz8I3/veT6qvJQDwbBLGAgAAACRWqxDeeONueOutu+Gzn713uadjk1Wz5XvDhtAFOeP7vNaqX2O/YQXtVP+QharpGOXj8tplxW48flj4GiaOHVL5um//Q8LUp1E5OzdcHTt31zlTfcaOHRq+Xuf6w35pNWutLa1w3TXHco/ZONZwL9ryuv2Y6RjlfrLp+bX59p+jPvgtK2TjeGlFbPo5XK3a7Pvk7t1NaJoQXnzxNLz//uPwk588USELAM8JYSwAAABA4uxsE/7G3/hj4YtffBAePjy/qojtlhRNq2Lz5YrLytjh8sW1KtU8WE2rZePjWoXsVGVs3+cmKmLnBrFjweh1KmUP7buUcg5zlwfe1X9XlewxA9ldAe28atnacsUhdMsRD5crro0x1RaXLy73jC1vL89OrlFWxKYhany8WvXX7faGLfeX7a6dVs124WtfIdvvS9uN2e0huwrrdTx3FbbbdQghhK985cXw5pt3wj/8hz8If/RHjydeewDgWSGMBQAAALj0+c8/CG+8cSe89tp5ePDg5KoiNg9Zy3AzBkx5+JZXnabhaq0iNa2ErVWvxvv5HNI+ZTVsfr2puc29X7qNQextCGHHTIWoY/33CUIPaT8kkJ0X2JaVsGN7xsY++R6vwzFr1bDltfLrlVWt49fMPx55KNsFxiHkgW7ap19uOd72n9G+8rb80UTbtoNq+/W6CXfubMKTJ9vLwBYAeB4IYwEAAABCV/H2l/7SZ8PP/dyr4eWXz8Lpab5H7LAqNt8Xtl4Fm//1QU8Z5HZqQWrfPqywnaq8La/VjZOHw4fdP+TxWNtU+65j+/S5TdL5zlkWeKrfbQlkx86thar9/XQf2RiOjs0lXco4/eFCWiVbVsemVa9pUDqsnA1ZKJt/RuP+sF1la14ZG7JwNV4nPrcY5HbVtc1VhWzXv/s+adtV2GzasN2uQtuG8ODBSVI9CwA8D1Y3PQEAAACA2+LsbB3u3t1cLku8yqrW+uWB079hZeyuZYm7Pvl183ApbS/3fx0GrrVrHjeILT2NILaZOLZPnznnX/fvOuaef0hgPTa/ff595ho/P38P5++x4Y8Uwsjx+o8ZhtfKP2djbfnnIp1n/bMaP99lZWx6Tj/f8e+K7scT3W2693RaGbter8LZ2Tq8++798LnP3RfKAsBzQGUsAAAAQAghhCacnq7DnTubcHKyGlTC9qFJuPqrBTjD4KcfP4RayBOy9v5+eqwJ4yHvdDVuep0ykNp9f59jtcdjbYe0zz1+7PP2HXfuMsTl+XOqZPetkN1nrLLtOo/H55NXxnb98orX/tx0ieN0ieLudlgFG6tT08rX9Brp9dNK3Frg21fKNlfVsfk5+bldxWz985fu5dzvLV2GsF217MnJKrTtOnz5yy+GH/3ok/D7v/9RuLi4qL6WAMCzQRgLAAAAfOr9iT/xWvj61x+GL3zhQdhsyhC2thzwWAg7Jygd7glbq/YbjlkPWfOwdXidshpxaCqkXCKInXu9fY4do/+xHBrOzgllp/qMHRsLRucEuPsGsmPn1u+XwWhbbAabL1uch655MBuy8dIxu8A2DX7LsLa8Tn/tbrxy39d07n0gPAxg+3nFZY3TZYrjbRrIbrdN2Gy6pYvPz9fh7Gw98sMOAOBZIowFAAAAPrViQPKVr7wU/sJf+Gw4P1+H9XpVDWLT/WHr4Wu+dPCuIDIPZdP24e0wWB1bTrUfOx0jbRufW9n+NIPYXYnTPonUbUuv5oSsZf99q2uPNeZ1rz1+fi38LLLX4vMwPJ72q+0hGwPXGJKmlbXp3rH5GGlbDGrz68T78a+ryg0hhrrpmLXPZBrk1qpm00A23p6crMLp6Tqs1002DwDg2SOMBQAAAD61vvGNh+HP/bm3w+c//yCcnq7CZjNcnjgGJrHarbZfbD2AqVe2jkmDqPzcvLo2XfK0Xh1bhlrp7XXvz3m8T9tU+65jh/S7SfuEsrv6Th0fO1YLSue0XefxdLjb/3ghr14dOx7FJYrT2zRELa9RBqoxlM1/+JBXuZYVsfnj/NzVqhtvu+0/u7EytrvfTaBWGdu2eSC72axCCCGcnq7Dgwcn4U/8iVfDD37wSfiN33gvbLejLyUAcIsJYwEAAIBPrVdeOQ/f/OYr4fx8kwUiZdgaQrxtskCnDH/mLCmaV7iW1avDILUW5NauW59v2feQ8HXs/LG+gthp+4ayu5YtPvZesXPO2/e6lRGzas8+TE33ji2XLa71G/Yfzq2vaC2vv/t5pOeWlbNl8FyrfO0D5RDKgHe1ai6XMB7++GO1asLp6Sq88cady3lc/zUHAG6GMBYAAAD41FqvV+H8fDOoio1Lg+bhSFoZW1a9Hnuv2No4wzF3Vclejljczr2/z7FjtM05tk+fpzHGdZf0nTPGoYHsPu3XDVunzt99P75dx/aOjUFnery8TcdJx0/75XvF9vvJ1pYnrlXI9tW03ffBdtsmgWo/z3xZ4iarjN1u80rZ9bqrjt1uu/tdZew2nJx0FbJ37mzC2dl65r8DAHAbrW56AgAAAABP29nZOrz11t3w8OHZYEnisaA1rVRNA9R994odU6uYnQpxywrYkVF3Xvd45x72vPfvf93nFP+O4Zhj7brOIceP+e+/7+ORUbP38rC6PO1TWwJ87LZeAT7+GUmrW8c+a+l4eaVrfZ5j9+tLm5c/pBh+58Rli+OSxefnQlkAeBapjAUAAAA+db70pRfC3/pbXw0vvHAaNptV2GxiRezqsgK2uQpMumrYMiypB0X1MHcqgBrer1fV1sOasSBnqKncnwrTjhHE7RvOHho4HvucQ5TX2beqdM45zYw+c887tG3X47Fzx+5ftjQhq1Tt94JN+/SVqekSxemY6VK+sU/aPyT7wqaVsN048dy8IjaeE6ty+4rXUPTtKmD7fWLzOcTPZvf90l7tFRtCXiEbb9MK2VdeOQt/+k+/Ef7lv/ww/ON//MOR1xsAuK2EsQAAAMCnxtnZOnzhCw/Cl770Ynj55bNwdrauLj0cQhqi5lVteYAarvpex3io2wenw+q/9PxhBeDuUHas/XkIYp9WCDt1/X2D0znnzA0/j3W9pycPV9P2bp7DADaENCidGm9q7H7p4VC5TZdAri+HXAuHy++Qfuni9ir4je19v36J4/iDkPh3crIKd+9uwtmZRQ4B4FkkjAUAAAA+NV555Sz8zb/5M+Hll8/C+fn6cp/Yfq/YNAAZW1q0Vpk6rGrNw9wQynC1DGDn7BE7XhUbx+vtqoSdCl/HxpnzeNd4c65x6Fg3HcCW0vnMDT3nVMkeEsjODV6vGyLvXylbCzzT9/KuEDWteo2VremesGWIWo4dq3LHqoL7z22bnN9XxMb55J/5Nns8DFr7PWPjfrGrVXv13ROrZuMesm3bhjt31uH01DLFAPAs8nMqAAAA4FNjtWrC2dn6siI2XYa4DF6H1alj1XO1Stk0iNtVNTusiK3vEbur/7CiN5/HPNcNNMfC2TkVuce+7m1y7PkdMt6hFcxzAvix4/W+Y+/p/H5+bh6C5j9kGLtGfr3yRwnlDynqP6bI94AtP2f1pcrz+dWO1b5v4g9BusdldexmswoPHpyEd9+9F1544aT6nAGA20kYCwAAAHxqNE0IJyery4rYvBo2hiFjQUk8vxbidMfy0La8bnq/r+Qbjpe21Spv02vFMfJAalfANuf+MR7vMtV/KsA9pN9tsM9c5/Q9VsA993U+9Brz3ntjn5vxH0SUIekwAE0/W+WY6ePpueXXLMeoB7LNyF/cjzrv13/vpKFsk1XHbjbd3rE/+7Mvh9dfvzN8sQCAW8syxQAAAMBz7+xsHf7sn30rvPPO/XD37iYJYftwJFaklUFJrWouhHqgMwxp0xBoGD7VqluHFXnjyxOXwdKuQCm3Kwzd5/G+19jn2tftd9s0Yfm9WseuMffa+87xOM+pacLV8sIhTC8fPH+Mvj2EuGRxfnz4+c33hk3HjPe79nwe/WezX6Y4H79fXrlfuji9ny9THG9jKHtysrpcXv1Zfe8DwKeTMBYAAAB4rjVNCOfn6/Bn/sxnwjvv3A937qyvwthhZVpZkZqPU96vVfONnVN/XO41Obz2WCVfrV/yaMb9sf6HqJ2/VBB7zCBq37GOFaIeKxR9GsHuIebNK+7Fmu4LGwPMWt9yn9j0duq6aZ/4OekedyFo7Xr9e6MPZtMx8qA130M2vW7ftw9f43XT4134mrZ1feIPRvowdhM2G4sdAsCzRBgLAAAAPLdWqyb80i99Nnzxiy+E1167EzabVVitVtkyoGWVaW2J4nR54LzidbjEcB+KNsXj3u6q2GHl63hVbj+XypX2vL/r8dzQ9bYGscc+/zpBaB72Tfc7JJDdp31OeFr22fV47jiXrU2sWu37pO/zWgDb3w7HTIPT3ffz6w1v84rWPqDtw9x0TvXPcn/+atWG7TbeD2G7TStkY8V+F+B2QWy4Wq745KRbYh0AeHb4GRUAAADw3FqtQvjpn34xfOtbr4R79+LyxOWSxH1FbBqqdveHlatXRyvh6FilbLpEcRnWpvfTYLUPfobt5fHlHHP8mwxim2ue/7THrV3naZ533XPL8/cbq/Z5232N6THGfhSxe7z0RxX1z/Gc74H8+6Upzhv7UUiTLKPeL1fcBbP1fXYBgNtHGAsAAAA8105O1uHsbB02m9VVkJFWxvbBbJOFILWgJu3XBzO1UHVXIDNVDTsMYsvrjodITZia1+77+wZo4+HV7rbrXmfOOU8zLD30WnPPu+5ruKv/nLZdj69z/TD6ucv7dG1jlejlbfl5rT2O/YefweGPLsYep98d48eGbX11fr5kevodFb+zYnXsF77wIPwb/8ab4fXX78x4rQGAm2aZYgAAAOC5dP/+Sbh/fxPOz9fFssTDitfdIct4pd5+1Wn163bjDAeqVfalQc7+17+OOUHcMULB64556DnH0oTbuY/rTRt7Xea9Xk1T30s2XO6/Gg33ka2PUd6P545fP19GuTs/XVY5hLjUcfm5zpcyTveOzfuMfe+U4ey9e91/0j07U2cDAM8CYSwAAADwXPqLf/Gz4TvfeSO89tr5VVVsPZQt//ox8grYXeHt7jB1rAI2D25qt8PxkpF3tM25v2vM6wSx+7bv2+eQvkvrw7n9zrnO/rH7hp1LhMbHHLMWsvZ7t8ZQswxQY8gaP7tdYBr7dvNLx4lj155Dfr3hjzLGPpvpDyW682PYmt6GsFq1lX1mY7V+XFK9CW0bsiWKT05W4eys+5EJAHD7+fkUAAAA8Fy6d28TXn31/Cq0mFvtWq88jR13hx/7Vsp25+TLrg7HqC9RfLyq2NsY6tzGOS3tus/5ps8/bLypkPMY1537mSl/LDHVv/yhRjn+2HdM/rhepT+cy7BCdr1uwv37J+HFF0/Cev1p/KwAwLNDGAsAAAA8lzabVTg5WQ2qYstK2L6tD1jSfSRDqIUq9fCj7zMMg2p70tbD4Tygre0VW85vfE6HVMjOqYKduk7admhV7L4Vsbc1jDpkbsd8ba5zzti5x3i/7LrG+PEyJM1vx8PR+v3hjyHGrj/87A1D2+7+sJp9rNo9P5ZWxtb3ju2rY1eXe8feD9/85sNw/77FDwHgNvO/1AAAAMBz5TOfuRs+97n74c037yYVseN7xYZQC0THK9uiuZV7ZVgzPuZY8Jtfr7Yc8u5Q9piuO/6xg9hnQRPsIxtC/jrUX5Om2b3fa9mW3kZjfcu2Wt9yzv2er/nyxuU45XW6+93zHFb+5sswd+15W/8jjHSJ43AVzJ6erq/2xAYAbi9hLAAAAPBc+frXH4a/9td+Kpyfr6/2WOz2XgxXezHWKtSmqhjHA9pdFXXxvFrF3tg8htcqqwDjtStX2vP+1PlzHu8ab1/PYxC7hEPC3do5c9uuc/1955oHtjGcLEPXsX1er1qSoLUMSGP74MpNHpyOjZH27ecZLvenzecVg9S4d2x3Tnxe8bPfDj7vq1W43Cu2C3Tj/rGxOnazacLZ2TpcXGyEsQBwywljAQAAgOfCG2/cCd/61ivhZ37m5bDZDJf6LJcCLQPY4dKh+fj1QLU+l+HSpGNtcYD+tt4+vxJ3P0uFOGPjHut6z2L4tGSAeaxzDx1zmcrfPABdrrp4boVsDGpjtWt6bryff87bLASuVfIOq2TzZcn7itj0NmRLFter5QGA20IYCwAAADwX3njjTvilX3on3Lu3Cet1bZ/YeqXp1LLBeTDat1d7TwSz3W29OnUsAM7n2GRjHF4hO2Xe89zd59Ag9tB5PkuOGcgeK5xcLuQ89NrzwtHx8/OxmsuK1RiOxlC1b4/VqmNLKI+FqOPzq58f51MuWxzPGauSTQPYWoWsLBYAbrfVTU8AAAAA4BhWq27ZzpOTdRLE1ipS+2CzD0Br1arzTQexfVhSr5S96p31SSvkhtfYJwQd67Pv81wy8bkNQWyT/D3rrvscbu/55RLC5W35uSnPK9vGQ9H0szh2fv9+qX+XhMFnvx+r/l2QX7vvE/e/jkFsF8auwsnJOnzhC/fDT//0C+HkxH/qBYDbyP9CAwAAAM+0pgnh5GQVTk9X4eRkVQSxeaCRVrvWqlDTx4dXmw2rWPM5DPtPVeiWYW3tWrvmsr9Dq2KXdOzrNcXf2LFju8mw9zYEzWNzmJ7b1OexrHSfc87YONc7p1al2lSOpz8MKb8byram+AFJGtCGsF434dVXz8Prr5+HzeY2/PsCACXLFAMAAADPtNdeuxN+5Vc+H954404RxjZX1WRpiBHCWLXasGq0tjzwdDhaq24rj+eB8FgQnFfVZT1qV91xfKp917E5x5e89jEdcq30nGMt59scaaxjjXMMS82lH7dp4jLB3RLD8XHt+umx8n4I+RLDtbZ8vO5+H6CW1w6Dx/nYcb/XfLnj9Hi8Xy5TvFp1fVerJmy3bVYd2y3H3obz83V49GgTDqnqBwCWJ4wFAAAAnmlnZ6vwxS++EF544TQJYUPIA46Q3O/bL1tnXec6OcdYMNtfOw99l5hD/bpP4/xjTPo2jfE0w8/bFLYurx6KHmXkUO4LOxaejs1rPGgdPk5/jNGOXKSs4B2r7s3HHe5/vVo1YbNZqYoFgFvMMsUAAADAMy3uFXt6WlbFxn0W0wCjGQQf+e2wWnVs6eCp9jwwyatWx+ZRVr+my5nW7aqQndNeO3ZoqHPdqtNjjrvEGOlYn8bga9/3yZxq7RlXHfmszRt7bDny3T9+KD+/aQXrsF//nqj9yGNO8JpXw6ffW91fX+Wf7xvbh7GrI/5YAwA4JmEsAAAA8Exar5vwmc/cDW++eTdsNumyxHnQUi7522nCsEL2OurBaD1oKXpVquBqIfFx5nSIZz3hMf9lx1vO0wgX53wm68fm/cBhGLw2k336H2wM51IutZ4uZbxaPTv/rgDwaWOZYgAAAOCZdO/eJvz1v/6l8Oabd8Pdu5skkA1XVWSrVVqF2kyEorW9XfebT3+NWpjSFP3yUCedXxnWlCFy5cr7TXSRJYpva1XskgFVE663hPB1zz/m+EvPZa5d8xgery8hPLdf3j9+1sb6xTG6z2o7umds+hkv97RNj+XhapudW46TnhN/dNLtGxv3jp2qogcAbpLKWAAAAOCZ1DRNuHt3E+7e3STLEefha60KLR8jv51x1X1neTX+nAC4NrfDws9DU5nyvNscht7maz8PbvfrV1aL15cjXnoO04/H22tzb7LnlH6Hjf3II23fbFbhtdfOw8OHZ0JZALhlhLEAAADAM6lpQjg5WV3uFbvK9ootq2DTqrJ8GdDhnpKHVMR2t/k+sfWlkfNquPT89Pr1kPhYAesxxrztntbzel5fv6Xtft3mB5v5sV2hbO0zPlxCuHbN6R909I/LoDX9QUYZtu6eSy187Stju/b1ugnn5+vwMz/zUvjyl18I67X3JQDcJpYpBgAAAJ4pq1UTvv71h+Gtt+6G+/dPkqWJh2HrWNhxXLsqXOuVrXngMrdKdjhO/f6c/ofY5/xPSwjcLT/79M99Xlz/NZhegnj5cfMq9toJfftw+eJyjK5/07RZEFv2yytju4B2s1kJYgHgFhLGAgAAAM+U9boJ3/nO6+FLX3oxPHhwkixRXO4J2y9RvP9yxPsrK2Lz/SCHlXFpe9KSHRu50jGnfYRxPy3zua2e10D3eM9rLPyc2kM27gkb+9X7x/damx1Pv4f2CXP77602O1armI/fL3GP7NUqhM2mC2QBgNvF/zoDAAAAz5zNplueeGxp4tqSwHkQmi8BOjw+31Sg2l9juDzp9HjHChSvU536aQs1edYMPyZzfsxw7Gseds6uZYrzH5WkFf/l/tj9/bhcOwBwuwhjAQAAgGfOZrMKm82qEsTmFbLR9F6N5RLBU2FGV7GWVsDVTC0vWns8HszMDVYEMHAsuz52uz73SUt2rP49M/xhSNqnrJqth7dNsly77wIAuG2EsQAAAMAzZ73u90fslimOe8bWlvPsz5sfus43FgKnFbFjyyTPr7KrdRw7+XkIY56H5/C0PI9LFA8tUek6VrE6p/9Yhfuuz3htf+j4o4v+tqzqH1+muAtiu7auMvaYlfUAwDEIYwEAAIBnxtnZOty/fxI2m1USUDSX4cN0APG0wpxdfdKK3O5xXiG3XBB5WwKaJedxW54jz4rp4HKfH0Ec0m966fSxx2kQG8/t95BtwslJ90MVAOB22Nz0BAAAAADm+vN//u3wjW88DG+/fS+rii2D2bRSNV/acxhQHLoHZL6fY7nXYxqs1IKTOUscPwthyrMwx9vs01HVels0Tb/EeOVoOOTfY+pzPH69JjRNW6mkr8+l/x5pr46l3zfd8sRdEHv//kn4xjdeDj/4wcfhn//z9/d+PgDA8amMBQAAAJ4ZL710Gt588244O1tnS3vWlv7sLB8Wzl2udNcYtdtKz10jzb/o3p6F4FW4ye2TLlm+u1/t8XDJ4r5P/iOPzaYLZM/P19ebNABwNMJYAAAA4JmRLsG5WpWVsWWVbHfOMNi8fqhY7g+bj50vN1zfZ7Jcovg6AewxHPsaz0JweyzPawB8u57XeEXr8eyqVt9x9sHjlOFq/v1Vr+zPv++aq8rY1aoJp6ersNn4z74AcFtYphgAAAC49V555Sy8+up5eOmls2rwOuawitW4FOgueZ99A5v8vPrJh455fZ+mMPU6bldgmdtnbrf5eRANf2jSL1nc94k/UvEZBoDbQhgLAAAA3Hrf/OYr4c//+bfD/fsnYb1eVfaHzatja6arZedqiuAj3SN2WJlbr267zvX7eVyvj6Dm5s0NQI8dlN624HVsPrdtnlO6/Vz76t3h/rP9jy7aHXvX5uPGcco9Zbv9Y/PvoFgZ260ccPizAQCOy/8sAwAAALfeet2E09N1EcSmPZrB/WMVhnWhyTBYue74++9xK0Cd51kK8T6tbubfaFcAepNLIe/TN/9RSe2HICpjAeA2EcYCAAAAt95q1YTNpkn2ih1WoKYBbRlEHJJLpMFMvD9cUnjXwPvPY5kMRTBzfE8jULxNwfLTncucYHTY5za9XvOMVevH77Cyor/23ZZX4Mf9Y5ecNQCwD/+zDAAAANx6TdMkVbEhdJVgTagtS9w/Titkx8PIGOi0l3dqIVAagNRCk7HliWv9a66/fPLz5rqh2tKh3G0J/W5yHruuvczc5lavzu93W/4tp78Hxr534rE0vLVnLADcLsJYAAAA4FbrqryaLGTIA8/pfWLnGMtjxtp3h6fjSyWPBbXH3VP2pk0FXE8r/FrqOscY96YCwNsTPB7TcfLU8UGWymsP/ZyPfffVfgwCANy8zU1PAAAAAGDMF77wIPzr//qb4Z137oX1ehjEHhpgtm29f2zvj7chDVbnBMCHzKdy9nVOfk70r/3NjpGOdZvGuelr7HPNufOZP++xitZa874/ttjf8V7v+P1TOTJxnSY0TZusFqAyFgBuE2EsAAAAcGu99NJp+NrXXg7n5+skiM3DhqdRUXrda0xVq8lMlnasUPdpu5llgJcfe+Kq7fTj2rz6ZcaPE64eOsbTWe24C10HrZXq2NUqhJOTVbi42Ibt9mnMDQAYY5liAAAA4NZarZqw2ayu9ouNyxWHkAec+1SBzQl4ek1WDVseq/WfQwD7tLVh/4CxDYedt2vMpR3yPG96DhMjHTBUGtBeb9zbtaxzfUni+KOUJvs+fPjwLPzczz0Mb7119wZmCgCkhLEAAADArbZa5aFDCGEiID1u0Dkcqxkcfz73aTz+srLHOe+65gSsxw5gD3HT11/S/s9t/0D2eq/f06lyvY7xL5v4XXRysgoPHpyE8/P1U5wXAFAjjAUAAABuraZpwmq1uqqILUPZrk/tvPp4XcgSk5Z2Yn/J4bFyr9qx6w6D4rHbZ81tXKr3umPX/pa83k2OVTvnOm37HJ9jbIy+vR6S7nftecsZT3831MdL25/uZyX/QUi/t/Zq1YRn9/sGAJ4f9owFAAAAbp2zs3X4zGfuhtdfP88qY6fC0OnK1OG+oW2bn1M+nj/2dP/xMYUk8xxjz9ebtk84d+vLMsPx5jh/nOtWq15/yeLjXOsYxr86+j1l+z22l50LALCbMBYAAAC4dV5//U74j/6jL4X7908uq2KbpOqruw0hZPc79eQhVq/VgokYnDRNCG3bJnsw1udWb989h6kxl1cGmrseL3HNfY8f2ve2OXYQu2uJ5evO4ZjnHnjFtl6Zmh7vbneONDsYna56HfadV2Fbjp+fs1Roe8he2gDAcixTDAAAANw6q1UIp6ercHKyOmhf1v0Dj/FOAo1dnoVKzpty7Ndm6df6umHwMfrvGG10uN3XuU74WQtT97/WcV+Lqa+m53MvawB4NgljAQAAgFunaUJYr5ukKrbJjg0rYmuPa4FIWVE3Fo6U1bHzKl8Ho3zqg5Bj7jX6rIW+Tzu03Lcqdqmlhg+p3B3pPXNp4TQorYem9YH6Cty5lbb7GRvvmNWx5ZLo6VLuAMDtIIwFAAAAbqEugO33i833jA1hLGyYWx03DF92hSLPXrjxrIWXczwrz+lZmefSrr+k8vQPJ9pK+DpsG44xvnzx2LLEY9cfP78t2nYvmbzv0sdj+iXdn7kvLQB4LgljAQAAgFunaUK1Knas7yFq1XRz5vXpMS98WuY6x+z/tB0yv6X2ir1u/6fzWu+qaD1mxerx92ktQ9cDR7nGucPvpb6yXyALADdvc9MTAAAAAIju3t2EX/iFN8Obb9692i82hHxp4vFwoQ0hNKFtY9/ucdajnQpU8/679mOstI6f8Nwbvtbzji1xvZt0E0Hssc47ZB77LFF8vWuPB7bzxpyqgq89Hq+QHZ/fPu1TjlcdCwDcBsJYAAAA4NY4PV2Fr3zlpfDKK+dhvW6SpYnLPVz3Nx3E5sp+go2lHRKu3qZA9mmEpUuO8TTGnT/e3Gr13Xs/d/vCzr3myJGd5+1/7u4li3ddcw7fWwBwO1imGAAAALg1miaE9Xp1GcSGrDJ2zK6KtDIsKSvsYlhzSDhyO5YAPdaSs9cd57rL6B5aVXqTyxZf5/pzX5NDX9d9/p2WrM7dNdacwDJdCnj4ea3dH36e43j7VczW9p9t23YkhG0H5+2e11jbsHFsfmV7/7XUCGQB4BYQxgIAAAC3StznMAadcwPP8ZCjHvakYcfx95Gsy4Of64SXhwSih/S9yaBzHzcxz2fltUktFajOeXzgVXYMM/XDil3LGk+Pff2QvT7+db532uJ2miAWAG4HYSwAAABwizRhvW7CatVchbJXR2YEC334Uqsqq1fG7Rr/uksjH++8pxH+Xfcax6iOvU4Ilv4d27HGn3v+dSqZrxvKH/t9MHep4PryvfXP9WFz7KtJy2AzBrnDOQz7Dq8/VqUaj9Vu8+rf4fn542FF8BRBLADcHsJYAAAA4Nap79l6vHRhV8XcssaXSb2djhnWPc0ne6xQ9pjh7txxrhv2HnvMYzo8RK3dP+T8Ocfmtu2+7rz3T33/2/Flj+cQyALA7SCMBQAAAG6Vrio2/u0fKOShRVtUwfVLF+e3hzlGpV46r0NDl2KkkftzHh96nWONmY5xzAD0On/HcswgdslweE7bsd5H6ecyv99/Fmo/XsiPj+8POz/ELb830nmkx9O55VW25XfMtLTa9rDz5x0TyALAzdvc9AQAAAAAVqsQ3n33fnjttTvh5GS1Z4DQhlrVbAwk0rHatp29B+2xtG2cQz/Pvu3TqP7vdf2+t9WxK1KnxlsiIL/u/MfPv27omB4vA9KubXpp3+GywMcLuWtLDpdz2bdad84xAOD2EcYCAAAAN26zWYU/82c+Ez772fvh3r3NVUXs3MAyD1nb0LbN4Nw0AH26Yeh4oBjnUQts6+c/jXBy1xwOHePQ8Z7lQHaf1Oy6FbH7BrFzq2J39dmnSna6knzunqtzxxse6yvl86rbvCp1uGfsxNDFeXP2vB0PZPN51eZRVvmXlbqp7jvxWf3sAMDzwzLFAAAAwK2wWjVhvW72qlwtQ42xIGSsQu0YlXmVMyaWV91zpMk57htELeFpVVw+a6WA+bKz8/ofo88xr3eMax5yfn2J4uFS42Ofjfrnblel6e4Adnw55Kl51PeCnZ5DWa27z/Llte8eAOBmCWMBAACAW2G1asJq1QWxcwLZsZClrEKrHbt8dMAs69fcdex2LSs6p5Jxn6rJqfZdT3zfwPJWvZAVh8zxGEHsvv82x5rHPlWxRc9K4DjVp2wbW154+PkfHhufx/BYWc06XA65/j0z/r20+7qVWVausfu99uldCh0AbhdhLAAAAHArNE2TLU3c3e5a6na6LV/ys789fjh6WAh1e9zkpA4JL2/bi3jonG4iiD00fD9elWz+Q4k8LC0rSculeacqX8cCz/r3wPwfTkwvj5z2a4uQdRjkzplDbaz6OPnrVVsGWSALADdPGAsAAADcCl0Q2+1xuG+AUO6ZOHf54n3Gn3POIWNePqocGw+gRkbco/+hIeAhFZjHCBzHzrnpUPY6c1gyiH0ajlMlO7dafezzPfeaw0rU8YrZYQAc23eHwuPt03Msv8Pq7eMVxFOVtwDAzRLGAgAAADcuVsSmlbFDw8rWWjiShhbpUqX5kqPXSSrGw5Ty8VhlW61tKlDedy7DY8dMZm5TIBvPe5rB7HWvN/fc6wSx+/wb7RO6zzUVzNZCzvoPKGpBZvrZn1ryd85ywOV3wjCk7dvGlimeE6CW5/djt1lb+hynfpAxrJrN+wliAeB2EcYCAAAAN+rsbBXu3t2E1Wp3Rex1K1wP6T/nvLGquF39x8KYHWfPusb+bkOCc4wQcInncazAd+75NxnE7nu9fcbZf4xdy4rXlvwdWx44P29svOFcdn8+h3OonV8PiOe/t6ZC39q1LVEMALfD5qYnAAAAAHx6NU0I3/726+GLX3whvPLK+dW+sZdHs77D6rFmcKxtQ2ia/ljT9Mfi/bGAoqygm+qXjlXv217Nv96vPz6lbdvLpZuPobzmnDmM9dm3PR4LM685p9+cMW6LfebztILYuWPserzPeGXIWe6xWg9D82N92Lp7Xu3VbVnZWp/H/FB1+JdXrpbnlHOsVwKXFfxpWz722A9AyrkAADdPZSwAAABwo+7fPwkvv3waTk76/0yxa6niKWPLku63/O+8atXp6rr+vKmlUnddI54z77wlKjevE74dcvzQ695WNx3E7tP/kNd8v7B2KkRM7+/+bNWCyX7c8SrU9NrjcyjnsW8VexmI1s6fV20/bIvBcfk6CWEB4HYSxgIAAAA3ar1uwmazquwX24axMHNYkVYLVeK55b6PtWVP9wsx9g1R0rmU/cplVtNquPE5zg3ldgVl1wlvrhMM7hPIDv99b7995z2n76Gv99zQdYkgfvoHBv39vBI0bR+rlh0LJtP+tc97rbq1HHdYhV/OefgZq31uh1Wt+fMdm8/wOdX2nE2vne8/249hnWIAuA2EsQAAAMCNm7sS71S1XC202FWFVgtiho/HAqVh+/NRmLZPKLdUmHvsaz0thwTHc/of+tyP/ZpdJ8yvf17mfWbaQUi5r/Glg6dD2bHvjWF4ms91YiaDOcz5burGzX/UUZuH6lgAuH2EsQAAAMCNWq2asFo1O/dGrYcT9Wq1dDnSPKDYHQiVlbZ5ZVs96NgvzBlW7E2FzOW5Iz1H2mvH5gRqxwhk5wST+4aXbdj/nKfh0BD2GEHsIf8uh7Rd53F+LK8gHVa/jleH55/FWhA5XmlaXmP43TD2XTGsrq893+G1+nPGKndr803b2pHnMB3gxkrZ4WoDAMBNEMYCAAAAt9Ku0GEY3gyrzaYeJ0f2ms+wfff58yvWalVzhwSw+7rpcPOQ6990KHudYHjuObcliN3X7h89VM+a+FFDd3/uZ3W839g16n3KELneli4TXF5/9w8t4rnpe2kqiC4D3GHVsOJYALhdhLEAAADAjeqqt5qsgmssLJkX6NTCkvpYY6HT1DV2hR7D9lqgU7+tVcDN147cn/N413i7zpsab25geWiC1BZ/SznWdea+Foe+pksEscd4P132LELLWqVprb0MIPu2qc/w+LLltf5lVexYRWrtxx/18cpzhnvIjn3+0znV94wt3wOCWAC4rYSxAAAAwA1rRpfSrIWofSXZsCqtVjHWByvTeznuqpbLw6JhWx/89Ncbu0Y9WJm63jAcGl5//PzDHSuQnXM89rnuvMvQdN8xr3v+rnHn9Dv0+KH/Nvtcb7+xxoLVYehYO3f6WBpApssOj3++2uK8/DM7Npcy2E2OZAFrfm7+nVT/rghFn3QOte+PfCnlesgrjQWA20YYCwAAANxq+RKe4/usTlWU7g5ax/tNhSa7xrxupVr93EMH3BWq7RtY7tO+7zWOFYDWxtz1d2z7jPs0g9h9gvYpU++j/Fj5Q4KxStDa+bWQdZ957Q4/621TP/QY+8FGeW5+/ni17tjj2li1v9pzAwBunjAWAAAAuFHdMsX941qoMF5RmgYRaYXseOXb5ZmV88vrtoN+NXlQUlbD5fMcPod6IJY/p/p1y+cyvD/HnED2kJBvV2h4k6Hs07BvuDun700EsfsG+ONzHFZz5sfGQshy3No4terU8lj/WSq/I8auOwxSxz5rY6Fpf53h90L6I5N8z9m02rb2vNrs/Lzvs/hZAYDnnzAWAAAAuBHrdRPOztZhtWpCCPV1iqer2fIAa6wyrBb+XB6pXXHnvMeXDE6vXx+nHi71484fc5+Qb+rxXEuEPPuM+ayEsofMc07/2xjETqu9l3eFmrU+Uz+EqFx1cj718fKlf/PrlgFuPkYtuC2P19pqcynD19pzqv+go5zz6EsAANyQzU1PAAAAAPh0+vKXXwxf/vIL4TOfuTM4Vgsxyvtpv7LatG2b0AUUTWia7rY73h1rmq5vXpGb9puee3luek5s70OadA7dbTy/u+3nlIx21S+OWbvmyOxCHm6Xj+f0D5VzauOM9d11bJ8+tf77nLOk6yRf1w1hp44fO4idM9ZUwNpm9+thZB461oPG4R6xfZiah6NjgWd5jbJatV7dWp9nPk4+tzIg7StZd88rn0u8358/XgmsOhYAbiOVsQAAAMCNuHdvE1555Tycnq4netWDoqnqsUHvParFapV8aTizq2Jtzhzq1YHj/fPr5MFUbS673caw5pA5tcnf03ad684992kEsXNNBa/zxq59ttLAsjZeLTAtr1f/nMTbtnpsGPQO51+7ZhmkltX55fljlaz1vWTr4ezuMcsl2QGA20ZlLAAAAHAjVqsmnJysLpcpHgYVsYp1WP3WhLZtQ9Okx5rk3Cb0Va6xX1p9mvbvQ5WmGauKjWPmVazpfJukZDW2D6tY47n99Ye6a+2qup06d3j/kMdTbWGP9l3Hav3m9J06t3RoBe2xk6254x0awk4dm9te//HDdR7nlbBpYDi2Z2u+Z3I5Tq1KtaxuLW/LH1Xk3yfptafnU59X/j1Se47pHMs9XvO/MHG/nE8bttt6pWw5NwDgZqmMBQAAAG5E04QsxAxhrDKsXvE1r1rukDCiDFTmXLt+3TK42X8e/f2xPlPn73u9ZcY4ZKxjJkjtgX/Hvv7cvocev24Qexy1sDS21/rEfmOf8V2ftfLHGsNjV2eMXqv2eGz/1jIUHZN+/uuV9bXrT4W8af8y8M7DYADgdhHGAgAAADeiaZrLQLZ+fKpyLQ05yvayIi4ZsRrY9CHNWCiTBz7pOWU4k7aV444FRWWYVFYGDkOsw8Pd6cf7th0aEO8TTB47GH1a9p37rr5zjl+3vfb+2PWe2f2eKt/Lw8/GeADZt4/vFRvPK68//r1RjtkOHpfLG49V66bPoTbHMpge2+u1Ns98SfKx8/PK2vy1qP97AABPnzAWAAAAuDF9ENsHP1OhaLyf3vbnD/vXxsrHGAYYY1ln7fpTIdC8MWoBSv28Mkjqz0tPvn54dhy7xt03ZH1WQtmbeF5LBLFzzis/c8Pqzdrnozs2/MyNB531a459Hssgc/AsJr9f6sHwruvUx576Thj7YUg+Zn38YUA89l2363sFAHg6hLEAAADADcr3Wh0GNMPK0FAs+1mvSIsntaEMPvKxpgKbsaBsaknVNuszrOJL5xWK+8MQpgx35oUrS4R746/FdOi3VCh7W1KmNhw2p7n9D319rxvE7hvaD4PZ/n5/WwaY43vI5p+PYTCahq3lZysMjtW+F8rPZz7HMDpW+XyHVbPjFbLDaw73jS3HnN43dvjc4g9cBLEAcHsIYwEAAIAbMwwO6oFMH1TkS5Pm4cmw2qwWqqRBSH5suN/irsqz2nV2Bb/1QGl4jXoIO1ZtOJW87ArWaqHevknOPtcf63PINZ9mOFte75BrHiOEDQceO1YQW/vsVEYpPpfpWMNQtv4dUKuuzT8fte+D+g8g5n0vpG3lMsZTcxv/jtj1vTXePrUkcajcT1+XznZrD1kAuA2EsQAAAMCNGmYFfXhRC23ibVm5Ogws26J92FYLUOrZRW0Ow0rVXaFsPr968Do1Xm3sWng9L1DbZSyo2yfs2+d6u8afe+51Q9NjjDE25ty+hxzf999mbtsu5Xt2rIJ0KgRtR/uk7bUAdmze4z9qiNfaVS2b9+3HGtunOn2utWWI82B0eLz2fVT7fqsFt7XXtg3b7dh3EADwNG1uegIAAAAAu4OFPPho2yY0TRnONBPhZXdOvN80Xd90z9p4PPbpx0uvNzy379sdi9cuj4eQn5vf5tePc+r75/Ppr9Pfr7yqIV0Gev/HY22HtMdjYeL4oX3nuIlEap9rHhqO7zp2nXB2/z5TYWNtafE4Rj2Urf0gIw1i8wA3PycNT2tzKZ7FyHWGgWt5bm0J4XQuY8sU59W7wyWK8+feVbimAWtZHTusgH3vvUfhn/2zH4f3338cAICbJYwFAAAAbqU0eB1Wd9XCyzScjMf7ILUce+yaMfisHxuGp8Ox+zmU49SD2Dy8HTsvvVb5eKxtf8cKZMPIsTnHD+17W+wb/N7GIHbOeWVleB6O5v1rQeYwGK0FpbVj+W39hDzszM/rxxvuN5sGp2NzGOszttR5bfw0iE3nMz6PWoBbn0vbhvDRRxfhe9/7SfW1AQCeLmEsAAAAcKPyirCygqypVMA1WShRVozGStSy6rWsIs0DjSYLOuuBUF6R2/VvQ6yKjeFvWh1bKsPcPPitV8f2zyUNgON1++fd9w/ZmMephh0LRccC2V3Hpsac6pu6DQHtvsHrvucdEsJOHZsbxA6D16nHw6rRvNo1D0THK2HT8fLvgVAdPx17uH9qbQ61AHQsZK2Fnul31fgca8fGAtThX63qNVwtOZxXxoarqtl5/64AwE2wZywAAABwY9KAJn08DHtCFnaU7bUKsXLfxnKc2lzyY8NlRtO51SrS+vY269ufM7x4bZ5Tzz9tm2e/YG28be74+45znUDzpgKn61x77mtye4PYqffj9GcsPTD2+cz71M4tvwumjqXBbdq3dk56zVowO3wO+XPLr52PX1uaOb1Wfs3hD1Pi91E+Xvr9InwFgNtKZSwAAABwg/Lgo7vfL008VbGW7+kaH7fZbVntmu/jGrLrdNWmfdtwnnnFa1rVms6/XEo4FfedjVWxwyWU4/zztnSP2HjNYXVsCIdXxJaPp9rCHu27jpV9on2qXvcJofaZw7EcK9jedfy6IWytffd8ys/u1ZEkWB3eH4altYA1DyPLz38tyKx9nwyvOQw6+3AzD053VbXWKmTHq3XLtr7KNe4LOz5WXxmbV8tut+lrnoazAMBtoTIWAAAAuFFToUkZKpR9i5EG/Yb3a0ue1h/315muiqvtEVkbqw+R8uvVA+fy+QyXIk2DpNp4+wcy+4R2+4yRHps73pLB6NjfUtc7Vt9jBbFzx6i/18c/W/1tLSwdO1Z+Pmvt/TjlcsDjIWk6XjlO+Rmrfb7K51QcGRlv/LmO9a+9BuPfWenr071vx18rAOC2UBkLAAAA3IhhAFnu8djv9Zr3HdszNg0/miSw6Pd0LfdeTcObbr/ZfNx8vmWfco/Y7lp9xWp7OUYb+mrW/pqxSrY7vw1pVWu/d2wcc/j88irfJtvDduQVD8Nq2PJ51s4fayvPnXNszvGyX3Qb9ojd5Zjh9Zw++x6bG9ruPneq6rUMCct9Yuuh7O72YSiZBr5lW22MWsXr2F+5d2s5l10VsbU9sId71+bH8qrZWA3bV852lbDp/fFlk0f+qQGAp05lLAAAAHBD2uR2uJ9i7S+EWlXZrr1d28G4/Tht0m8YYIzNYdinHZxTfcbFc8yvUa9yq12jfC75dYchWXrebtcJ8fa5VjujT63/bUqZ2nD4vJYKYsfmMta2+z1Sq9bsbsc/l/Vz65/z/Jzh8sTpvMr+ZbhaO5bOuZ9DW1yjDGyHr0UthM2PDb+Dhu39fNIxhp/9NtSe167vi6nvHwDgZqiMBQAAAG7MWOiaBw7Dytfudri3at8+PK9tyz1j831p06rZNDSpVcim1y6rVmOla6ycjdWy6T6x3fX6trFrROW8u7Z0HmmFbqjuQzv9uHyewznV28bOn3Os7LOr39g5qSWrZ6+bcO0bPB/z2D7h7HTbWBVsPJaHh8OwMr1f/wFBft1aAFoLXYf9huFoPTAdBqO1ELVcLni8va3MqVZZW/+Lla99ZWy/p2y/X2ybVM3WAuD6sssAwM0QxgIAAAA3Yljd1QeVaRBbBjXpUsGdMhgdLkOchplxueJ+ieDhsXSO8Vh5nelQNgzGiUsUxxB25FUJ6RLEsS32r82ttlxx+tzKsDa9zrSxQDaMnDs15pzr7Rp/jrkJVLoM9NKOFcLuOn78IHa4H/JUEJsHnP05tcA17Ti2PHEtTE3D3XbQVo5Z3o5VwebB7DCEje3p8x2GxWPhcT/fYWjcDv7S5zD2WpTPJfXRRxfhN3/z/fDee59UXhcA4CYIYwEAAIAb0wcwbXa/U+7rmv/FcLM/N6+UHQtha2FtGV7m+U4aJPYBbJ9txrY8SE1Dmy5ALgPRsWukr0u9CjbdI7YMavvXZhg2TweyY+HrPsHrrkA2TBw/tO8hlg5h9x3/aYWwY+37BbHxnDSIrYWtZd+xwLXsU1sqOA99p/ZwHQtiQ3bdsft5lWwf+A6P10PcfI7l65DPrzy3/pzG/mr/Rl0Y+8/+2Y/D48fbAADcDsJYAAAA4EaNV371IWpZYdbdji9f3FWfpsFtv3Rwek65NHEektTG78PRWLUbb/swt72aQxoo9+Fx9uxDLQBNx+orgectV9y318bf9/FY2672MHIsPT7Vp9Z37jk34ZBwd845h4a0ywWx+WdtLHwd9i3vj++3mrbvXp64Nr/aX3/tqSrZPCitn19+P9XC07E+U8sV98sPp0sVl33i8sXb7b7/9gDATVnd9AQAAACAT6d6FVitQixWmI0HH+mYaVCUX6s2h/rein1YUw82xsYfXwZ1WK2XnF3c1oOnPNSaem5lcDbVt/rsRtr2ad91bJ8+Y+fcZOjUhsPnMfecqT67Xve57fsFseU5ZXAZ+4+9Z8v3Xxp05tccjjM2n/y29lmavvb49YffS0mP7LkNr9FWxhpW6g4rXUOhXg073h8AuI1UxgIAAAA3pBYupPebLOzYbtNK1hDSatDuWBNWq9oSxMPlissx8rCkXC44BkB59Wnali4RXAtI8iWE071w61Wo+VLHfb+xKtjhWGlFbW154lCcmz/vetsh7buOlX129Zs6b8y+lbTHTrj2GW9OeL3vsXkh7FQwm4aMZfiZh5HDKtg49li/w/daHWurVdOO9RmrUK19L+VtedVqHpB2x7rq1vI6/Xm1a6dVsWkVbF8NW1+ieKzqFwC4DVTGAgAAADdiKpAog5r0nP7cwYhZn/y88SVOy7HT8cs51EOOXVVqeUAyNY/x516GYrX5lFXC4/Oeev12t03ZFRbOGW9uv7naPf+Ofd19+h96fJ8gtt5v7L2VBqr9seE545Wsw3HLfrve7+OfmfHnN1aNPtyzdRiYjo1bzif+G+fnlZ/z2nMcC3nL5x3HHy5/DAA8O1TGAgAAADdiWFVWCyiaq70R456r/b6vZYVsVz3WVceWwUlzNV53Xr8na+yTVpLGc9K5hqLaNB0r7lGbVsyGrKI1JNdJb+OYXd90D9vLK4epKtQ4Rlo52587eMUvx99VETtnz9jauXOOpcen+pT95vS/SYekY3OD6UOOz22vB/DDAHReRezw/tSxehXtWNVreu1+7GG/WoA7/je/UrasSs0rZMcel20h2Qs2Hbe/Xn+d/txYTRsrZvf7kQoAcNNUxgIAAAA3Ziw4me5bVpD1wUUaLpVjl+OX1xlee1iNVhsrb68vEzoMo2qVuuOVebW28jnUzy2rZXc95/p19g/9dh3bp0/ZP/7dBofMZe45u17b6waxl62V9/XYeWNBbO3c8nMw9jksPwtpeznP9NrTVfXx+6HNrpE+rj33cu7D8co51J/TcC7D74Vh/9r3TZucn86hfF3ycQCA20VlLAAAAHAj8j0Vu6qvWDUa90cMoasgTStLY2Vs7J/uoVruMzsMTGOfNhsrDTH7yts8cIpVsX0VaxvSqtx4m841XFWVxnNiwJJW6O6uhE0rcuv7xKZ98mPDatm5FbJz2qba02Njx8s+U/12nVdznUraY4Zac8fa1e+Q8HteuD5cRrt83J1XBrH1+8NjZfswuBwLPOvVquk1837zbof7uQ6rXuvjj/VNH5fVrvl1Y3Vrej/vV+4Z22Z/5XdOfC3SYwDA7aEyFgAAALgxY4FGGRaV4U3ZXgY1wwq4dLxhJV65V2N+/WFINNa3FjL1x2vVsMPnVJ/nsMJ1eO36cyjnXbte+hqUc5jXFtsPCQv3HWcf7TX+jnntuX139dn32LC9vpRv+l6p3w5D1Px9n96vvZfSc8u5lOOUn8vac8nHql+vdt2peezz2sTPVP07LG8bm0c+p7YYsz5uMfOr8y8u2vD9738U/uAPPhbIAsAtozIWAAAAuBHD8KOvbI3VYF0laV+Rut02YbVqL/eGLfd4jeM0xXj5vqx5qBLDjLxCtt9TNu+b7jUbK1776tZQ7P+aXy/V7xvbn1+reE2rWuM5IQwrgssK2XTu/TXj65RXxMb+5bV3t4VK+9xjY8fH+s7pf9P2TcDmhrSHHJ8frA+D1zJ8HFa8Th1PA8LyBwLjFbLT+8TurlSt9+vH3XVb+2tHqmdre8NOh7LpPrC1yth4nbQKNq2yHdsrNvXJJxfh//6/fxg++ODxaB8A4GaojAUAAABuRBc+5Mt0pgFE7JNXmJXVovUwpT+3/hcqezCmFbnpdcs5p3NI29MAqQyB+nPi+G02XjynHy8PsdK2YXsevA6Xhy2fZxiVP4fsSDa/3e27jqXH54aYbdj/nCUdOp85/ee+dmPHhm3l+ySE4XtiGJ7W3ze1914ZbqZ98/d+/h7N51arAJ9apng8YE0/g/G5lZ/BsfPK13A4j+nPYvndNN6v/8u/B2NbDH3Lz3l5/XYwLwDg9lAZCwAAANyINHgoA4fdQWoI+V6x/eM+VOkrTmOVbFetGkJa+RrPSfdcbdsQYsFoOl5aqZpW2vZ9h4HXeBVsvM1eldDvLRvP76+ZH+/vh6Rqtzw2nM/uCtnu9Uj75PMbGmvvx5+ubJ3TZ+ycmmNU0R4z2Jo71pyQdv6xNHzM29vk+DAIrT2+TkVsGrjmQWb5w4G8vf65D4NzxkLkqfAz/4vXHq+2Hc5rV0Vs2t6HpbGiNq+sHY41Vk1bPh8A4PYTxgIAAAA3os2qwcrq2O5YCCGsVnmlWL88cT1Mqi1TnAay0+d0bd3xWt9y+eA0CG5HlikeBpV9QFsGtdkrlATE+f0ykI39++WNy0C2X/K5Nn7f5zpLFO8KVPcJZaNDQ9WbTqn2uf6cvvuFsOPttUCz1j4exM4Jamt9h+PkFbG19jIk7foMA9jhvPetlh2Gr7XvpN0hbC1cTZc0rt2WAWz/45S0MjZ9XWv/pqpiAeD2skwxAAAAcEPyAKL8u+pVtNWCkMHIO8ZKw530WN5vOH4ZZPXtw0CkNu+0f37bzSm+LuW4tfP7x2NLvtbmnE+8vlRzOf/6azwdAu4KD+cGR23Yr/9N2neuc/pO9Rk/Vv83G6ssrQextQC1Ns6wWnN8CeK837BPeW7Zfzoc3b08cdk/PT4euNbaxkLYse+nsSB26rz8b0zbhnBx0YaLi2fhMwIAn04qYwEAAIAbsd12IUJX/dWFsrFCs237ytim6StIu8rYskK2GyMWdca+sSo2ve1DkbxSNg+cyuWK82V900rbdJniYeiZL5PcV82G7Fh/m+rb8uWNQ6hXwg6XMu7vp+eUx8ceh6JKtjbOVPuuY+nxqT5j/VPHWJJ4rusEXvuEtIccH2+vh7DD92yt31SfstK1v9/3rfXb1acW0E4HpOM/6Ki1j58/dt2x8LR/nC87nF9juDRx/zj9/kuXJM7/8ueUPq+Lizb8+q//MPzhH34SPv74YuQ9AADcJJWxAAAAwI2ZClJqgUq8393WK8b6pvbqNg178jGGgVOsFsznWIZRY9V8w9AkvX79eYy/Fv3xMuiqXS89UF6rfO5l5WTtdWyLx8O2qfPzY3MCxjn9dp17nXHmjHudceb23f947TMT+0+93/rb8cB2bKxh+Jp/9sbCw9q808e1z9buufZzzudWfo7L74R8HsPP4Fhl+vT31HC54nqFbAi18LY29vjnrm3b8Id/+En4gz/4WHUsANxSKmMBAACAG7HdtuHiYptVgHVVr32Q0rYhbLddVWjT1Ctj+71lmyzA2G676zRNvu/sMNBpioCkKfqkj5vktmxLn119r9hoWF3bXp0XsorZ2JadXfRN+7Qj98cel+f2j/t9Z8eqZMu5jbXPPV7rN6f/PuMsbd9rzum/K+iutA7C97Egc07VbBm6DoP+2pjDwLYdnDPWp3Y/n0tbuV79dvh90hZzGKuA7a/dV7a2lQrYftyyMjathI3n5rdplWz9Lw1u83/TYeANANxOKmMBAACAG9GHFTFcGatWa4vH8XgtFCr3WMxva5Wn6XyG184r08rgauz8MiAaziMdpwxy6/3qlaq1x2m/smq3Nu7wdR0+xzwIKv9thnYlRO2MPrX+tzV5OvT5HN6nfP+n7d3t+Pts/Lb+Ph+Olfcvr1F/X+aPh2358sX56zA252FQWbtu7Xpx/vnnNBuhcp38OdYqd/v29Dut//7Jr5tfe+r7qZ/77u8iAOB2URkLAAAA3Ijttg1Pnmwvq2Oby31f476JIdlDtkn2j22ujjdNE5qmvRxrWBnbBRuxf9e369OGWO0ar5GfP6yI3W6bsFrFECSthO33nu2OpxWx/W2/5+v8vWLj/XrVbK1v2ONY/ji+zvk80j59W14lO9Y3bQ8jx+f22XVO6Zh7yB4r6Zo7zpyAduRIJUQfD1fL9lq/8WWJ4zn1+2UgPKciNgzau8r2XXu5Ds8t92Udu01/CFKeGytW+9u+vb43bL7nazwnrYQtK2Tr1bB9xezFRX0Z9vTfIK+cBQBuK5WxAAAAwI348MPH4Q/+4OPw8ccX1XAlhOkwpz8+DGTKtqh/XN8LMh+zq2xL28vbsSVEx8esj9OHTvXnmI9Tr9Kbeo61+Zfzq70m9SrLdnBu7fWqXGXiWNrnuslSe8S/Y81jbt/x42NVk2kleNmetvX/xtMBX/29UI5Vhq/1vmXl7Njnov5erYet6fXLMDW/ft43bS/HL+eez7Et5ldeu/a9Fc9pi3PSa5fPr6zsH74mtTnE5dgBgNtLZSwAAABwI37nd34Svve9j8LZ2Trcv39yWaXaXlXBptWwsXq1u22zxyH0oUSs8KxXzfV9+z59NWw/XpP17UOR4d6xtb5T1bBd5W9f7dqfG6t8m8vH+XmXvS7HSI+HSp+wx7H08f5twyrZsf7lsTDRp9ZvV/+bdkhwOzekHTlSBJ397VgIGyr9p0PWss8wxBwuFd73nVsRW4an02HrMMAc75Nep6y0LatVY5/pyth0H9iyurbcGzYUj8vb/lr1Y/m/Q/lvF0J/7mHvPwDgaRHGAgAAADciDU9iCLFaTQUuMYgoA9Dutgspp//665ZjN1fnp2FiLZiKSyXHIDJd9jiEPCCOYoAaQ9f0ev1147WbbIzYvxsnPTftm/YpX5M0xM3Hi9fsnlMY9EnnGK+RzzsPZfPgqL0KtyfeBVev9Txzw9wlXSf4mnvu+NKztRA2bR+GrtMB63i/8aC1NscyfE3nkI6Ttg3HGAtu02u31fmWn+t0TvWQOD8WRqqTh8FwGUaPBcdt8Xh4PA1z8wB4vDo+fb7f//7H4b33PgkffXQxmDcAcHsIYwEAAIAble+h2CSVr+mesbEqtg9sQ8jD2b5//EurX/tK1bxyNt1ntlYBWz7O95ztg8zhnGKwWoaYubbom7fFkLR2fG6F7LDfMGyth6LDtu68kMyrHsoOn+PVCJXjZZ+pfrvO22VOte4x7TP2VN96ZWt3f34IW/YfD2eHj3cFtVP3a4+HS/jOD2Knq2l33YbB9dIK2BCGFbLD5YjrlbH94+E10tvhvrHp/X51gPI9Uf7bffe774fvfveDAADcbsJYAAAA4EalIUQMWvslPmvVsn0QmIezTSUEyQPZrk9fGTrsG67a+9s8gMwDq7yiND0nD1TL0LUevo61ldWvtUB22GfYL4bbIQyD1b5PvUq2+Fe7HGMslO3/PVLdUswh7A5bDw1nd1kyeD1k/GGQmh0tDswNYdP28YC16zv9eBjE1sPRvG95rLY0cT5m/dzx42Hkuvve1uY0Vu2a359erji298sPt21Z9dpePU77jbwTiufaDt4bAMDtJYwFAAAAblQfTISrULZf1rcPX8vgtA978krW+jkxWIzXrI/Rh48hlGFiHmamgW4MPNvsnPRaZRBbLnWcXGVw3TSkza8xDGTT/sPrh6sxaoFt/jgM2uJzHy6rXAtl+3PSccrz4rm7LRXOXtd+gVgalu4adxiyDscog9OxMLUcZ04wO1YtO3W8nEc57/S8/PM6dp2pELUt+o8Hr2Nj9efnYwznN3a/DGGH3znlddMQt/Z4+O8XBto2hIuLtnoMALh9hLEAAADAjdpu23BxUS7X2VeJxdumiUsVd8Fn97i5Or5aDZccLv/icsdd3z7YzMOStMo0hDQcjZW45dLF8bZt27BadX3juTV5gNVcjXnZGvrwNoQwWjW7634YOTb+uNwPtqySTcethbJTywCPh66HBK1zU6hDQttjJ1zzxpuugu3HmRvMzg9hp4PVsaC2dm7atwxsp6pmy/Z0DlNVrOkyw/k5Y3/D89JAtL48cUj6lhWubWWM/i/vk96G7Mcn6f20Qjf990vn8tu//UH47nc/CD/84ScBALj9hLEAAADAjcrDjX5/2HqwWu7B2oeKZb9aGNNXi5bhYhw7hDSELR/ne62moezU+Ol58Zw06OwD3b4Cdvga5cfzQDjdWzaGnnFe6XLD+bLKZWVuvmxxbLscZTBWv9xx+tz712f4mtRD2SKDDCELL5vBa7GfYwer8687fF4jPWeGsOmx9N9n2DYMV2ttZShato33qc+nDF/TPnnV7PBzOXwu9UrYsXB2/Hm12djlOOXzCUmwnfdP28f71L5z8teoHek/rCROn0vZ9uMfPwr/6l99GACAZ4MwFgAAALhRFxdtePKkq45tmn6Z4r4ytrl83IWAq1VfDRtCCKtVrFhNg9xaMNJcjV2e043TXp7fV8aWj2MA2e1v2y9zHEIMTuI18n1iYzVvXz1bVrtG/TkxOK1XzZZhar1PGabGpZbLoLkMZdNzdrcN29MQtv4ckzObWp9639xNL1V8WNA7Fb72j+uhZrxurX0sJK0FtnOWKR4LYYeBab1v7dhUpWz8HM4LYut9+iV/+9taleuwMnZsyeC8Mjat3i8rXdM+ZYVsrQI2/YsrA9TeU2PBMADw7BDGAgAAADeqDz/aIggZhjYxzOzO6ytA+6CnXhEbj5dVo3nAVdvbtJ9jWYla9s2P5eOVlaLxnFpVbBrIptWztb1i0+vUqmX7a5YVq+USxMNgOK8CHi5dHJ9XOn79uabzDdm5+esWBnOo/VskR4rXd8lwdhiO7nt+PXQtH9evc4wgNp1LbX7lPPLz0hB1fB5xLuV8y+dW65OeW/v8l8+t3qctrjt8PHbueHVrG8afU/p6tMn9udcox56WjgkAPDuEsQAAAMCNurhow+PH2/DkyVhlbB+2dYFjrFaN+8bGkfq2/pxwVUkbb5umuaqCjRWyITSX99Mxm6s9YvvlkWN7P49+D9k8DO72ju2P9W29WDE7vi9sP+ZYhezwfri6ZtxXNz3Wh7J93/Lc3rCtr64d61u2l8dqx/tQtzS+1+xghJn9ljQerE2Fr+XxNPhLH5ehZ/3c+jn7VMOWj8uwNB4fX743D2/z84YVqnn7nIrY+rF5lbFp+9i4+ZjlfrDp+enj4V6w9YrYWAkbb8sQOH3t+tcmr8YFAJ4dwlgAAADgRsVQog9JyqWGmyIwyYPPqDuet8X2dNng2K87lvfrl/MNIQ0vy4CqXB44HzO/XllhGkK+z2q8zcdLK2j3rZAdPv/YL46R7/c6rJLNH8dzavu91itlw2Wla7mvbD+/PthOh8z7pPNP2/epnn0a5gewfduuEHY47vC9mreXYWqtLQ33ps4tA9XaNcfC17xP+VyHSxYP22tB7dj820Hf8vrlcxrOvRbClvOfqnZNrz9W5T9eETv+Hhne/+iji/Dee5+EDz98MjwJALi1hLEAAADAjXr8eBs++eQiPHmyCavVNmy3q6Iytq9W3W775XvL6tbVqgtAY5gbA724bHA8p7Z3bAjpnrP9krl9ZWz3OA2BY5Vtd4000EqrXLv9Yvuq1jYM95XtA56+4ref45wK2TKoTZ9D36983Aeu9eOhaOvb0yWPx/vWj5Xhc/64NkZpOnkd36t2X/stHzve3lbaao+nlzKeCmCHbWP9d4ewafBYnjN2vLw/fFyGn/058XM+Xf1aOz6vMjathE2vM1UZW9tLtqyEjcfHKmTT86b+hkssp/8mfRC83Ybwe7/3Ufi1X/t+tmc2AHD7CWMBAACAG/VHf/QohBDC3bubsNmsLpcUTitk+2AjVnWmVbAxtMyr1posXOmXGY7L99b2lu2rP/OQq39cVr/mfWLA2YeledVqH8jGILbckzWqVaf25+XVrWl7SPZeLc+Jffsq2bzvWFVsP+9eWikbx+73h6211+ZW7htbVs2G4nWsh57DSuD0uR7fVEBbu3atf962fwjb359XCZuOkx4bq36tB6392FNBbPqcyrml18znuasyth3cDkPU8jph4tjY9crq4Lx9uq0MhtOlhUMRFNeeY/3fOH0N4ioCAMCzRRgLAAAA3Kjf+72Pww9+8El47bXzcH6+DtvtKlxchLBe93vHxkrXGE7Eata0gjU+zpc47oPSWKHaV8Y2lX799eqVsSHEcLXfhzYNR9PgNVxec/ic8xBqWDkbj/VVtGFwfHg/TBzLlyWe3hc2f5yGrOOVr7srYuvHasfzvukSx+U59WPLKoPU8WPj50yFr93j6QA2bS8D0OE5tf7j1a9z+kxXyw6XIh4GoLUgdm5FbO0vr2StLQ+8a+/YfG/YWuCaV7KmfdLq2LJaNn88XJZ9+D7IK2XL5w4APHuEsQAAAMCtkC7pGYPSNBzplvDt+saAsA9Y86A29u2D2Sa7Tfd5HQZETRaK5JWx4erccu/WWhCWh7PpcsMxaGmyILevnA1XbXlla7xeCOkyx7tD2H7u8Vi6p+vw3P46c0LZdPzh3rjpfNNz8nCxf9xU+pTGQtqrM+utI7nv2DWmTAVjtX+vQwPY9NgwmO3G3zeEzdvLfvstWzwe0o5VvqbPc6q6NA9O8/77LF88Ht7WgtXy3D5MDVlbGq72Y+TfQ2XAO1yaeFz6mn/wwZPwz//5H4Uf/vDj6ZMAgFtJGAsAAADcuBhwXFy0lxWnfShbr2Ltqk6bpr28TUPXPGSJe8mm1awxJK1VxvYB6lRImy7124RhgJUvRzy1PHHxSoRhGNm11QPVfDni7vqxf0iuHSrnDK8XH6dLJ6dLF6dzGoa58fwQylA2PzYVzMY5lq9l3rc/Vtftnzu0KwA7pG/937B+/ljIWjse/13r7d2xWvuuELbW1gd/40HsrtB2LHwtxxj2mT4+nNN4qDp9my4hnN+Ohbvl/rB5pe1w/OFesHloW+5TW/47l//W3XNvwwcfPA7/9J++Z4liAHhGCWMBAACAW+HiYhuePOkC2S5kDSGELjxtmn6p4hC6MK8LbMPV/rIxsOyXM+6XHY7HumWF26uAtg9y8+WJ06Ak9ulDob5qN+4bm4aLfbiSh7/9ksN9IJsvTxyS+83V9eL56TzSpYxjCJsHq+1lmFqOHWY9jkFsfp20Txg5t2yvHSuPj/UZ6zvnnOubDmPHwrPp86fC1/7xIQHs8LyxIHPfEDbOuxb2lqHirmP1gHYsWJ3b1laC0dqyxPHzPB7S5ucOj/XVrnn4Gs/pQ97xv/R1Tf8d89e7nG8AAJ5hwlgAAADgVqgFF/n+r/mSwmmQ2gcmw2WH60sT90sD9yHIcKnh+m1fOdtVYKaVsf210mP1ythyeeJUHCMkwWh/3fx4HsKmywqnc++vF6p90wrYfAnhdB59yNuPm4e1+fl9lWr/moXs3O5YnzYNl2XOlxdOQ8XyWN/nGEHtMAHbFYrVjs8LYPvrpcdrAeqwTy2Ezc+pBalj54716Y+nY7bV9jRwjWOU7eMVsfXr5vNti/PG2/Nr1ZciHr9fC4ynA+JyueLaeeW/Z/Kvmfzb5XMGAJ5dwlgAAADgVnj8eBsePboI5+fr0DTt1ZKcXfVoCCFZvjZWyeZBXF5BG6tCuwravio1Pu4rZcPVddJK23T8+LjrFyteu6rZPmTt5hgD1vQaMdScrowdVsjGPjEAjQFvfD3icsflefH+MCRN+/XnDccZ9knb+nHTtjR4ja9/HiaX+uumbW2lrR9vOMblLLLDxw2vdoew9Q71cPbq3qBP3n9+ANvf3zfU7B9PBbfDkLZeOVseG6uMnbtc8Zzgs/usjZ+TV8jWlirO76d986rX9C/f47pWDXtx0S+7PrZXbHy9av8WcR5xDADg2SWMhf+fvT+LtSVL7/yw/1qx9z7n3CkzKwdmZmWxKlldZLHZYg9kd5Oi1HRDIyTZpiDoQYAmCGoIEiABhl78IL3YEOwHPRmGX2TDgB/9YFmQpbZlww3J3aAFscnuapPNbtZAZk1ZleMdzzl771jLDyu+tb41xY597rl5p/+POIyIFStWxI493Mr92/9vEUIIIYQQQgh56ngPXF46XFyMuHnTYxhEXLTSsDrVWs8lm88bW87zOnesnic2T3AmoVju8+q4IEq1bCnnTdVJ3joZq0Wr9NfCtTxOJ3Pzc8j1lHPKJnGZxk0SNU+11klaxGss55StU7xJxNUpWn2dKVGcX3v+WPR46XHm13ZImF4nc0nFJQK27HeshNXteuw5oZqWrX71ceUx5fGtvvm+tojN78HScsXtfel8vWPKfu2+9f65benfO3cpf+u0bPZsF9egnwfnPM7P97i4GEEIIYSQ5xfKWEIIIYQQQgghhDx1nPP43vce4MaNATdvrmEtsFpZAA7WAoCdkqoi+LxKigK6DHA5v2xKsYo0THPHaokoZZHlLyVmZX/algRtEqE6ERuO1wnbfN7XJIll7F5CNiVj0+OSMeRx6/SrCJ1wHxDH6aVkpW84l5SFLiWtjC1omVYnavWYdf9WYjbvo9Gljet9vrvvSXFI+B6Sru1t393fkq9pvSVaawHbautLWd8cR+TiXN+WoG2NkUtSxNTnfDI2b+slYg8nZNspWJ2Alfd63l6mY5Etyz7jWKdp289l/YLS1/Tw4R5/62/9BA8e7GOlAEIIIYQ8f1DGEkIIIYQQQggh5Jlgt3O4vDQYRwfnhkmilinXtAREXJRzwUobimNRHJ8nY3WCsxRfur0ttPRcsfkYeXo0nV/KFev0apmQTQlWud4yseozmZrOX6dadZpXzw0rfXvzwuo5Yesx82Prx5u3p+tENV6ZIpbx071si9k5QXoVUXtIuLb79oVqr21ewuZj1q/LWqTqMQ+J2JZYLbfL13l/f5nkbSdvy37leWvpOidx28K1116WKC7fz/W5ysfXTtzmIriVlk0/4kifHb7Yrq9FtkXIMhlLCCGEPN9QxhJCCCGEEEIIIeSZYr/32O8dxtHCGAdrg9QbxzSX6DiGVKnMCyukZGvqm+Z1FQmYxGiaMzaNoZOv5dyxIleCJE6CVISmFo2SnBWpDJWM1fPJeu9j31LIeo+ZZKxOtGoJq+eX1ePGu6TkauqbxKtI1OVJ2SR2S8mr710+P2w+HrIx6rb0HJVytyY//vFoDzA3br2vlpBlv558LfctEbD9/kvKGNcSNheEbQlbS868BHASknnSFUjJWHkf1kL2aonYMu3akqfHzRXbmju2PVdsOWdsEu/1C0HfCy1+ZQxCCCGEPP9QxhJCCCGEEEIIIeSZQgsN50yULdamEsA66RrkpIiMer7YVqo2T7np8cpjwzW1JFaaexZIgrNM1/q4T0vWOiGr70Dqm9KpWvzm/XQSFajnXU3jJer5Xeu5YnvbaUxk55THqxOveTLWq/VUqri+Zq/aysfcenwlfkbULmepyG33a6VAW8e2BWzaPixh6/2HReySssU9Udt6T/REbH6NuaDNH0tqmy9X7IuxUiK21Z4nZufGL9dbf179SSnjQ/3ylG26X6jQ93McPT788BE+/3xLIUsIIYS8AFDGEkIIIYQQQggh5JnBe4/dzk3JWA9jHMZRJ2NT+d6w1MnVfL5Y6ZPmek0p1TA/bEqMyhyxOnkq2zKGrIfEbJKl6Xok7SqPJVwTkCdh9bYIWWkP6GRsKtUs8+SW/cK+fJ7ZlAxO5YzbxwCSgG3PC1vOL9vup8fLjy/7y73JhWmZmk1jzomovnEtJe8xLJOwuahcMsZcWeJ8uyUq6zGOFbD6+KtI2Nb+cr0nbg/NCxv6hGuR96s+pp2abSdl85Srbk/HtNKv6dheMlbSsfqYVjo2JPfHsZ2I1s9lTzjvdg7f+tan+Pjjy/4AhBBCCHluoIwlhBBCCCGEEELIM4P3Ye7Y7dbh9NTBWhsTskGQ+ihOgSAAQxnfvKSwbpeUqxaxUh447QuSNZdTprmdBFSdjNVJziTJcrna2tbJ1vYxModrq9+hdVT7Upo2zQ1b9w1tZaniVj89Xistm6gTs2HbF9t5cjY/T7q2FmUp5DlpWzMvTJtHzArZqwnYsm8pSMvxe3I139cuQVz2ke3Dydh+WWItXMvz1eK2PHfrmP4yP39r2dvXWs+38xLHui0XsaWULa8v3dP0fLeea5HFInUJIYQQ8mJAGUsIIYQQQgghhJBnBu+By8sRq5XBOK6m0sQ+zhcrMlaSoKl0sYlzq6aSxiYeA+i5YJOIlfFElMj+vCxyPh+rlODN5Wu7bHE5D6z0KbfzdjT6lCLnahK2v29u+1Db0vZyX2t/r99cX9WjkLz9sZazTMjWnVrHlTJuqZxdKmZ7ErbcnpOwdR8taOvtnnztj1FL0XTtLcE7J1Pz9lZCNs1Xm4RrmZIt07NpX52O1cI0P0/dr7xP+ba+R+kxyfGEEEIIeXGgjCWEEEIIIYQQQsgzwzg6/PSnF7h1a41bt9YwxmC18rFscJKxQVZIuWFdJjiVHE4li0NfE+VuKilsVAJNHyvlikN7kriSsBUp20vG1qWJpY/34TqAVC5ZPw6Rv3kfXSq5LkkcKEsYI543rcu1pnuYSgTPS1l9TF+ypva8f+sYfdxcn17fEnlcB7odiRZp/f1z7b7RVm/PlTHuC9j8uL5cDddxnIRNx5SiVfct+wHtssTlWC2ZunRfWYq4XZq43adVrlgf3ytbXJcpTv2TRE3naT3fredXP1bnPL797Xv46KMLPHy46x9MCCGEkOcKylhCCCGEEEIIIYQ8MzgH3L27g/dhzsU8bZbEZErB+lheWERL2G+icBGJmsoSl8k6+atLDCfRqkWVLlfcT8ZqATufhPVZCeI0lyzUPn2XkmCVvmV7f70eMx+j3T/0S7LT+1S+WKPLDefnSDKvPG6+9HCvX9FLyeQ5AfY4HBq3fo7ax5T9WoI1bfclbEuuto5pidnDfWopm45N5+4JWz1Geb7D5YKXSNpj+7UlbV6GON/WKdh8nLxMceqbn6d4Jqv7pe+tPueHHz7CBx88BCGEEEJeHChjCSGEEEIIIYQQ8szhnMdu52CtwWqV5hk1xk7rPopB2afFn5Q1lrHCEtMxSYCW8i/NOZvKE6e0bRhQyheLOJXjwjJJUknESiJXJ2F7CVnpL0lgnZpN12qiDNWpYO8lTRv6iOSRY9N6LlPlMcr+sEz3N80Xm0o6637q7mXPifQP60at58elY8pULbLnRz+/+px6X73/8WgLWL+gT1+s9vensXv7WlJ2SdniOekq261jjilJrPvJdkrItuWr7tNf9oXrXEK2VUa4TMRKe52azedu1T8KGccwTm9Zku5deX/z+zGOMkY1BCGEEEKecyhjCSGEEEIIIYQQ8szhPbDfO6xWBs4NmSjJ060yv2s6LsmZPNGq53pNYxh1jBZOZQlixO32nLGlzGonYvV2SqSm9nyJbpuWqildm65NSIlU01hHJnKTcNXbKTmbtvN+6lnLriEX5Om+lAnXtK3Ftqn66NdGec6sJdt/VTPbNmJzoqwnbttitdw+XsKG9ZaILYVrPkZPvB4jYvX1tlOv+fWW5Yrra21dc3ldvQTs0mTsoUSu7+zz1fGlIC63W89l/rjKxwTsdiMuLkaMI20sIYQQ8qJBGUsIIYQQQgghhJBnDuc8zs/3AIDNZohpVWstAAdjbBSF1nqMo51SoTaOIenLcYTqqxOy9Xl12jRPyaaEqfSTZKyWlHqOV9kf5qUN8lLKK4tQlTliJSGby1fEdUnRhvPo69PlkFOKF0jXVCdjy9Srzx57LwGbH4PYL52rnIs2F6uSdE2CNj9WEEnVE7C6b7lPP4/T3nrnEczJVxm/16cvYefEaz1mS7Tq9rZYbbctKUesZerc/jkJW4rJkCSfk6CHpGpKsYbx2ttXT8TmZYdbqdd2WhYxzdqXr7Volj+duv2jP7qHb3/7Hh492tcDEUIIIeS5hjKWEEIIIYQQQgghzxxBxo6w1mIcPYYhlQkV6Zfki5lKB5soDSX5Ws8ZC+h5W7UYkaSsFpe1iMpTsmWKVCRrOCafC1aO14lYXbI4F7F5MlanU9P1aPR5Q4suF1wmY4V63DIZ6wsBC9RzzOZzwsr4+T0BdGK2vM7+sfk50uOp28syx9fPfAnZvowLx/b6Pa6Erdvq/m1he5yIbcnXsl89Rt3eTpDWyd2erE1j+ez886nW3v6yz9wx8nmTL/W19J7T+n6k5+7ycsSDBzt8/vkW9+7tQAghhJAXD8pYQgghhBBCCCGEPHNcXjr84AfneP31Ebdvr2NqMyRIHawVQWhhbUi/WqvnbvUYx7Cu554EQpLNWtOYn7GVOM3TsUIQvD6Omc8Z66cUL+K8r+XcsGVCVtolKauvo27Tc6z207KpPUlVnXzVaVrpK/eun4xtzRWbZG1YT8fLPdHH5LLYFNupT11+OJe5qT2upWfyqtWJm+Mu6dOTcf2+fSnblq9pvS1tl5Qnrrdr6dqSsrKvJ2HLZGyaK7YtQLVQlbbWnLE9iZrvy8XokkSstOtEbLktfXV6NSVk0195H1rPW34ffXat3//+Q/zO73yE/X7BC44QQgghzyWUsYQQQgghhBBCCHkmEfkxjg7jaLJkrEhQETdJjgYp6JxvJmJDUrZMu+V/Mt+rjJUEVp7Ibc8dq9O1Kd16lTlj87lZ9Rytdb/yfHmyFtmx+TgozgXkqVc9Vn6MpjcnbCv1mtr19eXnbSdj2xJTp2njVT4Br9UTr3PnK5OQcwI2bPckbP3YexK21TYnYvPxWsI09T0kYluJXN3eE7FaVOpj83FaZYznShwvScSKCC7Fbl36OBe3Sdj2n6Na0raStvu9w+WlAyGEEEJeXChjCSGEEEIIIYQQ8szinMflpYMxBsNgYK2BTsaGOWShUq4pPTqODoDNyutKWhXQadZ0Pp08lb5hzteUGHUu7y+J2nzM4xKyrTlj5ZgkoFOiVfrpxGuSlSklW84lW+4L1KlX2Zb96hFnbaGfjKvH0ueejvD1HLOCnFdv589NmaDVtCXt46Zjlwjduk9PGC8Xr2m7J28fJxnbEp7LyhXXfXOxqI+Tc6SEbE+EzrVpGRrGL0sDt0oGzydi6zSs7iOfI+WcsWUaVidiDz3XtVROsrcUuoQQQgh5MaGMJYQQQgghhBBCyDPL5aXDJ59c4tVXN1ivrSobGvanZGyaMzbJVDPJjlZCNiVng/Ss03giP2V/kKiIAjWXU+35ZYNAMgjOWI7zk1QuU7RayAKlnC3nka3bymPKdizYF7Z7idb6mLn2XOLWade0oefnTW15yrCmbVv78+pejfY4fZHaa+/PK6q3a5nbTlrW4x4jYct+bVGbS9t2ujW9r+T4w+K2J13nhaxe1mWQlyZidYliLWLLvrnwLf8OS9h+wjhsezx4sMMHHzzET396Xg9ECCGEkBcKylhCCCGEEEIIIYQ8s5yfjzg/P4cxwK1bKwyDzBPrEOSohfcp9aqTreMY7IcstcCVpCmALO2aJ2OTfA1LkbR6Ptl8nlVApEsSvpLo0wlZKW2cp17N9DiCmNSp2bRMJZl1GlZkcJ6wBeYkrE6zln3DPW3ND5tKM+vUaqLum4/Z2leOl+6jmY23ti2oSK+nk4yV9nrHUvmqt48vW7xEwh5Ky7b719u1rG31aUnJOWHanzM2JWT1djkHa1r2E7Hp+LaY7c0Zq/cfuqf186avCbh7d4u//bc/jmMRQggh5MWFMpYQQgghhBBCCCHPPM6FuRWHwU7CMggMa6X0cBKrQiorLEsRo+1yxbKepCvicTJOOGcaS/qGa8zlrCRzk5BNCVlJ8co+LVDz8+YJ2/R4WgnadExZnliXNNb7gHkpK9siUvUYiSSm5PH3JK4+ppSz+XY+dtZyUNKmfsDxUnaJhA39+h3nhNyh/bVgzc83J2BbbdcpYXXfnmQF5L11WL6Gvj35mgvalrDVcrOWr7mobSVi5ySsjNEqT9y6h+oZmH3ceixCCCGEvBxQxhJCCCGEEEIIIeSZxzlgv/dYrRyGIc2fmuaSTDJW2qVPkjBBUqa+JjtGyxKZzzUIVEm2pnLHQJCYSXCVZYsR27WQzb2NHK/njNWk623L117qdVky9urbvbYl7a195f5en7n+NVoMH8ucaM37HWr3jba6zyEBW7fnx7XGakvUuk228+NqadqStC1Bm4/fEpM9OVv+LSlZXEvacl89r6yslyJWy1ItbHUp4/I9XD+nrf3lYxpHNyX2KWQJIYSQlwHKWEIIIYQQQgghhDzz7PcO5+d7WGsmUSpleR1CsjNPWoZ9QXSk8r46tZeSm2VyMpxDpEtLluTlgVtjiTzVc9emtlRyWI6RNKxO5ko54rQEdNniND9uWtcJWDlfuC/pmnUSVvaFpcjrNGdsezs/Jr/vZco2Sel0bL5PJ23Tdi4A6xLGqaGXfF0qVI8lH9bP7Gv370vZ5fJV769labqulmCV7VrSzu9vCVa9ne+rxSuQJ1rLeZ8PlSee365lbJ1yTelXnXj13mMcRZLqPj7bzh9zfe/L+96Sxs4BDx7s8Lu/+wnu39/Ge0AIIYSQFxvKWEIIIYQQQgghhDzzjKPHdutwcuKwXluVjM0FkZQP1vOwln1DnyRp5U+EaBIrKblaCiZJwtbJWC220vyqklaVksPlUqddpX+Qn3op8nNJMjati0idS77K+PUYrf69Nn19aLS3+ucSS+Rvu4+mnKM39q7OLWMcou9u2zt6/VvXOi9g83McK2Hztrx/e7svYnuCVZ9Hv070+6fcrt8zvjl2fo29pOyhlGzeV5cjbgnRtF1K41K+5uI3fw7TPSzvR/lYRQZfXo54+HCPH/3oIS4vaWIJIYSQlwXKWEIIIYQQQgghhDzzPHiwx/n5CGMMhkGSsWE5DEH2DQMAuEnmORhj1VKnOP0kOG0lWLT4szbf1ssw92tqS4nY/rJsEwGbkq2pNLIxaSnH1ilYuYY6Jdtq14lZuQ8p+VqmXvV2utb8nKj6iSjW902na7UYzPvoksLl48ufH52iLZ+7Y8XpUg6J2tb+toBtS9dyf0u+tqVqfcycgJ3rMy9ol5Um7knYJXPIHpeMbZUl1mlXnYQN+yX9midk85RsOxnbez7ytpaU1dd7eenw27/9U3z++SW2W4pYQggh5GWCMpYQQgghhBBCCCHPPOMYxMhuF+Za1BJFzwub5nVNc7+GfQa5ANLbJkvFAsj6JWml069l2+GEbGoTeZnGTyWF66TsdESjLRDka7qOXko2pV/FGqUSy3LtZd88uapLA+cljhN5yrZMvqZzllJLb7SStVMvX/bNSyQ/OfoSNevVFHW+20cLvLl9pVjV47ak6/x2GrPVp1+eOL/OQyI2f+xzIrYlfY9LwuZiVtp6JZNTclbPDavFb16WuH7u58sTt++jcx53725x9+4OhBBCCHm5oIwlhBBCCCGEEELIc8NuF+aOHQYD721MyIZUKQC4aZ8BEJKx1lp4L8t8ntPgS9zU1wOwsFanZn1MwZZLIIlAaTsmGasTr+V2/ddKybbGyNOwIrd0Yra1L7TnSdn8WlPiNW0j65fkbNkGaFlcpmaBJFJb6dmwX78KTGzP99UmdEl54hZzwjXv1+5YNi+TrmF/a18p/MoxryJkewJW+pd9W+K1LVnTeKmMeE+o5hIUqFOwuWjNt8v0a94WtstEbEq/1olYvVx6b+dEs76WcXSLX1eEEEIIebGgjCWEEEIIIYQQQshzw3brcH4+4uRkgLX1vLA65VrPFSsSJSVidWpNp2it9ZB5W0O54DKJlydipU+SN3ru19BetyVqSRP61ctWn0SectX7RZD2ErTo9k3liMvtJFHza9Jj5e36mDwdqyVtLz1bPsZqTzwujnoN8qtMR7b3z7XXArbc7qVnH1/CtvrNida0f4l8Lccox6/3zydk8/MtWbblZ3pfI+ubtnVJ43wc5/R1Y5a5PvoaPv30Evfu7bDfszwxIYQQ8jJCGUsIIYQQQgghhJDnhrt3d7h/f4/NZpjmiw2C0Nok+YbBIIi5EFe11k998qXMHSv9BGuBcUxzxspfKZiAOlWap1/LNGq7rZ2MzeeRTY8xLVtpWedM9pj1+PncsOU6IBJNzymbrqucRzbvkyRtOVYSrLpkcZ2O1aWNa3mZC9ZSQMc91XFPgrY47+0r22qR3JKy7T7HlCs+LFjzY2pB217vS9h2enaZhBU5CmA2GRv6pCRsWWZYJ2XLNknISkI1zRmr9z1OeeJc6Mp17fcO3/rWp/jhDx/Fx0gIIYSQlwvKWEIIIYQQQgghhDxXBLHisNs5rNcWxqSyopKG1WV5hyHtq5e50AzJWp+lbq2V+WgxpebyNhE1IZFbJ2RlPN0m6VqdwG0nYdOcs+k8aY7ZPM0qbXlSt+7TWsfM9tI+S9pb+8r9vT513zo9e8W6xLPUAm0uDVkeOydfw3Zb5payL1+2RGF+vjmB2Be17VSsXu+L13QuKTl8WMTmf/l4rbRrLm7zFKzsk/by+JSM1SJWt/XvUUuU9xLD6fwffXSBTz+9xP37O4pYQggh5CWGMpYQQgghhBBCCCHPHdutwzCMWK9DqlUSsiJgtcSStFsQn8jELZCnRzHNETuOfkrG9gRKXdIXQJS0eo5Vkbj5vKtBAgdpqqVwnYiVa5Tyy1q6ymMMc+fWc8WW7a0+dVK2nYQtyxPLtlxfOq5OzErytUzNpj4mezzpPuk2/fjz9rTvyQmvnoBtCddWfy3x+vvb8jWsLxWwS8oXzyVh0xgtQdsSoYfSsksSsvpHEuX+MgnbSsz25pFtzR1bylhJy/buX4m+H7mI1dcGfPe79/CHf3i3PQghhBBCXhooYwkhhBBCCCGEEPJc4T3w8OEeu53DZjMACDJ2GGwUrsY4GBNEbSlfU59axqa2JEjDdpqX1jWmfUxlgtN2StAaWAsgplx9FKt2qpCcb+s+eUJX0rRJkOZz5krKNiRxUbWX60mCikwzhdRM+0vZqkWrenbic6QFa94u16CFbHou5Lx6fxwlE+71Pn3vH5+2NO2dt91WC9RWn1y66vX6GpYL11a/voSVMXoStp7btS1Vgb6wbQnZdopWi9dS0PbKE/ekbJ6YLUVsmYhtMV+eOL9fMqbIX0IIIYQQylhCCCGEEEIIIYQ8dzx8OOLy0uGVVxyGARhHC8BhGIJMHEdAhImIoVa5Yj1HK5AkbEq4AnlqNc3HGsRLkpetMsVBxOqxEMVqq1xxKGkcxpbSxknO6jQtsn1l+WEtYQFM8rVVYjhJVr1vTsrm27pNH6fHKsVsfkw9Xmt/6teStNmRM8L2GJaItJZ0bR2bb/fla9iuBW4pUvN9tVCdO/awhM3Fak/QttOweV/5cUI/9VofW/bRZYpr+bpUypYiNklT2V8+F737mUvqdnniIGMdSxMTQgghBABlLCGEEEIIIYQQQp5TvAcuL0cAHsNg4b2FtQ4hfRrkbBCpITm73xsMA1SyVIsSN4lESdNiKlOcesi2llZJ5va3U3tdprgsV5z6mEIWt/7y+W7LuXJ16eGyRLEuOZzvS8dpiTpfwhiQeW11Yjbco/xc8ryFvkat+2If4mMQtBzW0qwlZmuRuiQpe1iczQnaUri2+i8Rr2m9J20fLxXbl7K9JGy+71BJ4p6E1cuWdJ2XsX3pWiZle4I2JFV9sWwL9f599Y19dRL3hz98iO985z4+/fQShBBCCCGUsYQQQgghhBBCCHku8d5jt3NxjldjHMbRTOWCU5JVUqmpzHASQ7nE1KWMw3FpvlcRSDIPq6zXidg0Pyy6ZYpzIZaSsbpPXyCmvmUiVsbOU7WyH+o4dPZh5jgc2dZv1/PNto/Lj09yd67vHNeXUGwL2WXyNbTNC9he+5LUZlvClgI19Wnv76Vo6xRo3V6XMq5f77WA7ZUrPpykrUWtTqfKMbW01feivr8t2vc//xtHj+3W4bPPtviTP3kwPyAhhBBCXhooYwkhhBBCCCGEEPJc4hxw9+4Om43FZjPAOTulLUMqVkRn6GuQUp8hIWuMQ0jQApKiBSy8r1OoQC1epA1IfWQOWH1M2aaTnHIuaddpU0niHpOITaWJfTZmOx3bTr+mssyI+3WyNU/25uWXdWJW9olc1o87rafkbHnfUl9TiLJ+35K5csY9Dkm5Q/18saMvaHviNew7Rr622urXaV16WPbNydqeqNUp1yVlinsSVsvYQ3PG1vPA1glZ3UeXItZ/PRE7d5/7ZZnTNfzkJxf4vd/7GA8f7kEIIYQQIlDGEkIIIYQQQggh5Lllt/MwxmO/d1OK1U7zNSa5mCdhU/lfKQ0c5mg1MekaxIpRqdaQVi2TgZKSLY/Tc8ameWHTusx7CmjxpZOsPutbtiNLm9ZtQbL2Uq6H068iaVv7k6BNIreUi2mc9PjyUsZa1pbnyqkTtNJeCtr6OGC5WO1xOC3Z7tAWsL65P1/v9WkJ1zDmYZF4qFzxvKQt9/XEbpleLY/pidgkdeeEbesc6OxPc8K2xG1PxM6Ti9jysY2jx4MHO9y9u8VHH1089uuOEEIIIS8WlLGEEEIIIYQQQgh5rnHO49GjPfb7YZKjHpJ4lZSstWYqL+xUQlYEoYX3DsMQ1kOSVeaezZelzCmXOj3qPSbRKwKzXpZ9yzQu0EvIzs8Xq9O45Zit7bo9T77W6dgkboVeYlYkLlC2p2Na++ptLXPbtuu6JGzJ3Hj5Pt9oK/vVfQ4J2VKA5vtq+Voee0jQlqlPvd6SsYfae4K2J2N72ykdmydlZd7XlnCVZKzMCavniC2fh/L927o3wPxjcM7j88+3+O/+ux/j/HykiCWEEEJIBWUsIYQQQgghhBBCnmu8D/M0GmMwjh7W+rg0Ji+VWs4dq5OyxpiYcA1JWR/lriRgRQQG8aPnlpX9qdRvEltGSR0DFKlZkZGSwpXt1LeXji1TrqktjYtO33w9Cc52WvbQtk7B5v10+jVvV8+gGkMfV4vOum2u//XSkq7tfe3+ZZ9DAjat96WhbpubP3ZO3Jb72/taQlK3t/fPS8z8+Na2fq+VcrY8l0hYPSdsaivvXzsRW0v+/LGWfeXa9nuHhw/32G5dPSghhBBCXnooYwkhhBBCCCGEEPJcM47A/fsj9nuPzcbGsqcAJsET0q7WuqmMcJCjQRKW88amZKy1BsY4lUIVsVqWGRaJY2MyM4wRRKqkY1tzx4brSOlX6VemZ2XM9hyy7UStnGNJMracKza0B8HbS8v2luUcsXlCNkmwvFyxyYRXS6yWsna6808sDdujfZ6e3Cu329I1bc+nX/O2vP+ccJXt+pilMrYlVNNYbeFat83NHdubM7aVlJW2lJDNk7HlXLH5/T6cMC4fm15P5wrr+72LKVxCCCGEkBaUsYQQQgghhBBCCHkh2O99LBO6WlmVjA2WRMqUOhek6zAEkTeOutyvpGYx9ZW5Y1M6FsA0ruxDTNDKOKGfmZKzPiZow7GpxK+1dfo1T6iiSOTm6VmdVE370ny45f5ULjhPx4qcnq5Q7Zvbrtva45R9D+1r7e/1W3LMdVFKvWLvgqRlSwL25KA+fq7tahK23J/3bZUqPiRfgXx+5rAMx5SidU7Q5vI1b5Oka5mQ1ZK2FLZL7nV9n+vnrZbHHrudww9/+BCffbbNfgRCCCGEEKKhjCWEEEIIIYQQQsgLwW7n8dlnO9y+7bFeazmIKeUqctVgGBz2e0DmlA3zxgJB1vi4nZKcqT0JTJlPNkmcPBkb2lMitp0YLROqIlXrVGsSsL35YpME9vGx6/2hrUzA6rlWl8wV2587Vq5fz+uq+6b71ErIliWT8/uTe03TaK9lWJkUXsqSlKO8Lg4dW17fIfHa7jMvFkuB2jtuvkxxX7oC6ccEvQRs6FNL2KvK2L6UTeNJIlWnYMvj1Z1cJGLTPagfo74e5zwuLkb83u99gnv3diCEEEII6UEZSwghhBBCCCGEkBcK59IcsgAm+YooKMfRwXs7pUgdjLEqEVtKJRGYSYKWc7fWUjQdnydiocZAQ3DqZGsaU2SutKV9IlW1nBUpm1KwIlhlv0gpudZ8O60DiCI2T9UCdVo2tGmBrcsT67HCerofad0X+9J+fb/kvO32nCTfllrZwxZ2TtTOiddyu5ea1ZL3kIDV48zLxatI2HLbV2PNlSRut7XLEWthe1jGailby1h9jb3n4tC9S48vfxxyjnH0+O537+Ozzy5xeTmCEEIIIWQOylhCCCGEEEIIIYS8UIyjx3Y7xjRsKAUsc7da7Pcew+AwjinVaUxIxxoT0q4pWepjqeHcnYmQRSFD86Sp7NfSFhD5Y6L80WWFRbBKOeJQ/liuqSxTnNDXLfPUyrXJNYsQPSRl9XouWFPqVRKtuk95PWVCNhe96ZgkVsukcS7HZJz0HLTaWxyWrIcoU5b9fS1hO1eKOI13qH1OuJaidmnZ4lqwtvfpuVfn5Kvu258jtpeIzUsQJ0FbS9kyBZvL2PZ9P3QPy/vXWso8sd/+9j385CfnIIQQQgg5BGUsIYQQQgghhBBCXih2O4eHD0VYiiw0k9B0k6gM5YpT4jOUKzYmlSe2FlHOhm0PY0JMVZcyBtwkfFOKtS5TnCdiwzmgxq7LFev1UjSW5YfLMsVJFJf90jlLOayTu+V6ul5dTjmVMZZzyf0Oyzwh25Oz+phyLC3SSlGrH2PZd47yXi497vAxffGXb/eTmj1pu3zu2FxGzknWer/P2tui9tg5Y9vCVqdj8759AVuWJdZzxMr2nIidv3c+69cupRzO9e1v38OHH57j3r0tCCGEEEKWQBlLCCGEEEIIIYSQF4pxDOnYzcZhtTJYrQyMsVHkjKOf+oVlkKwe4whVJliWUNt5yjRIVBPLrBojKdaQdJWxZQxJq6bSu2XJ2XB8ELtSarjelqUWrDJ23jecQ8tZPSesLitsoqFMEltLw3x/LlZF3CbS+On49Hjr8sR6HNk2lTTFbLp1+eSwV5Gv+hp6x7fae/I13z5GGub9+ynPtoRNbfn+Urjq9bpPS8jWAjNPwYZz53L2+Lli6/a0PXdP8/veuqdz9wrxc2O/9/jww3N897v324MTQgghhDSgjCWEEEIIIYQQQsgLycXFiP0+WKDNRqSljbJUErOCrA9DmmtWkrKSfvXeYBjkOAPn9Haap1ZEZUjgyvhJTLaXfjpHmitW95Ht+i+VH5a+rT+5rrk22dbtZapXl10u+7eW9Xqe3M375KlaTS1njWp/LMN6FFr4tdvbffsytk5mlu2H5Wt+jlKqyjE9WdsTsEBbtgKIP0Jo7S/ngW3tLyVsr1yxpF+1hA0/rLhaWeL+PamvVcvg7373Pr797Xu4e5eJWEIIIYQcB2UsIYQQQgghhBBCXkhE2Oz3QaSuVh5Amit2HEXQ+riekq0inLSEDMJWUn46kSrzuuZJVRP3AYiitU42SqnftF+36e16zli9RNGWxpYyyu2+rXV09rX2H9Om2w/ta+2f69uiPn55meL2jn7isj42F6tl/56ArY8/RsJqQVoeU/ev+9aCtp+EBfL5lFNCtT/faqu9TsEiE63peFnX+/J73n9OyntZ3/NczIb1/d7h4mLEZ59t8eGHnCOWEEIIIcdDGUsIIYQQQgghhJAXEueC3Ly4cFG2rlZ22pcvg3wxqk3miJXSv3bqE8RuSM+a6Rxm6pOSsc4Bw4BYdjgJJUnk9hKySepKqV6drO2lX8u5amWZz+96OBE7n5At54X1xb48Mav7l+NNa6pkci1JdYK2tb/dfkjuXpW2OM16zMjW9v4wblvYLps79pB8le1e/2UJWZGu9bEtQVvK13BsX8r2JGw7IZuP27qH5b1emiKu5XA4z49+9Aj/w//wES4vRxBCCCGEXAXKWEIIIYQQQgghhLyweJ8SsPu9B+AmkeoxDEHujKOPc7uOIwDIHJRpPtgyIetckIXWBmkqydiwHc7tnKRhRSBJ+WPpo5OyJlvqfTJHrN6XL+V6UIyDRn8cWMcR+9Jj0KWC6/levbq2vD3RMq2l9ZxLyfaOuX76MnaJfAXSfar7tUvp9o45XJY47Uv925L2UGliLWXbwlb3y8VtuzxxX+L2U7O6Xd/L3n0vn5PymNZ9lOVu53D37haffnqJe/d2jXEIIYQQQpZBGUsIIYQQQgghhJAXmstLj93Ow9oR63VIpg6Dh0hWkTwiSyUtOwySTA2p1yBWQ0I2lCGWNhf7SBpXyhdLGlaEZRJKQEq/1knZcq5YoN5uzSHbGucqc8YuWV+yXLYvSeVeqlb6LEvHPjn6IjaudfvqPrkw1Ou+0ZYf05Ktve2erG1JV91vXszOtfWSsXlbS9C2krFlSlZfV/s+9e9l6z72rnscPT777BJ/42/8GNstE7GEEEIIeTwoYwkhhBBCCCGEEPLC4xyw2wXRslo5AHZKzHpY6yaxGdpE0gIpxZrK/vpKKlqbkqlpDlk5cxKN5b5QjhjQgkjStGWbCFa9LUud0M2XKZkrpY/La6rXMW2n9SB2DydkE+UxyPrq5KxI6Ryj9uXH1rT6Phly2edn9rX7HhKwur0UrK22x5Wwuu8h+QosKVOsf9iA7JySeK2lrF72pWxLEM/f//qe90Rsfp2Iafn93mG7HadEPSGEEELI1aGMJYQQQgghhBBCyEvBxYXDMIS5XIN0FQEU9ovQS2LVqKWdhKyD9wbDkOaaBZKslfFayVj5ayVFpV2OK9ta23OJ2HLZTsSaSi5fV0J26b56XcvhWrCmJK3gs3v4pKnP0ZJ+7WtpidW03kpxtqXiMYnPcn8tYXNR25szVotQEa29+WBzKevjMX0JG/qMY0vGppLHS+7zUnndE8rjGM652znsdg6EEEIIIdcBZSwhhBBCCCGEEPKEOX3jFKdvngIGMOH/LUPkAXwexPNFm0iU4DTgRge3czj/8Bx+ZKpL4xyw3To456e5Y8vSv6Hc8H5vMAw6GStpzzgSANuVnnO0pGdYplK8Om0r+yT1GvqISDVTujckYNMSaCVlSwGb2gARdjpFm1KsaV9Y+nhd4fF7dR/y1Gx+nB4LQDbnbBpHyMdLQrC8x1rK1eWNjyV/z8xJ3rZ0zcdoC8TDpYp1+1IB2zumFLJLJSxwbCK2LWj1dr5e9vHVseW9WnrP8seeL+vrDtvj6LHdjvje9+7j88+3KuFOCCGEEHJ1KGMJIYQQQgghhJAnzI13b+D1P/c6jA3zg0Y/1PNEpWTV6+VSZIZLf27rsLu/w+XHlxhHzneo8d7j4mLEamWxWtkoaEQkBpkp87gG0Shzx4ZlOGYYgCCJfEzNjmOeVK3Pnc51aBmuJRe0mlbStegBY3xW0ljapLRxLWXT+bSU1eJUjkmCVSdrRW6LqE3tWtamNsTHVj4P8uYQ0Vs+9rwp9dX3edpq3ZwrUUrWel9r21f7y+srZWFYb8nXeeEqy7ytl4jN983NGZtKDvclbEu6tuSsLjncK0dcy9hD97onYvP2+dSvn8oTOzx6tMfv//7nePRoX5+cEEIIIeQKUMYSQgghhBBCCCFX4NbP3sLN927C2CBXY3qvIVpP3zjF+ua6am+iRaxKv+rka1fKurDtNg7DZsDrf/51+L1v9vcuHOP2DuN2xMPvP4R/SeZG9N7COeDiYsR6nQsbaw2cM4WURZSSgIsliqVkcZCeHoCdZKWdhGQYQ4RVmne2Xsr+JGHzPuH6TBxXp2Lnkrgy/6w+97Fli2WfiNM5MZs/rraclWP1Y497VKq23peeJ/1GSine/n0ox2ix5Pi6X1sEtrd70jCNc0i+ttqWliTW60vkbClEtVgNy3CMTreWy3ZCtp2IDb8bSWWJH/d+lvdE1nMBG5b7fZgj9h/8g7v47LNLbLf8EQshhBBCrg/KWEIIIYQQQgghpIdBJk+N2rjx9g186c98CWYwuZCdjjm2HLFPNYmzZSsZC0ziFarNJxlrvYU/9Xjl1iuZeNXpWT96uNFhvBixf7TH+U/O+ynaF8rRhifFOY/dLjxeSb7KOmCx3zt4b2GtA2Bi2V9jLKREsRwzjm6SuEEgjqPPUq2CPJW9MsV6PU/EpoRqa4x07nIJlYxNAjRIYpG5aCRk89LDeQI2l9P1/nSPyxdOXfI4idVWmeL0WE11/3r3tU1Z5vgQ7U69Y+v2fgnisL1MIur9h0sQH5K0x0nYvE8/CbtMvtbbvYRsS8I+zj2Uc+v1WsgGEXt5OeKDDx7gk08u6wsghBBCCHkMKGMJIYQQQgghhJAGdm3x1l9+C5tXNjBDLluNMdi8usHq5iprA3C4BLHg6/VyHlhgRsZqCTutx6WIWqe2p6UuaTy4AcNmwOrGCm/+yptwowtzzHoEWbt3cHuHRz96hO1n26vfzGcQ74FxFFm6h3NDJlMBYBhk20zbIgUtvA+p2GEwk7QFADe9DhycM/A+SFprQ1njlGrVJXjTUq8H2amlqCn2pwRtkqKSvvVTIhYHE7GlFG5tz69radxO/ep+9b78eKGVom3vr0njCo/za4K2HIx7u+JwThbW4+brpVTN+y8VtL1yxT1BKWPMiVcAB5Owoc+xydhcsPbv7XIJqx+zXFN5bePosN97/P2//zl+8pNz3Lu3q09KCCGEEPKYUMYSQgghhBBCCHnpMYOBXdusbTgdcPMrN3H6+insygbhqud8bQlY6DKrfTLpoFaNN7WQVetmSjTG9qKf8Snx6CECz8PY6Tg39ZlkLHx67MNmCHJkTKlZtw1/27tb7B+k+ROj9B0fR3I9bUwUMrsdYG0QqcPgATisViEhK2JWlkEM5slYkYV6flYtLEOflDhN87aGfVKe2LmUcg1lkoEglPISwCJYw3mCrJRyxCEBiyopm14ssm4gskquS86VkrJ5wjWVSZZ1IHsBV4lYLZDr5KxI57Sux0AcK+3Ln7veW02P+zjMSdi0f14g5tvzqde8rde/LWV7SdB6/6GyxLq9vb+dLq239TgtOZsnYvv3sLxHZZ/+fcn3548/nH+7dbi8dPj44wt8+OF5fWJCCCGEkGuAMpYQQgghhBBCyEvPnT91B2/+6ptBtqq/zasb2JUNZYiBvBTxtI24WovZiEgBSQbC5A7HI0pYvc97n7anPsaH7VZi1vtivyzdNL5T7SolK2I1K2k8eriTkJR97Rdfw/j1Mcw/6zzGbShtfO8f3nvOhSymBKvH5aXHfr+H9x6rVbCdq1V4bCH9mpbOmUk+mZiWlTlmgxS1U7LVwlo/HWeyPiIMh0HmqAWs9XG+WhGyxhhY207GJrGryw7r8sN5n7k2IG8P23q9TMQGodtLzrb65PvqtnK9vy0yud3nEGX/Q9K1pBSsvTFyYVgL17ReytM0dku8yvYhOVvvz4WqHielXnX7svLEraTsofLEckz7ntb3bO7ezd+j8trD3LQhEevwR390D9/97n08erQHIYQQQsiTgjKWEEIIIYQQQsjLgwE2d6ayw9M2AJy9eYazt87i/K86AdudB7aSRG0j5L1H8rTTinZJHvDG54JWxKoxsW8UrXpdjvVJ2GopG5fw2bm15I1pW0ypWePhTbhm6yy8Dcna4WxIMvZyhBkM1rfWcHuXyV+3c8+doPXeRAm133sADuMY5oYVMTuODsaEpKxIy5D+A9L8qZJOTWI0l5H5PK6AmdKwIqpkbtpwXJJNKcUKpESstfJCkkRsSsjmCVh02/pJ2DrlKteQXut6n7xmgVReWd+bfHzdltb1mMjGTs+VFrJlW/uYkmPla3muJWMuSXL22mspe5yErdfbglL360nX8NoKfXWZX1keErPtRGx+Pe372b9/5f0o70H5OPW17Pce9+/vMI4Ou53D3btb3L37YpVgJ4QQQsizB2UsIYQQQgghhJCXhuF0wHv/9Hs4ee0Edm2DMJMyvScDYPPka5mCzWRsiW73utlU7T6thD4+ySxpF1kaE7OqhLHxhUD1eR/jpvHKuWNtkrSSlvXOx9LFOjELh1jOOP6tQh+7tlidrbC5vYlzy47bEePFiEc/eoTLjy+PfGaePpJ2BUbspmkjV6tQingYRMgGoeOcxWolydeUjA3LIH/yFKyZ5o5NiVjv7WwyVsSqlRLTMHGO2LDUIjUt64SsTsDWbUCaXzZPv/aSs2lf3jafmtXLVt/efhHDrd869BOx6foel1Y6M+2ba+vJ1npfT7qm5bEJ2cMitpaxrdSsiNQwvl7OzRlbyte0nZ+7vnf1jkMSuydhAVTX65zHRx9d4G/+zQ8xjuFa9nvXvhhCCCGEkGuEMpYQQgghhBBCyAvNyesn2NzeACbI2JPXTrB5ZVOnYEXEAnkidtoOixkZqyn7iDAwSaBmu80kU4skLAzqNOzUP6ZhJezoVR+LPA0ruNRXjtPJ2PjY3SR+p0Sw3A9vgpS1CIlZWMCPHmZvYFZTaedXNpnI3T/cP1dJ2SBcg6TxPghZ791UjthOJYNTOlaOSZI1tfckZBKiucwMwtXHuWPT3Jsmjg2IgErzwdZzxvp4vF6GY1ObyNYwThpbi9qUXK3nl5VrTonYVmo29JFzL503Nq2HsfLt1Ke8v/EI9Zo+1svO+NdGH99oa233Eq9pjFLAttpykVqOW4tW6deXsm1Ru6RE8XwyttendS/nJez8PWk/hrzdY7dz+OijC3z88QXOz/cx7UsIIYQQ8kVAGUsIIYQQQggh5IXmjb/wBl7/R16PslDmgDXW5NJVJ191Mla4atAu85yF+BSZpFKv2TF6qdaz/kqoxjStrE/p1+Y8srJ0+XaWkC3W47yy45SoHUOi1q4s/MZjdboKpYu/4uC2DuPliLt//y72z9F8jLudi8/RauVgDFSpYpnvMqRjvQfGMUhBnYwNy5SIdS7MLSttIcGakrKhTLGJqVhrEeeMlbLFes5YKW2cJ2LzZKsWUnliNu2TMsdyzXo+WUmjtuaNba1fZXmoben2ofbroi1pfbO9J1z1Pi105wSjHmNuu5eW7UlXOc8xArYvY9vJWClpnB5733T3ZfYSCasfb74cR48HD3b4W3/rJ3j0aN95HgkhhBBCnhyUsYQQQgghhJBr5733buL9929nX+Br6i9cW19SLymz2P/y9+7dLX7wg4dP5PGRZ5PhbMDtr90OsnVIc77efPsmhtMhtkUJq2UsUK3HNm1hj5E98rI2yERrTL/KPu+zBGw2D6ykXo0a74CozdqMEsA+tWfzyRqflzqexJ3cI+/UupmkS7m0k6y1U191r09/5hTjxQjvPNylw/bzZ3t+RmstvPdRvA5DSMgOg8hWgxAxDp9tQbJikquAlA4uxVEuQUthKp+V6bOwTIHqtG0uRFOaVkoY63NKUraVxpV9On2rk7tybdJezi8bBHBKrcp+fd3TI4z3Iolj3abvQfq812ldkcNp2+PQvy3lPTxMKQ5nenb2tf49y7d9ta8nYMu2tpBd9u9l2U8k6SH5Kn3n/u1tzRGrjy/vS33Pem3L7lVbxCIm3L///Ye4e3eL7dZRxBJCCCHkqUAZSwghhBBCCLl2/vSffg3/0r/0fkxhyRf3ifqL4/oLXSghgimJlv/J/I37fVjudg7j6LDdOvzDf3iXMvYlY3Nng3f+yjtYna2CfLUmL0VcJGEPSdiwMI+diI3lgn1jn1dzW+q2sj/q9Gw1p6xOxeo5aH06Vidko5B1aZ5ZnZTN1iUhO0zSdQj7nHWhfUrKutHBDCaULrYGdmNx+/3b8KPHuB2x/XyL7d1t9dieJZKMHTGOHsAe42hjOV8AMRUb1kOUehgAwE9pU0nGWgxDEkaSQJUSqUFIWpVENfEzUK+nNG0uXMv1VCo43x+uJ8lJ3Rauo/5rtUub3pfWwy8G5tOwuaxdnorNx673tyh/DHTci07LwP7+XlstEfV2T9guS8PW8jWJyNZ+va9Oysq8qoekrPw7HI7pzwer981x7P3rCevy8en5bMfRY7t1+Ht/71N89tmz/SMQQgghhLzYUMYSQgghhBBCjuIv/sU38bWv3cYgyTejv2QPfd5//zZu3FjBNL4lb30hPJe4kS95W1JWZOxqJUsD5yzWa4ef/dlb+Kt/9d3i+CBuLy9H/OEf3sXl5fgF3jly3Rhr8NovvYbNnQ3s2mJ9e43N7bBu16EUscwD2yxJrGWslq6VDDrOxkYJoYWuV+N6dOeOjSWHdcnicl+0EGn8mHxFSr1m6z7vlyVjrUrIIiRhjTcx6SrrWbniaRt2ejxTMtZYEwTtkFK1xiY5i1cQ5awbHXZ3d9jd3x11f78o8oSsgzFjliYUQrrUTFI2SNgwZ6v0NVOqNpQmTvLVTjLUZVUERL6KKJXPyp5oFXGrZWu4jvYxvba2eNWJXJ2KbUtbWZf+c3I2redz0Jb7wz2r9+VjxC21nuaxvSr1sW2J2msrhWQpUMtj5uRrub1ExvYEbE+8Ajox66OoDYKz9+90W+QeujftfcdJ2PRY8muT/33wve/dxyefXOL8nP/WE0IIIeTpQhlLCCGEEEII6dL60vzP/bnX8eu//jY2GwtrTVG6s/1l+ZIvT9OXqOUy7BsGPVdjT8paOOexXnucnKzwMz9zhnH02O8d9nuHcQwi9sGDPf74jx9gu62/oH2cL+7JF4tZGbzyC6/g5pdvYnW2gh1smBfWhESslNbNkrAiYhvytUrHZiebuZDiNVMmXeV4LWmjhM3dUfs8/sB6IVqrfR0hW/3p+zGJVknLtkoXe+9hjQU84IwLfa1PpY0tkoydSh2vV2sMJwPcPswp+3B8+EzK2CAezfQDjn0mqOSzTvDewlo3SVhMP1SRssZ+SsxKX0DkqzEOujQvkJKq0ldkqe7Tkp66hHF5TP1XlyvO2+qSyPElHcfOx9Dlicv94RgTxaC+trKks5an+phynz5P/pmdp2ev8/O8N1ZPuObbfck4J1+lrS1pl6Zhe/v6Mra3X0tY3Vek7JL71e5z/P1pPVYtYsfR40/+5AF++MNHhy+EEEIIIeQJQxlLCCGEEEIIafLlL9/Eb/3W17DZWAyDnVJWBj/3c3fwyiubKB60mNBf2GuWSFjZVyZttHyV/WVadhwdnAtL78MccWHbYBw91msbZexqZbHZDPjN33wH2+049fXY7Tx2uxHbbZhf7qOPLr6oW02uwJu/+iZuffUWbr13C6ubKwzrAeVcpVVJ4kYiVpZxXtiedO21zwnU6GQnmVSmYHt4dT2oZU8cxyMvW6zKGPfKFJepWCAI07j0CPO+eiSh6n2Wlo0JWT/NEeuUoJ1KGHvnYcbQJqWMpY8bHNzo4NYON969gc0rG7idg9s5nP/kHO7SLbtPXxDDMADwUwl0wPs9Npth+iwa1Nyy4X6Oo5k+lwxWq5CclT8pXazLEweZK2lY+UNs03OsSkUCEeTOhX66rUy/pj89b6x8fofHqNv0etjXSsGm8trz6dg0fkrAzqVk6x/0HNrutS3ZN8chmagla6t/KYlborFVrrgtXvN/R2W7J2cPzRlb/rsLHE7Btn40VZ7r8P1K9+PwfTtWwiL+74Lvfvc+fvjDh/j008v5iyKEEEII+YKgjCWEEEIIIYRETk6GKBTefPMUf+kvvYUbN1ZYrewkB8rSxEpsKeovk5MYSl+ehnYpySn7JC0VkjciDnTCKk9UhX52EhI2bjsXtq0NX86GpFoQCKuVxfvv38Y4Oux2Dvu9x3Y74uJixPn5HnfvbvH559v4JfN+vyDiQ54oxhqYlYni9OZXbuLVb74Ku7JpblgtYSWpLT8W0EJWtsv5YGNXU7X1LwzRK3glGHT7QdGrOSRx9X5fzC3r1f5J1GZzxJZzykqf8sJcPg6cWi+X8riKP2MMHFy8/957WNgofiWxbO4YrG6sMF6MYU7Zz7bwex8l8tOeW1YSss65SVa5+Dkkn4kA4ufmfu8wDCJdAWPk5qXI6ziGFO04+ulHLrmoE6StLUWlFHKY87Ns08fKX7jW/MmTuWvD9Xp13UnchmvRJYp1n7RPrjmJ4XgX5RFln/FhmfqlY+Xac8lXJmHDdqtP+z7m19Jj/gU39zzpMdoJz7Z81e1LBKxslwK23n+MhO1L15ag1cnYQ2i52m5fdp9K+Vw/nlAFY7t1+PjjC3z/+5wznhBCCCHPDsar/4Wz2Wye5rUQQgghhBBCniInJwP+nX/nF/HVr4b5YM/OVnjvvZsxqZXKV4b+5ZferS+fyy+SdanP8kvhsjSipF91Aqdsa5Us1mWL9TKkZ0MC1jmvErEhMRukbPgi9/79LR492mO7dbi4GPGtb32Khw/3T/L2kwPc+fodvP0bb8OsDOxgcfKlE6xvrlM54sHAIMnYQ2WJ5+aIBdo/MmjRmhvxsSmHLGWvL9q9729PwjWuq30iPLX4LNu894BT22UytjWXrLxnp8SoyFW/D/vd6MK+0YdyxfuQinV7h929HdzOYf9oj/35Hhc/uXjqQhZI9805B++TcD07W2G9tjg5GabUfagkIGXc12uLYTDTX2hbrcxU4j38yCUtg/iV8u/GmFjyWH4IU25LxQJZlm2A3lcvRSZL37xscfmZX/8Qp72ejyX70752WylvW6nZ8ti8bckzOd9vydu512euTK+Iz157LWFb7aWM7IvZ46SsvLbbQrYlYcvrbdyNxv1p9CpE7ZyMbj1Guabwb7rH97//AH/4h3fx6NEeFxecJ5YQQgghT5ftdhvXmYwlhBBCCCHkJeTsbMCdO5vsS/OzswHf+MYreP/9O1itkhTIv5g/PHb+JarJvkSVL9nzVEv4k+SrJHAE3a5TWOEYMyVfg0wIyzAXo3OyFLlgp3KiknCzUQBbG06YJMYGN2+ucXGxx/n5iNu31/ExhXlnn60yqi8kFkG2TnL19M1T3HzvZpoXVpKwem5YmDDPaUvCzgjYpnhdGKBbKm1nxy0lhUq+6u1snlkPeBNEqDEmvr2kVG22Lcl000jESkjSp75x6Xy8pzpdK9elyyVn124Q0rSYlkM6RxjOwhsPBwcLmx6fNcAtwO1dOKdFnF/WP+V0ehKHZiqBHj479ns3pe4tADclZB32e4NhSJ8tgbA+jvKZN93HmIw1sb9OtLaTseUyT66mssB++iz03WSsMYh98hRrPo+siLAkXtO2XpfHpvtKAjb1L9vCZ7vcjxJJ0qbtfG7Y0JY/Vz2u+vuJ3g8vyuaeYNTrj1ueWLavKmEBSUXPzw/bFrTVHWjel979qdvmSzjr+1le437v8OjRPs4N//nnW5YmJoQQQsgzCZOxhBBCCCGEvIT84//4O/hX/9VvYLOxWK1Scuu1106wXttMwgKlhDXxC3T9JWzrC+X6i2D9JXD9xbFeb6Vf0hfEeVI2zR2rt8tkbErPlMnYlJB109yxkpIdsd97PHiww27ncHGxxyefXOLv/t1Pr/yFPlnG+s4aX/uffA3r22sMJwOGkyEmYY0tyhGrFGxPxAJK0pSuRvq20M1LnvOeB1ood3vtem7Ysn83CYtiW95nWnYU7YdSsjoJ203KlsnYMfRxowNcWHrnYzpWErLeeYzbEX70GC9HuJ3D7uEO28+2ePSDRwdu4BeDTsg6pxOyA4bB4vQ0T8hKMlZ/zoay7yb+6GW1spPQTanYNHdsnojV6dmUkEWzgkHep5eMBSQ9e9Vk7JIk7OHtdI/b/+6k8+TbrT4tjvzRROcNeVgs1tI2F409Qft4Elb2z8nXOenaXpYCdvk9me9Tl+XuP+b8ceprHEePu3e3+Jt/8yfYbh1CmeLw7zchhBBCyLMAk7GEEEIIIYS8ZGw2Fl/72u0oAb7xjTt4550bWK+TjA1f5udfwgPll+RpPXxJaopt+TI1T8SmOWPDn4wT2uXL1Xw9/0I4JWTDepqTMCVl8+0wZ6zMF+tVW56MBYLETY8vrNtpisdhcADW2O8d1muD3c7j9ddP4xyS5+d7JmWvEwOcvXWG09dPYyni4WRI88KKiJXXqp4bdqmELeXrUk9zqF88TUf6Lhlby1dp9+oxTX0kFavP50PHkFidjtNzwmbJWJ+Ssd759J7S+2dSstm1Tm/+mMBFSuPqhKxcVzVXrzyGEbArC2+D1DXTPKZu67C+vY5lkN02lDl+GuiEbFg3U0IvpO73ewvv3TT3qps+UyzC3LF2OjbNnRoS/S6KU418ppYp2VJgWmviZ5mMKZ+nklotj0/zyubp2WlkyOf20mRsPrcs4udx9cIuttNne3r8OjGr77n8e5L66ftgsrb0fMW7iavQF419oZhv9+Wrbl8iI2W7JWlbEhZozQerf1Agy9S3nYJtz2l8iPqY3r3oP/aWSJYfWH366SU+/3yLhw/3FLCEEEIIeeahjCWEEEIIIeQl4M03z/Af/od/Fl/60glOTwdsNgNOToYoYPPkVF3msScJ0rr+Mtgg//K2FrZhvf2Fcvklcm8u2bSeErF6uz+PbJCwq5WbErI2ljiUpayv1yPG0WO1kqXByckKr7yyxm7ncHk54jvfuY8PPnh49SeHZNiNxVf+ma/gxjs3sDpbBQGrJOxsIhbI07GyXcrRzMNeQZxqGom+3v5ZSokU5ZJv9jHeJGHrizav+qql3i+iVV9jbFP749KEY42b+sjjmiRrOXesXpfUrLU2yNlQ0RfeerghiFUzmiRgZTl6mMFgOBmweWWD8WKM88ju7u0W3tgnQ0irDtM6sN26KBCHIdyjYbAqmW+xWnkMQxCnQaDmc8g6l5Kxsi5LkZWyneaM9dl6mjPWx8/isD8tQ6nlfJnKI6c+WsRKW+jjs38n6n3phzypFHPar7elXxLHug3ZMUAtrPuyte57VXqp0JagTG3t0rth3Vftjy9h56WsFrGlbO3NC7uUOWHd2n9IwOaPO11n+vc9zOX+3//3P8W9e7v4YypCCCGEkGcZylhCCCGEEEJeYNZri1/5lTfw1a/exhtvnOLWrfUkYcMch7qUZVmOUmiJ2Dwh61GnkkzxBWwrEZPLJp2GlbSWPr/MJWttEBKt+QZFygJpDtn02MI8soCb5k6UL53dJC/sJDMkORbGSSWQHbwfMAyhfbcbMQwGX/rSCfZ7j3EMAvfzz7fYP+X5LZ83zt46w8nrJ7CDhd1YnLx6gtXZCnZlAQvYwUYBO1uWuCVhCwHbSmVGjpA3mXgtj9PnWjwgKrkaz5NcVNg9yVA9h2zWFhxcSqhO6/oYnZKNc8KKEHPTfmdistbbScxan88Vq5KyMW2L9L6O90kEscnvi4WFR5g/Fgaw3iaZGxPv+T1Y3wlzCe8e7J7aXLK1eA/b4XPCYLczap5r6WOnzytJlLpJstpCRiEKKN2mE6HhszDcUPlc1H2kn07RSr9e0hYIUlaOy0WsHkv+zSgFLqDTtGGcUsKG8+jt1md+esxGreeCM7+3SQBPj35GEl6dQ/+uldu9ksVtCRnGrF8LfSlbli5O24dkbEvMtq/1ONr3pGzTgnvuselrlR9WffjhOe7d2+HiYqSIJYQQQshzA2UsIYQQQgghLzBnZyv8W//WN/H1r7+CzcbG1FWSsPWcf0AtYIVe0idxSD7Nz4unv4xNJRTrL4ylnGJa+ignQiIt7AtLScQGgWttWqaEWjhG0q8hLRvmgxxH6eMwDKF9tTLY7cJ8kF/96i28/fYZzs/3uLgY8fu//zkePNgfemqI4tVvvoo3f/VNDKcD7NrCri2MNUnCTvNkSmniXiK22kZbyArNJGsPk683E7Xl+HVDohQ4qpxwa3/W5mfa5pa+sQ2kUsJKmGZLj5Salb6yz6W+xptQPlmtR0ns0rY1Ns4tCxv2wSIkaM2UrDVhGxbwq5CQtSuL4SS8RsbLEQ+++wD7/bPxXjMmWOndzkWhOQzhBxw6qS+p2fA5ZKellBpOqVgpHZ8nY02UuSk9Gz73pF9KwKpEs5KrIoglPSsiVcoUh6WWsb74d0LatGjVUjf1l771vy15erbVT/ct2/VxaVtesL3nZ/lzCRwSkW3Re0g26vXrSMe2/u0sBe6ShKw7usJvfe3NXpWkbj3mfJ9cZ6syxn4fKlf8wR98jp/85PzYiyaEEEIIeapQxhJCCCGEEPKC8Rf/4pv45jdfxTBYnJ4OePvtGzg5CXPDphKWRiVigfaX4DVzAvbQl92SfgrrPmvLv1iupan3+ZeyQXaYqc1E0SHJrFSeGNNfmlcWCGk0WQZB4SeJIZLBT0kzM80ZK2lcYBzDY0gy20wpY4PVyuLLX76B8/MRl5cjLi8dPv98O39jXmJuvH0Dd/7UHdz+2m0MpwOGzQCzChJW5oiNidiWjAUyMRu3OwK2kq9LBE1L6urztMY5Yty0qRKk5X6PmGwFkCdTDaJ008fHlKovxvSqv6xbday0eXWsbtPozwOH/Dyu6GPybWMmOTv9WVh44+G8i9fjRw9JyMYxLDD4MIfw6VunGM9H7B6FhOz4aMTTRz4nwjXvdk7JL4/VKkRYJZ2vl+Gzz8BaG39cIqWOg7gVMZnSsEGmmTgHbEqkeuTzt+alimWfJGr1specPdR+aD0t68oHMidt3Vfd2dl/o/SctzPPzqJ/p5b08Y221hjtcsU98Vq2lcI1l7Ptcr75cf0krD7vkse9hLakXiph62t0zuOjjy7w4YePpn/LPR48eLolygkhhBBCrgJlLCGEEEIIIS8Yf/kvv4Xf+q33sdlYDIPFaiXCMC9HXKZigeO+qC6/XJ87Ph2XyhDXX8bmZYpDMtYgpV7TF82pTHEqVywJV+89xjFtl6JWp8PCOWyUseMoY4m0cJN8letB7DMMFtaGUsXrdSh1vNlYvPfeTWy3DvfubXH//g737m2vkDx6Objx7g2884+/E9KwKwuzMlHCGjPJWDRkLFBJ2FLIxjbkbRk9IVrub4nXOck7d84eLQmL6f0h5y+lqggtJWe9CQIzytayPLGSqpl0BYJAFSfWkbLVNRvV7ov23j6o/ciXFiE1a6YkKAB46+PzbayBgYEbHE7fOoXbOuBjYDwfMZ6P9TV+ocg1+6lccbgYmas6fHaFz7Bhem3LUpKy4bPOTVLWwHspq+7iD0LSZ2EuXPP0bC1ltbCVv7xvvb9MyQImK4m8RL7O7S/71vtqSVsep19oxyZgj6UUrXVbKWZrEanbe1K0LV/Tdi1q5bWWxs8FbN52HfSGKWV1LaP7pZjLxK5zHj/5yTm+9a3PruWaCSGEEEKeFpSxhBBCCCGEPOf83M/dwb/wL/wsTk4GrNcWv/RLX8LZ2QqrlVFliXUStiwZWZeALKm/HO99MV4OVH5Z3ZOwoa+sSyIWOFSmWCdkEWVsKNuJTMaGNg+ZnzElxtL+UKoY2O/Deph31itxiyh2w36DYRjj/Lv7fdi32zkYA5ycDPAeuH9/h48/vjz8ZL4knL11hrf+0ls4+5kzDCcqDTuYfF5YvYTalpSqSa/HSsDql2JsOiBny75L5W5r/LlztCiFDpRUbfTR87MeLE081ybiFcV4vT8tWIGsTHEmcycpZHyYd1bPaau3pYSxQ0jEOuNC2eLpMVpjQ0LWTFJ2qkosot6tHE5fO8V4cwzli89H7D5/+sm58DkTyqp6bwE47HaIJYtTuWIL50TGhnLqIQ2blykuyxXrcvPpDyr9mtL7ebuf2sIyfJ6lbV26WM8Nm/7daJcyDo859SlLFef/btRlitttSQDX7fpup/PPPyfLnrtDrrIlM2vhGK7rUHs/IZr6tfq05pFtCdpS3C55fMdSytfyHP3H3U/tjqPHJ59c4tvfvofPP+e/nYQQQgh5/qGMJYQQQggh5DnFGGC9tnj33Rv4J/6JL+PGjRVOT1dYrSyGIUnYXiJWxpjWFgnZep6/dHy+HfCxrGnri2ZTfHGMbF3+JK2V5pCbT3TJOO1kVzBGYWwpC5qSZ+H6w9yP4+hVsixJ4dDuoUtiGhPmhrTWwbkVhsFN88/aKHE//fSy+gL+ZcSsDDavbvClX/4Shk2Y/1NL2KaMNfmyFLJAQ8KWgvSAfI2bC+Xu7LhXSeflb5VcBsvrZkq9xuuS9nRQSLKaJF+yhKwaN8pcWfcmzM86tUc5K/unOV+NK67Lqv12GmeaCxZQ16FLK2shDCWCXepnBhMk7VQm3MLCwcHCQhLA3oUSy/6mh92E9p3dYXdvl8okPxVEJgPeO4TUPQC4KEqD0Axl0MOPOwyMsVPqNFjt8Plpq8+N8NljY0I1nQtZarW3LNf15/ZcmWIp3Z7mjNX7U3u+Lv/m+HhO2a+vq9UWPs+D3def7eVxqW/7g1X6Hvu5O9dfC8ZW30NCdkkydl7G9sVrEObpmC9CvurHUm8fmis+/Ru738sc7x737m3xve/dv96LJ4QQQgh5SlDGEkIIIYQQ8pzy7rs38e/9e7+Ed9+9gddeO8FqZbFeBxErSSk9R6xOwZbJ2JL8y3pTrZd95hDxmtb1F7Embpfr6Utaky2lRHGdiO0nY0PiLJU77gldSchKSjb0TcnY1CckY0V67/fhfu/3Ti1DQnYYDE5OBpydDXj0aI9Hj/a4d2+Hi4uXr3bx5tUNvvLPfgWnXzrF6mwFM5hQnlgErLxW5ySskqMtAVvN7ar3Q0nU4jhgZrxW39Z5inNdiZY48UpY+kbfuTZfr3sU5Yml3Scpmh3rgZh4NcjPNwnUKIpd3lf2xSSsPuf0HHrr4UcPb6ckrCuWNuyDRSxZHNOy09KtXZCbJ0Hw7+7usP3s6c7XHD5bBoyjxziOWK3sNGesi3Nhh/T9MJU7D+lVSceGz5fQFub8lvLoiIlW+bwv07I6Gat/kJP+PcjnkA0/SMnTs0m6hnXnpA+QS1ktUkspC4hMTf/+qB8KAEUffVzeXiZf5bi6bf5N2Ps3a15atqVrq21ujtRDYrK3XUrZ1r7WXLBPivn7cFhAl9ftnMfFxYjf/d1PcH6+h/fA5eWzMAc0IYQQQsj1QBlLCCGEEELIc4a1wCuvnODdd2/gz/7Z13HnzgYnJ3YqmWuLL+RN/OI8Jab0F+A1LQFbylt97DIZm6+3lnUyVkvZJFBb/cMyF7z6+mSeRknEyuNwLiTSZFk+rjTHrJ1kBOIyJGzDPI+AyBEbyxrv9wOMMdjvk30K8/cCFxcjdjsfJfKLzHA6wK4sYICT105w+6u3sb65ziSslq+lgK1ErBYzC6RpWO2IUzn2kNTtCdhizENlUpfgOwJFS+Syj+zT7WWb3m7ty9ol4ar66yUACZDH5wZuGsdOKdmp7Gycs1ZStghpVp3qNS6I+ChyZWzkS7km620odezC2NaF96DfhO21W8NtHcx9E/o8td89yOeHV59jSS6GeWVNnCNWErJyM3Qy1hg3vT9c/IyzMX0s63WpX70Mc8ZKSeL+D2ry1GudhNVSNlx3krIyh7fM9VqmY+WHLyJz82uUa9f90uewlpx1UtbEe6ElZOstecxnbq9veZ7Wv3OlwF2eFG219dbbcrbkcT+a5u9D3DooYfU1liL2wYM9PvroAo8e7R/vYgkhhBBCnkEoYwkhhBBCCHnOuHNng//4P/4L+NrXbuP110+xWoXUVD4/bJKoaSkj1CWJZVvmadXH1F/um+q4OfIvZ3NhWs4bWydkU5vMD2ttnZINsrWeO3YcU7vMGStzNMqX+ZKUlbSZJGMleRaWrkrIjqPMyetjOm0cgzCRpSRlNxs7JZcHnJ2tcHIy4OHDPX760wtcXr64CVljDd75K+/g1lduYXW2gj2x2NzexDliYZGErDExGQs7yTtZahkLpO0lwlTti5uFfC3HbfXJ2hpjVtdwJFGM+saxxXuoNVdslZyVNlUeOB7r82PjepGIjeWLW32muWKTgJuWTqVkTd5HJ2WzZKzxScJOfWTuWL20Nswf641PCVkXHpNZhdeRW4e5Z+3KYn1rjfOfnGN39+nOIRs+Twf1o5DwGQPY+MOO8LnhYxp2tQqf5+OY0rJhaadkflhaK8v0+S9zuqYf5KR/E/LUbPqsP7St06/5vxP9dGxaB0TMauEalkD6N6mdjs1Lwod9+XY4tm5LYx1Pbh+XyMiyTHIrpXpMKlaO0+Kyta91zvIePO6Pfkrp2mrvyebW45DlOHrsdg6/8zsf49NPL3F+ThFLCCGEkBcTylhCCCGEEEKeE4wB3nvvFt599wa+9rXbeOedm9hskoRNpYnlS3dAvtBuSdU0bvrSuy1j0zj58e3xNCndJEmnPL0kElZST1rKplSZTkilvyBQtbyVPuFYEayyXVyZOpccb7JzhPuR35eQWktLPUZIi1kMQ5Asq1UYZLVKc806N8B7j+12gPfA2dkAANhu3WN/Wf6ssb6zxvrWGqdvnuL0jaks8SpJs66IzV6rSYg2k7C97amt5CoStitgW+L1Ks4nHlof7KGkZqPfXBI2axMRWiZiRYxOfbP1IkEb24r7UyVni/H0UpKxWVLWTElZIM4166cfQsBO11hIZXmIxk2vk8GEcsaDD6nZdfgxxuAHrG6s4LYO7tKFlOxTQL+G5McigC59rj9rAWMcxtFO6zJHtcwdK8lYH7dbcrJcyg9PymV+Xv1vRVmqWItQkbLyGV+WJvaNMfW/B3qZErOpvdUm7YjnlzHLe11/lmrxO8+hz+HWvLS1EPVV+xL5mpZzc8XWQjYn//cw2/NYj78tYMvt1uNJbelxScn+ME+sw/37Ozx8SBFLCCGEkBcXylhCCCGEEEKeE9Zri3//3/8z+JVfeQN37mym+Qf1nIB1ognIv/TW29LWT9Hmidq58sa6rfVlbi5M5Ut2U3zxbLJ1+eI2iYM8DWttSsIGKZsSspImkzlj0xyyss9nkkNKDNfJWF8lYofBT/fNTQLcxQTaOIbYYCpVHO7heh3uc5rX1+LGjRHDYHB+vscPfvAIu92LZWPf/JU38fovv4717TXsxmJYD0G8DiafI1ZkrEGUcuWyl4RtJWOFZsngltSdE7T6POU5WoL0MWRsdB0iLGVcX/TR+7WgBGJCtWrT6VgRm5Mkqc4hx05/VZo2ubiAy/vH9OtUQjg7ZlpmSVm1Hp9nO80z6zwspjljp21v0jqAeB4/TtuDD6+rIaSvzdsGm9c2ePjBQ+wfPBuyxzn57HLT82VjUlZ+lBI+QwxWKzfNGZvmjg2fJT7+AEf/GCck/OXzKP+Rjl7qdUCnaEXClv8u6HllAS1d+/9u5H2AIJfDsk7Dln10W90e14rt/MW8REDOsSQRq5Og5b6+mC3To7Wk7QnbA1cc166ajp3r13vcvcdcJmFlLvfvfOce/vAP78b+4/hi/ftHCCGEEFJCGUsIIYQQQsgzzFe+chNf/eptDIPBycmA9967idu3N1ivLVLJybI08VyJYSCli3qlKHsyNj+2R+sLYPnSPZewiOIhJJxSylWnxdIy2BxdpjiMJXO46seFuF+uQYvd8k/66GuWcfR9CulXg2EIET7vHYbBTGk3o8RuKGMM2Pgl83qdSihvNmFSzLOzAcYAt26tcXk54tGjcf7mPgecvHaC0zdPcfbWGVY3V7BrG6SYkq+wiEnYao7YVsJVt5fSFMj6VxK2JW/nxutJWb2vvMbGdTwOWRliJV+z/Y19rdRsKw0rx1X7jMmOi0lYn/r35oyN88TKcdYADnEMnYjNkrLTHLMwaczY16bSx7DxgUVBXMn7KSlrnY1yeBhD+nx9ew1jDPYP908tIVviXPjcHkf5HEyfWSI93VQWOvTx6nPIRREbyren9fyzTsYu2xGTpekzPn0e69RsmWyVZflXy9cyVdte6mP1Pt2Wt+v3eXlMTt6+5A2avzaWydgkIMt9LfGq+y9JyM5dB9B/7Evl6xytlPES8awFs3Mel5cjPvroYvqBFPDZZ1vsdi9uiX5CCCGEkBLKWEIIIYQQQp5h/tF/9G38G//GL+DGjTDP6MlJSFVKEiokYqGkbC5g5Utuva37tVKxoW87FSvjHEP6stY0vnDWbSkNq8+jl3lqVkpZytIXwiCJAT+l8XRZUDmnSI0wL6wk0twkU93U18ZrC1LYwloHY+x0n9KXzkF4hLLDImKlrLFOpK1Woezo6Wm4mAcP9vj+9x/Ga3teufP1O3j3r76L1ekKdmNhV0HEminFbYa8LLGxSpAWYrYrUIG2lFXtsn5QwLZkrR6/JYf15twbYu69UkqOom9Mi8o15J4ulQOe5GqUs74hYY2SsF4dJ5JV1m1Kwer5YqO4DW+JfBkvKfSX45qpW3WdcSnjyPp0bS6Y3JCMlTllpz9rbJordhKwMSlrlSyW+7cyOHv7DOPFiPvfvQ9/+SzIWDN9RoS/kIz1UajKfgBTmtBNP/KQ1H9eoj7ML5v/uzAMdlrKD3b6c8f2krHtygny2Wri519rztj83yO9DxBRG4Sr3m4dE/ql9dA/3y73t5gXt0vkpUjS1jEtManb9bHph0D9hOzsR4u6J9chXdv056RN66UwrueGdc7js8+2+O3f/mn8N/HJXTMhhBBCyLMJZSwhhBBCCCHPIF/5yi382q+9hb/wF97AzZtBxK7XdipRabIv1+svyVF8yZ1L2P4xc4naJV90t2l9WV0mY8MXz3oe15RKLcdKxwSbk5btc6R1bbMCQZ7mc8dOjzguReY6hyg5wngWw+DgvYXM4ziO0scq8WsA2Chqg4AJab39foAxBmdn4T/NvvSlE1xcjHjwjJRTPYaT105w50/dwe2v3cZwMsCubRCvqiyxlq8tCdtcB5oiFShEaE/CIh8z25a+xTi98sez4ndJe9lnLu1WDNJMxzb2xSSr8ZCSwDFtqo5rbXfXzfQ+80hpVbXUCdmYhoUJclfP+aruaUzdTnPExtcEchHcvEfygw15LU1jxzlkvYHFlI6dBO+wCe+5k9dPMJ6P2H6+nb3/XzTeA/t9eOxDuNRqTtc8Keumku1mkrNJzKYkrJu20/zaIY2bp2XTD1bSj1vk34N2ClbPJ1sKWQDI2+VzNP/3KK3PLdO6KsFd7A/b9ef7Vf69KmklQ8v2Xkr2mIRsa6xyXP14Simc7z/2gdfStXcN5eOQtnJeW/kx0nY74vvff4i7d7dTuvvISyOEEEIIeUGgjCWEEEIIIeQZ5Otfv4O/9td+EWdnScQOg8EwhPkCJfHUE6tALlJbCai+xG2NU5cnPiZdlL7AzZM8KR2U1qWvc/UJdB99nJYGspSyxmG9vCfpcer0ayqJaZWYCFIjjC3tbhojiFhjbJQZMieennM2PPaUygpz04Yvq0OibYXVKgjbe/d2z6WMPX3jFO/+j97FcDIEGbtSMtY0ZKzJpawWpM1kLJDvV9vZviUStjHuwdRt+XKUY4q2o9D9tdyY0qy6TaSqHBcljpKRs9JVjp+OjWWCfdofhaval6VcoURrUba4krNKhOrnQCdmo6Qt74FPf9k8uLqfAayfErKDSdujz+4DPILw9aHf6Vun2D/cY3dvF+eZfRYQGRt+tBEuWp5ikbLymSiyK3y+pHlhZV2W8vmlKyjouWVlHlj974IkY2V/KL/uY59wPeHFli9zIduSs6kPsm3970vqD8iLJu3zVZsgx6mWa5Sx9eukLU1zCavbexI2vo2ra60f55ycbV3Hscz92132KVOwoS0lYYOMdXj0aI8/+IPPcXHx/JfgJ4QQQgh5HChjCSGEEEIIeYZ4++0b+Bf/xa/h619/BTdurLDZ1IlYXeq2lrFhHC1T6y/bWxK2n6gtv9Re+gV3XbKxn15tSdaWYJWEqvRLbbXolccjc85qKZsv+1/aD0MQpJJETlI2T8jqZOxqZSYha6OMlTLKgnPh+RAZu997WDtiv18DMNjtHB49ej4Ssuvba7z5q2+GOWJPpzliRcTa/C9LvFolZPUSyPvJNvoSNkrRhnjN0rXl+EeI3uwcJZ3XTyVrJ8qUaxwj+lVTtQGIadd4ndE31mJWyhxnolbSslq2dtalX5aSNUVitZSm3sTywTJvrIwbr8eopCwQ+lsxtUhLNWYzIesADOkxG2PgvMueVysTzZrQ31mHYRxgYHD2zhn2j/bYfrptP3lPCe/D54Ek6zcbKWEsPxax1Y9KwnFhGX4IkiRs+NFH+BFPLmPzf0PyagtJpOp/Y8J15EuRxEmwJtkq44RrrSVsrxxxLl/Ve1K1pW1TbMc70mlfxvKkaC0q0/ryJGgtWn2jPRe0150y7YlXvd6a61bSsPJDpD/+4/v4/PMtnPPY7TznhiWEEEIIAWUsIYQQQgghzwyrlcGbb57in/vnfhZ37mxwcjJgtQoitp4jti1S8/li24nYwzI2Hyct62+z+8mclFQK0jQXpSnZZeIXwLIuZYjlS/2QBpNElJ8SX1JyM6Wqyi+og4SV+RUR75v3ehnGsTYJ4/I6w3WlcwNpDthhkL5hDkdAkrCpz2oVZK3MESvlGwGL9dpOwiUs5UvrcdzA++0zL2ONNVjfWuP1X34dq5thjtiqNHGrPDFqEdtLsMZtIH8JdgRpJV8b4rUsU9w8R0/A6nPNCdoZepJWaMpaKNG6oGRxmYxttWXJ1mJd+sX2SXq2zp2lZW0hZGGCxI1vUMTHoMsUy3Hxvoe3TSpjbBv3TRz0YACnXluSzh0QSxZ752GNxbAOpcE3X9rArEwoV/wMuaLwGWGmH4qEBP1qleaKTVITAEz8MYp83qbSw/LZZjAMbipjLKn8JGTzH7x4lAlZ+QyU8YByvm5Uf4De1gnZsk/9+d0SzXNt5fpc2+NQS1hgqbhska7PFNv1eKVgTvt6IrpNfTl+dv+hZG8pYZ3zGEePH/3oHD/+8aP5iyGEEEIIecmgjCWEEEIIIeQZ4NVXN/hrf+0X8dWv3sZrr51gsxmw2QxTaeJemimXsPJFbC1feynatsTVyaTEVb/ZNlmSqRSmc8lYXVpYErHSXiZjZanHlMemk7H1eQ1CqhWQ5Fn+xb+N4rdd0ljkqYX3bro2O0lekb0exqQJcOU6rHVwbsgSsrIMxwShe+/eDo8ePXslHofTAe/85js4e/MM69tr2I3NSxOXqdj4I4BcynalqXpdNiVs2SavYTVuOcahpO1s+eOm8enfn2b/ia6kkXPp0r3Bf4XjJCnoTbYvS8w2hGs8b1GyOArR9FuH2C7yNUu/Sko2vBWCVHWTtHMpQQuL7Ljp5KlcMEzeLuNBtan7ERO1xmdtsrSwMbUbf/hhPJxxcZ/3Ht76WNZYrhtfAXb3d89cQlbY7Tz2e2C1GmGtwWZjVVng9OOS9NmtU6bIPr/GMf/3If2bkpcyLv+NKf/tOGbe8TD399y/NfozN7wI88/g9r8h6f2VP15NKTyPo5VMRbOtfD/PvffluvolhWvB2ne6tUydk7rdUbI+9XywYRlW5EcC8iMA5zx+8pNzfOc796OcvXv32XwvEUIIIYQ8TShjCSGEEEIIecrcvLnCG2+c4s//+Tfwzjs3cHIyTHPDlhLWzApVoGxvp2jL7XBc/SX5PO39ZQnJum+elM2ti5++eDZZelVsTUqx+iotm77E11/my+P3sYym3mdtSolJskwnZwEzpX5MnBtRxkn9JM1bzqeYlkGuIiabvc+XgJ3Ss8B6HeTvZjPg9DSkjC4uRlxcjFFGPyuYlcGtr9zC6RunGDZDLmBNIxGrhGsp2Wblqz7nEjmrZU25vlTCxk1Tnat7TUdwUNTmb5n8ekS+qn1LUrDS5uGz47K5VaHG01K2SL9ieg+LzNXL9gPWq1NSdlpmbbY+rxwbRWx4y8C4dIwka41VJZD9JJMnMSyS3g4WDg5W3nO313B7FwVt7yE8LdL73mMYPMYxpVnTD07k8xGQzy1APtfkc10+X5PgSz9qkYRqnZTVbSJ9y/NbqQadzRlb9w196m3dXrYJc2297dAm/1YcT+9HE4cEp/yYpr6OdHxPmub/hprqXIc+bo6Xr0BPwIb1JKVTEtZju3VRxt69u8OHH54fPjEhhBBCyEsMZSwhhBBCCCFPkZOTAf/uv/tL+OY3X8WXv3wTZ2dhnlhrDVarVJp4rsQwkCSrlrbSVyedgDzVlCi/4Z37xvd4+dQdSX3B3kvJtv5E2oa5YvMv/ctla85YnZ7VS5G8QSqEKF8uKpwSD4DUUpX1ccwTQ5KU1Wm1dG2hFOk4hoTsMJgoh0UIizA+ObH4XZLkswAA+tlJREFU7LMdtttnx8gaY7A6XWF1FuaJNdbArBYmYgv5erQsbR1j67G6qdiewG20ZedDe9/B9h4NcZKV81VjRjFkUCdjdZJV2mR+WGOifJWSszHpKnPAqrFaydgsQSt9/DRHrPWZ9Mz+nLonrW2ovuikZoEsNSvS1xufyg8P4UcM1ocUrJsOsAjiNaZnx+mejJOsHdK9sRuL7adb7O7uDjxpT4dxDJ9P+334DDo5MdOc1unHHbo8sXzm5589kkQNT3YqcSwl38s5YssqC/m/P4dK3pcVG8J1lCWLTXM9LfNKDfrfPE1fzD7uv1fFG3H2XKGf/vesHueY66o/IFoid3aEGTnbkq66PZUiTuvOeTx4sMPv/d4n2G5DVQnOCUsIIYQQchjKWEIIIYQQQp4ixgDvvnsDP/uzt3B6uqpKEqdSkf2ykDKO9BMRq79Aly+IW8flXwofI2Wbj6jYrr+ADucsv+D2xXo5pm8s9fWLMJVlGCd98S/JVz1HbTg2CE9JdyW5K39hfxhbzz8b9vlMgkhyrJTfkozVf8OARlLWYrXyca7g9XrAycmAcfRYr/cYRzPNN/t02by6wclrJ2mO2EK6VkJUpKmWp2mlLVmnfVm/xjITrijOi3q9JWJ7EvaggC0fy7Gow1oJVbUzXkuWnJ3eDlliVtpkflnpP42hjzc+pVPzyzLZNRmYbBw5Z5aWRd0m54upWf0WRj5OXDepFHI8Rp5DmT9WH6/nqLXTdTiTErGSkrXFcjChrPHKwK4tVmcrjCcjxs0It3fP1DyygZTCB4KcbQk0/RmXl2XPPz9l/lfZltS/yNkkccN+/QOXXkK2/NwMx9d9dXtrvWwr28u2cj21pX8rDqGPb6dR0785XpUR1+JV+sn9bo0Zf2uhTlKmZnvX1euzhHa55ZaABeQxaAn76NEeu52bZOwed+/uKGEJIYQQQo6AMpYQQgghhJCniDHArVtr3LmzwcmJnWRcKxFbplsB+bI3Cb5+MjYc07BNB+XrFSXTUWg7k395D7Tnis0TsmkfUH+pLAlUva+XkM2vwSDMEWswDC5ua7Ewl4zVS2McvE/zxgY566ckbF4uWUogyzV4H+Tsfu9wfj7i7t39UxWyZmXwlX/mK7j9tdvY3Nnkc8SqUsUiyspEbCZqO/JUlt3yw0CaG9Y2xtF9G+uHxs6uQ/dv7QMOt/dQT2MlnXVqTc8Ja0wmbKvE7OSfymRsNyk7iSU9H6z3U18tSv0kVlUpYWPU3KsujRGXU2pWnydLzmK6BiVPpS2KVLkn4e2XcGkpCVeZM9bBAdM0yzJnrL6PXuZyFjFrptfs68BwY8DFTy8wPoPzNAvOARcXkt4HNhuDzcZgtbLZvx1llQD9YxGgJ1LTPK7yIxP5MYreB9Rp15SqTe+l8t8f/aMgvd1aT0tTbOdteXvZVu+ojzOd9vbxuZid76NGbPTp9VV71A8xjmFJieW2tE8iVio8jKPHt771KT766CL2o4glhBBCCDkOylhCCCGEEEKeEt/4xiv48pdv4tVXT+KX6Fqo5onY9pfTeRnJJF/TF96m+LK5MEzN9dZ2id4/JwYbZim25xHANFeeStN5aU+p11ZKVqe3wlhA+rJ+WUK2lhJ+up8yb6yeM3aSOx5VMjbI1FyGhOfWZ8lY76UksVHzytopMesmMe+wXgfJe3IywDlgtRoBeIxPwRWdvXWGk9dOcPr6KdY315V81X9lGrUSn0qgRkop2pKlLUlq1L6yr6nP1S2D3DpnKUnLflnTcdKklUptJWNjyhU+/+2CEjVVclVSr2o7itb67ZfEq0hYPZ+rTynJMi2r07ZVMlaW07XE49W5dRq2nCu2TMxmz/Mkb/W4MSVrTNovYndqi+Wsi4SsHS3sxmJwA4bTAd55uEu3NFj5VNAp2f3eT58pHoDNfmiS0pjpBSLzyrY+T/PP7XIf4v40J23YL3Nv63LIUv5YqP89y0spl9fc+2zXbfrY9LmP4jM+u4p4jO4jidfUHj7XtRDV91X3Cfc0v5YyMRvaTNZH96sfi+y/2ouwPCxt+2xbJ2DDnLAhCfvgwS4K2YcP989UmXxCCCGEkOcNylhCCCGEEEKeAsYA/8q/8qfwT/6T7+HmzVUsS1uWsu2lW6V9GIxappSsns9vOmOxnFtvbc8+miP6CvoL/3I7rev5DeXLbv2nZYB8yd1OyNZt+V/6wr38ktx7YBhCGm0YoL60D3PIpjFNFMj59QSZGtK4DiJKjAkSJSxDyk1khnPDdAXDVBY5zBW5WllcXOxxeQmcn7vqy/YnzVt/6S28/mdfx3A6wK4s7GCT4JqWMQ0rrz8l0KI4VXL0qLlcTT1mto6iHY11PW5D+jblq5Y+epweh/aLpGkb3Zg8rXeZzIlliVl13VGOziVl5UcM6lw6GZslZqWf9/E8VTLWp+PiUpUPzuaXlXvgIW+J2DfeEpWUzVLCcq1T+eHY36H+WMGUjIWPaVnjDeAA62xKyE7XP2CAsQab1zYYzgZc/vQS7jlIAO73Hvs9AIwwBrhxw2O1MlivbfxMCj8S8fHfBv1DEZ16TT8UAbSIlbbwOZd+xKL35yIWSD+U0eWPU7v+gYxI1HKO21zEpn8X8u10L3Jpmz6vc8HZ+MUD0rXoMsOlwGwfV+7P+6RKCqlf3pYfpz/X230aZ89O75vt6d+qUsbmc53vdg7f//4D/IN/cLf57yghhBBCCDkeylhCCCGEEEK+YH7xF1/DN7/5Kt5//w5OTwesVlbNFVuXeizTQukL9HYZY52MnY5UX5zrZbne2u61zdH61tYU+1rbaV2+pNdJLlOlCHOpkL74r1NUkmSVZKsWAHrOWJGhIiJCSqgs0SlyPM0XG2RHOndKvwJlClanZ4chmMKwRCwxGv5k/lgH5yzWawvnPM7OVjBmxH4fykd+EQnZG2/fwI0v38DZz5zV88QW88X2pGlLxEaiR6xfa0tFbCV11XY3CaveEpWELa9pyVtlKb1ji8SotGUJWiUcs8Ss2p/NDTv1r5KyyBOt4dBJ2KJIxqJejw/FqETtdN6YdjXzCdnsPDJO+ZzI45PnURKvRWpWkq5w0/1RyVlYxFLIMRk7qKUH7MqG+WgdMJyEH0PY0/BjA3f57AtZIZSQ9VNa1sXPo9XK4OTExs9MkbAA1Gce4pzYrdLE0pZ/fuef3a3P+Cy93fm3QBKouQSd+9FOawwRzknAStWCcmzpG44zlWxsX0/6t6YtbFFce/o3qJV+bQtOfdxhCdrbX8rZMgULhOd6HB1+/ONz7HYuStlx9Pj0020s508IIYQQQh4fylhCCCGEEEK+YH7jN97Gv/6v/zxOTwes11rE5jI2Lz0MyBe/aU7Y+RRtLV9bMrbcfhzDNDfGnISV7Z6gTV+0yxfYqZxiEqD9hGyrvLCJYyRhmoREWE8yuL1M1yJjAogp5XBtYem9xTAESxQSSGGu2SBhLYYhxARXqzCYnnt2vQ5i6PR0gDEGN2+OWK0MttsRux2+kPlj73z9Dt75zXcwnKRErC5RHOfcFClbzA+blRBuyNJM0kobUp/W/LDHJmP1eHNSNizUtSDfFzeXRtaOoJWGjdcTOtTyFW0pmwnWTltre+l6PFZKDNtJyFqVjBXxWiZkVVliY02Yb7ZMzULJMjc9PlvMLzu9hyUlG0WwSvBmaWKT7pWZ3p/WWTi4UKrYhQ+AYQwJ2eHWAJwjpGOfIzG13U43RxHmJE8/BtGStP7Bj/yApSVa8zZJ24qklDdKTByr9dQHSG+oJcK1FrCpjH0av50OTcdqwZratJRNn+Nz49T7ZKxaurb65bQ/R45Posq/bfUYqVpD2JbS0c55nJ+P+Pt//3M8fLg/9oSEEEIIIeQIKGMJIYQQQgj5gviFX3gVv/mb7+BXfuVNbDY2JmJ1KjbNEdteShI2L0+sj5Uv15WB6srWQxL2cWWT/jZ5TsKW22k9lSieWjxUW0ppzSdkpfymTsYiO9a5fL+kZfW6nEOuQ5Za6AIpISsCXbaDlA3nKxOx+dJgHEPfcbRYrx28t1ivB3gPnJxoOetwefnkorFnb53h1T/9Km5/9TbsehKw0x8MknQt5GtPxLbmfJ0VsaboV46J9nliO9Rx5dhquylhl8jX6/Sxvj5HTLdWpzUp9Vm2Y5mU7W2X63JsuR77FOlXPUbcVyZky20Rsmqffl14O51/krZh9yRlpyRsPFaEL5IcBhD6AvmcsQhS1sKGcaZvSOw6dF7fWMNai/H+2BXlzwv7vceDB/v4b8nZ2YD1Ov0bksoWt+VsWR0gtJef0WE9/5xO7Wkd6P8AZ8l2v89Vpexc/7w9jtJIt9Z9DvN4r6tS2tYliNO/UR9/fIGf/vQC8hyFFKzjXLCEEEIIIV8AlLGEEEIIIYR8Qbz//m38y//yz+HsbJWVJhaJqssO94Ss7q/nhtXHZUbqKCHb2m5x6EvqVr9jvmxvJ2OBJFtln8gBKaeo5at8WR7EqJnkapIHoS2VFZZylmU6zLm0LMt26uRymhMxiXORsiJhU5liEbPhvFrGhvLFFs4Bq5XHfm+xWgGrlYX3HptNkrKhRPGTk7Enr5/grV99K5sjtidge+WCM5Ean0clU3siFvlYc+dpjteRunPn021Ve7Fvrr1VbhnoJF9n3I8+fyZmJeVZStki/VkJV1W6OEpP2e8LCaquV+9rjRfTqEZJUKMSsDoJW2zre6j3xetX7fHapjlm5XWo07GxTLFBStAqoVvJ2KlMsRkMjDMhIbsKMnZ1tmo/N88h4+hxfp7ud5CuQ1YRQEtY+RxNKdkW5We0R5qftZStjydhUwK2TK/OJ2f7/bSUzfvnadmyPT9Pfr05evxiT7P/UnQZ5LxNL1P6VaosfPzxBb797XuPdW5CCCGEEHI1KGMJIYQQQgj5ghgGg9PTFTabAauVnhu0LEuMSsT2ErFybDsJe2iJznavrUevb+/L6taX53Nf2rfkbJIE6cv/Mr0a+soX0ancc5rrVc+TKOv6uoIw1WWJTWwP2+l8eTI2LUW0hr4Gw6BLF/usz2oVDFL4At1Mc8WGPpuNhTHAyYmbkm0rGGMwjh7brcPFxfWnm+xgQ2linYq1xZ8ksnvCtBCgzZLCQN5PC9aZcbWUbSZjZyRsLwXbE7N6u5KtC98u1XG1H+omMPWxVZnizr4lZYmzbRPEZDMla/LyvzGJOpU8jVIUqWSxfi68CSWGJQnrvY+lgqeTpTFNErrZ23+SsMaYmHT1LiVrpS27PSLSfEPCGsB6VabY2zSmMfAnQfievnWK8WLE9tNt9bw8r5yfO2y3en7tMK/snTurrPx9EIr636b0WSkp2vJPkrHpRyvyuZnagdRP79M/isklb74/HRv2C2mu2PTYSrmbyhunfzt0/347suvS1RhkO9zLNE68gux93pO0h9EyuCxJLAlYIMj3hw93+M537sdS9g8e7K52UkIIIYQQ8thQxhJCCCGEEPKECRJ2wNnZqpojtp+CDcemNp2E1aWJk4jNv7xWVgple9mGA229Poe+TdZjlWK2t13ua+8XMQQY9cV9+nJcJ7tKAVCWMJb1+s8Uz4PPnp/UJoIijJXm9y2f05TGFWmc5qo18TolOSt/w2DgXFquViJpg7Q9ObEx4XvVL/grDDBsBtiNhVkpCWuShC2laCVOp+d/VsTqp1gtW4K1KWKTHa2FqhqzmZYtzt2VsPEUnf2PQzmOzx+TpEyzvkpCNdOyPsnMdBqVbI1SS21DHVO8vbO0qx4HxVjqPFk5YknP6rlio7XK70VMxkqyVz8+9Tzp8szyXEtyNv5JKlZSn24qYVwkY2VeW2PTfmMNMABmFQTt6tYqXN8kkQ9+9D0H7Pce+33+QNZrg7OzAcOA6UcjPvuMknlk5cctQf7JD1bS52y7RHH570bxwp3WRZLW+2R/Plds+SbS8rhOscrnivxbkcoV6/69xKy+jjROOr/+d6juV46x5ENES+ZiT5SuLspWLWTHMZSl/vDD8y9kXnFCCCGEEDIPZSwhhBBCCCFPmG984xX8B//Bn8Hbb9/Aem2zEsWlYNXyrhRysmwnYkvZ2lvOrc+1tTjUr5WMbX0RX243DFVT2ObliOv0UkrDilSQUsWAlA1OKVmdlA3rMq+eUVIiHJvm5Utf1OcJWR+fI+dM1jeUIg6TXcq+YQjbq1VYDoOdEr2pzOR6msdysxlgTEhZGwNstw6SVru4CGm3x+XszTN85Z/9Ck5eO4FdT+WJZa5YiyhjEV+vuSjtSlqh8ZI9mH6d24e8XxyvOFfWhsY1qfVM9JY02nqliXssmYO0HPOqidhW29x2a18sGexnErJ6vzcpYTrtg4S3LdJ+LW4LWStp1vgwyvTr9Od9kqzlvsiQHy/97RCSsXba4eHD54LxGNbhveZPw/W5NxzG8xH7+3u8iOz3Hp9+ulX/tgTu3Fnhxo2h+PfKZ8lZoE7KShuQt5c/jknraVunZuW4IFlT3/YyHS/tZVpWi9awrPun9fx8tbzVPwxo39f8h1JC7/1fp2bzBKxX/+Z4fPDBQ/zgB4+qMb0PzydFLCGEEELIswFlLCGEEEIIIU+IYTB4441T/OzP3sI3v/kabtxYoU7E9v7Sl8HhC+46OZsnYoEvVsQuoRSurTbT2N9Lxub7SvmaJGz68lt/4S9fxOdfmNdf7ufHyxf4IgVS8qt+znzxHJWJ29bcs2kcKVMdXiPpuW9JeWtDQjbMJxuSsquVn5Jrj/HluwU2tzY4ef0EN965gdXZKitHrOWnlrCZXEXazkoBl+35s5Bvz4jYTPAqYdpN2ipJo/f1+nclrCk3G8cfgYHJnqpyTtZmIhZF6lW9JbK0qzpHS+AeM3dsOS9s81xFQjaOFd93+Zyyco64jZSIzQSwSdeZvcZ0G/LHoKWufq1IAtYbn35QAIQ0rBbHkp6d+pjBhHT4aGBPLNzu+suBPyuIwJu2Yvt267BalT8gCj8Q0RI0zZudPiOlrXzRatma2uW8rX8n6m39+ZynZUOf9O9CXuZYH5uPH++Ekq2tN3f9b5SWvG0Ofy63Jaz8KMjj4sJFGSvLe/d2uHv3xSmfTQghhBDyokIZSwghhBBCyBPizTdP8R/9R7+Cd9+9gRs36hLF+bx8SdjJ+jDYLBGbxJx8iV3aCXTalq5jQftSWgJWtx/64r1sL4VsKe8wffEf+peliKW8Zj7Ha0rGyraeO1bKCQOpHGcrIZtSSmmcsAzbMh9sOF+aMzacI+9TJmNDOjacO+xLc8fudgMAYLdbwdoRAHB5+XiiaH1zja/+T7+K0y+dYnVjBTuoVGwxV2xTltokKbXszBKrWtCK/NRpRS1bi5KyXUkLdYyWcCj2N7Z7baXUnH1LPO7bRc4hTC/xVnq2l4bV+7QovWpK9uC6miNWjtVlilttcakFKJSYlR9G+CRtYRBeH04tpU3uVZmS9aZKxsY5YwfTTshOc8daYwGHsO4sYIFhnBKyo4ffe+zwcs29ef/+Hg8fjlnbem3wxhsnat7z9G+T/nHJ/A9YwlhLt8O6/mxP40u/dh8gCNPyxzzyuZKOL1Oz8iLKf8Sjt023z1IOzQPrHHB+vse3vvUZtlsH/cIuS00TQgghhJBnE8pYQgghhBBCnhDDYPH666d47bWT+GV16wvpQC5R0xfb+s+oL5DnErElx4jYa7BKcZxjvyTWx7SOL4VsZ5Tsy/nQN4jSurylTtNKm77foS1P9ulryJ9PnQrTz5mp9ovQ1f1SGraeN7b1JxJktTIYx9C2XltsNg67XV3qctEzYA3Wt9ZY3VrFdKCWo5Xz12IUtQjNZCnqMbTkbJYiRrHU5ytfysV4+tiuiJVjdJvu35Ow1/k2ERq/XxCBqOd7rfYblfCb+jRTqkqkzr6V1NilHJX7Vc4RW4rrbgnm6ZxzyVhApVj12Pqay/vfeE1FIa1eMzIuDGLq1lgTJK71YV5ZSc56E5eSkLUri2E9YDgd4PYO/iURYTIHqcYY4OJijD8Yyn9MZHByYuOPiFoSVn9WYnpNyQ9Y5EUp5YXlM1zWpyuIfVPKFtnx5Rus30+uIf17IJ/Pen95T/LrqZOt+vje57EuOXx56XB+vi9K3wcZe3Ex4uJij93u5XjNEUIIIYS8aFDGEkIIIYQQ8oQwBjg7G3ByMsSUazlXbF2qFlV6ttxWZ0Btx9BYzq23tg+19+hYnWyfWbB9bEI2LbXkRExCiQCFmuPVR/Ep2yEZm8vV1JbGdk4nbSU9i6z8sMhUEbayLXPQyrWU6dkwnyymZGyYU1bmmF2tQpxPErLrdUjPbjYulhe9eXPAZmNw9+7+yinZYTOEuTKnOWKzRKxplCxuvAxnZSka7WYSXy0hW5ynm4hV21dJx3YFbOdtkEudx2duDtlmGla9NZakX1ttB7e1kFWStbV+KA0LIMh9jzQ3rOoTH6JN541idXofwSKWE9bjxYc47dcJbXXjsqUZTPZxY7wBBoS5Y124Ru/C3LF+Ha5vOBmA2+E828+32H3+ciVkNfu9xyef9MvjvvXWCW7cWMW5s1N54/DCtVb/mCV9ngJa6mLaTn36idnjlofalm4fS5mCTelXjx//+Bzf/vb93pFT5QdCCCGEEPI8QhlLCCGEEELINbNaGfzqr76F99+/jbOzVVZiuJ0QKtNCImZLaRvGTyWKhUPfDi+VskvHW3Kenpg9RsKW663zpbRqnn7N94UUbFqXL/VzcQuUqdYwVp6IzROw+nlJ7XIN4Xn0MUWVJ8JqEZ8nokVeJBncmkM2zB0r67ZK+y7BWIPb79/G6ZunGE6HSr7qhGG89cXLsCUnq/LE6qmrhCv6AnZO8pbJ2yVp2Gwpxy2QsLMC9ph73nhJy9hZorXxNonJ1MbbRBKm+ncKMSWbXsJJsno1ppa86tyzCVkU7cXj0fPFVtfbePx6Pln9PMXHJf2k3GzjOS2Tr72/ZkJ2krAieSU1G98P0/yxdmPD3+k0h2xewfelYS59f34+Yhx9MzULhM+o09MBJyc27tMl5KVP/nmcz8NdzxOu94XPzXxOcS185Xx54rYUs1J+vrV/yf15+HCPBw92WZvqkQnZzz/fwjkmXwkhhBBCXkQoYwkhhBBCCLlmTk8H/Gv/2jfwC7/wKm7dWmMYbDbXqxasgrSX88gG+ZZEXduKlcueUWpZqFa/66C0SLrdd7Z762Xf1j7VqxCn0qaTVa1kbCnDUzJWvoAPaS6dgBV5Kwlaa4N8CMekMfNkrI/rkozVy5CMDWMMQyhBLKlq74Psl4Ss9x6rlcVq5WNSNt2D5ZiVwdu/8TZuvncTq9NVlohFvC/Ta3YqXdwqH9wUpvLUQfXpiNdjE7GZ7NXXgbxf7N8QrockbHUvr+Ot0hqj89zp+V9bfSoJqksXx1tgqr5RpmpBq0Sr7t9MyIrcKs+vxa56LqqyxHqpkrAxEQtkx2RStnjeshStTddWSVhJ0up7KdUGfDjWwMBMczmbcVoOBhY2zBnrPQY3YHVzBe899vf2cCMjiyX37u0P9nn99Q1ee22j/t0D5HNWf77qH9doGQvUErZsm1uG9RQxL0VsIP/3qvXRqtOuett74Kc/Pcf3vvfg4L0ghBBCCCEvNpSxhBBCCCGEXDshobhe20ZZYtWrkn+pnGO7lHEpWtP58uWh9lafY/e1aAnSlpQ9VsjOtZXiNZ8rUyek6i/i5Qv+dJ15Mlb6a4HbTsaKvJXryJ9bvd2aVxZKzqYEVxC75dyxaU7ZIGwthiHI2NXKwrmQEL55c8BqZfDw4f5gactXvvEKzt4+w+bVDezKJhHbEKIiwUy8XyaTdzr9WqVii/UlAnaRiG28zJemY8tUbXV8Y99ce1Uat0FVjriXFi3Ea0vKlhIVyStVsrWVki2TtEclZI3qVxwr6V19vky4ioj1ScCqmxjHlRRsVa54Wi9lr5a03qbrM1K+3KV5Y8s5Y/W6CNq4HNLSOgu/8rAbi+F0wPjwJY3FXgOPHo1wbquSsEmKyudyLUhD26uvrrHZDNm/n+lY/UMcPU6rLbTP/X7l8tLhk08uq3mYW5Rd7t17eUtZE0IIIYSQBGUsIYQQQggh14wxmNKKOhGrvyQuv2DWKdiUim31nY5AbaB6y/K4ue1e21JKU1Tuuy4hWx5T99Gli3U6Vpcs1l/Wt8td5inaeFbT+5PxWxJWttNzq9Oy8vyXQr5OTJcyNpQpHkdZBiF78+YKm43DxcU4X/bSAHf+1B28+s1Xsb65jiIWFmHezSIZW0rS7OVWtumnCZ1+019Ttoq0VSK3GgNqv3re9HmzpG55THGNiySsHqNHuStzjfU5KgGqxzgkZeUeeSSxOh1fliOuhOx0PXMJ2axvWUJYjzddY2su2Wqe24aAjv2NWvbKK6vXRSVhi20tcaOItUHMxjloRdZ605axImmHkJo1g8GwGQAH7AbKtqtyfj7i/Px4mW0MsNnk5Y+luoD+sQtQf4an93gtYMttEasPH+7wwQcPOGcrIYQQQgi5MpSxhBBCCCGEXBPGAL/1W+/jl37pNbz77o1GKrZOwSbxlovYXOLOmS6ott5ybn2u7aoUFilrv4qQLfe39tX9dDpKzx8YvqBvzxUr8wPmX+DrEsdeHZP/5SWMtSTwsSSx975IwCKTsjohW5atDnPEIpYrFhkbShgH+T+OHs6FpKz3NgriOezaYtgMIRU7iViTvWaT1KrW0RCYUP2QS7FeKrYSrMXYRyViVXsmXcttdWwvIZv1aUjUxRzoa7zJ+kU5Wh7r07X2pGwpPquyxa2ErCmELAqpqs8l16HkZ1a6GErYFr+VmC1X7JUwhUrEemRtgLpeeU4nqdqSsrBIiVidkJ2ErLGpVDI8chk75Es72HA9ow9/G4/17fAjhv2DPfz+cHKSPD7eAx9/fInPPw8iPL1922WEe6nX1mdXi93OUcQSQgghhJDHgjKWEEIIIYSQa8IYg1/+5S/hN37jbdy6tVYJ1/RXHDEdB+SytixP3D0jkiFpCVg02o4VsYe+rD4sRdvjzUnXJePM9BahNclOLWLL8pVpjtX6Lx2frkGna+vnVe8rSyPnZip/rvUS2fEi5EXGOuer+YeDpK3Ts8OAeHyruqaxBmZlYFc2ilgtYbUg1dIik5JzorP55CgRG1//JjtHr6Rw9nKXJi19C6E6K2JLgVs+HrXefLwHHmOTQ28V1ScTip3fK+hEatY+DVYmYsvlrJBFLlWjkJV2XaJ4On8mgpGfo5lyRX6+7G1efLRpIdyUskivhbJ8sdyLTASbfAmDmLit/mS+bpUWN0P4s4OFPbUYMGB8NOaPnzxRHj4cAbBENCGEEEIIeT6gjCWEEEIIIeQaWa0sNpthJhWrE7G9+UBlXUYt7QDUUtPaNydijxWzLcr+h+Rrb4yekSnXj10mWapFqlyXTsjq7VyO1vPN1qlYwDlZJhErz6f3XiVjRaqm57iVkNV/0iavq5SQNTERu1pZ7PcO1loMQ7juL31pg+3W4dNPt1Wy67U/8xpe+9Ov4eY7N2FWJs0Vq0oTV0K2WG+VEq4Eabkux1t1vGkvm+so2lvnkae01YairWjXorja19rOds3unJd18rLVh0iqtUi7ynozJauOzeaDLcdCLjljqtW091dp2TI5iyRHW32bZYsbx5Tp2UrKakFczCcbnzsLwE2CVZKx1ucJWVWeOKZhFyRjnXewKxuSuB4YToZwffHzmhBCCCGEEEJy+J8LhBBCCCGEXAM3b67w5punOD0dlIBNsi5QW50yDQlI/1K+tpgTs2X7kxCxh8451z63PXfdrWP692GuDGWZVi6fp1q8GvXchKUuIS37yuczH8uofSZbttOxrfLWqZS1Xm9J/ZOTAZuNRes+bO5scPPLN7G6uYoCtpSbMSU7Pexemd+DL51SrJbHd8arzi3r2b1tiNOsaeZ1Ub7FivNU11oKz+L/srdt+Vf0ry+qbiqP69273j1opYHLc5f34uB5es9/495UfaqHl15nenx9jZWgLx+vPn/j+ap+ONA4lzH585e992xawiBbGjulY6c/kbiEEEIIIYQQomEylhBCCCGEkGvgn//nv4p/+p9+D++9d/PAXLHpi/4yGasFm81+NjlnhQ4ty/Ul24+LjNdKyXZqrjbHuMo+vT8skyT10xKxPZQwTtt1eWEUx8j+1C9/XnUJ4vbcsXUJYj2HbJK11vq43/uUkJVEbJoz1mIYPFarlJIFHMYRartxlwaT5opVqdhWMjZLycotbrzkulJQpK6WY3qpU7I9gWiKc/QEXUsqtvqo66zEYfkYMNNnKT1ZCcSXs06lxnZ9DTrdeiglqxKx5bhVOhX5vLD6mOz4oixxNp9rIzWrry2WK26kY+P90Y/JpLFapYklyZolYg3grc/ntJXyw3Nzx06P33gTyxEDqBKydrBwCMlYSdHaMXRef2kNe2Gx+3QH33nPEUIIIYQQQl5OmIwlhBBCCCHkGrhzZ4133rmBs7NVlGy9UGYr5RjajTouGKV8jFLKXoWrilhT/F3lXIfOd2jc4x773HPQ7lOmmfsH6+NyIVv2KZ9T2SfPb7qndZq6lPllQhaV1M8Ts2HfMBhsNhbrdTj/cDbgxts3sLm9CZKpkKXx+gphKcu5tHF2j5DGbr5stJBtiNhmuWElRLuJWNNo61/kchG75KVfvk2WvmVMuhaDxuMqtufSq1WbfozZ7rxtUdnm1n0vn5vyuOJ5iMlUFMsyFdu4b63HXb124/sqP2f5emwts7HKP4usf3zOpjlk7drCrvkVCyGEEEIIIaSGyVhCCCGEEEKugdXK4uRkfq5YQYRZkrZGbWt5B8zbnJ516lmaGdvUHXvp/mNSrLqt3L+0f2/ZuAIT9vXSrtLHmJBclfNIyrU8NrWV8rRMzNbrkm51LqVqy2Rskqs+vi6cM1lCdhhQLMOfJGGdCxfsfShR/OabJzg/H/Hxx5e48/4dvPtX3w3liQcTU7GYXn8inTLRFe9jehqaSVZ5ipDGyIQXkuyqys+2+ut0rhKiVTpWnW9RIlYLxM5bZDYJe+jt0aJ3TPnyl3O30rIqOdpLycp1L07I6jljp9RpuS73tZwbtpxnNkuy6rlmjUq3tubGRZ6AjY+hNYesPr96PmMSVpKy1gAOgEWY31UnY+U8Ri2nRC2AlIgtl5KQdTaM7RFSsDJ3bOOxEUIIIYQQQgh/tkkIIYQQQsg1kASryaVV0adMNZbJyVLcds6GeQGLRttSEWtm9h26pqvsO3QtV72O5Qatl2Yt98nxvecoSct8v24vz1ufOx+vfr3Ur6NS/Ou5Y0X2rlZB1gJBKA1nU3lilQTsytXerZu51WX6Ma5r6VoNV0vU6ny9l/TMW6JVmjgmUOdEbOs6r/r2mKM3ppbLvePQeb7QeNy9sVr3vDd26znoXZ5OV5u8f5WCLa9Hn79o1wnX6n3Ye33pe9BLxqJOxuq0bJWatchKe8v8scPZAHvCr1oIIYQQQgghCSZjCSGEEEIIuQYknVgLM0CbACklW5ecTclY6XuU+cj6HGpb0ucqyBhL5ks0C/st6S/7Wn1CmxadbcGa5pBNaVnpH1Ktsp7Sge0/IE/Etuaj7YvWJFTz9GyejHUun29Y/mT+2HGUeWUtjPFYrTxWKxeu2xoM62Ku2CkR20qwamlWSrRMtnbEWLPsK/J9VYlk5MdVctvU69k1mPZ2JgCXyMeyn24++KOJw3ivXq96uCItK0nZ1tytWTq1MY9sNyHb2kZxDFDPH6vmaK2Sspja4bNrlDHKczXvbbnPpDGr45FeA9XcsdNcsfo1UKVpp2SsyNV4T6YkrLfTicSt2vBYzGBg3PSeGQyMN7FE8ea1DcaLEZcfXR73EUcIIYQQQgh5YaGMJYQQQggh5DH4+tfv4M//+Tfw8z//aibUtGXQEvBQMrY8Ztq6wpVdh1y9Tg7JV72/t750zL6U1es9lybPRygbjKl0cS5p9f7W8XJMkq+yT57vsvRx/pfa5TXiG8s0npQ6TiWOpbRxKL08DAYnr2zwxs/cxM33bsUkX0uQdpOFS15S6vhKpioxVqUmO/1KedpKHFf7eiIWDRFrOu3lum6+BgnbGqspZksp64vyvOo3CJmQLc6xWMhOY+ofHVRvHXVdWSnj6sEpYds4d1aaWESrLkvce6z6vOXzWFx3lK36eqQM8iRsWz8WyERuuZRy8jaUNs7SsYOBWZkocwkhhBBCCCEEoIwlhBBCCCHksfjmN1/Fv/lv/gLOzoYs2ZqkLNR2KWLLNjmm9UX+XFtv2WLp2I/DUkl6SNAeO/58vzL5qtvzPvr4JE5zOZsfo0WpTuKWc9CW58wlbKsMcTtJK6WJrRU5a1RbSlrLXLPWGpy+doqzP/cGhtNVFLFNYYq6rXlr9TLb1TheSdVmWeQWxbVk5zb5ejnGokSsFrHlJRTbBwXsMW+hzktXzjErZbXgLM9/ZEK2DJPHRGspX4tx43rxWHR76xozUdq8Aek4LVGbklYn1ctErnpNRKmq5tfN7kXnL6Zt5XhrwmO30/UV5YmlRDE8YFcWbkqhE0IIIYQQQgjAOWMJIYQQQgh5LKQ8cZq3M5d7QlvEmkZbPAJ9w1OaqTkO9b1uEXtd4z6Z6yrTp/p8pXAr+9TpVm1wyn4mrvdKV6c5L9O58/kpe6+RlIYV+apFrE7HpvLFBuZ8h/3vf4rxRw/ifJdQ58jkZ/cGqofbeznFe4NagjZEakvcVn2R79fXmQnb4tzNa1DL6vE2ztkUsZ1rXMSBY5vnbMjhSlQ37k33/CjuU+M57e4v7mdLuGd9tdDvPOdlyjm7hs7+qkS2GjN7/enXlW4rxtd/1VgG4dsTo943ZSJ2+rMri+FkwOa1DYabQ+dJIIQQQgghhLxMUMYSQgghhBDyGOiUYk/Ehn6tRGy/vzpywXpru9d2zH7p8zjm6Riu43obR3VusjwXdXt6XvL99f0v9+vjWsJXn6Ncb7WV+3slrkXOiqCVPiJkjTHA5YjxB/fhP7tsS67WQ1SCbS4d2pK5lcxriL5WKrZqK64zk40LXpJHidjyMdWDXf9boDPmISE7e+3lPWqNh+Je6+ev+dAXPHAtWmf6N/cVwrT1eFuvqUril48HqO+BOq4li3tSVuZXzpLlqmxxTMmuLVa3VhhOKWMJIYQQQgghlLGEEEIIIYQ8FsZIMla3lQLtkEjTSUvgKOtSX9GR7XPjzI21ZLxWn+s2WVdlXoyW+1vyvPUch219bKv0sGmOW//1SlnX46UfBKSkrP4bBoNhsFitLOyQpFIlpaaHHpOXcisyZzcjCQs5Vo7dS79WYqyUZI3r6Mo2U2zrayz7NR5DlUxtib7WvmP+WjT2da9F72/JZrk3rcdd9C2ldJV6Lccs98m4pj4+6zv32lDXMfta0des78l0Xi2TewnXbgLb1m1avLbaW8lYs1LrnDuWEEIIIYQQAspYQgghhBBCrsRqZfDKKxucna0mCdcpZzrRSsaKRcjX22nN6+c6TvKsjPH45PfcNNqW7CvHnHs9HB67lPrla6SWwK2/Mj1rYGdk6ZWfjkKYNVOYWrqhEGrVcDOiz2Qd837lNRV9muddMkZ9gZXAXPp/reMPnXPutVTJyWzX/HHV+Q6du7zu1uMoxOnia+o9r/r1osctX7em0d4aXy116tsgL1NcJmZbZYwr6asFrQjbwTTvAyGEEEIIIeTlYfW0L4AQQgghhJDnkZ//+Vfxb//b38Rbb51lAjVIgFwkhdTiYVmW07IeV+XYY4/pbwD4I8c/lrlzyL7Hvw5jAN8cIh87c1OluzPtPuF14RvyVEt6n6cC4ZUA8o3+6ZhWGtb79HjslNBzLk/RluJMhFQpV7NbgUY7kI8pj6GUWnJsQ2a1ztsVgaWIa1xfMxnakbmLJKwe4zEoU51eXls+61S1GWPg5Qkt9xvAeANvfNaWvTWmZTaOuqZ47HTvvPf5S1+Ol76YzhkaQzt8fs1q3HjejqD13sf+Mq4x6VzyeI2Z9nl1HUZdh76m6TWlt728zwzCujXwzlevydhvml/ZY+rrw9L4tM94AztYOO9gBxuuc20w3Bhw8uYJ9g/22D/Y1w+cEEIIIYQQ8lLAZCwhhBBCCCFX4OxswHvv3cJrr51UCUVNP9B2HVGpGTM2O/5V9z1LXOU6zexzdeUrOfj8G7W+bLywrK1hLX/zJLU+tpb+4c9vR4yfXcBfKDk091LqXSeSRF0sM4/1/OX5pvZSiJbnPzZ9OXde3XYwaTr31z2sIZU71zKbkG0d05PSS5LQ2evquDdMVi64cf7u+TrPT/Me9Z6TQtovuR/NayuO1SnabBwlfY01sdyxMSEVazc2pGMJIYQQQgghLy2UsYQQQgghhFwBYwxWqzAXZ8tTxABbIcLSnxZ4Ji4Xnv3I9qfJF31NV5O0er1Mr4ZlLUPbfspUxzZ7FQKzFLp5eja9jtKxuXC1No2ZkthpW88dO/74IR78Nx9g+717+XXMvKyqdGujTymmMkkl164EbmvZPFenLdun2nrzolYp28bz0BNyWYnh4vEulswzx8TxW2OVfefSwh2xW127Hkc9xkUCtDxPeW29+9G4zqbcLh5T9toqrrF83enHVK635optfzbX5YqjZFWiNaZiG392sLCr8Me5YwkhhBBCCCGUsYQQQgghhFyRJEXKL9p1OdrDacz50Bm/xH9SXGc69pjnqRS6S18Xed+6NHYuc2dKYzsPbEfAqZKxx9yLUoRG52VUl77Imx9ajdESwDPCsXeN3X2H2huP6+B5j6UnTQ9cdzepahrX2znX7P4lfXv3B0V777GUf0uuQb/mZ57HQ6+R7nNaXE95Hl3GuyV3YRDFrZ47lh/jhBBCCCGEvNxQxhJCCCGEEHJFrE1zcba+bS8lWN3WTtX2eR6/0X/S88k+HlV528YtbiVdDz9vWirmYv7wNdXXWErY8jWkt0MKFs15ZCUdu1rZ9Nqd5FWWzOyIttkkY0tQIbVlZV7R6NuTtWV7S0qWMq285sbb9FAitpuGvW6KcbPnYu6wmeuvHrPp34dDx8n6XKninjgvz5elweX1UL4u0Hi9NF4/2fXq12AhYpup6/K1qq63l9aWNGzZp5eOjYlYq85BCCGEEEIIeSlZPe0LIIQQQggh5HlE5FqJ9x6Q9FQpsppfyLfsCL+5f15piduiByQ53T5e9udLD+AHj/a4fzliHD2c8xj3Ds4B+73H6IC9MRitwX5lMQJTHw/rPE7dHsZrWdsQw4e2s10Nkdvq03tZF/KxPG9L2pXnrcYyxVgz4nF2DtSeEJ5j6Vt27rcJJt9vYOCNz48p+hwc50B/Y0z4zOr0MzDTq0/1h8/HR3HdZZ/GOFe6/mJd359sfJP6Zo+v95i1eAXycaS/8ZnQ9sandqQxpL0Us8PJgNWdFcbzEX73bP9AhRBCCCGEEHL9UMYSQgghhBByRXKfM32rj3K+WCgxq0vJmmyc6y2Z+zLQExrHiQ7vvzgxMuv/4utEXkc+E7veA9++t8WPHuwr8ee9iC8Dv7LAAPiVhfcebuewHj1+ZjfCesBaD+cmIavTjJUPPfCCNP2/ZloVB9Zb5yx/z1BsV6nmnhDunK/ZVgrd3nFz7XPoY1ovvSOFbBSL5bFL5GopLKc24wtxulDUHrx+fb7WgOpa5LjmtaBxjsZ42eNCcV4lWgFkUjWK1enHECJutZTV/Yw1SepKiWKfUrHGGAw3BtiNxeXHl9jv9vVjJ4QQQgghhLzQUMYSQgghhBByBK++usE/9U+9h5/7uTsYhjxdqL1eKV1zb9Rqy/c9PZJUXt7/STN3Dr+gT+fIlg9a2Pa4/N0PH+H7d7fwPshU5wH4kGb1PiRfnQe8m1KwzuPhymJ1U/0nnJfrC7IrStnpOO89/ElIxj7cDMA0lqRqd3sH+yf341girrzzWN9Y487X78AM/deCMe1EbNhZ99XJwkzYln/ZMKYtZbsXlZaLyhPPXPO1Sti5ccrXV9HeFLK6e0fIVpIyd/3t69FvfxGMIkRL2YtiX/lYiv7G9x9H9RjLY6EkbUvO6hSrvlajjlciNruWom/808cXIrYpZicpG/fJvLGDgfGG5YoJIYQQQgh5iaGMJYQQQggh5Ahu317jr/7Vd/H666ddqdObW7S1/nwnYq9iKctjvsiSnUvO1e+zRMp6D7hJqo4+bI+TbA3L0P5Hn17i7/74URA2HWlYXc5gsRpsEm9awKKQsSJoXVienwY5Cxf2eeeBvYf/8FEQt87Dj2Hp9g4nr53g9tduh3SiVWVd5XpLRLAq+ZVJV9Uv32ykWVvzj3b6du9bh9nyxL1ztM535LGLS/QeOveB5GvrmkoBelTJ4Na55851ICl79DFz68D84yrPXQj9eG+KfTJOJnZln0rS6rLEmcS1gHEmzjMrpYq99Qdff4QQQgghhJAXE8pYQgghhBBCjsJgGNpzbsp8sYDpSthng0Pp1yXp2McTm9fT/3i8T3+989b72+O02I4O/5e/8zF+cn8H2JT+TP7Uw3vgRxcjVmerw0/DdIwOAGsZW26XKdlSyurt2CYp2jFsu9HBjx6f/L1PpseqJO4YhNIbf/4NnH7ptEqtdud0NWqfbi+PK+kkYjOp1UvBLknQlmP09nfaDsrbRr+mfAw76vZeyrXc30rHtkRmb9m+6OY1SUq1e+1Fn3jtrXNretdcXhNQly+WfdMxVXlhdS3h/Zhfj/FJqEbRKsfD5HPEqmRs2RaXOhWr5o5d+qMBQgghhBBCyIsFZSwhhBBCCCFHEhJPeVtLzrVTUE/y2/ieRF0iV1vHYGa8p8HTOq+6AnUJu9HjfOtS6d/R49F2xD/46BwffHYJu7JJzBTzqBpjYNe2Mb46gfguEU+tbf0H1G0O6by63QRZ5J2PST5vgpS11gIOuPjkIkvM+jGkZmGAV3/+VYy3xpj+i4/RAHZtMWyG+DBKYVmK1FLoZvvKMTpytj70gFg9tv+xSd2SIsEZmhakSEshO1OuuMnSBG05v6qWv6YjP5eer9FWnm92nJ6slnG06NVj6+tWojYbc07cFyL3UN9Df/q9Et+XhBBCCCGEkJcCylhCCCGEEEKOIM0Fq1OWwW7F7+wN8GSk6zFS9TrSr9LvKrSOO2as6xSvh8fqpWFj6LSx83e//wD/+d/5JCTeLIBJ3HwyAuub69AOxHTdwacDStDpJCx8SO6pazEweTK26NdMxqJIyOqSxTo9K0lZN/WRMsbOw46hTPLHf/djmJXJRK0fPcbtiNf/kdfx9l9+uy43rKVrmUSVNiVqMwG7VLzOsGiu2AUi9ljRW/VTcjVs+rzfIZnZSY8unjtW2so5U/VxByRulKCF3NTS9mBatxoUWao1JlK9Khus2oH5ayzH1dcp65KIjUnZ1o8DlJSV13QsTzwlYOW6s4SsJGIHE37sYD3Wr60x3Bxw+fEl3CWNLCGEEEIIIS8LlLGEEEIIIYQcSUw4KZbMJ7qMq6ZYDx1zlXGvytKbcZ2id6Z3s7uf2Z83OO/x0/s7bPcOzgV55pzHD+9t8cHdy6oMqTEGdmWToFpQpzoro6qeKu99KqFaCleo9J/0wySK3HSMS2PBI0jjMklbP+RcXpUJP2ewe7QDHOD2Ls4z6/dBxl58coHLzy5j/5M7J7CbOgU8y5x8nbufpfg+dOsf5y1x1WMXplWfGJ3zz6Zj545ryN7eMXN9F81l25HMrWs1Pk8S63LJWelkGbc4T3Z8Q9B2xX0jDWuMgcH0uQCkH2oQQgghhBBCXgooYwkhhBBCCLkyOhF7TNI09ZNEZu6XdJ/WuDpi9jhf6j8JQduTKT3b19rurT/+teg5Y733lYjNqgRP6w8vR/xv/8YP8YPPLkNpYRPE63b0WN9YZ2k4AEnC6mRn45J0Cjb2LZK4UbBOCddsLk6VghUhK+3e+ly+yqW4JG69nZZFIjaKqEZSVtKyZgj7zRDGs3sbkrMnFvc/uI+HP3oYShoDeP9//D7uvH8nPfDefVL7l6Zdl0rXqjRyNkTjeZrrt+B8B5lLrs6kY4+aOzbrckSJ407y9iiukIDtpnQPrOukbJbYLe+LyS9IlzPWwlVeK+WYrTljY3+L+F7TZbu98Sk5r+aR/cJ+F0MIIYQQQgh5JqCMJYQQQggh5DG4aiK2lLC1kL3yFWFe5M71v45zf5EsFb9Tq+/vK5OyP/jsEh/d38IjyNiPH+1xd+tgp9tl7JR2G0wmcADM386sm6mkkUgpYybRWm5LiWIkmavLucb0bHkRkyjSAlbEnrGmkr9aChuYkLAtw61yCgdgCNsWQcruL/bw+yBxH334KLs/3nusb65x88s361LGM/eru162HfFyXix9e9f0OBwrZNHpe8R5rjxO73pmxPHivuj0PzTeNdMqG10J26K/TtfGRLZ6HWali3UbIYQQQggh5KWCMpYQQgghhJAr4VW60sNPEmvZF+1zadcnSe8cOnJ21XGfxP6lCVl/RJ92vzT3b+Cv//6n+K9//1PYwQIWGD2wurmq5oUEUCc5e7exTMW2LqlYxjk4PfJkrC/66j8gCNLeUgtgn/a1koKxVKudUrXGh9StS/u8D23eefghLM1o4vqPf/vHgAfczsGPHvvzPV79+Vfxi//mL8KsO6lU1TYnTGfn4p0TtnPrvfMs6Hc0x4jG60isHkNxjkw++k6/jnDN5pLtpXRVvyw1C18f05C43dRw8QOILCErT6tKusa/RvpWzxkbE7LIj4uJWDOlz9Ucstl7lBBCCCGEEPLSQBlLCCGEEELIFZBkq6yn9lp4lv3yssZLJeyhfnOi1Szot+QcvWOO3b9Uml5lf9kvLFsJZl2y+Kf3d/jdD+7DTf3+5O4WozFwIloHwIqA7SRh56RhNj+lVxKxk4iFQVYyOOuDThJ2OkaXKZbUa7XU6VhJy5ppHKuuS5Kx+jw9CdyTn3skgYxwTdv7W3z0tz8K1+w87nztDm69d+uwFP2iUoVPIbx4dOL18ID91OpVZe7jpmyXnHdG7vbKMGfHFv1Kibw4haylbO+jukjCyjIKWNTJ2OrzgxBCCCGEEPLCQxlLCCGEEELIkSQZEBKxbTeQ0rL5sfV2KlG8RJxepU99bYvim4v6zLFExLbioceM01s2jvA+E7C6/7c/Osf/5m/8CM4AdjCANRhOhpAIFUGJQqqgaJuj97A7ktMjyVYtWeM6TEi0qoRrbC/bZBz9J2WHdZvg0L+tpr9PUo3eevjRh9SsS8sow6zB9vMtvvNffAd+5zFuR/zcv/hzQcYeQ+O2t4R48/k5woU9sVRsOkFfBs691Y5Jyl71HEv7ZN3n57VdfMzS69FCtGxvyWi1Hn/o0LjeLKVbyFs9B20pXrOErJ3mjFWC9mmIfkIIIYQQQsjThTKWEEIIIYSQK6Clnki+Rq9mejYdP5WwnMRt7oy0MF0qXHvHXEXYSp+rcqyIvcrxC6/E1/f/0XbE/+1bn+Du+QhY4Iefb2HWFtYEWZgJFKBOtwkLb2E8VsmzmHwVETuXhm3NGSvp1zIpq/qkyyhKvtqGpJXrs8W2QShLbEKatitqy5LIRWpQ5pM1PojkAQOccYABPv+Hn2O8HOH3HmYw+PJf+TJOXjtZdo9fIK49Hbv8xI/3dn8SzFxTt2Qy8nvYLIlcSmxZ6r/GtZRSNit5rCWstDeSsjAALLB+ZQ27sdjd28GPz9qNJ4QQQgghhFw3lLGEEEIIIYQcQS5hJSUrQjXvUxw5tfWStIvOjmQSWsslxx5quw6uImJ7CdmrS9ky/eo84J2Hcx6Ptg7/5d/7FD/8/BJ2bWGMgVlbGCVO9LywTRErtG5ruU9LWOSCNexO8igOI4IVqU8lZXVqVvooUSXzvGZLKKGrJa0uYazKE3flays1e+geKSnr4GCNhbEG9753D5//0ecYL0bYtcUbv/wGTl49mR/zSfE05O91pE9l36FSvkdd1hHlh4HqtR/nOD5mrN741+ksyx9UZMHXYh7YVgq3FK96TJWSzX7MIXPGGmB9ew17YrF/sKeMJYQQQggh5CWAMpYQQgghhJAjSWnYVKZY5oFN88HmbVKyuBS2tbgtzdaxwnQuEdsTsmi0H8uxKdcl+5dK2UPLcI//y7/7CX7vg/swg8F29Li7dxhOBpjBBBlrixSsSsnFEqQl5e0t26RdS1gZy9fJV5GrkHSsbMtxSFLWu1zgalkrf94maRvnhZ1ka0zVytyxeunVXLIuiVo4xDZMctt7Hx+Ht1NpYlm6qWTx1Ccup2v3NvQVWSWP5Xv/5fdw450beP9feB/rm+v+PX8M5ub4fWE4VvIeELmZ6Mf1Sd/qtyWtfWUbEEsJHxzP5I/tkBiWvjF1rqRrdmz5YwEtaqdSxsaY/PNkSsdK+p4QQgghhBDy4kMZSwghhBBCyNFo2YpKSGjBqnclOdv6Bj4YA+m/ZBrS5dd6SMhKOzr7lpzjmH1PQtzWjM7jcufgPeC8x//vhw/x//4Hn4ckrDUwg4Fd2eacjpl8LW5Jd47YqbknqLQ0Xdzm0/my0quxxHXRrtd16WIRaEVpYp2SzVB9YDA/j2wrIauElIOD8QbOpyUMYL0NZYo9YAebhK7z+OwPP8P5R+d47zffC7IcBmZlMGyG5r0lzyHXnXZdek5ZbYjnLOnaOtw0RKzaV52nIWdlfdFc04QQQgghhJAXAspYQgghhBBCjsLDOcBJItAniVqmXFtli8u0rKRrwz6vvqDvJWQPLVGs97aByiZk+x6XJWnXcvvQ+lxbvfzbf3wf/9nf+CHMysKuLX58f4vV6QpmmOTrJPlglXw1HalSrLckqpw+O17d+tYcsZKOlRRslpaFSsYqkZolYIuHHtOKeh3I5pPV+yQBC484V2wsVywljV2ektWJ2CopqxOxLh83vkwtAAc468LYg4cbXSjXahHLtu7P9/iD/+MfwBiDcTfijT/7Br7+W1+vngPynKEkbJSbS9Owcx9PKsku78ODSVglTaMsLX9UoF+7uq/8wGH6EUe2rfqVQhZmeo/bmcdCCCGEEEIIeaGgjCWEEEIIIeSKtEsN+yhZdR9Z18u2SG2e6cD+Vr9DQvZJchURe31s9w6fPtrhTz65wO//6CHM2qZyxCuTkrBSFreUsFrQ5Aa2ItuvxasIppbAneSqbs+SsT5P50Wpajr9ZR7ZouRxlPu+TsbGEqxIZYzhwvV656NsysoVyzFa8MrjlsfVuCdyTjOYKG8BRCkOTPPITvfMw8OvQnnjBz94ALd3GC9HnH7pFOcfncehN69ssDrlf9KSI2lI3ceaz7Z3DjV2mYJlMpYQQgghhJCXC/6XKyGEEEIIIUfgfUjFyl9ItgJBwkri1StJK1JWp2HbIlfGCd/Rt6TqsanYpQlZFO1XYU5ktPYtScguTcrmY3334wv8L/+rP8bnFyPWtzdBwtpcwpaptWpOWCU+9fbcw8sEqjf50yD7lSwNu3KBmUnTMjmrzlfN11m2lSlZlb6W7Uyu6kSsLI1Kxvp6HlmdkJU+3oW0rKx752GtDRLW5vPPmtGE+WRVMjbr4zzGYYQdQynpz/7wM/zO/+p3MF6OGLcjfunf/iW88+vvzDwx5LniUPJ1ps/sXLe9lO2h/b7oqxKuck5Ave8b+6UssXzuxB86SDshhBBCCCHkpYAylhBCCCGEkCPJZSsQRGyZkG0lYbWczaWsMalcsTHpmBSeump6dmlCtjQPx/AkROzx59ruHb77yTn+8CeP8JMHO2wdYhJWC1hjG2VEp+2wMP3bMCN2orj1StCo2y2CtUy5hm4NKQvVR503k7rqHCJX051KqVddnjj2VUJW949LmwtYeATRCiVqbUreGmdCmWFZN8hKscbr8Uh/8hh9/liMN8AIWGfh4GBXFm7vsD/fBxl7OeL+H9/H6eunuP2V21jdOP4/bWfny/2iRdk1hjJfOpZI3Os+R/n6mNvWKdlSxFLIEkIIIYQQ8lJAGUsIIYQQQsiRSDrWe0nH6pRrKlOs253zk2Q1qp8+LqURp7NMy17ydS4VW4rVXiJ2Tso+Lr1xlorYpUnZtPz00Q7/yf/9A3x4f4f9YGFXoRSuCNcsEQvUidhCmnRp+Ttt3EUmSl9fyFVdOjgekvrnr4P6oRvfmGezERYuk7HxGCVCRcjq9ihpi6UWpTohK2WVvfVZAjbOJzuGfdaFhKwzLh3jwj45xlkXjjUAhjCWHS1GGxKybuVgBgO7tvjef/U9fPD//AC/8j//Fbz2C6/1n6/niKWlcheX1H3eJW9DtM6mYK/rnNmm+oFCdTH5evnjDnkft+aOZZliQgghhBBCXh4oYwkhhBBCCDmSWsCKXJXUq07FShlj00zKCrp/Py7VE7FLonytPo+Thp07z5L2x0/Heu/x9374EB/eu4SxBncv9ri7ddh6DztYwAaZF2VsqyxxUXI0svSWxASzSqTqOWFFYGqRo9OfphZrWeJVXU8UUOpYfb6stLFO2qokLIBU9lgSrXIvyjlj9VJOZlEnZKcUcBTQDikRW8jfeD7Xls4yhh1suk4DWG9jIljuw3g5wu0cPv47H2N7d4s3/uwbT3YO2SeVmF36llk63JMUlS8R8bW98Hb25p2NKfJyP10sIYQQQgghLw2UsYQQQgghhByBTrqmOWNb6dhS1rb2SYI2GDQpUyxCNniqpcK1l5TFzDaK9ta+JczZita+Q2K21V738QD+87/zU/y//v5nGDYDMJiYmhQJK2nYKhGrJWCRjG2Wrm1enW8n99TxWsDGOSajwVX9HydIPLfstZX7Dnl+6eNSm6RbsxSuaRwHdYydkrLGwxqbUrBj2C9tkpoVOQwAfvBxDDe4sNw7fOc//w5OXj3Br/0vfm25jF36doISyEuOewwWp13TAe31x7mGF1Xktp6zVhGBq4zZSNLqFGzsU/wghDKWEEIIIYSQlwfKWEIIIYQQQo5ERGyekNViti5TnLZN0WaifE1LwBhJf5ppvYhaduVryzCUBmnOQFynjDlWxC6Xsr/7/fv41g8f4HufXcKsLbDK5WtMxNqGhC1LiyYrehRRoippVz4dsaSqdr+mIV87T0WcexZ58hVAPnfsdN4yJStyLUvCSpnkMi3r1PiNP++mcsLlfLMyrjcpFVtKYKe29T0qnotyabxJ1zuGx+vggrT1qrzx3uFP/h9/gtXZCuPliNtfvY0v/5Uvp1TwoZKwByRrd37Zx+WYt9vjvDUPHdvZXwriLN39RfBFuuFDT29nf0yfFxcbk7AdEWyswclrJxgvRmzvbr/Yx0oIIYQQQgj5QqGMJYQQQggh5Eh0GjalY1viNckwLWHDdv4nbUAqa5wnY/X6nJDtXnWjz+PEwg6d69i2ZVJW7tHf/uA+/k///Yewaxv+yrLEdpIkU7lcLWG1nI0cewsaty4rO6xud1PizYk/XY5Yp2ZNvj+Ts0YJ0en6ooRU8nZWytqp3ZlczopIFcmqBW1xzti/lLGm2HbFchLlDi5bipAW4WXDExvmpwXg9g6DH+D3Hn/8X/0xxu2I7b0tvvybX8a7/9i7MMOsYb3aS/+60rFer/ruvkPHHtWnfF4eQwBee4r2SctI/TuVx+ijS3NXx+plua9IxJrBYPOlDcbzEbv7u/BjA0IIIYQQQsgLCWUsIYQQQgghR+C9xziGP52QFSnrnIed0oPOYRK2uah1DjBGtwUDkM8t66eEbC/dWl0Z6lRsz4T1pGxr3xLmJMKx6dhee1j/1o8e4K//waf4hx+fY9gMMENIw5pBJWJbElbEZiFMsrYrUM4DCyCbz1Wfa+k4VYpTSzud8lRCLUrR6WnX4jWmQ0Xs+vzYKFZ9nf6Mc13qNKxaltcn885mSdjWUp6TSWzJn4VNSxvObVxK73oTkoZxnlo77RvC+88M4THe/5P7+N3/9Hfx9q+9jS//5pfze2n05kwJ4mP6HsuxInau/5PmquJ3Qd+rCN0rS+DruG2lrC1fA3NCVtrV55Gx6bOKEEIIIYQQ8uJCGUsIIYQQQsiR6Hlj5+aFDX191pbmhc37i4QVSavPJebHxDRWLxW7ZF22gbYxuE7RcxUR2z7GOWDnHP740wv89T/4NEhY+dPliU2+bEnYroBdEi4u+uoyv7HPFSRdVSpZvwamcsQA8qRrbERelrjc9ml8OSaWT57OHZOwCKlT4021hEctW1VJYhHFHj5J0qJMcnaMR0y4VpJz2h+fVyWaJe0q996ugsAd1kM4v/O4/PQSH/w3H+Dk1RO8/Wtvp/T0sTwJIfs4adTWwYfkpv+CBG7r1HPitBT0zypXle768wgmvTdQvFevJWZNCCGEEEIIeZahjCWEEEIIIeRIxtE1k7Hpz8A5D2MQU7BpGdqDdDUxSQtI2WNM5YllX1hvy9VjhSyQm4XHTcSWHJOQnduu17/98Tn+s9/+EX7yYAe7sSEBa/M5YpsyFuimYoWD84nGK+k/vqvOOztzsiROJdGq9mXLVlsj+dptLx3/3F+ZDCxLEst+JW0lWVv1QRCqOvGaXaMLZYm983Hp4GBtSM3CJJnrBx9E1yoM4lYOsMCH/98P8fkffY5v/MvfwNu/9nZ+DXKfzQHB2hCy4XYVzwvQf/6bjnRerHbbriovfbl5YKAl13Jd51v6GK96TU9R+MqPHcp1nZIlhBBCCCGEvNhQxhJCCCGEEHIEIkyDdEUj+Zqvi2RNS5P1SwnFMhmr29I6IGVqryJkW9u6XTjWDhwjYVttdR/ngbuPdthP8vqHdy/xd370EDvvYYckY2GRkrFAmiu2k4oVlgpYjT5Gz+taPYRrkiutksGt/bq9SsA2tg+t67FimeLyOSrvqZ3EqvO5fLLTGGqu2vi8WMA7n56raa7fKHJV6jbKW3mefVqXRK8dLDw8/Cp0HjYDLj69wMMfPsTbf/ltvPqNV7G5s4FdX09d2CwlmxoXHdfZcZWL+MLISnL39mHm8S07ydX2PS8UH9mPWyadEEIIIYQQ8nxAGUsIIYQQQsiRhGSsg3MO42imlCxUMhYqGRsMgl7qpCwQJJS1rWRsErEhIdsTsGVkcW4dqK1GKwr4OCyNtfW3H13u8b/+69/DH39ygdWNFbbOw1kDa0woN1umYW0SfIASp6bYVm1XQqRgKXM7qdvHPU/c9EV6c1pGIVi2qflc9fyuzbljtfBc+rcgIWtckYhF49jp+cvSsSYd70K0NvaVhGycO3YMA/khX8Y5hAcDu7L47v/1u/jgv/kAf+5/9ufw+i+9Xt3rRelY1O09QV5ypRRq0e7Dk9sfIqtvPnNu315Wz1Wrb+v6Wv1b/Z4gV55HNhvk8YdYhPpMyhLhhBBCCCGEkBcWylhCCCGEEEKOwHuRrZiSsZKE1X86/brkLx0TzgEAfkrFmtgnT8RWV6ba59bROL7XfvTdOWJfe9t74EefX+An97b44LNL/PDeFqudS/PDlmWJJR05yVGditXt086cyqfWSdPqUg/douiAj7+XWfKwCDNnqVx1QSJW47yyBrH0b9wuErCxP9rpWH0fynRs2UeLUg81Z+yUjo3zY4YYYLZtrAEcopAydpLEUyI2zlUr90SWUx/jJgkvr4EhLY0PEhYO8GuP7f0tLu9e4t5372F1tsKt925hOBmq+39wPthee+O5WcxSEXuV8TqHLRnv2uaZfVK/7Xjc45dK5ychadVHOeeMJYQQQggh5MWHMpYQQgghhJAj8B7Y7x32+zBvbEjJ2mk9nzu2TMbWc8bKX5pj1lpJx5rYP7SF9GwSsiWtNGxPwvbs4nVah6URudyIjN7jP/v//BC//d272A4Gqxsr2NVUlngwKQUrc8OKiJPytaWEVbKwkh4dB1IlUFW/svzvIcGb9S1opipnUpmSjIyPTSUay3RsXJZJVJ/3z1Kzbnp96XaP7p+Mk6VzDVJK1uRj6usw3kRBG/9c4/r1PdVLNZ+sXLsIXCC8HqR8tbxuxt2I3/8//D5OXjnBr/8nv45b792qfrOwWMiis+8YFv52oVkeuPy9QCsZulQ26uOvQ0rKayRrSuO3JO/B+XMP/Zajc95nCkl8y48d1I8VCCGEEEIIIS82lLGEEEIIIYQcSS5eoRKxUElXXyVgncNUjrhMzgbro9uM0XPM+kne5pI1r5Q7Y/Fmk7HXZZbK8Q6119vf+ek5Pvj0Aj+8t8Wj0WNY25iGFblWiVgtWU1bwoZFR57O0bhNlTzJgrfHiZW5RFwrJWu8SpnqdpVk1WP3ts30mpJ7F9tNnYgtr7dKyZpiiZSOBcJzJPPI6kSszBWrk8zeTrJZ30eD5tyxIl4NTJ2MVXPJGmdiqtp6i/3lHrsHO/z0d36K84/O8fo/8nqaQ7b3Fuo9TVd96xwShteYzjw4P213d2aD6/3e5z8SWHYxs2MeTUfs6h8pPLOUv5chhBBCCCGEvNBQxhJCCCGEEHIE3nvsdiN2OzelYk2WjB3HPAFbJ2MNjEnpWAAxEavnjHUu7LTWx3VjPKwN3+KXU5bm3+4fkrBzUvY6WWKV0vZ//fc+xv/5d34Ce7rCcDrArvNEbDZHrFq2JGwlZTXHCBB9q7T87AjZ2FQ/Qf1TaGmkxase2yOVFp6kbJROU0linUCNZa2VmIoJWKNSrzKOpEonGZr10UlYaXP5tUVh6pDKC0u/QqaKsI3JWbmfkoxtLbW4mpYWNl6nlDiWe+RHJazlVg6hj9s5fOt/9y3c+dod/GP/6T+GzSsb9WQgK+EcH9/c03ldb52ZNOlsv0NzxRbi9Srlh7vXos/bkqOHPgKK9Wpe3Kve27nj/IL96Mhc32m/AvpHC4QQQgghhJAXG8pYQgghhBBCjuDRoz1+53c+xpe/fBN/4S+8gfU6L00s878mqSqpVq+SsZKSNVlqNkhZH0sSSwljIE/JluI1n0tW28OlUla3PS5Lk7F1mx8MsLYwKwM72FRqtpSuLRGrRF0zoVomWGcfQS5HZ9OwLel65K1sXU9L0uh+1byxB9rKeWDLfbFdCdLW/ngOEawiO0Wc2iCL4xjWw7hUkriVevUIfaqEbDGHbCZ2leA1dkqP65LVHmnu2CGUM7bewq/CQXZlsXuww3f/i+/izvt38M5vvJNKXR+bkL0OrlnELpGNx15T85xzhx/oV5VGXoqfuT/dQ2Y6Lr1XrfUjrz0KWP2RzXQsIYQQQgghLzyUsYQQQgghhBzBgwd7/Lf/7Y/xzW++il/+5S/FVKwWsvmcsSiWPpsPFiiTsSE5m5ZJ2gYpG8RTSsjmgjbJQW2PDklZ3VbyuJHABRLWiyAzGE6GNEes+oNBlYwFCik7J01bgrZDNv9qkcbM5GtH+B6SvZooZsJGGkqlWmVsLbfi41FiqiVrK/EaXy/pHKVojXKzELjZfKrCjJSNQtao12WROhQJKyWHYx9JWuo0bn3zwvPuQzliN7i4LUsLCwcXRKzxoTyyBYazAdv7W/z+//738favv423f/3tJGOnsZsJ2em5uFaWitjysJ7snJGyrfLDs/PFHpKOZcr0wG8xuvPFFueRa5L+0ufg3LiH9nVv2ReQUNW/j5FtHPd5QQghhBDy/2fv335t2fI8sesXMdfa+9wyszKzuu7VTV/cttsPtrrVkhGNhcAW70gI8QAS4m9ASIh3JASCByR44QUEQljAA8iIB8sYVGoZX7pcRbe7qqjKyqqsvJ7Mc/bZ17XmnDF4iMscMWJEzLnW3jPP7fNpLcWMiBEjRsScJ2XXd//GAL6chLEAAPAIKfVTEh8OabaGbD9NcZpNU5xv27aZPo/51OlYM1TG9uHsWCHbDQHXaVrjWgB7rcrYR5StXXy8P/YHP3wZ/88//TT+8Cev+iB2VwSx+Tqx+XYcdq3iMh4WwC60p4/VKY+bIkR55H0WfeRZWZNm+/m6t1MolYWP4zqwfb5bqYwd2lQrY7NpiRfhbHZ+Wuu1G44NVa9TgNtkoW1WvZqfy7+vKYQdpjeOGALadh7E5uOe6bKQPgthIyLa3RDE9uW30TVdtF0b0UTsbnfRNE3cvH8TL37wIn7/f/b78Wv/4Nfid/7Lv5N9Adn3kL//S/6zOaeaKW6EsFsVsbXzMf/tTKH9uf88K+0uDofX2l0S1m53/KA2a+vIPijIrfS3FtheFOQ22X9H+T9yyKv6AQCAryxhLAAAPEJKsVoR209VPE4zfNp2XT5tcQxVrv2xdgizxmPjdX0gG1P4ulUhOx6PiGiaMZzt2/ceWhl7SUpwLohYTzu6FHHsUvz/Pn4d/5c//Hk/NXEZxJYBbK0yNh9qrUL2IY8zNj0XwK5Uxc4Prd/wkgBnbVri/NwUwI7HsorOWbs8WL3w8yw0SvMK1zFUmrZjgJtPS3waxDyIarIgauyrbaZ1aPO1a/O24/ExgI8mpt9J6oppivuBT++k2fVVsmmX+u1N/952T3fx5uM38af/5z+Npm3it/6LvzX9BrOXfxpH+Z0+JJjd+MofOu3uar+p8tvaCHcvmnJ47fravcbTWb+1Z6vdd3Pcl1S4rgXcK8fLKZ5TuiCs3jqWVtrVCGABAOBrRRgLAACPkFKK/b6L/b6Lw6GLw6GN3S7FzU2Ktu0rZCNi2rZD1V9eFduMFXdTsBhxygf6cLWvkO33a+3H6Y/zv/z60+fY2I/ieKycv8TlacYf//RV/G/+o5/Gj57fVytiF9MSl5/z0LUWwj4w8FgNdotj/WYllL3wvrOpkMtr85Arr3TNvtKxajafzniqOk2ntlO7shovrzZt5pWnizZD8N+krGI1W6c1pTSvlG2HttmUxXn4N4XGQ8gbEbMwdQq18r+IU3/5++36oHV6N8PzN00TXeqmaYrHd9J2w3TFT1LEoQ9jxzD3J//hT+L3/nu/F3/rv/a34rf/jd+efy/5e8+/w0qbS9WmDK40mu9uVcTmv5ut8PCSULjsr3L/xfgvDSdTcb4Y12yK4q13ungV6RQSbwWrlWs3XfDvTRZr92bjKP9bBgAAvn6EsQAA8Ah9ZWw3TU2cV8WOn0/VrrH466ciHs+dqmIj8vZ5JWzEqTI2D217pyC3XEd2PBaz/eGq8qkqT7qVLF6SLCzbHLsUL++P8VfP7uL/8/3ncWyiD2ObPkQbQ9jyrxrE5uHomSB2tt5rzSUhbNnH21S41a4dA8Xx5BioZuciYqpUnR3Lq2CzYDIPEKd+hmcZ206fh37ydWWr0xaPx8bph5usenY831xWITt+t4spjCP1U1SPQW/2/Y8Bb358rMqdxpMFxWXVbNM2/TTGN31Qu3uyi9c/fR2f/dln8Rv/+m/M3mvt+5nec/beL3VR5erW8YfdrH7PyALEMqTdClDf1bi2+i/2H1Qx+5h7zU6l+Xso77UWMD/kftl/r4v/NgEAgK8kYSwAADxC16W4uzvGzU0bt7dt3N52sds1cTj0KdHNTYqI/lhERNt2EdFG0/TbiIjjsQ9QmyZN22YMpsbqsBTZVMT9vfPt+NdfH0OgOV+Tdmgd81RgrUzrbapjLytF++Gzu/gf/7s/iJ+92ke3a6Jtm1lV7LhG7GLa2TyQHfeL6tjZk5wLX6eG633N+sg/1vp+TDBbCWpmVXZjpevY/1itWFTA9l1l4eDYT3b9NM3u2E9aqZLtskA/FeFrGcjWKmTHtmWFbBaeT2Fvyl7aSsVkdXrgsV32fbWpPa19OxwfK2PbaCMdU8RNRNf1a8emNsWu69eOHadIjiaivW3n4znzn8T4fVzkcf9+4ewasdPvIj+X/y7KY5Ugtmy3WDt2bc3V4t6L6tm8Te3dbT1XOebsXtM2q4Kt9ZePoRr6XvK+V8a0FRrXAvDpv6sz/3AEAAD4ahHGAgDAI9zfd/Gzn72Jrov44IObanVs2zbDtMSntWFPVbAxWx82pmrEfBsRcWo7fs7bjIlUH+ie9nvZupyzStmYpjx+u/D1Eqf+jl2KH312H9/7xZv43i/exIt91wdfaxWw+fDG45Htv20QWwauF4S8D66Mzc9fmH3n95gFNykbW4pqZezUPi2DnylMzb/6dHquvKI2ImZVtZuBbBQVsmXbpnK/LDAer5u9j/J7b4bnLX8rcaqaTW3qpy3OKminytlx3eW2v6Zp+3fY7Jp+WuObJppjE+1NG3ef3sVnf/5ZfPBrH8TNBzfroWzxvb21lT4uCQYvmp74sdb6vOzfXtSPPTSUroWol9yzOL46NXQW1lbXwV0JbBfTOpfHAAAAQhgLAACP8sMfvop/+9/+s/gH/+Cvxb/1b/123Ny0cXPTxOHQRdNE3Ny0caqM7eJ4bIYq13kCMFa0tm1fKTvmcG0730aczuV5YNuOQexYGVv/K68bjsR6gvGQcq1z4UN//vmbQ/yP/h9/Gd//5E28ir4Csd21p2rYca3YIUzbrIgtA9R4eLXqbNrbONNn2c8Yil54r+r5WsAzBqz5/bMwcArmxorXscp1DEjHStdiTdla1exUMZuvK9v/XPvjbVpU1T6mQjZfMzavcmy6ISQd14sd24zF42NAlv03sNCd3kO+VmxZGTt+jhSnCtmmr5DNnzki4nv/1+/Fn/87fx7/4L//D+LX/+Gv17+vd1nN+JAQtiz8LNcqzT6vVZ0uqmKjqFpNxX55TdH3rPK0vF/K2qz0NYaY5W+k9ryzY+nU1yyMTvNzi8uLStrV6tzsPZRVuJvr5ebPk58r/61MxLv9HQEAAF9YwlgAAHiErkvx+vUx7u6OcTym6W+sju0rYmOqjJ3v9yFZvmbsWEnbB7Tz6tmui4gY16CNqc0Y5vby/0t//n/xLz+PFZOn/fH6eZb5dtVdef8pRfzxT17FD57dx09f7uP5vovdk91UsTiGq7Pgc6sithK6PqRitQxYN6cnLrtdmbb4UWpVsWNYmodh2deXT2Gdf9XlGrJjQDlNVRynUHW8z1T1mq8rm/2EZm2KIHazQjbmFbKL52iKvvO1a8fjTfEu8mrYSuVrvkbtrJK2jWmq5NSeqmTH4007VMbumn7q4psUh9eH6A5d/OKf/SKatolv/0vfjtsPbxffVfU7vNSZ/7wuCWJXQ8va5637nQk8NxVB5GKK4o17XLSO7ca9tvpePfc21z/0vdaM/23l/x0DAABfecJYAAB4C8djivv7Y9ze9pWx+30XTdNXyEa0cTymGCtjIyJbz7WL47EdKlq7aNsmjscUbRtTpWtEDNW0p89jBey47fsc14mdrxdbr4w9tRmvHXo/86QXlHVWpJRif0zxv/69H8V/+Bcvonm6i/a2na0RO60P256CtnI7jXUtNF0bZn6qCHsXoewDK2Pnuw8IaWcZVbbTnM7la7uW7fJq2dnxPHBdOZZPHVyres3vPVbPVkPXtUB2rIxNTV/xmlfGdjEPTdssJB2rZCOrxu2yMDXFVCG7WEN2DOnG++xi9nzjsTba6HZ91Wzb9evLpi5F27SnauB0Wkf2j/53fxQ3H9zEP/qf/KP41t/+Vr3y+h3maavhXCVQ3JxuN4owvxaWVqo/q31XrqlWwpafV4LL1arcxSOm2djKCtjqGrobYW3/j1tWrhn7y6/feMfVKaHL+1f2a9N3N8P/AwAAvtqEsQAA8Ba6LsV+382qY8cK2XGbV8T2VbMxC067rk/d2jZF1/XH27Y/nlfPRizXjB3XnB2ranunksk+tE1TEBtTmNEMoe4pmE2pXnU6nL34ncyq44YA+dg00TVN7NoihM2qHMcQcBbEjopq2YWtPCPre9rPQtaLQ9jZcJrte24p+4k4hUJNEfSMwxgrXccgLKuw65vPA9itdS/LtWTLsZTVrLX+VgPZPPDKc/7sO56qZrOq3UWVbJx+B3lwlVfEzqpl47Rm7HRsnPq4zYLdYerrfFrlSNH/44BuqJDd9RWycR/R3Xfxg3/vB/HZn38Wv/WPfit2T3eXrUf8AJsVkpUgdnW/FsTW7nMmCF2913hs5fpFVezQdmsa4EUgWt5363921rLrtHHvrM0idK6FrNm41qZjrq0du3Dpv3kBAAC+koSxAADwFrouxf19N1XHHg59levh0Jfp9ZWxMW3bNsXxGBGRV6ee2vSVsRGzssgY2zXZdc10XR/ojlWwy+rYPJQd+8nXmc1D2DF4eEzetCg8Gw50KUVz00T7ZF4Rm4dm4/SxterXzSrWvN3sZeUfl4FvNYQtQ9v8frXw9QoFbXmVXC1IqlW/1kLZxbTElfOzKYzH4CoLX/M+zh2bxjNUso5VsbNq2WI64WjjtLbsOL7mVE07hmrTfncKYPOgNVJ/bpqCuAz74hTCprbvv2mbaKPt+4x+HE1qok3tVMHbPmmj23fxR//bP4qPfuej+Gv/2l+L3dNdNTx9SEB7dnratRA01gPDahCb/0S2pj3Otosq2IeuFXtBgDt7jspYynVaF/2U9yvfTf65FvxuBNrn1oKtjXftORb9AQAAX1vCWAAAeAs/+tGr+L3f+3H8K//Kd+Jv/+1vxuGQom27OB67aJoYpidu43jspy1u2zEoTcNasH2gW4ary7VgoxrCjtvl3zyUPbXr+zsFsUOlYNHn/P71cPbUJq0cj/h//9ln8U9/9Cr+6rP9IoidpiceKxyzW06h5EOD2Dw8zc8X/ZShby2EvSSAfdsqydn6r9PBmL+DFIs1XbdC2anqtQzZs6C1v2UloC0/j90X107PXwSy47TGU/AaWRA7VsQ2WaibHYuIU1Cbvf9pv82C6rHStRv6GwPfcX+43xjOzipixyB4CGUjIppjM6+OTW20N/28yN2+i2a3/T2/k/U/17oog8lLgti1sVVCz817l/3nx1bC3qkytbgmP35RWJkHwpV3UKtYrd5ja/rnWlhbXlMLcMcxFPdOkWbbhSv8Aw4AAOCLTxgLAABv4Wc/exM/+9mb+M533ou//tc/isOhi92uX/+1acbK2HG64nH64loYOw9N+2mKx7vkFbGnwHWcurhp+umMT8HtKcDtpyM+VdOO0xL3od0phF2Gs+O9T+fPmeUXKUWXIv7D7z+Pf+c/+3ReFZtPTxynYHTalpWsay4JYov+8vuNbcpwd606drr2krGcM2awRX+L6YPz8LUWyo7TFxcBbL6/CJBTszkd8hh+nh7tNP3wFKaOfWT3mwWueUBbTos8bsdrs/B1CmrzELbYz38rU/A63mdYfza1ab7W7Pi+i1B22t/1lbFN20yfxzC2vel/u6lLpwrc/DnexmNC0LU2aXm8eq8yiJ0Oz38TayHuVmi82D8zjkUgWvZTC5c3X9r6deO1ZVhchqZ5NXA1lM2C17NDWTvfbJwDAAC+coSxAADwDuz3Xbx5c4gnT9pomiZub7tIKeLmpo2ILg6HJiK6IeRso2m6aJp2CkTzKYMj5tvxr+2zoVkoO27H68cgNyKmdWTnUxbPt7McsjklBI8t+BzH/Xt/9ln8u3/0afzpp3fR3DTL6YmHKYnzKtkpMM1D1TJEnQYbi8+z4DYP7SLm94jlua3+z06JfMm5XCUgHY/n91pd1zUPZfPjcQqqHrK/ViFbm5J4Ol9UtObvcDGF8RCYxviPC4ZgtWlP0xlPx8rK2HK64uF7HdeMnaYrHv/6AvTT2rHt6V3OKmGzEHbcb3ftvDrytv/Q3rZx/+w+fv9//vvx7X/x2/F3/5t/tw9qrxGm1QLY7Hi13dq5B1TEbk5PXLlPHtyuVcXm954FnJUXN1W5bq0bW4a32f1q951No1y5dhEEF/u1ZxxqXtfHtXavDaYyBgCArz5hLAAAvANdl2K/7+JwSHE8dsP6r2mokI2pIraveE3Rdc1UEXva9udTOq0BO+6n1AzVtRERzRB6pkiprzocg9eIsd2yfdNkVX0xhh9NNjVxyj5vVIGuyEOZv/zkLv5ff/osdk93fWVhOT3xSnJZVrWuNFp8Xg1i86B1JXSdVcJeGsIWlaMP0sQy0Cnvkb3/2VTG6TTmRfVrOlWpLvazsY4VrbN7FvurFbJjwFX0v6h+HftsTm2n/svxR3asCHfH+07vrPhup2P5vSp/07TF4+9vDGPHtYqzdW3H3+pUJbtr4nh3jJ/8Bz+J7r6L9N+4QnhWCzqL4+WxrSC2emwtCD0XBm6FnGv3rd2rDDjX7lsGxrUx1ELfsV0RNE9j3lB952l+brpnJbRdDWgjTr/tyvcliAUAgK8HYSwAALwDd3fHePFiH0+f7qJpIm5v20gpxW7XRErttG2asWQvIqKN3S6GytgUTdNOUxPnoej4N6+EHQOwcT+KytgxoD0dr1XErm1z5zLZ6tqxbRO7J7tpitfF9MTtKVArt1NAGqdXVZ0athbEtln7Zn7drI+VEPbi6tsH5q+ltQB3FnZW2ubhTXXd2MiCnwv2L62QvaRqdrHNAs7afh5S1daKjYhTZWxENN3p95Ha4tg4FXE2JXEtzFutjN010UYbXer66YqzaYp3t7vomi66YzdV4o6VtsWLP++SMG4rUI3sN7J2fqW6tBYYrlbJ1trUQs58yt9yrdjhmkVwmurnt9Z7HdvX+pqNrXg/iymHs3uWz5VSWr67Sv+ze2dtqmvGFtct1l2WxQIAwNeCMBYAAN6B168P8emn9/Hhh7fx5Ek7Vcb2VbBpWkM2r4odK1f7ytj+2LhWbF4hGzEGoqdq13FK4byCdiwR7Lpm6jefenhZohgxTwOaWeg7npsfW8pnQ32z7+KT14d4fndcBrBZleIYZD14euLCIrQtrp3ONfPPm0HsY0PYc2FcLXgpvoZZFWjlaysrXadxpzhVvDYxW9N1Cj3zitm4rEI2H9cUyNbWpM23WfvZlMZpPrXxFNKm5bHqu8x/Q8PaxmO163g+nxZ5Olf89raOj7/Xpm2mitn877g/xssfv4yn33oaT771JBtac3GwtlUReu74ufC2/G0s+i0D1ZXwc+1+1Yru2v0ueJb1y8f/3cnutRE+T4fysLUSMm+OZesd5cezv8V6s8X5iwlkAQDgK08YCwAA78A//+fP4nvfex7/5r/52/E3/+Y348mT47BmbDes91oGnUOYNIRKfRVrO6332nUxrRN7WjM2zaYVzteHzachbts+GTutHXtqf7r2NGVxHr7mwedj1o39/b96Gf/Lf/zjeN3Faa3Y3SngWoSvtbBz7b5FSFpOTZwHsYsq24eEsE0xnrUxRDGGWvtRmp87Nz1pk07jrFW+zo7ngWvW9pJ1Y9c+j+3W2uTvLq9sncLU6kPNn2EKadsU0c2PTYF0O7yLPCRus2fomtkasdMY2jQFtpFiqpieKqezCtkmmr4idghUm9Qfa3dtpEjR3XbRNm20hzY++7PP4h//D/5x/M5/6Xfi7/13/970POUavmeda57K3WWV5WoIWwSLD6qILfdr11TOL4LQ8ZraWrF5oFlO/VuGmdl1swrayv70ntaedWhbjrsMffOQtXbPRVVtMd7Fd5BrinPF+AEAgK8mYSwAALwD/XqxXdzdHWO/P8bh0EXbNosK2dPffG3XiP7/KN9188rY/G+seI04VcRG5NWSzXCuGapwx+0YOKbZWrDjGrF5wJsnBQ9dNzaliLtjFz9/dYzYNdHetouK1DKEnZ2rqN5/rXK1DGLz48XnqV2lv2oQWwSJi/PnlJntWNlZhJuz0HHYX1Sxjk3KCtVYBrKzY3kQ1Cz7nq3Zmorr87Axze89VrZO2yimK05FYFuuR1v0N45vFh7nv6NUGVf+G8rHlK8tm7XLp7HO15KdqmOHStiU0qxKNh1TvPnFm3j+l8/j53/48/jgNz6I9//a+++uurEWwlaOrwaxRZvqWqaVbXV63jNjWz1e2T+3VuzmP0644N3WpgSuTte81m/lc3VK5MrnxZTE58ab/e4PLw9xfHV8d78fAADgC0kYCwAA79Dr18d4/nwf7713EymVa8fGtL5rnxO0kVIXTdNOla19VWs7hbFt2/+Na8tGNJW1Yk8Vs/lfWRFbWzu2ti0/bx2LGJ/l9Lm9aSLtmsUUr7MgLLJALAs3q2u8DvuzsURxrhKy5efK4DUPbKf7xfLY6dnX0uL64U1jbl4+R4pF6Dm1S0WoOJyfgvXseG0t2bXK17HvaZrgLCidXZMFreO1teC3vN+sArbYn/rJqmrLY/n3Mu03zVQd23RDFWxZIdtm0x+P1bXjO43hfDTzNWRTnILX1EzryKZdii66aG/b6Jou2q6Nn/0nP4uf/Sc/i3/pv/Uvxd/5r/+d6js4azVD3QgRt0LYMmCNZZh46fS9ZbvF2qu1+5Sh64VrxeZ/i/Vja6FxrV3+DlauW9wva19WzC7e85nx5n3Mqm2beV+z13xM8fIvXsbh9UEYCwAAX3HCWAAAeEdSivjxj19F16X44IOb2O2aOBy6aJpxG3E8NrNK2Yhx+uEYgtgxdF2Go+thav9/8S9D2FP1bF/h1we8zaz/sSLxFOyO7ce+TynB1myaz++O8Z/+6FX885+/iahNRxx9qFauFbuYQjhO7U8PP/9cTmk8C2DLMLXSbxms1qYpPnXRbI/nMfLr0/z4OFXuJZWsq5Wlw7nZurGRhatlv1EJYdP4G8kC1/L7r9xr6qf2vGm5v3ielI0zb5uHssVat7UK2Xzt2PGaWhVs/htKTV8FOwa5+bEmzf9RQepSpEOK1KV3EqSdXYu1zF3Xgti1vsqAtewrrbRLZ8aWYnGfRbtKODo/vf4Cx7GsjX1xjxTz4HjjmWsVxYuwei1IjWJ643IcufL3n7WtVfQCAABfPcJYAAB4h/q1Y1/Eb/zGB/HkSRtPn+6GtWP7/4t8256SuKaJ2O2aLCQdz4//h/42q6KthbCn7VhFm4eq5V9+fKu/rc9rfvTZffyv/oOfxOtjivZ2d6qIbU5/ZTi78JCQcyWI3aqIrVbH5vfNQuNLAtiHTOFcmlXOTQdP95pC2cpapLMq2TzE3ApkZzc/3WM2NXB+jzEQLUPP4cB4bXW64qhMU9xkFbB5KDx2X645m4evxfH8+54FyMV6s2tTEEcTi8rYaY3ZFKcq2d3wzweybZva6NquH/RNnMZQeX/zV76a6q1bC07X2qwFp5WAda2/svK6DDMX68TmbfO1W1fWkJ21zQLU/PpF9WstIK1dF8X9y2fI/1b6GtuvVeDWKmwXVbXFO16zOTUzAADwlSKMBQCAdyylFG/eHOLVq0O8917//8m93/cBzhjGnqpSI5omTdMQ9/tdpDQmamPa1kzX5tMPjwFrPq1xLYitV9b295iHsc00jtFW5vhq38W/9yfP4i8/u499iohhmtdZ8Fr+RWX/EllAVwtip34jO1/5PLt/2Xcsj8+G8BYBbK2fWaA1dl0LZccgMp3azSpfzwWyeYiaV8vmYeoYzkbMr8+O1ypzV6crzp8jD4Xze+dhbTTzCtfsHSzG3JzGXA1sxz6KILZWGZv/Y4FFu/EfFQzTFo8h7XiPj//g4+j2Xfzmf+E34xt//RvZoz8yaFvLbC8NYfNz0+teBrG1NWKrgW0ZoNbGWwSus1A2C0JrVaqL91QLNGuha3mf2rTF5TbmQetsf+OZFqFwGehmz701RfFpbe9YvAcAAOCrTRgLAADvWEoRb94c49WrQ3z00TGaJuLJk3aohG2jbVP068P2C1yeAto0hatjKBtxmjK43J6rkF3+ncLXc9Mdj8Y+11LTl3fH+L/901/ET14e4vbD276KsJn/TX3F+JzNbL8WhC7C01wWrs4C17y/Sypi8/7GkDc7NmtSC2Efm8sWAc10uKyWLcPMPJDNj18QyM6GXQSjeUg0BZprx7Prq1MST0ObV8lO98qPpyyATfNrI2JR0buohq2Er2WFbBmwTuvNdmn6fU7TE6dsDdphWuJIcVpDdlxPdtdMz/Pxf/pxfPxPPo6PfuejWRh7sY1QbjX8LPbXqmH7zUYQO2uelvuVMHPWR3mPsl12LO+vWhVb3q927/JcMY6y3eo9K30tKl4r91rkxrV1ZoWsAABAhTAWAADeseOxiz/8w0/iO995Ev/6v/7r8dFHEbe37RCUHiMistC1jabpouv6gGe3a6Jp2ilwbduI3e4Uskb0oW1EM6usPU1zfOp7+TcGUGM/9UA3356kaiDZdRHtTRvtbTtbUzOvjs2nKF4NWc8Fm1lgWq4Z239slveL4n5l6FoLZ2dB9DK0PTfGhVo4U7abwvUimM1D2XHsKeYVpkMgG03MAtgykJ1V5eUhbmTn80Ase6+LisZqLl1MQVx7B8XzlO96Eazm0zHn39k43iyE3prSePru26Zf4zVO10/TFHenoLbphu04XXG+3UW0uza66CK6IZhtT+N6G9XwNX9/xbGLQ9j8+CMqYqfrKp9Xw9FyfOOxcvrgYqyL6tdxm1enlmOo3aMS8s6qdFOa7ZfjOzdN8ewe5bHC4r8J4S0AAHztCGMBAOAd67qIH/3oVbx8uY9/9V89xJMnbez3u2iaJm5u2mjbLto24nhsomm6qTK2m4KiU4Vsv3/qe6xwHcPV/lifBJUh6/h3CmibIZA9hXNjmz7MPU1PfLrnKbwtw6L9McXdoYvYNdHu2imUaprmFJhGzAPU2n5hdSrgMlwrgtby2nNB7FY17FpAuxjP9HF9zJtTseb9ZMfL8DQPNBcVqeP5YlsNZMcAqtbP2H80y2BwPF6EfLXwdbFmbDkdcVPvfzbGyvc0TadcVOyWQXQeNuf/EGBc4zYitqctbrP31p7ukYeyeQVtNBHdvovj3XH6RwmXWg1gI1ZD2H7zDoLYqPw2K32Xa8Pmny+enjgq150JQqvPVwaY+fVR3D8fVy34rD1fef/8HuUYKsesAwsAANQIYwEA4Eq6LsUnn9xFSimePGmj61K0Q9Az/t//u66dbU/rwvYJUts20XVN7HbNcO1YEdtv2zaibdMUpnZds5imuOvGz3llbFkl26dYywB4DHnnAdP+mOJ//09+Fn/2yV18etfNpieehbKVwHSSh6TLW8wD1jyArWzLfh4UxFaC3LXxbIXI1VOpcs0YbpeBWhHKztaVzc/lwWh+7IIpi8s1X/N+ZmvDNpXjWfvFdVGvip2mIx4rUbOK3CmkzdvEaYrhRSjb9GHoLEAd24zfc3tqkwesY7Aa3endprafljiaOAWrKfoq2bHKO2K+TdH/1lMfyEb07f/0//Sn8Vf//l/F3/vv/L346Hc/qvwQLrCW45Uh31qoeC6Eza9NRfuVwHZRETueS8u2U78rUxjXQtbNtW7LqtRI9eNZlWtZsVoGprWq1tlzluFwvu3Sop/FdV1cZLa2LAAA8JUnjAUAgCs5HlM8f34fNzdN/MqvPI22beJw6GK3a+J47IbK2BTHY/9/yd/t0nRdvz31VVvvNQ9bxzZtm7LwNWaVsWMQPFbGRuQVuHn5ZUzTHvefY7r39Gxdiu9/chd/8vGbaa3YWeBafn4HZuvELvLN4v7ZGC4JYovOqvtroer2oIv9lJ+qrAM7XpO3W6mSXYSf5wLZSt8Xq1xXnZK4di6/tgiF86A34sw9mpg/U7am7BRc522L7Wyt2/wdNafx5CFvHvSPQW/qTm2m+zYRL37wIl7/7HUcXh/OvsrJue+hDGFr15wJYqvX1vqN7NiZELfWd3WK3q22+flasLs2/sXrWPa16GN43rJtudbtIiA9d7+x7zGYPfOF5u+o23fR3XcCWQAA+JoQxgIAwJW8eXOM//g//nn82q+9H9/4xpM4HG6GStcUXbeLlE5TE/dBbIq2bYfjzfS32zXTmrH9GrNjJWxeIZuG7TgV8elY1+XbPNhtpsD2FLaeKmcjIgtgT6li0/Tr4ja3beye7PpKwaGScKyGXawNu7YtP5ea4i9rX4ZleUi2GsRWph/eWse2nF75rZV5bjrdu7Zm65Qt1gLVMUTMA6KVQDa/bjFdcaXKdfE5m9I4r5pdPt7KmrFZkLoIXscx5KFsFpCWlbJ5RezaurJNNKdK2La/11QtO1bEtjGtFZtPOTx+Tm3/jvLK2GaYkrtLfTV46vrxNTf93+y5LjXL/y4LX6e2GwHs6vqwtWNFgLmogs2Cy1qIWW1XWWe2Vrlau35rzdbymjLQTZFm7c5VvZbn86rX6a8b2nUxVchOx/K+z0jR9/Xy+y/j/tl9dPsLS2kBAIAvNWEsAABcSUoRr18f4/nzffz0p6/jO995Gu+/fxO7XRO7XRs3NymapqyI7aLrxqq7mIWlKfVpVjusY3la/zWiD1HT7LrxWLlW7Ph5HONpDdmI+Xq1TbaG7ClpSKn/i+YUwG6FrGOguRp6bhiDuLKPxfTEa/ctA7qyzcb6tBcFsZc+y1pQk4WlU3Vm3j4/f2mFbN5X7drK+TWz6t2NZ9mqkq0FwtPnmO9X17Et75OPuwh5Z+vLlmMoA+EU8wrbPNAvtnnVbNluDHkvWiu28mjV5629gguD2LU1Xt86iF2719S8+FxpsxhLeSxVztWCzuxY9V7FM82C1vI91D7Xzq28y8dMOTxWxgIAAF8PwlgAALiyTz65i3//3/9x/J2/88346KPb6LpxzdgUt7e7aJqI3a4PcsYq2H7bZtWxMa0Z22+7YYrifr9tywrZfv3Yfprivu9+m6b9Mag9fY7oA9xx5PnUxPnxPjhumuinJ25jHsqWIelGRrW1BussFItY9J+fm50vPi8C2zKILY9HcXw+4Ac9x2La3NOJap9jpewicByuWa2QrU1PnAep47XZjWfrt6as2jSKe0S9v6nt0Ge5duy0HacHboq1YdNpOuBZuzFQzUPg8V7DM05B6HjvcX+sri0C0/IvNWk+7fCwHux4blz3ONr+r4nmtGbsWAW+y7644XhEJQhec67ZVpBaa7MWwq5MAfzQILYMOvP71apgx6By7G9WUZufL46V58p1XWtVrVvVr2Xbrf1LKnLHCtnFfVdcNIU0AADwlSaMBQCAK0spYr/v4u7uGK9eHaJt+8rY3a4PMA+HPnjd7fo5Vdt2DJjm/xf8PpRos2rViMiCsylbbGKa1nickrgmr5JN6dR23s8prB3v++fP7uOnrw7xfN+dgs5+KFO/W7YC2KzRPMDMA8vy+iKUnV17aRBb9l0Oca1dbdyp3q5c33U4uNLNeuXqWiC7uT2nGM9sKuNKm3wMm1Wxw3Wz4DWl0/Nl96yNtdp32a7yO8mrVhfnm5gFw7PgtxL+19aOHf/xwdR/E5G6FD////487p/fx3f+3ndi92S3/k7WpHL3fAgbsRLE1gLAlSB2dUrj/LraV1weT/Vj1WmOZ01SdVxrz1JdK7boa9FfbcxrIXCsB7LTrR84RfHsOQSyAADwtSKMBQCAX5K7u2N88sldpJSGStaIrutDz37K4pimLO66ZrZ2bB+u9hWxY4VsHyh1w1qyY2XsqTp2rL4t7zWuIVtWw/bh77wC9jT18VD1FxH/3vc+i//gh6+ifbo7VcbmAdZ08SmMPBfQzmRh6logNjtWXJcHqpdWxF4Swl68fuxqTtvMw7C8bR5IDvuzCtFUnCumHR6fa6oMHdrn1a+L67KQdBzfIiAd+x3GMKuErdwvf9apCrYWHGfPOFbDrq0ZOxtDfjz7fsdrZ8+Qv8/iN5WHqGPAOo5tVhm70mYKZNNwrI3oDl38yf/xT+L9v/Z+/MP/4T+M93/1/dn3cy6Am4XOa8FnvrtSCbsIK8vjZTC7FcRW2iyqZ2vnxmuKsLJ2fhF25uei0ia79+yVrVTKPqQi9txfvoZstc8LPHRKYwAA4MtPGAsAAL8kz5/v43vfex6/8zsfxu1tO00XPE5N3LbNNO3wWJHab9uI6Ib27VQh2wel7bSG61jhevp8CmX76Yr7cYzbfE3avBq2ts11ERFtFpJGzMKuab/mTCY7hbpjiFq0n8Ld7MRseuLyunNBbN7XJUHsAzLlqrGb8fvdCmVTcV2R4SzC0JiHpfnYZ9ML5/0V911cX7nv7Jpmvp1dX7tHOYatZy7HXz5zra/ae8nC+zyonaZHzoLeqV2cqmbLtWOn6Y3biKY7TcHcP8qZQLVss9Fu7dxqCDvs19aGXbuuDGIXwezKsSmIzO61CGUrbWrna4HnIoiN7Hhl+uLNaYqjuN/Kc+Vrv15yj4vXis2/h/KdAAAAXwvCWAAA+CX57LN9fPbZPna7Nr75zSex2/Wp6G7XRNelWRjbdWMY2wexKbVDiNrNKmQjumlN2X4q4bFqNg3bmNaGnYez+Xqxefjap1fLUHYIJfq9qTIwD2TzIPRtwsu1tWLPrRlbhrer0ycX1ZeLcT4mhK2d38pb1kLZsk06jWERckY9eKytHzvrtlJVWwtG87VjZ1WqaRn4XqQWBteeZwxG83FVAt1ZhWzqfxtluJ0H9Yt1a/PK3crvqqyeHY83TTZNcZtOgWycjs/CyYdYC3DLvh4Swkaat18LXlPl2rWK2LzfWihba5NXj+bnyzGujacSZp5dKzbrd6tathYUn12PtsvGd6GLA1wAAOArRRgLAAC/ZD/60at48+YQf/fvfit+7dfej7aNePJkF23bxM1NM0xX3Fe83tyk6Lo2bm7SEN6O0xPXt20b0zTF/Zqx4zTFKbpunJp4HtKW0xVHzIPa0T/7+E3804/fxJ+/OiymcV1MGZy7JJCtha1R+RxZQBrzNtXpideC2Ji3L8d6NoS98JlmahlMFsrOQsgzoeVaFensXL6N4ljWblHNWo61dqy4z1ZF7hgOV9eNjdP6sYvwt9bfEDJPYWn+LEUgHU0WIJbPXQv1h89TwDv+I4BheuIxfJ1C2bY5BbHt8Eypif3Lffzx/+GP4xt/4xvxN/6rfyPa2/b0EBfmcNXAbiuAzc8/IoRdrCGbhaiLa4rzl0xTPKs4Lc4/ZHri2bgqAWl5fS14rQWx5XTFs21XtOuWn88Zr3/zszdx/+l9HF8fz18EAAB8ZQhjAQDgl+zTT+/j00/v41d/9b346KPbePJkFxERNzdtpDROUzwGoX1lbNO0kVIXEe0Qss7/ImKamrjvI2ZTF4/TFJfXna7NQ9lYbCMivv/sPn7vL1/Ezfs30d62fSXgVip5QWA5hnHVa2qfy7B2OlwJaLeUFZfZ580g9pIQ9tw9V8Kb6hS/2ec8jJxdV5muuNp3dm11LdfadU0lIC0rWYvgcHOq4/JzLO+9tlZsre0YjM6eZdyuBPuzUDjvO7t/HsrOrh0qY/Oq2Wla42HcxzfH+NHv/She/+x1/O5/5XejvWnjnM1qyUtD2OxztdI0v89GEHvumjKonfpZmaZ4Mc7yfBmMRraNWAakeVA7jKc29XMZyJbVu4tK3TIQXgmG8zbT+7hAihT7z/bx5qdvLmoPAAB8dQhjAQDgc/LHf/ws/uqvXsXf//vfjW9/+2lERNze5hWxKY7HFMdjO0xj3K8X209j3E5ryzbNaXrjPnAdPzdDCHvaRpz2xwA2Yvw8hq/58ZjOp4hob9ppeuJa4DWbNvgBpirEIQhbTFEc2ba4pgzczk1PXKuSnQWx7zqEXesrLY/NpgC+pIq1Ek4u2k2n1teOnYLJPPRdGePU/lwIW55bq47N75XfI+tvbd3YWUVxXhFbPnv2nU/TFUe21mtlSuKpz6EydjrW9veZpipusirftt9O/53EmaA1t9asFvqdC2CLNpeGsJtryFYCzqmvWhAbK8drAezGGrK1v+m6bj6+sq9FJWy3rIyd3bur9NXN73dpNWx17AAAwNeSMBYAAD4nz57t4+XLQ7x4sY/337+Jp0/HCtkuIvq1ZJumG0LSNna7btjGsCZsiqZpp8A0r4odzatmT/sRMbXLq2L7cKqskM3C2Xyd2LJCde3zhq2K1sVatOP5jb7LMLUavC4vqo+lMqbFqTPh82YQtxKmnl2TdS1Mze819lOppM3HfnFQeEn17NimFtquVcdeeI9Z3+W2bJd/HitXyymNi37H33NeDTsdG8LefO3iPABe/ITHgHYMcUuXhnJj+Ll17dsEsYuuLg9iZ2Ms2i3GUIa1w4nVMWT3mk1PPI6p9g4qIexsPGc+T9MU5/ct2pXB8up/O1vfr0AWAAC+loSxAADwOeq6iJ/85HXc3x8j4qN4773dUBnbV8Pe3LRxe5vi9jbFbtcMFbJNHI9jhey47av0druxInZcP7YpKmHLytjTNiI/dtofE4QupWh2zTyQje1AdSHFVEk4tc1Cs+meefg6faxXxS76WhtD2TbbVitiK308tPK3bL8IcLLgcjbOtFHFGtsh62pgmR9bHfCwye6/WMt1vHet39oY14LYPLSNrGJ2fO7xXURRCTuuGxvzMfZdpdkYIuJUedvE8p0087/a2rG1v7Eqtmn7v9QNv+l2uPdYPT6+n1zl/VfD940gtwxOy8+z31kZwpZhan6sDFfHvjZCyVq7ajCajWtt3dZZAFse75btqtcWAetY2bo4N1TJTpWuKfq25X2Gatjp7yFrxWYhcuoq0ykDAABfC8JYAAD4HKWU4uXLfex2TXznO4eIiHjypJ+qeLcbw8kxHG2jaVJWGRtTxWvEqdI1pYi27ROnlGKxZmzeZ23d2XId2TeHFJ/tj/Fi360/yMMyyvVryqrF2nbWpBKijufWqmIX2XG146t4SDXq1rTCj+p7KxTNw83LBne+gveB93+IRbXr2E9+Pn932T2mytVxyuTacxe/w3Gt2LXAv7xf0zTR3Xfx4gcv4umvPI2n33l6/qG23sFWCFvsLyphh88PnpY438/7GD/XAt/xc+X6RQVtEZ7m1631N+urvC7vM3+GSLNza+8hX1d2Ee5ujKUq6z+lFN2+i+PrY6SDMBYAAL6OhLEAAPA5SiniBz94He+9dxdPnrTxzW8+iYiIp0+76LoUt7dtPHmyi+Mxxc1NF7e3u2jbJm5v5xWxNzftrBK2/CvXjl2rjB3XlT1NTxzxR5/cxf/9L17E8aaN5qY9VRBGVkn4WEU14uxYxDL4albuWat6La9bprDL9rX9yMbzDlRD07KKsgwoi/3VytPyXkXQWFbVrga4KxW7i2PFNYupkWtjWzuW9T0Lose+YyWArX1/lfeSB7jTGrbNaVtWw86mJS6PD2szLypjm4hoh39k8cOX8U/+p/8kfu0f/lr8y//tf/n8fyeV9/qg8LU8lyrXXxjC1sLbsxWx+TUrbbYqYhfHulN/5fEyfK1V0U5ty8rYcb87tR2PT5WxXTaGsao1q4xd+85m0ypn59789E28+P6LSEdhLAAAfB0JYwEA4HPWdSnu77v49NP7OB5TfPjhzTBF8bwyNqU2mqYbpiKOSKmJpmmHitj++FgJO+Umwzqyfeh2qqStVcaW58Z7748pXh1StG2KXS0ofaTZtMPD5zIwXV3Hdbx/LXiNjfD0kqrY8pJ3GMTmfZ6tkH1E9emD1oEt7hXxiGrX8doz4WqtzVhNWq1Q3Qp+a8H0cGB1auK87RisVjPoYgwrv6/Z+eb0LNN7bPqA9vDmEMe74/R8q880Pe560Fc7tlWdejaIXR/E+SA2v2dx32pwnObnamNYTE+cB7ErxzefpXwHayHxsE1Rn/Z4bcrli43hsKpYAAD42hLGAgDAF8DhkOJ733sRH310G0+etPHRR7cREfHee10cDn1l7O1tG123m60dO253u3ZaL3bcHo+ndWP7NWSXlbHtWOG3qIzt06qmiTh2KdqbJppdVpH6kHxyCEVmoWZRfZgfm7WJSrvp8DLMrY5rrIptKseKdotLLwx1N61kMKsVsucym6HNZnVsVh1aVqtWpz+u3iYLObOx1q6fzq+FrimdqlHLwDe/ZqyALe9VjmsIVKsBbuU9RRPL8TX1v6lKNus3n6Z4rITNj0/rII/Xtf19213brx9bC0fPqbRbrYIdPq+tJVubmnfWXx5Opsp1lfOzqYKz/WoFbRlkjk3G6tQ8eC3D2yIcrbbbqHZdW1t2VhGbbWvVtWNV7GrYXNlfPBMAAPC1JYwFAIAviJQi7u+P8ZOfvIk3b45xc9PG8XgzVbl2Xf9ht2uHbZ8+tW1f9dp1zVAdW05THMNas80pGBvWg+2nOU5TCNt1Y2VsHsLFqVQ24rIgcgwIK5rh/xUHTx/H0KsMULNzi2tXQtiVAZxvM97r3PWX2Ag9L1nndQovyyDxGgFPrSJ1Leg9M45FkPrA8VfD4K0q3Mp9qmHtue+v+McB0zTF2bk8hJ1+f2P4HVl17rCO8+aznnkPmwHssL8Wwi6uL4/VgtdyfyuIjWW7qd/y2mIsa1P6LsLZWp95aBqntV5Xn3El6J3Wis3+NkPk2njXnkcQCwAADISxAADwBXJ318Vf/MXL+Pa3n8STJ20cDk+GoDXF06e7SCni5qaLiN0Uwo4Vsn3FbBvH46k6dqyUbZqY1pftK2PTtB2D2fo6simOXYqm7SsCFwFlLdgag9i00aasSIx6+Dodr12/ohzj6lTEv4wgtryuEswsAtkHBK3VytEyuDwTgm4GwmtjeUgIe8m1a+8nP157nq17jNs8LB3H15ymRV6EqsN1U6haC3NrlbRZn9FGNF0z/TczVgZvWf0OaofXAths/7EhbNlutXo2vyZVrhmP18LWc+vFxrJNbergMnCdzmcVsuU9qtW1XVTHMfUzfn6Isb9ynVkAAOBrRxgLAABfQK9eHeIv//JVfOc7x9jvu/jmN5/EBx+Ma8m2kVJMa8SOIexu18Rul2K3a+N47Cto2zai69ppeuLxrzZNcRnKRvTbviL3cSnkbK3MiGoV6+oUw0UlYx6QTsHtWpVrWQW5ds/atWseG8S+AxdNLXwupLxCZe3Z4HWl/UWBbUT0jzxfE3Zt6uQYpwjO989NA12rol0JXcdjeaXsNGXyOJ7s956Gf+gw3uOi97TWZMoczwSwleAzoh7M1oLYavA67uft18LXiGXAGvPjaxWqs22sB7GLa+MUlOZTCU9t86mKy6mIy8rYbv43hqllWL32/czGFhH7F/t4/aPXsX+xX7kQAAD4OhDGAgDAF9DdXRc//embSCnFbjdfy/X2tg9Mb27G6YrbaZri/m8MarshsOqiafp24xqzYzg7n6b4NF1xO06v2vSVsWUg9dhg8qIq1a1Q9UyfqxWttb5XjlX7eFdB7GNC0IeErO94PIvwswz78rZ5RW4M/Q79r62Pm68Pe+mYZm0e8L1M429iVq2ah8N5m/ntTmvGju1r0xfPwu58m5+7RBm+rvVxJoSNWAasixB2bFMEjlvrx+ahcC1wrbYpwtTVytczQewsSC3C5PJ5Z23G4HYj2D0XEj9ESimOr4/x6oevHnYhAADwlSOMBQCAL7Bnz/Zxd9fFj3/8Jp48aePv/J1vxre+9SSOx5thTdld7HZtHA5t3Nw0sdu1cXPTRds2cXPTRts2cTz2wdFul6JtYwhjm1koW5ui+Nkxxe+/2MfzocpwbRrhmllFbBmaFdO7XhKQltde1Dbq4e+56WKv7pKpgt9R5eql96+2iQvHsFZxW7vPyr0vqvzd6nNrPM3p2Ooastnvarbma1EJu2if/Y7LMDev3k5dqob8q9WytcN5eFoLxWsBbHb8MVMUlyFsef5cRew0te+FQWyk6KtXs/tvth+qXqfq19r0xJVz5fHpLy0/T+OpfB+1tWoX4wQAAL72hLEAAPAFdn/fxf19nwa0bcSv/dr7cXPTT0l8e5uGNWGH4CP10xan1MZuFxHRDevKttG2fSLadc0QyPZBwTgN8SmQjWkd2Zf7Lv781TG6myZ2T3eLsKpm7HPVamFscwq2LvGAQPZB47hmVewXSHWa4CsEwNM0vg8NWM+0uXia43P3Wgt31/6BQKVitpyyeDZlchORjikOrw/R3rbR3rbLfreePZW7Dw9hZ6HhY4PYvP9aKJtXn9ZC340gdhG6Zvcpg+C1oLNWhTt+vmTMs78oxla844VU+Zwiun0X6SiMBQAAhLEAAPCl0XURf/zHz+L993fxL/6L34oPPriJ/b6L29s2nj7t4uamjdvbdgpr+8rYmCpkd7uxQnZcOzZmFbLlGrKHY4pm2l9Jt8ogolZRmVfBFtbWi51V4dbOVT5XOq9vH+KXGMRWp/LNx1ELDS/Mes6Fl+X6qxcFteeqYB+iVrlansunQa7dqzn9HvIq29mxteep/EamitehQjY/Pq4HO52r/OOAJpqINuLTP/40/uB/8QfxG//534jf+ke/dfY9ra4LWzlWDV+Hz7UAdu2azRC2CFgXbYsAtdp+JYitnuvm/eXHV4/l68KOIWy+fmxtDdgu6hWx3am/auhbCV/z8DilFPuX+3j2z59Fd7dWVgsAAHydCGMBAOBL5PXrYxwOXXz22T66Lg1TFZ8qXCNiWj82Ylxrdq1Ctg9fT5WxKVI6Vch2XRpKZS8YWBnEPnDq4HfR9kvlmtMQ/xKcrUytX7Qd3r5l4HzR/fPtueOV66dpiGeHs2mKU7MIbw+vD3H//D7uP7ufPcvZ9WA3jq+GsPm5Wji7Fsym9XZrQexiDCmW96yErYv2ZTgbMQs3y34W/W3cZ1YZW9ynVn27OL+h+vsf+zmkOLw8qIwFAAAiQhgLAABfOvt9Gipkb+Jv/a2P4v33b+Ib37iN29tdPH16jNvbXdzcNPHkSRtt28btbTOtITuvjG2mNWTn68f2n/cRl00dvBK+TuvG5ueKdTanY1G0qXlsu63zZSXkY5SXfc3yl0cFs5d1vP0u16pp16pey8vHCtdUuX6lintaD7asim3WpylumiaadqjO3QhRa6qBYK0y8/Rhea4SzpbHqvsrgWw1wMzbrbWpbKvnuvX9vAq21s90vljzdap8XVs7Nq+IPab5GKpfzPJdLcYEAAAwEMYCAMCX0H6fom2P8ezZPvb7Lpom4unTLiJuhsrYfm3Kfj3ZdqiMjWGbh7FjIJuyaYr7StljRF8ZG3H5dL1lMPuQYPQa57muz7nCt1apuji/NbVx3jZb/zU7uFoRu9LJdJ8plM0rZTe62KzELE89JIQtzp8LXsvton0esmb3n1WkbgSxqxWx2b1mFbFFf+X9FtWv+Tu54L61v6ra4eJY6lLsn+1j/3wvkAUAACbCWAAA+JK6u+viz//8Rbz//i6++90n8Y1vPIlf+ZUn8d57N/HkSRtPn+6mdWR3uyZub8e1Y/u1ZMftPJg9Vcju2ybiyW4ReI7Tsc72+1LAPnxK6xWxl1hcG29RtXpttWG9q4DySz6V8apLgtGt9XPLPh7ynppYVsLOTmfnysrb/Dech7Tj+rHDfwcpTvuzSvBYCVzPjT0PGGvXlAFoebwWyqaifdm2FsLmoWa2/84qY8dp1rcqY/Nz3emavPp1vGa2xmy+Lmx+bd42XzN2K4QeP+fvdPg73h/j2R89i8Prw1fzv10AAOBRhLEAAPAlllLEft/FixeHOBz6gPZb37qNDz+8mdaU7bpd7HbNtDbszU2a7a+FsYebdjtAHcLX8fM0ResjNZeuT/tFkr+D/Ni76pvLXDqF9drlzbwqdnPq5Uv6zkLbWd8XBK/9ZiN8LfYfFMLGMmRcDV7H/TJYLatU8z7K4LIIXrcqVKf7boW35ZiGa6rTFRf707F8muOuMraa8v0WbVOkZZ8AAAADYSwAAHzJ7fcpPvlkH8Mqr/Gbv/lefOc7T+Ojj7p48mQXh0MXu10bT54sK2TH9WPzdWSnytgUsbIY7HQ4paFKtlmea04fpv23CWsf6pd2r1ogy+dvq2I2r3otpiauTkm8tobs8A8Qpm3Mt+M0xZuVsaOtAK8MabfC2coasZdUwq7ul6Ftea4MayttLl4rduOaaoVsN++vDFzzStfpWHZ89nmjKnb1aymC5qlSFwAAICOMBQCAr5jnzw9xOKT45JP7uL1t49d+7b14+nQX7713Ezc3zTBtcRs3N13sdqdQtmn6ULbbNfHJB7fxZtdcXOA1Tl2cmnk4+1aVsvUE7GJTIPbL8NAMRmbzOO9i6uaHVLbm98x+07N1YPPz+Ta//oI1Y2vnLglfI4qQNw9Py+sfEsKO+7WwNT9XmaZ4beri1SC2tu1O962tD1t+LgPXMiRdTE+c74/Vsiuq6+Rmz5e6FK9++Cr2L/bR7bvVfgAAgK8nYSwAAHzFvHhxiBcvDhERsds18eRJO5u2+OnTXex2XdzctHFz00TbpmHbh7H3N238VdvEsW3jJlayq1o4pDr0rTy4avKLEOh+EcZwqUf8PhdVsmt9jJW2w1q3+Zqxi8rxzGLt0TVb4Wt5Pg9Pi/NldWx1yuKNNouq17zvypTCF1XEPnC71d/seFevjJ0qWLt632eVIXREpGOK1z9+HffP7i/oAAAA+LoRxgIAwFdY16X48Y9fx9Onu/jud5/Gkyd9GHt7209b3Aey7RTG3ty0cXjS9hfnwVMqtuWxtw1iL73+XYe+WX9jiHbV+31OVtc/Hc9vBcHv2hc5wK1VxFbaTGvKjtWyWWhbm6Y4/40tnHkfZ6/JqzVrAWylavZR0xOP5/PAdiWsXUxhPBSLTlMRd6navloRm1e7dsWxbLriWZt8Pw9m0/p29XvIQtq1qtiU0tn/xgAAgK8vYSwAAHyFpdRPW/zmzTHee6+N/b6Nw6FfS7brdnFzk+LmJsXtbR/GHo8puhiyh7UQMsW0zuZsGuAxi2iv9zzvxOcdsNayta1Kx1+yS0KlvM2XOoR64LTHUwib7zd9kDcLaNPsoojoqyePd8dob9po2uUP8EGV0WU4+MgQtlYJuzh/wbTEU9/p1C6/3+yaMWjNA9dyG8vjW1Wym/tlMJuHuikW67wugukigF08zzFFOmyEuQAAwNeeMBYAAL4GDocUP/3pXbRtRNs28dFHN/Gd7zyN29u+Kvbmpo227deTjfdv6rlCGfhkwcQYSj16jdZKQProNV/fImy9enXsYwKbc9c8tM9UBEyX9FM7VwkAr+4d3acMVd+qr3Iq4/z3MlTRRhPx8R98HM/+9Fn89r/x2/Erf/dXLut8K3Qt9lenJi4D2NqxPJQtw9Xi81YIWwas58LU1YC0rIgdQ9MsXM3Xf51VynYxr47NtmN4mve3+d4rgXYZ+r74ixdx9/O7OLw8rHQGAAB83QljAQDgayCliPv7btpv2ybef/8Q+30fxu527XBsF+1Nu16ll8rdLDB9l6HlpR5yz89jfO/Iahh3vRt+pb2zat6m3B3+UUJarjV7/+w+3vz8Texf7msDWh/bRhC+CGDzcytBYq0Sdmua4tUpi2vtxj5WwtezgWws92v9ldfVKmMXlbor41l9Z/m7K4Pm7Pjx1TH2n1W+UwAAgIEwFgAAvoZevuynLu6LQJtomj6g/et//YN4f9dGpIi2OYWsZbBTTk+colJR+g5VK1bPXhSnKWNnw+3DsulYeX6tOjbi8WHuRvb3NlMUb06hWvaXzhxbdj7r/63Xla3df63pL3MN2wstqmmL6tdpzdiUVYk3wztsIpq26acnHqsyt1T+0UPt+Ozrr4Wv+fFLAtlam+Jz2XZaB7YMSiNO679m2+malUA2r4Cdtc0rYsu1YbOq17xCdlortvwrw9q172B6dfVxjvcDAADYIowFAICvoZT6qYuHvYiIaNs+pE3vHeL9Wr6wFgS9owz2wdMdFyHqF9ZDgtjKtVvrgj72vg8aw7k+N8ZVrdy8tO+HZFwP+b0+9h5nNE3Tv8t8zdiV9WM3fxOVgH1tfyvIr4Wwi2vWgtjKGq+LtuVvMw9iyxAz+x1MgWYl4Mz7yfutVsTGmbViiwrZMgBefZf52Ffee6SI45tjHF4fott3AQAAsEUYCwAARERE10X88Iev4+nrLv72oYs2naq+mpRNRTyEoNMUxdcoDBuD1jxwrYSvszFUgtnFurPl2Mv7jbtrlbi1YG3rGbZOr02Jek4RdF2kCOTOtru429MFtWllL+6/FoBt3/h0z4eGrI/8vVbH1sTy91n8ZptmqJBt0rS+7EO/+7PV07XQvvY7KQPZVFy/FsiufF6EqTE/VgtbF9uySrZSETtu8zZlFe1iP/urrS9bf9GV910Gw0Ofr3/8Ol58/8X5KmcAAOBrTxgLAABMUorouiJ2qgR5KaUpoF1Usq4Eo+9sjLE9zfDKRcs2Z647OzVyGcw+IJO5qBo1D9guaDvrtwzZZk2LNit9XdzmIeN6aF9fgpxrmqI4C2LHqYrz30XTDMfWgurBpes1VwPY7PMirF/5jZRVsWWbtZB9c93VC4PY1b9YXl8GsdHF4ty032X9dzG/dvY/ZMXzlu97fMe1MRz7PwAAgHOEsQAAwLpaAJSFlItgdNF8HtQuKlLX7jmEWKnZ7n9x6Ti2so/1AW5X3l66Vu3bBrGV93y2/yvnQJesU7p53fkbXHbNRtD8oPut3Hv1+KXdFlWw+VTF47TbYwXt9N/NWkXvyngWz/iY8LV2LA8+x+srIW31c7FfWzN2qhrN1459SIVsEb5OgWi2HmweuFbXkC3Wit0KnqdtcW72bF2KdEgqYgEAgIsJYwEAgLPyMGKaFnjMIi6crrcaxF7ax0b7c1MVV/uoTVWcnZsdujSQveTWD1if9WzVY3Fss4/5wfqxtNI+Nsb9wDxq7H/a1qbffdvgOX81lf5nUyu/TaKdXTqFrlkgO6uELa+rLDP6oO8qv2YlQN6skr4whC3Pzz6Xa8cWxx89VXEeuhZtZ0FspVo2r4jNj62tE1t7t9Xpnsf7dyn2L/bx5qdv4v6z+zOdAQAA9ISxAADAUh5c1MKkKELKSttZ2HlpUFq79tw418LT8Vy5za57SCAbEY8OZR80Te9GKNqffmBgutHvZsi6emoZEtf6WX2Gt8g/z/W9Nd3sRmfrp4r+yvvmUxRPUxPnv7eYrxk7/uYunaZ6cd+V/xYXY70klC3+m31QCDtel+1PlaIboesscI20WSk7ncuqXstQtqyWnULYcs3YfNwb77H2zGVV7P75Pl58/0UAAABcShgLAACsGoOIJmXVsClOU/8+JFjLQrGUhuvzcDSGcLRp5teM0w3H5dMjL2+9UT07PkNTHKv0/ZBQ9qGB29n92ufaLcpz567Lg6gta6Hm2hjHQ2UYuNJu7fylVcAXP0ft0pUpec/es6m0yYP/PJQdg9syGLzkPsW5akVx9rlWMbsawK7tF8HraghbqYCdhatF6FoGr1vTE0/haq0CNq+QPWbna0Fs5Te0OT1xEcSmlOLw8hAvvv8iDi8Pq18TAABAjTAWAABYKoO3Wkg4BqRDyJSHoymlU4C7kVvOro9KCLs1vjIIu7R9cWy1CndjDA+Zbnh1PKunKuHlmWsvrX68aFyXBpFr40qx7CcqAWHt2jPHVqdu3rj+IVW05TTKi/4q98qrY8d209qxfYP5Xzn+2Di2NtbKf4/V6XWjeO+XhLDjfqrsF+fe1fTE1ZC20rZaEZtdW4a1UwXuBb/j2fvLv+cUkY4pDq8P8erHr6pTTAMAAGwRxgIAAAtp+H+10KXPnSrTAA/XnatYXUxfHFGvSq30n5/P+5nuO/S1mKo4v28Z5DbL62f3Ko+9jTNh5MXrxObHL5wiuOx7a9rW2bqqWbvqb2LrvpUweLFe7Mo7KdcyrQaKZ97noq/yXBZiblbUVsZfm/o6Xzs2oghl4/TfzTSl7wVjL8+tVgpvhK8Ry/ddVrqWxxaVsPl3XwlnV0PYmIeus3O1aYqz0HVWOZsfP1cRe8y+09o72gify6rd45tjPPujZ3F8fRTEAgAAjyKMBQAAlrLgtbofRYB5rq+3GkoWuqaVaYzL+9WGlWI+vfJiqdiNdWrX+nyIS4PYx/Rx7twlrtn3Wl+VcLEaLj+kErkSvm22eei1uWwa4vHzVOk9BrHNvP1miFzcezXcrrVbGfslVdNbQe1iLdkiaN0MYov//diqlB0D6q1wd6sidgq5i/+dWryr2vTE08e0aJMOKe6f3Ud3J4kFAAAeRxgLAADMZcHrYs3Y4XxeATsLZcdzWQI1Bj+zNWbHds3pusm4RmyTVdnmgVc+zqwqcQpax0OV6tjV8HboezbWtXb5OLc8JnB7YNi2ufZoLXyrBVJFILqoSM37rYxnEbqtPdOZoLO6rue5MDK7dlatWfZ17n3lz1t8XguC87B1qngdq2Lz3+zYtskCvq3K2HxcxTOu/T4Wz1Y7Xvs9ZMcX1a7juRTrwWv2W3nQNMXlOrErlbDjdlEhO34+nipkp0rZ2rtae93Fs+V/U7/HynsHAAB4AGEsAACwME1T3O+cjo/hbKU6dVa1mgcbZ0LLRXhbqX4tg9bVgHXtftnx6nTF9YGdP/9YW6Flrc25YOlM0HbxWIsQdjFF8blr8z62xnnmvlttq++jlrGeq6Z9wPc3W0P13HXFPx5oUnNxqNyf2vhNVI49JIStHV+djjiK5873s+uqFaxbQeyZbXlsq//VKtwVq/8IoXbPLuLw8hD7l3thLAAA8FaEsQAAwFKKfn3EIgSZKmSzQGYRkpYhZnZsMRVwFlrVztVC2LyitgyAp2raqXl/g1mFbN5HGeRmYxmPTfd/h9MUX2X62Vq/lWOLMG68x6VBaRnObd17a13YSrg5BXzZ+1+0y7abla7FfVfXQy2vLdtXh376XU3ttv5xQP4TzqbkPWez8jnb31xreCt8za+vfa9F0LkIRos2Z8PYbrhXuVZsvl+phJ2Oj1WxYxVtXhFbew8b/71sVfWmLkV338WzP34W++f7qeIWAADgMYSxAADAUhHKVEPYcQrhrP2ym2K912w6477jyvW1qYjL9tm52rTIq2u/1saWh2f5PWvtyjFc4iEhbHbsoiC21lctZCvvVTuWj28t6Fwb+9YzlseqQ98+f7Gt0Hfr/Nqxreca14htmsV3Na4buzbGi9fAXRnb6vuq/XYuCWHLcdXC10p4mbd5dFVsOT1xWYVcnB/bjKHt2u9w9spqVcL5u8qfo0uxf7aPw6tDHO+OglgAAOCtCWMBAICF2fSgXURq5wHJGDaNIW25vuuskrYSXq4FpmOf0/kxiC1C18WUyBGztuV2bf3YqfJ2LRzOpjbOBnlR2Js/U+Xg5rGLg9hzwetaILd1n61wrwwCy3tnf9XwL5/aNrK+avdd3CZVn6MMDGeBciW0rAXO1fVSY/lci/CvNiVxtm5sXjk7hrZjAFnz0N/K1jqyq+Fr7djKd/bOwtihEnixVmy+X1kztjw+VcWO1bN5Rey5/14q72Xx/XZ9ny++/yLefPym/u4BAAAeSBgLAAAs5cFaRD3oGAKn/Nhi2uK8r2n3FICO7RfTEW+NK4r7jkFtHgZX+tsKZPsuV6pkIxaB8tn1U8+Nf+P4RWvE5sfL0DHv58x1+bGz7fP9Wh8r11YDw7Vx1K5fWfu0/F1V+47Kc+XhYszbzULitb7X1oEdzk1B7NhmDPRr0ySfU3uOjd9GLah/q4rY/PwF4WtEFrBGWk5HXASvZSA7W7e1CGVn0xNnVbFb39XZitg8hE0p7j+5j/tn93F4dRDEAgAA74wwFgAAWBiDkepasWPYmbJAdagAnLZZ+0XYGVkfp9LTk6KyNV8HNr+mul5sPl1xJXxdC2RnfdcC2DKYechUxWfCxtPHSqiUn69VxI7X5ccqYVvt+rPVhGVold9rZTxbIXW1Krb2vLW+Ks+wFrIunqkSNi7GlV9XfF67dqp6bYZK8bECtjZFcf5bS8W7WxnX1vnN61e+27NTF+dtys+1NWTHNl3WVyq247lKRexD1oydhbFdmge+W7/h2rNmzzvefxzD65+9jpd/8XLtWwAAAHgUYSwAADA3BhVdzAKLPMCYwtFIi5B1tb9agDkEKuMUrmOolYe7s6A177+ojp2FqGllGzEPZIt+qsHxyrjfyiJLWwkmx48rQeziva9sF8FUEcytrhVbCTZXx1MEXNXfROXYOJZFSFsei5V+xkAta7OYTjh/znK8tX7LMZbhZ/nbink4u/gtRsRHv/1RfPDrH8R7331vdZri1fvVxpc/U2Xsa0Hlouo1a1cG07WK2HMh7CKQTbE5PXEeuq6GsV2l3crzzd5f5bsux5m6viL29Y9fx/2z+/p7BwAAeAvCWAAAYCYPx6bK2DGcLAK3qQK2CDxnbZpTJeusr4hFdersWMQ8OM3Wb52mOY6sOvb0AMuq2rVAdvnwi/VpF2N9rEq+Vg3Siv2tcLQW4p6dQrl2ejX7y8K4rdDv3L3W7lkGouW9Ku22qlwXfayEjmshXn6/2Xqi+bk8gC2rYGv/HQze+9X34tv/8rfnz7A2hq1nWhtzrD/j1rqp0/7KOz63buxmCPuQULbsr1hDdmy/FrSvPevsN1r871d0EemYYv98Hy9/oCIWAAC4DmEsAACwMAtBhqlBp6Bp+JtNRTwEs9O2rDCtBIa1UHZc+3U6v1blml+TTm2naWPL9WO3AtkybM2DrWY81Sye4bFWA7XKsdUK1LGfWjBatlubina8phZu1kLIyrHqtLbls9bGtfLsswD0kvcTaR4kXvA+ZuMq3k31+vHzVnVsZWxTs6HqO1If/D1KZeyr58+Fkfmx7JmrVbBj28q5dxXClqFrdVrisV3lNz97DWshcyzHm7oU+8/28fzPnvdrxAIAAFyJMBYAAFiYhSmxHqpGxCk4za6drTFbrL06Bq4RMU0/XF3LNYrrslB1FubWpiteFMteUCE7PltlrdhZuPxIDwlhx7GtnX9UEJuPYeueedvadWeeoRqOFuMZ+1uEorU+18Ze+T1uvuOxTVlZmebjmQLe4v4zl1THbjzLJS79vVxcOb32mygDy2ysj14rNgtaZ9dngeosiM2umf0jkLJidu1dbfyjhfx5prZdRHffxeHVId58/OZB3wsAAMBDCWMBAICFdDxVpkUT/eeIU9VpFrrk+2PIugg/0jLInLWvVb6O7aK+duzseMzD3DzwnfopK2SH+06BcxnKjuPKji1Ct82XeOZ8pc3m9LVZaPiY0G22rbRZBFpl+5XArjruKALX2nW1cLJyvDo1bszXiM2vrQWK5TS803iyd7dokwePs689C1+L39L0DwvKgDayoPFC1fCx8r7OTh9d+12kol15rrJfe08XV8d28/21dWLzStiymnbtHdSC2HMVsYdXh/j0n30ax9fHy/47BQAAeAvCWAAAYC4LxGaBa8yPz8LVMrhbW5s1b7cyNfFULRune2xOKbwy7fAU3M4eLQtk164v38Va6Po2IU4tZ9sKYuNM6LY2lpXQbau/2bnyc6ocz++xURU7G0fRbxmUTveqjKe8Z+3aze+mbF+7di3YjJj+QUJqNt770K7sd6u6czGGjeNnv7vKu98KYWdjq30uAtla6FoNYlemJ14NYsvg/Mx3VZtiu3zO2di6iOOrYxxeHGL/fB/pIIkFAACuTxgLAAAspGOK7thF27X9mpdDkDF+LteLjYhToDqsHTuFuEWQk1cPzsKVLCCdgtkxkM0qZ/MgeKp2jexcVuE6Oz9235zGsVYlG7FSKVuO9aKXuXHqIdWP546XgdSs6UoQl7L25ecy0MrvWwvoyvtFVMdW9juburgILBdryBZBYd6uHFMZ6s2mvC2efxH8Fe3z38j4O5wdK5+x0i6l9PmuGVt8F2vh63Su8r4vroQd2wyVwIvAdWvN2GNaPmP5+6r8BsrvtQyOU5eiu+/ik3/6SRxeHgSxAADAL40wFgAAWJjWexxCjbWpiKf9LAgt15CtBXVTmBpZ6DqGufnasWvbrO986uJZWNsU5/Px5FMZV6pkp3cQsayWrTzTQ61WSFZCtrWq0LWK2Or0xGUoWgvvqsNJ83a1pmWAV469cs9qmJg9a21a4c17roSTtWrjxVq4aT72lCpTIK8ZfmO1aYmrY76w27Nr3659fw8MZTdD2CLMLNs8uCK27L8MYsfPa7+Z2vOuPOti7F3E/rN9HF4d4vjmGN2+W/QBAABwLcJYAABgLkV0hy66Y3cKSbrUT8/aNZHaU3CyCGnHwCn7yytiy2BoVrVahqJ5uDpW58Y8+FpdM7YMZCMLZPNqxbUq2Ww8tfCnGtBuvdKt6WnPBbCVEHOz0nHt2Mp10+eVoHIW2o19roWdxfmyXVmZOtvPxlEMehn+leOMU5tawFibunYWIA791KbInaq8x9/gWgA7Hs9+q/kzTKHjGY/+rZTvfOs3ku/n/03WqmDzduV7K7+XtVB2q0K2Nj3xuXdS/O/I4hmKbTqm+OxPP4u7n99V+wcAALgmYSwAADDT7bt48ecv4ul3nsa3/oVvRdPNpySurh+bsrVds2mKx3AqD43KKtUxSB0D1NnasakISYuq2PzYNEVximUgO5wf1/ssg99FlWyl/9xmYHaJtcvzcK1sVwtAa/2kjW0tnCtDzbLt2rFKADbrIg9gV55ls+/x95WdKIPXWXBa66s8v/Hey3OrlcCjMrw/JwslH2Tt+6md3/q91PYrxy4KYSP6EDXSfHtJhWw6hbLl+bNBbPF8lwSx95/cx/75Po6vj4JYAADgcyGMBQAAZo53x/j57/88PvjND+Ibf/Mb0eyWa8bmgcesOrZcUzbiFLJkVaqRYhaUzkKSfO3YIZDNpyLO15FdVNfG6T7l+rKzaYvT/FhEzKtki3Es+n+orRDoXYVttWN5UBVp+7qVtovANg9JywAzO1+9fxbm1SpTy/3FNMIbgd1iquGyKjht9Jf9VQPqsuo1r45t+jbj73TxTvIKzYeGsbX3Wx7Pv8ZLfwsPmZ44v6Z4d2tVsheHsF0xttpzVJ63rKSuTak83uvVj17Fq796tXy3AAAAvyTCWAAAoGqaTnSYSnQKN1MzrSebByCLAHbYThWxlfOzatimWDu2SD2nqYiz6yJiVkE7Bb1lhWyxDu1ibdp8TM0p6FkEs/mzvY0y7Kv1XbYp323Uw7fqd3CmOnJRfVoLPbNjs2mCN6b2XYyn8gy1kLUavtaCw7J6dauf8V1k77MMfmuB49t68o0n8d533oun33761mHsdPhctWh+PA8rx/1rhLFblbEr0xSv/pYf+mzd/DlSl+Luk7u4+/gu9s/29ZcIAADwSyKMBQAAVuVrOkaKxRTEY7VhuXbsVCGYimmKs4BzFrw2WVCbVbZGiu3pistrKtdXA9mI+bTFK33m4c8sHH6L6tjNALbWtgwbx4+V6X83K2JX2izWFq2FmTF/F7MQL4rzlXuthsZF36shaBEozu5bBImzMHk8VguMa/dcefZVF0xVfPvhbXzjP/eNvs/HTFMclXvUvpPs3KPXiy3PZX2drYg9F8YO24tC2Ac+02zq5NSvEXv/7D5efP9FvW8AAIBfImEsAABQN4Ynw1/TDNMFd82ySrY97c+qZCshV0TUpw+OoUo2ZdsxyG2WFbN5iJtiHqxOUw4XFbL97Zb3nYWy2bnZmJs8QXq793ru+EUhbH78IQFcuX8ukMs/l/cpr1sL6vJzWX9lcLp45vL6MpCttC/fQd6+Wvla/C36LcL9aariS6RTODjr74Lrzh1/yLTVi3edt0vzz7Xv6aLvdSWMrVXCnq2CzZ/nzO96Ng30McX+s328+MsXcXh5WHmJAAAAv1zCWAAAYFVeyZZv87B1MQ3xSriVB6d5aJpXx07VspXwtb9JnI6NfTVjqWucrZCNiHmVbNZuWvszinPTy8g+P7Qydiu7KwO2sn1+fitoW3S7ctOV0G6zQrEWjJXj3Lpndi6fGrjWfPZ7K/vNQ7niN1ZOP7wIeivPNRtLNqaHVMWO02yvVskOoWS/zHFzvt+1Zy76nD6uTFm8WiW9Fcjmx4v/fmf/GxAr4WsZypbTFF8SwuZjvWT86fS/U92+i8PLQ7z5yZtKpwAAAJ8PYSwAAFA1VpqlQ4q0G8KmZgg+mnQKmLohWG2L8Gv4m6YwLgKpxfqwq1lgtq5sXhW78jkiVveHnVOVbLO87xQCldWyw7Gh0eOs3avsr2x3LoRN83MProgtgsypbWV/EZTWpgDeqDwtA9VLKmirfQ/nF9Nmb+zX7jdNxd0V94qYfgPTtNuPqI6dKmPzaa8f4tKwMvu8Wk26Emw+JJStvr84vb9qlezWs5TjrjzTVggbKaI79iHsZ3/yWRzvjis3AQAA+HwIYwEAgLoh7BgDranyNSrhXVqpjI1YBCsRcZqmOAu9pumJm6w6tihBzac3ns4PYc1UIZvf68y6s1OVbN4+f/5IpwC5fJbRWpXsRu52adVjxHqYtRrErt145fsog66pTRH41da6nYV4lftOlaZ5OFiOIbJwLYpnLQO4cszl863co7buaVXtHUVW/fpQWZC5WJv43HXTx40wcyN8jZi/s8V7e0wIGzELrVcrYsuA/cxzVp+x8r3nY0spxfHu2P+DkWOKw6tD7J/v51NCAwAAfAEIYwEAgLoUcbw/RrNror1p++rAJiIdhymFh4q4qfK1Vg05rCcbXUTTLiti+6wzWyc2O5dXzV5aFbtVETs7loWyeRBUhr+zdWVLl1bJPuL8ajVhEZDm24vXjM3DuDh9Z4u2K+cW33PUz88C1pU+Llm7dapujaiGhLM2K/vV/lLM/rHB7O8hwevW9MRpWHP5kOZrDj9GcfnZ38jGb2Gr+rkWys7eba0SNnuXq69uNtyVsa+MfzG+rq+GffZHz2L/bB/TtMmCWAAA4AtIGAsAAFR1+y7efPwmnn7raeze2/WBaXcKXsug5lxl7NSurHaNomowRTXgyqtfF+vOlhWyQx9T5WvW5zjlbK0idjZ9cTb2ajXj2+Y+lesXU9/WQrbKtZcEseV3Uq2IjWXb6hTGURlLLVxdu292/RS0jqFtrNwjxeL8ov9y7LVK2EoAWf3djjZ+k2fl9xquXVRwb11+bo3V/Duq/VZW/huc2jwkhL1keuKV31M13C4PrfxuZ2Mc7rV/uY/jm2McXh1MSwwAAHzhCWMBAICq+2f38dN//NP4xt/6Rvz6d3+9Xyd2XCv2GBG7oWHXb6ZK2bY5BTMrlbHjfupSfzyGILVrIrXzati8ovXBVbH5+rCVELh2PL/mdOjyAO0hNsPXYf9Ra4OW7TYqYsvzswAua7dWHVv2nY9rMb6Vv2oV7UqbMhi8pCJ2qlBdW/e0tr7pWvhaTHVdDWrHe3cpumM3q9icBZMPDfnz91u2XQkza9/Dg6cnrr334b/36FbC1nPPU/sNl89R3rfr7/vi+y/izU/enMYAAADwBSaMBQAAVo3rMY4hyBhsNalZhDX5dMWLKtnI2o3VrVnV6ljROpueuGnqla1j8NrE1D4iZhWy+Rq0EbFaJTtel49rFrSN7yEL6R5S2bh4n7VKx/yexf5FoVvt2FYQVwti834qoeJivxxf1k81nK1Vv5bhZ9n/GMTl98jGPgsRIy1Cxeo0vnl/tdBxsFgjtonT1NoXSJGi2TXx5FtP4ub9m3pouFVpe+HxzWdc+Q7KMDbf35oGuhrQRiVM3TIb7kYIm48zRRxeH+L+0/spkD28OghiAQCALw1hLAAAsG1YizG1WSg7VsiOAWlWkdh0Q2g1BljDGo9TZexw3Wxq4Wzd2EkWzpTnL6mQnfaLaYvHMa+tHVsen6lUzT7KRti2NhXxVgg7O74VxNamgF3pdzYlcVktO/axEtZtBXhl9etWu1qlbDWQLf+yZ6hVy569dlT+DjbWhy3tnuziw9/6sK8A31rLtMz2t35exW+1DDMfum5wObXwNPVw7fvMpyW+RCp362OePq5V6HYp7j+5j0//2aeX3RcAAOALRhgLAABsSilFOgxh7K4PVlPTb6Ppw5KpInUIcGpVstPniFlwNE0/nOaB6jS9cGr6qtdxW4S4iwrZ7HgeHi6mKW4qa9UOx8fPeWXtOO5VDwnVijazisu1EDYP2vLjZQhbO1aGqHmb8VgRYlbDu1oQWtxn9XnWQs8yIC3uUwtPt6bZrYasxbnN6YkjHrc+7Pg4xVS+5T8QePCM17NXeUGgmR/LA9ozYWztu128n/K72xx2Zaxb4y3H0KU4vjnG65+8jv3z/WU3BQAA+AISxgIAANtSRHfsojk2U2VstJXAplgzNg9hI52qZKfgdug7r16dTU+c6hWqi/ZlVWxzCnXKqthpP+trrODtBz+/X2rmgdIinC3e0yXvcrrv1rXlGLdC2Lx9KtqXbdcCuayfakVs/jkPTcu24z1q7bKxlSHfIthdC2GjGE825sV+JdBdDRprgexD5UHleK/j6bnfZnrr6RYrVdHTu8mPV34LqyF7lxZtqtXQm4O7/Nzq7zG7b3fs4vDqEC/+/IUpiQEAgC81YSwAALDpzc/fxMf/0cfx0d/4KD76Gx9FatNUERsREbt+k4eyTdOcpiPumlMF7bAu7Dht8RTOdhGpHSpiuyyQHatmszU882MRy0B2bFOem52vhbKDsoI2N4a3FwWv652cPV5dh3MrhI1lwDUL4y4IZTfDupVAdHHdVtiZB7Gx0S6vLN2Y/rhss7V/7l41i3VjLzXet0v9P2JI89/m0PmD+ls7dlG19KWhbJpf96C1YLfGWo4nP5aPYZgO/cVfvojj62NEijjeH98+JAcAAPicCWMBAIBNh5eHePHyRdx+6zY+/N0PT8FJFppGikUl7Hgsr1KdwteI2bTF0zTEcQpsp/0ifB0tpiweKw+L7GacdnixdmwUoWw+rXG2pu10burwXb3Zylg3QtiIlSB2HHPt2FaQ99CK2GJ8i+mAN8Y3bcvP+bHseC2AW10rtri22v9GEJsiq6o9E7Q/JKAdA9nqb2je6UoH549fWh29eHdRfO6y/t7B73vx/W2NbVyHuuunQ7/7+M60xAAAwFeKMBYAALhMF5EOKbq2izbaSMcUqUn9VKwR07ZpmilgSk2Kpm2m0GVWGTt+bvvq2UVlbLusjF1UyKZTcLpaITsGsPmxwVZFbC1026qafYjV9TQrxy6uhB0+n52muGhTBpur64hWwtDVKYS7NDt2SRXsor9LK2S7eZt8f7Uytiv6q2lO6xVvBqPTq+3v07RNPPnmk2h2Tb/WcpNdXPx8zv2eLp3OuvYbWXzntRB2Ldh9G7XfYzaO6V7DOF798FW8+embaf/w6vBuxgEAAPAFIYwFAAAuMlX6dfNQa6pwLUOy4m8MT6dq1rKyNauM7W+Y3TtWKmTLNV7zwHVjndjx/BjUjs+3uHcTs/0pWJoN4S0DtZXjW9WF1Wu2gti00aYM5PJnLT+vBJi1tVynIHY4UU5PvHi28h3nbbO/cix52DftV35/i2raNL/vu9TetP003ONU3vlPZFp2+AFVtnmgeTp4+nhmGuBLwtjFOC9Ve4QyhM3um7oU3X13Cl9fHOL+0/tH3BgAAODLQRgLAABcJB1TdPsumraJtmmjuzlVyHbRH4+IPtAZPzbZ1MNNOp0b1pKdpgQegqumHdaPHSpqx0rDiGUgW64hO34e20bKqm8jlufHY6mZBbLllMRTQBvz49M1D0nzVppWqxK3KgzL45WQ7lwIW11PdiXwnK4p23TZPbPza4F8tW2XZp8X9ykrZMtK2KKPamVsV7TN9iNOU2j3O+vfU83sPQ6/3W7f9RXfkf03MXpAkD/1f9opT/abtcrY8vsuPKrSe3arlbGV4xq/xy7i/rP7+OyPP5vOdfsuAAAAvsqEsQAAwEWOb45x98ldPP32034K1i5FapehWVkl26R5RWxETOHQGISOVanTWq5jFW2xzmxMl2dTEtfWjs3C0ulzimlt2jxwm60pG6fjs4B2PJQHsw8I7NacDWGH/YuC2DwXK/otQ7PVIDaW56ZrzqwdW61izc/lbWN+vPpstSmJy7EXIe9qZWxkAW4U171L429mDHtXQthxv7YWcml1Suva933mWO3+a32etRYMF7/J1PVTD49V9fsX+zi8Plzn/QMAAHwBCWMBAICLvPzLl/Hqh6/iu3//u/HRX/8o2kMbKVJ0u6FCth0Cty5LWZps20ZfSTluxyrZLquMbZqI9hTUjpWxa9Ww+ZTH09qxafl5ClvHtikWFa95VWy+1uyszbtMkGpd5YFW2WbtXFmFWDtWBpnDsdXzxbnNqtnKdutcddvN9zfXiK20qVbGFsema/PjD7T2/U/9Db+XqdozqxDP9yeXFqZeEnyuyX/TtT4fOYZLKrJT11cJP/ujZ/1asGWADgAA8DUgjAUAAC4yTu+ajsPfON3rMDVrGarlFbL537TGbMQswJnC1lSvjJ1Vw5bhbL4u7FgFG/Mq2dn6sc0pbJxNJTuOpzkFkdP6stl4F84FWufCp60QtjxfhLARRag6bKtt14LYvO80H8da1Ww5De7mOGshXP6bGE5sVdeWnxd9royrnLJ47buYTVV8qez++XTIU7X2+DNvst/p7KYPu93svuesrXdc3Hf6b3H1Vtu/yYj5bymlFIeXhzi+Pvbv5Jiiu+siHSSwAADA15MwFgAAeJB0TNEduuiOXV+BeuzXkE3HNJ2PiNMasRGzbdM1p7BzqJBtoonUFtMND+3ytWOrlbERU1VtvlZsRMyqZCPmwdLUJkuVpmA2q3KcgsVFjlZMWbyWadUqCs+0mQVdebCZnatO8bsSwi6C1zxgLatjH1oRW9x3XEv2XNXs4ny3bH/JteM/Alhcm/1jgUjRb7NxRcSD14edyULkcWzdvjtVeG9VxTbF7+fSULasct2aBjn7jdfGPl5z0e8xP7X2Wxrf+zHFqx++itc/er3eCQAAwNeIMBYAAHiQMYxNh9RXxI7Vsrus8rTLwtimr76bAtM2TVMT5yFek4rK2CFsnSpjU70ytjw2fo7IpiaOtAi/ZpWy47ONO01RMVgJ7VKkeQB2Sai31WYrgM3Or62zulkde0EoOws983MrQWxtTFvjXlxf/mX3XJvu+NJpi/N+L62MvVgeQmf7YxCZuux30cSiSjYP+Wdh6VogWwa3kf32pp9r/eKz02pf+i5qv7OuD5/f/PzNInw/vDhc2DEAAMBXnzAWAAB4kO7YRXffRfek66tVj1koO2wjIqIdAs0hmJ0qXLs+mBpDq6katuvbzNpHmkLaaTsGrsV6shFZCLsV0GbBVbUqtnKudv7RVZXVQsRUP1cLwdaO10LY7PgieF0LavO2K0HsoiJ2vE+tXdbHufVjayHqWjg7temy/bG6tivC1/w5H/qlpZXP+fN3MZ/Ce1zDeKy+HivBx997Nn1xLaiNmFe1XlS9XVhb9/hi5Xc7HhuD9y7F4fUhXvz5C1MQAwAAbBDGAgAAD/Lqh69i/3wf3/oXvhXNN5tob9vomi6aYx+MpvZUOZeHUNN2rJbNgteIfj91KaId2mYBWtNklbVZ0DWbnjgqIWwa+k/LaYnLsGormC3P16xVJ1avXeuqbLYSwK4GZWshbLlfCdfK86tVspUpjtcqWWfh3ZkgdgxQz4azXSyC1tl6rbXK2C4LbR+p+h0Of8f7Yxzvj9MU3dP5fHrupvJ7zPbHcL+cYjs/Nn3Hzfwe0285TvdbDfjPP+jp/uM9U4q7j+9i/2I/++10h27+zAAAACwIYwEAgAe5/+Q+9p/t48Pf/jBuPrzpw5ih0nWqjG2ztWHHaYpTmk1FPFsvdgjQZtMRFyHj2rTEW1MVT9MQN6dwaVYpW05HHPO2EbGYynhss8zmHhFKVS6ZBbBlm5UQdrr/WwSx5dqxq0FsOc4i+FwEomWfa+03+rpkeuLaNbVg+V3Jv4du38Xx7tj/A4OIac3Y2RrHQ7i6WL846tXaaxXc5bkp0J0Pbl5le+4fF6z8JvIw++6Tu7j7+K72KgAAANggjAUAAB4uC6B2t7too410k6KLfuriKYjKpmOdQqOxqjVfU3YIVafPeUXtGNC18yHM1pWNU7XhVGmbsntUKhFn+3m/qZkFWVOFYvH8EfOpZB/0+srAteg3369WOF4SwI7H0rLdagg7Xl9eVwlBI+I0JXUliM0rXvN+q9tizdHq9MR55Wxe6VqEr6nr+xv/zlbErk03nb/7tfczjGNaQ7kdfo9DdfgYzk4V4dH/3qbfTTk98dp26/PWsWnolbA2+zw+w6sfvIpu3y3apkhxfH1cvwEAAACrhLEAAMCjdPddHN8co3u/i2gj2q7tw9AxXGvTVP06rgc7bbPq1ylITdlasEVl7Gw77VYqY5t06if7PFa7LiplK5Wx07Sxka3vmd+7DGrfxtrlayFstl+bwviS9WMXbcbPtfA1vyZvU95jY3rhvP+1v7HPzemJy/HHPLgt+5tVx76ttd/gMcVxf4xu3/UhZjv8ZobtFMo2p4C/2fXn838ksJiSOBW/w+x3O72niHkAm+ZVt+m4EUIXv5fUpejuu7h/dh/dfbdyEQAAAI8hjAUAAB4sdSme/fGzuPngJr77978btx/eRnfT9SFPG32lbFZxWq6Lma8dW634q227+TVldW00w9TIkebnU9Z+LfSK07hmAW6kWQg2tpumfX1cYewpDNuqWCz216YvroWrD1ontghsq9MSl4FsWRnbnfpYVMR2K8fz/fH8uB5sNz9XO162GStn8+0sEF7z0Kw2ncby6kev4tVfvYru2M37WfldNE0TT3/1adx842YKaKegtlIVPv5jgOl3cuHvLR1TvPyLl3F8c2E16/BMi6pYAAAA3powFgAAeJQx6On2XaRjOgVkXRaWjWvHjp+HNWObrpkqZ5u2mYWCqxWyg1lFbLGe63Qsv77J+t5amzNrV4ayizHkAW6MzbaTstU1ZWuH87B2JaCtVcaWwerqtnaPvE0lsJ0Ft2v3zP/igs9FAFx7R2OV62xcZz4vnuEh8vdSPGfZprvv4vDq8KDuj2+O0dw28zA24lQ5W05hnJ+75B8BDMH08fXx8jAWAACAqxHGAgAAj5ZSiuObYxxuD9HethGpD1fH0KiNNrpdF23Tn+uafk3ZfArWma3K2LF6sM3Wih0rM9vo751Xy5bXpaJSdlgbdlEtG/3nReDaZGFYpQpyNWytvrhydxnulvtrlbGLALZ2rBKuliHs5rTEReA5tR0rYvNtJSCdrQdbq5Qd99cqY8drxzZdpQI2u3Y6/gDV4LZ4N/m6tOn4uCmQ735xF/ef3D/soodWYKfopykGAADgcyeMBQAAHi11Ke4/vY90THHz/s1p7diumQK0JjVT8NakZlpPdloztkvTNMRjlexYITutJ5utDTtWvE6VruN6sHEKW8vjETFrP4WtYwBbVkNGUemaV83mx2K55uxF720tfD01OH08F8LWjhXVnJvTEtdC2Y0gdtbvcL5WwZsHmGXAW/7V2swC3OL4rK/hHuU0ye9KbT3b490x9p/t4/j6EZWn3alPAAAAvvqEsQAAwKOlfb927JNvPYkn334SN3ET3W5Yd7IZKmPTqTI2NSlSm6I9tn01a8RyO1wbMVS69ulqXxE7horFmrNjRWzTDcHrUB07XZ+KNWPjVAU7W6NzqJaNiFnbMTubKmezY+P4HvbiVg6vBa/l/fJzZeBaHqsFtcXn2fVd0a5SMbsIbC+oiC3Xla1VxJZh61jlOqt67eZ95FNjR1eM+bGy91J+BymluP/FfXz6zz99p6EvAAAAX03CWAAA4O2kiHRM0d130e266J50/fqw7bAubBPTlLGpyypYI04B6BjiDe2qFbLdqf1s3dhi23ebVcOO0xFXzuX7+bHyeO381K5Yt/aiV7YWFtYOp+y+tXB2LYQt91dC2fL8uSC2FuBuBbbl1Mara7tmwewUvq5U1c6mJy4C3a3phteOL95XLfDO7zPeGwAAAM4QxgIAAG8tpRSH14do2ibaJ200TRNd24eybbR9KJti2i7WhI1sf5iyOD/fNM00tXHq0qkSttjOqmEjWyc24mwoOx0bxjeFkk3M2teevfosqy9r+9ws8K2Fr5Hqx4tAcTp2aQhbmfp3K5A9N7XwWkXsovp1Yz3ZWdtxrdgxsM2umU1dfO4dn1NeW4y3O3ZvX3kLAADA14YwFgAAeGvdXRcv/+JlPP3209g93UXTNH1lbNOv5ZnaoSrymPrpiPOwNcu1mnZYU3YMUPNpiiMLXtt5Jex0/bim7FhZmwWx50LZvH3e3yKcHcddazc/eFKcq64ZWsv3zgSwEZUQNhXt10LY8Zri/Gr4WrbZ2G62WalorV03tc2rXvMpi4sK2XMh7CVrtVbfxfA+Dq8O8fIHL2P/Yn+2HwAAAIgQxgIAAO9At+/i9Y9fR+pSvP+b70fTNtHs+kC2a7podkMV6hDKzsLYPJyN7PhYkZpO675Op7shmB1D13aYzjirnh0D3DFkzT+P/UYT83Vks2A2D2xn5yoWIV8RMl9UqTnL/dLiWDWAzY9vhbDj/sb0xWuVsfl15ypjLw1rq5WxXZoHttmYF5WyXeXYpdWqa81SuTt/5tT11d8v/+rl8vcKAAAAK4SxAADAO3P/7D4++cNP4oPf+iA++t2PIpp+muKm7YPZaCKaXRNt085CwtnniOU0xvl0xcN0xHk2uqiSbWMKVKdgtAx4m3Q6noa+8ymHh2PjuMYK3dk487HlA7q0QvPSYHAlfJ36Ko/VQtdy/5IQdqMaNiJmawFP27VANpuCeFYRW6t6LQPavBq2S/N1ZcfgduXdrSrfzXis8nd8c4zP/uSzOLw6CGIBAAB4EGEsAADwznR3Xbz52Zu4/eg2umMXzbGvVk3HLKxrTuHdOA1x0wzTE7d90DZVvMawP4SiYzVsimL92CFQG6tom+40FXG+Nmy5TmweoE7HmtOUw7VpkIsDq20fpHJpNYAdPi/C3JVgdnMK41rYOrYt9qvrxw7XLsLgWhC7skbsLNytfK5dv9gv39XWuz0Tfte+w5RSdIcu3vz8TXT3klgAAAAeRhgLAAC8c92h66sIh/CsaZpoUjMFnSlSRBvRRRdNaqZtk7JpglP0Fa4Rp2B1DErbOFW6ZpWpU5g2HJ8qaaOoqo2YrUc77kfEfN3Y8lxeOTuOc8VUVTs2vWQa3bJJLXgtzxWB7OxeZeg6XlcGrXnbtSmJ8/Yboeu07Sr7keYVrSnmFbPFsVrb/G82trOvdhlur1XFzu55PP1jAgAAAHgoYSwAAPDOdfsu9i/3/bqxN020x7YPVHfpVBnbRD/laxOnStbUV7Wmtg/CZhWu6RS2ThWwcaqETU2awtz8XEQsPo9ttvZrVa9b68ZO1wwurtasnKsFh/nni0LYtf1zoezYfiOIvTiQLbcxv3YxrjIQrVTD1q5/F6Y1YrNOU0pxfHOM45vjO70XAAAAXx/CWAAA4J1787M3cfeLu/jmv/DN+OA3P4imaaLt2r5CtusTyyY10Ua/dmy3Gypj22b6HCn6gDVOFbXRxHw92LJCNhX7Y3XsWAGbrzXbDCHtWAm7sk7trO3YTy2YWzu+Za39LBdN83Yb4etateyla8auTVu8Fb5uVsaWlbARF1XEjmvFblXELkLr2vvcCK9X180d++5SdPddPPvnz2L/fB/d3hTFAAAAPJwwFgAAeOfGqV33z/dx9/Quml/tK1zbrp93OO2GYK7NgtAhzGxSM1XONpGtJZuG/SGEa6JfK7ZJfSVtrRJ2rSL2orVjiyrYPPjbWjv2cS+scp+1YHFlLdlqMLtVKXtJ+BpxPnRdOxfLNvm989C2vH4WuJbVsJGNfeUdLlz43eRjPrw4xOHVIQ6vD4JYAAAAHk0YCwAAXM3Lv3wZr374Kr77r303nn73aTRtE+2ujWgjmrYPaJv2VCEbbUSXuv5cxHxt1hSnqYybZl4hO2qLtWHz9WGHY7W1YmeVs6lSMZtObRdB4NsGsaNKH2vB62wMtYrPtf08gB37eUQIO/VTVL9WQ9luZX+ofp1dW6uITcOardm1D3mf59aKLatix/t99qefxd3Hd1NFLwAAADyGMBYAALieFJGO/XSv3X0X3W1fYdgch1BzqIxNxyLcHLfl1MJtnNaU7fogd7Zm7Lhts2mOm2Kt2TGUrVXHjoFvXgWbmun+KaVYFsWeWUf20ldVW2M2LT/Xpi2+ZGriRfCaVcVO7fM23bzNIpwtr1kJbfMK2LzytBbaVitii8rZ6R1svsyVd1W2Kd9NNo5pPAAAAPAWhLEAAMDVHe+OcXh9iPamnULUZndaC7aL7lQdG3HatsU2xaki9h2uHTtts2ubNIS1TRboZZWzs4C2dC6f3cr4ysCxbFup7twMYM9Vwpafu6yvMgQd133Nq1yHa1YrZCuVsXlFbLku7KJCtotZKHrpOrELReg89VWO7ZgiHTZCXAAAAHgAYSwAAHBdKeLNx2/i8PoQze82cfP+TR/EpqYPZaOJtmmjiy6a1H+OiPn0v3kYWm7zz0VQ27TNqZo1n7Z4rUI2FVMR5+FsWTlbjql45q2K2dXKzo1gsVYRG1EJYCvH8gCyDGHLKtmp6rVL8/Zp/vnsWrJj2FqZnniqfC2nLC6OT+FuZOO80Ga1cMzHn9/37ud3cffpXRxeHS6+FwAAAKwRxgIAAFd39/O72H+2P60be9tGm9ro2i7a1M5CtnF90IiYVbxO675GUeXaRl/NWWafzel4E80sbJ36SfO1YZsmC28jC1RTnNqlmJ9fCWUfEhwuiz0rlZm1sDU/npYBZHUq4vGalRD2XDXsavhaBK3TfYtq2c21Y8eK2LLydu1Vrryjc9MTl886BrFjGPvyBy9XLgYAAICHEcYCAAC/FN2hixfffxG3H97GN/7mN2L3dNcHmMP/X0kTTR/Qpq4PbKON1KV++uKmn8p4qlptUz+NcF4Jm09PPBqnNy7Xny2nLY55SLuowC0+N818vdlZFe/bKEPZcgrkWiBbVn+uVYRWPq+GsNnxS0LYshp2LaC9eHrifA3hMTQ+865Wg9jiGavvpYu4+/guXv3oVew/2y/vBQAAAI8kjAUAAH45UsT9L+6je9PF+7/5fh+I3jZTdes4VfE4TXHq+qB03M6mGY5llWzTNFP4mrp+f9pGmk1HfMk0xdHEVCWbT1EccTqeP9sY0D769dTWnk3Lz4u1ZMuq1/LYWvBaVs3WKmDLytmy6nU8V64le6YSdnZd1v8Y1s7GdUkQu6Z2aVkd3KXoDl3sX+zj9Y9fX9gxAAAAXEYYCwAA/FId3xzj2X/2LJ78ypP45t/+ZqQnp+rE5qYPPZu2OVW8RhaQDpWwKaVTlWxzCleb1PTHK5WwqUnTuelzxCzknX2O4ngU57L9aRrkx+axsxx1Garmn8+GsXn4WlTJLqpgx/ZnKmHXjk8hbDE98UVrxnan6YHLatnVatjynVz6XorP+RjuPr2Lz/7kszi+OdbvBwAAAG9BGAsAAPxSpS7F/vk+mpsmjvfHvvJ014ekbdNGak8BXxPNvDJ20ETTt+v64DalofK1G4LW9lQNO4Z04+exyjW12fmssrW2ZmwZDDZF6joLAh8TyK5VeuZB41oIeUkIW1bBroSsUz9FBex4fW0t18W5rQraPJythb55SPyQ91SeL99N9lzTuS7F8c0xDi8Pcf/p/fm+AQAA4BGEsQAAwOeiu+/izc/fxM2HN/E0nvaVksc+rGt3bYwVsk1q5tvsL9ohtG2bKYRtmmaqnM2rYRcVskOQOKuWjWa9GnZl/djV8PXSUPZMEDvtVqYhnh2/sCJ2umYljK1OV3xurdiiGrYMbtfWil2cv7QaNn+WrYrY/Pnz7THF/uU+PvmDT+J4dxTEAgAAcDXCWAAA4HMxBmJN28Tx/aFCtmkiHVN00U3VrW03zlW80tEwdfFU8Ropmq7ZrpBN/bmImFfLNqc247lpP6t6LacSrq4Xe0mV7FYRaFkhmuafayHkRSHsuF9UzK6tJ3uu0nVz221Xws4qZR8SxK61WXnO2TsZKrP3z/dxeH2IdJDEAgAAcD3CWAAA4HNxfHOM1z98Hd23u4g24vaj20hdil3azSpjx22b+imM27bfNm0Tza6JphsqZPPK2Dadr5BNp0rYzTVkI5ZVszE/v/j8tspwsghi+03aDiHzflYC2tU1YaOvVM2PP2jN2DyE3VorNh9P8fxb72Z6/uJZy3dQjjl1Kbq7Lj75p5/E4eUh0lEQCwAAwHUJYwEAgM9P14ey+2f7aJpm+ovbIYjdRb82bIromi6adKpwnQyFs3mA2kQzBahj0JqaNAtjp2MRfb/D+fzzVPU6Vs0Ot56C26H6dRZ4vk0oW8sGz4SPEWcqYCNmoWs1kI04H75GEb5W2tZC2UUFbFlhe+75195FLaBeqYgdg9i7X9zF4eUhjndHQSwAAAC/FMJYAADgc3V4eYjDy0N0h24K03bdLiIiml2fbE5rxu5OlbLRRh/WdqmvkM1C0yZtrB07hrd5iFtWw55bN3arQrY41pxJZ1crYCvHquvG5lW05ypia+dXKmQvWTN2s0K2m28XFbJloLr9kubv64IgdjYV8rAe8fM/ex53P7+78KYAAADw9oSxAADAF8LhxaEPWqNfNzaaiPam7atld020TT91cZe6PnxNTTTRzKcXXtvmf2m+nVXN5u1jOBfzc2O17WTsK07XRJyOra6FuuHcerFTv8XxPGCd9bNVIbsVwkaaV8x2p2PVYDY/Pk5VXIax5VTKmy8i/7gMnGfvq3zGbGxvPn4T+2f7OL4+XnBTAAAAeHeEsQAAwBfC4cUhDi8O0d62fUXrron0pK9obbqhQnbXRBt9KBu76LeVaYrzCtkpXG1jGcwWf1PQuhLs1sLZMQSc1p+trYGa95XbCiTLMPdcILsSwJYB6KIiNm+zFsJWQteIWE5DXISxeSg77l9kkUXXq2FnzzseLytjuxSvf/w6Xv3VqwtvDgAAAO+OMBYAAPhCuf/kPg6vDhFdxO79XUTqK2RTStHu+iC2afuAttk1pymMm9M2djEPZYcpjGsBbD6F8bjO7Nlpi2PlWG3/sS4IYyNWwteNCtnqdL4R1YrSramJy8DzbIXsuSC2cr46lfFK6FybOvnNx2/i9Y9fx/2n92duDgAAANchjAUAAL5QDi8PEa8jbj686QPY27ZfF7ZtoktdX8E6VshGnMK6vPJ13E/Z8YhqGJtPUzx9TvPPi+mJh6B3CnkjTufK8LApd08HFlMY1wLLskltmt9UBJe1/dpUvrVz4/qvZ8LXqW0tlC0rZLeshbC1c2eC2Gmcwxqx+2d7FbEAAAB8rpqUzen05MmTz3MsAAAAk/a9NtpdG81NE7cf3saHf+PDaG/b2D3Z9WHsTduvKdtmFbK7ZlpjNpqhgrbNPjdNRDsEom1MFbFjEDuGrrNjEbNpivP96fh4Te5tKmRXQtm1KtnV6Ypr4WVROTud6yrH1ypiK2HsLIQt+rrskbcD2MVzjM+eirF0Ke4+uYvnf/Y8Dq8PcXxlnVgAAAB+ue7vTzM0qYwFAAC+kLo3XXTD4qSpS/He6/ciuj5UbaON1KTomi6a1ETbtFMF6+xvUF3rtYtZ6DpOVzxWuDYpWz92rJRNp/1oYlqTdhaGjgFtKoLbS0xZY1ocW7Qp10qNZVh5UQhb7M+C1sjO5SFsZUrg2faSaYmnoZ9/1tqzLcLp4f7Hu2McXhzi7ud3lw0AAAAArkhlLAAA8MXXRuye7OLJt5/EB7/zQexud9HettHetlOVbNP222ijX1s2q4xdVMcOn2cVsZUq2VmlbGTnhs+j6VhxvLbfFAceOlVxLYTdrI4dz6+Er6vTFK9MRVydlng81q08U81Wk0tC2GIs3bGL/fN9fPrPPo3j3TG6u+78GAAAAOAKVMYCAABfLl3E8c0xjq/7qsd4P6awtE3ttLbrWCnbRdeHrbly3djxc7627FgBm68hO1bUjuvGZtWxY1A7HYuYQsMpoF1krWOD5bnSLHgt+yoD2NqxWghbCTKne62FrmuVsLWK2dwFz7j6fBEXBbGp6/8OLw6xf76Pw8tDpONDbgoAAADXozIWAAD48hgqWt/79ffivV99L3bvnSpk212/jSYWa8muVcmOgeu4lmzERqXscP+8zTSmmJ9ffI5lRWzN2SrZlLVLyzbVaYpTsT+cn4WulYC2uu0q+2Ug/BCV685Ov1yMKR1SHN4c4pM/+CQOrw+RDoJYAAAAPl8qYwEAgC+nFJGOKY6vjnH/2X3cdrexe2/XnxvWgG3a5rSWbLSRUjpVyY7BZJ6LtjFfF3ZcJ7ay/uwYwuaVsLPq2SwHnE1dHDGtRXvJM853l9Wv08etytFyvxLQXhLCrlbG5vd/iJVLLp1+eRzD/Wf3cXx97NeJvT/G8e4oiAUAAOALR2UsAADw5dREvPfr78XtN2/j9sPbaG/a2D3dndaQ3Z0qY6cq2abfztaPbYtq2PYUpE4hbl4pG5V1Y8u1ZfNz+aGmcrBQDTgrYezmFMVrFaVl+BoRZ4PXlcrYd2F1GuaNEHacmvjTf/ppvPrRq+W1AAAA8DlTGQsAAHz5pZjWBz2+OkZ728bT7zyN9naohj1moWzbRJPm20h9tWqTmtPasWN1a1P5HNnnfD/frh2LYb3ZsYL2zHP1m0qlaHm+djyleqj5LsLYLOh9rM2wuXy2csxdivtn93H/6X3sX+wFsAAAAHzhCWMBAIAvrcPzQxyeHyIi+nVjn7axe28Xu7SLdtdGpIjmOFTFdtsVsk3bT1E8TlXcNE2ktk/78mPRxBSq5hWyY3i6qJodjNMUn1s7Np0SydrJ08d3NEVxLYhdDWPfpVpV73i8GO9UlduleP3T1/Hiey/e7VgAAADgSoSxAADAV0I6pnjzkzexe28XT77zJNrbftridtdGc9P027aJ5mYIX7thmuLdUCHbnqYqnoLZbghfs5A2ImahbBm+piYtpyzOzz+0nLOcybcMYYfPZRA7ta1VmJYVsmuhbHm/87MsX/wciwC2Mu6UUhxeHeLlX77s16lNEffP7gMAAAC+LISxAADAV0LqUtx/ch/te22077Wxe7Lrj9+kaFMb0UVfFZsq0xYPVbBjIJtSWlbDZp/zqYinQLY8thHIXv5Q9f1a8BpRBKcXBLDTNRth7OZ4HqMWwo7Hi6mT03EIY/9iCGMBAADgS0YYCwAAfKV09128+cmbPmhtm7j91m08+ZW+Ura9aU/ryO6W0xY3TRPRnipfxymMxwB2Op4fi6FidiyQHSply/VhpwraR5hNEXzp9L4Ri8D17PTE+TXjtMuzh3jIoOf9LMZfGesUDHcpjnfHeP6nz/t1gQWxAAAAfEkJYwEAgK+WLuL46jjtNjdN7N7b9eFfNxzrmmhTG6kdqmbb6EPANkWThqB1PJZNYTz7i5X9fLv1+SE2qkn7zSlYjbgsjK0GspVx5mFqky57gNUAtjbm8flSinToq2G7rovj62O8+fhNdPfdRfcEAACALyJhLAAA8JW2f7aPw8tD3H7zNnbv7+Lmg5u+QvZJXyHb3rSnCtk2+8uqZPP1ZFerZCM7PnweNU0zDygfUWE67daqZCtrxi5C17F9Gbzm/TTF/mIoj6hQ3ZhaOZ8iOXUpnv/J87j75K4/3kV0e0EsAAAAX27CWAAA4CstHftqy+Ob4zR1cHvTxk3cRLNrIlI/HfFUIdvGtH7sWCU7rSHbDmvBtjGFsrU1Y2fhbDSLKYvfJoytVsk+pCI2iv0mm4o4v9fjZ1We9TO773jvYVzdvovj/TGi66cm3r/Yx/75/i1uDAAAAF8sTcr+SfSTJ08+z7EAAABcT1bR2uyaePKrT2L3ZBe793Z9hextG+2unVfI7uZrx04VsmWlbCzXkS2nLJ6tGfuYoHOtQnarOrZsU76Pmqbc3R5smievq2Mup0ROKcXrH72Oz/5/n01tukM3TSUNAAAAX1b39/fTZ5WxAADA10NWIZpSiuPrY79G6SFFc9vEzfs3kXapD2Z3w9TF3RDAjtWyqQ9lU5dVyo4hazvcpxnWma0Esotc85JQdiXgrFacVqYCjphPSzyNd60KdjGD8QOnJq7ddwxgjyn2n+0jdf13sH++tyYsAAAAX2nCWAAA4Ouni9h/sp9CyN37u3j6q0/7qthhHdn2JquSLdaTndaSzath276zq1XIXloZG1k1ayX8LdeLbZpmdY3Yi4e2sgZtWQ17eHGIX/zhL05rwb7lfQEAAOCLThgLAAB8fY2h4b4PCqcpiYfw9faj22iftH2FbJNNW7wrpi1umkhNmk1dPB2L+XTG+fqxq6Hp2jhr6WXtUHMKameBcKUadhGk5k2y4Hir3dZ0xHe/uIvuruurke/6amRTEQMAAPB1IYwFAAC+9rp9F/e/uF+e+M2I3Ye7U/iab9v5GrJTCNuepi2egtCVKtmIolL2oZr559r6rmWAO43jgqrUzQC273y5Tu2wn7p+WuKXf/Ey7n5xd/5mAAAA8BUkjAUAAFixf76P45tjH3TeNPHkW0/6IDZllbHtvBp2CmGHNWTzqtj88xieTlWsw7F+00QlV523qUwvnAevtWC2bFPvvtlut7JO7eHlIV7/5PViiuLDq8Pm/QAAAOCrTBgLAACw4vDiFCS2t23cfHATTWqiTW2kJi0qY8upiiPma8lOwes4jXFk7YfjEf00w9X1ZrOAdRa85sHsUPU6nW8imnR59e0lIew0FfH4uYvYv9jHi++/sA4sAAAAZISxAAAAF+iOXbz52Zt5FWxE3H7zNm4+upkFs+PUxNN0wPl+zNeYnc5HnPpNw7qvw7km9X3OAtiUrUObTuvQRiqmPh6D2TyPfUhgWlS6pi7Fyx+8jMPLw6zN8e4oiAUAAICCMBYAAOASXcTx5XFxuLlton3aTuvJRhuzqtnYDdMRD9P5ThWxMZ8SuJweuFYFu1oZW0xJXKtuXZu2uCalfr3XrMN+M6wDe/fzu9h/tr+4PwAAAPi6EsYCAAC8hf2zfR/S5lnn8Hn33i7e+/X3+mmMd6epjKdpjLOK2Ol4zI/PqmmzqYfH7RT0lllrsZ8HvvmxbGfaHl4e4vn3nkfqFovSRoR1YAEAAOBSwlgAAIC3kA4pjodlxWxERHQR3V3XB7HjNMZZEDuGr2NFbXvTntaTzacpbpr6VMTjdMbDsb6zoQq2zFFTiuO+GGdZQJv6dodXh9h/tl+GsQAAAMCDNCml6f/v+smTJ5/nWAAAAL5amohm15wC0uJcbvfeLj743Q+i3bURbSzWps0rZGfXT7tZh1loG9EHrPsX+3jxvReXBaxdRLfvLnlCAAAAoHB/fz99VhkLAABwLamvnO0/nglBm3564Gnt2byKdjjfRBHEZp/X1oQd16o9vDzE8c1xWQ0LAAAAXI3KWAAAgC+Ktn54LWh9iBQpQrErAAAAXJ3KWAAAgC+ilbD0bFUtAAAA8IW08u+uAQAAAAAAAHgbwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAAAAAABXIIwFAAAAAAAAuAJhLAAAAAAAAMAVCGMBAAAAAAAArkAYCwAAAAAAAHAFwlgAAAAAAACAKxDGAgAAAAAAAFyBMBYAAAAAAADgCoSxAAAAAAAAAFcgjAUAAAAAAAC4AmEsAAAAAAAAwBUIYwEAAAAAAACuQBgLAAAAAAAAcAXCWAAAAAAAAIArEMYCAAAAAAAAXIEwFgAAAAAAAOAKhLEAAAAAAAAAVyCMBQAAAAAAALgCYSwAAAAAAADAFQhjAQAAAAAAAK5AGAsAAAAAAABwBcJYAAAAAAAAgCsQxgIAAAAAAABcgTAWAAAAAAAA4AqEsQAAAADw/2/fDk4AAAEYiOH+Q9cpDkGSCfo/CgAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmfbXo8AAAAAAAAA+I1nLAAAAAAAAEBAjAUAAAAAAAAIXNpczcumkMt4AAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "id": "78043756-0ce9-455f-9e49-fb75268d4478", - "metadata": {}, - "source": [ - "## Step 5: Add specular lighting\n", - "\n", - "This section corresponds to the [Step 5 of the C++\n", - "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-5-specular-lighting).\n", - "The changes to the code are quite minimal, but the rendered picture looks much\n", - "more realistic!" - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "fn scene_intersect(\n", + " orig: Vec3f,\n", + " dir: Vec3f,\n", + " spheres: List[Sphere],\n", + " mut material: Material,\n", + " mut hit: Vec3f,\n", + " mut N: Vec3f,\n", + ") -> Bool:\n", + " var spheres_dist = inf[DType.float32]()\n", + "\n", + " for i in range(0, spheres.size):\n", + " var dist: Float32 = 0\n", + " if spheres[i].intersects(orig, dir, dist) and dist < spheres_dist:\n", + " spheres_dist = dist\n", + " hit = orig + dir * dist\n", + " N = (hit - spheres[i].center).normalize()\n", + " material = spheres[i].material\n", + "\n", + " return (spheres_dist != inf[DType.float32]())\n", + "\n", + "\n", + "fn cast_ray(\n", + " orig: Vec3f,\n", + " dir: Vec3f,\n", + " spheres: List[Sphere],\n", + " lights: List[Light],\n", + ") -> Material:\n", + " var point = Vec3f.zero()\n", + " var material = Material(Vec3f.zero())\n", + " var N = Vec3f.zero()\n", + " if not scene_intersect(orig, dir, spheres, material, point, N):\n", + " return bg_color\n", + "\n", + " var diffuse_light_intensity: Float32 = 0\n", + " for i in range(lights.size):\n", + " var light_dir = (lights[i].position - point).normalize()\n", + " diffuse_light_intensity += lights[i].intensity * max(light_dir @ N, 0)\n", + "\n", + " return material.color * diffuse_light_intensity\n", + "\n", + "\n", + "fn create_image_with_spheres_and_lights(\n", + " spheres: List[Sphere],\n", + " lights: List[Light],\n", + " height: Int,\n", + " width: Int,\n", + ") -> Image:\n", + " var image = Image(height, width)\n", + "\n", + " @parameter\n", + " fn _process_row(row: Int):\n", + " var y = -((Float32(2.0) * row + 1) / height - 1)\n", + " for col in range(width):\n", + " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", + " var dir = Vec3f(x, y, -1).normalize()\n", + " image.set(\n", + " row, col, cast_ray(Vec3f.zero(), dir, spheres, lights).color\n", + " )\n", + "\n", + " parallelize[_process_row](height)\n", + "\n", + " return image\n", + "\n", + "\n", + "var lights = List[Light]()\n", + "lights.append(Light(Vec3f(-20, 20, 20), 1.0))\n", + "lights.append(Light(Vec3f(20, -20, 20), 0.5))\n", + "\n", + "render(create_image_with_spheres_and_lights(spheres, lights, H, W))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "78043756-0ce9-455f-9e49-fb75268d4478", + "metadata": {}, + "source": [ + "## Step 5: Add specular lighting\n", + "\n", + "This section corresponds to the [Step 5 of the C++\n", + "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing#step-5-specular-lighting).\n", + "The changes to the code are quite minimal, but the rendered picture looks much\n", + "more realistic!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "3ed5bc7c-f335-48c4-abf8-31c75d6e79ad", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 12, - "id": "3ed5bc7c-f335-48c4-abf8-31c75d6e79ad", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAEAAElEQVR4nOzd6XM0SX4f9qxqAM81z9wzO7vckzK5q4OySJk2fTEsH7LCDof8yn+z7VCELdEKSZYVJk1LFimSy13O7FwPuv2ikMi7uhoPeoCZ+XwiEN1VlZWVVd14ZmO/+GVOh8PhEAAAAAAAAAC4V/NDDwAAAAAAAADgm0gYCwAAAAAAAHAGF/nG1dXVQ40DAAAAAAAA4Gvviy++uH2vMhYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOIOLhx4AAAAAADxW8zw99BAqh+7e/f4rHgYAAJsIYwEAAACg4913n4Tf/d0PwsXFFKYphBCWYHbq5LP1vkM/M+0cOxTb8f3yeii2Dzcb8X18ffXqEP7xP/7z8ItffLn95gAA+EoIYwEAAAD4xpumEK6udrehaS9Qrb355mX44Q9fhMvLOUxTGcROWzqoHLLUtQ1gD90gNg9hl+rXZf9+n16//HIf/tW/+mX4/POyPLYNhA/F/i+/3K+GxgAAvL7pkP2vwKurq4ccCwAAAACcxZtvXoa/9/e+F54924XdbgohLNWu0zR1A9ppmsLFxRRevry6aXe369ZhZy+QTbtSAJu3zbfT8fR+vz+Ejz/+Mrx6dSgqZvMwNwW4SyXtZ59dh3/0j/4s/OpXr+52YwAADH3xxRe371XGAgAAAPCN8PTpLrx40f7fXdM0hTffvAwffPA0PH26C7vdXASxdbXrlmmIa6MK0zaM3f7+cJhCGdBOt8Hq8n4JWne7Kbz99lUTvpYhbBnGfvrpq/DOO1fh6mqurrm8+eyz6/DFFxaiBQB4XSpjAQAAAPhG+K3feif8x//xd8I8T03YOs9TePJk1wSwsUK2dkolbC+IjdWra23K/YemXfm+rpJdzulXzbaBbB3O7veH8Pnn12G/T9v7/SFcXy8/f/AHfxH+8A8/3v4QAAC4pTIWAAAAgK+daQrhww+fhWfPdqEOUacphI8+eh5evrzMAtfjla95KDu6ZjQKVFObFI4u+9LJa2uzrlXP5tvttMYhC2DzqtmQBbBTFsgu7+d5uq2ozStmr69TIPvBB0+LNWXzcPfzz/fhL/8y/R+MAACMqYwFAAAA4Gtht5vCP/yHPwo/+MEbt9WvqQp2eR+3e2FtDEfXql57x9aC1FPadM5a7aNeS7be36uWLfe1VbEhLOFrfB1NZxyD2fjz6tXy+sUX1+FP//Sz8L/8L38a9mYxBgDoUhkLAAAAwKP0/PlF+PGP3wgXF3NT2brbTeHdd5+EJ0/mMM9TCGEK87Lk6W3b5X0IeRjbn4Z4+zzEp0xZvNUSmrYdn7bG7DSYvrisil220/vl3g+3r/v9Mo5YIXs4TGG3W4LZ6+tl38XFEsZeXEzhnXeehN/8zbdugtrlXvb7Q/jTP/0sfPLJq9d7MAAA3zDCWAAAAAAejTffvAy///vfDU+f7sLFxRzmOVa/9qYebgPXPGStQ9RjUxIfF9PQ8vy7hbVTp5q2XTd22c6nO67bTEUVbNzOQ9h4Xv2+XFO2vy+vlo3h7LNnF+GDD57eVtC+erUPX365D//r//rvhLEAABVhLAAAAAAP4mc/eyt88MGzsNuloPWNNy7DixcXN0HsUvmaql5TEDte/3U8FfHrV7jO99RP3xKWHrLt+ngIeTVs3qZ9XfrKt+sq2bJ6tty3hK9TmOcyjF22D2G3W6piY7Xs5eUcfuM33gofffT8tsL21atD+OSTL8Mf/uHHd5zGGQDg608YCwAAAMBXJq9g/clP3gw//elb4fJyLtZ7XaYgTq+98LXdLq7S2fd6403b4063XG8tlOxNXdxOTRyD07bN2mv7Pg9fl2PLdMUxdJ1uKmPTVMbLdh7WLmHsbrcc+/GP3yjWl/388+vw7/7dZ+GP//iTcH3dr/oFAPimmw7Zn9JdXV095FgAAAAA+Ab70Y/eCL/92+/dTjv80UfPwptvXhUhbB283mU64rTvtDR2vZr2/gLenjKkHE1XnI7Xgevyvrd+7KEKYg+D96EIZ+Ox/T695m3y7XwK48Nhmbo4hrKffXYd/uzPPg3X18v+P/7jT8If//Enr/ewAAAeuS+++OL2vcpYAAAAAO7dUu0aQh6Ivvfe0/Cbv/n27bTEMZRd2uWVsHUYOw5f60rVu4aleeg6Xmu22PtawWyqcm2vEdd2jftimDpNaV3YaVr2pzaHME3T7b7ldZlquN7O28T+6zVjY/Vtfp0lhE3jjdvLdQ83+6ab6xzCPC9TGD979sbt2rIff/xl+Lf/9tPsXpdBvHqlZBYA+GZSGQsAAADAvbq6msN//V//Wnjvvadht0vrvj5/fhHefvtJsQ5sOwVx2p/vS+9D8z4PfLcGpPX5477bcaz3NbY+Re+he7w/TfH4WDtFcV0tW7dpq2HrKtllmuLlnFGlbJrCuF8pG18/+eRV+NWvXoVXr/Zhvw/hiy+uw69+9Sr8wR/8PHz22fXaAwIA+NpQGQsAAADAvXr2bBeePt2FEKbw5MkcPvroeXj//afh4mKpfo3VsP0Q9pQA9vh0wcfC0bUpjuvQ9XWus9a+DV5TBWt5TgpPY+Vp3t+hOGFqziurZVP1bF4pm9qX1bB5xexSvVyuaZva5MHuVNxf7G+/Xypm33jjMjx/fnETxi7TGD99ugsvX16Gi4vl+q9e7cPnn+9Pe7gAAI+UylgAAAAAXtt/+p9+J/ydv7OsB7vbTeHFi8ubqti1EHa0JuyxSth2euKR0ZTG/b7HUw+fa63YaL0qtl1Dtrd+bL5/y/qxeVVsPKedurg8Vq8rW68jG0Kqmi1fl4rZ/X7ZjtWyr17tw/X14aZa9hA+//w6/MmffBr+8T/+i5OfIQDAY6EyFgAAAIA7ubiYwwcfPL0NWkNYgsoPP3wW3nrrKszzdPvTC2HrNWDzitjxdMH9kPR4Bezp/d5H6Jtbn5q4aLnWe9M2VdHWFbWH4pxUERvXcy23lzb1WrSHm/1TFshOIVbGLpWuh+z4VIS481yHwlPxHMq1cOcwz4fw4sVFuL4+hKurOXz22XX48MOnt9Mef/zxq/D556YwBgC+nlTGAgAAALDZe+89Cf/wH/4ovHhxGZ482d1Wwl5cTGG3m2+ms52q1zqIXY6V223weWwK4dqxwHVUJTu+Vupj7Vqn6IezbeXr6JxD1aheI7a3bmy975Qq2W3rym6rkK3XlY1Vsr1K2S++2Icvv9yHL7+8Dn/wBz8P/8//88n4oQIAPDIqYwEAAADYZJpC+MEP3ghvvLFMO/zy5WV4+fIqPH26C5eXc1MFOwphtwSwx6pSt63f2q+Cfah1Ykfnl5nqNDjWprNxzdckVrHWlbJl9Wze/tQq2d66smn92LxatryHskK2DY5TxXS+f6mUjesMX1xM4TvfeRbmeQrX10tY++/+3Wfh1avNJccAAA9KZSwAAAAAQ/M8hf/xf/xR+PGPX95Uwoaw281hmsJNCLsEryl0LacfzreX19F6sMfC0lrdb95+/RpbqmDPFciuTVvcC2Hr9qN1ZEfVs1vWjI3b/X1tJWy8xmjt2LZStt7Xr5A9HJYK2WV7qZCNAez19SF89tl1+NWvXoX/+X/+0/Dxx6/GDxIA4IGpjAUAAABg6Hvfex5+/OM3wjzPYbebwocfPgtPnuzCxcUyDfEohB1VwLaB7NIm3xdtDUbvEr7WfW8LfY9Pj3yKdI1DEaDmx2IlarlvOaduE6tfpymFpnn1bH/N2FTlWm73K2bTtacsoC0rZ1Mw2/7Eay2Ba7m+bBxjqs49hHk+hOvrOUzTIauSXRrP8xR+4zfeCr/85RfhD//w43B9rUIWAHjchLEAAAAAFL73vefh937vO+Hycg4XF0sgO03h5jX+pKC1VwW7JYA9Fo7eHumGsf3+j01R3OuvF7bepfq1PwXxsPWw/bK/DGvzqYTT9tKunGa4DFeXfdPNvvVgNp2fgte6/zJ8PTWUjVWy+TinYkrlfLrj/X4JcKdpqaCd5xAuL+fwG7/xZvj5zz8Pf/zHnwhjAYBHzzTFAAAAAIQQQvjud5+H/+A/eD988MGz8NFHz24qYdOasPnasMcC2PXw9ZSq1P70xf0wdq19Gk/ver2K3GNjex1tYLtlauK4fRgez6cVLo/XUxS3bY9PU9xOW5y/3zpt8TJ18XJunJ44n7Y4Hi9/Qri+3of9PoRXr/bhs8+uw//3//0qfPnlMoXxn/zJp+GP//iT3qMGAPjKmaYYAAAAgBBCCBcX022A+d57T8Jv/da7YbebmnVhyzA2hBiojkLYXhB6LICtK1jrdr0pkG/edatt14PZ5bzRWI7tv3+9C42qPqeVNqNjvf3TSru2TZq2eDkWq1pTu8NtRWustu1XyS4VtYfDIcxzqsBN1bfZaKbY7yGEMN++Pn8+hR/+8I1wfX0IX355HV692od/829+dXteDHUBAB6aMBYAAADgW+r584vw9//+r4U337wK8zyFFy8uwtXV7qYaNhQhbAjpNa+OXba3Txmct+8dK/ev97s2BXL5fksl7nia5GPj3GK0PmzZ5lAdS9ML5/3EaYyX7XK64/T+0JyfKlnL0LNfMZuC1DIobdd9zX/i+NemK86nKd7v4zlxuuI0bfE8x2mK430ebgLcOG3xcny3m8KPf/wyvPvuk/DFF/vw6tU+/It/8Yvw85+nihQAgIcijAUAAAD4Fnn6dBcuL5eq1zfeuAzf//4b4e23r8JuN3WmJG6nJS4rYtN2CKet25of6+8b9zsKgfO2vf7rqYjXr79uS7t6zddj7epnFEPJvF0/qD1UoWve11rVa77/WHXsqJo2VcTmVbN1n7FidtmXXuf5cBu05tvx/uP10hTHZcAcr/vixUV48mQXvvjiOnzxxXV4+fIyfPrpdfj882sVsgDAg7JmLAAAAMC3yN/7e98LP/3pW+HiYg673RTeeusqXFxMt+FrPhVxHsaGEIr9cXt5baf7HU0RXG73K2Tr0LfeV7a/ewXuaBy9tufQDwn70+tuXTc27S77qdeJ7e0brRVbt9mydmwIaV3YtfVky7Vjy/31a/3++nqplL2+TtuvXu3Dq1eH8MknX4ZPPnkV/tE/+rPwV3/1Ze9BAwCcjTVjAQAAAL4lnj3bhbfeuroJWkP44IOn4d13n4SLiznM8xR2u/VK2Ho64q3Vqvm+8v3xkPYua9COpiTuX2M9pN167C6OVcvm0w6nqYh7UxXnUw0fmr5SP4fq/FRpGqcKXqYGDjfTAOfPqKyWLSt162rZ8n0aY6puratiQwhhntP9LdWz+bNJUxHHKbJjWBvXms2nRz4cQtjtlnbPn1+E3W4K77yz/LHBfh/Cq1f78Mknr9qHDgBwRipjAQAAAL7BfvrTt8Lf//vfD5eXc7i4mMOTJ/NtEBsD2vx1awC7LXwdB6/5vlGl7bHgt7/v+LXbsUyD/etG7U+ZFrds2692HbXtVb6m94fh/v4asXV1bd3uUAWf/WrYuvo17WurYrdWyvaqZGNF7OEQuhWy19f7cH19CJ99dh2+/HIfPv30VfjzP/88/O//+5/fBr4AAOeiMhYAAADgG+7Zs1344Q/fCD/84RvhxYuL22mJl0rYem3YNohtg9fXX7O13He8v34oO5oWOV23P6Z03dHY1vafYksfaZ3Y4szqWDmlcFkd21bQlu2m4thof37dtX15pW08nipl6/N7FbH1/v66tUvF66Goqp3npWJ2qaKNwe9UbMe1ZPPnE8IUrq4O4eJiGcebb+7Dd7/7PHz88avwi198EQAAvgrCWAAAAIBvoPfeexr+h//hR+HJk124vJzDPIemGja+D2FrVey4ajXfF62FoK879fHouvV0vMerYttrrNka1h6rjo391Gu/lsfK+87Xgy236+dzaI4t7cuwNU1TnKYVjqFtmsZ4Ks5NoeehaZ+3zdvt9+3+9icey/tZQth4jfg+D4KXtktFbGwTr7ffx/OWsT55sgtvvnkV/uiPPg7/+B//xfoHBABwT4SxAAAAAN8Au90Ufvazt8Mbb1yG3W4Kb799dRvE9taF7VXEhhBuK2G3Th2c76vf58FqffyUELbsfz2APRa+jkLX+6iIvVt//Ybl+qxr57Rh7qhq9vWqZcvtGMSO142Nx6Ywz6maNW+zhKh1cBqac/f7WDUbA+rDbVA9Dr1joBsraOebcRzCe+89Cb/5m2+GP/uzz8Nf/MXnow4AAO6FMBYAAADgG2C3m8Lv/M774Xvfex6urpY1YXe7OUxTuJ2aOIawIeSvIcTgahTC9qYhvksAW/dXB8D1vvx6bT/brlUbV8aW97BVWaG6xdbGvTH0zq3b9ab/rfePq2VHbUeh7DiEzY+l/THEjRWwMaiN0xPH17xKNoav5Zq18TX1n77DIYQwh2Wa5/lmjdn9TagbwgcfPA1vv30V/uk//UthLABwdsJYAAAAgK+53/7t98L3v/8ifPDB03B1NYeLiyWMLdeFrcPYEEYh7CgQHQWwa6Fnv+o1X4t2WwA7qn5dG8c4qF1vt6bXNt93PJg9drG1Do4Fr0ubNmQtz43TErd91qFqb1+aHjj1lU9DXI6hbpeqaftTCafXNIKlsjW1DaENZfOq2rpNDGf3+yWcjd/9H/zgRXjx4iJ8+eU+fPnlPvzRH30cPv30uvNMAQDuThgLAAAA8DVTV7j++q+/GX72s7fDxcV0UxEb14MdTUmcB6DbgtFeALot/Mz7L0PZ7dfaFsBuCV+3VcauWW+4VGMeVwaFZf9p+uAQ8vVf69C3fP6HTceW4yksbSuCeyFuXSnbbpfXHFXNtu/L71KsjA03FbPTTYCaHzs035c4lXFc/3i/TwFu/ixjFfM0zSGEfXj//aVC9tNPX4XPPrsOf/Inn4bPP78ugmAAgNcljAUAAAD4mvnJT16Gv/t33w8XF8t6sB99lKYmbiti88B123TE/WrWcl+5P9+3rd9TAtgt4WteTTseW7Nn2PbutnUWg8HFejVs2XbUvrz3/vTDy7kplJyaMcR9ZR91sJueW5wmOA938wrYfFriumJ2CV3DbfgawnRT/ZqvE9ubtjhkY2zXm43fr1Q9O4UQ9reB71J9u1wn/lHD5eUc/ubffCf81V99Gf7ZP/vL8MUXElkA4H4IYwEAAAC+Jna7KTx5sgvvvfc0/OQnL8PFxXwbyKYgtp6CuA1i8zCtF56W2/Hq/XA0bZdh4LZK2PXK2F4Iu3btcWVsuof+/rVz7leekdaVu6kCtq5krati4zM6NMdTH2UVaWozZaFpXi2aV7iW+9bupWyTh7DpWnE8ZQVtu67scixOe3wojtUhcL4/9hf/ACGGrUvV7DIFcgxdewHzxcUcpmkK77xzFa6u5vDs2S4cDiF8+aVAFgB4fdMh+zO5q6urhxwLAAAAACt+7ddehH/wD74f3njjMrz11lUnhJ1CDKBG1bC9IPTUStg6fC2PbQ9g6329duV4joWy/XH32/SOnTmJDSHk0w53j3aO9Spo83Z11ezoWPy/Advj6Zz0ejiync7rtUnVsP338ZxlGuK0Lz9evk+vSwXs8hq3l+P5vsNN1eyyb7/fh8MhhOvr5Vh83e8P4dWrfbi+PoQvv9yHV6/24S//8ovw859/Ef7JP/mLcH29bdppAIDcF198cfteZSwAAADAI7fbTeGdd56EDz98Gj744Gm4vKyrYUdVsO20xCG0gWkviD11OuBRJez6dbZXwdbt27FtD2C3BK/3VSHbhqv1OMvwtKyALffFKXpT5WmvKna6qS5N5x6rlo2VqGUFbl0Vm65dn5e3SZWw7X2na7dVsmW1b68iN1XH1tWzqYo2ZPvS/cf1Z+PxuC5tFKtml6mR5/Dy5WW4vj6EN9+8DJ99dh0+/fS6vhkAgM1UxgIAAAA8cu+++yT8T//Tr4c337wKz59fhHmewm6X1oXdEsaGMK6MTa/H12ltj9XVrscqYcfB7yj07Vfnjsc0Gveo3SnH72KtEnatzaGzs94VK1R7x/OK2t7++6qU7Z2TV7+W7/vH8mrYWPUaj+eVsKkiNp2zVMHm7+vXVCl7fb1s55Wx8f2rV8vrl19eh1evDuGTT74M/+bffBr+yT/5i+ZzAABYozIWAAAA4JH76KNn4cWLJXh9882r8OabV+HZs91tCBuD2PVq2HEQu70Sdr1Ctq6ETe/b41uC2NcNYU8JYPv77z+NTRWfSR2q9itiy2rUvF25Xa7V2lbF9qtl8/5jn71K2di2XGu2rrKtr5FXt+aVsOV2fg/pXvO+ygrYthq37DNed57zoDhV3S5ryE436yqXz3Kel+vsdnMIYR+ePbsIb755Gb7znWfhk0++DB9//CoAAJxKGAsAAADwyMzzFH7v974T/tpfexmePNmFeZ7C1dXudl3YaUrVsG1VbFupuiWE3RLApu1tFbenBrC98HW8vx3reLypr7W253XsYmvls71ze+2nleNbjvWnJS4D2Lxd3SZ+rilITf1ON23SuTFcrfvM9y8Vr0vwG6cXjj/7fRlOpwrdKdtuX/t/rBBCCPPNGrbz7frL3/nOs/D221fhX/7LX4Z/8S9+EQAATiWMBQAAAHhEfvCDF+E733ke3n//aXjyZBcuL+ebqYhDFcKOqmHb8HVrlWo8p96XnxPf16Fvfr36GqdUwW4JYUfVs23bcag8Puc81iphl+P5WNtph+vK2fgs6zVa8+rT5f2h2h+rWMtze9WuN1e+7ae39uxalWzeR71GbOq7XEd2vD8/Xj6T9vub2peVsmUFcfy+xirZshI4riE7hcNhDu+99yT85CdvhH/37z5TIQsAnEQYCwAAAPCI/Oxnb4e/+3ffD5eXc9jt5ptpics1YssANk65uqUyNrVL2/H9thA2th1XxpZj6fU9roRdC2DHwWodvo6C1fXAdf3cu8rDv7U2vQretL9cr3VU7VsGouVnt1ZJWwaw5b566uL2unmAmgfJeQCbtvNjIYTbatc6cF321+3z13A7FXH+POK+pcI1n+K4PH57F9Xvwn4fwm6X3/OS1H73u8sfSPxv/9ufC2MBgJMIYwEAAAAegR/+8I3wm7/5Vvjxj1+Gy8s5XFzMIVbCLtMTh9vtEPJQNgWV8dixkLRuk29Ho6rVU6YkPhbCHquCXauA3RLA9gPQabC/75S2dfVrOr/tJLVtg9o2dJ2q0LG/hmy9BmzeX6qkzQPT1P9yrA1lR1MXl/tG221gW4e37f3n5/QC3Pp6KbhdKlmXNnnouoS6KdxNVciH2/Vj62mNlzB2zp7VPoQwhx/84EV4+fIy/NEffRw++UQoCwAcJ4wFAAAAeGDzHMJHHz0L/+F/+EG4uIjTEqefshK2/z6qg9Fj1an5vvJ9P7jdHrwe2y776LVdG1t9rLdd30f36Alh6zHH+upVZNaVrXU//WmK4z31piBe+ozH62Ox4rNcCzYfyyFrt3wWoyrZtarZcgrkdLwee37OzSire14LZMtjbcicf8/yCtlDSBXlyzkxlI3P6XBI0xfvdstUxSHsw3e+8yy8885V+NM//Sz86levugE8AEBOGAsAAADwgL73vefhP/lPvhPee+/pzdTEeQibpidO61vGILIfzm6tTs33jfb3K2C3h7CjSthx2LoeDo+PpTbbK2RHx+8rnV1f97VpfSifS9rXq3KNW3nFbJsKpuCzrnptz12f1njLvi3bvQratt0S9NbTF+fv+4FsnPJ4maY43OzrVcgufeUBbP0dzacrDmEJYqdpvv2c/vpffyv88pfPwz//578In39+HQAARoSxAAAAAA9gmkK4utqFd955En7zN99aqYjNw9ZxEHvT68nVsMerTctpiUf9b6uEHQWurxPCnh7A9qpSt6j7XK+K7AXObUBbt2mrZ/NQsm2XtuNzKqtlU7u6WrXsq2zbq35NfYyqZNN919MdH0IKmw/FmNJ2WT2b7rcOcVOfvUA2jqu+t16F7DwvgWyqlk1t0pq1y2sMh3e7peP33nsSnj27CH/4hx+H6+t9ePVKiSwA0CeMBQAAAHgA77zzJPz3//0Pw9tvX4Wrq12Y5+m2KjZWwOaveSBbh5/Hq1VD2BrC1sFr/v7uIey26tg6VK6P9461x/v3d6z9XZzez9SEqEk5pXDv3NuW3XVfy2v0j+ed96pcR/vvo0q2PJYC3BTm5iFsvr8MXUPoB7HLsVgJW1bE1gHt0n6/XwLZ+MzSurHLsbRm7ByWsDZW4Kag+Ld/+93wi198Ef7gD34ukAUAuoSxAAAAAF+RN964DJeXc5imEN5//2n47nefhWfPLm4qYVNgVAevMYAcrQ/bC11LbXVp3N8LPcug9JTK23Houq0SdrS/HVf/fsbPYGtweh9B7VrFbN5/2a5dB7Y+p15Lta6YrStbl/f1GqxllWt+bjovXfyUKtn6GaxX5i7X6b3fXiGbnl19rL7nXjVvWS27BLj7ffweH7LtPOSNoe8ULi7m8OabVyGEEF68uAyffXZtymIAoCGMBQAAAPgK7HZT+C/+i++G73//RXjyZBcuL+fw/Pll2O3iurAxkJ061bBtQFuGtMs1tk4VvBbCnl4ZW/a3dSzp/VoAu1YhW/a71mb9WP+Eu4Sy/arXfoA4roKdOsfaqtl6jdet1bD1mrPLue16snX7tP7sekVsOY72eL6dB7ThtrL10ISwyzTBsU1eIRuy/spjMTyNYepyn+G2GjaG1Xn1bPEEiu/t/jagnaZ9uL5eqmaXfg7h7befhN/93ffDn/zJp+H/+D9+fmT6agDg20YYCwAAAHBm7777JLz55tXt65Mn8+20xEvIkwetMZwcB7KLOqh8/SA27ys/b3SdfhC7tTp2PJZ6PPWxLcfH+7eHt6fq9RVDv2xP0/b4+rEpCO1Vuabtttq1fF+u75qqRadQBq9lBWl9P3WVbD32uk0cVz7meky9e8nXkz21QjafmjgPoHvjKf+w4VBsLxW7qZI2/tFEnKo4riH77NkuvHx5Gd5990n49NPr8KtfvRqMEQD4thHGAgAAAJzZ7/zO++Fv/a13wrNnF+HiYg4XF1MRxvbWh53nEEKIr2U4u2zXIVK43d8POddD2DzwTduj92V/W0PYvJLzWCDcbzN1j/X3rbddP/f19KYYzvY07eqK09G6sqk6dWnfr5aNFZ9t+Flevzw/9t2rko3VrnVIW1fntlWzo0C2V0G7/n6aprDf1/vz11Dsm+d4vWWs+/2yP4a5y/FYKRvCfn+4/R2MzyytIdt+F+N6svmzef/9p+HFi4vwR3/0cfg//89fBgCAEISxAAAAAGfzwQdPw0cfPQsffvgsPH26CxcXc9jtpps1YvOK2NBMTVyGm3l1bNyX2qyHn2Vf9f64XVbGjoPYur9Tg9jROPr7j4ewo7BzLVy9z+B1a/+9qWvLIDUFinmIWrevq2UPWaP8+CiUTe3KitRUQTpaS7Z+LcPb3jqyIbShbTmevFJ3fa3YdmwpbG0rZcsgNt1rem0rgfNK2PLzib8Dcerj5fd16SeGt9fXU7i4mMLV1S689dZV+N73nodf/OKL8MknKmQB4NtOGAsAAABwJr/+62+G//w//yhcXc1FEPs6FbHLvl7Yebcq1DIALoPffLs9Z+n/dULYUSXsaQHsevi6JXitx3EfDlWSeiygzYPpFJrWUwTXAW4+9rrSNfbRD2VjoBqvs7aWbH2d0jQMZFNfdRVtWQWch7MpDM3b9d/X1yiPxb7KY/l2rIiNVbRxDPHZxfA13fdUPLv89eJiCtM0h8MhhA8/fBbeeusq/PN//gthLAAgjAUAAAC4bx988DT89Kdvhx/+8EW4vJzDbjffVsPGithl3ckybG1D135F7NYgdq0KtR++luvTpuuV/dVtx2PonTce2/YQdhzAruWq5whdT7nWsYC2nRJ3KsLANmjNt8t1ZXuhbK/idWkzXku2rHRdrhPHMgpYewFtWYlah64hjILXvBK23p/fUx7Iluu+HppjvdA2/04uIeyheK7Lz+EmwF1+j5cpjpeT4tqx+/0ULi+ncDjM4cMPn4bLyyn823/7afj00+sAAHw7CWMBAAAA7tE0hfDee0/D7/3eh+Hyci7WiC0D2XEQOw5ntwex9Zjq9+vhaz+IHV9zexhc30/5vg1Zy8ByqrZ7bfL928LX+85oe1MSL9eZqnb9cHa9YnZbKJsHr/FYXSW7ddri49Ww5dTC8V7XAtm6j3KsdVjbTmWcB6x1kNuuadt7nnl/+fXS+PK1ZPNpiuf5cDvGWF0cQ9n9fqmOvbwM4f33n4Q33rgIv/jFF8JYAPgWE8YCAAAA3JN33rkK/9F/9GF4//2n4epqqYhtg9i2InY8NXEZcN5HCNqGr+vTEt/l+u2+fghbB8f9ELYNaHvb9TXaY8ND927tWmXQ2g9n6/PLsLKdxrgXyubBazxWT10cQ8wyIA1FkNlb+zVVzZZty2A0bi/XORbI5teO5+bH2qrY/An1A+MyrI2Ba7m9VLiWlbHL63KNGLKGcLipiF3uPz7L+LpUxk5ht9vf9D2HJ092IYS8DwDg20gYCwAAAHAPLi/n8PLlVfjpT98Oz57twm6X1ohNa8PGgLOsiC2DoHLa4GXf6wWxZT+97fLa7ft0Tt336Pr5tdt9/eC2fl/fT3s8jbVnawB730HtqDI2v1avTR2g5uf0qmXzCtL6+Gh64vLa7fnL+7ayNK2RWlfE1q+9YHQc7MZwtR13OdZ2quO6rzp8TX2nZ1BWwpYVuKPvcqqMTdMfh2LfEuhOYZ7j+rNLaLvbzeHy8nC7XvT19coXAwD4xhLGAgAAALym588vwn/z3/xaePfdJ+H584twcTENKmLLIHZcETuuSO2Hrr1gtj3WC1tHIXB9rOy/v35see1RCDtl70Pn/fEAthe+rgWq7bHzViqW1ysDuHZd2N6xqdpfVoL2KmVTRWm9Hmwb8taBd95/HqrGMLKtiD1U26EJWEdryMbtukK2nWo4fw69qte4f33q4vL3aFnTNbaJ0w3v9/nzTNWz+Xd7nmO/4Wat2Phslvvf7abbZxLCHELY35y7Cz/72Vvh+99/Ef7pP/256YoB4FtIGAsAAADwGl68uAhvvXUVvvvd5+Gtt65uQ9iyAjYGSzHUPFYRG/e1QWgdJPYCz3SsDnFDsT3qfxzm1mNu26+N6/j7UWVvO561Nv1j44ZrfZyiXxGbd96u99obR30sr26N7dpK2BRQ5sfL9ynoHPWfQta2j3Eg21bTHltDNoaodXDcG2d+Th2y1mNtn2lZHdt7xu33+XB7bnqeqTI2Vcnm1bMptF2mMU5/hPHy5WW4uJjDixcXYb8/hM8/3/cHCwB8IwljAQAAAO7o4mIK/+V/+b3wve+9CG+//eSmInYO0zTdTlG8BDT1NMXLa3+N2Dz8PBaEjvblge96/3Wb1M+4Orbel197yzqyo/G3x9rwtT7e629L+3M4dp0UmOZty3Vf63561bK9StkUMsZnXa8Hux6C5tWzecgaBuvIbglkQ1HxGvvqV8im70E97XDqNz+n3J+C6FBUx/b2parYvEq2VxEb28Qq2P2+rZI9HFJ17LI93/S5v30fw+C/9bfeCb/85ZfhD/7g5+HLLwWyAPBtIYwFAAAAuIO3374KL19ehnfffRLeeuuyqIhdQtcy8CwD0TK8rIPEOjTNj5VGVall6LfWf93mWBCbXzs//1i7LUFsG8pO1XZo3FcI+7qB7do6sfU1yrZteFqfc0qlbBnKjqpk0/qv7fl1BWsewJ5WIZvur62QXXsux+4nto3XK/svr9kbdxxXDHLr9WRTKFyuSZvWjE2fWR7glj/TbZXsPE9htwvh6dNduL4+hDffvAyffvoq/OpXpiwGgG8DYSwAAADAHfzu734QfvrTt8KLF5fh8nIOFxdzmOe0dmRcKza+7wezo3VaywCzrVpN7ct9ddvtFbG9QDUfV7pOe91eCNvf1469bpOf2ztW97PWrn/OFlsa9wPFYetB5Ws6lj+vMpjN29eVsvU6sGvryfarYQ9NUNkPZE+pkO0F8ofmuvHYco086CyP1evh5oFpqR1LCkvz13jusm+el/bl2rEpnJ3nEPb7Q5jn5dzlfbitiI0/+fNf3i+Vsfv9cg9XV7swz1P4G3/jrfDnf/5F+Gf/7C83hfgAwNebMBYAAADgBO+99yS8//7T8N57T8OzZxc3IezUTEGcwsgY/vTWiQ3FsTaULYPJ5P4rYut2+Xbad94g9lgl7Kkh7PEAdv16x87tB2n9dK0OS9ePpcrL+pyyurMfyvbXkx1XyebrsN5PhWxb/RqvU49vfP+99V2n5pnE+6sD23JMscK1bJfa14FtO65yXd18rdjUNlXDLteJIW+cjny3m8LhMIWrq124vJybcQAA30zCWAAAAIAT/MZvvBV+93c/CM+e7W4qYqesCnbqrg8bK+ragDYPcEMYBbHHKlPrtqM+z10Rmyob633l+aOx947V/faOH9vfhsz3o99f2lmGjmUFa69Nfqyslj2tUrYOMY8FsnWFbDy3F8jmYzoWyPaC6XI92XB73TxojdfJw8+yWjZV0daBax4ul+9r7fTEcW3X8rubQtolVJ3Cfp+uH9vGdWUPh+l2TdlULbs02u2mEMIcnjzZhasrYSwAfFv4rz4AAADACXa7KVxdzWG3m4sQtlwrdgop7KyD2HD72gai6TrHgthcHaT2Ate1itg6yB0FsWWoW49vKtrl59b9leNbG1fqt3e8d883e7PrTt3zvgrl2Kbsp20zOvdmK9TPNm+3dv3y/egzCrf72z5639vQ7Ou91vc6vkb/+937Lrf31Xsua7877fet/b2pv+u934Pe+6n5NyH92zDdrB27/Lx4cRF+8pOX4b33nrQPBAD4RhHGAgAAAJxgCWN34eJiygLZUAUwbUjTD3FSv72pfUttiJfvr4PUNmDtB6ltRewoxGrHUQax/fCvH/ylc+prl9vHQ9hyXPXzD0O9IO51f9bUAV+ogtlRH/17HLfpBdztNcbfpTqQjH2OxlL2UX+3eiHqeBru9trbvlfpnPazL8feX7O53l9/78a/w/UfYKT2y78J4fbfhhjELq9zePnyMvy1v/YyfPDB0wAAfLOZphgAAABgg+9//0X4rd96N3zve89vqtvmLIRtQ5o6nKkDm9CEqGWA1A9G631taNTub6cmHh07Poa6TXkfvbbt2Pv76/56x/v7+tWW6+ecR+86/XVlU9s4hW1vGuN6WuJja6eW29PN9nja4ryPZV/qu13XtZ6GuD5vTeozXjufMrmcJjmfnng5tzctce99ea182uMpjKdMrtvn0x2HUK4lG7/r+VqxcZ3Y5d+CeI8xkA0hf11OitMVX1wcwnvvPQm/8Rtvhj/7s8/Cz3/+xbEHCQB8DamMBQAAAFgxTUt48v77T8Pf/tvvho8+ep4FsL3wtZ5qtTe9ar+yL7bvjKJpV4+xF4quV0i2HW0NfutxteHsaUFsP6Bux1Zfu37WvfanBLFteN7/OcWx88p7n5pj/bapfT/QHl+rfD+63vF1ifM+toX2/e/Vseu3bde/Q70/FOjrVwG32/37a6cv7v3xRaj251MWh9vpij/66Fl48ULNDAB8U/mvPAAAAMCKDz54Gn7/978b3nnnSbi4mG/XfNztyrVil+lKy+lLU7hYBkijUPbUdWLb89oq3bbt6Nx+21GbdpzlWLeGsPG8+li73W/Tbztqc2KSOuxn7WhbVTo6L2+XP4u0v61qzdumStbyutPUr5Btjx2rkA1FNWzsr62QrStfe+3yStZQVa7G+z4MxlW3bfuI1bbpnuv2cV9+rNyXzovb+TMv2+S/m7EyNoTptgo2Pc9DVhG73Nt+P4WlMnZpcziEsNupmQGAbyr/lQcAAADomKYQnj+/CG+//ST88IdvhPfff3q79mOvMi6dN1p3s2xbV+Pl1+29lvvK623pL7VpG43GW/df91f1MgyNe2PJz+sd2xrEju47v369jup5ld+P1ZYrwfL68+jv6wfdcXstEJ+qtseutf2PBqpejlx3rY/R9zb//vfO73XYv0j93EdryuY/sb/R1OL9daPTerLxDzsuL6dwdTUXYS4A8M2gMhYAAACg4+XLy/Df/Xc/CG+//SQ8fbq7DU1SIBua9yHkQU1v2uL+mrHLax0Q9QOy3nqw9XXya9djys+t+z0exPaD2V7QV9/PKAA8FsJuCSHT/m2B633nsuM1U+vx99ZiHfeTqlqXc2PbfpVsfJ5llWvevl6PdUuFbLmea1kNW6772q92jVWooyra+nr1PfXuJ353euvhpvPTtUNVAVs95dtjS3/5mrH5GrJl3/G687yMI6+M3e9DFqoebp9V/Ix2uzlM0yHs9yEcDvtweTmHH/zgRXjvvSfhX/7LX4a/+AtrxwLAN4m/tQIAAADITFMI77xzFT744Fl4772n4a23rrJq2DZsvTnr5typ2K77rQPJ4yHneIy9qYbj+/512vCzrOCr920dUxvEtmOtr3ksiJ3CaUHs8crXtprx/mzv+/g6t+P96885v8Zav8enjO7tW+9zXf97lB/fPr5RwF/+UcKxa/f66l9vvX19bv/3qa6krytkl2NPnuzCixeX4fnzi/Ds2U6FLAB8g6iMBQAAAMhcXs7hv/qvfi185zvPwsuXl2G3m4uK2PSzBCuxMrYftvQrYY9NFdwGVPG1vUbdb76/DqjqY3mf9XXWt8v9x/bl91XvL7ePHc/3jcOxcwSuW/Wu3VbO5p/voVvpWp8Xn9+oSrbcLitK4/HjFbLT7Tqn9Xn1Oqz9dWG3rx9bVttOt/fUHk/v4xjr9XGX8aTxrY+1XLs2fh712rGxbaxojdWyy3n9tWNDONxUxsZq+RD2+8Nt6BrHmNaQnW7Hfjgs6euv/drz8PbbV+Ff/au/Cp9+eh0AgK8/YSwAAADAjQ8/fBrefvtJePPNq/Ds2UUVtLbrxPYD036FXl4tl9tS0Zm3q0OkOvgdXa8OPPOxrl2n/1qOuX9f9ft2/L17Od7v/YSw9xHYjqcn7l+r3z6Fl73zetMal8FjG9rGQLaekncUyI7G3Atye+NvpytuX+9yjfp4CPV2eQ+j59yOKZ7XBsfja+VTJaewOw9l86mi29/L1D4dL/99meelQvb6OgW2AMDXnzAWAAAAICzByW//9vvh13/9ZXjjjctwcTGH3W4O8xxuK2Hj+yU4qcOUEHoBbTttcDu9cB10roeb9XTJZUBZhrBlKNtWwdbXP7bdf83bjvaPg9YtIexpa8eWx88VatXVlTd7VwLavH3ZLgV2a4FkuW9bILulQrYOG+tK1XKcvfVjmzuNd5mNqa2OLatz6/Vh8+Nl2/J+0nPorWMbA9v8GuV6tXFfqn7trR1br4fbC2VjyFr+jh6ydWSnsN+noDWuN7vbTWG/n0IIc3j6dHdzTBgLAN8UVh8AAAAAuHF5OYcnT3Y30xKHTuCaB4vxfRvElhW04facY1WwtdRvea1+yNsGrOthaRvUpmOj1+m2/3KcbRBbX7+9rzSG/rF4vN+m33dewdwf6/2Zqp9ybNuC4rbP0RTW/efUD8DL7fWBjKfMnjr74hjLfVtD++Mhexvc9+9jfE/1mHr95r8//T8syNvV73vXbn/n8t/TOJ7e2rHpjzuWf3N2uylcXs7hgw+ehA8+eCqUBYBvAJWxAAAAADcuLuZwdVVWxJbrwtaBaC9wKkOgUTA3Cjt7+8tQZ2mX+hlNT5wHRHVYtB6CrY2lHf8oEDwerPWP9cbXazNu17O13Raj6YazFs01R9MQ947FZ1pPIzxNvQrYeJG2kjVtl1Mhj69bV9DW1aprUyD31o+txzyFunK1rFJtn8Oxithja8f2K3/79533Eatl8/Vh8+dRrhlb/s6kZx2rZVPb9G/I4WYd2RDm+XC7puxuN4fLyxC+973n4ZNPXoVf/OKL8MUXG+fDBgAeJWEsAAAA8K337/17b4Yf/eiN8J3vPGuC2H4Im6rbQugHq73gsDzWhp2tXpt+dWw9vrrf+vw0li1BbDnAtSC2DoLXrn/asdSmv3/U/v71rlFP55sdKc45PZQ9DALW/rm97V4gW1+nnDK4f616zMfWhM1D29S+DG3rNnHs/XH0p10OK2vHjgLmOJY8ZO1Pc7w2jjS9dP07FUPZfIwxgI1TFS+vy5jm+XATxi6h7OXlHC4vTWoIAN8E/osOAAAAfGtN0xK6fv/7L8Lf+TvvhXfeueoEse3UovHc+Nrbn4em5ftluzOaYRBZV7a27dYqcOvwtR5nO47u3ua+Tw1ip1DfY/58joW0IUzD+xw9l6/SeAxTyJ/p2jj7+9ud43brn13v+af37efZu/6x7/C2ff0x9Mc4vqd6nOX3qb7GVLzvPYfyjxNig/YPL7Z+xr1/P2LfvWN5Jf7FxRwuLubbqnwA4OtLZSwAAADwrfWjH70R/vbffjd8+OFSERurYtMajv1q2DJgzUOYfmBzPExpw6P6enWIVE+XnI9hHJiWQemx6Yvba7bnrfXf62Nr+3K7d27Zbq393bUln+Mq0P4Yyil6U5+xTW/K3Hp/b9riul1ve+uUxfnUv/2pkfvTFfemJg6dKYyPn7eck9os2+XYYj95/6ld71nENula7djSWNrq4H6/8ZrltcvveZySuG2zTEd8CPv9Ug0b72m+KZnZ7ZZg9+JiDs+e7cJf+2svw1/91Zfhj//4k03fPQDg8RHGAgAAAN9ab755FX7yk5fh8nKXBa9t9eVou1dRd7Pndn+tDTb7r50zmyC2vlavinActNZjbAPhXhDbHdnGYPXU9msBbrv/HPKOt60D2/TQhKttKDuaunhtTdf1Ma/3vaWvOgg9dt31NuMpkrf0sb527LbPIW9bf4a9e+0Fwfl1637b8/LpkGOgHQP1fC3Z2Ee5puw8L2tYv/321cn3CQA8LsJYAAAA4FtrnqdwebkLFxfLWo2xGjafLrQMaMuq2DbgbAPRXuh5LODsVcXmQU3brj+G8TXL4/3Xu1fEbglbe8Hw2v7e8Xhv/f3HHE+2xuvALufX1zwWbpZtUijbHhufkwK9fpv4jNfXgE2Bbdumf+7onF41bd22vqdta8fWx/sBaV5FG/uo15fN94+eQX9s8bzYNl8rNq0Zmwes8fy0XmxaPzb+rs5zCPt9XEN2ueZyjeXfpBBC2O3mEMI+PHkS144dP1MA4HGzZiwAAADwrXN5OYd3330S3njj4nZa4jb0bM+rj7VBY9muPb+fGOb91QFrHmCu9V9Wy47H1d/XXwv3mLVgt30/NW3T/rr91Am18+vFtTbHa+VuGH3102mx8l3onbdlLKMwuX9sax/dVkfOHa8fu9bnWrtTw/2jVxsG83f6wFevUY+xbrP+b0I5nXnbb/46Veel73E8Xq8jG6csXkJZAODrRmUsAAAA8K3z0UfPwj/4Bz8Iz59f3KwVW1bG1uFKHrKkQDEP0fKAJXT3j+Vteuu9tmPp7U/X7AdMvTAov35/DOW18n3jILbe14aNx9ayrdvUx46FgutG1YWpw6Vysq2abHq6rbAs+87bjqa1LY/FE8pK0LX2S7t+dWvanoZ9js5b9q2vn5rvq6tj633r105tlr7r6Yzb8edt84rYdP1lf92mv6ZtuV5sfGax6jVWw8bK195asXX1dKyAzT+j8veq7CP/HZ7ncLuO7LJ27DJV8ZtvXoaf/eyt8Gd/9ln4oz/6pP8wAYBHSxgLAAAAfGtcXs7hww+fhe9+93l4443LcHk5D4PKfrVbW7U6qnbdph84lv2XY6v31+eWfdah5XrV3nCU3XbHg9h+H+Pwtx5zfU+jcZ72ESyNe4FrPa6l3Xhq2H6o2p/6dnT+1vVit5y/tt1/X463bNObfnj7WPrH19eOHY33rmM45X7Wjh8PXvthddxfh85lUJ76Kf/dWV7neflDkTRdMQDwdSOMBQAAAL41Xr68DP/tf/tr4Y03LsPV1XwbdKSK2FBVxo6mVm1D1DaMrMPKcRBah78pkGzPqffXU5y2Yyr7XB/PeJ3Y8n6PB7Ftm2nl/DagzY+3gW2ojp8mr1bsHSuvMQ2P1eMoK2XH67puObcXRrb71sPN2Cav2O0Fsnkfx68bQ8Q6eGyD6NVRNef3r5e3C9VauCGM1rpdxtILRmPVbj3WvPq33pdfI187Nr/vvNo1hs7pO5bC1vR7eAjzPIX9fjk3rh07z4eb1+V+lmmKp3B1tQsXF8JYAPg68l9wAAAA4Ftjmpbq2IuL+SZ4jWHm+tqjKTAtf6pWzTl3HGUnfG2DyVGYODp2fDzrQewoZI3njttMxVjqY2XV8ZTdX72e5lTtm7r7Rj/ls2jX6myPdZ5Qp6/yePk5nfIZrD3P9T7W134dfU+26Afxp/TXu//1au3yu3L8Wmu/t7G/9VB//fNcXvttRv9u1PcSv8/tvdXXqf89StOm73ZTePZsF95//0l4/nw3HDMA8PgIYwEAAIBvjSXUmMPFxWht2ONrxdbBYh2qrAVovdfyWqMgdCra967XW082tanD0vr624LCXkXrqMo1D956IVP7k4dPc3Vszj6v6bZdvW/8M75mGegWd70Stp0ayo6O9Z9zft7WQHbt+CisHYWU2665/r1Or+P1fev2W65df8+3jHNtf38sZWV63D8eZ+93tfc73fudb7+T8Y9Elu94uF3T+uXLy/DDH74Ib755tX4zAMCjYppiAAAA4Bvv8nIOv/Vb74T3338anjzZ3QZ5ZZjXC0bHwUqu3V8Hab0kaLxvHKTWlXaxXT80Ggdb/erE8tr9kLWn7rM3dXIdcrVtR2FyL2hcS9Z6U+X2pvM93Ewnm85J2/F4utY0xTb5WKasXeeq03gK33RsdM5p+0b9ZS2aMWw5L5/+9/g56TnHNvXr2tjy53Vs+uX4OeVTEOfb5b7y3tN3KO2L0xfHKaxH0zaPrhv7zM+v72fZzp9R2t/++3MottN0xXPY7Y4kywDAoyKMBQAAAL7xLi/n8Df/5rvh/fefhqurOdThah3C9sLJXB2G9o5v0Ya//bC0DmJ71xkHxceC4eNBbNumntJ4FJ5Oxb464I6voz7qkHk03vp+2rVdD6G87zqInW7CsTxwnZrt/lqudbtqNEUgG69XHzt+zpawdW3t17WAsXd+9wrFeW3AuT6+vF0/GB6PdfTs63Gkdr3vwVqI3I4nPo/4+cb+8muMQvI2cM2P59+Z/Pco/1nWjF3On+fDzfrWc7i83AljAeBrRhgLAAAAfGNNUwi/8zvvh48+ehbeeusy7Haj6W3bwDMPN9eqNNtKzeNBSS9sTOf1K0xH4+hNr5vGNlXnta/1vt74186P412rgK0D11EQ2wtqyzG0gXTrcBPetdtrYeVt60PsvxfSpn5i25veBvvzsW+vhB3tXwtY0zjWAtJ0/Fh4WgaivYB72xiO9b82juMB8vqz7ffTv5c0nrY6tr7Wcr14n6m6NY6jf28p/O///tQ/hzDPy5TFh8N0E8ZOt1OsAwBfH8JYAAAA4Btrmqbw3e8+Dz/60Rs30xP3Qo8ySMwDyriv99q/3vi8tf5OmwZ5LZDsr3FaH1+7j1EA3d/uV/AeC1xPDWO3B7Gxr/UKzxBCFrKmwDVVQdbVmPn7OJYt1arVyG77CuG0qtJtAefGUTR9bQk9m16mPJA8/Zr9/rZdN3Srn3v9HAufT60GXjveC8LLoLY9Fm6D316/vSnU4x+T7HZT2O+Pf88BgIcnjAUAAAC+0S4upnB5OYfdbr6pNDu2VmwZBMYQML3mIeKyvxfCZntu99cB5nrbccVubxxtCNsPUevjxZ7V4LUfkq6HrvH4VGyndmVA+/phbB5OpfcpuIv7DrdTzvbX+Fza5EFt+b4MaJftfIxbpi0+vr8XLNbt2u0yqDwtaO0FitvHedprvb5sP/BO/W8NdMvzQuiNN7UZj6d8jc8nfm/qqYvTtMNL33l/+fjy70j6tyf/nV8qYvf79P5wiP9uhbDbTeE733kanj/fhf/3//1V+Mu//GL1mQAAD08YCwAAAHwjPX26C8+e7cLV1e4mfB2Fl710rw4hj19vS5uyfRmwtmFqfyy9a/Xuo9d+/fXYDbT9b6l+Tfvy0DVvU+7r9ZcH2Hmfi0MRWKYArA3XygrYPHA73IaY7etalWwdGObPalw5uzVcbPvd1mbtnFPC4PL4KWuwdnsIp1THbhlP+uy3VENvq5genbsWUo8D5Pz35FjInapoy6A//W7M8/K9fPJkF0JY/tAEAHj8hLEAAADAN9Lf+TvvhZ/97O3uWrGpMjYPCUO1L4Q89OuFpVsD2Lyyrgwdl33xWLpOv3q23N+vzm37z6+xPZjt9zd196XttJ5luyZvvU5vajvPc3NO737XparXEJaAtayCTfuW7cPNdgzpUgDb6ztWQfbCsnjOKYFs3uZ262i4uaXPLf2u9XPq1L29a61XmY7ObcdVjmVr+Bu/Kr3zjj2L8rVf3Zr31Qtm8+9EHdDm7cp/cw7Z9iHM8xT2+xDm+XBTGbuMJ64be309WzsWAL4mhLEAAADAN9LTp7vw8uVluLiYOyFr+7ouDzPLE7YGsv22dWi61v74hdbGst5X/8QyLE77RkFsGRSXYWwMXMspons/eX9bw9hU7RpD1hispgrUUTh5uL3HFKqOqmTbQDY9v14g27teve94ILtl39agsnbsvDJ83LpW6+tf95T2o4C1bTPaX75fu8/RNesAON+Xrh1CWVUdmvHk5+Xbsbo2vp/n5d+458934bPP9mG/v1PJLwDwFRDGAgAAAN9IsYJsqYqtQ8C6Kq2uwuy/Rmm7H2r2zlvvuz+mvL+yr/WK3bL/qdpX32d/uz02ZWNq14VtA9X5NoStq2HT+xjQzsU5bRhbT1Ncy6tg42v8CeFw2C+tDofhT7zHfPu29w3TF+fVkL2g9ZRAtueUtr3rtaHjWjC5fUrfcUh6t3GuH0vPu610HR3r32fUVuu210/f+7ySOv/sR59t+fnX/x60P2kt2qVSNv99OhSV/RcXc/jww6fhjTcuwh/+4cfhV7+67j9EAODBCWMBAACAb5R33nkSPvzwaXjnnSdF8BdCGXokZcpXT/E7CgHXw8Fe322weOwa267ZH//W/tfG0ga6o6md+1MQl9tzN4xtpy1upzqu76u0FsTGn/lopWPeV7zW8UrZLRWy20LJ3FpAudau3D79uncfz9Zrjdvd9Z6PHTstLD6+bxQQbxlfbL+0qacujuFu+o6lqYtDsT3Py76LizlcXc0rvxsAwGMgjAUAAAC+UX70ozfCf/affSdcXs7ZOrHh9rUOE0MYVZfWIedaIJja9Pb1q27b0Le3DmyqyivPq6+Xj68MeMp7Wg9o8/PzQDSee6widrqtck3ha/06hWmau6FsHsauBbFl4DUKYZeK2HLfPhwOIez39f70s6zR2U/TxoFsPq5xILseFp4S6m0LP08NLk9xl/PjOfXrsX63XGtrmxCOV8Fumaq47itOI1yvl5sfq78r8fuyvD9k7fM2+fFy3eurqzns9ztrxwLAIyeMBQAAAL4R3n77KvzkJy/D97//4mZq4noN0vjaBnt58Jj2ba9YvWl9vEW3//a8OhzubcdrHhvjKeFrHv6W4XNdEduGsXXlax3C7nb5dgzK23NiGJte10LwtWrYJRg7HA5hv9+HEA5hv08BWx7Q7vfrzzCGriG0AWwcXztF8XZbzzm979ND29H7k666IXQdXb8dc387/zx6/YVwSpXw+PiWULwfII/HVj/j3rH8tf6Jf2Qyz8s07Kf9OwUAfNWEsQAAAMA3wttvX4Xf+Z33wpMnu6IiNv8JoQ42+kFoGXL2wttyfy8M6YUovf7roLXTU39vN5xd31cemwZ9tPeb2qdwdNlfV8Gmqtc2hN1l++swNn8NWSibj7O+oTxUjdO+Hm7D1zyUTcHYvghjl5B2DvMc39f9T7evMfRd+loqFfMwsAzfUriXgrdxcJc97bAlPM3bnhKYtm3Xrtc/tlYxerfwtves7h4EnzquPLhd2pWVrXmFa2pXh+/9e6jvr7xu7DRNRZxX2cZK2NRv/gcQqUo2/jsHADxewlgAAADgG2GapnB5OYfdbg75VJ7lNLq3rbPz1gPR42HpcETNtcZt8rAl7a+vXd5DPa6p2ldPSdw/t75eum49TXAdxvaqYFPYGkPY3W53G8rOc/vTVs22Ux+39xpuw9FeRWwMY+NrObXwPkxTCPv94fb1cFhC2RTQ5p/NVF23XCu2F06Ow7+1Ssr7mbK3Pn6foeb6NXuh4ynh8lrf7ft+m/x65bV7bU5/Nimo7Z9ffr7937/xVNTx93v5PuVrxqZ+80B2nkO4uJjChx8+Dc+fX4Q//dPPwvX1mT9sAOBkwlgAAADga2+3m8LFxRLqLdN2joPH+ud1bD2/DkPr17tdq61g3TKu9X7aKtQUxKbt/jTFsSq2rXZdplONoeyuCmRHFbLjNWPb6YnL9WHr8DWEvHJ2DodDuKmGDWGaliB2ec2vNYXRGqApiN1W5Xpa6Pf6AeZd3CW03XLOKLA8td9xEFuG4VvvYxwg3036boRQh7b9a6f38Xcpr7ZNgW4eypaVsfH37uXLy7DbTeHP//xzYSwAPELCWAAAAOBr7a23rsLv/d6H4e23r27Xip3ncPvaVpzWFY/ptQ1JT09rR4FvHmaW23XY2K+QLQPSUL1vq2Lr42WeuTaGOmhNz7C3xmsMU/OK2Hmeb8PXi4tdmKb59nUJzGMQuyuC2jg9cRmI9sPlFMCl12X911QRe319fRPKXt9sx8Dr+rZCdrqpjl363IdwMyXxfh9D6BjS5gFamro4n674HGvHbgl816thRxWi/eNbxrE2VfGoj7xa9PhzuZ+QtAxIx2PLr9kf5/ozOv2zTgFrPYV13W98Tb+LcYriw+00xVdXc3j1atf9PQEAHp4wFgAAAPhau7ycw3e+8yw8f36RrZ/YD1h7FbG9fa+vDno3nNEZw9q42kB2+9hG545C4DIMyoPapRo2/uTBbApud8X+WBm7BLLxWApj689veBdTG8bu91OY57ISdpmGOP/Zh8NhCvv9fBNsLVWxvamYUzg3ZderKyrrEK+/dmw7/vNPH3zM8TGcHoqeVpl6t+uMq2Tv/5me2mcvtG7/EOLQbNfnLZW1/Qrb+t+05Q8aJLEA8FgJYwEAAICvtWlaAtmLi+m2UmypiM1/lqCtPq8XYo6Dyn5lar2vH/62gWZbrVrvay/SD0vH46ivM76fPMRupyAug9c0jfASrC5hal4RO89zVhF7cbsdjy8/821/IczZPbefVT+sa8PYGK7O8xLEXl8v68DO85StERurb2Nl7P72uSzTHae+lmcz31wjjSkP2E6vnnz9qs/XCQi/ene/394zO+1eymuPKmVH/fbC1Lpqtn9e/3j/93BL+3L92GW92DRN8VJtvg+n/PEHAPDVEcYCAAAAX0vzvExR/M47T26nJy4DyHEF6Lpx0Ln1/C3nro2tV717X3oBcHytK1/TsxgHs7EiNlXHlj91SBtfU0VtHsDWFbFTZ5whpHA0fy3vbVkXdr6phF0C1f1+DvO8v6lsnW4qD6fiflNFbLz3OIVxHQjGix1bO7Z89uPphMf7HtJd7+2++/8qrY1p67Et99V+H1KVbLnucQqE0x+XpHb5H58AAI+PMBYAAAD4WnryZBd+//e/G9555yo8ebK7rYotw4kylC0rZUPoh353V4YhZchZHi+rUttzm56Lc3sVrv2K2/w65XZ5Th1it9WxcarhfOrhfMrh5f3utgL28vLi5vXypjL24nad2BS8xorYujK2HWtyqN4fqveHEEJc53W6qWydbqplQ9jv07H8OrEq9nA43E5hHNvla8PGtnH62Hj8tKmKj1WLvn717Dk8xuA0Oh5058+0DfC3r2eb+otTCcfwfryO7ug7ELKK1/a70/5u5u2n24rv+G8fAPA4CWMBAACAr6VpmsKTJ/NNELs91Gz7OU/laQp+x22O7V8bW3//thtpq4ZjVWjZV10pm0LZ8n1eBVtXwMbXuC5sCL1q2FFlbP0+ny44r4qtg64YpsYgdQ4h7G8Cq3y92LzK9xBSGJ2HrHnotlw3BWd1JWQbuj3mADOExzO+u4xjdM6WCuTsaDgt+E5Vqf0+Y39t4Fu/3zKO/LuW/qAir5RdvrO73RTefPMyXFxM4ZNPXj2KzxQAWAhjAQAAgK+laQrh4mIOFxfz7TqxMSTM12atf/Lz17ZPGUd9fj+AnTrt29CxrWCtq1tDc2xt3KOK2jimclztVMRlRexchK9xrdjd7iJcXCxrwaY1Yi/DbrdUxi5h5+62/6USdmsYW2vXih3/LMfTsy6nfU2B1RK27vepsnqZwjh/Lvl0xb3xHAvp7u71+3xslbanjadX5Rork7f23XuGxwPVbWNuQ/n0fvmDgLzK+jD8fW3/LUnf2TzYLdeQXX4uL+fw/e8/Dx9//GX4v/6vj1eqdAGAr5owFgAAAPhamaYQfvSjN8K77z4JT5/uisrNqmX3fdvuXkY1eN149gnNt7YdVeO1UzTngWNdCdtWxebrwi7rwe5uX2Ml7G6XpiWeplgRm6YMHoexofNaq0PY2HbfewpZIBZuxh7Xkg2368cuYfH+9jWviM0rZJdndQh5Vey4OvPYVMX35TEFrY9pLA9na3ie2k3N96pu0/tjkRTKTjfThqe1swGAx0MYCwAAAHytzPMUfvrTt8P3vvcsPHt2cRs+rFXBLtrwsXW3FKMXfKYgs66YnYbn5vu2VO2u7+uvHVv3VwaxU/G+DGLnolK2rIzdFZWxeRi7TBm8vKbQdb0yNlaf9kOlfkXs4TCHpYowrRmbB7vLPc1hv09h7OEwh8PhkK0Tuy9C6DimWIUYx1ZXZZYB2n0Fkuv9jEK7r9p9X/eruo9j1zk9UD3aMmyprI1t03csPy+viM2D2BD2+yWM3e0ksQDw2AhjAQAAgK+di4vpdnriuoozhDxoLIPa84jXrMPess2oUrU9vjbQ8bH1/kf7Uvia30e5lmo9PfFUrA+bXpcgNoaxKYDdhTKAXQti22dZytfijK/LzxLCxiB2DqMK2ng/ZQA7Z1Wy9fTEMRyeQpqGOK+SPR6+PlRQyusrK5xPOW9rmNv2n7577dTEZZvyWPz3EAB4XOaHHgAAAADAKaYp3ASCddBaBnm9cPMuU/z21BWJ5fv1k9dC09cb3/GTyymK8/ZlNey4Ojavis2rY5efNE3x7ibIXYLXFGbmgWz906uarYPbrYHu+k8cWx7mx6A2hrFtVe3aMxaAfZ2s/Z6NjrXV5MXRo/322m+5dvtvxNQdR/n7CwA8JipjAQAAgK+dfH3E3jTFp4cjyV0C0e3haB4MHw9k8uCl7a+9x34AXZ43rh7urQ3bC1/zdWHLithlauJdyCtiU4VsP0iN1ahtQBzvoy4vLCteD4d6auI59KYpTq/zbRXhfp+qZOc5hcZ1KJ1Pm1xWwqb3X3X1a32tr2Pl7delYng8zvrz71dJ1+Hp+N+Y+H3rVcrW7Q5FFXf6Y4lNtwQAfIX85xkAAAD42ri8nMPTp7uw29UVYONpgEfVp/dRQNa7Tjl96P1da3S97edN1XZdKVucMaiMjYFsXl1a/uTtj1WxporZtZ/R+Wnc6/2E4n28rxi6lhWz/c+s9/y2VDHyzXa3z7v9Pez11dvu/cFJe2wKFxdCWQB4TFTGAgAAAF8bf/tvvxt+/OM3wnvvPW2qYlO4tlhfwzV3eqJyLPitq1vjvlGAdyyIOXasV2W73ueUjasMXuPUvTFYbatjd2G3u7ipjL0IFxe7m3ViY1XsaI3YtjJ2qZoNt9t5BWraf7ipng2hXCt2WRd26SNu9ypi2/A23feyVux+34bP5flxrdj22Z/P1os9bGnp6zyTx1cVW1a29j7zbd+D9J0J4Xj7us/6Dzp6Fbd1ABtfnz3bhR/96EX45S+/DP/23352bKAAwFfA30gBAAAAXxsvXlyEd955Ei4v56a681gV6ilVbNvClvR6aoXceF3HrQHy3a5TB79l6FlOzVtu11MYt9MYtxWx9/ETOu/Dkbb56+h97ztTP/Bp02fw9aiGfXSp59fc/X3od/lDkbV/4+Z5Ck+f7sLVlf/bFwAeC5WxAAAAwNdGvlZsuV7icjyFiPl2a+344TDaf2iqbcswM38da/seBbrHg9ntU+WWIWY+7nrdyV7QuqwTu6wVm9aMjRWyy1qxaV3YYxWx42mHR9MmL2vCxurAskowBuftuf2K2HxfvTZsHiTHasVUmRjPOXzlFZ3nvN799v31DX3vq/L5tH7K7/La73n6/czbt+tlz3MIFxfL7y8A8DgIYwEAAIBH7+XLy/Dmm5fhxYuLatrfcWB5zorFtRD0lOvefXritYtsregsA8p2OuWyIrZcN3YqfrZUuS5TDafX9crW9p7KILZ8bZ/NVxcKbgneHt90vHz9rAW3S0ibfk/r328A4CEJYwEAAIBH78c/fiP8+//+e+HZs12Y56X6q1xXcRTKpil322OnyavQyv3H2/amwf2qspL+1MSpErVeMzavjO2vGRvXjV1+ljVbx1WxS1VpDGTLqth4bFQRO5YHsfW5h2x7HOLGYLj+jhy98iBYPRzuJ3Q9R3B7X31+FaHyNyG4vluVbfrDglSRnfbn7Zbv6+H2WvmMAHGq4tksxQDwaPjPMgAAAPDozfMULi7S9MT5VLJ5iPbVBJy96XDH1z91THe9h2PnrVcRHwtnU1VsWjc2rhU7Z30c+wnF9vb1ZUMIRVh6PLw9Ho4esp/++WXb/PXcHk8ieZ5w9PHcX3Se+3z9f5DGv9dlBXz6w4/830kA4DEQxgIAAACP3rJWbKzWLKs9e9MDj4OI0wKKtYBmVG26dr12WOvj6VXi9vvp7R+FxXnwWoY4sX2/SjYGsXWV7HqQ2gt120C2fhZTZ7veXz+EtD+t8bpeyVq+P9y+9trV7R+yCvYxVo8+xjF9Ve4j9+z9+7VlOvRj/xYCAA9PGAsAAAA8esvUmzF4GAWy4wRiFE604duhOnZ8XFutBajH+9l6oWPtegFmvl5sGZiWVbEpiM2nMU5TEqc+0/Sq6RptwNob15Sdn/bH8HNb4Heogq3yWP6a+qwrX5eK2TqIba8/rpjtV9bet3QfW6/dC6GbXm933ce4t/Wx9tk+9qD3qxrf2r8T5b+N29aNBgC+GsJYAAAA4FFrp8wN4Xh15LnHs9piUx93Oa/fV/+89XHW1bJ1pezUCXfKYDYFtiHk1a75GrHjauHe8bJtHcjmwewW5f0fPykPXMswshfUbtEGpcdCzt69PcYg8vDggzqc6bl8lfe1/fd92x9slG1NUwwAj8fFQw8AAAAAYOQ733kW/vpffzu8//7T28rYEPLAoQ0pXieDOBx6lZRtcNmzPkVo3sdDhCTlPZTVc/XUv+M1Y/Opi5e1YnvTEodwOKTq1nZd2PHY8jG2DivHloAwD1+Xz7IXrh2yNu1Pqoo9FJWz7VTG9b40ji3GzdbPP9b9epXs/fX7uu3u2v4+zj3XvdyvKYy+C/WMAOW0xtaLBYDHRhgLAAAAPFovXlyEH/7wRbi83BVT6S7KwOGh8odt67c+VinEqStje9MMl9XJIYzC1RjI3tf0ykt/9d52SukYpven3y2no16C1hS6pn319MVtFWa/2nXdXab+Xe+7P0XxV+l1phZ+8OLab4Tp9g8O6j8GmecQdrsp7PfnqiIGALYyTTEAAADwaC1rxU7d9WLrdvnr2DjA6odlKQCu16XtXWv7ONa97jTIeZDar4QdXWvqnDP+qa9V9xuD0fJ598a/Nm1vCpumKa9gjccON4HUodhehpfvD837w2F/09/+JrQqK2TLythDMZ42oE3jSq/je1u71/U2pxivF5sf7/c7+kxGa8z2q5CPr7u7dq3146O2W57TqM3WdYkfs2kK4Y03LsNPfvJGePfdJw89HAD41hPGAgAAAI9avT5pVFZnnp5+vk5V39aq3Puujj1ftW0dMk/Nvl5ou9bP2Ojhrk8pvKV9OS1xb63XtiK2rIwtg9i2MvZuUxI3I3/EWd5dqn5PvMJrtTn31MT30c9X8fn2/xgk7dztpvD8+S5cXn4tSvQB4BvNNMUAAADAoxUrMHvrxdbv23Pbfe2asOttjrV9/QrWrX29fvubs4rXtMZkWTlbV8aWlbanhbDbqpWn7H197qgKNu3rVceWP/tie6mErX9SGFtXybbTGZdVsMdC2WMB59Z92dFum3J7vUL0HIHhevXr6f3c9XjdZlS5u/X5tNXdW8d2/w95rSI/vs9nELB+LAA8PGEsAAAA8OhcXs7hnXeuwltvXTUB4eJ4wJCHqsdC2LXjvSmRTxnHWmD8kE4NVV+v6nWt/ZSdN1XH8vf9StfxVMSH0B/PWtiaV8YeOiHc8Slwy0CybrwWCB46++7Pfff5VVeIPlQ18VrQ/npjut8b6v8b8wj/4QGAbyFhLAAAAPDovPXWVfj93/9uePZsdzNNcTxyrnAhr84c++qmHT5viPI6z3O85mf9DHvhaTOSbP9UtdkSvrYVsIdDXSW7L177VbFp7djjlbEhC2rzADWvnO09r9cL3+p+1qtit1R9rgfDp01XvK0y+Nh6sadXCB9rOzq59z3b3v99fabnUVe6AwAPzZqxAAAAwKMzTSFcXk5ht0vT6ebT6MZ9d3Es1Pq6+OrH3atAHbVb66Pu69i+cGTftn7ysHV53Wfbo8rY+B1JrymATd+fYyHj7Z7ho9kWZp7DuacUXjunH9KOfy/7+14/5N4e4m7u9TXP3+bYlMUAwOOgMhYAAAB4dKYphHmesqrYqTh2un7laz09cdzuTU381do23q9OGS6VAdiomrUXnk7V65ZrjkLWfWf/PkzTPpRrxKb3+/0h7Pf7cH2dfnrrxtaVsfU9t+FhP6Detlbs+JzRMzm1UvV1wsbyHs4fUr5OuNt7f9e1X08cwbDa+KvUrh0rnAWAx0AYCwAAADxKsRK2N93mKQFDDDCPrxt7GKyjuuWaX6/E45R1T/O1U3sVpClYrUPW0eumERbvl8+uVwmbwtbDYd9pU05RvN9fd6YmPv2nrpytn1l7r9uqZO86TW8dDh+fonit7+3r4q7vOy2Y3F41vNbv61fJ3mff5wt/151/WncA4BTCWAAAAODRyYPYtO+rHsNXe72vWi+cTgFrHSqmNVN7FaOpnzyULXoOp4VZeciZws/lOr2K2LxNHdLGY/21YutwNlXFtveaP7v8fW+63eOhZ3XHRwPObVWx9fGtYeDxfkcNTqnsPf26ozb3HXLetb9TP+ft13/9G/ym/xsGAF8XwlgAAADg0XjyZA5/42+8E9555yrsdlMz1eZ9hQsx+FiCu+nBpv+923XLsPN4xe/o+KEIEfMK4hRu5pWxca3VKQsp92Ga5iwEjefGwHTKXvOgdsr2jaYszvuLQWzed1n1ukxPHLf7FbHX1+VrOz1xvo7suHI2PZt6nOl5pvejsPL0cPp1Q8nRVLqjMR27Xi+Ejv3Ux/qv64O/a0B8rO+7VP5mR9dPPsndqm0BgK8XYSwAAADwaFxczOH7338eXr68CvN8LKXckmL2qjQfp4cKhLMRhPis8qAxBrFlOFsGk6katewnbeev4+u25yyBeV6x26uIHVXJxvf9Cth8quJ9d53YYkSH8iddq763+wnY7ha6ba9SHR273+rO4ujdO8762Dru8XYebK9/bmtr5J4S6J5eLXw/VbHWjAWAx0EYCwAAADwq8zyFeZ5upiqemqrY1wkXYgATpz9OFbL99g8VZNxHMJv3kQdRy73nwevhtiK2Xwmapu/d7/dhmkK4vl6qU3e7XZjnEKZpDksV6hzayti4L2T7ppAHv+VavW1A1l8vtlch21bEHg778OrVq6Yy9vp6H66v98U6snkou2yXz6QMe3uVoYcqhDteFfs60xPX7Y6Hr+O+1voeX3utMnWtcnZ41ap9/zndV7i59kzr6/U+61PG01ZSj/vbMs7j152qVwDgoQhjAQAAgEclrRd7+rmjcPXhq05fV1k9Orqfu95nP9Qp14Xt/Szh7HTTdupUyPZe165b79haEbsvtpdxx3B1fxMkH6rq2P40xPU14zTNeQC7JRy7axC7/jz619qyvcX4nPuoau2HzMeuf8p9nGMK37UQeBSu3qUieetxAODrRxgLAAAAPBrTFG6rYuN2CFNVOXncUu1ZrgVbBpUxPFzeP+bqseMB6zL++v6WfYfs2aV9sX0ZDPanIY7hZQjh9nW3uw4hHMI8zyGEJUBf3tbVeL2Bp6rY8efaC3KPBbHL6xLALtWusSI2veZrxi6Vs9fXKbRNFbGHatricPts8srYvBo1D1/HQez6vq1tj4fYvfbHqkNHx0fhcVnFut5P/3mUr6P+emMt942qfutgtBeUHgtP18Zf7hv/0UG9P/9O5f2tfc53CdtP/XcTADgPYSwAAADw6PQrY08NZMPt9LvfvErZ+5CHs9neJoDsBbSH27Vc8+mM45TEKeTOX/chfYYxAO8F4Yfq/SiQ3d/uTyFpXg3b/izVsP11YvMq2BTuHYr3y/PphWhbK1i3hKZl2y2h2ylBXT/gOx42nnL8LtYC5te73paTtz/rU6971/Vf10JpAODrRRgLAAAAPCp1EFuGpvXaolvCvdQ+VcNme7Ng9lwB7bbwtx37+LwYpNbHl3sMod3fey71tLpl8LoP+/3yvPb7ZU3YWBl7fb1Uxi7Vx0snu90u7HapmnmRPpNlXFPneBpHWdlbv45+UmVsWg82/cTK2GXt2GUN2bwydglkU2XsEtaGsN+ngDaGsim47YdsbbVx/RmMw7WtbdvgdT1IHVWNHut3y/FegDqq9qyrYLeEjWtBdpo+uj22LfQePbf1tXfXxniX6tXjbdvv0yn9+qMTAHh4wlgAAADgwU1TCB988DS89dZVuLiY496TgoSt1a55u6+iQva+rnHXfvIK4RDCbdVqDKbz6VVjkBvPS9Wih5uAcn9zbAlqlwrZ/e3asWm64rxCNlnWlM1D83jtPFQP1fs8eA0hVcSm8DTcTE9ch7AxbM2rYuP6sfmase2UxHlVbMj21WNb2x+6+3u2tj1XleQoUNwWwB4b1/0OekuYnVcvl8dPq7a9r/B6HBqflyAWAB4HYSwAAADw4Ha7KfzNv/lOeP/9p+HJk/km2Ath69TE60HlaH3YtSraU23vq1zHNe5bD4hPOd6Oqbz/JRiaboLREMrq1HIa4lgdOk3LFMSpMnafXXN3e1+HwyHsdrswz4cwz/H6aV3ZfL3Y/Nr9scfX9erY/T5Vu8YQtvdaVsSmaYtTZWyqCE5VsP1q2Hp64vWKyPupiO2fu70qdnzdtYuNjvWrR49VxR67zlr7uoq728umZ7y2f7QGcP77sb3/uk3/3DbMX/tsRt+XUf8AwMMTxgIAAACPwjwvVZV1UFk6HnqOgsv6fQjnrhzrT4u8Nq77um6cwjiEcd9toHjIKmXr9WBjYFlOV7zf9ztPAVOslA0hhDmrjA2hrIzt3UP9mq9Ne7idVnipft1n1bB1CJvC1zKITRWxvcrYcRBbvpbjfP0g9ni7uG9LENvf3lpdeqx9eazXqDfG8VTG+XnlsfFz7J17imMhZu85HAuN18Z0LDitQ+D02g9mBbAA8PgJYwEAAIBHYVkrdlQpOdYLNmN4saxp+pin61wLl9tjo3uNIef6veZTE6fpilNwuxxfQtlUHRunJA5hDvMcpydeAtHr63hurK5dQtMltD2EaZqLNYDztoveYOuQsw5kl4rWGLSm4DUGrmUoG9uUoWw+RXF6X/+k5z4KZKuRv2YQuzVYG1WGdloe6XdtfdT23FEouH6NY8rr3KWftRA5D4tPCV7r8R3b9zrj7t379nC9DbwFtADwuAhjAQAAgEchhnbHgtM8bMiDyKxFaEO+PHR8iHB2LXTNWnXC1s1XWGmf33d8ZjEYTRWxcUrjEPb7w03wGsJS0bq8v76ewjxPN+HmHEK4vg1gD4dd2O2W99M0h8PhEOZ5ul1Pdp6XKYrj2rLLePphbAqHD7evZXi6v5kquf9at4mBawpl8ymJ+0HssYrYOgyrw9VtIezo/LX2x9tsDU1PuebplbLr1qpit45n7T5HfS3n1oF/fX/bw+7+c0nflWNhd6+fcqz1GA+bx/d4/wgFAL5dhLEAAADAIzENwrmtxoFnGVRubfcaIzlL6JvG3Q+hy+uXoW7etjwvhWIx8JluwtrpJvDKQ9FlquJ5PtyGrOV9Hm62l9f9fgq7XaxQnm9C2flmTGn92LJytgxCU+VqDFTT9MRpuwxe0zTEZRibT7l8LISN12/DsLsHsZ1PqnN+drQbQraVkKdsD0fyWhWp4wC1fD3l2fTD1vX1YtPzvOtzGYfOa8/90LTZGl6fpg2R19sAAI+BMBYAAAB4FPLgsl8hu15d2gtSl6rPqTm+NXQ9V3XqaLudbni87mx7vfrc8v7jdl1FHKtl81B2vw9hnvdhqZKdiqrlaTqE6+uQPdd9OBzmMM/Lz36/v32dpins9/NNNWwMY1NV7NJFXdWcQtBeaNoLWuNasMt23aYNdJft2H8dONdVjf1AthcsrlUsnlIROw4K14PYY0bhYhscnja2+whee/2MrjsKgbfc33h/73ppauP0s77mbS8IzvfnP/3vUHtsFOyWY+pVzCqNBYDHQBgLAAAAPKiLiyk8ebIL8zwOHY+pg9aoXB+1OCOcGlSs9XNqaLt1LHfvtw1x2+A2hN7Y82mLy6l5DzfTF4fsdR9CmG/6O4QQ9ln7cg3geY7PaqqOlWFsCqLiTxnKjoLWPIzNX8sQ9nB7jdT34Xb8bRA2noZ2FK52P407hIFtH8cb94K9rW03juJO54/Cy9Hau722efteu63jqD+L/DM/zZ0eYOg9w/a7dvw+x4H9Xe8HADgXYSwAAADwoH7zN98KH330LLx8eRlCGK0jOlYHsbGitLdubAoCTxvjKBTt7X+9YHZ8/RDiWq9TFaquh8GxGjZNVZyewyhci5WxS1Xr0m6eY9Aapy+ebkPQWBU7z8s0xEtFbLlW7LI/TU8cx5s+7zKMyoPSPEjNw9dlrG31a7kmbAyN8z5Sv+V18oDwMBxX/xn39jd7BvtH7cf9r4dz/YrL49c5rf1obP0gcP0Z9StFj4e1+bm9/VuDyTyovUtI3lsftgx/84PbP8/e53B8fGks1o0FgIcnjAUAAAAe1LNnu/DGGxdhtzteGdtWcW6fbjiE3rm90Pb0vqoWWZ95WDq+Vj9QPj6OuvK3PLe93trYU2g13fYbbqYx7gWVSxa6VMimcLStel3C4yW4XaYmTtMT9+9zrTo2vrZhbBnClgFuOQVxHryWQWwKyfohdT8w21qtuR7EjhwLIl/XXSpcX7efpX19wtbn2D++NTyOx7eM95RK1ezIzfEyzL/7c94eJN/n9wIAuD/CWAAAAOBBpWrKELasCZsCtN40vGXlaAoU4/qm5Rqqdd+n7KvD0FGI2guQyzH1141dewbjY2X1b2ofn0sMh9dSmyXEXKpa55tAs51OOAash8OUrRM7hXneZ2vEhjDP8+358SeOL4W38R7KACsFsik0zStkQ8jD2PWfdG4o9pUVmfk6nXkgWz6v+w5hR8e2Tstbh3ejKsu7OLVCsz7WPtet16yfeXqO7fH6GfeqrJurdMPWeurkPOisQ8/Rs1n7PNu+yu9c2Vd9z/W41qtxVcUCwOMgjAUAAAAe3LEQcxSihtvK0xgOphBy1G/edy9c3WYcmI7u4VTHg9f1sZxyb/k6sXkYHEPveureJayNUxnH0HafTUE83UxJnK5dV8WGcGxq5RTApuCpDlbrKYfXw9i8r/hc6n359ev3+Tm95925k5Vja+dtCV37+46Fnb1QdeuYjvV57HXr+cf23XWsx6cSPtrDSt+n7T92jfb+R4F2/l099VoAwFdBGAsAAAA8qBTQbVWGj+OgsQ0V1ypYizNfI0S96/mj8LQNovP76l0nfz55pXCsmo39ldtLX701UQ83a8eWB/LgNZ+CeOlzulljdrpda/ZYVWy8n7ZKsV0/Nt/uh7Gh2Zf6C1WbdM1TQ9hx+HX3ELZ37VH7LeHbuM3y2Z/S17Z2xwPLuvq0PNY7r95ZV5D2246C1tG+OqQf6z+3UTC+Xol+vJ/e70T6vai/z6dPiwwAnJcwFgAAAHhweVBXWwtb6ymJY+iYh5VL/3cf2/ZgdRSCpn7ysZRTLZcBc9weBbSjMW5pU147Xacef5JCu1gRm4LQ+bYCdvk5hBDmrK/p9jnk68jmz6F3zV5AOgpj+9t56FoGVW2fodrXG0v9TEZh1+uGsKef0ypD1rv1E8P6cYvXDfvK8LUNW0fXGIew5fvyOzQK19trt332g9+6/7KPeg3iNKb6uuPvW3mttXa9+wAAHg9hLAAAAPCg1oPOMqTMQ8d0bloPNa6Xmvrun3/sOlvH0xvXeqXqhit0+sirY5fjKeytt9vxtNWx5Zq6IbRryY4CvaXaNU5JPE3xNU1BnKaMXi4yz3UIm24uVcj2ArF+cFoHralCsP++H8KG4nj+LEbb5dhqx0PYY8ePV2Me7yvtGwey960MJ3vHD1W7fvDa63O0rzy+FlCO1GNqj9fHyrVd6/PaNYdXr34bzI7GcWiOrY03D3p7wTMA8LCEsQAAAMCD2xLIrgee62JQ0qu+rfvLt0fvR+ce39cGs2WwfPw+tk2x3Fbm5ueXz6M3fXEIvWls5zl/PYR5jpWv+TqxaXs5L4WweTXs+D7ya7bVg6P1ZNtA7Nhr+z5dqzeW8VhfP4Qtr3XsvG1ZWx6uj9ss/W0NNI+HvMfC2ePnjMPbNrCup+RtP9s6zOwFmb33sY/OaIvXtfPzgHS9z/XPYBTI9u4HAHh8hLEAAADAo5UHD2th5qga9ZSgc9zXEpTEdVWj1C4Pi4+Pbzym0bTLW8dZX7scV14d266lG9um7TqQjWvD5vew35fPIU1JnILvVDG7NYyNfeX3UYewx1974Wt+LL+P8nr1dbeMcdBi8/HtQexp13qdCtl07l3HsvV1tK8+Vofjdwsi85A2768NQ7eG6G1I3AtU2+903a4fHq+FvofiPMEsADxOwlgAAADg0amDh970u73t2tp6rIMrh7Re5tQNV+txvX5o2rbNg91xEF1PVXxsTKNwNg+mpuo1H9/hNljNQ9i0P1XXjteIrdeLPeZ4KNvf169+bdcNrb84xwLW7dPQHj8+brQtBNyq/u53WkzTYEzbwtwt4WV9/W2BZz+k7ge25TTC5b8h/c9tbV/ZVwpw8777YXI9/XV+kV4/o3C43C7blWPLr7X8PgpmAeAxEcYCAAAAD2Kep7DbTbdriiZ1CFkdXQk/twSdvX3rfZ52rdhfCOsVsTFs6U2dvDbGU8Y6CmnLEDtV/eYVsuUUxmX4uvW65RqyZcBcP5+qh9t+2u1xGDt+X4Zx/ZBv/b623ve2Nl9VEFuLD3zUUV4VPb7+XcLXuo/+8fpzP36t/v5D930vyE2B5vHP5tj1e32frr82bfm7cAh1Ja91YgHg8RLGAgAAAA/ie997Fr73vefhnXeuiv29StAYNqTgMoWGKUCaqoqwdH48XoaL42mB14PaNoStpzFuK1nHwW19z+V0vmUwnT+DGG6W1bHbt1PoNFXjj2PNX8fPpR7XqCI2f4Z5lWznaXT31SHeWlC7bJf9nBrAbgnmtuZf99nXKeoKybS9Vi1bB7ZpO043XZ6zXj27FqaWx8rKz95asXWgPm6b3vfC31542atSbcfe29e/Zm+s459DcW7v2dT99Nr3wmYA4OEJYwEAAIAH8eTJLrx8eRkuLubVaX47e0NdOZvCyv66rfehDIPL666ft7yWFbHtNL+9806b/vj2aFiflrkOeNtANQ+7U4VsGe6VQV+aovh+pkndFsiGUIdV7fm9IHQtHO31MW6z7v4D3ZHel6F/QvsZxs9ufI322PHpi4+Hr8fbj/vtBeu37zph6OnX7IWidfg7CmSzvSvX6H0n8/f9gHncHgB4rISxAAAAwIOI0xSPpiLO38eKzjwY6U2p26tYPbZOaTslb7ndr7oNN32267bW91FXuY6kgGxcsds7pzeGUdDa387Pz8cY38eb7lfJln0s58TK2zrsS89ty1qko7C03t8GY+MgaxyAHQ9nj9sSvt6t3+N/XFCH/fX3vr3e4fZ42X/63NJ3IvV3LLjNK2fXw9fe51a2r6tUt1al5tfoh7SHbpt+EH/o7Cv7TPd7KPb3qlbLKtm2Erd+X1fNtn0dsn62rWkMAHy1hLEAAADAg5mm8dTCayHkbetDaELLPIw4fR3Yft8nnhnyqZDz+0ljatdiHY8hhs69CtZ2vMcC2tGY0zjboDZvMw558/A6FNMet9PjnpIYbQ1lU9tR8HjsWNn/psFlbe8/hL1LhfcoKK0rYvO1e9tgNu9gFJyPg/o1W6pRU8i5qceTA8itlaZbQ+S1QHgwgk1jOu3YofkeCmYB4HEQxgIAAAAPIq43Gi1VXe30wzG4rMO/2EdsVwaOeYCZB4q3Vwt19Wmvv/p9fn4vKDstwG0D0NRH2X9d2Vo+k9HUzPW+9EzWjqfnHDrh6jjdaUPgGPDln1ceZK2F0esp0vHw81hA93qB1dpz6Lc/9QqnhrBl+/L3qt3fhrDlZ9Svij32vnfNtkq21259/dd2rdh4rNd2dKy+57rqtB5nW6HaP5bOq8PQslp1uVbvWR2K973K2aWv3k97fwJYAHh8hLEAAADAI3a8wrPczgPOfiiVB6+nhaed0RVjKgPgfkXs9uB3bWz9Z9EPiMv2dVVtG8jWIW8vCO8FtPWxPNiN95uHsOHIdLeduxgfORrO5ve39Xr1NU4/8W7Xaj/Ddvrr7V/a3jTF6fPN/xgg/3xS2Jp/nush7N2qY7c+o15guqWvNqQ9Ppa2n3Hg3OtzbSzjcHesvsYpIaxwFgAenjAWAAAAeDBxutRarJItg8k8OIxVtIcsEKyrA/NwdDSC8rxRUFpW1aX2x6YB7o17HJjW1bGheT+8i0N/LL0+R23SvfcD2TT+UN1P3M5TnzaYS+Hfodq3fm+du10/WnxWp3ud818v+NryINaqicud9Vh6fwwQg8ot6wnH37n8ufSnNS4dD04Pzb4UMtZVsWvvD6vv6zGV4XpbmdsLTss1XrcFpOM/FCjH2F6nvFav75BVzPafoyQWAB4DYSwAAADwgGKQUwai9bqq+bG4vw0rD01/ZSVoPwhtA9O632PasLUOddPYxxWyvX7zUHQ9NNsWyPb63damDGHzaYyXe8irJ+NYQ7GvnPY2ZPtG93+q7R31r/lVh6+5Y1+03vHROePAtv1Ol3+wcHy94Ng+/12rr90ea59TG9SP245D3P77MrQst9vrlm3LgHasf2/teNaC3Tr4HT2vQzPOOqhu76PdBgAejjAWAAAAeBC9KtIUYNThbBnA3hwJcU3TPADtX6MfxObXyNuPQqtjtgW4/fD2btMT1+NaC5zXzmvD3TYMTufVIW1ZPRnbrk9HnFfjjtx9PdktTkuq7ivYavvZXu062jcNvjBlQJ5/xw63560FsW1F7LHX40bBaxuW9teKbd+XfaytFdsPKA9N295asvX1yrA1thldo73e8GgRsJaBc7pWu5Zt777K8wGAhyKMBQAAAB5cHRjEcKE3XXAe7MX3axV/ZXgSw4x+9WodMMW29TTEdWDVb1dWFubTBefXLfsdTxlcjm/8XNpphtNY1qcnHl0/hHKq47oKNo4r7VtfK7ZfJZsfy+/v9Wzv4D5Dq+19rVe31tvp2fSP1/vGfxiQ/zFAvq8fPLbV3OXvx6lB7XogWwejdThat2kDx/IPO9qwsjcFcG8MZeh5qK53qMbWr85N12r76r3P72e9jziGQ/N8Qwjh449fhX/9r38VPvvsur1JAOArJYwFAAAAHpU69OwHjv225dSqW6pU22v3zitD4P70wKdqg63xdesxjELVtemK8yC3Pre85vq+XsCb9h+y93X4fMj6C7dj6d3zMadWzN5n0Hr+/k8JYuvAdT3crT+L/I8J4rTT+e9QGbrm38UyaN0y3XQvMK32DPYfOy/tr9eB7bcr26yFulvH0Qt6+9c/foEyDN7Wpr33EL74Yh9+/vMvjl4PADg/YSwAAADwIMaBQqpo7U2DW1aspu1yit3Utrpqtq/fV75/CRTL/eP+2kA4X4s2r57tnxdu2x1bv7WdsrkWg5nt4WseRI/2Le/bytl6fzmGqH12W0K80dqnX7X7v2a/mjV/3wtgy8+v32YUypZhatT+ToyDzNRP+v2Mn3t77vEANu2vA820/1C1adeKHQejIRtb/W9NMYLsWG8K4Hbf+Frl9uj8tjp2tN17rdv3nysA8DjMDz0AAAAA4NtsVMnWq5LrTy3ahrr94KS58pEQp/e+18ex9qOQ5nWu216/DZtGffTH3DYcr8u5tn8tiDs019kSJrUh1nnDp6/memVYuoSkozC1F8ROYZqm7Lwp27fsT+/Tz5Z2bd8h25/vWxvzNsd+Pzt7h+feZa3Ytd+Twai64xz9mzQKtUf99caYXyOfCrneBgAeL5WxAAAAwIMpA9R6jde8OjOvBo2Vp3Ff/Vpc4aavqQpeetPupmv3pgauRh5iOJXa5H0ux5e+lvdt36mP8v7qey+rYZfrra8BO2rX72t0zRRw1VXH/SrZ9GzTdjtldB3I1s/+Zm+3TfEJ3FsIdX9pVllxOppOuT8Ncb49Cj3LMLa3v39e/d2L+9KawPn3Mf1+hazaNfaXT0Wdjsf3obNdqoPS9lgb6Jf/LpTfs/yc/rG8/3ElbR5ulu/XqlpjR2XbPADu99c7Hs/bVpmbH8vupvvMAYCHJYwFAAAAHtQo6OwdG4dKdXDaTsc7uHpow7Cy363tx+ccPz8GYzG0XVuzdn0a5q3jKp/xeIrksn0vUI4hXX2N9DmE7rllu9742ja98x/COAguP5Mt467XfD0lfM0/q7xt3l/v2r3PqvwDhDJk7a0tG3/HeuH6sis/v73vOhDtP9ND0+64UQjcC35H7df2jb+b/X3rgx5VmueBbr//Q+ec8ZgAgIcjjAUAAAAeXF31Vld8prCvDAV7bfOK1/x1FJSVVYFlv+l9f53W/NjSV9uuF2COK2LbQDmNpQ1QR/e/1k/9XLdVyMZ+QvZZ5PeXh3T1/ebn5p/H1GnXGoW3j9da4L5WFbs+NXD7eqxKdv2PBpbXQ/H5pgr1Q3Yf8X1+H221dOp3+wc0CkTrELIOH8tpuQ/NOWWl6fr16urT+vmUbXrt2zVd47l1296+1LZ/rOy/Xi+2PK9+hgDA42DNWAAAAOBBjYKV/FhqW7crA5GyTXFmE6aMxlL3X46nDGPyY53eqiC4vtY4cMrHUx8vA6P1ACkfS33ten85ltH+dE4//DmsHm/HdAhl8NQ69pl9fbUVrG3l67KvDGDrtV23/sw3P1OY5+nmde606Z+fXy+Otc6WUyjcD52PfYbl59wGkvdzThl69vprX8cD7/0er/3ej8bS63M07fHadXqBMwDwsFTGAgAAAA+iDhZCNhVub63TVPWaV6Km8/O1Y5d+1qfczceR95Xv708tW56f74vn9PocX2c5t1eVW4+lfj1lPHXVbjqWrp/3W1cZt9PYhu7nsGzngey4Aja/hzqQ6n12x8K8c05hvCUMXr9+Xklahq3L+7YStgxfy+26QradunhcIZtXxMZ1Y/vVsOmm6+9H/X3Meq+uFX9n43b7ZNo/suiHjm2b8R8N1H9cMAr189Bz/AcO6d7a9r1rrq/x2htPfSzv81gfnSfa2wkAPBBhLAAAAPCgUgBSTj+c74tBYhloxlC2nFb3pofbfXUoE0OxFELW4W0Kdeu1MeuAsD+lb96unMI4TbHcD4rze+33t5x7fLri8nrHAtlen+n+QtFP+nzqe+odj323wW3brn4WZaCUB5cjWwLTc+oHzbVREJtXwubVp2XgOg5kR9MVp31pnHWgmb7jMeTb7+N5+5u+98U9tt+R+vnHULc1DhG7rYv34xC0DFTL+yv7aveX/S9tDtVrb8yHqq9yfHVAW4+5HXe+r+wznb++luwXX+zDn/zJp+GTT1517g8AeAjCWAAAAODB9KbUrdc9jcfXQrz6eHWV0IaSZV/9ELFtUwcgvf7q+xn1vbZ2bDvm1LYOVfvb43GdXiG7HrrGKtg6sG3v+XgoWz+z9pkeVtscC2u/SuWz6I2rV9EaK2JDyIPY1GZuKmZ7VbN5v/n18j8EKP/IIQ/8lp95XgLB/X6+PWfpN95f+tw7d58dG6eudSjaD1PrY+n6edDZD2j72/X1yyC0/+9SGtOhOq/cn2/nY6uv1T6DXkVsux5tfqz3bL/44jr863/9q3B9vTntBgDOTBgLAAAAPJgUKkxZyFCGIktoNKpmve0ppOAnVXjm29WVm0AyhH5w2g96y37zYGs5Lz+eX6s/xXJ+rbXr1kFr2aa897yqtheujipk6+mh0/vxtMXpntfD1jKUDbfjXQuze8d7bdIzWD/vVOV1yg6P9R+/u6l9qnhNr+2UwyGk0DWvhp3nMoStK2XTNcoq2f495QFf/f4Q9vsl7IsVsanffLv8fuT32a887YezW0LZMqAt2477aQPbtVC0fR2vNT0Oidtj9bTE+bOux95v2543CpgBgMdHGAsAAAA8iF6AkYLZXljYCwrritIQekFp7zUPK+tx9Spu28B13La+9pZQcH2N1u4Zt/dZh6+9fb0++9cZBbWxrxBGVbApbG2raPvPowxmR88p/66cErDef1gVO8wD/+S08De/3/Q+Tj/cBq1TmKb5ps2ctZuz88opjuP+29F3/nhhmqaw3x/CNB1upiYu76UMefPfrfTHBst3qZzyu6f8nd8WypbHur1W97UW7qY2cQx58Fv/G5Ffo9fX2vjqgLrs61Cc0+8ztkmvo2AYAHjchLEAAADAAykr8vIQL4aI9ZqxZbjYru1ahrDl2q2LNi2LoUm5LmzqO4ZLbaDZriVbriG7fe3YfhBaVgXn95CC1N70xOtr29bBaj9cTtdOz6itkq3D1TxISvvGlbLl/rpasR/OroVQ91EJu03/+zQOzvO2/amI0/sYtuaha/ypt/sVsnlVbLuechvwLd+j5Xdw2be/fR9CuAlrl/ue533Y78uQNn338srX9DsZf1fjZ5wHj+NgcxSsluu61n31A9Je+Jk/lP5asXX42VvHNe6vt3vXq/tM16mvFdftHU9T3COkBYDHSRgLAAAAPAplhVoZAqawp9yuj/UqU9twIg9D16pg2/f5+eW1+1Wt+T3UgWUd6h6/btnneiDbeyZl2D26xvYxlOPO76k8t/+8R88nO5J9duOq2V5fta8upA2hrNQeXXhqjsWANg9T14LX+DPPebVsDEnzCtm8OrYX8B+KMSzmEKcjTuFxGSaX91I/+N6+sbVw8VibdOxQbd9uDUPKXjCan58HrPU5vTH1A9n2wmWAW46zvkY9nvSHK6P7BQAeG2EsAAAA8CDKKrCpeB+PL0FjCG0laRnw5VWqMQiqpy+ug9666jUd21Z5G/uog9D8GrGvOMYUZPXXjo3Bbl79ml+3rAzuB6/5c6vbpXs7XiGb7i9U4ynPTdunVcrm7cq27bE6ECvbHU9azx1WrQXaNy2KgDXft1b5ugSty+uy3WvXVssuY0rXqceWB4bl+rCHsN/vbz/X/f4Q5jm1y/tdpkfeh2nKq6TT9/6YXqBZh6PLvrYStg1Jy/Vg+321a8bmIW4/gO1d+9Bst33WY+lfu18RW/YXq2OX12PB8vj3BAB4OPNDDwAAAAD49ioDkzwUKQOV5X0ZmuT76v1l/710Ylzt1l6jO/LmOr1+1vtYG2P/hPpZbG/ftm3vcS3FaZ9Xe53jn0W6fvv59tpvCZZSgHUYfNbn1D7Lsanzfqp+bvY20w7nwetcvI8BbQxs0/t4PP2k9mWYm0LeUbhbv6YAflz9W99zG5DWQWn6DrWh4t2+J6d8z9o1Y/sh8Pq/D6NAuPdv3bjvFOLmr73rje4ZAHg8VMYCAAAAD6KtKpuyUKSsfq3XYu1VsOb703S8eR/puiG0Vaj1sbidV4TGvmvtVMV5u3LsZfVgfu20XQcuo7Vhy7G0YzutQjZdJ91T/jyOVcnGfpc2+T20lbLxs4n72yl707HQtTZ98v0Yh4y9a+fPsjy/DmF7FbF1MBorYddf8+A0VtHW0xzXY1xe4+/dPixVl/H3bX9THRvHuhyf5304HOabz+xwUxWbPuvlWvH7F5//FLZWao7+mKFXCVuHnWXgOq6irduUfwTRWzO2HFvebq1KNr+P9t+4tQrZtsI2/9nvD0V17Hhsx583APDVUhkLAAAAPJBxgBG3i9bdCrTy2LjNIdQVY73QZ9z3WsJRVrndRX3ttt9l+3j3/Qaj8KZ/7dH+/jX6z3y9TWqX95k+oy2hUh1W3b/2O1Nfu91/fI3YFGCWx8bVsKPq2BTM5lWv6f3ctM/3lRWyZZ9L2Nqrjk2Bczs9dF3t23te4+90HYyufefy/b3Pog11e59XPzitx1aHo00vTeCb7mNt/P3fk15Y2/+9r3+nr68P4S//8ovwy19+eed/hwCA81AZCwAAADyIOuhIYUZeFRuPx8rXcLu/XiM2Xys2tk2Vqnl4sbQdr4GaqvzKitzbkVfXTPvyytU0luX92tqxvYrVZVz12rdxXGvrx+bXbfup76VXIRvC2jqyKUTKn2+6Vv4s2/Vk8zb9c+vAblw1W9zJmfKnVMHbXrj+/mRnFd+/1NeWsDWvks0rYcvttSrZ/Fq9McdKzOV7cQjTtL9ZN3apkp2mfZjnEPb7eP9z8TpN+9v7jNesp9JdCy7rP3TIt/OAvte+/uON1Pe4ErbXJm/b/rFC7w9FRmvE9kLd9t+3ct+oKnZ8rbh2bOephsMhhFevDuH//r8/Dp99dt1rBAA8IGEsAAAA8GDygDRNU5yHKCnsywPLOiRMIV4bLObbeYCaphUupz3ubbfha9tfO846dMxD2LxNGbjW42+D0Pq1H8j2xloGu2lcZQCcX7v/THtTK9fPIN+O4W7+edbPJ99fHjtUbbaFs/clD+jK6ta0f/T53Yxw0HM5ZXEZ0rbruKaq16m7/mu+ZmxviuJ8bDEAXALY5bOZ5yXUW6YkLoPhGCynYDMGvXdJwOvPs3yN78vn3oaso8A1D3HL/tpze9cfBcbNXTQhcRvmlsfK0LXuJ1XAjkLf8rxqNCvHAICHJowFAAAAHkQZQkzFdln9GUIvSIzn1ZWgZYAYA5gy6I1Baz847K9xWo2+UzFbhqNxjHWAl18/btcBaB42lwFyW+V6rEK2DHN7++oxbwtk8/Et2+O1d8v7DsX95M+ueMKdZ3tzpNNuPZG9v8A2PYu63zaELUZQhaTHKmLzKYlHa8bONxWyZVXs8n655jLG/Htarl+6bC8H9/tDmOdD2O/nMM/pOxHXoC3HmI7l99h9Yp0gsQ4l02sKJPNz877K+9h2nfL8/rqt6XvcVsq27WOno+36XsrwtxfO9gPYeqri/j9Ia8cAgIcnjAUAAAAeTBk25FMSl+FEDJT6QW0bQObH8wCnrmKNIW/UCxPLkK0ORou7yYLOpV1dsVuGsGWbMmAtQ7/Yxyho3RLIpjG3UzinMYdQh9R1qD16TqeGsmn/8WC2Pt62Ww+i0rl3T2W3fQeKMzrnLvvrEDNft7VX7Vqv9TrPu9t2vWmK26C0DjzjZ7W/fb9UxM5hmvZVsBunJU5Bcvkc8yrZslq2/MzqAPWQtRmt2ZyHsr3phNtANW/fa1NfPx9bGcQeitfU92ia4naN1/G0yMemKW4D2vK+8/vsPWsA4DGZH3oAAAAAwLdTb8rOZX8IZVBTBjZ1pVgZiKT2o6lLe9ccBUh5+NHbX4+rbpfGsmW7f426r/q6a9baja/VD3rS59K/x/z8Q9Wg/8zzzyn+lO233N/659qcceRn27Xq/WN5cFlWdpehaf99v2I2D2bzCtnyJ99ft62D27a6NlXElmOvk+f+VMjHnkv9LHu/y3m7OjhNx/q/4+X5+b8N5Xe7P47ynNH3q/c7PPo3Iv83q/2dyq+ZB7Plv2n97+eyb7+Pa8pKZAHgMVIZCwAAADyIwyEPEaaw3y/7l7Ur4/qUqaI0VWWmNV3LaYpT+7yytB9g1v3HNrG6dDnWq7QNIbVJVaT5tfPgp6x8jePvV8rWUxSnsd6M7qbvtkI2u4Ob11TB2m+3ViGbrjWenvh4FWy+vmjdJm9X7j9Ux9qpoHvn514vj6pPbtfYza/Rm1q5t1ZrGciu/+TVsOn9Lnudw25Xh61L+xCWYLWtvq3Dy32oKzqnaR/meb79vsTpjpdK2UMoq1/zatgtQeQozD6ENnQsw8uynzYkze8h9dkLhcfTE8c+6nsZVb22oeraOq+Ho/v3+/oZxf3x38f62aTr7/eH8Ed/9En4q7/6Mnz55T4AAI+PylgAAADgwZShR/wZBSLlOW271L4MfdbTuWPrP9ZhTTvu/jh6Y+xvj6Zf7Y21d+x4+pjfR+8extdfD9vq4KvXNg/c6uuPgtMyKOs3Ggd896k3vW1/LMf1qkrbSth6OuB+FWt6PV7hOt8eK8/pTWucX7seZ+8e7vIcUtv2d7f3+3N8CuNen/HcUb83LZrv0dq/N2m7DGn74x1VpB+qcaV/+3rjOOZwCOGv/urL8Mtffnn7By0AwOOiMhYAAAB4EIfD4bbya79fKmPztUtTKDFV4UaqXA231bBttWqqMCvXJE19LefH9iGM14w9HOo1ass1W8t9eRXq2hqxodqeivtP44r3mq8NG0JbEXu8QrbtK3SuH5pz8irZ8tjx9WTzcWd7uu3y9uWxQ/d4fo/3HciO1ohdjsXvXWqbnmW4eZZ5gJlP89sPYetAtT/F8C5bMzbf34ar7Wc/DgJTJeyhE87m424D/TZ4z3/38p92X3qm7R8+1IHkuPq1vGZ+b73gdlSlGq8xbtdOjd7bXrtGrHItn8WyvVTHls+rroqttc8fAHiMVMYCAAAAD6IMNPJ97XYvuOmvLVkGeGWY108t2rCmPhaqAKV3rTbsTfvHU6iOx96GXO01mjvp3t+WvtJzPXTPqe+p3/ch9O6vP95DqD/7uv2WECoPFMuf15dfoxdCrp2X1BWm8bVcjzXf3wtpt0xvPKp4rSttU1+hE7qGaiz1PYyfQfmZ9R5Q+92qf2fq3+vUb/93ffT7VF+3Dm7X7qf8vHtjGf0b1R9nb23s8ne+Nx3zsXsq7w8AeNxUxgIAAAAPYr8/hOvrvDo2VXwu76eb9WOXfTEk2e+nMN/8eXkKTtIasil8KSs9yzAmXxc2tUlrxKY+87Vjy3VO6/VlQ3ZeyM7Nr99fM7Z9318PNq1RW18rtelVyOb9pr5CcU91v6Mq2Zs9tz3l7dL9hbBWKZv21+FY/YxDV7UcajeAO11/fdjUf/t59ip0V69wG4LG69UB6pz9xArZtH5sXinbe7/0PWfVrPk9pN+LZTrbQ8jXDU7VvGWAvB4EHgsn+z+pXVkd2gsp6/b9646qY0dB6bEq1vbcOjBuX9P7ssq1d716rdhDtj7s4Xa7/8cR7TUBgMdNZSwAAADwID7/fB9++csvw5df7geBS10xlqcOZeByu7cKJsogpa9d4/Fwu78cxzi0aUPF/PprIVL9vg5fyk7r9Sz7oWO7b7Rmax5i1f2uPdf8Gv1nHtv0K2XLdmW/vUrC0bn3G0SNg8H62ql9ve94INtOW5z2x6A2D2vTa9pXV8umc/uVtOX0yKG55vaxj4LVPBjMv6P17+nxz7Zsn85pj/X/Dei1Kfe3wW1+vP19738f6vst++iNqf5+9X8/tnz3t7YFAB4HlbEAAADAg/jzP/88/MVffB4uL+fw9OmuqIxtA8JDKNeOLdevXPZPRbsUlJRrtrZ9lFWgsb9eZWi9jmi+Rm1/XdbymvUasbFNXkXaVqbm/YXimvlYSuW+3nnpnmKo1asSDt3nk67RVt32K4Hzz6isKO2dWwZ6ubZ69T7CqLLP2GG7Fu3aWrH5vnrM/TB0bfrhufM+rg1brim7VMX2pideu9/8M8vXgx1PSdz/nWzXoG2DxkPWtjwvDybz1/T5b18btm4/Wj+2/L2p+2iD2Pw+en2VP22bVPGat2m38xkC2qrX/u9D7F8gCwCPm8pYAAAA4MH0g5M6HDkWqoz7GJ3XhkvH167N27XBVLrezVa3n3JfHrDUYUsdsJTHt1bIro0xP1a3642lfyyFbe399bbzkG78bHrH0ljaMO91/f/s/VuvLEmanom9Zh6x1tqH3FmZWZV16Kru6iO7Z9jNbpEQSxRm2EOAnBmAwAwkgD9AN/oRutPf0G+QhLkTJEDAXOhuNIMRhuwhOV3sYnWxTpmVp73X3mtFuJkuzD+37/vMzCPWzp25T+9TiHZ3c3Nzcw9fsTvjiddsJNb8fb37+Xpy04vZ/rqdy3U8/2tP6o7PU5aja/DPRJWt9r77Z0vfq9Hfmm63nsuK1GWt8wxYOWrPW4/vP0/jv8vTnw0+/Zpdm618hRO6bX9s37Y+l/R70mvns89u8atfPcPhkNpKhBBCCHllYDKWEEIIIYQQQgghLxWZY7EmY+u8rT7lKglSm3LVbdUkpuzvSU2dBCzH1L5gmSNWkq+j1GCdR1aWUPWlju03lnlfpa9SR66vl1y158Ta33MSsrZvOnlb05H62iWZ7M/v07Oj/ku7fr/e1u1Jm/Z+Qe1DQy/Fui1IWyF6IjjaPb9O7bb31F5nnYN10KMgS33tVqyOU7P9l5evei5i+wzbpRX7rRwdyUIvZq1c9NK8P89pe07bvi6r976VlaP5YH2dXj/bfmwlX3sSt5eYHZWV7Tqn7PhebVPq/OpXz/CrXz07VZkQQgghLxkmYwkhhBBCCCGEEPJSaaXFqe2RxOgfhxNpOGyk3cpxtVwvR0Kpd009YSVtWxGV3bodqtSe08uk3nZ7XK+ur9+/HmnrVIq4ppl7+3WZPl9PgvUYybExuXn10rXjNtv7VO9VuxyV9VOqWsKiM19s77i+4T1HMPeeef+s9eXp1qt3jL0HvWd7S17ae967/+PnsH0W+8+9Pg4dEdu7R23fev3qXVNfysqryNlRH/XftG2HEEIIIa8HlLGEEEIIIYQQQgh5qfTFT7u91HbHjqXZtvzxwqQVK32h1B7f7rciRcsd33ddpy3v9eXLC9le3a1z9fuW0ZNarQjLzX7vkGx5Nq++8Oozfo9OHZ/dq9dme59Gfejj54q1ZSJgx/PK+vr9oYr1cf2+1Pta+3sXgdiT2L0fGtR6+p6299H+MEH66P9m/Hr7nPXqjNrZ/tu3/crNOfp/660k7d8b/0OM/j3VffX91mWn/iYIIYQQ8mrAYYoJIYQQQgghhBDyUsm5DFGcUh3ytSc9Sr2AGEVo+KFW67Cs5ZjQkRtiL4I5vx+WuJTVY+tQtNmdV9fJ0MMR17Sj7hvUfpg6dXhgfX2lrh2+uNQdDVlct2Hq6XPaIZDz0m5viOStoYu1jOoPX1y264WLVPQSqTeUcb12tWXuS8updOh58qq9pnJsRnvv9Lnre27P2Q5X/GUlmrzPtkw/A14+tgI1pbwuU0rLKyPnpPYls13rt+v6VZOe47Rt/Tu1gtYL0ZHgrNc1lspLrYEY7fVxJGdPXc+p9nv3Hsvw7D25u/XeZ/z612V44sePD8/x9BBCCCHk64bJWEIIIYQQQgghhLxUrLDYGv5U1x9JnOzaLtKnPZ+XOj511ibj7LFWdMm+8bnWks654M7Vu0e5qav73vajXarWNs/hjxn1rb2u/rCx9hzb70mP3j20r37dkVQ7n/a9knP489by/vnG5y9zy+p5c6Xc/mCgTdP22u49z6cTrs+TjN3+m5X3xra5JTrt35u9Bv3s9/ZDncvXyd1zqbvnlrUt33/9WdB7b9tr7X9m2Gu2bfr+u3d6Xbu+PuLjj29wc5MGdQkhhBDyKsFkLCGEEEIIIYQQQl4qKWXMs8icgLT4hZKADY3o0MlKKY+xpFV9fZ+WtdvBlOuy0Xa7hCvT6ERr3W+Tsjb1atvR7Z+qOyrzbWDtQ71uKasiaDslW4/zSdl6P0udXoq0TeqOE7N133I1XU9lC7fSsbpv59Cmmtv3oE0k2+S0Tsz2xa7d9tJQP6/yN6IFqFy/TpbbNnViNaFNw9rXPKflb9Ju21c/LasTs2PxO/qxRSsmvWT18rZXp97Hto6+531JPOrLOctWPksC1tfR5XW9fbjt89AKXUIIIYS8HjAZSwghhBBCCCGEkJdKmworr74kGQuc2p4XN9vyQu/zdcfHbtkQK438Me05bN97676uloHn9c0e1zv+3D6J3Brvq233r6Ff1kvM6nbPlVCtYOu1kd1rq63clMn19a7n3O2teqOUsy+rolH/HeS1rCdAzxOld5GqVgyP5GF7vdvysbfdv1f9bf0++b/H8WfL+J73/m5Hx7fp3NPp4y3a95wQQgghrxNMxhJCCCGEEEIIIeSlkhIwzwnzHBGCTcbWtF9QkqNNtwIBKdX5RXX9UjcsbWWVwizHlfqyns0+mZ/V77e0+0bzx9pjoMrlfFXk9FK1UrdNyKKp0yvT879u19Xldt+5Sdmy7YXs1pyrVvT6faN06YjzErJrielj26/Re9umjO111Pe0L1S1yOwJzL7wTCkvfx8JQEQIWNZ1YrttQ5Kx8zy79Ou8pmDneV5eCSnp8n6S1idkz5O4WiS3YrPeGy9Q22uT968nV/vlW2Xn7NtO1Grp3SZga706X2wtt9dmn8t6Pf0fORBCCCHk1YXJWEIIIYQQQgghhLxUihzqySfZv5UuaxNstu1RWV8ILTWaY3viBS4FKNdy6ryjvo3SvF7K+POoUozYbqseP7qXz5OU9ddRzzFOzI4kk382tq7Vt3fq1TnStN+7pvO3s7m/Zf/4Xulz67Rr+7fRJli9AO1tt8MJt0MQe6naF6t9ATmSrq3A1H8n/u/P/i34e9V75kbvZft3ZN+bXv3evdfvSXvt/nOht95er7zXo2fe9qlUur1N+OyzA25u5u2DCCGEEPJKwWQsIYQQQgghhBBCXirHY8bhMGOeI2KMazI2pSIgbDIWQGe+V52YtaK1Tch6ManTtVv7AJkPtNapKcmalrTyzc73WvaXcjvHajAJzOdLyPbr2DbaenbeV98fqDptWzWJXM+17Klr3Xlj28TsqK5uZ+19RyqP0KnaHmMZ1r//bVIWbr9PzvYEoshKO/9rfeYzYsSSgAUkSVmS3ZKATQghIueEEIJ6NvVzBtN2m4zVS0nIzk06VpKxOdc0bJnnWcvcOh/tWN72ZK6Xpv1kq17vy9y2jq9r97f19N+/f+m5XbeErK7XS8aWRKykZ1txq58/25+MTz65xb/5N5+7eoQQQgh51aGMJYQQQgghhBBCyEvl6dMjAODqaodp0nIjOCFyWqj646r8CmZby7kiVWW9SlktGv1+Lz1FuImoq2JMizkvYavMa8/jJWmVv7bvVcjqOjmHYZ9sGUw/ah9qG717oNvS11Dr1vs8qmPL6vvk6/pj9D0/h21x2w5JPDpv777obX3vdVv2WbXX4UVeLdOitu6rcjYhpYgQipAtkjZAD1Nc/zZsErZNxLbDDtdErB6G2O/ridf2mtpkqP5b7idP672167ZuX17advU974vaVsRm117bVvvySeCtffo9bZ/L1rPa6xVhTwghhJDXB8pYQgghhBBCCCGEvFQ+/fSAL7444t1397i4iBtyQ88VC/hELNBKEJ3itHVrG1rmFqFl2y9tWAm6tAidhLRzh9b6IlCrSOrNJevXgX5a1tfF0m90pKBPxOalP1be6uM1o5Ss7WOburV17Ty+uk4pM6dcJW4rpFpJ29bZpi9vbSP1/ev1yc8ZK+9De1/98yVlpZ12Kc+6zAUr0k3OLdIVKHPE5pwRoyRi5fmw/Zb31s7pKqnWGTlnHI8zck7N3LGSjpX5YmWpE7ZV3Lbp2PFQxVbaynugt7049RJV6vSGBfaCti9Ix8ncceq1txzJ5/bzSxKwbbq290zq96+Vu4QQQgh5/aCMJYQQQgghhBBCyEunSguRUD4Vq+WLFqpenmrR4ROyNs1ZRaRP2tbkaH+YYitDq/zsD1u71BoMU6zPOU7LeiHr069yjtFwvL2UrL1WK423hi7u3aey3k/LnitmbV2/rydp+22MOF9kST/t9ch52vu21b59lks9uc91KeJVDykcY0LOYUnAyvDEpZ2Sjg3r8MSSitX907JXp1yrWE2rlK0SNq1DEvcSszJMcZWNXr568VrXvWCVvrWisS9i9TMwEq6+Tis+/dC/+hz9ZOtWe62E7a2PkrHuSTHXZJfPns34+c+v8fjxsfeQEUIIIeQVhzKWEEIIIYQQQgghrwR2+NOe9OglY8uxVqqERnz0ErE+KasTsK2Q1Ocp9cfDFZ8zTLGWwbV/bYoW6pj+kLh+eOF2GGM09fxQwzYl2xO19lrGQziPpay/f6fErK2PTp1WXqla7YHdNvrU+6+vV19/K8Pre2fftzYJK23ZpQjZusQqYa1wTcv5WhFbBbKWnXaYYp2M1QJWL325vFqxa4cttkMX678/PxzxSKKOhybuC9VxgtYLTS9w7Tna98jew758BfKgXi/Z30pZ3T+LfbafPZvx059ec4hiQggh5DWFMpYQQgghhBBCCCGvAHmRRDInYkBKpVyLTQCIcVusWuExErhVrPmkoq4rQk7vGw1XbPdpkacFqz4G6EtDLwF7Ehhr20WI+uGIbUpXp259H1r5mtV6e0wVkO3wxfp437au46/JlrX35K7DE9c5a/vYNsZmtn3vtKzW72H/GdDX46WgzP+aksz7mhYBa0Vrla1Bvde52ddeYxWN7VyxeljirIYknpdkbB2i2ApZacvOL6vlbG84Xvlbbv8++9JzJGJ7iVh9r3uSV7/Xdn+bym0l77nDE4+Fq/6BifzIRMtW+57Zvuhk7egYQgghhLz6UMYSQgghhBBCCCHklUCkjZUQQcmNKrWsPLHDFVcBW+va4VtturJNl9Z26xyyrXCz6chsJFlPGG6lS7V0Fnk6Ssj2U61ZyTrZBnySthzTpmTtEMjo9qNNw46uZZyW7dXRZfKe1H3tUMH+2B7nCNvalq5sG9b3Xw8zbeWnFbZyz/zxbfrSSsPyI4QyZ2wVtXmRs3Wu2FLfp2Xb+2uHyLVzutbhiZNa9pKwbSLWpl99kr0nK8t19eRmvTdWzvdErL4+P6SvF7G6HXuv+wK1/76Mlrav9VyjoYr1eUYSVpe3ApkQQgghrzeUsYQQQgghhBBCCHklOB4TjseEeY4AsA7JWZKwNWFX5sssx5SlT8ZKIq3WTUkP9StJvdJ2aSebdoSxCNECuJd8HCdlt9fR3ddKU1/XtzUu03PAtmW+zdKGTsOO90H1T5/Py6Z+YlbqAj3ZNdp/wsoO2td4Eaxqm+PsszF6j6HKLSJW5Z7JUMRFrMblmKSeo7iI7zqEdYzl2DKPbDs8sb4mkX92CGFJsNZEbM4Zx+OMnMvfX6kzq6GLZUhjOaaK296wxV4Al2sv191K2lZKt5K0XZd7JO17AerbGUtVn+A9V8jW9G9NAVchXVKwvaSwlblb0lX3icMTE0IIIa83lLGEEEIIIYQQQgh56eQMHI8Zh0NaUoF+3tewITOsEJX6db/UAXrSqg7hq5OeVs7WtGOVb+VYvbTpVDlvrV9lau9cuk3dN51MbVOsPtnbJn3b1GybcrVlo/lkx0nZss9fV29/PUcp6yVR2/q9/bU/PfqSdizXe+e170s9XzunMEyyuSdq2ySwTWTWZKUI1DJfrNRJ6r6WeWNHMrb+bWwlY9thi0s9ScP2ju0lX20iVCS0Fqa9ZGyt1/6N+v22bn0D9WdAL1lqz9cK0F561ffJrrcyV5/fS159fO/aR1hBm3F7m3B7mzaPIYQQQsirDWUsIYQQQgghhBBCXjo5A7/61TNcXERcXk4IIWCaipVIykOUVKAXfXZeWBG3JRkrCdlap90OiDG7doqILcnZdtvKNrEnvX14znUM9p27jTuU+fK6r59gbY9rxaTe3kqv9sXUKDlr62zJ1TOsq22tk7r17YxSsXVZJG3v2ZC5YatQnef6HJYEd0bO0Yn1InlLIjasbbTDE2sZa4WoHlrYy9g6XPHsErN1qGKfhLWJWD0frRW45W+wFbFaSmr52heZ7VDD5V5u1+mdr192XjLWz4HbSmms9WxiVt+X/pNnBbOVuM+ezfirv/oMNzez+RwkhBBCyOsFZSwhhBBCCCGEEEJeCY7HMgxrmzLrpdr0sqZeWzmjE7M2/SnH9OZPtXX1fultO0esbafU0QLPJyfbOVNPJ1JrfZ/C9UK2X9ZP78o9tEJSDy/s+1XXtcQep2X1e9GbK9anYLWg8ulZf6zm1FyyY/rDNLf9knK5X1rE+iGkm96pNoqkrD8YyKuQrUMV9+aIjcsQx6WN0zLWCsEqTv3Sp2TrXLEic8cv+/dopWp/aGJ9L72Ure20klIf16uj2/GfFVWMt+9P7xpG673PJrkXul/9z7De9bfr+vibm5nJWEIIIeQ1hzKWEEIIIYQQQgghrww5A/OcMc9+vskqxmKs6VgZolULmH4yFmtZ7xggrMMja5FT6uu5ZKvgrJJGhKReoqnfX9d1e3X8vrts36Vsq7zu20rKFhFpRaat20/MbiVct+Wm1GmH6P1y9K+nvQdexLbvh8jrELD+0EDaKMMQl3ohpPW51e37OWK3hie298AmOHsyVovXkoSVcv3qD21cl1DS1p4P6M8Vq+VrO5xxv9wK3tN1fF0R37VPo7Rrf5mSF6xtMlbXKXPG9ud7teK1lcnynMnxhBBCCHn9oYwlhBBCCCGEEELIK0Sdn7LMm1nlqn/pBKoI1Ta5ZpOxst4usxGNsrTzoEoSsUrXNhVrE6ZyTf30aBWvNmHaple9ZOylees+ndKsddrUbb2/tk2RWOclZfWxIlx719u7r7WsTc2OrttzStb6FPK5aDFmhzHO63a9nowqbnvHeGlf6+WcAEQAWJ95ScLKjwFEwvrhiUdz7vbFYZ0LtjdnrJWxWuBuJWK9BNUJ0QwtYuWavVit/dX315ZbgTmu458F+/kA1zf9HvQTvOPr9J9HPglrhyYeLXsUsZvx6ae3ePLkSCFLCCGEvAFQxhJCCCGEEEIIIeSVQidjSypQlmiWQBVSJXnYyltJyGphawWul2S+zA8BqxOvfokzyso5rOhFU98mMOsxWoh62VolTz2m0jtOzgXYFKgIRn1eNG319+n9vg+jJKxPzdrjRlK6Rytex/N1do4etFnvhbTZHteeRO5zCHlJt8oSq2At88SWdZkbtpRJetZKWD00cU901+e7l461adde6lXLWS1w+4nYIpPlPDURa0WsFZytfK3Cdbt869h+/X5itvYXqk+jl0/I+jJ7Dr3deyZ6z4h/HY8Zf/M3j/HFF4eTxxNCCCHk1YcylhBCCCGEEEIIIa8MRUQkTFNYh2YVCSJJwSJW7fybVsL2kms9CSvbNkVaBWldFnpD9JreY0vI+vlVe8dtJyxtX+1xVsj2krpW1LbDCev+jVKf7ZywVtjafbKd1ba9/p5MrOW5s68VtJ7zxWv3aNVub/jjco/6cron4HVb5T7KDwNk6OwY01Ie1fDbbRK2L2J9H72orC+dcB0NPVy3+/PKWtlY/860fBURXPtwWsTK/erJVy9i6/WOErHniFg0fdgagnh7Xy23stb/CMA+mL7Pte82YUwIIYSQ1x/KWEIIIYQQQgghhLwySCpsmtKSiM1IKZiEbM51ftcqVPT8ilWWeRnTT8aKGOklYZcWnaTV4k2EpIjjdl7VVtK2ElMLz7H8bEWqlreyH6ZOK217Sc9atzd0cS3Xfe5J2f4QxnU7u7I2NWuvF25/T9Cue/sHqXbPwd7rtm177/T90s9FKatDPotklWR3TcjWpLeeD7Z9lXMH15f2WevLQytkW8Haitd+ndq2lbJaumopO5avPVFrr8Gun0rEtuUjEbudlm2P93VlLlh77e28svp56j+3o3NJYpcQQgghbwaUsYQQQgghhBBCCHllSCnjs88OuLqacO/ebpFW2YgswA5XDFRJKNKkHdJYS89aV7ZTCipxW4VmK2nbpU3polMXZr1Nv56zDrNthxW2+/sp2XpML/W6NQxxbfOcfXq/7rMq6bYFd03tMcBY0uq2+vPKbh13jqlt58JFM5R0K2Tl3DolHIIdpngkYGuZlbB2nlj9wwEtNdthitt061jKjhKxgJ9DtpWxVrD2k7F63f7dWPnp6/UErb3mU7L1HElbl1o4i2wdJYO1lLV/A1B9tNcqz5GUpQT8/OdP8fnnt7i5mZs2CCGEEPJ6QhlLCCGEEEIIIYSQV4acgevrGTmXuWNj1DLWJl5bESpypM4Z64frrXWrNNX7q6TU7ftEbK0jUsanYmXIX32MT93aYXz1fLC9+WT9Ma1IbYcZbocttlJYtwPVBy8PqyT15y/r/RSvld9tYlYfo99DW94e0ztWsy1eu0d02m0b1/2z75dsj5LTtl5P1Pr76mWsrNc2BlcyEKHnJmTrenLS1b/g2tZi1Z6/3zcrJOvf9Law1SJWP1tW0G6J2NMCtj1nTwL3rl/6rQVzf9m7Zrlnn3xyg48+uhm+x4QQQgh5/aCMJYQQQgghhBBCyCtHzmX+yhgDpklkbJ3PMwQgxrCKWqBuy36boq1DxpZ5Z0Ui+mQsAEi7ATFKf0zvTFmRuGXYZCtsRY5mJdWqqMsZyzHoHtdfB6yMy51tXWd0jC/zw+96+sfIPj2EcWmrJ0V9wXmJVI9PQ78IRlLY1TL9KuI0uG17hJbk8v7X9GvdHonXuq+eP7iTWMHnJWY/IduXskDOXs5KGVwy1orIKir7ydhz1k/v60tVe713E7F1aOG6ra9FrrV3zX4O3VrHPze9Z8k+R9KOtEEIIYSQNwvKWEIIIYQQQgghhLySzDMwTV6mhEau6OSpTl/qF1zK1KfSfOK2tCOipx2mWCdI9XJpEVrcWQmLta1+CrWto0Wo7l89b2+eWt83e29OD12MYR9LHZsi1sfKPavXXu+zLWtTs76ub8Pv06KrTcqeL2rPE2B1qOJ6XL0fth15/3RaVo6tArEvb/2ytiEJ7FHfeyJ0K91q54H1QxDbYXdr6rO2L9dq/x7vLmJtO9v7RonbVrrq+9OTs72+juqNz9Frbwt7/bX94zHjcEhq7mtCCCGEvClQxhJCCCGEEEIIIeSVIyUscyZmTFMAIPNsivySmmEZyliEmJVzMmespGZjrGU6YSlp2dpO3d8bflbPMRujlyd+qNpSVtOzMPuLcPPJWQBKBveErhWDWvZBtatlazb3reJTnrXcXtO5+/z+rXpb9a303eK8JO5d6Q9VLM+grlOlrK5nBXRPrIqw3U7AhsH7Vs9V17fkopWwADryVadmy/EiB3UyVp+jPZfth/SxlZB1X//Ynli1iVibZG371C/rpV2xXrNNyNa6vTljbZq1J8n71+zfq5Qyfv7za/z8509xe5ua95gQQgghrzeUsYQQQgghhBBCCHnlSKmkxKYpKPFRhxIurwCdlgV8clYnXovI9OWA3fZJ1NpmlacifYvktIlbYCQGewnV0mY7P2wvxSptyHmxtqFTslbmYm2vSsM2TauTqqVO6EhF3VeY47QY1vJR6tXt2r6u09bT5VZ8ftl5YkfHD1o15+6fy9+Xul3XW5lvE65hvYf2vqL7bPj+aOEnffBCtJ+S9dtatMrxvSRsew4tROv7bCWqvX/+PF4q2+P1OW3d8xKxvk3/vOg22nb7wnjU7x6988nycEh49mzGkycznj6d+w0QQggh5LWGMpYQQgghhBBCCCGvHMdjxscf3+Kdd3a4uppQkrEZ8+IqRIj6uWE1en5ZmTNWErFyjJ1nVstWSUC2Mq3OJ1vlml7qeWyXHkBLtH5C1q6LLG3l8PZ2EXh9YXde2TnlvX1+/6hOr95W3VPHbXGeJD+PrT7XFLJOO9tzagFrpf5WArZNK4+SsXboX1k+n5S1srGfhLUy1cvKu697mXpOUjavf8d3TcTKdUl5O1esLG2KVidh9XyzrRBvy2q5PddHH93gr//6c8zzcz+chBBCCHnFoYwlhBBCCCGEEELIK4kIDxlKtQwzHJRYCevwwqP0m5U7NR1a6+qEqJaqQE3cWonnU5/L1irb7HyugBWubdK0l5D1iUi/zwq+Nu0qfWqFpG2jnh+oAlC3D/ikbG0H6hp696ZNzI7un59r1tddr6jjq8ZpV1v5fBF7bnzWDhVd3+tSpt/b2h8t5jstZns9bZ/bY60EtOJSysZi1stYuw6XjG3bGEtW6e9Yvtp+j47R1+Pr+H6NRSyac/fLxse17W8NT9zi08HyKqMAUMQSQgghbzKUsYQQQgghhBBCCHllkeGKJYlaU6xYlzXl6iVHrePnjJW6KRU5VsrbZGxPHEnKtqRbq2yTuWglOSvLpQX4hCyWuWf18MJVCqOpb4UxXLt6G7ACECfqnFte9rXDJmNwXHu8yF2NTaxuSak7jTH8JTglxvyQxb25eG06ttbtyeiakq1tjOb39cfafnhBWcVmK1S9cG1l5EjC9trvn19v62Pbdnx5u0+f53kSsToZ6+vqtKu+Z/pYP1esvpYWPzyyFrG+HYpYQggh5E2HMpYQQgghhBBCCCGvLMdjxuPHR9y/D0xTEbIy7LBIrDqPbFjFClAlX0nQ1pSnTcRl+DlnAZEn/WSsnFcPOVuHM4ZLyGpZasXpaK7YvpvR+7KTmm27bULXplxF7Ep/5Rp1UrZN+I4TsX6fvv+2X9LfOqyvv95xMjQ3+2ud80Xt3eaN7eHfIJ9GruVt8lgPaayP90Nbe0G9JWT9ELlbwwZrwbotXv1xXoz22/f9OS1l6zbMvp6Ircf05OtIzo5efenqz9mTt/b+++e0X+7P+ezZjF//+hk+++zQP5gQQgghbwyUsYQQQgghhBBCCHllub1NuL1NAALu3ZtWqSoJ0ZKWDWsiFYAayrjKFCmT4yXFKiJMhJ6Vsl68VPEqbVZR1hsG2crapVSVobvfS1fdr3Eq1gvaXv2tMkCL4N7wxb1j+uI1u+2euLVitpaPZPRoeGjfH1u3W3PQfueMZ9azAlaXV/FqhyeucxDXZ7kVur00sxzv17NZH4vTVrpub4+PbdetbB3L2rFs7felrfN8c8XaaxlL29GcsVkNm+7vuX0vbFkrcHMGnjw54q//+os7PI+EEEIIeV2hjCWEEEIIIYQQQsgrT84Z85wRoxZYVaqWl5WyeijjKnKq2KzDFcvcs1rKWkFmZWg2dbSg1WnY3jFLa2hFn5ezGNRv97UpWZ1q1Wnd3rlGfdD3biRr9fnrcePEbKnj98sxgBbAft9Y0vo2Sjvbdc/jnEa2hnQu+61Yl2O0mD11/lEqtm3jtAzNrt5p0Tpq89S5ZN94iOJxe6eSse2xIxG7ta9K1/HQxnW/1B2+Wx3h2t+vh4gmhBBCyNsAZSwhhBBCCCGEEEJeeYqMTZimOvRrSawFJVFlPlhJu9aliFIrXL3gGSVjR0MS22SsiNh6rJ8P1qZe7dygvfRru66lpZWj9XxtO7Lthx7upWnb4YZL2Skpi/VapL1ekrU3x+yWnK3HjyWtrfd108rX0/vPKeu3MRJ8ZT2bspFg1WV9uTlKvvba08f59W0R68+t641ErH7W+tJ0u6w9biRtrbCt0rbt7+i9at+Tevw81/mvCSGEEPLmQxlLCCGEEEIIIYSQV57jMeP2Ni3zm8ZVqkpCtqRi6xDEIkxlKSJWhjT2dWPsJWpFFtZ2ZGjiKoHDktatwtcv6/nq3LU2YVv3F7aELJzkhWmjP7Tt85SdU97b5/eP6pR6PRF7/vDAvXN91Zzq21ZyciRd/fu20XpXxo4kbNnnRamtM95/SsKOz9OK11PC9pSs7clTLOl234aWqICe81UPOWylqx2OuMpXf+xIxLb3byy6nz6d8eMff4GnT+fOs08IIYSQNxHKWEIIIYQQQgghhLzypJRxPCbs99GJl5qA1elSm3TTc7r6+WG1ZKqp0WXPsmyHLS7H1UQqVDK2SFURbFW0+TSrnEMkbE3f+nlE+ynYsu7brX0W0elTs/4Ym7aFa9smZbU89WlZuSf62HqN9p6P5n8VyVzLbcrW3LmByNqaL/bLM0pErmc/eWy/7mkr1xex5dhtMdgTq7WOl4Vb+3UbvXP5c9xFyvp6ug399+yveZRytddur6/9jPDttPtHjN8X3Y/yOhwSbm5mfPLJDQ4HmlhCCCHkbYEylhBCCCGEEEIIIa88NzdpkRdhSZvKkMVVysQoy5pAFJkoc8nWuWVlHRBpWuaPxZqo08nYmoit5ynz1Qa3DZWI9cu6z4te2S/yVve71pG+AvX62pSs7C9t+Llj6zFVvtZr1W3X/sGdQ59nOWLtX3+/b9dK79MC09Yf0QrhF8X5CcZzK/ZTsneTfl6KbovSsZTV2/0hiHv7em1std+XpH5ff1jiuw5H3NvnE7F66GGbjM1NMlbfj9570RPS/poOh4R//a8/x5MnBxyPFLGEEELI2wRlLCGEEEIIIYQQQl55yryNeZ1rsYiSoKRHcALGzwkbOkugyp+g5IkXUfUYnwwtdcs+Eak6eSplUHPI6gRsbcf2qZc0teeS8pqS1e1V8WoTsFXMjpOytg0th3V/bFrW93WUmLXXIiVZlbXXstbq+CsrXG2F8wXq8zA2veedd7tSr41Wxta2rAi0ZedL09PD7Opt36bvl5eRdX826/46dPu6ju2T7Zsc7+/PeM7YUZ3esMSnaK9d75P2Usq4vj7i+no+p1FCCCGEvEFQxhJCCCGEEEIIIeS1YZ4zbm9nxBiw2yXEGJVgHB1T0qyylESsTslKGhawc8aKKC1zzeZ1f5ljts4jm7OdT3aUkJU0rRc4Oq2rk7BSt9aBOtamZKv0tQnYtr4uq+U23Volqly39MFSz9eew7fZr+PbG9MeZ8/9dTJKSN6hhRPHnhKyo6TmOPXa295Kwvrt/r5eu6NjR0K4t+90Mrat25Op/Tljz0/Eju71eNkOcZxS2yYhhBBC3h4oYwkhhBBCCCGEEPLacDwm3N4C+31ehCgWySlStMoPmcO1pmZ1+lXSoTVZWpN3dqjfkv4s5VV0lv16mGGfkJU2xmWFOk9q3e/nkfV1+gnbmnjV56l9tnPCenxS1s47i7U/fl5ZuXd2vtd+YrZek5S1yVnfbiWbfUvNOwmuLXH7IkXZXdraquuv39c9R8LWsm3RKuV3kbSnjveiUurq8rqvP0/r3YcoRrOvtt1Lv/aHRvb3rn0/WrKpUNt//PiIp0+PSIk2lhBCCHkboYwlhBBCCCGEEELIa8P1dcLTpwn7fUQIE2JMqLK0CsUY63yyIlJ1HUmiCiJ2gYAYbYJV0qolBVvnhrVJ2DYhW7BDFfckbeljFb6ASM9gBKfucy/1Wq+17tfy1A49DNcXuDJbriWvbaMeo6WtbdO3qxnJqXPjrneTW191MvHc9s8XsL6slYLnyNde2fNsb6VsT0vacVvnzA8LyN/odjJW6pSUa92nE7G9FKykV+31bd3z09eTcxla/W/+5jE++eTGJPAJIYQQ8vZAGUsIIYQQQgghhJDXjnnOmOdkhgQG6hDCRa4UYSr7RKTGWNoodfQ8sHb+WKxJ1HbuWF0mYrVNyGLdtyVkbQpUl/mUqU7G+rli/Zyvfl7YKnRFmvaTslXU9uaI7SdZtQgfpW61GNTpXl9P7kVrJEcp2rbe9v7n4Xkk7ukUZbe0u+/ctOZXJWHLshWxvWNGUrYnW9vtsYi1+7eFrG23L2zrEmYI4d6z3d77dinr+vXZZwc8fnzAs2czRSwhhBDyFkMZSwghhBBCCCGEkNeKnIHjMSPGhN2umNUYqxD0SJkkWGVZ536Veq3YrXO4AlhSsOVcYR0iuZeQ7UnXkZCV4ZLlXFqI2uPrugjWtt7WdlvWb0fXO7fc7t8Ssz3BdSoJW4dO3kYL6RfJKUG3Xf/8Ov2yPKzTk7J1/1iw9spejIRtxavU82J1lIzV6VQvanXqVdf188L2xGsrYnuJ2a37rPHvSU82Z/zyl0/xs59d+4MJIYQQ8pZBGUsIIYQQQgghhJDXjpubhHkO2O8TgIgYdXLTihJJx8q8snUpNfJSryZni1ipwhUobZchjMMqf4Fat4rSIlhrnZ6ILf0di9tT6xjsG22jW8emU3v1xuU67dqXoFrM2uPbVGx2ZVt1W7YStS+ac09xql57308LWi1f2315WP8uonZLwsr2lsjt7z83KduXmq3M7Qlbu6xSV0tXLWR12WnJPbpXdnjoek6dtiWEEELI2w1lLCGEEEIIIYQQQl47bm4SDgfg/v0JIWRMU03IacnoJSxQxZ3UkWGJq7RphwmuEqamYPVwx1ay6qXdp5c17dmbYxbuGJhye2zdV6XoSMCiOUbfL5tA9cMJt/XbtrfSqVrOerHbb68tt5J2rf0SpNf2ObcF66i8J7S3EprtPLF9kbhVdhcJ67dPidpW0o7rbYtWv74tYreHKG7lbO+++/vd3ie7z6dvJXFLCCGEEEIZSwghhBBCCCGEkNeWw6HEW6fJD91bkGGHRTRKmV6q2kt5XoYortuATs6KkLVtiZyVclmW4Y/zmqyV1GzpU1ja7w9DLEnfWhdm2wtWmQf2LkMVW3EY1H2pQioEe3y9n+Ohiv193a6zVbd/nH5PT3NuxfPk2bmO7bSI3Za258jXun6ugB0L1nPqeJFay84TstJWX9D25exIvtZhirf22eGIa93R0MTtG9F7v3Tf9HWnBPzmNzf4xS+e4vHjQ9MWIYQQQt4+KGMJIYQQQgghhBDyWpIzMM9l7th5jktZNjK0DktcRKOkZLU4kTRoFTM6CSvbNekqidQ6NK5d9qjnsKlZmzqtclTkpz2XP67us+u+PdmGqSPDDOskaymzyVdpXyda9Xn0MMQ+yeqTtr399t5lVd5P2D5fIjafFLdfJsR46thRQvK0gH2RyVjb3jnSVbfX2x6J2l4bW5JW2mjLt5Oxte1+ErYenzt1eve/vZ96nz9nrVuF7/GY8PjxAb/+9TPfACGEEELeUihjCSGEEEIIIYQQ8lqSM3B9PWO3i5imtEjEgGmq+7U8CSEhxoB5luFDI2JshWBJs/oEbZGosl7nkdVzzNptScoCIn2LDK5LqHStT8DqdK5P0QI1waqFal77XfZrm1RFrxawWpbWMpsk1nK2nr+mZWtde1xN+MKd276HWmzrcp9ytsfY85zDl5GtndbOanO03wvXXt1zxGtdb9vwslPvP1fAyvpIuo4EZStS/XY2x4zqtPJ0exhiP/SwTsLW5ehe9e7TWtKVv3JPpOyzz27x4x9/gZubBEIIIYQQgTKWEEIIIYQQQgghry3zXKRdSchilZxVSmKRNEUqlrRsSX9WgWPFYhUvNiHrk7F1aec29duVUr8u230+AWvrjtbLtpejrfCzqVotZOW6qsj1knWcltUJVlunimPZV+8xVFlWx9Rr8vevJ2zrtW3XdXvd9tio3lXgbtXv9bdX30rCvLGvttUXi+MUbK/Mi9jRsVuCsr9e645ErG//PBF76jVKy47ep9PPQU/aigR+9mzGkydHfPYZhyYmhBBCiIUylhBCCCGEEEIIIa81KWXc3s5IKS6CMQCQYYtLnRjLkMYlcRq7ckWSrH6pxZ5Py+qErE/Ttq86V6xOzxbpadOwNgGrpWcvMWv3Sb+qULVzw1axqocY7idj2wQuXBtlnxatVmz7NK1+53xytgq5nkztCdsR2xL1job1rHP12xz1oyfqR+nM3jlOyVdd/iIFbCs0t+eNHQva/vDEvXUs8zMD7TywW8nYckw2c8b6e+fvbe+e9+6JP+eTJ0f8y3/5KW5vmYglhBBCSAtlLCGEEEIIIYQQQl5rcgaOxyJa6/C/dsjelLKaL7YmXWUeVyuBglqv56hypopQnZDVSVzXQyVPbeq0ysh+GraIzJrQ7c0lWyWltFeP0fPJ6v6U+r1kbHB9q9fpU6998aqFam9f7YWWtDq1q4+pdfX7PZKp7XDHLwotPM+rd2rflhj021+dhNXnOFfM+jp9UWvr3nVY4rYfW/PJ+uPadvy1+OvwtNfeu8a6nOeMm5sZx+P280EIIYSQtxPKWEIIIYQQQgghhLzW5Aw8e5Yxzwm7XUDO0c03mta0aRGOkoxNiwBNq4CV9vSyn4wdzyEr88DWOWPrXLE1/dqmZmufbQL2dDLWpmR1mlb26xSsTsDWa7FDD9t6MO1rseuTrDVJW9vS75M+XotgLyd7CVr/HrS06dLt+oNWnsOn9QT8Vnv9sjys42Xw80hZuy+7OqPyntBsZelIVp4rYQGbXD01PPFWQlYnYVu56+/PWE5v30d7PukPIYQQQkgPylhCCCGEEEIIIYS8EaSUcXOTkDMQY2iGBy7CJKzipKRk0bzQTb9CJWtHdUr7WJKtfrsuNb19bQLW1t1al9TqeH7Ydm7Y/lyxVQ7qtuR8vXKdpK0yt/bLHi/n1PSTsa3Ube+jPd4c/QI82biNsUA91UYv4XsqufnlJaytP5awvXqteJV9bf2+pO2J2F5fxiJ2nIL1ArZ/r/r3tVfPrvdF7DxnfPzxDR4/PqxDKRNCCCGEeChjCSGEEEIIIYQQ8kYwz8D1dZGx0xQQgkRT9bCmGXGJrM5zP0kZI5oEq5SLcNlKyMpQyHXu1rps54y18tamYf18rZKeraK2N19sqauPGQnXWsdu13py/8r5/Hyt+ua1aVefjPUCVc7Zlo3qmhL0qCK4u/vO3EXkjuqOhlXuC0JgnNas+09JQ13uRWmvbEvKnk7LflkJ2yZfzxWyKZ0vZP21t/e1vb/++n069/Y24cc//gJPn869hgghhBBCAFDGEkIIIYQQQggh5A0jpYzjMS1Crg5ZLCJTJKweWrjKVSAlK0NFzKYUFiG7lZCVYYr7ydjStpdVRdIuPTD1axlMuRWj2dXxx2xt36XsdLlOu/o5Ynvy1tOmb83e7jH+eOBuEvUczmuvL/9Gx2/J116duwhYXe6F67kSVsvTfp1taVnX9XZveGJ7rm05W4Wrba8Vs1v3sr1X/XvTXkcpm2fgl798hidPDjgcGIklhBBCyDaUsYQQQgghhBBCCHmjEBlbhirOCKHMCSvyVdKtInS8jJWXJGFlWROywRxblpKQDctcsXmVujX9qvtoxa9IWitii/Dti1qgSiU736ze9+Kk7Lnlfl9vf6nTytqxbLXDJm/V2W7n+dhKUbqaJ2VsX5yO6t1dwLbHepnaK+tJWNk+Nxk7qtvb15eyPTlr5asXrlJXzxPr74m6O917pve34tpK2HIOIKWEX/ziKT799LbXECGEEEKIgTKWEEIIIYQQQgghbxTzDNzcZADFuoYQIUnYMnRu3S7767FaxlYhI0nPamiqqA1KMtV1kblAFa91mGJJwraS1iZftbDFUi6CudSt11HX7TC/vRSt3W/P3ZZJX6zMqsMY6+GI9bn8cXW7HdLY9hUNdtjkPvJ++aGPvyznSNhabyuROSrvC8SRfB3t64nb5xWw/XrnJWF13Z6s3Zaz28MTV/nalvfug76+/r1b1zauzZ7r5z9/ik8/vcH19RGEEEIIIedAGUsIIYQQQgghhJA3ipJcA3a7jHnOa7K0pOaCStnZeWFleGERpiJoaio2qHRcHbJY5oYF7PDEvWGKa7tlf0nNaqTuqMyuy3yvQJ0TttbD4Lje/nGZbXepEURe2WGXdYK19k3vq+fpJVnbtKw/X7PHHAucL0+fBy9Qx/tP7duaz1Rvb0nEkYTtD2ncl7atmN1Kwsp2Fa1jKTsWrl7sjuaE7e/Tx+jhivv3r96n/r2y92vr+JTK58mnn97gl798BkIIIYSQc6GMJYQQQgghhBBCyBvJ4ZAwzwnADpKsLFIxIkYswxfHtX4RL2kVpnVYYr0UiVrK9PDGdSlyVs89m9ehjIUqgPVLJ19LnyR9K/uxJkhrXb1d17EeJ/3WdcuyplHrPerXk/7YeWFtmtUnZvW9qcI2uO1WltUUrK1r9wEj0dbWuzt3kbpt3b4cHJflzTrb8rXs80Kxd8yWYO0de0rSbgnauv1iJKzIV789vqf1+s+9b2PxnPHLXz7Fz3/+lIlYQgghhNwZylhCCCGEEEIIIYS8kYi4meeEECKmSeRgdvO1+vlgsQ4jLMJHi1OdkJU6QF9g9ZKx/fRndnVLWU3a2rZqAlWkqN3Gmj4NSkrZulW0imTt9U+f26Zbe4lZmMRom5ot90UL6TY9W++dvg51huacaOrYNl4M4/bGQnir/HkFrN0ezXM6ErfnDUfst88TlrV937/zhi0eidjtV4/nEbFtG6VwnjMOhxmPHx85RywhhBBCngvKWEIIIYQQQgghhLyRlKGAgcMhI6V5mcc1oqZfpU6ZQ3aaACAhxoAQ4pLYjC4ZW5YigsYJ2Zqg1clXwZfrlGs/JSvDJ9vj9HZN4pZ1EazSH5ti1UMr1z6LZJXyXlq2Xl+bmK3nBUR2WcFq534dpWdrf3rlfQN3Sr6eO+fsXdg6xsvW0TFePPfFYdk/2tefG3Z8zJaAfR4p2xuOWB9zTvlWQtYnYnVb7b0cS+6e4O4JZj2U+W9+c4O//uvPcTik9oSEEEIIIWdAGUsIIYQQQgghhJA3lGLf0uJQ5hkAMlIKy1LkZ17mf5UhgYuEkeGBS4JWiyFbT6dla1I2mzK9reeVxSAR68sktWr323IZGtkKqTZFq4/TQvfctGy/vSq6+olZfd76/vQlrJRZqeaHNx4xkq7PI1vvcty58tWWtQK23f56JGzv2J6oHA1J3O6zUlX3eSRd7Wskac8TsVv31F6vr1cKj8eM6+sDnjw54Pp6bisSQgghhJwJZSwhhBBCCCGEEELeaI5HLKnYtA41HGNASchG5JwARJOMBeKSjqsJWZFEsU4z61KkdikJ2pKCrfPIAnlJ3+r5ZHuJWL2vJll7c8j6On7OWBHA/flla5mtI1K1n5YF7PFyXi1lgd4+m5zV97HWD51yL2f77/fzSte7snUeL1NHx2xJV7+/l+rU5X1hO55Ltre9JWltWStaRxK2LR9J2PPmifV4Cdu/P/17tJWIffz4gP/pf/oEh8PX9EARQggh5I2FMpYQQgghhBBCCCFvPDmXuR9zDpimrKSqzAdr5aYkY3sJWRE2QE3IApJQ1XPJFvla2qj90MtKLyWbO/uwtru0hN68sHKs3VfaqslWqPr++FrWJl19W8vWoF2fdN1KztZjvHTstbfZhKl7F+4qc0fiddTW8wrY0b4XIWFtvbFcbfePUrQ+6dor3x6eOCW7r8cpETsq763rPqaUMc8Zx2M2f++EEEIIIc8DZSwhhBBCCCGEEELeCg4HIMaMGBOmqcwLO00lFevnkS2p0QxJxAJo5o4tdcuynTO2Lmt61YrWNgFrU7IlWdsmZ4sUllRq3V+2tawcJ2VrmU63jtKyfp7WWmZFrE6z9lOz9Z7VfrT3MRhZJu35uvo+jzglfQdHna6xUaW/b1u61rIt8dq2Y9etwNaicku4jrZ70tYLWl3XJ031tgjNLfnql1rGtvepXlvvXpy6Z1uJ2JzLEMXlxxvtuQkhhBBC7gplLCGEEEIIIYQQ8hVz+f4lLj+4RECwwcOeJ+p9+Z+BLDuyK9PbuWznlJEOCc9+/Qx5pk3Q5FzSbjmHZThiAEgIoRhWkY4iZ6rM1K3U1KrMNWsFJ4BlbtoYpb2yXkVqSc6WPmTVZk22St3eXLIiSusD0M4n267ren7/Vp1R2bnl5+7v1Tun/hZfzfM/lnR5uL8vC8dC8S4CVpd7Wdoru6uEle3e/LBb+3rC1e63IlSWozSsvif98rbe1jVbYV1SsMdjxi9/+RRPnhy7fSCEEEIIuSuUsYQQQgghhBBCyFfMvW/fw3v/8XsIcZGxAUXMAl2X5SUrUEXrKmGTla85Z+RUyufDjOOTI24+uaGMdaQE3N6WZGwZYrjMDxtCQp0fFioh2iY8NT716ZOtIlS1tNWp2TqHbWmrDmdc5K2UlWU7V6zUlfPK8Mi+jk6zVtp5ZO01B3Xttp5cu29P3RlVR5+/7rfbvTbqPbbn8fu2j38xtNJz1J9x+d0F4ta+nmzV5SMBW9ZbIenFqm2rL1K39p0rZ3tzxPavr15jWz6+Rn8dvesWATzPGTc3M3760ye4uUkghBBCCHkRUMYSQgghhBBCCCHPwYPfeoB7371XBCsWQeVSryJcL9+/xO7+rinXGAFbCspitQjlpec1NGVKysZ9xLSf8P5//D7SnGwdVRcZSIeEdEi4/vk18vHNF7cynG7OwOGQkJK8FxE5JzVcr5acGSFEM+9rlbCtYO1tl3URrHWYYr9d5q4t5y2itpbJvLZVooal/QwtW3tSVg9PXK+v1l32yF0y2yMxq+tqYaoFbMXvkz5amarnldVoCezRAm4kbb8s5wQke8K1d6zdbsWj3T5/WGLdh94xpwTs6TrnSVigPLu2/Py5Ynvy+JSEPeee9YZQlqXMEfuzn13jyZMjjm/BZyEhhBBCvj4oYwkhhBBCCCGEkBFLirXH1YdX+Mbf+QbCFIokilbINuJoNJqrFBl7UJerpO3IWS9Y1/U9kK8ydg92RrzmlOtrLsv5Zsbx6RHPPnqGeZ77F/tGeYmwysnjsaRhY8yrxJNhhWW+yJJqDWtaD6hCt8hSO58rgFWilrr1eBGUMkwxsDVscakLiGjNSzJWztmrJ+tYjwOsdNXS9JSEPT1csS6/6z6/f1Rnq749dpReflGMZKvdv1WeO2W97ecZltge1xOQ+hpO19sejliv+326TpGy54nYXiL2HLk9ugej69Pvo5x/njMOh4SPPnqGL744ticghBBCCPkSUMYSQgghhBBCCCEd4i7ig//VB7h45wJhWiRRxDrv68W7F9jd31UBG+o+w5afUmWjOWFDDnU753IOWc9VtjUp2ZzLUMZ6SOMk8qHIWGQg7iN293Z4/8/eRz7mOuTxXF7pmPD0l09x+Ozwpe/pq0bOEfMM5JyWdFyJvkpaNsaakBVpO00ROQPTZOed1UnYnOtww3pb1xGkvEjSul/SsVry1mNs6lWnYesxkrat8lj2STJWD0dczptV/4LZlnp6uOKyL6g6tr4VpDqZa4+t261otKlZeyPsfWmH9v06GInDbWFY629JWSsNe3VOD0Gs29na7pf1Ba2uO5KzUmeckN1Kw54nYEf3onc/etegE7F/+7fX+PTTWzx9OvhBCiGEEELIl4AylhBCCCGEEELIW0+YAuIuqgIgXkTc/959XL53iTjFIluXOV+7Cdjnmaoyd9bPWWa7HZZU5VqWihjOIddlDsixCNmQSxlyuaacM672V0AG0pzW5KwMYXz44oD5el6li5z39Z6PtrxhJY2XUULBGdNUrkmWktaToYBFaNbhjWtKVQSkTvlJ0lWSsFJHhh4u97QmYFPKq2yVJGwdHjlDUrL1Gvx6P91a07jtvna7lsnwxP02YZ8JeFmqBVkrUvWxVXr7OrpEy2IM2/ZtPA9jsfs8orAeuyVf63Yrdc+Vju0x56VgZfuUlLXb/WGLfR3AJ2TbuWFHErZ3j9qy02nYXv9yBo7Hkoj9/PMDPv30tnt+QgghhJAvC2UsIYQQQgghhJC3nnd++A7e/7P3EWKownUKuHh0USStJF+deB3NYdk4rh4ZJg0rideymduybJOwPhUrQjYgrInYkJcUrUgPGa445/U4M4RxzghzWEVrvihS9tEfPEL6nbQObZwOCcfrIx7/u8evuZAtpBRwPGIZpjkjLvZzmmpCNmfZDpBE7DSFRSAmky4tydOwSh8732oduriXkNUpWVl6pLy+bIq1pmnbdK1PykqZrlvPP07H1uO0sPWp2dJuvS8wbS1bJj27lnaGHNZDLbs7Yvrj79WLYrutcTJ3LGDzyf2nxKsuPyVfe2VewPb3j2SsF7JbwxG3ZbrPp+5Zv/w8Me37llJNxP7859f4xS+e4eaGiVhCCCGEfHVQxhJCCCGEEEIIeXsIwP7hvg47vAwtfPnBJa6+ebXO/7oK2ajqdRKwQxmrzudZxUhQsjXYfSGHNei4JliXIZBF7pl0rIQil1eOSspKOjbnNQUrkraXupW6KI4RIQbsp32RsMeSmk23CSEG7O7vkOZUz5tzGer4tRK0SmoDS0I2LXO51vSezPmqh+WVtJ8dUlgkq8gf3X5oJJSeM7Y+DHZZxVIv/bqViNXl2KinZemovi7rJ2Z1mR+euG1b6lmh5ocuruVjcVeTss8Zg70T28Mhb0vEVoq2262gHUlG37aXsFti1qdFpeycuWN727207JaIHb2XvXvTLz8/IaxF7DwnPH06I6WM4zHjyZMjrq85RywhhBBCvlooYwkhhBBCCCGEvDVMlxO++4+/i4tvlMSriNe4j4gXcZWvWsICG0MRn+N+vFTqJGDXfUbcoUpYJTtCDvU4L1RFhKWlTsQ6PPGanJXlMsyuScYi13llU7sedkXwpn3CdDVh/3C/ziubDgnzzYynv3iK209ev+E+cy4i8XBIi5ANJhkLlARtzpKUHSdjgbjKw5x1WrbK9FLezhmrE7KjpKxPxLbJ11FS1q8XYeuTtFKvv9TXqSVpPVbX18dYMavrBbVt/2DaIYlr/Xbf+T8CsHPRnn2YYeu8vTa3hKvf7qVZ67oXpuNjzhm6+G7DFI/nX9V17bDE7f7RdZ/ed5dhmtv5az///IB/9a8+XeeynV+rH44QQggh5HWFMpYQQgghhBBCyBvN5XuX2D3cIYSAeBlx8Y0LXDy8QNiVFCziIouCWwLVEXkpexdUEHEdlngJLUra1ezDUr7Uq0PChrWe7Je5YE1AMsMkY31qdn2JGJTUrKRtl76u/Ux1PYaIHDIiYjlHCMipDG0cduVe7h/tq9zNGfOTeR0m+dWn3It5zpjnpIQrEKNIJis59XpPkKaEdQ5YALBzx4qoCkv77Zyx9c3V6DcckOGEq9jUx+g3E2fs09vn1tHlPjVb9/lyn3bdStD6c/WGMVYt261Oc3cVgOfXHbexJV/Ldl/A6n09Efm8Elbq9de35OYoIZub87fzwo6v39N7hs4XsbZ/85zx+ecHfP75LW5v03MLeEIIIYSQ54EylhBCCCGEEELIG817f/c9vPcn75UhiGMoc8BGdFOwJ+eEfZ5RULV8UkPOmn2LmDVJ2a3lYJ+ZN3aRsqZc5pDNuV0u88yaNKxIVbeep1IvxTJEcZgDpv2E6XLC/v4e6XslKZtuEz7/t59jfvr6zMd4PKb1PSrzutaErCRjJRGbc0SMWGRtOV4nY8t2FUO9lKsspW5vrtheWlbLX5GT5yVlx3PF6v21fzXR64+p27VuvQc6uWrL9X2p23bY434itm3TI0NEa16EeBu30UrCU8f5dGhfMPZkailvy+4mX0fbvRTs1r5eArUVttv3x3NXib113XL+lIBnz2b81V99htvbmSKWEEIIIV87lLGEEEIIIYSQF84HH1zi29++d1aKcPSl9OiL51NfFOdckjjX10d8/PHNi7gc8powXU148IMHiFMsc8IuEuret+9hupxqWaz79BLoJGKX9eAt7OjR7omXkE25SaCK5HJJWVMm9UORpWsSVp/vlLDN/bKQl2QrwpqyXeeoDTUxm+MiZJf7l+eMHHNJyuZlmfKanF3n3g0BV9+8wnwzr3PNHj4/DG7eq0GMcRE45fOkyNmwDlVshWIrJL0QrR+D7dDBVlLKcTYlG0JY56sV8VvP0U/Eljq2XI6z60CVfnau2zqUsq9fj5HrGpVXqez/MHp/QOfU2ap/inN+STFu824pTl3e7ujLxVZa9v4d1OV3mT/2LhJW9vdkqxed7fG6rH+9PXoStld+VxE7zxkff3yDJ0+Oy9/y6b4QQgghhLxoKGMJIYQQQgghL5zf/u2H+NGPPlxEQSkbzc/XGxaxtxQxIikX+ZK1Los0SSnjeMz4D//hmjL2LWP/zh4f/sMPsbu3w3QxrUnYVb72JCxQHI0IVydh62pH0npy3W+GHM6h9VWLWPWyFcAqQNe66jifnl0TsFImdZY/Kp2E1XPPSlIWwDq/bEh2Ttk1IZvrvjUhG0u5JGTztCRm54w0pyJ4l7l4H/z2g1J+SLj97BaHLw5392hfIyJj53lGzglAxjTFRYqW96VI1AggLZI2LsOxxjUZK0lZWQJoPg97y/7Qx1WkAkXWiujcEsB6+OIq1/16rVeOsfv721Xe6vIilKsUsynfmnwVwauvvYpp2dbSu95D/e9H7wc/Y9lmd4zavAs90brVppauvo6tP0q/1uO9gGzLTgnW9jxbwxSfO1esr7vFuQK2vQ/tPez1r/z/Awk/+cljPH58PN0hQgghhJCvCMpYQgghhBBCyJ34wz98hG99694yfKeWBJVvf/seLi8ndL4nBzBOsQB1fjm9HEnZaSpidprysl0SZLtdxre+dYU//dP3GombUsbhkPCzn13jcEht58hrQ4gB7/7Ru9i/s0fcR+we7LB/uEfcRcR9kWchhu6csIBd78rYpfz8DulVm34FUKWpS8HKPsPWdmc9ZCdp9XZWx6jtVbou174mY0XIxiJaZV1StMhADnmVszkt9dJSL5Z6KVYpK8v9oz0e/ODBKm4PXxxwfEUliU7IAgmHA5BSXARjEbE5R0wTEEJyKdW0ykWdEqxDGY+XvZStnnNWqHK2tu3laxWstdzPL1tkaU2/WsHaCtc2MVvryee5TgNL/0TOynZP0Na6XpaGpqyU94XtOTy/gD13X1+69uqNpGxPtOrykXztldV/Z8+bF1avt9vjpGzvesfXXu/BaF977/oy2svhlDJ++cunePz4iJsb/ltPCCGEkJcLZSwhhBBCCCFkSO/L7R/+8B388R9/A7tdWOdTrAKh/cK8fpE6+uI4mC9QS8osrwm0vozNyDms+6RM0mIpZez3Ed/4xgXmucgUWR4OCc+ezfjVr55Rxr7mhCng0e8/wr3v3MPu3q7OB7ukYEOwItYIV/8jAr3ae/DPET1eJAQrRxCWpKq0p+WKHvq2xmvH7edBmS/vSNhhWXDbSSUilbiVuiHX4YqNlF3k6xIcRQppHeJ4P+0xXUxIxzKnbJ7zKyljZYjlnDOOx+PymZWMUF0vEAEhlCTsPKf1hyprLZWMraJRPivzsqzlMZbPv97cr1Ju99uych6dnm2lrF7Xn91Vplbhqu7KWkeXeTFby+rz7+Ws3Avbvq1jpW7ulNljehL3RTJKcY7398pPzX9a2z1V3kuK9gSsPt6LVX9MT7y2+8oPm2z5OAm7Lb2fX8LKei+Rm1L59/7Xv77Bb37DETIIIYQQ8vIJWf2X4cXFxcvsCyGEEEIIIeQV4v33L/GjH32I3S6aFOx3vnMf77yzN2Xbpmp77rrRl6m9BI4eolhLWCkTOSvDF8sXsikVSSLL4zHj44+f4XDImOe0HFPKj8eEjz66weev+LyWbzvv/9n7ePj9h7j/vfvY3d8h7uLmkMTNsMRot82+3jPtizYlQ62Tz6nYqyJ/L3WlLfdlOQ+3c7b1Zdsvu/tSu70OW5zq9rq+JF9zzsjH5e/xWKSsSNh0TDg+OeJ4fSxlx4xnv36GdPvq/EhChmkuryJad7uI3S5gv4/Y7SKmKayfk2UJTFPZnqbyo5UYsf54ZZrKZ6dsy2epXdqy0bZdLw9ondu2v79dt9tlafcD7ZDz/phxWTm+X75uNRK1+5uIwb83X5WAHfGi0p29/b0fMOnyfvrV1t8SrrLdHnOejNXlMoLF6Dpb2r43Nc6UsFYu2//f4Be/eIrf/Kb8O377Cn2eEEIIIeTt4vb2dl1nMpYQQgghhBCyst/XeQ7fffcCf/iH7+LyMi7zJbYC4BRtgsWWVxGr07FBfekL9wVwieXldb7L0Pniti51aiyEMqdjCBHTlPHhh/fW+eQkMXs4JNzeJjx5csSTJ8e1Hf+FM/n6CTEg7Ko8ffC9B3j0B49qEnZaBNYJCdsIWEnL6rLm5Bvlpx4NnYbdamsgYzPqXK96TlkAZi5aU6aPlTljscxDK7I11H3+JUnYbmo2qb7KcrnPS0i0vnSdBETEIm+BMpxxCAgPA6arCfPNXOaU/fS2yFs9xPJLRBKyKaV1mPPjMSGEuHyulA7GWJbyWeETr3JDSuq1fpa2Aq0k/uVzuHz2haX9sHyGyZDEWIcvlkRt6YOXluUz06Zg65tXPivbhKzud7t9lzJd3tvn94/qjOp6vkozOxaua42ujN2WliIU/T673tvvZWtp59QPoHydnnjV6+22Ld/mPGG7JaxH11z/f4iynOfy+uKLAz76iIlYQgghhLw6MBlLCCGEEEIIAVBE7H/+n38f3/rWFWIMuLyc8MEHlyalBZyXhAVa8VrW+/PM6fVRIna8vyZi/bDFkoqtCdm8pmbLsMWSmM04HkvZ8Zjw9GmZY+54LIL2b/7mMeece8k8/J2H+PB//WGRslPA5XuX2N3fmSTsOiwxyhJQUlbWASNiy+I8GdtNy57ByfYXWdorL4tsBKhPyurEazcZq49V+00SFrmkWpelPrZJxeZcy9TSJGNzScYiA2lOdZnKMs9lv6ynQypJ2cclJXt8esT8bMbNRzcvXciu9wJYpGxa0q4BFxclHVt+yBLWH7RIUrYmY/1rlJRFNy2rk7FALyE7Tsr6/ZJC7SVk9b5RGtaXbaVmbb1xuW9ve7+nTdV+1Wh52t83KuvLXL3/XBnbO6YnX2W7J2z7crY/B2zbRr2eEadk7ZaA9ftHElaPiPHRR8/ws59d4+YmcRoCQgghhLx0mIwlhBBCCCHkLefiIuL+/fKfA/Kl+8VFxHe/ex/f+c49NXxm2dd++V7KKzrBUr9Il3Rq/YI1rNslqVXXyzG9ZKwu6ydny3l7y5IA8/1PKSDnpIRDifUVCRER4w5XVxm3tyUpe+/eDsBxOTbjcHgF7NCbTgT29/frnK9XH1zh/nfulwSsvEJZAmgSsack7Dp3rMbLn14dKT+FCcOeqL/0xwjZrNrw67pML/U6UFO16m9Q0rF+X8ihpFVzEdk557VPIap5Y1Ou9zN3+gS3npbrT0DMETnkkpBFRkIq66FI2xAC8ABIx1Te9xhwuDiUpOz8cv/mqrQsS/mxxzwHhJBWSSrJWBFEo6F2JR0LZJVkxfq5W9KxkoT1ydiwfhZKubz5OWOZK7YmZe2Dgs461mNLovdUGnaUen0RCdlSR/792K7Xa/McvkzqVtUcVLXlp+RrqTMWsG0bXrj2yk5JWNkeJ2L7+7YkdP/azq8zErG9fksf5jnj5mZefnSVcH19xONXcA5qQgghhBDKWEIIIYQQQt5C/uAP3sVf/uV3sduFZW7DkrR68GCP3a4mYbdSTJqshmEdz2fXl6ciAfyww6eHR6z7R3PH6qXUKclYYJ7DkoytSxniUNanqUjqP/qjR5jnjMNhxuefH/GTnzw+6wtn8vzsH+zx/X/6fewe7jBdTOV1NdV5YaOk9GoyFkAjYhvxOkjpdetiO9XaSNatts/EpGBrYT8d66WMSout8lQkrFpHbrdNWV7kcKptrEs1LG5GRkjLMQlV1i5LSc1iXvoWl8RszMjTcuxc6oWprIddWcZdRLqfMN2bcPjsgKc/f/pc9/NFE0LAbrdbE7KHQ8I8F7k6TeVeFIkqQwiHJiFbfohSfxASY1yHHZYfpJShkfPyw5j64xV51R+6QJWLqG33lb7bly+TbV1+TpncF/3DF72vV7/8CMY+6G0S1kvh8b9D/fKx7L07fVHYrdnsy03ZKeFq17fnjj0lLf2/o7LP7x8P/9u/hrswFtfj+3rqelLKuL4+4q/+6jMcjzL3O/9hJoQQQsirCWUsIYQQQgghbwG7XcCHH95bhsMM+N737uO99y4wTdFIgt7QlYXtJJFOMYkMkH3+eC0W1lobsraK19FcsrWPpW3pQ1YJNEmjlQRsOSYuMsAuQ0iqrPT33j2scvZ4zHjnnf0qem9vZyZlXyQBuPrmFS6/cYmLb1xg96DIWJGwjYiNSr7qHxAMJKyRpAN56utsJVuH7Q1StZv4P5fRdm+ZYVKxa9ny0nPG5mJbq2CVhGxSdbJLxGabjJX5aHPIdVho+ZtNeZXjZv5ZoM4568Xb8tmEDOSQaxsZyIeM3cPdKnjz4eUlZXVCtqZkw5qIlR97SCp1nntt6Ff53EpJt5/XUQnkRyrlcywvCdyMlGQO2LAkYev8sXZZJa1+oOTzUd4Iuz1+EKU9u7/Wkc9fX76dkO3t79UZ1Rvx1T0jYzHZl5atjM3dfecKWFtm67cidSxhdX3/wye/fle2hfW23O6J5joscVn/4osDnjw54tmzmRKWEEIIIa88lLGEEEIIIYS8Bbz77gX+6//6h3j4cG/mOCyprHZ+QdxhDr7+F8ZAz7iU8tDUL18Mh7Wsl9jxXw7bOWPrsJ2jhGydV05EhWyndVnmkQ3Y7fIyj2zAPAPHY1pk7Iz9vgzxLEnZX/ziGT766ObMd4KcIu4jvvePv4d7375Xk7BTFbEmCavlq54jFrD7lu11VQ85u1YP3TqaRrBqUXvi2HM5Jxm7ClQvaIyEycPtJgG7rK/XkOp5m2SsiFj5wYMI26S21fyxImyRyzCiIZXhkHPKdTllhOPSj1jOL+2EKSBeROzf2eN4s8wj++sbHF/yUKRlrtdp3T4eE0JIjQzd7SJSCktqNi6fO3H54YgsZe7Y+mOVkqyt0lWGjpf3wIpYGfLdp2al7vkJ2VPrp5c28domYnvrRQC3ydjmrjdp2nHdr5Zt0QjoP+JWNJqtgYxthaRuu/3R0li+yvZI1o4SsedybvVeu71rs/1u+5pSmULg3/7bz3F9fVx/yEAIIYQQ8ipDGUsIIYQQQsgbzDQF/P7vP8KHH97DO+/sce/ezknYrTQsutvt96k6UTiqM26j/VK5LusXseNUrG6rSNh6fJuM7Z0rLucoYqQkbLJK2Zbzl2FEo0q8JcSINSVbRG7G9TVTOnfl6ptXuHjvAnGKiPuIi3cvMF1OiFMsyVeZH3Y0L6xPxKp1YLx9dhpWC9teu6qsKb8r/jcMent5rEIOzbDFm8lYv+33JXVsRp07FkUCr3PHos4ruy6TK1eJVn1encAtF+Gueyr9iFOZQzbkAMxA3MX1fu6wQwgB6Z2EEAOOT44vPSFbqG+SJGSPx7zK1UpafnRSkq9FqFrhGdcfFehtO5T7KCEr7cmQxyKF9T6dkC0StyZi6+dd3VfXRe4CzQMJWyafvb3krK0Ld057XN2ubbRl0k7/36+vAv0jon75qOzUcMV9gdsfjti215OwPXG7JWG3xPDzMhK77X3oX6OWyPKjqs8+u8X19Yzb20QRSwghhJDXBspYQgghhBBC3mAuLyf803/6W/jOd+5jt2uTsFUC2CTs1hfaW18m2+PCsF77pa98+a6/OA5LvSoiylIP3VmXZW5GSZXVZRETOhlbUnsldQbEmJBSWLZL+TTJemiW8yzLiGlK+Na3Ar7xjT1ubhIOhxk//ek1ZewdefT7j/DB3/sA09WEuIuIu4GE9TJW5N65AlYdo8XgUMr6MnfcKFVr6p5BXiOu7phc92k5utbTknOpq5OswCI5jHip2yYRO5K0cOUynG5yCdlFxK5tJaz7pP85LOcMy/HLcMQ55XWfrpOnInbTXORrmhLiRXk+5ndnPPn3TzBfd8YB/tqpqdV5nl0KvwyPXl4R0wTknBZRmiDDustnV03FVkmm07NrOjlXiVvFbj8hu5WE7UtgLWn7x9W6VfDaf0NsWd3XJmflM78OcZ+bfW394MqtzPuqac8zPv9IPPp9vWSoXu8nZb3E7AvWntzU/66+KLZStf3/32EsYX0fZU73n/70Gp9+evviOk0IIYQQ8jVAGUsIIYQQQsgbxh/8wSN8//sPEGPAxcWEb3zjEvt9XCVsjDUVqGVsKTvd/otIHrUJH7gviMfr+uXFgyRje+U+GVtlRIRPqM1zvc5yTFwTb5KMjbEeIynjaQp4//1L3N4mHA4Jx2PCkyevgix6Nbn68Arv/M47ePiDh0XE7mMRsFMAIhBj7EvYQSIWUPvU+ipgfSK2I1OH6dctcev+Ju6ajJVzNiJjka46BbsOK7zsNwlUfYyI1g2xqocr7r10QtZf5yp+e4nYRfDmpI73/dRCO6h9yyvmkpBNOSGGCJnnVmRviAFXH1xhfjDj+PSIdExIz15+TC6EYjVrQjatklV+TAKEZf7qOl+1/lwrYrT+EEV/npXPmior675gPpP6L32sTctKf3UdaVcSsVUC1/Nruap/2CPHaNFallmVVbEqx9R27L8PdX5eKbHyt+cAT/8Z6gdvzClZOdq/NS+qvo7Rvv78sD15eX5CdlT/eThnOOOxnD5fwn7++QGffHKz/Fue8ewZ/00lhBBCyOsHZSwhhBBCCCFvGH/0R+/iRz/6ELtdEbDTki6U4S6jm1uzTTP18V+8Wil1Xt9qE2HwRXPvy9n+C6hy1UvYnpStw3kWIVLWZVjPknitZSUZK0sZXrS0U04+TSUhq+/xbhfwwQeXOB4Trq+PePp0xvX1/LWltV437n94Hx/+6MM1DWvmho3nD0vcpGR78lWXe/na+xtw8nVLyo5E7l3RCVcAfQELmGGKtXjtilotP5WAXUUssKZckdxxImWX+ije0C69EO6VbS1liOSlH2lKCDkgocwvCxSpm1Ck7PpMTAGX37xEOiQ8+/gZ5mcz0k065dW+UsozIfNWJ/MZJmnZImPj8jmclh/HiLC1n3FtArVd+oRr+Yz3QxP364ps7aVgfULW90d/jtbPWr+tJWorZ+t6X9Dqa/WiVvpv773l9Ofu8z0sd09/1nNt7R/9OKkvLr1QbROw9pj+/q+CsYAt/bT9sv3x/U0p49NPb/GTnzz5yvpLCCGEEPJ1QBlLCCGEEELIa853vnMP/+AffAv7fcQ0Bfz2bz/ExcWkJGxvWOK+jB1R07N9AXuqjf4X0MUO2S9lA2wyRm8H84WyTW3JvvG2DEvsU2YybLEkZ+srIIS0LLX4zQACUkooczfWZOw8RwAB81yGH93vi/l++nTGF18cT9/ot4SrD67wwV98gKtvXmG6KHPDronYgCJiQytjzTr6642A7chUI2WXsrLotKckr2lHt6Xa0JyTkO1JETMkcVlpRKveNnJ2WdfLdZjiDHhZK8MH62GER3LWSFn/WmSvOQb95dp3eU+X8+WYSwo2ZUTEso24Dn+cY6kDAHlarn0XcPGNC6TbhLiPSM8SDp8fTt73rxpJyM6zzBMbcDzW4dLLMMUy9HBYf9hhX1g/v2T+WT9csZ4vtspQXW6HIB6JWV+nXe8lYHP3GL08VdZfl4ep/bel/ZOSv++v18LbP9s8KO9t5+H+/jDEpf1R2fMI2hfJVpNbInokYeXHTillfPHFAb/4xVM8ecJ/OwkhhBDy+kMZSwghhBBCyGtKCFiHxf2zP3sfl5fTKmHly3wvYWVdt9G1SPB1bP3TX5BXdKKqllXBqlNaaIbmzLDzyfr0WBWuelnbsdu6T7ofKfUvIOeo5IbtbxGvCTUiKPM+ZsxzGfZzmqowe/z4aM79thJ2ARfvXuC9/+g9xP2SiI1hTcVqGYu4yE6d5tZSFliFaFDDb2+lYtcy2DLTPtrjddkoVev/lLbmjF3ngjVRP9eO3s6dcr1c9us5ZFeXG7KdS1Y/gwE1napSqj796ueFlTlfzRJlqGIRuupPw/RrlcT+XkjfZFcCMJXtiIi0jLUccgBmlGGtYwDuA2lf9h3DEYcvDvYav2ZqQjatn1XlxxySsJcfgJSE7DxvfS54CWplqEhSmddafnii59BGM6Rvm5qVz0A9dLHIPDtUcTm3f4hKPV1f6vrkrPQhq3X774AWq7WdsG7re+FF3zk/LpI+W04/MOeJx9relpjViVe9r5eUHYlLX3ZOQvb8+9PnnH+/zpGw/vr0vLAyx/v19Yxf/vLZl+swIYQQQsgrAmUsIYQQQgghrynvv3+J//K//AHef/8SDx/uMU1RiVgtYe3csOckWntDEI+StM+fim2/KK7itNZrh1fUr1bEbiVlRVgUYVqlhKRmUyr75aUFQp13ttQvr4AYE+Y5L1KlHCPL47Es9/siym9uZtzczHj6dMbh8PZZ2f2jPb73l9/D5XuXmC4nhCmUVGxcxOtIwjrRqtf18tQcsSOZasRuL0nrU7WqDVN3LTh9L4yo1bLCpWGB+ndiErPLfpOO1cJzWddDEjfb7u8DATYpm7ORsL6uScTKdSgxvKZkVbvmmIBVvudFwsi1JCSEGJBCGa44hWXu2GUI3jwty0UOx12ZX3i6KHMPH7444PDZy07IBoQwIaWElNLy+VzSsikVWRsCsNtFyDDnPh1bRjjAui2yUtL4MiRx+Vwqn2cyJLv/IUr5dwEAspo7XF41SWvL7bas+6Uty82/F+enYs/fHpWN9+uN0eevLb+bfNTb43Z6QnJUvpWcFYlpy1oButXXL4sXr71znBLMch23twk//vFj3N6Wof0Ph5c/BzQhhBBCyIuCMpYQQgghhJDXjBCABw92eP/9S/zwh+/g/v0d9vuo0rBexgJawtYvp9uEqz5HWfa+UO9L2a3+AjqZo+cHtClYLT/lS1pJgEkqViyOiFEREbIEaiJMb5fkV16voQwBWvuWcx2qU9DpWy017HFSVpaSMNvtSnL24mJSMrj0/3AoAje9Bd81T5cTwq5Iz8t3L/Hw+w+xe7Ar8ixifRmZ2hOiarhgEbUB7hiRsj3JKmU6IQt77HpOd75uX1D3CecMS9wlWMG6ti0pUlW2Cle4ff6YEKofEfnZEzEByMvfj07I6rYl8Yq81EVY96/LWKXtWq5Sshm5uf8IAOLS5tK+T+GGaIdbBlDSskAd1npaZONFEbK7tEM6JByfHJHnfE7o8Suhzpdqf1RSfthROiU/4thKyPrPpb4Mlc83n4gN7nMSpkw/JDX9Kp938nep1wH7YMHUHX+e12uWunXdX3Tv72j0Jm7/zdlE6PkPwvkStq14joz0+0ZzqEv7vuyc1OxXQdv+ORK21PP/3kqZiNhnz2Z8/vktbm7egn8YCSGEEPLWQRlLCCGEEELIa8b9+zv8i3/x+/jww3t49OgC0xTW+WElQVW/UN+SsZVWurb1vWi6i3eyX8qG5ovj3tKWaZlR1+uX/PUL/lFC1s6pmN2xkiirQ3FKyqzUlX3tMsYqhafJyg9Juu125T3a7SIuLyP2+4ibmxmffXbE8fiSTNHXQQQ+/NGHuP+9+9hd7RAvIvbv7Nf5YWVeWD08sRerANoyka5+HR2ZCth9arkmcL0AdmLWHLP0pyyUWNSYqrZC9vImd+rlWm8dchhKxIpwVUN4A2gSsKZMzyXr07FLYnWdM3b9u1EJ2WTnlfXzyZpErKxLHX1fslum5e9WUrPSZ5T5YfO8LIPaXtZFJANVKKddSdSGXcDuwQ43H9289Dlky/NZDHJKVVQC8vmWllR+WOaxDusoB5KM1XOAl1det+swxXVdJ2Rlu/5Ax843C5Qh1uXfCV1uE7M+PauPqfvLvrZOvR+lbr+8HuPL7T2VtdN1XxR3EZG+bHuu2NLWVtlIuo6EcOXL3pB+26eut9/3Wl5/6JRxPGb89V9/gS++OOD2liKWEEIIIW8mlLGEEEIIIYS8JoQAfPDBFd5//xIffngP779/id1OJGx/jthynP1yvK63X2Cff6w9/nTffSKotttLxMq57RfNobPeDiGs9+lEbIxaAtdUlpxDBKxQhv2EERr9IRZFZmBZlu1pCgAipikj54jdLiOlUkkE7MVFApDeSCG7f7jH7sEOl+9f4vK9S+zu7aqEjVXEIqIrW5tU6ikRqwTs1vDEPg27lY4dHbsiZWr7FM08svqxBmqCtDenqk/Eyt+PLg+haa+bZPXLkKsYTZ30bcQqYddz67liB23q1KxOxK59XZKx672U7YjSdnTzz8Z6zevw1VNdRkTkXV6F8HQ1Yb6dkW4T8JI8T5uYtkOv66RsPabuL58tYRGma431mJqK1Z/d9TNJPh/rS8vZvHx2Snt1KOTa797csXUfYD+/7Y9j6ue//LtT172pX1pUn8my7f/NqmW2HZuEPYW9hi22Eqc9SbuVEu0lXnX5OalX38b4el/cvy3n3oOtlK889zc3M25vE1LKmOcyPywTsYQQQgh5k6GMJYQQQggh5DVhmgL++T//bfze7z3C/fs7k4itX9aX5SmhKvSGMvbbte66NmzPc/oLabveJmJrWW9bXvXLf1suEkLWR18mt6KhCouSQIuL6K3zLpa2I3xaFsCasJW5Y6epiN0YI3a7hBACLi/L0NK3tzM+/viAeX6zhOz7f/Y+3vuT97B7uMO0L/N4IgJxKkPJSiJ2laKxStgm5arqrMMQ94Yp1scocTpsr1cO2OO1cF0XrZSF2dwQtPIc9yRJtsLVpGZzLRPhiYw1RbqWr38oMPubRCz6CVkzL6wcLxJWJ2ODOjfQT8oKOiErv5dIdrmec3k/UkjleZljEcWh1o8hIqdcxOvSlzUpOy99E/H/YcD+3T2uf3aN+Xpu7/lLIOdilo9HPWes7Csyq8hRkaRh+QwJLiErCX49NL1Ozeo0LNS2X4oMrsLX7y9ldWnTswCa1Gwt08f2y+r5fbk/1v+71K93Ls/3mbv170hPDLfb/bliT0nM5+nTi+Yu4tlLZP3v4y9/+RR/+7fX6zFv2r9/hBBCCCEeylhCCCGEEEJeYb75zSt861tX6xC3H3xwhfv3dyYRW8WhFa+nErF9CWuP2Zayp6mCobarU09l3aaT+olY2fbruk5ulmXozioZdCI2Lgm7siz1RYCIuACwlskcsa8R4QABAABJREFUsz0xXNbLeWRYUZk7ti4jck7IOWC/DwAiLi5KdO3qasbxmN+IZNDFuxe4+uAKV9+8wu5+EbGShl1TsGpo4kbEQslUEa5q+GKTiIUrRxWr67peRrfsSVh3jG9rrecErWHrb0QOy51KoQoMLXRNMnapY86vBG9vWGSdVvXH+HqjdrQMNdvlgJqC1ecLdqnbCLHOCYtUj1+Tr/K3GvL6fsm5IHOoLmnZ9f1MdRlzLP3alwvdP9wjxIDj9fGlJWRb5LNBfx7X+V6BgJSwJPzrZ40Vt/WzSX4oUuvU5KvdtuX6xydlHmv5vNT9susytHv9IUz9MUupK39H2fUHJj0rdSVBK9elj/Ep2FH6Vf97cncxu40WqeN9ve2+eK3b9ppHqdneNvDir7NHX/SeL2FzzjgcMj777Hb9scHjx0cKWEIIIYS8VVDGEkIIIYQQ8grzx3/8DfyTf/I9XF5O2O8jdrto5hHsD03s00mtYLUJpn46VtAS6nm/+G2HMAymfJSG1ev6i90yJ6zeV8VFLzWry7fOq+VET3z4urIsAqOkZIukCEsaNy+SJKv2yz2epmKUylDFZdjGjz66/doSTl8VD3/4EN/5R9/BdFnSsHEXi3yV4Ym35ocVIbusx2Wc1TURq0Wsk6+bQxO7Y80S6rxwZa6dtb0NEdsOSdtHJ1/N8SIhq2Fd5eaalM12e03B4nQyVu/Tr3W/W19fWuD2tlW7Zo5a1PO7G1AWIpa16FXtrelXc5NQ730CYo4lGQuUZCxQthdpG6aAqw+vMN/MePKTJ2XI4pdOuYicgXkWEZnXoYUl2Wo/u/KalC3zy2KdQ7amY+scsfLvg+yXuaz1vvqyc8PqH9Dol5RBJWFteV/ejvb7fVvrve1T5XetA4zk47p3WGckWnv7e4nXXkJWsH2vG6f+vTh1zef9e9NP5vauR9brv8vl38HHjw/4N//mcwpYQgghhLy1UMYSQgghhBDyCvLNb17hj/7oXfz+7z8yInaa6vCUNhnrBStwFwnbJmLbY5e1tY9bX/I27iToNFNQ+6uk3JozVvZrkSvi04rXvEqHaovOmzsWkHliw7Ku07D1XFLur1NSafU69DCjkpCNANIyd2zCfh9Rhiwu1/jw4Q6HQ8KzZ6+CLLobF+9e4J3ffQcPf/AQ08VUJKwMFRtUEjYq6TkSpJ3kaleoYjBMMXC2hO0laZu0rJOvzTDFap8tUtLEmVfThpYakiTM9ZwmCbu01UuuyhDDOjBuxKjep/stydQcjEw1QwkLMndrcttw5XpfaLczaip2+bNYheraj2Jj65yxHjnvhDVtCxQ5m5BKOna3nG+RQBfvXWB+NuPw+aErw18W8tkinzd2ntgqUquU9T86sT8E0Z/Psl8LWKlT57rWSz9ke9lnt33qdlvG2mGodb3yudwXsAG9uXTttv0M12+qr/s8P3TZOqYnTftp0dzs9/091Te939+T7ofPoD+n2e7POcleLWGPx4yPPnqG6+t5HaaYEEIIIeRthDKWEEIIIYSQV5DvfOce/tk/+z4uLyP2+2mVsHqO2LFM7Q8r3KZo6zGnZKxfX0oGvc+dL8Frn+xwlEGVyZe4fihLLWXD+mVvXpN2VbwW0doOKSxDfeZcRa0WBVbC1vXSNyt9RxJ6muQ8OiFbhicOIaHME1nMk/Sx1E+Y5/Iep5RxfT2/ljL28v1LfPt/8+0iYi9UIla9GuHq5aj5kUEwwwobsapE6l0k7HBYYtVm05YXrx05axg8H408BYw07Zb5dS9vF2Ep8tLUy53jpb5IWXlFV9eL1qjqiqCF2gYaKZuTSsUuP4AIKVTBmuswxaukk79p3bct3DXHXOaXTTkhYhGyxf4jX2SEKeDyg0vMT2ccHx9XQftqEJbhirOTfDXJKglFvVs+20IImKa+lLVLO19snSO4rQNYAVv/LcG6T9fprW8v60Nu/62pD1grX+09a8XkVv27sy1j17VhfV2nl4I9Ra//7bFjAb3FOX24i1zWYjbnjHnOuLmZ8bd/e43bVyKNTgghhBDy8qCMJYQQQggh5BXivfcu8KMffRvf+c69NRE7TUElYluhapNKpR29rYXtWMb2jtdfitvybapg9cdpwSrlNdUFI1t1glanYMW8iLCVxGwVprXMpmHbVJKcp4jRKmH9UMq9V+++yPUUQSJDgyaEUOaLlQhgkSVxSbtFXFyUJNw8T5Bk783N65GQ3T/c4/0/ex9X37wqQxPvYk3FioSNqKLVSViTfB3J19BuN8nYjbRtNx0L1YfeOtAXr7pMl/foSdZT+7Xo9Os9Oev39SSsLhcpG+rQxavM9XK294Kro9tWKVc99+sqZqNK3GKpk9QwxUuftbAtzefu+wAs55rUMizHhTLEsYjZnDNyzJguJyCgDFv8dMbtp7f+XXmplM+WgHkunyPTlDvysyZlsQxdHGNehjuuwkwPUyzzZ8vwxyJkZX5akb1++GL5EUzZtuncrWGKzxWy/bIqg33du5ZtUf9duttxPRk6lrC+/uhkodv/Xt+2rvN50r9bx47kq6x7AZsz8MtfPsWTJ0fkDMxzSccSQgghhLztUMYSQgghhBDyihBjwKNHF/j7f/+buH9/h4uLOj9sVHJKvlwHrGiV7UL9klzq+qWXsD0B235hfv633XpoYlWq1nOnXFJSwX0JbE1UbVvbKKj1svRp2Polf1b3raZsRcjWJC2WdmQf1rka16vIUPe6psYk6TpNYd3OWZbFWJV5Y/M6j95+X2zSPCfkjFdfxkZg92CH9/7kPewe7BD3VsL2ErH+pWWpF69Gzvo0rBewQHNMNz3r+rK2AdU/wP0dOBEIVd8z+hPx5V7ehAxkJ39zKyL1kMV6n1lXQw4P+6KlClSK1XW0OYfcu6TaWrZzzHVI4UXOyjE51GRsCOpcImR9Qlb/6cdF0AK1fRG/+l7KjzeWvzlMVejGFJGRkfcZCMD+G3uEKeD2s9vxfXop2B+O6OSn/KikZ+LLcOjyY5dWcEoaX/brdX9MOVc93v6gR9Kqepji+plajqmJ1bGMrcfUa5V2q+TTx9TjrCQ8JVVbeanbEOzBdxk2uJad30bbJ/3vZV/Mnmr3lIw+V9R6AauP1T9kku3ywydZZnzyyS0++eTV+pEDIYQQQsjLhjKWEEIIIYSQV4AHD3b4Z//s+/jww3t48GC/JGIjYoQamrhNw/aGF5b1c1K0fRlbynS7wrnJI5GYur7+sl+Sp35ozDrfKiDi1A6DKOkbGQK4HbpYErFlv9yLul/LV5ESvRSTT8H2El3+vpQkm1yTDBWalv3FIIVQlyJ9RQKX/tShQ2MErq9n3N6+UrYIADBdTvjwRx/i6oMr7B/uEfdqaGKXiu0lYvVwxUa+OiHb3YZrA/32TyViu8MR63V0pKvsX9a7bP2d5H6dkMM6X+xaL7hjRmV+2fsNg0+4hrouCdlhGlbXg+ujvwZk04eQAxJS2RfV/LWSytXy1vV1Fc+9321sLCOKeJVhiuW+5liGAJa5akMIuJfv4fjkiMOnB7yKzHPAPGfEWF67XVg/G+QHIJb6ppdhj+vnqxa28vehU7KyDUi5Fqv+2FbK1n9L6o9q6udmXvfXbbgyoErd+gdiZWz7B7T171J/3/mfp3cdpng568m+jEZXkPb65+3/uzxqc8S43207uq4fkliWn356i1/84tla5/r6eF5HCCGEEELeIihjCSGEEEIIeclcXU149OgCv/d77+C9967WoYlLynIkYu0X2D7N2huSeFvItmLXrm9/CTympmfssd4oSVl/2yenSllNudYhjqtYaPtb6tZElj1fvY9VBkgiVt8v2S8SV8sJGQpUDwtaJWsdSlnKdGpWljkH7HYR+33G5eWE29uMw2H+UsNPfhWEKeD+9+7j6v2rbiIWEUaE9l5esvqybpJ1S6gOBOxweGIvXoNbX9oti46A1WK2uUGdstyWa7mp21qToK5M5GQOnVSsKtfH++TraOn75dvPyOaemeGEZVvfr6VsvZfSv6DOHVwfXLtrWja4fakeiwA7PHJS/RKRHMu6pGbDLiAiYvdwhzxnHKdjOe4V+zuTv/uU8vrZoeVnHV5dG3b/8MkPWHoyVT7D2s93X6985vUTsXXY4/qZKMPSS1v1s1X/LdZj7I94at36+W+Hrvf3SK7F3r87/6Olj25Lzno++v/++B/2jNod/ztr/z3UbZ/qyxbj4YnL8T0JezyW0RtknvNPX7HhvgkhhBBCXjUoYwkhhBBCCHmJ7PcR/8V/8QN8//sP8MEHV7i4KPPEhoA1GSspKJGDWqJqgarTTkUWln322L6QlTb0di3z9IdQ7A0bKV9At1+q2zliyxfxudnWSdn2C+E6V2y5NishdOrVp1ylr2UIY6j7ZFOz/vp0G3JcvZdxHZa4JGRleFw1QeaynnNc7oEM0xkXWVvlrbyHOQP7fcCTJ/OrNfdeAHZXO0xXU5GxpxKxg+GDz07GYluyNkMaR3SPaaTsci3dlKzeVtddFqrOHe5ZF+/P5G9DRIpOjPql93ByfCelutbZKuu8THJWX04OSDnZ84YyR+w6ZGuvzy4JKwnZjLxK07Wu76sauVvmggVQ54zNS/mckUNJx5bHIZZkLMrcsUbQhoC4j7j99BbHL17FVF8duvj2tnw27HZpHca+fl5YgVp/MFJ/oKIfGBFr9TMsm+Ptj3h6+6oot4IWaNOxdn9fzNpy+aOo23pf2T8Sl/qYr4owOLn/9076YctD95j2uK3z17Y9z5uS7Y8SkdW/exnPns348Y8f43gsf4yv1L9LhBBCCCGvKJSxhBBCCCGEvERCAN5//xLf+lZJxEoC1idh65fONs0qbZSllrTofNGtxa2VuGMJO/6yu3ct/gtmnYyy5fULetUC9BfCNvWKtbxeizZYNfnVpnBL2zI0sh0u0yZk2/RWKxN8eXlltR6WoYf10J/opGQBOzQxlkRtEbm7XcQ8Z+z3ASmFdQ7a9ApMI3vx6AIX714gXpRELCKK/Fxkqhaf6wt1GWDTr71k7LoNkdobIjb065jjOzLWiFcnYY1o2RKwwW+O/2ByR5pIqrRXR6ddddvDuWKRTUr1LqlYk35dztUrk7bXe7IMryz3S6dndXLVlGvJ7OrWxHvb1vq+BKxCVd6DEFQbIa/CVyR9I2CXHw/EXUROGdPVhOlywvxsRj624vnls1zH8kMS/TlQhjD288n6H7/457KVs+PyejO03K3/luRG+rb7sH5Gy/76Yxs/d6z8LVtBKMfIurS93iH9d2Tev9Ct8zzYc2RVFlR5/1y23P7bd14ytt/eXfCCuNdOT8I+ezZjnsuPLJ49m/H06ZESlhBCCCHkDlDGEkIIIYQQ8pK5uppw//5ulbHTFI2QbcVsK1ZrImprrlh9DKBFaz+hVPFJpTH+y3MvBeTLfKkXTJn+ol0nZf3xIlZFkIr4lGGAZa7EKixEVlRJKucXkVvmb9VfRGMVp1JX96W5ciWB9dyxtd8RIfhkLNQyISWbmJV2p6nMG3l7Czx9ml6qkA1TwHf/8rt4+IOH2D/cF6E1xSLEVAq2mcNVJ1dDaJdasC7p1vWYLQk7SNz25Ou5yVizT/bD7rc3ZVvC1mqdOVd7jixsrPsyX+5TpVDl2a37Ommw39WV+V9XGSXXlbEOFbwmVHsJWR0WV+3KHLE55zrMsD9W3yf9kvcgYZ0nVuaNRQBiVnPHBiVml2uX9zteRdx+fIv56YxXlZwDjmuAN2O3A3a7Ojy6zCdbqT9CseK0HG8fHPnMrj8wAeDWqxj38lX/W2KHQq6f1/Jvjx1O3kpW/W+O+VPU8yoD9u/UlJs7Ntg/lrRts/XfKl9Hjwqh++T/rbD12/6N9z+PQbaNbA9FXOr3hiMu/2YCP/nJY3z++WHdP88UsYQQQgghd4EylhBCCCGEkJfEd797Hx98cIkHD/brl+gjgWq/NPZfeJ8jYtEcU9Zrmd6u6/ZL4FOJHZtaAnQqquyv7eo0VE1J+bRQ+yW1lwxVXAYjEGzdaqtE2tYv/YNZ1uGT+3PFapFQ761O3OrhPP2QofI+STK23ld5BkS+Shp2twvIOWK/j8gZuLlJm1L4q+Tqm1e4ePcCl+9dYnd/tw5LbETsIjx7r14itpuMXdKU5d7UdnvrmwJW7wNsuT+H3i+4eqYMtuxc1mOVVNVJUX3+NZGq52Rd2sg5r33xaVZpp5t+zaGZp9XP3+r7phO60u56LQGmL+aapH/PkZCVuuv51P71fqtzrnUlMSvPxpKEzTGvz5+kuHPOdXjtJSU7XU6IlyUtm27VEMyvMCkB84zlhyhFzurP9jqce5Wo8iOUQmv9q3isP4rRwjbI+76eo22nlb5A/SyW9u3na/38xVo+Tsai+TeiMv6jtNdW6vo0a5tu1f9ujOr0+hSa+v3+jj/TvYDe4tS/C3YY4tyUi3y9vZ3x9Om8PlM3N4lJWEIIIYSQLwFlLCGEEEIIIS+BEID/9D/9Lv7e33sfV1c7TFNQqabtRGwVq2GZl7SWj2Rse2yVPltCtre9lKp1nQhaSnKtV7/4BiQFKuerIla+iA+mzZqM1YLAfuGv60j6VaSmvFKq6a+akJX+lX0ytLAeUrhcS+mL7JPEkOyXftTkrBznl/oLbykrSdjdriSNdrs6h6xQUr4BV1cZ0zTj9rbMHXt723tfvlo++PMP8N5/9F6ZJ3YqQxSv6Vadho19OTpMxPbmigVMMnZUr0ng9uQt1D7A1JP213InX31itqw6Qfs8aNmZ3TlylYub6djecmlnHe432/LhdkZNqi7PuZHOy74cl/5KihauDbTrq+BFLZd5Yte2VXvrubO9P6ZP/pypU6aQtKz0PeSAGKK9vwDCFJDeTWtCNh9efQGVkowCUPp6cZExTVhGWbAS0f9QBIARtc2DBGnXf+b3t+2PbPSPWtAsy3r9bK/7tDT29bfXayq1lbSjkRqqlO3JXttX/W+bbaPti0/M1n2hOcbTk76n2KrXE6+yLvvk38V5Tvjooxv87GfXd+4DIYQQQgjpQxlLCCGEEELI18wPfvAAv/VbD/Dtb9/DxcXUka9KAKkvvEdiNQQ7THEvFStfduu2tyRsXe8LWovdqRNNHp1IrSK2/dJehIBO0vaSVbZenW+ynYMQ7tg2GVvFLNYye+/6SdkqwovELe+HiF0teOswyHGVjDVdG6OfOzYsw1YH5FwTshcXE0JImOcyXPHX8SX5vQ/v4d637+HqW1eI+1gEqDxzSsJ64anLtl7LXW2kqJaoTTLWnXMrGdsI2ebZV33W26MyVS59Pxc/b+xozljdpi/bnDPW/z320rGyHKRk5VzdOWPV9evE6trP9VaGtY5Pt64+VSf+6p8hNtO0QbUTgZzy+r7muAhe+S2DCGaUeuY5kb/BFBBzBCYgT+X46WICAMTLiBQS8u3rZaJ0SrZ+vpT5p+u/GfpHJdspWb1eRaNOzPq68tle69TPej8cfS2r2/1z1DYBEZpafMp+20/bXmkndPbJOaqglnOuV2j+PcmqrJ+Y9cfXfbmzv/139HnIgwN7idicy4+APv30FsdjXn9olFLG48cHClhCCCGEkBcIZSwhhBBCCCFfM3/8x9/Af/affQ8XFxOmSadbtXSyMtWL1VF6VsRsqVOWPQlrpaL9QrhxTud7Joc/MA/29VJYo+3+up17UMtUZXgGCSU9l2KMYUmiemFbRamtV+pqyVq+zIYRsGVZvwCXL/rlvS/z2IYlwVu2c44q1VuGKS4J2YRpCjgeE+Y543h87jfobB7+zkN8+0ffRryIiLtY5ohdhnpFRCtEdYL11ByxEXZbjkO/jd65AgYJWbRSdi1Dv2wkZL2I7HLqrciuHXWMnn+1Vl9EoyRDz5GyIqyUTF3P4/8ElxSpEbQh1JTqYG7ijFzndA1FqjYpV30/gj2/kaZpOb8MG5xqP7zAlXqAkrB6GOIcaqp3KV8vdwr1Xqp7GqZlmQPivpjb6XJCiAHH+0cgAvNh7v225JVlnsurdjpjtwvLDz7s56T8gETEbZGcIq51G/7z1+8r20WIbn2+Sz0rab3MLf2zctXX1+eq5SJ3YY6TOoCVsl6carnsr8WL21qWnbgM3br+2uz+F/OA+fNp+VtHZsAqXm9vE3760ye4uXmJE5ETQgghhLwFUMYSQgghhBDyNfFbv3Uff/fvvo/f//1H2O2iGprYS1j/8olYLWBHUrbKpJrC1G1AlVkBa+VrK2fPx3+53PuCXpf3v+jXc8naeWWLHJBUbJWvWqZqEWuX+pgQZNhirPdTywn5wr2I1bAKWOmriNkqbkXA1nlvZRhjEbflXPX9E8mbM5Y0bDlmmiJyTtjtirnaL8KoyNn8lc7jd/XNK7z7h+/iwfcfIO6LhF1TsTodK1LTydDNlx+C2MlYAF2BuwpYd57eum6rJ2ibddR1I2DN38fgD+KcvxMvRNEKVqnnhwn2qddT6ViTal3k4ygl2+unEaTL0L455DLErz5Ghi8O2dwvI2yxXLeI0rTM7Zrq/fTz1q7tLenXEEMVt4vEN3I3L1J26W9Oea0TYljPuT53yzLmiIRUE7IZyPvS8O7eDiEGpMdpmDh8XSjzfgLyGbXfR+x2uRmRoY4AIIg0zWZdPhsLvc9u/1z5MnuMiNdW5lq5WsterJQt235/7We/X638HMlZu38saZ8Xn7jV4rUsMz7//IDPPjtIjfXHPpwLlhBCCCHkq4cylhBCCCGEkK+JDz+8h3/0j769JmLr/LC9BGxdCiKaZDjb8TFauFqRW5athLUytpUzzydk6xfcIdgve+uQlO3QxPUYba70vlbI+nL5krxNxurUVxW2tj9tMkzfLztcsR1muIja0jM9bLGuo2WGiHI9PHEdphhmmOKyjEbG5pygv4B/0Vy+d4kP/t4HiJfL/LBTqPPDdiSsHhK4K0XVsrxPnXbk2N7+QYp2FbTYOCc6Ytb9bfg6fp8ur5uhWz6iGabYHZhLVNWc18tWOW5rvdduT8QO5a36W+kNMez7sgpYtH1f21NDD8s9k6GKdTJXD3cs7TVDFaO85zL8cNNHPf+tkrkybPGasF1EbpwiUk4IOSDsAiIidlc7BATcxtthSvh1ISXgVg23HEKCJEPrD4LqXNn28xKQz1BZ92lW+fzUQlYEZv08bocjHg1lDPhjS5t1SHqo88oxbXlZP0/KlrI2LVvq1Gta9jTt1Hr++FaSqhq+4ATt5/0oDVt+0FOTsF98ccAvfvH0jucjhBBCCCEvAspYQgghhBBCviamKeDiYsJ+30vFtgJWy1ORtj5F2xumuCdppZ2RhLUyCmr97ha2ftk9ShSNU7HtnLJeyEpdv27lbF/klqWkVWsytvZGErGjZKzc8/rFvL7fWOdhrOlZScbqhGy9HzHW8wLlOFlOU6knQxbvdhmAJGSBy8sJMrzo8QgcDi9eyoYYEC9jmSdWRKwsRYhKSlZk6lK2ClIZPtgPI+yHK/bPvq7jk7Buu5HBSgr3tr1Y3BSw6y4rIv1+W7SIvo44Wdv2AiUsElbOk53shJKy9pE2yzVRq9YbOav/PKTdsIhNBCMy13pabuZcU63J7U9VcOrhitdEq75nam5XObdOxJr2lmGNTUo21KTrKlpzPW5tX99vEWjrDyFKMhYZRcoiIqeMjIx4EYEAXH5wiflmxuHTA94Ubm9LItL/O3PvXlT/1uh/S7JZL8fUdf3ZXagp2vpZrveXOrbM/zE9X7n+N6cvZXvHVjlct0NHnvo+mBZGlTe4++e27ZNN4Yp4TQm4uZnxi188XUd9ePZsfo7+EUIIIYSQFwFlLCGEEEIIIV8xMQIXF5NJxPblqZajddkXrH2J26+n2wyurH55vCVh7+Jka4opNF+CS7n/AtoORdxK2DqcZD2H7VutX9tqz6OPtfcgL1/eS5qr3kefjNVJMZ2MFQFQ1tthkHvvtT0+mGSspGqLtM9rSlYnZXe78so54/AiPVFAGZb4og5NrOeHNa/1ECs6T8lRn9yUbS9XfTvDNG5vifbczT7U6/AStitgA5q+jxxMUw9YH8ns0uLr/KtLMnY9T7bpUWARRqEcs0rcoH9koBKHyLWe6sO6T/ooMlfV76Zvc72n0g99Xev5e2naUMv1Oc21u/akjawE4Hr9QSVig2tDvUIIq7iV4Yt9MnYty8tyAuKuDFs83Z+AABzi4bVPyAopYZF09bmYpoyLi7D+SEQ+m+IqteUz1b2BzXrZ1olX/QObXiq2toG1nfpZLJ/PukzabNOup4cvrv2Rz3Wg/bfBi1ldx9az/dcfI35o4y9H/TdSSCmv76OkYAFgnjOePZvx6ae3q4wlhBBCCCEvD8pYQgghhBBCvmK++90H+Of//Lfx3nuXbq5YL2X7orUOSxzWJKxeAm1CFoBpT75w9hL2+aVs+wVzT5j2vzD3X+D7Nn2itbfea0fXgTuuLv08srIdY16TqX7OWbkOfc8lOSvvUZGoWQ03nNdhi2W/DAkqaVn9/ullScaWYYjLl/kRKZVYYknIFsEfAnA8xqWfCYdDxvwCwk9XH1zhe3/5PVy8e4G4i3Z4Yp1W1alXqOfYDWXcfamkrDxnMca1PZ2AbepKHYRmDlDdFy1ee4J2XZf9Xr5K2bLueZ7k+CoVvaQROSV9UNJW110TplntU2JLErWyvvY998+VwzKHq7RVHrPajr9wn5p1yViZE3Y9j79el1CVBOuayg21vXV+WZWqzTFXSQ01V2xczrMkaM09F8Gc8ypc1+GKJ/XZJ4n1XUQOGXkuYneaSwr94r0LzM9mzE/ezIThPANPlmvTz/a9exEXF9GlZe2rHFNf8qOYKk/rZ2vdr3/cAoz+Xdga6r5KXt/GWnOpb4Vqrd8eb7dtO7YP/c8AK2zb486hl8jVoyvI8qOPnuHjj2+6x1dRSwghhBBCXjaUsYQQQgghhHxFxBjw6NEe3/rWFb7//QfLsLK9L7KD++LXitFW1NbyUkeO18eFTr26b2tbl9Vyv91j9CV4+VK+pqH0th/KcjlS1RUJWr4k7yWPar9652h6Gdrj9Dnr9We1ra+vJvTK/bWpXxEMInN1v+x7rof9bFO2In51slbEfH3FdbjraQqY5y8pYwOwf7jH5XuXuPfte5iupiKt1PDYa+Kwc6xOIvZe671dXV1NyG4lYhsRG0IVd6Gev9eWOafUcc9+L8E5krBDATv8u1Bk2+46jLFPlarEqU+1BqhkaCcZK+341OoqXmHngjUpWF2+HOznlJUyk5BV6Vmd5JU+rsdI35REluN1yrXbZyV19ZDOJoGL5dzuWTTPSYQZ4jik5RpCNsnYnHP5EcIyn2zelWGL8zFjxpspYwGoz4/6zB2PeUnn26T/NJV1P8+sPb5utynY3r8ZbZlN0y6tqvlnAf3Zr/8GpK7U2dpX2y3bobtf8G3affUaxsMcb6PblR/yHA7JCNmcgadPZ1xfv7nPIyGEEELImwJlLCGEEEIIIV8Rjx7t8S/+xe/h/fevcHk5YbcLg1Rs/2WlG+CTscB4zlgApn29XdYBEYe9bbuvfrF8Kgmo54oVkSpzpFoha784h4nuVSFVJeioXl3XQ7T6ZGvvS365NzLEowhYfVxprkrZkmrVc8bK+wJTJsnYWhdrKlauDZBkbG6SsdMU1mPKesQ0lYZ2u7K935fty8sJMZb40/GY1T25O7sHO3z/n30fl+9dYrqaTCrWSFmZszVWiRlCQAxxMxWr5ViTclXtNolYnYLtiNlhmerb8pgMBawuLwslZ1X5us+VnYWXQrqd1cueSLUqusnVUFOvTZkIUP2Y6O3oypPan1wZ7DGSYF23c9le/8bXv4O8PjvrvK66zbBclwjRZIWrmT9WJ2OXc/vE8SqTs0rHIpREbEKdOxbL3LEo1xJDmTtWlggoc8nOz//39bry7FnCs2dJ/ftQPpfeeWenRm6Qv8F2SHbALqWufMb3f6jTpmf1j170j3ikXStns1r3/3ZZ0Vn/nelJWdv/epz+d9Hv+zJp2Db9mnPG7W3CT37yBMejjbrOb+HzSAghhBDyOkIZSwghhBBCyFfENAU8enSBhw93q3z19OVnFUv1y+zel9vB7PPtjkVsWOu026N6Nn3bfvlcz9v/HrpKUZtw8ilZm3w9lZD1x/v29f31X3LbvoqA9QnZes36C3x7X30y1qUT0b4fUs8KjPo+6dStHCfzyRb5mzspWSxzypahKZ/HB4QQsH+wx+7+rhGfJqlar6IRoVqq+ZdJs0rZhrBd9yM09bekrO6b7o9Jyqq3drity84RsKN9TaquVlyfZWlekqRL+lPqm6Trerqlrkqm6nTrWqZTrS792psjtknfrunEWibSdE3l6nltRY7qe6/ldmj3+7p6GOX1Hqi++vsu7a9pY/VM5KCueenrulzSsFKGADt37LIMU0nIxn1EvCwJ2bdFzGoxqEpxOKTl37aamAWWz5F9UPsA/Rksn+H28xVmf3+71qv/LujPcv3vgv+s77flj63/9oROHduH8b7z0ff2eEy4uUlqX/036fY24fY2Ub4SQgghhLymUMYSQgghhBDylRGw30fs95NJxNZkbKnTplllOFo9V6yWVjVB2co7LZzQtC3lfttLKt1uLR/LX6B+oa2XJR2aV5makv/yuiZWa7J1nJDtpWUlTSV9sPt1Paz3yLxLZrumYnWyqpeIlbr2PtdrqAK1zh1byrCWtcnYvCzLcdMUkFJYUrWhScrmnLDfR+RcElKXlyU5e32dlpTsHQkosmm/JGLdXLE98Wpkqk+2+hdakernoDWJ2NDfNutLOnckZRsJ2xGwXhQu727rgKRu576duq8AjJTVw/aacjUErzy+TVoWth0tZdd6+k9J96OXit1KxPrXiYTsmnZd1gMCUki1bTlGp2KjKhOhKnWXNlZZHPNapvuds7pvaihiLVeb/i3HBYQ6Xy5Q545NsaR7l3ma80XG7uEOiMDhswOOnx/bN+QtISXgiy/6w+OGADx6tMPlZVT/ZtV9+qXLynovHWsTsPXfoHMTs/aY8Q9y/L9NY9nak7bb2B8D6fXybyTwm9/c4he/eDpugR6WEEIIIeS1hTKWEEIIIYSQF8w0BfzBHzzChx/eW4aQbb98Bqwo1dtV7vntrS+w11bUvqDa9sd4ASxlWsIGJ32V0FJLO7SilrF1iGJZr8P5yjHWGG0lZOWcPhU7OtYL2TosZlj6V8v9dh0W0/ZP37te6rUvELS01e9nXttqk7F1qE+RsHLvRNR6uR9jWIc39sL5JBF457ffweX7l5guJyNGVymmRKdfX8vkGVqfJSVJEdp6ro4/V0/6Nutoj61vGNp6UH8brrzZ1mVq+7kxzYQ2QaokrKROEbCmU+WRNilVLWL1ukqvSuJ1PValX7dSsmtiVNXVsnQd9njpOwCbkJXzh2COWaWxvifLe7eeO1RRatpQ19DcT9U3/d7re+fPpxOyq9BdJP865PKSjF3TsbuIeFESsumQADty7FuPJDlT0kMW28+mELD8WMn+21KTtHJM/exsHjbIZ6189uof3gS1Xo7xQxK7XrvRFGz7vWv0fenx7NmMZ8+stPZSVf59vL4+UrgSQgghhLyhUMYSQgghhBDygtnvI/7yL7+H3/qtB7h3b1Lzw+pXre8lXZ1/D6a+XQbzBbVe6rql/WDOU+vpL8DR6aPI2Lq0UrZeg6Rgy3peXynlZjuEvMzTClghG9bjqyCV/vrkK8y2TsfW9npUqWQTsL1zWGFaE7H2/SrbI5naO0a/15IWtlJWBKzIjDIssU7IFvEqy90uYJ4DJBJ4Vxkbp4hv/YNv4f737jcytidFvSD1CdaRuBVRu5ZFuxy114hdOQZhnfPz7GSslA3krNmvy+DqfgmMaHUnWBOzeihg2Ho+KduIWCcza+c7ZZ6AkipFHcIXQJmjNauyYOuu87Um19ZyrE+iIgM5VSkrQjQgrKnWADt8MlBFbCNfAfu+BpQUrRLcaz98QnZJ9q7pWElxyrM1BUTEkpDNwJQmpGMqn2tfZORbGjTP06enDfXDhxMePty5z8v+D4/80v8bqpf63wwRtXW9/vvg/5R13fpQ5abeFlrS5gx89tktfvWrm/MbIIQQQgghbySUsYQQQgghhHwFlLk7q9AcfbFsv1AeSVgvTFux6kVsbVOfL6gyLWRDI4xjjKrvdbvK2Cp72yRsWiVsCMlIWSCZ4YL13KY+5WolbPkCXX+ZLtc9SrEurcIncP2X87Ltpa4Xv/W+Vilk56ut16DvuU3A6lc7Z2ydF7Zux5iXfoWlrPSzl4ot9zPg8jIixoybm3QyafXO776Dq29dYf9ob4YlXuXVIrYakSn3RD2v9ZpVufxvIGdHItYL3+6x+r3p7FuP663r99SVmzIlbQ13EDTNoSpRus5x6uTsSMLqst72up6V6EQVoPq8a+rUL91xQ9mrE65Ac6y8FznVY+TerWlXGXY4BFNm5qpVglondYH6vvbmoN0StjlmhLTMPysJ2OV5zMtw4auMdXPHhilg2k/IlxnpOmFGf7hess3tbcIXXxy7/26VZVsm6/fv77DbVYFrj9M/ovHH22e2177UEw6HjC++OJx1Tf7z9vr67R3KmhBCCCGEVChjCSGEEEIIecGEUGVsFbFeyFYz0MrWnoTVYrUn9mp96cOWlLXnshK2yL0iX6dpWssbWaaw6deIGOsQlSllAPMqWIs0TUp2WuGKgYQt2/Ue+OGIbZcC9Jfptq/1fmjhateraJX7p/eHUCVwu6++R/LFv67r3y+bBhsPVywitrwfsh3WeWXLepWxu13G4ZAxz9s29p3ffQePfv8R9vf3VcQ6QdrIylBfXfkaXAJWiU2devUp2FMS1p+nEbDmb8Bud4VyR/p0y1S5XEevfJOsxKs+PNc+rYlZff6MOvSvlri5I0IX4boO9avKtbjdFLFumGIvb9f2RbqqczXbwQna0ErZddkrc+0ZERvq32FPvPp9Zvhj+buU65DzaykbYGUsUERsDoi7iHyRMeUJx0jZ9rzc3mbc3t5dZMu/sUBc592Wz0nZr6VrX8pulwk5Azc3Mz766IZDCBNCCCGEkOeGMpYQQgghhJAXRAjAP/yHH+K3f/sh3n//siNiQ+cLY7u/zi8b3HFKRplj7H5p157H79fni+tSJGyMEdM0LXJvQggR0xSXutH0o5CXIXVLCnaeE1Iqr3mekXPCPAeklCAS1c8JK+1UiVoFJiCyM6znao+tado2AVvbtHJU2qvlsl0TrrJPn7MmWaVfdThiLWHrMe175YflzIgRi1SV4YnlPZL5dkuDdrhiqGRsREppFbS9+Q97xF3EdDEh7ErizwhUJUKHUjT0j9GCrCddfZnIsEb6j84Z2/Z75zXiVa+v7y/qthaFUPVVnSGj/eo3A6FTaRW0aPebuVlduRGgcMJyqe/rjcqa61DDFDfDGi/CspGbUieiJmFlGGAlQNc+eilbRtiuEnZJx2qJHYKae7YjWI2UXYY9Bpb+xJLQRcSaiNXXJ/PFIvYlrCxjjshTLkI2ZUwPJ2AC5icz8okfPpAXQ87AF18ccX1dn8v+Z1046zNwfHw51zxnilhCCCGEEPKloIwlhBBCCCHkBREC8MMfvoM/+ZNv4Opqgp37dXzMWJ6O9uvjQ7e9U9tF8oV1KSJWkrBFxkbsdtMiaKdV1Nb5Y0ubNREradgZKckcpkUwyhfZpV4RiGWuVH9H7BDBerhiLVbLvgBokRVgBKSdR1adYRGoRQjr9mw7WuzadX0vrTT2/ZA+1PeptleH0syurpW2cq99QjbGKpXL+yfJWXl/t2XsOuTqImG1JG3kKpy4lP70ZGuo6dhGZo5eqO3pY7eErxeuvp+NiMUJEWvexBMSVrd3ilBl4oraNOnWnM35mtSsLpcy/TwHu29NxEodlXxt+hPs+jpM8CI99W8l5N6a5KkaStj0rSNNtVRd76f0UX4IAStegVYA6+OHyVj9fmkZLPcjtAlZmWtWP3855vojAD1c8eUEZGB+OoOjFX993NycnpOWEEIIIYSQVwXKWEIIIYQQQl4gMQbsdtGlYq287CVeRa55+TpOyEK158t69YJKVtb5YG0SNmK/3y3LvVnudjsja71ASiljnuclDXvEPCccj0ccjzNSmnE4SDIWCCGhmI4MGa64DGVc+ilzpmoB2huuWK69Hnfe3LF1ntfaRhW3Vq7W+6nnIGzlaVnHel6bqNWSFfDvndSPMSOlKmHr3LCSjEUnISsp2JKMnee87g8BePhwh+Mx4fHjGT7Z9e7feRfv/tG7uP/hfcRdtEMURytZtRitz3AwSdZGjKrtrUSsXyJgTb2ekrKjMnnLjZh1ZV7UDgWsLveP1JmY47X4hJOsIdhHd3lsmzTrIkJHMviu9dcEq+10/TPNqo5KuyKgpFn1uZe5WKXdnNW2lq9y3rQssdTN9Vg5t5+ntvfe9ZKxa3p6OYdJxko/5TpivUchBZuQnQIiSiIWKGly5FI/XpTOhxjQSHdCCCGEEEIIAWUsIYQQQgghL4SrqwlXVxMuLmIjUYFWvsl6rRNcuRZJ9pi67KVle8MyjkRwUGnXMhRxTcTuujK2JGStjE2pJGNjjEhpXtovEbGSTMuYpiIsiigsw+lKPyTdWWShF6o9CRs69Xw5mvtg07buDqnysdDdPsafVwtZPU9tufd1OGQ/P60+tn3P7DPQF/t1iOLdLqzvv7/u/Tt73P/OfUxXUytQUZdmvScz17sf1uWampVjVd1RgrZ60Jq4leMaIayWjeDr9NMnI5tj9LWYvzf3EA1c5p3wTfohiCW16oc3znafTsPq5Gs5xCVis0q4LufU86/q9OqahnUPjE6/rv3SKVgM+ukkqr+mVfq6+yPDLTfzxA7a691nSffq998Pc+yfDylbE7GqTvNjgxgQpyJpwxSqXCaEEEIIIYQQBWUsIYQQQgghL4B/8A++iT//82/igw8uMU1twrVQ5WoVZ3qJVXT647W0taLWCrMq6/qSzgvYMgzxhP1+h2macHFxgWmacHV1iWnardvTtFv6HxtBJcIVKPPEHo8HHI9HHA4HxBgxz8flvPMiXtO6lKidyFnVqhtyWK5Rn7ctk/IqH7XURNOml6i+TZtwtfdWErR6OFS53zWl699HoDdfrOyPsbQjQzlLarg+H6M5YzOmqaRk9bDQu11AzhE94hQRL2JJxcowxSoR6+WTSaEOhjQ+lYxdy1T6Vrfda/dUCtYnYk2fYff1pKxJWOp9qv7yrjdlL4T1eVRCU8qVpNyc61Weucb09stX0QknYN3S9DG1SyNhpY8xVCEp6dak2pF+Ia/yUlKlIVc5vD4nCDU9K3PZjqT6km7VwyOv77HMZTuYO3a911n1x88duyR8Y4o1tbsvB+7f3SNeRRw+PVDIEkIIIYQQQgyUsYQQQgghhLwA7t3b4b33LnFxMQGwqVjBOJ5QLYIVf+NjZNuKQVum22zbtUPE+kTsNE3Y7XbLa79uhzAtr4hq2nSfRMaWfdNURKrMI1tSs/OyDKYfZd3KUn2tNpyn7dRovVe3uauAzBWp5o2VvpyTiq39q7J2S+aOjm+XIhRzp14wZVbYe4lf98WYsdsFzHPGPAPT1YT9oz12D3aNfB0KVdNvK+m6ghQ2GdvUkX36WdCncY/ZMBkLDI/zkrUpO1PEnpSwd5Wzg0drPfcaKlXJT52ElXPqNOyyvqZSTYC1k4gVERtsErabkBVJGmzSVr+PZn5YPVxwrsJ2ff/0PV/+/NZz6z7pvqk5a/X1NDIWtX0zdyxsfbnX69yxeq5e9YyZ5Kx+LR+F8gOGEAPiPhbZq89HCCGEEEIIIaCMJYQQQggh5IUwTQH7fUkmSoqxJvWqUNPbtZ4Iq1awlfr9dKy0tayZ4+U4fXxJxhb5GuOE3a7K18vLC+x2O1xd3cNut8O9e1cIYUL5T4aoXs6SASgxsBJ/CyEtc+aW9kX6ylDEZU7ZGfNcomMxpmWeVC8h69yxdT7X0wnZ3vDEq7lalqMUrG8HqyiW+20Tsn7OWOm/3pez3P92zlg9T60W0vZ5yGZdJ2Pr+yrp2PIqc8jWa9rtIh492uH2NuPzz494+IOH+Pb/9tvY3dshTnWu2CaF6sTlWu5ePckqwmqtE92xo3P6slj7MTrfuYlYfT1bSdnlnW8fcy/8evji3CnbwMwf6w7sJWN1mU+pduu4ROxWP0ZJ2eGxoW1jve9qntnunK9xPcj+xgKwc7vK+b2IV+3k5IYzVuJWJ2R7ydgc7RDNTTJWJWTjFJFyQtiVZzRexDu/34QQQgghhJC3g/54VYQQQgghhJA7YZOJQZW39bAKJC9ZfTtarKJpsy97Q7eOnFOEbBF3NRE7TUXK7ve7JQ1rE7FFzEYAfinrZVvqlnOUIZBL+0UC92SeF8/tvTVbJ9+HU3Xtvey/V16g99rcqj+W5rW8fX99orn/Hnupq5+XdpjrWh6X//oLU8B0NSHuYyMsu5eqpad+rrS4lKX0R/6nJe0iSnvnaeSnrhfqOXrn8/U3RWxQfV/vnb3+UV/UVdlzjq6rd09Hx6lzj5LC/j0w90Xvl+2OWF/vXee9NIJb1/dtuT7ofuvr8XV7Un30PJh23LPTPEvu+OY9HT2/+j75e+auZ/gjBPl7kx8XTAHxqgz/TQghhBBCCCECk7GEEEIIIYS8ALQIk221dy3bEml98SZCL7g63hbZdqHETJ0rVpKT0QxJvN/vcXl5sSyvEOMO5T8VqmQty579yOurpEMTQpjXvu52ZS7Y4/GInIFpOi59miFDBWuJrYcNDgFqyOBaBtj5YG3ZyXdqbU+Sq7q83LM8aEuOdaWhn9iVcrmO+v7oNKxfYl1vn5E6x3BPwvr3We5JCEBKtSzE0M4TG1spV67BSa2gn3Erq4yg8wIvtjKrl64dJW69xOsmcv0Sqh+yjtrPcySsSYA66dc8Gk3R1gGOrBKccny2/eklX7eSsWZ44aU9PwQxoIYIVvtG9c2QyOr97vZND2UcOgld2DbM+sZyvR59vCRvZVjkgDp3bYCdO1b6EuqQyjq5u26n5TpjScximUsWwCpekVEELMrcywCwf7RHukm4/c3tOaOdE0IIIYQQQt4CKGMJIYQQQgj5EnznO/fwe7/3CN/73oOODG3rW9Fq9ph9/vjeuq1fjvHH6iRuSa1GM1esFrL7/R51btheEjaoF1BNQxmmuMrEvIjOjBjLsSUlmxBjRErJSre179lc0/b8sb6eFqW1LT1ssR+euN9Of1+7XObYDFoY63ufu8f562mXImKDaaN3vJW1eZGybTlQROzFowu8//13cP+791c52hOnzdu8SKye4NTla6oTHZmKjXNIXxHsefW5B8fIeY2I9fJVr5u/C7Tb/jhVx74Brs4WvlpP0On2ZIhpLWf1nLAiEE/MGbsK1qwEpIjVbOd2NfPGuofNzOcqMjPXPui+67lj6+W0c8iuYle1sfYlZNN3Mz+svw+j+6j7qJ65Zm5Yd4/8S/qySlmZQ9YNcZxzLj9uyOWHDvlIC0sIIYQQQgipUMYSQgghhBDyJfj+9x/gn/yT7+HiYjISoxWxizhqUoGtbOtt99ss7fbaqOfSYi644Yl32O0m7PciYy8QgswRuyVj5Xr0BI+99YQYJ4SQMU0RKdXhkcu8p6HppxWbVVL69S36x9gk7Km2zknI+vOM3h8vVXtitb+U+6KPb58bWx7UUMUZMQakVJa7dy/w7l98E/FqMnO2evm53C1VVEWVGfK2I0jXNlyfeonW3nC1TRJWn1tLV9hzmfPD1t8SsZtp2M7f05DBrq6w7RSJxNT7RV4CVsyuUlMlXrVo7MlXOa5JwWo5qec7VetNMrZzXV7CrqLUl2kB6u+z9Dmo84Vs3i/fzuZ2cPdPP2cieUVou/36GVylccA6t2wIocwvK39HuSzjVBPnhBBCCCGEECJwIhNCCCGEEEK+BCEETFNQicTQSBstzPS2HA8jVKtV0kMUL7U3xKxtWw8l60WsnitWUrExljli69DE/hVh54gt6zn7fRHVZsgcsVG9bBq2XmN7PVvX2jumJ7C7LQ/q9YXqKaky6r9/j9t9+v21S3SXrYTtS/0Q9NyxVc7mJwc8/Zcf4/CzJ0UWKVFp3hclooaiVJ43v+xI1tHQwv78Wv6NpKwXwWaYYrht3Vf/Xrhyfx79tjd/0x1pt/YboXsPNl/qmpvEuLsHQ1mt+6nvO1Q9fX+0FPf9dutNfS3wN849KjPPgLr35yybPpyx7fszeg67fYxoryWinSt2GbZYhgCPlxH7d/eY7k8ghBBCCCGEEMpYQgghhBBCvgRWip2qh64I3DrOH1/WQ1OmanbaD6afkkyVuWOnaUKMVZa2crUnWyNyrus9y9SK4OD6UvusJfQ592Kw56x7+VVj3yu7XLaa+nYZOtu999W/glvaV76ZcfvTx5g/eTaUVr23QGRde52LtHKirycL12tCaNtcFwMpCzTt+raacqnrZKW01YhY1xep35Wwvfujr31AcP9r2nXHGyHq7pPvu+6nbru5f6rMiGfdb70dbHvNNcPV7dwzcw2+XNU376f0072v/j3syml//zryuLkX/lh5ptw9MrI2unPL3MuLkJ3uT4iX/MqFEEIIIYQQwmGKCSGEEEII+dJIKhZoZeBIiPYEnJdosn9LPuo643NpCdsmY3c7ScXa1Os48Wr7XoYWjgghwZgL1Ufb57YNvR3CMnwqAvwEmyH44YUDZBjfrSGFu3sCusMW+/WyLO3o98XP+Vr7ra87N3VkHleZG1bm6bRLfT/677HdX9uLsc4fK0NBx8UJlRR3FUf+7WqEqJddXm6h7uvWcfv0cqu+2dZiDLZfvb70pOVIxDZCUZfpNs1maMpM22fS1FWPjh7mV7e7DhOcax/80MHd4YlRhwVenzNk047vyzqUsTq27j4xXLG6h34Y4bVczTsbgpsr1i+DnTvWDzPcO48ZXlifWy31sMiI9X6vc8LGDKT6nOW4nDMG5FSHKZayOEWkXSrDFk+hfZYIIYQQQgghbyX8mSYhhBBCCCHPwTQF3L+/w+WlzKXaisUWa418ArKpHfQxI7nZO2bUTitnQ4jLUls5/8KJ8nO4m5R4OQ7jbtdkRcu5z4Ace6rMpR1DfR+1bPfPka5TlnCvYE/kBWJ7SeglG32K0QgvL1VR9/Uk7Xq8Po/rR+/4RqAG259TIrb3dm8lYb2oNv3r3CPTRqfPw7pyLn0/0Sn3fXbX0yQ9/Tk2RLa+l73nQ6eem8sIYftaXBsjWW/Or+6xbsu8t07ir+fQ92f0UtfnBar/YYBO0/rnfe2HzMesf8dCCCGEEEIIeWthMpYQQgghhJDn4Hvfu49/+k+/j3ffvVBirGB8zio/MUg4whxnpBnQtNlfdqwS9BCgIl97CdmIGCUN21qKkqy0id+aGg0YpU5V7eWYjJxlWY8pq1KW1+0XQQht2lWXlWusaVR/bLn+032xbfo2ZF022oryntf0rH5/9T2W9Gu/Xn3pZGw5TpKxMS5JbjWnrBFZul9oRZY/plfWSDEnq7rHunPoa5J9PiFrBC3apVlXx/tyf4yXn41IC2pf55hmn2dLzC2J1LVqtv3spWDXdKikWZe0q0nDSlp2ScUCLiEr+xCaROwoVYuA4bnK7rpP15XrWZOry/VsJmOXpZaiQE3vmvMoWbuWhWDqmvfBPadrEjfmko5dPiMQXDI2l3u9JmOnRRVPoZTvAnb3dsAHwHw9Y34yb7zxhBBCCCGEkDcZJmMJIYQQQgh5Di4uJnzzm5d4+HAP57AaRvurSA2bbWwL2NPn9PJXZK9NT4qNqH06Te6s5/UlAlaX2X3ZtaFae8FS9pyyF8Wp99K/N6faOac9//7W5yo0+/JtwvE3z5CeHTfabaXVUDA6iVqLlRz1gtMdP0wjqvN35RncPt1m7fhYwm0wTH7CJXiDLW/2jV79k6JJCJvnxQpgf11d4Yx6L3rS2b9PvdSzeY/1cYNz+XrdRDHstTbLTn96PxoY4vpprkcve+uDZ84kef3zLe9dVK8pIO5jEbaEEEIIIYSQtxYmYwkhhBBCCHkOSvJQEodjmWrlp17a/eqI5titPpy3XsUclNCooq53EpnX1Jfp9otMLXOgZgAJrXhNyDkhJXllpFRlrKRlzVnuIGJ7qVRd1l8PZ7e/HKnqn3fsSADrvtY6pc1x0liemdw8O34pz1iMeU3aAuU5TamkYm9/9hjXf/sY7/zFt/DgTz/YFoVaQOmyQRK2l7gdLbvDFGuxpSRak34dCTsvcVU7+vieROxJRn8fdD3dj5FcPSchm/V7rh6zUCvUtKyeIzW7dKra1vOpmrlj3XyxOoW7nt91OWSVktXt6lSqnBv2fAg2zevTqTodux6/lYyV+xZc+25bv89mrllpTz1niCgfXbKd1XqobUhadr3+uNzD6BKyImGniISEMAfKWEIIIYQQQt5ymIwlhBBCCCHkOamCyJbbYXxfDbZTll4A+sSrTrC2KdetV5Ww5ZVzckMVj5ZfP1/V23Uqmev394Rre3wV61XWAtqkefm/vjKAQwLS9r02Cc2l6SZtGWx9qecF21rfn6Mjes359Dm8ZNViNqDfl3N5XhHrzqvP3xuq2bxUO+v/egnSUOsM77fbNgLavYe67900Kly53OvOedbzuWeld05T3nlGTiZkg7tP+twundp7joy498+U7lPneWuOCa5f7r0OIQDR7SOEEEIIIYS8tTAZSwghhBBCyHMismu0ryxDp24wdfwxquTsftRztMf1uljnb11LoOduLWlXiYvp6JhGkrAzajJWXjOAhJRmzPMR8zxjnmclZfO6HCVkXwa9pO1WPb28e/K21rPtlfI28arfX7tfLFBNz9Y0bSmvx8cITJNNSNce+YcSQ1nWiCi0wmwzEavEV6+N9fyofWj6qNvQ4lAf0ztHR8g1IlaX6+3OH9Rz/fCid0i2/Vj/JuTcOgUr55XkrCQ2fUJ2uQafhpV1sw9uHllVLudb551V55U+yr1a074BZl7ZtY4Lmq/zwer7EmyddV225Rp1Elede32/O+03ydtg56Tt1TFtBjTHrQJ2ScjGKSKlVLYpYwkhhBBCCHmroYwlhBBCCCHkOdEJxtH+sgym7LTE/TLf3LfHFtGp1/UwwUWOFonnhxyOnXVNUvutjM25LFOacTx6EWsTsnpY4rv62F79l+t0zxWxdyMD+CQBzxIwByDHgDRFpJgxx4C0y0hzxDwnpDljnjPyMiQ05ozd9QEh6+dv/OwaWYqOpIR7frVkXbb18d1zoBWuQ8l6h3Y7J7LLQXn3Gnv927oPo3PDXZuQ3RDFcowZynoRjFrK6uGHtZQcCVnToCrzj6p00T++6vqlXX3eVbQ2l2L3rUMY6/dQhgSW9uAEMZQgDvV6dV3Td/XMrH0NMO2JzNZieR26WLqlz+XvsbSpj9MSNwbktNSLpWy6mJAfZsw3M/Lh5f/ohBBCCCGEEPL1QhlLCCGEEELIc3O+Feo7m7Du6wnb887T25c75TX12hOyQFr6kJb6snRRNHMOLW5rGlYvi4xtk7F23tishHEdwvhFSNWXKWZ1yvVF8KuU8UnS8mcRdTsx7Yu0y0CW+3vMiIeE3bMjQrI/BmiGB3YC1ghT1H1aRp1qY00MqqURVy4F26RXYdeboWvdtu7LcNjcHqNjByK2K2F7UvnEOU1deRv1PK7iGiWJqiTqKjelrZGQ1SJyaWMVkVp++m24cmkDraw04hWqb9JPlSxdU71yT1U7jYB1fV3rw55L3zcjfdW90PPnennbPNsIJvnqE7CjdS1k1/mTY0C8F7G/2CP/JmM+zOc9H4QQQgghhJA3BspYQgghhBBC7sCDBzv8+Z9/gG9/+x5ibPfXIWvr0LDC84xkepqeJFUJr1zLtHzNOWGeE+a5JFd3OxmGWMtYPzaojrPpOrNaioQ94ng84HA4GBk7z37u2CqGtbT8KiTqqTZ1gvjF0grZnz6b8ZubhLzoITm3FtMZATkCCQE5ZhyuAna6g7ku12SiCNm0tJUywpxxjA+AtKRlc0nL3uSM+W8fq+uvbezu7/DuD99F2LUS0s/72R2m2MtSJTN7QyGP5qLtzU/a3FovSV3dk3Or+r54Eev+cBsR22vneZDz5UUu+vSqCFcvGkcJWSVrjaCEPbYZnjgrEQsnMaH6GFDTp9ImVN/dNfnhg3W/dV0vkE2aViVjpa11+OPecMi6j+r+aOnctBuUbIYt90M4GyEb6301QjaG0rfUeXYIIYQQQgghbwWUsYQQQgghhNyBe/d2+NM/fR/vvLM/+4v1c4YyfhGsI5mGtrymTfM6X2tKaZWk05SQs8wNC4QgclYa8+a5l4ytwxPPc5GxPRGbluFzJR2rhyi2c9iWpfGPd5Clemjmtu9fHRkZKQMpy3o2dysD+OVNwr9/emyGBG4IAZgA5LLcafG6XMo6hK1OxiqxmnNGurdb5Wx5yzKOGTj8+mlN0S5DG+djxuU3LvHotx+VROEiB/W5/DDDq4CFuxbn8U160KdZVf3enK5ejjZpWdVYT7LqY5s+enri2EvXDbl8J/zjKKJVxKafl9ULWdjEZ29eWH2ONamqZeOoH6rcnEe1Vapke90dMWuGGu5cq5Gc+vwiWlX9pq6uL+fyElZJWp249c+ofjZzyN2hnrWYlfX1mdWvWF4hhfYjlBBCCCGEEPLWQBlLCCGEEELIHenNtyki0e77elJQcl69XZZ5Kc/IOSxzwwbMc0IIIkwjQgiYpglAxjQBIYg1CCiS1duKUTL2uAxLXBKxt7e3uL0tQlakbEoiZSWhm5UstulYfS3PU9bbPxa0d2N0/DFn/He/fobPbhPKbZR03nLc8n8/jQHT1WSlozmBLJy8cvK19EWJV/Rl7LpMajvVpRa1aU5Ic8LH/+rjeh51PALwnT//Dq7ev7ISarncdTmSlb0yEWBtxa5sbQR2bxs4/SfoBJ4us0OHn5CwzeXc4W9fXLd+qNSfmp97VcvJZlhidX6TrBUJ6eaSbYYr1snR7NKxbtjjNU0qaVB5/qBEpfTNp3XlfV3a0MMI+/TpKo+dLB0lYP11yn3yxzRDIQd7v9bzuCGJR8MUr8nYGNalvBBVQpcQQgghhBDy1kEZSwghhBBCyB1p5sp8BfBCVpeXfYsGVEMV1/lbS0I2hIAYp+XIpK7Rmy5AErFFANVkrMwRW+TrOXPF2jlidYq3sZCD9ecXq1/OyM4543aWoX+L1LyZM37+9IiPn82Iu1iETVxkopZ9AWX/ia6tYkl3Vy/zYFv7clkqeWbW4yLnlvcmhghk4NlvnpUyec3lhQDc/uEt9g/3yFPZjrFe67SfsLvYNUnBZs5YVJEm+CGC1Y6zGSVkvSA9V6b2/tZHx36Z4YrlPI2U1c+CTo1mW8ckPU0Tdojgtf1evVESVEngpi0tMGHrrH3Tchho//TCoGy0r4NP6a6pYH8P/Xy3fk5aEd+qH34u3bVfSgb3krHyb4UcK2J2/bskhBBCCCGEvBVQxhJCCCGEEHJH2lSsNgUvRtJauapMx/ktrMeUYYmBlIoBmOcZgBIFS//neS4yLk7Y7eT4iFbGatOXkdIRKSUcDreY5xm3t7c4Ho84HI44HA6Y5xmHw3GVvlUGeyFb76Ofv9UL176A7YnZ0xanJ3/7Qybb9b/54oD/76+eApJ+W4J+17uI/YNoBQ2w/Rb6bkrKUJKRvW0ZMjjXbbMvAzkucm1ZnkrK5pzXFJ9JzqoXMvCr/9+vEKdohzieM9Ih4cM//RC/9aPfqtePgRTVMqvurFLPz+2qhO7arh/qWD+qG8stCdyds1bv0+fqXdNdce/9ek55z7VM1MJ2EY6laitIjYT1wxUrsWrmnVXXsKZHvZz159GCVmSn3BN1DTptuwpPLXD9XK7mhDDSV8/3aiSva8/ct6Xueg6dau1I1PU82QlctV/q9I4NoYhXScfmmLF/tMd0NeH2k1ukWxpZQgghhBBC3hYoYwkhhBBCCHkBeHn4ZYKzo5Tr6XpW2nrJ6NOoKWU1ZPEMIGCaRMiGZbji0qaWUnpI4ZzLcMcppXUo4uOxvHQitgxJnDCSr+fel68K27a9bykDn9/OOC4JWGQg5YxPDgkfH1IdinQVMEUldecn7Z7c1jGibRFQIoWabS27chXrq3BK9RgRqyGUFGxAlbRG5MLOE7teg7wScHhyMPPMpmNCPmbMtzOuP77G00+eQpKAl+9eYnexW/vVozt/7Eb9czj72A1JO2zvRYlYfVwnGernh91so7O/Ga4YMD/AuFs3B/PPbvXPXVuvDam3ymHdZq+97EQznJBW+4zEdW2Y/vUv2MjlRtr6a/Q/BHDrIQSEXUBE5PyxhBBCCCGEvGVQxhJCCCGEEHJH/PysI69xrlBd1mDNRUBj6eyRAIIaglgSc3VfCGU7pYwYyxIQ8VqFo0jSaSpzvk7ThOPxiBgjYpyW4Ytr+1XmzquELcnYA+ZZS9njKmSPx3kdGllEcDtcMdZlFcg+eWzv3Sg9e45rGtXx7dzOGf+vnzzGxzdl6OEQAMSAOQO7ezsr8VSqcFP0ZFlksw2gph3V8MR+uOJ1OythJ+tSrkXSImNDXMRrXISsiFiVnvVzyYYU1qTsum+qiVgkIEwBeZ8RLyI++8ln+OJnXyAdExCAP/6v/hjf+N1vNOnBkcQMWv6P7qETYiOZu57CtzcSsL7NXh/0e7zRx7uKZPNeqXP1hKwZIhgw6U0/f6vuj5m71c8NO9rWgjS7c+faRwQlRHNHlnaGDJZt31fX8bpU6VTz8ajeR5+41efWc8U27amXScSiPguNLA6wSdig/sZ8MjaUvztMd382CCGEEEIIIa83lLGEEEIIIYQ8J6eE37nhMy//TkncrflhvSgWUatFp8jQEBJSKkYhxiJoY4w1XRkCpik1c+SKPC2iNatk7LwORWzniW0FrE3r3uVejSpmVQfd9XP3A8AnNzM+v5mRAdzMGV/MGU9zRlwTpEW2hBiGMm8TJ4uMlJL0n0g1JdDKlbaJQLO+JF8BJYbQyqR1X6op2vV4kVCSVsz6wVJLkXGLQE1Y5iB+OhdRm4Evfv6FFZgZ2D/c49H3H50/9/LZ1e4muYbzy7p+efF6log9Q8b7Y7pS8pSQHR2vniOTmPbn0L8BOYFPpPb62/wIQPXF7Pf7nFg1zyra6zfrW3119Zp5c0fHisB1onuVyvr40Y8DXHm3jBBCCCGEEPLGQxlLCCGEEELIcyMpzuf9Zl0biL5MFSTlqte1aJXympjNS70qHkoyNSKEpMoypimtQxOnlBYJOyGEiGmKS9utjC2iNS/zwFoZKxJ2ntMylHFaj5G0br1GK2blvp5OrtY2esMMr0HSrNtu760uk/L/8aNn+B8/eoYwBSAG5Clgt9vZFBzQJvPOwMzPabvcLmXdC1BfN7t9oVM+eoX+UqSVmR90SdRqSZVzRgyxJm9TLsnZJUn70//PT8t7f0jIKWN+NuODv/MB/uL/8BclKbh2OVhR5ZbrvLFLgZlH1rPxVvTeJzNPrLFq54vYkwJ21D/jT1W6s3GmHSHrynqpVRH5wzljvfgMdq7YZthfdx4jK52s7V6LO8a0q48Prj/LjxPKLVM/MHBytEnIyg8bpEzdfy1dm5fe794z/V43cnZ5ibhdf7QRg//IJ4QQQgghhLwlUMYSQgghhBByR7zI64nDcxKug9bR+7a+tnf623ypK8I252IkZFmHLU7qqBk5RwBHhBBXCVfkrRgGK00l8VpkbG7SsDJXbDskMdZ2qnjNpv/2fuBEnfMZHffZ7Yy/+fxQ9gfgo0NCmhaJsgw3GtVQuM2wuOe810qgrfWVXFrbXfqg04xm2w1D2wgsn4QNSqBKCnYZjtjMHyviLbjyZbhaRJQyEagdGbwOz6p/VDBnWzcAN5/f4D/8d/9hPc97v/ceHn3/0fb9e9ESy0vfu5zny4jYUVtOyp6Slbq832wrUc9e3+qjEr0jqTrqj36O/XWV5nN7jZ2+eBksx47Oe2rIZo8ZplhkboYVt/q+QH0maDHc+5ygjCWEEEIIIeStgzKWEEIIIYSQ56RK2PPiTjaZWeToaLhhwMvc9hw+EZsXKVHnkK0CVs5ZZCzWtrQkLcnYMkfsPMd1eOLSflDnlXZqQlZLWUnMahEriVg/N2ybVtXS5NyEbN1+HkmbM/Cr6xn/z3//eJnjMQIRmC4mK1RU6m7lLmLF903kDqpQ0iLWi9l1O1dZJFJ2lUXZrS91EJfjohpyeClbl/Lq9Tm79cEyhriKX5G/KaR1TlHsgDAFPP3NU/zV/+2vkI4J6TbhT/73f1KGLe7c0KZs65533hudYm4SsE6qbaViX0gidgsnMofDDjtRuyUve230hjzu9kFfU08E+0MHqVzTljvcCNqRHN/qX6e9Jikcst0vf3OyLoJUvUy9oNr0fUH9fDDzy4Z67nWYd/dZQgghhBBCCHl7oIwlhBBCCCHkORgNebs1/K04Ib/u69oEbE/ClrJ2fti2H1rUynFVyCaEEAGk5ZiwtiOJWBFZvm0tcf2csLLt1+U+1Hlj9fXYfo/Eam+I4h6npOztnPE//Popro8JCAGf3MyI+4gcUNOwHXnSDIl7rlTp+XqdCFwvfGlWhJne1qJL6upXqOs+YbgmXFOVX9LmukxKKmpJG1ASsSJU/aPppay7PxFF0MYpVkG8lMv5PvrXH+H47Ig8Z8RdxA//8Q9x9f7VmTdXThW66926YVDXrPbla3POM56Bbvqyd8O8kHUp6EHj7bym/lnBedJ2OFdrp+5WmZ+ntrleEZ7rBxXa50dL0VM/snAC1dwHVcf0tXdO36y7l168jgStEa4ieEUMR2D/zh5xH3H84rjO70wIIYQQQgh5c6GMJYQQQggh5I5IgrPKxZH8a9OvveGLtYAczRmr8YnZeo42HVvFbW7aSwkIIa31tLyIUaW81Dn1EMNSt6ZerZRtX614rXPXlv6PrvuU8B7VrQQjhG8WGfvJTULYLQngXURwArY3N2xZ3DHa1hGxRvw5+bomEbWk1ft8unG5lz2ZtspUBOSYTcrR1ItLG9FJWp3aVf1Yh0N25c116mvNQMwROeZy3mUuzU/++hN8/G8+xvxsxnQx4dt/79u4eu/q+RKEp5KVX6YNL2tPtNedzxawIv6kEUSTBj0lKYdDFLs2vcAc1R8Oj3yXurLpJemp/ssxcr0iOkW4or0P/vrNUMb+fkK16c8FV+6vSx8bbDtyjE7GymfK7sEO8TLieH2U38IQQgghhBBC3mAoYwkhhBBCCHkOrFi0CVYtV/0xy9oqTVsrUOu2HscavJp+FfFq19vjtAitw2fmHBBjMQUp5SUZWyRt0CKiEaataO3L11bG9tvyfdai2+736+cMT/w//Oop/ubzWyAGzACehoB4Ec28sHqOx0bEuvVTycmusPX9zFXGaekpgklkpxafa+LQJ1tlCSVRc32vM0r6dZVXy2tN3eaNNkXQJjtXp55bM+cMJKx1csp1rtpchytOqEukZWjjJTEo9+1f/zf/Gg+/+xB//F/9MS4eXPRu7gthlKb1711XvG4lZk9NGK3+/Bspe47g7JQZQas+knrDEp8zL2tvt0+8bgrfXrmWwJ10apPm9j8YWFjnQu70xd+HNTWsrz+oNp2c1XMzd9PG7kca/j1Y23Qvk6qNOP2MEEIIIYQQQt4YKGMJIYQQQgi5IyIWy7p8eR+cIMzrl+16eOCyXSRnX7j2ykcStn9MXdeC2AtZa0FKSlauI6zrw2CfEavF6qVUt/vyVfffzgdrl36u2DNMq6Fc25wyDnNRJTkDP318wL/8+BniPq6JzDhFK2GDE29+u3Oq3pympszLKF2mt33acPx2jS65vnplGXXoYbW/Ebcyz2znleGSsrqvSbW7rIewSNfshitOGWGy9zUilnOkjF//q1/jya+e4Hf/ye+W9ygAcRfLPL4vmuCWbt9Z89ieqL957p4g3RKyp56FzdONpe7mEMXuOdXDIjeSU/2xnyVsXb1NUexlbu8c0s9eWy61OkroDqXzqE/BvT/Shu6X/kyR+WRPtU0IIYQQQgh5I6CMJYQQQggh5I7UFGhPJlrLJmLUL21bQE1+Bvghhj11SGKRBrXtst8nb0X+esNX+1yHI/bL/vVL21aeajnbE7Y92Zo793B8zt49X67aXVfAv/v0Bv/vH3+OsAuI+4hPbxN2V7tVAoa4XGOsKbdeGtYk2LRsWxd9+TaUclml6RaxpLvuhwZeBehofTlmbXJZ1wnYtWwR5b5Mi9i1LfdaBRyKMG2SsjGUJOwiVKVODItkXdKzOZZ9Uj/HjDQl5LmWIQC3T27x3/9f/nuEGJAOCd/5i+/gT/53f9K/p6cYSPPee3Uqsbgl5+88fHXn+HPmkv1S+89Z14eeGFa4kcQdYSoCF0B7fVI/WJl59q3UP6JQf1u9fq/DdufaL91GI02hUrXy+RBQy/Q9CG3f9TDFRsCGXD93CCGEEEIIIW88lLGEEEIIIYQ8J60sFYkq+2tZkY5BHWslqG23LPtOyJ6zn4LFKnTlmJrGFTkr/dlOZem+eB+zJVqtZO3J2eEZu+ffPkYo1zPnjC9uEz56esTfPr5F3E91OOKpJGK1WNFDE2uJorfLamj3u/Jur7yEUmLKdX1NJK7bQQlXte7F17r063DbJ17DZGxa+haVfJWhXnVSFksbUGW9tv391vUDEFNEnjM++/efIc0J6Tbh3vv3cP3r6/WWXb17hd29u/8n7ZcVphsNP/9xWW+en5bsDlXcOfacYY57fbnr+c9uS/1W5Owhk3vi+Jz+9uqEE/s7+0b3a5i+7cndoObn1uKZEEIIIYQQ8kZDGUsIIYQQQsid0EPwStIwqO2lVq4CU156W8/t6uVtEX1aluol1nU9LLEvtyK4XR8ldrWsPXkn1nN4ESv7+/vGidjstts2KyODEvCr6yP+r//2U1wfE/YPL8owxMuwxOvcsAh1jlIvXiVl11mW3Va+niv3fAIWnXvlk65aUq5JV3fMKjuX/U0iFihpU9VuNyGbcjk21bL1FUvfclrSszGvsniVSzmXemnZn2Dmk41xScguyVi9DFNAnjNSLPPIhli2wxQQ54g5zvjVv/oV/tv/83+L+XZGOiT8/f/j38cP/tEP1O2s8+puviV3SVze4ZgvJXl7QjbY93st9+Jv6EKfb17YcfU7DKl7ZttnD708ELHrfLi+up7jNdcfXJikrDrev3frXMhL39b3Q/dbtoN7Ae3z4uuETh1CCCGEEELIGwtlLCGEEEIIIXfASthxnbK0VsgO71uHF/b2aDsZ68/Tpmtru75tfx6RaFiSsoCI2Pba+rakFbJWeJw/FHHvZp6yOSqdGoBjyvjFkwP+w/UBnx0Sjijzk4YYzLywZqma0dt+uOaukNU96Y7nfKL7wCqSuiJvlASEWl+Wa+q0d8wiUwGUuVx1eVZlS7s5Lm3JHLCqr5KMDWkRVSJpoY6JaJfSp7S0r69X+7HlGkIKdRtlvth0THj6ydMiY28TPv13n+Le+/fwjd/5Bvb3921fT9iuc+TpnUT768BdBKx+1s6qfrf5T7/sfKl3SQGrnU0dL1pX+er3y99caOuYU6jPDj3EcdOP1+SRIYQQQgghhHx5KGMJIYQQQgi5I1rIpmXOTJ2QLXWq6JR9IjllyGCpl3UaEuPEq7dx8qW/Pq6cF2ZI5NbiCdXMZEmPuSSqlbq+X3VffzjhVsKeW3ZqqZHrfXJI+L//+HN8ejsj7wKmGDeHJPbDE4cQVuE6lLGALe8wEo0+2aqTryaxl/ttbCVjzfpWMlYSrToZq1OuyHXe1+jmhRVxu9wPZKxzzPokYjchO5cUbJxjLV/q5HmZR1a1o+eVDTEg7JZhpqeAtE/4n/+b/xn/y//jf8F/8n/6T/CtP/nW5nvxomTpcEjqr0OsDUTq1y1B73qOZu7WM4SwHO+Xm/X1nK3qI3OUJu5J2ObHDK6v69+rvjZVwSR9YZ+/9fNGZO6pX9sQQgghhBBC3hgoYwkhhBBCCLkjephiSbmWctmGEbP1OLs+SrDaoYLHX9j7BK0fctjVRp03Vo6rfa9DFMs+fU3j+9C/vuy2dR/aun3h2qvrCfj3n9/gk2czEAOujwlPU8YMtMMS9ySsT7uGYCWsFrCubik6Q6YomdPU76VYZV3wHn2QjF2PzZ02FzkKoJ+M1cfo84p4jWp7WZf0bE6LKJM0rTo2xyJyEWBStN3z6etehikOISDlVO59Cv9/9v4l9pYlu+/8VuTe//O4D95ikeJDZBWLJGTBgtSSjG43LFktd8ttoDU30IDhQU/sqQf2zBMPPOj2yJr1yPDABgy020DbgNW2G24YoiXZkommRFIUyaJYrFuPW3Uf5/V/7Z0RHmRG5IoVK3Ln/p+z7+Pc70f4I3dmRkZG5t6X6K7fWREyyFBdF++jHO+P8qPf/pHcPbuTX/rrvyRXT64uH4x6/1mu/6f6IA+q/HyNtpf0JsfhrpPrTOnsnbNh6XywGw5X9/KqW9W2VMLaZvY4GSwAAADwtUMYCwAAAJxpqXat14vNgacOEZc2ulJWypqstr2IXTO23FXq9E1ErzurEzi99qtWT0Ws7yfleH2/0+/Btj9VIds73gtiW1UaKv/4B6/kd35yI8OjqQo27IIMV+sVsSVYHeqKtZNBrP3cjMw5rr4GrzLWVtB515cqvKqCut7Pa6Xm6YJ1mzyFsa5gzftJ1JTDQcoar6VSVlXQlgrHHMzqZ9H7+bly8Kv6rcYVUj2Na34Fg8ggg6SUpm2u6t2lZf3f3RS2x2OU3/1PfleefvOp/J3/5d+R/S/tp+/0nO/oq+KLz1S7Pq9qWwnL770KSXtB7EPDbOcfR+jqW1sR24S7eWuP6/8T/hX+KQIAAAA4D2EsAAAAcCZdGTuFS940xXVYWv+1Uxrn/2V+CXbFXU/Wts/hra6GXSpklymL1ytiRfWV+ziVFCxBRL8CuB/QtuvK+kHs8nkZr4jIdz+7l3/1/E4+uhslXA0SdsPUZK6otGHsdK0JXYclfK0CWFsxaz93rK37WtYw7V3ey4aSCo/y95fqfW9btVn5a9bGTOoaUe1sf/a+al3Ysn6t1Mfy2LuVsbMQg8RdnMLcnYgEkSENS0icKxtzQByTjIdR/vD/+ody9fRK4n2Ub/z6N+Q7f/s7by7wav8zfLO+xEGrdcng9ey+ncpzb0pi97vrhbg2aM3H3DnSV8alPzsBbRiCXH3jSuJtlMOLw1fqNwAAAADgPISxAAAAwBlyWBpjWxlbT1O8nFtC2aXUqq6QXYJYHah60/zmqtbcJh/PgawNZ/M96nVq832X0NVfp/b8d6OvPadKdksQu/QQ5I+f3cl/+WcvZNgPpRI2hKliUkRKGFsFq/PnEsIO/TVimzVj80hOrPOYK1Sr8YZUgqLVyswcNJpj+Tq9Lqze10FpFajmtqY6tvSbTP82vM3H5996rnbN9yvr0aa5ujYsFbprQbGIlGpXu47mfFPJFctRYtnKOFXMxhBlCNO8y2lIspOdxEOUP/jP/kDiIcr9i3v59X/71+XX/tavieycd741WD03gH3Tge0lwrmvYOD3JsLfUlXb6adMy67Ol+mFO7feup5t1Z/+Rxk7kUffeCTj7SjHl0c/7AUAAADwViCMBQAAAM60BLEitkrWhrN6muI6hBWZwsdggsh6Otl+aVeuYl0qbPXUw/ORqr2uLrXVsF7wuZY7elMUt8e3h7D2Wj+IDfKnz+/ln350LT+8PshwNciwG5apa/P6sKK2qjpWb7vrw76Jqtiwcu6E0rZkpksYpKciXg1kc/jaqXRtwln1E8vrwOrq0+o6FcLqMVehlbqfnkJZP1f+HnIoK7KEVWV64rBsSzg7B7F5Dc583zhE2aXd9HtIIp/+yafyW//hb8m3/sa35Dv/9nc2v//N3mTw2sngNgWQr5Pfnbo2bWjzRelUtW4+n5vpKtj8m/R+33Obqvo2+G2acajzJeDV/82d+AceAAAAAL76CGMBAACAM/lBq10/VppjOfTU17Z95+PJ/I/0bTBrpzPW0xF7//u+nrZ4ua7tRz+nnzi1oUM/hM1ja8+dDmLrY2NK8tHNUX77J9cSdlMQG3ZzgNpZI7YEsyqAbULYlWrYpjJ2SVfWXkfd1rbv0f3MVXwhLWGwpLnKNh+zPwmdwefPUe174wyqTZyP5SmH1dTD3WrXQY1LlurYJGn6TuJUvWqnLZY4XzMsLybFNH1XKkzWIbHIsi2f53NDmNaWTUOSXdzJ9cfX8od//w/lyTeeyLf+xrdKcF8qE/NYej/vh+ZjbzKktf2Wj9sT0ktMJ3zptWE3y/94wBnPOdW0Xlv3eud7Lf8QwWtz4neg/28RAAAAgLcbYSwAAABwhjxF8fSXq2RFYhQZhqViNsYplRmGOrRdwlivIrauWl3CSpXGNZWy9nOu7lr2varaxakw4IzgZ0MAu3zeEsKGsv3R9UH+b3/2Qp7dz2vEDqH8rVW/NpWw9pz42+muoXo93QrXXuXsmRWyqU7cqtCwVOalHMQ7FbFOJWyu9MvtbFVsSFOYVFVjx7kvNT1xrpjNn2OI1bVDGOoq2yjLTzMu46l+kjoIzlWJuT9Zql8lTdMTpzjfZ0xLZexcWZuGeTvO72U3fcff+39/Tz7+lx/LX/73/7J86298q/fi2/+s8qlU/6OIXpi7KeT17vsGzlXrB2+4pqr8tNc9MGddDT7f0D222hLEnjX1sfdd2mP599z7Bw/5z7bVxwEAAAC8tQhjAQAAgDPVUxS3lbGmdal01ZWwXjiZQ9l6jdk6JdJTEZd1Dud2S6WrXTd2Oa+rZqfPSzqmx7S1YMt/3n4bHQStBbEpibw6jBLTFNJ9fDfKv3p+L2OYg7ahDVh1qFeOq3ZeRawbwurKWBPIlmMr3Gq3DZl3U0mbs8igKkuDCghNRWy1HuUcyJapUXUgK+22un7ohJC50lX/9kKq31FQ91Tj0cf0+07DtN5s/lxC5Vw1m5Znye+pBM1q7V8RmfoRKVMVp0dJrj++lhcfvpBf/W/9qvzcX/w5efIzT2T3aFc/71bnVL32/h2EPnfq2oe4xLVfkkJYa7V6Na2064WmW+5xRnjaHZ/6jVdjBgAAAPDWIowFAAAAzjJVxY5jMhWyU2VsjNNUwHGu2IsxzMdzlex0bhjyNUsIuoSyOoCtt1P/OnHwPrf7IeiQdD0hqteQtdfUJ7wphb3jOYQ9FcBmt8ck/+nvfyof3Rxl/2QvRxFJ+yBDmKth1dTDVQg7V8oOYaiC2aYqVqTZlpDQfi7vpZ+aNKGtc/1mqhJWxKmGndLNpSJWVb3mdquVsL3jea3YKKXqNZ9vqmSdithSMRvnoCnKMt3w/E6an7WqjC3TJOdK2PIfxvJOyzYu1bIibYWsnr562A3ye//H35M/+vt/JH/zf/Y35Rf/yi9u+g66/5l0/jNzw91zg0wVrHt9rFa1evdNzrGH0IH4A9pvrUL12vXehbYWfPaUa7x2zrGtUxd7/3ij+u85rxub6n8QAgAAAODtRRgLAAAAnClGXR2bPy+Vr+10vUtIllId6uVjujK1XsPVk6r2uiK2roD115HVVY/evfyAdWOY0glh7bnuZxH59OYon92N8tPbo3xyN8puroYddkMVxJYQL6jqSDtd8aCqXx8wPXEvUG2CWRPk1qf84+WBy8elUk6vjVqmKA4qhFX96srZXuVrqUyN/fN5vVYdjpZ7zVWxZTzmnU358HyPYQ50TfWsrqItfehq2WDOmWskyLRG7fze0jCdO1khm5LcPb+Tu2d38skffyJX71zJB9/6QHaPd+73Ue6pv6O1sOycitk1J4JY/5LUDT3T0mH3Xg+yobLXHceXyWt+X2dNc3xqDASxAAAAwFuPMBYAAAA4Q0oi4+hXxub9tjI2V8OGEuDmdkuoqkPZpQp2GLxyQjHHxBz39vUxe9yee7hk0li/+rU3lXGQmJL83//kufzBJ3cyXg2yf7qXYT9MQeE85bAOY/N2GIZlK9JOYyxmSmNpt/aztz+Nsg4hbdi6Gr6uaALYks2aENZbN1ZXkaY5LNKVsFEFsrYiVm2rdV/ne+uq2FI1O/+/HBxXa8jGaU3XXB1b/UztVlfEhrZtVSEb6r8hzOvI2grZtFTIyjD9BQkSj1H+yX/8T+TpN57Kv/sf/bvywbc/KP8Z2WmZyxjtf26y0lakTD17dlX0hiD2ZFVs7x3bfu0xW/Vq93V7206PPSV/XN54vXue0As/14LRpir1oSGq/l1uaR78+1T/+CCpqYoBAAAAvNUIYwEAAIAzLSFskqUqdlkz1q8ODarNsqbrdF5Xpi7TFOs2XiC7rC0rTXtbFav70Mfqqtp87LwgyQaw+Zna/dSc059//OogP72eqmHvRWQ3mCmJB1P1GkJTEVuO2+mJxVTHitTHVXjmBrC9kNZWiJYGDwjkggpYc58qpNNru5Y25pzup6p8HdbXjLV9ikhZO9YGzraKtlkPNlfR5krWXGFrA2x1rQxzkGrOlX1VEWtD2aZCdrdsQwoypEHSfmpzvD7K3Ys7+fD/86G8+skr+aW/+kuyuzIVsqbS1Zt+2A1knWs38YLYTpvNx8/t51x2zFv6PeMZmnfxkHF/gTmn938TG1TGAgAAAF8bhLEAAADAGVJKMo5RjscoMe6qitgcyuZjIktF7FIZa0PbNFfKTv2HMFXSTveazrfleZ2SvSYJWsoPlwC2Vymb778xSKjeydrxNoC1+/nzP/3hK/mHH76S4clOdo93S0XsLqyGsdU2V8qqNWNzoNebonh+Q21lq3pF3jU2pCyXnBlmazkwlfzqQnu8fNaVifbz/DOpKmNDWwlb2ue25tiUh6rjuaIvV8vKcu9SMetVcK5s9Xq31TM4FZ7TjaT6DgYZlqmag0zhq6o4LNWqQxBJIuNxlH/09/6RfPM3vin/3v/635PdB7slwM5TK+cAdn7mMkY9zJVAtppy2v531uSMp4NHr2LWHuuFufq34v1uVtenXem3N9at50t1tW5r/qoxJKnb9u73OsFwxxuZltjp73X+bwUAAACArw7CWAAAAOAMd3dR/uiPXsjP/dxj+c3f/Jk5hJUSqMYoJfis15QNZptDyOBUxubjXvi6tMvHchXs8nm63q4dO51fwk/d1p57iLoC1x6r99377ILI1SBhN0zVjXpqYlX12gSxTiVsaeNUxk7PWm/tZxET0HYqYatrvDBXHXfZ96PWf81fvZ7WdLqkrdQsYWIemwrf1ipjJUipYk1xDodi3XUaUlmHNffpBdNuJWuukDVt8n5TIZvb5Mpb/fxz5Wv56Zd/tFBXxubjYZjWGY4pTmsOzxWyIiLDfpDb57fye//p78k3f+Ob8mv/1q8t1+t7eN+X/fcOJ77fs0I8L4h1wu0mnLTnTVBuP7vTFs/XnFuVevL57Bi2hKpbPPDa6h88bO3nnHv12uZ/IBHq6YnPrqAHAAAA8JVDGAsAAACc4fZ2lN/93U/lV3/1XfnOd96T3S44UxaL2dogNpTQNoevMQaps8BlumIdyNYBqh/I5uttajSFrV7wmpwg1gSTq0FtfWK9CrbXNkjYDbJ7tJOwn4PWXkWsUw3rBbPTuJ0Q1lS0BlHnjN46s15FbXXNVrbSUvenv0Kby+eKzVydqY8n1XdvX1cfzkGtDPOxeXriEFVYm8/loHZQ/XpbPU1xPqbHkXPV/MxRynTDpZ2+r6qSzGvAlleYf9O7UL2bclymIDZKlCFOFdO7xzu5e34n/+Q//ify7b/xbfn23/x2qZwtY5N6PCnU1bKljQ7PX8epILbX1laOdrYnq2tPjU311wuDdVV3SnXla1MJa6/5MnnTQ5r/70wK5r2p/xYAAAAAvL0IYwEAAIAHmKYrTtX6sfkvhFCmHc7TFecpimOc0qJhkBKq6umKUwoyDGk+3iZwdeAq6lz+LCv7+pg93jzh1KKEZt476FxZHU8mjG3bfu/lQX7vszv5s+vjFMAO7bTDOpQdhqEKYSWoaYmHINWUxF4Ia6o6vWC2atO5zrYXafvbZA63SojrfY1OEOtuRZbq2l4oK+Z4Dk7NtgSNOpzdEMqmmOoq1vyMaQku9Vq0KaQShOYplSVM4ayI1Pc1IWKQsISu+b+NeQnYvHbsIFN17BAGSTFN26vp/vsne3n2Z8/kt/5XvyW/8t/8FfmN/+5vLNMR2+9FTEAbzFj0f5tnfPe9493pgzvH3fNb7peD7nyt3ddb9R9ws16sDvlP3de2s8/7ut5kmPrAvuy7s9701McAAAAAvrwIYwEAAIAHmKpZk6qKFTMt8RKu+hWyUoWwOZQNwQ9el6mPp/O9CtmprVclK6WNXj92yplCFZLqws4t0xb7bU6HsElEYkryo5uj/H9/cjsFsTqMNRWxJZR11ojN1ZLVdMKnpiheC2TV/fQ1TSCrz5UD+uN6KmenIC7Xq3Aq9+Ht28/VsTCvFWvOVWvHSmgqYr1nFJF6uuLcNrYBtQxTIGtD6zCEqQI2LBXASaYgNkV1bJh+HO7+oAck9fTL+R3OFbUlkE5Swt5hN1fI7qeOdo928uonr+R3/5PflbAL8p2//R0ZdkP57Zkvq/13Dfq/FfXu3eDbO+5ZCSa9itTulMWi+vHC3FNj6QSrq1W40h/7puB5pc2XghMib6b/T/XWsB4AAADAW4EwFgAAAHiAlETGMVV/w5Bkt5sCzlwRO1XDSqmI1evJxpgrZkVE0jx1cW6XK2QneVrjaTrjpKY1NmWRTerThrIpLVMiLwFw/Wx1vuglB6pCzgtsnPDVXvOD66P8gx9dy6eHtExNbP5EpJ2W2FTONhW0KoQtYa04Yay3XqwNYE0wuWWa4tLPlsSl9zWFzufe1v4M8jE7TbANk4K0lbGirtXXnDtdsUyBaJQ4BaJzlW01FXGSUkmbA9wqILZjt6JppwKvZirjOfQewlCtkytB5Cpeyff/0ffl7/9P/r78pf/+X5Jf/+/8ernWrsVbrY1r3qUNzJdOnLEb7pTENuQ079gGsXqt2HIubbu2+45zHyv/MqO7zqy+fx6Xnr7YCTbzdNRlWmp723PC0FPPt+U3tvW+vaDW/vdm9wlmAQAAgLceYSwAAADwIMlZKzb/LZWvSQUM9rheW3apTl2qWm21ag5Jc4C6VL/20jtvP1873dOuBetPS7whSWqu0cfqEDYmkbsxyad3o/zR84PEQUo1oq6InQa0/HXXhtXnzfTEOkx1w1f12b22t1asTqu94HVjwOKFdim0gZ6tgtXnm6rYuY+qGnZeW7apkp0rYctzJFWxKss0qvp49cx5vCa0zt9Jnua3qoCd9/U1ZTrgfA89JjHHzW9CgpRqXD3tsZ7eWAf7kmSqwJapEntIgwxXg7z88Uv59Lufyrf+5rekVNrm/x7U+8/fU/Mdq2PdUNaxZV3YterXph8vBFzp2w0Rt1xrw10vCBYnqF3tum17alrmTd3bd7n1ujfMTk286R9sAAAAAPjKI4wFAAAAHiBGkcMhym4X5HgcZLebKmPHcUoydrvpf3CfKmalrCFbZXghV8yKDIMOZdN8j2X92Gkt2rZCNqc/U9i2XJ8/T2wplpTjtgo2B7x25t1TbOi6HGv3P70b5f/ypy/k+TGJ7IIMQz09sQ5eJcxBrRfEmn0RFbrZ6th8bH4F1bTEXhhrwsWzpikuJ9ZeWKeNDcVsxr62Xfvcq5BNps38OU9jLEnqith8TlId/ulK1mjuJ+KPQ2RZXzbKNOXwHPDaNmXaYe9VzmvRDrtpTdiwm/oLu+V7GtIwhcZzeJxSKhWycYiyS7vS37AflkBbB7K6QlaW8LH6/u1v/iGJX/PfTRtG2kDRBrFVJaoORnPVaT6WlrZlvdi8n+r9amyqP3faYq+9+W1X13bem7332VMgnzq31l6Ny73vyrO57yMs+yGEfggPAAAA4K1DGAsAAAA8wPEY5fnzg6Qk8ujRTlXISpmaeKo6tWvH1n/5f53P56eANIeD+fOSytkK2Xz99D/uT/v686QOYPMxWwW7THvcBqnn6IWwMSX57G6Uj26nv7skMlwNJVRtqh1zKNv7s5WY+WPwA9i8LZWyedsJY+31bjgrUvXvVrqpEMa2FzHBWr7PHAbm4yW8CapKVe2XSli15qtXBVsqR9XxPAZbtSfJVKXKcq/mfeagLFetqnPlfnZbfqupaVvd01TM6t9HCnWlbT6fj5d287qzEmQKdnOF7BAkpLlCdj9Iukpy8+mNfPonn8p7v/iePHr3kf7PT2zFrEgb0j6Yl/et/YfYCUB7VbReXyerTnvj6jTWx931apv/42Da9f62+Cpkm/YfVwAAAAD4WiCMBQAAAB7g00/v5Ld+68fym7/5M/LX/to3ZTdXeOaK2N1uWpRyGKZSwLyGrK2MnYJDKeu2LmvGikyBab1+7FIZK6VNnrY4B4T9yth8Pge9yzim46HaP9eSsyTnmMjNIcp/9q9eyE/votwPQYbdXBGbq2AHqStiB1MR60xRvLpWbH6fJkDtVsK+5lqx3QpZdZ3/4kybtPK5t83tvGq9IKfDrSD12rEi7Zqxuu/eWrGxPZfD2iENU0WqzNt5P7frrR1bwk5VpdiE3nntWBvOm5C8VMhGWSpkh2EZp4j83v/p9+QP/s9/IH/7f/635Vf/zV+dvlf1Lksgq/rXAWg1tt73vpqxOmGqevbqehtmeud0X/qYbjd/D6U6Vu+LVOu4lnPetMhpaWvH5oau+VK9jqz/Utp9+07M8W6IbP8b8G5rz9tndIJm9zqnTfWPHghkAQAAgK8FwlgAAADgAWIUub+PcjjEee1YmStip2mJvSrYet3YperVXzNWr+uq14e16hB2ai+lr/p/7V8CXx3E6hB12T83JfADWJFpjdgfvTrIJ3ejPD9EuY1Jhv0SvuqKRv3ZBq3l//XWihUVktowzglae2GsDmLPWiv2IcFKqvvUa7hWa8Sqdno90qqqNKlK03msOTis1m4VUwErslTX2rVh9TjnylW9X1Ws6oB6/umValxZnsvdJiljbyph833Lb1ZV56rfQFV5a9qEMAe78z9qyNMl5+NlveJdkPF2lOP1UT765x9J2AX5hb/0C1OFrH4uqQNi/d1X68Wu5ItWd13Y1D+/Nl1xMz3xhv66IWRnTG7/Peq+axW5D5raeeVe3vHN+/qU8w671zpBrPffHQAAAICvB8JYAAAA4DXEmOa1Y6f1Y3e7KdCc1o5dKmKnbV7nVcrnqSp2+RMRFc7ma5fzOehdtssasbmqdlkHVpdK5n1RlbMyt9VhYL72/NDAy2NSSjImkf/y+6/kT57fS3iyl+FqkGE3TMMx1bCrlbB2jVgd1HrVrtLZOmGvPleFsTpg1OGrDkx7Iaw97r3SYM55+0ltq+5SqdosQapqW02fayoJq+fI5+Zq0RDna6K62bC0cfdzeDrIdP0g62vH6j7yqVwZm8Pk+XnKcw51O0lLH2lYnj9XrZbqVXXPMMzTW++mZ5W9SByjhH2YKnYliUSR8TDKb/9vf1sevftI/u7f+7vyc3/h55b/TvJ7zNXsXujqBdo9JwLP1el+O8fcIDat9KXOdfedSlh3WmJ1Tb6uqYr1nj211zXBsXe9GUfF+93pMYpzXj/f1mmizft017zV/w2rz6sV9QAAAADeCoSxAAAAwGtIKck4prk6NpUq2RjTPJ1wHcraqllRFbEx5nA17wcZBnu/5b5LYGvKEZfWzn6uQJT5cx04TPsPDQdSN5BNQ5C4C7If2iDVVriuBa696lmvmrUb0OZALjjnnGmNm1BWn5vPT5sT78053VSoyhKuzg38ilgVqOp1TEslbDAVsOqn0FtHVleh2gpZXd1aVew676aMXfe3ss3fX7lfEndM+vuxVbO6SrdZM1aFvmEIJTTOYW5IaprsuTp2SIPEQ5TxbpTv/j++K5/9yWfya//Wr8n+yX49lF2+2IezIaztr/Pf2HLaa2ACWqkD17VxuGPT91MBqg4mu9MH5/HYkLY63Xn2tbH28tjXWQD7nDFsua/6P9VlrWMAAAAAbz3CWAAAAOA1xChyPEY5HqfK2P1+KCGsDWOn/eXaXOk6Vb6Gqn1eJ3YKaOv7Te2mytq8FZlC1Fxtm0PevDZsDllz+LpUxgbRuWIOgh9SrOUHsdNf2AXZXe2mNWKHpRK2CkR15atqo4/3wtluACv+dMR2XdhmnVgTMrprxqr9hgot6/fhhK+2TQ5D535KpagOX1c+V9dnpgq1tA/TGq22Ajivq9rcx57LwegcapZq2Hn92Wp6ZBWGS1RhlApj8/kSMA9L2FdCWVV9q6tkU5qqelNQlbPqvQeZf1N5DCIyxEGixKm/NK0pm6t9h6thqpD93/y2fPDtD+SX/xu/LPsn+7riWJb3qqdiPhnM119E8714x6vw1DxbdSyZ9ua4rjhtwtmVtWJteLs6bbIem7pHE1Dqezqh7uq7cP8PjvM+1tqI3093SmIbOJt+qmcAAAAAgBlhLAAAAPAaPv30Tn7/95/Jt7/9rvzSL70j4xhlGIYyTfFuN7XLYewSFuZgNodUbWVsXjt2qpCd9ochyZT46K00n5fAVYdC+ryU6YiXz1LOP4Reezb7g2f38uH1UT49xBLE6hC2CVjz2p02aDXXNBWxovoTJ5R1+utVxa6GsCaldqcYXXl9vZBOh1i6jQ1b9Xm7/mtV8do5Zqtq83h1aKrfQRP2qvfRq5Qt70WFss19hjpwliCl/epYcpVwrprNQazpN8W0BNDzd1xCWlnC2DSokHY3BcphHySkIMN++lcQ8Tj9dueHXJ491b+Vct58n2vfu9fWC/J64aA7BbHT78kQ1wscvXF6YacOfVVw695LTGjpnRf/WV2d824g6z1XMuec9vrdVevd6ufvBMOEsgAAAABECGMBAACA1/L8+UGePz/I++9fyc///BMZx2GuaK0rY1MKc1XrUiGbq1VjTCWEXaYzXo7nQHaqcp2C1nw8B6tLSCvl+HTftVDWHvfOb9cswZhEvvviIP/Vp3elKjYHaKemJ24CU+lPXyxiQlETCJawLajPItILY6v+TDirw0fv9a1WzKqvaC2sS0mFmnr6YSeUdStjkwotzTEb1pawUsx0v2kJQqt7hFRd0wsmdTvbv7et3m+qK2ntlMT6u+pNV1wFvEnq9Wb1b0iHs0mWfwywW6YrHnbDVK0b01KJO4+1evbe9+58304D/7BTSdocN4Fhdd6Ep001q7r25Fqxa+MwYbANMMs13nPaULP3qnTYq++z5f9cde6r13YtQevaGKtDqf98hLAAAAAAFMJYAAAA4A04HqMcDlGurqKEEGS/n/7X+Fwhm7dTdayUzzbnyOdzlWycw6Mctub9pdI2t89hbQ4p68A1h7L5vEj+nNRn3b4e05o2q0nyh8/u5Z9/cic/OaYpzOpMT1xVw+ppilf+yrWyhKinKmG7FbLqGh0wdgNYG9Zaa+9KZeVrFbIhhCXsUsFrOb/yuXtsUOvDqjYSpEzLW4WbISzH9b1Ce42ILNMJq+mLS2Vsnk5YTVdcxjQfr6Y2HlS4lac/FlmC0CjVerJ6uuJcEVuF0oOUz2UKZFMhmytfQwoSYpBBBkljkhSSDMdBbj+7lX/wH/0D+XP/9T8nf/V/+Fdld7WrArdqjd/VH8FpvQA2fw9umKrbeAGpaVcFryrg3Dxdca5uVeeqMDW3EbUvZn/uw53uOHXG6ryTsq//pN42Fa3mHdZdtSGrHrd7H/P+3VBX/UOD5n4AAAAA3mqEsQAAAMAbkNeOHccku11dGRvmSsO8/usUnObANZXq2FzBmo/nQFZkmbJ4SrnyVtPH7HlvfwrcvKI3nSJ4gbF7hWnz8e0of/DsXnaPdtN0r6pa0U4zXMI/G9LmPxuEzv9PB6rl/BzQrU1PXP2Z66o+t4SwakybzU1tdaqICh5zBWgOVnOlagql6nT6/pZQsqqI1ZWwyYSgKpAtVbjzGEolrro+j6MEtapatwmYgzR9lrGailj97nNbvd5tUz2snjd/T6WN+X5SSOWepe18TAe+pSJW/15UlaykKag93B7kz/7hn8l4P8q/9j/416p3Xb7DeRy9KadX2bDR9pvfhwkaTwaxyXzWbUz/bkhpj4kZZ2qPdUPT3v8dyWGpnbr4VEi5YVynrmkC1bX30btXpz/9zstvd8uYAAAAALx1CGMBAACAN+B4jHJ7O8rV1U5CENnvg6Q0yG43lQZOoWsON/NCmtPcqXnqYl01O009LPN5KdcOg1Rtl79Q+sltQxVQJbUvIlJXz9rQVVfPniulJDKEaWrifaiqYm3oOgzDUh2rt95UsnMw252mWAe5qvKxqYRdm6ZYpDpmj89vTroZmw5we++mNFX95lArB62qDztNcBWY5uPSft66rcYXkoQ49x+d/r0KWBXI5krYslXhVA5Zy29rSEs7ma7J676KLO3Lu8lVr3l8YRlTCR3nQC/EsPSr+5jfWek7/zeWx5aWc8N+kBhi+ccEaUwloHW/S/U96u/uLN71TqC5FsLa/bWKWP25WwUr9b7+0+u/uhWyUrfR11Thq3ou73j5rMdsjpX3Yt+d10YHrV5A67Rtnl+kfS5xxh7MZwAAAABfO4SxAAAAwBtwfz/Kq1dHefJkJ/t9kHFMEkIq68QulbKhBJ9TtewUiuY1Y0XSvA2ljS4d9KYE9v/X/lR9nu653DtPaTyFskvouoTBDyvXOsQkr45Jbsc0hbAm8KxC1BzkzQFmqYLVx1VQqs+dqogt1+Tr52t7VbV6bVpbZVnG7YWwJ8JXy1bWlvec76mrTuevsKqGFVOtqqtk1TW5r6oitlMhW41vvlc1DlH3Tct7qCplRdq1X0UFl/q+amt/umuVsdW70CGwOZ/70b8j/bupKmRNu+q3OU+RHIZQtuP9KM9/+FyefPBEnn7jaRlD9W7EGdsa5z81d5rbBwSx7nHbl+7T+8++Nz63aScMtWO1bfJ9Nt6/c/MmZHWnBHaC27PvZdr2gt9z+gAAAADw9iKMBQAAAN6ADz+8lh//+Fb+6l/9pvziLw6y30+Lau52QVIKKmzVpYBLpasNQ22FrF4HtlcRW1fH2vZT6uVVx/rrwwbnWF/u43svj/Jf/PhaDmGuiJ2rYiVIU6VaVcN2KmNtcGurYd2KWL2vw2C9FX8/97tkanUA24TAxqlgtgk/TXsdfjb7QZbpceegqVcN6x3bUhkrQcrarXrN2CJXoUazL1IHwWr91nIub/W/G9DVq3NlbFnj1Ya+OXyW5TtKkpZ1ZZNMVbVJlgrWYO6Tg7h5jdlq7dgkIrslXB7iIFFUZew+ycd//LH85//T/1x+4+/8hvwb/+N/o/kO9dqxZ1sJIqtK0HzKhKs22PQqYvV1TQVqas/pfW/d2Oq63mdp+3YrZe0zmmC1vAcTelbrwdp3mZxrTD9epezqOri99yCq71OC6tv77wwAAADAW4UwFgAAAHgDjsck4zjK4RDleIwSY5Jx9NaODWX9WB2MDkMONL0K2SW9spWydbKl0rD58xL0zhWJVU6gr61D4XzOTl+8JiWRQ0ry8pim6YlV2FlVTNpw1VQTVgFpvkZCFXpVfUhY3df3mroL7r4bykr7uQpnTVh7SnmGHALpr2u+j1sVO7dp1onN31OuaFW/l6oC9qFryJpgV4/b3c+Pl9Szmfel146tAtOgnl//Xmwoq6pjq9BanzP9lnE499GhvbfWbAl7B5F4jHL902t59qfP5Ef/1Y/k/V9+X979xXer79V84X1r/12thLDl/dp2a0GsqHamv2o6YtWXnbbYBqNVf/Zzqj830wqb52zONdlqaq/1rjPj8PpyQ1lpQ91Noao3/lQ/f++6lJKMN6Mcb48PnokAAAAAwFcDYSwAAADwBt3djXJzc5Srq0FSWtaOHYYoKU+/mgbZ7WT+XAeeOqDNVbFLdexyrl8d27bzPuspiqegtg5dl8rcM5LG2bAfRHRFrFPlWlXA6spYp5LVTk+sw1p3XdleP/qYtIFuE8Ka49U5zYazHedWxeZjbpVsPqfC2ipUNdMa67VOS9jqBF4hhIdVxs771TquuU1Y2uaK15RSCThFL6GsQul8rQ17yz3yOb2O7DC/k1whq6YcLvfJ7eL0uyvvR+bQdTf/tuJ0bNgtFbIpJEkxyYf/5EP5wT/9gfz1/+Cvy1/59/9KG9zl4W/578cGr+a43rdh6qYQ1uy71ao5gPX2bTA7bzevFavu1exLvUZsFQTr57Fhq7q+el92HHYsnfC3Vwmrj/We022zQRqTXH94LePtuPkaAAAAAF9NhLEAAADAG5KSyGef3UtKIo8f72QYgozjlDBNlbFh3qaqGjbGIMOQ5uBTV8ROFbV6PVm9xuz0v+DrrczXLyFrSjpA1Gmc3hd1zfIsuY8tbsck37s5yo/uohuc6grFZvphWYLVHL6WoFVMX7K01/fR/VbH1datlFR99QLZal+ca53jjWRCVjudbb5/DqDmr7VUwqp7VQFUkHpNWVX9msPKXAmrv/aqQlUFvvmnVFW2yhLq6oDT2y8Vp/qZzPtu3pX6TvQ0xE0Im/d19ax6Fv2fwkPXjtXHc1WsXju2vOOYJI5R4hjr//zU9918V1uthbC2bxvEdrs0vzcVvNqws9nX7e11+t6dILQJU3OIqsNQ/Sym7+oZemNde83mnBvKrrVd61oHyiv3XB0bQSwAAADw1iOMBQAAAN6gDz+8lo8+upWf/dlHst8PcjhESSmvHRslhFyiN5Rq1GXd1iTDvLZl3i4Vqkt1bL9CdvnLYWpeK1aHsnot2Vz5qteO1fdc1GGtlpLIZ/dR/p8f3cq9iAxXQ6mKtaHsqTVhbXhahbJizuk+evfrVMlWfdnPa6Gs1PubNZltfUAHaSWUVRWvuo0NULd8tprpidW2N75c8aqnSW729WU6QNXhb65eTaqK175vVcnqVcbm/suUwmrfhrBNGD9IWTM2xVR+l5KkjE2SNOvJhl19PI/XBolr1dFb9cI9N1Q1x86qiHUC1qoathOu6kpZO61xc9yGr2npo6o2Nf00a9uaQNcLTt31atU7tNMnu4Fxqs+dWjO2eS4vwA3SjJcQFgAAAPj6IIwFAAAA3rCUktzfR7m7G+XRoylV3e+nFGgY8nTC07qxIiLjmOagtf1f53OYOgwiMeaQNpRK21xRu0xTvHwWyWuFSqmwXILaUILgacyirlkCWfVU7tqx9zHJ7z+7l0/uo4zShq26+tELX6tAVZYpiavpicUPWHt99ULZEuiJVGOrzp0bwqo+t6rCu9xtnsJarXeap/PNQY6uOm2C0zm8rSpipW1fbfU6sibg1WOtwuBUv6fcRxOa6neVx5PvFcy9ze8kv4dSpSqmfz2FsV07Vq/1Guo25U+kube9LoU5rE3LFM9hCNMUxrvlHf3wt38o42GU7/yt78g3vvON5T11fhJ2Cur5Q99KCKu/k9Jch6rqXBMummPlmrVpi6UNWasAUoeVpr8qlM3jP/Fs3XfTGbOnNz1xE8r2jqe2jQ1rdZumaliFsLrKHQAAAMDXC2EsAAAA8IalJHJ/P8rd3ShPnuxEJMg4JhGJMgzLFMK6MlZEh7HL/4KfQ9jpfCjXDUP+H/aDc90StNpQNk9HbIPZPG4dzk73XH/Wu2OS3/74Vp6PSfZP9xLmaV1tVaKeVjjvVxWLIvVnUe3UQT2dcRPoqj670xVLu78WxHrVnnkclS15bH6nJsys+lVhag5gc9Cag1A9JXE5J35Am/teq4TN0xz3KmSrPtVzljAzB8FSjz2/P32uel/O957b6umCSwirpx7O348TBJcw1PzpcFdvy5qz85q1pWp2DmSrMDZv5+/uh7/9Q/nh/++H8sG3PpAPvvPB8rvoZG4npy3WwaoX1nYCzCrk84JYqT97lZ9VRaq336uQtYFvavt3Q9ncl+mz98w23K1eW2/N16pR22+1Bq55Xnt/L0jNz9ad8lmkCmQBAAAAfD0RxgIAAABvWIxJvve9V/Lee/fyF//iz0hKU2VsSoMMwzRFscg0ZfEUgEap14tdqlDz9MQiUoLVPKVwPV2xro5tj0/7S5ibg9g6zK3DVz2NcU+SJMN+kCEHV3baYZEq/PQqYdf2beBahWteFW5o7+eFwk1lrNr2QtgqgHVey1qFrFstqYNwFWCKyLIOrOlbrwdb9vU59TlfV46r/vUYvCDW7VNVs5YxhbpNFbDm6/Mz6mmKowlE8+Xz1MFVhaosn0Xq76mqjA3L/aoq2rC0rapzZa56jVJPa2xC1yaM3anj8zvMgVsvbD352zDfidPIDWc3hbBe6GqPdaYttkGsXh/Vnf5Yhay2KrWZRliSOyYvfPXCTttf805V0Nurym0CYXPOTkV8cprirR5yDQAAAICvLMJYAAAA4A1LSeTTT+/l7m6Uu7v3ZL+PMo5JQogyjlP4GeMU2oqIxDglOcOQJMbpvJ6WeDovotd6zQFtjMt+rnLVFbF1Apf/l389FbFOA+rASFfKesYkcohJZJiipir8FGea4Xws38qrjlzLfm2gKyaEzfsizfHpchXEqv3SXlR7Na5eCNsEtqtDV8GdmHA2qTBRVcqGpKo80zIWHSqVqU/n9rkPG5RWQZR9Bj2usFTK5nGVsFUHr8kEock8kwqV8/NWga8JRsszztc2la75O8r3Ve+svDfnO9NBb/l9mXfghbbV71GFtCWQDqm6Jh6iHG+Psnu0q6ddLl/xSurWO+WFuzZo1cc6QWwVkHpBrBdSqv1SMdoJTHNfes1X3acOXXM/p6pP3eczUyY3TDBatfOO22fRXZnQuGqrg1jVf1Uhu0H1ngAAAAC81QhjAQAAgAuJUeTly4OIJNnvB4lxkLxWa644zdMWT4HrNI2xSJAYg+x2UkLTlNJ8bpKPT2vNLvv2T8Tf19vp85RS2WmJe9MUj0nkH/70Vj66i3Kzm6dyNVMUN+HpENpjJlhdXVPW/OV7lX0x+ypksxWxVdWtmGOijs+f6/fkOBXKqqBx2iwhaK8CtmpXuqnXde3tu5Wx7rCc9s60wk3VrXpf1b55H2Ua4BRKSNz0n38vwxK45YrVPHVwDsVsVWzpb65aLeck5QL05nsux2X5nIY5XFNTFnuVsSEFCbvp95risvbuP/s//DP57n/xXfnX/0f/unzw7Q+a97xWGeuGrvPxercNQ6tj0glh875XybqlItbu6+BRB5PO52Z6Yqdtr9K2WzVr7tPczzyztw5sNX5Zphq2x92+9bGY2nOneGEuAAAAgLcaYSwAAABwITEmubk5ym4X5N13owyDyDgOcwWsroxNqgJ2CpxylaxImqteQ2lfqiHnICilqb0u+8tVrTlkFZn6qKthdUBkk4H1dDGmJD+9G+XHd6NcPb0qUwZPV5rKwBy2iQlOV27XraLVQa+o4Db33Rt3DmL1+JwAtrQ1QezWMXuaKYr1q57vVa0dm1TQ6RzPlaESpKpi1fu6WrWEraG9f/4tLesGp6raVj9bDqfs2Kp1W9VPq0ynrIJUO41w9VNMy3uu2un3pJ81hOb5dNhrp08uz5T/UzHfQRUgh+Ue1W/OTIGdg/Tn33su1x9dy+H60H7H+Tew1VoIK8v7rNp2jolIG0Z67U3/3r47ZbDuS98vSTMOt2/7zL1rVsbsVph6/Tl9ekFv77lKcNu5VxWw6t+2qPP58zFJPEQCWQAAAOBrgjAWAAAAuJDDIcp3v/tSPvjgkTx9updx3JWgK6VpnuHdbirNy1WvuUJ2qoyd1pJNSYdkU8iag9Wlcla6lbH1mrP1ubo61v/s7cckMuwH2UWZKgVz1auqftWhla167a4fmwNWke71verZXPUYJJStrZDN/VbhbG+KYn0uX1c+huZYj50KuASX6li5T6rPP7QyVn8+WRkbTGWs095OVVzGlvedd1dVrop5/3k7f2e5gjW3tWu65vuUiui4tPWqZ8t2UO9Zfe/N+rWqXUihBMO66jZvh90gMcV6zdi9SNhP9/Wmql2rjG2m020b1O10c7surA1F9Tmv4nP+fE5FbAklnUpWW3la9mNarnH6a8Jbc8xrV013rP66Vazm2Zr7mPar/cU0/Qbzc87/UKb6Lp1ANvd3/eG1HF4cpkAWAAAAwFuPMBYAAAC4kJRE7u+j3Nwc5fnze4nxSh49GmQYpkrWqZo1qSA2lSmLc/XsYjo25Qhh3uo1ZnXJX12eNa0rWx9fQt0ctNqwyKYIJpybL8zhqw43lytUVaHqYq16Vbf11n+1VYo6FC37wbl37lZPU9zcPrRtzeOfE8K6zycyBXvSqVbN3ee1VvMUxvNXW6po56+zqmLV/c7jT5KWtWedsZRKWmdt17p5XX0qSZY1Y9W11fhVgNpUB+txqGev1sDV7yhIUwXchF3BPI/9TyFnp3m92tSG1VUlrjOltfs7zPfUgbp5z1umIe6dXw1hdTt7zAllq7BWfbbXVPtmHO50ybrqU9qxNZ+N0rdZF1YHx1VbO1Z7X73fubYE0fadiDTHq/apM7ZT3+cyCImHKPGeIBYAAAD4uiCMBQAAAC7s5cuj/PN//pn88i8/lSdPPpgrXadzOYCdwtRhDmin/bxmbK6MzevILpWxoUxFvFTGpvm4VH8i/c95X2/tZy2EaZpiGaRUxTYVqDowVdWvVXBrzlf3kNBtt1oZa67RYZq7L1IHbrISwvbCxHy+owm99DUmhC3txbTJoZ6aUji3tUFiFciKX+ma+7Th68nK2Hwf9c6q/dw+qP62VsjKEpTq6tbcpvSpjuV1ZstYgqqI1aFtqO9T7avK2rL2bJKlWjZXluu1Y3dBwri8jyChnPeC0vwuPJuC2mTaeYGqDRa9yti87RzrVsSK2XfWjF2tjO2037zV4071Z/23VhHrtVsbX3N9VO2j85xr9PcFAAAA4GuHMBYAAAD4HIxjksMhyt3dKNOasEF2u1DOpSQliF3WhtU9LNWyS8XoUhE7HRfJ683mdWSnkHYKbUVkDnHzZx086mPT/ZbPy3kRkZ8eojw/Jrmbp4+dh6dGaqYbzufDci63q58wP5cKTfW+nmpYTAhrVPdQwasXqroBofrsBrEbQljbv1epV12ezP1yCKa+omW94KVtFaTOlaO6XalMTeUidxy6qrSqQLX95efZsGasnSq5ep657xKKJhXehjnYDEuf3rHq+fJnXRlr/srzzUGv3u99994/NAhhCV/zsRij/Pif/VjuXtzJL/zlX5D94/r/d3s1iOucakI+Heql+ngviG2Om8/dCtn8l/vpTS3shJnV+ql63KdCS+dZTz63CUNTSk27akpj27/e5ufR18/7thLWnWK5N/4txwEAAAC8tQhjAQAAgM/J4RDl5cuDqmIV2e8HCWEKZpcK2WkN2ZSmStndLkhKwa2MzX0Nw9LnMgXxUiErspy3VbBtVewS2NbHJ7//8ijfvR1leLSbKgQ70wiX0CqUeNavUpS6fXcrTgAb6mPeWLzpjpvpjGVp1w1hVUBcOZXH6pC11z6HjPoafT913quEzfvlc+qvBavPlePJr2Bd1ipOZTzVfXMoa95l9Tz5Oq9CVgezOSxVoa3+zmxFrnesPNM8hbL3WyjrxOpAVt8nV+cO9TTJEmSqBp/XsQ1DWAK5ME09+zv/+9+Rd3/hXfl3/hf/juz+3O7ED6P9jfSOu0F+ao/3Qli9X7Vx1n1tgtfO8V4laS+grca9Eux6gWfVr5gx6HflhMe2v96zVFWusW4rUZq23nta+w6bzwAAAAC+NghjAQAAgM/J7e0oP/7xrfz8zyfZ70NZK3YKXoMMg8wB6jAHqkvp6VQ5K3P7aeuFqctfnsJYB7A5iMvtg+h1Y3N4KzIdy33WOUOY8gS1VmwVXlYt69BUh4tV1atHB7E2xNQBrGpfzom5Tt2/urcdn5g2a0HsqQDWPEvFC2Ry/2nZ9ypNp8vnMNRUijahaVLhrJgANqlgVAex8/U6DK4C3dy/qiYtx/OzJvUe9dqxOpAV0z4/oxf86teuzuvvxFbcVr8Zdbyq/NXfjw1sq3+MEOrfY54G2QuL5++3qeDcItldP4D1zjVhp7p/N3y1gacOa9Nyj27wqK+RTmWsd0/nz67f2qztaq5vpmx27puvscd6z+K+69yvGk/1XHYsa8x1AAAAAL4+CGMBAACAz8n19SjX1zey2wV55529E8aGucJ1CUPzurEi9VZPIbxUw9YVsjqUne6ztBdZwtrp2JSKVflmCWL1wVRVCFZVp7mpCVLd9WD1NlfOhvrPBmBVAGvuo/upAtmVQFdfp895Ie1qVeu5vD5Se04HmVXAmQNIHYyuTU+s7mED0WpqYqmnB676VcFoFWbmTFVNhVzeZ5J6SmF1ra2UteGrXTPWhsVVMB3Uc+l3ZoLe8n5C5zlzO/Pb8qpsy7q26lz53cxr0J41Ja/9HZhj3nqxIm2YeHKq4uS0cQLTbkWsDV/X7uNVxupwVW+9QFY/m30+E4p213l1QtkqDLV9qXvb8Lipnn1AsPqgkB4AAADAVx5hLAAAAPA5+/TTe7m/j/Irv/KOfPDBIxkGkd3Om654qpDNgey0puxQha8iS/A6VdbaMHaecjXU5/J1a9vp85Jo/eB+lA/vo/xUlrDUVh42a8KqANG9RpZry1aHpCZwLUGYCkfdvr3+dUjrhbPleevnqdrZbnuVvafYQEZ1U1WZigplTfVpVUVqA1kVjOoq2NxfNZ2vHZcOTU1l69RkCWh1WGz3q5BUndNBa6nenZ+vhK96fPqZVJ/6+7TTE5fxm9+Fnpq4hL522uTcVget87TFOtCVQabpjoOaEnoQuX9xL7/zv/sd+cavfUP+wt/9C7K7Om+64qbSssphTZiX2mNNQNurhtXHbAjq7atr1kLZXjWqHv/q9MT2OttelmPNcee5baDqBatr0y57waxEkRTTNH2xxz73PJa7j+/k8Owg4+3YuRAAAADA24gwFgAAAPicvXp1lFevjvIzP3MlT57sZL8Pc+i6VMjmaYpTyqV2WaoqXHUQG2N7bOovzVMQ52mLpzQvt8vnlumKl5BxqbIU+el9lD+8Psr+yV7C3oSQwXx2QtW6eXvMVh2Wdvm0VxVr7627M1WxTUgc6nF0pyF2+n9wCNvrU4VJpWozH1Thq4hUUwl3A1knyCxTC+v757YqzNT9lPuIs1ZsL4Q1z1BNS+y9h/ke+nO13q2aXnkasgpSqxe3fIclIDVVrVVfJnD1fo9VBazU/egqWx3oHm+P8qf/rz+VV3/xlfzmf+83ZdgPcjabx9oq2zNCWNvWhq1TExO4ekFsDl+lvV733VS+OhWu1X2l7aupjhUzFu+V5dDUjsdM4dx8doLgzZWx5jtYlUSOL45y9/HdxgsAAAAAvC0IYwEAAIAvyA9+cC2ffHInv/Eb78t7712JiMh+Dm6mYHaYtyIxTiHtbhdlGESGYVAh6xS4TtsljJ3C2TQHukuF7DRtcSjt8jmRvF+3KYJMwdKgAlMdis5tmurYqot2v5qe2KlQLPfIIZgNaL02Osy1YZsXvkp9vlcRe1YI6wXQms6IggmM9BiSVNP9rq4VqytZdaiqnksHs9U6suoaXY1bBaM5WE3L+7ahrIgKjPV9dQVqfj8mhNWVq2H+betxlvdiwmpdXWuD9KoPPTWySPX7seFsL8wNg3rfJpCVJNP03bsgMjhhoPoduAG1F+yZ4HI1gLWhqz7nhbAPmaY4zqFsnNuorT6vr2v6sIGrE8D2KlW9Y6vTFOdj0amAjW3I6lbGxvl5kyxb8xxd9vsAAAAA8LVDGAsAAAB8Qa6vR7m9jXJ7O8qjR4NcXQ0iEmW3y8GoLt2S+ZjIkmLVx0IJmKRUxooEiTGHrbn6dWk7hbn6Hrn6Mge5+h51CFsFhsulTTg6j041M0GpFsx5c21pc6JvPY5eH3rrVtnaUK8ZrNOuObV6cpKWdjlwtOGOrnQt16Zlq9eKrcac6rDVu3czJt2vOEGsbtfr79T19n55vPo57HeRzNaGsOqa8tvSAW9atvrdVD8ZHcBWt68rZO1+7k/Ccj+9dq7WrRKuG9VtbR9OtedqJWzveDL30PdJ9bFTFbHNPey14lzr/dnnVQGtPbY23XFzzvbnPUsv0M1NnCmfNyGHBQAAAL7WCGMBAACAL1BKST777E4Oh2kNwat5fcndLkiM03a/TxLjIMMQVIXsFKJOa80mGYYwn58+h5Akxjw1sd5K+SySP4tMYa4OgOuq2LkYc6r4y2Ho1KwKPWW5Wl2rrnHC11JxaKttzdZeX003rCscRcQGbFXoqkK8ckxd04TEXhC7NYDttfOCTJkDPXVMV3ratWPdClkdfKp2VfWr1OvINsdVYKmfqZqmOAdZob+vg0l9TlenlurdoO4R1Jjz1Mz58/y87rtQ330JWdVfNQ5V0SoiTUWsBCnnQwiSBtXfMH9/uUJ8CFO1pP6edtKtjF3lNPWCyPxOdJBog9teQNqEqirs3FIZe3ZFrA1nk9PvyrY5FvuVsN76r9Wx2LlHTM21+l65Mlb/2e+qmlI5h8/6Ozj3twAAAADgrUEYCwAAAHzBbm9HCSHIe+/lQHaaongYoogMVeXqUqGaA8pUjrXnpUxhnFJeQ9Zel9enXapmp+vzvsghidzOf9O5OjCcPoZSLditVF0Olm2+xgt0u3TA5lzkrTfbHUvT9YkgdksIu+U5chubzZjjTaVoMsekDUrL5xw+OvlPFYbaoNbp6+T4vf2km7d96TFMl5pQVrfVAXGSeusF/OWVLSdL6KunaFZBdglx9T1Dfc/8+y7vSk13XALuuY/xbpTnf/Zcnnzjibzzc+/479Hhfmdp5Xyqj7nTE5vjTTibz3v7+XoT/q712Yw1OePuPX+v+jSZZzvVl7lWj6GZ7lj3aYPT5PzlZ9tw/5SSxGOU8XaUNBLGAgAAAF9HhLEAAADAFyglkU8+uZf9/ihXV0GePp3+P9GvrgZJaVeqYvf7JOMYZL+vK2SnrczVsGGukF3WjxXJlbJSpivWVbIiqYS2IqKmOs77Ij86Jvln91HS1SDyaOgHp7oqVVerVk1yv2p92PmavN+rjtVhmHfPqtpVQjtOe049p72+Ombv5TxPL4A9GQCb0zZ41WPUYaQNJ5vpd3PImANPqathpw7NOHK4KUsgqqdPLhWwqu8SYDr7+p3qClldoVoFqkndV1WsVhWzaipg/f3Y/dxnteZrfk+hHotuV+2rfkqFrGpXPs+VsUGmCtqQpvf0/MPn8g/+w38gv/pv/qr8tf/gry2/tR4bYjrHdViqz9lpi7vTFHvBrJ2yN4eRneCy9OFUxDb38I7N1zb3V8eac7avPMZcoarXsc37uqJ1a2VsrnqNUsZkq2ZPVrc6p+9+eievPnxFGAsAAAB8TRHGAgAAAF+wGEXGMcmrV0eJUeTJk53EOAWsi0F2O5krVpOIDFLylBLaLa1t7mMrafPfdE6vN2tDWZFjSnIvIkMQ2an00F3ztWNLhawO07rrxZbnWQlUVd9ewOrdf8MDOIf6QezJd9PJZNbWjrUVo2uBrNd/CSBTXdlZpjTuXGcGWIW8JYQVqde0dca71l/53HtmEzI35/S9vD7184ewPtbQPl+qG1chbbXGrLpvikkOtwc53h7bEHWN06w7VfHGEFbv62pQW/Xq7tvAVkxYq4NYUfdMUj9LarfutMjeGHv3mcdaPbfZ1+PpVsaasSYxwWsSt12XHW9Mko4EsQAAAMDXFWEsAAAA8CUwjkl+/OM7efr0KLtdkKdPdxLCIxnHJFdXSWJMsttNodkw5KmFdYWsyDAsa8fmdWSnithcNTuFAVPI219Ddtrm/SnsHXbT2pi6etCGjWXKYemHqOVcFQSr4DL4f6VdbuP1uey050N7fnUdWCfY7T1D9z5rbLNUHy9T9+rQUAeS8zVNICuqojVXpCYnFFX3qSpg9TquSZp+87PbcekAtNxbV/nm8ecAODnvfg6wqrBUfVfVlMLJCX/1mrnB3CeovlPdRv/Gcrtq37TRFdtl3Vndf75+CBL2oawdW95N89Wb4LA+We964atuZ4414Wwn4FyrlHUrSSWdXxGbpNtfd2vHZPo5ua/Wl3W3cbnOWxu2BKn6z3m+U98JAAAAgK83wlgAAADgS+RwiPLs2UEOhyi73SCPH+9UBewgIkl2OxGROIeqwxwkhPlPylqveTsMMlfUhup4WyFbf87bJPpE3pwIW08c18GtOnhalamuB7BNYBy2jW2tXWlrT5+45iRblepUoJb7mHC1WxWq+5K6vyagde5XBb2y9KHbVqGrqEBUBandMDfU/ZWAU4el9rnM1q71Wq3jKqGZpri8Q7XGawlc1TndZ3WNHo8+poJy/V70FNMnK4WbXC+1x5N/7txpir2wtbR1QlQddHbXoM3jyX96zJ0gdvVPxA0+N4Ww6plWA1+px9Hry05P3J1G2tg8tTEAAACAtxphLAAAAPAlcjwm+elP7+Tdd/ey3wcZx+n/kz2lqTp22gZJaVAVsiK73VBVxk7nciXg1PcUyuo/XR07tfG2cRAJu9Cu16rp4NMEpk1o6rTN7WzloQ1US3+mmrHqfwtnrKvt8q5T+dqthl0Lrr1sxgSbq6GnDmlVEOgGuLq9vbcKTHVg2YSn+bMKS5uAU9pzds1Zt0LXvoug7qnCZ1sR6wa8Ul9bvQNVLVvO23ecj+ex5d+ZvUbqNlXFcn6GvJZsHncvtVvL6ex1+uNKAFud74SwTSCbr+ntrwWdqm1zD28q4DKcOhTN0wP3gtu1ELZ3fnNlbHSuzevHxhPfk/nO3DEBAAAA+NoijAUAAAC+hO7vR/n443u5u4tyPCZ55529PH48rSW7308Baw5jh0HK/jD0pitewlkbwuZgVmQJFvXUxak0kjaMOlNVVTqHbr3Q1b1GVu6vw09VqepNUdwd05ncIHYthLXjsNmkqqQs7dJyzpuS2O07h7QqINVTGOspe9cqNnuhrA1up0dJ3Wur77cTwDYhcX7G0I6tTDGc2+r7mXeW712eda6Wrdp7la5mOuKqTVimJNZjqd6tpGlqb5Ep1Dv3N2Ye24av08YEfSaUfWgIW4WWuq0KVLvhqxPEdqtpnbF4QaYNVbeEsJKkBKnl2mi2KVVtvAC2Vx176vsSETleH+X2o1s5vDz0rwMAAADw1iOMBQAAAL6EDockz54dJKU0B6zT8Wma4Wlnt5vSnWm64igxhnldWW+64mWa4rXqWFsZK0Ek6mBQpP3c4YaROSTdWJnqVtWeart1bF670O/n5LTKW0JY534i0oaynYDUBo46oNVTD3dDVH1f755mrdheu2nIbTDrhqhOxW21pqu6V1O5mrtdec4yFieEbcIzE2Q3VasqhF2bUriZAlkF3817lCUI3qoJWZcT/QBWlud3Q9h83Hy2oWh1LiU3jK3anghi9bjsmLqVuJLq8YlU7XpBrD2e/19zr07Q2wSwZo1Y952b953fSUpJxptRbn5043yRAAAAAL5OCGMBAACAL7Hr61EOhySffXaQ/X6QX/7lp6VKdrcLcnWVZLcLEuM0bfE4ToHsUhk7hbYhBBkGHbzqrT4+h1whyM0g8v39IHe5QrATJpVqWtk4jXFuq9ehDaZd8K/xPpfr1qyErJvCWxPEesHsm14ztgolU6fdSj9VcCt+H7ZKVqQOPnOg2AS6K+OppjIuzdpA+NR0yt31cm1gbO7dhLAm+K+qanO/nXViq7A1twmp6ctbX9dW5W5SvWLnfc+fm/BVB7ResGqPO4GobpuiCUe3THnsVdXaitjYCWJTe8/yF+tjOiB1g9WophzWlbGdrQ1edR/l80rwWn999dg3f+8AAAAA3mqEsQAAAMCX2PGY5HgcRUQkBJEPPrgqQWuMQVXKRhmGILvdVDU7hQphrpqVqjK2XTu2/hOZAtp7Efk4BEkisjsxzlNB5DkVrs7FqyHvagB8CeeGuZ3qV7fdhkDWBptuFeyJ0LZXLdurrnX7cKpKt4TGWyp1m3VqxUynrINZLywOpl8b5OZ72DA41H3mdiLij1nqd17CbTW2eIxyuD7I7monw9XgvxTNC/lsqGeD1vlYL4TV+274qgNSu9+7Vy+gtWukOiGxDVF1G9suv/em0jZJ24ceop5auBfcOtMdu5W2Z8hjj8dYAmYAAAAAX2+EsQAAAMBXREoiP/jBjTx6dCd//s8/lSdPdjKOO9ntBrm6GmS3C7LbpVIZO21FhmEwFbLSqZCV6vNxP0gYRGRQ67q+hqlfv6JVV8raEEy3K59tNa26R3WtvW51gBva2vBXjX/tWnda5CrbcgJNda0NGt0K0XnrVabqsbtVoyv33BT2zmOqnkU9t15H1QtKm8DLCTqrZ3QC3dJ/vi5Pg5wfMSxTCDeVwLraNYevZhpi+2enKi7TFOdq2fnZP/6XH8s//nv/WL71N74l3/5vf1s2834fqT5npyzuTU/cBKH5mKlcbapTTZ9Vv/bzSmXsakVspzJWTx1chaqmMras86rOVVWuvapY3bb3Z95nFVZ773B+F8fro7z44xcy3o+bv24AAAAAby/CWAAAAOAr5P4+yjgmubkZJaVpvdj9XuYK2SXlmj4PkpJISvGMCtk8bXEOR/zw9HXooNRWtb7WVL9fkLOqgusTJfDqVqGuhI/2Hmdff6J6drNeP+f2n4PO3jU2bO4EwM0zrwXrXnB9onJ7tV8dGs8O1we5e3End8/u/A6T3U3dcyUANee8NUu9MLUbxNp+TwWx+h56jDpEtWPW57w/5z66MtZrZ+9vpwmugmI7DtOPDZbdtua962esnndMcrw+ShrfxH9gAAAAAL7qCGMBAACAr5hxTHOF7CC/+ItP5NGjQZ4+3ct+H+TqapD9fphD2iTDILLb2crYpTo2ryvrVsbmtWJtNespNsO14ZbZr6pubQWirFx3gaDYo5/fVsCuVcRuCpZNICsizdS5XtvVY3p8aT3E7d7DqbI9FQiX60WWMLT3LM74q/Vrl4N+mKzH6fwmqqrWVG+9d1Kt76ruXaq5w9JGj7FaM1aWqZTLeIdpTCHO41qbtlYHoub48rENOu3x3vTEvTDSBpXlGhU+uufMvjtVcb72TVXG5s9OJaxtaytc3epZ/Tc619hKWOc7qY4lNVZyWAAAAAAzwlgAAADgK2gckxwOUa6vj3I8TmHr1VVeL3YKXkWmytm6Mlbmatn8OVVB7DAvaVkqY3tVgiczOeci1deDq0m/LE4M76zxP6RC1YaKZ/Shp/DdHNSqkLX0MaWk3emJt1TynhXwSqeSVbdb6aqaJlm/v27h8kq1sRlXcx8TYOd7d8eeuVmsE+yl9viWELYcN23WqkCbClgbAJtwuOo/92uCWPdPls9VZawNdlXfdrrg1f5tSOysHasDWPtcW46lmOTw4iDHl8ft/20BAAAAeOsRxgIAAABfUcdjkp/85E6uroK8//5enj7dy7vv7uXRo12pkp0qZAe1hqz+Wyr/7DqywzCtGVuYMK58dqZltVaDSVsxu3b+VF9vSA4JRUxV8Nqt1yp2z9SrAj1VaXoqPKzCx2Su88JZW1WaD68Fouc+23xMgtR9OmFzWe/WCYCbithU9537r0LgkPz7qArY8g8IvCpt1b6sR5vDwiDVPWT+T2m1MlbTYaY5JmLelQ1H52MnA9jeurB23wa/NnB1PnsBarcitlcZG+upgktla6cStvSl14PVVbK6Gla38ypkvffrVMnqd5lSkngfp7Vib8fuf6cAAAAAvn4IYwEAAICvsJRExlHk9jZKjEc5HpM8fRrlyZOdxDhVyOa1Zae1YutQNoSkzuUq2SQxBolb1jv0wlmlmuLV+NJVv6oQbYsv3fhFHlZl+4b72FTt2mm39dipcVbruqb+Natj9a41ofvJ8DqHtaKCxi2cZlsCWHusu16sDkj1tRsqY/U4VoNYMfdxtvavCl+lbWs/r1W6umGvOe/27Tx/LxQv+3pMMbVtAAAAAHytEcYCAAAAX3HjmOTVq1FevRpF5CDf+MaVvP/+Xp48ibLfDzKOOxmGIFdXYa6QHWQYRAWyy9qxensco3/DOXDSFaRbwofS9sQ0r58HPfbqOXrOCGnfhF71qQ0Ae2GiPr41HF0dTy/crBtVIeTm0LN/0/5Y5grhqorVXNut4NVryaq2VTWsuZ/eur/fXL2s15KVudp4/kcOVfiprb2WKgNsQz5vSt1zpifeFMLmfW9NWHs/Lxx1QtW1gNauFWuDVy9EbdaOzdfHtGznQNZ+bv50tasNopcP9fOJVO0AAAAAQCOMBQAAAN4yt7ejxDgFtLtdkA8+uJpD2WEOZZOZrniZpngYgsg+yO3PPJbj053IHFJZ3QDzwmHEqRBVr0PanJvXx72kL2W17JneRHj7uv1vDZ2960SccHY6ebKvai3c3Feeali3Cam9bj5WAlgVGpd/sxD9/27c8TgVmFXwlw+bitnedMVuFe1DK2NT51ovkJ2f22tTpgt2jnc/2zDVhrPmuJ2quAlw9fXeO9Xfh/ezme958+MbOb46SjqSyAIAAACoEcYCAAAAb5nb2yi3t1NV6zCI7PdBHj8eJKWd7HZBYkyy2+UK2VBVyQ5DkDjs5Nl7V5Ke7GSfs1gnGNIhU3POc+mcsjeeC1z3NoSur+1NTIn8Ju95srjZBLzBWYPXVrt29qtK4bU1edWas1UoumJL9ezWALZqq6s7T4Sybp+24tY7vlYZq0NdG8g62yZ81aGsF8J64Wtsr2/WnPVCXftuzXfRVPnGJLcf3crhxaH97gAAAAB87RHGAgAAAG+xGEU+/fRerq4Gef/9vez3Qa6uplB2vx/mUHb6y+vJJhF/nddOVVgJM/N2ZRrizz3ETFKqFPWxarwyBS4ErGf6AgoAe9Mvr1a75imIU3LbeVW4IiuhaW/d2Hw81Z/z/XNod4pX/apOuufXKlyb9ueGst60x70QVsQPZDdsvbVdT4Wy+pytmq3G4ExV3ExNnNQzzs9RPa/zhSRJpX8AAAAA6CGMBQAAAN5yt7dRDockV1dB9vsg45hkvx8kpSQxDhJjkBjnqtgYRPZD3UHqfDZtvqhAs1m7thOK5erEr0To+gUEnV9qQVWedpu0lanNurF5bVcbytoq2HOGNq8PW/oNqYxV3z+OUY53Rxn2g4ThxM10YGqO5c82ZF2rjl1r57b39reEr+IEqfmY3TqVsF6I64W7TYBrpimuztu1Z51KWfs+m1C68x3k+8Ux+hXNAAAAACCEsQAAAMDXwjgmef78OC0BG4I8eTLIe+9NlbLDkKcslmkrMgVLnbVic+gkSco6mWWt1rQedm4NQ0s7HajO42ouN0Hr2rqx5fp57CEtVYurwzp1/pK2hOFr55Oc7mPrPT7nvKmpPJ2/h7wu64PHo0NZs/6rF8w2VeLBaaenKw7Lfw+53Ue/85F89t3P5Nt/69vyzf/aN1eHd2qqYneaYtNm7XjVh+3XC2Rt8Ko/m3Z2emIveO2Fo9XWVrva9WKdSli36lW1rfbHOuit3pd9L/lZpB379fev5e7TOxlvxvY7AwAAAAAhjAUAAAC+No7HJWUZBpH7+yjjOE1NPAxTFd/jxyLDmNz/H4VeuJnSdO3FA8u1YPZzDkubd/E6939bCuq+RM+Rw9NT67OW9itTE+fq1tynV1Vbgtd5v/wewtL33fM7ufnkRu5f3m+rouyEgfp8Ux2b/DDxVJvVNWOd66pQ1oau6tiWKYur5zmzIrZ3jbt+rL4uSvsM3vPnY513KSIy3o5yfHkUAAAAAOghjAUAAAC+hu7uohwO95ITxKliVuTnf/6xPL4aZJfPqCAmpLAEE1516immTVNFm/vV91QVibpaNk8BuzoWFdTqdWN1kHoyVO0Fvp37NuvTnuK9N1uh5x3vhWilaXI/r97XtlfB1NZrz2qzlfpNuOd65+3xlbWMmzYyh6jBvL+V6Yz1dMVVIDtvQwgShqnNqbVjz6qMNefy/qaqWH1+LYBN0vzWqlBVt+mFr5KaKYOr7fxOvKrXbrVsNGFrrzI2LpWwcYz9cHh+Lvse7POVe+XqWgAAAABYQRgLAAAAfA2lJDKOIjptCGEKacNdlCcnAoYcSjTTt266+dopP8x8I2u92pBsS9uvsodkRJ1rmirGL5CuTC2hup1q+A30vRoC57Yh1QH9fF2ZqjiZNnO7kwGeF66fCMVXA9qSl6p+vBC2t98LZW1w6wWx0tn2glDbj7rvljVje3/elMiWd7x5Z/PfeDfKeDNKPMS2IwAAAABQCGMBAAAAiMgU0H766b08iiLvjSK7cmLtopXzW/KxJM3arU11qQq5pt22sjXJ3MfcLu/rClp9n9K+sy6uVy1rj9vKXW+sa8/dfR/6ZPUx1ce80Mge967vjMG976nv0DvvhVzq4JZKXRs+elMDe9007RylzVpV7Ql2TeLcn14ntlnXNsi2ylgdnJpjvbb22Mnfwtq0xHY/tdd0144168VuqYK155t1YNVUw7mytrdmbKl6VRWx3rH8fpopjkWq99BdKzYluf3oVq6/f01lLAAAAICTCGMBAAAAFCmJRBVWLCfMXz521oy8/emBbaXjSidtKOsd69zX62fLvc5hg+Gmz+0dnbxP1W5LcHoiKN02rJVQdyVMPvMmD7YlkD2n3cabljHnNWbtFMWlejeHj9YDgu8tFbNNmKrbOCFs1bYXyqb2XC+I7f6JuW6t6jXWx721X5sphKOZzjim9r75Her3ktrP+tma/gEAAADgBMJYAAAAAD4VWFQVgHo/ByN2nVXblVdFKiq49ELPHOzMFYeSZKlu1c3UdLC5MjFPIVuFtfn6XtVtMts8vpUq3V5gWwXFW+hKvJXzm630V6oCTch2zj02VQNuDZNPeFOh6RsNX5dO6ypYkfp3pO5b1qBNnRDvgd+xPXZ2Vaw95gS0a9MU26mHvYB1bdtUx8a6Hxuo2mvs8bW1Y6vx22cw7656j/mSOP2lI0EsAAAAgO0IYwEAAACsU4FFSCpg7ASRIrIEomLCUyfwdM9Jv+/VcXb6rELVUwHq1r7zNZ0q2HOqfTdXm3azWidE0td7VZEr92v6XWmXqwXd8eR2OuTr9Zev25JxvYkcrNPHg0LbHMja64LaqgD/tYO8U9+h2m/eqQ5Zbei6EsLa825FqzjHvADWBK+9c00Yq6tkeyFsJ5TVv7+q0jUf088mZvyyjO346ii3H9/K8cXxvO8MAAAAwNcWYSwAAACAVqq33WmFU6jbO/1UFaqyBLUlpLNVtV54KlJVtXbDVfPZq47tVeHq86WS1/TR9KfHshLYivih7Jbpar0g1lvz81Q/m8/ZNjZIXfmu9Wc30LQB3RzkNlW6Hd2g9KHZ5psIZO26s2G5vglow/LM9n6vO+Zu4L72u5k/u1MRi9m3n811Tegqc3AqUq0Rm49768jmsLW8I9V3OeeFrieC2HJfHa7qZ7bvy7yHcu+Y5PDyINffv+58OQAAAADQIowFAAAA4LJVcU1wobdB/FDD9imd9VudEFZPYawrUJs28xqdIdQBWJkW2fRt26xWxOrns8/QC2Qzr1L2VL5ng1gnrHWDsnm/WwWpz6+Npden/dwZb/fYBtXYtva3FuDa4+eOa3MWOweuOYTV39lKZayetvtk8Lv1GdWxkxWx3jG936mK7U5TnAPXLdMV63DWqZL1KmJTXAljR2erK2e9d2GDY/2c5t1IFDleH+X6w2s53lARCwAAAOA8hLEAAAAAzmLD0OZ4atvZQFOStOu3ev2sZqQnQlR7n15/NlTNa9h67Z3n6A7hNcO/k1MLn+hrSwWpXSvTfp/rt6hDLi/gLUHYhvF+Uaoq2IeMQ1dl5/0k5R8JVPfQgWznZu5veiWMXQ2v9U/o1Fqxuj8VcrtVsfqzE2q6Va06hD01dbGYa2O9r4PYJuyNdTvvWXR1ci+orcYQk4x3o9z85KZU+wIAAADAVoSxAAAAAFomZAkpVJ9FZJluuLosLYGm6qe019WtuU9VVVtVl4YlKAkS6umD9T31+rQSSvhaTTUsqoLWaVOexVbAJue+NkjOzxeW4O2s9+wcqwK2lfCsVxVbhaoqQCvX2vvawGplbG4fzn1tWzdcXrtHZ3yr16710Tm3GhavjU9VwubflMj830qY37laSzb/fqqQsHS1sUp2ayjrBbK6jRe+quPV78p+9sJYSWV64Sag1YGrqoh1z81h7Mn9tYpYtdXjt/vleU3wqp8/h7AvvvtCxpuRIBYAAADAgxDGAgAAAGjY0MZWoVbVsTlk9UI+p71z0p3St6lmzZ+T6c+rXp2Pb6qeNdemoKpj9am1QFbdt1fx693Lvf/WIHY1cWz777XfMnVxFR6uBIIn753a5+gGvJd06j69Z3nI+PQUxbmPcwJha0uA7f1u9PENIWzZ74WvOnQVaUJPL5Btgs/Utt+y353+WFXG6v+WTu3bz9U7GJMcnh8k3pPEAgAAAHgYwlgAAAAALRug2D9RW2kDxFL5Ooc2eurfEnZ695RUV96qytZSiaiD4Hyf4KwDm/vR97NTymahvl8z1pzB6gpaHQrbKZjVDbYEs83asHbXntdtTLDWBGhiwjMTSK2Fe9599RSvJSATZ/9E6Nit5PT2z+GFp85vtmpjg8J24M21+XdW9pOZiti7X/7dxNd5QKdfe0y/2s8jjE3LtW4Y660Rq86drJDVa8VuqIxtxiPLmO2Uyu7z5PuNy3gAAAAA4KEIYwEAAAC0bOiq/rzpid3r89ask9lMVRzU1oStts8y3asKQpvrzVTEeQzV9Mmd6YirYybw7Rf2nj6/6V31TjthWje8XQsb81hOtOmN56zqTd3ezZFVeCtpe98PCcXOvObc5/TWgz3Vf/7+zqrarjvpHutVeObPm0PY3F6fOxW62sBzbargHL7qwFb1V/rXQeyWytg8Dvtc+rj978B5jpSSHK+Pcrw5+v8YAgAAAAA2IowFAAAA0DLhhP6zVa5NkJHqUFRkPhekXoNVlgrWqgJVBUWlIlaHnfN9qzVb9XU2/DVrwuqq3bKOp6gx57BXVdTq8XmhbqkA9sK1jSGdbdMLXFeDMxUyVVMLe33bcEr15QVe1WfdRtQ5O9YctJrfUBWO2edwxrtJ7vdNtT/V18r02OU3HVRQm9vHKXgsIe5DeJepd161Mb+BNx3GdqclFlldIzYHsPbzybViVypjm/HZcar96vnMNo1J4jHKi+++kOOro6SRMBYAAADAwxHGAgAAAKipkK7bJC1Vp14laxXIJhWa6mvzsdBu8/3LPYIKO1XwWoWtej1Xqfd1aKqrb+20w+5W1LU6nM1Vt9L2b9/nSTaH7AWxpmFv2l99/cnpgJtbbRjwiZDXPbfWb+f5upfYe6yEkyf7OvcadcwGqlsC1lI9eqLdWtXs6rTVZv9NT1PcBLVeEHti24SzKpQtbU5UxuqwthfENr8Nve99B/P5w8uDjNejxPtIEAsAAADgtRHGAgAAAGiZ8CSkUAUlTRWpraCVZaun8S1hpQpxcz+5eraErjpU1SFtWtbrbK4XWdaWtdMVqzE1YasKYKsqWPWM5br8fqaB1qGsTNdrvSmX693kHq9CSue99kK0MkZbNZvb6v0cDurvUF/jhG69aV6rcel+vOpa+3sRZ1/qds176OVkzvHqHSez793PuX/vfvl3Vtrn6tj5giqkncPHHj099qpemOh87v4+zHe1JYwt18X6+s0hrEgVxq5Wwq5VxqoKWf1bX62I1c/uhMq5Kvb6+9dy98ld//cFAAAAAGcgjAUAAADQUgFLDmJzYOGuj2rCvTINcFqCSl0l6wWpOnSt+rWBqLpeRPxgVdr9UkUrqZ5qWdoxuIHs/AwlgM3jC6YatsnHNiQ6XhMbbto+NwRotn1TJdkJGL3wzn2OHGA5QafXXv9G7BTJb4wXSKpt7znsudVxBROwqntUx/X02fn+anpnL6h/478X79ntMW8/tftN+CqyBKxr0xbHJcDfXBm7ZZriU0Gs87ze95H7v392L4cXBxlvRv8dAwAAAMADEMYCAAAAaFTThObAMleAOiFtCUt1exXIukFnuZn4a8UmcUNQHcSW/kO9Dmx1f1tFq9eOlaX/k4GsmSK5qZIVNY3y5hfdP+YGSbK8G/ecNz1xL4BSbarwyvRVBZSmmrCq9rQPo4NHOwanvyZAtO9BxO3DXrNaLeq077Y1z9gNWC0z1XUIS9VsriiVKMv+2u/lVCC4Mn53emIx73zeuoG+PqeP2zB2LYRVQaeItCGqqYLVn5swdlTH85/3e7W/Zfu7Fn+cKSW5+/hOrj+8PvHSAQAAAOA8hLEAAAAAWiasKBWuOcRMJgz1prhNKijV0w7ba3M4okIp3T4HWuV6HcSKE8Ta6Yl1YJULWnMbMSGrnZrYrGOr14ydcrQ6fNWhz9qan+77ztebY+V9quAzP0Nv35ua1a0W1G3FhFi2jT7WG+Na8KpCsOa30ksd14JUNb7m/XljsNeYsZ0Mr9U4dfVr+R0F81s293jvl9+Td3/xXXn6c0+7QelJXtvec4r493G+42bf+S01vxdTEVu9JyeMzUF0tzJ2ZZpi/ZevWw1i9fj1784+x3yf+2f3cvuTWzk8P2z4EgAAAADgPISxAAAAABpNRaMKL6pqUVXhqqssy3ET4JQwM6lK1WDWc81bb9rhOejSoax3Xh/PoawOU91pllUlbLlPrshVIWwJeE1Aa/vVAWMvmK3CMjUWt40XsqV2v1ehavtvgl8nbHX7EvXbEPVbUde4U92aPt0AthOi9qqBqxDVPF/z2dvX99wSitrf5lq/xtOfeyrf/IvfnJrbNWND5zdyql/7fXee3auG9Y73QlivOtZWzus1ZL21YXXAWgJVHa6uTFNcBbFeRaz6jTTV2vY96N/P3P/x5VFufnhz4mUDAAAAwMMQxgIAAACo5WAqLsGqnpY4hxiletWEtuW8qnrVAW4ON0ugqoKwXHGax1GmFM73CMvxatpYkSp0mQ6r6YllqZYVqe+fp4qtpjvOla96ymJd3avWsNVTzVbBbPVKT6RqvQDSOX8yiE3ms+6zM7VsNV2x1OFYFZ45fVYBn/4N5D71mJwgr+ln7fntcfPO9HeyWiVr3oe9j/ebLn140xT3pi5Wx0v4+Kbo35/at+dtQFkdS3Xbk9MTi2xbI/aMylivElaSSByje9z7vdtK8CZ09X6DMcnh5UFefe/VtEYsAAAAAFwIYSwAAACARhXGSR3ETg3mP71uqq2UTarSVKQJR3JlbDkXpG4vS3Ciw8+uTkVs/WD1uSoQnoMzr0K2jNlZw7bqV8zxU5xnWg0Ie8dMuFZVoupgqnPPKsj0qnXttTlIk/r+NkBtqieb7pI/nt44T41r7ZgZezlsnnf1+Y3qHwUsB5d/iGCHoPq2v5GTgX3duHvMC17zdkso2w1h1yphbVWrCjz1td3KWGeaYt3GTj/sVYJ7FeTVuzHPGA9RxptR7j65O++3BgAAAABnIowFAAAA0NDTgkoUScMSkEx541IVq6ck1kGMXktWT1NcTe2rwk4d/JaKWr12rPjhV68Ctlqb1mvjbXUlrK6Q1RW6Uq9hm8dQBdNvKFgT6YSwOnjVIZQNZXN4JfX3oAO0JuDSfengzFbNqn5s5aGtfNX3b6pOzXM3Qaltm5y/fA8xx+b7rT1j06d+LjMFs0gngJ1OLP/AQFVKV4H1mErb6rez1anfivrum3POVMX6e7Nttk5TfKoyNqVUV8SKdNeFrY6NbQirx7w2VbH3fDoQHm9GefaHzyTeRf+dAgAAAMAbRBgLAAAAoOIFGFVlbJJ63VZvP7X7ZZ1ZM/VvCa/SFHJWUyCraYWbtWLVeMv6szqIDe25pko3OH2YQLa0S7J6vSQVrJ3K13oB0IZgzQtnm0BSt7Ohpwq3bKVkN+iyfdpnsPewfZs/XUVrt03fDjcMdcbQnFfbsyp17bEHrBmbg8mqErszDr+DjcfNd2nbeL8LG9S6IaitjHWCWG96YredM02x3m/6EnNf+/s8EcTqZxhvRzleH+X46ijpSBILAAAA4PIIYwEAAAA00rhUq+WA1AZqOaC1lbDVfkwig98mxFCtxTrdOG9UuJnqfVsl621zH03Fq9SBbbe9PpafX6Q6XgJklczp49lq5aMXDDrhmhfMdqtj1X43QFPnehWyXuBlr6uOSx2i6TZN+Gp+S1Vo5rUx4/ECvur92T47QZ4dpz1evTuZ/7GA91tUv5GGrpiOy3s4qyLW8m7lvSfd1vkd2WdeDWU7x1a3uSLWhrN2HVhnmuKmmtn7zXvfp71G3Tseojz7l88IYgEAAAB8rghjAQAAANRyOKVCkaYy1gvQdLu8rwOnOTippg9WUxLr6tMSeuYQV4ep5nNVEasDsmSmK9brxCYTyIZQjaGqrs3Vsnk8YQmJc78i7fqxy2NvDH1sMx2umeNbglgvyPSm8nXHoENO77PqJ4ewTchn+zWhnqd7Xt937XXqsdln8vrcelz/Ph8oh5NbK2K7Ye2pZ+x9D71Q9lQIq9vo7yGubG2Iq6cptv/3xVTCeuPp/ea71c1mzCklObw8yHgzyng7EsQCAAAA+FwRxgIAAABopGMq1bEhzBWuuRK0UxHrVsbqirhhWUOzBKh62lYneHHXjM2BaFJBrDhVrSpsLdeadjaQrfqWukI291HtBxXKmmAoB7jty1178aYfL1gzAat9Z6WtF2CasMurZmwqZHuB7FzxWu17VbFOdaUND5sQVv0e3PehnrMbEq9Vuqpns1XfetynwmNP9Q8EpO47xtiGrN2fiQkk/Ubd/SbQnD+vTedrp/Z9cGXsORWxthrW/L57//Bg7Tmqcc5Vt6/+9JXcfXp39vcJAAAAAK+LMBYAAABAJR6ivPr+K3n0jUfy/q+/L2moK2ObKXtTe14HtFVgokJYkaV6NZ/P29U1Y5MJW0Md7DbTwOp1YXUlbB5Tb8piE87qe+Z+q3dhQjVbHepVOnYrPb1QTR3fFKjlduKcz/3qYNIJPb1zpRI2t7NhX68y1z5bkuYdueGiFwZ6bfUYzHM3wZ4et9pvxnlOcLdSOVveWVx+09V9mq7Wp7Z+ncpY9/vxKmDF/3xOGJv3T4Wx1fWixiLJH+PK778aa0xy/+xejq+Ocrw9nvd9AgAAAMAbQhgLAAAAoBLvo3z6u5/K0194Ku996z1JuyVIKsGkCslKcNqplNWhWwk9kxPkZipc8daMnZr4FbHVtMRzp721ZTP3ej098Xx//VkHtCJzwJaW/jyr09I22Vpq3klz/EQotakiVsy+rZDtHLN92CrUUjWr2jX3t89vxypLH7331Dyb6UO/h2ordftyL3WdK1eHq7VjvfPeGHOFZtW2w/t9ludy+vb2vSB282/Gfsf6Xc3P4G7tb0eHrjI/v5qyuLwPMy4vhD01dbH+fel73H50Kzc/unFeHAAAAAB8PghjAQAAALh0NV8VbqmApkxZLHUoaytjdaCiK2PnGy2BSg67bAirg1A5PeVwVc2q26mK2EpQYzP3EFmmns2fq7GEOkyuAsRSRNu5r72mF6yZ0Mke601hvFoRm9t4lY16LOZYMy2w+l14UxdX15t+q+9epBqnPW/H0ExpK05/9n6mTRPAJvW79/oSqQNXFajqKbG1q/eu5Ok3n8rjbzzeHMZan1sYe6pCtvd7Md9JE8zaNWN1Rawejxp3txK29xymMvf++b3cfXInhxeHDW8YAAAAAC6HMBYAAACAL0mz9qOkujI2hx8loAzJrYwtVaSqTbmH3YYlaHHXjDWf7VqxOSwrUxw7UxgXYblvWevTPIsOaqupicNS3bt0Z6YrtmGh9447x90AbiW8asI0HbJJHYp2p+s1fTYVrp172jC0qZbN1+ixiBqLfkepvlc1tl4Yqe+79mypva55zyqALOdWpiA+5eqdK3n/W+9Pv514uj9bWe1VB69WDHd+G9W13r79/TjB7KlQtpmiOE9LbPYlnvgdq3NeqNz84wM7lpjk8Pwg19+/bl8wAAAAAHzOCGMBAAAAdOWpRFNUYeTgBK1xPh5DmbLXTlssMoeauY2IH5bFOegcllDGm55YpA1ktVNTGpdndM7rvr3P+Tq9LyLVdMV2HP2XfDpc84LZXvCqz7mBWg5DTdVqr1LWDdxy8Gna2ODeVrBWz5DaP69iuleJW/rX70a101W63rM1fZnnab6HBwSy5b55Kl/1DwRWr9nWubvvVZGKtAFm9b7Nu10LYk9udVXsiUrYXsBvz/WewQ1hXxzk+gfXMt6M294jAAAAAFwYYSwAAAAAXw45olSBh52CWJJUVaT62qqtzH3MUwg3FbJhOZ/paZCr63TQavsqQ1iCr3xNqZBVYfCmNWPzPeex6KmJS195vM1rPCPBM003B1L6XjbsVG3cqlHd1oSe3pTDTaAmbeDahKT22exzVhevnE+mrdfehKlVCCj1c9g2bhD4mpLMoaSZOnvLNMVNlaw3rl4oa8NXe8x8v/p8twJWZKlqjerZtoSxnRDW+z15v5VeEFv6iEniMcp4M8rdT+/a9wQAAAAAXxDCWAAAAACuJEnSMUncRQlxCoXKVL4xVCGNrpSVOHcQTEAzSDmfwtyH1MfDEMr53EcJXOK0Xyprg5S/qtq23H59SuO1bXN9CvW0xyY8LFMWrwSvvWpIdzpis9+ErFKHU72pZ702TUXshorH7ueo+u9Uxlb3kOSOpfkTafo6FZ42lZfmGm/freSNdd8PVcYRRdKYlum3lbKG8Vofy47XoL2fObdpqmKnErZce+K34YayzvTm9lm60xTrsfd+9/nzfM84TiHsiz95IfEuCgAAAAB8mRDGAgAAAPAlaYKpUolqKmObsEvqY2W6YV0hK8t6rpJkCV6DmWI4V5uqylk3PE1OZaudqthWyHrHg6qAzdfrfs2Y7PP0Kh7doPYBAVsTYql9rxrSC0Wre5mwS49Vj7n6bKaXtVMFu1Pe6nt4r8Kr3q2GagJEp13zvrx76mDwVOCqKr0fqqkc1r/vh1bgrvxueu+7+/7yNb3vLpnzvbDeBLBNRa0eo/ebNc/VrQpX4xjvRknjFAQfr49yfHmcgm8AAAAA+BIhjAUAAADgSyLxECXsggz7YTk8TIFonnq1TGWsKlxL21xNGoKkIS2hZZqC0FwxW9ad1RWx6joRKWvJlilfwxyihqVStlTI5rYmtSqBbXAqYvMUySoQbqpkk9RhqxMe69Bt7d1uOt4LDr0wrXc8mfO2StVWykaz1QHbPN1sE9Ll6kgbxqlxV4GwHZsdr7TjtZ+rIFAd08ebv1iPr6ny1cdXv76Ngd/8zuIxtr+Tzu9jdY1hHWaaY02bcyti10JYcX4X9n1F8+56wardt8+UzHHvt5uSpDHJiz9+IYcXh+U8QSwAAACALyHCWAAAAACueIhy9+mdXL1/JbsnO5EkdTWsyPI5SH08nzZTGefQp6pMzVMcSztta74+V5yWylWRbphq13ytKmSdtWNtRWx+FrfKNp+TZRxVeKgCt615ndtW92nO90LOJlDTwVs+71Wfmja6z7VwVfdp+/OCQHern8mOQ/enTrrjsH10nqvp31z34EpVjwkP8z9A8KptdQB7TtBbtXfe7alAtgqyRZrv2q2I7YWxJryt7u/tbx2/M9bxepTxbpTxdpR4z7TEAAAAAL7cCGMBAAAAuA4vDvLTf/pTee/b78njn308hZIhLRWxplIuDMv0xWUt0Rxe5sq5kKZ2eQ3ZeR1YEVn2RR1z1owtW+/PtrEVskm1tfupv7VVtlUlrTqWQ9zNek17gZYOsLyAzQvbpA6yTlbEdipH9TFbNetNZ1vdy2698M6GfjnkFWna2orYZszSjqX6HTrX22Byq2YNYfVdpThVcKZjatc0Dg8IYMUZX/XzMO9TTgSy9vNaCGu3eo1YfR8x9zk1TnPe/ccGeSxx+u29+v4rufvp3fJ/ZwAAAADgS4wwFgAAAEBXGlNZkzHEZaphb73YEsSmumpUhz6l0lWvOxvqNqWCMKmAc05mSoVsbhdMH3pdWVPVaqtZ5w6X/V5FbFCVu2aa2bJ2rMgStqWl3fYXbXdNWJWc42l93w06bRgqdZC2JYi1fdrPpU9J7hibZ0ptuyo8t2GqfVdOVa2t7K2mVlZ9e4HtVqsBahIJ+yCPnj6S3ZNd+QcMlTN/Irrv3rEtYWy1r9+7fm+xfUdNZaytmLbjcMbqVh6fGmcUGW9HuX9+X+433owEsQAAAAC+MghjAQAAAKzK6zOmYQpkc4VrtWZsDljjsh5rCUh1RayukFXru+b1ZkvFqUgdyqYgMswhj6qMrfpQlbBl/VlVebtWwWgrXKu1YnO4K051rNRBlJ5C+byX7O97odZquGb2vZB19ZwJKHvhrK1e7VXGekFqE77qNt4xEwI34xM5ee9uqKv6rypxRaopqc+VJMn+ai/v/NI7EoYgcazXjM1tvED2tdaM3fo7Me/6rIpYOxVxL3iV1Bxz262EsPm/9/tn9/L8D587nQEAAADAlx9hLAAAAIB1SaYwdpfKNKE6aNWBVll/1awtWwW2ObyT5bxua0PZqs3MC1arqlXVpglX1bHetrpHUMFw5z7zB7fyb1OVrBf6pc55L1wz+940tF5FqK6UXQvfekGtDfhsWOiGhjYUlXpsVf+dd9JMM6yfQ/yxrj2LGxo+hL3XPJXvsozw/JsJ/d/EpvDXNtGv+Yywvry7qM71AlhR7TtDdCtfnfG61bROCDvejXL7k1s5vjz6/QIAAADAVwBhLAAAAIBVKSWJY5QwhhLIlnVf57Vjg8zVqEMdxFbBj62QFSlTH+fzuUI2X1NNU5zqIFQHqPmY5bU5J4jtBbxlLdmVULi8v61J31pgpc53w7X8OXU+q2O9SlM3wF0JNJu2vf70/aXu12vbDWd7favfzGr4KuvPUgSz/xBJpn/EEFIdvob6N5Gn3j7V19rx7rTW3m9FvavNFbG9e54xVi+Abcao7ztO0xG/+v6rZS1pAAAAAPgKIowFAAAAsOr+03v55Hc+kXd/9V1591fendaNnStl9TTFuSK2BDtxDprmgLVUxKpphvNUwrldDnbL+qs5pFLrysqwjG1LhWwlLfeu9tXn0mc+Z4+LWo9Wh2rOsc28S1aCNrs2qN5fm4pYfz41TXGvWtYLOE9Vo7pbae+/JYTtPUu34tX01f286WtyqnW9dnMFeRzjNG13aK958JTW00Xuvv1diDhhp7TP7YXr+ZreNMSrw+sEuM15fc84vbfrD69lvB2n7/SQCGIBAAAAfOURxgIAAABYdbw+yvH6KFfvX8k7v/zOauC1OkWxWQ82nyvHVRu3IjbJFGqlbSGsWxU7r2ebpx0OYblfCur4XK2Y0lzVOI+l9BWWwMo7po+fRYdqaj9/tsHs6lTFdgphkTqwtPuqfz2VdLeKVId+5lg3CLdb73ltCOtc30x1bYLEfL78P2/64vnZemHo1pB0dSrlPKV35v0kzvmZdELYMo6tQaxI9V16of2m4ZwKsddC2Lw/h7ApTv/I4+6TOzm+YlpiAAAAAG8PwlgAAAAA20SRNCaJxyiDDBLHaZt2c5DjVbVGkTCEMkVxVRE7SD01sTNNcdnmz8H8DfN6rnmq43y9qp4tfZhrS/A7B7LlXOpsxRwTKeFuNd7gh8VdXm65Ulm4GsDmsK0TvJ2slDWh61p1bBVsmiC0Cvk6YW9zfVwJfdVxGyKuVsRGKesa59CvXBdT9R6WV31GGqm+nxz6hiHIo/cfTdNxjyrsLUsLm4rYLWFsb0hJ9bMWxIq433l1/oHPvXbcG5v9fdz++FZuf3pbzo+34/njAAAAAIAvMcJYAAAAAJvoAKsK5vLasbm6dZ6qOFfIluNzhWnuqwnOpP3sVcSKTPu6ejZXtOr72EpWXXXbBE9BmmrZ6XBo+injyM8sZt1PHZBVt+inbs1UxPldeOdt2Kbvmer2TVBr3nE3YBVzrRd46rHY8W0JYiVVY7Cf9bPbYNH+bvTz6vs1lbEi3d9e9Z3pZ7Q2HA+7sKyrnI/1piVeC2PX8lHv3evjW8PYN6X3Hs0YUkwSD7F8X4dXBzk8P7zhwQAAAADAlwdhLAAAAIBNcogShimgLBWxeTvM2zAHmnNIG+IcXOopW711IL3pXPVWVcPqdWdzBW61VX95PO5asV7Fq723PS/OZ5E23Dqj4rE31W3TRudcG6co7k3Pa4NSrwLWDWo7/XdD295f9NuXqWvVmKpxxOVz+ccAnT66lbGxDm3d76/6CjpTJrcNJaWpejwM6gcQVBj/gNmrvftuDWGrZ7wE27X3e1Xfz+HFQV5890U5Fw8sCgsAAADg7UYYCwAAAGCT8XaU+2f38uiDeQrWTuDWW1e0qWRNZn3ZoPoQU+2aK1HVvg2YqulfdaWrXjP2RHVqWUPWVNd2K2JVuzKOuQKyzVdX0z73mBcUroWwdr9Z99UGp1IfO/ldmvCvNy2yfWZ3emL7rOqYF/A291HjcQNh/f9MZaxbidzjtLNjaL7bHDTn/DWY3+tDA1n72mzwKmY852awp8a1EkI3Y8pjiUnG23GasjklOb46TlMRXzAfBgAAAIAvE8JYAAAAAJtc//Babn58I9/8K9+Ud37lHRmO08KsaZxDrjwlq1qTVYJIGpKEOK/rGudgKkyfo0QJEmSYF3lNIU2fw3wumGpCu2ass4ZsCXm8ylZdKWuOu59tX94asmLavE7I1Avb1Lmm4nBl361ktQGtnZ44qtCyVxEbOwGoN7Wx6s+9b2zvkz971bl6X1fGNuPoVMammJaw9OTXodZ89b4fHXqq30U8ztWe6nezuTJW/+78QS0fNzxD1a+sT5e99be7Nq12VYEdpyrh53/8XMbrcWlHEAsAAADga4QwFgAAAMA2Ocwal7VjS6iVp4CdK1J1MNasITsHOblSVodnueK2ux6sqoit1nMNdQiUt6X9HIZ114wVWapi7T3CPHaR6ni1r9fDdSogmwDMCaO61YxeCCt18Fn2U3tO99sNRGXZ2mmNvXVim4pYM14vnC1bfT8bNjvBq/5zz83vpje9sv7rhqnNK3fGvdI+v9MyDXJYfpciUqq6yz8C0M6tkj0nyLT/IEH83+eD7tn5LaaUZLweZbwbp3dyTBLvYvlHGwAAAADwdUMYCwAAAOAsKc4ByzHKIENTGZtC8td8nddzDVPZ69ROy2vBmuuaClldBZvZNWOdtWPdNWK9/dTZijkm5rjel+V4L/xtdILN8tGZktZduzUfX/m8Wh2bQ9mo+vb6c/px++pV4JoqVq/6tRfAVlWzujI2tseq40n9Q4LqNasx9b6e3jl9n2Oq1kb2KrsfvHZstQRtaK93c94TN3lAPtpdk3Z+zykmufnxjdx+dHt+5wAAAADwFiKMBQAAAHCWNM5B7DhICip8mgPQlKZpiUtomeZz8xTCtjK2TCkrUk8zrNuooLGEm6qStlw3OFWrThiqq2qrbQolJLbn8jHbt97PYa0OwTYFsflaveusq1odL5vkBmNVSOaFpvqcE5auBrupvW8V2q79Oe2b6l2nv6bC1TxXXgu2VxHrVcaufQ/6e+t+h+q9pJQkjrH+hwDSbpsK2U6ourq+caj/e3CnNlZrG7+2VH/O3308RLn/9L4KuyWJHK+Pb+a+AAAAAPAWIIwFAAAAcJY4RomHKOlRmsLYXBm7m0LZEJepgd3K2BDKtK2SZFlPNoe2ub2tOs0h15aKWBXOlj7me1eVu0kdU0ooO19XtrLy2V67ldc06Y+pG4Z5+2vrw+rPW6pjdYDqhqBijtmQdWW75Zg97h2rqmCjVO2q9mpt2rX335ui2L7T5r1EKVN457C1BPumQtabxjgr1+b/hvL55Ae03j80eGOS/z7yM4+3o7z6s1dMQQwAAAAAKwhjAQAAAJzl9qNbOb46yvu//r5cvXclwzhM4WqepngoJXvVdK0lcBWpq1plDjBzhW1Y2lRh1GCO29A1OW1slWJmQ9ik2qkANq8j6wWyISxr2eYxlira18mmnLDQW092y5qxTTBrQtYSaoq00xI7n6ug1Dl2TiC7dmzteDUtsQ5yY2q3MbVTFntfjj2u3qP7fer3KCLj/Tj9A4VxHk8O/PXvRJb90mb+TYW0BLN6HGE5OG3M79WeL//IQR9bOnOf22V+Uykluf/0Xo6vjtXzl2mZAQAAAABdhLEAAAAAznL/2b0cnh/knV96R/ZP91MYM0oJU/M2pFCFZiHNa8UOqYSvpQowqemAbYCaKwLzOrODmap4DkyraY/NdMU6JA2Dv4arNy2xPpf70m17571rt+pNT1ydK5s6GK1CVHXuZDWsCvBOBrH6vl44q8432xOBrDfNcXNc/MC2V2lbTVdcvdZUbR9CT9c73o0ShuW7zgFr+d2F9jdkx7J6fA5xvWeYL1z+W/EHe/I5qt+S/s6iyP2ze7n/5L7fCQAAAADARRgLAAAA4EHiMcp4GGU4DjLIsExXHNTWWTezTGM8yDJ1sUxVqmFQoavKlFKYgttqutf5r0z5aoXlOt2+mQo5mH1pt+60sjrc6qzZeVIvXLN9JeecCVx7Aaz+3ISiNlRV/bvrw6ZOv2dOUWxDVlvteqoytqmQNWuW2mrYKiTW716/Z/WO89qzvfdc/uJ0rzTOVaJDqqbhLuHsht+Y/u+gUOvHNlNfez/54P9DA6sKpvO7PSS5+dGNxGN0f3/j7XiyXwAAAABAizAWAAAAwNmSJBnvRxnvRtk/3k9rx+bK2JSaaYd1JWyerjhXzurKQR0ShTgHUHP1qwx1KKYrWd3ATLWxn7fwrvUqZPMz22v1u9rwQt1jW6YndkPYfHxtumJnPVk3lPUCW+c6fZ+q6tT27YW3ogJQE6L2Kmbz/bxqX7cq1r4vO06p+64kuzvfa0wSD9MayvEYl6rrQQWowXwewjJFt5rKWJLUUxfPv2tdXavDWb1ffSf5s13HdSWQTilJvI9yeH6QeIgCAAAAAHhzCGMBAAAAnC+KvPzuS9k93cnP/uWflf27ewn7ICFNQVOUKMOUSImIlICqqe6Tupovh7VBgsQYl6ld58pUXRmrq15TWqY8Xjo2bXSV7Hx+rTI2SaorcWUZv55ytrlvHm86Y3piJwDsTVfcVDV2glh9rglenfB6c2WspFJd/KDK2LiMpalkjbJUvYo0VbB2PVh9bbXNFasx+WuaeoFrOVW/Tx1e2lD75qMbufnRTVkrVkTWK6KDyONvPpbdu7tSNVvWLs4/NT2dsTlWxuH8d6SfLcUk1x9eS7zbFqzm7yEeCWIBAAAA4E0jjAUAAADwIOPdKEmSxGOcpmnNla+qAjZEFZameW3X+ZgO93SVbEihhJw5JPKqX92qVxUudtsodp3YqgJWhbw5hDu1dqyIqnJcS/w8KxWZ3rOdnKJYZD1Q7YW751bGJmnvm0PgTuDrVsaa4NO+Q69Cthv46vtuecf2Xr3rdR9pXiv25rzpe8e7UcJ++n3ZfxxQTYU9H1s+hvWgVw9xTDLejpvDWAAAAADA5RDGAgAAAHi4NIVLw36Q4WqYgtNcGRsGiRIlSJAhTOeqalSvklBVAupwtKpUnfup1ucM9bkyPNtGpumO873ydSX8ndvoNWL1mrR27VivMra7hu3G92n3t0xV3Fvf1E5J3Atv3RD2Ta8Zq6pd8/GU0lINqz97lbK5f1XxateQ9bb2PZatmVK5eQ71zPZZS8XtA7LO+0/v5fDZYXOw+lDNNMUAAAAAgC8EYSwAAACAB0sxyeHZQdKYZPd0Vypj8zSxYQjlswzzOrDDUv065ayhhFy6AjakUKb7LdWzsoRnuS8Rp0I1yrJW7bw2Z1nPcz6nr+ttRaSMw97HVsn2jlleUOsFrnZ/bXpiN4TNx1eCW7eN7csGsXo8Saq/1SmK1TV6fVgvyK3CWrPvVdd693Tfb/vim/NuW3Mo3kU5vDzIeHdeVWzuq5mCGgAAAADw1iKMBQAAAPBg6ZjkxZ+8kKv3r+TRB49ERCTsggwySApJYpjXjh1lCqFCWrZ2zVZRn/V2kCW8VddUFaiD1P3lNim168raPrZUxqbQjEtPZ1zeh/hryFbvbCWodU+pqk43nDWVm/acN8WxG+Z+XpWxpgq2BK2xDmirds5asbnPUjlrqmi9wLNZQ9d7Lj1m5x2lmOT+2b08/6Pn/vcFAAAAAIBCGAsAAADg9cyhWDxECbsg6WoKYcMwTQmcQprC0rldGEJdNTtMgVeIc3tVISsiUxtdIaurV2Oq1p/N98lTEZ9cMzZX34al+rYEsvk6VRlbXavXqc3rfYqUSlyv/fprbCs63fBVHT9V9bppemIVSDbXmJDWC2g3BbErFbG9ClhJUk9hnOoxNdMSq6rZ6hXad7CiCcqdYLoEywSxAAAAAIANCGMBAAAAvL4oMt6O03qxj+b1YocowzCU9WMlyRJqqlyyhJrD1E+uTC3thuUeXvVrk3GGpW1ZS7ZzXamATep4knptWG99W7udg8ZSFesEdaWStqMKApM0n5vq2LVg1V57qTVjVbVrN5g1bdwgtrdWrL7GWSe2VNdGZ7ze+1XnmoA4t7NryarrU0qSxlSeCQAAAACAUwhjAQAAALy28X6U6x9cy6MPHsnwaEpPw7Cs6ZrD1RK2mUyyBLL5+FzhWqphw7zWbG9t1xzUqsDWBrFrwWw1TXFQ4awOaUWq49X0xSJ1aKuPbeEFiHbXqfB0qz7PDWVXQthqX31ugs9otk4IW4WzXhDrVMo20xTraYjNtlwrZrze+7HTFJvndJ8/iow3o1z/8FqOr44CAAAAAMAWhLEAAAAAXls6Jrn96FZSTPLkF55IGIKEfZimIg5SphNOMZUKWBGpAtQQQz1lsUg9PXGcw9KhE8gmqaYpDmkJg/sDn+9tpykOYZluWIfHat9OX+xOZ5zyZfPzOBWb7ZBMkKr6EemEp522qyGsqnZt2pjz3amKc6hptyogrYLYTuBqQ9mT0xTHfn9r73Rz4K3Pq2cYb0e5+eFN9z4AAAAAAFiEsQAAAADemMPzgzz7F8/k6S8+lXf+/DsSJEhIoVSbpmCqD0WWaYgH1ZE3HfAgZZ3YXMWqq1tDCNX0sTlclSBTVe08hXCusC33U1WzVYXsPE1xNf2wGk+Zdjgs9xORpa3ihbDeGrbqgma/mabY+bzaRges6vjJNWL157y7ZXpiO01xryJWH7fTFKtpiXNf1Z+estg8nw2I7XvRVbS2KtY+w3g3yot/9ULGm5EgFgAAAABwFsJYAAAAAG9MvI9y9/Gd7N/dSxqTxHFaN7YK5GSewjjNlahz1WypiA1LqFbWcxUp4ZiujJ0O11Wy+T45XBWRUlVbKnBDWqY0lqX/Zjpi6Yem9vha9au3VuxaENtdP1btbwlnRTphpAlavXbdalipg9hTFbD5mt4573Ovjf2r1opdY8bdrRT2Lk1J4jHK/Sf3Eg/RbQMAAAAAQA9hLAAAAIA3Lh6jHG+Osp//fzlCCBJ2U9AahimYDEOQKLHsS5KqWrXZJrO/8hdETTOsK1/nbZBlDdrV9WOlXyWbpyQuIazZ1/nrlumJyzvYetxUebptbdCaVo7rylL7eW2a4q1buzasrnZN9WdvXdiUkqRRVcPOf8ujpnrcou6vK2Cdd9M8q96a+wAAAAAAcA7CWAAAAABvXDokOV4fJeymELZUv8a6SjJENTWwCvmChKltXoNVT1Oc2krYcl9VJTtd1q4vW9olp+I1tevHalU1rGrrnje86tj2xS3P0Tu3af+cEFakri7dEMQ2lbI28FzZ2mP6um4bWwWb2mfqPqP3bpL6HXrvMj9vTDLejTLeje16sgAAAAAAbEAYCwAAAOCNu/v4Tu4/u5f3fv09efoLT0WCyLAfpqrUYQ45B5kqY1Mo2xKyeZWxeZtkqqD1KmLVWrK5qtWtnpXlPlUFrK2IVVWwpT9Z1oVNstxL709DNUFxWA/zqimZe6p80QkSbTApfiDbXTvWBKy9MLa0ic62F8aesWZsHONSlWoqYatK1TwO+07U+/CmJ66eSdrny/eMhygv/uiFHF8dJR0JYwEAAAAA5yOMBQAAAPDG5cDs+PIo94/v5fHweAo6x1TOi8i0bqu04WY+V9aWnYPKUuWa14Qd6qpXryI293tq7dey1RWxc2Db9J1UCJvqoLW7dmxantN9Z3XSuvJyV/bLsNuwVUSFqbqtnarYhq/6s2nT21bVq16Vq9OfF+LaINetiM3jU89cxjMf895tNT2xLG3yPY/XRxlvRhlvR9aKBQAAAAA8GGEsAAAAgIu5/uG13Hx0I9/4S9+Qx998PFXIxqGsHTuEYaqEnCtjQ6rXW01pCkerNWN1VWymjpXqWFHtvMrYtf1UH7drxeo1ZEXqkFW3reR+z9W7xglh7edNVbFekKlCzyY8lSVMX52CuFcJ21kztqwdG8WtiC0Vs/o5zLPpZ/bWi/XG2zzzPKaXf/pS7j65K/9gAAAAAACAhyCMBQAAAHA5SSSN03Sv8T7KsB+m4HWcg81RhaaZmXa4hJ5JlqrYYa5ijfN0wmmuoB2W7XT7dp1YG+TaNWV11etapa2udK0qZUUFhVJPV2yrZc9ZR3b1mBdOqs+ra8d6bVK9X4WY+n45qMwZqQ1g7bVJmnWD9fTEvcC2urfzHkpVa+cdrK73qkPYtITAEoUgFgAAAADw2ghjAQAAAFxcvI9yvD1K2Idp7dghlGB0SMPUSFUqNtWvtnpVf17LM+16spKmvpNzXLdNau3Z/Dlfk/PjsAS3InO73E9SwWxoA8LuVMZrToWy6nMTvs6fV6tizXlvWuJuFay37VXC6sAzSbciVl+jK2LLezMhsrserAphu1Mkixn7mCQd03qACwAAAADARoSxAAAAAC4ridx9cifj7SjDbhB5IhJ2QYY0SApJ4i5O0xVndvrhfMyEr2XN2DkEDWGqmpUgU0Wjrm5V4Ws+l8dWAti5KrZMc5zqoLaEr2KC2Dl41aFruS7fQ9qpjNc0FbM6aF2pgG3arlXE5v21EFYHtd6asdHZbgxly3EdynbC2PpVqLH23qMeo7p38x5MOJ1ikvtP7+X+2b2MN6PfNwAAAAAAZyCMBQAAAHBx95/ey+HFQR797CORQabpilNcphO21aM2Y9NVq4MKXedzZbriIUyhWg5pc3VrcEJZXVWb2n0dqHanL05mGmUzbXG+thzTzyP1ea0KCduT7n5zTS+U9QLZvG/PJ2krTb1g1tv21ozVx2NqAlvbphqTDWJtYKyPmWeqjul3ocaYYpK7T+/k5oc3nZcPAAAAAMB5CGMBAAAAfC7SmOT6+9eye2cn7337PRkeDdM0xXEqfw0pTBWzMtShbJK6Qjbv58/B2Vfhaql0zUHq/Fmfs8fLvcw0ydWUxno89rO6xt1PZ05V7DVxgtduIJvMORvA6s/OfjOV7wPCWFvtWqpgTVCb/6qwdHnA9jltOKunK9Zh8MozpZjk/pN7ufnxjRxeHk5/HwAAAAAAbEQYCwAAAODzkUTuP7uX3d1Oxl+YpoAd9oMkSZKGJeAsVbKm8lVEpnaproTVlZE5tM3Vq7aKNQevy5BMGz1VsaRuYFpVu4Y2WLX3yM//oKmKTbPXnaa4el+2Tar31wLZU0FsFcqq/ppA1wSxzTUrQWwTvEqqj1cvo+2jBMHHJIdXB7n9ya39GgAAAAAAeC2EsQAAAAA+V+PdKM//8Lk8+uCRvPdr70l6NAV0Qxwk7KcAMgxhqpTN2zBVzYYYRIYplA1hmpLYrYjtrTUbZKmEHZaK2BCCWxFbzpnjZV/8Y3kNW1fncJcXxtoc1wtjnSDzoWFsE8rGZSsyh6/5eC+YPTVNsVoz1g1enRC2fHbC4pRS9azVu5jHLVHk/vm9vPiTFxLvogAAAAAA8KYRxgIAAAD4fEWR46ujhH2Q8TAu68AOSWRcKmNLdWqYz0WZQtZcGTuoUDLNla85YI2pXfPVVLqW6lpTRdtUyurrUttv7k/vnzqWeevFNm29AtpOGOtN35vHXY71QlgbXJrqVx3Uulsb3qp1YL1+ylTEZr3Yk9Ww6sGaIFZMRWzveWQKf8e7UY7XRzk8P/jvGQAAAACA10QYCwAAAOALEQ9R7j65k/27e3kkjyTFJMN+KGGrJFnC1yGI7GQK7oZUKmZFVcQmSctUxPP0xWGoq1qrKlhbCZvbSNumTG+sz5vjIvW5YqUS1k6bvJxYeXFbgljdLplzOozVbZx1VfX+pumJTeWrJGnXiHX2q37sM9kxS92uCYZzle5KsJxikuOro3z2Lz6bKmIJYgEAAAAAF0IYCwAAAOALkcYkx+ujhCHI+Hgs4WcOUHPla7WGbJgrZqNKz3LeGub1XiVMVbRBqgrZqip2Dm2bHDRJ1V6vCdv0oati07IebK9qdhmuumkOC/U4TgWDnTBWf9bT+LqhbOdYtyI2V56uhLBV8KrD2V5lrDrnBbH2c3f9W1HbDdW+KSY5vDzI8dVRxptR0kgSCwAAAAC4HMJYAAAAAF+IeBfl9se3U2XiIHL17pXsnuymYHM3B6u7zhqyQ1hCxVwZG6aQ1a2A7RybOnf+RNz1YteqYm2w21S96urZsxeOFT+kPSO49I5X67NurYgVKWG4F77qqtdNlbFOCNusCes8lzdF8paK2Hgf5fkfPJfj9bEO9QEAAAAAuADCWAAAAABfnCQy3o1yeHEoQWkIQQYZpspYmUJNGypWdGXsXGVapinurP+aUhIZpDpf+s8VuKoyNp/L1bcSZKmu1cdlubaq6pWpfT5vq2WXR+mEtE5zt/rVfO5WkzqhqxvC5mtOVcR6lbHOmrG9Stll6El649dTFleVsPN+N4iV5X73n93L8foo4/1IEAsAAAAA+FwQxgIAAAD4Qo3Xo4zXo6TjUiW5izsREQljKJWyQ5oC2iENIoMsa8cOS/BZKmPTPD2xVw2b/1TwOt2s/qvWjhWnrdpWa8XmayW0bcyxTTqZ4YPD2F51bKea1AaaTfgq4q4Taz/rithqHLISwppnKOOw4zlVEZuSpDHJy++9lPtP70+/cwAAAAAA3hDCWAAAAABfCuP1KPfpfqpIfTpVnw67oVShikzbKHGaqjiVlHPiBaUrfzms7bUPos7r8Na5l1cZW6piy+H2mMhybjq8Uq3pnTIVo03bZIJOG8Dmz/mcDVzFOXaqIvZUGKvvvRLC2rFVAax6hi1B7N3Hd3J4cZDxduy/XwAAAAAALoAwFgAAAMCXwvHVUY6vjhKuglylq2nd2Ks0TSccl7VjBxlK4DYdVNtktoOcDGXd4NULaO29OtuQlumSpRwO9XTLYs6thbCWbeoFslvC2HzeC2NlqXp902FsdX/9GCeqYfXxc4JYiSK3P7mVmx/dbHzBAAAAAAC8OYSxAAAAAL5UDs8OMt6MIklkeDwFr8N+EBEpUxKH3TQ9cUj1VpJU0xWXUDYHs+JsbTg7HytTHEt7rhvGynxdb4piZ3riavriU5wgNvextTJ2bc3YJtCUTih7xvTEEtuqVj1OHUS7UyjbbSegbYLYmOTukzu5/cmt3D9jamIAAAAAwBeDMBYAAADAl8p4Pcp4O8r+nb3s0k52V7tpDdghiOyknerXbnvTFefPsd4GmacY1lMXJ+c6NV1xCKb6tVcZm6SEsE1gKlLC3m5lbK9gdksouxbI2gDTC2GTOdariBWp1oN1g9kTIWy1/5BqWP1c+d5jksOLAxWxAAAAAIAvFGEsAAAAgC+fKHL38Z2EIcjd/k527+zk3V99V8I+yO5qJ2EfZNgNEuJcGRuXClkJUwVtCNOxFOYgN4ewc0VsGqaK1Lxdq4bNx3PVa57SWAetVbCaz8kSHttq2dJWn1uzFsDa817V6LxdDWJlqmQt164FsbrqNYq7Lmwz3bAZvx17r+LVVsiujjsmuf/sXl5+7yVrxAIAAAAAvnCEsQAAAAC+lOLdlK6NMkqKSY63R9k92pV1Y6PEaf1YkWVKYpmnMhYVgg5hCglNpWuIc7g6b0XmqlYVtJaK2flzqZzVbXOl7BwUhrBMlzwNRK0ZK8s4S1t5g5WxugLVq4xdCTrdKliRepriE9MT24rZJjD2jq0EsWXbCWn1uRwOj/ejHK+Pcv8pUxMDAAAAAL54Ian/v/VHjx59kWMBAAAAAN8gMlwN8ugbj+TpLz2V4WqQYT/IcDVM4ex+mNrs5u0wbXOFrAxSKmXzdMQyzBWpOc8N6lyoj1X74rQRqSplq+OZqpbVx+pdd1FZlxu8qs8nq2JlCVP1503TE69MUzx13wbP7jH1DF7Va3e9W2nHmWKS48ujPPuXzyTeR4n30X9xAAAAAABc2P398g+EqYwFAAAA8OUXp0rZ8WaU46uj7J7upuNhCmBjiFWlalWJmStbh7RMVRxUtWpc1oDV1bAlF02mvTpeKmLzWrF6vdm03F/ErCUrqg91oFshqzlVsU3Q2Qkwu1WyOqiNdRsviPUqY0tf7pBTM+5TQax+Dlu9qz+nOAex10c5vDrIeD0ulbkAAAAAAHzBqIwFAAAA8NUxrwf7+Ocfy6NvPpLd491SIbubKmTDECTs5jVjd6FfHaurZHVFbP4sUh8X53j+7FXE9ipkO8c2cYJY77NbFdsJYe25TWvF5q0ObvV9vKGboLYXwLrrzHaqYSWJpDHJeDfKZ7/3mYy3o6SRIBYAAAAA8MWiMhYAAADAV1MO325GOb44TpWuj2WqkE3DFN7N0w6XbVKfg7M1f2VdWLNubNU+OZ+dbbVW7Hx96VPrTVfcyRVPTVG8pcK0+Zx39dTDYgJQWxFr1nZtB9qGs701X5vxrVT0ppTk8OIg8S5KiknG+1HifSSIBQAAAAB86VAZCwAAAOCrKYg8/vnHsn9vL/t39jJcDbK72pUK2byGbBjCsn7sUFfGVlWxg6mSne/RrYL11pGV9njZl3q/OmaOi0g3iG3OOaHmg6cpPrM6th1Wsgfq41sCWDN+b4wpJXn2B8/k9qPbbe8LAAAAAIDPEZWxAAAAAL76ksh4M60PGm+jhH2Qxz/7WMI+LNWwScq0xZJkqqTdSalcTSGVcFZXu6aQqumJc2VtXlu2qZSV+Ro1XXEVrnY+53VqH/Ls9vPmMLZXEbs1lLX37IyrCVbNGG1176ZK3ihy/+JeDs8PMr4aCWABAAAAAF96hLEAAAAAvrKOL48iL6fP4SrI8GiQ3ePdFMLOAWwYgoS4VMWGZCpjhyWU1SFs+SyyhIPzlMM6qNUhbJLlmqqtSAlxbfiqpzHuBrNeFeqJqYqr4LQXburPW6piT6gCVW+cdgxrlbBmbCklSTHJ3U/v5NWfvTo5FgAAAAAAvgwIYwEAAAC8FdI4BXW7xzu5+sbVNG3xo2na4rALZcriEKfgdNgNVWVsDmfLMZFSEZuiqZRVFbEnQ9i8rwLbrIS9+RnWSj29U6dC2Hlbrbd6YpriXhVstxrWDsmGtk7o2oS2nbGnmOR4c5SbH96U9WoPLw6r9wcAAAAA4MuEMBYAAADA2yGKHJ4dZHw8yvB4kDROid6wG8rUxbkyNgxBosQpDM3TE+dpi0OQlOptCVxzSNsJZavtqWNW73gv+1wLM/Oxc6Ypjqne5nPeuJq89QEBrHfOBsQxyXgzyqsPX01TTAMAAAAA8BVDGAsAAADgrRIPUe5+ejdVu+6CXL1/JVc/M1XKhl2QYT+UdWTL1MXzX66QlTBVrYZhXiN2mCpbU0jlXA4pT1XETgfVFMRBHw79ENbTCTP159VA1n521owtl9rK2NVhtW3XwldvnDYYHu9GefmnL2W8GQliAQAAAABfWYSxAAAAAN4uUaYAbxZ2QYbHw1QZu5+SzzAEGWSYQr7dFASGFOpK2UGWyth8TP+J89nbrn329tecCGNtFWw5btdp7YWxZw3FCVu9fuyus9ZtHkc8RpE4h7G3o9x/ci/xQBILAAAAAPjqIowFAAAA8FY7vjjKeD3K/r29DE8G2T/dy7AfZHg0VcgO+6GsISvDsnasDEsFrK6WtdskqYSypXpWZKmcddaKbapjneOVrevFrkxJLKLC17Wpg72xeKGrtKGqe94Zpx1LSklSTPLyX72U+8/up/MxTeEsAAAAAABfYYSxAAAAAN5qaUySxmna27Im7H6eUni3rCUbJUqIYaqUDVOlrAxS1pPN1bIiarulUtZ+VvtBQjekXR6g92D1Z68qthvG2utP3NdbE7ZtvhLOdqY/joco8T6WMPb46ijHV0dnMAAAAAAAfDURxgIAAAD4WhivRxlvRjmGo4QhyNU3p3Vkd49301TGV521ZFWVrK2QddePVWFsVSk7H9Py+rKbOSFnU4G6FryeU3lbTp0xffHatMVmXCkmuf3Jrbz805flHJWwAAAAAIC3DWEsAAAAgK+HPCWuTFWY8TaWqtlhP68puwsSYmhD2RRKtWwIoVTYSpD6s6QqkE0hlWmKCy8QXctkO1mot/Zqd/rhLXnq66xdu2FsKU3v+vDiMK0Lm5IcXh4k3hPAAgAAAADeXoSxAAAAAL5+ksjh2WH6HER2T3Zy9bNXUwC7m9aRDbsgw26pls1rx56qkG2qY3X1q/4YwnlVp9IJYOfPuq/uOrRrUxOboTQhsjeG5qTTLofgMcnx5ijP/sWzqQL2vEcHAAAAAOAriTAWAAAAwNdbmqbHHV+N03TEaori/bv7afriaMLYXWgC2DRMVbBpmNejnUPYFFKZsliHm3r64rBSlrplvdbuNfN6t6X/XjBrz4lTXdvepNmvpkxOUyB7/9m9xLtpXdh4P1UjC8WwAAAAAICvCcJYAAAAAF976ZCWSlnl8S88lv07+6USdmfC2KGtkv08KmS9fpa8VQWvetpi9/K27Ulen2qa5FwRm+I0LfH1h9dy/9n9xs4BAAAAAHi7EMYCAAAAQMfx5VHiXSxB7NXPXJU1ZEMIIsO8LuwQlgrYOXQNQ12N2oSzsqwzW7XrTA+s25T+nAA1TaWwdUVsvrYpst2YwHrNkqqeTSLHm6Pc/fSump44pWlqYgAAAAAAvq4IYwEAAACgY7weZZRRRETCVZDd052EfZBBhimEjVMgW6YxDqFMP1xVyEo7XXEOTUvF7LxJIbWBbDDBqpg1YteC2dy3DWfVPbdOR2ynIRaZK2GTyPHVUV792auVjgAAAAAA+PohjAUAAACADdIxyf3H91P4qgLU/Xv7MpVxGtJSAav/5rYlrE1SAtaUVCXrHKraNiKqCtVORyyy9CHtufniaROSe7z/0OrjHLqmlOTmBzdLxevcJt6zECwAAAAAABZhLAAAAABskUTGm7E5HPZBhkfDtJ7sXCkrItM2LNsgy9qwVcC6st8cc9aBtcf1uWqcnepZ91FTkhRT3X4OYtOY5P6zezm8aNfYBQAAAAAANcJYAAAAAHgNxxdHGa/HdirhIDI8HuTJzz8R2U1haK6aTcGpoJ2vCbJMdazXmy1rwYppa4+r65bd4Aa0Iia4Veu/vvreqymQbS+Q8bYNpQEAAAAAQIswFgAAAABeQzomScdO0BmTjPejhCFIGNQasnMAq6c7DiFIuNwk0R0AABbUSURBVFJVrkEkpDm8tVMZ5/71Gq46DFbTGed2KXbGmdpAdrwZ5fDyIMLMwwAAAAAAvJaQUir/f92PHj36IscCAAAAAG+XIBJ2dbXs8rEuXx2eDPL0l59O0x0P07kquM3TEat+qmNrksjh1UGu/+zar3a1zVOSdNg4pzEAAAAAAKjc39+Xz1TGAgAAAMClJOlXzdppg4PIeD1O4a2uoJ3PhSWBrbdl1wlmVdXreD3KeDduXjcWAAAAAAC8PipjAQAAAODLQq8f+6bN68ECAAAAAIDLojIWAAAAAL6MCEwBAAAAAHirDF/0AAAAAAAAAAAAAADgbUQYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwD///bt4AQAEICBGO4/dJ3iECSZoP+jAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABA42/Z6BAAAAAAAAMBvPGMBAAAAAAAAAmIsAAAAAAAAQOACaazXSuW+u20AAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "fn reflect(I: Vec3f, N: Vec3f) -> Vec3f:\n", - " return I - N * (I @ N) * 2.0\n", - "\n", - "\n", - "fn cast_ray(\n", - " orig: Vec3f,\n", - " dir: Vec3f,\n", - " spheres: List[Sphere],\n", - " lights: List[Light],\n", - ") -> Material:\n", - " var point = Vec3f.zero()\n", - " var material = Material(Vec3f.zero())\n", - " var N = Vec3f.zero()\n", - " if not scene_intersect(orig, dir, spheres, material, point, N):\n", - " return bg_color\n", - "\n", - " var diffuse_light_intensity: Float32 = 0\n", - " var specular_light_intensity: Float32 = 0\n", - " for i in range(lights.size):\n", - " var light_dir = (lights[i].position - point).normalize()\n", - " diffuse_light_intensity += lights[i].intensity * max(light_dir @ N, 0)\n", - " specular_light_intensity += (\n", - " pow(\n", - " max(-reflect(-light_dir, N) @ dir, 0.0),\n", - " material.specular_component,\n", - " )\n", - " * lights[i].intensity\n", - " )\n", - "\n", - " var result = material.color * diffuse_light_intensity * material.albedo.data[\n", - " 0\n", - " ] + Vec3f(\n", - " 1.0, 1.0, 1.0\n", - " ) * specular_light_intensity * material.albedo.data[\n", - " 1\n", - " ]\n", - " var result_max = max(result[0], max(result[1], result[2]))\n", - " # Cap the resulting vector\n", - " if result_max > 1:\n", - " return result * (1.0 / result_max)\n", - " return result\n", - "\n", - "\n", - "fn create_image_with_spheres_and_specular_lights(\n", - " spheres: List[Sphere],\n", - " lights: List[Light],\n", - " height: Int,\n", - " width: Int,\n", - ") -> Image:\n", - " var image = Image(height, width)\n", - "\n", - " @parameter\n", - " fn _process_row(row: Int):\n", - " var y = -((Float32(2.0) * row + 1) / height - 1)\n", - " for col in range(width):\n", - " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", - " var dir = Vec3f(x, y, -1).normalize()\n", - " image.set(\n", - " row, col, cast_ray(Vec3f.zero(), dir, spheres, lights).color\n", - " )\n", - "\n", - " parallelize[_process_row](height)\n", - "\n", - " return image\n", - "\n", - "render(create_image_with_spheres_and_specular_lights(spheres, lights, H, W))\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAEAAElEQVR4nOzd6XM0SX4f9qxqAM81z9wzO7vckzK5q4OySJk2fTEsH7LCDof8yn+z7VCELdEKSZYVJk1LFimSy13O7FwPuv2ikMi7uhoPeoCZ+XwiEN1VlZWVVd14ZmO/+GVOh8PhEAAAAAAAAAC4V/NDDwAAAAAAAADgm0gYCwAAAAAAAHAGF/nG1dXVQ40DAAAAAAAA4Gvviy++uH2vMhYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOANhLAAAAAAAAMAZCGMBAAAAAAAAzkAYCwAAAAAAAHAGwlgAAAAAAACAMxDGAgAAAAAAAJyBMBYAAAAAAADgDISxAAAAAAAAAGcgjAUAAAAAAAA4A2EsAAAAAAAAwBkIYwEAAAAAAADOQBgLAAAAAAAAcAbCWAAAAAAAAIAzEMYCAAAAAAAAnIEwFgAAAAAAAOAMhLEAAAAAAAAAZyCMBQAAAAAAADgDYSwAAAAAAADAGQhjAQAAAAAAAM5AGAsAAAAAAABwBsJYAAAAAAAAgDMQxgIAAAAAAACcgTAWAAAAAAAA4AyEsQAAAAAAAABnIIwFAAAAAAAAOIOLhx4AAAAAADxW8zw99BAqh+7e/f4rHgYAAJsIYwEAAACg4913n4Tf/d0PwsXFFKYphBCWYHbq5LP1vkM/M+0cOxTb8f3yeii2Dzcb8X18ffXqEP7xP/7z8ItffLn95gAA+EoIYwEAAAD4xpumEK6udrehaS9Qrb355mX44Q9fhMvLOUxTGcROWzqoHLLUtQ1gD90gNg9hl+rXZf9+n16//HIf/tW/+mX4/POyPLYNhA/F/i+/3K+GxgAAvL7pkP2vwKurq4ccCwAAAACcxZtvXoa/9/e+F54924XdbgohLNWu0zR1A9ppmsLFxRRevry6aXe369ZhZy+QTbtSAJu3zbfT8fR+vz+Ejz/+Mrx6dSgqZvMwNwW4SyXtZ59dh3/0j/4s/OpXr+52YwAADH3xxRe371XGAgAAAPCN8PTpLrx40f7fXdM0hTffvAwffPA0PH26C7vdXASxdbXrlmmIa6MK0zaM3f7+cJhCGdBOt8Hq8n4JWne7Kbz99lUTvpYhbBnGfvrpq/DOO1fh6mqurrm8+eyz6/DFFxaiBQB4XSpjAQAAAPhG+K3feif8x//xd8I8T03YOs9TePJk1wSwsUK2dkolbC+IjdWra23K/YemXfm+rpJdzulXzbaBbB3O7veH8Pnn12G/T9v7/SFcXy8/f/AHfxH+8A8/3v4QAAC4pTIWAAAAgK+daQrhww+fhWfPdqEOUacphI8+eh5evrzMAtfjla95KDu6ZjQKVFObFI4u+9LJa2uzrlXP5tvttMYhC2DzqtmQBbBTFsgu7+d5uq2ozStmr69TIPvBB0+LNWXzcPfzz/fhL/8y/R+MAACMqYwFAAAA4Gtht5vCP/yHPwo/+MEbt9WvqQp2eR+3e2FtDEfXql57x9aC1FPadM5a7aNeS7be36uWLfe1VbEhLOFrfB1NZxyD2fjz6tXy+sUX1+FP//Sz8L/8L38a9mYxBgDoUhkLAAAAwKP0/PlF+PGP3wgXF3NT2brbTeHdd5+EJ0/mMM9TCGEK87Lk6W3b5X0IeRjbn4Z4+zzEp0xZvNUSmrYdn7bG7DSYvrisil220/vl3g+3r/v9Mo5YIXs4TGG3W4LZ6+tl38XFEsZeXEzhnXeehN/8zbdugtrlXvb7Q/jTP/0sfPLJq9d7MAAA3zDCWAAAAAAejTffvAy///vfDU+f7sLFxRzmOVa/9qYebgPXPGStQ9RjUxIfF9PQ8vy7hbVTp5q2XTd22c6nO67bTEUVbNzOQ9h4Xv2+XFO2vy+vlo3h7LNnF+GDD57eVtC+erUPX365D//r//rvhLEAABVhLAAAAAAP4mc/eyt88MGzsNuloPWNNy7DixcXN0HsUvmaql5TEDte/3U8FfHrV7jO99RP3xKWHrLt+ngIeTVs3qZ9XfrKt+sq2bJ6tty3hK9TmOcyjF22D2G3W6piY7Xs5eUcfuM33gofffT8tsL21atD+OSTL8Mf/uHHd5zGGQDg608YCwAAAMBXJq9g/clP3gw//elb4fJyLtZ7XaYgTq+98LXdLq7S2fd6403b4063XG8tlOxNXdxOTRyD07bN2mv7Pg9fl2PLdMUxdJ1uKmPTVMbLdh7WLmHsbrcc+/GP3yjWl/388+vw7/7dZ+GP//iTcH3dr/oFAPimmw7Zn9JdXV095FgAAAAA+Ab70Y/eCL/92+/dTjv80UfPwptvXhUhbB283mU64rTvtDR2vZr2/gLenjKkHE1XnI7Xgevyvrd+7KEKYg+D96EIZ+Ox/T695m3y7XwK48Nhmbo4hrKffXYd/uzPPg3X18v+P/7jT8If//Enr/ewAAAeuS+++OL2vcpYAAAAAO7dUu0aQh6Ivvfe0/Cbv/n27bTEMZRd2uWVsHUYOw5f60rVu4aleeg6Xmu22PtawWyqcm2vEdd2jftimDpNaV3YaVr2pzaHME3T7b7ldZlquN7O28T+6zVjY/Vtfp0lhE3jjdvLdQ83+6ab6xzCPC9TGD979sbt2rIff/xl+Lf/9tPsXpdBvHqlZBYA+GZSGQsAAADAvbq6msN//V//Wnjvvadht0vrvj5/fhHefvtJsQ5sOwVx2p/vS+9D8z4PfLcGpPX5477bcaz3NbY+Re+he7w/TfH4WDtFcV0tW7dpq2HrKtllmuLlnFGlbJrCuF8pG18/+eRV+NWvXoVXr/Zhvw/hiy+uw69+9Sr8wR/8PHz22fXaAwIA+NpQGQsAAADAvXr2bBeePt2FEKbw5MkcPvroeXj//afh4mKpfo3VsP0Q9pQA9vh0wcfC0bUpjuvQ9XWus9a+DV5TBWt5TgpPY+Vp3t+hOGFqziurZVP1bF4pm9qX1bB5xexSvVyuaZva5MHuVNxf7G+/Xypm33jjMjx/fnETxi7TGD99ugsvX16Gi4vl+q9e7cPnn+9Pe7gAAI+UylgAAAAAXtt/+p9+J/ydv7OsB7vbTeHFi8ubqti1EHa0JuyxSth2euKR0ZTG/b7HUw+fa63YaL0qtl1Dtrd+bL5/y/qxeVVsPKedurg8Vq8rW68jG0Kqmi1fl4rZ/X7ZjtWyr17tw/X14aZa9hA+//w6/MmffBr+8T/+i5OfIQDAY6EyFgAAAIA7ubiYwwcfPL0NWkNYgsoPP3wW3nrrKszzdPvTC2HrNWDzitjxdMH9kPR4Bezp/d5H6Jtbn5q4aLnWe9M2VdHWFbWH4pxUERvXcy23lzb1WrSHm/1TFshOIVbGLpWuh+z4VIS481yHwlPxHMq1cOcwz4fw4sVFuL4+hKurOXz22XX48MOnt9Mef/zxq/D556YwBgC+nlTGAgAAALDZe+89Cf/wH/4ovHhxGZ482d1Wwl5cTGG3m2+ms52q1zqIXY6V223weWwK4dqxwHVUJTu+Vupj7Vqn6IezbeXr6JxD1aheI7a3bmy975Qq2W3rym6rkK3XlY1Vsr1K2S++2Icvv9yHL7+8Dn/wBz8P/8//88n4oQIAPDIqYwEAAADYZJpC+MEP3ghvvLFMO/zy5WV4+fIqPH26C5eXc1MFOwphtwSwx6pSt63f2q+Cfah1Ykfnl5nqNDjWprNxzdckVrHWlbJl9Wze/tQq2d66smn92LxatryHskK2DY5TxXS+f6mUjesMX1xM4TvfeRbmeQrX10tY++/+3Wfh1avNJccAAA9KZSwAAAAAQ/M8hf/xf/xR+PGPX95Uwoaw281hmsJNCLsEryl0LacfzreX19F6sMfC0lrdb95+/RpbqmDPFciuTVvcC2Hr9qN1ZEfVs1vWjI3b/X1tJWy8xmjt2LZStt7Xr5A9HJYK2WV7qZCNAez19SF89tl1+NWvXoX/+X/+0/Dxx6/GDxIA4IGpjAUAAABg6Hvfex5+/OM3wjzPYbebwocfPgtPnuzCxcUyDfEohB1VwLaB7NIm3xdtDUbvEr7WfW8LfY9Pj3yKdI1DEaDmx2IlarlvOaduE6tfpymFpnn1bH/N2FTlWm73K2bTtacsoC0rZ1Mw2/7Eay2Ba7m+bBxjqs49hHk+hOvrOUzTIauSXRrP8xR+4zfeCr/85RfhD//w43B9rUIWAHjchLEAAAAAFL73vefh937vO+Hycg4XF0sgO03h5jX+pKC1VwW7JYA9Fo7eHumGsf3+j01R3OuvF7bepfq1PwXxsPWw/bK/DGvzqYTT9tKunGa4DFeXfdPNvvVgNp2fgte6/zJ8PTWUjVWy+TinYkrlfLrj/X4JcKdpqaCd5xAuL+fwG7/xZvj5zz8Pf/zHnwhjAYBHzzTFAAAAAIQQQvjud5+H/+A/eD988MGz8NFHz24qYdOasPnasMcC2PXw9ZSq1P70xf0wdq19Gk/ver2K3GNjex1tYLtlauK4fRgez6cVLo/XUxS3bY9PU9xOW5y/3zpt8TJ18XJunJ44n7Y4Hi9/Qri+3of9PoRXr/bhs8+uw//3//0qfPnlMoXxn/zJp+GP//iT3qMGAPjKmaYYAAAAgBBCCBcX022A+d57T8Jv/da7YbebmnVhyzA2hBiojkLYXhB6LICtK1jrdr0pkG/edatt14PZ5bzRWI7tv3+9C42qPqeVNqNjvf3TSru2TZq2eDkWq1pTu8NtRWustu1XyS4VtYfDIcxzqsBN1bfZaKbY7yGEMN++Pn8+hR/+8I1wfX0IX355HV692od/829+dXteDHUBAB6aMBYAAADgW+r584vw9//+r4U337wK8zyFFy8uwtXV7qYaNhQhbAjpNa+OXba3Txmct+8dK/ev97s2BXL5fksl7nia5GPj3GK0PmzZ5lAdS9ML5/3EaYyX7XK64/T+0JyfKlnL0LNfMZuC1DIobdd9zX/i+NemK86nKd7v4zlxuuI0bfE8x2mK430ebgLcOG3xcny3m8KPf/wyvPvuk/DFF/vw6tU+/It/8Yvw85+nihQAgIcijAUAAAD4Fnn6dBcuL5eq1zfeuAzf//4b4e23r8JuN3WmJG6nJS4rYtN2CKet25of6+8b9zsKgfO2vf7rqYjXr79uS7t6zddj7epnFEPJvF0/qD1UoWve11rVa77/WHXsqJo2VcTmVbN1n7FidtmXXuf5cBu05tvx/uP10hTHZcAcr/vixUV48mQXvvjiOnzxxXV4+fIyfPrpdfj882sVsgDAg7JmLAAAAMC3yN/7e98LP/3pW+HiYg673RTeeusqXFxMt+FrPhVxHsaGEIr9cXt5baf7HU0RXG73K2Tr0LfeV7a/ewXuaBy9tufQDwn70+tuXTc27S77qdeJ7e0brRVbt9mydmwIaV3YtfVky7Vjy/31a/3++nqplL2+TtuvXu3Dq1eH8MknX4ZPPnkV/tE/+rPwV3/1Ze9BAwCcjTVjAQAAAL4lnj3bhbfeuroJWkP44IOn4d13n4SLiznM8xR2u/VK2Ho64q3Vqvm+8v3xkPYua9COpiTuX2M9pN167C6OVcvm0w6nqYh7UxXnUw0fmr5SP4fq/FRpGqcKXqYGDjfTAOfPqKyWLSt162rZ8n0aY6puratiQwhhntP9LdWz+bNJUxHHKbJjWBvXms2nRz4cQtjtlnbPn1+E3W4K77yz/LHBfh/Cq1f78Mknr9qHDgBwRipjAQAAAL7BfvrTt8Lf//vfD5eXc7i4mMOTJ/NtEBsD2vx1awC7LXwdB6/5vlGl7bHgt7/v+LXbsUyD/etG7U+ZFrds2692HbXtVb6m94fh/v4asXV1bd3uUAWf/WrYuvo17WurYrdWyvaqZGNF7OEQuhWy19f7cH19CJ99dh2+/HIfPv30VfjzP/88/O//+5/fBr4AAOeiMhYAAADgG+7Zs1344Q/fCD/84RvhxYuL22mJl0rYem3YNohtg9fXX7O13He8v34oO5oWOV23P6Z03dHY1vafYksfaZ3Y4szqWDmlcFkd21bQlu2m4thof37dtX15pW08nipl6/N7FbH1/v66tUvF66Goqp3npWJ2qaKNwe9UbMe1ZPPnE8IUrq4O4eJiGcebb+7Dd7/7PHz88avwi198EQAAvgrCWAAAAIBvoPfeexr+h//hR+HJk124vJzDPIemGja+D2FrVey4ajXfF62FoK879fHouvV0vMerYttrrNka1h6rjo391Gu/lsfK+87Xgy236+dzaI4t7cuwNU1TnKYVjqFtmsZ4Ks5NoeehaZ+3zdvt9+3+9icey/tZQth4jfg+D4KXtktFbGwTr7ffx/OWsT55sgtvvnkV/uiPPg7/+B//xfoHBABwT4SxAAAAAN8Au90Ufvazt8Mbb1yG3W4Kb799dRvE9taF7VXEhhBuK2G3Th2c76vf58FqffyUELbsfz2APRa+jkLX+6iIvVt//Ybl+qxr57Rh7qhq9vWqZcvtGMSO142Nx6Ywz6maNW+zhKh1cBqac/f7WDUbA+rDbVA9Dr1joBsraOebcRzCe+89Cb/5m2+GP/uzz8Nf/MXnow4AAO6FMBYAAADgG2C3m8Lv/M774Xvfex6urpY1YXe7OUxTuJ2aOIawIeSvIcTgahTC9qYhvksAW/dXB8D1vvx6bT/brlUbV8aW97BVWaG6xdbGvTH0zq3b9ab/rfePq2VHbUeh7DiEzY+l/THEjRWwMaiN0xPH17xKNoav5Zq18TX1n77DIYQwh2Wa5/lmjdn9TagbwgcfPA1vv30V/uk//UthLABwdsJYAAAAgK+53/7t98L3v/8ifPDB03B1NYeLiyWMLdeFrcPYEEYh7CgQHQWwa6Fnv+o1X4t2WwA7qn5dG8c4qF1vt6bXNt93PJg9drG1Do4Fr0ubNmQtz43TErd91qFqb1+aHjj1lU9DXI6hbpeqaftTCafXNIKlsjW1DaENZfOq2rpNDGf3+yWcjd/9H/zgRXjx4iJ8+eU+fPnlPvzRH30cPv30uvNMAQDuThgLAAAA8DVTV7j++q+/GX72s7fDxcV0UxEb14MdTUmcB6DbgtFeALot/Mz7L0PZ7dfaFsBuCV+3VcauWW+4VGMeVwaFZf9p+uAQ8vVf69C3fP6HTceW4yksbSuCeyFuXSnbbpfXHFXNtu/L71KsjA03FbPTTYCaHzs035c4lXFc/3i/TwFu/ixjFfM0zSGEfXj//aVC9tNPX4XPPrsOf/Inn4bPP78ugmAAgNcljAUAAAD4mvnJT16Gv/t33w8XF8t6sB99lKYmbiti88B123TE/WrWcl+5P9+3rd9TAtgt4WteTTseW7Nn2PbutnUWg8HFejVs2XbUvrz3/vTDy7kplJyaMcR9ZR91sJueW5wmOA938wrYfFriumJ2CV3DbfgawnRT/ZqvE9ubtjhkY2zXm43fr1Q9O4UQ9reB71J9u1wn/lHD5eUc/ubffCf81V99Gf7ZP/vL8MUXElkA4H4IYwEAAAC+Jna7KTx5sgvvvfc0/OQnL8PFxXwbyKYgtp6CuA1i8zCtF56W2/Hq/XA0bZdh4LZK2PXK2F4Iu3btcWVsuof+/rVz7leekdaVu6kCtq5krati4zM6NMdTH2UVaWozZaFpXi2aV7iW+9bupWyTh7DpWnE8ZQVtu67scixOe3wojtUhcL4/9hf/ACGGrUvV7DIFcgxdewHzxcUcpmkK77xzFa6u5vDs2S4cDiF8+aVAFgB4fdMh+zO5q6urhxwLAAAAACt+7ddehH/wD74f3njjMrz11lUnhJ1CDKBG1bC9IPTUStg6fC2PbQ9g6329duV4joWy/XH32/SOnTmJDSHk0w53j3aO9Spo83Z11ezoWPy/Advj6Zz0ejiync7rtUnVsP338ZxlGuK0Lz9evk+vSwXs8hq3l+P5vsNN1eyyb7/fh8MhhOvr5Vh83e8P4dWrfbi+PoQvv9yHV6/24S//8ovw859/Ef7JP/mLcH29bdppAIDcF198cfteZSwAAADAI7fbTeGdd56EDz98Gj744Gm4vKyrYUdVsO20xCG0gWkviD11OuBRJez6dbZXwdbt27FtD2C3BK/3VSHbhqv1OMvwtKyALffFKXpT5WmvKna6qS5N5x6rlo2VqGUFbl0Vm65dn5e3SZWw7X2na7dVsmW1b68iN1XH1tWzqYo2ZPvS/cf1Z+PxuC5tFKtml6mR5/Dy5WW4vj6EN9+8DJ99dh0+/fS6vhkAgM1UxgIAAAA8cu+++yT8T//Tr4c337wKz59fhHmewm6X1oXdEsaGMK6MTa/H12ltj9XVrscqYcfB7yj07Vfnjsc0Gveo3SnH72KtEnatzaGzs94VK1R7x/OK2t7++6qU7Z2TV7+W7/vH8mrYWPUaj+eVsKkiNp2zVMHm7+vXVCl7fb1s55Wx8f2rV8vrl19eh1evDuGTT74M/+bffBr+yT/5i+ZzAABYozIWAAAA4JH76KNn4cWLJXh9882r8OabV+HZs91tCBuD2PVq2HEQu70Sdr1Ctq6ETe/b41uC2NcNYU8JYPv77z+NTRWfSR2q9itiy2rUvF25Xa7V2lbF9qtl8/5jn71K2di2XGu2rrKtr5FXt+aVsOV2fg/pXvO+ygrYthq37DNed57zoDhV3S5ryE436yqXz3Kel+vsdnMIYR+ePbsIb755Gb7znWfhk0++DB9//CoAAJxKGAsAAADwyMzzFH7v974T/tpfexmePNmFeZ7C1dXudl3YaUrVsG1VbFupuiWE3RLApu1tFbenBrC98HW8vx3reLypr7W253XsYmvls71ze+2nleNbjvWnJS4D2Lxd3SZ+rilITf1ON23SuTFcrfvM9y8Vr0vwG6cXjj/7fRlOpwrdKdtuX/t/rBBCCPPNGrbz7frL3/nOs/D221fhX/7LX4Z/8S9+EQAATiWMBQAAAHhEfvCDF+E733ke3n//aXjyZBcuL+ebqYhDFcKOqmHb8HVrlWo8p96XnxPf16Fvfr36GqdUwW4JYUfVs23bcag8Puc81iphl+P5WNtph+vK2fgs6zVa8+rT5f2h2h+rWMtze9WuN1e+7ae39uxalWzeR71GbOq7XEd2vD8/Xj6T9vub2peVsmUFcfy+xirZshI4riE7hcNhDu+99yT85CdvhH/37z5TIQsAnEQYCwAAAPCI/Oxnb4e/+3ffD5eXc9jt5ptpics1YssANk65uqUyNrVL2/H9thA2th1XxpZj6fU9roRdC2DHwWodvo6C1fXAdf3cu8rDv7U2vQretL9cr3VU7VsGouVnt1ZJWwaw5b566uL2unmAmgfJeQCbtvNjIYTbatc6cF321+3z13A7FXH+POK+pcI1n+K4PH57F9Xvwn4fwm6X3/OS1H73u8sfSPxv/9ufC2MBgJMIYwEAAAAegR/+8I3wm7/5Vvjxj1+Gy8s5XFzMIVbCLtMTh9vtEPJQNgWV8dixkLRuk29Ho6rVU6YkPhbCHquCXauA3RLA9gPQabC/75S2dfVrOr/tJLVtg9o2dJ2q0LG/hmy9BmzeX6qkzQPT1P9yrA1lR1MXl/tG221gW4e37f3n5/QC3Pp6KbhdKlmXNnnouoS6KdxNVciH2/Vj62mNlzB2zp7VPoQwhx/84EV4+fIy/NEffRw++UQoCwAcJ4wFAAAAeGDzHMJHHz0L/+F/+EG4uIjTEqefshK2/z6qg9Fj1an5vvJ9P7jdHrwe2y776LVdG1t9rLdd30f36Alh6zHH+upVZNaVrXU//WmK4z31piBe+ozH62Ox4rNcCzYfyyFrt3wWoyrZtarZcgrkdLwee37OzSire14LZMtjbcicf8/yCtlDSBXlyzkxlI3P6XBI0xfvdstUxSHsw3e+8yy8885V+NM//Sz86levugE8AEBOGAsAAADwgL73vefhP/lPvhPee+/pzdTEeQibpidO61vGILIfzm6tTs33jfb3K2C3h7CjSthx2LoeDo+PpTbbK2RHx+8rnV1f97VpfSifS9rXq3KNW3nFbJsKpuCzrnptz12f1njLvi3bvQratt0S9NbTF+fv+4FsnPJ4maY43OzrVcgufeUBbP0dzacrDmEJYqdpvv2c/vpffyv88pfPwz//578In39+HQAARoSxAAAAAA9gmkK4utqFd955En7zN99aqYjNw9ZxEHvT68nVsMerTctpiUf9b6uEHQWurxPCnh7A9qpSt6j7XK+K7AXObUBbt2mrZ/NQsm2XtuNzKqtlU7u6WrXsq2zbq35NfYyqZNN919MdH0IKmw/FmNJ2WT2b7rcOcVOfvUA2jqu+t16F7DwvgWyqlk1t0pq1y2sMh3e7peP33nsSnj27CH/4hx+H6+t9ePVKiSwA0CeMBQAAAHgA77zzJPz3//0Pw9tvX4Wrq12Y5+m2KjZWwOaveSBbh5/Hq1VD2BrC1sFr/v7uIey26tg6VK6P9461x/v3d6z9XZzez9SEqEk5pXDv3NuW3XVfy2v0j+ed96pcR/vvo0q2PJYC3BTm5iFsvr8MXUPoB7HLsVgJW1bE1gHt0n6/XwLZ+MzSurHLsbRm7ByWsDZW4Kag+Ld/+93wi198Ef7gD34ukAUAuoSxAAAAAF+RN964DJeXc5imEN5//2n47nefhWfPLm4qYVNgVAevMYAcrQ/bC11LbXVp3N8LPcug9JTK23Houq0SdrS/HVf/fsbPYGtweh9B7VrFbN5/2a5dB7Y+p15Lta6YrStbl/f1GqxllWt+bjovXfyUKtn6GaxX5i7X6b3fXiGbnl19rL7nXjVvWS27BLj7ffweH7LtPOSNoe8ULi7m8OabVyGEEF68uAyffXZtymIAoCGMBQAAAPgK7HZT+C/+i++G73//RXjyZBcuL+fw/Pll2O3iurAxkJ061bBtQFuGtMs1tk4VvBbCnl4ZW/a3dSzp/VoAu1YhW/a71mb9WP+Eu4Sy/arXfoA4roKdOsfaqtl6jdet1bD1mrPLue16snX7tP7sekVsOY72eL6dB7ThtrL10ISwyzTBsU1eIRuy/spjMTyNYepyn+G2GjaG1Xn1bPEEiu/t/jagnaZ9uL5eqmaXfg7h7befhN/93ffDn/zJp+H/+D9+fmT6agDg20YYCwAAAHBm7777JLz55tXt65Mn8+20xEvIkwetMZwcB7KLOqh8/SA27ys/b3SdfhC7tTp2PJZ6PPWxLcfH+7eHt6fq9RVDv2xP0/b4+rEpCO1Vuabtttq1fF+u75qqRadQBq9lBWl9P3WVbD32uk0cVz7meky9e8nXkz21QjafmjgPoHvjKf+w4VBsLxW7qZI2/tFEnKo4riH77NkuvHx5Gd5990n49NPr8KtfvRqMEQD4thHGAgAAAJzZ7/zO++Fv/a13wrNnF+HiYg4XF1MRxvbWh53nEEKIr2U4u2zXIVK43d8POddD2DzwTduj92V/W0PYvJLzWCDcbzN1j/X3rbddP/f19KYYzvY07eqK09G6sqk6dWnfr5aNFZ9t+Flevzw/9t2rko3VrnVIW1fntlWzo0C2V0G7/n6aprDf1/vz11Dsm+d4vWWs+/2yP4a5y/FYKRvCfn+4/R2MzyytIdt+F+N6svmzef/9p+HFi4vwR3/0cfg//89fBgCAEISxAAAAAGfzwQdPw0cfPQsffvgsPH26CxcXc9jtpps1YvOK2NBMTVyGm3l1bNyX2qyHn2Vf9f64XVbGjoPYur9Tg9jROPr7j4ewo7BzLVy9z+B1a/+9qWvLIDUFinmIWrevq2UPWaP8+CiUTe3KitRUQTpaS7Z+LcPb3jqyIbShbTmevFJ3fa3YdmwpbG0rZcsgNt1rem0rgfNK2PLzib8Dcerj5fd16SeGt9fXU7i4mMLV1S689dZV+N73nodf/OKL8MknKmQB4NtOGAsAAABwJr/+62+G//w//yhcXc1FEPs6FbHLvl7Yebcq1DIALoPffLs9Z+n/dULYUSXsaQHsevi6JXitx3EfDlWSeiygzYPpFJrWUwTXAW4+9rrSNfbRD2VjoBqvs7aWbH2d0jQMZFNfdRVtWQWch7MpDM3b9d/X1yiPxb7KY/l2rIiNVbRxDPHZxfA13fdUPLv89eJiCtM0h8MhhA8/fBbeeusq/PN//gthLAAgjAUAAAC4bx988DT89Kdvhx/+8EW4vJzDbjffVsPGithl3ckybG1D135F7NYgdq0KtR++luvTpuuV/dVtx2PonTce2/YQdhzAruWq5whdT7nWsYC2nRJ3KsLANmjNt8t1ZXuhbK/idWkzXku2rHRdrhPHMgpYewFtWYlah64hjILXvBK23p/fUx7Iluu+HppjvdA2/04uIeyheK7Lz+EmwF1+j5cpjpeT4tqx+/0ULi+ncDjM4cMPn4bLyyn823/7afj00+sAAHw7CWMBAAAA7tE0hfDee0/D7/3eh+Hyci7WiC0D2XEQOw5ntwex9Zjq9+vhaz+IHV9zexhc30/5vg1Zy8ByqrZ7bfL928LX+85oe1MSL9eZqnb9cHa9YnZbKJsHr/FYXSW7ddri49Ww5dTC8V7XAtm6j3KsdVjbTmWcB6x1kNuuadt7nnl/+fXS+PK1ZPNpiuf5cDvGWF0cQ9n9fqmOvbwM4f33n4Q33rgIv/jFF8JYAPgWE8YCAAAA3JN33rkK/9F/9GF4//2n4epqqYhtg9i2InY8NXEZcN5HCNqGr+vTEt/l+u2+fghbB8f9ELYNaHvb9TXaY8ND927tWmXQ2g9n6/PLsLKdxrgXyubBazxWT10cQ8wyIA1FkNlb+zVVzZZty2A0bi/XORbI5teO5+bH2qrY/An1A+MyrI2Ba7m9VLiWlbHL63KNGLKGcLipiF3uPz7L+LpUxk5ht9vf9D2HJ092IYS8DwDg20gYCwAAAHAPLi/n8PLlVfjpT98Oz57twm6X1ohNa8PGgLOsiC2DoHLa4GXf6wWxZT+97fLa7ft0Tt336Pr5tdt9/eC2fl/fT3s8jbVnawB730HtqDI2v1avTR2g5uf0qmXzCtL6+Gh64vLa7fnL+7ayNK2RWlfE1q+9YHQc7MZwtR13OdZ2quO6rzp8TX2nZ1BWwpYVuKPvcqqMTdMfh2LfEuhOYZ7j+rNLaLvbzeHy8nC7XvT19coXAwD4xhLGAgAAALym588vwn/z3/xaePfdJ+H584twcTENKmLLIHZcETuuSO2Hrr1gtj3WC1tHIXB9rOy/v35see1RCDtl70Pn/fEAthe+rgWq7bHzViqW1ysDuHZd2N6xqdpfVoL2KmVTRWm9Hmwb8taBd95/HqrGMLKtiD1U26EJWEdryMbtukK2nWo4fw69qte4f33q4vL3aFnTNbaJ0w3v9/nzTNWz+Xd7nmO/4Wat2Phslvvf7abbZxLCHELY35y7Cz/72Vvh+99/Ef7pP/256YoB4FtIGAsAAADwGl68uAhvvXUVvvvd5+Gtt65uQ9iyAjYGSzHUPFYRG/e1QWgdJPYCz3SsDnFDsT3qfxzm1mNu26+N6/j7UWVvO561Nv1j44ZrfZyiXxGbd96u99obR30sr26N7dpK2BRQ5sfL9ynoHPWfQta2j3Eg21bTHltDNoaodXDcG2d+Th2y1mNtn2lZHdt7xu33+XB7bnqeqTI2Vcnm1bMptF2mMU5/hPHy5WW4uJjDixcXYb8/hM8/3/cHCwB8IwljAQAAAO7o4mIK/+V/+b3wve+9CG+//eSmInYO0zTdTlG8BDT1NMXLa3+N2Dz8PBaEjvblge96/3Wb1M+4Orbel197yzqyo/G3x9rwtT7e629L+3M4dp0UmOZty3Vf63561bK9StkUMsZnXa8Hux6C5tWzecgaBuvIbglkQ1HxGvvqV8im70E97XDqNz+n3J+C6FBUx/b2parYvEq2VxEb28Qq2P2+rZI9HFJ17LI93/S5v30fw+C/9bfeCb/85ZfhD/7g5+HLLwWyAPBtIYwFAAAAuIO3374KL19ehnfffRLeeuuyqIhdQtcy8CwD0TK8rIPEOjTNj5VGVall6LfWf93mWBCbXzs//1i7LUFsG8pO1XZo3FcI+7qB7do6sfU1yrZteFqfc0qlbBnKjqpk0/qv7fl1BWsewJ5WIZvur62QXXsux+4nto3XK/svr9kbdxxXDHLr9WRTKFyuSZvWjE2fWR7glj/TbZXsPE9htwvh6dNduL4+hDffvAyffvoq/OpXpiwGgG8DYSwAAADAHfzu734QfvrTt8KLF5fh8nIOFxdzmOe0dmRcKza+7wezo3VaywCzrVpN7ct9ddvtFbG9QDUfV7pOe91eCNvf1469bpOf2ztW97PWrn/OFlsa9wPFYetB5Ws6lj+vMpjN29eVsvU6sGvryfarYQ9NUNkPZE+pkO0F8ofmuvHYco086CyP1evh5oFpqR1LCkvz13jusm+el/bl2rEpnJ3nEPb7Q5jn5dzlfbitiI0/+fNf3i+Vsfv9cg9XV7swz1P4G3/jrfDnf/5F+Gf/7C83hfgAwNebMBYAAADgBO+99yS8//7T8N57T8OzZxc3IezUTEGcwsgY/vTWiQ3FsTaULYPJ5P4rYut2+Xbad94g9lgl7Kkh7PEAdv16x87tB2n9dK0OS9ePpcrL+pyyurMfyvbXkx1XyebrsN5PhWxb/RqvU49vfP+99V2n5pnE+6sD23JMscK1bJfa14FtO65yXd18rdjUNlXDLteJIW+cjny3m8LhMIWrq124vJybcQAA30zCWAAAAIAT/MZvvBV+93c/CM+e7W4qYqesCnbqrg8bK+ragDYPcEMYBbHHKlPrtqM+z10Rmyob633l+aOx947V/faOH9vfhsz3o99f2lmGjmUFa69Nfqyslj2tUrYOMY8FsnWFbDy3F8jmYzoWyPaC6XI92XB73TxojdfJw8+yWjZV0daBax4ul+9r7fTEcW3X8rubQtolVJ3Cfp+uH9vGdWUPh+l2TdlULbs02u2mEMIcnjzZhasrYSwAfFv4rz4AAADACXa7KVxdzWG3m4sQtlwrdgop7KyD2HD72gai6TrHgthcHaT2Ate1itg6yB0FsWWoW49vKtrl59b9leNbG1fqt3e8d883e7PrTt3zvgrl2Kbsp20zOvdmK9TPNm+3dv3y/egzCrf72z5639vQ7Ou91vc6vkb/+937Lrf31Xsua7877fet/b2pv+u934Pe+6n5NyH92zDdrB27/Lx4cRF+8pOX4b33nrQPBAD4RhHGAgAAAJxgCWN34eJiygLZUAUwbUjTD3FSv72pfUttiJfvr4PUNmDtB6ltRewoxGrHUQax/fCvH/ylc+prl9vHQ9hyXPXzD0O9IO51f9bUAV+ogtlRH/17HLfpBdztNcbfpTqQjH2OxlL2UX+3eiHqeBru9trbvlfpnPazL8feX7O53l9/78a/w/UfYKT2y78J4fbfhhjELq9zePnyMvy1v/YyfPDB0wAAfLOZphgAAABgg+9//0X4rd96N3zve89vqtvmLIRtQ5o6nKkDm9CEqGWA1A9G631taNTub6cmHh07Poa6TXkfvbbt2Pv76/56x/v7+tWW6+ecR+86/XVlU9s4hW1vGuN6WuJja6eW29PN9nja4ryPZV/qu13XtZ6GuD5vTeozXjufMrmcJjmfnng5tzctce99ea182uMpjKdMrtvn0x2HUK4lG7/r+VqxcZ3Y5d+CeI8xkA0hf11OitMVX1wcwnvvPQm/8Rtvhj/7s8/Cz3/+xbEHCQB8DamMBQAAAFgxTUt48v77T8Pf/tvvho8+ep4FsL3wtZ5qtTe9ar+yL7bvjKJpV4+xF4quV0i2HW0NfutxteHsaUFsP6Bux1Zfu37WvfanBLFteN7/OcWx88p7n5pj/bapfT/QHl+rfD+63vF1ifM+toX2/e/Vseu3bde/Q70/FOjrVwG32/37a6cv7v3xRaj251MWh9vpij/66Fl48ULNDAB8U/mvPAAAAMCKDz54Gn7/978b3nnnSbi4mG/XfNztyrVil+lKy+lLU7hYBkijUPbUdWLb89oq3bbt6Nx+21GbdpzlWLeGsPG8+li73W/Tbztqc2KSOuxn7WhbVTo6L2+XP4u0v61qzdumStbyutPUr5Btjx2rkA1FNWzsr62QrStfe+3yStZQVa7G+z4MxlW3bfuI1bbpnuv2cV9+rNyXzovb+TMv2+S/m7EyNoTptgo2Pc9DVhG73Nt+P4WlMnZpcziEsNupmQGAbyr/lQcAAADomKYQnj+/CG+//ST88IdvhPfff3q79mOvMi6dN1p3s2xbV+Pl1+29lvvK623pL7VpG43GW/df91f1MgyNe2PJz+sd2xrEju47v369jup5ld+P1ZYrwfL68+jv6wfdcXstEJ+qtseutf2PBqpejlx3rY/R9zb//vfO73XYv0j93EdryuY/sb/R1OL9daPTerLxDzsuL6dwdTUXYS4A8M2gMhYAAACg4+XLy/Df/Xc/CG+//SQ8fbq7DU1SIBua9yHkQU1v2uL+mrHLax0Q9QOy3nqw9XXya9djys+t+z0exPaD2V7QV9/PKAA8FsJuCSHT/m2B633nsuM1U+vx99ZiHfeTqlqXc2PbfpVsfJ5llWvevl6PdUuFbLmea1kNW6772q92jVWooyra+nr1PfXuJ353euvhpvPTtUNVAVs95dtjS3/5mrH5GrJl3/G687yMI6+M3e9DFqoebp9V/Ix2uzlM0yHs9yEcDvtweTmHH/zgRXjvvSfhX/7LX4a/+AtrxwLAN4m/tQIAAADITFMI77xzFT744Fl4772n4a23rrJq2DZsvTnr5typ2K77rQPJ4yHneIy9qYbj+/512vCzrOCr920dUxvEtmOtr3ksiJ3CaUHs8crXtprx/mzv+/g6t+P96885v8Zav8enjO7tW+9zXf97lB/fPr5RwF/+UcKxa/f66l9vvX19bv/3qa6krytkl2NPnuzCixeX4fnzi/Ds2U6FLAB8g6iMBQAAAMhcXs7hv/qvfi185zvPwsuXl2G3m4uK2PSzBCuxMrYftvQrYY9NFdwGVPG1vUbdb76/DqjqY3mf9XXWt8v9x/bl91XvL7ePHc/3jcOxcwSuW/Wu3VbO5p/voVvpWp8Xn9+oSrbcLitK4/HjFbLT7Tqn9Xn1Oqz9dWG3rx9bVttOt/fUHk/v4xjr9XGX8aTxrY+1XLs2fh712rGxbaxojdWyy3n9tWNDONxUxsZq+RD2+8Nt6BrHmNaQnW7Hfjgs6euv/drz8PbbV+Ff/au/Cp9+eh0AgK8/YSwAAADAjQ8/fBrefvtJePPNq/Ds2UUVtLbrxPYD036FXl4tl9tS0Zm3q0OkOvgdXa8OPPOxrl2n/1qOuX9f9ft2/L17Od7v/YSw9xHYjqcn7l+r3z6Fl73zetMal8FjG9rGQLaekncUyI7G3Atye+NvpytuX+9yjfp4CPV2eQ+j59yOKZ7XBsfja+VTJaewOw9l86mi29/L1D4dL/99meelQvb6OgW2AMDXnzAWAAAAICzByW//9vvh13/9ZXjjjctwcTGH3W4O8xxuK2Hj+yU4qcOUEHoBbTttcDu9cB10roeb9XTJZUBZhrBlKNtWwdbXP7bdf83bjvaPg9YtIexpa8eWx88VatXVlTd7VwLavH3ZLgV2a4FkuW9bILulQrYOG+tK1XKcvfVjmzuNd5mNqa2OLatz6/Vh8+Nl2/J+0nPorWMbA9v8GuV6tXFfqn7trR1br4fbC2VjyFr+jh6ydWSnsN+noDWuN7vbTWG/n0IIc3j6dHdzTBgLAN8UVh8AAAAAuHF5OYcnT3Y30xKHTuCaB4vxfRvElhW04facY1WwtdRvea1+yNsGrOthaRvUpmOj1+m2/3KcbRBbX7+9rzSG/rF4vN+m33dewdwf6/2Zqp9ybNuC4rbP0RTW/efUD8DL7fWBjKfMnjr74hjLfVtD++Mhexvc9+9jfE/1mHr95r8//T8syNvV73vXbn/n8t/TOJ7e2rHpjzuWf3N2uylcXs7hgw+ehA8+eCqUBYBvAJWxAAAAADcuLuZwdVVWxJbrwtaBaC9wKkOgUTA3Cjt7+8tQZ2mX+hlNT5wHRHVYtB6CrY2lHf8oEDwerPWP9cbXazNu17O13Raj6YazFs01R9MQ947FZ1pPIzxNvQrYeJG2kjVtl1Mhj69bV9DW1aprUyD31o+txzyFunK1rFJtn8Oxithja8f2K3/79533Eatl8/Vh8+dRrhlb/s6kZx2rZVPb9G/I4WYd2RDm+XC7puxuN4fLyxC+973n4ZNPXoVf/OKL8MUXG+fDBgAeJWEsAAAA8K337/17b4Yf/eiN8J3vPGuC2H4Im6rbQugHq73gsDzWhp2tXpt+dWw9vrrf+vw0li1BbDnAtSC2DoLXrn/asdSmv3/U/v71rlFP55sdKc45PZQ9DALW/rm97V4gW1+nnDK4f616zMfWhM1D29S+DG3rNnHs/XH0p10OK2vHjgLmOJY8ZO1Pc7w2jjS9dP07FUPZfIwxgI1TFS+vy5jm+XATxi6h7OXlHC4vTWoIAN8E/osOAAAAfGtN0xK6fv/7L8Lf+TvvhXfeueoEse3UovHc+Nrbn4em5ftluzOaYRBZV7a27dYqcOvwtR5nO47u3ua+Tw1ip1DfY/58joW0IUzD+xw9l6/SeAxTyJ/p2jj7+9ud43brn13v+af37efZu/6x7/C2ff0x9Mc4vqd6nOX3qb7GVLzvPYfyjxNig/YPL7Z+xr1/P2LfvWN5Jf7FxRwuLubbqnwA4OtLZSwAAADwrfWjH70R/vbffjd8+OFSERurYtMajv1q2DJgzUOYfmBzPExpw6P6enWIVE+XnI9hHJiWQemx6Yvba7bnrfXf62Nr+3K7d27Zbq393bUln+Mq0P4Yyil6U5+xTW/K3Hp/b9riul1ve+uUxfnUv/2pkfvTFfemJg6dKYyPn7eck9os2+XYYj95/6ld71nENula7djSWNrq4H6/8ZrltcvveZySuG2zTEd8CPv9Ug0b72m+KZnZ7ZZg9+JiDs+e7cJf+2svw1/91Zfhj//4k03fPQDg8RHGAgAAAN9ab755FX7yk5fh8nKXBa9t9eVou1dRd7Pndn+tDTb7r50zmyC2vlavinActNZjbAPhXhDbHdnGYPXU9msBbrv/HPKOt60D2/TQhKttKDuaunhtTdf1Ma/3vaWvOgg9dt31NuMpkrf0sb527LbPIW9bf4a9e+0Fwfl1637b8/LpkGOgHQP1fC3Z2Ee5puw8L2tYv/321cn3CQA8LsJYAAAA4FtrnqdwebkLFxfLWo2xGjafLrQMaMuq2DbgbAPRXuh5LODsVcXmQU3brj+G8TXL4/3Xu1fEbglbe8Hw2v7e8Xhv/f3HHE+2xuvALufX1zwWbpZtUijbHhufkwK9fpv4jNfXgE2Bbdumf+7onF41bd22vqdta8fWx/sBaV5FG/uo15fN94+eQX9s8bzYNl8rNq0Zmwes8fy0XmxaPzb+rs5zCPt9XEN2ueZyjeXfpBBC2O3mEMI+PHkS144dP1MA4HGzZiwAAADwrXN5OYd3330S3njj4nZa4jb0bM+rj7VBY9muPb+fGOb91QFrHmCu9V9Wy47H1d/XXwv3mLVgt30/NW3T/rr91Am18+vFtTbHa+VuGH3102mx8l3onbdlLKMwuX9sax/dVkfOHa8fu9bnWrtTw/2jVxsG83f6wFevUY+xbrP+b0I5nXnbb/46Veel73E8Xq8jG6csXkJZAODrRmUsAAAA8K3z0UfPwj/4Bz8Iz59f3KwVW1bG1uFKHrKkQDEP0fKAJXT3j+Vteuu9tmPp7U/X7AdMvTAov35/DOW18n3jILbe14aNx9ayrdvUx46FgutG1YWpw6Vysq2abHq6rbAs+87bjqa1LY/FE8pK0LX2S7t+dWvanoZ9js5b9q2vn5rvq6tj633r105tlr7r6Yzb8edt84rYdP1lf92mv6ZtuV5sfGax6jVWw8bK195asXX1dKyAzT+j8veq7CP/HZ7ncLuO7LJ27DJV8ZtvXoaf/eyt8Gd/9ln4oz/6pP8wAYBHSxgLAAAAfGtcXs7hww+fhe9+93l4443LcHk5D4PKfrVbW7U6qnbdph84lv2XY6v31+eWfdah5XrV3nCU3XbHg9h+H+Pwtx5zfU+jcZ72ESyNe4FrPa6l3Xhq2H6o2p/6dnT+1vVit5y/tt1/X463bNObfnj7WPrH19eOHY33rmM45X7Wjh8PXvthddxfh85lUJ76Kf/dWV7neflDkTRdMQDwdSOMBQAAAL41Xr68DP/tf/tr4Y03LsPV1XwbdKSK2FBVxo6mVm1D1DaMrMPKcRBah78pkGzPqffXU5y2Yyr7XB/PeJ3Y8n6PB7Ftm2nl/DagzY+3gW2ojp8mr1bsHSuvMQ2P1eMoK2XH67puObcXRrb71sPN2Cav2O0Fsnkfx68bQ8Q6eGyD6NVRNef3r5e3C9VauCGM1rpdxtILRmPVbj3WvPq33pdfI187Nr/vvNo1hs7pO5bC1vR7eAjzPIX9fjk3rh07z4eb1+V+lmmKp3B1tQsXF8JYAPg68l9wAAAA4Ftjmpbq2IuL+SZ4jWHm+tqjKTAtf6pWzTl3HGUnfG2DyVGYODp2fDzrQewoZI3njttMxVjqY2XV8ZTdX72e5lTtm7r7Rj/ls2jX6myPdZ5Qp6/yePk5nfIZrD3P9T7W134dfU+26Afxp/TXu//1au3yu3L8Wmu/t7G/9VB//fNcXvttRv9u1PcSv8/tvdXXqf89StOm73ZTePZsF95//0l4/nw3HDMA8PgIYwEAAIBvjSXUmMPFxWht2ONrxdbBYh2qrAVovdfyWqMgdCra967XW082tanD0vr624LCXkXrqMo1D956IVP7k4dPc3Vszj6v6bZdvW/8M75mGegWd70Stp0ayo6O9Z9zft7WQHbt+CisHYWU2665/r1Or+P1fev2W65df8+3jHNtf38sZWV63D8eZ+93tfc73fudb7+T8Y9Elu94uF3T+uXLy/DDH74Ib755tX4zAMCjYppiAAAA4Bvv8nIOv/Vb74T3338anjzZ3QZ5ZZjXC0bHwUqu3V8Hab0kaLxvHKTWlXaxXT80Ggdb/erE8tr9kLWn7rM3dXIdcrVtR2FyL2hcS9Z6U+X2pvM93Ewnm85J2/F4utY0xTb5WKasXeeq03gK33RsdM5p+0b9ZS2aMWw5L5/+9/g56TnHNvXr2tjy53Vs+uX4OeVTEOfb5b7y3tN3KO2L0xfHKaxH0zaPrhv7zM+v72fZzp9R2t/++3MottN0xXPY7Y4kywDAoyKMBQAAAL7xLi/n8Df/5rvh/fefhqurOdThah3C9sLJXB2G9o5v0Ya//bC0DmJ71xkHxceC4eNBbNumntJ4FJ5Oxb464I6voz7qkHk03vp+2rVdD6G87zqInW7CsTxwnZrt/lqudbtqNEUgG69XHzt+zpawdW3t17WAsXd+9wrFeW3AuT6+vF0/GB6PdfTs63Gkdr3vwVqI3I4nPo/4+cb+8muMQvI2cM2P59+Z/Pco/1nWjF3On+fDzfrWc7i83AljAeBrRhgLAAAAfGNNUwi/8zvvh48+ehbeeusy7Haj6W3bwDMPN9eqNNtKzeNBSS9sTOf1K0xH4+hNr5vGNlXnta/1vt74186P412rgK0D11EQ2wtqyzG0gXTrcBPetdtrYeVt60PsvxfSpn5i25veBvvzsW+vhB3tXwtY0zjWAtJ0/Fh4WgaivYB72xiO9b82juMB8vqz7ffTv5c0nrY6tr7Wcr14n6m6NY6jf28p/O///tQ/hzDPy5TFh8N0E8ZOt1OsAwBfH8JYAAAA4Btrmqbw3e8+Dz/60Rs30xP3Qo8ySMwDyriv99q/3vi8tf5OmwZ5LZDsr3FaH1+7j1EA3d/uV/AeC1xPDWO3B7Gxr/UKzxBCFrKmwDVVQdbVmPn7OJYt1arVyG77CuG0qtJtAefGUTR9bQk9m16mPJA8/Zr9/rZdN3Srn3v9HAufT60GXjveC8LLoLY9Fm6D316/vSnU4x+T7HZT2O+Pf88BgIcnjAUAAAC+0S4upnB5OYfdbr6pNDu2VmwZBMYQML3mIeKyvxfCZntu99cB5nrbccVubxxtCNsPUevjxZ7V4LUfkq6HrvH4VGyndmVA+/phbB5OpfcpuIv7DrdTzvbX+Fza5EFt+b4MaJftfIxbpi0+vr8XLNbt2u0yqDwtaO0FitvHedprvb5sP/BO/W8NdMvzQuiNN7UZj6d8jc8nfm/qqYvTtMNL33l/+fjy70j6tyf/nV8qYvf79P5wiP9uhbDbTeE733kanj/fhf/3//1V+Mu//GL1mQAAD08YCwAAAHwjPX26C8+e7cLV1e4mfB2Fl710rw4hj19vS5uyfRmwtmFqfyy9a/Xuo9d+/fXYDbT9b6l+Tfvy0DVvU+7r9ZcH2Hmfi0MRWKYArA3XygrYPHA73IaY7etalWwdGObPalw5uzVcbPvd1mbtnFPC4PL4KWuwdnsIp1THbhlP+uy3VENvq5genbsWUo8D5Pz35FjInapoy6A//W7M8/K9fPJkF0JY/tAEAHj8hLEAAADAN9Lf+TvvhZ/97O3uWrGpMjYPCUO1L4Q89OuFpVsD2Lyyrgwdl33xWLpOv3q23N+vzm37z6+xPZjt9zd196XttJ5luyZvvU5vajvPc3NO737XparXEJaAtayCTfuW7cPNdgzpUgDb6ztWQfbCsnjOKYFs3uZ262i4uaXPLf2u9XPq1L29a61XmY7ObcdVjmVr+Bu/Kr3zjj2L8rVf3Zr31Qtm8+9EHdDm7cp/cw7Z9iHM8xT2+xDm+XBTGbuMJ64be309WzsWAL4mhLEAAADAN9LTp7vw8uVluLiYOyFr+7ouDzPLE7YGsv22dWi61v74hdbGst5X/8QyLE77RkFsGRSXYWwMXMspons/eX9bw9hU7RpD1hispgrUUTh5uL3HFKqOqmTbQDY9v14g27teve94ILtl39agsnbsvDJ83LpW6+tf95T2o4C1bTPaX75fu8/RNesAON+Xrh1CWVUdmvHk5+Xbsbo2vp/n5d+458934bPP9mG/v1PJLwDwFRDGAgAAAN9IsYJsqYqtQ8C6Kq2uwuy/Rmm7H2r2zlvvuz+mvL+yr/WK3bL/qdpX32d/uz02ZWNq14VtA9X5NoStq2HT+xjQzsU5bRhbT1Ncy6tg42v8CeFw2C+tDofhT7zHfPu29w3TF+fVkL2g9ZRAtueUtr3rtaHjWjC5fUrfcUh6t3GuH0vPu610HR3r32fUVuu210/f+7ySOv/sR59t+fnX/x60P2kt2qVSNv99OhSV/RcXc/jww6fhjTcuwh/+4cfhV7+67j9EAODBCWMBAACAb5R33nkSPvzwaXjnnSdF8BdCGXokZcpXT/E7CgHXw8Fe322weOwa267ZH//W/tfG0ga6o6md+1MQl9tzN4xtpy1upzqu76u0FsTGn/lopWPeV7zW8UrZLRWy20LJ3FpAudau3D79uncfz9Zrjdvd9Z6PHTstLD6+bxQQbxlfbL+0qacujuFu+o6lqYtDsT3Py76LizlcXc0rvxsAwGMgjAUAAAC+UX70ozfCf/affSdcXs7ZOrHh9rUOE0MYVZfWIedaIJja9Pb1q27b0Le3DmyqyivPq6+Xj68MeMp7Wg9o8/PzQDSee6widrqtck3ha/06hWmau6FsHsauBbFl4DUKYZeK2HLfPhwOIez39f70s6zR2U/TxoFsPq5xILseFp4S6m0LP08NLk9xl/PjOfXrsX63XGtrmxCOV8Fumaq47itOI1yvl5sfq78r8fuyvD9k7fM2+fFy3eurqzns9ztrxwLAIyeMBQAAAL4R3n77KvzkJy/D97//4mZq4noN0vjaBnt58Jj2ba9YvWl9vEW3//a8OhzubcdrHhvjKeFrHv6W4XNdEduGsXXlax3C7nb5dgzK23NiGJte10LwtWrYJRg7HA5hv9+HEA5hv08BWx7Q7vfrzzCGriG0AWwcXztF8XZbzzm979ND29H7k666IXQdXb8dc387/zx6/YVwSpXw+PiWULwfII/HVj/j3rH8tf6Jf2Qyz8s07Kf9OwUAfNWEsQAAAMA3wttvX4Xf+Z33wpMnu6IiNv8JoQ42+kFoGXL2wttyfy8M6YUovf7roLXTU39vN5xd31cemwZ9tPeb2qdwdNlfV8Gmqtc2hN1l++swNn8NWSibj7O+oTxUjdO+Hm7D1zyUTcHYvghjl5B2DvMc39f9T7evMfRd+loqFfMwsAzfUriXgrdxcJc97bAlPM3bnhKYtm3Xrtc/tlYxerfwtves7h4EnzquPLhd2pWVrXmFa2pXh+/9e6jvr7xu7DRNRZxX2cZK2NRv/gcQqUo2/jsHADxewlgAAADgG2GapnB5OYfdbg75VJ7lNLq3rbPz1gPR42HpcETNtcZt8rAl7a+vXd5DPa6p2ldPSdw/t75eum49TXAdxvaqYFPYGkPY3W53G8rOc/vTVs22Ux+39xpuw9FeRWwMY+NrObXwPkxTCPv94fb1cFhC2RTQ5p/NVF23XCu2F06Ow7+1Ssr7mbK3Pn6foeb6NXuh4ynh8lrf7ft+m/x65bV7bU5/Nimo7Z9ffr7937/xVNTx93v5PuVrxqZ+80B2nkO4uJjChx8+Dc+fX4Q//dPPwvX1mT9sAOBkwlgAAADga2+3m8LFxRLqLdN2joPH+ud1bD2/DkPr17tdq61g3TKu9X7aKtQUxKbt/jTFsSq2rXZdplONoeyuCmRHFbLjNWPb6YnL9WHr8DWEvHJ2DodDuKmGDWGaliB2ec2vNYXRGqApiN1W5Xpa6Pf6AeZd3CW03XLOKLA8td9xEFuG4VvvYxwg3036boRQh7b9a6f38Xcpr7ZNgW4eypaVsfH37uXLy7DbTeHP//xzYSwAPELCWAAAAOBr7a23rsLv/d6H4e23r27Xip3ncPvaVpzWFY/ptQ1JT09rR4FvHmaW23XY2K+QLQPSUL1vq2Lr42WeuTaGOmhNz7C3xmsMU/OK2Hmeb8PXi4tdmKb59nUJzGMQuyuC2jg9cRmI9sPlFMCl12X911QRe319fRPKXt9sx8Dr+rZCdrqpjl363IdwMyXxfh9D6BjS5gFamro4n674HGvHbgl816thRxWi/eNbxrE2VfGoj7xa9PhzuZ+QtAxIx2PLr9kf5/ozOv2zTgFrPYV13W98Tb+LcYriw+00xVdXc3j1atf9PQEAHp4wFgAAAPhau7ycw3e+8yw8f36RrZ/YD1h7FbG9fa+vDno3nNEZw9q42kB2+9hG545C4DIMyoPapRo2/uTBbApud8X+WBm7BLLxWApj689veBdTG8bu91OY57ISdpmGOP/Zh8NhCvv9fBNsLVWxvamYUzg3ZderKyrrEK+/dmw7/vNPH3zM8TGcHoqeVpl6t+uMq2Tv/5me2mcvtG7/EOLQbNfnLZW1/Qrb+t+05Q8aJLEA8FgJYwEAAICvtWlaAtmLi+m2UmypiM1/lqCtPq8XYo6Dyn5lar2vH/62gWZbrVrvay/SD0vH46ivM76fPMRupyAug9c0jfASrC5hal4RO89zVhF7cbsdjy8/821/IczZPbefVT+sa8PYGK7O8xLEXl8v68DO85StERurb2Nl7P72uSzTHae+lmcz31wjjSkP2E6vnnz9qs/XCQi/ene/394zO+1eymuPKmVH/fbC1Lpqtn9e/3j/93BL+3L92GW92DRN8VJtvg+n/PEHAPDVEcYCAAAAX0vzvExR/M47T26nJy4DyHEF6Lpx0Ln1/C3nro2tV717X3oBcHytK1/TsxgHs7EiNlXHlj91SBtfU0VtHsDWFbFTZ5whpHA0fy3vbVkXdr6phF0C1f1+DvO8v6lsnW4qD6fiflNFbLz3OIVxHQjGix1bO7Z89uPphMf7HtJd7+2++/8qrY1p67Et99V+H1KVbLnucQqE0x+XpHb5H58AAI+PMBYAAAD4WnryZBd+//e/G9555yo8ebK7rYotw4kylC0rZUPoh353V4YhZchZHi+rUttzm56Lc3sVrv2K2/w65XZ5Th1it9WxcarhfOrhfMrh5f3utgL28vLi5vXypjL24nad2BS8xorYujK2HWtyqN4fqveHEEJc53W6qWydbqplQ9jv07H8OrEq9nA43E5hHNvla8PGtnH62Hj8tKmKj1WLvn717Dk8xuA0Oh5058+0DfC3r2eb+otTCcfwfryO7ug7ELKK1/a70/5u5u2n24rv+G8fAPA4CWMBAACAr6VpmsKTJ/NNELs91Gz7OU/laQp+x22O7V8bW3//thtpq4ZjVWjZV10pm0LZ8n1eBVtXwMbXuC5sCL1q2FFlbP0+ny44r4qtg64YpsYgdQ4h7G8Cq3y92LzK9xBSGJ2HrHnotlw3BWd1JWQbuj3mADOExzO+u4xjdM6WCuTsaDgt+E5Vqf0+Y39t4Fu/3zKO/LuW/qAir5RdvrO73RTefPMyXFxM4ZNPXj2KzxQAWAhjAQAAgK+laQrh4mIOFxfz7TqxMSTM12atf/Lz17ZPGUd9fj+AnTrt29CxrWCtq1tDc2xt3KOK2jimclztVMRlRexchK9xrdjd7iJcXCxrwaY1Yi/DbrdUxi5h5+62/6USdmsYW2vXih3/LMfTsy6nfU2B1RK27vepsnqZwjh/Lvl0xb3xHAvp7u71+3xslbanjadX5Rork7f23XuGxwPVbWNuQ/n0fvmDgLzK+jD8fW3/LUnf2TzYLdeQXX4uL+fw/e8/Dx9//GX4v/6vj1eqdAGAr5owFgAAAPhamaYQfvSjN8K77z4JT5/uisrNqmX3fdvuXkY1eN149gnNt7YdVeO1UzTngWNdCdtWxebrwi7rwe5uX2Ml7G6XpiWeplgRm6YMHoexofNaq0PY2HbfewpZIBZuxh7Xkg2368cuYfH+9jWviM0rZJdndQh5Vey4OvPYVMX35TEFrY9pLA9na3ie2k3N96pu0/tjkRTKTjfThqe1swGAx0MYCwAAAHytzPMUfvrTt8P3vvcsPHt2cRs+rFXBLtrwsXW3FKMXfKYgs66YnYbn5vu2VO2u7+uvHVv3VwaxU/G+DGLnolK2rIzdFZWxeRi7TBm8vKbQdb0yNlaf9kOlfkXs4TCHpYowrRmbB7vLPc1hv09h7OEwh8PhkK0Tuy9C6DimWIUYx1ZXZZYB2n0Fkuv9jEK7r9p9X/eruo9j1zk9UD3aMmyprI1t03csPy+viM2D2BD2+yWM3e0ksQDw2AhjAQAAgK+di4vpdnriuoozhDxoLIPa84jXrMPess2oUrU9vjbQ8bH1/kf7Uvia30e5lmo9PfFUrA+bXpcgNoaxKYDdhTKAXQti22dZytfijK/LzxLCxiB2DqMK2ng/ZQA7Z1Wy9fTEMRyeQpqGOK+SPR6+PlRQyusrK5xPOW9rmNv2n7577dTEZZvyWPz3EAB4XOaHHgAAAADAKaYp3ASCddBaBnm9cPMuU/z21BWJ5fv1k9dC09cb3/GTyymK8/ZlNey4Ojavis2rY5efNE3x7ibIXYLXFGbmgWz906uarYPbrYHu+k8cWx7mx6A2hrFtVe3aMxaAfZ2s/Z6NjrXV5MXRo/322m+5dvtvxNQdR/n7CwA8JipjAQAAgK+dfH3E3jTFp4cjyV0C0e3haB4MHw9k8uCl7a+9x34AXZ43rh7urQ3bC1/zdWHLithlauJdyCtiU4VsP0iN1ahtQBzvoy4vLCteD4d6auI59KYpTq/zbRXhfp+qZOc5hcZ1KJ1Pm1xWwqb3X3X1a32tr2Pl7delYng8zvrz71dJ1+Hp+N+Y+H3rVcrW7Q5FFXf6Y4lNtwQAfIX85xkAAAD42ri8nMPTp7uw29UVYONpgEfVp/dRQNa7Tjl96P1da3S97edN1XZdKVucMaiMjYFsXl1a/uTtj1WxporZtZ/R+Wnc6/2E4n28rxi6lhWz/c+s9/y2VDHyzXa3z7v9Pez11dvu/cFJe2wKFxdCWQB4TFTGAgAAAF8bf/tvvxt+/OM3wnvvPW2qYlO4tlhfwzV3eqJyLPitq1vjvlGAdyyIOXasV2W73ueUjasMXuPUvTFYbatjd2G3u7ipjL0IFxe7m3ViY1XsaI3YtjJ2qZoNt9t5BWraf7ipng2hXCt2WRd26SNu9ypi2/A23feyVux+34bP5flxrdj22Z/P1os9bGnp6zyTx1cVW1a29j7zbd+D9J0J4Xj7us/6Dzp6Fbd1ABtfnz3bhR/96EX45S+/DP/23352bKAAwFfA30gBAAAAXxsvXlyEd955Ei4v56a681gV6ilVbNvClvR6aoXceF3HrQHy3a5TB79l6FlOzVtu11MYt9MYtxWx9/ETOu/Dkbb56+h97ztTP/Bp02fw9aiGfXSp59fc/X3od/lDkbV/4+Z5Ck+f7sLVlf/bFwAeC5WxAAAAwNdGvlZsuV7icjyFiPl2a+344TDaf2iqbcswM38da/seBbrHg9ntU+WWIWY+7nrdyV7QuqwTu6wVm9aMjRWyy1qxaV3YYxWx42mHR9MmL2vCxurAskowBuftuf2K2HxfvTZsHiTHasVUmRjPOXzlFZ3nvN799v31DX3vq/L5tH7K7/La73n6/czbt+tlz3MIFxfL7y8A8DgIYwEAAIBH7+XLy/Dmm5fhxYuLatrfcWB5zorFtRD0lOvefXritYtsregsA8p2OuWyIrZcN3YqfrZUuS5TDafX9crW9p7KILZ8bZ/NVxcKbgneHt90vHz9rAW3S0ibfk/r328A4CEJYwEAAIBH78c/fiP8+//+e+HZs12Y56X6q1xXcRTKpil322OnyavQyv3H2/amwf2qspL+1MSpErVeMzavjO2vGRvXjV1+ljVbx1WxS1VpDGTLqth4bFQRO5YHsfW5h2x7HOLGYLj+jhy98iBYPRzuJ3Q9R3B7X31+FaHyNyG4vluVbfrDglSRnfbn7Zbv6+H2WvmMAHGq4tksxQDwaPjPMgAAAPDozfMULi7S9MT5VLJ5iPbVBJy96XDH1z91THe9h2PnrVcRHwtnU1VsWjc2rhU7Z30c+wnF9vb1ZUMIRVh6PLw9Ho4esp/++WXb/PXcHk8ieZ5w9PHcX3Se+3z9f5DGv9dlBXz6w4/830kA4DEQxgIAAACP3rJWbKzWLKs9e9MDj4OI0wKKtYBmVG26dr12WOvj6VXi9vvp7R+FxXnwWoY4sX2/SjYGsXWV7HqQ2gt120C2fhZTZ7veXz+EtD+t8bpeyVq+P9y+9trV7R+yCvYxVo8+xjF9Ve4j9+z9+7VlOvRj/xYCAA9PGAsAAAA8esvUmzF4GAWy4wRiFE604duhOnZ8XFutBajH+9l6oWPtegFmvl5sGZiWVbEpiM2nMU5TEqc+0/Sq6RptwNob15Sdn/bH8HNb4Heogq3yWP6a+qwrX5eK2TqIba8/rpjtV9bet3QfW6/dC6GbXm933ce4t/Wx9tk+9qD3qxrf2r8T5b+N29aNBgC+GsJYAAAA4FFrp8wN4Xh15LnHs9piUx93Oa/fV/+89XHW1bJ1pezUCXfKYDYFtiHk1a75GrHjauHe8bJtHcjmwewW5f0fPykPXMswshfUbtEGpcdCzt69PcYg8vDggzqc6bl8lfe1/fd92x9slG1NUwwAj8fFQw8AAAAAYOQ733kW/vpffzu8//7T28rYEPLAoQ0pXieDOBx6lZRtcNmzPkVo3sdDhCTlPZTVc/XUv+M1Y/Opi5e1YnvTEodwOKTq1nZd2PHY8jG2DivHloAwD1+Xz7IXrh2yNu1Pqoo9FJWz7VTG9b40ji3GzdbPP9b9epXs/fX7uu3u2v4+zj3XvdyvKYy+C/WMAOW0xtaLBYDHRhgLAAAAPFovXlyEH/7wRbi83BVT6S7KwOGh8odt67c+VinEqStje9MMl9XJIYzC1RjI3tf0ykt/9d52SukYpven3y2no16C1hS6pn319MVtFWa/2nXdXab+Xe+7P0XxV+l1phZ+8OLab4Tp9g8O6j8GmecQdrsp7PfnqiIGALYyTTEAAADwaC1rxU7d9WLrdvnr2DjA6odlKQCu16XtXWv7ONa97jTIeZDar4QdXWvqnDP+qa9V9xuD0fJ598a/Nm1vCpumKa9gjccON4HUodhehpfvD837w2F/09/+JrQqK2TLythDMZ42oE3jSq/je1u71/U2pxivF5sf7/c7+kxGa8z2q5CPr7u7dq3146O2W57TqM3WdYkfs2kK4Y03LsNPfvJGePfdJw89HAD41hPGAgAAAI9avT5pVFZnnp5+vk5V39aq3Puujj1ftW0dMk/Nvl5ou9bP2Ojhrk8pvKV9OS1xb63XtiK2rIwtg9i2MvZuUxI3I3/EWd5dqn5PvMJrtTn31MT30c9X8fn2/xgk7dztpvD8+S5cXn4tSvQB4BvNNMUAAADAoxUrMHvrxdbv23Pbfe2asOttjrV9/QrWrX29fvubs4rXtMZkWTlbV8aWlbanhbDbqpWn7H197qgKNu3rVceWP/tie6mErX9SGFtXybbTGZdVsMdC2WMB59Z92dFum3J7vUL0HIHhevXr6f3c9XjdZlS5u/X5tNXdW8d2/w95rSI/vs9nELB+LAA8PGEsAAAA8OhcXs7hnXeuwltvXTUB4eJ4wJCHqsdC2LXjvSmRTxnHWmD8kE4NVV+v6nWt/ZSdN1XH8vf9StfxVMSH0B/PWtiaV8YeOiHc8Slwy0CybrwWCB46++7Pfff5VVeIPlQ18VrQ/npjut8b6v8b8wj/4QGAbyFhLAAAAPDovPXWVfj93/9uePZsdzNNcTxyrnAhr84c++qmHT5viPI6z3O85mf9DHvhaTOSbP9UtdkSvrYVsIdDXSW7L177VbFp7djjlbEhC2rzADWvnO09r9cL3+p+1qtit1R9rgfDp01XvK0y+Nh6sadXCB9rOzq59z3b3v99fabnUVe6AwAPzZqxAAAAwKMzTSFcXk5ht0vT6ebT6MZ9d3Es1Pq6+OrH3atAHbVb66Pu69i+cGTftn7ysHV53Wfbo8rY+B1JrymATd+fYyHj7Z7ho9kWZp7DuacUXjunH9KOfy/7+14/5N4e4m7u9TXP3+bYlMUAwOOgMhYAAAB4dKYphHmesqrYqTh2un7laz09cdzuTU381do23q9OGS6VAdiomrUXnk7V65ZrjkLWfWf/PkzTPpRrxKb3+/0h7Pf7cH2dfnrrxtaVsfU9t+FhP6Detlbs+JzRMzm1UvV1wsbyHs4fUr5OuNt7f9e1X08cwbDa+KvUrh0rnAWAx0AYCwAAADxKsRK2N93mKQFDDDCPrxt7GKyjuuWaX6/E45R1T/O1U3sVpClYrUPW0eumERbvl8+uVwmbwtbDYd9pU05RvN9fd6YmPv2nrpytn1l7r9uqZO86TW8dDh+fonit7+3r4q7vOy2Y3F41vNbv61fJ3mff5wt/151/WncA4BTCWAAAAODRyYPYtO+rHsNXe72vWi+cTgFrHSqmNVN7FaOpnzyULXoOp4VZeciZws/lOr2K2LxNHdLGY/21YutwNlXFtveaP7v8fW+63eOhZ3XHRwPObVWx9fGtYeDxfkcNTqnsPf26ozb3HXLetb9TP+ft13/9G/ym/xsGAF8XwlgAAADg0XjyZA5/42+8E9555yrsdlMz1eZ9hQsx+FiCu+nBpv+923XLsPN4xe/o+KEIEfMK4hRu5pWxca3VKQsp92Ga5iwEjefGwHTKXvOgdsr2jaYszvuLQWzed1n1ukxPHLf7FbHX1+VrOz1xvo7suHI2PZt6nOl5pvejsPL0cPp1Q8nRVLqjMR27Xi+Ejv3Ux/qv64O/a0B8rO+7VP5mR9dPPsndqm0BgK8XYSwAAADwaFxczOH7338eXr68CvN8LKXckmL2qjQfp4cKhLMRhPis8qAxBrFlOFsGk6katewnbeev4+u25yyBeV6x26uIHVXJxvf9Cth8quJ9d53YYkSH8iddq763+wnY7ha6ba9SHR273+rO4ujdO8762Dru8XYebK9/bmtr5J4S6J5eLXw/VbHWjAWAx0EYCwAAADwq8zyFeZ5upiqemqrY1wkXYgATpz9OFbL99g8VZNxHMJv3kQdRy73nwevhtiK2Xwmapu/d7/dhmkK4vl6qU3e7XZjnEKZpDksV6hzayti4L2T7ppAHv+VavW1A1l8vtlch21bEHg778OrVq6Yy9vp6H66v98U6snkou2yXz6QMe3uVoYcqhDteFfs60xPX7Y6Hr+O+1voeX3utMnWtcnZ41ap9/zndV7i59kzr6/U+61PG01ZSj/vbMs7j152qVwDgoQhjAQAAgEclrRd7+rmjcPXhq05fV1k9Orqfu95nP9Qp14Xt/Szh7HTTdupUyPZe165b79haEbsvtpdxx3B1fxMkH6rq2P40xPU14zTNeQC7JRy7axC7/jz619qyvcX4nPuoau2HzMeuf8p9nGMK37UQeBSu3qUieetxAODrRxgLAAAAPBrTFG6rYuN2CFNVOXncUu1ZrgVbBpUxPFzeP+bqseMB6zL++v6WfYfs2aV9sX0ZDPanIY7hZQjh9nW3uw4hHMI8zyGEJUBf3tbVeL2Bp6rY8efaC3KPBbHL6xLALtWusSI2veZrxi6Vs9fXKbRNFbGHatricPts8srYvBo1D1/HQez6vq1tj4fYvfbHqkNHx0fhcVnFut5P/3mUr6P+emMt942qfutgtBeUHgtP18Zf7hv/0UG9P/9O5f2tfc53CdtP/XcTADgPYSwAAADw6PQrY08NZMPt9LvfvErZ+5CHs9neJoDsBbSH27Vc8+mM45TEKeTOX/chfYYxAO8F4Yfq/SiQ3d/uTyFpXg3b/izVsP11YvMq2BTuHYr3y/PphWhbK1i3hKZl2y2h2ylBXT/gOx42nnL8LtYC5te73paTtz/rU6971/Vf10JpAODrRRgLAAAAPCp1EFuGpvXaolvCvdQ+VcNme7Ng9lwB7bbwtx37+LwYpNbHl3sMod3fey71tLpl8LoP+/3yvPb7ZU3YWBl7fb1Uxi7Vx0snu90u7HapmnmRPpNlXFPneBpHWdlbv45+UmVsWg82/cTK2GXt2GUN2bwydglkU2XsEtaGsN+ngDaGsim47YdsbbVx/RmMw7WtbdvgdT1IHVWNHut3y/FegDqq9qyrYLeEjWtBdpo+uj22LfQePbf1tXfXxniX6tXjbdvv0yn9+qMTAHh4wlgAAADgwU1TCB988DS89dZVuLiY496TgoSt1a55u6+iQva+rnHXfvIK4RDCbdVqDKbz6VVjkBvPS9Wih5uAcn9zbAlqlwrZ/e3asWm64rxCNlnWlM1D83jtPFQP1fs8eA0hVcSm8DTcTE9ch7AxbM2rYuP6sfmase2UxHlVbMj21WNb2x+6+3u2tj1XleQoUNwWwB4b1/0OekuYnVcvl8dPq7a9r/B6HBqflyAWAB4HYSwAAADw4Ha7KfzNv/lOeP/9p+HJk/km2Ath69TE60HlaH3YtSraU23vq1zHNe5bD4hPOd6Oqbz/JRiaboLREMrq1HIa4lgdOk3LFMSpMnafXXN3e1+HwyHsdrswz4cwz/H6aV3ZfL3Y/Nr9scfX9erY/T5Vu8YQtvdaVsSmaYtTZWyqCE5VsP1q2Hp64vWKyPupiO2fu70qdnzdtYuNjvWrR49VxR67zlr7uoq728umZ7y2f7QGcP77sb3/uk3/3DbMX/tsRt+XUf8AwMMTxgIAAACPwjwvVZV1UFk6HnqOgsv6fQjnrhzrT4u8Nq77um6cwjiEcd9toHjIKmXr9WBjYFlOV7zf9ztPAVOslA0hhDmrjA2hrIzt3UP9mq9Ne7idVnipft1n1bB1CJvC1zKITRWxvcrYcRBbvpbjfP0g9ni7uG9LENvf3lpdeqx9eazXqDfG8VTG+XnlsfFz7J17imMhZu85HAuN18Z0LDitQ+D02g9mBbAA8PgJYwEAAIBHYVkrdlQpOdYLNmN4saxp+pin61wLl9tjo3uNIef6veZTE6fpilNwuxxfQtlUHRunJA5hDvMcpydeAtHr63hurK5dQtMltD2EaZqLNYDztoveYOuQsw5kl4rWGLSm4DUGrmUoG9uUoWw+RXF6X/+k5z4KZKuRv2YQuzVYG1WGdloe6XdtfdT23FEouH6NY8rr3KWftRA5D4tPCV7r8R3b9zrj7t379nC9DbwFtADwuAhjAQAAgEchhnbHgtM8bMiDyKxFaEO+PHR8iHB2LXTNWnXC1s1XWGmf33d8ZjEYTRWxcUrjEPb7w03wGsJS0bq8v76ewjxPN+HmHEK4vg1gD4dd2O2W99M0h8PhEOZ5ul1Pdp6XKYrj2rLLePphbAqHD7evZXi6v5kquf9at4mBawpl8ymJ+0HssYrYOgyrw9VtIezo/LX2x9tsDU1PuebplbLr1qpit45n7T5HfS3n1oF/fX/bw+7+c0nflWNhd6+fcqz1GA+bx/d4/wgFAL5dhLEAAADAIzENwrmtxoFnGVRubfcaIzlL6JvG3Q+hy+uXoW7etjwvhWIx8JluwtrpJvDKQ9FlquJ5PtyGrOV9Hm62l9f9fgq7XaxQnm9C2flmTGn92LJytgxCU+VqDFTT9MRpuwxe0zTEZRibT7l8LISN12/DsLsHsZ1PqnN+drQbQraVkKdsD0fyWhWp4wC1fD3l2fTD1vX1YtPzvOtzGYfOa8/90LTZGl6fpg2R19sAAI+BMBYAAAB4FPLgsl8hu15d2gtSl6rPqTm+NXQ9V3XqaLudbni87mx7vfrc8v7jdl1FHKtl81B2vw9hnvdhqZKdiqrlaTqE6+uQPdd9OBzmMM/Lz36/v32dpins9/NNNWwMY1NV7NJFXdWcQtBeaNoLWuNasMt23aYNdJft2H8dONdVjf1AthcsrlUsnlIROw4K14PYY0bhYhscnja2+whee/2MrjsKgbfc33h/73ppauP0s77mbS8IzvfnP/3vUHtsFOyWY+pVzCqNBYDHQBgLAAAAPKiLiyk8ebIL8zwOHY+pg9aoXB+1OCOcGlSs9XNqaLt1LHfvtw1x2+A2hN7Y82mLy6l5DzfTF4fsdR9CmG/6O4QQ9ln7cg3geY7PaqqOlWFsCqLiTxnKjoLWPIzNX8sQ9nB7jdT34Xb8bRA2noZ2FK52P407hIFtH8cb94K9rW03juJO54/Cy9Hau722efteu63jqD+L/DM/zZ0eYOg9w/a7dvw+x4H9Xe8HADgXYSwAAADwoH7zN98KH330LLx8eRlCGK0jOlYHsbGitLdubAoCTxvjKBTt7X+9YHZ8/RDiWq9TFaquh8GxGjZNVZyewyhci5WxS1Xr0m6eY9Aapy+ebkPQWBU7z8s0xEtFbLlW7LI/TU8cx5s+7zKMyoPSPEjNw9dlrG31a7kmbAyN8z5Sv+V18oDwMBxX/xn39jd7BvtH7cf9r4dz/YrL49c5rf1obP0gcP0Z9StFj4e1+bm9/VuDyTyovUtI3lsftgx/84PbP8/e53B8fGks1o0FgIcnjAUAAAAe1LNnu/DGGxdhtzteGdtWcW6fbjiE3rm90Pb0vqoWWZ95WDq+Vj9QPj6OuvK3PLe93trYU2g13fYbbqYx7gWVSxa6VMimcLStel3C4yW4XaYmTtMT9+9zrTo2vrZhbBnClgFuOQVxHryWQWwKyfohdT8w21qtuR7EjhwLIl/XXSpcX7efpX19wtbn2D++NTyOx7eM95RK1ezIzfEyzL/7c94eJN/n9wIAuD/CWAAAAOBBpWrKELasCZsCtN40vGXlaAoU4/qm5Rqqdd+n7KvD0FGI2guQyzH1141dewbjY2X1b2ofn0sMh9dSmyXEXKpa55tAs51OOAash8OUrRM7hXneZ2vEhjDP8+358SeOL4W38R7KACsFsik0zStkQ8jD2PWfdG4o9pUVmfk6nXkgWz6v+w5hR8e2Tstbh3ejKsu7OLVCsz7WPtet16yfeXqO7fH6GfeqrJurdMPWeurkPOisQ8/Rs1n7PNu+yu9c2Vd9z/W41qtxVcUCwOMgjAUAAAAe3LEQcxSihtvK0xgOphBy1G/edy9c3WYcmI7u4VTHg9f1sZxyb/k6sXkYHEPveureJayNUxnH0HafTUE83UxJnK5dV8WGcGxq5RTApuCpDlbrKYfXw9i8r/hc6n359ev3+Tm95925k5Vja+dtCV37+46Fnb1QdeuYjvV57HXr+cf23XWsx6cSPtrDSt+n7T92jfb+R4F2/l099VoAwFdBGAsAAAA8qBTQbVWGj+OgsQ0V1ypYizNfI0S96/mj8LQNovP76l0nfz55pXCsmo39ldtLX701UQ83a8eWB/LgNZ+CeOlzulljdrpda/ZYVWy8n7ZKsV0/Nt/uh7Gh2Zf6C1WbdM1TQ9hx+HX3ELZ37VH7LeHbuM3y2Z/S17Z2xwPLuvq0PNY7r95ZV5D2246C1tG+OqQf6z+3UTC+Xol+vJ/e70T6vai/z6dPiwwAnJcwFgAAAHhweVBXWwtb6ymJY+iYh5VL/3cf2/ZgdRSCpn7ysZRTLZcBc9weBbSjMW5pU147Xacef5JCu1gRm4LQ+bYCdvk5hBDmrK/p9jnk68jmz6F3zV5AOgpj+9t56FoGVW2fodrXG0v9TEZh1+uGsKef0ypD1rv1E8P6cYvXDfvK8LUNW0fXGIew5fvyOzQK19trt332g9+6/7KPeg3iNKb6uuPvW3mttXa9+wAAHg9hLAAAAPCg1oPOMqTMQ8d0bloPNa6Xmvrun3/sOlvH0xvXeqXqhit0+sirY5fjKeytt9vxtNWx5Zq6IbRryY4CvaXaNU5JPE3xNU1BnKaMXi4yz3UIm24uVcj2ArF+cFoHralCsP++H8KG4nj+LEbb5dhqx0PYY8ePV2Me7yvtGwey960MJ3vHD1W7fvDa63O0rzy+FlCO1GNqj9fHyrVd6/PaNYdXr34bzI7GcWiOrY03D3p7wTMA8LCEsQAAAMCD2xLIrgee62JQ0qu+rfvLt0fvR+ce39cGs2WwfPw+tk2x3Fbm5ueXz6M3fXEIvWls5zl/PYR5jpWv+TqxaXs5L4WweTXs+D7ya7bVg6P1ZNtA7Nhr+z5dqzeW8VhfP4Qtr3XsvG1ZWx6uj9ss/W0NNI+HvMfC2ePnjMPbNrCup+RtP9s6zOwFmb33sY/OaIvXtfPzgHS9z/XPYBTI9u4HAHh8hLEAAADAo5UHD2th5qga9ZSgc9zXEpTEdVWj1C4Pi4+Pbzym0bTLW8dZX7scV14d266lG9um7TqQjWvD5vew35fPIU1JnILvVDG7NYyNfeX3UYewx1974Wt+LL+P8nr1dbeMcdBi8/HtQexp13qdCtl07l3HsvV1tK8+Vofjdwsi85A2768NQ7eG6G1I3AtU2+903a4fHq+FvofiPMEsADxOwlgAAADg0amDh970u73t2tp6rIMrh7Re5tQNV+txvX5o2rbNg91xEF1PVXxsTKNwNg+mpuo1H9/hNljNQ9i0P1XXjteIrdeLPeZ4KNvf169+bdcNrb84xwLW7dPQHj8+brQtBNyq/u53WkzTYEzbwtwt4WV9/W2BZz+k7ge25TTC5b8h/c9tbV/ZVwpw8777YXI9/XV+kV4/o3C43C7blWPLr7X8PgpmAeAxEcYCAAAAD2Kep7DbTbdriiZ1CFkdXQk/twSdvX3rfZ52rdhfCOsVsTFs6U2dvDbGU8Y6CmnLEDtV/eYVsuUUxmX4uvW65RqyZcBcP5+qh9t+2u1xGDt+X4Zx/ZBv/b623ve2Nl9VEFuLD3zUUV4VPb7+XcLXuo/+8fpzP36t/v5D930vyE2B5vHP5tj1e32frr82bfm7cAh1Ja91YgHg8RLGAgAAAA/ie997Fr73vefhnXeuiv29StAYNqTgMoWGKUCaqoqwdH48XoaL42mB14PaNoStpzFuK1nHwW19z+V0vmUwnT+DGG6W1bHbt1PoNFXjj2PNX8fPpR7XqCI2f4Z5lWznaXT31SHeWlC7bJf9nBrAbgnmtuZf99nXKeoKybS9Vi1bB7ZpO043XZ6zXj27FqaWx8rKz95asXWgPm6b3vfC31542atSbcfe29e/Zm+s459DcW7v2dT99Nr3wmYA4OEJYwEAAIAH8eTJLrx8eRkuLubVaX47e0NdOZvCyv66rfehDIPL666ft7yWFbHtNL+9806b/vj2aFiflrkOeNtANQ+7U4VsGe6VQV+aovh+pkndFsiGUIdV7fm9IHQtHO31MW6z7v4D3ZHel6F/QvsZxs9ufI322PHpi4+Hr8fbj/vtBeu37zph6OnX7IWidfg7CmSzvSvX6H0n8/f9gHncHgB4rISxAAAAwIOI0xSPpiLO38eKzjwY6U2p26tYPbZOaTslb7ndr7oNN32267bW91FXuY6kgGxcsds7pzeGUdDa387Pz8cY38eb7lfJln0s58TK2zrsS89ty1qko7C03t8GY+MgaxyAHQ9nj9sSvt6t3+N/XFCH/fX3vr3e4fZ42X/63NJ3IvV3LLjNK2fXw9fe51a2r6tUt1al5tfoh7SHbpt+EH/o7Cv7TPd7KPb3qlbLKtm2Erd+X1fNtn0dsn62rWkMAHy1hLEAAADAg5mm8dTCayHkbetDaELLPIw4fR3Yft8nnhnyqZDz+0ljatdiHY8hhs69CtZ2vMcC2tGY0zjboDZvMw558/A6FNMet9PjnpIYbQ1lU9tR8HjsWNn/psFlbe8/hL1LhfcoKK0rYvO1e9tgNu9gFJyPg/o1W6pRU8i5qceTA8itlaZbQ+S1QHgwgk1jOu3YofkeCmYB4HEQxgIAAAAPIq43Gi1VXe30wzG4rMO/2EdsVwaOeYCZB4q3Vwt19Wmvv/p9fn4vKDstwG0D0NRH2X9d2Vo+k9HUzPW+9EzWjqfnHDrh6jjdaUPgGPDln1ceZK2F0esp0vHw81hA93qB1dpz6Lc/9QqnhrBl+/L3qt3fhrDlZ9Svij32vnfNtkq21259/dd2rdh4rNd2dKy+57rqtB5nW6HaP5bOq8PQslp1uVbvWR2K973K2aWv3k97fwJYAHh8hLEAAADAI3a8wrPczgPOfiiVB6+nhaed0RVjKgPgfkXs9uB3bWz9Z9EPiMv2dVVtG8jWIW8vCO8FtPWxPNiN95uHsOHIdLeduxgfORrO5ve39Xr1NU4/8W7Xaj/Ddvrr7V/a3jTF6fPN/xgg/3xS2Jp/nush7N2qY7c+o15guqWvNqQ9Ppa2n3Hg3OtzbSzjcHesvsYpIaxwFgAenjAWAAAAeDBxutRarJItg8k8OIxVtIcsEKyrA/NwdDSC8rxRUFpW1aX2x6YB7o17HJjW1bGheT+8i0N/LL0+R23SvfcD2TT+UN1P3M5TnzaYS+Hfodq3fm+du10/WnxWp3ud818v+NryINaqicud9Vh6fwwQg8ot6wnH37n8ufSnNS4dD04Pzb4UMtZVsWvvD6vv6zGV4XpbmdsLTss1XrcFpOM/FCjH2F6nvFav75BVzPafoyQWAB4DYSwAAADwgGKQUwai9bqq+bG4vw0rD01/ZSVoPwhtA9O632PasLUOddPYxxWyvX7zUHQ9NNsWyPb63damDGHzaYyXe8irJ+NYQ7GvnPY2ZPtG93+q7R31r/lVh6+5Y1+03vHROePAtv1Ol3+wcHy94Ng+/12rr90ea59TG9SP245D3P77MrQst9vrlm3LgHasf2/teNaC3Tr4HT2vQzPOOqhu76PdBgAejjAWAAAAeBC9KtIUYNThbBnA3hwJcU3TPADtX6MfxObXyNuPQqtjtgW4/fD2btMT1+NaC5zXzmvD3TYMTufVIW1ZPRnbrk9HnFfjjtx9PdktTkuq7ivYavvZXu062jcNvjBlQJ5/xw63560FsW1F7LHX40bBaxuW9teKbd+XfaytFdsPKA9N295asvX1yrA1thldo73e8GgRsJaBc7pWu5Zt777K8wGAhyKMBQAAAB5cHRjEcKE3XXAe7MX3axV/ZXgSw4x+9WodMMW29TTEdWDVb1dWFubTBefXLfsdTxlcjm/8XNpphtNY1qcnHl0/hHKq47oKNo4r7VtfK7ZfJZsfy+/v9Wzv4D5Dq+19rVe31tvp2fSP1/vGfxiQ/zFAvq8fPLbV3OXvx6lB7XogWwejdThat2kDx/IPO9qwsjcFcG8MZeh5qK53qMbWr85N12r76r3P72e9jziGQ/N8Qwjh449fhX/9r38VPvvsur1JAOArJYwFAAAAHpU69OwHjv225dSqW6pU22v3zitD4P70wKdqg63xdesxjELVtemK8yC3Pre85vq+XsCb9h+y93X4fMj6C7dj6d3zMadWzN5n0Hr+/k8JYuvAdT3crT+L/I8J4rTT+e9QGbrm38UyaN0y3XQvMK32DPYfOy/tr9eB7bcr26yFulvH0Qt6+9c/foEyDN7Wpr33EL74Yh9+/vMvjl4PADg/YSwAAADwIMaBQqpo7U2DW1aspu1yit3Utrpqtq/fV75/CRTL/eP+2kA4X4s2r57tnxdu2x1bv7WdsrkWg5nt4WseRI/2Le/bytl6fzmGqH12W0K80dqnX7X7v2a/mjV/3wtgy8+v32YUypZhatT+ToyDzNRP+v2Mn3t77vEANu2vA820/1C1adeKHQejIRtb/W9NMYLsWG8K4Hbf+Frl9uj8tjp2tN17rdv3nysA8DjMDz0AAAAA4NtsVMnWq5LrTy3ahrr94KS58pEQp/e+18ex9qOQ5nWu216/DZtGffTH3DYcr8u5tn8tiDs019kSJrUh1nnDp6/memVYuoSkozC1F8ROYZqm7Lwp27fsT+/Tz5Z2bd8h25/vWxvzNsd+Pzt7h+feZa3Ytd+Twai64xz9mzQKtUf99caYXyOfCrneBgAeL5WxAAAAwIMpA9R6jde8OjOvBo2Vp3Ff/Vpc4aavqQpeetPupmv3pgauRh5iOJXa5H0ux5e+lvdt36mP8v7qey+rYZfrra8BO2rX72t0zRRw1VXH/SrZ9GzTdjtldB3I1s/+Zm+3TfEJ3FsIdX9pVllxOppOuT8Ncb49Cj3LMLa3v39e/d2L+9KawPn3Mf1+hazaNfaXT0Wdjsf3obNdqoPS9lgb6Jf/LpTfs/yc/rG8/3ElbR5ulu/XqlpjR2XbPADu99c7Hs/bVpmbH8vupvvMAYCHJYwFAAAAHtQo6OwdG4dKdXDaTsc7uHpow7Cy363tx+ccPz8GYzG0XVuzdn0a5q3jKp/xeIrksn0vUI4hXX2N9DmE7rllu9742ja98x/COAguP5Mt467XfD0lfM0/q7xt3l/v2r3PqvwDhDJk7a0tG3/HeuH6sis/v73vOhDtP9ND0+64UQjcC35H7df2jb+b/X3rgx5VmueBbr//Q+ec8ZgAgIcjjAUAAAAeXF31Vld8prCvDAV7bfOK1/x1FJSVVYFlv+l9f53W/NjSV9uuF2COK2LbQDmNpQ1QR/e/1k/9XLdVyMZ+QvZZ5PeXh3T1/ebn5p/H1GnXGoW3j9da4L5WFbs+NXD7eqxKdv2PBpbXQ/H5pgr1Q3Yf8X1+H221dOp3+wc0CkTrELIOH8tpuQ/NOWWl6fr16urT+vmUbXrt2zVd47l1296+1LZ/rOy/Xi+2PK9+hgDA42DNWAAAAOBBjYKV/FhqW7crA5GyTXFmE6aMxlL3X46nDGPyY53eqiC4vtY4cMrHUx8vA6P1ACkfS33ten85ltH+dE4//DmsHm/HdAhl8NQ69pl9fbUVrG3l67KvDGDrtV23/sw3P1OY5+nmde606Z+fXy+Otc6WUyjcD52PfYbl59wGkvdzThl69vprX8cD7/0er/3ej8bS63M07fHadXqBMwDwsFTGAgAAAA+iDhZCNhVub63TVPWaV6Km8/O1Y5d+1qfczceR95Xv708tW56f74vn9PocX2c5t1eVW4+lfj1lPHXVbjqWrp/3W1cZt9PYhu7nsGzngey4Aja/hzqQ6n12x8K8c05hvCUMXr9+Xklahq3L+7YStgxfy+26QradunhcIZtXxMZ1Y/vVsOmm6+9H/X3Meq+uFX9n43b7ZNo/suiHjm2b8R8N1H9cMAr189Bz/AcO6d7a9r1rrq/x2htPfSzv81gfnSfa2wkAPBBhLAAAAPCgUgBSTj+c74tBYhloxlC2nFb3pofbfXUoE0OxFELW4W0Kdeu1MeuAsD+lb96unMI4TbHcD4rze+33t5x7fLri8nrHAtlen+n+QtFP+nzqe+odj323wW3brn4WZaCUB5cjWwLTc+oHzbVREJtXwubVp2XgOg5kR9MVp31pnHWgmb7jMeTb7+N5+5u+98U9tt+R+vnHULc1DhG7rYv34xC0DFTL+yv7aveX/S9tDtVrb8yHqq9yfHVAW4+5HXe+r+wznb++luwXX+zDn/zJp+GTT1517g8AeAjCWAAAAODB9KbUrdc9jcfXQrz6eHWV0IaSZV/9ELFtUwcgvf7q+xn1vbZ2bDvm1LYOVfvb43GdXiG7HrrGKtg6sG3v+XgoWz+z9pkeVtscC2u/SuWz6I2rV9EaK2JDyIPY1GZuKmZ7VbN5v/n18j8EKP/IIQ/8lp95XgLB/X6+PWfpN95f+tw7d58dG6eudSjaD1PrY+n6edDZD2j72/X1yyC0/+9SGtOhOq/cn2/nY6uv1T6DXkVsux5tfqz3bL/44jr863/9q3B9vTntBgDOTBgLAAAAPJgUKkxZyFCGIktoNKpmve0ppOAnVXjm29WVm0AyhH5w2g96y37zYGs5Lz+eX6s/xXJ+rbXr1kFr2aa897yqtheujipk6+mh0/vxtMXpntfD1jKUDbfjXQuze8d7bdIzWD/vVOV1yg6P9R+/u6l9qnhNr+2UwyGk0DWvhp3nMoStK2XTNcoq2f495QFf/f4Q9vsl7IsVsanffLv8fuT32a887YezW0LZMqAt2477aQPbtVC0fR2vNT0Oidtj9bTE+bOux95v2543CpgBgMdHGAsAAAA8iF6AkYLZXljYCwrritIQekFp7zUPK+tx9Spu28B13La+9pZQcH2N1u4Zt/dZh6+9fb0++9cZBbWxrxBGVbApbG2raPvPowxmR88p/66cErDef1gVO8wD/+S08De/3/Q+Tj/cBq1TmKb5ps2ctZuz88opjuP+29F3/nhhmqaw3x/CNB1upiYu76UMefPfrfTHBst3qZzyu6f8nd8WypbHur1W97UW7qY2cQx58Fv/G5Ffo9fX2vjqgLrs61Cc0+8ztkmvo2AYAHjchLEAAADAAykr8vIQL4aI9ZqxZbjYru1ahrDl2q2LNi2LoUm5LmzqO4ZLbaDZriVbriG7fe3YfhBaVgXn95CC1N70xOtr29bBaj9cTtdOz6itkq3D1TxISvvGlbLl/rpasR/OroVQ91EJu03/+zQOzvO2/amI0/sYtuaha/ypt/sVsnlVbLuechvwLd+j5Xdw2be/fR9CuAlrl/ue533Y78uQNn338srX9DsZf1fjZ5wHj+NgcxSsluu61n31A9Je+Jk/lP5asXX42VvHNe6vt3vXq/tM16mvFdftHU9T3COkBYDHSRgLAAAAPAplhVoZAqawp9yuj/UqU9twIg9D16pg2/f5+eW1+1Wt+T3UgWUd6h6/btnneiDbeyZl2D26xvYxlOPO76k8t/+8R88nO5J9duOq2V5fta8upA2hrNQeXXhqjsWANg9T14LX+DPPebVsDEnzCtm8OrYX8B+KMSzmEKcjTuFxGSaX91I/+N6+sbVw8VibdOxQbd9uDUPKXjCan58HrPU5vTH1A9n2wmWAW46zvkY9nvSHK6P7BQAeG2EsAAAA8CDKKrCpeB+PL0FjCG0laRnw5VWqMQiqpy+ug9666jUd21Z5G/uog9D8GrGvOMYUZPXXjo3Bbl79ml+3rAzuB6/5c6vbpXs7XiGb7i9U4ynPTdunVcrm7cq27bE6ECvbHU9azx1WrQXaNy2KgDXft1b5ugSty+uy3WvXVssuY0rXqceWB4bl+rCHsN/vbz/X/f4Q5jm1y/tdpkfeh2nKq6TT9/6YXqBZh6PLvrYStg1Jy/Vg+321a8bmIW4/gO1d+9Bst33WY+lfu18RW/YXq2OX12PB8vj3BAB4OPNDDwAAAAD49ioDkzwUKQOV5X0ZmuT76v1l/710Ylzt1l6jO/LmOr1+1vtYG2P/hPpZbG/ftm3vcS3FaZ9Xe53jn0W6fvv59tpvCZZSgHUYfNbn1D7Lsanzfqp+bvY20w7nwetcvI8BbQxs0/t4PP2k9mWYm0LeUbhbv6YAflz9W99zG5DWQWn6DrWh4t2+J6d8z9o1Y/sh8Pq/D6NAuPdv3bjvFOLmr73rje4ZAHg8VMYCAAAAD6KtKpuyUKSsfq3XYu1VsOb703S8eR/puiG0Vaj1sbidV4TGvmvtVMV5u3LsZfVgfu20XQcuo7Vhy7G0YzutQjZdJ91T/jyOVcnGfpc2+T20lbLxs4n72yl707HQtTZ98v0Yh4y9a+fPsjy/DmF7FbF1MBorYddf8+A0VtHW0xzXY1xe4+/dPixVl/H3bX9THRvHuhyf5304HOabz+xwUxWbPuvlWvH7F5//FLZWao7+mKFXCVuHnWXgOq6irduUfwTRWzO2HFvebq1KNr+P9t+4tQrZtsI2/9nvD0V17Hhsx583APDVUhkLAAAAPJBxgBG3i9bdCrTy2LjNIdQVY73QZ9z3WsJRVrndRX3ttt9l+3j3/Qaj8KZ/7dH+/jX6z3y9TWqX95k+oy2hUh1W3b/2O1Nfu91/fI3YFGCWx8bVsKPq2BTM5lWv6f3ctM/3lRWyZZ9L2Nqrjk2Bczs9dF3t23te4+90HYyufefy/b3Pog11e59XPzitx1aHo00vTeCb7mNt/P3fk15Y2/+9r3+nr68P4S//8ovwy19+eed/hwCA81AZCwAAADyIOuhIYUZeFRuPx8rXcLu/XiM2Xys2tk2Vqnl4sbQdr4GaqvzKitzbkVfXTPvyytU0luX92tqxvYrVZVz12rdxXGvrx+bXbfup76VXIRvC2jqyKUTKn2+6Vv4s2/Vk8zb9c+vAblw1W9zJmfKnVMHbXrj+/mRnFd+/1NeWsDWvks0rYcvttSrZ/Fq9McdKzOV7cQjTtL9ZN3apkp2mfZjnEPb7eP9z8TpN+9v7jNesp9JdCy7rP3TIt/OAvte+/uON1Pe4ErbXJm/b/rFC7w9FRmvE9kLd9t+3ct+oKnZ8rbh2bOephsMhhFevDuH//r8/Dp99dt1rBAA8IGEsAAAA8GDygDRNU5yHKCnsywPLOiRMIV4bLObbeYCaphUupz3ubbfha9tfO846dMxD2LxNGbjW42+D0Pq1H8j2xloGu2lcZQCcX7v/THtTK9fPIN+O4W7+edbPJ99fHjtUbbaFs/clD+jK6ta0f/T53Yxw0HM5ZXEZ0rbruKaq16m7/mu+ZmxviuJ8bDEAXALY5bOZ5yXUW6YkLoPhGCynYDMGvXdJwOvPs3yN78vn3oaso8A1D3HL/tpze9cfBcbNXTQhcRvmlsfK0LXuJ1XAjkLf8rxqNCvHAICHJowFAAAAHkQZQkzFdln9GUIvSIzn1ZWgZYAYA5gy6I1Baz847K9xWo2+UzFbhqNxjHWAl18/btcBaB42lwFyW+V6rEK2DHN7++oxbwtk8/Et2+O1d8v7DsX95M+ueMKdZ3tzpNNuPZG9v8A2PYu63zaELUZQhaTHKmLzKYlHa8bONxWyZVXs8n655jLG/Htarl+6bC8H9/tDmOdD2O/nMM/pOxHXoC3HmI7l99h9Yp0gsQ4l02sKJPNz877K+9h2nfL8/rqt6XvcVsq27WOno+36XsrwtxfO9gPYeqri/j9Ia8cAgIcnjAUAAAAeTBk25FMSl+FEDJT6QW0bQObH8wCnrmKNIW/UCxPLkK0ORou7yYLOpV1dsVuGsGWbMmAtQ7/Yxyho3RLIpjG3UzinMYdQh9R1qD16TqeGsmn/8WC2Pt62Ww+i0rl3T2W3fQeKMzrnLvvrEDNft7VX7Vqv9TrPu9t2vWmK26C0DjzjZ7W/fb9UxM5hmvZVsBunJU5Bcvkc8yrZslq2/MzqAPWQtRmt2ZyHsr3phNtANW/fa1NfPx9bGcQeitfU92ia4naN1/G0yMemKW4D2vK+8/vsPWsA4DGZH3oAAAAAwLdTb8rOZX8IZVBTBjZ1pVgZiKT2o6lLe9ccBUh5+NHbX4+rbpfGsmW7f426r/q6a9baja/VD3rS59K/x/z8Q9Wg/8zzzyn+lO233N/659qcceRn27Xq/WN5cFlWdpehaf99v2I2D2bzCtnyJ99ft62D27a6NlXElmOvk+f+VMjHnkv9LHu/y3m7OjhNx/q/4+X5+b8N5Xe7P47ynNH3q/c7PPo3Iv83q/2dyq+ZB7Plv2n97+eyb7+Pa8pKZAHgMVIZCwAAADyIwyEPEaaw3y/7l7Ur4/qUqaI0VWWmNV3LaYpT+7yytB9g1v3HNrG6dDnWq7QNIbVJVaT5tfPgp6x8jePvV8rWUxSnsd6M7qbvtkI2u4Ob11TB2m+3ViGbrjWenvh4FWy+vmjdJm9X7j9Ux9qpoHvn514vj6pPbtfYza/Rm1q5t1ZrGciu/+TVsOn9Lnudw25Xh61L+xCWYLWtvq3Dy32oKzqnaR/meb79vsTpjpdK2UMoq1/zatgtQeQozD6ENnQsw8uynzYkze8h9dkLhcfTE8c+6nsZVb22oeraOq+Ho/v3+/oZxf3x38f62aTr7/eH8Ed/9En4q7/6Mnz55T4AAI+PylgAAADgwZShR/wZBSLlOW271L4MfdbTuWPrP9ZhTTvu/jh6Y+xvj6Zf7Y21d+x4+pjfR+8extdfD9vq4KvXNg/c6uuPgtMyKOs3Ggd896k3vW1/LMf1qkrbSth6OuB+FWt6PV7hOt8eK8/pTWucX7seZ+8e7vIcUtv2d7f3+3N8CuNen/HcUb83LZrv0dq/N2m7DGn74x1VpB+qcaV/+3rjOOZwCOGv/urL8Mtffnn7By0AwOOiMhYAAAB4EIfD4bbya79fKmPztUtTKDFV4UaqXA231bBttWqqMCvXJE19LefH9iGM14w9HOo1ass1W8t9eRXq2hqxodqeivtP44r3mq8NG0JbEXu8QrbtK3SuH5pz8irZ8tjx9WTzcWd7uu3y9uWxQ/d4fo/3HciO1ohdjsXvXWqbnmW4eZZ5gJlP89sPYetAtT/F8C5bMzbf34ar7Wc/DgJTJeyhE87m424D/TZ4z3/38p92X3qm7R8+1IHkuPq1vGZ+b73gdlSlGq8xbtdOjd7bXrtGrHItn8WyvVTHls+rroqttc8fAHiMVMYCAAAAD6IMNPJ97XYvuOmvLVkGeGWY108t2rCmPhaqAKV3rTbsTfvHU6iOx96GXO01mjvp3t+WvtJzPXTPqe+p3/ch9O6vP95DqD/7uv2WECoPFMuf15dfoxdCrp2X1BWm8bVcjzXf3wtpt0xvPKp4rSttU1+hE7qGaiz1PYyfQfmZ9R5Q+92qf2fq3+vUb/93ffT7VF+3Dm7X7qf8vHtjGf0b1R9nb23s8ne+Nx3zsXsq7w8AeNxUxgIAAAAPYr8/hOvrvDo2VXwu76eb9WOXfTEk2e+nMN/8eXkKTtIasil8KSs9yzAmXxc2tUlrxKY+87Vjy3VO6/VlQ3ZeyM7Nr99fM7Z9318PNq1RW18rtelVyOb9pr5CcU91v6Mq2Zs9tz3l7dL9hbBWKZv21+FY/YxDV7UcajeAO11/fdjUf/t59ip0V69wG4LG69UB6pz9xArZtH5sXinbe7/0PWfVrPk9pN+LZTrbQ8jXDU7VvGWAvB4EHgsn+z+pXVkd2gsp6/b9646qY0dB6bEq1vbcOjBuX9P7ssq1d716rdhDtj7s4Xa7/8cR7TUBgMdNZSwAAADwID7/fB9++csvw5df7geBS10xlqcOZeByu7cKJsogpa9d4/Fwu78cxzi0aUPF/PprIVL9vg5fyk7r9Sz7oWO7b7Rmax5i1f2uPdf8Gv1nHtv0K2XLdmW/vUrC0bn3G0SNg8H62ql9ve94INtOW5z2x6A2D2vTa9pXV8umc/uVtOX0yKG55vaxj4LVPBjMv6P17+nxz7Zsn85pj/X/Dei1Kfe3wW1+vP19738f6vst++iNqf5+9X8/tnz3t7YFAB4HlbEAAADAg/jzP/88/MVffB4uL+fw9OmuqIxtA8JDKNeOLdevXPZPRbsUlJRrtrZ9lFWgsb9eZWi9jmi+Rm1/XdbymvUasbFNXkXaVqbm/YXimvlYSuW+3nnpnmKo1asSDt3nk67RVt32K4Hzz6isKO2dWwZ6ubZ69T7CqLLP2GG7Fu3aWrH5vnrM/TB0bfrhufM+rg1brim7VMX2pideu9/8M8vXgx1PSdz/nWzXoG2DxkPWtjwvDybz1/T5b18btm4/Wj+2/L2p+2iD2Pw+en2VP22bVPGat2m38xkC2qrX/u9D7F8gCwCPm8pYAAAA4MH0g5M6HDkWqoz7GJ3XhkvH167N27XBVLrezVa3n3JfHrDUYUsdsJTHt1bIro0xP1a3642lfyyFbe399bbzkG78bHrH0ljaMO91/f/s/VuvLEmanom9Zh6x1tqH3FmZWZV16Kru6iO7Z9jNbpEQSxRm2EOAnBmAwAwkgD9AN/oRutPf0G+QhLkTJEDAXOhuNIMRhuwhOV3sYnWxTpmVp73X3mtFuJkuzD+37/vMzCPWzp25T+9TiHZ3c3Nzcw9fsTvjiddsJNb8fb37+Xpy04vZ/rqdy3U8/2tP6o7PU5aja/DPRJWt9r77Z0vfq9Hfmm63nsuK1GWt8wxYOWrPW4/vP0/jv8vTnw0+/Zpdm618hRO6bX9s37Y+l/R70mvns89u8atfPcPhkNpKhBBCCHllYDKWEEIIIYQQQgghLxWZY7EmY+u8rT7lKglSm3LVbdUkpuzvSU2dBCzH1L5gmSNWkq+j1GCdR1aWUPWlju03lnlfpa9SR66vl1y158Ta33MSsrZvOnlb05H62iWZ7M/v07Oj/ku7fr/e1u1Jm/Z+Qe1DQy/Fui1IWyF6IjjaPb9O7bb31F5nnYN10KMgS33tVqyOU7P9l5evei5i+wzbpRX7rRwdyUIvZq1c9NK8P89pe07bvi6r976VlaP5YH2dXj/bfmwlX3sSt5eYHZWV7Tqn7PhebVPq/OpXz/CrXz07VZkQQgghLxkmYwkhhBBCCCGEEPJSaaXFqe2RxOgfhxNpOGyk3cpxtVwvR0Kpd009YSVtWxGV3bodqtSe08uk3nZ7XK+ur9+/HmnrVIq4ppl7+3WZPl9PgvUYybExuXn10rXjNtv7VO9VuxyV9VOqWsKiM19s77i+4T1HMPeeef+s9eXp1qt3jL0HvWd7S17ae967/+PnsH0W+8+9Pg4dEdu7R23fev3qXVNfysqryNlRH/XftG2HEEIIIa8HlLGEEEIIIYQQQgh5qfTFT7u91HbHjqXZtvzxwqQVK32h1B7f7rciRcsd33ddpy3v9eXLC9le3a1z9fuW0ZNarQjLzX7vkGx5Nq++8Oozfo9OHZ/dq9dme59Gfejj54q1ZSJgx/PK+vr9oYr1cf2+1Pta+3sXgdiT2L0fGtR6+p6299H+MEH66P9m/Hr7nPXqjNrZ/tu3/crNOfp/660k7d8b/0OM/j3VffX91mWn/iYIIYQQ8mrAYYoJIYQQQgghhBDyUsm5DFGcUh3ytSc9Sr2AGEVo+KFW67Cs5ZjQkRtiL4I5vx+WuJTVY+tQtNmdV9fJ0MMR17Sj7hvUfpg6dXhgfX2lrh2+uNQdDVlct2Hq6XPaIZDz0m5viOStoYu1jOoPX1y264WLVPQSqTeUcb12tWXuS8updOh58qq9pnJsRnvv9Lnre27P2Q5X/GUlmrzPtkw/A14+tgI1pbwuU0rLKyPnpPYls13rt+v6VZOe47Rt/Tu1gtYL0ZHgrNc1lspLrYEY7fVxJGdPXc+p9nv3Hsvw7D25u/XeZ/z612V44sePD8/x9BBCCCHk64bJWEIIIYQQQgghhLxUrLDYGv5U1x9JnOzaLtKnPZ+XOj511ibj7LFWdMm+8bnWks654M7Vu0e5qav73vajXarWNs/hjxn1rb2u/rCx9hzb70mP3j20r37dkVQ7n/a9knP489by/vnG5y9zy+p5c6Xc/mCgTdP22u49z6cTrs+TjN3+m5X3xra5JTrt35u9Bv3s9/ZDncvXyd1zqbvnlrUt33/9WdB7b9tr7X9m2Gu2bfr+u3d6Xbu+PuLjj29wc5MGdQkhhBDyKsFkLCGEEEIIIYQQQl4qKWXMs8icgLT4hZKADY3o0MlKKY+xpFV9fZ+WtdvBlOuy0Xa7hCvT6ERr3W+Tsjb1atvR7Z+qOyrzbWDtQ71uKasiaDslW4/zSdl6P0udXoq0TeqOE7N133I1XU9lC7fSsbpv59Cmmtv3oE0k2+S0Tsz2xa7d9tJQP6/yN6IFqFy/TpbbNnViNaFNw9rXPKflb9Ju21c/LasTs2PxO/qxRSsmvWT18rZXp97Hto6+531JPOrLOctWPksC1tfR5XW9fbjt89AKXUIIIYS8HjAZSwghhBBCCCGEkJdKmworr74kGQuc2p4XN9vyQu/zdcfHbtkQK438Me05bN97676uloHn9c0e1zv+3D6J3Brvq233r6Ff1kvM6nbPlVCtYOu1kd1rq63clMn19a7n3O2teqOUsy+rolH/HeS1rCdAzxOld5GqVgyP5GF7vdvysbfdv1f9bf0++b/H8WfL+J73/m5Hx7fp3NPp4y3a95wQQgghrxNMxhJCCCGEEEIIIeSlkhIwzwnzHBGCTcbWtF9QkqNNtwIBKdX5RXX9UjcsbWWVwizHlfqyns0+mZ/V77e0+0bzx9pjoMrlfFXk9FK1UrdNyKKp0yvT879u19Xldt+5Sdmy7YXs1pyrVvT6faN06YjzErJrielj26/Re9umjO111Pe0L1S1yOwJzL7wTCkvfx8JQEQIWNZ1YrttQ5Kx8zy79Ou8pmDneV5eCSnp8n6S1idkz5O4WiS3YrPeGy9Q22uT968nV/vlW2Xn7NtO1Grp3SZga706X2wtt9dmn8t6Pf0fORBCCCHk1YXJWEIIIYQQQgghhLxUihzqySfZv5UuaxNstu1RWV8ILTWaY3viBS4FKNdy6ryjvo3SvF7K+POoUozYbqseP7qXz5OU9ddRzzFOzI4kk382tq7Vt3fq1TnStN+7pvO3s7m/Zf/4Xulz67Rr+7fRJli9AO1tt8MJt0MQe6naF6t9ATmSrq3A1H8n/u/P/i34e9V75kbvZft3ZN+bXv3evdfvSXvt/nOht95er7zXo2fe9qlUur1N+OyzA25u5u2DCCGEEPJKwWQsIYQQQgghhBBCXirHY8bhMGOeI2KMazI2pSIgbDIWQGe+V52YtaK1Tch6ManTtVv7AJkPtNapKcmalrTyzc73WvaXcjvHajAJzOdLyPbr2DbaenbeV98fqDptWzWJXM+17Klr3Xlj28TsqK5uZ+19RyqP0KnaHmMZ1r//bVIWbr9PzvYEoshKO/9rfeYzYsSSgAUkSVmS3ZKATQghIueEEIJ6NvVzBtN2m4zVS0nIzk06VpKxOdc0bJnnWcvcOh/tWN72ZK6Xpv1kq17vy9y2jq9r97f19N+/f+m5XbeErK7XS8aWRKykZ1txq58/25+MTz65xb/5N5+7eoQQQgh51aGMJYQQQgghhBBCyEvl6dMjAODqaodp0nIjOCFyWqj646r8CmZby7kiVWW9SlktGv1+Lz1FuImoq2JMizkvYavMa8/jJWmVv7bvVcjqOjmHYZ9sGUw/ah9qG717oNvS11Dr1vs8qmPL6vvk6/pj9D0/h21x2w5JPDpv777obX3vdVv2WbXX4UVeLdOitu6rcjYhpYgQipAtkjZAD1Nc/zZsErZNxLbDDtdErB6G2O/ridf2mtpkqP5b7idP672167ZuX17advU974vaVsRm117bVvvySeCtffo9bZ/L1rPa6xVhTwghhJDXB8pYQgghhBBCCCGEvFQ+/fSAL7444t1397i4iBtyQ88VC/hELNBKEJ3itHVrG1rmFqFl2y9tWAm6tAidhLRzh9b6IlCrSOrNJevXgX5a1tfF0m90pKBPxOalP1be6uM1o5Ss7WOburV17Ty+uk4pM6dcJW4rpFpJ29bZpi9vbSP1/ev1yc8ZK+9De1/98yVlpZ12Kc+6zAUr0k3OLdIVKHPE5pwRoyRi5fmw/Zb31s7pKqnWGTlnHI8zck7N3LGSjpX5YmWpE7ZV3Lbp2PFQxVbaynugt7049RJV6vSGBfaCti9Ix8ncceq1txzJ5/bzSxKwbbq290zq96+Vu4QQQgh5/aCMJYQQQgghhBBCyEunSguRUD4Vq+WLFqpenmrR4ROyNs1ZRaRP2tbkaH+YYitDq/zsD1u71BoMU6zPOU7LeiHr069yjtFwvL2UrL1WK423hi7u3aey3k/LnitmbV2/rydp+22MOF9kST/t9ch52vu21b59lks9uc91KeJVDykcY0LOYUnAyvDEpZ2Sjg3r8MSSitX907JXp1yrWE2rlK0SNq1DEvcSszJMcZWNXr568VrXvWCVvrWisS9i9TMwEq6+Tis+/dC/+hz9ZOtWe62E7a2PkrHuSTHXZJfPns34+c+v8fjxsfeQEUIIIeQVhzKWEEIIIYQQQgghrwR2+NOe9OglY8uxVqqERnz0ErE+KasTsK2Q1Ocp9cfDFZ8zTLGWwbV/bYoW6pj+kLh+eOF2GGM09fxQwzYl2xO19lrGQziPpay/f6fErK2PTp1WXqla7YHdNvrU+6+vV19/K8Pre2fftzYJK23ZpQjZusQqYa1wTcv5WhFbBbKWnXaYYp2M1QJWL325vFqxa4cttkMX678/PxzxSKKOhybuC9VxgtYLTS9w7Tna98jew758BfKgXi/Z30pZ3T+LfbafPZvx059ec4hiQggh5DWFMpYQQgghhBBCCCGvAHmRRDInYkBKpVyLTQCIcVusWuExErhVrPmkoq4rQk7vGw1XbPdpkacFqz4G6EtDLwF7Ehhr20WI+uGIbUpXp259H1r5mtV6e0wVkO3wxfp437au46/JlrX35K7DE9c5a/vYNsZmtn3vtKzW72H/GdDX46WgzP+aksz7mhYBa0Vrla1Bvde52ddeYxWN7VyxeljirIYknpdkbB2i2ApZacvOL6vlbG84Xvlbbv8++9JzJGJ7iVh9r3uSV7/Xdn+bym0l77nDE4+Fq/6BifzIRMtW+57Zvuhk7egYQgghhLz6UMYSQgghhBBCCCHklUCkjZUQQcmNKrWsPLHDFVcBW+va4VtturJNl9Z26xyyrXCz6chsJFlPGG6lS7V0Fnk6Ssj2U61ZyTrZBnySthzTpmTtEMjo9qNNw46uZZyW7dXRZfKe1H3tUMH+2B7nCNvalq5sG9b3Xw8zbeWnFbZyz/zxbfrSSsPyI4QyZ2wVtXmRs3Wu2FLfp2Xb+2uHyLVzutbhiZNa9pKwbSLWpl99kr0nK8t19eRmvTdWzvdErL4+P6SvF7G6HXuv+wK1/76Mlrav9VyjoYr1eUYSVpe3ApkQQgghrzeUsYQQQgghhBBCCHklOB4TjseEeY4AsA7JWZKwNWFX5sssx5SlT8ZKIq3WTUkP9StJvdJ2aSebdoSxCNECuJd8HCdlt9fR3ddKU1/XtzUu03PAtmW+zdKGTsOO90H1T5/Py6Z+YlbqAj3ZNdp/wsoO2td4Eaxqm+PsszF6j6HKLSJW5Z7JUMRFrMblmKSeo7iI7zqEdYzl2DKPbDs8sb4mkX92CGFJsNZEbM4Zx+OMnMvfX6kzq6GLZUhjOaaK296wxV4Al2sv191K2lZKt5K0XZd7JO17AerbGUtVn+A9V8jW9G9NAVchXVKwvaSwlblb0lX3icMTE0IIIa83lLGEEEIIIYQQQgh56eQMHI8Zh0NaUoF+3tewITOsEJX6db/UAXrSqg7hq5OeVs7WtGOVb+VYvbTpVDlvrV9lau9cuk3dN51MbVOsPtnbJn3b1GybcrVlo/lkx0nZss9fV29/PUcp6yVR2/q9/bU/PfqSdizXe+e170s9XzunMEyyuSdq2ySwTWTWZKUI1DJfrNRJ6r6WeWNHMrb+bWwlY9thi0s9ScP2ju0lX20iVCS0Fqa9ZGyt1/6N+v22bn0D9WdAL1lqz9cK0F561ffJrrcyV5/fS159fO/aR1hBm3F7m3B7mzaPIYQQQsirDWUsIYQQQgghhBBCXjo5A7/61TNcXERcXk4IIWCaipVIykOUVKAXfXZeWBG3JRkrCdlap90OiDG7doqILcnZdtvKNrEnvX14znUM9p27jTuU+fK6r59gbY9rxaTe3kqv9sXUKDlr62zJ1TOsq22tk7r17YxSsXVZJG3v2ZC5YatQnef6HJYEd0bO0Yn1InlLIjasbbTDE2sZa4WoHlrYy9g6XPHsErN1qGKfhLWJWD0frRW45W+wFbFaSmr52heZ7VDD5V5u1+mdr192XjLWz4HbSmms9WxiVt+X/pNnBbOVuM+ezfirv/oMNzez+RwkhBBCyOsFZSwhhBBCCCGEEEJeCY7HMgxrmzLrpdr0sqZeWzmjE7M2/SnH9OZPtXX1fultO0esbafU0QLPJyfbOVNPJ1JrfZ/C9UK2X9ZP78o9tEJSDy/s+1XXtcQep2X1e9GbK9anYLWg8ulZf6zm1FyyY/rDNLf9knK5X1rE+iGkm96pNoqkrD8YyKuQrUMV9+aIjcsQx6WN0zLWCsEqTv3Sp2TrXLEic8cv+/dopWp/aGJ9L72Ure20klIf16uj2/GfFVWMt+9P7xpG673PJrkXul/9z7De9bfr+vibm5nJWEIIIeQ1hzKWEEIIIYQQQgghrww5A/OcMc9+vskqxmKs6VgZolULmH4yFmtZ7xggrMMja5FT6uu5ZKvgrJJGhKReoqnfX9d1e3X8vrts36Vsq7zu20rKFhFpRaat20/MbiVct+Wm1GmH6P1y9K+nvQdexLbvh8jrELD+0EDaKMMQl3ohpPW51e37OWK3hie298AmOHsyVovXkoSVcv3qD21cl1DS1p4P6M8Vq+VrO5xxv9wK3tN1fF0R37VPo7Rrf5mSF6xtMlbXKXPG9ud7teK1lcnynMnxhBBCCHn9oYwlhBBCCCGEEELIK0Sdn7LMm1nlqn/pBKoI1Ta5ZpOxst4usxGNsrTzoEoSsUrXNhVrE6ZyTf30aBWvNmHaple9ZOylees+ndKsddrUbb2/tk2RWOclZfWxIlx719u7r7WsTc2OrttzStb6FPK5aDFmhzHO63a9nowqbnvHeGlf6+WcAEQAWJ95ScLKjwFEwvrhiUdz7vbFYZ0LtjdnrJWxWuBuJWK9BNUJ0QwtYuWavVit/dX315ZbgTmu458F+/kA1zf9HvQTvOPr9J9HPglrhyYeLXsUsZvx6ae3ePLkSCFLCCGEvAFQxhJCCCGEEEIIIeSVQidjSypQlmiWQBVSJXnYyltJyGphawWul2S+zA8BqxOvfokzyso5rOhFU98mMOsxWoh62VolTz2m0jtOzgXYFKgIRn1eNG319+n9vg+jJKxPzdrjRlK6Rytex/N1do4etFnvhbTZHteeRO5zCHlJt8oSq2At88SWdZkbtpRJetZKWD00cU901+e7l461adde6lXLWS1w+4nYIpPlPDURa0WsFZytfK3Cdbt869h+/X5itvYXqk+jl0/I+jJ7Dr3deyZ6z4h/HY8Zf/M3j/HFF4eTxxNCCCHk1YcylhBCCCGEEEIIIa8MRUQkTFNYh2YVCSJJwSJW7fybVsL2kms9CSvbNkVaBWldFnpD9JreY0vI+vlVe8dtJyxtX+1xVsj2krpW1LbDCev+jVKf7ZywVtjafbKd1ba9/p5MrOW5s68VtJ7zxWv3aNVub/jjco/6cron4HVb5T7KDwNk6OwY01Ie1fDbbRK2L2J9H72orC+dcB0NPVy3+/PKWtlY/860fBURXPtwWsTK/erJVy9i6/WOErHniFg0fdgagnh7Xy23stb/CMA+mL7Pte82YUwIIYSQ1x/KWEIIIYQQQgghhLwySCpsmtKSiM1IKZiEbM51ftcqVPT8ilWWeRnTT8aKGOklYZcWnaTV4k2EpIjjdl7VVtK2ElMLz7H8bEWqlreyH6ZOK217Sc9atzd0cS3Xfe5J2f4QxnU7u7I2NWuvF25/T9Cue/sHqXbPwd7rtm177/T90s9FKatDPotklWR3TcjWpLeeD7Z9lXMH15f2WevLQytkW8Haitd+ndq2lbJaumopO5avPVFrr8Gun0rEtuUjEbudlm2P93VlLlh77e28svp56j+3o3NJYpcQQgghbwaUsYQQQgghhBBCCHllSCnjs88OuLqacO/ebpFW2YgswA5XDFRJKNKkHdJYS89aV7ZTCipxW4VmK2nbpU3polMXZr1Nv56zDrNthxW2+/sp2XpML/W6NQxxbfOcfXq/7rMq6bYFd03tMcBY0uq2+vPKbh13jqlt58JFM5R0K2Tl3DolHIIdpngkYGuZlbB2nlj9wwEtNdthitt061jKjhKxgJ9DtpWxVrD2k7F63f7dWPnp6/UErb3mU7L1HElbl1o4i2wdJYO1lLV/A1B9tNcqz5GUpQT8/OdP8fnnt7i5mZs2CCGEEPJ6QhlLCCGEEEIIIYSQV4acgevrGTmXuWNj1DLWJl5bESpypM4Z64frrXWrNNX7q6TU7ftEbK0jUsanYmXIX32MT93aYXz1fLC9+WT9Ma1IbYcZbocttlJYtwPVBy8PqyT15y/r/RSvld9tYlYfo99DW94e0ztWsy1eu0d02m0b1/2z75dsj5LTtl5P1Pr76mWsrNc2BlcyEKHnJmTrenLS1b/g2tZi1Z6/3zcrJOvf9Law1SJWP1tW0G6J2NMCtj1nTwL3rl/6rQVzf9m7Zrlnn3xyg48+uhm+x4QQQgh5/aCMJYQQQgghhBBCyCtHzmX+yhgDpklkbJ3PMwQgxrCKWqBuy36boq1DxpZ5Z0Ui+mQsAEi7ATFKf0zvTFmRuGXYZCtsRY5mJdWqqMsZyzHoHtdfB6yMy51tXWd0jC/zw+96+sfIPj2EcWmrJ0V9wXmJVI9PQ78IRlLY1TL9KuI0uG17hJbk8v7X9GvdHonXuq+eP7iTWMHnJWY/IduXskDOXs5KGVwy1orIKir7ydhz1k/v60tVe713E7F1aOG6ra9FrrV3zX4O3VrHPze9Z8k+R9KOtEEIIYSQNwvKWEIIIYQQQgghhLySzDMwTV6mhEau6OSpTl/qF1zK1KfSfOK2tCOipx2mWCdI9XJpEVrcWQmLta1+CrWto0Wo7l89b2+eWt83e29OD12MYR9LHZsi1sfKPavXXu+zLWtTs76ub8Pv06KrTcqeL2rPE2B1qOJ6XL0fth15/3RaVo6tArEvb/2ytiEJ7FHfeyJ0K91q54H1QxDbYXdr6rO2L9dq/x7vLmJtO9v7RonbVrrq+9OTs72+juqNz9Frbwt7/bX94zHjcEhq7mtCCCGEvClQxhJCCCGEEEIIIeSVIyUscyZmTFMAIPNsivySmmEZyliEmJVzMmespGZjrGU6YSlp2dpO3d8bflbPMRujlyd+qNpSVtOzMPuLcPPJWQBKBveErhWDWvZBtatlazb3reJTnrXcXtO5+/z+rXpb9a303eK8JO5d6Q9VLM+grlOlrK5nBXRPrIqw3U7AhsH7Vs9V17fkopWwADryVadmy/EiB3UyVp+jPZfth/SxlZB1X//Ynli1iVibZG371C/rpV2xXrNNyNa6vTljbZq1J8n71+zfq5Qyfv7za/z8509xe5ua95gQQgghrzeUsYQQQgghhBBCCHnlSKmkxKYpKPFRhxIurwCdlgV8clYnXovI9OWA3fZJ1NpmlacifYvktIlbYCQGewnV0mY7P2wvxSptyHmxtqFTslbmYm2vSsM2TauTqqVO6EhF3VeY47QY1vJR6tXt2r6u09bT5VZ8ftl5YkfHD1o15+6fy9+Xul3XW5lvE65hvYf2vqL7bPj+aOEnffBCtJ+S9dtatMrxvSRsew4tROv7bCWqvX/+PF4q2+P1OW3d8xKxvk3/vOg22nb7wnjU7x6988nycEh49mzGkycznj6d+w0QQggh5LWGMpYQQgghhBBCCCGvHMdjxscf3+Kdd3a4uppQkrEZ8+IqRIj6uWE1en5ZmTNWErFyjJ1nVstWSUC2Mq3OJ1vlml7qeWyXHkBLtH5C1q6LLG3l8PZ2EXh9YXde2TnlvX1+/6hOr95W3VPHbXGeJD+PrT7XFLJOO9tzagFrpf5WArZNK4+SsXboX1k+n5S1srGfhLUy1cvKu697mXpOUjavf8d3TcTKdUl5O1esLG2KVidh9XyzrRBvy2q5PddHH93gr//6c8zzcz+chBBCCHnFoYwlhBBCCCGEEELIK4kIDxlKtQwzHJRYCevwwqP0m5U7NR1a6+qEqJaqQE3cWonnU5/L1irb7HyugBWubdK0l5D1iUi/zwq+Nu0qfWqFpG2jnh+oAlC3D/ikbG0H6hp696ZNzI7un59r1tddr6jjq8ZpV1v5fBF7bnzWDhVd3+tSpt/b2h8t5jstZns9bZ/bY60EtOJSysZi1stYuw6XjG3bGEtW6e9Yvtp+j47R1+Pr+H6NRSyac/fLxse17W8NT9zi08HyKqMAUMQSQgghbzKUsYQQQgghhBBCCHllkeGKJYlaU6xYlzXl6iVHrePnjJW6KRU5VsrbZGxPHEnKtqRbq2yTuWglOSvLpQX4hCyWuWf18MJVCqOpb4UxXLt6G7ACECfqnFte9rXDJmNwXHu8yF2NTaxuSak7jTH8JTglxvyQxb25eG06ttbtyeiakq1tjOb39cfafnhBWcVmK1S9cG1l5EjC9trvn19v62Pbdnx5u0+f53kSsToZ6+vqtKu+Z/pYP1esvpYWPzyyFrG+HYpYQggh5E2HMpYQQgghhBBCCCGvLMdjxuPHR9y/D0xTEbIy7LBIrDqPbFjFClAlX0nQ1pSnTcRl+DlnAZEn/WSsnFcPOVuHM4ZLyGpZasXpaK7YvpvR+7KTmm27bULXplxF7Ep/5Rp1UrZN+I4TsX6fvv+2X9LfOqyvv95xMjQ3+2ud80Xt3eaN7eHfIJ9GruVt8lgPaayP90Nbe0G9JWT9ELlbwwZrwbotXv1xXoz22/f9OS1l6zbMvp6Ircf05OtIzo5efenqz9mTt/b+++e0X+7P+ezZjF//+hk+++zQP5gQQgghbwyUsYQQQgghhBBCCHllub1NuL1NAALu3ZtWqSoJ0ZKWDWsiFYAayrjKFCmT4yXFKiJMhJ6Vsl68VPEqbVZR1hsG2crapVSVobvfS1fdr3Eq1gvaXv2tMkCL4N7wxb1j+uI1u+2euLVitpaPZPRoeGjfH1u3W3PQfueMZ9azAlaXV/FqhyeucxDXZ7kVur00sxzv17NZH4vTVrpub4+PbdetbB3L2rFs7felrfN8c8XaaxlL29GcsVkNm+7vuX0vbFkrcHMGnjw54q//+os7PI+EEEIIeV2hjCWEEEIIIYQQQsgrT84Z85wRoxZYVaqWl5WyeijjKnKq2KzDFcvcs1rKWkFmZWg2dbSg1WnY3jFLa2hFn5ezGNRv97UpWZ1q1Wnd3rlGfdD3biRr9fnrcePEbKnj98sxgBbAft9Y0vo2Sjvbdc/jnEa2hnQu+61Yl2O0mD11/lEqtm3jtAzNrt5p0Tpq89S5ZN94iOJxe6eSse2xIxG7ta9K1/HQxnW/1B2+Wx3h2t+vh4gmhBBCyNsAZSwhhBBCCCGEEEJeeYqMTZimOvRrSawFJVFlPlhJu9aliFIrXL3gGSVjR0MS22SsiNh6rJ8P1qZe7dygvfRru66lpZWj9XxtO7Lthx7upWnb4YZL2Skpi/VapL1ekrU3x+yWnK3HjyWtrfd108rX0/vPKeu3MRJ8ZT2bspFg1WV9uTlKvvba08f59W0R68+t641ErH7W+tJ0u6w9biRtrbCt0rbt7+i9at+Tevw81/mvCSGEEPLmQxlLCCGEEEIIIYSQV57jMeP2Ni3zm8ZVqkpCtqRi6xDEIkxlKSJWhjT2dWPsJWpFFtZ2ZGjiKoHDktatwtcv6/nq3LU2YVv3F7aELJzkhWmjP7Tt85SdU97b5/eP6pR6PRF7/vDAvXN91Zzq21ZyciRd/fu20XpXxo4kbNnnRamtM95/SsKOz9OK11PC9pSs7clTLOl234aWqICe81UPOWylqx2OuMpXf+xIxLb3byy6nz6d8eMff4GnT+fOs08IIYSQNxHKWEIIIYQQQgghhLzypJRxPCbs99GJl5qA1elSm3TTc7r6+WG1ZKqp0WXPsmyHLS7H1UQqVDK2SFURbFW0+TSrnEMkbE3f+nlE+ynYsu7brX0W0elTs/4Ym7aFa9smZbU89WlZuSf62HqN9p6P5n8VyVzLbcrW3LmByNqaL/bLM0pErmc/eWy/7mkr1xex5dhtMdgTq7WOl4Vb+3UbvXP5c9xFyvp6ug399+yveZRytddur6/9jPDttPtHjN8X3Y/yOhwSbm5mfPLJDQ4HmlhCCCHkbYEylhBCCCGEEEIIIa88NzdpkRdhSZvKkMVVysQoy5pAFJkoc8nWuWVlHRBpWuaPxZqo08nYmoit5ynz1Qa3DZWI9cu6z4te2S/yVve71pG+AvX62pSs7C9t+Llj6zFVvtZr1W3X/sGdQ59nOWLtX3+/b9dK79MC09Yf0QrhF8X5CcZzK/ZTsneTfl6KbovSsZTV2/0hiHv7em1std+XpH5ff1jiuw5H3NvnE7F66GGbjM1NMlbfj9570RPS/poOh4R//a8/x5MnBxyPFLGEEELI2wRlLCGEEEIIIYQQQl55yryNeZ1rsYiSoKRHcALGzwkbOkugyp+g5IkXUfUYnwwtdcs+Eak6eSplUHPI6gRsbcf2qZc0teeS8pqS1e1V8WoTsFXMjpOytg0th3V/bFrW93WUmLXXIiVZlbXXstbq+CsrXG2F8wXq8zA2veedd7tSr41Wxta2rAi0ZedL09PD7Opt36bvl5eRdX826/46dPu6ju2T7Zsc7+/PeM7YUZ3esMSnaK9d75P2Usq4vj7i+no+p1FCCCGEvEFQxhJCCCGEEEIIIeS1YZ4zbm9nxBiw2yXEGJVgHB1T0qyylESsTslKGhawc8aKKC1zzeZ1f5ljts4jm7OdT3aUkJU0rRc4Oq2rk7BSt9aBOtamZKv0tQnYtr4uq+U23Volqly39MFSz9eew7fZr+PbG9MeZ8/9dTJKSN6hhRPHnhKyo6TmOPXa295Kwvrt/r5eu6NjR0K4t+90Mrat25Op/Tljz0/Eju71eNkOcZxS2yYhhBBC3h4oYwkhhBBCCCGEEPLacDwm3N4C+31ehCgWySlStMoPmcO1pmZ1+lXSoTVZWpN3dqjfkv4s5VV0lv16mGGfkJU2xmWFOk9q3e/nkfV1+gnbmnjV56l9tnPCenxS1s47i7U/fl5ZuXd2vtd+YrZek5S1yVnfbiWbfUvNOwmuLXH7IkXZXdraquuv39c9R8LWsm3RKuV3kbSnjveiUurq8rqvP0/r3YcoRrOvtt1Lv/aHRvb3rn0/WrKpUNt//PiIp0+PSIk2lhBCCHkboYwlhBBCCCGEEELIa8P1dcLTpwn7fUQIE2JMqLK0CsUY63yyIlJ1HUmiCiJ2gYAYbYJV0qolBVvnhrVJ2DYhW7BDFfckbeljFb6ASM9gBKfucy/1Wq+17tfy1A49DNcXuDJbriWvbaMeo6WtbdO3qxnJqXPjrneTW191MvHc9s8XsL6slYLnyNde2fNsb6VsT0vacVvnzA8LyN/odjJW6pSUa92nE7G9FKykV+31bd3z09eTcxla/W/+5jE++eTGJPAJIYQQ8vZAGUsIIYQQQgghhJDXjnnOmOdkhgQG6hDCRa4UYSr7RKTGWNoodfQ8sHb+WKxJ1HbuWF0mYrVNyGLdtyVkbQpUl/mUqU7G+rli/Zyvfl7YKnRFmvaTslXU9uaI7SdZtQgfpW61GNTpXl9P7kVrJEcp2rbe9v7n4Xkk7ukUZbe0u+/ctOZXJWHLshWxvWNGUrYnW9vtsYi1+7eFrG23L2zrEmYI4d6z3d77dinr+vXZZwc8fnzAs2czRSwhhBDyFkMZSwghhBBCCCGEkNeKnIHjMSPGhN2umNUYqxD0SJkkWGVZ536Veq3YrXO4AlhSsOVcYR0iuZeQ7UnXkZCV4ZLlXFqI2uPrugjWtt7WdlvWb0fXO7fc7t8Ssz3BdSoJW4dO3kYL6RfJKUG3Xf/8Ov2yPKzTk7J1/1iw9spejIRtxavU82J1lIzV6VQvanXqVdf188L2xGsrYnuJ2a37rPHvSU82Z/zyl0/xs59d+4MJIYQQ8pZBGUsIIYQQQgghhJDXjpubhHkO2O8TgIgYdXLTihJJx8q8snUpNfJSryZni1ipwhUobZchjMMqf4Fat4rSIlhrnZ6ILf0di9tT6xjsG22jW8emU3v1xuU67dqXoFrM2uPbVGx2ZVt1W7YStS+ac09xql57308LWi1f2315WP8uonZLwsr2lsjt7z83KduXmq3M7Qlbu6xSV0tXLWR12WnJPbpXdnjoek6dtiWEEELI2w1lLCGEEEIIIYQQQl47bm4SDgfg/v0JIWRMU03IacnoJSxQxZ3UkWGJq7RphwmuEqamYPVwx1ay6qXdp5c17dmbYxbuGJhye2zdV6XoSMCiOUbfL5tA9cMJt/XbtrfSqVrOerHbb68tt5J2rf0SpNf2ObcF66i8J7S3EprtPLF9kbhVdhcJ67dPidpW0o7rbYtWv74tYreHKG7lbO+++/vd3ie7z6dvJXFLCCGEEEIZSwghhBBCCCGEkNeWw6HEW6fJD91bkGGHRTRKmV6q2kt5XoYortuATs6KkLVtiZyVclmW4Y/zmqyV1GzpU1ja7w9DLEnfWhdm2wtWmQf2LkMVW3EY1H2pQioEe3y9n+Ohiv193a6zVbd/nH5PT3NuxfPk2bmO7bSI3Za258jXun6ugB0L1nPqeJFay84TstJWX9D25exIvtZhirf22eGIa93R0MTtG9F7v3Tf9HWnBPzmNzf4xS+e4vHjQ9MWIYQQQt4+KGMJIYQQQgghhBDyWpIzMM9l7th5jktZNjK0DktcRKOkZLU4kTRoFTM6CSvbNekqidQ6NK5d9qjnsKlZmzqtclTkpz2XP67us+u+PdmGqSPDDOskaymzyVdpXyda9Xn0MMQ+yeqTtr399t5lVd5P2D5fIjafFLdfJsR46thRQvK0gH2RyVjb3jnSVbfX2x6J2l4bW5JW2mjLt5Oxte1+ErYenzt1eve/vZ96nz9nrVuF7/GY8PjxAb/+9TPfACGEEELeUihjCSGEEEIIIYQQ8lqSM3B9PWO3i5imtEjEgGmq+7U8CSEhxoB5luFDI2JshWBJs/oEbZGosl7nkdVzzNptScoCIn2LDK5LqHStT8DqdK5P0QI1waqFal77XfZrm1RFrxawWpbWMpsk1nK2nr+mZWtde1xN+MKd276HWmzrcp9ytsfY85zDl5GtndbOanO03wvXXt1zxGtdb9vwslPvP1fAyvpIuo4EZStS/XY2x4zqtPJ0exhiP/SwTsLW5ehe9e7TWtKVv3JPpOyzz27x4x9/gZubBEIIIYQQgTKWEEIIIYQQQgghry3zXKRdSchilZxVSmKRNEUqlrRsSX9WgWPFYhUvNiHrk7F1aec29duVUr8u230+AWvrjtbLtpejrfCzqVotZOW6qsj1knWcltUJVlunimPZV+8xVFlWx9Rr8vevJ2zrtW3XdXvd9tio3lXgbtXv9bdX30rCvLGvttUXi+MUbK/Mi9jRsVuCsr9e645ErG//PBF76jVKy47ep9PPQU/aigR+9mzGkydHfPYZhyYmhBBCiIUylhBCCCGEEEIIIa81KWXc3s5IKS6CMQCQYYtLnRjLkMYlcRq7ckWSrH6pxZ5Py+qErE/Ttq86V6xOzxbpadOwNgGrpWcvMWv3Sb+qULVzw1axqocY7idj2wQuXBtlnxatVmz7NK1+53xytgq5nkztCdsR2xL1job1rHP12xz1oyfqR+nM3jlOyVdd/iIFbCs0t+eNHQva/vDEvXUs8zMD7TywW8nYckw2c8b6e+fvbe+e9+6JP+eTJ0f8y3/5KW5vmYglhBBCSAtlLCGEEEIIIYQQQl5rcgaOxyJa6/C/dsjelLKaL7YmXWUeVyuBglqv56hypopQnZDVSVzXQyVPbeq0ysh+GraIzJrQ7c0lWyWltFeP0fPJ6v6U+r1kbHB9q9fpU6998aqFam9f7YWWtDq1q4+pdfX7PZKp7XDHLwotPM+rd2rflhj021+dhNXnOFfM+jp9UWvr3nVY4rYfW/PJ+uPadvy1+OvwtNfeu8a6nOeMm5sZx+P280EIIYSQtxPKWEIIIYQQQgghhLzW5Aw8e5Yxzwm7XUDO0c03mta0aRGOkoxNiwBNq4CV9vSyn4wdzyEr88DWOWPrXLE1/dqmZmufbQL2dDLWpmR1mlb26xSsTsDWa7FDD9t6MO1rseuTrDVJW9vS75M+XotgLyd7CVr/HrS06dLt+oNWnsOn9QT8Vnv9sjys42Xw80hZuy+7OqPyntBsZelIVp4rYQGbXD01PPFWQlYnYVu56+/PWE5v30d7PukPIYQQQkgPylhCCCGEEEIIIYS8EaSUcXOTkDMQY2iGBy7CJKzipKRk0bzQTb9CJWtHdUr7WJKtfrsuNb19bQLW1t1al9TqeH7Ydm7Y/lyxVQ7qtuR8vXKdpK0yt/bLHi/n1PSTsa3Ube+jPd4c/QI82biNsUA91UYv4XsqufnlJaytP5awvXqteJV9bf2+pO2J2F5fxiJ2nIL1ArZ/r/r3tVfPrvdF7DxnfPzxDR4/PqxDKRNCCCGEeChjCSGEEEIIIYQQ8kYwz8D1dZGx0xQQgkRT9bCmGXGJrM5zP0kZI5oEq5SLcNlKyMpQyHXu1rps54y18tamYf18rZKeraK2N19sqauPGQnXWsdu13py/8r5/Hyt+ua1aVefjPUCVc7Zlo3qmhL0qCK4u/vO3EXkjuqOhlXuC0JgnNas+09JQ13uRWmvbEvKnk7LflkJ2yZfzxWyKZ0vZP21t/e1vb/++n069/Y24cc//gJPn869hgghhBBCAFDGEkIIIYQQQggh5A0jpYzjMS1Crg5ZLCJTJKweWrjKVSAlK0NFzKYUFiG7lZCVYYr7ydjStpdVRdIuPTD1axlMuRWj2dXxx2xt36XsdLlOu/o5Ynvy1tOmb83e7jH+eOBuEvUczmuvL/9Gx2/J116duwhYXe6F67kSVsvTfp1taVnX9XZveGJ7rm05W4Wrba8Vs1v3sr1X/XvTXkcpm2fgl798hidPDjgcGIklhBBCyDaUsYQQQgghhBBCCHmjEBlbhirOCKHMCSvyVdKtInS8jJWXJGFlWROywRxblpKQDctcsXmVujX9qvtoxa9IWitii/Dti1qgSiU736ze9+Kk7Lnlfl9vf6nTytqxbLXDJm/V2W7n+dhKUbqaJ2VsX5yO6t1dwLbHepnaK+tJWNk+Nxk7qtvb15eyPTlr5asXrlJXzxPr74m6O917pve34tpK2HIOIKWEX/ziKT799LbXECGEEEKIgTKWEEIIIYQQQgghbxTzDNzcZADFuoYQIUnYMnRu3S7767FaxlYhI0nPamiqqA1KMtV1kblAFa91mGJJwraS1iZftbDFUi6CudSt11HX7TC/vRSt3W/P3ZZJX6zMqsMY6+GI9bn8cXW7HdLY9hUNdtjkPvJ++aGPvyznSNhabyuROSrvC8SRfB3t64nb5xWw/XrnJWF13Z6s3Zaz28MTV/nalvfug76+/r1b1zauzZ7r5z9/ik8/vcH19RGEEEIIIedAGUsIIYQQQgghhJA3ipJcA3a7jHnOa7K0pOaCStnZeWFleGERpiJoaio2qHRcHbJY5oYF7PDEvWGKa7tlf0nNaqTuqMyuy3yvQJ0TttbD4Lje/nGZbXepEURe2WGXdYK19k3vq+fpJVnbtKw/X7PHHAucL0+fBy9Qx/tP7duaz1Rvb0nEkYTtD2ncl7atmN1Kwsp2Fa1jKTsWrl7sjuaE7e/Tx+jhivv3r96n/r2y92vr+JTK58mnn97gl798BkIIIYSQc6GMJYQQQgghhBBCyBvJ4ZAwzwnADpKsLFIxIkYswxfHtX4RL2kVpnVYYr0UiVrK9PDGdSlyVs89m9ehjIUqgPVLJ19LnyR9K/uxJkhrXb1d17EeJ/3WdcuyplHrPerXk/7YeWFtmtUnZvW9qcI2uO1WltUUrK1r9wEj0dbWuzt3kbpt3b4cHJflzTrb8rXs80Kxd8yWYO0de0rSbgnauv1iJKzIV789vqf1+s+9b2PxnPHLXz7Fz3/+lIlYQgghhNwZylhCCCGEEEIIIYS8kYi4meeEECKmSeRgdvO1+vlgsQ4jLMJHi1OdkJU6QF9g9ZKx/fRndnVLWU3a2rZqAlWkqN3Gmj4NSkrZulW0imTt9U+f26Zbe4lZmMRom5ot90UL6TY9W++dvg51huacaOrYNl4M4/bGQnir/HkFrN0ezXM6ErfnDUfst88TlrV937/zhi0eidjtV4/nEbFtG6VwnjMOhxmPHx85RywhhBBCngvKWEIIIYQQQgghhLyRlKGAgcMhI6V5mcc1oqZfpU6ZQ3aaACAhxoAQ4pLYjC4ZW5YigsYJ2Zqg1clXwZfrlGs/JSvDJ9vj9HZN4pZ1EazSH5ti1UMr1z6LZJXyXlq2Xl+bmK3nBUR2WcFq534dpWdrf3rlfQN3Sr6eO+fsXdg6xsvW0TFePPfFYdk/2tefG3Z8zJaAfR4p2xuOWB9zTvlWQtYnYnVb7b0cS+6e4O4JZj2U+W9+c4O//uvPcTik9oSEEEIIIWdAGUsIIYQQQgghhJA3lGLf0uJQ5hkAMlIKy1LkZ17mf5UhgYuEkeGBS4JWiyFbT6dla1I2mzK9reeVxSAR68sktWr323IZGtkKqTZFq4/TQvfctGy/vSq6+olZfd76/vQlrJRZqeaHNx4xkq7PI1vvcty58tWWtQK23f56JGzv2J6oHA1J3O6zUlX3eSRd7Wskac8TsVv31F6vr1cKj8eM6+sDnjw54Pp6bisSQgghhJwJZSwhhBBCCCGEEELeaI5HLKnYtA41HGNASchG5JwARJOMBeKSjqsJWZFEsU4z61KkdikJ2pKCrfPIAnlJ3+r5ZHuJWL2vJll7c8j6On7OWBHA/flla5mtI1K1n5YF7PFyXi1lgd4+m5zV97HWD51yL2f77/fzSte7snUeL1NHx2xJV7+/l+rU5X1hO55Ltre9JWltWStaRxK2LR9J2PPmifV4Cdu/P/17tJWIffz4gP/pf/oEh8PX9EARQggh5I2FMpYQQgghhBBCCCFvPDmXuR9zDpimrKSqzAdr5aYkY3sJWRE2QE3IApJQ1XPJFvla2qj90MtKLyWbO/uwtru0hN68sHKs3VfaqslWqPr++FrWJl19W8vWoF2fdN1KztZjvHTstbfZhKl7F+4qc0fiddTW8wrY0b4XIWFtvbFcbfePUrQ+6dor3x6eOCW7r8cpETsq763rPqaUMc8Zx2M2f++EEEIIIc8DZSwhhBBCCCGEEELeCg4HIMaMGBOmqcwLO00lFevnkS2p0QxJxAJo5o4tdcuynTO2Lmt61YrWNgFrU7IlWdsmZ4sUllRq3V+2tawcJ2VrmU63jtKyfp7WWmZFrE6z9lOz9Z7VfrT3MRhZJu35uvo+jzglfQdHna6xUaW/b1u61rIt8dq2Y9etwNaicku4jrZ70tYLWl3XJ031tgjNLfnql1rGtvepXlvvXpy6Z1uJ2JzLEMXlxxvtuQkhhBBC7gplLCGEEEIIIYQQ8hVz+f4lLj+4RECwwcOeJ+p9+Z+BLDuyK9PbuWznlJEOCc9+/Qx5pk3Q5FzSbjmHZThiAEgIoRhWkY4iZ6rM1K3U1KrMNWsFJ4BlbtoYpb2yXkVqSc6WPmTVZk22St3eXLIiSusD0M4n267ren7/Vp1R2bnl5+7v1Tun/hZfzfM/lnR5uL8vC8dC8S4CVpd7Wdoru6uEle3e/LBb+3rC1e63IlSWozSsvif98rbe1jVbYV1SsMdjxi9/+RRPnhy7fSCEEEIIuSuUsYQQQgghhBBCyFfMvW/fw3v/8XsIcZGxAUXMAl2X5SUrUEXrKmGTla85Z+RUyufDjOOTI24+uaGMdaQE3N6WZGwZYrjMDxtCQp0fFioh2iY8NT716ZOtIlS1tNWp2TqHbWmrDmdc5K2UlWU7V6zUlfPK8Mi+jk6zVtp5ZO01B3Xttp5cu29P3RlVR5+/7rfbvTbqPbbn8fu2j38xtNJz1J9x+d0F4ta+nmzV5SMBW9ZbIenFqm2rL1K39p0rZ3tzxPavr15jWz6+Rn8dvesWATzPGTc3M3760ye4uUkghBBCCHkRUMYSQgghhBBCCCHPwYPfeoB7371XBCsWQeVSryJcL9+/xO7+rinXGAFbCspitQjlpec1NGVKysZ9xLSf8P5//D7SnGwdVRcZSIeEdEi4/vk18vHNF7cynG7OwOGQkJK8FxE5JzVcr5acGSFEM+9rlbCtYO1tl3URrHWYYr9d5q4t5y2itpbJvLZVooal/QwtW3tSVg9PXK+v1l32yF0y2yMxq+tqYaoFbMXvkz5amarnldVoCezRAm4kbb8s5wQke8K1d6zdbsWj3T5/WGLdh94xpwTs6TrnSVigPLu2/Py5Ynvy+JSEPeee9YZQlqXMEfuzn13jyZMjjm/BZyEhhBBCvj4oYwkhhBBCCCGEkBFLirXH1YdX+Mbf+QbCFIokilbINuJoNJqrFBl7UJerpO3IWS9Y1/U9kK8ydg92RrzmlOtrLsv5Zsbx6RHPPnqGeZ77F/tGeYmwysnjsaRhY8yrxJNhhWW+yJJqDWtaD6hCt8hSO58rgFWilrr1eBGUMkwxsDVscakLiGjNSzJWztmrJ+tYjwOsdNXS9JSEPT1csS6/6z6/f1Rnq749dpReflGMZKvdv1WeO2W97ecZltge1xOQ+hpO19sejliv+326TpGy54nYXiL2HLk9ugej69Pvo5x/njMOh4SPPnqGL744ticghBBCCPkSUMYSQgghhBBCCCEd4i7ig//VB7h45wJhWiRRxDrv68W7F9jd31UBG+o+w5afUmWjOWFDDnU753IOWc9VtjUp2ZzLUMZ6SOMk8qHIWGQg7iN293Z4/8/eRz7mOuTxXF7pmPD0l09x+Ozwpe/pq0bOEfMM5JyWdFyJvkpaNsaakBVpO00ROQPTZOed1UnYnOtww3pb1xGkvEjSul/SsVry1mNs6lWnYesxkrat8lj2STJWD0dczptV/4LZlnp6uOKyL6g6tr4VpDqZa4+t261otKlZeyPsfWmH9v06GInDbWFY629JWSsNe3VOD0Gs29na7pf1Ba2uO5KzUmeckN1Kw54nYEf3onc/etegE7F/+7fX+PTTWzx9OvhBCiGEEELIl4AylhBCCCGEEELIW0+YAuIuqgIgXkTc/959XL53iTjFIluXOV+7Cdjnmaoyd9bPWWa7HZZU5VqWihjOIddlDsixCNmQSxlyuaacM672V0AG0pzW5KwMYXz44oD5el6li5z39Z6PtrxhJY2XUULBGdNUrkmWktaToYBFaNbhjWtKVQSkTvlJ0lWSsFJHhh4u97QmYFPKq2yVJGwdHjlDUrL1Gvx6P91a07jtvna7lsnwxP02YZ8JeFmqBVkrUvWxVXr7OrpEy2IM2/ZtPA9jsfs8orAeuyVf63Yrdc+Vju0x56VgZfuUlLXb/WGLfR3AJ2TbuWFHErZ3j9qy02nYXv9yBo7Hkoj9/PMDPv30tnt+QgghhJAvC2UsIYQQQgghhJC3nnd++A7e/7P3EWKownUKuHh0USStJF+deB3NYdk4rh4ZJg0rideymduybJOwPhUrQjYgrInYkJcUrUgPGa445/U4M4RxzghzWEVrvihS9tEfPEL6nbQObZwOCcfrIx7/u8evuZAtpBRwPGIZpjkjLvZzmmpCNmfZDpBE7DSFRSAmky4tydOwSh8732oduriXkNUpWVl6pLy+bIq1pmnbdK1PykqZrlvPP07H1uO0sPWp2dJuvS8wbS1bJj27lnaGHNZDLbs7Yvrj79WLYrutcTJ3LGDzyf2nxKsuPyVfe2VewPb3j2SsF7JbwxG3ZbrPp+5Zv/w8Me37llJNxP7859f4xS+e4eaGiVhCCCGEfHVQxhJCCCGEEEIIeXsIwP7hvg47vAwtfPnBJa6+ebXO/7oK2ajqdRKwQxmrzudZxUhQsjXYfSGHNei4JliXIZBF7pl0rIQil1eOSspKOjbnNQUrkraXupW6KI4RIQbsp32RsMeSmk23CSEG7O7vkOZUz5tzGer4tRK0SmoDS0I2LXO51vSezPmqh+WVtJ8dUlgkq8gf3X5oJJSeM7Y+DHZZxVIv/bqViNXl2KinZemovi7rJ2Z1mR+euG1b6lmh5ocuruVjcVeTss8Zg70T28Mhb0vEVoq2262gHUlG37aXsFti1qdFpeycuWN727207JaIHb2XvXvTLz8/IaxF7DwnPH06I6WM4zHjyZMjrq85RywhhBBCvlooYwkhhBBCCCGEvDVMlxO++4+/i4tvlMSriNe4j4gXcZWvWsICG0MRn+N+vFTqJGDXfUbcoUpYJTtCDvU4L1RFhKWlTsQ6PPGanJXlMsyuScYi13llU7sedkXwpn3CdDVh/3C/ziubDgnzzYynv3iK209ev+E+cy4i8XBIi5ANJhkLlARtzpKUHSdjgbjKw5x1WrbK9FLezhmrE7KjpKxPxLbJ11FS1q8XYeuTtFKvv9TXqSVpPVbX18dYMavrBbVt/2DaIYlr/Xbf+T8CsHPRnn2YYeu8vTa3hKvf7qVZ67oXpuNjzhm6+G7DFI/nX9V17bDE7f7RdZ/ed5dhmtv5az///IB/9a8+XeeynV+rH44QQggh5HWFMpYQQgghhBBCyBvN5XuX2D3cIYSAeBlx8Y0LXDy8QNiVFCziIouCWwLVEXkpexdUEHEdlngJLUra1ezDUr7Uq0PChrWe7Je5YE1AMsMkY31qdn2JGJTUrKRtl76u/Ux1PYaIHDIiYjlHCMipDG0cduVe7h/tq9zNGfOTeR0m+dWn3It5zpjnpIQrEKNIJis59XpPkKaEdQ5YALBzx4qoCkv77Zyx9c3V6DcckOGEq9jUx+g3E2fs09vn1tHlPjVb9/lyn3bdStD6c/WGMVYt261Oc3cVgOfXHbexJV/Ldl/A6n09Efm8Elbq9de35OYoIZub87fzwo6v39N7hs4XsbZ/85zx+ecHfP75LW5v03MLeEIIIYSQ54EylhBCCCGEEELIG817f/c9vPcn75UhiGMoc8BGdFOwJ+eEfZ5RULV8UkPOmn2LmDVJ2a3lYJ+ZN3aRsqZc5pDNuV0u88yaNKxIVbeep1IvxTJEcZgDpv2E6XLC/v4e6XslKZtuEz7/t59jfvr6zMd4PKb1PSrzutaErCRjJRGbc0SMWGRtOV4nY8t2FUO9lKsspW5vrtheWlbLX5GT5yVlx3PF6v21fzXR64+p27VuvQc6uWrL9X2p23bY434itm3TI0NEa16EeBu30UrCU8f5dGhfMPZkailvy+4mX0fbvRTs1r5eArUVttv3x3NXib113XL+lIBnz2b81V99htvbmSKWEEIIIV87lLGEEEIIIYSQF84HH1zi29++d1aKcPSl9OiL51NfFOdckjjX10d8/PHNi7gc8powXU148IMHiFMsc8IuEuret+9hupxqWaz79BLoJGKX9eAt7OjR7omXkE25SaCK5HJJWVMm9UORpWsSVp/vlLDN/bKQl2QrwpqyXeeoDTUxm+MiZJf7l+eMHHNJyuZlmfKanF3n3g0BV9+8wnwzr3PNHj4/DG7eq0GMcRE45fOkyNmwDlVshWIrJL0QrR+D7dDBVlLKcTYlG0JY56sV8VvP0U/Eljq2XI6z60CVfnau2zqUsq9fj5HrGpVXqez/MHp/QOfU2ap/inN+STFu824pTl3e7ujLxVZa9v4d1OV3mT/2LhJW9vdkqxed7fG6rH+9PXoStld+VxE7zxkff3yDJ0+Oy9/y6b4QQgghhLxoKGMJIYQQQgghL5zf/u2H+NGPPlxEQSkbzc/XGxaxtxQxIikX+ZK1Los0SSnjeMz4D//hmjL2LWP/zh4f/sMPsbu3w3QxrUnYVb72JCxQHI0IVydh62pH0npy3W+GHM6h9VWLWPWyFcAqQNe66jifnl0TsFImdZY/Kp2E1XPPSlIWwDq/bEh2Ttk1IZvrvjUhG0u5JGTztCRm54w0pyJ4l7l4H/z2g1J+SLj97BaHLw5392hfIyJj53lGzglAxjTFRYqW96VI1AggLZI2LsOxxjUZK0lZWQJoPg97y/7Qx1WkAkXWiujcEsB6+OIq1/16rVeOsfv721Xe6vIilKsUsynfmnwVwauvvYpp2dbSu95D/e9H7wc/Y9lmd4zavAs90brVppauvo6tP0q/1uO9gGzLTgnW9jxbwxSfO1esr7vFuQK2vQ/tPez1r/z/Awk/+cljPH58PN0hQgghhJCvCMpYQgghhBBCyJ34wz98hG99694yfKeWBJVvf/seLi8ndL4nBzBOsQB1fjm9HEnZaSpidprysl0SZLtdxre+dYU//dP3GombUsbhkPCzn13jcEht58hrQ4gB7/7Ru9i/s0fcR+we7LB/uEfcRcR9kWchhu6csIBd78rYpfz8DulVm34FUKWpS8HKPsPWdmc9ZCdp9XZWx6jtVbou174mY0XIxiJaZV1StMhADnmVszkt9dJSL5Z6KVYpK8v9oz0e/ODBKm4PXxxwfEUliU7IAgmHA5BSXARjEbE5R0wTEEJyKdW0ykWdEqxDGY+XvZStnnNWqHK2tu3laxWstdzPL1tkaU2/WsHaCtc2MVvryee5TgNL/0TOynZP0Na6XpaGpqyU94XtOTy/gD13X1+69uqNpGxPtOrykXztldV/Z8+bF1avt9vjpGzvesfXXu/BaF977/oy2svhlDJ++cunePz4iJsb/ltPCCGEkJcLZSwhhBBCCCFkSO/L7R/+8B388R9/A7tdWOdTrAKh/cK8fpE6+uI4mC9QS8osrwm0vozNyDms+6RM0mIpZez3Ed/4xgXmucgUWR4OCc+ezfjVr55Rxr7mhCng0e8/wr3v3MPu3q7OB7ukYEOwItYIV/8jAr3ae/DPET1eJAQrRxCWpKq0p+WKHvq2xmvH7edBmS/vSNhhWXDbSSUilbiVuiHX4YqNlF3k6xIcRQppHeJ4P+0xXUxIxzKnbJ7zKyljZYjlnDOOx+PymZWMUF0vEAEhlCTsPKf1hyprLZWMraJRPivzsqzlMZbPv97cr1Ju99uych6dnm2lrF7Xn91Vplbhqu7KWkeXeTFby+rz7+Ws3Avbvq1jpW7ulNljehL3RTJKcY7398pPzX9a2z1V3kuK9gSsPt6LVX9MT7y2+8oPm2z5OAm7Lb2fX8LKei+Rm1L59/7Xv77Bb37DETIIIYQQ8vIJWf2X4cXFxcvsCyGEEEIIIeQV4v33L/GjH32I3S6aFOx3vnMf77yzN2Xbpmp77rrRl6m9BI4eolhLWCkTOSvDF8sXsikVSSLL4zHj44+f4XDImOe0HFPKj8eEjz66weev+LyWbzvv/9n7ePj9h7j/vfvY3d8h7uLmkMTNsMRot82+3jPtizYlQ62Tz6nYqyJ/L3WlLfdlOQ+3c7b1Zdsvu/tSu70OW5zq9rq+JF9zzsjH5e/xWKSsSNh0TDg+OeJ4fSxlx4xnv36GdPvq/EhChmkuryJad7uI3S5gv4/Y7SKmKayfk2UJTFPZnqbyo5UYsf54ZZrKZ6dsy2epXdqy0bZdLw9ondu2v79dt9tlafcD7ZDz/phxWTm+X75uNRK1+5uIwb83X5WAHfGi0p29/b0fMOnyfvrV1t8SrrLdHnOejNXlMoLF6Dpb2r43Nc6UsFYu2//f4Be/eIrf/Kb8O377Cn2eEEIIIeTt4vb2dl1nMpYQQgghhBCyst/XeQ7fffcCf/iH7+LyMi7zJbYC4BRtgsWWVxGr07FBfekL9wVwieXldb7L0Pniti51aiyEMqdjCBHTlPHhh/fW+eQkMXs4JNzeJjx5csSTJ8e1Hf+FM/n6CTEg7Ko8ffC9B3j0B49qEnZaBNYJCdsIWEnL6rLm5Bvlpx4NnYbdamsgYzPqXK96TlkAZi5aU6aPlTljscxDK7I11H3+JUnYbmo2qb7KcrnPS0i0vnSdBETEIm+BMpxxCAgPA6arCfPNXOaU/fS2yFs9xPJLRBKyKaV1mPPjMSGEuHyulA7GWJbyWeETr3JDSuq1fpa2Aq0k/uVzuHz2haX9sHyGyZDEWIcvlkRt6YOXluUz06Zg65tXPivbhKzud7t9lzJd3tvn94/qjOp6vkozOxaua42ujN2WliIU/T673tvvZWtp59QPoHydnnjV6+22Ld/mPGG7JaxH11z/f4iynOfy+uKLAz76iIlYQgghhLw6MBlLCCGEEEIIAVBE7H/+n38f3/rWFWIMuLyc8MEHlyalBZyXhAVa8VrW+/PM6fVRIna8vyZi/bDFkoqtCdm8pmbLsMWSmM04HkvZ8Zjw9GmZY+54LIL2b/7mMeece8k8/J2H+PB//WGRslPA5XuX2N3fmSTsOiwxyhJQUlbWASNiy+I8GdtNy57ByfYXWdorL4tsBKhPyurEazcZq49V+00SFrmkWpelPrZJxeZcy9TSJGNzScYiA2lOdZnKMs9lv6ynQypJ2cclJXt8esT8bMbNRzcvXciu9wJYpGxa0q4BFxclHVt+yBLWH7RIUrYmY/1rlJRFNy2rk7FALyE7Tsr6/ZJC7SVk9b5RGtaXbaVmbb1xuW9ve7+nTdV+1Wh52t83KuvLXL3/XBnbO6YnX2W7J2z7crY/B2zbRr2eEadk7ZaA9ftHElaPiPHRR8/ws59d4+YmcRoCQgghhLx0mIwlhBBCCCHkLefiIuL+/fKfA/Kl+8VFxHe/ex/f+c49NXxm2dd++V7KKzrBUr9Il3Rq/YI1rNslqVXXyzG9ZKwu6ydny3l7y5IA8/1PKSDnpIRDifUVCRER4w5XVxm3tyUpe+/eDsBxOTbjcHgF7NCbTgT29/frnK9XH1zh/nfulwSsvEJZAmgSsack7Dp3rMbLn14dKT+FCcOeqL/0xwjZrNrw67pML/U6UFO16m9Q0rF+X8ihpFVzEdk557VPIap5Y1Ou9zN3+gS3npbrT0DMETnkkpBFRkIq66FI2xAC8ABIx1Te9xhwuDiUpOz8cv/mqrQsS/mxxzwHhJBWSSrJWBFEo6F2JR0LZJVkxfq5W9KxkoT1ydiwfhZKubz5OWOZK7YmZe2Dgs461mNLovdUGnaUen0RCdlSR/792K7Xa/McvkzqVtUcVLXlp+RrqTMWsG0bXrj2yk5JWNkeJ2L7+7YkdP/azq8zErG9fksf5jnj5mZefnSVcH19xONXcA5qQgghhBDKWEIIIYQQQt5C/uAP3sVf/uV3sduFZW7DkrR68GCP3a4mYbdSTJqshmEdz2fXl6ciAfyww6eHR6z7R3PH6qXUKclYYJ7DkoytSxniUNanqUjqP/qjR5jnjMNhxuefH/GTnzw+6wtn8vzsH+zx/X/6fewe7jBdTOV1NdV5YaOk9GoyFkAjYhvxOkjpdetiO9XaSNatts/EpGBrYT8d66WMSout8lQkrFpHbrdNWV7kcKptrEs1LG5GRkjLMQlV1i5LSc1iXvoWl8RszMjTcuxc6oWprIddWcZdRLqfMN2bcPjsgKc/f/pc9/NFE0LAbrdbE7KHQ8I8F7k6TeVeFIkqQwiHJiFbfohSfxASY1yHHZYfpJShkfPyw5j64xV51R+6QJWLqG33lb7bly+TbV1+TpncF/3DF72vV7/8CMY+6G0S1kvh8b9D/fKx7L07fVHYrdnsy03ZKeFq17fnjj0lLf2/o7LP7x8P/9u/hrswFtfj+3rqelLKuL4+4q/+6jMcjzL3O/9hJoQQQsirCWUsIYQQQgghbwG7XcCHH95bhsMM+N737uO99y4wTdFIgt7QlYXtJJFOMYkMkH3+eC0W1lobsraK19FcsrWPpW3pQ1YJNEmjlQRsOSYuMsAuQ0iqrPT33j2scvZ4zHjnnf0qem9vZyZlXyQBuPrmFS6/cYmLb1xg96DIWJGwjYiNSr7qHxAMJKyRpAN56utsJVuH7Q1StZv4P5fRdm+ZYVKxa9ny0nPG5mJbq2CVhGxSdbJLxGabjJX5aHPIdVho+ZtNeZXjZv5ZoM4568Xb8tmEDOSQaxsZyIeM3cPdKnjz4eUlZXVCtqZkw5qIlR97SCp1nntt6Ff53EpJt5/XUQnkRyrlcywvCdyMlGQO2LAkYev8sXZZJa1+oOTzUd4Iuz1+EKU9u7/Wkc9fX76dkO3t79UZ1Rvx1T0jYzHZl5atjM3dfecKWFtm67cidSxhdX3/wye/fle2hfW23O6J5joscVn/4osDnjw54tmzmRKWEEIIIa88lLGEEEIIIYS8Bbz77gX+6//6h3j4cG/mOCyprHZ+QdxhDr7+F8ZAz7iU8tDUL18Mh7Wsl9jxXw7bOWPrsJ2jhGydV05EhWyndVnmkQ3Y7fIyj2zAPAPHY1pk7Iz9vgzxLEnZX/ziGT766ObMd4KcIu4jvvePv4d7375Xk7BTFbEmCavlq54jFrD7lu11VQ85u1YP3TqaRrBqUXvi2HM5Jxm7ClQvaIyEycPtJgG7rK/XkOp5m2SsiFj5wYMI26S21fyxImyRyzCiIZXhkHPKdTllhOPSj1jOL+2EKSBeROzf2eN4s8wj++sbHF/yUKRlrtdp3T4eE0JIjQzd7SJSCktqNi6fO3H54YgsZe7Y+mOVkqyt0lWGjpf3wIpYGfLdp2al7vkJ2VPrp5c28domYnvrRQC3ydjmrjdp2nHdr5Zt0QjoP+JWNJqtgYxthaRuu/3R0li+yvZI1o4SsedybvVeu71rs/1u+5pSmULg3/7bz3F9fVx/yEAIIYQQ8ipDGUsIIYQQQsgbzDQF/P7vP8KHH97DO+/sce/ezknYrTQsutvt96k6UTiqM26j/VK5LusXseNUrG6rSNh6fJuM7Z0rLucoYqQkbLJK2Zbzl2FEo0q8JcSINSVbRG7G9TVTOnfl6ptXuHjvAnGKiPuIi3cvMF1OiFMsyVeZH3Y0L6xPxKp1YLx9dhpWC9teu6qsKb8r/jcMent5rEIOzbDFm8lYv+33JXVsRp07FkUCr3PHos4ruy6TK1eJVn1encAtF+Gueyr9iFOZQzbkAMxA3MX1fu6wQwgB6Z2EEAOOT44vPSFbqG+SJGSPx7zK1UpafnRSkq9FqFrhGdcfFehtO5T7KCEr7cmQxyKF9T6dkC0StyZi6+dd3VfXRe4CzQMJWyafvb3krK0Ld057XN2ubbRl0k7/36+vAv0jon75qOzUcMV9gdsfjti215OwPXG7JWG3xPDzMhK77X3oX6OWyPKjqs8+u8X19Yzb20QRSwghhJDXBspYQgghhBBC3mAuLyf803/6W/jOd+5jt2uTsFUC2CTs1hfaW18m2+PCsF77pa98+a6/OA5LvSoiylIP3VmXZW5GSZXVZRETOhlbUnsldQbEmJBSWLZL+TTJemiW8yzLiGlK+Na3Ar7xjT1ubhIOhxk//ek1ZewdefT7j/DB3/sA09WEuIuIu4GE9TJW5N65AlYdo8XgUMr6MnfcKFVr6p5BXiOu7phc92k5utbTknOpq5OswCI5jHip2yYRO5K0cOUynG5yCdlFxK5tJaz7pP85LOcMy/HLcMQ55XWfrpOnInbTXORrmhLiRXk+5ndnPPn3TzBfd8YB/tqpqdV5nl0KvwyPXl4R0wTknBZRmiDDustnV03FVkmm07NrOjlXiVvFbj8hu5WE7UtgLWn7x9W6VfDaf0NsWd3XJmflM78OcZ+bfW394MqtzPuqac8zPv9IPPp9vWSoXu8nZb3E7AvWntzU/66+KLZStf3/32EsYX0fZU73n/70Gp9+evviOk0IIYQQ8jVAGUsIIYQQQsgbxh/8wSN8//sPEGPAxcWEb3zjEvt9XCVsjDUVqGVsKTvd/otIHrUJH7gviMfr+uXFgyRje+U+GVtlRIRPqM1zvc5yTFwTb5KMjbEeIynjaQp4//1L3N4mHA4Jx2PCkyevgix6Nbn68Arv/M47ePiDh0XE7mMRsFMAIhBj7EvYQSIWUPvU+ipgfSK2I1OH6dctcev+Ju6ajJVzNiJjka46BbsOK7zsNwlUfYyI1g2xqocr7r10QtZf5yp+e4nYRfDmpI73/dRCO6h9yyvmkpBNOSGGCJnnVmRviAFXH1xhfjDj+PSIdExIz15+TC6EYjVrQjatklV+TAKEZf7qOl+1/lwrYrT+EEV/npXPmior675gPpP6L32sTctKf3UdaVcSsVUC1/Nruap/2CPHaNFallmVVbEqx9R27L8PdX5eKbHyt+cAT/8Z6gdvzClZOdq/NS+qvo7Rvv78sD15eX5CdlT/eThnOOOxnD5fwn7++QGffHKz/Fue8ewZ/00lhBBCyOsHZSwhhBBCCCFvGH/0R+/iRz/6ELtdEbDTki6U4S6jm1uzTTP18V+8Wil1Xt9qE2HwRXPvy9n+C6hy1UvYnpStw3kWIVLWZVjPknitZSUZK0sZXrS0U04+TSUhq+/xbhfwwQeXOB4Trq+PePp0xvX1/LWltV437n94Hx/+6MM1DWvmho3nD0vcpGR78lWXe/na+xtw8nVLyo5E7l3RCVcAfQELmGGKtXjtilotP5WAXUUssKZckdxxImWX+ije0C69EO6VbS1liOSlH2lKCDkgocwvCxSpm1Ck7PpMTAGX37xEOiQ8+/gZ5mcz0k065dW+UsozIfNWJ/MZJmnZImPj8jmclh/HiLC1n3FtArVd+oRr+Yz3QxP364ps7aVgfULW90d/jtbPWr+tJWorZ+t6X9Dqa/WiVvpv773l9Ofu8z0sd09/1nNt7R/9OKkvLr1QbROw9pj+/q+CsYAt/bT9sv3x/U0p49NPb/GTnzz5yvpLCCGEEPJ1QBlLCCGEEELIa853vnMP/+AffAv7fcQ0Bfz2bz/ExcWkJGxvWOK+jB1R07N9AXuqjf4X0MUO2S9lA2wyRm8H84WyTW3JvvG2DEvsU2YybLEkZ+srIIS0LLX4zQACUkooczfWZOw8RwAB81yGH93vi/l++nTGF18cT9/ot4SrD67wwV98gKtvXmG6KHPDronYgCJiQytjzTr6642A7chUI2WXsrLotKckr2lHt6Xa0JyTkO1JETMkcVlpRKveNnJ2WdfLdZjiDHhZK8MH62GER3LWSFn/WmSvOQb95dp3eU+X8+WYSwo2ZUTEso24Dn+cY6kDAHlarn0XcPGNC6TbhLiPSM8SDp8fTt73rxpJyM6zzBMbcDzW4dLLMMUy9HBYf9hhX1g/v2T+WT9csZ4vtspQXW6HIB6JWV+nXe8lYHP3GL08VdZfl4ep/bel/ZOSv++v18LbP9s8KO9t5+H+/jDEpf1R2fMI2hfJVpNbInokYeXHTillfPHFAb/4xVM8ecJ/OwkhhBDy+kMZSwghhBBCyGtKCFiHxf2zP3sfl5fTKmHly3wvYWVdt9G1SPB1bP3TX5BXdKKqllXBqlNaaIbmzLDzyfr0WBWuelnbsdu6T7ofKfUvIOeo5IbtbxGvCTUiKPM+ZsxzGfZzmqowe/z4aM79thJ2ARfvXuC9/+g9xP2SiI1hTcVqGYu4yE6d5tZSFliFaFDDb2+lYtcy2DLTPtrjddkoVev/lLbmjF3ngjVRP9eO3s6dcr1c9us5ZFeXG7KdS1Y/gwE1napSqj796ueFlTlfzRJlqGIRuupPw/RrlcT+XkjfZFcCMJXtiIi0jLUccgBmlGGtYwDuA2lf9h3DEYcvDvYav2ZqQjatn1XlxxySsJcfgJSE7DxvfS54CWplqEhSmddafnii59BGM6Rvm5qVz0A9dLHIPDtUcTm3f4hKPV1f6vrkrPQhq3X774AWq7WdsG7re+FF3zk/LpI+W04/MOeJx9relpjViVe9r5eUHYlLX3ZOQvb8+9PnnH+/zpGw/vr0vLAyx/v19Yxf/vLZl+swIYQQQsgrAmUsIYQQQgghrynvv3+J//K//AHef/8SDx/uMU1RiVgtYe3csOckWntDEI+StM+fim2/KK7itNZrh1fUr1bEbiVlRVgUYVqlhKRmUyr75aUFQp13ttQvr4AYE+Y5L1KlHCPL47Es9/siym9uZtzczHj6dMbh8PZZ2f2jPb73l9/D5XuXmC4nhCmUVGxcxOtIwjrRqtf18tQcsSOZasRuL0nrU7WqDVN3LTh9L4yo1bLCpWGB+ndiErPLfpOO1cJzWddDEjfb7u8DATYpm7ORsL6uScTKdSgxvKZkVbvmmIBVvudFwsi1JCSEGJBCGa44hWXu2GUI3jwty0UOx12ZX3i6KHMPH7444PDZy07IBoQwIaWElNLy+VzSsikVWRsCsNtFyDDnPh1bRjjAui2yUtL4MiRx+Vwqn2cyJLv/IUr5dwEAspo7XF41SWvL7bas+6Uty82/F+enYs/fHpWN9+uN0eevLb+bfNTb43Z6QnJUvpWcFYlpy1oButXXL4sXr71znBLMch23twk//vFj3N6Wof0Ph5c/BzQhhBBCyIuCMpYQQgghhJDXjBCABw92eP/9S/zwh+/g/v0d9vuo0rBexgJawtYvp9uEqz5HWfa+UO9L2a3+AjqZo+cHtClYLT/lS1pJgEkqViyOiFEREbIEaiJMb5fkV16voQwBWvuWcx2qU9DpWy017HFSVpaSMNvtSnL24mJSMrj0/3AoAje9Bd81T5cTwq5Iz8t3L/Hw+w+xe7Ar8ixifRmZ2hOiarhgEbUB7hiRsj3JKmU6IQt77HpOd75uX1D3CecMS9wlWMG6ti0pUlW2Cle4ff6YEKofEfnZEzEByMvfj07I6rYl8Yq81EVY96/LWKXtWq5Sshm5uf8IAOLS5tK+T+GGaIdbBlDSskAd1npaZONFEbK7tEM6JByfHJHnfE7o8Suhzpdqf1RSfthROiU/4thKyPrPpb4Mlc83n4gN7nMSpkw/JDX9Kp938nep1wH7YMHUHX+e12uWunXdX3Tv72j0Jm7/zdlE6PkPwvkStq14joz0+0ZzqEv7vuyc1OxXQdv+ORK21PP/3kqZiNhnz2Z8/vktbm7egn8YCSGEEPLWQRlLCCGEEELIa8b9+zv8i3/x+/jww3t49OgC0xTW+WElQVW/UN+SsZVWurb1vWi6i3eyX8qG5ovj3tKWaZlR1+uX/PUL/lFC1s6pmN2xkiirQ3FKyqzUlX3tMsYqhafJyg9Juu125T3a7SIuLyP2+4ibmxmffXbE8fiSTNHXQQQ+/NGHuP+9+9hd7RAvIvbv7Nf5YWVeWD08sRerANoyka5+HR2ZCth9arkmcL0AdmLWHLP0pyyUWNSYqrZC9vImd+rlWm8dchhKxIpwVUN4A2gSsKZMzyXr07FLYnWdM3b9u1EJ2WTnlfXzyZpErKxLHX1fslum5e9WUrPSZ5T5YfO8LIPaXtZFJANVKKddSdSGXcDuwQ43H9289Dlky/NZDHJKVVQC8vmWllR+WOaxDusoB5KM1XOAl1det+swxXVdJ2Rlu/5Ax843C5Qh1uXfCV1uE7M+PauPqfvLvrZOvR+lbr+8HuPL7T2VtdN1XxR3EZG+bHuu2NLWVtlIuo6EcOXL3pB+26eut9/3Wl5/6JRxPGb89V9/gS++OOD2liKWEEIIIW8mlLGEEEIIIYS8JoQAfPDBFd5//xIffngP779/id1OJGx/jthynP1yvK63X2Cff6w9/nTffSKotttLxMq57RfNobPeDiGs9+lEbIxaAtdUlpxDBKxQhv2EERr9IRZFZmBZlu1pCgAipikj54jdLiOlUkkE7MVFApDeSCG7f7jH7sEOl+9f4vK9S+zu7aqEjVXEIqIrW5tU6ikRqwTs1vDEPg27lY4dHbsiZWr7FM08svqxBmqCtDenqk/Eyt+PLg+haa+bZPXLkKsYTZ30bcQqYddz67liB23q1KxOxK59XZKx672U7YjSdnTzz8Z6zevw1VNdRkTkXV6F8HQ1Yb6dkW4T8JI8T5uYtkOv66RsPabuL58tYRGma431mJqK1Z/d9TNJPh/rS8vZvHx2Snt1KOTa797csXUfYD+/7Y9j6ue//LtT172pX1pUn8my7f/NqmW2HZuEPYW9hi22Eqc9SbuVEu0lXnX5OalX38b4el/cvy3n3oOtlK889zc3M25vE1LKmOcyPywTsYQQQgh5k6GMJYQQQggh5DVhmgL++T//bfze7z3C/fs7k4itX9aX5SmhKvSGMvbbte66NmzPc/oLabveJmJrWW9bXvXLf1suEkLWR18mt6KhCouSQIuL6K3zLpa2I3xaFsCasJW5Y6epiN0YI3a7hBACLi/L0NK3tzM+/viAeX6zhOz7f/Y+3vuT97B7uMO0L/N4IgJxKkPJSiJ2laKxStgm5arqrMMQ94Yp1scocTpsr1cO2OO1cF0XrZSF2dwQtPIc9yRJtsLVpGZzLRPhiYw1RbqWr38oMPubRCz6CVkzL6wcLxJWJ2ODOjfQT8oKOiErv5dIdrmec3k/UkjleZljEcWh1o8hIqdcxOvSlzUpOy99E/H/YcD+3T2uf3aN+Xpu7/lLIOdilo9HPWes7Csyq8hRkaRh+QwJLiErCX49NL1Ozeo0LNS2X4oMrsLX7y9ldWnTswCa1Gwt08f2y+r5fbk/1v+71K93Ls/3mbv170hPDLfb/bliT0nM5+nTi+Yu4tlLZP3v4y9/+RR/+7fX6zFv2r9/hBBCCCEeylhCCCGEEEJeYb75zSt861tX6xC3H3xwhfv3dyYRW8WhFa+nErF9CWuP2Zayp6mCobarU09l3aaT+olY2fbruk5ulmXozioZdCI2Lgm7siz1RYCIuACwlskcsa8R4QABAABJREFUsz0xXNbLeWRYUZk7ti4jck7IOWC/DwAiLi5KdO3qasbxmN+IZNDFuxe4+uAKV9+8wu5+EbGShl1TsGpo4kbEQslUEa5q+GKTiIUrRxWr67peRrfsSVh3jG9rrecErWHrb0QOy51KoQoMLXRNMnapY86vBG9vWGSdVvXH+HqjdrQMNdvlgJqC1ecLdqnbCLHOCYtUj1+Tr/K3GvL6fsm5IHOoLmnZ9f1MdRlzLP3alwvdP9wjxIDj9fGlJWRb5LNBfx7X+V6BgJSwJPzrZ40Vt/WzSX4oUuvU5KvdtuX6xydlHmv5vNT9susytHv9IUz9MUupK39H2fUHJj0rdSVBK9elj/Ep2FH6Vf97cncxu40WqeN9ve2+eK3b9ppHqdneNvDir7NHX/SeL2FzzjgcMj777Hb9scHjx0cKWEIIIYS8VVDGEkIIIYQQ8grzx3/8DfyTf/I9XF5O2O8jdrto5hHsD03s00mtYLUJpn46VtAS6nm/+G2HMAymfJSG1ev6i90yJ6zeV8VFLzWry7fOq+VET3z4urIsAqOkZIukCEsaNy+SJKv2yz2epmKUylDFZdjGjz66/doSTl8VD3/4EN/5R9/BdFnSsHEXi3yV4Ym35ocVIbusx2Wc1TURq0Wsk6+bQxO7Y80S6rxwZa6dtb0NEdsOSdtHJ1/N8SIhq2Fd5eaalM12e03B4nQyVu/Tr3W/W19fWuD2tlW7Zo5a1PO7G1AWIpa16FXtrelXc5NQ730CYo4lGQuUZCxQthdpG6aAqw+vMN/MePKTJ2XI4pdOuYicgXkWEZnXoYUl2Wo/u/KalC3zy2KdQ7amY+scsfLvg+yXuaz1vvqyc8PqH9Dol5RBJWFteV/ejvb7fVvrve1T5XetA4zk47p3WGckWnv7e4nXXkJWsH2vG6f+vTh1zef9e9NP5vauR9brv8vl38HHjw/4N//mcwpYQgghhLy1UMYSQgghhBDyCvLNb17hj/7oXfz+7z8yInaa6vCUNhnrBStwFwnbJmLbY5e1tY9bX/I27iToNFNQ+6uk3JozVvZrkSvi04rXvEqHaovOmzsWkHliw7Ku07D1XFLur1NSafU69DCjkpCNANIyd2zCfh9Rhiwu1/jw4Q6HQ8KzZ6+CLLobF+9e4J3ffQcPf/AQ08VUJKwMFRtUEjYq6TkSpJ3kaleoYjBMMXC2hO0laZu0rJOvzTDFap8tUtLEmVfThpYakiTM9ZwmCbu01UuuyhDDOjBuxKjep/stydQcjEw1QwkLMndrcttw5XpfaLczaip2+bNYheraj2Jj65yxHjnvhDVtCxQ5m5BKOna3nG+RQBfvXWB+NuPw+aErw18W8tkinzd2ntgqUquU9T86sT8E0Z/Psl8LWKlT57rWSz9ke9lnt33qdlvG2mGodb3yudwXsAG9uXTttv0M12+qr/s8P3TZOqYnTftp0dzs9/091Te939+T7ofPoD+n2e7POcleLWGPx4yPPnqG6+t5HaaYEEIIIeRthDKWEEIIIYSQV5DvfOce/tk/+z4uLyP2+2mVsHqO2LFM7Q8r3KZo6zGnZKxfX0oGvc+dL8Frn+xwlEGVyZe4fihLLWXD+mVvXpN2VbwW0doOKSxDfeZcRa0WBVbC1vXSNyt9RxJ6muQ8OiFbhicOIaHME1nMk/Sx1E+Y5/Iep5RxfT2/ljL28v1LfPt/8+0iYi9UIla9GuHq5aj5kUEwwwobsapE6l0k7HBYYtVm05YXrx05axg8H408BYw07Zb5dS9vF2Ep8tLUy53jpb5IWXlFV9eL1qjqiqCF2gYaKZuTSsUuP4AIKVTBmuswxaukk79p3bct3DXHXOaXTTkhYhGyxf4jX2SEKeDyg0vMT2ccHx9XQftqEJbhirOTfDXJKglFvVs+20IImKa+lLVLO19snSO4rQNYAVv/LcG6T9fprW8v60Nu/62pD1grX+09a8XkVv27sy1j17VhfV2nl4I9Ra//7bFjAb3FOX24i1zWYjbnjHnOuLmZ8bd/e43bVyKNTgghhBDy8qCMJYQQQggh5BXivfcu8KMffRvf+c69NRE7TUElYluhapNKpR29rYXtWMb2jtdfitvybapg9cdpwSrlNdUFI1t1glanYMW8iLCVxGwVprXMpmHbVJKcp4jRKmH9UMq9V+++yPUUQSJDgyaEUOaLlQhgkSVxSbtFXFyUJNw8T5Bk783N65GQ3T/c4/0/ex9X37wqQxPvYk3FioSNqKLVSViTfB3J19BuN8nYjbRtNx0L1YfeOtAXr7pMl/foSdZT+7Xo9Os9Oev39SSsLhcpG+rQxavM9XK294Kro9tWKVc99+sqZqNK3GKpk9QwxUuftbAtzefu+wAs55rUMizHhTLEsYjZnDNyzJguJyCgDFv8dMbtp7f+XXmplM+WgHkunyPTlDvysyZlsQxdHGNehjuuwkwPUyzzZ8vwxyJkZX5akb1++GL5EUzZtuncrWGKzxWy/bIqg33du5ZtUf9duttxPRk6lrC+/uhkodv/Xt+2rvN50r9bx47kq6x7AZsz8MtfPsWTJ0fkDMxzSccSQgghhLztUMYSQgghhBDyihBjwKNHF/j7f/+buH9/h4uLOj9sVHJKvlwHrGiV7UL9klzq+qWXsD0B235hfv633XpoYlWq1nOnXFJSwX0JbE1UbVvbKKj1svRp2Polf1b3raZsRcjWJC2WdmQf1rka16vIUPe6psYk6TpNYd3OWZbFWJV5Y/M6j95+X2zSPCfkjFdfxkZg92CH9/7kPewe7BD3VsL2ErH+pWWpF69Gzvo0rBewQHNMNz3r+rK2AdU/wP0dOBEIVd8z+hPx5V7ehAxkJ39zKyL1kMV6n1lXQw4P+6KlClSK1XW0OYfcu6TaWrZzzHVI4UXOyjE51GRsCOpcImR9Qlb/6cdF0AK1fRG/+l7KjzeWvzlMVejGFJGRkfcZCMD+G3uEKeD2s9vxfXop2B+O6OSn/KikZ+LLcOjyY5dWcEoaX/brdX9MOVc93v6gR9Kqepji+plajqmJ1bGMrcfUa5V2q+TTx9TjrCQ8JVVbeanbEOzBdxk2uJad30bbJ/3vZV/Mnmr3lIw+V9R6AauP1T9kku3ywydZZnzyyS0++eTV+pEDIYQQQsjLhjKWEEIIIYSQV4AHD3b4Z//s+/jww3t48GC/JGIjYoQamrhNw/aGF5b1c1K0fRlbynS7wrnJI5GYur7+sl+Sp35ozDrfKiDi1A6DKOkbGQK4HbpYErFlv9yLul/LV5ESvRSTT8H2El3+vpQkm1yTDBWalv3FIIVQlyJ9RQKX/tShQ2MErq9n3N6+UrYIADBdTvjwRx/i6oMr7B/uEfdqaGKXiu0lYvVwxUa+OiHb3YZrA/32TyViu8MR63V0pKvsX9a7bP2d5H6dkMM6X+xaL7hjRmV+2fsNg0+4hrouCdlhGlbXg+ujvwZk04eQAxJS2RfV/LWSytXy1vV1Fc+9321sLCOKeJVhiuW+5liGAJa5akMIuJfv4fjkiMOnB7yKzHPAPGfEWF67XVg/G+QHIJb6ppdhj+vnqxa28vehU7KyDUi5Fqv+2FbK1n9L6o9q6udmXvfXbbgyoErd+gdiZWz7B7T171J/3/mfp3cdpng568m+jEZXkPb65+3/uzxqc8S43207uq4fkliWn356i1/84tla5/r6eF5HCCGEEELeIihjCSGEEEIIeclcXU149OgCv/d77+C9967WoYlLynIkYu0X2D7N2huSeFvItmLXrm9/CTympmfssd4oSVl/2yenSllNudYhjqtYaPtb6tZElj1fvY9VBkgiVt8v2S8SV8sJGQpUDwtaJWsdSlnKdGpWljkH7HYR+33G5eWE29uMw2H+UsNPfhWEKeD+9+7j6v2rbiIWEUaE9l5esvqybpJ1S6gOBOxweGIvXoNbX9oti46A1WK2uUGdstyWa7mp21qToK5M5GQOnVSsKtfH++TraOn75dvPyOaemeGEZVvfr6VsvZfSv6DOHVwfXLtrWja4fakeiwA7PHJS/RKRHMu6pGbDLiAiYvdwhzxnHKdjOe4V+zuTv/uU8vrZoeVnHV5dG3b/8MkPWHoyVT7D2s93X6985vUTsXXY4/qZKMPSS1v1s1X/LdZj7I94at36+W+Hrvf3SK7F3r87/6Olj25Lzno++v/++B/2jNod/ztr/z3UbZ/qyxbj4YnL8T0JezyW0RtknvNPX7HhvgkhhBBCXjUoYwkhhBBCCHmJ7PcR/8V/8QN8//sP8MEHV7i4KPPEhoA1GSspKJGDWqJqgarTTkUWln322L6QlTb0di3z9IdQ7A0bKV9At1+q2zliyxfxudnWSdn2C+E6V2y5NishdOrVp1ylr2UIY6j7ZFOz/vp0G3JcvZdxHZa4JGRleFw1QeaynnNc7oEM0xkXWVvlrbyHOQP7fcCTJ/OrNfdeAHZXO0xXU5GxpxKxg+GDz07GYluyNkMaR3SPaaTsci3dlKzeVtddFqrOHe5ZF+/P5G9DRIpOjPql93ByfCelutbZKuu8THJWX04OSDnZ84YyR+w6ZGuvzy4JKwnZjLxK07Wu76sauVvmggVQ54zNS/mckUNJx5bHIZZkLMrcsUbQhoC4j7j99BbHL17FVF8duvj2tnw27HZpHca+fl5YgVp/MFJ/oKIfGBFr9TMsm+Ptj3h6+6oot4IWaNOxdn9fzNpy+aOo23pf2T8Sl/qYr4owOLn/9076YctD95j2uK3z17Y9z5uS7Y8SkdW/exnPns348Y8f43gsf4yv1L9LhBBCCCGvKJSxhBBCCCGEvERCAN5//xLf+lZJxEoC1idh65fONs0qbZSllrTofNGtxa2VuGMJO/6yu3ct/gtmnYyy5fULetUC9BfCNvWKtbxeizZYNfnVpnBL2zI0sh0u0yZk2/RWKxN8eXlltR6WoYf10J/opGQBOzQxlkRtEbm7XcQ8Z+z3ASmFdQ7a9ApMI3vx6AIX714gXpRELCKK/Fxkqhaf6wt1GWDTr71k7LoNkdobIjb065jjOzLWiFcnYY1o2RKwwW+O/2ByR5pIqrRXR6ddddvDuWKRTUr1LqlYk35dztUrk7bXe7IMryz3S6dndXLVlGvJ7OrWxHvb1vq+BKxCVd6DEFQbIa/CVyR9I2CXHw/EXUROGdPVhOlywvxsRj624vnls1zH8kMS/TlQhjD288n6H7/457KVs+PyejO03K3/luRG+rb7sH5Gy/76Yxs/d6z8LVtBKMfIurS93iH9d2Tev9Ct8zzYc2RVFlR5/1y23P7bd14ytt/eXfCCuNdOT8I+ezZjnsuPLJ49m/H06ZESlhBCCCHkDlDGEkIIIYQQ8pK5uppw//5ulbHTFI2QbcVsK1ZrImprrlh9DKBFaz+hVPFJpTH+y3MvBeTLfKkXTJn+ol0nZf3xIlZFkIr4lGGAZa7EKixEVlRJKucXkVvmb9VfRGMVp1JX96W5ciWB9dyxtd8RIfhkLNQyISWbmJV2p6nMG3l7Czx9ml6qkA1TwHf/8rt4+IOH2D/cF6E1xSLEVAq2mcNVJ1dDaJdasC7p1vWYLQk7SNz25Ou5yVizT/bD7rc3ZVvC1mqdOVd7jixsrPsyX+5TpVDl2a37Ommw39WV+V9XGSXXlbEOFbwmVHsJWR0WV+3KHLE55zrMsD9W3yf9kvcgYZ0nVuaNRQBiVnPHBiVml2uX9zteRdx+fIv56YxXlZwDjmuAN2O3A3a7Ojy6zCdbqT9CseK0HG8fHPnMrj8wAeDWqxj38lX/W2KHQq6f1/Jvjx1O3kpW/W+O+VPU8yoD9u/UlJs7Ntg/lrRts/XfKl9Hjwqh++T/rbD12/6N9z+PQbaNbA9FXOr3hiMu/2YCP/nJY3z++WHdP88UsYQQQgghd4EylhBCCCGEkJfEd797Hx98cIkHD/brl+gjgWq/NPZfeJ8jYtEcU9Zrmd6u6/ZL4FOJHZtaAnQqquyv7eo0VE1J+bRQ+yW1lwxVXAYjEGzdaqtE2tYv/YNZ1uGT+3PFapFQ761O3OrhPP2QofI+STK23ld5BkS+Shp2twvIOWK/j8gZuLlJm1L4q+Tqm1e4ePcCl+9dYnd/tw5LbETsIjx7r14itpuMXdKU5d7UdnvrmwJW7wNsuT+H3i+4eqYMtuxc1mOVVNVJUX3+NZGq52Rd2sg5r33xaVZpp5t+zaGZp9XP3+r7phO60u56LQGmL+aapH/PkZCVuuv51P71fqtzrnUlMSvPxpKEzTGvz5+kuHPOdXjtJSU7XU6IlyUtm27VEMyvMCkB84zlhyhFzurP9jqce5Wo8iOUQmv9q3isP4rRwjbI+76eo22nlb5A/SyW9u3na/38xVo+Tsai+TeiMv6jtNdW6vo0a5tu1f9ujOr0+hSa+v3+jj/TvYDe4tS/C3YY4tyUi3y9vZ3x9Om8PlM3N4lJWEIIIYSQLwFlLCGEEEIIIS+BEID/9D/9Lv7e33sfV1c7TFNQqabtRGwVq2GZl7SWj2Rse2yVPltCtre9lKp1nQhaSnKtV7/4BiQFKuerIla+iA+mzZqM1YLAfuGv60j6VaSmvFKq6a+akJX+lX0ytLAeUrhcS+mL7JPEkOyXftTkrBznl/oLbykrSdjdriSNdrs6h6xQUr4BV1cZ0zTj9rbMHXt723tfvlo++PMP8N5/9F6ZJ3YqQxSv6Vadho19OTpMxPbmigVMMnZUr0ng9uQt1D7A1JP213InX31itqw6Qfs8aNmZ3TlylYub6djecmlnHe432/LhdkZNqi7PuZHOy74cl/5KihauDbTrq+BFLZd5Yte2VXvrubO9P6ZP/pypU6aQtKz0PeSAGKK9vwDCFJDeTWtCNh9efQGVkowCUPp6cZExTVhGWbAS0f9QBIARtc2DBGnXf+b3t+2PbPSPWtAsy3r9bK/7tDT29bfXayq1lbSjkRqqlO3JXttX/W+bbaPti0/M1n2hOcbTk76n2KrXE6+yLvvk38V5Tvjooxv87GfXd+4DIYQQQgjpQxlLCCGEEELI18wPfvAAv/VbD/Dtb9/DxcXUka9KAKkvvEdiNQQ7THEvFStfduu2tyRsXe8LWovdqRNNHp1IrSK2/dJehIBO0vaSVbZenW+ynYMQ7tg2GVvFLNYye+/6SdkqwovELe+HiF0teOswyHGVjDVdG6OfOzYsw1YH5FwTshcXE0JImOcyXPHX8SX5vQ/v4d637+HqW1eI+1gEqDxzSsJ64anLtl7LXW2kqJaoTTLWnXMrGdsI2ebZV33W26MyVS59Pxc/b+xozljdpi/bnDPW/z320rGyHKRk5VzdOWPV9evE6trP9VaGtY5Pt64+VSf+6p8hNtO0QbUTgZzy+r7muAhe+S2DCGaUeuY5kb/BFBBzBCYgT+X46WICAMTLiBQS8u3rZaJ0SrZ+vpT5p+u/GfpHJdspWb1eRaNOzPq68tle69TPej8cfS2r2/1z1DYBEZpafMp+20/bXmkndPbJOaqglnOuV2j+PcmqrJ+Y9cfXfbmzv/139HnIgwN7idicy4+APv30FsdjXn9olFLG48cHClhCCCGEkBcIZSwhhBBCCCFfM3/8x9/Af/affQ8XFxOmSadbtXSyMtWL1VF6VsRsqVOWPQlrpaL9QrhxTud7Joc/MA/29VJYo+3+up17UMtUZXgGCSU9l2KMYUmiemFbRamtV+pqyVq+zIYRsGVZvwCXL/rlvS/z2IYlwVu2c44q1VuGKS4J2YRpCjgeE+Y543h87jfobB7+zkN8+0ffRryIiLtY5ohdhnpFRCtEdYL11ByxEXZbjkO/jd65AgYJWbRSdi1Dv2wkZL2I7HLqrciuHXWMnn+1Vl9EoyRDz5GyIqyUTF3P4/8ElxSpEbQh1JTqYG7ijFzndA1FqjYpV30/gj2/kaZpOb8MG5xqP7zAlXqAkrB6GOIcaqp3KV8vdwr1Xqp7GqZlmQPivpjb6XJCiAHH+0cgAvNh7v225JVlnsurdjpjtwvLDz7s56T8gETEbZGcIq51G/7z1+8r20WIbn2+Sz0rab3MLf2zctXX1+eq5SJ3YY6TOoCVsl6carnsr8WL21qWnbgM3br+2uz+F/OA+fNp+VtHZsAqXm9vE3760ye4uXmJE5ETQgghhLwFUMYSQgghhBDyNfFbv3Uff/fvvo/f//1H2O2iGprYS1j/8olYLWBHUrbKpJrC1G1AlVkBa+VrK2fPx3+53PuCXpf3v+jXc8naeWWLHJBUbJWvWqZqEWuX+pgQZNhirPdTywn5wr2I1bAKWOmriNkqbkXA1nlvZRhjEbflXPX9E8mbM5Y0bDlmmiJyTtjtirnaL8KoyNn8lc7jd/XNK7z7h+/iwfcfIO6LhF1TsTodK1LTydDNlx+C2MlYAF2BuwpYd57eum6rJ2ibddR1I2DN38fgD+KcvxMvRNEKVqnnhwn2qddT6ViTal3k4ygl2+unEaTL0L455DLErz5Ghi8O2dwvI2yxXLeI0rTM7Zrq/fTz1q7tLenXEEMVt4vEN3I3L1J26W9Oea0TYljPuT53yzLmiIRUE7IZyPvS8O7eDiEGpMdpmDh8XSjzfgLyGbXfR+x2uRmRoY4AIIg0zWZdPhsLvc9u/1z5MnuMiNdW5lq5WsterJQt235/7We/X638HMlZu38saZ8Xn7jV4rUsMz7//IDPPjtIjfXHPpwLlhBCCCHkq4cylhBCCCGEkK+JDz+8h3/0j769JmLr/LC9BGxdCiKaZDjb8TFauFqRW5athLUytpUzzydk6xfcIdgve+uQlO3QxPUYba70vlbI+nL5krxNxurUVxW2tj9tMkzfLztcsR1muIja0jM9bLGuo2WGiHI9PHEdphhmmOKyjEbG5pygv4B/0Vy+d4kP/t4HiJfL/LBTqPPDdiSsHhK4K0XVsrxPnXbk2N7+QYp2FbTYOCc6Ytb9bfg6fp8ur5uhWz6iGabYHZhLVNWc18tWOW5rvdduT8QO5a36W+kNMez7sgpYtH1f21NDD8s9k6GKdTJXD3cs7TVDFaO85zL8cNNHPf+tkrkybPGasF1EbpwiUk4IOSDsAiIidlc7BATcxtthSvh1ISXgVg23HEKCJEPrD4LqXNn28xKQz1BZ92lW+fzUQlYEZv08bocjHg1lDPhjS5t1SHqo88oxbXlZP0/KlrI2LVvq1Gta9jTt1Hr++FaSqhq+4ATt5/0oDVt+0FOTsF98ccAvfvH0jucjhBBCCCEvAspYQgghhBBCviamKeDiYsJ+30vFtgJWy1ORtj5F2xumuCdppZ2RhLUyCmr97ha2ftk9ShSNU7HtnLJeyEpdv27lbF/klqWkVWsytvZGErGjZKzc8/rFvL7fWOdhrOlZScbqhGy9HzHW8wLlOFlOU6knQxbvdhmAJGSBy8sJMrzo8QgcDi9eyoYYEC9jmSdWRKwsRYhKSlZk6lK2ClIZPtgPI+yHK/bPvq7jk7Buu5HBSgr3tr1Y3BSw6y4rIv1+W7SIvo44Wdv2AiUsElbOk53shJKy9pE2yzVRq9YbOav/PKTdsIhNBCMy13pabuZcU63J7U9VcOrhitdEq75nam5XObdOxJr2lmGNTUo21KTrKlpzPW5tX99vEWjrDyFKMhYZRcoiIqeMjIx4EYEAXH5wiflmxuHTA94Ubm9LItL/O3PvXlT/1uh/S7JZL8fUdf3ZXagp2vpZrveXOrbM/zE9X7n+N6cvZXvHVjlct0NHnvo+mBZGlTe4++e27ZNN4Yp4TQm4uZnxi188XUd9ePZsfo7+EUIIIYSQFwFlLCGEEEIIIV8xMQIXF5NJxPblqZajddkXrH2J26+n2wyurH55vCVh7+Jka4opNF+CS7n/AtoORdxK2DqcZD2H7VutX9tqz6OPtfcgL1/eS5qr3kefjNVJMZ2MFQFQ1tthkHvvtT0+mGSspGqLtM9rSlYnZXe78so54/AiPVFAGZb4og5NrOeHNa/1ECs6T8lRn9yUbS9XfTvDNG5vifbczT7U6/AStitgA5q+jxxMUw9YH8ns0uLr/KtLMnY9T7bpUWARRqEcs0rcoH9koBKHyLWe6sO6T/ooMlfV76Zvc72n0g99Xev5e2naUMv1Oc21u/akjawE4Hr9QSVig2tDvUIIq7iV4Yt9MnYty8tyAuKuDFs83Z+AABzi4bVPyAopYZF09bmYpoyLi7D+SEQ+m+IqteUz1b2BzXrZ1olX/QObXiq2toG1nfpZLJ/PukzabNOup4cvrv2Rz3Wg/bfBi1ldx9az/dcfI35o4y9H/TdSSCmv76OkYAFgnjOePZvx6ae3q4wlhBBCCCEvD8pYQgghhBBCvmK++90H+Of//Lfx3nuXbq5YL2X7orUOSxzWJKxeAm1CFoBpT75w9hL2+aVs+wVzT5j2vzD3X+D7Nn2itbfea0fXgTuuLv08srIdY16TqX7OWbkOfc8lOSvvUZGoWQ03nNdhi2W/DAkqaVn9/ullScaWYYjLl/kRKZVYYknIFsEfAnA8xqWfCYdDxvwCwk9XH1zhe3/5PVy8e4G4i3Z4Yp1W1alXqOfYDWXcfamkrDxnMca1PZ2AbepKHYRmDlDdFy1ee4J2XZf9Xr5K2bLueZ7k+CoVvaQROSV9UNJW110TplntU2JLErWyvvY998+VwzKHq7RVHrPajr9wn5p1yViZE3Y9j79el1CVBOuayg21vXV+WZWqzTFXSQ01V2xczrMkaM09F8Gc8ypc1+GKJ/XZJ4n1XUQOGXkuYneaSwr94r0LzM9mzE/ezIThPANPlmvTz/a9exEXF9GlZe2rHFNf8qOYKk/rZ2vdr3/cAoz+Xdga6r5KXt/GWnOpb4Vqrd8eb7dtO7YP/c8AK2zb486hl8jVoyvI8qOPnuHjj2+6x1dRSwghhBBCXjaUsYQQQgghhHxFxBjw6NEe3/rWFb7//QfLsLK9L7KD++LXitFW1NbyUkeO18eFTr26b2tbl9Vyv91j9CV4+VK+pqH0th/KcjlS1RUJWr4k7yWPar9652h6Gdrj9Dnr9We1ra+vJvTK/bWpXxEMInN1v+x7rof9bFO2In51slbEfH3FdbjraQqY5y8pYwOwf7jH5XuXuPfte5iupiKt1PDYa+Kwc6xOIvZe671dXV1NyG4lYhsRG0IVd6Gev9eWOafUcc9+L8E5krBDATv8u1Bk2+46jLFPlarEqU+1BqhkaCcZK+341OoqXmHngjUpWF2+HOznlJUyk5BV6Vmd5JU+rsdI35REluN1yrXbZyV19ZDOJoGL5dzuWTTPSYQZ4jik5RpCNsnYnHP5EcIyn2zelWGL8zFjxpspYwGoz4/6zB2PeUnn26T/NJV1P8+sPb5utynY3r8ZbZlN0y6tqvlnAf3Zr/8GpK7U2dpX2y3bobtf8G3affUaxsMcb6PblR/yHA7JCNmcgadPZ1xfv7nPIyGEEELImwJlLCGEEEIIIV8Rjx7t8S/+xe/h/fevcHk5YbcLg1Rs/2WlG+CTscB4zlgApn29XdYBEYe9bbuvfrF8Kgmo54oVkSpzpFoha784h4nuVSFVJeioXl3XQ7T6ZGvvS365NzLEowhYfVxprkrZkmrVc8bK+wJTJsnYWhdrKlauDZBkbG6SsdMU1mPKesQ0lYZ2u7K935fty8sJMZb40/GY1T25O7sHO3z/n30fl+9dYrqaTCrWSFmZszVWiRlCQAxxMxWr5ViTclXtNolYnYLtiNlhmerb8pgMBawuLwslZ1X5us+VnYWXQrqd1cueSLUqusnVUFOvTZkIUP2Y6O3oypPan1wZ7DGSYF23c9le/8bXv4O8PjvrvK66zbBclwjRZIWrmT9WJ2OXc/vE8SqTs0rHIpREbEKdOxbL3LEo1xJDmTtWlggoc8nOz//39bry7FnCs2dJ/ftQPpfeeWenRm6Qv8F2SHbALqWufMb3f6jTpmf1j170j3ikXStns1r3/3ZZ0Vn/nelJWdv/epz+d9Hv+zJp2Db9mnPG7W3CT37yBMejjbrOb+HzSAghhBDyOkIZSwghhBBCyFfENAU8enSBhw93q3z19OVnFUv1y+zel9vB7PPtjkVsWOu026N6Nn3bfvlcz9v/HrpKUZtw8ilZm3w9lZD1x/v29f31X3LbvoqA9QnZes36C3x7X30y1qUT0b4fUs8KjPo+6dStHCfzyRb5mzspWSxzypahKZ/HB4QQsH+wx+7+rhGfJqlar6IRoVqq+ZdJs0rZhrBd9yM09bekrO6b7o9Jyqq3drity84RsKN9TaquVlyfZWlekqRL+lPqm6Trerqlrkqm6nTrWqZTrS792psjtknfrunEWibSdE3l6nltRY7qe6/ldmj3+7p6GOX1Hqi++vsu7a9pY/VM5KCueenrulzSsFKGADt37LIMU0nIxn1EvCwJ2bdFzGoxqEpxOKTl37aamAWWz5F9UPsA/Rksn+H28xVmf3+71qv/LujPcv3vgv+s77flj63/9oROHduH8b7z0ff2eEy4uUlqX/036fY24fY2Ub4SQgghhLymUMYSQgghhBDylRGw30fs95NJxNZkbKnTplllOFo9V6yWVjVB2co7LZzQtC3lfttLKt1uLR/LX6B+oa2XJR2aV5makv/yuiZWa7J1nJDtpWUlTSV9sPt1Paz3yLxLZrumYnWyqpeIlbr2PtdrqAK1zh1byrCWtcnYvCzLcdMUkFJYUrWhScrmnLDfR+RcElKXlyU5e32dlpTsHQkosmm/JGLdXLE98Wpkqk+2+hdakernoDWJ2NDfNutLOnckZRsJ2xGwXhQu727rgKRu576duq8AjJTVw/aacjUErzy+TVoWth0tZdd6+k9J96OXit1KxPrXiYTsmnZd1gMCUki1bTlGp2KjKhOhKnWXNlZZHPNapvuds7pvaihiLVeb/i3HBYQ6Xy5Q545NsaR7l3ma80XG7uEOiMDhswOOnx/bN+QtISXgiy/6w+OGADx6tMPlZVT/ZtV9+qXLynovHWsTsPXfoHMTs/aY8Q9y/L9NY9nak7bb2B8D6fXybyTwm9/c4he/eDpugR6WEEIIIeS1hTKWEEIIIYSQF8w0BfzBHzzChx/eW4aQbb98Bqwo1dtV7vntrS+w11bUvqDa9sd4ASxlWsIGJ32V0FJLO7SilrF1iGJZr8P5yjHWGG0lZOWcPhU7OtYL2TosZlj6V8v9dh0W0/ZP37te6rUvELS01e9nXttqk7F1qE+RsHLvRNR6uR9jWIc39sL5JBF457ffweX7l5guJyNGVymmRKdfX8vkGVqfJSVJEdp6ro4/V0/6Nutoj61vGNp6UH8brrzZ1mVq+7kxzYQ2QaokrKROEbCmU+WRNilVLWL1ukqvSuJ1PValX7dSsmtiVNXVsnQd9njpOwCbkJXzh2COWaWxvifLe7eeO1RRatpQ19DcT9U3/d7re+fPpxOyq9BdJP865PKSjF3TsbuIeFESsumQADty7FuPJDlT0kMW28+mELD8WMn+21KTtHJM/exsHjbIZ6189uof3gS1Xo7xQxK7XrvRFGz7vWv0fenx7NmMZ8+stPZSVf59vL4+UrgSQgghhLyhUMYSQgghhBDygtnvI/7yL7+H3/qtB7h3b1Lzw+pXre8lXZ1/D6a+XQbzBbVe6rql/WDOU+vpL8DR6aPI2Lq0UrZeg6Rgy3peXynlZjuEvMzTClghG9bjqyCV/vrkK8y2TsfW9npUqWQTsL1zWGFaE7H2/SrbI5naO0a/15IWtlJWBKzIjDIssU7IFvEqy90uYJ4DJBJ4Vxkbp4hv/YNv4f737jcytidFvSD1CdaRuBVRu5ZFuxy114hdOQZhnfPz7GSslA3krNmvy+DqfgmMaHUnWBOzeihg2Ho+KduIWCcza+c7ZZ6AkipFHcIXQJmjNauyYOuu87Um19ZyrE+iIgM5VSkrQjQgrKnWADt8MlBFbCNfAfu+BpQUrRLcaz98QnZJ9q7pWElxyrM1BUTEkpDNwJQmpGMqn2tfZORbGjTP06enDfXDhxMePty5z8v+D4/80v8bqpf63wwRtXW9/vvg/5R13fpQ5abeFlrS5gx89tktfvWrm/MbIIQQQgghbySUsYQQQgghhHwFlLk7q9AcfbFsv1AeSVgvTFux6kVsbVOfL6gyLWRDI4xjjKrvdbvK2Cp72yRsWiVsCMlIWSCZ4YL13KY+5WolbPkCXX+ZLtc9SrEurcIncP2X87Ltpa4Xv/W+Vilk56ut16DvuU3A6lc7Z2ydF7Zux5iXfoWlrPSzl4ot9zPg8jIixoybm3QyafXO776Dq29dYf9ob4YlXuXVIrYakSn3RD2v9ZpVufxvIGdHItYL3+6x+r3p7FuP663r99SVmzIlbQ13EDTNoSpRus5x6uTsSMLqst72up6V6EQVoPq8a+rUL91xQ9mrE65Ac6y8FznVY+TerWlXGXY4BFNm5qpVglondYH6vvbmoN0StjlmhLTMPysJ2OV5zMtw4auMdXPHhilg2k/IlxnpOmFGf7hess3tbcIXXxy7/26VZVsm6/fv77DbVYFrj9M/ovHH22e2177UEw6HjC++OJx1Tf7z9vr67R3KmhBCCCGEVChjCSGEEEIIecGEUGVsFbFeyFYz0MrWnoTVYrUn9mp96cOWlLXnshK2yL0iX6dpWssbWaaw6deIGOsQlSllAPMqWIs0TUp2WuGKgYQt2/Ue+OGIbZcC9Jfptq/1fmjhateraJX7p/eHUCVwu6++R/LFv67r3y+bBhsPVywitrwfsh3WeWXLepWxu13G4ZAxz9s29p3ffQePfv8R9vf3VcQ6QdrIylBfXfkaXAJWiU2devUp2FMS1p+nEbDmb8Bud4VyR/p0y1S5XEevfJOsxKs+PNc+rYlZff6MOvSvlri5I0IX4boO9avKtbjdFLFumGIvb9f2RbqqczXbwQna0ErZddkrc+0ZERvq32FPvPp9Zvhj+buU65DzaykbYGUsUERsDoi7iHyRMeUJx0jZ9rzc3mbc3t5dZMu/sUBc592Wz0nZr6VrX8pulwk5Azc3Mz766IZDCBNCCCGEkOeGMpYQQgghhJAXRAjAP/yHH+K3f/sh3n//siNiQ+cLY7u/zi8b3HFKRplj7H5p157H79fni+tSJGyMEdM0LXJvQggR0xSXutH0o5CXIXVLCnaeE1Iqr3mekXPCPAeklCAS1c8JK+1UiVoFJiCyM6znao+tado2AVvbtHJU2qvlsl0TrrJPn7MmWaVfdThiLWHrMe175YflzIgRi1SV4YnlPZL5dkuDdrhiqGRsREppFbS9+Q97xF3EdDEh7ErizwhUJUKHUjT0j9GCrCddfZnIsEb6j84Z2/Z75zXiVa+v7y/qthaFUPVVnSGj/eo3A6FTaRW0aPebuVlduRGgcMJyqe/rjcqa61DDFDfDGi/CspGbUieiJmFlGGAlQNc+eilbRtiuEnZJx2qJHYKae7YjWI2UXYY9Bpb+xJLQRcSaiNXXJ/PFIvYlrCxjjshTLkI2ZUwPJ2AC5icz8okfPpAXQ87AF18ccX1dn8v+Z1046zNwfHw51zxnilhCCCGEEPKloIwlhBBCCCHkBREC8MMfvoM/+ZNv4Opqgp37dXzMWJ6O9uvjQ7e9U9tF8oV1KSJWkrBFxkbsdtMiaKdV1Nb5Y0ubNREradgZKckcpkUwyhfZpV4RiGWuVH9H7BDBerhiLVbLvgBokRVgBKSdR1adYRGoRQjr9mw7WuzadX0vrTT2/ZA+1PeptleH0syurpW2cq99QjbGKpXL+yfJWXl/t2XsOuTqImG1JG3kKpy4lP70ZGuo6dhGZo5eqO3pY7eErxeuvp+NiMUJEWvexBMSVrd3ilBl4oraNOnWnM35mtSsLpcy/TwHu29NxEodlXxt+hPs+jpM8CI99W8l5N6a5KkaStj0rSNNtVRd76f0UX4IAStegVYA6+OHyVj9fmkZLPcjtAlZmWtWP3855vojAD1c8eUEZGB+OoOjFX993NycnpOWEEIIIYSQVwXKWEIIIYQQQl4gMQbsdtGlYq287CVeRa55+TpOyEK158t69YJKVtb5YG0SNmK/3y3LvVnudjsja71ASiljnuclDXvEPCccj0ccjzNSmnE4SDIWCCGhmI4MGa64DGVc+ilzpmoB2huuWK69Hnfe3LF1ntfaRhW3Vq7W+6nnIGzlaVnHel6bqNWSFfDvndSPMSOlKmHr3LCSjEUnISsp2JKMnee87g8BePhwh+Mx4fHjGT7Z9e7feRfv/tG7uP/hfcRdtEMURytZtRitz3AwSdZGjKrtrUSsXyJgTb2ekrKjMnnLjZh1ZV7UDgWsLveP1JmY47X4hJOsIdhHd3lsmzTrIkJHMviu9dcEq+10/TPNqo5KuyKgpFn1uZe5WKXdnNW2lq9y3rQssdTN9Vg5t5+ntvfe9ZKxa3p6OYdJxko/5TpivUchBZuQnQIiSiIWKGly5FI/XpTOhxjQSHdCCCGEEEIIAWUsIYQQQgghL4SrqwlXVxMuLmIjUYFWvsl6rRNcuRZJ9pi67KVle8MyjkRwUGnXMhRxTcTuujK2JGStjE2pJGNjjEhpXtovEbGSTMuYpiIsiigsw+lKPyTdWWShF6o9CRs69Xw5mvtg07buDqnysdDdPsafVwtZPU9tufd1OGQ/P60+tn3P7DPQF/t1iOLdLqzvv7/u/Tt73P/OfUxXUytQUZdmvScz17sf1uWampVjVd1RgrZ60Jq4leMaIayWjeDr9NMnI5tj9LWYvzf3EA1c5p3wTfohiCW16oc3znafTsPq5Gs5xCVis0q4LufU86/q9OqahnUPjE6/rv3SKVgM+ukkqr+mVfq6+yPDLTfzxA7a691nSffq998Pc+yfDylbE7GqTvNjgxgQpyJpwxSqXCaEEEIIIYQQBWUsIYQQQgghL4B/8A++iT//82/igw8uMU1twrVQ5WoVZ3qJVXT647W0taLWCrMq6/qSzgvYMgzxhP1+h2macHFxgWmacHV1iWnardvTtFv6HxtBJcIVKPPEHo8HHI9HHA4HxBgxz8flvPMiXtO6lKidyFnVqhtyWK5Rn7ctk/IqH7XURNOml6i+TZtwtfdWErR6OFS53zWl699HoDdfrOyPsbQjQzlLarg+H6M5YzOmqaRk9bDQu11AzhE94hQRL2JJxcowxSoR6+WTSaEOhjQ+lYxdy1T6Vrfda/dUCtYnYk2fYff1pKxJWOp9qv7yrjdlL4T1eVRCU8qVpNyc61Weucb09stX0QknYN3S9DG1SyNhpY8xVCEp6dak2pF+Ia/yUlKlIVc5vD4nCDU9K3PZjqT6km7VwyOv77HMZTuYO3a911n1x88duyR8Y4o1tbsvB+7f3SNeRRw+PVDIEkIIIYQQQgyUsYQQQgghhLwA7t3b4b33LnFxMQGwqVjBOJ5QLYIVf+NjZNuKQVum22zbtUPE+kTsNE3Y7XbLa79uhzAtr4hq2nSfRMaWfdNURKrMI1tSs/OyDKYfZd3KUn2tNpyn7dRovVe3uauAzBWp5o2VvpyTiq39q7J2S+aOjm+XIhRzp14wZVbYe4lf98WYsdsFzHPGPAPT1YT9oz12D3aNfB0KVdNvK+m6ghQ2GdvUkX36WdCncY/ZMBkLDI/zkrUpO1PEnpSwd5Wzg0drPfcaKlXJT52ElXPqNOyyvqZSTYC1k4gVERtsErabkBVJGmzSVr+PZn5YPVxwrsJ2ff/0PV/+/NZz6z7pvqk5a/X1NDIWtX0zdyxsfbnX69yxeq5e9YyZ5Kx+LR+F8gOGEAPiPhbZq89HCCGEEEIIIaCMJYQQQggh5IUwTQH7fUkmSoqxJvWqUNPbtZ4Iq1awlfr9dKy0tayZ4+U4fXxJxhb5GuOE3a7K18vLC+x2O1xd3cNut8O9e1cIYUL5T4aoXs6SASgxsBJ/CyEtc+aW9kX6ylDEZU7ZGfNcomMxpmWeVC8h69yxdT7X0wnZ3vDEq7lalqMUrG8HqyiW+20Tsn7OWOm/3pez3P92zlg9T60W0vZ5yGZdJ2Pr+yrp2PIqc8jWa9rtIh492uH2NuPzz494+IOH+Pb/9tvY3dshTnWu2CaF6sTlWu5ePckqwmqtE92xo3P6slj7MTrfuYlYfT1bSdnlnW8fcy/8evji3CnbwMwf6w7sJWN1mU+pduu4ROxWP0ZJ2eGxoW1jve9qntnunK9xPcj+xgKwc7vK+b2IV+3k5IYzVuJWJ2R7ydgc7RDNTTJWJWTjFJFyQtiVZzRexDu/34QQQgghhJC3g/54VYQQQgghhJA7YZOJQZW39bAKJC9ZfTtarKJpsy97Q7eOnFOEbBF3NRE7TUXK7ve7JQ1rE7FFzEYAfinrZVvqlnOUIZBL+0UC92SeF8/tvTVbJ9+HU3Xtvey/V16g99rcqj+W5rW8fX99orn/Hnupq5+XdpjrWh6X//oLU8B0NSHuYyMsu5eqpad+rrS4lKX0R/6nJe0iSnvnaeSnrhfqOXrn8/U3RWxQfV/vnb3+UV/UVdlzjq6rd09Hx6lzj5LC/j0w90Xvl+2OWF/vXee9NIJb1/dtuT7ofuvr8XV7Un30PJh23LPTPEvu+OY9HT2/+j75e+auZ/gjBPl7kx8XTAHxqgz/TQghhBBCCCECk7GEEEIIIYS8ALQIk221dy3bEml98SZCL7g63hbZdqHETJ0rVpKT0QxJvN/vcXl5sSyvEOMO5T8VqmQty579yOurpEMTQpjXvu52ZS7Y4/GInIFpOi59miFDBWuJrYcNDgFqyOBaBtj5YG3ZyXdqbU+Sq7q83LM8aEuOdaWhn9iVcrmO+v7oNKxfYl1vn5E6x3BPwvr3We5JCEBKtSzE0M4TG1spV67BSa2gn3Erq4yg8wIvtjKrl64dJW69xOsmcv0Sqh+yjtrPcySsSYA66dc8Gk3R1gGOrBKccny2/eklX7eSsWZ44aU9PwQxoIYIVvtG9c2QyOr97vZND2UcOgld2DbM+sZyvR59vCRvZVjkgDp3bYCdO1b6EuqQyjq5u26n5TpjScximUsWwCpekVEELMrcywCwf7RHukm4/c3tOaOdE0IIIYQQQt4CKGMJIYQQQgj5EnznO/fwe7/3CN/73oOODG3rW9Fq9ph9/vjeuq1fjvHH6iRuSa1GM1esFrL7/R51btheEjaoF1BNQxmmuMrEvIjOjBjLsSUlmxBjRErJSre179lc0/b8sb6eFqW1LT1ssR+euN9Of1+7XObYDFoY63ufu8f562mXImKDaaN3vJW1eZGybTlQROzFowu8//13cP+791c52hOnzdu8SKye4NTla6oTHZmKjXNIXxHsefW5B8fIeY2I9fJVr5u/C7Tb/jhVx74Brs4WvlpP0On2ZIhpLWf1nLAiEE/MGbsK1qwEpIjVbOd2NfPGuofNzOcqMjPXPui+67lj6+W0c8iuYle1sfYlZNN3Mz+svw+j+6j7qJ65Zm5Yd4/8S/qySlmZQ9YNcZxzLj9uyOWHDvlIC0sIIYQQQgipUMYSQgghhBDyJfj+9x/gn/yT7+HiYjISoxWxizhqUoGtbOtt99ss7fbaqOfSYi644Yl32O0m7PciYy8QgswRuyVj5Xr0BI+99YQYJ4SQMU0RKdXhkcu8p6HppxWbVVL69S36x9gk7Km2zknI+vOM3h8vVXtitb+U+6KPb58bWx7UUMUZMQakVJa7dy/w7l98E/FqMnO2evm53C1VVEWVGfK2I0jXNlyfeonW3nC1TRJWn1tLV9hzmfPD1t8SsZtp2M7f05DBrq6w7RSJxNT7RV4CVsyuUlMlXrVo7MlXOa5JwWo5qec7VetNMrZzXV7CrqLUl2kB6u+z9Dmo84Vs3i/fzuZ2cPdPP2cieUVou/36GVylccA6t2wIocwvK39HuSzjVBPnhBBCCCGEECJwIhNCCCGEEEK+BCEETFNQicTQSBstzPS2HA8jVKtV0kMUL7U3xKxtWw8l60WsnitWUrExljli69DE/hVh54gt6zn7fRHVZsgcsVG9bBq2XmN7PVvX2jumJ7C7LQ/q9YXqKaky6r9/j9t9+v21S3SXrYTtS/0Q9NyxVc7mJwc8/Zcf4/CzJ0UWKVFp3hclooaiVJ43v+xI1tHQwv78Wv6NpKwXwWaYYrht3Vf/Xrhyfx79tjd/0x1pt/YboXsPNl/qmpvEuLsHQ1mt+6nvO1Q9fX+0FPf9dutNfS3wN849KjPPgLr35yybPpyx7fszeg67fYxoryWinSt2GbZYhgCPlxH7d/eY7k8ghBBCCCGEEMpYQgghhBBCvgRWip2qh64I3DrOH1/WQ1OmanbaD6afkkyVuWOnaUKMVZa2crUnWyNyrus9y9SK4OD6UvusJfQ592Kw56x7+VVj3yu7XLaa+nYZOtu999W/glvaV76ZcfvTx5g/eTaUVr23QGRde52LtHKirycL12tCaNtcFwMpCzTt+raacqnrZKW01YhY1xep35Wwvfujr31AcP9r2nXHGyHq7pPvu+6nbru5f6rMiGfdb70dbHvNNcPV7dwzcw2+XNU376f0072v/j3syml//zryuLkX/lh5ptw9MrI2unPL3MuLkJ3uT4iX/MqFEEIIIYQQwmGKCSGEEEII+dJIKhZoZeBIiPYEnJdosn9LPuo643NpCdsmY3c7ScXa1Os48Wr7XoYWjgghwZgL1Ufb57YNvR3CMnwqAvwEmyH44YUDZBjfrSGFu3sCusMW+/WyLO3o98XP+Vr7ra87N3VkHleZG1bm6bRLfT/677HdX9uLsc4fK0NBx8UJlRR3FUf+7WqEqJddXm6h7uvWcfv0cqu+2dZiDLZfvb70pOVIxDZCUZfpNs1maMpM22fS1FWPjh7mV7e7DhOcax/80MHd4YlRhwVenzNk047vyzqUsTq27j4xXLG6h34Y4bVczTsbgpsr1i+DnTvWDzPcO48ZXlifWy31sMiI9X6vc8LGDKT6nOW4nDMG5FSHKZayOEWkXSrDFk+hfZYIIYQQQgghbyX8mSYhhBBCCCHPwTQF3L+/w+WlzKXaisUWa418ArKpHfQxI7nZO2bUTitnQ4jLUls5/8KJ8nO4m5R4OQ7jbtdkRcu5z4Ace6rMpR1DfR+1bPfPka5TlnCvYE/kBWJ7SeglG32K0QgvL1VR9/Uk7Xq8Po/rR+/4RqAG259TIrb3dm8lYb2oNv3r3CPTRqfPw7pyLn0/0Sn3fXbX0yQ9/Tk2RLa+l73nQ6eem8sIYftaXBsjWW/Or+6xbsu8t07ir+fQ92f0UtfnBar/YYBO0/rnfe2HzMesf8dCCCGEEEIIeWthMpYQQgghhJDn4Hvfu49/+k+/j3ffvVBirGB8zio/MUg4whxnpBnQtNlfdqwS9BCgIl97CdmIGCUN21qKkqy0id+aGg0YpU5V7eWYjJxlWY8pq1KW1+0XQQht2lWXlWusaVR/bLn+032xbfo2ZF022oryntf0rH5/9T2W9Gu/Xn3pZGw5TpKxMS5JbjWnrBFZul9oRZY/plfWSDEnq7rHunPoa5J9PiFrBC3apVlXx/tyf4yXn41IC2pf55hmn2dLzC2J1LVqtv3spWDXdKikWZe0q0nDSlp2ScUCLiEr+xCaROwoVYuA4bnK7rpP15XrWZOry/VsJmOXpZaiQE3vmvMoWbuWhWDqmvfBPadrEjfmko5dPiMQXDI2l3u9JmOnRRVPoZTvAnb3dsAHwHw9Y34yb7zxhBBCCCGEkDcZJmMJIYQQQgh5Di4uJnzzm5d4+HAP57AaRvurSA2bbWwL2NPn9PJXZK9NT4qNqH06Te6s5/UlAlaX2X3ZtaFae8FS9pyyF8Wp99K/N6faOac9//7W5yo0+/JtwvE3z5CeHTfabaXVUDA6iVqLlRz1gtMdP0wjqvN35RncPt1m7fhYwm0wTH7CJXiDLW/2jV79k6JJCJvnxQpgf11d4Yx6L3rS2b9PvdSzeY/1cYNz+XrdRDHstTbLTn96PxoY4vpprkcve+uDZ84kef3zLe9dVK8pIO5jEbaEEEIIIYSQtxYmYwkhhBBCCHkOSvJQEodjmWrlp17a/eqI5titPpy3XsUclNCooq53EpnX1Jfp9otMLXOgZgAJrXhNyDkhJXllpFRlrKRlzVnuIGJ7qVRd1l8PZ7e/HKnqn3fsSADrvtY6pc1x0liemdw8O34pz1iMeU3aAuU5TamkYm9/9hjXf/sY7/zFt/DgTz/YFoVaQOmyQRK2l7gdLbvDFGuxpSRak34dCTsvcVU7+vieROxJRn8fdD3dj5FcPSchm/V7rh6zUCvUtKyeIzW7dKra1vOpmrlj3XyxOoW7nt91OWSVktXt6lSqnBv2fAg2zevTqTodux6/lYyV+xZc+25bv89mrllpTz1niCgfXbKd1XqobUhadr3+uNzD6BKyImGniISEMAfKWEIIIYQQQt5ymIwlhBBCCCHkOamCyJbbYXxfDbZTll4A+sSrTrC2KdetV5Ww5ZVzckMVj5ZfP1/V23Uqmev394Rre3wV61XWAtqkefm/vjKAQwLS9r02Cc2l6SZtGWx9qecF21rfn6Mjes359Dm8ZNViNqDfl3N5XhHrzqvP3xuq2bxUO+v/egnSUOsM77fbNgLavYe67900Kly53OvOedbzuWeld05T3nlGTiZkg7tP+twundp7joy498+U7lPneWuOCa5f7r0OIQDR7SOEEEIIIYS8tTAZSwghhBBCyHMismu0ryxDp24wdfwxquTsftRztMf1uljnb11LoOduLWlXiYvp6JhGkrAzajJWXjOAhJRmzPMR8zxjnmclZfO6HCVkXwa9pO1WPb28e/K21rPtlfI28arfX7tfLFBNz9Y0bSmvx8cITJNNSNce+YcSQ1nWiCi0wmwzEavEV6+N9fyofWj6qNvQ4lAf0ztHR8g1IlaX6+3OH9Rz/fCid0i2/Vj/JuTcOgUr55XkrCQ2fUJ2uQafhpV1sw9uHllVLudb551V55U+yr1a074BZl7ZtY4Lmq/zwer7EmyddV225Rp1Elede32/O+03ydtg56Tt1TFtBjTHrQJ2ScjGKSKlVLYpYwkhhBBCCHmroYwlhBBCCCHkOdEJxtH+sgym7LTE/TLf3LfHFtGp1/UwwUWOFonnhxyOnXVNUvutjM25LFOacTx6EWsTsnpY4rv62F79l+t0zxWxdyMD+CQBzxIwByDHgDRFpJgxx4C0y0hzxDwnpDljnjPyMiQ05ozd9QEh6+dv/OwaWYqOpIR7frVkXbb18d1zoBWuQ8l6h3Y7J7LLQXn3Gnv927oPo3PDXZuQ3RDFcowZynoRjFrK6uGHtZQcCVnToCrzj6p00T++6vqlXX3eVbQ2l2L3rUMY6/dQhgSW9uAEMZQgDvV6dV3Td/XMrH0NMO2JzNZieR26WLqlz+XvsbSpj9MSNwbktNSLpWy6mJAfZsw3M/Lh5f/ohBBCCCGEEPL1QhlLCCGEEELIc3O+Feo7m7Du6wnb887T25c75TX12hOyQFr6kJb6snRRNHMOLW5rGlYvi4xtk7F23tishHEdwvhFSNWXKWZ1yvVF8KuU8UnS8mcRdTsx7Yu0y0CW+3vMiIeE3bMjQrI/BmiGB3YC1ghT1H1aRp1qY00MqqURVy4F26RXYdeboWvdtu7LcNjcHqNjByK2K2F7UvnEOU1deRv1PK7iGiWJqiTqKjelrZGQ1SJyaWMVkVp++m24cmkDraw04hWqb9JPlSxdU71yT1U7jYB1fV3rw55L3zcjfdW90PPnennbPNsIJvnqE7CjdS1k1/mTY0C8F7G/2CP/JmM+zOc9H4QQQgghhJA3BspYQgghhBBC7sCDBzv8+Z9/gG9/+x5ibPfXIWvr0LDC84xkepqeJFUJr1zLtHzNOWGeE+a5JFd3OxmGWMtYPzaojrPpOrNaioQ94ng84HA4GBk7z37u2CqGtbT8KiTqqTZ1gvjF0grZnz6b8ZubhLzoITm3FtMZATkCCQE5ZhyuAna6g7ku12SiCNm0tJUywpxxjA+AtKRlc0nL3uSM+W8fq+uvbezu7/DuD99F2LUS0s/72R2m2MtSJTN7QyGP5qLtzU/a3FovSV3dk3Or+r54Eev+cBsR22vneZDz5UUu+vSqCFcvGkcJWSVrjaCEPbYZnjgrEQsnMaH6GFDTp9ImVN/dNfnhg3W/dV0vkE2aViVjpa11+OPecMi6j+r+aOnctBuUbIYt90M4GyEb6301QjaG0rfUeXYIIYQQQgghbwWUsYQQQgghhNyBe/d2+NM/fR/vvLM/+4v1c4YyfhGsI5mGtrymTfM6X2tKaZWk05SQs8wNC4QgclYa8+a5l4ytwxPPc5GxPRGbluFzJR2rhyi2c9iWpfGPd5Clemjmtu9fHRkZKQMpy3o2dysD+OVNwr9/emyGBG4IAZgA5LLcafG6XMo6hK1OxiqxmnNGurdb5Wx5yzKOGTj8+mlN0S5DG+djxuU3LvHotx+VROEiB/W5/DDDq4CFuxbn8U160KdZVf3enK5ejjZpWdVYT7LqY5s+enri2EvXDbl8J/zjKKJVxKafl9ULWdjEZ29eWH2ONamqZeOoH6rcnEe1Vapke90dMWuGGu5cq5Gc+vwiWlX9pq6uL+fyElZJWp249c+ofjZzyN2hnrWYlfX1mdWvWF4hhfYjlBBCCCGEEPLWQBlLCCGEEELIHenNtyki0e77elJQcl69XZZ5Kc/IOSxzwwbMc0IIIkwjQgiYpglAxjQBIYg1CCiS1duKUTL2uAxLXBKxt7e3uL0tQlakbEoiZSWhm5UstulYfS3PU9bbPxa0d2N0/DFn/He/fobPbhPKbZR03nLc8n8/jQHT1WSlozmBLJy8cvK19EWJV/Rl7LpMajvVpRa1aU5Ic8LH/+rjeh51PALwnT//Dq7ev7ISarncdTmSlb0yEWBtxa5sbQR2bxs4/SfoBJ4us0OHn5CwzeXc4W9fXLd+qNSfmp97VcvJZlhidX6TrBUJ6eaSbYYr1snR7NKxbtjjNU0qaVB5/qBEpfTNp3XlfV3a0MMI+/TpKo+dLB0lYP11yn3yxzRDIQd7v9bzuCGJR8MUr8nYGNalvBBVQpcQQgghhBDy1kEZSwghhBBCyB1p5sp8BfBCVpeXfYsGVEMV1/lbS0I2hIAYp+XIpK7Rmy5AErFFANVkrMwRW+TrOXPF2jlidYq3sZCD9ecXq1/OyM4543aWoX+L1LyZM37+9IiPn82Iu1iETVxkopZ9AWX/ia6tYkl3Vy/zYFv7clkqeWbW4yLnlvcmhghk4NlvnpUyec3lhQDc/uEt9g/3yFPZjrFe67SfsLvYNUnBZs5YVJEm+CGC1Y6zGSVkvSA9V6b2/tZHx36Z4YrlPI2U1c+CTo1mW8ckPU0Tdojgtf1evVESVEngpi0tMGHrrH3Tchho//TCoGy0r4NP6a6pYH8P/Xy3fk5aEd+qH34u3bVfSgb3krHyb4UcK2J2/bskhBBCCCGEvBVQxhJCCCGEEHJH2lSsNgUvRtJauapMx/ktrMeUYYmBlIoBmOcZgBIFS//neS4yLk7Y7eT4iFbGatOXkdIRKSUcDreY5xm3t7c4Ho84HI44HA6Y5xmHw3GVvlUGeyFb76Ofv9UL176A7YnZ0xanJ3/7Qybb9b/54oD/76+eApJ+W4J+17uI/YNoBQ2w/Rb6bkrKUJKRvW0ZMjjXbbMvAzkucm1ZnkrK5pzXFJ9JzqoXMvCr/9+vEKdohzieM9Ih4cM//RC/9aPfqtePgRTVMqvurFLPz+2qhO7arh/qWD+qG8stCdyds1bv0+fqXdNdce/9ek55z7VM1MJ2EY6laitIjYT1wxUrsWrmnVXXsKZHvZz159GCVmSn3BN1DTptuwpPLXD9XK7mhDDSV8/3aiSva8/ct6Xueg6dau1I1PU82QlctV/q9I4NoYhXScfmmLF/tMd0NeH2k1ukWxpZQgghhBBC3hYoYwkhhBBCCHkBeHn4ZYKzo5Tr6XpW2nrJ6NOoKWU1ZPEMIGCaRMiGZbji0qaWUnpI4ZzLcMcppXUo4uOxvHQitgxJnDCSr+fel68K27a9bykDn9/OOC4JWGQg5YxPDgkfH1IdinQVMEUldecn7Z7c1jGibRFQIoWabS27chXrq3BK9RgRqyGUFGxAlbRG5MLOE7teg7wScHhyMPPMpmNCPmbMtzOuP77G00+eQpKAl+9eYnexW/vVozt/7Eb9czj72A1JO2zvRYlYfVwnGernh91so7O/Ga4YMD/AuFs3B/PPbvXPXVuvDam3ymHdZq+97EQznJBW+4zEdW2Y/vUv2MjlRtr6a/Q/BHDrIQSEXUBE5PyxhBBCCCGEvGVQxhJCCCGEEHJH/PysI69xrlBd1mDNRUBj6eyRAIIaglgSc3VfCGU7pYwYyxIQ8VqFo0jSaSpzvk7ThOPxiBgjYpyW4Ytr+1XmzquELcnYA+ZZS9njKmSPx3kdGllEcDtcMdZlFcg+eWzv3Sg9e45rGtXx7dzOGf+vnzzGxzdl6OEQAMSAOQO7ezsr8VSqcFP0ZFlksw2gph3V8MR+uOJ1OythJ+tSrkXSImNDXMRrXISsiFiVnvVzyYYU1qTsum+qiVgkIEwBeZ8RLyI++8ln+OJnXyAdExCAP/6v/hjf+N1vNOnBkcQMWv6P7qETYiOZu57CtzcSsL7NXh/0e7zRx7uKZPNeqXP1hKwZIhgw6U0/f6vuj5m71c8NO9rWgjS7c+faRwQlRHNHlnaGDJZt31fX8bpU6VTz8ajeR5+41efWc8U27amXScSiPguNLA6wSdig/sZ8MjaUvztMd382CCGEEEIIIa83lLGEEEIIIYQ8J6eE37nhMy//TkncrflhvSgWUatFp8jQEBJSKkYhxiJoY4w1XRkCpik1c+SKPC2iNatk7LwORWzniW0FrE3r3uVejSpmVQfd9XP3A8AnNzM+v5mRAdzMGV/MGU9zRlwTpEW2hBiGMm8TJ4uMlJL0n0g1JdDKlbaJQLO+JF8BJYbQyqR1X6op2vV4kVCSVsz6wVJLkXGLQE1Y5iB+OhdRm4Evfv6FFZgZ2D/c49H3H50/9/LZ1e4muYbzy7p+efF6log9Q8b7Y7pS8pSQHR2vniOTmPbn0L8BOYFPpPb62/wIQPXF7Pf7nFg1zyra6zfrW3119Zp5c0fHisB1onuVyvr40Y8DXHm3jBBCCCGEEPLGQxlLCCGEEELIcyMpzuf9Zl0biL5MFSTlqte1aJXympjNS70qHkoyNSKEpMoypimtQxOnlBYJOyGEiGmKS9utjC2iNS/zwFoZKxJ2ntMylHFaj5G0br1GK2blvp5OrtY2esMMr0HSrNtu760uk/L/8aNn+B8/eoYwBSAG5Clgt9vZFBzQJvPOwMzPabvcLmXdC1BfN7t9oVM+eoX+UqSVmR90SdRqSZVzRgyxJm9TLsnZJUn70//PT8t7f0jIKWN+NuODv/MB/uL/8BclKbh2OVhR5ZbrvLFLgZlH1rPxVvTeJzNPrLFq54vYkwJ21D/jT1W6s3GmHSHrynqpVRH5wzljvfgMdq7YZthfdx4jK52s7V6LO8a0q48Prj/LjxPKLVM/MHBytEnIyg8bpEzdfy1dm5fe794z/V43cnZ5ibhdf7QRg//IJ4QQQgghhLwlUMYSQgghhBByR7zI64nDcxKug9bR+7a+tnf623ypK8I252IkZFmHLU7qqBk5RwBHhBBXCVfkrRgGK00l8VpkbG7SsDJXbDskMdZ2qnjNpv/2fuBEnfMZHffZ7Yy/+fxQ9gfgo0NCmhaJsgw3GtVQuM2wuOe810qgrfWVXFrbXfqg04xm2w1D2wgsn4QNSqBKCnYZjtjMHyviLbjyZbhaRJQyEagdGbwOz6p/VDBnWzcAN5/f4D/8d/9hPc97v/ceHn3/0fb9e9ESy0vfu5zny4jYUVtOyp6Slbq832wrUc9e3+qjEr0jqTrqj36O/XWV5nN7jZ2+eBksx47Oe2rIZo8ZplhkboYVt/q+QH0maDHc+5ygjCWEEEIIIeStgzKWEEIIIYSQ56RK2PPiTjaZWeToaLhhwMvc9hw+EZsXKVHnkK0CVs5ZZCzWtrQkLcnYMkfsPMd1eOLSflDnlXZqQlZLWUnMahEriVg/N2ybVtXS5NyEbN1+HkmbM/Cr6xn/z3//eJnjMQIRmC4mK1RU6m7lLmLF903kDqpQ0iLWi9l1O1dZJFJ2lUXZrS91EJfjohpyeClbl/Lq9Tm79cEyhriKX5G/KaR1TlHsgDAFPP3NU/zV/+2vkI4J6TbhT/73f1KGLe7c0KZs65533hudYm4SsE6qbaViX0gidgsnMofDDjtRuyUve230hjzu9kFfU08E+0MHqVzTljvcCNqRHN/qX6e9Jikcst0vf3OyLoJUvUy9oNr0fUH9fDDzy4Z67nWYd/dZQgghhBBCCHl7oIwlhBBCCCHkORgNebs1/K04Ib/u69oEbE/ClrJ2fti2H1rUynFVyCaEEAGk5ZiwtiOJWBFZvm0tcf2csLLt1+U+1Hlj9fXYfo/Eam+I4h6npOztnPE//Popro8JCAGf3MyI+4gcUNOwHXnSDIl7rlTp+XqdCFwvfGlWhJne1qJL6upXqOs+YbgmXFOVX9LmukxKKmpJG1ASsSJU/aPppay7PxFF0MYpVkG8lMv5PvrXH+H47Ig8Z8RdxA//8Q9x9f7VmTdXThW66926YVDXrPbla3POM56Bbvqyd8O8kHUp6EHj7bym/lnBedJ2OFdrp+5WmZ+ntrleEZ7rBxXa50dL0VM/snAC1dwHVcf0tXdO36y7l168jgStEa4ieEUMR2D/zh5xH3H84rjO70wIIYQQQgh5c6GMJYQQQggh5I5IgrPKxZH8a9OvveGLtYAczRmr8YnZeo42HVvFbW7aSwkIIa31tLyIUaW81Dn1EMNSt6ZerZRtX614rXPXlv6PrvuU8B7VrQQjhG8WGfvJTULYLQngXURwArY3N2xZ3DHa1hGxRvw5+bomEbWk1ft8unG5lz2ZtspUBOSYTcrR1ItLG9FJWp3aVf1Yh0N25c116mvNQMwROeZy3mUuzU/++hN8/G8+xvxsxnQx4dt/79u4eu/q+RKEp5KVX6YNL2tPtNedzxawIv6kEUSTBj0lKYdDFLs2vcAc1R8Oj3yXurLpJemp/ssxcr0iOkW4or0P/vrNUMb+fkK16c8FV+6vSx8bbDtyjE7GymfK7sEO8TLieH2U38IQQgghhBBC3mAoYwkhhBBCCHkOrFi0CVYtV/0xy9oqTVsrUOu2HscavJp+FfFq19vjtAitw2fmHBBjMQUp5SUZWyRt0CKiEaataO3L11bG9tvyfdai2+736+cMT/w//Oop/ubzWyAGzACehoB4Ec28sHqOx0bEuvVTycmusPX9zFXGaekpgklkpxafa+LQJ1tlCSVRc32vM0r6dZVXy2tN3eaNNkXQJjtXp55bM+cMJKx1csp1rtpchytOqEukZWjjJTEo9+1f/zf/Gg+/+xB//F/9MS4eXPRu7gthlKb1711XvG4lZk9NGK3+/Bspe47g7JQZQas+knrDEp8zL2tvt0+8bgrfXrmWwJ10apPm9j8YWFjnQu70xd+HNTWsrz+oNp2c1XMzd9PG7kca/j1Y23Qvk6qNOP2MEEIIIYQQQt4YKGMJIYQQQgi5IyIWy7p8eR+cIMzrl+16eOCyXSRnX7j2ykcStn9MXdeC2AtZa0FKSlauI6zrw2CfEavF6qVUt/vyVfffzgdrl36u2DNMq6Fc25wyDnNRJTkDP318wL/8+BniPq6JzDhFK2GDE29+u3Oq3pympszLKF2mt33acPx2jS65vnplGXXoYbW/Ebcyz2znleGSsrqvSbW7rIewSNfshitOGWGy9zUilnOkjF//q1/jya+e4Hf/ye+W9ygAcRfLPL4vmuCWbt9Z89ieqL957p4g3RKyp56FzdONpe7mEMXuOdXDIjeSU/2xnyVsXb1NUexlbu8c0s9eWy61OkroDqXzqE/BvT/Shu6X/kyR+WRPtU0IIYQQQgh5I6CMJYQQQggh5I7UFGhPJlrLJmLUL21bQE1+Bvghhj11SGKRBrXtst8nb0X+esNX+1yHI/bL/vVL21aeajnbE7Y92Zo793B8zt49X67aXVfAv/v0Bv/vH3+OsAuI+4hPbxN2V7tVAoa4XGOsKbdeGtYk2LRsWxd9+TaUclml6RaxpLvuhwZeBehofTlmbXJZ1wnYtWwR5b5Mi9i1LfdaBRyKMG2SsjGUJOwiVKVODItkXdKzOZZ9Uj/HjDQl5LmWIQC3T27x3/9f/nuEGJAOCd/5i+/gT/53f9K/p6cYSPPee3Uqsbgl5+88fHXn+HPmkv1S+89Z14eeGFa4kcQdYSoCF0B7fVI/WJl59q3UP6JQf1u9fq/DdufaL91GI02hUrXy+RBQy/Q9CG3f9TDFRsCGXD93CCGEEEIIIW88lLGEEEIIIYQ8J60sFYkq+2tZkY5BHWslqG23LPtOyJ6zn4LFKnTlmJrGFTkr/dlOZem+eB+zJVqtZO3J2eEZu+ffPkYo1zPnjC9uEz56esTfPr5F3E91OOKpJGK1WNFDE2uJorfLamj3u/Jur7yEUmLKdX1NJK7bQQlXte7F17r063DbJ17DZGxa+haVfJWhXnVSFksbUGW9tv391vUDEFNEnjM++/efIc0J6Tbh3vv3cP3r6/WWXb17hd29u/8n7ZcVphsNP/9xWW+en5bsDlXcOfacYY57fbnr+c9uS/1W5Owhk3vi+Jz+9uqEE/s7+0b3a5i+7cndoObn1uKZEEIIIYQQ8kZDGUsIIYQQQsid0EPwStIwqO2lVq4CU156W8/t6uVtEX1aluol1nU9LLEvtyK4XR8ldrWsPXkn1nN4ESv7+/vGidjstts2KyODEvCr6yP+r//2U1wfE/YPL8owxMuwxOvcsAh1jlIvXiVl11mW3Va+niv3fAIWnXvlk65aUq5JV3fMKjuX/U0iFihpU9VuNyGbcjk21bL1FUvfclrSszGvsniVSzmXemnZn2Dmk41xScguyVi9DFNAnjNSLPPIhli2wxQQ54g5zvjVv/oV/tv/83+L+XZGOiT8/f/j38cP/tEP1O2s8+puviV3SVze4ZgvJXl7QjbY93st9+Jv6EKfb17YcfU7DKl7ZttnD708ELHrfLi+up7jNdcfXJikrDrev3frXMhL39b3Q/dbtoN7Ae3z4uuETh1CCCGEEELIGwtlLCGEEEIIIXfASthxnbK0VsgO71uHF/b2aDsZ68/Tpmtru75tfx6RaFiSsoCI2Pba+rakFbJWeJw/FHHvZp6yOSqdGoBjyvjFkwP+w/UBnx0Sjijzk4YYzLywZqma0dt+uOaukNU96Y7nfKL7wCqSuiJvlASEWl+Wa+q0d8wiUwGUuVx1eVZlS7s5Lm3JHLCqr5KMDWkRVSJpoY6JaJfSp7S0r69X+7HlGkIKdRtlvth0THj6ydMiY28TPv13n+Le+/fwjd/5Bvb3921fT9iuc+TpnUT768BdBKx+1s6qfrf5T7/sfKl3SQGrnU0dL1pX+er3y99caOuYU6jPDj3EcdOP1+SRIYQQQgghhHx5KGMJIYQQQgi5I1rIpmXOTJ2QLXWq6JR9IjllyGCpl3UaEuPEq7dx8qW/Pq6cF2ZI5NbiCdXMZEmPuSSqlbq+X3VffzjhVsKeW3ZqqZHrfXJI+L//+HN8ejsj7wKmGDeHJPbDE4cQVuE6lLGALe8wEo0+2aqTryaxl/ttbCVjzfpWMlYSrToZq1OuyHXe1+jmhRVxu9wPZKxzzPokYjchO5cUbJxjLV/q5HmZR1a1o+eVDTEg7JZhpqeAtE/4n/+b/xn/y//jf8F/8n/6T/CtP/nW5nvxomTpcEjqr0OsDUTq1y1B73qOZu7WM4SwHO+Xm/X1nK3qI3OUJu5J2ObHDK6v69+rvjZVwSR9YZ+/9fNGZO6pX9sQQgghhBBC3hgoYwkhhBBCCLkjephiSbmWctmGEbP1OLs+SrDaoYLHX9j7BK0fctjVRp03Vo6rfa9DFMs+fU3j+9C/vuy2dR/aun3h2qvrCfj3n9/gk2czEAOujwlPU8YMtMMS9ySsT7uGYCWsFrCubik6Q6YomdPU76VYZV3wHn2QjF2PzZ02FzkKoJ+M1cfo84p4jWp7WZf0bE6LKJM0rTo2xyJyEWBStN3z6etehikOISDlVO59Cv9/9v4l9pYlu+/8VuTe//O4D95ikeJDZBWLJGTBgtSSjG43LFktd8ttoDU30IDhQU/sqQf2zBMPPOj2yJr1yPDABgy020DbgNW2G24YoiXZkommRFIUyaJYrFuPW3Uf5/V/7Z0RHmRG5IoVK3Ln/p+z7+Pc70f4I3dmRkZG5t6X6K7fWREyyFBdF++jHO+P8qPf/pHcPbuTX/rrvyRXT64uH4x6/1mu/6f6IA+q/HyNtpf0JsfhrpPrTOnsnbNh6XywGw5X9/KqW9W2VMLaZvY4GSwAAADwtUMYCwAAAJxpqXat14vNgacOEZc2ulJWypqstr2IXTO23FXq9E1ErzurEzi99qtWT0Ws7yfleH2/0+/Btj9VIds73gtiW1UaKv/4B6/kd35yI8OjqQo27IIMV+sVsSVYHeqKtZNBrP3cjMw5rr4GrzLWVtB515cqvKqCut7Pa6Xm6YJ1mzyFsa5gzftJ1JTDQcoar6VSVlXQlgrHHMzqZ9H7+bly8Kv6rcYVUj2Na34Fg8ggg6SUpm2u6t2lZf3f3RS2x2OU3/1PfleefvOp/J3/5d+R/S/tp+/0nO/oq+KLz1S7Pq9qWwnL770KSXtB7EPDbOcfR+jqW1sR24S7eWuP6/8T/hX+KQIAAAA4D2EsAAAAcCZdGTuFS940xXVYWv+1Uxrn/2V+CXbFXU/Wts/hra6GXSpklymL1ytiRfWV+ziVFCxBRL8CuB/QtuvK+kHs8nkZr4jIdz+7l3/1/E4+uhslXA0SdsPUZK6otGHsdK0JXYclfK0CWFsxaz93rK37WtYw7V3ey4aSCo/y95fqfW9btVn5a9bGTOoaUe1sf/a+al3Ysn6t1Mfy2LuVsbMQg8RdnMLcnYgEkSENS0icKxtzQByTjIdR/vD/+ody9fRK4n2Ub/z6N+Q7f/s7by7wav8zfLO+xEGrdcng9ey+ncpzb0pi97vrhbg2aM3H3DnSV8alPzsBbRiCXH3jSuJtlMOLw1fqNwAAAADgPISxAAAAwBlyWBpjWxlbT1O8nFtC2aXUqq6QXYJYHah60/zmqtbcJh/PgawNZ/M96nVq832X0NVfp/b8d6OvPadKdksQu/QQ5I+f3cl/+WcvZNgPpRI2hKliUkRKGFsFq/PnEsIO/TVimzVj80hOrPOYK1Sr8YZUgqLVyswcNJpj+Tq9Lqze10FpFajmtqY6tvSbTP82vM3H5996rnbN9yvr0aa5ujYsFbprQbGIlGpXu47mfFPJFctRYtnKOFXMxhBlCNO8y2lIspOdxEOUP/jP/kDiIcr9i3v59X/71+XX/tavieycd741WD03gH3Tge0lwrmvYOD3JsLfUlXb6adMy67Ol+mFO7feup5t1Z/+Rxk7kUffeCTj7SjHl0c/7AUAAADwViCMBQAAAM60BLEitkrWhrN6muI6hBWZwsdggsh6Otl+aVeuYl0qbPXUw/ORqr2uLrXVsF7wuZY7elMUt8e3h7D2Wj+IDfKnz+/ln350LT+8PshwNciwG5apa/P6sKK2qjpWb7vrw76Jqtiwcu6E0rZkpksYpKciXg1kc/jaqXRtwln1E8vrwOrq0+o6FcLqMVehlbqfnkJZP1f+HnIoK7KEVWV64rBsSzg7B7F5Dc583zhE2aXd9HtIIp/+yafyW//hb8m3/sa35Dv/9nc2v//N3mTw2sngNgWQr5Pfnbo2bWjzRelUtW4+n5vpKtj8m/R+33Obqvo2+G2acajzJeDV/82d+AceAAAAAL76CGMBAACAM/lBq10/VppjOfTU17Z95+PJ/I/0bTBrpzPW0xF7//u+nrZ4ua7tRz+nnzi1oUM/hM1ja8+dDmLrY2NK8tHNUX77J9cSdlMQG3ZzgNpZI7YEsyqAbULYlWrYpjJ2SVfWXkfd1rbv0f3MVXwhLWGwpLnKNh+zPwmdwefPUe174wyqTZyP5SmH1dTD3WrXQY1LlurYJGn6TuJUvWqnLZY4XzMsLybFNH1XKkzWIbHIsi2f53NDmNaWTUOSXdzJ9cfX8od//w/lyTeeyLf+xrdKcF8qE/NYej/vh+ZjbzKktf2Wj9sT0ktMJ3zptWE3y/94wBnPOdW0Xlv3eud7Lf8QwWtz4neg/28RAAAAgLcbYSwAAABwhjxF8fSXq2RFYhQZhqViNsYplRmGOrRdwlivIrauWl3CSpXGNZWy9nOu7lr2varaxakw4IzgZ0MAu3zeEsKGsv3R9UH+b3/2Qp7dz2vEDqH8rVW/NpWw9pz42+muoXo93QrXXuXsmRWyqU7cqtCwVOalHMQ7FbFOJWyu9MvtbFVsSFOYVFVjx7kvNT1xrpjNn2OI1bVDGOoq2yjLTzMu46l+kjoIzlWJuT9Zql8lTdMTpzjfZ0xLZexcWZuGeTvO72U3fcff+39/Tz7+lx/LX/73/7J86298q/fi2/+s8qlU/6OIXpi7KeT17vsGzlXrB2+4pqr8tNc9MGddDT7f0D222hLEnjX1sfdd2mP599z7Bw/5z7bVxwEAAAC8tQhjAQAAgDPVUxS3lbGmdal01ZWwXjiZQ9l6jdk6JdJTEZd1Dud2S6WrXTd2Oa+rZqfPSzqmx7S1YMt/3n4bHQStBbEpibw6jBLTFNJ9fDfKv3p+L2OYg7ahDVh1qFeOq3ZeRawbwurKWBPIlmMr3Gq3DZl3U0mbs8igKkuDCghNRWy1HuUcyJapUXUgK+22un7ohJC50lX/9kKq31FQ91Tj0cf0+07DtN5s/lxC5Vw1m5Znye+pBM1q7V8RmfoRKVMVp0dJrj++lhcfvpBf/W/9qvzcX/w5efIzT2T3aFc/71bnVL32/h2EPnfq2oe4xLVfkkJYa7V6Na2064WmW+5xRnjaHZ/6jVdjBgAAAPDWIowFAAAAzjJVxY5jMhWyU2VsjNNUwHGu2IsxzMdzlex0bhjyNUsIuoSyOoCtt1P/OnHwPrf7IeiQdD0hqteQtdfUJ7wphb3jOYQ9FcBmt8ck/+nvfyof3Rxl/2QvRxFJ+yBDmKth1dTDVQg7V8oOYaiC2aYqVqTZlpDQfi7vpZ+aNKGtc/1mqhJWxKmGndLNpSJWVb3mdquVsL3jea3YKKXqNZ9vqmSdithSMRvnoCnKMt3w/E6an7WqjC3TJOdK2PIfxvJOyzYu1bIibYWsnr562A3ye//H35M/+vt/JH/zf/Y35Rf/yi9u+g66/5l0/jNzw91zg0wVrHt9rFa1evdNzrGH0IH4A9pvrUL12vXehbYWfPaUa7x2zrGtUxd7/3ij+u85rxub6n8QAgAAAODtRRgLAAAAnClGXR2bPy+Vr+10vUtIllId6uVjujK1XsPVk6r2uiK2roD115HVVY/evfyAdWOY0glh7bnuZxH59OYon92N8tPbo3xyN8puroYddkMVxJYQL6jqSDtd8aCqXx8wPXEvUG2CWRPk1qf84+WBy8elUk6vjVqmKA4qhFX96srZXuVrqUyN/fN5vVYdjpZ7zVWxZTzmnU358HyPYQ50TfWsrqItfehq2WDOmWskyLRG7fze0jCdO1khm5LcPb+Tu2d38skffyJX71zJB9/6QHaPd+73Ue6pv6O1sOycitk1J4JY/5LUDT3T0mH3Xg+yobLXHceXyWt+X2dNc3xqDASxAAAAwFuPMBYAAAA4Q0oi4+hXxub9tjI2V8OGEuDmdkuoqkPZpQp2GLxyQjHHxBz39vUxe9yee7hk0li/+rU3lXGQmJL83//kufzBJ3cyXg2yf7qXYT9MQeE85bAOY/N2GIZlK9JOYyxmSmNpt/aztz+Nsg4hbdi6Gr6uaALYks2aENZbN1ZXkaY5LNKVsFEFsrYiVm2rdV/ne+uq2FI1O/+/HBxXa8jGaU3XXB1b/UztVlfEhrZtVSEb6r8hzOvI2grZtFTIyjD9BQkSj1H+yX/8T+TpN57Kv/sf/bvywbc/KP8Z2WmZyxjtf26y0lakTD17dlX0hiD2ZFVs7x3bfu0xW/Vq93V7206PPSV/XN54vXue0As/14LRpir1oSGq/l1uaR78+1T/+CCpqYoBAAAAvNUIYwEAAIAzLSFskqUqdlkz1q8ODarNsqbrdF5Xpi7TFOs2XiC7rC0rTXtbFav70Mfqqtp87LwgyQaw+Zna/dSc059//OogP72eqmHvRWQ3mCmJB1P1GkJTEVuO2+mJxVTHitTHVXjmBrC9kNZWiJYGDwjkggpYc58qpNNru5Y25pzup6p8HdbXjLV9ikhZO9YGzraKtlkPNlfR5krWXGFrA2x1rQxzkGrOlX1VEWtD2aZCdrdsQwoypEHSfmpzvD7K3Ys7+fD/86G8+skr+aW/+kuyuzIVsqbS1Zt+2A1knWs38YLYTpvNx8/t51x2zFv6PeMZmnfxkHF/gTmn938TG1TGAgAAAF8bhLEAAADAGVJKMo5RjscoMe6qitgcyuZjIktF7FIZa0PbNFfKTv2HMFXSTveazrfleZ2SvSYJWsoPlwC2Vymb778xSKjeydrxNoC1+/nzP/3hK/mHH76S4clOdo93S0XsLqyGsdU2V8qqNWNzoNebonh+Q21lq3pF3jU2pCyXnBlmazkwlfzqQnu8fNaVifbz/DOpKmNDWwlb2ue25tiUh6rjuaIvV8vKcu9SMetVcK5s9Xq31TM4FZ7TjaT6DgYZlqmag0zhq6o4LNWqQxBJIuNxlH/09/6RfPM3vin/3v/635PdB7slwM5TK+cAdn7mMkY9zJVAtppy2v531uSMp4NHr2LWHuuFufq34v1uVtenXem3N9at50t1tW5r/qoxJKnb9u73OsFwxxuZltjp73X+bwUAAACArw7CWAAAAOAMd3dR/uiPXsjP/dxj+c3f/Jk5hJUSqMYoJfis15QNZptDyOBUxubjXvi6tMvHchXs8nm63q4dO51fwk/d1p57iLoC1x6r99377ILI1SBhN0zVjXpqYlX12gSxTiVsaeNUxk7PWm/tZxET0HYqYatrvDBXHXfZ96PWf81fvZ7WdLqkrdQsYWIemwrf1ipjJUipYk1xDodi3XUaUlmHNffpBdNuJWuukDVt8n5TIZvb5Mpb/fxz5Wv56Zd/tFBXxubjYZjWGY4pTmsOzxWyIiLDfpDb57fye//p78k3f+Ob8mv/1q8t1+t7eN+X/fcOJ77fs0I8L4h1wu0mnLTnTVBuP7vTFs/XnFuVevL57Bi2hKpbPPDa6h88bO3nnHv12uZ/IBHq6YnPrqAHAAAA8JVDGAsAAACc4fZ2lN/93U/lV3/1XfnOd96T3S44UxaL2dogNpTQNoevMQaps8BlumIdyNYBqh/I5uttajSFrV7wmpwg1gSTq0FtfWK9CrbXNkjYDbJ7tJOwn4PWXkWsUw3rBbPTuJ0Q1lS0BlHnjN46s15FbXXNVrbSUvenv0Kby+eKzVydqY8n1XdvX1cfzkGtDPOxeXriEFVYm8/loHZQ/XpbPU1xPqbHkXPV/MxRynTDpZ2+r6qSzGvAlleYf9O7UL2bclymIDZKlCFOFdO7xzu5e34n/+Q//ify7b/xbfn23/x2qZwtY5N6PCnU1bKljQ7PX8epILbX1laOdrYnq2tPjU311wuDdVV3SnXla1MJa6/5MnnTQ5r/70wK5r2p/xYAAAAAvL0IYwEAAIAHmKYrTtX6sfkvhFCmHc7TFecpimOc0qJhkBKq6umKUwoyDGk+3iZwdeAq6lz+LCv7+pg93jzh1KKEZt476FxZHU8mjG3bfu/lQX7vszv5s+vjFMAO7bTDOpQdhqEKYSWoaYmHINWUxF4Ia6o6vWC2atO5zrYXafvbZA63SojrfY1OEOtuRZbq2l4oK+Z4Dk7NtgSNOpzdEMqmmOoq1vyMaQku9Vq0KaQShOYplSVM4ayI1Pc1IWKQsISu+b+NeQnYvHbsIFN17BAGSTFN26vp/vsne3n2Z8/kt/5XvyW/8t/8FfmN/+5vLNMR2+9FTEAbzFj0f5tnfPe9493pgzvH3fNb7peD7nyt3ddb9R9ws16sDvlP3de2s8/7ut5kmPrAvuy7s9701McAAAAAvrwIYwEAAIAHmKpZk6qKFTMt8RKu+hWyUoWwOZQNwQ9el6mPp/O9CtmprVclK6WNXj92yplCFZLqws4t0xb7bU6HsElEYkryo5uj/H9/cjsFsTqMNRWxJZR11ojN1ZLVdMKnpiheC2TV/fQ1TSCrz5UD+uN6KmenIC7Xq3Aq9+Ht28/VsTCvFWvOVWvHSmgqYr1nFJF6uuLcNrYBtQxTIGtD6zCEqQI2LBXASaYgNkV1bJh+HO7+oAck9fTL+R3OFbUlkE5Swt5hN1fI7qeOdo928uonr+R3/5PflbAL8p2//R0ZdkP57Zkvq/13Dfq/FfXu3eDbO+5ZCSa9itTulMWi+vHC3FNj6QSrq1W40h/7puB5pc2XghMib6b/T/XWsB4AAADAW4EwFgAAAHiAlETGMVV/w5Bkt5sCzlwRO1XDSqmI1evJxpgrZkVE0jx1cW6XK2QneVrjaTrjpKY1NmWRTerThrIpLVMiLwFw/Wx1vuglB6pCzgtsnPDVXvOD66P8gx9dy6eHtExNbP5EpJ2W2FTONhW0KoQtYa04Yay3XqwNYE0wuWWa4tLPlsSl9zWFzufe1v4M8jE7TbANk4K0lbGirtXXnDtdsUyBaJQ4BaJzlW01FXGSUkmbA9wqILZjt6JppwKvZirjOfQewlCtkytB5Cpeyff/0ffl7/9P/r78pf/+X5Jf/+/8ernWrsVbrY1r3qUNzJdOnLEb7pTENuQ079gGsXqt2HIubbu2+45zHyv/MqO7zqy+fx6Xnr7YCTbzdNRlWmp723PC0FPPt+U3tvW+vaDW/vdm9wlmAQAAgLceYSwAAADwIMlZKzb/LZWvSQUM9rheW3apTl2qWm21ag5Jc4C6VL/20jtvP1873dOuBetPS7whSWqu0cfqEDYmkbsxyad3o/zR84PEQUo1oq6InQa0/HXXhtXnzfTEOkx1w1f12b22t1asTqu94HVjwOKFdim0gZ6tgtXnm6rYuY+qGnZeW7apkp0rYctzJFWxKss0qvp49cx5vCa0zt9Jnua3qoCd9/U1ZTrgfA89JjHHzW9CgpRqXD3tsZ7eWAf7kmSqwJapEntIgwxXg7z88Uv59Lufyrf+5rekVNrm/x7U+8/fU/Mdq2PdUNaxZV3YterXph8vBFzp2w0Rt1xrw10vCBYnqF3tum17alrmTd3bd7n1ujfMTk286R9sAAAAAPjKI4wFAAAAHiBGkcMhym4X5HgcZLebKmPHcUoydrvpf3CfKmalrCFbZXghV8yKDIMOZdN8j2X92Gkt2rZCNqc/U9i2XJ8/T2wplpTjtgo2B7x25t1TbOi6HGv3P70b5f/ypy/k+TGJ7IIMQz09sQ5eJcxBrRfEmn0RFbrZ6th8bH4F1bTEXhhrwsWzpikuJ9ZeWKeNDcVsxr62Xfvcq5BNps38OU9jLEnqith8TlId/ulK1mjuJ+KPQ2RZXzbKNOXwHPDaNmXaYe9VzmvRDrtpTdiwm/oLu+V7GtIwhcZzeJxSKhWycYiyS7vS37AflkBbB7K6QlaW8LH6/u1v/iGJX/PfTRtG2kDRBrFVJaoORnPVaT6WlrZlvdi8n+r9amyqP3faYq+9+W1X13bem7332VMgnzq31l6Ny73vyrO57yMs+yGEfggPAAAA4K1DGAsAAAA8wPEY5fnzg6Qk8ujRTlXISpmaeKo6tWvH1n/5f53P56eANIeD+fOSytkK2Xz99D/uT/v686QOYPMxWwW7THvcBqnn6IWwMSX57G6Uj26nv7skMlwNJVRtqh1zKNv7s5WY+WPwA9i8LZWyedsJY+31bjgrUvXvVrqpEMa2FzHBWr7PHAbm4yW8CapKVe2XSli15qtXBVsqR9XxPAZbtSfJVKXKcq/mfeagLFetqnPlfnZbfqupaVvd01TM6t9HCnWlbT6fj5d287qzEmQKdnOF7BAkpLlCdj9Iukpy8+mNfPonn8p7v/iePHr3kf7PT2zFrEgb0j6Yl/et/YfYCUB7VbReXyerTnvj6jTWx931apv/42Da9f62+Cpkm/YfVwAAAAD4WiCMBQAAAB7g00/v5Ld+68fym7/5M/LX/to3ZTdXeOaK2N1uWpRyGKZSwLyGrK2MnYJDKeu2LmvGikyBab1+7FIZK6VNnrY4B4T9yth8Pge9yzim46HaP9eSsyTnmMjNIcp/9q9eyE/votwPQYbdXBGbq2AHqStiB1MR60xRvLpWbH6fJkDtVsK+5lqx3QpZdZ3/4kybtPK5t83tvGq9IKfDrSD12rEi7Zqxuu/eWrGxPZfD2iENU0WqzNt5P7frrR1bwk5VpdiE3nntWBvOm5C8VMhGWSpkh2EZp4j83v/p9+QP/s9/IH/7f/635Vf/zV+dvlf1Lksgq/rXAWg1tt73vpqxOmGqevbqehtmeud0X/qYbjd/D6U6Vu+LVOu4lnPetMhpaWvH5oau+VK9jqz/Utp9+07M8W6IbP8b8G5rz9tndIJm9zqnTfWPHghkAQAAgK8FwlgAAADgAWIUub+PcjjEee1YmStip2mJvSrYet3YperVXzNWr+uq14e16hB2ai+lr/p/7V8CXx3E6hB12T83JfADWJFpjdgfvTrIJ3ejPD9EuY1Jhv0SvuqKRv3ZBq3l//XWihUVktowzglae2GsDmLPWiv2IcFKqvvUa7hWa8Sqdno90qqqNKlK03msOTis1m4VUwErslTX2rVh9TjnylW9X1Ws6oB6/umValxZnsvdJiljbyph833Lb1ZV56rfQFV5a9qEMAe78z9qyNMl5+NlveJdkPF2lOP1UT765x9J2AX5hb/0C1OFrH4uqQNi/d1X68Wu5ItWd13Y1D+/Nl1xMz3xhv66IWRnTG7/Peq+axW5D5raeeVe3vHN+/qU8w671zpBrPffHQAAAICvB8JYAAAA4DXEmOa1Y6f1Y3e7KdCc1o5dKmKnbV7nVcrnqSp2+RMRFc7ma5fzOehdtssasbmqdlkHVpdK5n1RlbMyt9VhYL72/NDAy2NSSjImkf/y+6/kT57fS3iyl+FqkGE3TMMx1bCrlbB2jVgd1HrVrtLZOmGvPleFsTpg1OGrDkx7Iaw97r3SYM55+0ltq+5SqdosQapqW02fayoJq+fI5+Zq0RDna6K62bC0cfdzeDrIdP0g62vH6j7yqVwZm8Pk+XnKcw51O0lLH2lYnj9XrZbqVXXPMMzTW++mZ5W9SByjhH2YKnYliUSR8TDKb/9vf1sevftI/u7f+7vyc3/h55b/TvJ7zNXsXujqBdo9JwLP1el+O8fcIDat9KXOdfedSlh3WmJ1Tb6uqYr1nj211zXBsXe9GUfF+93pMYpzXj/f1mmizft017zV/w2rz6sV9QAAAADeCoSxAAAAwGtIKck4prk6NpUq2RjTPJ1wHcraqllRFbEx5nA17wcZBnu/5b5LYGvKEZfWzn6uQJT5cx04TPsPDQdSN5BNQ5C4C7If2iDVVriuBa696lmvmrUb0OZALjjnnGmNm1BWn5vPT5sT78053VSoyhKuzg38ilgVqOp1TEslbDAVsOqn0FtHVleh2gpZXd1aVew676aMXfe3ss3fX7lfEndM+vuxVbO6SrdZM1aFvmEIJTTOYW5IaprsuTp2SIPEQ5TxbpTv/j++K5/9yWfya//Wr8n+yX49lF2+2IezIaztr/Pf2HLaa2ACWqkD17VxuGPT91MBqg4mu9MH5/HYkLY63Xn2tbH28tjXWQD7nDFsua/6P9VlrWMAAAAAbz3CWAAAAOA1xChyPEY5HqfK2P1+KCGsDWOn/eXaXOk6Vb6Gqn1eJ3YKaOv7Te2mytq8FZlC1Fxtm0PevDZsDllz+LpUxgbRuWIOgh9SrOUHsdNf2AXZXe2mNWKHpRK2CkR15atqo4/3wtluACv+dMR2XdhmnVgTMrprxqr9hgot6/fhhK+2TQ5D535KpagOX1c+V9dnpgq1tA/TGq22Ajivq9rcx57LwegcapZq2Hn92Wp6ZBWGS1RhlApj8/kSMA9L2FdCWVV9q6tkU5qqelNQlbPqvQeZf1N5DCIyxEGixKm/NK0pm6t9h6thqpD93/y2fPDtD+SX/xu/LPsn+7riWJb3qqdiPhnM119E8714x6vw1DxbdSyZ9ua4rjhtwtmVtWJteLs6bbIem7pHE1Dqezqh7uq7cP8PjvM+1tqI3093SmIbOJt+qmcAAAAAgBlhLAAAAPAaPv30Tn7/95/Jt7/9rvzSL70j4xhlGIYyTfFuN7XLYewSFuZgNodUbWVsXjt2qpCd9ochyZT46K00n5fAVYdC+ryU6YiXz1LOP4Reezb7g2f38uH1UT49xBLE6hC2CVjz2p02aDXXNBWxovoTJ5R1+utVxa6GsCaldqcYXXl9vZBOh1i6jQ1b9Xm7/mtV8do5Zqtq83h1aKrfQRP2qvfRq5Qt70WFss19hjpwliCl/epYcpVwrprNQazpN8W0BNDzd1xCWlnC2DSokHY3BcphHySkIMN++lcQ8Tj9dueHXJ491b+Vct58n2vfu9fWC/J64aA7BbHT78kQ1wscvXF6YacOfVVw695LTGjpnRf/WV2d824g6z1XMuec9vrdVevd6ufvBMOEsgAAAABECGMBAACA1/L8+UGePz/I++9fyc///BMZx2GuaK0rY1MKc1XrUiGbq1VjTCWEXaYzXo7nQHaqcp2C1nw8B6tLSCvl+HTftVDWHvfOb9cswZhEvvviIP/Vp3elKjYHaKemJ24CU+lPXyxiQlETCJawLajPItILY6v+TDirw0fv9a1WzKqvaC2sS0mFmnr6YSeUdStjkwotzTEb1pawUsx0v2kJQqt7hFRd0wsmdTvbv7et3m+qK2ntlMT6u+pNV1wFvEnq9Wb1b0iHs0mWfwywW6YrHnbDVK0b01KJO4+1evbe9+58304D/7BTSdocN4Fhdd6Ep001q7r25Fqxa+MwYbANMMs13nPaULP3qnTYq++z5f9cde6r13YtQevaGKtDqf98hLAAAAAAFMJYAAAA4A04HqMcDlGurqKEEGS/n/7X+Fwhm7dTdayUzzbnyOdzlWycw6Mctub9pdI2t89hbQ4p68A1h7L5vEj+nNRn3b4e05o2q0nyh8/u5Z9/cic/OaYpzOpMT1xVw+ppilf+yrWyhKinKmG7FbLqGh0wdgNYG9Zaa+9KZeVrFbIhhCXsUsFrOb/yuXtsUOvDqjYSpEzLW4WbISzH9b1Ce42ILNMJq+mLS2Vsnk5YTVdcxjQfr6Y2HlS4lac/FlmC0CjVerJ6uuJcEVuF0oOUz2UKZFMhmytfQwoSYpBBBkljkhSSDMdBbj+7lX/wH/0D+XP/9T8nf/V/+Fdld7WrArdqjd/VH8FpvQA2fw9umKrbeAGpaVcFryrg3Dxdca5uVeeqMDW3EbUvZn/uw53uOHXG6ryTsq//pN42Fa3mHdZdtSGrHrd7H/P+3VBX/UOD5n4AAAAA3mqEsQAAAMAbkNeOHccku11dGRvmSsO8/usUnObANZXq2FzBmo/nQFZkmbJ4SrnyVtPH7HlvfwrcvKI3nSJ4gbF7hWnz8e0of/DsXnaPdtN0r6pa0U4zXMI/G9LmPxuEzv9PB6rl/BzQrU1PXP2Z66o+t4SwakybzU1tdaqICh5zBWgOVnOlagql6nT6/pZQsqqI1ZWwyYSgKpAtVbjzGEolrro+j6MEtapatwmYgzR9lrGailj97nNbvd5tUz2snjd/T6WN+X5SSOWepe18TAe+pSJW/15UlaykKag93B7kz/7hn8l4P8q/9j/416p3Xb7DeRy9KadX2bDR9pvfhwkaTwaxyXzWbUz/bkhpj4kZZ2qPdUPT3v8dyWGpnbr4VEi5YVynrmkC1bX30btXpz/9zstvd8uYAAAAALx1CGMBAACAN+B4jHJ7O8rV1U5CENnvg6Q0yG43lQZOoWsON/NCmtPcqXnqYl01O009LPN5KdcOg1Rtl79Q+sltQxVQJbUvIlJXz9rQVVfPniulJDKEaWrifaiqYm3oOgzDUh2rt95UsnMw252mWAe5qvKxqYRdm6ZYpDpmj89vTroZmw5we++mNFX95lArB62qDztNcBWY5uPSft66rcYXkoQ49x+d/r0KWBXI5krYslXhVA5Zy29rSEs7ma7J676KLO3Lu8lVr3l8YRlTCR3nQC/EsPSr+5jfWek7/zeWx5aWc8N+kBhi+ccEaUwloHW/S/U96u/uLN71TqC5FsLa/bWKWP25WwUr9b7+0+u/uhWyUrfR11Thq3ou73j5rMdsjpX3Yt+d10YHrV5A67Rtnl+kfS5xxh7MZwAAAABfO4SxAAAAwBtwfz/Kq1dHefJkJ/t9kHFMEkIq68QulbKhBJ9TtewUiuY1Y0XSvA2ljS4d9KYE9v/X/lR9nu653DtPaTyFskvouoTBDyvXOsQkr45Jbsc0hbAm8KxC1BzkzQFmqYLVx1VQqs+dqogt1+Tr52t7VbV6bVpbZVnG7YWwJ8JXy1bWlvec76mrTuevsKqGFVOtqqtk1TW5r6oitlMhW41vvlc1DlH3Tct7qCplRdq1X0UFl/q+amt/umuVsdW70CGwOZ/70b8j/bupKmRNu+q3OU+RHIZQtuP9KM9/+FyefPBEnn7jaRlD9W7EGdsa5z81d5rbBwSx7nHbl+7T+8++Nz63aScMtWO1bfJ9Nt6/c/MmZHWnBHaC27PvZdr2gt9z+gAAAADw9iKMBQAAAN6ADz+8lh//+Fb+6l/9pvziLw6y30+Lau52QVIKKmzVpYBLpasNQ22FrF4HtlcRW1fH2vZT6uVVx/rrwwbnWF/u43svj/Jf/PhaDmGuiJ2rYiVIU6VaVcN2KmNtcGurYd2KWL2vw2C9FX8/97tkanUA24TAxqlgtgk/TXsdfjb7QZbpceegqVcN6x3bUhkrQcrarXrN2CJXoUazL1IHwWr91nIub/W/G9DVq3NlbFnj1Ya+OXyW5TtKkpZ1ZZNMVbVJlgrWYO6Tg7h5jdlq7dgkIrslXB7iIFFUZew+ycd//LH85//T/1x+4+/8hvwb/+N/o/kO9dqxZ1sJIqtK0HzKhKs22PQqYvV1TQVqas/pfW/d2Oq63mdp+3YrZe0zmmC1vAcTelbrwdp3mZxrTD9epezqOri99yCq71OC6tv77wwAAADAW4UwFgAAAHgDjsck4zjK4RDleIwSY5Jx9NaODWX9WB2MDkMONL0K2SW9spWydbKl0rD58xL0zhWJVU6gr61D4XzOTl+8JiWRQ0ry8pim6YlV2FlVTNpw1VQTVgFpvkZCFXpVfUhY3df3mroL7r4bykr7uQpnTVh7SnmGHALpr2u+j1sVO7dp1onN31OuaFW/l6oC9qFryJpgV4/b3c+Pl9Szmfel146tAtOgnl//Xmwoq6pjq9BanzP9lnE499GhvbfWbAl7B5F4jHL902t59qfP5Ef/1Y/k/V9+X979xXer79V84X1r/12thLDl/dp2a0GsqHamv2o6YtWXnbbYBqNVf/Zzqj830wqb52zONdlqaq/1rjPj8PpyQ1lpQ91Noao3/lQ/f++6lJKMN6Mcb48PnokAAAAAwFcDYSwAAADwBt3djXJzc5Srq0FSWtaOHYYoKU+/mgbZ7WT+XAeeOqDNVbFLdexyrl8d27bzPuspiqegtg5dl8rcM5LG2bAfRHRFrFPlWlXA6spYp5LVTk+sw1p3XdleP/qYtIFuE8Ka49U5zYazHedWxeZjbpVsPqfC2ipUNdMa67VOS9jqBF4hhIdVxs771TquuU1Y2uaK15RSCThFL6GsQul8rQ17yz3yOb2O7DC/k1whq6YcLvfJ7eL0uyvvR+bQdTf/tuJ0bNgtFbIpJEkxyYf/5EP5wT/9gfz1/+Cvy1/59/9KG9zl4W/578cGr+a43rdh6qYQ1uy71ao5gPX2bTA7bzevFavu1exLvUZsFQTr57Fhq7q+el92HHYsnfC3Vwmrj/We022zQRqTXH94LePtuPkaAAAAAF9NhLEAAADAG5KSyGef3UtKIo8f72QYgozjlDBNlbFh3qaqGjbGIMOQ5uBTV8ROFbV6PVm9xuz0v+DrrczXLyFrSjpA1Gmc3hd1zfIsuY8tbsck37s5yo/uohuc6grFZvphWYLVHL6WoFVMX7K01/fR/VbH1datlFR99QLZal+ca53jjWRCVjudbb5/DqDmr7VUwqp7VQFUkHpNWVX9msPKXAmrv/aqQlUFvvmnVFW2yhLq6oDT2y8Vp/qZzPtu3pX6TvQ0xE0Im/d19ax6Fv2fwkPXjtXHc1WsXju2vOOYJI5R4hjr//zU9918V1uthbC2bxvEdrs0vzcVvNqws9nX7e11+t6dILQJU3OIqsNQ/Sym7+oZemNde83mnBvKrrVd61oHyiv3XB0bQSwAAADw1iOMBQAAAN6gDz+8lo8+upWf/dlHst8PcjhESSmvHRslhFyiN5Rq1GXd1iTDvLZl3i4Vqkt1bL9CdvnLYWpeK1aHsnot2Vz5qteO1fdc1GGtlpLIZ/dR/p8f3cq9iAxXQ6mKtaHsqTVhbXhahbJizuk+evfrVMlWfdnPa6Gs1PubNZltfUAHaSWUVRWvuo0NULd8tprpidW2N75c8aqnSW729WU6QNXhb65eTaqK175vVcnqVcbm/suUwmrfhrBNGD9IWTM2xVR+l5KkjE2SNOvJhl19PI/XBolr1dFb9cI9N1Q1x86qiHUC1qoathOu6kpZO61xc9yGr2npo6o2Nf00a9uaQNcLTt31atU7tNMnu4Fxqs+dWjO2eS4vwA3SjJcQFgAAAPj6IIwFAAAA3rCUktzfR7m7G+XRoylV3e+nFGgY8nTC07qxIiLjmOagtf1f53OYOgwiMeaQNpRK21xRu0xTvHwWyWuFSqmwXILaUILgacyirlkCWfVU7tqx9zHJ7z+7l0/uo4zShq26+tELX6tAVZYpiavpicUPWHt99ULZEuiJVGOrzp0bwqo+t6rCu9xtnsJarXeap/PNQY6uOm2C0zm8rSpipW1fbfU6sibg1WOtwuBUv6fcRxOa6neVx5PvFcy9ze8kv4dSpSqmfz2FsV07Vq/1Guo25U+kube9LoU5rE3LFM9hCNMUxrvlHf3wt38o42GU7/yt78g3vvON5T11fhJ2Cur5Q99KCKu/k9Jch6rqXBMummPlmrVpi6UNWasAUoeVpr8qlM3jP/Fs3XfTGbOnNz1xE8r2jqe2jQ1rdZumaliFsLrKHQAAAMDXC2EsAAAA8IalJHJ/P8rd3ShPnuxEJMg4JhGJMgzLFMK6MlZEh7HL/4KfQ9jpfCjXDUP+H/aDc90StNpQNk9HbIPZPG4dzk73XH/Wu2OS3/74Vp6PSfZP9xLmaV1tVaKeVjjvVxWLIvVnUe3UQT2dcRPoqj670xVLu78WxHrVnnkclS15bH6nJsys+lVhag5gc9Cag1A9JXE5J35Am/teq4TN0xz3KmSrPtVzljAzB8FSjz2/P32uel/O957b6umCSwirpx7O348TBJcw1PzpcFdvy5qz85q1pWp2DmSrMDZv5+/uh7/9Q/nh/++H8sG3PpAPvvPB8rvoZG4npy3WwaoX1nYCzCrk84JYqT97lZ9VRaq336uQtYFvavt3Q9ncl+mz98w23K1eW2/N16pR22+1Bq55Xnt/L0jNz9ad8lmkCmQBAAAAfD0RxgIAAABvWIxJvve9V/Lee/fyF//iz0hKU2VsSoMMwzRFscg0ZfEUgEap14tdqlDz9MQiUoLVPKVwPV2xro5tj0/7S5ibg9g6zK3DVz2NcU+SJMN+kCEHV3baYZEq/PQqYdf2beBahWteFW5o7+eFwk1lrNr2QtgqgHVey1qFrFstqYNwFWCKyLIOrOlbrwdb9vU59TlfV46r/vUYvCDW7VNVs5YxhbpNFbDm6/Mz6mmKowlE8+Xz1MFVhaosn0Xq76mqjA3L/aoq2rC0rapzZa56jVJPa2xC1yaM3anj8zvMgVsvbD352zDfidPIDWc3hbBe6GqPdaYttkGsXh/Vnf5Yhay2KrWZRliSOyYvfPXCTttf805V0Nurym0CYXPOTkV8cprirR5yDQAAAICvLMJYAAAA4A1LSeTTT+/l7m6Uu7v3ZL+PMo5JQogyjlP4GeMU2oqIxDglOcOQJMbpvJ6WeDovotd6zQFtjMt+rnLVFbF1Apf/l389FbFOA+rASFfKesYkcohJZJiipir8FGea4Xws38qrjlzLfm2gKyaEzfsizfHpchXEqv3SXlR7Na5eCNsEtqtDV8GdmHA2qTBRVcqGpKo80zIWHSqVqU/n9rkPG5RWQZR9Bj2usFTK5nGVsFUHr8kEock8kwqV8/NWga8JRsszztc2la75O8r3Ve+svDfnO9NBb/l9mXfghbbV71GFtCWQDqm6Jh6iHG+Psnu0q6ddLl/xSurWO+WFuzZo1cc6QWwVkHpBrBdSqv1SMdoJTHNfes1X3acOXXM/p6pP3eczUyY3TDBatfOO22fRXZnQuGqrg1jVf1Uhu0H1ngAAAAC81QhjAQAAgAuJUeTly4OIJNnvB4lxkLxWa644zdMWT4HrNI2xSJAYg+x2UkLTlNJ8bpKPT2vNLvv2T8Tf19vp85RS2WmJe9MUj0nkH/70Vj66i3Kzm6dyNVMUN+HpENpjJlhdXVPW/OV7lX0x+ypksxWxVdWtmGOijs+f6/fkOBXKqqBx2iwhaK8CtmpXuqnXde3tu5Wx7rCc9s60wk3VrXpf1b55H2Ua4BRKSNz0n38vwxK45YrVPHVwDsVsVWzpb65aLeck5QL05nsux2X5nIY5XFNTFnuVsSEFCbvp95risvbuP/s//DP57n/xXfnX/0f/unzw7Q+a97xWGeuGrvPxercNQ6tj0glh875XybqlItbu6+BRB5PO52Z6Yqdtr9K2WzVr7tPczzyztw5sNX5Zphq2x92+9bGY2nOneGEuAAAAgLcaYSwAAABwITEmubk5ym4X5N13owyDyDgOcwWsroxNqgJ2CpxylaxImqteQ2lfqiHnICilqb0u+8tVrTlkFZn6qKthdUBkk4H1dDGmJD+9G+XHd6NcPb0qUwZPV5rKwBy2iQlOV27XraLVQa+o4Db33Rt3DmL1+JwAtrQ1QezWMXuaKYr1q57vVa0dm1TQ6RzPlaESpKpi1fu6WrWEraG9f/4tLesGp6raVj9bDqfs2Kp1W9VPq0ynrIJUO41w9VNMy3uu2un3pJ81hOb5dNhrp08uz5T/UzHfQRUgh+Ue1W/OTIGdg/Tn33su1x9dy+H60H7H+Tew1VoIK8v7rNp2jolIG0Z67U3/3r47ZbDuS98vSTMOt2/7zL1rVsbsVph6/Tl9ekFv77lKcNu5VxWw6t+2qPP58zFJPEQCWQAAAOBrgjAWAAAAuJDDIcp3v/tSPvjgkTx9updx3JWgK6VpnuHdbirNy1WvuUJ2qoyd1pJNSYdkU8iag9Wlcla6lbH1mrP1ubo61v/s7cckMuwH2UWZKgVz1auqftWhla167a4fmwNWke71verZXPUYJJStrZDN/VbhbG+KYn0uX1c+huZYj50KuASX6li5T6rPP7QyVn8+WRkbTGWs095OVVzGlvedd1dVrop5/3k7f2e5gjW3tWu65vuUiui4tPWqZ8t2UO9Zfe/N+rWqXUihBMO66jZvh90gMcV6zdi9SNhP9/Wmql2rjG2m020b1O10c7surA1F9Tmv4nP+fE5FbAklnUpWW3la9mNarnH6a8Jbc8xrV013rP66Vazm2Zr7mPar/cU0/Qbzc87/UKb6Lp1ANvd3/eG1HF4cpkAWAAAAwFuPMBYAAAC4kJRE7u+j3Nwc5fnze4nxSh49GmQYpkrWqZo1qSA2lSmLc/XsYjo25Qhh3uo1ZnXJX12eNa0rWx9fQt0ctNqwyKYIJpybL8zhqw43lytUVaHqYq16Vbf11n+1VYo6FC37wbl37lZPU9zcPrRtzeOfE8K6zycyBXvSqVbN3ee1VvMUxvNXW6po56+zqmLV/c7jT5KWtWedsZRKWmdt17p5XX0qSZY1Y9W11fhVgNpUB+txqGev1sDV7yhIUwXchF3BPI/9TyFnp3m92tSG1VUlrjOltfs7zPfUgbp5z1umIe6dXw1hdTt7zAllq7BWfbbXVPtmHO50ybrqU9qxNZ+N0rdZF1YHx1VbO1Z7X73fubYE0fadiDTHq/apM7ZT3+cyCImHKPGeIBYAAAD4uiCMBQAAAC7s5cuj/PN//pn88i8/lSdPPpgrXadzOYCdwtRhDmin/bxmbK6MzevILpWxoUxFvFTGpvm4VH8i/c95X2/tZy2EaZpiGaRUxTYVqDowVdWvVXBrzlf3kNBtt1oZa67RYZq7L1IHbrISwvbCxHy+owm99DUmhC3txbTJoZ6aUji3tUFiFciKX+ma+7Th68nK2Hwf9c6q/dw+qP62VsjKEpTq6tbcpvSpjuV1ZstYgqqI1aFtqO9T7avK2rL2bJKlWjZXluu1Y3dBwri8jyChnPeC0vwuPJuC2mTaeYGqDRa9yti87RzrVsSK2XfWjF2tjO2037zV4071Z/23VhHrtVsbX3N9VO2j85xr9PcFAAAA4GuHMBYAAAD4HIxjksMhyt3dKNOasEF2u1DOpSQliF3WhtU9LNWyS8XoUhE7HRfJ683mdWSnkHYKbUVkDnHzZx086mPT/ZbPy3kRkZ8eojw/Jrmbp4+dh6dGaqYbzufDci63q58wP5cKTfW+nmpYTAhrVPdQwasXqroBofrsBrEbQljbv1epV12ezP1yCKa+omW94KVtFaTOlaO6XalMTeUidxy6qrSqQLX95efZsGasnSq5ep657xKKJhXehjnYDEuf3rHq+fJnXRlr/srzzUGv3u99994/NAhhCV/zsRij/Pif/VjuXtzJL/zlX5D94/r/d3s1iOucakI+Heql+ngviG2Om8/dCtn8l/vpTS3shJnV+ql63KdCS+dZTz63CUNTSk27akpj27/e5ufR18/7thLWnWK5N/4txwEAAAC8tQhjAQAAgM/J4RDl5cuDqmIV2e8HCWEKZpcK2WkN2ZSmStndLkhKwa2MzX0Nw9LnMgXxUiErspy3VbBtVewS2NbHJ7//8ijfvR1leLSbKgQ70wiX0CqUeNavUpS6fXcrTgAb6mPeWLzpjpvpjGVp1w1hVUBcOZXH6pC11z6HjPoafT913quEzfvlc+qvBavPlePJr2Bd1ipOZTzVfXMoa95l9Tz5Oq9CVgezOSxVoa3+zmxFrnesPNM8hbL3WyjrxOpAVt8nV+cO9TTJEmSqBp/XsQ1DWAK5ME09+zv/+9+Rd3/hXfl3/hf/juz+3O7ED6P9jfSOu0F+ao/3Qli9X7Vx1n1tgtfO8V4laS+grca9Eux6gWfVr5gx6HflhMe2v96zVFWusW4rUZq23nta+w6bzwAAAAC+NghjAQAAgM/J7e0oP/7xrfz8zyfZ70NZK3YKXoMMg8wB6jAHqkvp6VQ5K3P7aeuFqctfnsJYB7A5iMvtg+h1Y3N4KzIdy33WOUOY8gS1VmwVXlYt69BUh4tV1atHB7E2xNQBrGpfzom5Tt2/urcdn5g2a0HsqQDWPEvFC2Ry/2nZ9ypNp8vnMNRUijahaVLhrJgANqlgVAex8/U6DK4C3dy/qiYtx/OzJvUe9dqxOpAV0z4/oxf86teuzuvvxFbcVr8Zdbyq/NXfjw1sq3+MEOrfY54G2QuL5++3qeDcItldP4D1zjVhp7p/N3y1gacOa9Nyj27wqK+RTmWsd0/nz67f2qztaq5vpmx27puvscd6z+K+69yvGk/1XHYsa8x1AAAAAL4+CGMBAACAz8n19SjX1zey2wV55529E8aGucJ1CUPzurEi9VZPIbxUw9YVsjqUne6ztBdZwtrp2JSKVflmCWL1wVRVCFZVp7mpCVLd9WD1NlfOhvrPBmBVAGvuo/upAtmVQFdfp895Ie1qVeu5vD5Se04HmVXAmQNIHYyuTU+s7mED0WpqYqmnB676VcFoFWbmTFVNhVzeZ5J6SmF1ra2UteGrXTPWhsVVMB3Uc+l3ZoLe8n5C5zlzO/Pb8qpsy7q26lz53cxr0J41Ja/9HZhj3nqxIm2YeHKq4uS0cQLTbkWsDV/X7uNVxupwVW+9QFY/m30+E4p213l1QtkqDLV9qXvb8Lipnn1AsPqgkB4AAADAVx5hLAAAAPA5+/TTe7m/j/Irv/KOfPDBIxkGkd3Om654qpDNgey0puxQha8iS/A6VdbaMHaecjXU5/J1a9vp85Jo/eB+lA/vo/xUlrDUVh42a8KqANG9RpZry1aHpCZwLUGYCkfdvr3+dUjrhbPleevnqdrZbnuVvafYQEZ1U1WZigplTfVpVUVqA1kVjOoq2NxfNZ2vHZcOTU1l69RkCWh1WGz3q5BUndNBa6nenZ+vhK96fPqZVJ/6+7TTE5fxm9+Fnpq4hL522uTcVget87TFOtCVQabpjoOaEnoQuX9xL7/zv/sd+cavfUP+wt/9C7K7Om+64qbSssphTZiX2mNNQNurhtXHbAjq7atr1kLZXjWqHv/q9MT2OttelmPNcee5baDqBatr0y57waxEkRTTNH2xxz73PJa7j+/k8Owg4+3YuRAAAADA24gwFgAAAPicvXp1lFevjvIzP3MlT57sZL8Pc+i6VMjmaYpTyqV2WaoqXHUQG2N7bOovzVMQ52mLpzQvt8vnlumKl5BxqbIU+el9lD+8Psr+yV7C3oSQwXx2QtW6eXvMVh2Wdvm0VxVr7627M1WxTUgc6nF0pyF2+n9wCNvrU4VJpWozH1Thq4hUUwl3A1knyCxTC+v757YqzNT9lPuIs1ZsL4Q1z1BNS+y9h/ke+nO13q2aXnkasgpSqxe3fIclIDVVrVVfJnD1fo9VBazU/egqWx3oHm+P8qf/rz+VV3/xlfzmf+83ZdgPcjabx9oq2zNCWNvWhq1TExO4ekFsDl+lvV733VS+OhWu1X2l7aupjhUzFu+V5dDUjsdM4dx8doLgzZWx5jtYlUSOL45y9/HdxgsAAAAAvC0IYwEAAIAvyA9+cC2ffHInv/Eb78t7712JiMh+Dm6mYHaYtyIxTiHtbhdlGESGYVAh6xS4TtsljJ3C2TQHukuF7DRtcSjt8jmRvF+3KYJMwdKgAlMdis5tmurYqot2v5qe2KlQLPfIIZgNaL02Osy1YZsXvkp9vlcRe1YI6wXQms6IggmM9BiSVNP9rq4VqytZdaiqnksHs9U6suoaXY1bBaM5WE3L+7ahrIgKjPV9dQVqfj8mhNWVq2H+betxlvdiwmpdXWuD9KoPPTWySPX7seFsL8wNg3rfJpCVJNP03bsgMjhhoPoduAG1F+yZ4HI1gLWhqz7nhbAPmaY4zqFsnNuorT6vr2v6sIGrE8D2KlW9Y6vTFOdj0amAjW3I6lbGxvl5kyxb8xxd9vsAAAAA8LVDGAsAAAB8Qa6vR7m9jXJ7O8qjR4NcXQ0iEmW3y8GoLt2S+ZjIkmLVx0IJmKRUxooEiTGHrbn6dWk7hbn6Hrn6Mge5+h51CFsFhsulTTg6j041M0GpFsx5c21pc6JvPY5eH3rrVtnaUK8ZrNOuObV6cpKWdjlwtOGOrnQt16Zlq9eKrcac6rDVu3czJt2vOEGsbtfr79T19n55vPo57HeRzNaGsOqa8tvSAW9atvrdVD8ZHcBWt68rZO1+7k/Ccj+9dq7WrRKuG9VtbR9OtedqJWzveDL30PdJ9bFTFbHNPey14lzr/dnnVQGtPbY23XFzzvbnPUsv0M1NnCmfNyGHBQAAAL7WCGMBAACAL1BKST777E4Oh2kNwat5fcndLkiM03a/TxLjIMMQVIXsFKJOa80mGYYwn58+h5Akxjw1sd5K+SySP4tMYa4OgOuq2LkYc6r4y2Ho1KwKPWW5Wl2rrnHC11JxaKttzdZeX003rCscRcQGbFXoqkK8ckxd04TEXhC7NYDttfOCTJkDPXVMV3ratWPdClkdfKp2VfWr1OvINsdVYKmfqZqmOAdZob+vg0l9TlenlurdoO4R1Jjz1Mz58/y87rtQ330JWdVfNQ5V0SoiTUWsBCnnQwiSBtXfMH9/uUJ8CFO1pP6edtKtjF3lNPWCyPxOdJBog9teQNqEqirs3FIZe3ZFrA1nk9PvyrY5FvuVsN76r9Wx2LlHTM21+l65Mlb/2e+qmlI5h8/6Ozj3twAAAADgrUEYCwAAAHzBbm9HCSHIe+/lQHaaongYoogMVeXqUqGaA8pUjrXnpUxhnFJeQ9Zel9enXapmp+vzvsghidzOf9O5OjCcPoZSLditVF0Olm2+xgt0u3TA5lzkrTfbHUvT9YkgdksIu+U5chubzZjjTaVoMsekDUrL5xw+OvlPFYbaoNbp6+T4vf2km7d96TFMl5pQVrfVAXGSeusF/OWVLSdL6KunaFZBdglx9T1Dfc/8+y7vSk13XALuuY/xbpTnf/Zcnnzjibzzc+/479Hhfmdp5Xyqj7nTE5vjTTibz3v7+XoT/q712Yw1OePuPX+v+jSZZzvVl7lWj6GZ7lj3aYPT5PzlZ9tw/5SSxGOU8XaUNBLGAgAAAF9HhLEAAADAFyglkU8+uZf9/ihXV0GePp3+P9GvrgZJaVeqYvf7JOMYZL+vK2SnrczVsGGukF3WjxXJlbJSpivWVbIiqYS2IqKmOs77Ij86Jvln91HS1SDyaOgHp7oqVVerVk1yv2p92PmavN+rjtVhmHfPqtpVQjtOe049p72+Ombv5TxPL4A9GQCb0zZ41WPUYaQNJ5vpd3PImANPqathpw7NOHK4KUsgqqdPLhWwqu8SYDr7+p3qClldoVoFqkndV1WsVhWzaipg/f3Y/dxnteZrfk+hHotuV+2rfkqFrGpXPs+VsUGmCtqQpvf0/MPn8g/+w38gv/pv/qr8tf/gry2/tR4bYjrHdViqz9lpi7vTFHvBrJ2yN4eRneCy9OFUxDb38I7N1zb3V8eac7avPMZcoarXsc37uqJ1a2VsrnqNUsZkq2ZPVrc6p+9+eievPnxFGAsAAAB8TRHGAgAAAF+wGEXGMcmrV0eJUeTJk53EOAWsi0F2O5krVpOIDFLylBLaLa1t7mMrafPfdE6vN2tDWZFjSnIvIkMQ2an00F3ztWNLhawO07rrxZbnWQlUVd9ewOrdf8MDOIf6QezJd9PJZNbWjrUVo2uBrNd/CSBTXdlZpjTuXGcGWIW8JYQVqde0dca71l/53HtmEzI35/S9vD7184ewPtbQPl+qG1chbbXGrLpvikkOtwc53h7bEHWN06w7VfHGEFbv62pQW/Xq7tvAVkxYq4NYUfdMUj9LarfutMjeGHv3mcdaPbfZ1+PpVsaasSYxwWsSt12XHW9Mko4EsQAAAMDXFWEsAAAA8CUwjkl+/OM7efr0KLtdkKdPdxLCIxnHJFdXSWJMsttNodkw5KmFdYWsyDAsa8fmdWSnithcNTuFAVPI219Ddtrm/SnsHXbT2pi6etCGjWXKYemHqOVcFQSr4DL4f6VdbuP1uey050N7fnUdWCfY7T1D9z5rbLNUHy9T9+rQUAeS8zVNICuqojVXpCYnFFX3qSpg9TquSZp+87PbcekAtNxbV/nm8ecAODnvfg6wqrBUfVfVlMLJCX/1mrnB3CeovlPdRv/Gcrtq37TRFdtl3Vndf75+CBL2oawdW95N89Wb4LA+We964atuZ4414Wwn4FyrlHUrSSWdXxGbpNtfd2vHZPo5ua/Wl3W3cbnOWxu2BKn6z3m+U98JAAAAgK83wlgAAADgS+RwiPLs2UEOhyi73SCPH+9UBewgIkl2OxGROIeqwxwkhPlPylqveTsMMlfUhup4WyFbf87bJPpE3pwIW08c18GtOnhalamuB7BNYBy2jW2tXWlrT5+45iRblepUoJb7mHC1WxWq+5K6vyagde5XBb2y9KHbVqGrqEBUBandMDfU/ZWAU4el9rnM1q71Wq3jKqGZpri8Q7XGawlc1TndZ3WNHo8+poJy/V70FNMnK4WbXC+1x5N/7txpir2wtbR1QlQddHbXoM3jyX96zJ0gdvVPxA0+N4Ww6plWA1+px9Hry05P3J1G2tg8tTEAAACAtxphLAAAAPAlcjwm+elP7+Tdd/ey3wcZx+n/kz2lqTp22gZJaVAVsiK73VBVxk7nciXg1PcUyuo/XR07tfG2cRAJu9Cu16rp4NMEpk1o6rTN7WzloQ1US3+mmrHqfwtnrKvt8q5T+dqthl0Lrr1sxgSbq6GnDmlVEOgGuLq9vbcKTHVg2YSn+bMKS5uAU9pzds1Zt0LXvoug7qnCZ1sR6wa8Ul9bvQNVLVvO23ecj+ex5d+ZvUbqNlXFcn6GvJZsHncvtVvL6ex1+uNKAFud74SwTSCbr+ntrwWdqm1zD28q4DKcOhTN0wP3gtu1ELZ3fnNlbHSuzevHxhPfk/nO3DEBAAAA+NoijAUAAAC+hO7vR/n443u5u4tyPCZ55529PH48rSW7308Baw5jh0HK/jD0pitewlkbwuZgVmQJFvXUxak0kjaMOlNVVTqHbr3Q1b1GVu6vw09VqepNUdwd05ncIHYthLXjsNmkqqQs7dJyzpuS2O07h7QqINVTGOspe9cqNnuhrA1up0dJ3Wur77cTwDYhcX7G0I6tTDGc2+r7mXeW712eda6Wrdp7la5mOuKqTVimJNZjqd6tpGlqb5Ep1Dv3N2Ye24av08YEfSaUfWgIW4WWuq0KVLvhqxPEdqtpnbF4QaYNVbeEsJKkBKnl2mi2KVVtvAC2Vx176vsSETleH+X2o1s5vDz0rwMAAADw1iOMBQAAAL6EDockz54dJKU0B6zT8Wma4Wlnt5vSnWm64igxhnldWW+64mWa4rXqWFsZK0Ek6mBQpP3c4YaROSTdWJnqVtWeart1bF670O/n5LTKW0JY534i0oaynYDUBo46oNVTD3dDVH1f755mrdheu2nIbTDrhqhOxW21pqu6V1O5mrtdec4yFieEbcIzE2Q3VasqhF2bUriZAlkF3817lCUI3qoJWZcT/QBWlud3Q9h83Hy2oWh1LiU3jK3anghi9bjsmLqVuJLq8YlU7XpBrD2e/19zr07Q2wSwZo1Y952b953fSUpJxptRbn5043yRAAAAAL5OCGMBAACAL7Hr61EOhySffXaQ/X6QX/7lp6VKdrcLcnWVZLcLEuM0bfE4ToHsUhk7hbYhBBkGHbzqrT4+h1whyM0g8v39IHe5QrATJpVqWtk4jXFuq9ehDaZd8K/xPpfr1qyErJvCWxPEesHsm14ztgolU6fdSj9VcCt+H7ZKVqQOPnOg2AS6K+OppjIuzdpA+NR0yt31cm1gbO7dhLAm+K+qanO/nXViq7A1twmp6ctbX9dW5W5SvWLnfc+fm/BVB7ResGqPO4GobpuiCUe3THnsVdXaitjYCWJTe8/yF+tjOiB1g9WophzWlbGdrQ1edR/l80rwWn999dg3f+8AAAAA3mqEsQAAAMCX2PGY5HgcRUQkBJEPPrgqQWuMQVXKRhmGILvdVDU7hQphrpqVqjK2XTu2/hOZAtp7Efk4BEkisjsxzlNB5DkVrs7FqyHvagB8CeeGuZ3qV7fdhkDWBptuFeyJ0LZXLdurrnX7cKpKt4TGWyp1m3VqxUynrINZLywOpl8b5OZ72DA41H3mdiLij1nqd17CbTW2eIxyuD7I7monw9XgvxTNC/lsqGeD1vlYL4TV+274qgNSu9+7Vy+gtWukOiGxDVF1G9suv/em0jZJ24ceop5auBfcOtMdu5W2Z8hjj8dYAmYAAAAAX2+EsQAAAMBXREoiP/jBjTx6dCd//s8/lSdPdjKOO9ntBrm6GmS3C7LbpVIZO21FhmEwFbLSqZCV6vNxP0gYRGRQ67q+hqlfv6JVV8raEEy3K59tNa26R3WtvW51gBva2vBXjX/tWnda5CrbcgJNda0NGt0K0XnrVabqsbtVoyv33BT2zmOqnkU9t15H1QtKm8DLCTqrZ3QC3dJ/vi5Pg5wfMSxTCDeVwLraNYevZhpi+2enKi7TFOdq2fnZP/6XH8s//nv/WL71N74l3/5vf1s2834fqT5npyzuTU/cBKH5mKlcbapTTZ9Vv/bzSmXsakVspzJWTx1chaqmMras86rOVVWuvapY3bb3Z95nFVZ773B+F8fro7z44xcy3o+bv24AAAAAby/CWAAAAOAr5P4+yjgmubkZJaVpvdj9XuYK2SXlmj4PkpJISvGMCtk8bXEOR/zw9HXooNRWtb7WVL9fkLOqgusTJfDqVqGuhI/2Hmdff6J6drNeP+f2n4PO3jU2bO4EwM0zrwXrXnB9onJ7tV8dGs8O1we5e3End8/u/A6T3U3dcyUANee8NUu9MLUbxNp+TwWx+h56jDpEtWPW57w/5z66MtZrZ+9vpwmugmI7DtOPDZbdtua962esnndMcrw+ShrfxH9gAAAAAL7qCGMBAACAr5hxTHOF7CC/+ItP5NGjQZ4+3ct+H+TqapD9fphD2iTDILLb2crYpTo2ryvrVsbmtWJtNespNsO14ZbZr6pubQWirFx3gaDYo5/fVsCuVcRuCpZNICsizdS5XtvVY3p8aT3E7d7DqbI9FQiX60WWMLT3LM74q/Vrl4N+mKzH6fwmqqrWVG+9d1Kt76ruXaq5w9JGj7FaM1aWqZTLeIdpTCHO41qbtlYHoub48rENOu3x3vTEvTDSBpXlGhU+uufMvjtVcb72TVXG5s9OJaxtaytc3epZ/Tc619hKWOc7qY4lNVZyWAAAAAAzwlgAAADgK2gckxwOUa6vj3I8TmHr1VVeL3YKXkWmytm6Mlbmatn8OVVB7DAvaVkqY3tVgiczOeci1deDq0m/LE4M76zxP6RC1YaKZ/Shp/DdHNSqkLX0MaWk3emJt1TynhXwSqeSVbdb6aqaJlm/v27h8kq1sRlXcx8TYOd7d8eeuVmsE+yl9viWELYcN23WqkCbClgbAJtwuOo/92uCWPdPls9VZawNdlXfdrrg1f5tSOysHasDWPtcW46lmOTw4iDHl8ft/20BAAAAeOsRxgIAAABfUcdjkp/85E6uroK8//5enj7dy7vv7uXRo12pkp0qZAe1hqz+Wyr/7DqywzCtGVuYMK58dqZltVaDSVsxu3b+VF9vSA4JRUxV8Nqt1yp2z9SrAj1VaXoqPKzCx2Su88JZW1WaD68Fouc+23xMgtR9OmFzWe/WCYCbithU9537r0LgkPz7qArY8g8IvCpt1b6sR5vDwiDVPWT+T2m1MlbTYaY5JmLelQ1H52MnA9jeurB23wa/NnB1PnsBarcitlcZG+upgktla6cStvSl14PVVbK6Gla38ypkvffrVMnqd5lSkngfp7Vib8fuf6cAAAAAvn4IYwEAAICvsJRExlHk9jZKjEc5HpM8fRrlyZOdxDhVyOa1Zae1YutQNoSkzuUq2SQxBolb1jv0wlmlmuLV+NJVv6oQbYsv3fhFHlZl+4b72FTt2mm39dipcVbruqb+Natj9a41ofvJ8DqHtaKCxi2cZlsCWHusu16sDkj1tRsqY/U4VoNYMfdxtvavCl+lbWs/r1W6umGvOe/27Tx/LxQv+3pMMbVtAAAAAHytEcYCAAAAX3HjmOTVq1FevRpF5CDf+MaVvP/+Xp48ibLfDzKOOxmGIFdXYa6QHWQYRAWyy9qxensco3/DOXDSFaRbwofS9sQ0r58HPfbqOXrOCGnfhF71qQ0Ae2GiPr41HF0dTy/crBtVIeTm0LN/0/5Y5grhqorVXNut4NVryaq2VTWsuZ/eur/fXL2s15KVudp4/kcOVfiprb2WKgNsQz5vSt1zpifeFMLmfW9NWHs/Lxx1QtW1gNauFWuDVy9EbdaOzdfHtGznQNZ+bv50tasNopcP9fOJVO0AAAAAQCOMBQAAAN4yt7ejxDgFtLtdkA8+uJpD2WEOZZOZrniZpngYgsg+yO3PPJbj053IHFJZ3QDzwmHEqRBVr0PanJvXx72kL2W17JneRHj7uv1vDZ2960SccHY6ebKvai3c3Feeali3Cam9bj5WAlgVGpd/sxD9/27c8TgVmFXwlw+bitnedMVuFe1DK2NT51ovkJ2f22tTpgt2jnc/2zDVhrPmuJ2quAlw9fXeO9Xfh/ezme958+MbOb46SjqSyAIAAACoEcYCAAAAb5nb2yi3t1NV6zCI7PdBHj8eJKWd7HZBYkyy2+UK2VBVyQ5DkDjs5Nl7V5Ke7GSfs1gnGNIhU3POc+mcsjeeC1z3NoSur+1NTIn8Ju95srjZBLzBWYPXVrt29qtK4bU1edWas1UoumJL9ezWALZqq6s7T4Sybp+24tY7vlYZq0NdG8g62yZ81aGsF8J64Wtsr2/WnPVCXftuzXfRVPnGJLcf3crhxaH97gAAAAB87RHGAgAAAG+xGEU+/fRerq4Gef/9vez3Qa6uplB2vx/mUHb6y+vJJhF/nddOVVgJM/N2ZRrizz3ETFKqFPWxarwyBS4ErGf6AgoAe9Mvr1a75imIU3LbeVW4IiuhaW/d2Hw81Z/z/XNod4pX/apOuufXKlyb9ueGst60x70QVsQPZDdsvbVdT4Wy+pytmq3G4ExV3ExNnNQzzs9RPa/zhSRJpX8AAAAA6CGMBQAAAN5yt7dRDockV1dB9vsg45hkvx8kpSQxDhJjkBjnqtgYRPZD3UHqfDZtvqhAs1m7thOK5erEr0To+gUEnV9qQVWedpu0lanNurF5bVcbytoq2HOGNq8PW/oNqYxV3z+OUY53Rxn2g4ThxM10YGqO5c82ZF2rjl1r57b39reEr+IEqfmY3TqVsF6I64W7TYBrpimuztu1Z51KWfs+m1C68x3k+8Ux+hXNAAAAACCEsQAAAMDXwjgmef78OC0BG4I8eTLIe+9NlbLDkKcslmkrMgVLnbVic+gkSco6mWWt1rQedm4NQ0s7HajO42ouN0Hr2rqx5fp57CEtVYurwzp1/pK2hOFr55Oc7mPrPT7nvKmpPJ2/h7wu64PHo0NZs/6rF8w2VeLBaaenKw7Lfw+53Ue/85F89t3P5Nt/69vyzf/aN1eHd2qqYneaYtNm7XjVh+3XC2Rt8Ko/m3Z2emIveO2Fo9XWVrva9WKdSli36lW1rfbHOuit3pd9L/lZpB379fev5e7TOxlvxvY7AwAAAAAhjAUAAAC+No7HJWUZBpH7+yjjOE1NPAxTFd/jxyLDmNz/H4VeuJnSdO3FA8u1YPZzDkubd/E6939bCuq+RM+Rw9NT67OW9itTE+fq1tynV1Vbgtd5v/wewtL33fM7ufnkRu5f3m+rouyEgfp8Ux2b/DDxVJvVNWOd66pQ1oau6tiWKYur5zmzIrZ3jbt+rL4uSvsM3vPnY513KSIy3o5yfHkUAAAAAOghjAUAAAC+hu7uohwO95ITxKliVuTnf/6xPL4aZJfPqCAmpLAEE1516immTVNFm/vV91QVibpaNk8BuzoWFdTqdWN1kHoyVO0Fvp37NuvTnuK9N1uh5x3vhWilaXI/r97XtlfB1NZrz2qzlfpNuOd65+3xlbWMmzYyh6jBvL+V6Yz1dMVVIDtvQwgShqnNqbVjz6qMNefy/qaqWH1+LYBN0vzWqlBVt+mFr5KaKYOr7fxOvKrXbrVsNGFrrzI2LpWwcYz9cHh+Lvse7POVe+XqWgAAAABYQRgLAAAAfA2lJDKOIjptCGEKacNdlCcnAoYcSjTTt266+dopP8x8I2u92pBsS9uvsodkRJ1rmirGL5CuTC2hup1q+A30vRoC57Yh1QH9fF2ZqjiZNnO7kwGeF66fCMVXA9qSl6p+vBC2t98LZW1w6wWx0tn2glDbj7rvljVje3/elMiWd7x5Z/PfeDfKeDNKPMS2IwAAAABQCGMBAAAAiMgU0H766b08iiLvjSK7cmLtopXzW/KxJM3arU11qQq5pt22sjXJ3MfcLu/rClp9n9K+sy6uVy1rj9vKXW+sa8/dfR/6ZPUx1ce80Mge967vjMG976nv0DvvhVzq4JZKXRs+elMDe9007RylzVpV7Ql2TeLcn14ntlnXNsi2ylgdnJpjvbb22Mnfwtq0xHY/tdd0144168VuqYK155t1YNVUw7mytrdmbKl6VRWx3rH8fpopjkWq99BdKzYluf3oVq6/f01lLAAAAICTCGMBAAAAFCmJRBVWLCfMXz521oy8/emBbaXjSidtKOsd69zX62fLvc5hg+Gmz+0dnbxP1W5LcHoiKN02rJVQdyVMPvMmD7YlkD2n3cabljHnNWbtFMWlejeHj9YDgu8tFbNNmKrbOCFs1bYXyqb2XC+I7f6JuW6t6jXWx721X5sphKOZzjim9r75Her3ktrP+tma/gEAAADgBMJYAAAAAD4VWFQVgHo/ByN2nVXblVdFKiq49ELPHOzMFYeSZKlu1c3UdLC5MjFPIVuFtfn6XtVtMts8vpUq3V5gWwXFW+hKvJXzm630V6oCTch2zj02VQNuDZNPeFOh6RsNX5dO6ypYkfp3pO5b1qBNnRDvgd+xPXZ2Vaw95gS0a9MU26mHvYB1bdtUx8a6Hxuo2mvs8bW1Y6vx22cw7656j/mSOP2lI0EsAAAAgO0IYwEAAACsU4FFSCpg7ASRIrIEomLCUyfwdM9Jv+/VcXb6rELVUwHq1r7zNZ0q2HOqfTdXm3azWidE0td7VZEr92v6XWmXqwXd8eR2OuTr9Zev25JxvYkcrNPHg0LbHMja64LaqgD/tYO8U9+h2m/eqQ5Zbei6EsLa825FqzjHvADWBK+9c00Yq6tkeyFsJ5TVv7+q0jUf088mZvyyjO346ii3H9/K8cXxvO8MAAAAwNcWYSwAAACAVqq33WmFU6jbO/1UFaqyBLUlpLNVtV54KlJVtXbDVfPZq47tVeHq86WS1/TR9KfHshLYivih7Jbpar0g1lvz81Q/m8/ZNjZIXfmu9Wc30LQB3RzkNlW6Hd2g9KHZ5psIZO26s2G5vglow/LM9n6vO+Zu4L72u5k/u1MRi9m3n811Tegqc3AqUq0Rm49768jmsLW8I9V3OeeFrieC2HJfHa7qZ7bvy7yHcu+Y5PDyINffv+58OQAAAADQIowFAAAA4LJVcU1wobdB/FDD9imd9VudEFZPYawrUJs28xqdIdQBWJkW2fRt26xWxOrns8/QC2Qzr1L2VL5ng1gnrHWDsnm/WwWpz6+Npden/dwZb/fYBtXYtva3FuDa4+eOa3MWOweuOYTV39lKZayetvtk8Lv1GdWxkxWx3jG936mK7U5TnAPXLdMV63DWqZL1KmJTXAljR2erK2e9d2GDY/2c5t1IFDleH+X6w2s53lARCwAAAOA8hLEAAAAAzmLD0OZ4atvZQFOStOu3ev2sZqQnQlR7n15/NlTNa9h67Z3n6A7hNcO/k1MLn+hrSwWpXSvTfp/rt6hDLi/gLUHYhvF+Uaoq2IeMQ1dl5/0k5R8JVPfQgWznZu5veiWMXQ2v9U/o1Fqxuj8VcrtVsfqzE2q6Va06hD01dbGYa2O9r4PYJuyNdTvvWXR1ci+orcYQk4x3o9z85KZU+wIAAADAVoSxAAAAAFomZAkpVJ9FZJluuLosLYGm6qe019WtuU9VVVtVl4YlKAkS6umD9T31+rQSSvhaTTUsqoLWaVOexVbAJue+NkjOzxeW4O2s9+wcqwK2lfCsVxVbhaoqQCvX2vvawGplbG4fzn1tWzdcXrtHZ3yr16710Tm3GhavjU9VwubflMj830qY37laSzb/fqqQsHS1sUp2ayjrBbK6jRe+quPV78p+9sJYSWV64Sag1YGrqoh1z81h7Mn9tYpYtdXjt/vleU3wqp8/h7AvvvtCxpuRIBYAAADAgxDGAgAAAGjY0MZWoVbVsTlk9UI+p71z0p3St6lmzZ+T6c+rXp2Pb6qeNdemoKpj9am1QFbdt1fx693Lvf/WIHY1cWz777XfMnVxFR6uBIIn753a5+gGvJd06j69Z3nI+PQUxbmPcwJha0uA7f1u9PENIWzZ74WvOnQVaUJPL5Btgs/Utt+y353+WFXG6v+WTu3bz9U7GJMcnh8k3pPEAgAAAHgYwlgAAAAALRug2D9RW2kDxFL5Ooc2eurfEnZ695RUV96qytZSiaiD4Hyf4KwDm/vR97NTymahvl8z1pzB6gpaHQrbKZjVDbYEs83asHbXntdtTLDWBGhiwjMTSK2Fe9599RSvJSATZ/9E6Nit5PT2z+GFp85vtmpjg8J24M21+XdW9pOZiti7X/7dxNd5QKdfe0y/2s8jjE3LtW4Y660Rq86drJDVa8VuqIxtxiPLmO2Uyu7z5PuNy3gAAAAA4KEIYwEAAAC0bOiq/rzpid3r89ask9lMVRzU1oStts8y3asKQpvrzVTEeQzV9Mmd6YirYybw7Rf2nj6/6V31TjthWje8XQsb81hOtOmN56zqTd3ezZFVeCtpe98PCcXOvObc5/TWgz3Vf/7+zqrarjvpHutVeObPm0PY3F6fOxW62sBzbargHL7qwFb1V/rXQeyWytg8Dvtc+rj978B5jpSSHK+Pcrw5+v8YAgAAAAA2IowFAAAA0DLhhP6zVa5NkJHqUFRkPhekXoNVlgrWqgJVBUWlIlaHnfN9qzVb9XU2/DVrwuqq3bKOp6gx57BXVdTq8XmhbqkA9sK1jSGdbdMLXFeDMxUyVVMLe33bcEr15QVe1WfdRtQ5O9YctJrfUBWO2edwxrtJ7vdNtT/V18r02OU3HVRQm9vHKXgsIe5DeJepd161Mb+BNx3GdqclFlldIzYHsPbzybViVypjm/HZcar96vnMNo1J4jHKi+++kOOro6SRMBYAAADAwxHGAgAAAKipkK7bJC1Vp14laxXIJhWa6mvzsdBu8/3LPYIKO1XwWoWtej1Xqfd1aKqrb+20w+5W1LU6nM1Vt9L2b9/nSTaH7AWxpmFv2l99/cnpgJtbbRjwiZDXPbfWb+f5upfYe6yEkyf7OvcadcwGqlsC1lI9eqLdWtXs6rTVZv9NT1PcBLVeEHti24SzKpQtbU5UxuqwthfENr8Nve99B/P5w8uDjNejxPtIEAsAAADgtRHGAgAAAGiZ8CSkUAUlTRWpraCVZaun8S1hpQpxcz+5eraErjpU1SFtWtbrbK4XWdaWtdMVqzE1YasKYKsqWPWM5br8fqaB1qGsTNdrvSmX693kHq9CSue99kK0MkZbNZvb6v0cDurvUF/jhG69aV6rcel+vOpa+3sRZ1/qds176OVkzvHqHSez793PuX/vfvl3Vtrn6tj5giqkncPHHj099qpemOh87v4+zHe1JYwt18X6+s0hrEgVxq5Wwq5VxqoKWf1bX62I1c/uhMq5Kvb6+9dy98ld//cFAAAAAGcgjAUAAADQUgFLDmJzYOGuj2rCvTINcFqCSl0l6wWpOnSt+rWBqLpeRPxgVdr9UkUrqZ5qWdoxuIHs/AwlgM3jC6YatsnHNiQ6XhMbbto+NwRotn1TJdkJGL3wzn2OHGA5QafXXv9G7BTJb4wXSKpt7znsudVxBROwqntUx/X02fn+anpnL6h/478X79ntMW8/tftN+CqyBKxr0xbHJcDfXBm7ZZriU0Gs87ze95H7v392L4cXBxlvRv8dAwAAAMADEMYCAAAAaFTThObAMleAOiFtCUt1exXIukFnuZn4a8UmcUNQHcSW/kO9Dmx1f1tFq9eOlaX/k4GsmSK5qZIVNY3y5hfdP+YGSbK8G/ecNz1xL4BSbarwyvRVBZSmmrCq9rQPo4NHOwanvyZAtO9BxO3DXrNaLeq077Y1z9gNWC0z1XUIS9VsriiVKMv+2u/lVCC4Mn53emIx73zeuoG+PqeP2zB2LYRVQaeItCGqqYLVn5swdlTH85/3e7W/Zfu7Fn+cKSW5+/hOrj+8PvHSAQAAAOA8hLEAAAAAWiasKBWuOcRMJgz1prhNKijV0w7ba3M4okIp3T4HWuV6HcSKE8Ta6Yl1YJULWnMbMSGrnZrYrGOr14ydcrQ6fNWhz9qan+77ztebY+V9quAzP0Nv35ua1a0W1G3FhFi2jT7WG+Na8KpCsOa30ksd14JUNb7m/XljsNeYsZ0Mr9U4dfVr+R0F81s293jvl9+Td3/xXXn6c0+7QelJXtvec4r493G+42bf+S01vxdTEVu9JyeMzUF0tzJ2ZZpi/ZevWw1i9fj1784+x3yf+2f3cvuTWzk8P2z4EgAAAADgPISxAAAAABpNRaMKL6pqUVXhqqssy3ET4JQwM6lK1WDWc81bb9rhOejSoax3Xh/PoawOU91pllUlbLlPrshVIWwJeE1Aa/vVAWMvmK3CMjUWt40XsqV2v1ehavtvgl8nbHX7EvXbEPVbUde4U92aPt0AthOi9qqBqxDVPF/z2dvX99wSitrf5lq/xtOfeyrf/IvfnJrbNWND5zdyql/7fXee3auG9Y73QlivOtZWzus1ZL21YXXAWgJVHa6uTFNcBbFeRaz6jTTV2vY96N/P3P/x5VFufnhz4mUDAAAAwMMQxgIAAACo5WAqLsGqnpY4hxiletWEtuW8qnrVAW4ON0ugqoKwXHGax1GmFM73CMvxatpYkSp0mQ6r6YllqZYVqe+fp4qtpjvOla96ymJd3avWsNVTzVbBbPVKT6RqvQDSOX8yiE3ms+6zM7VsNV2x1OFYFZ45fVYBn/4N5D71mJwgr+ln7fntcfPO9HeyWiVr3oe9j/ebLn140xT3pi5Wx0v4+Kbo35/at+dtQFkdS3Xbk9MTi2xbI/aMylivElaSSByje9z7vdtK8CZ09X6DMcnh5UFefe/VtEYsAAAAAFwIYSwAAACARhXGSR3ETg3mP71uqq2UTarSVKQJR3JlbDkXpG4vS3Ciw8+uTkVs/WD1uSoQnoMzr0K2jNlZw7bqV8zxU5xnWg0Ie8dMuFZVoupgqnPPKsj0qnXttTlIk/r+NkBtqieb7pI/nt44T41r7ZgZezlsnnf1+Y3qHwUsB5d/iGCHoPq2v5GTgX3duHvMC17zdkso2w1h1yphbVWrCjz1td3KWGeaYt3GTj/sVYJ7FeTVuzHPGA9RxptR7j65O++3BgAAAABnIowFAAAA0NDTgkoUScMSkEx541IVq6ck1kGMXktWT1NcTe2rwk4d/JaKWr12rPjhV68Ctlqb1mvjbXUlrK6Q1RW6Uq9hm8dQBdNvKFgT6YSwOnjVIZQNZXN4JfX3oAO0JuDSfengzFbNqn5s5aGtfNX3b6pOzXM3Qaltm5y/fA8xx+b7rT1j06d+LjMFs0gngJ1OLP/AQFVKV4H1mErb6rez1anfivrum3POVMX6e7Nttk5TfKoyNqVUV8SKdNeFrY6NbQirx7w2VbH3fDoQHm9GefaHzyTeRf+dAgAAAMAbRBgLAAAAoOIFGFVlbJJ63VZvP7X7ZZ1ZM/VvCa/SFHJWUyCraYWbtWLVeMv6szqIDe25pko3OH2YQLa0S7J6vSQVrJ3K13oB0IZgzQtnm0BSt7Ohpwq3bKVkN+iyfdpnsPewfZs/XUVrt03fDjcMdcbQnFfbsyp17bEHrBmbg8mqErszDr+DjcfNd2nbeL8LG9S6IaitjHWCWG96YredM02x3m/6EnNf+/s8EcTqZxhvRzleH+X46ijpSBILAAAA4PIIYwEAAAA00rhUq+WA1AZqOaC1lbDVfkwig98mxFCtxTrdOG9UuJnqfVsl621zH03Fq9SBbbe9PpafX6Q6XgJklczp49lq5aMXDDrhmhfMdqtj1X43QFPnehWyXuBlr6uOSx2i6TZN+Gp+S1Vo5rUx4/ECvur92T47QZ4dpz1evTuZ/7GA91tUv5GGrpiOy3s4qyLW8m7lvSfd1vkd2WdeDWU7x1a3uSLWhrN2HVhnmuKmmtn7zXvfp71G3Tseojz7l88IYgEAAAB8rghjAQAAANRyOKVCkaYy1gvQdLu8rwOnOTippg9WUxLr6tMSeuYQV4ep5nNVEasDsmSmK9brxCYTyIZQjaGqrs3Vsnk8YQmJc78i7fqxy2NvDH1sMx2umeNbglgvyPSm8nXHoENO77PqJ4ewTchn+zWhnqd7Xt937XXqsdln8vrcelz/Ph8oh5NbK2K7Ye2pZ+x9D71Q9lQIq9vo7yGubG2Iq6cptv/3xVTCeuPp/ea71c1mzCklObw8yHgzyng7EsQCAAAA+FwRxgIAAABopGMq1bEhzBWuuRK0UxHrVsbqirhhWUOzBKh62lYneHHXjM2BaFJBrDhVrSpsLdeadjaQrfqWukI291HtBxXKmmAoB7jty1178aYfL1gzAat9Z6WtF2CasMurZmwqZHuB7FzxWu17VbFOdaUND5sQVv0e3PehnrMbEq9Vuqpns1XfetynwmNP9Q8EpO47xtiGrN2fiQkk/Ubd/SbQnD+vTedrp/Z9cGXsORWxthrW/L57//Bg7Tmqcc5Vt6/+9JXcfXp39vcJAAAAAK+LMBYAAABAJR6ivPr+K3n0jUfy/q+/L2moK2ObKXtTe14HtFVgokJYkaV6NZ/P29U1Y5MJW0Md7DbTwOp1YXUlbB5Tb8piE87qe+Z+q3dhQjVbHepVOnYrPb1QTR3fFKjlduKcz/3qYNIJPb1zpRI2t7NhX68y1z5bkuYdueGiFwZ6bfUYzHM3wZ4et9pvxnlOcLdSOVveWVx+09V9mq7Wp7Z+ncpY9/vxKmDF/3xOGJv3T4Wx1fWixiLJH+PK778aa0xy/+xejq+Ocrw9nvd9AgAAAMAbQhgLAAAAoBLvo3z6u5/K0194Ku996z1JuyVIKsGkCslKcNqplNWhWwk9kxPkZipc8daMnZr4FbHVtMRzp721ZTP3ej098Xx//VkHtCJzwJaW/jyr09I22Vpq3klz/EQotakiVsy+rZDtHLN92CrUUjWr2jX3t89vxypLH7331Dyb6UO/h2ordftyL3WdK1eHq7VjvfPeGHOFZtW2w/t9ludy+vb2vSB282/Gfsf6Xc3P4G7tb0eHrjI/v5qyuLwPMy4vhD01dbH+fel73H50Kzc/unFeHAAAAAB8PghjAQAAALh0NV8VbqmApkxZLHUoaytjdaCiK2PnGy2BSg67bAirg1A5PeVwVc2q26mK2EpQYzP3EFmmns2fq7GEOkyuAsRSRNu5r72mF6yZ0Mke601hvFoRm9t4lY16LOZYMy2w+l14UxdX15t+q+9epBqnPW/H0ExpK05/9n6mTRPAJvW79/oSqQNXFajqKbG1q/eu5Ok3n8rjbzzeHMZan1sYe6pCtvd7Md9JE8zaNWN1Rawejxp3txK29xymMvf++b3cfXInhxeHDW8YAAAAAC6HMBYAAACAL0mz9qOkujI2hx8loAzJrYwtVaSqTbmH3YYlaHHXjDWf7VqxOSwrUxw7UxgXYblvWevTPIsOaqupicNS3bt0Z6YrtmGh9447x90AbiW8asI0HbJJHYp2p+s1fTYVrp172jC0qZbN1+ixiBqLfkepvlc1tl4Yqe+79mypva55zyqALOdWpiA+5eqdK3n/W+9Pv514uj9bWe1VB69WDHd+G9W13r79/TjB7KlQtpmiOE9LbPYlnvgdq3NeqNz84wM7lpjk8Pwg19+/bl8wAAAAAHzOCGMBAAAAdOWpRFNUYeTgBK1xPh5DmbLXTlssMoeauY2IH5bFOegcllDGm55YpA1ktVNTGpdndM7rvr3P+Tq9LyLVdMV2HP2XfDpc84LZXvCqz7mBWg5DTdVqr1LWDdxy8Gna2ODeVrBWz5DaP69iuleJW/rX70a101W63rM1fZnnab6HBwSy5b55Kl/1DwRWr9nWubvvVZGKtAFm9b7Nu10LYk9udVXsiUrYXsBvz/WewQ1hXxzk+gfXMt6M294jAAAAAFwYYSwAAAAAXw45olSBh52CWJJUVaT62qqtzH3MUwg3FbJhOZ/paZCr63TQavsqQ1iCr3xNqZBVYfCmNWPzPeex6KmJS195vM1rPCPBM003B1L6XjbsVG3cqlHd1oSe3pTDTaAmbeDahKT22exzVhevnE+mrdfehKlVCCj1c9g2bhD4mpLMoaSZOnvLNMVNlaw3rl4oa8NXe8x8v/p8twJWZKlqjerZtoSxnRDW+z15v5VeEFv6iEniMcp4M8rdT+/a9wQAAAAAXxDCWAAAAACuJEnSMUncRQlxCoXKVL4xVCGNrpSVOHcQTEAzSDmfwtyH1MfDEMr53EcJXOK0Xyprg5S/qtq23H59SuO1bXN9CvW0xyY8LFMWrwSvvWpIdzpis9+ErFKHU72pZ702TUXshorH7ueo+u9Uxlb3kOSOpfkTafo6FZ42lZfmGm/freSNdd8PVcYRRdKYlum3lbKG8Vofy47XoL2fObdpqmKnErZce+K34YayzvTm9lm60xTrsfd+9/nzfM84TiHsiz95IfEuCgAAAAB8mRDGAgAAAPAlaYKpUolqKmObsEvqY2W6YV0hK8t6rpJkCV6DmWI4V5uqylk3PE1OZaudqthWyHrHg6qAzdfrfs2Y7PP0Kh7doPYBAVsTYql9rxrSC0Wre5mwS49Vj7n6bKaXtVMFu1Pe6nt4r8Kr3q2GagJEp13zvrx76mDwVOCqKr0fqqkc1r/vh1bgrvxueu+7+/7yNb3vLpnzvbDeBLBNRa0eo/ebNc/VrQpX4xjvRknjFAQfr49yfHmcgm8AAAAA+BIhjAUAAADgSyLxECXsggz7YTk8TIFonnq1TGWsKlxL21xNGoKkIS2hZZqC0FwxW9ad1RWx6joRKWvJlilfwxyihqVStlTI5rYmtSqBbXAqYvMUySoQbqpkk9RhqxMe69Bt7d1uOt4LDr0wrXc8mfO2StVWykaz1QHbPN1sE9Ll6kgbxqlxV4GwHZsdr7TjtZ+rIFAd08ebv1iPr6ny1cdXv76Ngd/8zuIxtr+Tzu9jdY1hHWaaY02bcyti10JYcX4X9n1F8+56wardt8+UzHHvt5uSpDHJiz9+IYcXh+U8QSwAAACALyHCWAAAAACueIhy9+mdXL1/JbsnO5EkdTWsyPI5SH08nzZTGefQp6pMzVMcSztta74+V5yWylWRbphq13ytKmSdtWNtRWx+FrfKNp+TZRxVeKgCt615ndtW92nO90LOJlDTwVs+71Wfmja6z7VwVfdp+/OCQHern8mOQ/enTrrjsH10nqvp31z34EpVjwkP8z9A8KptdQB7TtBbtXfe7alAtgqyRZrv2q2I7YWxJryt7u/tbx2/M9bxepTxbpTxdpR4z7TEAAAAAL7cCGMBAAAAuA4vDvLTf/pTee/b78njn308hZIhLRWxplIuDMv0xWUt0Rxe5sq5kKZ2eQ3ZeR1YEVn2RR1z1owtW+/PtrEVskm1tfupv7VVtlUlrTqWQ9zNek17gZYOsLyAzQvbpA6yTlbEdipH9TFbNetNZ1vdy2698M6GfjnkFWna2orYZszSjqX6HTrX22Byq2YNYfVdpThVcKZjatc0Dg8IYMUZX/XzMO9TTgSy9vNaCGu3eo1YfR8x9zk1TnPe/ccGeSxx+u29+v4rufvp3fJ/ZwAAAADgS4wwFgAAAEBXGlNZkzHEZaphb73YEsSmumpUhz6l0lWvOxvqNqWCMKmAc05mSoVsbhdMH3pdWVPVaqtZ5w6X/V5FbFCVu2aa2bJ2rMgStqWl3fYXbXdNWJWc42l93w06bRgqdZC2JYi1fdrPpU9J7hibZ0ptuyo8t2GqfVdOVa2t7K2mVlZ9e4HtVqsBahIJ+yCPnj6S3ZNd+QcMlTN/Irrv3rEtYWy1r9+7fm+xfUdNZaytmLbjcMbqVh6fGmcUGW9HuX9+X+433owEsQAAAAC+MghjAQAAAKzK6zOmYQpkc4VrtWZsDljjsh5rCUh1RayukFXru+b1ZkvFqUgdyqYgMswhj6qMrfpQlbBl/VlVebtWwWgrXKu1YnO4K051rNRBlJ5C+byX7O97odZquGb2vZB19ZwJKHvhrK1e7VXGekFqE77qNt4xEwI34xM5ee9uqKv6rypxRaopqc+VJMn+ai/v/NI7EoYgcazXjM1tvED2tdaM3fo7Me/6rIpYOxVxL3iV1Bxz262EsPm/9/tn9/L8D587nQEAAADAlx9hLAAAAIB1SaYwdpfKNKE6aNWBVll/1awtWwW2ObyT5bxua0PZqs3MC1arqlXVpglX1bHetrpHUMFw5z7zB7fyb1OVrBf6pc55L1wz+940tF5FqK6UXQvfekGtDfhsWOiGhjYUlXpsVf+dd9JMM6yfQ/yxrj2LGxo+hL3XPJXvsozw/JsJ/d/EpvDXNtGv+Yywvry7qM71AlhR7TtDdCtfnfG61bROCDvejXL7k1s5vjz6/QIAAADAVwBhLAAAAIBVKSWJY5QwhhLIlnVf57Vjg8zVqEMdxFbBj62QFSlTH+fzuUI2X1NNU5zqIFQHqPmY5bU5J4jtBbxlLdmVULi8v61J31pgpc53w7X8OXU+q2O9SlM3wF0JNJu2vf70/aXu12vbDWd7favfzGr4KuvPUgSz/xBJpn/EEFIdvob6N5Gn3j7V19rx7rTW3m9FvavNFbG9e54xVi+Abcao7ztO0xG/+v6rZS1pAAAAAPgKIowFAAAAsOr+03v55Hc+kXd/9V1591fendaNnStl9TTFuSK2BDtxDprmgLVUxKpphvNUwrldDnbL+qs5pFLrysqwjG1LhWwlLfeu9tXn0mc+Z4+LWo9Wh2rOsc28S1aCNrs2qN5fm4pYfz41TXGvWtYLOE9Vo7pbae+/JYTtPUu34tX01f286WtyqnW9dnMFeRzjNG13aK958JTW00Xuvv1diDhhp7TP7YXr+ZreNMSrw+sEuM15fc84vbfrD69lvB2n7/SQCGIBAAAAfOURxgIAAABYdbw+yvH6KFfvX8k7v/zOauC1OkWxWQ82nyvHVRu3IjbJFGqlbSGsWxU7r2ebpx0OYblfCur4XK2Y0lzVOI+l9BWWwMo7po+fRYdqaj9/tsHs6lTFdgphkTqwtPuqfz2VdLeKVId+5lg3CLdb73ltCOtc30x1bYLEfL78P2/64vnZemHo1pB0dSrlPKV35v0kzvmZdELYMo6tQaxI9V16of2m4ZwKsddC2Lw/h7ApTv/I4+6TOzm+YlpiAAAAAG8PwlgAAAAA20SRNCaJxyiDDBLHaZt2c5DjVbVGkTCEMkVxVRE7SD01sTNNcdnmz8H8DfN6rnmq43y9qp4tfZhrS/A7B7LlXOpsxRwTKeFuNd7gh8VdXm65Ulm4GsDmsK0TvJ2slDWh61p1bBVsmiC0Cvk6YW9zfVwJfdVxGyKuVsRGKesa59CvXBdT9R6WV31GGqm+nxz6hiHIo/cfTdNxjyrsLUsLm4rYLWFsb0hJ9bMWxIq433l1/oHPvXbcG5v9fdz++FZuf3pbzo+34/njAAAAAIAvMcJYAAAAAJvoAKsK5vLasbm6dZ6qOFfIluNzhWnuqwnOpP3sVcSKTPu6ejZXtOr72EpWXXXbBE9BmmrZ6XBo+injyM8sZt1PHZBVt+inbs1UxPldeOdt2Kbvmer2TVBr3nE3YBVzrRd46rHY8W0JYiVVY7Cf9bPbYNH+bvTz6vs1lbEi3d9e9Z3pZ7Q2HA+7sKyrnI/1piVeC2PX8lHv3evjW8PYN6X3Hs0YUkwSD7F8X4dXBzk8P7zhwQAAAADAlwdhLAAAAIBNcogShimgLBWxeTvM2zAHmnNIG+IcXOopW711IL3pXPVWVcPqdWdzBW61VX95PO5asV7Fq723PS/OZ5E23Dqj4rE31W3TRudcG6co7k3Pa4NSrwLWDWo7/XdD295f9NuXqWvVmKpxxOVz+ccAnT66lbGxDm3d76/6CjpTJrcNJaWpejwM6gcQVBj/gNmrvftuDWGrZ7wE27X3e1Xfz+HFQV5890U5Fw8sCgsAAADg7UYYCwAAAGCT8XaU+2f38uiDeQrWTuDWW1e0qWRNZn3ZoPoQU+2aK1HVvg2YqulfdaWrXjP2RHVqWUPWVNd2K2JVuzKOuQKyzVdX0z73mBcUroWwdr9Z99UGp1IfO/ldmvCvNy2yfWZ3emL7rOqYF/A291HjcQNh/f9MZaxbidzjtLNjaL7bHDTn/DWY3+tDA1n72mzwKmY852awp8a1EkI3Y8pjiUnG23GasjklOb46TlMRXzAfBgAAAIAvE8JYAAAAAJtc//Babn58I9/8K9+Ud37lHRmO08KsaZxDrjwlq1qTVYJIGpKEOK/rGudgKkyfo0QJEmSYF3lNIU2fw3wumGpCu2ass4ZsCXm8ylZdKWuOu59tX94asmLavE7I1Avb1Lmm4nBl361ktQGtnZ44qtCyVxEbOwGoN7Wx6s+9b2zvkz971bl6X1fGNuPoVMammJaw9OTXodZ89b4fHXqq30U8ztWe6nezuTJW/+78QS0fNzxD1a+sT5e99be7Nq12VYEdpyrh53/8XMbrcWlHEAsAAADga4QwFgAAAMA2Ocwal7VjS6iVp4CdK1J1MNasITsHOblSVodnueK2ux6sqoit1nMNdQiUt6X9HIZ114wVWapi7T3CPHaR6ni1r9fDdSogmwDMCaO61YxeCCt18Fn2U3tO99sNRGXZ2mmNvXVim4pYM14vnC1bfT8bNjvBq/5zz83vpje9sv7rhqnNK3fGvdI+v9MyDXJYfpciUqq6yz8C0M6tkj0nyLT/IEH83+eD7tn5LaaUZLweZbwbp3dyTBLvYvlHGwAAAADwdUMYCwAAAOAsKc4ByzHKIENTGZtC8td8nddzDVPZ69ROy2vBmuuaClldBZvZNWOdtWPdNWK9/dTZijkm5rjel+V4L/xtdILN8tGZktZduzUfX/m8Wh2bQ9mo+vb6c/px++pV4JoqVq/6tRfAVlWzujI2tseq40n9Q4LqNasx9b6e3jl9n2Oq1kb2KrsfvHZstQRtaK93c94TN3lAPtpdk3Z+zykmufnxjdx+dHt+5wAAAADwFiKMBQAAAHCWNM5B7DhICip8mgPQlKZpiUtomeZz8xTCtjK2TCkrUk8zrNuooLGEm6qStlw3OFWrThiqq2qrbQolJLbn8jHbt97PYa0OwTYFsflaveusq1odL5vkBmNVSOaFpvqcE5auBrupvW8V2q79Oe2b6l2nv6bC1TxXXgu2VxHrVcaufQ/6e+t+h+q9pJQkjrH+hwDSbpsK2U6ourq+caj/e3CnNlZrG7+2VH/O3308RLn/9L4KuyWJHK+Pb+a+AAAAAPAWIIwFAAAAcJY4RomHKOlRmsLYXBm7m0LZEJepgd3K2BDKtK2SZFlPNoe2ub2tOs0h15aKWBXOlj7me1eVu0kdU0ooO19XtrLy2V67ldc06Y+pG4Z5+2vrw+rPW6pjdYDqhqBijtmQdWW75Zg97h2rqmCjVO2q9mpt2rX335ui2L7T5r1EKVN457C1BPumQtabxjgr1+b/hvL55Ae03j80eGOS/z7yM4+3o7z6s1dMQQwAAAAAKwhjAQAAAJzl9qNbOb46yvu//r5cvXclwzhM4WqepngoJXvVdK0lcBWpq1plDjBzhW1Y2lRh1GCO29A1OW1slWJmQ9ik2qkANq8j6wWyISxr2eYxlira18mmnLDQW092y5qxTTBrQtYSaoq00xI7n6ug1Dl2TiC7dmzteDUtsQ5yY2q3MbVTFntfjj2u3qP7fer3KCLj/Tj9A4VxHk8O/PXvRJb90mb+TYW0BLN6HGE5OG3M79WeL//IQR9bOnOf22V+Uykluf/0Xo6vjtXzl2mZAQAAAABdhLEAAAAAznL/2b0cnh/knV96R/ZP91MYM0oJU/M2pFCFZiHNa8UOqYSvpQowqemAbYCaKwLzOrODmap4DkyraY/NdMU6JA2Dv4arNy2xPpf70m17571rt+pNT1ydK5s6GK1CVHXuZDWsCvBOBrH6vl44q8432xOBrDfNcXNc/MC2V2lbTVdcvdZUbR9CT9c73o0ShuW7zgFr+d2F9jdkx7J6fA5xvWeYL1z+W/EHe/I5qt+S/s6iyP2ze7n/5L7fCQAAAADARRgLAAAA4EHiMcp4GGU4DjLIsExXHNTWWTezTGM8yDJ1sUxVqmFQoavKlFKYgttqutf5r0z5aoXlOt2+mQo5mH1pt+60sjrc6qzZeVIvXLN9JeecCVx7Aaz+3ISiNlRV/bvrw6ZOv2dOUWxDVlvteqoytqmQNWuW2mrYKiTW716/Z/WO89qzvfdc/uJ0rzTOVaJDqqbhLuHsht+Y/u+gUOvHNlNfez/54P9DA6sKpvO7PSS5+dGNxGN0f3/j7XiyXwAAAABAizAWAAAAwNmSJBnvRxnvRtk/3k9rx+bK2JSaaYd1JWyerjhXzurKQR0ShTgHUHP1qwx1KKYrWd3ATLWxn7fwrvUqZPMz22v1u9rwQt1jW6YndkPYfHxtumJnPVk3lPUCW+c6fZ+q6tT27YW3ogJQE6L2Kmbz/bxqX7cq1r4vO06p+64kuzvfa0wSD9MayvEYl6rrQQWowXwewjJFt5rKWJLUUxfPv2tdXavDWb1ffSf5s13HdSWQTilJvI9yeH6QeIgCAAAAAHhzCGMBAAAAnC+KvPzuS9k93cnP/uWflf27ewn7ICFNQVOUKMOUSImIlICqqe6Tupovh7VBgsQYl6ld58pUXRmrq15TWqY8Xjo2bXSV7Hx+rTI2SaorcWUZv55ytrlvHm86Y3piJwDsTVfcVDV2glh9rglenfB6c2WspFJd/KDK2LiMpalkjbJUvYo0VbB2PVh9bbXNFasx+WuaeoFrOVW/Tx1e2lD75qMbufnRTVkrVkTWK6KDyONvPpbdu7tSNVvWLs4/NT2dsTlWxuH8d6SfLcUk1x9eS7zbFqzm7yEeCWIBAAAA4E0jjAUAAADwIOPdKEmSxGOcpmnNla+qAjZEFZameW3X+ZgO93SVbEihhJw5JPKqX92qVxUudtsodp3YqgJWhbw5hDu1dqyIqnJcS/w8KxWZ3rOdnKJYZD1Q7YW751bGJmnvm0PgTuDrVsaa4NO+Q69Cthv46vtuecf2Xr3rdR9pXiv25rzpe8e7UcJ++n3ZfxxQTYU9H1s+hvWgVw9xTDLejpvDWAAAAADA5RDGAgAAAHi4NIVLw36Q4WqYgtNcGRsGiRIlSJAhTOeqalSvklBVAupwtKpUnfup1ucM9bkyPNtGpumO873ydSX8ndvoNWL1mrR27VivMra7hu3G92n3t0xV3Fvf1E5J3Atv3RD2Ta8Zq6pd8/GU0lINqz97lbK5f1XxateQ9bb2PZatmVK5eQ71zPZZS8XtA7LO+0/v5fDZYXOw+lDNNMUAAAAAgC8EYSwAAACAB0sxyeHZQdKYZPd0Vypj8zSxYQjlswzzOrDDUv065ayhhFy6AjakUKb7LdWzsoRnuS8Rp0I1yrJW7bw2Z1nPcz6nr+ttRaSMw97HVsn2jlleUOsFrnZ/bXpiN4TNx1eCW7eN7csGsXo8Saq/1SmK1TV6fVgvyK3CWrPvVdd693Tfb/vim/NuW3Mo3kU5vDzIeHdeVWzuq5mCGgAAAADw1iKMBQAAAPBg6ZjkxZ+8kKv3r+TRB49ERCTsggwySApJYpjXjh1lCqFCWrZ2zVZRn/V2kCW8VddUFaiD1P3lNim168raPrZUxqbQjEtPZ1zeh/hryFbvbCWodU+pqk43nDWVm/acN8WxG+Z+XpWxpgq2BK2xDmirds5asbnPUjlrqmi9wLNZQ9d7Lj1m5x2lmOT+2b08/6Pn/vcFAAAAAIBCGAsAAADg9cyhWDxECbsg6WoKYcMwTQmcQprC0rldGEJdNTtMgVeIc3tVISsiUxtdIaurV2Oq1p/N98lTEZ9cMzZX34al+rYEsvk6VRlbXavXqc3rfYqUSlyv/fprbCs63fBVHT9V9bppemIVSDbXmJDWC2g3BbErFbG9ClhJUk9hnOoxNdMSq6rZ6hXad7CiCcqdYLoEywSxAAAAAIANCGMBAAAAvL4oMt6O03qxj+b1YocowzCU9WMlyRJqqlyyhJrD1E+uTC3thuUeXvVrk3GGpW1ZS7ZzXamATep4knptWG99W7udg8ZSFesEdaWStqMKApM0n5vq2LVg1V57qTVjVbVrN5g1bdwgtrdWrL7GWSe2VNdGZ7ze+1XnmoA4t7NryarrU0qSxlSeCQAAAACAUwhjAQAAALy28X6U6x9cy6MPHsnwaEpPw7Cs6ZrD1RK2mUyyBLL5+FzhWqphw7zWbG9t1xzUqsDWBrFrwWw1TXFQ4awOaUWq49X0xSJ1aKuPbeEFiHbXqfB0qz7PDWVXQthqX31ugs9otk4IW4WzXhDrVMo20xTraYjNtlwrZrze+7HTFJvndJ8/iow3o1z/8FqOr44CAAAAAMAWhLEAAAAAXls6Jrn96FZSTPLkF55IGIKEfZimIg5SphNOMZUKWBGpAtQQQz1lsUg9PXGcw9KhE8gmqaYpDmkJg/sDn+9tpykOYZluWIfHat9OX+xOZ5zyZfPzOBWb7ZBMkKr6EemEp522qyGsqnZt2pjz3amKc6hptyogrYLYTuBqQ9mT0xTHfn9r73Rz4K3Pq2cYb0e5+eFN9z4AAAAAAFiEsQAAAADemMPzgzz7F8/k6S8+lXf+/DsSJEhIoVSbpmCqD0WWaYgH1ZE3HfAgZZ3YXMWqq1tDCNX0sTlclSBTVe08hXCusC33U1WzVYXsPE1xNf2wGk+Zdjgs9xORpa3ihbDeGrbqgma/mabY+bzaRges6vjJNWL157y7ZXpiO01xryJWH7fTFKtpiXNf1Z+estg8nw2I7XvRVbS2KtY+w3g3yot/9ULGm5EgFgAAAABwFsJYAAAAAG9MvI9y9/Gd7N/dSxqTxHFaN7YK5GSewjjNlahz1WypiA1LqFbWcxUp4ZiujJ0O11Wy+T45XBWRUlVbKnBDWqY0lqX/Zjpi6Yem9vha9au3VuxaENtdP1btbwlnRTphpAlavXbdalipg9hTFbD5mt4573Ovjf2r1opdY8bdrRT2Lk1J4jHK/Sf3Eg/RbQMAAAAAQA9hLAAAAIA3Lh6jHG+Osp//fzlCCBJ2U9AahimYDEOQKLHsS5KqWrXZJrO/8hdETTOsK1/nbZBlDdrV9WOlXyWbpyQuIazZ1/nrlumJyzvYetxUebptbdCaVo7rylL7eW2a4q1buzasrnZN9WdvXdiUkqRRVcPOf8ujpnrcou6vK2Cdd9M8q96a+wAAAAAAcA7CWAAAAABvXDokOV4fJeymELZUv8a6SjJENTWwCvmChKltXoNVT1Oc2krYcl9VJTtd1q4vW9olp+I1tevHalU1rGrrnje86tj2xS3P0Tu3af+cEFakri7dEMQ2lbI28FzZ2mP6um4bWwWb2mfqPqP3bpL6HXrvMj9vTDLejTLeje16sgAAAAAAbEAYCwAAAOCNu/v4Tu4/u5f3fv09efoLT0WCyLAfpqrUYQ45B5kqY1Mo2xKyeZWxeZtkqqD1KmLVWrK5qtWtnpXlPlUFrK2IVVWwpT9Z1oVNstxL709DNUFxWA/zqimZe6p80QkSbTApfiDbXTvWBKy9MLa0ic62F8aesWZsHONSlWoqYatK1TwO+07U+/CmJ66eSdrny/eMhygv/uiFHF8dJR0JYwEAAAAA5yOMBQAAAPDG5cDs+PIo94/v5fHweAo6x1TOi8i0bqu04WY+V9aWnYPKUuWa14Qd6qpXryI293tq7dey1RWxc2Db9J1UCJvqoLW7dmxantN9Z3XSuvJyV/bLsNuwVUSFqbqtnarYhq/6s2nT21bVq16Vq9OfF+LaINetiM3jU89cxjMf895tNT2xLG3yPY/XRxlvRhlvR9aKBQAAAAA8GGEsAAAAgIu5/uG13Hx0I9/4S9+Qx998PFXIxqGsHTuEYaqEnCtjQ6rXW01pCkerNWN1VWymjpXqWFHtvMrYtf1UH7drxeo1ZEXqkFW3reR+z9W7xglh7edNVbFekKlCzyY8lSVMX52CuFcJ21kztqwdG8WtiC0Vs/o5zLPpZ/bWi/XG2zzzPKaXf/pS7j65K/9gAAAAAACAhyCMBQAAAHA5SSSN03Sv8T7KsB+m4HWcg81RhaaZmXa4hJ5JlqrYYa5ijfN0wmmuoB2W7XT7dp1YG+TaNWV11etapa2udK0qZUUFhVJPV2yrZc9ZR3b1mBdOqs+ra8d6bVK9X4WY+n45qMwZqQ1g7bVJmnWD9fTEvcC2urfzHkpVa+cdrK73qkPYtITAEoUgFgAAAADw2ghjAQAAAFxcvI9yvD1K2Idp7dghlGB0SMPUSFUqNtWvtnpVf17LM+16spKmvpNzXLdNau3Z/Dlfk/PjsAS3InO73E9SwWxoA8LuVMZrToWy6nMTvs6fV6tizXlvWuJuFay37VXC6sAzSbciVl+jK2LLezMhsrserAphu1Mkixn7mCQd03qACwAAAADARoSxAAAAAC4ridx9cifj7SjDbhB5IhJ2QYY0SApJ4i5O0xVndvrhfMyEr2XN2DkEDWGqmpUgU0Wjrm5V4Ws+l8dWAti5KrZMc5zqoLaEr2KC2Dl41aFruS7fQ9qpjNc0FbM6aF2pgG3arlXE5v21EFYHtd6asdHZbgxly3EdynbC2PpVqLH23qMeo7p38x5MOJ1ikvtP7+X+2b2MN6PfNwAAAAAAZyCMBQAAAHBx95/ey+HFQR797CORQabpilNcphO21aM2Y9NVq4MKXedzZbriIUyhWg5pc3VrcEJZXVWb2n0dqHanL05mGmUzbXG+thzTzyP1ea0KCduT7n5zTS+U9QLZvG/PJ2krTb1g1tv21ozVx2NqAlvbphqTDWJtYKyPmWeqjul3ocaYYpK7T+/k5oc3nZcPAAAAAMB5CGMBAAAAfC7SmOT6+9eye2cn7337PRkeDdM0xXEqfw0pTBWzMtShbJK6Qjbv58/B2Vfhaql0zUHq/Fmfs8fLvcw0ydWUxno89rO6xt1PZ05V7DVxgtduIJvMORvA6s/OfjOV7wPCWFvtWqpgTVCb/6qwdHnA9jltOKunK9Zh8MozpZjk/pN7ufnxjRxeHk5/HwAAAAAAbEQYCwAAAODzkUTuP7uX3d1Oxl+YpoAd9oMkSZKGJeAsVbKm8lVEpnaproTVlZE5tM3Vq7aKNQevy5BMGz1VsaRuYFpVu4Y2WLX3yM//oKmKTbPXnaa4el+2Tar31wLZU0FsFcqq/ppA1wSxzTUrQWwTvEqqj1cvo+2jBMHHJIdXB7n9ya39GgAAAAAAeC2EsQAAAAA+V+PdKM//8Lk8+uCRvPdr70l6NAV0Qxwk7KcAMgxhqpTN2zBVzYYYRIYplA1hmpLYrYjtrTUbZKmEHZaK2BCCWxFbzpnjZV/8Y3kNW1fncJcXxtoc1wtjnSDzoWFsE8rGZSsyh6/5eC+YPTVNsVoz1g1enRC2fHbC4pRS9azVu5jHLVHk/vm9vPiTFxLvogAAAAAA8KYRxgIAAAD4fEWR46ujhH2Q8TAu68AOSWRcKmNLdWqYz0WZQtZcGTuoUDLNla85YI2pXfPVVLqW6lpTRdtUyurrUttv7k/vnzqWeevFNm29AtpOGOtN35vHXY71QlgbXJrqVx3Uulsb3qp1YL1+ylTEZr3Yk9Ww6sGaIFZMRWzveWQKf8e7UY7XRzk8P/jvGQAAAACA10QYCwAAAOALEQ9R7j65k/27e3kkjyTFJMN+KGGrJFnC1yGI7GQK7oZUKmZFVcQmSctUxPP0xWGoq1qrKlhbCZvbSNumTG+sz5vjIvW5YqUS1k6bvJxYeXFbgljdLplzOozVbZx1VfX+pumJTeWrJGnXiHX2q37sM9kxS92uCYZzle5KsJxikuOro3z2Lz6bKmIJYgEAAAAAF0IYCwAAAOALkcYkx+ujhCHI+Hgs4WcOUHPla7WGbJgrZqNKz3LeGub1XiVMVbRBqgrZqip2Dm2bHDRJ1V6vCdv0oati07IebK9qdhmuumkOC/U4TgWDnTBWf9bT+LqhbOdYtyI2V56uhLBV8KrD2V5lrDrnBbH2c3f9W1HbDdW+KSY5vDzI8dVRxptR0kgSCwAAAAC4HMJYAAAAAF+IeBfl9se3U2XiIHL17pXsnuymYHM3B6u7zhqyQ1hCxVwZG6aQ1a2A7RybOnf+RNz1YteqYm2w21S96urZsxeOFT+kPSO49I5X67NurYgVKWG4F77qqtdNlbFOCNusCes8lzdF8paK2Hgf5fkfPJfj9bEO9QEAAAAAuADCWAAAAABfnCQy3o1yeHEoQWkIQQYZpspYmUJNGypWdGXsXGVapinurP+aUhIZpDpf+s8VuKoyNp/L1bcSZKmu1cdlubaq6pWpfT5vq2WXR+mEtE5zt/rVfO5WkzqhqxvC5mtOVcR6lbHOmrG9Stll6El649dTFleVsPN+N4iV5X73n93L8foo4/1IEAsAAAAA+FwQxgIAAAD4Qo3Xo4zXo6TjUiW5izsREQljKJWyQ5oC2iENIoMsa8cOS/BZKmPTPD2xVw2b/1TwOt2s/qvWjhWnrdpWa8XmayW0bcyxTTqZ4YPD2F51bKea1AaaTfgq4q4Taz/rithqHLISwppnKOOw4zlVEZuSpDHJy++9lPtP70+/cwAAAAAA3hDCWAAAAABfCuP1KPfpfqpIfTpVnw67oVShikzbKHGaqjiVlHPiBaUrfzms7bUPos7r8Na5l1cZW6piy+H2mMhybjq8Uq3pnTIVo03bZIJOG8Dmz/mcDVzFOXaqIvZUGKvvvRLC2rFVAax6hi1B7N3Hd3J4cZDxduy/XwAAAAAALoAwFgAAAMCXwvHVUY6vjhKuglylq2nd2Ks0TSccl7VjBxlK4DYdVNtktoOcDGXd4NULaO29OtuQlumSpRwO9XTLYs6thbCWbeoFslvC2HzeC2NlqXp902FsdX/9GCeqYfXxc4JYiSK3P7mVmx/dbHzBAAAAAAC8OYSxAAAAAL5UDs8OMt6MIklkeDwFr8N+EBEpUxKH3TQ9cUj1VpJU0xWXUDYHs+JsbTg7HytTHEt7rhvGynxdb4piZ3riavriU5wgNvextTJ2bc3YJtCUTih7xvTEEtuqVj1OHUS7UyjbbSegbYLYmOTukzu5/cmt3D9jamIAAAAAwBeDMBYAAADAl8p4Pcp4O8r+nb3s0k52V7tpDdghiOyknerXbnvTFefPsd4GmacY1lMXJ+c6NV1xCKb6tVcZm6SEsE1gKlLC3m5lbK9gdksouxbI2gDTC2GTOdariBWp1oN1g9kTIWy1/5BqWP1c+d5jksOLAxWxAAAAAIAvFGEsAAAAgC+fKHL38Z2EIcjd/k527+zk3V99V8I+yO5qJ2EfZNgNEuJcGRuXClkJUwVtCNOxFOYgN4ewc0VsGqaK1Lxdq4bNx3PVa57SWAetVbCaz8kSHttq2dJWn1uzFsDa817V6LxdDWJlqmQt164FsbrqNYq7Lmwz3bAZvx17r+LVVsiujjsmuf/sXl5+7yVrxAIAAAAAvnCEsQAAAAC+lOLdlK6NMkqKSY63R9k92pV1Y6PEaf1YkWVKYpmnMhYVgg5hCglNpWuIc7g6b0XmqlYVtJaK2flzqZzVbXOl7BwUhrBMlzwNRK0ZK8s4S1t5g5WxugLVq4xdCTrdKliRepriE9MT24rZJjD2jq0EsWXbCWn1uRwOj/ejHK+Pcv8pUxMDAAAAAL54Ian/v/VHjx59kWMBAAAAAN8gMlwN8ugbj+TpLz2V4WqQYT/IcDVM4ex+mNrs5u0wbXOFrAxSKmXzdMQyzBWpOc8N6lyoj1X74rQRqSplq+OZqpbVx+pdd1FZlxu8qs8nq2JlCVP1503TE69MUzx13wbP7jH1DF7Va3e9W2nHmWKS48ujPPuXzyTeR4n30X9xAAAAAABc2P398g+EqYwFAAAA8OUXp0rZ8WaU46uj7J7upuNhCmBjiFWlalWJmStbh7RMVRxUtWpc1oDV1bAlF02mvTpeKmLzWrF6vdm03F/ErCUrqg91oFshqzlVsU3Q2Qkwu1WyOqiNdRsviPUqY0tf7pBTM+5TQax+Dlu9qz+nOAex10c5vDrIeD0ulbkAAAAAAHzBqIwFAAAA8NUxrwf7+Ocfy6NvPpLd491SIbubKmTDECTs5jVjd6FfHaurZHVFbP4sUh8X53j+7FXE9ipkO8c2cYJY77NbFdsJYe25TWvF5q0ObvV9vKGboLYXwLrrzHaqYSWJpDHJeDfKZ7/3mYy3o6SRIBYAAAAA8MWiMhYAAADAV1MO325GOb44TpWuj2WqkE3DFN7N0w6XbVKfg7M1f2VdWLNubNU+OZ+dbbVW7Hx96VPrTVfcyRVPTVG8pcK0+Zx39dTDYgJQWxFr1nZtB9qGs701X5vxrVT0ppTk8OIg8S5KiknG+1HifSSIBQAAAAB86VAZCwAAAOCrKYg8/vnHsn9vL/t39jJcDbK72pUK2byGbBjCsn7sUFfGVlWxg6mSne/RrYL11pGV9njZl3q/OmaOi0g3iG3OOaHmg6cpPrM6th1Wsgfq41sCWDN+b4wpJXn2B8/k9qPbbe8LAAAAAIDPEZWxAAAAAL76ksh4M60PGm+jhH2Qxz/7WMI+LNWwScq0xZJkqqTdSalcTSGVcFZXu6aQqumJc2VtXlu2qZSV+Ro1XXEVrnY+53VqH/Ls9vPmMLZXEbs1lLX37IyrCVbNGG1176ZK3ihy/+JeDs8PMr4aCWABAAAAAF96hLEAAAAAvrKOL48iL6fP4SrI8GiQ3ePdFMLOAWwYgoS4VMWGZCpjhyWU1SFs+SyyhIPzlMM6qNUhbJLlmqqtSAlxbfiqpzHuBrNeFeqJqYqr4LQXburPW6piT6gCVW+cdgxrlbBmbCklSTHJ3U/v5NWfvTo5FgAAAAAAvgwIYwEAAAC8FdI4BXW7xzu5+sbVNG3xo2na4rALZcriEKfgdNgNVWVsDmfLMZFSEZuiqZRVFbEnQ9i8rwLbrIS9+RnWSj29U6dC2Hlbrbd6YpriXhVstxrWDsmGtk7o2oS2nbGnmOR4c5SbH96U9WoPLw6r9wcAAAAA4MuEMBYAAADA2yGKHJ4dZHw8yvB4kDROid6wG8rUxbkyNgxBosQpDM3TE+dpi0OQlOptCVxzSNsJZavtqWNW73gv+1wLM/Oxc6Ypjqne5nPeuJq89QEBrHfOBsQxyXgzyqsPX01TTAMAAAAA8BVDGAsAAADgrRIPUe5+ejdVu+6CXL1/JVc/M1XKhl2QYT+UdWTL1MXzX66QlTBVrYZhXiN2mCpbU0jlXA4pT1XETgfVFMRBHw79ENbTCTP159VA1n521owtl9rK2NVhtW3XwldvnDYYHu9GefmnL2W8GQliAQAAAABfWYSxAAAAAN4uUaYAbxZ2QYbHw1QZu5+SzzAEGWSYQr7dFASGFOpK2UGWyth8TP+J89nbrn329tecCGNtFWw5btdp7YWxZw3FCVu9fuyus9ZtHkc8RpE4h7G3o9x/ci/xQBILAAAAAPjqIowFAAAA8FY7vjjKeD3K/r29DE8G2T/dy7AfZHg0VcgO+6GsISvDsnasDEsFrK6WtdskqYSypXpWZKmcddaKbapjneOVrevFrkxJLKLC17Wpg72xeKGrtKGqe94Zpx1LSklSTPLyX72U+8/up/MxTeEsAAAAAABfYYSxAAAAAN5qaUySxmna27Im7H6eUni3rCUbJUqIYaqUDVOlrAxS1pPN1bIiarulUtZ+VvtBQjekXR6g92D1Z68qthvG2utP3NdbE7ZtvhLOdqY/joco8T6WMPb46ijHV0dnMAAAAAAAfDURxgIAAAD4WhivRxlvRjmGo4QhyNU3p3Vkd49301TGV521ZFWVrK2QddePVWFsVSk7H9Py+rKbOSFnU4G6FryeU3lbTp0xffHatMVmXCkmuf3Jrbz805flHJWwAAAAAIC3DWEsAAAAgK+HPCWuTFWY8TaWqtlhP68puwsSYmhD2RRKtWwIoVTYSpD6s6QqkE0hlWmKCy8QXctkO1mot/Zqd/rhLXnq66xdu2FsKU3v+vDiMK0Lm5IcXh4k3hPAAgAAAADeXoSxAAAAAL5+ksjh2WH6HER2T3Zy9bNXUwC7m9aRDbsgw26pls1rx56qkG2qY3X1q/4YwnlVp9IJYOfPuq/uOrRrUxOboTQhsjeG5qTTLofgMcnx5ijP/sWzqQL2vEcHAAAAAOAriTAWAAAAwNdbmqbHHV+N03TEaori/bv7afriaMLYXWgC2DRMVbBpmNejnUPYFFKZsliHm3r64rBSlrplvdbuNfN6t6X/XjBrz4lTXdvepNmvpkxOUyB7/9m9xLtpXdh4P1UjC8WwAAAAAICvCcJYAAAAAF976ZCWSlnl8S88lv07+6USdmfC2KGtkv08KmS9fpa8VQWvetpi9/K27Ulen2qa5FwRm+I0LfH1h9dy/9n9xs4BAAAAAHi7EMYCAAAAQMfx5VHiXSxB7NXPXJU1ZEMIIsO8LuwQlgrYOXQNQ12N2oSzsqwzW7XrTA+s25T+nAA1TaWwdUVsvrYpst2YwHrNkqqeTSLHm6Pc/fSump44pWlqYgAAAAAAvq4IYwEAAACgY7weZZRRRETCVZDd052EfZBBhimEjVMgW6YxDqFMP1xVyEo7XXEOTUvF7LxJIbWBbDDBqpg1YteC2dy3DWfVPbdOR2ynIRaZK2GTyPHVUV792auVjgAAAAAA+PohjAUAAACADdIxyf3H91P4qgLU/Xv7MpVxGtJSAav/5rYlrE1SAtaUVCXrHKraNiKqCtVORyyy9CHtufniaROSe7z/0OrjHLqmlOTmBzdLxevcJt6zECwAAAAAABZhLAAAAABskUTGm7E5HPZBhkfDtJ7sXCkrItM2LNsgy9qwVcC6st8cc9aBtcf1uWqcnepZ91FTkhRT3X4OYtOY5P6zezm8aNfYBQAAAAAANcJYAAAAAHgNxxdHGa/HdirhIDI8HuTJzz8R2U1haK6aTcGpoJ2vCbJMdazXmy1rwYppa4+r65bd4Aa0Iia4Veu/vvreqymQbS+Q8bYNpQEAAAAAQIswFgAAAABeQzomScdO0BmTjPejhCFIGNQasnMAq6c7DiFIuNwk0R0AABbUSURBVFJVrkEkpDm8tVMZ5/71Gq46DFbTGed2KXbGmdpAdrwZ5fDyIMLMwwAAAAAAvJaQUir/f92PHj36IscCAAAAAG+XIBJ2dbXs8rEuXx2eDPL0l59O0x0P07kquM3TEat+qmNrksjh1UGu/+zar3a1zVOSdNg4pzEAAAAAAKjc39+Xz1TGAgAAAMClJOlXzdppg4PIeD1O4a2uoJ3PhSWBrbdl1wlmVdXreD3KeDduXjcWAAAAAAC8PipjAQAAAODLQq8f+6bN68ECAAAAAIDLojIWAAAAAL6MCEwBAAAAAHirDF/0AAAAAAAAAAAAAADgbUQYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwAAAAAAAAAAAAAXQBgLAAAAAAAAAAAAABdAGAsAAAAAAAAAAAAAF0AYCwD///bt4AQAEICBGO4/dJ3iECSZoP+jAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABAQYwEAAAAAAAACYiwAAAAAAABAQIwFAAAAAAAACIixAAAAAAAAAAExFgAAAAAAACAgxgIAAAAAAAAExFgAAAAAAACAgBgLAAAAAAAAEBBjAQAAAAAAAAJiLAAAAAAAAEBAjAUAAAAAAAAIiLEAAAAAAAAAATEWAAAAAAAAICDGAgAAAAAAAATEWAAAAAAAAICAGAsAAAAAAAAQEGMBAAAAAAAAAmIsAAAAAAAAQECMBQAAAAAAAAiIsQAAAAAAAAABMRYAAAAAAAAgIMYCAAAAAAAABMRYAAAAAAAAgIAYCwAAAAAAABA42/Z6BAAAAAAAAMBvPGMBAAAAAAAAAmIsAAAAAAAAQOACaazXSuW+u20AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "id": "a6e7fc32", - "metadata": {}, - "source": [ - "## Step 6: Add background\n", - "\n", - "As a last step, let's use an image for the background instead of a uniform\n", - "fill. The only code that we need to change is the code where we used to return\n", - "`bg_color`. Now we will determine a point in the background image to which the\n", - "ray is directed and draw that." - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "fn reflect(I: Vec3f, N: Vec3f) -> Vec3f:\n", + " return I - N * (I @ N) * 2.0\n", + "\n", + "\n", + "fn cast_ray(\n", + " orig: Vec3f,\n", + " dir: Vec3f,\n", + " spheres: List[Sphere],\n", + " lights: List[Light],\n", + ") -> Material:\n", + " var point = Vec3f.zero()\n", + " var material = Material(Vec3f.zero())\n", + " var N = Vec3f.zero()\n", + " if not scene_intersect(orig, dir, spheres, material, point, N):\n", + " return bg_color\n", + "\n", + " var diffuse_light_intensity: Float32 = 0\n", + " var specular_light_intensity: Float32 = 0\n", + " for i in range(lights.size):\n", + " var light_dir = (lights[i].position - point).normalize()\n", + " diffuse_light_intensity += lights[i].intensity * max(light_dir @ N, 0)\n", + " specular_light_intensity += (\n", + " pow(\n", + " max(-reflect(-light_dir, N) @ dir, 0.0),\n", + " material.specular_component,\n", + " )\n", + " * lights[i].intensity\n", + " )\n", + "\n", + " var result = material.color * diffuse_light_intensity * material.albedo.data[\n", + " 0\n", + " ] + Vec3f(\n", + " 1.0, 1.0, 1.0\n", + " ) * specular_light_intensity * material.albedo.data[\n", + " 1\n", + " ]\n", + " var result_max = max(result[0], max(result[1], result[2]))\n", + " # Cap the resulting vector\n", + " if result_max > 1:\n", + " return result * (1.0 / result_max)\n", + " return result\n", + "\n", + "\n", + "fn create_image_with_spheres_and_specular_lights(\n", + " spheres: List[Sphere],\n", + " lights: List[Light],\n", + " height: Int,\n", + " width: Int,\n", + ") -> Image:\n", + " var image = Image(height, width)\n", + "\n", + " @parameter\n", + " fn _process_row(row: Int):\n", + " var y = -((Float32(2.0) * row + 1) / height - 1)\n", + " for col in range(width):\n", + " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", + " var dir = Vec3f(x, y, -1).normalize()\n", + " image.set(\n", + " row, col, cast_ray(Vec3f.zero(), dir, spheres, lights).color\n", + " )\n", + "\n", + " parallelize[_process_row](height)\n", + "\n", + " return image\n", + "\n", + "render(create_image_with_spheres_and_specular_lights(spheres, lights, H, W))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "a6e7fc32", + "metadata": {}, + "source": [ + "## Step 6: Add background\n", + "\n", + "As a last step, let's use an image for the background instead of a uniform\n", + "fill. The only code that we need to change is the code where we used to return\n", + "`bg_color`. Now we will determine a point in the background image to which the\n", + "ray is directed and draw that." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "3de30ee3", + "metadata": {}, + "outputs": [ { - "cell_type": "code", - "execution_count": 13, - "id": "3de30ee3", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAEAAElEQVR4nOy9WY8kSXIfbpF3Zt3d1d0zPVfPzs7uzJ7iuQLFFURJoAC+6UEQ9CABAkR9DgnQVxAEiIJe+SIKIp8ESCQIEiKXIrW73Ht2do6e6bO6us68r/g/1N+iLa3M3c09PDKjqvMHFKoqwsPd3N3c3A4/kjRNU1hjjTXWWGONNdZYY4011lhjjTXWWGONNdZYY4011lhjjTXWWCMqKqsmYI011lhjjTXWWGONNdZYY4011lhjjTXWWGONNdZYY4011ljjOmIdjF1jjTXWWGONNdZYY4011lhjjTXWWGONNdZYY4011lhjjTXWKAA1+k+j0YheQJqmwE9CTpJk4YemnUwmkKYp1Ot1SNMUptOpMe9GowGVSsWYhuZtgzadKw/MR6qzdBo0rz9Px/NJkgTq9fqlb6bTKczn80t5m1DkydQ+bW7iDYDLNEpp+Xeask1peN6VSuVSf2Ia3kcuWkx84cN3SZJAs9kU2ydNUxgOh5fGQbVahc3NTZhOpzAcDo30hYDmMZ/PIU1TSJIEqtUqfOMb34A7d+4AAMB4PIaHDx/C2dkZfP755xndtVoNarVaRv9sNluoU7VaFdvNxbsh9dL0lZQ+lB+l72KNSdN44n/75KHJB3nAVo5pHjCVaSrP1Dch5dL3tv7mdGroNo11Sr9tLuSoVCqXvufluepg4u88fENlOZ2HpO+QBu34StMUNjY2oNVqZc8GgwHMZjMYj8fWbyU6aBsiOC00DeVrfIdzg6m/qDyMoVtcFbjmttlsBvP5HF555RXY2dmBs7MzGI1GcHp6CrPZLJsPpHyxTem8XKlUoFarwXw+h9lsZi0b5yY610h9biqfj3upDJP8o8+p/jafz2E+n8N0OoXZbAbVahUqlYq1LBuv2mSibXxrnmshlWPT8UL1oTLBNXdT3sL+brfbsLu7C/V6HarVKjx79gx6vd6C3sPbwyQ3Jd3fxqcx6uQLzoem/HF887mEtmEobXTcSc9jwzVOuQ7Av6G02WQQH0Ma3cRGK8eqxmWtVoNKpQKDwQAajQZ885vfzPSAp0+fws9+9jOo1+tQr9cXbGBOb61Wg1arlfFVv9+HyWQC/+Af/AN488034Utf+hKcnJzAf/yP/xEGgwHU63UAyD8G0J/S6/Wg2WzC66+/Do1GA5rNJjx9+hQePXoEjUYDqtVq5veguC76A5VbJv42zafSGLHNhzxf6f8y3szl28+1Wg2SJFnQZVxzqcnfZJKH2nmbl8f1Z5McpzSY6AuRZWWEL/9JdgqF6Tm1PSQflqYc/AZ1aqlfaJ/yfPf29uDu3btwcHAAz58/z/RaTEt9PdweNPGojbdt72ztbstHy2+m/Gnbc9j8PxKNLt2nUqlkemOapjAajSBJEvhX/+pfwRe+8AUAAOj3+/DRRx9l/fbBBx/A3/7t30Kj0ViY70zzkA3L1qu0MPlKbWlNaThfSj4b/FaKR9jawpQXpcWlN7ve2cq1fUttbS7XTWm5PU7faWwlagNLsNk7tvlMSnvdEXsMvgxttkxQH6bs/VoicAKWnrs6njtL8zgefJ1WseDL3PP53Cq8eb6rnhB9YesLzbcAukC0beKLDa1C7dNXqNTaykDFYD6fZxNczDqaypxMJjAajTIlD+Bikm232zCZTDKFD3kZwK44+TqVfHm+qLEi0bLsyazsciBWe8SonxQ4MKEoZ7WpLJdRLX2jyVtTpk++Pm2oTTubzWAymUC1WnWmtY05G70mWqTnITJmjeJAHTq+33F+1uicNB034l3jmOpvtFyX8yYvv/G65ZkXNM5vW9lrvOhz7kij4H3E++9lkEGmNvGZ3/LYFFcRWhmmTb8KxAxEUj8B/bvb7cLR0RF89tlncHZ2dsmBGFoWwAX9ksNSC0mHuQ7jXZo7Q+21or+5Sgi1W2yBobz0xPA3XLV+8wn4mRDDN6UZU3n1MjqOMeBaq9WgWq3CYDBYCErxedtWdtE+Kv5+WXI1JNhL00p2Dv5dqVSyhQ+0TvP5HIbDIQwGg+zvbrcLvV5vIY/YvsGyQcMHPuD6SYivUltObH8KRQgfut7HaAObPeRbdl5f2MuO6ywXyoSgYKzvBMYNYSr4TU4o245YxGQyWSgDd9OGKusxB6rG+NcICf58Op1mSg9NU3bjmsNE46qcej58k4eOWE4hvttVwnw+h16vB7VaDZrNJkynU9W40sDkjJ7NZnBycgJpmsLt27ez961WC9544w04PT2FJ0+ewGw2g9lsBvV6fWHVFdLnMx7L6GizObvLHiC9bjAFT1xpQ9770ATwgs9t+VLDSpOvjxyjsAVZtE4ErRPSh87hcAij0Qg6nY4qIIv5A9jpRnoxT747H0EXspjkkm0xCX3/MqOoNkiSRNwh60MT/Z3HgeOatyT9DedA3CEbc8EDzQO/K1KHWkOHSqUCzWYz29lnk2t8AUBZ2zmmDcVtRddOoWXSdpVB27WsiySq1ap6ntdgNptlp2nQ+eEXv/gF3L9/H87OzmA6ncJkMrGekOCDNL1YCBsib2MGolcNvuiIjsM8dSwj364CIWM4dJGARmbQPuWnyryM8J13Yskflwyx2TAhZW1ubkKr1YK9vT04OzuD+/fvX+p7vnEGecnFj0XyEJdPRZcXE9R3gKcroE8Q+Wg2m8Hnn38Ow+EQhsMhPHnyBL773e9eanM8tYjyjasdrsocVUSAVKq7yX/ggk1GaOR7yIIPLXDRqEaPWUZQ32Yb51n8tkZxWNteOgQFY/MEYjm4YwpX99CB1Wq1YHd3d+G7NE3h6OgoC8jSST1mx7tWuklpY03qJiGLQS8UlD4Cs2isYuCFlGcKPOBzVEwk45EaJabJUgr+5OEL3uf0iEbK93fu3IFqtZoFPLEu6Bigx+DFnLxoO/R6PUjTFDqdTja2kT+1RoBrhZMNoTzok79vnhq5EQOaFachAUnNt5p8Q8DLDnFAaOim5UhBNRf9Ep2a8nDu8pUPvm0gKbIxeI+ON9N8aQs0a2igcxv+9pnz0ICSgho+vBGKq7oAI0b9+Rw4nU5hNBrBZDLJ5iVahmmO4EYwHTemMcedPwAv+KYo443PPzH6XGqbEGcJ12Figo/lPPmXNVAkwadPbN/aYAvExmz3PIhdLpf5ee3OsvCT1F8ue4LCZXf48lQe+NjHvqA7fTjQDsJ0mjZD0CtS8LoDn0U8Wh3HRhPdEY95mOaNVfCtRp5o6HPxo6QL29JpUHYdS9JJED6BEFe/mMrNA+14N41Z/O26zuRlh2s8mNIDuH0NmvbW2ka1Wg3q9Tq0221oNpsLi6aozh6iD9t4yPXMBlf7aPy4Jjq0tqzrvcsnhmmkhUtvvPEG3Lp1C7a3tzN7i25ywLmOnsiirWNonVYBH/vIlpbbl5KNGWPekoB5a/KP6f/X+GSl/yUafOc0Uzk2HtX6gLRprzry8F3s9lnP7zos9ZhiaTDU6/XsHhiAF4Ejqqzt7e3BV77ylYW8ZrMZfO9734PT09PsmbTrYFkDz6S85HHUmPJP04t7AWq1GjQajUyI8SMqrjqWKTx5WXwVH73flH4jBSKKcrzjym28Z6jdbsNoNMrOHa9Wq/D1r38dms0m/Mmf/An0+/2sLqPRaOF+CMwvdpAhTS8WSZycnCyMbZOiajIqQ9qQ0hA6DpY5URdVVqgj+yrJjqIXn/A21PBj6LhHA4nfGUnfhxqcfCzY8vINSsaSczbZwMsEeCGbaVDNZqxITgFJVl8V3r8KkHgDF46Nx2PodrswHA4XVhPjYiPuXKCOdx6gmc1mmWNbS0+1Wr204M+FPLoI56sYux/y8Osy+DyGE+KqAPlz2TuBqCyP4aRco3hIQTfpXahD6zoBF+tIQDmepvIdbTa0Wi1ot9sAUPwCTxOq1So0m81MfwGItysuNlZlF5gCTC7H+csAepqLBquWG7ZrGK4rOM8WHdySvsmTj4beTqcDzWYTdnd3L8kvrpe78tOUF3se5LaxNO/6lBXTjnQtdEiSBJrN5qX3v/Zrvwa//Mu/DI1GI5tD+RxZrVah0WgsnCYUSndZdyT69puUnvI0tUN5ObF0f9oHLr8Gp8G3vlrY8uX+IJPe6oJrfsjbtmv/zhplhzMYm3fFDP+G54fHrTYajSzQhEe2Ydrz83P45JNPYG9vD/b29gDgYvDevXsXdnd3YTgcwng8hpOTk4XyqGFrUuxddTWl0eTB62yb2F35mhx6/KhmjbJStGFvcyTwNnDVV3L+m8ozBRxs9dX2OTqKbXSaVvVI5bvSmoDH2yG4kpUkCTQaDfjSl74Eo9EIptMpnJ2dwdOnTy/RGxt8nNF+mc1m2REqm5ub2c4odMbTVeIcLoXY1G5aA8jGj6HKBU/r6vu8cMkaTVto6yblVUSdXDCNKwqXzAiFTV5r+U7bZnQOsznfaXpKowTMy+Qc5gt7bI5CrbIeQqckx2u1WuaEDQ2OSW0qlYf58yA5/VYa59q5uOzIQ7s2QIT9qT3eOoQuOocjL0u6iEnf1TqotOMSx9d8Ps9WtyN9fKGAplxON+VXk7y2fW+DrQ98bYNVzBuxwQMquKhmMpkYeRoXyOEinNDrI7TOmlXDt49Rfkpyl6bR5LMq/qJl+wZPytJ/eWzlUNCTflAuTqdTePjwYbYoFheaamg1pcNj4SmPJUmycEqJb94ScPHP0dERVKtVqNVqMBqNnPRJ80CZ4LKnXXO1aQ4KrW9ZxowJmvnSVXecW2LItTz6qUlv5rowf67V9a8LfPwPsXx3JvkRMgfz/9Hucdm4mjqhnDflFZMfTGMvtAzJHpDGstYeNPWRZvzM53MYj8fQbDZhZ2cHNjc3oVarLdAzHA7hwYMHcHp6mj3nG05CbADt87LDVy7R/sqjg7v43tUnlC/43GviGer/sJUtfa/xx/N8tAiRW7b2p/leVb5cBsqqX75sCL4zliKPA2YymcBkMskcUrjrbzAYZGm63S50u134whe+kB1XXKlU4LXXXoPZbAbHx8fQ7XazXbImxTAW/SagUmFTVLTKt8tQQQOPOnFqtVopV9dKigttKwpJAZQCSz5wKbCa/KiDgLYxr5s0OdoMe9+60GBskiSXjPo0TaHRaMB7772X3ZX04MGDLBhbFEyTIj6bz+dZMHZrawsAIAvGokMkj+PHNOak5zbHel5HgPb7opyElA5TGZrAgqk+JmfoqgJPvNwyKF0+7evDB6GGk5SPKehI+cYmw/i3LuOc18GWJzdgeToajHXlZQI6ebXGDq0np5HSje3g0j3KwKexEeLATpIE6vX6JV1GWw7VD1x9ifOMpCPF6A+TI1J6lqaLq6mRLh68CxlXdC7l47pMcMnHq2QkYvviyTy1Wi27hwvgsn6Ii9NwEZppsZ+rvOsCm1Mqr24RIpfylgGwKOvpHW5FIYYDLDRNTKRpunBKAs4NDx48WKAp9F5Z6nuYTqeX8jLN4678TMAdvEdHR9kzvCs6b95lwCp0f8nHs2waQso16X/a733vU7b5l3znWJdz3CTDpVNNfMu0lXEVYLOj6TOTn0tbbxqo9/GZafNHvdX2XltXno+Jf2KPccn+jZGvqSxahu25a6wCyLtQcUPTzs4OvPrqq7CxsXFJRgyHQ/j5z3+e2UCmvHi5El080Fe2MekbJAzpd8kXwMvRlOXL3yFjwRYPcflaJH+2q0yTDMJvKT0uP5ipbaU0Ei9qdbjrAh85vka5sNRjiilsimCSJLCxsQHT6RQGg0H2/NmzZzAYDOC11167dIdso9GA1157DQAuhAEGcJeJmM4lKchHjVTqVESnHnf+hBqry4DUHq72S5LEqEDYvuX3yiFcwQ3pOSqRWkdziNFjA+50bTQa2XFbtVoNut0uTKdT+PGPfww7Ozvw/vvvZ8cE3759G775zW9mPPP48WM4PT3NnASxHETc0fzs2TNoNpuwv7+vzgMDLVKgxKY0m4JLmH5ZDoOXZeJfphKuHWt5oeUNSUHlz23fuJ7b8vEN5tnS8byobDXdq8nplGjk90NLjgHbeDUBnafSUc4STMaQTd7TdLY8XUFZ+kxr/L4MSNM0u6MPg1b0dA8K2k+hQexVBvVMTh8XqPOS5qXNh+ooRcnotTG3fKAcpQF8/n6NNdaQgTax6Y7Y2OMnhuwtgz0Rk4bQvCTdqQxto0Vs3sJTYZYt803lUb1ac2SnKZj+MsAneEO/8VkYogns0Wc2SH3VarUy/R31kNFoBM+fP1/YIMB1FvrMVE4ZoAkU8fQAfosyTPXlfSSlazQaAHDR5s1mE27evJkdvY/5P3z4EE5OTuDDDz/MTo00LUbFctY6pB2cn6XxFmJ3cf+BzVcgpQ1ZuEGR15/HZYTkNzfZ8LYgsQ+tvnJtjTXKBGcwNnYQw7aihjoZWq0WTCYTGA6H2fPz83M4Pz+H/f39SxfF12q17AhjgAtl9fz8XEVTiCDSfOMK9iFMTmApf3SyYf3p3YlcycFgrCnPIgJUNvq5MNYEG2wrdUwwpeE7RjRBOq1DONTx6st3uMM0SRJotVrZCuvhcAiTyQQePXoEZ2dn8N5772XK8s7OTqa8pWkKJycncHp6mvFO3mCsqR+73S6Mx2PY29tTG46cplAnvJbGEPiMG58FB0UgT3mu+i0zIGvDKmhAuUDbiAcJQ4LIPjzF5w2Nkktpt+VBF5G4HDBS+dLpATaY5khKJ8oEzekPlH5OI6cV/7f1hWmuMMknU8DE9V3ZEUNnwOMh6/U6VKtVMRhL+yOvfmILvtucQhrD0AeaPud8a6PBJH9xzFLHi20Mr5EfVIbkDYKbZIkki4vQ4dcIg20xTx5HpyQPeHk+dBSBVc5jLsc2Bx57XK/Xvehe9hiz9eNVg087S2Nl1XYUR2ydwBd04X0MGmK0J85PmgXzLv3uqvJ7aDuG6ruucWIrR0sX/Y2o1+vZKYb0yrTT01ORJu0uTKmsonlBki0hbWTKjz+X7EdTfqagU61Wy6666HQ6cOPGjQV9fzabweHhIRwcHMDTp0+h1+st5GebL7UBsasEyTeirQP34/P20cxNvu3lypP7selzV1DSx6612R4mnw9Pa7NbTOVp6XJB6udV6w5FQBuLWqO8UO+MzWNMajAYDGA8HsPGxkY2qOv1Omxvb8N4PF7YIfv222/D17/+dQC4WBn0gx/84NJO2Pl8vuDkwzP0TUpB7MCCNj9bGknI4qXr9Eg/U7/Q+ttWRJUFNuc+ggc8TEE7X1618beNbzQoImiFAUvpeN9GowFf/epXs93jT58+hZ/+9KfZ+/F4nB0ZDBC2kkuLyWQCn3/+OQBcOOGbzSZsbGxAu92GRqORBWzH43F2xF8Mx/GydqNRRSNJEucY4wEvfFY2LCNQvQzEnrdsY1nDazZ+4QttKPC5NjiqKV8qB9/jimfTqktJ2c6zGw+/8xmvPneMcmiMixC4+uhlBzVocVGR6bhoKifp/VIcefrNFODQ9J/WwDcFUPg8UK/XoVarwXg8dpbPDeqyyd2XDWl6ce99q9WCRqOR3Qtp2vW9xvUDn8sRSXJxFHuavjhanwZX6ZzJnaFUH8DnZThhgS46WAY9SZJAs9mENE2zMaUJPISWFRPY5+iDQB1hMplEWbxRJvD5KAQuWzz02+sA20k1FL7t4KtDafoB5V69Xs90PM2u2TUuQ+snDPk+BOir2djYuHQ/KZVntL9NOr5G/hXBM5TnpTlMo4Nr6OaBM1MA3eY7wu+wregmJcS9e/fgnXfegZOTE/jBD34AP/3pT+H4+BhOT0/VV8Bwmih4P13Vcay1lXx8Kb7zOF98YQvQa/L11SFcAVxTWgSOF01MQWvL+uJlCLKu8fJADMaaJhmXsynPYMBJm+aFd8jyibJarUK9XodOpwPT6RS2t7czo3A6ncJ4PM6+RyWQT4p56dXkQw1uVx6295KxLn2HDvTJZCIK+GULK1eZUtuYnIumFTghRgctX3oemocLpjqFTEbz+Xwh+IFGPj2mul6vw+bmJgwGA2i1Wtm3zWZzwemLO6h5XWLwzHw+h36/n/2PNCZJsqDEY3DZdLS2z5jlhgGvh0nRtAUETMqS9PcqHOO87GXRwJXRmGX68B9Pa+q30ECh651PEMYGPlfZyvJtb99+oY5greOVO5k57aZy6Le2fF3PYyn2vmlcwUT8vQoDNubc70s/HwP0f3oiQ4hTMbROMQO60pj0aSPO+yGGsVTuqgxTSYfgz6+qE8cFtDnwh9dZmptRF7LpES8rYo/9VbUr8gUP0PrY2WXkBSqv8o5patfyuuL/eK2Ky7Eco61C85DGMnW2o05FFyCZ2jBvmxZt8xeRt0ZXWuZYiKVfUmjmd1caW9v4BARC6qMNDuA8aLryJBSr8GXlxTJ9Ai77MeRbpJvLLDzdZjabLejzPvXl/BSzjWx2meY7rX/WVTaO2Tz2aZqmCztf0YeGfrR2uw17e3vw9OlTODg4gOPjYzg7O4PJZKJeKF4Erup4Ndky/G/pm5C2NPmqXLRo8/UZ/1I9qI5GwdP68rk2rUZGSLS8jLiO9S5KjpRFPonBWBthGCyJdc8kRZqmcH5+DtVqNQuw0mMwEP/7f/9v+Ku/+iv45//8n8Nrr70Gf+fv/J0sOPXgwQP4v//3/8Lu7i5sbW3BkydPLq0Mok7momFywvjmoWn3L37xi7CzswM/+tGPsmMpKMroENMEM2z8qD0OE4N9PMBgMoh5XtJx0LF4KMQowiNh2u02tFqtbLfp6ekpnJ6ewn/6T/8J3nnnHfjX//pfw+3bt+Hv//2/D9VqFWq1GmxtbcFHH30Ef/u3fwunp6fZDttWq7Xg7IgloGjbjcfj7P4KADA6VmhQNs9qWh9FP2R8mnbg+gZuriKKdm5qgnScHlcQM8bESxVWU1/Ssmh5kmPCZ/y7AjY+9UMa0MkpldXpdBZ4vNfrico4VdTpndoob7mCnsfZGTMdwpcvNAEUXD2OTtjRaJTpKcvEKhRNKUjpSh9KZwxHX8w53Xc+x7uQ6/X6gm4SUifehnTuzNPGsWGi6brMjRT0xAMapO33+xnv2ngP+YnroC8D6Ek4VyFI/TL1TQyY+pLqD41GIyjoa5rT0aeA73D85ZWP/PQpXBSN5WFA3ne3fKjeVOZxclWQtw1d/E2RR25IV1KZUKupD8RbgI/uXavVoNlsXjrFLQauG19TuRPr5D6f9Cb5QvOw2S2TyQQePnyYyTVNuejb1dBUBEKD1QB2XyX/7drtakvD/R9oE+B3rVYL3nzzzexEnYODAxiPx/CLX/wCDg4Osv7w3b0Y23e16vHK/e95oIl70L4yweQf4vpjHv7RwhRc5eD858rLVJdY/LBqvlpjuSjaz7xqqLQy08TFB6WPAmBywNCV4vReVDzqZD6fw/n5OQyHQ3j06BHUajW4detWpmBub2/D7u5ulme/34fRaATj8XjhqDuTMlzWyDt1RKDRx4Vdo9GATqcDW1tbCyuocGeiRMcqHQc+xjWl3WacSg4baYLg3yEtnCabo9DHOaSh2QfcKYdOviRJYDqdwuHhYXZXa6PRyBS2Wq0Gd+7cgdFoBD/72c8W8qRKiw9NkuPd1A+mI7alPDg9tna29QUPxtH0AJfvEubfmfJ10RKaNo+sCDHCYvGjlFdMaPiSj2GpX235ayHxuhZ5DEGa1hYI1qTj6U3/m5yUGnmhmWt9A9H8mcZZaZL5UjottAFGTLeso9NXDVsf+H6rNRTzyLK88jbGN64gmzQH8jpr+NmkA3LHjwumMZ9XnyyLYVQkqO6ONo0rEGTTT69i8M+ly5nqFaKTufIqe/uFOhND67WsMcjrZZrHpatYfPL3fecLiW6fAOqy+c82R+aZz0LsY9O3God2bD7V6hqub7X+Mvwur23JZSK3ofnCT1Nepv6SdAMbz1O9lzrw8/D5y6AXaFB0MMyVP/U9TqdTGA6HMJ/PYTweZ4EqzbxatrnXNoY09QAwyzKf8l0yk46jJEmyU+5woU+/34der5dtxlmlL2rZsNHvoyvGyF/iBY2NyuWqdixp+jkPf0rfhYxhbftq7CENjdqyrzLy2oBlk8XXHaZ2XgjGapyFmBHfkegKdOZBs9nM7pfESWYymcD/+B//A/b29uDf/Jt/Azdu3AAAgP39ffiN3/iNjM7NzU349NNP4bPPPlu4xJyuDlz2bpUQ5sf7ZRqNRnZM82QygdFotJCuWq3C+++/n+WN9wegwoQT97IGYIwgjeSElPjQVA6vI+9rk5NfQ1eappdWpfoEBHh5yxCIX/3qV+ELX/gC/L//9//g4ODgEh248CHP7ndb+/HjlZPkxSpJDNTW6/WFvGgb52mjIpzzNE+++3rZWKXCsYyyTeOEPnfdZxE7cKwZu64yqUKV14AKTYdHiNPVj7hrr9lsXqI3b5mm4JJvGimt1N4mY0pqd1/ecMk7AMjuDTTdkVoGxNbfaOCJGq5a45F+S+VqrJNZ8sy7IXIk5Bup3ULpDdFN1igHaEAW4EWQCp8XcVrRGqsBdwhjX/PrSRCrmk8k3X1ZoPPCVQMdt/RqGfp7GYjFN3n8J5IuT69c8j0ZKa9zctnwoZX62Vy6MO7Ixh3a/P0yx+t0Ol3PT/8/yuT89qWh0+lAu92GwWAAw+EQTk5OjLwoPQ8JopjSh8pJE70a25w+k07lM9VDWz9XnajtiLKg0WjA1tZW9u1wOITz8/Psm9Cd8NcV2rmK84mpD/mJGCH3D2toktLk8VVy2HZo8xiJaQOLCS49jbf1VdTp1lgjDxaktG31Hk/H/88zeKSVIqiE40SCQaJms5m9G41G2coseg9lp9PJgkk3b96EyWQCBwcHC0f34tGsNCAUCu5gk9pL6xzWgDpjarVaNkGfnZ1BpVKB3d3dLJjVbDZhe3s7E6ToXJeO6o0BW35SG3MHkwmmNC6lCr/TBAZMdLr6Ny/y5It3JOO9EXik13g8hm63C9///vfh1q1b8MYbbwDAC8Wh1WrB+++/D81mEz744AMYj8cZX4SuRHfVkTsbaBn0mRRQKbIPNH3vk0/etsuTD/92GYafdozlhW9dymDsupDXqAx5T+8uA5ADW/R9klyswE3TFLrdrujYMZXNx3ieoJdEo68Cz4OCpvxNdfTpq/l8fknPKDtPxpD7trna5XDWLFrISxsN8JahP5Ae6mjloHqS6Uj8GG2j1cdilOeTfxn6SQvsS2kRAsKnnZeJVbaz1N9cvmt5XbvYIxa4HWmaU106TJkc9QD2xa306N2i6OULUKRdfrHGUKxAAf3O5cxdRT/70LFs+YR6p8YGtcnX2MjbTyHBJgCdPUrnG/wGv7Mde+tCHvsT4MVCPMlf+LLAFmSIxbdan1uMdseTzdC/aron1qVb5x1PIXXRzq2S34m/d+kqJhpdNqvpG5p/pVKBzc1N2NjYgCRJYDgcwmAwyNLj9Rfcr23SpXjd8P1VH6ea8aX1GWjL8vEl+ORn+iaUNq19nXcOwDxcvnuJtlh27VXnYxdCZOlVta2vM9RLZkzBEBoYxOcxFNdutwu1Wi27Oxbg4oz8VqsFJycnMBwOs/R41Fe1WoVqtQobGxswHA5hOBzCvXv34PXXX4ePPvoInj9/nuU/mUygUqlkwauijUqpjnmB9R2NRjCZTODTTz+Fer0Ov/zLv7wQjH3zzTez8vByd7yfDAXlKo5OjCEQtAoQ5VtpctQ6H7GtyiLAxuMxjMdj2NzchEajAZubmzCbzeDo6AgeP34Mv/d7vwe/8iu/Av/iX/wLaLVaAADZkcX/7J/9M3j+/Dn8h//wH+Dg4ABGo1F21wtA/EA9vavJtBsdF1/YJmKXgerr5ESeyLOb1aZYlIVXigRv8zI4FbmzpmhwY1RjBPjQaDMSXWOCftNoNLIjy/HYf87/tVoNGo0GAFzM7Ts7OzCfz+H4+PiS44eWQeeS2O1eVF9qx6ivcYAyrl6vW+9Huo4IMaRiGV+uMnDR0SqdhJTfcDyhTmozlF18GqJTSbJoWXLzuhjKtA1xcSTXb3jfSmnKhGUa7JwPpNNrpHQcrnmxKH6jQaRKpQKj0Whh5xkNTFx1fRDlRK1Wg1arBcPhMOouOx7YxnFS1M66ongC6aYnjlHn6lXnA4o8bUi/xZO7NMD2xbEXI8ATq0+WKTv52ED9fjqdLnV+4XYv9gnfUfUywLSAhO+io35TTZ7SfCZ9y2VoXmB/TiYTmM1m4m5rijLrNSZQ/VfiUyqz+d8cmvGvGQuST6VWq8G9e/cy+/zo6Ag++eSTS9/SExApHVpf51WGpC/6yOFVxgGo7IytJyxL/6S8ZhpL+JvS4zM/lMHHeBVx1cf2dcWlYCwXBADmQAOm505oKV0I5vM5DIdDqFar2cTDMRwO4a//+q/hzp078M1vflM8MrZSqcD7778Pe3t78JOf/CQL5FLHXJFH95omQV/BiI4erJM0qGazGTx+/BjOz8/hzp07UK1WodPpZDsoO50O7O/vQ7/fh/F4nLVXzLqb8rK1g6ZsLW22VTY22AK29D3+Rp6hd2X4OIuWIRRp0HM2m8FoNMoWNYzH40t8hLtm0YgYj8cwmUxUZdn4WepzKmds96ZJckWzekrqexuNeXif847mHjj6Xd7y82AZQRBX2QgbDdim2rwkFOmM1dKA6fm86ms40TxswRMTj6FzsNlswnw+XzCwccw3Go2FHbLaumlo9nnHadfyAXeA879t33PdRsrfdrSPiSZTWWu8gGsccR01JH/J0ZHXWMV5Lc/VF9wID9WXbPlzXWaVBi2OM+q4LANdPgih16XvuALiNrssNq5af0hYBs+XQY4vq4/y1jU0OG0LQPiUjb9j2GTUiW8au5IOIpVZhjEmjREe8NTq2yE2DuqmuIB3PB4v0OWTF0VoX4fqBUX0JfKWFHDQlF8kf1UqlWyxdwjKwPtFQfLZSXpo3qCRNgjr8tWYZGPIGFr2vBjC9y4/N9VNNf6mkKCnqT+pPTGfz+Hk5CQbY9JpVT5yUsMHZYLkOzGl83nuys+WDx8rPHYSOu/EaHuXj801f/DNRy7/vvS8aF4qG4+WFWUd02sY7owFWFxtxztQI/ykScaXAfBC8mazCfV6XVRUhsMh/Mmf/Am88cYb8N5772W7/2i6arUKv/IrvwLdbhfu379/KRiLO0zpSr5QxdvkwKVpEL7pAGDhKFkJ8/kcPvvsM2i323Dz5k1otVqwtbUFg8EAxuMxbG9vw9bWFnz++efQ7/cXdseaaAlFbGPH1HYmYS/lSR1/PL1LGUNg2+Pu4sFgkO3M1sDkZLP1gat/kG9t7YhHVO/t7UG73RZXmlerVWi321k+5+fn6mAspVOTjjpgsR95G7ockjZjX2oHabWuT3kmGniZdMW26xsTrXkQUg9EXseDr3EpOalsjiwXTGXyO15sbaQ1ZjRy0zTWqYGngXT/Ji3bVR8+NpBH2+02TCYTGI/HWRrccY9H4ftAWtXpGsOcTtOcaKujS5bbAhza+U9j9Gr1pZcBPuPW9A2OFT4Hp+mLXYguB5SPfiM5y30MdN/dDvx/if8p34bKZ5pPnvnBtzyEVgbgd2UIbC0LJr3UJF+onJTayaZDmvJfY/Uoeq7QzJ3LxLLHOZZlOxI+T954XQwALJzepUWZdAVJr+Q6q49t5gM87azZbEKSJDAajTL7MM/cZ6Izb7uH2HMhDnppDvDVrfKe7GXSTZD/2+229Vsfe/0qwjT32naISf/7BI24DcX1CRd9nFZNOm1am49mFZDGjI/97vLpuPotpF/pkdCz2QyePXu2YAPZ8g6xQ7TfrQJaumLQr2070z2xtna16WIxdpb7jE3T+DTdFWvzQ2uemejQpjO1rZR+jRco65h+mWDiSaOXFZUHF9PjMTx4LC7AC0W6KLTbbajX69Dv941HF+Fu2lqtlgXMms0mfPvb34aDgwP467/+6yzIhArkZDKByWQS5ChHaJ3Frjx8gHXEu3Tx2a1bt6DT6QDAxVEWZ2dn2TcYkDs+Pl4ItuUxoLSgDkEsE8Bvtwt3WtkULJfBaHNc0fyRp6bT6cKxXI1GI9dOmBjAY9HQeN3Y2IDpdAqDwQA+++wz+IM/+AP4yle+Al/5ylfg9PQUhsMhbG5uwq1bt+Bf/st/CZ9++in80R/9UeF0mvpE+l9yTGqV+jxBABtsym4e5aCIMXfVHNqaoBnCJ8jLv6O/eTo67kPaTuMot9Fng0ZOub7Hu9ZRlvHFD7b8arUa3L59G4bDIRwdHRnrumyFT+tMyxOItaXhQTJbPpVKBZrNZnbUF/1+DTeorKVtHTJeQ/l02XzuOhEAwH+ecxnUMXjyZTP86EkiSZIEHau6DN7iDnDuyDXpTi6+WeNiERMGO3B+xGOLqcyyBSHK3MZ0dxC9P3AZtg9d5CItmCmiPFe9tPYqQtI7y9DXvD3p377HafLvNcD0ePR1pVKB6XSa+TR8dH0fXliVzhpD90/Ti80E+K7T6cDe3h50u13o9/uZ7HHt6AsNALrSoVzIc2/tVYMky30W6RdJiwm2wC0Fl7+2Msq26EdbPh8jMe13Xo4rD7qTGvmIXy1Hfb58k84yfU3XCRofI+WTmLy+6r7hwf1lBOm1Qdg11rjOWNCyqaFIhb8NODBxdymdMGKBO9yazSa02+1LtKHyRwNnrVYLOp0OVKtVqNfr8PWvfx2++tWvLihImBbptu081dJLjfG8cBnxtVot26WJqFQqsLW1BTs7O7C7u5td9g5wIdi2trbgxo0bUKlUslVXRawW9oVtYnM5MaQ0NF+uZJkmU+QBaUUcD2AkSZK1v7avqSJmo1mqG13JRMubTqeZw6dSqUC73c7ufn327Bn8n//zf+Czzz6DNE2h1+vByclJdhfkP/7H/xi+/e1vL+yA0wQ6QyEZLJJBwJWi0DEVc4GBtr9MdPC86DvTMUah5dnKlhAS3DSl43Uz1UtTTl6jQioL29tVtisv07jUBOaQDl/+lNrX9E76Do+sp053Kguluw0BLuTf7u4ubG1tOZ06Lpqld6Z+iq1LaPmLp9HoNTbHBp2vQ49xe5mRpmnm3HMtfjLNFz78xMeFb16m9/x5qMyR8tXmeRUQU4eODal90Tk2mUxgNBoVdselCbHaSuJ7/HsZoPbeMvg4dN6SgFeB4AIKtIdxAWfIHEixyvHAdQ48PSvvvC19b7PhqENaU04IH/nkHYIQvS8vfGnV2lymvqDtru0DtLHxqFsMyPrSXSaE6psa3qMLP1qtFty8eROazWZ25QjXV2x5cXvAxz8h5Uf9SpwWKb2EMs79vkB/osu3ZYJG38sLm33DZYBWL1uVjNPyqkufD7ETtOX45ok8RH2NaMvTxRbUD2+yPa4ytL4OCpt+IvWdpj8RIT6kVcM2V3Mb2yb/bXO7Vj9zpZHGp8YWXhWKpqVMdb2qKGsbLngE6X2kEkwTNd7tik5GNEDRUMt7D9R0OoVutwuNRiMLMCXJRUBxNpvB+fk5PHv2DH7/938f3nnnHfgH/+AfZN/ihfPtdjvbJdrr9RbqOBqN4Pj4GJrNJmxsbGQ0drvdQlf8hjIFOn34XbcUvV4P/viP/xju3LkD3/rWt2Bvbw+++tWvwvn5OZyfn0O324XBYHCJntlsluW7TGdImqa5AuCaMvIaQZPJBLrdLtRqNeh0Ohm9yOe1Wi1TkHiepnbkd4vmcai66ocBWx64pxiNRnB4eAjtdhs2Njag3W5Do9GAbreb1SuGQmfb7ePTV/QbE6T88t456KLJxxFVFgVZY1wtE1LbaO/iBZDnG017a9PwcnjZ1GkYi8+oAmwq2wQ6L+P8iQubRqMRAFzs7MG/aZknJydQr9dhZ2fnUr5YR1TeuWyxtafWUeU7rjS6Bm1DdJi7+ilkDNCdHXkXer1MoHyj4fcYYwzL9JkfkCZqwKJjRLOrh/K2Scf2rUPId8sEr7NmF1qZoJEDyEN8DqCLPlEWA1zm97LoBbFgk8lYX9s7LaissAUkcM6KAbqLbw09uFynu68oT8QcD7a8UG77QFrMjXmVaQznpSXmfMIDf678eduG6L8Uvn1DZbhPO2hOtQhFs9mEt99+G5Ikyex6G3ibFWGXzGazLECEizXQPxKKMo0hF3yDbpLNlKe+kr1pk3UmfZP3F/XjamiwlbeKOdLFfzZ5wvso75jR+hdoO0ll4qYLHGca/42tb7RB9jKjaNp5/iZ91cYjsWjM4yumedBNWNK4R97ndC+7rTldZcQq22QNHcrahgvBWO605s9MgogG8bjSygd4iLGdpilMJpPMuYWo1+tZMHI4HMKHH34I9Xoder0e1Ov1hRVErVYrM7JarRZsbGxkQWRUGPFuWgDI7gDldShCkdW2AwVV8iU6ptMpPHjwIKO92WxmR9ji6u3xeLywAhXzWragC3U2upw7NE1IORK/T6fTbHUazZMGZnkw1gQ6fkL5SaKR8gZ1Ko/HYzg/P4etrS2oVqvZan1cSbe9vQ1pmsJgMMjGDvJHv9+/VE6RQk1yYuJzCp+ArCtNCI0mWnzbhrania/zOiA0NGD+Urv7OoqLCqBoyncFYpch42IE3Wxt6DMGaZ+i4Vav1xcWODWbzWxOpGXg0cauwJLkBKDjLm97SH3nMi5NefBnpqCf1P4mPchEC76nx0mtEtcx0GPCKnSZNE2zqyOke9xt8wZ/ZhpPMeHKt0h+cTl/ymh0a/qPvjM5SDG4gDqarRyb/qKVR6FzbQxw+SnNyy470bc+kk5F/46tC5p2Qhehe8aCTxtqYdJVpHda/4IPfPVkk5NRW26SvLgrNkROFiXXi0KeOko2jUtvwu/zjGFJZpvycMlzbbncvg+RO6a0qE/v7Oxk13BhUIbf6UvbXsNreXmRLkqz2Qyx5HAZ9VmbDOTPaN/kLVNbbgidmvKlb6Q5OBQx+9pUT6kepnKL9oGZnlP9UesD0/hMXGmWPdZcsthXltn8BaZvfGhyfZ+37Xza30cP4gvGpblaI6+XMR5CZNEyYJIdy6SljHOhD0L8zNcFC8FYrLg2mES/4X8DQBbMBLgcuNU4VDlGo1F2HxOuCuL4+OOP4fd+7/fgm9/8Jvzqr/4qtFotaDQaC2lu3boF//bf/lv44IMP4L//9/8urtRKkgQ2NzdhOp3C+fn5UhjDN39UvNHx12w2odFowHA4NK4+297eho2NDajX63B+fg47OzswGAzghz/84aUdUTg5F7GSTXKUFLVizmdSwkkIHea429V0hHOlUoHbt29nPDYYDOD+/fuX6uIqm+avPeZb4snBYJA5B9BYG4/H0Ov14Lvf/S58+OGH8Nu//dvw/vvvw2effQaNRgPu3bsHb7zxBvz7f//v4W/+5m/gv/yX/5KNMVM5MQSm5lvJeKdKA6eJ0kXTSoqETdnliGVISHnxsRDbMRPaR6Y+Dm2LPHXTOGu1Zfo662IgZnCFfkcNs5C85vM59Pv9TI49f/4czs7OsgUaw+Ewu1+alq8tz9cQ5+PA5sAw0WJy2mmdpVR2u3ayagKslF5+/M8qlM2rpOCaxm6R5dH53wfUiE2SFztj6ZHKmrZ3OYm1TlVX/kWlB9A7uq4SiqAfF7uNRiPR7uJzHpV73Okem95lzZNXmSe00OyQR0gyjy/q8HEe+pYXEyY55SMPfVD0/EBtVSrr0V6qVCrQ6/VgPB6rjimP2Y9lA9XlUF5p64iLmnEe9ZmPQ22d0PYv6pQlXga1x/Fucorz83N48uRJNo80Gg1oNBrQ6/XEHboxbJEQxJ5Hr8L8gX5Paq/M53Ojr8fWV1I6TaBEA0pfLH7Q2l3avGLAFdjhc60rKMjzdaULQZqmmf+70WgY83PVjdbLt4/LMNZcdMfw33H+N/k/NYjNs1rZoMmL+6lrtRrcvHkTJpMJPH/+fOU6ScwgeVGw+ZaWTVMZxmcIpDa8qnUJxaVgrI+Qk4QCN7IkJuXBN5+ADCo0XLnBZ8PhEJ48eQL37t1bOCoFj5DCXY2vvvoqHB4eLpSD6VD5p8FkSguWpRGKLgEitalLseKTKVcaqHEwmUzg6OgIOp0ObG5uZkdJo6KOd6Bubm5mKyxpPWk5sRHLWZQHtrbmgoEqOXwneKVSgXq9DvP5HFqtlnhHlLZfabvwNnIpiDimkHepIdvr9aDX60G/37+0263ZbMJbb70Fn3/+eWY487FAd1BLbRQCrbyh7WFTNovkVU6LBiFGEpUvMRzuLoMthtNVqwDzui1TqbUpS6axR+Hbh9p0mnw148SWl1QXNOxw4YZ0fDnKEx5Qajab6lMAbIZMkY5kkww1PXflrx3LkiODzx8Sv61RHKS+s+mzMZxaPE/MN9RZ7IKN53zy4fnZnD6x5fcyncK+0NbVRx5T+8UHMdtI08/07xj6gqttpPdl5AukCY+qpcF1uuhY69yW2jbPGA75zqTr8j7BOtl0P02dJbpssoXPnSE+CxvNtmP7bKDfYyC2bEGImNAGKHyAbW67Z1Sjk2n4TzOuXPXQvnfRqQUdc5J8pPa/JogdatdK4Da6z9iJMaesEhLdtdqFexXv76Wwydi8KMKm0OrGlN9MPEp/l62/bT4L1zch/G4qV/J38e9sfSLlT+tRtnY3wZde07weo7559V2EiU8kHojh6+RtyPPE00XRX4zvYswNmhiJ6xtX2lXbBVdlLJUZL2Mb8jrXbIkkJrftBMHjfmkAJ0mSLDCEBkq1WlWtGnWB7wIcj8eX0gyHQxiNRlnA7ObNm5mSxNHv92EwGMDu7m52dCMFNwK1ziX6bRHggrPZbEKaXhw3e3h4CH/4h38I7733HvzWb/3WJbow/Te/+U04PT2F73//+zCbzWA8Hmf3/2Jd8+xclRREpHtZxzbmUVIxwI1Byul0Cu12G+r1OhweHkKtVoNXXnkF2u02vPPOO9DtduHg4CBbwWpS8nAy4QoXHR+hd1WkaZrtJreB8jL+xqDtjRs3YGNjA3Z2dmA2m8HR0VEWZF61AOWySEPPMlYxA+icSS7HEI6NZdCLdMRyvNvAA7KxYMrPJV9MSip9VyR82sGVTpIn+B0d5/P5HJ4+fQqNRgNeeeWVS3MizuUYoEUZlqYptNttePPNN+H09BQODg6MNIYEX+idwK7+zKtDmOjD/E0nZgCYF15RR6KrHITPPchrXGDVBhhFqIPD5EAJ4QO6UCI02Mt1kLyOaBt43ZH+er2eyZ6rAtNchov1MChHF5KijNGegrJK0KBiTDnlmvdo2/juLLcF27Q08DqbZP5sNoP9/X1466234O7du3Dnzh34y7/8S/jss89gPB6LR5XbyisCRfAYnswU40Qj7qykOoxtruXfSvlqHYC1Wi27pgG/wauQfHZ1ItB2LhqxdPNY+rhPmwMs6lnT6TQ7clfzPdXttTuRtYElE73abyh9scb2ZDK5VE8sZ3NzE1577bUFn1dsmJzrSZJAq9XKfA78G9tYLZMuFwuVSgX29vZgPp/Ds2fPnH4u6d2y7H4XqG/INV+3Wq0sPd+9TU8TWDZcY97nuN9Y0Pg/Ne2Vpml2ioCUl+Y+4rLroBRlGRcctgVEFHntRJ5HyLxN0+/s7ECr1QKAi/nl8PBwYTEZxnMqlUop7bKy8G4ZfOJXHWVqw2XTcikqqTFO+d/0W3yHR3Dw9HRiNym3mgbgzk7+zcnJCXz88cewv7+f3YWJiuJsNoNGowGbm5vw/vvvw+HhITx9+jRLg0Fdem+mtAvI1E6xnFTaVSXY3pITG43L4+Nj+PTTT2Fvby8Tvnh3LH6L96BSuFa6aWFrE8r0JqXdxpcuBzlPE8JfEp34g042TEvvMqY7rF0GSczAPecH6lB48uQJ/OIXv4C7d+/C9vY2nJ+fw3Q6hY2NDdjb24Nf+ZVfgcePH8ODBw8W8ll2kIrC1ia+bUeDgZr8TbS42oCWYaKPykptm2rKl9L4BPyk8ecL21jjAVnTHKAdr6ZgglaG+tCeByHyzZWfDx9S8N2uSXKx43V7exuGw2E2DyJteKQxvQ/TVS+pfB95LcHkVLell3QXac6RFj/Y6DeNFZe8AljewpDrCFN/2+TIskD7N0bwysQjtjmFvufpbXq3z5iMoQ/QMUR/bOWWEXQuc83Lkr6OsPG1yzaI1U5cZ7DJztC8XTyVd9y49A5NWt/yarUaNJtN6HQ62R2iCI1DNQS28Yp0xSyP5+urN/vSY5qH8bk2Tzo+OUxyx0YXL0daGJqHh330wZjy0TanmGxpXx3bpDPR+7NteUi2Usz5XZJNIXMS/z4WjUmSwNbWFnQ6nUuBFrqAHhdLmPTUWMC8QxYsXBekaZrxL+5KpieJYRtxHrddNZBXttr0PKk8TGuSrZJM4KfDUVuRz+VF2jo++Upj2TU2bP4vU9lSf2rnFtM7bGM6riU7nJevkUWrsJV8EUqbdmxR3jd9r9HXbXqtFrY+ov9T+euiCwAyGYXAOQPgxSJ86hfyXTCq8d34+OE0ZZWBZ6+CnVp2lKkNi6LFlK+4JEdDBE4CkgKGx/RMp9NLgzsr2HAsogZ8ApLwwQcfwH/7b/8NPvnkk4XvTk5O4PT0FNI0hbfeegt+93d/F37jN35j4dtutwsnJyfZUbR4z6pEQxmEwHw+XzgSV1J6PvvsM/jDP/xD+OCDDwAA4ObNm/D666/D5uam8f4BqjzSn9hYdlv6Gti2NPRHQq1Wg1arlSngJmiNO62Bj8ckA1ys0MZdvAAAf/EXfwG///u/DwcHBzCdTuH+/fvw+eefw2w2g6985Svw7/7dv4Pf/u3fdpaxbHDHrek9NXz4O0QZhD7yGJWRNmfRsmiSFNEiytcqUi7ZoFGOJWicRq5yfedKbdk+iOW0S5IE9vb24N1334Xd3d1L76fTKTx58gSePHkCR0dH0Ov1VIEHHxptwPxwHrK1Pw/uUEeBydFI02naysa/1IDh+WF51Ahaoxi45mfXd6HlVSqVrH9j7H506UgmhxfXGcow71HQXbBlo60o0OtT6Lwv6XdSn3OZFhMvSx9cF2jkWxn6lOsBfP7kvoSYdqZLB8Gre0KAMnc6ncJkMsl2goXQX1ZZHcs2t+mDtVotW8RAwdsjSS4WFjebzSytbXe2LUDlqzf7tEORJx5Uq1V455134N1334VGo2HktdFoBL1eL7uiy+Ukz2PnzedzGI/HzmtLyuAviw2UX+jr2dvbgxs3boj9Uq/XodPpwMbGRnZtmAkm+0Eq39eHJuVHZbBrFys+r9frC8fzA1zodMPhMOMF7ospE3x4XmvrutJoTpMw9We9Xod6vQ7T6RRGo5H15DubjkjzL8s8ExPUd+3rE6J94+Pzju0n4zxlqo+pf01oNpuwu7ub/UibsGjeeeeyZfov11ijzLCNA28LRFpVQxVslyEhORa0u2z4xMGP98MdiDjJzGYzuH//Pszn82w36K1btzLhg8LtjTfegN/8zd+Ejz/+GB49eiTSgAEtNLpssAUzfJRR2+ocF5LkxbFLeMwYdTpTutDA6XQ6cO/ePTg/P4eDg4MsyEt3eWqClD402niJp3W1IXd4S89ttEh5S/ngM2xXbOfz83NoNBqwsbEBjUYDdnZ2YDQawWAwyJzuLocq9g9NYxoPLuAYQND7H6fTKRwdHWXHU+zu7sIXv/jFS0H30WgE5+fnWUAZxwDeLbwsSO1B24W3kUbJlL6zlevKy5ZecppxfqX3EEtprip4G0vjniKEz+l3vjKWz1mu8Sl9GwL+va1dNIaeDVS24HxLv8E7pKvVanYihKkMyfDUtL2pvhrZ6wKd20z9KZVna3NpzjH1N71nTkt/aMBvjXD46gUm5JU1IXm45JKvTNXKFE07+fKxaw64aggJoJSp/lS20+OVK5UK3LlzJ7MB+v0+HB8fA8D10E1iY3NzE27fvg3tdhuSJMkcr77OaEmnKWq+8JVDPD2l1cQTfLybbDWtTkXzi+VQnk6n2TzearVga2sLBoPBwjVHlF5eB409QdObEDK3xEZIe+ahF6//wbL5zjpt2Sb7ryhZpbVptPn4pE+SJAu0AgBsb2/D7u4uPH36FA4ODmA4HF6SPTZ9VmMHmXRqTd0k/V7jyykrTL4qfNbv9xf6h9r20g40nlfRgTLJv4q/TXWS8qA/0iLUMvSlxKcunVh6X0RdNHIO30l2Jn1PbWDJfnXZ52WDpCe45BJvRx9dQdPnpvnfltZEq40GTX9odcL5fA7VahVarVa2+YryB556hvdb41imOk/R/grt2DLpjmusUWa4fATWYKzNmWlznEoCyUQADnhqCGlABQMeCYXHCdN8fvzjH8NPfvITePfdd+HWrVuws7MDnU5nIa93330X3n33XfiDP/iDLBjLUa1WYXNzM1vxFSoElumEqtfrWTBWk3ZnZwe+8Y1vwMOHD+Hg4CBTGJvNZhbARgFeZB1Md/VhQFNrAHDnvEbxNxkM/F7SNE0z4xGPAH7+/Dm0Wi3Y2NiAVqsFzWYTjo6OYDgcZquv0UDiZUuGPf6N6X13UaVpurBSlS94ePToUXa/y+3bt8V27/V60Ov1YH9/P3NQ4Kq8WEH5ENDxb7pz0UZfURO6jdd4AIz2J1V2qPFs6vMYRoGPsRfaRj4OFYRWGY0VWPEpm8ueog1mDaR2sDlAUJbS49Vnsxn0+/2FHQfLqJdJlzAdj24ClQc2uk0nFEj9yB3oNoOL8wTCRgt+t2r+0eIq0SphlYZb7LJ95joXltEu3OlrsiOuEiSnz1UG9gXaZOPxGKrVKrz99ttZcPHJkyfw/Plz4x13V70N8mJvbw/u3bsHm5ub2VyDQW0bTGOB6v/4P/3tC9+Aq+05n3Nj9/0yZQMuRkNsbW3BW2+9BZ9//jl0u91sByINnsTsg1XLQlPf5aVJyxPoa5D4KE9guwjYnP3ab31pltoAeRbzunXrFvzSL/0S/OhHP4LhcAhnZ2eQpqnz7uKQcesThAUw1/cqz/8AZvrn8zmcnJxkwQ2+q20ymWTXwACsdgEG9T1oAi7Se356HtqYtnlPM65jzilFyFjfsW8LclPbXQq2Jkki7jyndjLlNVM5IbDVc5l6ny24Sf82yUvpG1t+WKbGjo8BXzmtHa+z2Qzq9Tpsbm5mzymfzOdzOD09zWQSnlyK5Wp2c1Mai/avrnF1sLYLdXy7EIylR5nwlSZSQBbfc/BASehRfJLzU3J0cmPVdO8IHsn65MkTaLfbsLe3B++8845RyPV6vez4HNcl65xO6T2m4e3J04SWwwPRUrt/+umnMB6P4a233oIbN25Ap9OBVqsF5+fnRmGLgXLcMYU7kGNf5u3TJj7CXtM/+I466yWFyAeUP32MXZMyRn+HTHBJ8uIO20qlAp999hkcHR3BW2+9Bd1uF77zne9kweSnT5+KeWgn5WUiVj9JeUqKmZSGTzhSnnRneaVSyXYl407l8Xh8KRAVWicNYhs6CF9jzqTo+wQ+bfMQbUvT+JHmOJ7OZixp6DGBz7VozLqO/DKV63JmUfpxRSRdbEIXK+ECApxL0jTNVntXKhVoNpsLR6LbxotUX06PBNN7ehKGBO2cqpGpeRRKlwF5VXAVaY4Bn3qjrOHf4OkZrh0/lM9cDgAf2nzTm2gqCi5H4CqdlRy+wQJpAQjWFXVrPs+gbFtWfX0dlahH8nvHTbDNpzwdnbOpDh3Kh9KY5PwWol/TuxmbzSbs7e1lOl0IXH2Qlxdc9pVkl/pC+i7ECS7pk7FlEOpZk8kEarUavPrqqwt38j148ADOz8/V+eFJSfjbZlcAlGcxh8v+cenWAJcXrtHx5KqXL39Q+Sid8mKqE9JNf2tkFk3H7QnNt6Y6aGAKKjx79gza7Ta0223Y2tqCN998U7xaxFWepi4Al3UAaW4y8bZL5tPnV1HHxPtha7XaQjAS643PKdDOk1D0nK/Nn17ZYvKJUX+Sqe98xqdvGp5WM+5M8synbFt5pjGrpVXSSUzzKv1Gyo/bxpqxaKNJQlFj1tROpjrY9MmQMunfEn+E2lKmOYSWw+soyVOXrQRgH3vNZjPTV20LBlGf0daP0msaazF9KVcRy7Cpy4Ki6nkV2lCST2hfcFzaGYsVtCnjJkWL/k8LdK0KdglMl+Is3UcrCaHZbAYPHz7M8nn99dfh7bffvnSMC36Hx8u22+0gZcIHLsFPYWoP7piWgrGPHj2CR48eQaPRgHa7Dbu7u1CpVKDX611SGLAcXLWKSic6YWIEYyWh7ZqE87Q9z1vK08TfNkWGp+N5xHJuhCoWAC/GIRoHT548gXq9Dq+++ir0ej34/ve/D51OB/b39+H58+eXxr7LYVoktAqsC66+sMk2bd4mxRnbE4Ot9K7m4XCYrUoz0Rji1KL8bXPC8ed5xpp2/Lqcg/iOO35M8OlbWp6rTemcGOo0kAxaSfEHeLFi0UcJlug1lUHznM/nMBwOFxR0Cn7EFvLvZDLJlPk0TS8Fjk2GItctOD28Hrb68WAA5rlsRV8zLvnccV2MijUug/MfOt6SJFHdj5rXyFimgaKlVUpn0i2uy9ig9eBHnKIcTdPFRY3YRnRX5TLgK5NQ/ubtK5tOQu0yLV9oeVFjZ/E5lM9d1L6q1+uwvb19af4sM1y2vdbBzWFznuL/vBzJtip6nkSZjNcz7O/vQ71eh0qlAs+ePYP79+975ed7/7WmfkXIco0eTX/T59xPwW1L+h0P0Njyc/Eif27T81xzq8mOd/mgTL4A/N/kw4ndh2mawvHxMQwGA3j11Veh3W5nVwz56qG+5Wp9f/SZzZY0+V2uEvAOYxqIpXXBk/sQ+L6Ie7G1bSjZYxya0xz4tVYStAu2ikCo/0IrIzVlmXQXja/ClQb97FL+Wr+Ji4Yy6OMmGkL7ygVXnjZZ5uOL1DzndfSxkWz2Q6PRyBbeT6dT427qkM03NvpCfGeuPK8ali0HfeXPVUCZ6TfpNTaaxWOKfQS4xmCeTqcLCrQ06Pl9rz6QBiuu2EI8efIEjo6O4LXXXoNGowEAAOfn5/CTn/wk+/7dd9+Ft99+G/74j/8YPvvss+xbKoxqtRpsb28vBE/KCjxO2bRTOE1T6Ha7C46F6XQKN27cgF//9V+Hhw8fwoMHD7L0NKC0DPAAhmnHICokvuDGlckZ48J4PF6g48mTJ9DpdGB3dxe2trag0WjA8fFxttO6Uqk47x2WYDqONxQ4Dn7yk5/A1tYWvPvuu9m7e/fuwdbWFvzkJz+Bzz//HM7OzjLer1QqsL29DZPJBPr9/komScko1BqaeZ3dJjp80s/nc+h2u1Cr1bLVzTdu3MjS4fHW2gUtsRGzjUz5mZQsE59r+YzKKdcYXzZMThz6HE844PdMm2Sc1qGEaXkwFhcdNZtNGI1GcHx8nMk0W36TyQS63a7aqKAyXLNAS6of0gygP7ad5+XrBHU5LCSHk+S4ozwZU46vocOynPwALxxQyOeoi4XMF5SnQnUwOkcW4Rxe8/Jl+DpIJVD5gv1uk02hfL1KR8d1crLEBJ/Xbfp/EePPFmCSsCwZwE8X4DIyJl3VahWq1Wp2TDEeC8v7wfeaJROtq4akO4fQyfVVHwdyKGy8qnXY+8xlywgwUT7D08lMZR4cHMBHH30EJycnCws589DnCoKUkYeXCeQX285QgBeLd9rtNmxsbMDp6al48pEPT4UE+Ux52MaL9L7ZbF46hhiPzaYnwS1j3PuC34O5avgG0F15Udl7VfVyW2Ab37vS+OSbF6GyUCOjffxeCCr/q9UqbG1tZdfM4aYqnEsePXoE5+fn2TUNeOJLSCzGdLXTGmu8rNAupDDeGRvTwUKdCdIKylgGAAUvq9vtQrVahdu3b2dKxGg0goODgyztF77wBbhz5w5897vfhUePHmXKEl1dUqlUoFarZceK8npi2ba2oGk09fTpC5ovDeRwA3Y2m8F4PM4chtTpg8ff+BzRFArNxKkxlEyToU97awOyUkCD5nF+fg5JksDOzg40Gg1oNBrQ7XYB4MVqYcl4l1ZQmII3PvxjAvb54eEhjEYjuHfvXnaXyebmJuzs7GTB+PF4DNPpFDY3NzPnRAgv5wV3TLuCWzaFzWVQSkGuWE6f+Xy+ID/q9TpsbW1leZydnRnLyYuQIGeMPqbjS5OfrX+1kMoJmddcfMWfawKkJppQDuOx8Br+tJXjKps6BabTKQwGg+wkBNvuXORhaWW0q855+Qh/S3LAx2jVpDOlz+vkcvWfb/6mPK+qQR4TpnFZVNtw/SsPigie8ry1emgMenwdF1eVf2l7hco7E79K/ZZHprrmGcnhnMeJaAso0+/yOip9bDHtO1M5MfgU20KrJ5n6I4QXTPqWNj8fWm3pMXCB8zvf3aGZJ0N0zUajkTkoUWajvS/du8kDDlfF8Wgbj1r7kratyynu2y42G1+DUFnC/Qwu2cHn0aLmNJo3v3uU0tnv9+HBgwcwm82CFgdowNvR5B+x/U/zug6gvkasq+TbwQAIBjI5KE9pxqBpHLt4yzbfSe+lcqrVaiYrEXhiEsDlk0CWBZ+6h+hlLtmppcHX1pPylvJw+cdseXNaVjU+feWF9rmvjqb1FWt8NK62dPm5fPUvKksqlQp0Oh1oNpuZjoMbcebzOZyfn8PJyclCPlgnH/6hMjCmPnRd5oll4rq2Wdn9WSbdh8oIU98Yg7GmQlwGjUuAoHFFBzD9ht5Hmtdhi+egoyKUJAk8fPgQ2u023L17NwvGbmxswNbWFjx8+BAODg7g9ddfh+3tbfje974H3W4Xzs7OssuvMV8MngwGg6C7/WzI47yx5Unvtvjggw/gk08+gV/91V+Fvb09ALhoM7y3EuDyEQej0QjG4zG0Wq0soI2KfywakQ76TOMA4oqIifdoHqYBkmew4+rAfr8Pp6en0Gq1xHuktP1L6xXLuMLjtHBMNJtNmEwm8Dd/8zeZ8+HLX/4yfP3rX79EM90Rvqwj9GxwjZWihXdeBzV+PxqNYDKZwMbGBrRaLSPPFyEbVgGpXySjhvK+VjHUOGBdyrPrPtJVAI/ljdX/VHnmASNU3rvdbrZoh38bqnBju0rlhhqCkt7hcrIXNZZCHW1FlFtmxfU6YzKZwHQ6NTreENx5IsE21rg848GcsqGsdBUBPn8s+3QLXyDv4KlCKJ+3trZgY2MDqtUqnJ6eAsCLk4eKsn34T16+4c5JOpYkRxhNz+cTST8BeNG/6JRGW8q331c5Rvh8xB1t+KxIvWh/fx9u3boF5+fnMBwO4fDwMLsWAUC3e8y3Dbe3t+Gf/JN/AtVqFQ4PD+FHP/oRfPLJJ9nC0/F4bL0LVoKkh5RFf5/NZqL+ZQPVFzc3N6HVasHe3h5UKhX4+OOPYTQaQa124VIK0d9ctFQqFWg2m9lpLvQOdg0vSGNZE3Tmc28I74fqtTjWeBAW80T/AvpkZrMZHB8fw+npqfXkNo2vzkQPrQ/P0xfXSR9oNptQr9cXbCYMWrZaLdje3l7QBelctEo7M488wv6bTCYLJzeUvV9jBoukvF1+Cy5/JPjakaHfcpTFfuCbXPLANwgb0p4+c7vLZ4k0xOgH3BmLc3MR4DrzGmsUgTLIJQ1cY1eaFxZGpzSQqGByDTJJuZMMWZ6nyzGuhWuFSpIk2VZ8DH4MBgNIkgTa7TYMBgMYjUbQbrez44kAXhguNLgr3Q3B664JCvjUwQc8H6QFlfp+vw+9Xi8LNOPZ8dT4qNVq0Ol0YDQaZUdnUiVi2YLX5bjU8in9PqQOrjGRpilMJhMYDodQqVSyu0HpDmXpe1e98O+QcUHL4GMT6UJHG8CFQ+Ts7OySQYd3CyRJkvHDKiZfzguSA4m3k82pZsufp9Hwl41m/owfRwtwcRx6o9HIjrfk3+ThWRNcPB17IpTk0zLqqs1vmRO/RDNfbY1/F2WYoFMAF1nY5rhYtEh0+Ro0vvMtb0+fMrXwybcoGl5GmNrSJhNijXM+B1FHqtb5Y3MCmL7X6hC28pch61xlXBf+l/QRfCbJHgqeRtPnRYDSgAs4qU20jLIl+R6ih9gCsZrvbHRKTlUc98t0sOcdvy6+pM9D9DHTc6kstEfRwc/TamjVgNrxeGcsnpiFC2ipnUvtX1ovzp+cXs24p/nEgE0n0swXCD7m0H/QbDah0+nAxsZG1obLkt9p+mKxvsmmk+og2Rba8jTPaDl5dA3THMDrkaYvFs7QPkDfg7a8UEh9Lo1R2/cAV3/eR9mAf+NCHASOmVqtBmmaLuxaxv7k9kmMftO0q9ZXYfMJ0PlumTZzHvj6cEL9CcvQuW02g/b7qz4GbQgZTyb57kpjy8c0J1M5aOI7l+5q6sN6vQ71en3hdA8qg9Cvb6qjq055oZm313DDt52uipy+KjDp96bxK/WX91IJHwVKEkScWFSsi4J0v9xwOISf//zn2f+3b9+G6XQKu7u7sLm5KeYznU7h9PQUms0mbGxsZM+5oC9KeGgczhy2vmo2m5CmKXz3u9+FdrsN3/72t6HT6cDW1haMx2Po9/tw9+5duHXrFnzwwQfw+PHjOBWJDKldfIV4nl1eJozHY3j27BlsbW3BdDqFarUKOzs72X0ueMwvLg6wwfeORB8akyTJjqyg+MUvfgGfffbZAn1pmsJgMMiOvcBAc8zd0SHAMah1fplkkW95mnJoWWgw1+v1zGir1WoLxxPj6rX9/X3Y29uDhw8fLuxWXxViTN7LDm7m+Y46FXzy0ji3NPQlycWO9Uqlku0CoPOka96h9eBppfEyn89FB45tTCVJol5tSZ2aNkOHO855XShQ5izDuUnzRCcYRQhv05XksR2xL7uyTeuPfFLkymBT2bhDNs9uGvp/6HxFf8fWdWIA6Vl2EGvVoM57Kgckecn73teJssb1hKvvJQfAsvjFtZgAA6L0lKUQ2RTyTbvdhlqtluk9PjDJqDI6EKW50Oe7Wq0Gs9kMJpMJbG1twc7ODuzt7WVX1uDRpJryTUF1DVBH9ZkjJLmq+QZpXUVf2mjEHdoA7tOCarWaeC0Yh7aOkh2hpfu6gdpi0+k0OzUuSRIYDoeXbJPZbAaDwQCGwyF0u10j/7runi0Kpn418QbdoILBHZ42pi63LJsmbxmm79HHGFKGad42+bxMbaVpQ58FKrH7Q5tf7HR58tD0qY+eHjLf0DxpcLVWq8Ebb7yR+ZHQXzscDuH8/ByOj4/h/Pw8m7+lqxg0dEp+IMofeebQMupTa6xBIflWOfA0UhsWRpAtYKqBtKqDO1X5ADVNGi6aTDDRzf+mKyv7/X4WJBsMBrC9vQ2VSiU7gufk5CRb/YWNSlfU0vx8aKXpXG1nqqNvvqggIf2TyQSSJIHDw8NsNTBdyVetVmF7ezsT4JSp6L06MQ2XUAFsa3/+TqsY2RQbUzm0LLqj2BRMXaahKK3UoLt18flkMlkwsqmQMRnTq5g4eRAnBKbVaMsAHmuNO2GRno2NDUiSBJ48eSLSyBGTZkmGSg592/e2/vDpK6mcUKMmFJo5i8MVcOTPpO/pIgw0vGxl+8wZtnaVnLc2aMa9iW84L1De0bZhyNiX8s8jv0KN31UatS8L0jSFarUKrVYrk7ODwQD6/b71G1s7SgE0Cvot3QXholP63vaMvvPhXY080JTLvzfl65oTJDquCh+bdEtf+NS3aD2LOpBQF+SL7tZOkheYzWYwHo+z04bwmMoiedglD/Lm4UoXGlQLhUbn5M9sMDlOpLJMvgQXDTbkGT8hATTbNy45Tfsad8hXq1Xo9/swHA7Fe33pNyY7IiQwoam7ba7xfR6aNrZNRtux0+lAp9O5pGeMRqOFRX4uYHva2sQ2v5n4RNtHVxnYxtgmWB+cO3HXMrWn0H8Wu+4x/LWafGidXXnFxKp1wTz+SNvc6bLXNTJbO+8V5SMqEpKdH2Lr54HNdxEDvv4WDo0eiIslcNEbLq7CHfymcW3yWcWou6/uedXni9hYt0d5YOJlre8HwBCMlTKmCoYPgehEpmWECtU84I7ter2e3e2Dd2wAXNTvW9/6FrzyyivwS7/0S3B+fg5//ud/nu0QnE6n0O/3s8uw8Xe/34fpdBqlTtwgCnV0S0BB3Gg0Mgdlmqbwne98J/v+lVdeWbgv9N69e/D666/D9773PTg6OoLhcAjVanVhd+R0Oo26OzLGBGpqD2582PjR5GS3vaOGqWllIAZpbfcf8SBFbOBYpkfqmNqtXq9nweRVK8YSXEaiBBrwAnixCCEmTdRQozIUaR0Oh/Dw4UPY3d2F/f39LDB+584d6HQ68Omnn8JgMIhGU9GQHDDab/i48nEqFIWQhSbcsYV/2yC973a72WIYzGc6nS4sJOIOAeRfDb2uPpLaPu8OP14m1iPvuJNkuMvQpXynda5p2xX1Hq1Taq1YF4t6vQ537tyB7e1tuHPnDnzyySfw0UcfGdPb+CFWEF9adKAJAksyhTtrpXKKgLbutgUWVx0mp+WqHdIhfZ4kSaabos6CwcUkSaDX6wEAiEecvcwYjUbw/PlzqFar0O124fnz5zAajbIrSvLK+DKNHapzJEmytN1ckl7F6aLpQsug8zbV26/TPE31LayvZhclRZqmcP/+/Wwhu6R7+fBFyDcc3N9kS5enDOR7emKNNugSWja9IuuLX/xidkQ0YjgcwvPnzzP/DpZr84P48vN14f+8oBsWJCTJi5ONAHSLOfA7LUyBEx9ogn00bzzy1AWt7bMK5KVLY2Picx97XMrfBC7jtAFZjjL2Ea+bSZ5L8ivUX8TtKlMeeXU4E/juWXpHuOt0MjoH0DLm8zn0+/3Mv4uLQzg0O2J9+MnVB8teyLHGIsrov7+KcPlpqA2twaU7YyWnjvR3DOXSBM1KFK3zlH9n+hsbbD6fw8HBQSbA8IhI+g2uEJcCeiZ6TeAGiMmRL9EtKWNaxxtnEvxmOp1Ct9uFhw8fZs92d3eh1Wpdqi8tCwW9rxLma0D7Bi3z0mLjOZNDgOYzHo+h2+1m7/HooNFotDCRYnvSyczEU76Kgo+RyCd3HjTGyZwKGzTkV+2scAVkNbzmUmptTiBTXqZvaJtJDvlarQZ3796Fzc1NODo6gul0CpPJJKiNNcpRTCMF//fN09bemvxCjRJfaOSsb5BFes9lfZIkmZzlO29swUXbnGErk+fl61zQOE1N7WKjzVSWqT1M+dMgkZZXqZy2facdV2tjpHjQuQ0XONy9exdOTk4u7ZB1jVPXO59gAeUj+r+rLFu+pu9DZaFJNsWaN3zKX1aZoeD9yd9JfcL7nvOHS07y/ELptr2TdBkT3Sa57SvPedkUkq7H0/IFPra2N72X6EdZwoN2qBOHOKKL7FsJWtlgGnshfWkDBrYALmykZrO5cM+ZiRZOl60uFDwN3oMagqJkkq+/w5VPmqZZIAV533eXXrVahUajAa1WC9rtNiRJsnBSmC9NCK3PgsscPkZD4KtT2pzNEn/GBuZdrVZha2sLms0mnJ+fw2AwiGKD+3zvksE2OyTEPiwLKA/gby77Ud/EO9cpYvSTa841weaXsJVFf9uOIA7Jv2hobLwYc7DLzrfJDpqHBia9SFsPm666CoTKHRNC7Tjpe18b3sZrfO7i8hLlhqsfeR5U9jSbTajX66LuNp1Os+PuXfOZpq4hsOlMRc6dVxl52n3dpsXAxMe2OdDUFwsaAl81YXIo+KBsAp/fkyfhww8/NH6PwgwNGfq8SGjbUHK2S4oIN8JarVYWZD49PYUf/vCH2buvfe1rcPfuXWu5uJIHjzMrAnTiMK1G1U6gLqVJC8nwoEdXDwYDGAwG2QR769YtqNfrcHh4CPP5HGq1Gszn80u7il2Oj6IcALhbGjEcDmE8Hmf0YVAelfHpdAq1Wg3q9brxbrxYbe0CdZJp0wMUO3ZteSOfmHaUV6tV+PrXvw79fh++973vQbfbzXbwXxVo5ZaPkbSMucTGsyEGMP0uT154EsFkMlk4XrxIUOMBHdx0IUYsOUoNB5+5zpXWZRxrggkSvXROlYLUpvqURRd6mXH79m24ffs2/PCHP4R+v5/LqcUdiyF52XjExwGkCarERoh+b2ojkxOjaDlXdPvw4B19zumgv20np5QJIe1n4nHJ4UsXAdL5KNRx6bIT6HiSFq1SHbjM0I4l0zNTHhJC2gKvzKGn0jQaDdjc3ITBYJBdoxMTlHfoaTVbW1vRbNeyjVdcuEcdtPzYcQ1qtRp0Oh3Y3t6Gra2tLMhUq9WCA0KuU1E4H/KALE3n8llxmWvjWZMuZ6KXO8djBNxMdGF/3r59G2q1GhwcHKzcNgzRf8rgG4w1908mE5hOpws70CqVSrZoAcuicicv+LwZsy1t+XE/X71eB4By2jbSXG/qb1udtTxi+951+gCXGaZgmWQr8HTUVrehDHOV5KM2QUoXUofYwd8Y3/gEYmm8hs/l29vbC4vLaNrhcAgnJyeXnmvAbRju97Dp1cvyU5U9zzLjZatvKKQ20thLtrF9aWcszZhPCqZCNNFfjbPJlE9eJ7Ypfyr4MMCnCZ7QQJStcbWBQS3dGkebadLmeVGFntYdj2+mitbBwcHCHWu4Wnk8Hmcr//IOYJdjnedvMog0bWH630WLywnkcrinaQq9Xg8qlUoW0HcFfDg9kvJtolMLemxuml7s5sU7gbBvsc+leuFx3zGU2Dx8RAMrtvxM77mjD59p6Na8s6XDI6ba7fbC3c2URjwafDqdZsem87x5G9D3edrWpFhp2scnrU/ZprJMhoq2DIlekyx3yRgbnS56uCxrNBrWi+ClOdtEuw9f28YQ/Z+W7/rGVb6GZyR5pOVzbsCG8qZrrnCli40yKNNloIFjMpnA8+fPYTqdQqPRgHa7veAkWyZ8y3TNIXn1Hf6tSXfROAhCkKc9NGl9bIRVQFu2JKu082+e+TsmtDzkO4/66vIampbNE9xhbwLytIu3l9m3Jr1C60OIUbZUnkSTb95ct6aw6Tm+vJ7X1jDlr3lO/SCucm314s5ak//BRXMeHYLWQ9LBeNq8domt3WzfmWjiQBpN/qlerweffvopPH/+3LkrX+NDkujUPHchz3dFymLfvqM8irYYPeqb5jebzaDb7WbPxuOxUYfL40eM5X9zPed34PH6FiXffevn8oPaytLS5Asqk0xzls2vyG1s/I2nFdATG10+EtPzZeuDCK7zmHwJNtpj0I/5hMxX0jteJ1Pe+FwzniTetqVDGYTg19L51kXy/fiA5qX1nWrz1cBHnpTNj6HFMmzxMvp5NIhBN7XB8H/+XtIPbbJZvDPWBB9h5xIiLoMztFwfUAGIgQ+ToztJFo+HxLRaRdwl3G0GnwlcMbQZhvg33dGUpmm2MoYeEcUd/gcHB3BwcJD9j6thR6NRFrCLNTB9haTJ+MdJTZrkeXrehiG8pnF8pmm6oJgDmFcmaYxYW9/7OCG5UBmPx9kdsbjrFe++6vf7lww+eneYVGYRDlEf41FTnkn5c9Hgk55+x78ZDocwHA5hb28va+tKpbIwDqvVKmxsbMBgMIDhcOjtRAylt4i8+Pc2Po81edJy+DtJ/nLapMk3z7zk4j/+DHc18DmK0iDd7c7bL5bBot1VIH0fmsZkyGjqZOr7GJD4y9eQizE+y6Acl4EGjul0mh313mg04ObNm9But73z0RrpPI2kJ+L4trWXbzmURhc90jcu43iVfZvHAabJe1V104x7qtem6YsjyXz05VBZtwwHnakMF90u2mz6vu1ZHvjYthQuHYj/79L/fGnwbUv+3FZvkyM6FJIsK4pPtTuLJJokG9SUxgcax6iNLv4N6ot5dCSb/8QXefhEWiDv4ktNWlM6187eEEh+DAzGcpq73S78+Mc/zk6myiMvNTQt+9ui52UfHUyy2dD/QXf3I/DeRhdCechGt88Y0MhQ6iPl/KkpJxR5fUex6cmrh2p8hfgNl/PSXISnFeBJEpQPtbaBjY5lwKbzaHaKasePqe3pXMyvjvPJUzPXSs9oLIL2tav/0BaQ0uC3s9kMTk5OFtpT8jvbfC6hvlHbO5c+6Ytl+ZmXjWWOS1+b8ioiFt0ae4mPaRsuBWO5UAo1LK8S6Ko2KtRRYA2HQ0jTNFt1RO9/WDVDFuFISJKLXVgI6fhZGhxABQB3U2LAoCi+4XyKz1zACc90NDDNx2QoY9kap7vG6cOdajwAg2mwTPoOeRYDI7HaG/Mbj8fZvU34vNlswmw2uxSUxTpIdSxijLiMEN+28KUxxEmOwP5EWcPlbJqm8ODBAzg6OoI33ngj233OF0nECN6ssQg+vlzGi69y6qvozOdzOD8/h3q9Dp1OJ3e+NK2PA5x+g7J/NpvBZDJR58vbK49T3DTGXcaQlFZLRyxHsgtlMACuE3C+pzoMylRccIQnO+RxrIbyhw/PFo2iAxum8laN2Dp0EWmXBdQx0M75+OOPMz1zNBpler/rdBcKrjO7IO0w0jgxbfMC1d1xnFMbgOr8dBzgiUj4w0+JqdVqcH5+Dj/72c/g008/hUajAc+fP8/ar4x9nAe2OdyVXoNerweHh4fZfd5oZ6DenDewg/epAUDGw/P5PHNmn52dwXA4zFUG/o6lM9B8QvNLkmThnlest+9RhQAAg8EgOxHJRpOp7012tQb4Lc7ddDGw7Rtalgu2NKayipjLsF2wjrSdBoMB/MVf/AX0+/2MXzU0aG2GImziZesXGsTuNxz3Jh/YVdPvyxrAiwEtP8buL60MooE6Sgs91Wc+n0O32720EIbOP2XlOVM72Oww7oMNqZdJl/TlZ5/vNHTSert0B5y/qZzZ2NiAZrMJo9EIhsPhpfd0rpf8Hrbgr7ZtTHq5bz6+WLafuazIQ/NVrG8Z4ROERdT4A1egK6ZxIZVpS29zvvoYhaZ8+IoRuuOTGi50taIvNA5r0ze2NPydb5CAl0frSB2ZNF96Nyr+nyQvdhDn4RNpUjAF+VxOeZoW6UNnkslJxMeBLTghQdtn+LxSqah2mlFatMqI7xjBMvAYbnqMMR5bbOvfVSp+IeNSCrzZ2iyG/KOKD/Y9/j+fz+H4+Bi63S68+uqrUK1Ws+AXjjUXD2iUKtN4CqljkQGFEAPeVn/t95oxHCJvfWhJ0xRGoxHM5/MsGMtllinPkEAtpnfJK5T99BuexvS9zTHvCthqYGsPE51SX0t5aJ1da6W2PEB9ht/9iPpeHn0O4DJPu8YO5+9Q2alxIIU4vGPp+C8LeJtKd4xqdFRb//jq83nkD+omGLA6PDxckPt4lYn2PtsQWlBPR9hOg6DfaPidOjip7kd1KUn3N7VttVqF0WgEvV4ve1ar1S45FGPOCS691KS7hMoX07ys0c0kGWdLPx6PodvtwnA4zHQfVxlaJMnFYtxGowHj8TgLxqbpxYlA4/EYhsPhwiIzF6R2suk4ITSHpJF0YDx1ZzKZOAOpJmBbURmgtYMlfrHpZaZvcf422c2+9roNmrk9RMf2AfWzoP09Go3gk08+yfoRg9M2OvO2O8/rOuu5IX4EyitScKwoXS+PL1KTxpb2uuuKoWNbGi/S3668+LyLchz1i/F4DIPBwOrzsNUhj2wsAiae475P21V10vf8vQl5fF95ofUbY1vwRcZ4Bc/x8XGm39BvOD/RXcCmHbahtEvPy8Jj1xXXeT6+SnD5OCUsBGPR+HUpEUWgDIodLx/bge5I4sKvTOCTkNSmyCRYB7rrkn5LgTtI8JvJZAJJ8mJnLPINPYt+2UKX1hl/+NFL+BzpxwvOsQ7VahWGw6G4Y9YGTV01xrmvco5H4xQ5biaTCUyn0+x+4I2NjcLKKgIxnJPaMqRytLIT+7Hf78N4PIbt7e3MGdpsNuH999+H09NT+OijjzIHVUyHD8fL5pD3MUhczlnN99QJjHn4tDfK5PF4LK7AzsMfEh15+c1Xtmnagy5mkIwJX+B8YcuHz59Ih2buxfcS37xMY21VKFJeSpCcL9qdtzRQlIevtQEq6TtMbwLle5+819CBywnJKbeWG1cLMccIzYcHxm3BGK57FAk8gQBlBaWTOhP5qS9FgAZJxuMx9Pt9mEwmavmqCcrFhCYQogW1i7X5YR/hqREAF203HA6hXq8vnBBm+n4VsAUlfKDVF6g9UKQ9hgthqtUqHBwcLARoXbQVBdOiGJ/0VxnUd8TB9aPYvLGK8UWvabuqCLW78tRZsvO5PLblj3NUu90WF3rR/ADg0hVXVwUmnZa2n6nu9HdIuaajnfPAFQTHBUWcJ31PlsR8BoMBjEYjbx+2D90ca7tv9Vi3/9WCNLbFnbE+GcQghk9GeRzIPo4mF10oZHA3IACojsTJC9fk7GMgmL7lSoGUL9ZfUiB4njanYSxBITm8pf9pemmCxXrRSRAVanzm4smilFFXW0l1dK3AkNpHChryb6gBj8EYm4JnUyyXNVnY+sU2rnwcm1pHtW8Z2L6z2Qym0+mC42Nrawtms1nGo2j8ads5RGEKdfaaxozUbhq5HXMMSnlpHJimv0P5WuMU5e1P7/tGGZWnfOlvKT8TrShDpTnBlp8vfRoa8bm2fzQOtBBHikkGuoyy2LrVWjm/DNovKGdj6XK8r03jS/rfhhj9aOMv21gCuH7O06uGVY5jSf9f4zJsOgVHEYFYTovGhogVkJX4gstCKksoL0nBZBNi2RXUVsXrd7a3t2FzcxPOzs5gNBplCyJpeSabl8InKCe9L3Ks23Q0fM/rhPSg7ac5FYl/K5VjS+trU0n1kto/j5Oefy/xr9R+Uvl5A8PU6U77waS3u/JcIz9s/ieeRuJ1k50s5eMDzXeusqU8XTK/CJhkqsbHYEpL8/ZNG+Kv4GVp5hROT61WW1gEw4Pj3CdA/QWmPEP9KLHlh0Znovoop8Fn7tD65zQyPQRIN/U30/nWZ4EY/kb/Id8NG+KnDEGeuciW5mWfp1zjlOvYa6wWofy6EIwdDAYLSndeYq4aY3ABKK12q1Qq0Gg0YDKZwGw2M67SWbUTBcB/dUuapgtH0pp2XeKOPbpbCvmmqLtieZ3yGjccGPxqNBrQarUA4KJ+/X7fWR/NjioTfHjFZAQuawVcmqbQ7XaXUpYPYo23GHIrlgHc6/VgNBrBX/3VX8HW1hZ861vfyt51Oh1oNptwenoK5+fn2XPXSvVlo0g5qGnnvMFaUzCN8kksh6aUB93xifc00/SmbwDCZJEGKPMBLubHVquVHXknOYeWMRfyO5i1/Y79x4/Zl/JHuE4ikPjHlJ7Pn7HmzatqvCyDVyaTCXS73eykj16vlx1VCXCx2I7ykgtUBkiOId6n0g7zIlZk54FEW6g8MfE1dTzQckxYtU7tQwPWGetEj5dcNvKUiWMB9X0E77Oy8O0ygWMY5+ZKpZLtWqtUKpl9SKEN0mkdhQDFzfMc1D40vXMF/CiQbs19pfxKhJjodDrwu7/7u1Cr1eA//+f/DOfn5zAej7OjX3EXbQzEGv8x8+G6LAXt63a7Dbdu3brUX/RoXPoNdRKbHOGh97PjWJtMJjAcDhd0KClAyssNBT9NTMO7eW1K1E/598PhMHtOafF14ofSVFTaZc2RoWWZbEIpyOajQ0p5mlB0G5kWM1AZYbKVioImEMsRyqdS4JynsbURgL3vMdhmS0NtQryiqF6vL3wznU7h7OwsS1Or1bLTCnlesRHD5+HKzxUQ99E3pDJpOTHtbxdQXsfyWXL9HAAu+TQ4f5tkl42nTeUvAyZ5XYY5owgaXHnGLO8q2dZlh3b+ltIteO+pkNNmHANaZWTZQV4shztNuRFjc9zTvLhD37XixqYM+NbBJ+BnMtAkAV7UILL1tU+dbG1MFSfqbJCOjZBos5XnUi6kdD4KQQwjz0SbDaHOnyJlig9vu/LwNYxC4cobnXyDwQAqlUp2pBoa3cinrvwlI9GnXi6ejCWLpSCeLY1rfOali8p1PkZN9Nlgc0rZ6KXl2e64dsE03vO0k+QAWwV856A8ddZ8a+Jd33Zath62aiyjnujcxBXEuIDApPP49IFJ75P+9xk3fPe5Sy+UxrppvLvqZ5Nb/G+tcyzE+VGGMeA7b5ogzXUmfdFXn4wFThv+L+l/IXOJzbGRpml2FB9dHGpygFI6OF+Z5m/+t0SHLY3ksE2SxKqXlYGHAdxyyuSMxnS+DjsJNv1uMplcOm7PpRf62AB08RYGEieTCRweHi7c+8vL1JYRwx7JmzcHLhTA8YE/PvMaBhHQDsEFB64xosnbBj6esQ+lOvC/NXONbTy45lb+TqMD+LSLVD5f3CONV5c9Qf/38TkU6XtbpnxcVlkuvYv+H+rvi9EnrjyW5XPVlG2yxzV2tKYsX3vfV+9xySLpfZIkC6f3YV6mXbG0nDy8FQN5fGqm9LH8nvyd1P55fCWSDmHym9B52QWbv4zOeTZdzkRrDMSWXXl0jFiIQYOWl1z2oG+5vmUtG2WgIS/yyjbxmGJUthuNxoLCmySJVzCmqAkghiNZA6wrHg/aaDQupeHC02fAFq3c2kB3PJhooIo/flOpVC7xAL8/r0hwx6lkXOA7/LHdHYt339AjC0OcXBolK4bzrExCq0y0uJDXqb5KTCYTuH//PlSrVeh0OjAej2EwGETJW+OQySOnfBxlZUNe2kPbTeLVNE1hPB5n90ah3I6xM4bLxavSXzRIpaFbktG0j0x95TqKGfMx5eHK30QrzXeNYsH125Bxy3fK+BjXSIMUSGo2m0E7tCQnTShiGIGaYJr0/LpA0k3pc5ONYGqXEJusDLA5ktDmQF0HxxQey0l34bnkNQV1TvGgKU9Ld67wOeaq8mVZ5hE+V0vteXR0BMfHxwvjwka/T93Q7ptMJtBqtaBer8Of/umfwmw2g9FotJCnZuejprxVAsvf3t5eONEKFyK5kCQXJ15NJhN4/PjxJbnlO7fkmYtQ38W5EMexCaarXDSg+WKdbe1FfQ3025iyGW0AAIBGowFJkizc57vGy4Ui+90ko01BpFVDMz9o6AxdTKHJ23X8LNVHJHmTJMmCHO/3+/D8+XNnOWWZ+wHM7VREkMmFVQTy+I5Y/Bv9OaGnHPINRDbfE+etGPbhGsvBup/Kh1h9YjzXEgUDH6i+DmbTRKhxXpqcE6bvXN/mARoBFHjUHadFM3mHQKNUuFYS8dVTrrTSc1f5pvaI1Q40P+0qIk3AiTtnkiTJAh+aC9FNjv0iAvE2ngtpZ4mWZS16KAK+7evi0TztE7KiiSpM1DmIzlc0yuv1+sIxVpwml1KmRd6ALKVNk5b/rf0+Lw1SQEQqH+Uod9Byx3nsMUT5AvM3OZ9pua5FQrYgpUTDdDp17s7W5hcbedvcRaupbTXzDAf9Zplt9DIC23c0GkG3282COzs7O9lxxSaY+pb2mXQEsQ1SntL/Jqd3CK+4dOoYOhoNetFnsaGZd68SfOdH07My19vVZ7ZAT14e0gb3VgluP1A9g6eTnHouLLve1G7WBrRpwFbTV3nlwHQ6Ncp+yf8BoL/jVkIMf4HmG8o3WA8pIKDxGdAAAX3Oj5BeFR9SnvFxTOO3Jto4z+aRQT51lmjC/gsd+7ZyJP/Qyw6X79Ikmym0/GKTdXnsGFc+Wv8ZpTEvXVqE+G8oYumyvrTQb112t01up2kKrVYr+6HXIGA6TIsyj8+vV9We9PHDub616Rx5bCofe10zriVZ7Jun9L1L37DlofGDmL71fafN/2WFpj2uss/+KkPT7q7+MwZj0eGP59BTUIcwQlpJ6HI00fT8by3jLYvp0jRd2JlQr9eh2WzCaDRaCNLmDYqVGRpDGmC5AoEb7qY0LvDVrKjcdDodmE6n1rtSJYPXRKekSHGeKZsgjWkgvKywyUJJZmDAC+DyTo/pdJodp9bpdGA4HGZH2NrKjuHMLEO/xwoaSDCNYdu8xMe2LzQBU6ocTyaTLBBK7yWU5Igpb00b8nKpI3IwGEC9Xs/u1+bpXfnlgY+OEJJ3aL6hhh1fpVqGMSahyHG3DCRJAtPpFM7Pz7O7tt966y24c+cOfPrpp8770E31R/mMCxSku7upDDbpxy7a+ZGtPG9K5yrA5zSq60g2wxr5IAW3rvL4vM7QjHfbrnweWDOlo+UtAzb+Q5mIJ21pd5r6Bq2K4nmXXRmap3QCU2hepnxMeup4PLYGLmieuLhIAl+IV6RO5gLnwVqttlQ6NDpbXnpsvoW8KKu+WUZQnqcBNVOgU9vvvrbjKvqsTPp/EXSYZH3e0yD5M7pYxOaznM/nsLu7C3fu3MmeS/dH4x3a+J0t+FY2m5miyHk8RhsUsRAh70ILaYGEVi90tcN6XlgjBso0b5QZC16jN998MwvCDodDODs7AwB55TxXQPg7/h1CGzDTCo1VrQSgq31dsBk/NvpNBk7INyZabG1ro9uE2M5kn7raBr2Ulu78rtVqC84CvLOqCISuWDIZ3aZ8ihSAvFztOFyl0Y7lh5S9LDmD9NFyZrMZHB0dZUeE03u0uAw2OZB4OoRmPNNvYrRDqIygNLj60UWnxIdcjricVrEdJLxcrnDzPqTOMluf2mRiyFjAsnDXC62/tEuXfuPq+1BjQQpwSbyrkblaGSaVEQNlVVzLSpcGpn46PT2F0WgEw+EwyOki6VO+7eQjD0PSxuBNbvDb6DDNGfw5fa9tM+148w1QL4u3bW1G+8o0h/u2UwxIspW+C8lPm4fktHTxnjSPSnOndH0J/pZ+aJ9wHgZ4cfyrpBMsw1m5bB015DvXO3RUS33mgi9Nk8kE5vM5PHv2DKrVKty+fRsmkwn0+/2F3bK0XbW8KvFHKKT29pkH0vQiCIuBcayHdJKDqw35rlPpO00/+PghkuTFQqTZbAbb29tw9+5dGI1GMBgM4OTkBAaDQXYEJB+noX2Au1BbrRbUajWo1Wown8/h9PTUmzdddXR9x7/V6iqUNsmfEVtWXGUdUQuXz8z1nvOkT5vlbV9f2b1sv6oLfHxrYRuvvrLI9q0pjbbPUS5Lxwyj/MMFpcPhcKE/pXlnGf0Xa8yH+gZdfeLSO0Lp1+gCrmeYj8/1OFo/ME+v4VVOF01XFv3zqsKmI/n2zVXCdamHDdx2R9jGPMdCMPaLX/wiTCYTOD8/h6OjoywYSzPGQe/aOWS6j8c2wKW0JqY1OXyWBdf5/y7EdJC5nN+2d0UK0Jh94uITrpSYwAMJ1Cilzpl6vb5wry51lrl4ktMtOSNNQQP+zmeAm+pa1NgwjfGywMTbsdsl7xjid1JyHpjNZvDs2bOMZxuNBrTb7Uv5hNZrWTJUo/hKY8Q0L/C5xGRUaZyAJjps6TXyJgY90nc2Bzn9zkWbj1NA6ge8e4zqBrZ53GeMSLTZ9Al6z58pP4lvbOXZ6NLysolen+/WiAds3/l8DkdHRwuBFpOzGaEZnyHy18SHPo4FiR76N5+vtY4In+AILc90bLNtnLmc5zF0jRBHqI/jhfelJLtM+hzlIR8noYnevLIkSZIF/Zfmn4c+SqOtbFvb2r6TdGzeznSHosTbmAb/x7lF0tfRUVrW3d8hc5WEonRF3sb4LFRfAHDTOJlMYDwew2AwgHa7DV/+8pdhMpnA06dPYTAYiEcX2/QujT8jVH7lbffhcAhJklzaWcV1JZctW6lUoFqtwmw2WzgRjM+bsW1CDISmaQq7u7vwS7/0S3B0dATPnj3L+pDvvqbj2HfexN/z+Rza7TZ0Oh1ot9swm83g/Px8YTG+acxr51fbNyYd3nV/rQlcdvnS5sr3uiGmvWKyj6R8TP2eRx7y/G10S9/H7GObHm2Cj2Nbk07zHW8bky0ufePy41HQfPl1eNzGHY/HcHBwIC4WMn23Srj6zcZnvn3k850pra9fRwubv11avGezAVw2lctWc7Wxj35vGxMhfp/rNpdobZZYKMu4v66gtor03NfvijAeU7yxsQGvv/56ZhydnZ3BcDjM3uNdIdLE4WPYUeGChv8ay0fegFLZwCctDBwAwCWDbTqdwmAwgPF4nBmceNxgs9mEer0Ou7u7MBqNoNfrXZpoeDCNwqSEUX63KW88L8nRxOu5xtWCD98AQMavyEPohDAdQeYq20dZyMtfvg6KUEMLISm0ochjnIa0Hw9mxKxLTKD8czmIJEeQRnFxQfs9l50hbak1qkPzX2M5iNU3WgeSzYjWKO44vmLIYRwHfBFaaF62d0Ua1ra28AlehBhORUOjE8Y67nSNqwHb/K8Zh8viY1rW7u4u7O3tQa/Xg8FgAIPBYOEaGICrMU+inFyGf8IW7PXJI+Q7+j3uNI11YoT0PCYwUFyv12E+n2c7xzTgOrbPYnvuwzJBM9ebnOzU17BKXIWxGguhgaCQtFIgzRZw8R3ftsCsqdwy9bUrCOVqD9ShbXYbrbc2cG6DKQjG52KXzOAbR+h3KKPL1FdXHTY+0S6mALAHoUN4y+Tz5eW68pXyofRIc3cRPruXFb4+UN+811gO+DUeefv0UjAWB16z2YRmswkAFx2MR7nxgvOuytE4uG2KSRkUh6KdIT6OpTz5UiUkDy1F94mN5yj9/G4GVGR4MBaVHLyLEQ26NE2h0WhApVKBTqcDACAGY/Fv+pxPbnzlsDR+NO1WpkAsVyhtdbgqDkMX3RqHmK0fuHM1pF1wdSQuGmg2m1Cr1bIjyCgNWkPNN6Clga0t8/KsL80hkGjUKNp5ypTyc821mvJC2tsnrVZ24W9NO9oCEabvuRzitPkGS7Xt5iMnJBQ1x69hxrKcGJKzVuN8o++0hjYv1yaDpXHI9RhNGT7PTXTZaAzJx3duzTMfFaHrmPpAI0OLNPYpDbHBnT55naEmuNpHM16XCa4D2Jxm/Dv6XGvbmfKzpeXf4O9OpwN37tyBZ8+ewXQ6zY6D1wSVltXm2M/VanUhUMztm5AxFTqvm3QYFzi/hupXAC8CfzabTvtMKt9Gn+l77Af+g/Ti/Ym+wVhejnahi6+sCJHNtK1M14CYvtE819qIa1xA4+v0sS0wvUl+2/6W0i/LhnDNAUXmq2kPU94SfVLbh/arKa3vHIKyFIOxfOMTwItNUT72aR79MJZu6aI3hh4eKut8ynCls+nvmsU+Wnq1dNl8SRIf8XlNmudCx6IGRdsyRUCrM/jm8zLMwWXsb63NRG0aSX939d9CMHZ3dxcmkwkAQHZvLH23sbEBjx8/zp5LCrE0oG3Hmb7sTsgiHDkvM6QjM5H/Go0GpOnFTljXABsMBjCZTKDRaFw6/oimsxlgkjEvjQ2cmDVKaFn542WYKGJDE8DB//nxbVSRm0wm2a5vXL0vKf4xgw9lcFIiipShtnpqjv0sYn7zCRD6Bh99gKt1q9Wq94p9pMvGqyZolSNuREg0+BgxPn1YhnGxhhnYlzivxwj8aHiEygMuN0IMEVOZoUFKk06j2f3uA9fY9MnHFKCS8l7mvGXT52zzfAxezEMfT8PnsJgOOal/8BjU0WgEo9EI0vTyCUx5wHXtJLk4vrVSqcDm5iZ0Oh24ceMGnJ+fw/Pnz2EymWTO0NlsBrVaLaNfmm9CcBXni6Js92WejlWpVOC1116DO3fuwO/8zu/A6ekpfOc734HHjx/D6ekp1Ov1bGGuj8Mb4AV/UFs0BmLkZes73G1lg03u8nSmsjXAsTYcDqFarcLNmzfh7t278KUvfQk++eQTODs7U+uevrJ/Y2MjW4Q9Ho+zo5JpXjHB5atWz9XkS/PztQNdffwyQKvX0b99FxpokHe+yfNNTP9BDEi6iQ9ij2ENj2jL3Nragv39/WxDFH7/7NkzGI1GAADZ4iFTWaF02lAG/6NGR87Dp3kC1RLodXeutD4LY0xpJZvQpj+b2tLXp+PiuZA+KQO/rbE8XOX+1sh3HpOiWAjGNptNqFQq0Gg0AACynVZpmmbHtSbJ4rE1tVrtEhE2RxBiFY1exqg7h41GySmiyY9+o0Esh1XRKztMdErGDDp5TMcP8WOzMLjFjzbmR1W5grC2Z5Q236CJj6NvFSjTOIvhJAsZP/R77XcuPpH4bzabiTyUxwCX6KdGmSmNb56h72z1iSXnNUao5JSSJtoiguBSf2gchj4BSFeeMY469RljpiCG9L3kIOHfu+roq7MUpWOsWncqG2K0syQvY+UngfO5LSin1fVomVJaWxm+cDnWtXorfR5LR6TBbCmPEGeq5rtQuOaUInS4EPlqehczIEtB51PUvWlQK7QMF5/hjsh6vQ6tVgv29vZgNpvByclJFoRFOqQ7dGMitjOwCPjoEGhbxRxLeediKoM3NjZgb28P3njjDeh0OrC1tQVHR0cL9NsWy5rocekqNtmu0WVcZYaOGamv8srlUNAFj9VqFfb29mBvbw92d3eh0+mIJ065eE3r38BriiaTSeY3CL2r1Qd0LgvNn9t+mnzy9FWeoNhVQUjgVBMw0eomNjkRU/Yj3Sa+cZUVQqdP20p0mNpa0y6cNikfV1to6DeNaym/er0Om5ub2fv5fJ6dLDEajawLZq6zrZhXhw0pI+8Y4/4hn/JNfYm6qG8eFBJNmjkglj3JcdV5NabPUfPeZLOukQ9FtKXkj+d9femY4lqtBnt7e5nRORwOYTgcQrfbXdgpi5hOpwv3dGBggFaKr8oImTSX4SwrC5at2BblQC4LNPW7ceMG7O7uwpMnT6Db7War809OTqDRaMDOzk42Nvr9PgwGA9G5iuUBLK7gms1mMJ/PoVariYYS3XmCgV90AEj8YAoq4N9r4Vw+2E4IwOeuvkuSJNuJiE5C7pBY9b1CJoTIGVN7+BpB9BtfYJsjuEOG3p9eZCBOypv3PXca0jbnxmAsGYFHvCOk/JctjzQy0/V9SF9q+TKUrjUuUFZ9JYYcoLtvMChl4hFMa5P5pnch8wTKOml3Yd4+sTkYbDZDaLmhzrtY0DjTTO9pW+EcsMwdhcsGLqTk85mEl02e+gRtXPpUbDQaDdje3oazs7MFBzIPRhShK5j4A8fLdDqNOmb4uNRCE/zUBJYlWvBdyM5yKQDtU0cf57HpewzC3rx5E1599VX4nd/5nYUghfRNq9XK7O00lRdHusrFXbCj0QiazWZmcxUhY30CDD5zHbafbxB3jWKQR669bHMawjR2bQFfns4UXDbB5ltz0cC/045ttBt4nujjefbsGfR6vQX/4HWApo24nrCMBTE+MPELPjfRG7K4A8But/H2lHgK8+Jzg0uv9p17ON1r+IPy0npuLic0i6lonMcE8c5YPBoG4GIwTyYTqNVqUKvVoNPpQJqm0O/3F1ZWSILCtJo0D1O5BMVVG/g2upcZlJWc9LbAUKhxQL8tEpw+WqZ0zAWugm02mzCdTjM+Ho/H2YSGY0MaUJq6SW3GJy1bPjEnw1g8VeZJIiZtoWMxpHxNMB2VLq58mfhHM+Y0fOIzhm1BuRCngtQuMfrYVy6h45sbedoFET7OU3yfV86aFozYaCtDAJVD21cx5k6p/fBvbdtoDXvpm7LK1esC07iytT/nCVdgw+Rs4DqIbYxr9DFeLi1fC0nWh8gAnwUJvuPIJRtM8wRPJ/2tBc3f1G/auvkYcvy5KQ9Jj+ffmPIP7fNlQNNvq6Sdtp22z0x6moYvTbaD9J7T5wOfsSc9x0CWjU9j8p2P053qRfV6PTvpy8dJyfPU0GeSGZwuV54mPvNpSxMPSvnk5aFQ1Go1aLVacPPmTQAAODs7g7OzM+j1etkOeoTtXlXt/Mn7olKpwHQ6hclksmB3hdofMewWjX6ax35bYxGhdpjruUu++up8PmnKZGOEyCwb/SG2F4fWbvaBadzSOs3ncxiPxzCdTmE2m8F4PIbJZCLOoyaaywaTXqqxe2yIoWfb0tH5kKeV3knjW+PT4OXFgIvXTLRIddWOAd+0GqzKz6zxk2n1QpvOl4em6zCXlzmOoIGPvWaSJwvBWOlsc0Sn04FOpwM7OzswHA7h+9//PgwGgyz9cDjM7ldB4MpTl3PKxkxl3eW1TCyTUWMP7FUKUSwX+RlXZjebzUzB4bh9+3bWBpPJBB48eLA0mm0ODdcEl9cR6wseiCojTM4N07Oi4XKOciPaRSPeIxujHnkCQMtw4God7Zo8tHA5wnH1favVgjSNe6+dqUwOKtt8UaRjRpsn9ok0NsooW7SKt0+bLttBVta2XQXyBEM07YgymjqMK5XKgg4S0u9clsXoU8nANDlQfEC/5TpDbJnJ581Y7SI5kFwBWRoUWMbY9q2niX7OW5L+eR0cADGRh8fKyBuufEzBSvocZV8RZcZGtVqFW7duZQ5wfjcovZ9PK1NMbRVTTnP4jE1p3AO8kMlchko6JqdlGbvznz17Bt/97nfh/v378PHHH2f0uvhNE9SyBQaePXuW3R1L75oPqXOs8Rg6Lxdp5y1bv1xGedz29Amu2PL0/caVj887bd5cf1s1fAPQsXVBXkao3mXSGRuNBoxGI3jw4AHMZrNCTnAw+TU0gc8YbaidP0PGEs9DS5MNPu0f8+omBOc7H/s0b7DaVVbMuczkpy2D3MkDH/rzzgVXsa0kGV32umhkpQmSPFkIxj569Ajq9TrcuHFjwQhpNBqZ4xkdDDdu3IBerwenp6eiUY9/06NdcGKn6aTJzVRpzSqU6whT8DrUSDUZbJLQy2sIS/0T27g25WdyGEh0jUYj6Ha70Gq1sgUFaZrCxsYGJEmSHcONx4Q0Go0FJclWFzohUiNfCrj5KPyu9itSmF2lcWfjwTz55eVf19hwKWBFGNRSuZwuE71Fg44XHoigtHB6JIeTbfGCJEeo3LA52ULGnGYOlOgIaXOtzLDNsRo5mwcxeYnXx6deUhpXWTaEyKHQfval42VH7HZ26QP0xxXUy0NnniCqC3nlnY+zwIZYeo6rz0JoMM1ZPM88gYJY8HXc2OZJm32hsfMwyCGltbUjTyPJeJtdUKlUoFarQaPRyK4UQTu20Whk10OkaSoezW+qjwnL0Ju05UiOryLpk/qxyPJoX1L522w2odVqLQTztLqAj+yhbSvppNo8TPRpv6djo6j2NtVJ41yl7/DIf7preTqdQr/fh+FwmF2TJS1KDaknpsUrhdrtNrTb7YWrg2j+Pu1n4h+feQHraTp+Ult+Hkdi3rxjYxX6rK+uHzrO8vRDiJ7oeu7rg43VNz7t7WuP+th9eeSvS+/h98DitX+xF7i46hbybZ5vJPkXg29i0aodG5r8imo/m56r8XlJz339TT6yR+sLWaZsX5YuDuAeg1J7h/DbVcMq9Yg8/a+x0V39uRCM/dM//VO4desW/NZv/VamfLZaLWg0GtDr9WA0GgHAxeXi77//PpydncF3v/vdS8fEIPjdl5iOrxzhBopLycX3612z4cDAIgUaPatE7ACiNr/j42M4OTmBN954I2uDWq0Gr776apZmPB7DYDCAVqsFrVYLTk9PYTQaXVL+pGOQqZE3n88XAr7Iy6iE8CNQecCXC2zNxFdEgOMqoSw0l4GGUCzLKcwhOZCKdtwhuEIK8GLHk+Yu9GXAZbxw3nf1Y6ihGTMgEpKXyyjRls0R6mj3hYmniyjrZUGeYGGeb0IdKBL/cwd2Hn7W1s2ka/AdY775uuihOr2vs7uskMa1qz+XNb+tAq66oc4rnaqkgSmA63L2YGCu3W7D9vY2dLtdqFQqmR17584daLVacHh4CKPRKNvVXnY7VCMDXbxWVB0lOaOhJwSVSmXBvsUxuLOzAzs7O8F11Oqjy9QPJZ2QtjGXs668MB1N6zsP+fZpmqYwHo9hPp9Dp9OBdrud+ZEwEAsA0Gw2odFoGMu18RTX71H2TKdT6HQ6cOfOHWi325AkCTx48ACGw2H2bawgCb0T3uWDqdfrUK1WYTgcFjo/rsrWk1AW231Z8BlX2nYJtac0z1YNH1kWEzaZ72Nba48evq5jgMsxU3to5C1fTBWiR2vlah75G3PsSrpTjHt1eb6+yDsWr7vcD10o4oPr3oYhKCLGBGD2E3LfCf2GYiEYm6YXd8F++OGHsLe3B6+88kqmuDcaDUiSJFOOuUIPcCEsJ5NJtlIR86RObE6kVCmahleWGwMmY85U4bLCZTDQNKH5SkFDLrRNfbAsh3ARggNpxroiH9ZqtYWgdJqmUK/XodlsZv/To4yn0yl0u93sf80RezyQ5JvWZOj79oc0djQ0mfK6aigbzTHGk6TEhuRPecFlRMRqRy6LNHOBpi6hyjd+q82D05wkF8e44aQb2q+u9qfywCdImMewNvWVT558HqJKSshYiMEvlBZOo5QWf2vGiUSjDZo2KJsMuwoI6YMQ+PIx6l50HEh0SOPdxNu+RgaXXyGQaOU0uegyGf1cXzG1U1GOY60ThCMWPZo24+VK/JSmKVSrVahWq9DpdCBJEuj1etkReJzuZcBUN5O9EgM+wTITT8Z0ikpBKlfetjqsyt7lY5Py/2QygV6vB8PhECaTiWp+K6oemD/uNrp9+zZsbGxAs9kU+5n/beubUAcnlY+heqtEs6lc+r+kI1L+5v0h8aumbNM3WpoleSr5gfD4YNxR5kML5w36nI/5ZS6+oL4zn2tpTGNJep5Hnml9eHmwKr3XxZu28YDQpHF968Iy2idvGXnGv5SHS+/0zU8D/J7LB1sZLkj+PvzN/TIvs/3n8meE9kMIT7hka0i5tHzuI9HkLfll8siPkHbxabtQuopAqN8phD4Xn/r0Xez2fllgsp19oZl3JHluQo0/6Ha78N3vfhfu3bsHr7zyCgBcEI+7AU9OToyrLvDScTzOCb+lv2MyEFfIuZIcYuBcV2CQAIGKPWWSNE2zY4EAZMcDbdOrNNCxbogkuViByu9jaDab0Ol0AODF4gKs73g8hpOTkyxtrVZbuBeMIxb/Fe2kWCMMRcoXm4MeIQn4vDQVwWtFtZOUr0S/b5DClA8vkytm6Aiiu8eKqLepPknyYoEU300f0gax6OJptAHQUGC7m5x3CMnpJqWVnM2x7mo20b7G1YON/3m/UueqS1GXArI+ZZtQhCNVcpLn1RdtMixG/r7QOCqKkreSk06a63jZePTunTt3IEkSePz4MYxGo+y4y2XMD2u8ALa5zbHL05cFJn7H3/Tv0WgEp6en0O/3M35bNSaTCUynU3jrrbfg9u3bxnanpxXFvP+Zj8+iZRjXU4twmsam28cJjeMId43OZrPMbtfShYuj6NHjJuCiy2UA2xaPaV41fPXT6zyvaNvClkbD5zGCPz75mtLZ7O3YMNluJv1Gk1+obeUTmKLlhASgaRmmU2jwWZl0Ai1i0C19H4MPXf3mm1do2Vy/j1VGnnw0vsjrjmXPYy9Dm151xAqaAwjBWA4+KVKFcHNzE9599104PT2FR48eZc/x2JV6vZ4ZNCZjw3QUlclYwXdJkoi7OrkgczlkywbbZMXbUGpTmwJAHX+YDneB4nG73DFDd2/QvGIgdt/4OvbRqV6r1TKn1JMnT+D8/Bzu3r0L9Xo9O6IIeXk2m8H5+Tn0er2Md22OeZMih0FvOj5439jysdXZpDCvg7r5wY1Ll3JpUmJ8HSJS/+N45ndya/OVgk6m3Vo8HafHxVu+SrjWOOVBMhP9Ps4uzZiimE6nkCSJ6CzRKPihQQ/aD1Se2L7R1j8PH9nKp3+j7KT5SUfnayDxozT2TI5kTosLJsespu0oL0p8KcmJq2p8X3cU5UQP7W9Jpmt0Ey3P5qXPlW8s563WgeYqTxMMMJUh5S21Y9n0Ml86+BzsC5ND2tR2XK5LzloKqhNwZyn/djQaQb/fh6OjIzg9PYVerwc3b96EnZ0d+NKXvgQbGxvwl3/5lzCdTqHVamVHmkqQ5rtQZ3JMmOYcibY8/crz0KbhfVTU+KjX67C1tQVf//rXoV6vw//6X/8LDg8PYTgcBgWNTXoz0u/SL3ydoiHA732P2LXZpDa6XfqNlGeSJNkO1fl8DpVKBcbjMZyensLPf/5zODg4gMPDQ+j3+2J53W43u0vWNNZt2N/fh7feegs2Nzdhc3MzW5wd8wonStPm5mZmO8xmM+j3+0a/wng8hul0mvnYTLLExIP0f5PuYvq2KF2nrHC1YYy8bXNBqF5ShB7B54TYc5jL56lpLxNi+IE1eqBmnjLlw/04rm/KoitqYOIXSS7b/M74jCPUrxbKv5Rmk87qm7ekH2pkA59Xpes9pO9swLnBpCP4+vGuEq+aYBuDIXzkkhVa3+MaYYjdpjHmQmswViK4VqtlBVerVXjjjTeg2WzCkydPssGLAoGmlfKVHNWm9JKxpqGXomxOj1igBqtNeKOwpoK/Xq9DkiTZ/UfcmVGkQmrLN08faSZnyoO1Wg3S9GLn7NHREZydncH+/j40Gg1otVpQrVah1Wplq2dns1kWjAVYvOPAZrRi2+JEh8ETyVC05WPK2xRoMH2ref+ywdVOeRGzvemYN8lRF1/y5+j8MDmWbHI4hsPOJgc0Mp8qsxqjyDZmeJkmGjEQKgVjtW0SSi81VlGe2KCdI230xJDV0rwiKaD8uc+40TiZQpVeV9to+JnPtRJN2ndr6JBXB1yGDmkbg6HlUt3D9ztT2bbxY5LVGhqkceED05gLkSMaPQzr5ENziB4QKmdj6BomWaWB5juNvmKjyxVAcNGFf4/HYxgMBtmCy+FwCBsbG3D37l149913YWtrC/72b/8Wzs/PodFowGw2cwbuJKdjGcD7VOoDrltqdCuanzT2bPTQ8ml5/HkoaB61Wg06nQ584xvfgOFwCH/0R38E5+fnAACXAuw+vgUNf+PfUp01MkfbniF+Elt+SIvNUWyDxk8BAJeOGh6Px9DtduHzzz+H58+fw8nJCYxGo0v0penFVVuz2Sy7R9b32pC9vT147733Mlo2NjYgTVOrfh8ix5GudrsNrVYLAC52bXe7XUhTeXHgeDxe2L1r8rFx3sozH+fBy+BX8B1jq5oHNH3h8l/RZxr7KgY0epvNZsrr03HVg8rDUJ8DQLw7qMsKyZbR8hT3c9BvfCHZV1p9htJt4q0Y+orNj8B1Bc5/pjrhd9K84lt/nzqsYg7gfWV65/q+CJpseWv8UWWzI64C8rSZi1+0c4yLp4zB2IODA/izP/szuHnzJty8eRN2d3eh3W5Do9HIjiNOkgSazSbcunULfu3Xfg0eP34Mn332mbEwPN4FdxKhwpmm6UIgN0mSbBUipqWCxrRCJk9DXFeggx7rjwYOtvdwOIRKpQLtdjv7Bo/5QYQYHGWGtOpKAn/farVgf38/M9g5fCZ2LS0aBfe69Mt1Bw8wxXDeSk4cXyXIpbj4Kl+hDv/YfKw5AtQXRTpVNW3tSsNlUNHOlpAybOmlo/NjgjtNk+Tyblyelv4fy4BHaOXAWgG/XsAFHM1mMzs20+Q0psY/faZF0XqwRu7zgI5mFzp1MiRJkumu0hyVt16SM8OEZdgVJgcvd76Y6KHyE+0sk+N+jeuPWEF5LarVaibbDg4OoNvtwng8BoDl3rnJ4WqDwWAAT548gdlsBp1OJ/NZ4E5N06IEH92A5oH+DGyTPLowLhbmsjYEMflFmr9c5eLvvb09aDQaUK1Wrd9QnxQALMhyW5AD56J6vQ6z2SzjUQCARqORHQ/M/SF57YD5fA43btyAzc3NjMaTkxOYTCYZP+Ai8fl8DsPhEABeLBJwXZPhamsTjxRp31wHrGr+DO2TvLZFkiSqe5iLoInK1BjtnpevfRd1mMB1tOsehJUCrDY5I8mj2IGpvPwUU4cJnU/Qd2ybGzXw1V+0eb4sCPHlaubnNcoNbZ9T/d4GYzC23+9nKwxrtRq02+3sSFuq6FYqFdjY2ICNjQ3odrsLeXCFz+T4lIQBvaNFcjq4Vn9IDG/Lr2zQOt40A5syAnV24xFblUoFms3mwj2/eAyOTzkxEep4tOWDebmCYmh841FH+E21Ws3GAT3a2JdGWwBN4nFOm1QvG8rM52WDJujJ04aUERKQ5fANDklpJV40GekU3FiS8rTJ5hC4+sbkJPdxkkn5h4C2TaxApQam/nAZM7a+Mc2jmjSmgKZrUYmWXv7OZsBLuoGNj10w8bfGSWabW5cRQDdh2fP8qrCKNqZ9P5vNoFqtejm68vCqD23S/ERlGedVH/g65dFZjraDb/matuLBXNs8yPO06QU2/VLTBi6ZzN+b0mN59MQLE+0auOwRmrdJ/mvyziOLTG2g+Q7Hp3SnuIb3fOgODeLFTKuhQ5IFtrzQSYinCI3HY+OVN6uc6/CeUFwQg3fc4hU1CNMOaF4fmjdNIz03pQ+BbUxz2W77XgOt/ZJXzwe4WACNp1IlSQKTyWTB7sb0OGYRvnwl3QOLAdHpdJqdHBaDX5HedrsNOzs70Ov1YDQawXA4zIK+1CemlUf0Hf3tS9uqEMvnEwOhdrXEH1pbUCMb8ujmGruew8Rj+K1rPoxpy+bxH9hkn61sV1v52no+74tGkfoEwqQ7h/RF3rJNefrm7+q3kLZy6asmfozlqzLRYaNRkx//dhm+BZe+Y6tHDB4PyVPDj6ueE68aYunUmjSuPtOM1YVgLD2uFXF4eAinp6cwGAxgf38/yzhNL4JTOzs7xkJGoxFMJhNotVoLCmK9Xr/kgOLMOBqNoFKpZEfNAFysCuRKqanyWudwGeFrRNuQpi92IlerVdGxlaYXR/tgsBGPb+J9FGtlnC+KMtjpDutarQbVajXjsQ8//BDa7Ta8/fbb0Gg0IE0vjilqNBrw+uuvw61bt+CDDz6Aw8PDS3dG+ihZmIYbWq58+OBGY9K2u0ZyjK2xWsRQqOjqfZ43gH8/0+Ozms0mDAYD471oa7xY7IJyAOc3nzajfBBD3vnIIHpkemzErpcNoYo0v9ee78B7meTky1TXVWE+n8NoNIJqtZoddYo6dWye8x1zIQasDw1cLqHek7e+1HmtoSMWtAGsVQadEEmSwPb2NlQqFTg6OoI0TWEwGGTvbbqIq32l+YYHjPF/nGd4cF1ySPg4QDUOVFMdcXdBv9+H4XAIZ2dn2S45DMzhHZJ4chA9BhVgcaGrFLhxBUliOHVC0pq+o39L9okGNJAVQouvE12LNE2h1+vBs2fP4Dvf+Q50u1346U9/CoPBILN98dSoJEmyYHKoEzlN/e6kLwrS+AwNbmh8D3Tc03J9UK1W4ZVXXoHRaAQ/+MEPYDwew2g0ynxQ2vx8gx+DwQD6/T784Ac/gCdPnsBwOIRmsxlVlqNMnk6n8OzZM5hOp1kZNuDJGniCnIse+l6zE2+tB16Gi+eLarPYugOdm6SAJ15dJp1AaAvOLgua9ohFJ/rUXGVdRSxDn6CwtSX2V5FtaYoJlAEu3RBg0Taj4xTgxbH+eMoDPckBYHFDFm9n3g55doDbArHLAMY58KrMq4Qy8eMadpj4XJpPtXr/QjBWKgBXjQ6HQ/GODtxZCXAR0Nrc3MyCsBgg4Hdr8snU5PzhxjXdLUvfSYNOMoKvKnxWVpgcG/QoAz7xYT9h8Bv7leZjUuCW1ba2ySM0H9u7wWCQTXB0ogO4WK3bbDYXDCFb+/P8JQcRf6/tc5uRK9FQBofAGovwCchy5yXvf0k+mqAJ9lcqFahUKgs7xCVHqVSOr/MjFmI78Gg9pMkWf0uOJ/59SJn0WV4l2dRnkgwrIoBgo2NZfMLLk4IGpqCCK08XTHWUZIArsLRGGEzj1Ad52x+PruEyldKYlxYqk3zHVuh39HtOm/aZRAfOQ6GOAtoWtnJ8Efqd5vsi5CHuxsb2dJWpqZtGfpucbXkcgkXwNO6ARPsVADL9B394kEmyjTTtKNGySrmuCa4h+LG6EtAhlscp5nJO5mkv7OfT01PodrvQ7/dhMplkd4Si89gUuNCC8odLH6fyUNLJaFqf8m3wtRtCytTqxHxunk6n2c9kMoHz83Nxh6iLDpudjOloG2Df4/HBh4eH0G63g64+kcpGn0yj0bgkGyW53Gw2oVqtZjuD0T/jqzvbbD0T3TF0kdA0ZXZQ22gztbMNtrkpr31hS8dtHekIbNP8nRdaP5m23Bi2N4etTzR+SZO8iYm8c2HR8NUN844DU9l5dXUXYszLPryOP3RRK9VLXXRK+qppTGp5VtInioDNj6NJH6v8EGhoKPPcVyYU5aPUPHeNG1eeFOIxxbjDz5XZdDqFo6Oj7P/d3V34zd/8Tfjxj38Mn3/+efZ8OBxCtVqFzc1NAJB3WEoDBVen1mo1qNfrmTFM06XpxS5aU0C2zBPUMsEZBe9DGQ6HWds1Gg148803od/vw+PHjy/lgY4IdFRch8CehkfSNIXxeGytb5IkC6t0896x4aNU+yoA6zFxteHqQ5sDJ2TCaLVaAPDiZAJclBPLcZMHUhAtTV8sLtEopjGBwYJY98tQUMXb5OzS9kmSJNBqtSBNL05FoI5HgBcOoRhtx2miBn8ZFU6sO+4+0CCG40oTkF3L7vxYRhvGMPxi7BqlY07j7AjJm4/v0Lwl3k/TNNNVUc8P3WnnKg+faQJNsWFyGHFHQ+w+XOPlAQ/0FQkMoFH5w+nIC1+5iKeV5Cm/qLlDktOh/US/k46G1oDLdHqilia4LgUsNTSgHoq29PHxMRwdHcHDhw8X6JLA50sf+4Tq1LPZLNsVLdn8dKEGp93lDKa03bhxA9544w04PDwUr/jC8VOpVOALX/gCvPHGG/D555/DyckJHBwciCfv+PQzrVvsYPwai5DGQqwA+DKAGzVwc0IIf4TyVNl4sWz0AJSTJgTKdA6qa9uQt244F63aXy3N56Zxbgpm8raoVqtZbITvhjWV47uIJBRFyzBcoOSyB8s2Nsom29fIjxh9einqamLc0WgE5+fnmcLZ6XQWdqoiQUmSQLvdhq2trex4S66YoxDG7eSaCtlWPNGVXCbBT7FMo3TZsAl3bpjxNp3NZtDv92E6ncLGxkYWUBwOh8YjN2OtOtIA+ctUjoYW14pF5E00zrrdLjSbTeh0OtlKatxZsLW1BaPRCM7OzmA6nS4c92kLApkU7tBAaZ6AbFmV/1VD40jQOJhsfc3fawKs+A0NPobCRAMvi5aHiw4kZwuljdMcSlMo3RJdpucuOl3KK/7EMBo0C0NsY9b1ngLT2fqTppPmeql8TZmaYPEyQOdFKWhsosnWVkXKUs7rZTM01tDDZ9GGSx7GGk95A78anUYrK22BSNd3ofoQlueaU7gNkafdtPLCdw6jzzAQhcdj48IqV17UvqrVauLx+y69/LrCFHDykf+r0r+1fYW2dK1Wy/oYA3Ku+dA0R7n+LxI2PQffY8ABTy/gyBNgttmoGt1Pk07j9KV1cM1BJv1PQ4spLxut+DxJkoWT1dD2CKm/6ZkUEMB5mS5IpM9NfWijC9/N53PodDrQarVgY2MjG1cU1H/VarVgc3MTms1m5mx3tYGJL13+EW2gwBehPo2yIXY9bD5N7TwSMwhBxxzKBV/dS1MGgK5/tTxOIfkGTGl8IfnNQr4tI28XAUmnpv/TtrT5jEJ1KlN+vgix6fPoOC7/GfqfcR6gOg31R3Geo21uGhcue8eGovkb88VFUpJs4nXw4YXYeihvjxAeWOMyytQ2MWkRd8ZKODg4gIODA5jNZlCr1eC9996DZrO5kGY4HMJwOISdnR3Y3NyEX/ziF3B2draQBhVqXNExHo8XVnRIAxq/MRkNlA50OJggOVzL0rl5nDqmSYy+n06n4u5ixGAwgJ/+9Kewv78P7777bvb8888/X9gBjbDdc0rLja3Ixc6D0ohtg8ciffzxx7C1tQXvvvtudmR3p9OBdrsNX/jCF+DNN9+Ev/mbv4GTk5PsnmO8IxmdV3nv2vUJ0tBdXVKal9VxdhUQGuBCmJQhHycOvXtYSp8kycJR5iYFLkSm+iotUntJzpGYSiJVfjE/lIOoHBc1tvhiGsnA861rpVKBTqeT9Sce06hBDNnuojfm/GEC3S2TJC/u4aLgin8RO58BFg2xVbbJGnFg42/c5Vl0Ob75oCMuT9lc13AZzXlpxjzpPaRanSkE3GFic9Ktwr7g9hPeefns2TOoVCrQ6/UuraRH2rkOWalUoFarQavVgslksnCFCZbjc3fjdQAN2mn0Ftv4dDm88/Jpnn6ZzWbZqVboBOv1etDr9TKn4HUByr3hcJg9C70rl4PLOxro0+RrCqbSd77HQfM8THSgzsv1Qu7wDUXo3IVtZ9rBaiqHgt675/oWg1Shznmc799++234xje+YZwrJpNJZovduXMH3n//fXjy5Al88sknqiBzTLgCuC8DNGO0bIG2kL7CI7Pxii4AyI7S5liWDRLTHxojn9B6l2nsrEKf4H6ZovVk3FBDN8iEIGa/aXwdLl0ySRLY2NhY0NFpvMO0yBK/pdcV8o1woddJLNPmSdMU6vW6KJPwfYwTpYpAWeaGNeKC96spvkYh8aY6GEsd0PP5HI6OjrLjjJvNJmxvby8UxO8dQEW0Wq0urAZEQ58KEF6J+XwOk8nkUp4uZzzPy/SuLApnUWXT+tH7ewFeOFGw/bkTLU3T7Hhp7Pvj4+NsJ6itrGUH/WIFa7lTcTqdQq/XW7gbudPpWCd5KShkM6gl2AazKS+k3zYOtGWs8QIhMqIoQxn71+UINgUmTTTxIB8ubKEOC5tC6RM0jpVW6heTo5zni2mkMW/6jj83tYPJ6Wr6Rlu2iQ78X+M0QCMFd/mj8kADjTyIIgV+8W9fuautW1HzsmmO4kF26RutzDbxbdHOszVWAx/+lHRYSf6E5G2CafxKtLn40zZ+bPmannM9SgrqasZMyLiS5FeIU4Lmo5k3TOmK1pdpe0oyzUaThjZ+WhKWSf82HYFP522T/mrjNczPNve6gPyIu4fptQO4QBMD0rVaLVdZ2rR5eMLlKLPlzdvShw+KQOjcyf0Q2L/Pnz+H8XicLSKniwxCxqZvoMylU/C2L0oGavIrIrghyUNeHvp8bHY2lQnSMcoafsUjgbe3t6FSqcDJyUmW12AwcNIegsFgAJPJBMbjMcxmM1H+Yd3RD0GP/6aOdQpXX9lsH20ea1xGaJtJ869JB9H2rU/Z+EN9gKbyfK5w8OWrPGPKVJZJjuedR2x2r0YfXiVi6xPSe0kPM+kPmnZy9RnP27RY2se/4gOTr42XLbWLD+9K5dmemeDjf9Omd+nmvpBkD114hX1sunqC+0jR95WHJp9vQ+3RNewoyofmyw8+fmLNe3UwFoGKIb0Tdm9vbyEYKyFNL+6mq9frWXAP4CKwVavVYDgcGld04G6dZrO5sCLCtgLE5TB+GZjeJOTpivd6vQ5pmsJwODQKtBs3bsCNGzeyY3oHgwEMh8OFXR0hTvllQTuxmdJMp1M4OTnJ3vMd4ab8QhBL0EiGbujKpzXc0CrqsWBypNr6mQbVNDw2Ho9hPB7D1tbWQkA2r2K2LNicuxxaemkb8nLw71XUmRrVnCaaBgAyJxMujmq321kabjBI98fTvDCtj7ObHgPvcv4X0ZbotEPFHk/dwHnRtCvcpnxpjm1EFFWvNcqJ2EZZKP/E5Dl6r18oqMyiBjaFTzBWUx7Plz/Hd9LzvGWbHK0mJ/9VlBFoH9K5l8/DPNhA+5g7T2geaZpmpxZw24/myx0upvnENPdUq1VoNpuQJEkWkMXrWqrVKgyHQxiNRtBqtaK0WVlA22oViOXE499TvXg2m2UBvs8++ywocOdbvu84Njmxfb6PUQ9TMH4ZcokHY/E0HtupZ3TxBMKlEwNAthu63W7D7du3IUkSePToEfR6PRgMBtDr9SLW7MXmgpOTk+yuWNM1UPSb2WyWnWhAndKrnieu+pwVA771DnXghuTpAp5wMBwOnT4i5Lu8d29roVkAsSyek/TEsvo8Vw1Tv+Xxw9vkOF/MGXIaoY/er/EnmewNWpYPXdJ3aDtpaPf11ZQBtL7VanVB58a4EL0zNkkS8eh/upFv7QdfIwa4jmqDZsx5BWNNwnAwGMCDBw8upd/c3IROpwPPnj3LlM3ZbAaDwSDbkWOqiKTgoQJQr9cXlFEURmho1ev1S3cbaZRy+u6qCiyftLSOtM16vR7cv38fdnZ2YG9vb8HRUalUYH9/HwaDATx+/HhhF5V0jCbFqto0ZHJFnkIj6Pz8HOr1OrRarezu5EajAZVKBe7evQt7e3vw+eefZ5MD7vhG/nbtIkZQpz415F19bDKc6be2Z2UInl0VuNrOJs94+/rIG5vz2Od7F0y04hHG9Lgu37w10BhgsRASRJcCstpybN/R/jW1p+TIttHI8wV4cRoCBiQxGIvH2APAwl1dtrr4vMPndJ7AORxX+5vq6gONw50GfxqNBtRqtWyRzenpqRgw4cEBW7m0LJcs5gEMF66SbvKyQGsM25673i+j33lZLme8SxaE0GyTj6ZxR50SseYik3w1yRRb+8QCDUxq5mCqm0+nUzg+PgYAgNFotHLHTEigKjQ/Wz192iCEXskJVjY7U0MHXsFCF+FSXYgeD0d1FNovoTJhmQ73mH2itYHzBGfytK0kL4vQQ2xpuT3hOx65boaQTlKTyqayNEmSzIanO6VjwDR3HR0dZbtk8dnW1hZ8+ctfhnv37sHXvvY1GI/H8OTJk0v5uK7LsOkWLr+bBjGckLbvVuWPCNHj6DvbPETrRu99BHDv6AuhV8orTdOFeyc5ms0mvP766zAajeDp06dZWrTffPslj3zT5O3SnU3PivBh+NBynaAJdmnaQOIJaZ7i6fLq36b5RzOHu/jbp+9NPNlsNqFWqy1cpYdtjX5qU9vTuZC3pa/N5GufxQaeTIObCrBMPt/TIDW3m9YoN2zjRut/CCnPRQMvm/7Q95JOzscfp9l7Z6yE4XAIjx49ulSRd999FzY2NuDk5CRTbHEVIjo/JQPCJIxxJQS/wBmPi8J3jUYDxuPxQj787+s+MWpA2wDvN51OpwvB9d3d3YVvqtUq3Lx5E3q9XmYc0Lx8ldiyCEY+yKjiiStS2+02tFot6Ha70Ov1YGNjA1qtFrz66qswm83gyZMn2VFmuOObOghdk3psJZE6Snzqv4YfYradhgekseajZJicL5IyKk0+fNEFLd80cXG4FN5VKE2miV1q71CnhYZXXHWX2tpUJu8PDFpUKpXMqYp3XKNTDB1URawgpG2JBj7AC6eYrS5SPq6yJEWJOt3S9GJxV7vdhr29PQAA6Ha7wceE8bJN9bDNl/zdWjZfHWj5EkA/x1Neksa9aWzQQIg2KEDfa5yCJqM+xLFO87E5ZFxyggaGbOm0jiHXeIwdwHHB1AaS7kDbgwZj6ZFfEh/anMk+dIa888k/Jn+5vnHB5RRGB7jpW205qwDaROgQxGf428R7vijL3BdjPLvkhMtmNr236eemsl30+bZ3qMyT+pfe6+crX1y2igvol0JZmKYXxx72+30xfShf2uTC8fExnJ+fLzzb2tqCr33ta/DOO+/A1772Nfjwww8XaOBzoU0/LsJRaXoeex5ctRxA5LGvbaDOXPRhFg0alKBHXdP6NRoNePvtt+H4+BgePnyYXS+HPlie3gbJBtPSScuR+iDWOMRybHqyqXzJ2R5C21WH1mag6TXPTX5jLS/Y/DYh/mqTP0GTh8Zng3lxG6bZbGYb0fhmMzy1kueF4MFYTpPLPqR9q5lzTPlo4OKhyWQinpDBZRnqFChX84xHH9kfq84vK2zjlY8J6UQtEy/76LZSeps+H+KL5QgKxiZJsmCQ0SP+aGGPHz+GWq22sJKWA1c20AupTWXSvHFXD/0Gj7ACeBFcHA6HMJlMLgUQfA2X6wZcRWM7as4kpNM0hWazCW+//TZ0u92FoCwqeMtQKpcBKuCn0ymcnZ1Bs9nMjktI0xROT09hMpksVZFGmBQBOmFqnWLLdCiuURyke9vyYDAYwHg8hna7vXDfG90py1eh5UUeXpSMIpsjNBZoeXxcSgFs/l0IQpzjJicKOlsrlQqcnZ1lx7+EGtMmGkVF5P9fUOU6ri0UPooYHluM3xURlLb1m+TcLotTao1iYDN+pffLRlHlU6OZ3/dHF1y64Aps8DTUAarVlUJA85fu+ON9LM2hq+57AMgWuboMUpcOYFrIhXnZ8qF9hvlw54eNX1zOVgq6y+D8/BwODg7ggw8+gEajAYPBANI0zeZHHpy86uDtVKlUoNPpGK8sCIXLLonVnuifQN5A3sH64NVHuFs8FLTdbP4FH3mGf2vloBa+jinXM5qvK29NGp6eO5o139A+15SHuwApv6DNkPdIfgmnp6fw9OlTqFarsLm5Cf1+H9rtNvzyL/8y7O7uLtgr/X4fjo6OoNFoQLPZVB0pa8J1kVNXGT66TdF47bXXYG9vL9O/ZrMZTKdT+OlPf5rNdWgbLitgTOGj27nSab73+aYM/bdq5OFjm69K4+fEd3xxCj7n6UIQGkw2BV9MOq0N/L5UqUxN/WL6EWz8n3dcYN50kxjerW7yEfHT1Yr290lYy4MwaHmX96lmIUEeXreN/ZBykF6pvkHHFNO/8bc0QdPVfibwIwsxOGtbZUGNcfyfGleYlhrMtjpgHhTLcIbEmsxDnEg0QGFbCUCNElpOrVaDmzdvQrVahYODg4XjAnwMII2iFRMaw5g7IhAY3McgFPIhHjEkOfh4m0g0SLRIaVyOLh8n1BovENo+Gt7No/xonBq8HFu5oTwwnU5hNptduiMN5TV1itLfLmhlrKsNTf3A6ZCcWj59r6GXO/f5O5OCyAO5Lt4KnZ+kOYfuTMDd/FLgIG/ZNkhGWcw5wSVb6XMMxvoGYkPGulZma/j0qjoHrirdRcIUsPKRrzZIATBf+kLKc31LecGmM5kCeL67q0w0+r439YmkC5q+d5WTJ4ASCuyDJEmya2V4ObyPXPTTPtbWlZfF85HSmuqj6Wdqz4zHY+h2u/Ds2TOo1WowmUwWnNKSg8AXy9LPXQ406R0G4kOcW3kdIT68bOIN7Cuq16CsqFarWTAWF23nAfdJxO7XkLHtI+Mlmvn32qCIDZKssOm6pgCQrTzq+NK022w2y+5wRXmH3+V17HLeRL/B+fk5NJtNaDabMBgMoNlswjvvvJMtfEUaJpMJDAaD7EoNXk9TWfh/CB+udbJF5BnLUp9QWbQM0PFLx9/29ja88sorWbrJZAJnZ2fwwQcfZH4t25HGpnJcz3y+x+cuf50tXUxIdv4y57qy5G2TrbZ2oXqlT1kIk/7Pn5v8Ylq4+tSVn8lu0eRD/Wk2e9AFKeZh8o1p62H7Lqb9Re9Fx135XHbShfOYB49X+GI99y0PmtgIgvsJJX1dY0tLaX2+kXy7+Fvy39L3Jj9F7qWuWDgaNACLZ5lTUAdvmqYwGAygXq8v7GjFQJdthwxdtcyFrm31CA5cn0mgyEFZtgFfqVSg2WzCfD6HyWQCh4eHcH5+Dq+99hrcuHEDABaVSACAnZ0deO+99+D58+fZMb2z2WzhbHsA847nVcDHqOQTWZIkMBwOYTwew+npKVSrVbhz5w40Gg14/fXXs7t0+d3I2G557tugEw1VPjRBHi7wNApz2fhzjcvgTqfQPtN8x2U6X4ABYF7puAyD0zSufZxJmjJMwQKbI8+nTB/FWKNM2JTSyWQCT548gXa7Dfv7+5fyw9WGtVotWLk1KeyrWLnIMZ/PoV6vQ7PZhF6vBwAAt2/fhvF4DM+ePcvodDkoOWyGI4XWWMPvbYrmVZXXV5XuVQJ1CtS1Q8dSXkcN10MoJIMlpKzRaJTJHpPugvnHgotOrhfShaRFgdedOxy4o4UagPREC58AxRrXC0X0ObVLXGUXzXPI33mPpdMgjz6Jfgrpnjct3ShvJF0kNGibJIm3HJOc4L405OELfrerT3CEyswiTkBBYH/XajXodrvw0UcfwdnZ2aV0jUYD3nzzTbh16xa8+uqr0Gq1rLvSlxXI83FwruEGjrVltyXaOxsbGzAej2E4HGa+OUlmYtoidoavEnkCRihz+YJlk26qKes6+Jk18hN1BOrDdMEW+PCxlzX5+wRLOU2aece3L5IkgU6nA41GI4uN9Hq9S3qDie/Qb0P1Ikxv2/gWgph8hnRLuHv3Lty5cwcALub+Dz/8EAaDAQBc8BUe5Yz6VR5dcBkLO9aQ4fKBavs09jzLecKmd0vHKpvsJFUwVivQqKHvyocLAyloxMGjz9wJZXIIoaOE5sEbxEeBXxVsE4XWOWwLlKCCgf+Px2MYj8cwGAxgNBplQo7mV6/XYWtrK3NkU2WFrmrhDiKaB6chBrRCVKLH1YZ4bAK2+3g8zlYOUqOJ34XDhYJJyZDK9QmwmOD7Tew+KStswtWVVnoWO2CSR5GICcoPGoXYNJ4kPjTxWlHKkC3PEGeOBMlJbsqft0nseptkyHw+h9FodMnZg44jyVkYAlN9aGCgqLnXVjb+RplOj2S09ReHjxMyb9/axo+NrjXKhdD5FccLn2dW2dcheqfre6rn07x8yte+p/AdvzwISiEZXqZ+95GBLnljs8FM6ak8lOilthrmQXV86VtOj8ZpRe0F+q3UXpq+4jT4IEmS7D6u0WgE0+n0En2muqx6TMYCt9FDoHWMYnn4TYj+LNmatrLy1s/XEWvyddh0YpPdwfOm/7vGJE/vkilafvbheZ+0pjZwjXGp3aX39LeLLp6nq20wT/RFdbvdbIc9/a5SqUC73YatrS3Y39+H4XAIh4eHmbNZ4+vRzIU+/qKYMsw3v6voj6OI0XZaOWYqj36Pvih61x6+p8FFevQ+bpYxBTWW5TvV+mjy5h2Sf9758apDOxfR9zZ91+e5q919x6DWzqdpbfxjmu9d5VEdG8cmHtPL4xk2ermOTvPO4580zaMhPmaeD6W5UqnA5uZmdoT65uYmbG9vw2QygfF4fIkOunAkht5aFHz9zNcNGnluGlc2eWObozTQzrcm+aXlN54u185YE8PgrkgcCLhyEQNYOFjwnjh6lHCj0VA3HB6hgbtycdUHVSo6nQ60Wi04Pz9f2G27LAWi7KA7n0x4+PAhPH36FL74xS/C9vb2pSAjDdKagLtCsQ+KFjQuwwhA56gxpaF5PHr0yCn88T4OjWNRUw8aLHHtOr7uQj02bEqii09W3da2ScL1HYDsmIixm3uZCG2DvMA5jx5xa3NySUYKtjdAcTxF70xL08X7uFCu7+7uwvb29oIjyISQvsYTFOr1+oLyHRvYlqhzSHdTHh8fw9nZGdy6dQs6nQ7cvHkThsMhPHr0CNLUfESexjFG0/GVrKuWFWtcPyCvSUa2j5EgySV8F4tvUUYCwKVFfr4n2NA8TXoaTYPvYo5B3va1Wg1qtRpsb28DAMDh4WF2zBb9piyygM5dAC/aDoOReCLMfD6HWq0G9Xo9W7GP9hWvm9TGtJ1MASjOF3wXsHTME31H8whpB6xLo9GAs7MzOD09hc8//xyS5CI4S+8Vx2+k+tA5h7ZHqF5VNKjuRB0faGsDQGH3uhcF9DlwoB5AFxLHAG27vDKG5iU5VWPANh4leqQ6Fc3Hofnb5kPbN6gb+5TjQr1eh83NzYVxNB6Pod1uG3ce/tmf/Rn81//6X7NdtLizAvvKx4+grQ/KLJt8xr+1OjDN+7rCJyjE2wEX+RSFNL2497XT6cB0OoXT09NLOt6dO3eyq4gODw8X5jjclBFybUsM+ASxTMirZ5Vtri4DXHMG9ydp7HxTfjbfKV9QECKLtHXRQpKdIfPmcDjMfDTUZvJF0eMxBuhVKGmawmg0gldffRX+3t/7e9Dr9eDo6ChbHPLJJ5/A8+fPYTweL9BVhhPXNAjxM78McNV9VXLYNn8DvNjNTfmRppd8jwvfxyIOwDzZSQY6/44a4Vy5c03EtFzqBKc7EmkekrPpKoPW31UXSQBIxiNVxtFxzo+Hpu3abDZha2srmzi4M0WizeYwjN0nLsNBuxpCemZyqnDHois/nzrz/jIZnSaaTDS8rHD1hcnRpkVIwMrnW8oPsfqU5oVBqTRNg44iNrWVz3g3tYPN4W5CjHJN+YQGLqgMN81vvEwNT3D68J1JaUXnZcj9iz4BH016l7Iayuu0TXkAgh4tz8sw8Y3UZwitcWDrz9DxXZZAz8uCvHxp0xPQoUaPYqIL3Ez5aHnG14GhGR/acvPoX5pnvtDqU9J3XDeTjrNzGXaadzZw+arNx6ST0x/6jjs/XPImpD4amzJ24ISmRfsHgfeq+5RlqsOy9G+fslxjyjUn+zgLY89PSBvKR1ywShecmb4pEpJTularLbQV17dtsNmb/H0MPrOVp9VBtd+6fDOmeUfrj6L5SPKuKH0JfSkI2/GJ8/kchsMhnJ6ewpMnT7K7jblOHjp+XG0HcNmO0fgWrro/QeOnyZv/svRxie5qtZr58XZ3d2F/fx9effVVuHHjBrRaLahWq/D8+XM4Pj6+tNhIK9fz6iyx8w2Bxk921Xm9COSVpya91eSv1djjNh8NzV87p8aUEaY5m+fNF4S7aOW6OdaP6/Muunx8er5+CVN+dAH9/v4+3LhxA7a2tgAAYDAYZAuSptMpjEaj7Ht+BKzWrpRoCIHPXPwyyY48Np9p3GvGTShMeqH0N/WF2+SCpg0WgrF5VhSbBF6SLK4yRAFhGijcaPLtyPl8DuPx2Gkwm3aEJkmxd4eUFdge9Xo9c/hNJpMF4wFXcgIsHneSJAncvHkT9vb24JNPPoHHjx8v7FrWHtVWpONYY9S5jED6jvIJ/x+fobE9mUwyfjQJGVe96cSKwYPpdJoZaQjN+fh5HcZrlAsagR+jr/v9fnavNPI8Opul+yfKyl+hu644TO0uTdB8zPmWbXOImOQmGtCmoCpdMEPppAp7kVglf2DZuJvZ12CMkd6HF2jaso6rNYoD5ddWqwXb29vQarXg8ePH0O/3VXmYZFER0PI2153oDln+resEkLyQ5CHHKmUiH/vUwULbS9qxuUwn8BrlwLL72+Yg4TubKWLYfcjfaHfevn0b2u027O3twenpKXz88celGgN4FyM/LQrbiNuSruB/pVKBRqORHWNIvwXwX2gjyZm8cAVtTQvxbToPbSuJfp8Aj+0+r7zA4Gq3283ostE2GAzgwYMHcHx8DAAAGxsbsLGxEVX/8z2la41FhPQFLsJAaAIjeWDL9+/+3b8L//Sf/tNssdiDBw/g4OAA/uf//J/w/PlzmE6n0Gg0lmILmuC7mMKWLsYcs7a9/BDS7q65Rxoz0skXoWWuMg8Kbof4xCVwQTm2C92th8f90nJsKNIvj8CYw3g8zmjb29uDf/gP/yG02+2F8vG0U9whC3AxNmk69LsvE+t5NB9WZXObaHD5MOgubv4N/V+SV1Kel3bG2lYA+TgNOTSVdK32MJUn7UzkwhmPQ8R7OhB0F62N/jLAZliFOvltZXEn/fn5OcxmM9ja2oIkSbLAH7a1tGqTgwfiOd3LEPy8vJBvuYMrTdOFutF20xp4Lv6XDHUpwKtpP1qHMvP8VYSPfCsbpPFH+cu0UinUYKOBP4kX+Rij30h5cbpM723peHpbkFmSI9z4cxmDLrpN71yTuw+m0yl0u91MgUc5ww2AouQFDTbZjvLg6SW4ZDvKZC5L8fQHPIZyf38fer0eHB8fG/lbmrdsjkPpe4lXTNC0fUy+WCMeYvQFDbzZ8uNzkG/Zksziuk0ofBzkWpgClS7dK0ZgWtJlsexarZYd/VepVLJjil1BBhONMRyKlFYXsExc5MoDRzSAQedwU7tLxqlp7jQZtrweNp1Eei7VzzZX4CkJea4YkfQaqT6xoe1vEx3Yj+jMS9P00lHbZdJrqV2Gd60t49g6m96M7xHS4jfTd1I5seGjb9h02Dz6P5bl42PSzkd8DJi+Kdpe43IPj7GfTqcL9wCiTOV+LfRf0RPKKJ0+MsTXftLywVVFSN9rbBD+LERuasaWqz/41XH4rNVqwWAwgNFolF1DgAGRRqOxEPAwlVW0/A/RXfnfmna36RQ2WnzSXheYbEzfeYDrQdr0/Bmny2UD2/S+MtnP0tylAc4hfH51laOhBRFj3FP/OM5r1Wo1263fbDazXbBJkkCz2YTz83N49uxZdn0WP9rYl7ZV9/F1Q4z29LHhXHlQunzsX1oPbkNwHwzaRVzH4+XasBCM9RGKJkjGspSGEkgN3ZDycQUENXK4M7fT6UCapnB6epo5FLAB6XHGZUYMZwyFS0GhF4cDADx9+hRqtRq8++67UK1WYTKZXGo7V/+hs73oXQ4+MDl+6HvTd/zvNE0vrUzW3GPgY4hKhhiCHyHrmoBdzqg1ZJj6SnKC+xpSZesLHN/SUSn0flR0woY4mfG3r0MhVB7mlaX0e5MjTpIpJsdbjHnXxpOu/MfjMRwcHECz2czmSpwfOb10vta+09APcLFoajabZcfPuMYZLVuTP6bF4wsprZPJBMbjMUwmE2g2m/ClL30Jnj17Bt1ud8FZJsHF81If2ByCefhB65yLrU8sA1eR5mUi5txhOvIptA+o48XXMNLmj/nhfCQZTUWAX0WRJBenzDSbTdjZ2YEkSeDRo0cru28T24I6PuhzSrf0LQYMsP3QNkAnr6l9qSzicwr/hjtOpX6ji2e54UttP0l/N8lFl8GPp9rw44ol2IJsyJchx/+bEFse8rqj7XJ+fg4AL9oWn5fx3lstuPO9KNsagX3vuwNTcvDEogvz9eVLkx7r+kaqA7VDfb6V5pKrhHa7De12G46OjrLFDqibmnZ69fv9haMZi4KP/6Ns438ZOqKNjzVY5ul7SZJAq9UyBr6Oj4/h+fPn0O12od/vZ7IAN12sAqHlxgoE2GyosvJ9LPiOH5cf2adcX7h2j2rqYRuLLr+Kz3ehbaopj39rW4RWpkAlnuyIC0EALnxAv/7rvw57e3sAAJk/KEkS2NnZgU8++QQ++OCDLA8M2Nr84muUF3l4PXb5pnmd6mOmMUGv56RptfXzujNW6+TjMBkA9B115PJgUohAmE6nMBwOM2GNDoNWq5WdNW5zHND/ywLurAilz6Zg0CM8sd2osQYAmXO60+lcEvi7u7tQqVTg+fPnMBwOYTqdZo4bbT9qDIFY0CgSEl/Y6OIDV9tPUr7SOKF9gs6hTqcDtVoNhsPhgqPNlj+vj2+A42WCLXDoGo8mHtAEbm1jYRnySeJ5XKUmTVCSg1RqH43zFsGPFc5rbMfKx4ZqtbqwqpgG82zzIb73kRt5YTqtgNLCT5AIAW9vlyOQKzIx2oMGJahjHfOezWZwdHQErVYLbty4cen4bZtMdfUZb2deNy6bbfLYFMCwyRmez1WU72WlOS9dNtku9R+e8LKxsQGNRiM7tUSCRp/y0blszm+pHj5tY9LBY8lCHFc8eGqjISYkGRdax1qtBkmSLOh7NpnBr9WQvrFdIUPpRQcJ3f1bq9Wg3+/n7iuNLspptNGbBxo6NN/jb7pYrYjgmo0G/o3W6Szlo9F5+bdaGyNvn1UqFdjf34ednR145ZVXoF6vwy9+8YvM8Ye7CyVbyAaTo0bz3mZbur6z6RVJkizIAZPvhOYR6j+gfgEbQvRqTXrfPnIFlzk/x5xjJOBR0lQW4N+NRgO+9a1vwd27d6HRaMDx8TH8/Oc/h08//RQALhx9/X4/1yJ2k/7oM59L34fSUpR9E0KTT6DDltaHR7n8tcnpUFCbLU1TGI1G0Gw24d69e7C/vw+NRiPzlUpXXOFxn9pFZDF0J5eMMelLWnlu42ntvOyTpqw2iwkaG8H1XrIxTXqH1OYme8TWRz7jJI8vzZZW0kk1cyalidbPZ5Ma+uTovIcLzqmvxcfWk9Lkldv8mPbRaJTpY2+//Tbs7+/Da6+9BpubmwBwsQBpOBw6xy3+7VoguMrxuCyf3iqh0fF5Opc/2Kc8DVDuuHiBn2IjvUN7Qmsrmsq8FIyVEoZU1lYwn0ypsDI5YUwNYnKO0uMGqYBqtVowm80WzlCn30k0lBU+QkVTpyR54XTH4Gm1Wr10tNrZ2RmMx2Not9vZt9h+N27cgN3d3UyA0qMHfCYnPlBchnBe2BxUvvnwVa0+/GQaN9ge9PJyPM5zPp9Do9GAdrudrc7A9FzZoc+lcqUyX0ZI/cCPNuXt49NWtL2lXTU8jUSTZMDFMJJdoAsseJk8eFXkXR6hBr1JrnAHmA94u9dqtYW7nHHFMS8T/5dko01pthkjmjlcw2/0Pb/T0USXL7hxxfNzzQH0nWZOQZ2AykZazmw2g8PDQ+h0OrC1tbVw9Ahf9UYdpbw9aZvx55qgGaZ38UXIeHd9U6Sj7LrCpafSND55SjyRJAmMRiMYj8ews7MDlUplwVFrcnRIY8tXjnA6bDKK33uorS89bUUad3lhaxN8r6U5pGyaNx/TpjldGv+4g2o0Gl062p3mT+dlfG7aWWqST3xuxJ2ymA/e1zQajQrZ/YvzDtcvaN0kepdly5lsG9rGaBtQnl6mfr1sXd4mD+h7LkPy9lW1WoU7d+7A/v4+vPnmm9kcjsGwmCczFcVfOK5s+aM9WK/XIU3TS1cwmWj1gaTX8NOXJHD7U1tWLF5AOrXIU44rTypzqSOatmOz2YR/9I/+Ebz66qsAcHF/55//+Z/D0dERAEB2RLyJDzQ2BKeL0mFKK5VjyscHZdQvbfYP/z8Wn+bxNblAxyvAi3uLt7e34Ytf/CLcvn07u2e63++LeeA3mF+RsOnOHK75PgSuvliWLlE2aOvL5Y/NZ2FbmO4qg8sgDX2hfjoXLUVCUzdeFzytBkHnDG5LUdng2w9SGk27or6CaUejUXbSQ6VSgS996Utw7949eP3116HZbAIAwMnJCRwcHBjtQO6T1eyODvHxvWzQ2ME+trLPeDHpGS7fuESLJItMdhpPY9pESOdWtIWlNC7aKLx2xsaCNPC5kyD0qEPuHKVOCH5EF/0u9Pio6zpB0/pgu6BRi86fo6OjLNC9sbFhPNYEDcUkebGKF48rDh2gy1IMfdK7lHnJQR9Kk0lAbGxsZGVMp1Po9XrOPG2OwDVewGQIa1G0rIjhRNYqKWm6eEY+n9yo/HXR5NqNs2yYxpbGUMC0uHOIHznmUmBDlURX37vyxflxNpvBYDCAer0O1WoVms0m1Ot1GA6HovzNKzNwsQ7OC9RBhfOypEz51tEWkMKf0WiUzVMuR542YGX6zoWyjIU1ygV0uON9XjhOUQ+TArK+8JVBPLAnOfDp/xSx5kTpqhHuoI4ByRGLZfH/Z7NZtusEIOxoQsmmwd+4Ihf7H3mDz6WSc56fgKOZg2kedH7Hk4Y4nUWjDM4UEw20fXCnZpIkMBwOs11uMY8rNpUfax6RVn7zcmKPNR/Qo6SXAU370qOcEfQe25BjgbksrVQq0Gw2YTabZdc12fpB41hzgcoYXodYATqtY1dTriTXlulLwLnAhul0Cj/+8Y/h888/h5OTEzg9PXXOFxq6JfsC616k/LGhbI5wLc+G0sznX+r3MpXNFzyE2Fl0DhoMBtBqteDLX/4y3Lt3D37zN38T9vf3s7RpmsJPf/pTODw8zOZy6djFMiM2T3GZK7U/ynEcV1epvfLCpPtKoAuiJMQYg77jw7XrNC8/rVrG+QZyV40kSWB/fz87zWQ8HsOjR49gMBhAmqZwcHAA9+/fh+fPnwPAC52Px3q0Za0RD6FzuslH5tLn6G9X/iF0SUFY6he05Wta3OaiQxWMzevc53nRitjuntPmx99TxQX/p8akVCY3Jl2ReansMkOzuoCmpW2BP7j6HpW0Xq+3oLBsbm4aBxLezUtp8Alw+Lyz1S/UgDGV7RrskjNSI0R8BzKmbzQaC846XPHoMzFr2/wq8X9M5Jl0NP2w6kCMdmI17RDmeQHIDmF8XhaYxpxtbJj6ip7MYEsrGTR5nZom2aQJyOKuEXonYJqmC/dUSfmGAnnIdAcdnqqQFy4HJTof8D3uoNHwqm2+COlD27xse++ia41ywqef8N5KuniBH00VMh5t+rgJnM+19zVJRk5eYFtITk9fQzHUsOTjE53w9BQem23hoofPEbiQBU+owUCUFBgzyWvabi4jmOdD6ViFXRSiRwMUo2OZ6o99t729DQCQ2VCcL4vQ+WLlLfGFNIaxPiG6gUY3sQF3HfKytQ4bG122b2x2Nbdx8X8eiNXaqdQZhOA7TShfaXc8hgDLof1mG1cunTaURtdYpnTy58vUj0y8iM9msxk8fPgQDg4O4PHjx8bFDwiTPcXzNcl/7ofT1sFVTkgeq4CvbHTVz2UD8PFJ09hkjM98zJ/T78fjMbRaLXj11Vfh3r178N5772XvcUHVgwcP4PHjx9n3qF8gjUWPlzx+ldiQxo0pHW4swQVuZeHxosFtBmkM0DQmHcJXR+cLFbhs1fpKXfLV9J0P8srXkPw08sXF35J8jMnXnDbUY7a3t2F3dxcALvzXz549y+ya09NT+Pjjj7M86Ol8AMu9hzsEZZcLPvSZdIHQcaPlM83YpTylPR1FsmekbzV+FpNt4PJ7LH1nLO8wU8Xy7JZyCeYkSS6tJpXSmxxUpjxNNFxF0JXzpgFA+7Lb7cJ4PM6+qVarsL29Dd1uN1hISgYFpyW2cRcCiRZKZ5q+WBEmHQ+nLYP2Ca7cwKDP6ekp9Ho9uHHjRnZXZbVazS5BT9MU+v1+tsqI00TLiXWE1xr5UaSzzpcOPGJPkuGUp1dNqwu23ZYuueKSQXyc1mo1aDab2e4oqbwilFykSZpHNQr9eDy2zo38eUjfmwxXVMxxZ1lMR0CapjCdTheO9JPuw51MJnBwcACDwcDpGKN5aw2qUKe1Bst0Mq5RHCRnvq/OUNT8IemCvo5ZCupg4XNL7JMTTAYaPZUnlg6UpimcnJxAtVqFV155BUajETx79szqrNXIBS5zyzzmab9K86d07Cl3FlEbwjSXudrBN/iAeaKOXXa9xgXelprxmsfBJTlYbE7AWHycpikMh0Po9XpwdHQE5+fn2XMeDMlTnokf6DUIoaBjxYfv+Mr9kOOwTc4khMkRJ80JpvQu5JlLEGVxziZJkl1ZQhc64qJ2vmgT4OL4xqOjo+woeICwOdaXx7X5U1p8joO+6vDl5Zh2iw9wgR7exyjh8PAQnjx5At/73vfgF7/4BZyengIAQL1eF3eda3lpWbpI7HJQ3mrriMfB+p7wd5VB28Z2bCz3f9rmDN+5kusVtrb3yZvLsavUp7hwHuuK19hRvZXKdl+ZHcP+ajQa2dw3nU5hMBhkPPTtb38bvva1r8Frr72Wnbp5fn4Oh4eHWTCWn/J4HXTysiNGcNWUj/SNK+8i+lvKE08cQ0iyDn2kNJZiSqvBQjBWq3zHMphc0DifbM4KmoZ3tOneE2153ElmwqqDKZoVLrZ2tj1HxxXAhfN6Op1mgh7v56lUKkZHiqts+o0m6Kpp6xBjRvve5mCndeBKn5Y3uFMLV+QBvGh/qhhiH2A54/HYSpMJJjpjGMxlh08dfRZk0DY18YKm3bV9E+LIl+pkG4cuGvLKwJC+cJUpOYd5eb6Qxikqodxwk8osw3gy3XcKEGfcc37kedJ5Q+ItTf+aDEc6b5nqgHcl0QVGJsRy0NjGj403XWPUZyz4frOGHto25fMB7xeqe9Gddqa8fPqQy0OJJ+g7H4c7dby4bApJDprmV42Oy6HReU2LdrRzKfYRHle/u7t7yckZQ9ajEwad+zabSGvLmdLGkAeavE18x1GEfHIFnkLzDHGCFQUNH+S10U3vlhGgwIVceNem6xtfH4etzhoHsFYu+9i0nIa88NX1uTyLMXa0MjLE9uJpi9K76bingTHckYhth/Y5LhYcDAYqGy8PtHlIc71Nfy8rYtHnyievbeSrW0l50EVsjUYj8wXh6Xanp6fw+PFjODg4gOfPn2eLb+nRuyHlhsI11qX2CClPIxtc+dI24sHuso+BUPjWC3lPY++EHO3J85bSmvrTtxwTTLJ5WXKGpuMBIXoCC02n1U/o39r5lNqFXIdHHxi+p3rZrVu34Atf+AIAXASSu90unJ+fZ9d60OtebHRpbEaTbV0WmNqwiHI04L5qWxpbWT5jeZWgvApwed7B32hjaK/qcLXRSu6Mpc4kvoqUV1h67sOg+B0eQYjf40pFCu6gReGGO8K4c9gm1Mo4yG2Q6MX6IrNhO+DxJXgEbpIkUK/XFwJ/CH5M53g8XjhSCpXDsgxEDpORoVEEpPSSM4bzUR7BxO8joeXRneBJklw6cx+f1+v1S+XzsVHW/roKkNqQj7U8MPFsLGeqqxwpHR5laHNG2njLVifTN0UhZE7a3t6G2WwGJycnxsvei+obH+cTdQRI9PAABVdsUZ5rgd/jN3TngPZ7W7vxO+h5vq6+azabsL+/D71eb+GUB84DtD1chotJx6Hw2dFy1XSNVaOsRhhCQ9t4PIbZbAbHx8fZDoi89yXaHK4+QSSqP5scMnnkHdIiLfJD5zbdIVYEpPGPcgblIDoRms1mITQAXMizN998EyqVCjx8+DBzXlAa+d8Aizo9hdQntO/xuzLr7KsE13HwfzymmI7TMssgDmme5+9M+kSRfIJ5810gZQCOEZRTuJMKF01g0C0UVFejx2T68JXke9F+R3mB+kRCEMonZepvDpST9OoPPPFlNBot0D6ZTOBHP/oRJEmSyQfkF2n+1LQ19ylIuqup76X8qdznznrffn9Z/Qgu3w7Or7yP8rRTs9mEb37zm7CxsQGNRgO63S788Ic/hJ/97Gfwgx/84FKQA8vmi/eXAY3TvqhyNUD/GA9QrJqPi7RpTP4DiQYTYt4tjt+78tC2h822CaFzlXod+uZj6UK+vG3SBdHWMLU1LgwBuLDhPvzww+xUsvPzc/joo49gPp+L10f5wGYTlQU2fXrZNPhi1XIQ4LINZoJEa7PZzOIiUno+rmy7Z12+bt7GxmCszVHoWo3gA5tCKEFblhQoo43l2k3AaTOl44qSNNh5PstkWE1Zof1J2xN3MtEgO4D5LkBTebY+oYZfXmgDSabvpOfcQDGlyzte6G/eJrg7mSqMmK5Wq0Gj0VjYQYt9xemS+sTHcLtuMI3xZZWZJ4+i6ZXGki/tRRnnGnlBHUt8fFHafGnFyXs6nUK1Wl24FD5U/kg0mYLXsR1jedrERQuXnbH5IE1TqFar0Gq1AACy1eGmANZ8Ps92xVL6QucfH/6W5CvNIxTaPrjusnzV9YtRPs7duDJT4quQcrT8LY1/ST7Y8tPwoy0fyUmkddLQAIJEM89XQ69EPw2UjEYjMfhik9UuOZ4kycLxX9wAtAVntE42KS2mp3XEdBoHsosvQuTtqsc1tVHwf4AXzgH6u2zw5XHTfMafu8ZjrHleygcXq3S73SxNkYsIJDvJ1j4YlHXlx3UjPqZNbewKuvnosbbvTWlXgbI4AwHMOi2Vl5g+SZKFoBguWC9C9nHeWWZ/rZo/KB0ceXxLsexXl16lzYP7cjqdDnQ6nUxXGAwGcH5+DkdHR5ldyv1AqxpLRcvnvN/QxYBF2KohKHJMhfp1OA+6dAb+twm0zW267TJ97iZ/SJ48fMF1cZ86m/w9MdoNd5Fj/XBjRqfTyTZxNRoNmEwmMBqNYDwew2AwgMFgkF03MRwOF3bWcsRo/6JQBvmAyKNPuHRMn7y039rKtpXn4gdJBqF9RnfE2n54HbjdKpVrogdgRTtjEehEog5Rk7GqZQ4N0vRihybNV8oLV5rayqJpXPTSd2UaoC5odjpNp9MsEAgAsLGxAbVaDTY2NmA2m0G3280UPuqwKTukXRgIzht4XAkd2JJj3RbooDs6TO1OdxlikGc8Hmdn7ddqNbh16xbUarUs2Fqr1WB7exs6nQ48f/4cer1e1l9coEi70lwOMu44pXVa4zJMTpGYbUaNf5tT1hdF9K/EP/x9KDTyVutE1gLz6PV60O/3YXd3N1vpTt/zcU+frUo+hhr/Me6Xw/and8W65Iq2nVqtFrz11ltZ+oODA3j27NmldDiX4crw+XyeGRQu+jWQnKSufH154SrMrcvAVdEzYiK0vshrpuPU6TisVqvZKuzQAJNrHON8aDrCLBQoU7ispzvYcHU56ll5MJlMsmMnXfqf9KzMPIw8wG04gMU5FUH/Np0SQ6Gpu6TbmHilSEfvddB3JR0ojzzh85d0XKsJeXn+7OwMfvKTn8BoNMrKxIBXTH2YQ3LaIDDIhjLBhLxHX6K+ggtvabtLMs3knMJvYvLFVUeoPMarL1CnxH7AoCveP0aR11eikUt5ApAuunAhEqbH8spwXHvsgKwNWtsI2yj43rlaLeMnrsM1Gg14/fXXM//OcDiE4+Nj2N7ehlarBRsbG5lvVJLPqx7vRcoebX6o+3Kd52WC1p9iu0cxljzjtod0otR10c0k0HaeTqeZPm5Kq233WG2WJAm0Wq1M5uBO1+3tbXjnnXfg7t278Oabb2Yy68GDB3B+fp6dHvHTn/4UZrMZ1Ov1LD+pjJcFRduCph2hV8FuMsUuNKjX6+IJVtLpEOgbkMr3GV8czmCsT9RaQ4hWMeQTr+SQtUXqtWXGVr7oYDEFXGzlFqUMhqxCMAXdTOloerrqV1qNLPGMrb2kuuSFxsnjosHlRJPS2BxHpuC+KQ9sc340mgR6PLQpX0635EiLGbS6ijAZBbb2MMlIzkc+Bgd3kGv6w7ffON227yUZx/NxtYOG9zXzjY0WV334M015pjywj/gqWlMZITDJE84fvuWEBABjyGs+Bmzt71MvXBTUbDah3W7Dzs4ONBoNOD4+Xrifix5tjP0mBW9c9Ev8z2VoKLRtTdMVrci75rlVoAw05IFtbKPjzMWXeeRkCK2YFz2meBmgY5eD6+U0OGRbaBcDvM/y5IGgfU6vm+AGoU2fiEGXBKmdNe0Zk/di5h0LeBoDBsQQq9aj+byg0UFNNFNeCpkPtG0h6YRoO6VpCmdnZ5lDz3QthC8dobozpzFkd66pf9AxRJ3Q3MZz0YXPXGPV1ucSnUWNOa2fQIsQPdcGVztxvR9/JEdiqM4W4xtJZ+XpfdsC09NgNI6LULqLgtY/xJ/ZfGY+yGNLSUeVjsdjuH//fvb/4eHhJXmNfMht1TL1C4C/jNJ+78rDpl9dV4S0qc3P5ePf1JbnQ6erHFc+qxgLtP1s/sdQ/cn1XKJFm4bbV9vb27C5uQm1Wi0Lgh0eHmZHFeP1h6PR6JIMswWaXwaE1tOnXzXjqkhbjSOGrsxPIrGVxX+kd7Yyabk+OlOhO2Ndgtf0TlpFY1JUeToTHa40PsEMF6gT3vadzaF6lSZ5yXmOuwA4pB1g/P+rJlhNwsXHyUcHb8hOE3qkkekoB1wtbVqVit/QVR/SHSaYlgecTPldJV4uAr71j2GAuwyKPAYifm/rX1NQKOReq7w0m2hzBSli8i03jrEN8iqXrjEWyksu4Li3yaoiAhrSc205w+EQ7t+/Dzdu3IA33ngD3nrrLbh58yZ85zvfgfv37y8cUcJXv8VySGjp1chOH3qKlsEvu4xfNujRt+hAizneuJPU5xsq4yQdL69Mss03ePqAdGcSnbv4POTS1VwyTmNjxARt42azmZ2QgvKYtzFtd9ov/F7LNYrDfD6HbrcL4/H40lFYiKtg+5h0P5fjw1enMZUtpcWAJPL2/fv3C+HrPP2DMltzRZImL0w/Go2y/6vVanavmmb3MQXKBp860iBaXt5dht9jWeNL4wtA4Ckw7XZ74SSuPPcJSwgNXkhziU+ZND3WD2Vgo9Gw7uYqEr68sEodV0sryrzxeHxpEcrx8TH89V//tXFHJ+7Mxp1s5+fnAADBu42WBRd/xggcmP7netXLCKy7dNoCDfAD6E7E0JRF/we4LF9d/in6rYSrYs+G0CnpnEUuMBiNRln+7XYb3n777Usy5Yc//CH88Ic/XCgf71indGmDamvoYNoJuyo9iSJW/IDr2zZZjfq5JKfSNC30NISowVhNADI0X0npl1beuwxb6pChMBkCNkHuwyTcSWWjUeNgN31jKx/T+SjhvrQBLO428FGMYilUoUadT3CG96VWgGno0uQlORQpLYPBIHPOVSoVmEwmUK/XoV6vw8bGBlQqFeh2u9nRFkny4s4QG70a3lumMC87NO3n+pY7UEMRa3JzOeNc5UnyT0NT7AC1ab5yBf648aWVVUlycWQLHoEbw5EljTVJVrnyd9XFFtgwzamucmPICEn2SWlQtnFlniqj9Eg/nMPokZsUJgcAHataXYTTz+si8Yem7VxlahBLZqyRD9j+MWU3hw9fcP42wZQnlxkm/cpFs5Qfjus0TbOgLD3qmPN0TN7WOHhM49L0Tiu7Tc98nef4jUm+4f+mfqHzo9TGXOZJDhbTfILvbH1osuOKcJrS8pHParXawmKANE2h1+tZTwhaBsoow0NsXU0eJueLbZzlpZWXbdIDTDSY9AEp7zzwscHztBeHzf9h87No0vlAO5fEgEk2U9mAO5npUdI+POZK49uHkqxGXpB41Jb33t4ebG1tZfr006dPYTQaQb1eN+rWnIaYCOVn05yiyctlB+DzmDzO72l8/Phx5uvh+W9sbMDOzg6cnp7C6P9j709+JEuS+3DcXuyRW2UtXd3V0z09G4dDUiSH5BCQIEg6CDp8oSMB3fQX6KD/QAed9BfoIugoQLoKAgHpIAgiQRASKYkghzPD6ebMdE93V3UtWbnGHvE71M9eWViauZu5+4uIrMoPUKiM9/y5m7ub2+bbZALj8XgjR/Ba/eZQe3Aet6QNlaWhqqr6BBLM601fwGbhR60dcVIj194K2Y2cjhRdmVNHbxovQjIHANZ4UfLHUm2cmC625MHRarXgzp07MBgMoNVqwWQygdPT0/qo9KdPn14rl14VA2Ab2030Qyp20d6m0MaTl5dy+SX3W5Qxmk8Ykvtod1XV9dMLuYy36pYYtLTFd8Z6DFlpAEnBEoDrx7fSDsBZbK9yzx0sFkcyFHDg32pMZYHH0PAYPdJADdEQqoNmvGMabTdGyIEN0RGjWwruSMD3oRXN3naSvqGgq7xpWin4I5V9dXUFVVVBt9ut3+/v70O324XDw0M4ODioj/BChYe7SnhQI8U5jQUWQkr/JoC3SUp9Qt9octCTN/821I8x+vm3lr6U2ojLh9g3VvCFOVI+PDiWG+ixBJL4u+FwCIvF4tqd5all4DtN5mpBSS0fXm6ofCobNJ0aoq0ENH7hz7vdbr1iXMNsNoOqqmBvbw8A4kebhHgsRh/lxZiclN6F8o0h1ieSHZXbfx79GMsnxN+7DouN5fk2Bq3fNFluoW21WtU2d6lAi/a3Jw8K5FkMKmoyKjWgFtNTIX7X3kl6ydpPKTSG4HG+Y7Z+6JvQO433AK7fS6vpH+p/bSJgg6v50Y9B+s7OzsQghwUhmeHt45w2iOmJphALpljsMGkxRinEeNnqC9J8+M7plLEv9TVvq5gPKtEW0sEcHv1j9a0pNBssZJPGUEqnxcrAtHiyAU5goM4K2e5Wna3pt5gdyfPixwhbfLiqquDdd9+Fb3zjG9BqtWCxWMCLFy/g6uoK9vb21CsFtglJnlhpzKkLPdGiBHBREOb76aefrt3fS3F4eAgPHz6sF6OenZ2t2U1WbDKmE9JFkmzLpYvH0qh8LX3/8SbsFCtiMlnr88ViUd/1KW3ySC1bsw25zMfvQ3qHlxFLG3teAlo7SbTReLm1fVP9Ha8c4Gi32/Dw4UPo9XoAAHB1dQWffvppNC9+pUcshrUr2CW9po0jyymlJRDy43gai8yW8pN25UvzSJyX6NWN0kIlbSe/Fg/VaLTEvxo5pthi4FkbWhKuFuUnOSA8P62cELzBP6kttOALD8yGLkCP0de0wIq1KZ0cofWlk+pWp86qJEvBGnhODcbRZxZBxfNNcX4BoL5DCd9rR/PhKlZKX+kgxi4pKy+sTpr3fZPOTC6tmMbLA576WAME1nK0QE0JXg7lge9ofUajEUyn07XjxK35pUA7NUIqwzLGJWNHw6aNZa43NX3D0el0YDAYwK/92q/Bo0eP4Ic//CFcXFwEy6HHyFltmFh7pMoBD89YdVpuOU3mgfk0XUZTCNk3XmeX21+p9bYG1T2ggREuC1Mg2Yx0bFN7JXZfogXUhg75EdviN95nL168gKqqYDQa1QtKYuME8abv7rjpsPhEKX5EE3TFxkKJnTK8PD4+MXhCd3aVbofUSSRtAQFAmgzH9BhE4v62BRIdsfI0eyXFT7f6UpY8+LNd8TGrSr+OhIIe1+uhPTVQ7pH9Fh3e6XTqBY/37t2D999/H46Pj8W86G4UALh2T+muYJP0lKg/391D0Wq11hYD3717F+7fvw937txZS4dy1SurPT5hbj15bIo+pzYn51tPXJhudMD/kb+buuM4Vyc0RUsojbQwU9tRFvNDrb4yto3WhzHZtmtyBsC3kAfAb7trNltObEDLi2O5XMLV1VW9GH48Hovp0H/jO/N32a/n2EXessBLd+4YjqWx6kPJNtHmNqg851c7oSyLLW7I1dPat43dGasZ5t6Z75ihTQM/GkoJG4kOS/7ccODpNKXLV/NaAyzSb0vA3eLQc2MmxJiSoKdtltofKULA2kdS/ULf5YKWm8rDUvBQcrDpjjyt33ggVTJ6tTbS6PLWKcWp3xakNvEg10nh5Vv5hD4LTSpyOmP11RyfEmk0PkkNYkllSeli/C3pK96uOO4Gg4GpzBhtIeAYlgwSS//xd5Y+kmgogRITK6vVSlydi6vivv71r8P7778PP/vZz9TJWGwX6wp26+Q11+0lZR0NSIRoKFUOh2Qflahf0/XJQdM0IQ8i+OrWmC5tGlQPWe3jGOgYxt/8GDR8pulDb3m8nVPpznnPIQUWV6tVfbcb3hMXCkDy8qUxGfo2xdZrwnH1IsffyAUfl5rdnVuG1a5rGpofaZEDFpp53Xi9URY0AUm+pcQiSvIjX71vDRZ5x/k2x1AMu+QjxvxxfMe/yb07NVXPhtpOiotoeaB+Xi6XsLe3Bx9++KGqh/lvuqAK31M+3nT/5vK5R8bHxp5n3EltRvuw1+vBbDaD6XQKh4eH8MEHH6zFemiZ0qlrKWiq70I6VdN/Gi9LbUx5muZb8i7nXZSnHj3t1bV0IZPU3h4ZZrVFvTEVa/yjFFLldS7vUB8nFA/OAR2H4/G4Hk/aCWXtdrs+JSLUj5vuozcdVl7KseEt/BXzk6TvreOBpuX+PX4r3RebMs5CsWENjU3GloJ0rwTftScBhUvpIyRo/pyuHGcF60MDTDHjLVUZlYYUeMYyMQguMXisftwgx+9omhIICQktAOalxZpGCizEFA9Nw/mH/sZjaPC+lqOjI5jP5/URahq2Gdi5KSg90VAKsWCAJSCLv0uPOY2vc8rm49VLd8ngbylYAuslENpNq+kjyYjfhqzQArTUyEKncTabwfn5OXzxxRdweXkJjx49guFwKObJ84uB7+KTvueOhsZzmq7xOJPW9LsYFLhFHFLATQt2pECzcaxB2hTkBBvwCoZHjx5BVVXwt3/7tzAej9WV2B5nyQJpchzbiQartUDzrttZnG5OL79eg34npcfnUnvQ51o5PC+AV8d+VlUF0+m0SMDK+h7pxas/6C63ly9f1oHcbU4y5KAJPaHpWOzzUPB2FyHJrpQ+DslAabKl1WrV97GF8kuhBSdlcMKM0mDtG66n6POY/aMF7bUAcqh8K1L8BovfIuUpHUsc+ybUbkiLRI+WX1PY29uDwWAAVVXBbDa7NrmFdElXgmx7vJcsP9bmTcg4jLtVVQX9fl+UDavVq5M1zs/PG7krNhTj84zdWHyK/p8DKQ8+KY066Sbp7pKg7RGbiEVbiN632wQ8uuCmQYoLS2m0d6F8+e+UNuT0YawFx8jx8TH0ej1otVown8/h5OQEAF5dm8fnBnAy7CbaxzcBPJZXctw0PScDcF0WW74LxSnotRChcmNtFHpvbZcik7EWx8PT4ZrxjcJCEhqaYx5SmqWMvlL50LpZ6kjLtBosNF3K4PE4DPSdRjtvO2uALzSBFKpjrK80B4o/t/Kf9E7LIwSpPpqzBXD9DpKqqmolie/wPgeLYyv1lVS/nHHuSbdNJa21Q8r4D/GJty1jY9vav5Y0WuBUKs/SV5ZxmZqHNHaltJYyYnWSAutSGaUnAaS8Lca1R9Z6HNBtOKsW/QfwaifJeDyu77G6d+9evWM5N2/puXVc0zbT2ntbgSqtPz28VpKWEt/eVEfPI4Ms8rTEWC2lx2JloH2IK6g5er0e7O3twf3796HdbsMXX3wB8/ncZQ+G7LWYnYv/SzJfO940N/CAAddcx9o7hrUgEdIRkhchrFbXF9HSvqdlSfm1Wq1rTntqkCklLZ9sX61W9WKAFJvXwh9eey8VOXLCKmck/0LziT35Yl6h5zk+iZZfTt9YZCk+63Ti4ZzUMS7ZJZS/PfnR/zWZZdFtXuySvqd8EbrXNTXmYNUzqTIy1pZVVdX3Zw8Gg3oRCi2L6ixv/KcJeMvNpTPW9rnyW4oH0efY7uPxuD5dQ1somlJXzT6g7z1IiW1wnyqWt0SfxJMpfo+3P7c1DjxxLUqjtBCR20FanhZ5ItEU0tsleHZXELNPUmLU1jQaLRpWq/XFNd1uF3q9Xj3xNR6PodPpwN7e3tpx36uVfDrELvaHhG3HPyT/KJQuxV+M+ckh39mbvzXvGELtwnnVSovlPS0f/w+131Z3xqYG8NDZtjATpuVn/IeEt4UhQgMilocFlF40bOlz+o5Du3SY0tW0gOP1xx2ynPEtTm3McUtBiPc21UaUFlo2NwIl3pXahdLN7xum7Y5H2e3v76/lMZ1OodVq1UFOKaiYakDzer5pKMEzkmHEeSPE/zEaLEZUipOh0WEpOyVAl9LGWgDJanyWkjuTyQRarVZtnJY68qhpmYXyw7K6ddPyM0SDhPF4DE+fPq1PBjg/P6/1Ez2JgzoQmKd0DGiMDi6rqS7kcjsEa3tK+Vn0bI4hTA18qbwU3RHDppyfXYBkI/BgG76zOBGpslDLj/6v3f+WMhFAsVwuod1uw/HxMezv78OjR4/g+fPn8LOf/SyJbqSZB6dDNjwfz6Xs/RSgbfj48eM12/qm2Flv0/hNhSWoYk3fNDxjItemojIHxwHV36Vs2VC5Od8jXfzvFD2JEy148hHfmRKz2STdYpnACH0fQyyd9N4TKLf0j1QGr38OMLgMcJ32UH974xyptpU0QRdKK9FFy6ZXgfR6PTg+PoZutwur1Qr+/M//HD777LP6FC5cIDWdTqGqXt/f5gnwlgbfhd+EzbpNrFYrmEwmsFwu6/t9r66uah/06uqq9nVydzFq/ajxthbrCNlgXnqkb3h8C+D6Yi6+c69p7CLPSf0wm83q9uj1evDgwYP63fn5OZyfn9c7YrFOseNnLc/p9yWOdb9JkMZJaj4lbUVpHFEsl0t49uwZLJfLtbgz0kL/zo2DlJDbN1X2U7q5rSmdMtsEJN7yxsz4tzG+sNp79H+L7MgZI/REGUToPtrik7FWQZuaN2c0rZNjRp0luB+iPRTMkoJlWp45Tp1m3EtppfKl56lCOneyhOcT6r+cAWJpJ4tjHOtHi8JMnVSKPaeGbMjRwx0VtL5056xWjsVI8mCbAc1tIFTf0PjLMaAsigzzD8mClMB9btDDSoMlwGOhrSloRoAkK2JjLPSNJItjcsMT5Eptr10Y3xi4xYnwxWJRH6WEoG0Sc+AxnfQ8FHTQjDI+/rR8NIT4Q3rObQiv/WbJQ8rHWrcU/qTpU2Sm1Z4sCUs9LXXxOjyaDZtLg1UOx+pLv8F/nU4H+v0+HB4ewuXl5bVvMLiLdoxkz0n6x9PH1vppzjHPi7dJyKnmmEwmAHD9CCfuxIb6jY8X6sOk2mcxXySUZ6qeQedXmpTjZXr7m9rO9DnNl/6TvqdpU33BVFm6KVC+KUmTxDtSv1j0kbUsq40aozWEkAySeEn7FtPSxbcWeW59Z2lLjzwtpcuskGwDDq+9w/UnzyvEs1qeIZotdMXsF628WP/S93x8cF3barXWjiY9Pz+Hk5OTOg3lUylIHIpheBGSxZwXPH0Twq75SCgPsL17vR602+16JxoeD7pYLNTjjCVo9SxpL1vsCE/5lj7lY4mW1+/3a79RGncl+pDmmWKvNAU6PuhJDP1+H3q9HqxWq7VjP1E2AMR1GS8Hv2kS22zTVHuPv+PtmhPr0exbLQ6ixRno38gPePwwPdGI0m71ga1pNHjG/03Epu0qRKqt7MlXs6ms8IwT63MJ3Pfm7yQ0vjNWCoCk5BELnmgNhYYGrrxD4Co4aReplcZNDljNIEkxqqX8mhpItDzvoElxljwIKXzu3MeMA1q/nFWFkqPAaQq1C6aZzWZrThKlCdNiIBOPEyq1S09DLKgovWvCId+2ovXULzVwaIFkxDXVNh75lZJ3rvFude5K8ONq9epoqFJ153/HgpHUOcpFSNd4dtNakWpPIA0YgAidHoG7l3FVvxVWR6Hb7cJisTDL29JBbQrKM6lGfFNyI7fOTdsz29YjEniQNGciAsEdCylIT7/F+zylIIzm7JdqT5yo3d/fh06nUwcdPXyeAm4/S/YubQOtHbTfTYPufAoFAEN1wnw0YBq+EIVfqUHBdRmm4/Yt/XswGEC73Yarq6uar3Jtco0+/gwDTnRnItaRvqfI1cclZZHVzmliHJUITjaNEI187HBZnFIWXzCb46d7ffBQPogUu8ESEIvlZ7XXc8HHlhaU1soO0Ul3c1sCyFIMzALLN9iP9P8QLRT9fl+8MkBCt9tVZTGWi4skkS6r7LbKQZ5Ou8fWk18JNGXjA8Cav7m/vw/vv/9+3a6TyQQuLy9rXsyFN1YRGi8l21aLP1nGNMAr3T0YDODrX/86nJ+fwy9+8Qv1uoxUxOytbQJPzUO/9Rvf+EZ9vc9isaj56MWLF2uLgah9E/K7N4ld9N04cGzgohZ63QpAc7Eunlbz0SRe5f27Wr26k7rVasFwOFzjBTzJA23iTen0TfR9k/EByebiz6z2RAnEdIa3LSSfLwatLqlx25y26XQ64tiI5bk2GevpTA9CRqTXqeNBAu136DtLB3nSpL63pgkF2KgBLeVp7VMPM3sHfSq0gFCobzRjhiuUUB5S/Wgb029j/BYCFVKcPs0o1caQVC51KEL1pA4YF6wWWlLGEVfyUt1igQ/pmxhKyrWcoAjtdwxe83caH9J8LPmH0ob611oXTlcsL2uwwkNLjvHjqW8O//C+CLWdJzBpNWJpuTFnNIRtOogxuml7SPINf+O4m81mMBqNoN/vw9HREQAAnJycXMvDSxsF199WAzPWbxZ4xk/ouWR78PeUbotups9SjeVNB8xSyrbQEtOFqfDKf8nJo+8kPcTfYyCGj6FStnRVvdr5OhgMoNvtit/SALfX7tXkNL6T+p23k9XZtcoCiV5L/fg3TcBrL1h8Dcne1vKT+qKEr5mKEL97gyZa/hZ5WwqpMrpEmZ70ITs2JKtD7Zdi34aeS2XT8tEXCB1nJtEjyRzq/1nywG+s44nnE/LxUpBjF5eCh35rWkkG5vpBVnveY3da/XFMN5/PodVqwYMHD2Bvbw9ms1l9rQffqY07NI+Pj+uAPMYfcLGkVzem8polniOhCZuyJKT+w77AO8wB4Np9viXLj9mWnrhGrCztmaYbJJtbKhtPWen3+9DtdmE8HtenkXh5JlQOp2+XQMcttkOv14NOpwOLxQLa7TYMh0OYTCZrE3KhsSXJLC2N1Zb21EVDrt4qBZSHJcaIlN7rn3h1B92NT+2T1er1qQj8Hc9H+r0LfUNhjXV4UMLmDrVZCf6h+YboDaUJyQTpuTce5/kuxZbX9I6lXP7tVu+M9YI6F15mR8FAj1bg+eyKAvQ619xhxHpJ98uGGC4WbLPSHqONPrcgNmBLCWfJYIit9JcUt3RElNUhpsE+qrhC30jfa3RKgUZ8TseGRMstygD7g99RE+IRyocxB4DmHwOXFbmBQppfLBhG6yEZfSkGw64Zal6Egu0hgyglIJ6yCtpqPG0bmgykR1jOZjM4OzuDx48fw9XVFXz3u98FAIA/+qM/gtFotPY9txU8d9XgWODyledPafUGf0OwTGrkIpWfUsqR/tbuNHvT4HUwrHlifha+09JwfYZBmVS+4DoP0el0YDgcwsOHD+Hi4gLa7fba0Zy5wHpothTAbsk9ekevZuftEr23sCNm6++q/wqwPqnehNzSyuUI2djWcREKIGlprcHLVqu1dlQowLrss9JId11zeSCVK9EM8HpCmP+zolQAcZdhHXdUJyK0Y6S5jqV9aaWlKcRoWC6XcHl5Cffu3YMf/OAH0G634fT0tLYDcPIK85rNZnB4eAjf+9734PLyEp48eVLvvJvP5zCbza6dZtcUaKyldL6ImL++CVTVq0Vso9EIfv7zn9fPcsrn8kU74ljyGzVZzOVnil/PYyY039h3/PdwOIRerwf379+HyWQCn3zyydpRvE0gRivafE3fYYuLJnBn5mKxgEePHsGdO3fqOM/V1RX0+3147733YLVawRdffHEtH76rc5exKzqo9K5rCutY8LQFyhcKGlfE02zwt5Ufdnkitmlw+VxqwrAUpHKt/VrSrqHtlFNfj4ySTjQJxbhjKDIZa3GychrKOkFgMX6kyTaPo8XzopOckhERozXEzCUGkTcPavhI7a4Fp7QypfJzlXJoUiIlfz6QJcdUKiPWtjxPnrc22SKlCznZGn2cDqneNE/NaS9hRMXyiQUMUibmLGVsGzxIpY0dj2yRvk/NK7W8TUCSk1oQfRuQ2jlFv9C8UspFSO1i5YEcHtGCSk3yi9TmVFfTsvE4y8PDw9rAwgkeTnuKgcjLx+CrhFif88A2fc7rHsqbf+fRZRptMYR0Js+3hI2QEmin9Fjsn6bg5TdJtnhkNm33VHsnRFvoXYqzrU0STKdTuLq6ghcvXkC73YbxeAzT6bQRnRDjCSprvHKD5rsJ3tMCpjxNKqgsPDw8rHdULBYLGI1G1/S2xv945cydO3fqYOR8Pq93YGGA0EKvZ4xR3RHLW+I1zZ6nz3YJks9B3/E0sTwskPqD+1+YzjumpLK43Ck1vjyBoZCupn/zxUYeuSnxWsi3Cvns/PjtGGJpU9rd40duQl+n9nEqJFkSa2P+raWdtHgEB93dhPYtymGaR7vdhk6nU8vvfr8Pl5eX9RG6kr/SpN6WQOMr9FnsuxB2wRflcYaYzUJ/S99Y+C2mK0PyK1RWql7xpFsul9DtduuFf/1+v57cpdfvhK5YsNJjtT942qZsBtp/9Do/pPvw8BDu378PAK/tscViAY8fP4aXL1/WeXiuX4jFDkLpNPs45mtuC7H2oHyF6blcksaW5i+kyh9vO2F6aiPwyVmJfot8SKHnJoDWvdRidqmdcuKIlnJCvBbqY61Mq20e00kpsj/0zMqTlm85dmJnbK7BFXMuKPh9Vlrgw1u2xUGwdlBKEA3/1gJp0nutPGpYe8HbkQroXQGlUXP0qfOJkI6MqKrKfA9CjlKkQSZqDMYEr6SgOY/Q+1lCNOQ6FSkKgTqbu+DUNAHLrq6Y3LoJiMmUknV5U/glNVClObCSU8fhCSbyNFajpklYbQHExcUFXF5eQqfTqe9nwRX6JYMyKMf5RK8UUKO/S/EAz9fyfJuQ2sdiS+U6oTS/myBDJN2RQzdtayovmmoL3rc5wIUVn3/+OVRVBefn5zCZTLLtfCt4X2xit3guVqvVtQlMyafijm+sLel73FmxXC7h3r17cHh4COPxGMbjMVxdXcFyuaxPDuB2K81/Pp9Dr9eDhw8f1juuLi4u1naqLBaLtQkCutOP0mWF12aRjpi1BAq1MbYtOcQnVOjzTUDjA34Xfam2ybWpm2gXiXdjASgJIZ+XQnuP44jbLSUg2T8Sdl0Xe8dpqC9CwUfJvtX0m8UWzgnQrlarWvZyW5n+xonYXq8Hg8EAPvroI5jNZvD5558Hg/Gbln2r1fq9h1afVYq77RI8O+xK0m+Ji2rfpQS0rflY0u/t7cFwOISjoyPo9Xpr6VqtlnrSUWk5RsfyJu1JHH+LxaIe41VVwf379+FrX/saALyytfr9Pjx79gx++MMf1roZxzvA7svtXQPnLemUOY4Ssp3COhmmlblYLKDb7dZyR6M/1Z7ZJYTax2JTWtrW2v6WycJS4zF3sUVM/ufGBLx2qqUeIZpCzy15F52M9QZBU77Fd4vFIrhNWHNepEAdddg1umL1kYJWloERyotDM7y1NEgLT8cHUYoTYekji1HCB51m1IaMKkuwQEujOTFa29KgldUw0tpDChRp9Qj1NdISCzhKDrmmJD3BIgtC5XFnXKqHxVnXII35UsHfVHDDmvJVTBHht9YdIAiLYyQZSiltFQoghWiTZKblW84fUjB5W2iibEuQgI93j1wMyctQf267za0GFQIDjFbZJtXdG1ADeOWs7u3twXw+r3fuWeE1MmmflQygcnpo/nSBiUSv17nL1QE5yHFMS5bflByhC3xCi+asba8dVefJJ3RU5uXlJbx8+RKePHkCp6enwXw8QQoe/LXya0xmhr7x0Izf8fGG/3IWPJYYW03y6dsKzYfk8pzzbig//Ea6242XkUs30om7PaRJf4t9aIFnjObwOpcR3kATvsf2WK1WsLe3B51OZ20Mz2YzuLi4MNEkyR4qHzw+ArcVcxdSS36n9C4Xm7Q9qd0Y84+4HcRppc88/jgvwwNqU3m+ieHi4gJ+8pOf1Olx3F9eXl5L22q1YDAY1H9fXl7CxcUFTKdTMW96ag0CF/iEIMkz2m9Un1riWh6kyIYchMqjtjmmjcWKrL5ejAZuq0ixHq0sT3txfajRw5+n9kloDGl8R59p7R5DKZ0ZQqxNrq6uoscPW2VfqGxr7OimIoUHmux/KXYm9aFGN8pp6aoFC93bjMumwmLvAVxvy5A8LEmPlac8+cfkak7M1wKev9X+t9IXo8vjw1tsrbXJ2JKDwKqoJSdQSqflIeVHjSzNMKCTr54AbkjxWugP5ZMS1NXy8xqVUtmSw0mdvFyB4R0MlsGd42BY+IEP5twxE3NGSwV/Y8GDEC20XbwBSprW4lBqQaHcdgjJndJIaSOvw1EyiMXLT3U6Q/XZhMEcMvhTZGtpWkromVK0WNNToIG9Wq3E3fSSA7xNRylUNtaD3tMm0RwzolNowCDVcDiEyWRSB59KyyRNf5eGFlisKvnUiBz5EuLNJnnNMy5T7AKLfkp1UiyQAnSxfEP9Tr/x0sPHIQ8ijkYj6HQ68PTpUzg/P1fzCNm00m9ub2h9HuIFTzCN1skCicdXq9VacDrHNrXSnuOn3MIPSedwfWTZ+YTf431z2ok+JeRo6UCFB1rQMLWMFB8tZnPh6Ru462gwGNQTU/jtaDSKTsaGaMux9Xgaj6wL2f4Wn98Ty9gWcPxgPwKEaecThqV3uFnlvSUOoH2j5YOoqgpGoxF88skn9TO6Q47T12q1oN/v1zLp4uJC1ef4fbvdhm63Wz/ju7V5+hBiO3usOiukDz2yLidGYY1dIaj/0wRivhdPx/UZQLj+Fv5NmeCI2Y0W2eShLQYPb5WE5t/Stry6uoLZbBbMRxub1rItNuUu6ocQUvRyTP/mxu9isTtpbGrlSJvkUnT6TfUZYnMy3B6S/Dfpe0u5ljbLtbelcqS6euwLjf8kO0PiR0sZGq0heNrUWr6GrR9TnBI0QEiGBAaMEfRO2JhgTwmIIVN4jevQhFdpSLtUJBo0SIPFYrTQdokFsKQ25CtPLce5WoH5aAYb5ZuQcOUGLtLN0W631+pHj1WTjGLNgdfqTo+xpZN1Gt20DAzObOIo6Rw+9yiRUDlWAds0FovFNXkVg6S0tLqGdl0jmjJkOU2SvNNkQYoTGipr09iGcxAbV5oMTy2Lfa/1LwABAABJREFUyvVddoY4L2gnYKxWK3j+/Hl9hHCr1YJut7s2WZtLAwbwJpMJtFqta0df5cITkKJBQq8MstCwyTGIAdFQX4X4NDUAHJOr25ZDOUDbpt1uQ1W9Pq40pU7UHokF6r35U/sQAGA8HsNsNquPJh6Px43IJ8k25DYlp5Gm2yRQnnkCgDQttQtjgTKpfly29Pt9GA6HO687ENT3CN33nZIvhdRum24fyxiMTSbkyj0p6Md5sIS+akpXaXLAisViAS9fvoTlclnbCPz+euRFb1Bf8qEtPIZ94AmSS3ncZJ0I8NqGk8YqbVtN3nMb3OoXpdLatPzAO7sBAHq9HiyXS3GC5vDwEPr9PnQ6HRgMBvDOO+/AbDYTT7bAWAltQ95OuIihhCxOjYullrXJMcBjQVg2nyTjfOflw1CA3hOUt/KslAZ1Qmo8BcvGo7Q7nU5dzmKxgC+//BLG47HpJKXY5IIX/Hj4Jo8rrqoKut3u2vibz+fwzW9+Ez788EO4f/8+rFYruLi4gPF4DACvTqtBnURjnSV5nfNyLK2GTY11L6qqqv0tgNf8KC04SR0jlm80ux5plH7j36F4o2Z38Djmm4wUfZXL75tCKb+o5PhMtadi5TbR3qbJ2CYnCjHfUOVCk2GhPPn3Wj6WQDZPK73zto+msC0Tc/Q5N/5jwPQew5B+E6JN6iMejKNCWOtTia5YWbHvJYTSa8ftxfhI+o3OGn2n8Y7UN5b6hOoS6hce8CghaCz9aA3qpDgGofybhlRuqE80YyTGX/SZNhasRmksz9zAlYeXrcpYylNr+9K8YOkbnnYTBpOlrhKfaU67Bml1s/Rb6pem2yG1rKurq3qSlDoV9L4cPiY8bUadK8t9Ojk8a9HxTY2J0Fj38qYFGJzQdBxNR2nk9lNOe2xK5zRpg1veS/aPFmzijnnMdg7xqfQt3g1K9ed8Pof5fF4HiTC4wW05yR5NQUyHpuQVCt556c11RKWAaopNQdHpdKDb7cJ8Pl8LPnmAk6KhIHBpWPwfrfyYPR/ioyZkpqU/PXZLEzod8+SByFgg2tJmHt839Rua3hLcoXJ1NBoBwKsJLrQZpLFIy7LC2z68XIut7W1bSU+XHseleFSSAdyXpmlDY80iB6w8FKK19PisqtfH4lsW9PX7fdjf36+PJj44OIDxeLzWXvg/j5XQdwh6j6UGa1yM9lHIXwnlkdO+JexO+luzI2g9pPrl2EJcftH/c+Fpf8kesALbpd1uQ7/fr/PDRZ6np6drR2hrcs4ah7PaUUgDzbeJyVjahnS3Hj6/e/cufPjhh7XtPZlM6slptLelby184LGH8P224ntNgsdV6ERsLK6Y2zbWcctltjW2F6vDJuJjqYi1fSxt6HkorfUbT0w1hy7tW6lvU/0GrqskGeKlOUUGafRbfT4vtr4zVkNIAeOqOe0IPNxx5lXMmjERYjLONBb6Ka08v5jxnuLo0Ly8wZUYvaEyYmmwf6hRD3BdIXkGdeqg4EIlRzHgTlNKy3w+h6qqoNPp1P8jr3K6PX1j5XFLGu24BK1MNBZSUCIA5CmH84d25/QmgUY1GrA4FqQ2pQEZyVn1jLsQ+D22kqPqAR/j/B1A+eAplpUa6I2hRDvvAnjQSzu2SwqEhvpzF2B1iDENlf/T6bTeGYsyut1uX9slSL+3gO6EX61WxVb2czpSDNVdkIdWcJmuGdExXW7R81Kb8HbedJuVLDcnwMvzKSHzpDwkW+r09BT++q//ukggU7MRuD3fpEzXAvhScJXvbkO5sgk6mwann+om/Lvb7cI777wD8/kcLi8vYblc1pNXALD295sYvKuqCnq93trpDXicreQP4G+83w3ToL1fql2oPKUBY2pHWoKsqWXTfLBufIFpTpCS04rvaF1Tg0SHh4dweHhY8/KTJ0/WAlH0nxbboO1vOXZeg3avbwg3wW4ogVarBXfv3oXFYgHn5+fQarVqn14D7S9vPIp+4w3mWgOwuX2HxwbjaRS4mLHdbsNsNoPpdFr7rd/85jdhf3//WvxDmlziCxBwIgwncUv5vN7Atweb1MdSn1oWroTysX4TS8/tk5LyQquj5UQjLlspDg8PodvtwuPHj2E0GsFyuVw7ktwLya8O5UPtOvwWfVCMJ1quJ/AA7QosH+sN8Gqx8osXL+Di4qK+Xmc2m8EXX3wBs9mspo3SzWHxXTT724ISfFWaP1PKx9MXNiE76HyKpTwtDY8Hx/Tdm2gzeHzzUgsqvPM3oe+4bSu9499JR5Hzvk/hY8m+TbWvbwLUO2O1gIv2rgQ4I8eYRzN0LN9p6UKBaE6jxCy8PK1OHkUTooFD68PcgcHLl9pQG6wxXgq1u2a8lXQmaH5SIEijOwQpHecdVF4lHApepsRfMd6O9Zs0jmK0WXiVt31MgYeM2lg59Hur0VVi7Fjqxo/Ak+jlecX4sSnDMsbfPE2IT2I8FONfqTxaroSmlXRMppWAll9oHGtt5oWlbzcZiPCC0x3TpfjbGgQKlYv/a7Jf0hMhuuizkE0Ts59SZEWpPvbKYfq7ql5PcONxxQCyHIjZETG7omkbWILWLzk0cJ2WK5O8NkBMX0n9RNseV+bTXQyImDyKBQl4efT7UHrtmbdtU51Ojx9Bx4O3LI/cSOGrWDvT0wu63a54tJvFnihFk5TW2qbWfuNjB48D7HQ613bNhPLBf1VV1aczSOly6I7JWk2uSvWsqupaADy2gEkb31ZfxeprecZNLC3uFqfHvHIfLhR74LTlIjSGvHX3+Fy7ZjNymYnjhvJ4SFdJ0NqjVExD67tU20WzPbgOwWe4WJguCEAZ1el0oNPpwHQ6vbbLUPqb1oeOe5R/mqyxLHKUyizRNvRdKi+n2Az8W49NbaUzJHs030MbI9rvHF9Ayx9APqKdpkferarXi+JXqxWMx2MYjUZBfisFKYYB8GrBA8aHUuxDS5kA64tPcUdwu92uJ2lnsxmMRiMYj8cwn89hOp1em6hGuiX5IL2XftNnFr8hFZJN0lTfWsBlnTROrOMPEZJDtH1jbWtpF6lfc/PcJmL0W+JHIV0ca/tc3rfYuxr4uNVkvyT3Y/0aai+N1tL1t5adwqMptK55Y5u4O1JjLo2pQ8wqbemnadFpDdGg0WhlYm+AJgZqDMQcotgzz7clEAqwhcrWDGm+2tgSQLIYfiFo/CYZBjwtvwOUv6eOinQUtTUIQGnCfzE+1wxQ7kR5od1HLCGkuEKGWgypwbVdMARWq1c75JAvYkYhb2ucfAi1fejuWD42aduXvLMMy+fKvUlsymGSsEsBJQR38KRVtRj8lHhqtVrfNYp9Op/P11Yhlw4u5UA6bUED8j4epybRjOMUj0iNgQdRsRwLf6BcR3vAgpgekZyAXeFV7sDT/0M00gk5DJ7MZrMk+WXRw6V52etwSTSW7sOmAiDIbygvMLAd0wmhAAQeV0hPJKETOPRbTNMU+F139H/LwrsSkOzOUDpv8IS2KT/ZRSt7l+SMFzxgRXdbagFFT5tK95hTe4li022IdKAslXiYn5ZRyrbGsu7duwe9Xg/29/dhMpnA559/DgBQ765LbRPNJ8qFJbCb4pNKJxdxGyvW7lpgsKSdH4PXv9s2kMc6nY5qF+LEBZX1ALb4kDUY7gHlBXqikrUcS4wM06D+xQkjaZHHfD6HyWQCn376KXQ6nfp4U7zPnIKebAQA9c5aiYZOp7M2WQQA9a7lUBCclrNLKD0upBirpfzUOLDF90BoE06h761+E0+HiwDQb5OOuO71enB4eAjT6RQuLi7g9PS0Hjuld6B68cEHH8DR0RF8/PHHcHl52Xh59NSmhw8fwne+8521cb1cLuGXv/xlvRs+1j7WfrOkual2pAUSX5aoszR2NF1WQh/ROYwmsU1bwipbS/GsFKMvNa5S5kykndSSTxQrS3vm1V0lsE27VNwZazHEAOzOjDaBZQ0cehS89kyiMZQ/n5jQaJCEQaxdYsEnK0OkTGrEmJ6mCfVP7oSKVqaWL7azFqAoMYi0vqaOLw1OaBMWEv30PV/hSYV1LPiijR9p4kNq01DdYn2iITdwq/FZSl5SQEyr1zagyR76HNsjNPYkJzY3qCLRkDOxFtIFnCdLBiRiBqa3DIvMzJWHtCyrTmkKUmA4JCd2DR67gbY37UPJ6OX9ktJHPNhBdUrsO0lWSPnib0kOWnVlSA9Lz3Og2Z2hMrjOwRXcJY7+sdiPKe3AnQuL7Wexk3Oh1SHHtrMEoXOdfZ4ff8fTSHat1I8x+lNlc0nbiNchZPNZyuD5aGlidGmgfDydTmE8HsN4PK53R3nHEd4NLB31rvlalAarDEzxrVL6IJU3cDdlqF6YN+4mxklM3IHpLZPm6bEFPeNmtVrV8hx3AHe73ToA5O0XSc+XgNYO3j5HW4BeUyKN71QaLfYFpYW/C9kclvJvMij97XYbDg4OYDabwcuXL6GqqrVFQJa6praHV0am8kzud7QtuM2D8no6ndY763ACF49elcrvdDpw7969+h3uVkRb3bJIUsrb0xdcdmh2ayzfmAzahu+X43+H6NX0hccG9NAmyWHkES67JF8JeRYnbNGvCPlBMfuMfyPRSZ/jaReo99rtNgyHw1p/Yzpp4Z8HGt+iP4UL7ebz+drVDxcXF/WCV2yfJhDybzXk6spdgCQ3OTz63MobmnyzlOGFJ47i8cV2CZZ+y5XtmvzJjQNbxpnUT1yWSvRKf+cgVQZqNrtFRzWho8Vziugq2BCsjk3IcdMM/Vh+q9X1lX6lLzXntHEBSWkI5UFppH/jO2nnWqxtLW0Wut9vW7AaVN6BGuMxT/khLJdL6Ha70O12YTabiSuZpPKx3NlsBlX1+s4n3IVGj6biQqAp/ubgq3ktAdXcIB1CmpTehKK1lMON9lLOkVQ23k2Jhq72HQal6E4fpE+7c9aD1KCbJ3/KZ6XatHSwbVPwyP6UvEMGG9dDIfpyddKmEBoLHOhMhu4YwgAS7o4IpeM0SKDB8NQdPtYga1VVazvYYnZLjlGL+Vt5wJNO46/ZbAaz2QyGw+G1I2tjtMZA24vebY+yNwVeHUfT7Zps0wImTejv3Px4oCEkE9H/2VZ7S7Ry/uenkuyC3A0BZRHeO4YBeXwn1UGSofP5HM7OzmA+n8PV1dXacZcAcjAn1a7ctfFGUVUVHB8fw3K5hGfPnq3Zg1SXYxu/8847MBwO4e7du3B5eQk/+clPoKqq+m700nW1BBUl4ITk0dERDAaDpP6itiUGrmlMo2RdS7TdYrGA6XQKi8VibZI8VQZxmnL8aer3WHylTcuhTZbX7XbhV3/1V+Hi4gI+//xzqKoK+v3+mj2noWQcQoI03jYdyMZ2oJM5GqbTKXz55Zf1ZOxqtaoXl3AcHx/DP/7H/7i+n/ZHP/oR/MVf/MW1ss/Pz6+VW8qfigWaKR0WP0nKf5dgaTfPiUNN6JgQcGJTO44f4DX9SJ9l16nFz+VprPXudDpw586d+vfx8TEcHh7WCw0wTzoxW7JdMa40mUzqPJ89ewbPnz+/lhbjlxIstGnyadfGwabR9DhBewjBYxbaN1bs0nzDLsLL37H5EOr/hWwM6Zh2nq/Ud3whi+WOWPp8l+KCGjTapPawzI+k4JqWsiiPnMCQpKSkWWZrkIo7DbnQJiE0htIGggWcfsr0nokfi9Ht6attBiCk9sXnlmAa/8bDq1Ia6Xs8kghgPZDOj2zT6NR4KZQ2Rh++9/S1xUjytBt12EN1DhlhUn2ltCkCvpTwDE2weJE7LnlbevKzjiFLvp7+CPW9xAPePqaB11TZnIoc2ckNl5DRZNHPVppS2wbbFR0ya+DQS18OYnWTxg492hjvJ+TBJc2o1WQYTbMN/ZpatjSurbaZhR4PrMEPT/AYv7UEmfH/mE72YJccFG9drG3Gv8Edb1R2SEcexSAdsxWzFTz6xEqPJKt58NFrm6VC0n1IE4B8fGZJuyXk19Fv6T8tj1xaSkM7VtOKEnRim3W7Xej3+65jt9HH1I6ns5avPeOyN2QPWGhut9v1wlcAgPPz8/qeaCyP56VdbSPxnNUOsYxbid+5Dy/5RLFnmj8U8rVyERvbmi2xDV0WoykVOPmxWq3g+PgYBoMBtFotGAwGawvyUv0dK3Jtc5pHalxACj5axzWO39VqVR9NDAD1nbF0gRt+T3VVVVVweHgIh4eH0O12YTKZwFdffQUvX76saZKOX9bsAq9/HHrHx3VOX4XKlMa4x+4JfWORSTS9Rh8tz9LWHj9Rk5+Wb2l5qJPopKZUFv4dG+Ml+luyG/nYbbVacH5+DqPR6NqCj1B/WWmgZSOoXYHtxpFjRyBCsUCergl9s2v+V8y3bDKWVcKWaDoGukuQ5FLomhpLXgBxfWAd8yXibDF/mqYLybVYnloZOdDGT4g2+l3MN02lUau/vmQIbINTUsQxQ81jwIby5YKr6Z2DXFECvA5AW4K+nF6JKdBZBnilEGNBKmvZmHaXEaNTMlykI8pKCSEtsICBeQyGYBnj8bhOS52EUuCBBE2Q0EAgX/nnUbihwAVNIyFXsYcCJiX4uASPlAStV0odaXt72j7kkHFju+k2KhFg0oJXbzuaNOBxNzfu7NglhOSWJj9ns9naEVEHBwcwHo/h6upqLZ1mlOJ7+jskq0tC0gtUD3B7wmsbWOnNrVuq3PE6q5LhvSl5EQtCbEsnSXauly4cHzSf1WpVywp69BsN9lgCeJgn3fHAy6Lp6f8l+5a3D6UPg1l0vDUx3imsga1UUHuY58vbvmlfbBtYLBYwn8/r3ZqWU3FiCMkdfMd3MSyXSxgMBnBwcLCRdsaxzGmlJy+tVqv6/mf8hp72EwvUSOO+0+lAv9+Hg4MDWCwW8Nlnn8F8Pl+7H5zmAfA6GIZ2CF0oRn04Lpck2ihSxhC2x3w+vzY2vTa+5PtRPy8VXlubywD6DOm86cAdXzje33//fXj33Xfrd7g4oDS8fRGS95puos9iecfS8zTSyTr7+/tweHgIFxcXcH5+XvsIUj2Rl9E2mE6n0G634b333quPKH7+/Dn8yZ/8yZpslBaDbsPnu0m8H4urSP3vCapb5IHH5tYC41b/DidhcQFAt9uNlol2KvKrh16t/qFxFMrz8ePH9e5UXq8S4BuBer1e/Q6PE982btL48sKix1NsvZCc1d5zeHz+tw18wWHKna4atFiOxCsW2RzbAS3laamPN+ayLfC5EAmxcdhkPdcmYzVlE3NQeAA9dyImhRbpnUfBSw4GTaPlJQWuNEhlUKHIV63TABMdSNqASEWOI2UxJKz5S85FyNiK5WNpJ0saFEp0VZ1EL+6SxXch/prP57UjgYFFzF8KeKUKiFRjjZfndc4sfS3lZQmQ8HGj0WXhkVC5TUAqB+tDnVkpgMV5SFMcsTGzWq2urfqM1dsqS0sFs0IBBI03advFxos36EHzT81Hy4/2dQofWnQUT6uVEaJDanctICSVHSp3E+B1ismHxWKxtjiKvpN+a3UN8U1IRwDANZkQo1uji+owy1hP6SMaHJZ0WCo0enL5yNOe1BaLfRPTQbSd8HdKMEorM/ad1Vblv722t2YDoY1DnT2r3ub0pfKppEt5vl7+ldJpMkdztPF/j09hTVNK7sZkfih9q9Wq7xvDSSoqXyWeoc9brRbM53P46quv6qPjp9NpY050VVXq3bSx/FPa3duuuDBU4lXcgY4+y8OHD+Hu3bvw6NEjePbsGfzkJz+pJ5dw4slKT2p7emyVXHC7KuQ3pNhbmmylOydDfhyOi1arBScnJ3B5eVn3g3X8a5DkjuTv4N90/NDxWLI/pPws/rglr1z/JfZtVb2aoMDd2nQRNtpUXrssl05N5kj6Tet7D30W/57ye7vdru+bxCPpuQxF+5rqPKk9B4MBfPvb3167xxP7w2p3WxCS414bxZp/7F3I9m1Ct3OaND6SvtHGd468tUCiC/kN7xFGnkCeifnF3vgKhzU2RZ93Oh04OjqCvb09uHPnDgwGA+j1evDZZ58BAKydKpMLSgPdQIJ54725ACBeZWCRIx7fiubZNL/sElJ0nvUbyW/zxEFy4lKh/G4KeL3b7TYMBgOYTqdrR3lbYgMW/SG1N/eBpP4MtWvM5rbGw6Q0pfzUVD8+9K2FLqs8K8m3Gr1rk7H87tIUw9BqJEgBB0khcuUQyzOFVktamp7SHhtgvD1QOGr5onGPabV7X6Ugl0a3t445Boi1HFoe/y05DqkCLsVolYRXyEjAd3SnBr37h/c9vscjz9BABAhPnkplh3YvpghuKySF7jW8pGeaoSAZ+blyQKIllq9HYHvowH/UueQKmf6Pz0P3/GrjAf95ecHqLOYox5z0/LuYHMsxLEvls22EgnAYGNHuQV2tVnVgRNKHnFe3DUlncvnF60bTYtAolLfHOKVjUTrehtLF7+bx6jFc+GPdzRWSg1p6WiZvy9yAmUaP1+bTypdsT+xLyhshHvCA859kF5ZAE86vpuckW4PrGm7b8oUO3PHk70oFBTh9vF5e/tfyt9qn/LckSzmN/J2GEF81wXOxcvAEGYBXtNOdZjwQz/mBTsbSfC12WWqfWu4/RFqkckPw0CTlR2mj8gp9ik6nU+9qeffdd+HRo0fw0UcfwXA4rMcfBlo9dUjhG65/8Rnn+Vx+lMpJkRspOgf5Gds9Vh4ukHr58mVtz2MeObJO86O0dJiG+yD0W0vf5NrFGo+kIteHoOj1enXf0slYzxH7pexgzbehMqBUvtJ7zS/Hd6jfF4tFfa83j23QuAelH++cpc9xMvb09BQWiwV0u10YDAZq3IHzUS4vWfg+Jhdy8tfgqY9ma8byCNEmxW7oO8mujuVtaYvQYnKsn6S3caEMfsfjq7xdpN1kEj/xcSfJMQRPQ+nBydh33nkHPvzwwzrdYDBYo5+X4QX/Vrq+Yrlcwmw2g06nA71e71osQAJ+773rHG07Tp8nluSxv1LGWylbOcfe4+8sefF8rHEZSd9Lcq6p2M42+0hDp9OBg4MDuLi4gNFoVD/XFkh4YmCafcVjVNq3Ut157II/52VoZUvfUHpjfjtPo5VhgYX3Nd879E2O/k4BL0/dGetBjiHhEZg8oEPzyYVFkJfqEE05A7xWYji4paAE/sa/6SS6tT0tg29b2FSAyAJKC11FjqvyF4sF3L17FzqdDlxcXKwFRrrdrsmAofA6UvxI5BCf0OcxeAxnjUdDeccM/G0ix5nNARr/dLUwdwaw7aSApbcsGnixBp20smJ9H3JO3nZIwS4u33PgMdwthhI6adQBxaDiTYFUL5ShWDdMxydCAa4737GyPDotd8LP0t9ID68HX5CnfSc9R9oxH699J+VnAaadzWb1ZI1HPlL96TlmW5NptP2tjgMi507KXHCHysqvWkAM/6e8hvbQwcEB9Pt9GA6HsFgs4NmzZ+4jzj3yrKTO8dqnJYKeKeA82Wq16tNb+Ek71rJTbMk3EWjfY9CXIoU/tKC21sa448d7ZOrFxQX84R/+IZydncFgMFjzY7RyKI3cV6U0428uP1L5ej6fw2w2g9FodO24b/y/aR60BNNQttH7bWezWT0BFQqyeejHPLCvUE/k6AtuB1BaY7KTtkup3Vq7AtoO/X4f9vf3od/vw2w2gz//8z+Hi4uL+rhy+g2Cy8ld8HctcoWnjfWplXZ+RGCsTVqtFvzu7/4u3Lt3Dw4ODuCdd94RFyTOZrO1ezSbbstdjptZYbVLS5ZXCrFxFIuBYuyu2+2KctMzeSLRw31CaYKR/o32Q7fbha997WvXZMrf/u3fws9//vN68dmmgHq/1+vVun0TY8uiQ7alZ6S4/aZo2UadS5Z5E9sJT8CgC+MWiwWcnJxcu7t5W+AxQ+m9dLIb99Wl+S8eD+BllBirpWSKhRaPrbINOyI6GZvipHu+tzhtXMlajUrNmbBMHknMGaIxVI5UJmdqnlYy5qX6SIZDKEicOtGktQen0QutzXh+Wp2twiFncGE5fBUdGna9Xg96vR5cXV2tTXIBQH2sDofGwzQwE2tz+r3U/qnOYYiuEB1WhIL5MVqkMcudCz7GLJMSGo0hmWhxaHkaSz3phCwNeEl8ERr32li3Btu5EvbKFd5OUrC+CaVnkefbRIj/Ke9aZEGorl6+Dj3n4AuApIlYa16l5EqsDEnnSjTSumiBTtpP1qCqxP+xfEN5SM+lYGoItDzLBKq1bPouZK+l9LnWLngahbS7Lmbbor7GoL9WDzouY3wbs7VC+nzTsMok+tyTJ/12uVzW90Hu7++Lu7U94ykWgOO0bAKSw8v/1uS61ZYPQbIF6U7k2Wzmtgm5naWVRdNLNGl8JNkJuwBsO85ndMGchXbPGIuB34Eq5YvvsN9brRZMp1P4y7/8S5jNZnB0dATz+Rwmk4lKVwiS/OM05Yw7PCaRy/QUez4XIbsX/2HgDulF/5BeXxPLL5SGy1BaNk8f031aXbw0pabxYNOym5fX7Xah3+9Dp9OByWQCv/jFL2A6ncL+/r4qy6ztrvnsqW2o2aVSORb/tRRo/MTiW7daLfjoo4/g/fffh1arBYeHhyI9lvssvTGBGHZNP6VCkxf8HaKUrZ7ybSwWyH/jSUD8vXSvsOYDesevNR7EbQWU5cfHx9cWVz19+hT+5m/+RqyjVRZb7DpeF6RJWryn1U2jyTPmLG0YioFtEqXHQ0iXSP5oKlLt7BydZOGBTev5GDqdDnQ6HRgMBrXuGo1GcHV1dS2t5hvlwDoWePlaGoB0ubZahRfcpfiDFnh4IuRfefKQZAzPy1tHi73V4Q88gVFu5DTFkNSQo88tStWSv4cOb76S4uD5aLvgOGLMpg0aqUytLkhLaluWEqiWfDYpvDVjENFqteDOnTvQbrdhb2+vfn5ycgIvXry4dl8K5oH3A9G7IKqqujYJR/9PoZ0ebaI5+QiJd/kzvPeN0pzKNyXgkVvSt7tiCIQcaAqpb2Lf8LQUsdVT0rcx+iRaY3Q0AW13QmqgG3HTgk7ccMP6SydNpNBCV5RZgqabRGrbLhYLGI1Ga/I4hKbq5Rl7EqQjYUuj6bp7+ZIunpLGvxf9fr/eTbZYLODi4kJdhGBxDKz0aAHWUqD6htofqdCO3A6Vj/ZRbFUq1j9X33Oe0PST5pjlwEoz2vL4dxO0NA1uN6KtizyGtiRPr+VDYRnT1kCQ9B1OBr7zzjtw9+5d+MY3vgGDwQD+5//8n3B+fl4fHbhtYNCUT9BOJhOYTqfw27/92/D+++/D9773PRiPx9DpdEy7yXLGmIZUWe7NH0HHSwkdIB2rvlq92qF3eHgId+/erY9llY5m1YC00atuEFa+jfF5apvzMbxNP28XgAu3xuNx/azJ9rAG4il/U/laIpDvPd0LQRdaxXgPj0PFRQwArybCv/Od78BwOKztLoDXOryp+J30Pf1/k/Do/BQbMzZBYokp8HjjJk9JQvqp3Xl8fAzf/va361OcEJ988gm8fPmy/o3ppWN6U2iw2C/0FB6pnfC0isvLS3WhQcqkSgw0rqfdxdwUOP+E8KbrnhJ2SgyhNpTiBJa4MX0W0lEeWjaJTqezthjCEi+R5qa8iH0vtU9qmdJ8lOT78msCpPiwlHcOvH5aynxcaj5SG1kmZD00Xrf84brxrSEU3C49KSuVSxtEMgiseXlolBpaqmvMAJYcXYvR7G1X7vxKNEq0WBRiEwrDMjG4KVjriHdT4H0yw+GwVqjj8bi+b4EeYYz/awpO46ncwImVf7SyYm1SatxpvOjhyxL8wvPyGMDSmNPylfK2GDTS+JZkSiiAYulPC3+VGqMxZRYKoIcUpHVsSHRoeZSWSSUCBhKNWr4xw99SP5q/pX2sAfdNOoMSkJ+53C6Rr/S3hpSguGanaJMTUv9JcqZ0n3hloyTfrDxK85byigHvYFytVvXKe8zHapxbIdnWTYJPWITaVdM/0nvtO6l8axCG92XID5FosDqSIVs0FyEbUEprkZmWQIc1Lw0entDA5ZAWuNV006Z8AeTJfr8PR0dH8O6778Le3l498dk0DRqfVlVV+xP4j4/ZqqrqXf537tyB9957r14syneo0fIwD49/GRvXqXIRJ5f5vbgWmigkPsrxEbj+QV7AnbF4lU1MLknyhC+alWReu91e68ddQYp/Yfl+28Dd2avVau0KCx6wDPEUjgOrbvToGK89qSFHL2jf8fiN1kZVVdU2FdWN7XYbjo6OoN1uw8nJCZyfn1+jy6MPUupSwn6zlJHad6l1stp4qbDaWSXLrKoKer0e7O3twf379+vTcmazGczn89pmT40vcZT6loKeqqfFIDxxME/53A+gz0JlxvRaLrYdC+DQ4m2h9Lnl5SKkn3J9M09+uembiDNivtId5lTfS/ee59iSNB8pj1LtLvmJnticpY4pOkzqy1w96JFbljJz/WVrzEGcjKUF7YIQXK1erZzH3R08YLSpVVjcuEwVIJa2xTqFLoYGeKW4rYEBS8AMkbJDdpu8kmPMWkB3UnQ6HWi32/VxVF999RV0u1147733oKoqODs7qw3C4+NjODw8hE8//RSePXsm3j+I/G2BtsMVf2v8QtuHjh3O0xwxwe0dezHadgkaXfx5jP4U44E771IZmuKO0UIDSKF0CHqPdSwtD+alOKU54HxuzXNT/LctPi8d6KJti8HSTqezk+OYg8tBLsP4bjQOLdgr6UtLe9BJCVq2VJYlnxAGgwGsVqt6ty+l3+rkxwKLqdBkXEyW0H7E3UgYHA+Vhd/iXfBVVZnugkEb4PDwEObzOZydnQXps2KXgtGcH0rraMpzOflqQWxq23B9kItYQEzb8VCiXDr2Qg6eFmjo9XqwWq1gMplkOcGlHOhU7JKeSQlWIWg9tPvlKNAHvrq6gvF4DGdnZ7UdjnTgsaq4QzOFlhRo7ZAqOy4vL2E8Hq/VTbvnr2mklEHHaavVgn6/X9tLeBIA5ot+G5W3+DdfyPvBBx/A/v4+XFxcwGQygZOTE1itVuKu2hCs8QAuQ60TAlYatLw27RdWVbV2Pxziq6++qu2K6XRqvi+uVBtRaPmFbB2rjkVbSLKJU8DjE1p7dLtd8f7dwWAAe3t7sFgs4PPPP4d/+2//Lbx8+XIn7KRdiFlY/PcSEwUhbDvmR//Go8O///3vX+OnX/7yl/D555/X+hDf8esapLwRPOYTAvfjLFgsFrC/vw8PHz68Np5R76P+iCFlUoT+nTsh8qajKb7ftkyhsNq1u0SzF1TP8bru7+/XMa3pdArPnz83x+lL0WSFpQ8sE4I8zSYW/DXJP5Y6e7/HPGIxOm+9gta7FgTzTN5YjAGLU6DlJwVapMkSiU4PjTG6ed4SjdI3Ocor1la5+d6UidhtlE8NFhTQPEjW6XTq1Z7D4RD29/fXgsU0uGAJOPPfMWO8CT6IyQKrwWoNBGh0eOCVQfhNaHxx4zWUF6dB+jalbryPYw6iVBbvh1hdtCCshR9TkKNMc8eA5fvc/qPfhiaeSjnVniBCij6Mtdk2nbXQBEau0RbKR8uL9gXVCVpfe2SUVFZsYipkQ4WA9bZ8E+NjXn8toKfJX35/o0U2Yx5Uf0v1wCA6OmjSnVRSPWgZofQxNBHclcqQyvI6MKl6QdKTJWSe9H8oLaXHQkdMhsTsOymvHJtW67+UPC18R+sX4h06pq39GhuXPC9N1vJyY7YSvkcbHo8xs/K2B1a5yfVFKHCDaXF30Hg8hvF4rI4HK2/SbyxI5Tl+jHUsMCTpjRCvefjPAiyX30so+UgxPpZsdNx1i34l73+LHg7pRIvv2YT+8dhMqfnH8pLsDqQL71XGcYS0Wa+uCEHzC2O0UrRaLej1emv3QuMkE+9bqz+zabTb7XpRJ9JIF5ZPp1P46quvYDQarV0/YdHlpewIiibaySOHLbCMZ85/2/TPOGL+iOY7DYdD6Pf7axOaeN0M2u2SrmiCT0J1QgwGg3ryuKqq+t7xs7Oz+ih0j69ngWarxsrhdpZkp6e0Z0kdELPrLLR4fN9YXtuC1Ff8OU9r0fWx2FQoziDxhGSP5MYRQpD4lG9iwmd0Jz1fQOf1Yzy0WdJpfg5AGb6M+Tkl9IU1PuNFjHetMi6WJoVerezoUspNCpOQwx16FruoHX9L36fO/PNAISK2QhG/pf9Tpz+Ut1VJUMOkiYBOihP/JoK3Ta/Xg16vBwAAw+EQDg8PYTwew2g0gkePHsHDhw/hpz/9KZydncFisYBWq1Ufe2gJWEpOmGRMNgGuqKghjLRp9ynlyJCmhDXPk+ZrkQmpwdKYoYh0SI6+VS7SXfUx4J3FuKpeMsboHSf0Ob6jMo86yttASNlagrlcZqaMyxBijgrdHWmBlwZvYM1iPNP8qDzYhHOr0WEJRHjztMBzokRq8C0lj/l8DvP5HPr9fqN6oum+pkEji8NRip5WqwWj0QhGoxHcv38f+v1+VMZJujl3TOxawAxAXjQg2QMhULnL7XJpYqIUrRaaLG1uyZfXqUTQyJq2aWh8TvsV+SJlZwe/j1wqW/sW9ZL17mgelOz3+3B4eAjHx8ewv79f2zt4KtG2QPUtBe6kxHcXFxfw/PlzWCwWcHV1VR9/OJ/P1b5oSs7EfAKUG+jTp9JAeU0KEnrzkuxKnhdO1uF9sVYboNVqmSbVHzx4APfv34erqys4OzuDZ8+e1YuDOL1UT1oQ00sldemmYelzbCscE9ruV5zMwbEXC4qWpFFDr9eDhw8f1jviv/zyS3jy5En9PhSTQmgnajUFaUxNJhO4urqC1Wq1dncfRafTgcFgUE+u3UKGty9z/CJrjKZkGTgO0S7neqzT6cDe3l79ezgcAsCrsYLysrSfxmmW8pEmfD766CPY29tbsw+//PJL+L//9//CYrEofn+rRhs9eRLT0XaVYgC8PiGZuGvwzDV48ipR/9K2vTdGlTOGc2nO9YssoPYWbpaivB+KH1li9hZ4556s8Y6UOS1uf1psBkxDbexdgWT7enhnG/XxnWuTAUsQODbJhwawFDCXlDUPsJdoYI/TQgd2LAgvCXLrpKcnwKcp4tg7DaWUTizfXRns0qQdBnrOz89hMBjA/v4+LJfLehU6TtDyiRbar3wSTgreSnxgcQS9yo2PFesEomUcNgFOb2isecaI1M4x2cW/s3wbo5W/kwKKsXpJfZoypkL1T5lokOpmzSPET7F+svKixFsl+dgTKNK+TZX7mIeUv5c3aAAwlcZSaNoRTNGTXj2nTTyk0EZ1Cg+ChXSFFDCT0jfZtxpvanolxG+WsYuBD76oAPmb6+FQ2SEbLwZJHob6rRSwHPznvRtT4mfJjp3P5zCdTmE8Hot3Y8X6kZelBYpKBlw4DaF+kN7H+q2EPOf8Sp+j/5TCOyk8l9rGtP9Ky/IU/U3Hg6bfYt/H2k7yBaT3Kc+x773HZ3vtfit/xNpQ+x3jB0u7WceYte4WGhA4eU91iwfD4RDu3LlTL6zC8Uxpsvg6Hv4KIdWGTs1/EzYkb0MAqCf9cJGDt+9LyDBJv1F7pKquT6bQ8WJtu5Dt4skjNla1d6vVCu7duwdHR0ewWq3g4uICvvzyS3j69Ok12bVJn2LbCNlVXp0U0zVSegsPN9UfnvHTarVgf38fhsOhyoPcjqfPYzSE/DIrnbz86XRaLzbDe21PTk7WduFbYYlvSHYp9/N4ftZyU77NRa6dWZqGEr5F7O+mYxwhWMaChqbtAM+4pGOFXn+JizxwTI7HY5hOp+7YlkX3etJo30h5cP0Q66sYP6XQYMk7J0ZiydOjG71levosVjbABidjKVKNc3Qo+d100m4UroilY32aAD82KPWOG68BgmVb62dV2jRtCm1vMtrtNrTbbZhOp/W9Jnt7e/Ctb30LptMpvHjxAg4PD+Ho6AgAXvWPtuKk1WrVxyBivhp433FhS/ur6TPfkQbO9xR0V4MXtK74TzKkcyG1IV+RKCk7z1goGUSn8izFAME8eFpt98hNdnw1wyHlW/w7RwamBoNjuye21UfWwGYJ+mjbx/ohZXx66KB/x3YWWMdoqmwL2T+4CIjKTi5LtXJ5G1r5TJKnsQCdB1Lf5uSN+eGO16urq2ienU5HDKw3NRZRNuNOqpRjEqV2w2dcN3h2eWv0Yv40n1arVR/7iEc/pTj0lqBiKdkj6Xsuj7c1ecDLkk4oQVotu1L5t7ws+vwm2wWbhEUmxMbatgJzkpzF+iBfNelXc37mcq8kD4bGsDfgStupql4dP5kzGXvnzh149OgRzGYzWCwW1/w/79hORWiSY1vItclDeP78ef032gjbBupmvPZIAgaVPZB08abjPd/97nfhG9/4Rh1T+fnPfw4vXrwQ+ftW/4R5f9Pto51AuCl0Oh14+PAhdDodODs7u/beYwfF6KYLYTx1xOO4ES9evKiP6QYA+MUvfnFtZ74lf4t9wXVGyG/1Trbl2ADbjF/sErQ22HbbaDySOga2jZCO6/f7axuoTk5OYD6fJ90D7Zn8TB0/mt9g7Rtr3/F4uHZ/7iZ9k9JIGWel5vPWJmM1gagFsUPB7RLGQWjASAFZLTgiKSF8jv9osFIqn35vrQvNPxY4tARrtfYOKbJQH9F20CZgYk5XU4NNojsnAJTybcpE9Wq1qu9roefN4/+PHj2C/f19+PLLL+sVzlX1ejUO3fqPyJlQDfFfqYlNyjux4EVqWbHvS/BhycAtz5P+loxcST5J3yN4YF6DVidprHM5yfPnxoi0eywVmwruemRnCLStmgxSh/LT+tQzFrx0xvIuwQPWNLH0HnuFp7PIm1jg3BqAp7LYg9B3KcHJUJ1j7cH1iKYT6HtrfWlammeojiH9zPNdLpe1syXpbJq2ql7v6uTHQ2rlcttKq3vMRgNYtwVSdJ7VVvfkTdsGIO4v4N9SX6TwiucbzjNSufz0EonWHFgCLiV1qiddat1K8KLGA3QxH7V1Qu0Ys7MswO/wzsjxeLxmD8UWEZS0BWi7WPQXBkparVZ91+JgMIDZbFYvzsGFEFa6c+VEiN5YfqnlSItErbJXg/b9ZDKBs7MzmEwm4m5/LS8eJwiNR4tPWsKvk/SXxg9N2exWfrem0fKX8sJdzDQNBiNjtkcqPRbatLxx8ZTluGHOH9Z+DPFADtD+wpgH8hvuQsYyO53OtXtlbyK8fluK/rLY/5Y2tJSn2SpeG9KahvN6Vb06OvRXf/VX4cGDB/Wdq6enp3B+fg6np6drCyoo3Vr5oT6RdGZMVnGZjleUSQsmPHKPfxMCzS/GU7ljzON/psQtvGgybwkl5FOu/Z8Cqz1r0RXat9ZvPLRZwH25qqquHVu+XC7rhcIA6za+ZldZ7ICYT5yrV+n31utYYrTS5/SflEarh5ZfDlL9uVDaFN7yjs8Yra6dsSGGSnH8SzgLnoAfF/o4+LRgX6hcKX8pjeX+xliZHiGVOohDAULeZyUVhKW9c5y+FKVAy+bfxL5fLpcwnU4B4PWZ6jSfr3/96zCZTOD58+cwm81gNpvVO2HRuOR3OWmC1VMHmheviwRrABRpw5V9WlDBIyO89fDAEmiKjcMcPtQcF95msbZfrVa1QxKCxrO8P6gcxIAjX6ASkgO5/WtBbv7SOArJ7xzj0NKXoTZLlbGSY5Oal1evSOmlcZbibJYEb3fNYKYGphSQjOl/qZzcMUPTSwvIpHp6ytAWd1h5KNS3ofbQbA/+nVcGh9LTsvEIT+0kEyq38T5AyyIp2v4p+oO3T8puWE85MYclFGzCd3RFrhU5ulVCTH+GxgWtR2l7V6Ij9D4Vqe2Zo8e1oJomV7WxQducBlzRX7PWg+ZHy7PodRqEwcnYy8vLNRosd0anIkdH0l3z7XYbPv/887Ux2ev1oNVqre2+4fbKJnSz1xdL8W1pvflEVYmgENLebrdhPB7DaDRae2blNUlmWvmVp60q+RQVzS6xQhrX1nxi/mQIJcaRN720KLrT6dSLGADy+MdjT8dsPhznVFbS7/nfEi2SHSbR2IRcWC6X9SIRSgM9Vr2qqvoe2dA917sIawzL6m/F+tKSLhXamG/STuLltVot6PV6a+V1u134wQ9+AA8ePAAAgKurK3j+/Dl88cUX8MknnySVo0Hrp5h9DABrenkwGEC321XHKV2EZuUbjRZuX2k0Uj+jqf5sCt54xbYhxQKl8btL/ZBKk1VmefOx2pCUrxHtdnvtXmm0xcbjsfgN9008tEt2Hc0Tn4f0sFZX6Tcf/xb9z/1i+r/llKwS/ir/rclGax94286jPzVbS6Mp5tNdm4zdpBOfaqDjpA89yhUVHHfYOWNqTGUNjKQ4hBaHLBfSgEZoSjlEg4XBN4VNBQcskIQc8h0eu/fs2TPY29uD4+NjOD09hdFoBHt7e9Dv92uHwlumFZqg19qwdBAUgeOQB7Jz8ktRfCmIBWrphIVUJ0mga23PFUwskClBO4I91u5chvIyaf/RyVmelge8KE27ZEhawNubBoK1+vDxlns0uHYvupV+OuZKweJoxtJtG1xHagZgSCbyd7GAqeYUa/mngDvtoUkC7mRr8saLUBCYOxlN2UN87HrywTFHdzTF7EG6gtbD89S52TXQExfo7iB+CoIFko2JOgQDrXz3iwWxIHGTQYxY3UuNp1xIbU8XCnLE7LPUIMjbhJBPaQ0WSc8l/cFtjqZ0riYLt2XbcbssdBqWN98Y/6fadkgTTjihzrDsYqRot9vQ7XazfClN9+fkafn2pskJqqsQTU1QSPYjxhM0LBYLaLVa8O6770K/3zfx0a71AcbsOO0/+9nP4Pnz5/XYxqugpJ38uXGFTSBFNmsyXZK7b2M8brV6dQIdnmjT6XTg9PQUlssljEYjGI/Ha+1Er92guz4tPi2Cjv92uw39fr+mIURnLAYzHo+vHSnK40L0f0qflC5UBw1S3HDbfJaDXeDRGCxxk12QbVI8mb/bVFuHYhehbyTa0R/S5kfoPBPKm9z+4Lpekg2a39wULHXC9tDiwAgeLy1JX0rfh/LbNVw7ppijKcJDTlPI8ceORmNUSkfz4c4qMgu9c4WWaQ0UepnBm38oLU/Dg8whaGm0wLPUFzy4uml4HG6t3XODSdzQQ55cLBZwfn4Oq9UK9vf3YT6fr90/R49B1IwuqSwL//CJgZhDFwocetrFYkjwNKlKVWo3jty+5W1I87QoG6k9Qoattd0lHub0hAKC2niWaKAGAB/r2rE6lvI4tPchZ2PTRjYN/KXwVErAICS3LG0ak3dS/paApDQ2JJot+mRb/RlykC20cJ2rjWVeHs/f6uxq+p6CjtXQzkRuE6XwpsVu8jrDJXnAK/9pemnXi9aneHffJmjcJLDvMFAaszliepCnQfsb2xCfSem0MrVy8HeMJi9/SuVqfbjtvg3ZH3zxgIdGqb0swQRLOZtoK6+/x/mJytYYuI7x6AspL0qPpINT+FkrJyWthZ9SdA3/PmQPWfoy9M7bL5a0NE+cTNKu/YiBHqMfglfvev35Tdtr20JVVdfsqlI2K9VZUnCTH6/N5QfGv46Pj9eOWeS6zypfttWnEj8/efIEnjx5AgCv6tvr9YL+103lxxjdml8t2UhNtUHIjioNr02CJ1YMBgPodDpweXlZ3/HITzVB2SktttTiKpwWOibp7tzY3Ykxn5reAU5lDqVPWmhvgWaz0b8lvRqLy4TSWXlxU/bKJuVDjt3A/Zht379My9NshJh/aAEfj1p8JsWvwHwknxDHLpbLTxpEGYLjfDKZRMsK0cbtiRSUkrtSm+Nv6RnA67uu8YQQrb5WveaROx45w/02r9+RYgOXGJfRY4pzHShL/gBxhUXTIuh9m1o+dIcWzUfauSUpqVBgxwrMw7q6wWMch5g05KjHBoF1YDXNHzcJuIIG4Hq7XVxcwHg8hrt370Kn04HvfOc7cHFxAT/72c9gsVjAZDKpVz7jkUM8AJQy4D1HKYZ2e2rgwc1N80Jq4HOTtHrHP4BPoeH/KRMDdJU+QPjoPazD3t5e3X54lxqCH6NpOab9TUbJwHxpnpV0Ij5PpU/6fteCJZrejxl3HmgOvZYvl8Gh9MgHdBejBdQ4DZ0iwmkL5RcKjofg4WVL0ERCaHe+tX4SDbgaPnTKBadNc3DeFPDAl1eGxL4pKfuoP3DT7Ndd4xs+Ni1+HH/G5YiUFx/H1pM3KH3evq6qqt5xg/eBdrtduLq6qu2tXeYdKuvp3XTWCZomQH2F0LNccP6QdC2Ft74hf9m74xXpDQXCYqBxEGrLWyYEOLSYyC02B7TN6LHEWh9Op1N4+fIlALzio8vLS9fdsdru8qaxWr2aiKIyCncbWhe97CKonC0hR3kcrwl5eZNAd0gPBgP4lV/5Fbh37x4Mh8M6zdXVFXz++ecwHo+h0+nUEy85GA6HqnznEzmWWAw9DjXme0q2i/QN5ZEQMA3XNyk2TQqf07baZRuqaWzK50nJS+IhC2/lQrLNcmNKPEZCxzCOaby7HEEXI0ttF4u7xNrK6r802eYxf43KsVhsKsXutdCUOgYk3xKRSmeTvB+cjPUq/RQDwSMkuJOAja2tFqW0cMc+5phq39JnXgc/5uTwvHiwyNK2WlBECjzFAijWtLG2ktJ58qf0x8rwwkI7b/8Qz0gTUQCvjJzpdAoHBwfQbrfh6OhoTXih40X5igfKPePQUz+aNjVQE5vQsOQnBdt5eSGlzAMPnoC71Mc8bymA5EWIh7SgZCgfDbQ+IeUWSyeVgyujANadjphiz5FfOciVHbljAv/OqVMO/bm8yiHpKAs04zMkXzcRcPDaLZ4JgFB6iw0QSuehZROwyF1NxoVklBQ4COVB34d43xv4proaYH3xlUZ3DFY7slQ/biqIR+0XTadJ9qjG+yVsjlJOHv0+pS09ejBUthdNfeOxs7RvYmPQGpApoYcpX1VVBZPJpF6AgbtrKH+nBC83CfQz0GaL3XnJbWL+XHpmkZ08rSbPQ5BsBerbhuxn3q+8TinyQZNZId7kNndMjlG9M5/P6+PiuL7DPqble/WKxQ/YtH0WQq5dv236Q2MqFncCeM0To9GolkfSqXFWGrztkduGPO7RbrdNx8juMkr6sJpMyom3lKCnVLkx30azE5DH2+027O/vw8HBQX1N2Gw2g/F4DKenp7BavYr1enlKkum4oIlPOiCdlsVOVL4iTVxfxMZUiv0Ys4swjbb7P+bT5cJi/1lo4e93UX6E/FGvT+qBx/aVym66La185KVDkpXaqao05t7pdFRZrtl4ofK5DxOyPVPKoWVp8MTf6Cku0jecVyh/Wfy1UFzWwqeajIvllcvHqfo9JuPVydhNCzHurGkVtSgqvuuDKkqcPJCYjO7iojTwVTwxZcsHH3UW0TjQ6kSZmpZVYldtSKGFBsUuKrRdBG3D8XgMT548WTtaqqoquHv3LgwGA9VZl9obv48Nfs6bMUHOdy1ien7EC69fiG56n+pNR8i4RhlR4h4hrsSshvhqtaoDhKG+8RgN9J5ALkOlerbbbRgMBuqRnaWNy9TvU+VYCt3Sna90bG0TVM9IwWSLwc6/KZl2m/DYHFowRAvOSro3xfkI8XEsQEPHc27/WQMaUjq+o1ejRRpHVnpTxlms33haPLbIK+OobRfirSbGjbUt8W7DHP1G64Y6ymujcFjGIc2T8ntOe4aCW9xeR97epNxDGnL0o/T3LXyQAmoA6ws4SqB0H6XYOZvmk9ApK8j7OSexSEdB8lOKUoD6CI9k9+aDdyI+ffoUlsslPHnypD6SE8f9crl08RbKKGrve22/XbBnc2DV002A5t3v9+u+Wy6XcHl5CQBQ3w/M7T/s9+VyCc+ePVvz1agPFrpOhgPL8I6bkrEhnEjrdrvQ6/VqWqbT6c7zWRMxsl3Ww6FYYilYfYy/+qu/WksbsltjeUrvkRf5ZE6v16t3cVtic9RO5MeQa2XT8W6J5Wn5hGhKec9j1jFoaZuSsbses+Z1Dp3umYpYHDHk0+QgxQ/xTJiVnJNAWUHHMD2GF2P5Xv2TE2sEgGvypmlQG1CihwIXo0ong/F5Kw2arIvBIwe1MlPatXRfSPlFjyn2IifoToWR1TGgZabkpzFfqB6x8qzBU/pdTgCcf5/bbilIycvTx9r31rItfBnLj+ahBWDppNpsNlsLylVVBePxuHbw5/M5DIdDmE6nMJlMasOLH6GA+XG+iikw+k2ojXg6rV9KBjM1OmhaywSGxSnwKnpMI5XpMUJjsiPEZ6HgKqXL2kY8WK3VC/9RPqZpVqvXE8D0SG06CU/zonlYxmAJmRSS6VqfhPoq1nYeeqxlh8qx8nNM90iTI1aZodHr/Y4iVNeSxpC1fnwceIw5TrfWxykBAw+sBraWvnT5Vjq0vELPJX6WUMrR0+Qs16E57ZlrI3nKAXhdJwzshpwffGc9Hj+lTagusX7rGd+0nNi3sXcpNnhJlHAyS4//XEh2CH0Xkgl0sQfX4TF7GNPRZ7Ej/PhYidmP/FsvPDwWk4uS7Eyx0yx2ulZ2Lqy6zdL3SBdFSA7Gxg36dqljq9VqwWw2g9FoBNPpdO04PW5vc7piCNUrJT+OWN/H0oS+3aScLW2DUjkjHS1tGUs4wc8XUEvxgxAN0jdSeU2A0yDtPtwGPLowZGNbZaol/23YFTnlWtvQ2y5U3o1Go2s2aFVV9V3KuWXxDRX0hAl+eh393wPv2KPpc/krpg9D8RStzJD9rMWvPLR59NomxkxOGTTulpKXFt/TaAz5dKFYoTXuRMuypLV8n1MOb1fJV6MLHugYx3c5salUvzDFj/VAoos+w0WAXM7RdNQ398o/zT8KpQ2Nkxxb1/JN0/Kk+GRsSViDiDhTT4/okZiklHHnOe+e0pRzxxDdoVaiHpoClxgO23bXVyfuOlarFXz22WfQarWg3+/DYDCAX//1X4fT01P48Y9/DMvlEqbTKXQ6HdWQpHlZjLDYfbOobGg+2vix1K+JoEqTTpnFoc9dGY/QnGzNmLUEg+gzvBsFHXQP6LE/WvAbA/QnJyewv78Pd+/ehaurq/pelk6nA9PpNOnu2lKIGWPWdtXy9o4Jy0pzj9PvGYuxPGm/on5CWW81AEPBHKtxViJYwfPbdiAH6Qg9T+GnVN61wBtgt3xL80gxnjlCToEFpewnWqbmqK1WvnvCed50fG4a0+kUqqqCwWBQy3VqK1RVtXYPpXSaBj2hhrYH2pKSE0Z1rRZYlqCNeUqf5tBhOSj/MA3Ssk19FkITTmFTclOyJzTQemltH5KZUtCJ864UkNFow+/Oz89htVq571/NRa4+w+93yX/jctgaSKHjUroDUNOPXt2DtrDGZ1IwXKtTaiCS+2be7/Fvr/+m0bvJ4PYtXvcH9olmS6xWq1pfA9hsHK7ntm0vz+dzaLVaMBwOaxthMpnsnC9pSY+2UqlTEDaJ0r5TE3zV6XSg1+vVv6fTqZiuVByp1+vV8TgcL+PxGJ4/f16XQXerS+Bj03vnPX/W7/frd3h0fWjcx+wvbnOXQsxmT8GboH+kmLuWruRknMQjPE6zSV3giQ1Z87P4F1Jd2+12NO4O4Ds9QjqpJYV/m+L50K7+vb09ePDgAZycnMDp6amYpqoq6PV6MJ/P65PCQpB4LzX2BWCLjZSM+TSJKOdZhIGEWGBPeqYJg5AjJQVVuENE04SUoERHqB4SXSGlZwkqpcBDo/a9RYCl8gLNA+miNErvtACn9xsLDV54A8/S3a/tdhtms1l9H5XUth7+i01o8D4OBbJ4sEoLinp4gZfv4SULL3iC/bSOsTIsbRmiO2ZoeREbO1qeUr9KaXg+IVlbVa9Wnw4Gg/q4DzoRHGt/a31zZI6FV7U6Sn97ykHaLXwfGp+p40aCli8G/qSJ2FQHPYXWEgE/azBRG9uhPHKh6UAPf8ZkisXRj+nOlHaIyZUSsMovr44OpQs9D40nK6TxpY253PEfA68XBnlC/GQNLEiQ2s8rA3JsU805DOnZXcOu04fQ+MTLM6UCfB7bDvXjanU9yK7peMmepzR6bKBS2AaPeOwn7XueJlSPVDkSsuEs30p2M627R8/zZ6vVq2PxLy4uzEdjhmjVytDSxPK4RTo03arJD/y7qtavyaE+nnes0L+3pUeof4r+5E2Btug9ZZxY+0tKmzsuY/mXLMsL1MEIenqLNNnBZS9HyP/jaej/+DffTWfxOSzPOC1cf9Bv6L2z9JvVKr4QlPtLJXhJagMLT3n4LvbttuVYDFZ6U8eXZl9afGfr85JpPXYHponZUR79J41tlDVcB1lkBqfR2u45YyCGWF79fn/tukL6jNOFG3Zw0VQIIZmn8UDo+9SYYgm9lhuTjH2/0ztjQ5AcPMsxQNbV7qlB2dB3njs8MA8LA4TKtDJhyGGm9x3ROtwkY5kjdYKBfg8QDtaigUN5jd4NMJvN4Je//KV4nLEGbvhRIypWJ01JhYwXqyLjtJSGZHBK9JQqH5VxqmAOGUT871BgxcIT2O7WlbiWdkJ+pLThTgG6I2EwGMBgMIDRaASTyaQ+Qk2ju+lxVyL/2PfW4FxTNJW4w4zTCHCdD73BwxQnQMOuO1QUtC+aClB4AtqdTgeWy6W4cwjzkv6muiWXZ5sCDULG0nlspxx6+N8peUp9ss32x7Jx10GqHUzrIgV9StUV+ZXyrtY3UpDLUw7NU6rftrDt8t92SE4/gB4Y3VUZG4PV/rHYap7n9I5UKW1uW0q76Hk5njJQR/E7/7xjFCcdnj9/Di9evFgLgqEutNIl+WseWxKDcCn1uMVrcB6mvAIQ5zP09WazmdkXvQlA//KmxJaq6tWJQjzGQ+U9nliVs4DibQRvK5SDyBuTyQQmkwn0ej3o9Xp1+pwTCLFcaSKFx1dwoiJlQsILfnUZyn26G43LcYtNit80xZvaREjO+A7VyaKbStoMudDobcqWl/L1xHiahiXOa4UlXkLHNE/PT2ZIsf3omPXs4mwyls7RarXg/v37a7vtQxgMBtFYs+YLSUiNl7xpunTjk7FSA6YKRC0vzclNDSjxb6UgjseZsaQPCePYRIck2L35auko/TlBdms6Szt5v0HE+CRlsPP2kcrE44hbrRZ0u12oqlfHjuBxI6vVqj42ludLf/N7OktB4nsa5LRMNFposqSXyqI0pPKhBVo70Gch5Wnh9ZBSsRiNUmCKHw+pIcbnmtGG+V9cXECv11tT4r1eD6qqgslkUu+0DJWxTWh8I41db+AQ258aJfz/EL9TGlNhDfZicA8n8ehuOEtenkClxTnctoOkwds3ofcov2kaq+GvjUvadjk2Cs/bo7NTx3lovPF71HkaavOFxpa1LUL8nOPIl7R9m4RFL1B7gH4DkL5IT9PlVh6M6TqavxRs63a70O124fj4GBaLBVxdXcFsNquvQfH0VRP2GNclkn7fRX4qDU/bhmz8EH9L772LaZvGtvgxhJj/I6WT3qXSK41r+i43NqCNN+l5ab9E0m/UjtDuL7ToM8mv2aWg9ZsEbFc8CpvLFe1IQylQTfPi32j+Of2/tFyw+JtaHZqIZTQNSQdTPzlVBsZwk9pIQsy25s/RnwZ45SfRo6Alfk6RV7w/ut3u2tVP2Nfz+Vw9GtlajmWc8Gf0H453jMUAvOZFnjbVnpa+Cflpkr6wxK08tEj5WmI1m4gRlvo+Ry5Yy4iV7cnXIuNy6bK+l3SelF5a3IDjHMso6a9rOkJKtwlbCxewYIyy0+lcG1vT6bTeZMNBeVQ6xSIkKySbU8o79MwrP2+CvjRNxjYlyDzlhALn+L4J8MHBmQz/jq3GKjXIYvXV2kii2dOnIQPBGnyLCe1tDJhNB/+pQYkTIO12G4bDIUwmExiNRmuKILTqDo2y3FVtmqLgq68lx57/zg3+h+jC/HmwTBsTFlkSMxZWK/24F8k5juWZi1iwqaqqtclYjV4NllX23W4XVqsVvHjxAg4PD6Hf79c0DQYD6Pf7tbOEyNnNmSIbLMFWT/5ePUN5p/SdTJ52pE5UKGjQ7XZhb2+vlkFaXgBhYydXjsfG3E2Bpb/p/czSruQQaHvz+zCx7Sx3/4byTtGNlkCDJ9+Y4e6ls6R+ssJr0/LveJtty1bC8nHBBg1aURmXw3Oa/ilRX6nvqSwdDAawv78P3/zmN+Hq6gp++ctf1kdV7cK9egDXF4DtKkrY1SV0iea3cNuNl8VlMdpV+M4il24aNsFTlH8RpYOn2D8xOyUlX06jNAHq1W00vxBQt3M/DO1xekWIVxbTMUH9vjeJv3cNONlDIfUxgsssyuce/yo0kcGxyfiIdCzkrgLHvnT6DNowuNDektfbPM4sPEgXquKmhU6nA91utzEahsMh9Pt9GI1GMJvNoN1uw2KxgMvLy6x8vd/RvzGegL4jThYDQL2jnB8fyvnLypMeSLrMowdTabIskKP28q6Ms237Elo77TokWWmxmzj/oy2PvNFqtWA2m9WLLErxSUo+npNOUrG3tweHh4fBNOPxGJ49exZMgxvLAOILMCR4+NArI3aFn610mHfGNmkwUMciNNgs5Uu7kUJC3CqgQ8pGcsJiyk/7VvuuZDDKWqY0ucV3bIbySqHP0xdaYNfbbiUc9JRvl8vl2sRH6Ohs7oDTf5SXLYatFEiKBUAlxxCf8bPmOS3W4H6Ih3ImCLS8uIzQZAGXKVJeND/tt4bUsaN9x3klpvBoGi8N6JDi6qicvgnR6dU/3gBfquzxQpsop3mHyo3RZHmHjpwkb/AOYNwRhnlYnKvY2Nb4TOLjJp2m2DjWYNV1Vv1D2wT7BB1qq5yjEwnSMY4WPi0x4eEdP5Q+jYZUWYJ8fXR0BK1WC87Pz8Xxxmn2Biw4PIFvmp4GVTUdKumWTQQWePnaosNQP/KJTEp7KIhcSs+XyIvnsyuO3q6idHtTlPKFUvORvuXyOuRX7jLvhNolRb6XQMg+1XzAFPDFS1w+W6H5aqm2I/e3eV2t10tovk2OD5uKEvGCTei/JoF2CtX/FltN4imJRyWZJMV06P8cVp6wyoZce3SXZOdgMIDhcLg2+bVavVqkTBdG8IXsHJpMo7+1tCHcBP0TooXSH7IT8bnX/pae06Pq8USUUDvGYj6SvRiyd0PfV1Ul7qRfrVbR+IulnS3+O/+G/x0qQ6p3Cr1aWhpX4ceoUj237RNONBms/S6ZN03n9eM0eHw3i10c4xFrHIrbYFo6GsOMxSBzkGJDhuJuFj1JxwQfszzfTqcDd+/eXRsfT58+rf/udrt1nErK00qnRQ5IfByT8ZYY5abhGU+uY4pLGNAhxIKdFkcR08QcNKp0pbKkvOlvLtAlRRWjgdZTY2paH4kuTyBUKpeXF4K1Xl46aN4pabjQsjo0VvpS+N3y7Wq1gvF4LH4nfU/bXzpmQSszVdl70vGgCOVLXgca9AgJcylobaHD+33sG8yX7ozg31vHIB9z+K1lRTCXcbFAZczgkr7jZWj54G80ZKz3IUh1scIjp0LKPZX/Q2PTCk9/0zJSHXKaHv+nk7F8zKKzZ7l3xyND6e+cIAGlNybHPXoq5hR67QP81lrfdrsN7XZb3B3A85DK47LWq9OtaVL6PFRWDi9o32CeBwcH0G634fLyUg1UeG0niibsYMkGzhn7Uv4hx1R7hu2EAeSY40NtMppW0rUoi+i3IbokOr3fSHnEvtfSlApqhGDR95yuW8hI6RPJttTksAZv35TUb5ayUlCS32J2G/XVNZlSomzNbwi1t6SDvbvpNdsG7TJtkZZmS8biKSn2AoXmo25DBqWUK33TJP28/bE/rb6fpjtpXvQZ/U7ygT38baXLk76Eb0O/b8IeC6HX68Hdu3eh0+nUO5yXyyWcn59fm4xNhbVuMd3kRej7JsZHyL+hvC61pfdkOD4meCwGY7vUB5b0EtVBmv0pyZcUn4fSxmPPdOI4ZpdzhOjhZWvf87RaGVpZUnvF+E+TY3TjBJWN9A5PqU9SEPvOE4eyxukssG40s/gTHqTSy20eT4whh14aw6TyWipLs3U4LaV4q2Qe1thsu92Gu3fv1nFufgIAnkRg5SstLialty6Q2LSOT0UKf278zthceA0NiXHo4KL3btJvrPnyIwE15U3fh5wpSyAIy8e2sAgvWjY1Pix1jTFWCeOPlxUqr2QZu4aYs0LTlYKlPfjqbK6UQrtHpbJoHa1BrBKKV3tuKR/v0txWsIHSgs9oAAh/SwtFYm1H5ROXFbx/pL7udDrQarXqiVl8b+ULWrdNKFwuC0OGg2ZgefWQlJc3bYm2QccNjziaTqdwdHQE3/3ud+Hk5ASePHkCvV4POp0OjMfjmu8tdDfd1yFHN5R2U+B9RxeeUD1P7w3H+zpwrC2Xy2srezHvXH0v0WlxqJtATiAYv4u1R7vdhvv378N8PofRaATz+bx2vKzl8na36gz6T3OIuB600hWSTyGU6NvBYADHx8dw9+5duHv3Lnz22WdwcnLiPmqbpkNZxPUPRS6/0DyovsNJEyxzOBzCarWCwWCwdgSTNFY27RyuVq93QdD22GWbdpcR0uW0z0vwnhe7qN9yIQWwpP9Lg/vfvF9j0MY9lQlW3RzKX/N/vflymWD187mdT8v2xAo2jZRypW82QT+1CzzI4S+eD8D14xBLtWEqPTFsc0cb7S+6k4ri+fPncH5+Xi+wxyN0paOMNWxjMuQmgNteKM9TruiS2glPrJIWIc/n82tlU2j2Qc7EDB3r2pU9rVYLer0eVNWrE5XQjs3xByQaudzRdLUWryg9TqmPEJpo2tvbg7t378Lz58/h5cuXNY3U3m9ShvD2oL85n+XY8LkyHCAc228KofbJgVQXvEqHtvtqtbo2tqVYibUMzZ6w8Jg0lqz2Gy+X7p7nR+kPh0M4OjqCBw8ewPHx8bVv8CSxjz/+GC4uLgAA6sVG/OQY6yYcCaWuIXuTfN+NTcbyYFaq4VciAM7L9zotNB3NSwsO8vxDDKQpOE0Z5t7vEvou1EcSnXRyKPSNxAcWo8AqIDkNXoGYwpvbCNaE+i3VyIgFmLWyvWOaGkMxvvHSmYLYGJAMNy1IEWonzvuhdovJCN5mNLgcCu7wd16nQSoT4JVCR+MGFbsWWG8aljKtdKXwJ/8eQDY+Q3lynZkDqc9wwm+5XEKn04F79+7BbDaDZ8+e1Su9Z7PZ2m64EpDGQEk0wW8WucjbmDrHUh3pJLeHXqr3Y+ks9HN4dHgqQraZBVx2Su2IjsJwOIT5fA7T6dR9BLQVmmPt5Rst7xQbtSl0Oh3Y29uD+/fvw6NHj+Dk5AROT0+DNpumj0L2bRPQ7HNqR6PzSZ1ajW6OmM1cQi7hnb1Y3k12Rq1+YRMy3RNU3CZK1X0bdpgFlgAwRU7Q0mPveewz+syavsn+SA3khVBSD21bh20CuTws8Z8Wd9Hy18aWhUYLUvoxp+9zY4i55SLQtkRbAReunp2dAcDruz0RIVs818eztsMuyP5Ue5/nQeNHXkhjCOmSJndDp0RJY0lqZ83WiNEpna5A8+ATsHRXZKi81Fg6/x2KJXn6x+ufapPwOOmGE9XD4XDtXl2pDtsAb5tYLDCGHL2867rYOlcSAp48Rtt9tbq+mAPHEpfJfJxbYElnsc0oDZruoH/zUzPx/3a7DcPhEA4PD+Hg4AAODg7qbzHeN5/P4erqCh4/flzruFarVS8sorRI15yFZF9OWvqNFmvZdT6OYWOTsRLT5OblGRSaMZWbv1fhSHXvdDprRylIzBYyIOgzS2CPB3OtinkXjDkNoQmPnDybrrO2Awr/533VarXqI6vw/l7KC7hSDuAVj08mkygNoQA7pYG2R+gODw5LWir4NaRMXPBvcwU2bw+tnND3PFifSxPmh20Yu3vYQiemjU3oTCYTePHiBXS7Xeh0OvVqqb29PVgul3BxcbE1JRkbv962SAEae9qRdZpsxzI1Ayw3oKHplfv378PBwQH0ej1ot9vwZ3/2Z/DkyRPXSjZPu0q0SXnl5LENxPraG0AJ3TXMoTkOu9AuTQAn03CMYVvhooKHDx+q30oOMX0ecgRpGi09PufXYsTqs2vIlTn4LdY/dGxYKn3cMePjoIQeopP5VIYul8s6+IM7VyeTiXhsGsWmg8q7BqtfuCtt5A3KxHS5BSXqXpLPttUX3P4vPXam0+mafU9366fSS+1ySV9YoPkZXKbGaAnlJQXRpQDvTQ94NYVYoFRKn1oO/o96B+2fEHZFflqQ4+c3jdlsVvfB3bt34Xd+53dqu/P09BSeP38Oe3t79U4i784hb50lu0LSUbvYll6gbQ9QTg7hJAPHarWqT9AJlaXpB0neWmKzWj9Jd8Uul0u4uroq0hYpefC6eSdUvYjFrA8ODuAf/IN/APP5HD777DM4OzuDjz/+uO5HXGDJaedoyia36F4PYvplV3X1JmRRp9OBfr9f/5b0I04oYjvh9V0hxCYWS7S5RgN/3m631+QXt9vQ/wQAuHPnDvzqr/7q2uIhgPVFQ6PRCP7yL/8Srq6ugnqL7yYOQYttpqBUrGBXkTQZW3Jiwzs7His7FhST3lnK1fKX8g0xoGawx5jMGsi1Onq87b3BYU+amOLzlG9BKSUkOf9SWZLTSvOICXApLQ1WShN4fDIFf0t3SnD6edDZOhll4cFQXamy8I5fXhcPtP7jbRei3wOPHMnNOxbgTaEl1F68vMVisXZ8M598pP0eojlWp1RY5EtIppekgSJ3coPmK41vDdq7xWIBl5eX0Ov14PDwsD6mGI220KRSk0bSTTK+eOBdcoi08ardaRoqJ4QcR7kpxHi+pCNTVVXtjKADTnfue9qD9iPNPxSgturLWD22DS3IjCuN6SIBi0zjbVZygign+E2D27PZrF5U5OFJGizE35ZvPDSvVqv67h66+Ap1bpPQxk1pvbkpeZWjg3O+28bYLlFmTtDQ017etHw3EM+H+2eS3xvS2R5oPnVIV2jtw/01i28Z82U8Mlr7fYvr8AZxtT4NfUOfx3j1pvYZj7mE4gChMdUUXShv9vf34ejoCI6Ojup3GBjndpGWV+y5JQ7KkSu/tolt0B2KwaXQkyIHQnnRmJl0PDJdeO/Rszwek/Idp7XkN1paTisufAB4NRl7eHgI0+kUBoMBnJ+fw2g0WsvDUtcm7TNL/2v2SQzclrGmDb23wBM/9voK3vFEv6PHUdO01Nez6s9NxAQBdD7nCB1JLtWv2+3C0dHRmq2MPjvqqPl8DmdnZ+IGLt52IT+myfEVs5W3jRxf+MbdGUvhMV62CbrrL2SI8R2yUhqExVDzOF27Evyj8EwKWd41gSbKsgTScdJ1NpvBdDqFbrcr7rKNwTIxRifZ8BnyMl31rTn/HHxXDM/HQtc24JkE8Uz+4d/c+NYUrfZ7E21H+VEqD3lwNputybFd6tfSwWML+Pigd9RsE9gWL168gD/5kz+Br3/96/C9733vWrrFYlEfc7JcLtecHAnU2JN4meseegcQpesmgwdjpIlsnPyh3+DdJji5kzKRR2Uq5ttUm+bknfMt/Q71E7Yfvmu32/XO2OVyCefn53B+fl6/s9LIdR+AfAKB5qikOqPbhtQ3vV6vDkTeuXMHVqsVXF1dwf7+PnS73XqHmRfWIFhKW2pOOcB6P15eXsLnn38O0+kULi4uYDqdrunlbQUM2+02LBYLmM1m8I1vfAPeeecdODs7g/F4DF988QXM5/Piu0YkOjaJJmUW5x3NJsvFTRnnTUGzYT2Lj0qDLySzQLNhStm1/Dh0iw8o5ZGjXzY5ufW2Afsl5YQZ+j1/hhMR/Du0g/g3NxHarqZN1qvX6wHAq93z9+7dg3/yT/4JDAYDMS3Kt/F43CiNKRNgu4hNx+wk5PrhPLbraX/+Hbdv+aQRldOeidQYDbH4naYf+HHcUl6l4z9oE//+7/8+fO1rXwOAV2Pz008/Xdu9zlFKbqTmgbIB/frUOzclWrY9hkJIoS11sk9KQ+83Xa1WMB6P12JNkh6N0VaqvWkcwjIJXFXV2gmYPB29jkkDvX4MMRqN1r7BUzgxTw9K6h9LO5eSg9vEGgemTM7lNELuDDmFh3bLpJE1IOT5JgRtYNFyQo6WlRZP23gFjkWhe5CTnzZh5BHkmw7G0HIlHsD7EPCYYnpEESr5+Xy+VldMy+mIrTAJ9T3nkdCEYMzQDtGhBXJCATPJYOTpQ/Rr+ZYC7+MQbZyWEC9ZlbhGi6csCXwRybYC1zFsajJEK6eU4xnTEaHveH/jxPB4PK4nXXFX7IMHD2CxWMCzZ8/WJld5PWPlWfSplN9NcDQQoTFoCZxYZG8JfWz9ltJkSVsadBJMKkPT8TwNBgtCi+EoLHIW+yikS6T2lyYFpbSxOmn0akHb0kA7pMQiihTnWnsXs1li8mi1WsF8Pq+PGqa8R7/F72nAu9PpwP7+fv09TkqX3rHabrfrkwtSFmuURmldatVl2wT316z2rjXNTUGOnPH4ZnTMWnwOD704nkO7DehzTTan6ttYu9HxIOmOlPKQB+k/brOHYhxN8u+mbPRdgJdnNJsCwO9r7KoMkuR/yVibB5JMaLfbcHh4CN1uN7ggj9pF/D2Avf2bqmuI9zSeaoJntsWHpcq16p+cfkRekuLEm2g/j96JxRq1uB59J+lWiV8HgwHs7+8DANSbU8bjMYzH43qHH9VxJZAS06Xw2Ie5ZYXK9cQTpe9TYRkfMdkfoh1PJqA2TWpsJoRQe3r7QkvD86HXMWkxCFo+6qr9/f3apwVYX+CxXC7h8vKynozN8b9SZFwuj++CnVhibGTtjN01Yy6HnlxFaaElhT7rnSASPOVtk6FjbfW2OGfUIKGTqCggj4+P65Uq4/EYrq6u6kmTyWQC0+l0bQULBgcXi8Xa0QNc2Fp2pWqGuzUAIgUztPxjfMt35aZCC6jxNPSO3hxYJ6TwbymQ651MaFpGU4eTto+00mzX9MW2EDMmpfQA9qCdp/yqqmA4HMJ8PofxeAytVqu++3AwGMDf/bt/F8bjMfyX//Jf4OTk5Fp5FjltuQ9amtzgkyE52FYAnJarBWZ4G5akMyS3m3S4QvQgvEFISxq+GwQn11LHhvSOTu4CgHhUWEo7lm57Wo/UiYISkORCacc+xsu0X0vIArTL6XGE+/v78NFHH9WnlYzHYxiNRtDpdIrYK7sIPl7eRB2vBQYl+5nzuHeC5CZP1DZNu2Y/5Mpb1A/D4RC63S4MBgMYjUZwcXGR5XtrQWerHJZsKypHqM3kqT/l39g9fBqsbb5NvbPLCAVQQ4j50VoZNwFcrm5bn1RVVS96Alj3Y4bDIVRVVV8R4PXpmsZN1SFNg/NXyvcUJSZeLWmR96TFd9S+b2KiP5TG6u/gos0U8Ikn9Le0MkejEfzsZz9ba7OUUwNLgct6vEs6V15gu/OdydY+3SV5heBxIC/a7Tbs7e3VC4Vns9nayWNS+tLxFgDbZKxFlvC4ON0Ri/4nx3g8rv8eDofw27/929BqtdaeU75ZLpfwySefwOXlZb0RIweeuNIu8uC2oLb6NgJ1OdAcn1L5peZFB9JyuYw6TlRY8zxCwSyNvpyJzE0NqpAy9zoqJeiJ5d+0AOGrU6Rg12q1una8JQcegblardaEtsRbCM0B4nXnR5CisRXryxifar+t+WkBMGveUgCXGgio5BH8ON5QPpwm3rf0f+vEd1O8GON13s/86Gk+QbEr4LK06QAi7WO6sjW3zBJBLrrQB+nBhRudTgdarVa92COkX7nMkPiTOm0S3aF+KGGLbJMHLQ6yVb95JzC9ejOWR2k7y1KuJCe1ckNyy9MWsYkVi81C08aCNlb+tOq8EEpMilJdT++pL8XrofTU5kgJalB7hee/WCzg7OysPmUE62i1R6RJjhLAo8sBoJ4w6vV6wUDDTUbuBBuAfvyXZnPxvz1l5o7JnPJD8MoXC1L1SsoElNfn4mOay3NLe2jj3SI3Pe1MA8z8+1g+lgA5H0MhH0vTUbn8cxtsu45SbbILflWJmAjl+Rj/83HcNFarVb0QGydeqZ4HAHj27Bk8e/YMTk9PAQDWJmi1PL1yIlTfmO5JjdmVbOOSvJrLayFfNdRvMbve65ulpl2tXp/eoslnSx2kGFSMbzRfLKUenu/4tw8fPoR79+7B4eEhAACcnJzUO/twzK5W2zuqXfItqurV6YadTufaMbGaL2sZo9Z2LW0LpvCw1C6xPKUxGipHOzKcjm8uw2PtGIt/SXW05BWLV+Bz9LGlWBzyCZcJmAePT1dVVe+EBYDa19XqytssFzljkfbTLtuWFnnM0+zcnbElg+MlAtap0AYXHgOpGZ303abufAuhpACPBdxjZWyzPzeNmNDBY/BCWC6XcHV1VQfvEHwCUTPCKA0oiNGAoDtD6DeW+mjw9i/SVGLHSUjR0PsbB4MB9Pv9+t3p6Wly+byPrYEYKZ/S0BwW/M0NGSrbAOTdYruKTcjWEhMgHLntijtC8D4kgFey4fz8vA5AoLOD5dG7zbTgpsUYlXgqhCaCypsAdQT45IDmoMScjRTk8EpT4zfmCNFn2jG4qUH6EE2oUyTHzTuOMX3OCScSjTRvz3eaLNcgvUdZD/B6gRK3aa0THxqdtCz+jv/zgvcnbZf5fA5PnjypHd8U+kuD13UwGMDR0RFcXV3BbDZzBwNuAiSes/YDBmO63W4dpOCQ+OpNx7Z8yBR9n4NQYKtUG6TsRuHfS4tJJNvaCrrY21NXGrwG2K4cedPHoXRXcigwva0xuwlwveWZVNgUb6LdeXV1pfr5P//5z+F//+//Xf+mOrkU3lQe2DYoL2l8pU3EaEdUl6SL3ttI39H7iFF+W2U9t9O9PtUmeVGz8X/lV34FfvM3fxMAXtnsX3zxBVxeXq6lwbbjE1KpfoNXFnNfsaoqGAwGMBgM4PLycm0hZc6iypsyQSWB0xvarGaV+1JMGnmAL6hBaH9LNMbiFiFovCfFgmi53W4X2u02dLvdtbSUr6fT6doJmJhmPB5Dt9tdK//58+fw5ZdfrpWP7cbrhbZhyu7yUFum+u43ASm84bozVmPKkoKgSSMmh74QXZb6c4crlCffGYvfSELEG8RObQMetEJ4+suSNkZnKDAstSvPL6fttgWs8+XlJXQ6HRgOh9Dr9eDOnTtrdyN0Oh34+3//78Pdu3cBAOD58+fwJ3/yJ2u73WjgFHd+YBlauWgUSpD4mueB77SyJOUmGY00fQ6fhJS9pIQAXit4DOzh/b3aePQEQihNnO5cmRrjYYtc0/LENFReWcbZNgIMlrGuBQVy+yCmSzVejfFwDl0aX5yensLf/u3fwqNHj+D+/ft1QJvqo1arBf1+HxaLRe1EcGeHlsGfW++XvKkOhoZUQzQ0XixtlGP0NqEDY/yBiMlvSa7w4PZyuYSXL19eOyYrdnS2R16GJlit41RyqKV8aX4WHcjzl74J8SVP3263YTKZwOPHj2ud+PDhQzg4OICf/exncHFxUcsMvDNVums6VIZUVyu4nao52Z58Q+1M7RpcYYz/qC3wpoHyAwa8MEAZsgFS5UjIpk+FxSeTfDFMH7MjLXy4SVhtPUu7Wsdmqn9okQWpNhDarPj/4eEh9Ho9ODg4gOl0Cs+fP4flcgmdTueaPpF0VMwf5b4PtYOkOtF6ldC/1I9DUN8lVAetXp54iNXu2bafvSlIdgtAvrxsqv1ybMxQTMCTjzXvJtHv9+E3f/M34c6dO/D48WOYz+dwcXEBL1++BAD7JE8sTY6cy/ULY3k3hU30ZcwP93zL4wXWtrHa7NiPXEdg/MkiQzR44qcWmr3lS5DKpM/a7Tb0er1aV9HjWrH8+XwOz58/r69bkmjO5eFUPu12u9Dv968t8NRsAF6WZA9wf85K2zb8EUqfhY8orDKVti+eCkkXVYfy5P4xp9vC31r9pG+0WIeWPz+hDmUD9be4fffw4UPY29urjyg+OTmp05yfn4u0UF+Wvo/JOI3/SsdOd82XtsaJLDwcPabYwnw3BR6DMSf/WH60bUMKMOaUeZRjzIGy0C/lYQloeBAyUqxBSJ4fV1q5BmsJg1dqSy1fTHd5eQm9Xq8+oq7X68FyuVybjP1H/+gfwbe+9S0AAPibv/kb+F//63/V98lWVVUfs9tqteqAoWS4UCedB1NpG1onVqT6a/WkPE+NU5ou1AeWMULz1XagS8c541EQ9GjGkPEUkzkhpSy1w6bB+53+j6BHVPMd07xNdiXg4pEhOU6cBGmchcpukg942WdnZ3B2dgbdbre+N5bTiIbvbDarZQg1xtBo5CuHeT7WoJ5E5y7Coz89jhPXfRbZmYNUWZ4TiAoFbLXAg5YPdXBXqxW8fPkSOp1OvToUn+OJB9J9Rp424LukLHRa4A3a8WcxR0Eai9qYxLQ4GfvkyRMAeKUjf+VXfgXu3r0LX375Jbx8+RKGwyGsVqv6igT8NrYrOMWu0hzoGDyyNMQbvA03NRmbq39K6JHValWPq+Vyee1oZ4Bmg8MW+qzvpHETklXe4Cv+va3gQqqdE3ruLbeEnpDeW/xtmp7a7q1WC+7fvw/D4RDu3LkDJycn8Itf/AI6nQ70+/16LGOZvFwLj/HAFuob6fi4UL1KyBPqD1uCbJtCSRp2yc+IwRPA1ALIpVDaz9HyTPmuKV2qtaE0Lvr9PvzgBz+AVqsFP/7xj+Hq6grOz8/r44lxbMdAYyuWtCHapXw9sMZEd308xfyfUN942ozqMKpD6DtNz6XYDNpkUujbkP+p0bKL/jWlsd1u1/c0A0C94BPgNe2z2Qy++uorWCwW9aQcr/M2+BhP2RkOh/UzahtoNPJ+53/TXaSWmAOHR15wOzYEyv+WukjfhsqS8qT3eAOsnxzp4W2et0a3Ja6ryQNru3D+51cN0qPz8RlN/95779U8Nx6P4csvv6z9NGoHcvqlPih57Y5nDO6iXEKUliU7d0zx2wDp7kAuwFDQ8jPALQyAA6pJhas5iiUc9yYVJlcq2xrsmzAKHjx4AH/wB39QT4r86Ec/gh/96Ef1kQcIfoQibyN61Afvo1AQF3k5pY1D7UOD6PRYLu3uVs3hxXdc0WB6XBmP/2azGXS7Xeh2u7C/vw+DwQBWqxVMJpP6vgrJOAoZTJSOWL015EzEaOVq/WmRK7QvtGPY3lZIhmoOcmUYTiBgYF3ih06nA9///vfh7OwMfvKTn8Byuax5n9MC8Hp80vFPZUtot1GoXm8631j6MbWvU+WLh7+8Y1sKbDfVx8jnVVXB3t5eHWQvNdFgtctCtl8OSuZlxWg0gmfPnkG/34eTkxOYTCZri7y4jWAB5zeJ/0oEITld9H8+ac/T8W+aBre9Li8v4cWLF3B+fg5XV1c1LSmBlTcJ2Dc4eYZ6SLvz/BbbQWk/j9oaIfCTbObzedKd0xwpegDTctuYBhdpWi1IRoHf0CPkOX0aPZvwvT3I6ZNdqUPT2EQ9d6EtLUH8VISC/QBQB7z7/T50u1349NNPodVqwdnZWdLRol77mNoa2jHJ3L7a5QB2CXhtXW3Sgech5Sf117bbt9VqwdHRESyXSzg7O1t719RY2YZ/QX0lXq9PPvkEPv/8c5hOpzCfz+Hly5drG0443dsA2p57e3s1TUivdMR1UzTcRCDdfKF0aBKU+vO8fb2LGjDPUNk5sVorer3eWrx+sVisTajiM8pTnU4HWq0WfPHFF/WihMlkIt4ny/10Xt+Sk7C3CON2MhZ8q2zpN1payyQoX3XBJ8DwX+g+Sk1ReVZyhOiMfaPV39ouIeROMMXK8vT5LjiqmpHFJzyn0ylMp1Po9XpweHgI3//+9+t3L1++hB/96EdrecSUDZ3oDPV3zKnx1jH0PfI4HreM40Qbk6F8pDsKaH/Te50Wi0WtGHu9HvT7/fou3vF4LAaf8W+kLTYhy+WAhm06BJYgOz+2mH+7beQ6FyXqUaoPtf6wyjh+ZCvyKa6+63Q68OjRI9jf34cf/vCHMJ/Pod/vi/qL6jU6Pjm92njgEx88/13hHytCskV6LkEaZ6mTW9aJsdTxEcufykMpf63/Y3TGaEL5XVWv70j23PWt2Vra8xAtmB/VXbmyIESfxX5JsQ+n0ylcXFzAyckJTKfTun21oz2pjuOOIKfFOsHBdXQMsfHIeZPaSbTPJNmKMpM7yyVA85tOp3B5eQmTyaTefUzp2ASwbfBeLt4mm5wo4GMKn+EdmtJ3KXKNllkq3ZsMTT7m5glw3R6QeE+yPSk/YGCrZF+E+l+y0ygvSvRK+pHnx99bfA5KR8hf35ZseRvh8V1LomQZHrtWSy/5wtviQ7QRe70etNvt+kjiq6urazTFxrwH3M7YVL1Ll9Mk/+bGnGI8JfmuoXxieWnpJXsypsOGwyEsFgs4Pz9XY0oxxOJlHl7QdFEsTSwf3kf4/7Nnz+pNEHTiDe/ULMl3KWMCy2+329Dv9+vneGWcNe8YP3l5z5K3FZbvU3kTQPYbQ9+j/4lpeNt46Y3p4xA92rehuIcEeqIXxjBQL+E3eCIRAmPaZ2dna+NGK8Myx6ThbbXVmsDOTsZag3pNl1MS/FgBi+PO76r0BNZiSj8HMeOCv7tpQfRtIRYoms1mcHJyAv1+H/b39+sdmqenpzCdTuE//If/AF/72tfgX/yLfwGHh4cA8GpVzOXlJfzu7/4ufPOb34T/8T/+B/z0pz+tBTpdUY3GHlc62kqu0CQJneTRlGQqSvCTlge2RyhQc3Z2BpeXl3B4eAj9fh8uLy/XVsqGxoQEzQnV0u4KUuTnLsmClMBsCVC52ET5njaW7nT86quv4Pz8vL5nejgcrh3Zp5UpyQoe9AvVF2UQ7san+e4S3+8amrRjNh0Qksq01I2upAZ4vaoW+fjg4MBVds6kjQda4JzqY09elA7ujJXikVarBdPpFGazWX1HfYwuKmNCVyRYgI4pto929CengR6pXwJYXrvdhtPTU/jRj35U5z+bzd7YXZnY1o8ePYJ3330XWq0WzGYz+H//7//BeDyuV2SX3gEg8TD2P05Mv//++3BwcADvvPMOXF1dwV/8xV8AANR3jiFdEm3YdzjBX1VVPbnOjyOXjpnF55qvdavHdITkU2jMetoU86HyEHcW4K4Vnj4GLr81Wj3+t3bKT64soTzMg3gW3PLuLUohNHEb8hc2wYMheTOZTODTTz+F1erVglPU87nlIUI2X+4EWSitxT8riRx7lNvoqRNDlm+ssVYpf+0KE/pNyL7HNP1+H9rtNuzt7dU+ObVftHhsCFJ/a5NNnoWrJdFut2F/f7+2x+bzeX0XqAQrT20q7i9NCgJcjy1yPgnZOtLkfQpdTSKVPqx7yG/i7TMYDNZOSMQTT+j4CNEgtad0Z2qMbiusV/uhbUrjyvwKJvQ1cIG5lC/fbMHzoaBprOPjbbQJm5AdUQtik5OVFBZGbaIczyoSa1rNKaeDUgrOUyEQcjj5Nxq93onRWJ01mjQ6Le1iKbuJunrRZIA61Nc0yAfw+ix5NFY+++wzmM1mtYDGnZvT6RTeeecdeOedd+DP/uzP1hQVnSzV2ivGf5Y6If1WxPhPe2/hD14Or3/sG3p3LK5ewgCx9H1TzoIVTcpxbaztspLWHJBt0qGhxGR3jK85f0wmkzpQ12q1YH9/fy2AaQ2Ohhx8iSaaf6g+u4wUWZcbpE9po5j+pPYH70epvBQZI9U7pINikOqCzgxOwPDj9i26LbdvLDaKx5bS8pWexWiX5LYlAIUOL57GQU9D8LZXbMzToBX+3ev16rsdR6MRjMdjtV4xW5rKHU2+hdoFJwNx1XtVVfWO0VRo39KJo00dd8aB7TkcDuHo6Ki+Sxhpth4vllKuRgv22XA4hMPDQ7h///7a3WLaWA/JvxAvh/iBy89dhxSEDcE6xr1ygLdpzG6wti+3SSQewEl3LQ1Pb3nuiRvw71LsOAsoX/O4g7VetyiDm+QzpdpfKUjxn3PyR4R0/3K5hMlkAuPxuL4eADdLxMYltT1oGZZ4S0rdPTGZbemo1HKtdHtiuSF44pYxejQdpMkBak/hiWw4EcttP4sPaZE3JWSS1/cNfUd3BqLPIfmhUuxPy7dJexTLootE8XnIBpFkiNc/3oT+sPCY1KchP1jy1bTYg1Qe9Q21k4m09qV/h/pFotsDWk9PG9L6WxbpSXwW8+e1NrHEF2K4KT6QFSXqI/WJaTlXSpBtl2GtT269pcFEg0poyFHmpquqLUG6UIBJQmml1ES5mkJNRSw/j4O7K2OBC1wJ3W4X7t27BwDrx8bijlmAVwbD4eFhzYuz2Qyurq7WFBwA1PdJ4o6W0Op/Cv6eBjxDtPO6SnnxnUPeXS9UUfExV1Wvjz6md8dKaLfb8P7778N4PIYvvvgiaDRgvlJ9KF0pPJYTqJHa2DIOeZqmjN5bbBYY6Mf7JwBe9WW324Xlcrl2RzI35FCWSDuHJNAARWg3eolA5DbhlZXbqqcmfyzB6RL2RMo3KFc12ufzOZycnDQS1LPUnY4TKv+le9o9yHXAQwF/K7788kt48uSJ6Pjl0MfbFo/7whMpfud3fgfeeecd+PDDD+GP//iP4U//9E/rAAh+Hytfekfl1q5MUGBd2u02fPXVV/D06dM1+jZ9tw9e10Dv53rb4bE9b2EHty9CY5raCNw/8ci11er1kXDcF+f+T6ngjJdGBH7j3b3Eg5j4/63N/nZjUzwQK4eO8W3JVRzfs9kM5vM5/PCHPxRPSvDkRRGLFQC8Pk49lG8qbupY3yR/Sn6sNvkRyounl67I4mnwzkiabrFYwPPnz+tYXNPY1CQfgrYnTr5Kp5Lgc4xJaHltCjR2iLuYke7ZbAbj8Vg9kYXnE5uQfRNA64X/48YiLa3Uz7PZrG5TviMWIZ3ApNlufCGpRgvf0BQDfqOVS5/h7neeznKtRmzXtdSG3tO3bn2dPEj9vzYZq82O83ehDG8CrHSnOnLaBJSURptotaxW8Bh3peAx1GPB8xhPNeEUcJpSJgU3gZCRBvBK4M5mszr42G63odvt1sd4fPzxx3B1dQUffvjhNUH7wQcfwHe/+1347LPPYDwe144FV4TShD+nJcSnEt25bch5IqUfU0ADHvP5/Npdad1ud+3OAu37punz5J8ycaqVI43Vm6ofQtjUZLNH/6bwlPQtDTzSoCM/KoV+R9Pi36ExkCpnb+JEbKrNoNXfUnepnVJ41Boo03QCp0VKH+rT0rJEch5CukqjzUKHt+1DfW/RdZbvm7Lfq6qqd9CjPpQmZGNla3YwBd8Zu7e3BwcHB3B8fFzfYY16ma6ep/lR+qT31jprz6lNHps4SgUG4TD/UFAvF5qvQe1OPB1Esn82FSykx5R1u13o9XowHA7r3brSanl6FHETdG7KVigBr+/P4ZVzVlros9T2i303nU5rXp5Op0H5GqNJ+ra0H+u1oTh/cx1t7d+bZHvdVGxDRsT8/E2UjWhivOSA+v34vzSRliIjpbqjLpPSx+ANkEv2iTWes21IcUKP/WZtq1iakF+RohOlvOjpd3h9jzRBH6OV2+ReXrH4ECX8DJoHjXMCwNqdmTRvOoFWOlYQ0v98rHAbGW1PeipTKH8eS4nRgO/eFN3MF9MCxOsOsL7ZSEsT+50TOy0FaTzR2HmoXCnGLsVitLJKxQNuErzyKtZmOXyxs3fGvmmwdDBXQgCvBTpVRtZ8LELGIvBi36Tcw5VS7i1eYzKZwGw2g/39/fqouOVyCc+fP4cXL17Av/k3/wZ+4zd+A/7Vv/pX9VHFiH/2z/4Z/NN/+k/hX//rfw1//dd/DWdnZ9DpdOD4+LhOwwPoljtMQkYLzzd1goCXowV6U4Qi0kbvjKXAowin0yns7++vGcj4XjuWRKIvNAa24ZBqZVppeVMMwrcJsX5Ffh+NRrVjqIE7EXQcUUfF6wS+reCG9C47XVSmURmqpY31K6bRdrtabBr+GwMZlh1EKTzqocmDmK6I0dXUGELbFO/o8YCeCiPZEN4AG2I4HEK/34fT09N6Zz/mB7B+mgYNrCKsATqpTVH/4z/LKuabgqp6vTMZ2wyPih4OhzAYDKDb7a6dUrKpe8ZwMhhtr+PjY3j33Xfho48+guFwCFX16u4lPFoSAOojrpF3JV6jsof+04B8JQVF8DcNtKeO6zcdTQVVsT95/i9evFhbUOA9Xpz6NFzvefximlbbHeKliU/sSPeHxXDLm7fYNLalN+m4oXyPC8729vZqfRI6LSuUPz95A+C1vYtHsqbS/qbAM9FdagI5Vqb0XqMt56QSyh94NPHBwQH0ej2oqqq+hswDi7+1C+DtuVgs4OXLl2LsgccBvYsjNoHFYgGj0UjdEetZ1BHrI+6XxPIq3UZSH3gnu2g8FRcdaOB2mpTWEmvwgMvvFL7j/SQtLJnP57XOkcqRaOFlN31a0i7Ho5pA0zIyazL21pG0QwsmxhxOLbAYKocOdim91m+lnd8Up1r7RhJelvw9NKSscijdZh5owb7VagXj8RjG43G9UxYA6iNPMGDEj8lG5TYcDutjefC91A9aIJXTor2zgrex1Ke8HUooCr7IgNYBd8iORiNYLpcwHA6h0+nA4eEhTKdTuLy8XAvShOhLDeanGAH0u1Abaf1Kn79NinjTyBk3oW81XrPIUB6Y1tJL3/KytO9o3rvoXDUFbYKHvyvtWNA8U2QIhUXm8nrE5I8U4C6FUJuHvqFI6Q/eTp4xZB0Hmm1ngVZHze7CgAJPR+uJjqPVOeb6kX9DJwL39/frICZOEkr1D8k8TdZg2R47vGl/iLbvNnwvWuaLFy8A4NVpK1qaTQNlBl1lXyLPUtimz1AKVn9VQ057akE+SZ7j2KX/OA1815uUrxU5fdtUcEuiKUX3WQP6tz7C2wNP/3psp23yjSRDcFEXfeYZ69SOsNrIpWCZqGyqvUvYy6XKTJHNWvxHQyhO6SkXj9/tdDprPvd0OoXpdGrqUwtNWjqOWD+m6jvpe01na3a6p51z7Y5YvpRGXOgXO2bcAw/9Hr6g8PalZx5BK1OKK/G+T6HLK6fpt5IdI/mGpeNU1niAh99D8sIj10rIc6/saQI5PB6iNUcu3u6MjSDFaSldviSQtEASvpMGX2mD66Y5WjkTHLsKzh8Uy+USxuNx/RuDl6PR6Fo+VVXVK++GwyFcXFzA2dnZWl6ScrPc1WAJjGqQhBv+k+5cLgm8J5cf0VpVVX1cyosXL6DX68GjR4+g2+3C+++/D2dnZ/WdmkifRZhr7dLkOJOMDsv4uGlj/21BCRkXCqbhzjIcGyEjWZpMkQxXycCN0XWLzcIqs0sZ5/ic777kO8tyQXk0Nz9LHlL7hI5Y2nVUVVXfaUWDDnxCFv/hRJmVT2g+dNdhu92Gw8NDOD4+hocPH8L+/j4ArK+sjuVLT5tB3qqq63e680Aq1iMUGGoK256IpVitVvDJJ5/AT3/6Uzg6OoKjo6Ot0nOL7cA7lmNpQnJQWxQh2dq0PE8wNOTf5AT2Oc08X49PVFLeeCccPPne4hY3BdQ+4Xq+3++v+f0pSA3ae/zxpiabNgUP/Z5YSapfEouNSHEdS1kxGxh3w3J6zs7OYDKZXLNRNZpCsPT3Jk93wXKwbXjcjacDyJv8KBXb57Y4+hXYT3SHY+g7/g5ppL9DNNxUoA9J/TYqZy0nEEiThKljQ7PtON+VWugZ4kPteewO8VCcwZL/LTbfNupkrEe5v4mTXIhSdSq1GoA6YppSkiZqrasttJUkFiMn5lA2NSmcAknZWemKGWU036YxnU4B4JXx1m63YTgcQrfbhdFoBM+ePYP//J//M3zrW9+C3/u934PpdArn5+fQ6XRgf38f/r//7/+D7373u/Df/tt/g8lkcq0enL9yeLhEe6SWZeE7iQ+07zBgu1qtYD6fQ1VVMB6P69WzaERqjp1GS6nx4Z1YkCZkKWK/tWeYN69XKVm4C8jRfRqfetGUXK2q6tqCh9CxMbG20IxOy5i7qSipF7iO3kQbhRyTUhOYWlmh4IZFJnFaLbRsmu88MpHXQ+ob62RGaIxantHn9JhXqwzDUzhwlb9EV25/cJ0m8ZWUP530jUHKgy4aiNEVyzv0vEmdSWlEHYC25mq1gk6nUy/IWS6XcHFxUdtFAJsN4nGakSZa/p07d+Cjjz6CxWIB8/kcnj17VtvCtG4A4XbV+MhL4y7D6iumQpNbofSeCVotP6o36Tf0+OLcupXUh9p7i5zFdN4dOU3akrfYTTQhv1L5Z1PyMWaXa7KdLpxL9WNDfp9kS4Tsu9QYojQZuIk4rlV2cZroO+m9JT6J6bR6WuIU1jK0OK2UXqINgcfb4iJDvJ5M44GSfSjR4/FnPTSE0lJe9fgnOWWG8rf2J04o8r7KaZfQ+PHobs2mym3LEN+HvqN/x77TZDJ9L7VzTBZItqE2zqxxzRjtFtByQnHaWBkxeV9a9+6ir5Mir0rEdi243Rm7ZdBO0+5elYR/TCFozmjIOVutXt8xk2N0e4ytWL5UUMSMJ4vC9iosa1rtW4mGHHCaZrMZzGYzaLfb0G63YW9vDxaLBYzHY3j69Cn8p//0n+Af/sN/CL/3e78H4/EYJpMJ3L17Fw4ODuAP/uAP4MmTJ/Cnf/qn8PTp0zpfjXap/S2GQU778X6T7mSi71NA80B6Y0YTpkPDeDQaXQtaVtWrySy6ysvCmyUM6dRAttaekhFgHR+7qJR3EbmGdinnh4I7QqHJWEwj6ZCQntDGBG0Pr+G5K/DyvtZmtC0wmMLvwMN3qTRKbR0LgsdkZAq4TVQiTwS2nSWYtg29bwkQaTZRbIxo73N0aCr/4X3r0+l0zSbFiV1vfjG6LKDji67G1iZnQ+2ZeizZJgKiViB/4V3L/EQV2i7n5+dr92Lxu56btgFo/th3lAfu3bsHP/jBD2AymcB4PIb/83/+Dzx//hz6/T50Op16UYAW+KPP6K4UHviRZGJInu5CP28C3iCk9H0pOjiwP3EHi7SQItavFl/IS6PFp9e+R9r4ZE5qYNuiZ0roy1tf4WahlI2Ez7fV/5IMl3iTjifL+NHicHwSQAK1QThtlgmA0FhOtas98T7NPrXIMU0He+imbev1I2PtEauDlS4KyWacz+cwmUzqCVm8FsuTb4gujc+1/GNpaFpqH+bELWI6i+eVEpPOgeb/pCxIDPmmkszwxlX49zRvb7txPw1/SztZPTH/ED2YF40xWXia58+f8TbVdpFqYyDV3/PyJa8vylht8a+mZ6gesfBojn4IYVf8H49/khsj0nA7GbtFcCGeYljhO+t9XB6G40ZjSoArF7GA767kuWlw+tFg6/f719JOp1N48eJF/c3+/n59rB9iPp/XwanDw0Po9/twfHwMV1dXazsiUgILOTyzyX7idKKCxR0g0kTUavVqd+z5+Tl0u13Y39+vxwk1RGMBa+o0NDnGSjjCngDrLgWXb+EH8i46RNLR4CV4VnIO3jaesTiumwTvg5CjCJC+CAsne6hDI00+huiMtRnKby2gk2qIp/Jp6iSVpjtSnEFq0zWld7guTC1H0qnz+RxmsxlMp9O1ScDQEW5WoKyjQSVePi8jd8LpFre46ZDGd1NjImRHU+TKNa6LqK2eE4SLBf80OiQdxPP05JWjx25xCw9uCo/x8RFbhBqC5Q57er95k36AFJRv0t9IsW9524Qme615WsHlqTX/0m04n8/rxW94byylKWccaZNSpScZpPiXNCGklWe5bmQbCPU3lRXSrnbp7xBK89Wu+Sgo91D2aRPYobajk/6x+vGJzFgaqbzY9/zb1D7UbFle19T+3JU407YRiolvEmuTsbmFe1dWaHnskrBoGjQQlqtgQ8o0xUlNVc6lJ2B4sNAqbC15UmPgpk4yVdWrO/UWi0V9fxvFdDqF09PT+qiT2Wy2Nnnf7Xah1WrB5eUlrFYrODw8hF6vB91utw52IkJ8uok28QZ6JGPI27/tdhuWy+U1h4wGMkajESwWCxgOh2r5vO2sE6Mp7WmRxU0ErkL0WMbtLoynEFInUVLKsRiOIeS2qRSk47vEqO6yjiuND0O6sOlFCruCUoHjUnxK86O7cWkZHFLZUh/jc/zHA9LWQJE1gOKxDbyQFhPE0nr0UC5i44eOOU9dvLDauRK9/DfuxER7BtOkTpDw8gGur8rX2lFqs9K6bNu6kS5i4LwSanct+JcKK39KgR0evCjZpqXruSuwyLKYTNsE727CnqX1lfQb9QmseaXSgNAWn0gTGwDptuS25c8ttoOmxtAuQrOfcydjaV4I7lfF4m2l+8Grs5voN81u18r3xCxTaLH4ESXkdkyeLpdLmE6n9XUQUj7eSeYQPaH2t8SBQz59KAYWog0X6fJ0PHYbg9Vmp2VIbePxHyUbQOq3mE8Wg0abtZ9K+3ZetFqterMLgL6rNhZrCPGflUaLnWt574lRe+MW/O/Y3dOhvLaNbdgBMT6ivz1zC6FnVuzcztjQRM8uG3EhhAacVTDnBFetyg/fhRhWU7JN4yb3/yZAJwUBXq2mw8vjP/74Y/h3/+7fwe///u/D7//+78MXX3wBz58/h4cPH0K324V/+S//JXz88cfw7//9vy9GS44xI+WRmy4H3ECQylwsFvWkd6fTgbt378J4PIbLy8skektPPmmBmdQyd0mpv6m4afLOokMs34fev4l8J7VbyKDHCSiE1yC3ImUy3yqz0ZHAb0ITKp68JXpwh2On06nbrsmxxfuwqckfDz1U/iMNuCCL32u+CdDV0E2CHnscmziyBnksE9va5HZoXIcmxDeNqqrqhX3T6RQODg7g937v96CqKlgsFvD555/DL3/5yzpY+POf/xyq6tWCChxnVh8hdKpPTAZhGbQ8vAu21+vB6ekpLJdL6Pf78ODBA5hMJjAajeoTZNrtdr0YkfO/dDw1pZOOK6n9KP0psnQXsA19W6qN6DjkOrKEfyLlFQPnGXqFSUxPeAPQ0t90B4oVt773Ld525CxooBO6mj4pIWdjE4gxHRpDqnxEcBnMbXtsh6ZoyZ1gjtkoXnq0MnAScj6f10fnow9TYqFhCNS2SeVJS0zbq8dKxZutehv7WlogLNEXQ2jsWcH5z6OXQ8d7l2jX2F3aIaxWr49/1xZQNgWJv2Llx+pXgl5pEUOszNvYbRlsy9ZtfDK2lBN6k52BUnWPDaKQopHyCKXhgzvFCCkdgJDoSsmD0mRRaCnOepP5cNA6zOfzOviAODs7g7OzM/jwww/h6uoK5vM5jMdjuHPnDuzv78Nv/MZvQKfTqYNPeD8F5oM7Qz3KX0prMdJieYTS5qThvKWNl1AeuJoRA5l0RzFHk7wglWOFdTIlBW+SEZAi0zyOiUV2ljRavU4BfqPRqRmSfELobUUoABsLGvDFId4JHD7pK00eWoJPqbo4NOkktUtuAILqMcqz2l2glA6JRnwm8XjMwbfSK9GRgpAOxvy9x+OVGrua3LPIPHTcMWBFd66kyFmtLI/tLbVtaKIu9rwpG8EKDADiiSsffPABAACMx2N48eJF/bzdbsPFxQUsFgvo9XquoCpCa7/Qe4DX45AGcabTKUwmE7i4uKgXw7VaLej3+3WADY/Ao5NjXCZ5+097Z5WlXmhyvEloMj+FR0PjwCKLQvqH845ld5omd0N1lvSYxPu8HFq/GJ9Z6qhBkimxNpXyTuEvjy/hsXND+afkg++2aZNuu/zS2EZdctowNr61NADymJJ0Wci+DuXvTaPRqOmmHF1t9V94Wp4Pfx76Tnqn2QolbSepDa35e/qb2zT4z7J4MUUnaO8tdU2Vt6G01hiBRXfQdBYb3osUfkjVpZT/LHWyxGZC5Xnfxeye0HNuw+fSpsWfYvnljGfMy0JDqA2lZ9rYs47lpmGxKVPy3LQdYWlTD2/FvqfYuZ2xtwjD4qDFhFVKsCRECy27aZQcoJjXtoJdpWBtjx//+Mdwfn4Of+/v/T341re+JaYZj8fw5MkTODg4gKOjIzg4OIC9vT14+fJlcHJRgqevcoxnq1FmKR/zo3lKRrDmROCRiYvFAubzeZ0PHvEZq0eTyqdU/tqYeRPG0i3C4PcnWu8qR3CnS0KMj3Ac7eqdMjF4xgjuIOx2u7VM4cC7UPlxVhq0AHSIXm4zWL6zBKl4OZZnWln8b5ygC/FJKGgW+obaUZTOTchwLAMnllarVV3HlInrEragtzxpl0gMlPen0yk8fvwY5vM5LJdLePHiBQAAzGaz4ASHl06Ub7gAgi5So+nouOA29k0MsldVBYPBAKqqgqurK9jb24Nf//Vfh/Pzc/jpT3+6bfJuDLTJ0tI26y7wmDdYmwMaMKbykNolOTTwvtKCoHy8x+TvcrlMPtWCt2/oygBOC5ajpd8F/tkmtl3/bZffNDZRvybKaEp/e4LxOflxhGzhmPxGOwjTeiZFaFppkrH0pGnJPLSJ3lLgbYQ2bOoiVIvP5fHZN42YbZRLtzZhhu+keB/dqBID7zfpBKgS/G6JpWA66ehf+ndq3DXXfl2tVrUP16QPmuLjhnYT09+lFiRYgLwbo02iq+ld9aWxq/KpKWxsMraE8/m2IzRhpU2MSkaRR4hYy7ypE5vckQfwTQym8HXpSewQ3bReFxcX8PjxY/jqq6/g6OgIut0uDIdDaLfb8OLFi1phzWaz2uhAJz5V4WgK2xuA8EwalIRnMgGBARc+5rgxFssrZ4IaIbWfJ19r2pss129qwJwjFJjLkU8peVgQyvMm6pJcaJOX9B91WnBX2nQ6Ve+NK0WLxfGT+jPWjyX4Kiaj2u02dDodGA6H9TGlkkNu1fexSRCtTtTWoM9CiNXNY6Nok4NeG8ajN6juo6D8almoxL9BO2U6ncJoNKpPBOETo5yeGL9RPS3ZzBaUSF9C96eAtg+dKGq1WjAcDmGxWMD+/j70er2aTj5B3dTkvjUAPJ1O4erqCs7OzuDy8rKmBxezWBcCxPogNl6swbKbBolfPXayh9d5WZsOLHNZHaLdwvc8DdcJXn8nRHen06nz4cFOb3tZ0jdhs3n045s0xjYFKYZjQYz3LM9jMmRXkKIrJFsvlT95bMoiY2KwyCprnEqy+Wn60v1e0r6wxFKt72iamM9jycvLLyEfwRqDk9rW20YWPikprz3jYbUK7zDmupj7AjxtDNQPitGtjaPQN1bw9k6Ja2r55iLEL9I7K+9o8QtL+bG235auovxp8RFL+ZGhmMZNxib5PvbN7c7YGwqLMkxhtNzB+zYG0XcJvO3x7tjFYgFnZ2dwfn4Of/zHfwx/9Vd/VR/deHx8DJeXl2srtvEIQMwzp089hte2gpAhSIHi0BjDtsP71DD4pxnEUnBmW/BMvlqMmF3qRw2baG+P47uLbVZ6VV0oaIGI6RLcEbqJuyebAspWSx2oTAYAeO+99+DOnTvws5/97Nrd1NuCd6d002i1WrC/vw8HBwfwwQcfwNOnT+Hk5CSJZzyTth76PPo15NxrWCwWa8F4rPumdpZLOg6P88e7O8fj8dqEhlQ/5H3Uq6k8Ru+RBbh+j6K0+t1i12r0pNg/20Ks/Dt37sDf+Tt/B7766isAgPpuVpzkxLbz1CO3zrhrGfn5l7/8ZZ0vnYQ9Pz+H6XQK4/G4tnXxWy6z6CJEOn64rN52f20TKXVv2raJ+cXUbrdMpuPJFNJkJrWV0RbxtgnyX7/fh1arlSx7aH6r1Qr29/dhOBzWR3M/fvwYZrNZffS4BM329+jKbfn/b/M4LIUm2vBN6ZcUnuYLNULprBO+JcYW351vmTwPTUiFgvT0Hd1VGypXysvalh7EFqfk9HloEo/nL8ldz4kJJYD9SE9z2xVY+MWy0IjHHDTwxQ/YLjxNDFYbw5qfZZJ707sfrbySO5lN8ykxLkJ5SPaORYaXKDv0TSjWRdvlVo/7sQv12/hkbM5E4S1eocSEh8ewK7GqpCRCPCQF/iTaQoaQhl1I64UkxGezGYzHYwB4pXgwmHZ8fAzj8RguLi5gPp/DaDSqd191u936Wy+dMeNIShPqRx4IiZUdW9lGy5by5WV7AiOWFelaXWMGI6ct9Jw7NNY8Q/lTuiVjwMMnb7I+SDHiePuWpkEab1K6GEITqZifVedb9dq2An7bALYv8gMursEjUzudDgwGg7Vj0WOTBaltp8lQz0Riib7T+ERzRjCgjvei02+skOSp9g6fWfndYyPwvzU6MQ2dRJJoa9L2oNB0nFZujJ75fA4vXryA2WwGs9kMzs7OokeJNVlHHrik/4d4PiY7dw14ZDqdyNfshlDdaDrtm9R2kHa+rlarWm56A1YWOlKC7TfV5impP1LzkMabtT0l2afZ+CXsMFpOr9erTyPqdDrw8uVLGI1G0e+09yE9g3qP2+xNYRflFWKXads2moo7SH83VV4uYjZlKG0MHt3vLSeFFq+96UWufgjF6Lz2oiX2hL9Dk2cWHrZOFoa+i9kYIRot9pdGq5WGUDuUGCta3piXpKtT8tL6z2N/xnhCa9Om5F8s31L6PzemrcVvY7xlKZf7XiVi1bH4Mf9tGT88bWqMMPZtajuUQEyWbssOsMp4jqbb8nZn7BsKqyHnUTQ3NXgQg9eZt+a5K+2FO2Dpb47BYADf/e534cWLF/A3f/M3MJlMYDwew/HxMezt7cHe3h4sl0s4PT0VV4lpStVjaPL0TSMUMKyqKhq0i9G6XC7rHUCx1eXeSY1UlOZLbUKWvqdlvy2gE08WGUvbLtSeu4SQYyghNsat9S01qbctcGckZOij3F6tXt0Lure3B5PJBCaTSZ3u+PgYBoMBPHnyBBaLRSM7hb2TDZoskHYZ5UKbhLXwZwodubqq5LgOOTZ4IsY2EQpQAIC64jy2w/ry8hJ+/OMf19/g5Aa9V5mPsZw2jwXqaBl8Bwil5U0At++wzjftTqJUcF2tBQ35M+n3ruswXpdN02stzxogpAFtKmtCQf4UvqY6CXXebDaDu3fvwve+9z3Y39+H/f19+PM//3P4+c9/bs5X4yur3ZS6GGnbeFv9iJuGN0nPAZTntU23Dy1PWxxO7dlc+jztJekViQbrBLIFXr1rbZOciQcqw0OLgqyIpaWnfpSenCsdQ43l65mgC4HHSCl4vCFWx1C7WiffuL7L8VOl/EvllQIan7BMIJd477EfuH0v2X9ajFsrI9TmnvEjxQn5d9u01990NNmeW5uMfVMDFduAZ6Brg1nLlw/smxwEB9BX22iTcvybWL6bdhq9Y6eqKhiPx2vBs8lkAv1+H+7fv38tP7qLVgtqSgZGiTEdan+PsouB1sljPIfoLDlOQnXTyrG0ndaPse+tuCkBxyaRUnfJCcuVTx76QnzhSUPThgxH61jmbfEm8FVMTtCjmNFhxPoPh0M4Ojqqd8laZWCs76wTVzSwTfPhdoLFkZYmOELfeYMfuKOv04mbvB5d4uVBjb4mbeDBYAD9fh8GgwG0Wi148eJFfccqLb/p8WQNYsSCD/gOd8Ii/zcNi963BFti73bVzrYGozx5xdLwQJglz3a7vSYj5vM5XF1dwaefflrbsxcXFwDwWr4CyHoX+SsnGBrSV7vg+8baV/JptLGgoSkfgZch0RULnFnylb7Vyouhqirodruwt7e3po8on1SVfzEo9iM9NaPX60VtA6n/eazAUn6qvErxYW9RBpvqs1LllkLqREXOpJC3zSS73AJpPJdo75D947FXQmmt+VC5rslJT3uH/OtYfl5fhNqvoW88k3Ca3anpQ23Cz2qjWOxcK82etJ5xq6W1+reYVtL/Hr3I6ZFsIP6/VH6IxtBvWlYqr3pgiStqsPSZxxcI0Wflde+4D5Ur+Rc52GQcIVSuhYaQPI21gyetBU23UwqNtztj3yJYlJAngLqr4IHgEkq5BC0l02J6K2hdr66u4PLyEqbTaV3ewcEB3L17dy3vqqpgOp3Wu2tixhp/nyJ8tQCHFri3QmtbmlcuL9AABg2MbBObCrJbHahdDUhuE6Fg2DbAxxenJdXJ5XlUVbUmW6S8pTbgdzzedITqQydjq+rVDkBMf3BwAPfv3weAVxMQ7Xb72k7DVFj5MWYnhHiFOyTe+1MlWjVnqt1uw2AwqI/bl+ANEnkCcLw9UurJYf1+f38f7ty5Aw8ePIBOpwOXl5db3zGrIaaLaTt2u936Pk9vGbxfQm2ZIvusgZtt2qa7hhyHm6bHBSvtdru+Z/vs7Ax+9KMfwWw2g+l0CqenpwDwarEh8o/GE3Qy9m3rE0SOPYLfWgIupWQi9hPqylI2DILLHO9ikF6vBwcHB7U+igXHLSfr0G/x+pl+v79mM3iwTV63TAbfYjdx22dl+ZfHPnLhDYJLk61cnnjpkiZEYhNcVLbzq1hicakYHSFYYlIp8VI6KarFpnj+JSZGpTykqx1i2ER8wuNjeb632nPSQrwYL3jo4H4C7WfrIkCLfWWZiC0By/xCSC5aJ9ut8QXaninjw0qnNxbvRakY9bYQozsWe7GmtZS/q224E5Ox1k64RT48QUBuDFgVzqb6zSoQLROyVEmkKPdS6ZtEqO8nkwn8/Oc/rydo0eBdrVYwn8/rIzx4W2EaqRz6jhqeCNovMRnADQ4puE1/a3l5ZI1mzEu/JWFP0/FjF5swgErKUckBLBEsywmK3URgn/PgnWRg0L+bDkSlOA+p9HCep/zKJyL5GA+1w5vOO3wMWnQ3ymvcGZOi76161Nr+VK9SnUFp04IM3j5erV4vgMEg9HQ6hel0CgAAd+/ehd/6rd+Cp0+fwldffVXvOLbIOC2IJTnQlMc97RRCyDbh3+LRmACvAv/7+/viMVzaBJT0jj/3QtL3qZPCtJ9xQiPGmyV0l5Qft3H4s1xYgopNgO44Xi6XMB6PYbFYwGKxgNlsVtPkmQynbSa157ZkOpeTIZ6XxiG2g/aOB5A9cnkT0GS71weU8k2hQ+KT1DGl2Vop+ovSoaXledPTLDqdDhwcHECv17NXgNBtCbxSoN7jd4fHAreIUFm54zXkc2nPd2nM3OI6Qnp3kz5HE5D8l00hNAYpTdx31GwiKst5bEbyO6RyJT0XkwmajvHE3eh3tEzJDqMI1V9LFyvbY5NrzzyTbpb8pPdNjKNYe5fIO1Qm/V9DLB4oxSXxXUweUV0co5eCx0wlv9Lrt1t8R608b3yA5xvif15PLX2s/ahc0fzwkM0uXR3D0+FVN5gOFyhIvKDZ+bwMni7FhuZlWOzPkr6Uh16PTZeaDtOmyExLLNFqr1jTWLETk7EaSgWBdhkW48UbtCgxELmi9RjSVoVZ2pi1OJhWwzKWX4yGXeTVkOKazWbw+PHj+jcGqfE4Y3rUFeWH0B2ANEiH3297TMcUOXVmtMCHVA+LA6Sl1/LVxtEmxw2nx9JfsT4O1fFNgeYkW76h0PrcwmOlESrTqo+0oK9URgzSQpA3FdTpkxw27nhYg8deePWkJueqqjJPxFmD4Nw5xiMaZ7MZzGYzWK1WcHBwAAcHBzCbzeDLL79Udwx5nabQOOf8niJTpbx4Hpq+6Ha7MBgM6p2CTYCX7dEpCEs70PyRz7FeIbszR+dovLBN2dO0/McxhO26XC5hOp3W9xCHTkuxBlU5tmUDxAIcmvzieWh5A8Ca/Sy9z9GDTcKj5yV4AxramC1dZiyIWMofBFjfRdbpdGBvby94QkOpQNpqtar1nhRg2oYNGUOsjXODmbdoFpI8C9lDuwLrpI40qWHxZ7yyhn8fw2q1WjsFQPpWy4vrJk+Zoec5E2WW9Fxva/FG2jZSftw/5Wmpn8LlqEVXxGKosTspNUgynb/XaJN4xGLDazEKr+1uhcUu0/KNlYd0p96jHvLDY2WWGPPWtB7bMjamLdB4XbKBaVoLv2n+utfOlIAL2DGt93oSqQxrHMYqCzX7jeYRk01WeOsem+9pGinlenRl03bLTk/Gvg1IMVhKGzlNoZRT+TbB42zmtG9VVWurs1erVb2KmoIqUF7earWq756jR2F1Oh2oqgpGo9HaiiRqdFoNOE6zNkGaA8yPOzMxWiyBg6rS736y9rXmTEj5YfqmYHUeb8d9uC3epnaytAP+jfwVm9x609vNMoZnsxlMJhPodrtwcHAA3/72t+Hi4gI+++yzImWXbGMq/yU5bu3TGC/R57PZrJab5+fn8Fd/9Vewt7cHx8fHMB6PodvtivzlCSwAwLUdbxIWiwV0u1348MMPoaoquLy8hKurKzg5OakXPlkQc+hC74+Pj6Hdbtf1bgKlxqYnj+VyWdsf8/ncPOFsoZU70zxwkDs5xfPnR+Z6eXEXA91WYGAMj1uXFmtY2h3TzOdzWK1W0G63YTKZwJdfflkHWBaLRW2n3mJ3YOFfelc08gwuGt10QIgufLLQPp/P4fLyEubzOUwmE5hMJgDwWrZYg7r0G17nqqpgPp/DaDSqFyQ1hablze34vNnYVX3k4asmedCix0oE8S3fozxBGyQkN6RYkKUsydbR8swFzV+bgKS0cfD2SKEtNmHc9Pig9ZYm3eliO0+e2xzXJXheykNqA83etLTXpmM8kg3SlO5PkZ/eCUdaF+RdLR4klReauMR0aD92Op3gwmyLfRfbHJAzbkpMNt8ijG23342ajA0p1KZW5rztsLaVZTWVtCrGW05TiBlrm4RnQjYnX2qcYVBBMhw1oHLBY7j4ZCxXTlYjWHpXcnWRBZZ24O3F+Rzfh/qTvivd55xuy+ofCyxtI42n0ATbmwxPgE37timaELljJ5afFDTE5ymTrVKb3oQJbs+EY+h5VVUwm81gPB5Du92GXq8Hd+7cUXdgeWhL5U/te/obJ85CeWlylae18AgGG2azGTx79gyOjo6g3+/DYrEosrM6FkyjbVJVFRwdHdW/cdcS5sPbsqS8Xq1e7RTudrsqj5SSy1rfWPP36npM5wk8SHrZSl8pmUyDATl5xvR8KvgYpDtj8W5qPolkzU8CDYzg5Jr0naRrtDbAfl4sFnB5eVmnT71Hk+efKmtpu+2ivgrR1aSejY1BzYfk/R2jL1S/2Pcxmz5Uxmr1egHrarW6tusqpPtDPM7pXywWMJ1Ood1uJ9Mp/S3J3Vg7Svmk4m3yG24yYvZbDE348qF4Qsg/t+Rdmj4vXamxNMkXk+RJKE9Oq2b7WemM2X85bW7VLVVV1TZILN4R8u+1b638HSrPCy0v72k5Vhs+1X+J9VGuXtHysI45y1jQvg0hx4YO8VYO3SF4yrHwcWjcxGxRDZZ64QJQTc5xmSWlQxq9Pq4HKX206ZhYSPZzmpooK5ZWk9VajGmTuFGTsbuOXXWsLbDQnhOsvSntctPozQEGAnBV0GAwAIB15Yfn5iN439N7xSiqqoK9vT1YLpdwdXUVFHbeti4pzJsWuBbj0UIHXYFvDViljNcQSo6Nt2FClju2Wruhw6cd5Z2C0n2vQXLgtSA3TsTxY0W1tCEj/G0CBm3Rce50OnB0dASff/45fPHFF/Brv/ZrcHh4WKfF/62TJJtGE3YS5kd3S6F+wyMhZ7NZ8h2lHjro5Bo6eTh5ZQHKAX7/LEDaeJ7NZjAajeDs7Ay63e61CYBNjDGqk0oHBQBe2SmaTJHGQSldptlG9OgzOulGZdpqtYJutwu9Xg+m0+naJM0uYDQa1bSfnp7CH/3RH9Xj6vPPPwcAqCdoYwE9qZ3omMUd24PBAPb39+Hs7AwuLy+LtQW/D8oaOKF8y+/dpHqO9y2HtItz1yCN0U36tKEJBj5upPSW/Gke3LeRyrMGSLVgaCr/Uv1Bdy9Z6zyZTOpduABQ3yNP2846oczr4Qk4YtqcQPMtbrFpbGISNpZnzsQOT091rfQc31E/lILbMyGE5GEurDFK+ttafrvdhn6/X/8ejUa1TRaCpCP5blptkoe+L81ToQms2MSjNf9SfWuxM7ST63LbLWSLeWwNKa5H/y5hF0jY5RgJ2rxa3TnfS+1N247bHpZJXgmhhZjULtTu993lNt80bmJb7KKt+cZMxlpXY9DnuR3SpNGxaZSaYAHwT9Z6HN9ceGiU0nI6NSNiW5O6MaNGMv54oJD2R2gM8cA/wLqSQyWMAYXQcS9S/9M21Port515PWJpPOCBj1AZ1vwshqjXSLbQFuN5j7EqBfssk5Y3HTFepe2aEwRN+a50+1vkUMwp1Iz0TQaIS8MirzRZSI8Pa7Va9XGHeBwhTujwsmJI0YmhMrzyxFKO9I01WEV5bT6fw3g8htlsdi2fpmwg7kxKDqqmc1MCb7T8qqrqydjpdCrKl1igvfRYi+nz1PKs/RiTNTnAYKYlb+SD0G721AmTEqD3wi4WC3j58mVNz3g8XnuHtMYQohHbg+9alfjUwyfUpqX5aXIqxbaJ5evto1I+qhepdY8htR6lbBGeF++PUDkhu5varzFaq+rVjtXRaASz2Qza7Xath6SgpBaAlPKVaOYLgEJ0WvtHk51evgn5gNQf9eZxi3VovLuLbbcJmjTbMJY+xV6VnpeS56l0SbEenk9s7OXIDy0fT/zWm4aXwctCG4zaYly+W/O2wMor1ncpZQFc12Hat5Ku1GS0Nw5koZ+XJcWLcscV17+UTv7b4z+E5I2F5hLyIscP99Cg2dG5vCv9r5XlHYearONxSSk+po0PKS/+7S4jV5bzZ5v2YSRIYzmmfzaNN2Yydhu4CQNrk+BK1hp4pn/vwqDwYNd4ICV4S1eGYTAMwVfx4zvaT4vFAhaLBQwGg3oXEs1/b28PFosFXF1dJdHoNYi9x/6lGN8WxJSw5W4WitSx0sS48rRTrB2aDv7fBGCdrYFtb4BYcjYociakuLznd7eFjDK+SKPb7dZHYWp04rucI3l3HXTM0joul8v6PkVcyf7FF1/A8+fPYblc1jvVSgWxd9XITpUZZ2dncHJyUo+HEjzEgxQaWq0WDIdDqKoKxuNxvVNPKx/1At/NIE2k4v94LCWm6Xa7cHp6CmdnZ/DgwQPo9/trO0hD/ZuDXXR2YpDsV7RtUI7xe4/5t7ngu9fw/xC/0+Ouuf12i1u8DZDGSGqAn0+KarLS62O0Wi04Pz+HH/3oRzCfz2E2m8F8Pq/vSMZ0VP7wE3EA1newcbosk5gx5ATjboKcf5vQlH5/k8B1u/YeIO5HlYR1N2pIRnG6qZ3AUUJ2SDaRdXFFDKF6SmmtqKoKBoOBuoguFuugbRuqJ5fjKN8t9OUgJJtTebmUjxDLT5ow89BM08buQOZ9gTpby2/bCNkjTcl4T76WWF/sm9A9rpb8OPgiz16vF60T978lcBndlH+4S7jJdsQu0n7jJmNzmNqiyEtOxmwi320gJGS0IDJNa5mc3Ybw0iaTOTYxaWyhoUT+vAxutKNBIt3fFQsSdrvd+jfdiaTVIdSudPyEAi+hNBJ4cFsrOxeWiTD+u6S8CI1Z7kQ0zduxlWQ83U2Vmx4eBPC3e25/5QQXtUCnJSDKv+Hf8YncN9GQlXib96fWP/x+78ViUctXPDaeOpLoaDYpV6RAieaMpdpCFl6Q5DmWie3W7/frYHhJu0ziYVruavXquNdutwv9fh+GwyEcHBys3cGpTbbyOobA2wlpOD8/r/PudDprxzFJfWYZdzG9touyW7NbrPooBqy3ZTzgwhOLw2+hqwlZiYsGLi8v63rNZjN3YCbG101C6pOQrYlprEHfpvpg1ye5cm0X6+8QQnot5BdYbHKvTSTpc1w8hgtlxuMxzOdz8eh6jc5QsJr+r40xiS7+twVWP0EbO5vWCbs6bm6xeb+uicmKmE29K/zHJwvo89h3AHG7UJJDofykyQsPbSEarHE8AKivzaHl4wI8y0SpV0+E5LjWHtYJLK/9qsXuYs83NW6bin8B6AuuPPmljG0Pv8T0K/0/h5ZQ/hb/05JWs489Mjlku/N8LDIKbRT8Ta8h0fpJs69CstUrxzi9UjnchtuWnpH6bNM+i1aOV6dsGzduMrZpNKVodjEoVRpvUh03bXjsClar9eOt8K4tfjcYBhY0VFUF+/v7dSAP76zLCcbT73ZlksZiNFvr7AkINzWZESqzBCz070K/lkIJY5kHtkoHe5Evcu7TDAU7Q32NzvB0OhXp2vVg9CaBbcDvLqTAibZWq7V2SsF0OjX3b0xOeIId2vexO4NjZdPytXRV9Xoh0WKxgMlkAnfu3IEPPvgAnj17Bk+fPnWXbwXd1bparerJz7/8y7+Eu3fvwve//33o9/swGAzgyZMn8NVXX0G32613RkqT5x7ZT79BWn7xi19Aq9WCXq8Hw+Gw6J2cXmgOtTSZ3kTZORMSGqie1xx+jtlstjaxuSt2DaKqXu0aWS6X8Nlnn9XPUb54Alm8zfE3PRoQbUwpEJrbT9I1GdrVGVR+IF00Hc+D6lELDVKZu4RQXZri0RzfIJQngGxDSbrEUy9pXNPvka8nkwm0Wi0YDAawWCzqI75pekwbCiBZA7kSj4boDD3Tvo+VH7IHPXnEAp63uIUHIfmy6z6pJB/oGNFkB9VfEnImHfG3dGJaTnk8f4pSPiGeVMN3300mExiNRmb6YhNWMRtQ+iYHWj6hSaZtg/OwtS1KxLM0W5P7Iil2LgBcsyFzYTlJL2ZHNdH/lj7z8l+OPSjZYiHgqWP4bSieK/0NYLOzUrFrY/YWZfFGT8ZqRgoPmNwyeTp2OaAQwqb6Pje4sOn2lQLAPPhPDSY0NHAyZzKZQLfbXZvA7fV6ajk0PytiK59CClL7jtdPyytEd+oEKaeDlxUK0MToTAnySsH/0uOEBt6ld5yWmw7aphp/eusaMxY9Mg7Hsvc7LS/Lt1R28OAbd15pWu4gpbbfTUev16sXu+DuWFzVjZNwoSAvh9SmHLEJwSacaKuMs3yHbXFwcACtVgvOzs5gPB7Xq+NTJpZpvjGgwzcej2E6ndZ9RvOyjldOA3/P661NPDXpQPJ8Y0GOkF5oEnwCIZRO6qdcenEBBT1yOAZMd3h4WPfvYrGo7wb2BEdCdoJVH5SSv5xvc9q2hJ2/rcDVpuDxUVIDlE2h9ORtrKyUb5A+3G3Fx5p3XIXGREgvlOizmO7gcidko+baELe4GdDsMC0dT9tE+Ry59qjHZ02xobUJPY9P77FXQnGPEK0p+npT/ptmJ3O+k2z63NhOLI1kA+P7WF9INEp84u3z2PPctKHv0X/VYNVzPF2sT0KxNo1OL30xhGKbUlpKS6h+qfG/GA3S9034SN78+Hjg9cKYNcI6WW4dj1Y/3qKXvLorRV6l2re0vKZ996Zk0S7EnN/oydhb3CIXm3T2dxHSLiwqgDudTh1gnk6nMJ1O4ejoCKqqgqurq3pnrQSpbUsFz7x9xieCmiqHliflVwLeelgQCwClOGC7FNRrEh7D3OrAWdrL26bU+cntD26Q02CC1B50J6HmVHIZRPMtQfNNw97eHgwGg3pS7/z8/No91J1OR5W/NwHWwJYlLcW9e/fga1/7GvzkJz+By8vLejIsdXe4RxfM53M4PT2F+XwOo9Fo7Qh/S9AEIY2NTdsrqc7XJiZcrW2BafhpH3x3M09fygkGeHWlQ6/XMx2Ph2XM53NotVpw79496Ha7MJ/P4erqCr766itotVrQ6XSiwSKpXtuYDN91vMntcVP9m9RgYWpZnvwlfwLlPL+3LMV2ti62iNGG8E5GaT6G5Y69FB21yb6+RTMI9dmm+tPjL0jB+xw6pQlRj32ivUvJQxq/KTGTTY/Dpsuj+Uu76ayT0hKwvy2TniXteI9PsQuwTmJZ01rzTp08zynTUl5sgrVk33oWiMSQW28pPxr3iX1viR2gTZZq2yF43CUX3sn8TfpsWt/skk12E33YmxulcyA2OUEFbBMTGW8brAaMJY9tDCjOA03xRCiYV2LSJgeaYajRzO+gA4B6ZxYGut955x0YjUZwfn6+ljfNP1cpauloPWJGLz12LmfSVFshxukKfSeV62mj3EC51u+eSXTpXYoxe1NlssTfVp2UA6ksHnxvok1DvLBavVqNaDGmeR5avlr9bio0/dlut6HVatX3zT148AAePHgAn3/+OVxdXdXHIE4mE6iqqj4CutPpwHw+b9Rgtk5W0eexiVRJxnj7GPmNOku9Xg8GgwHs7e3Be++9B4PBAJ49ewbT6XTtnt0chJy1+XwOT548gU6ns3aUNAe9+xd3PVI54m0LnFScTCZ1u2A5iBT+0L6J2dNehzOHLj7RqNkAVfV6B3EqTTFbRsoXd7ZrgV9uV1VVJd45WQrSJEu/34fVanVtwUypslB2LZdLmE6na4ttSvNHaDIK+aPb7cLBwQFcXl7WR8tKdiH+xtMbpPx3GdIYtcpoK1JtVo+dGSqXj3tpooU/twTNEbTvrXTFbGWL78HpbWJcxp5JQHpCR0Ba80mloQnkTMa8iUiJ0zQ16WHJM7efmp7YskwgxPwrTQ6UmlCJ2TWUBi5/tXz4316f38pTmG+v16vtKNxMgHRrdpVkN2q6Kka/1U5IjZl4ULKNPflo/CuNU2xrjCmG6PK2k8aHoXT0Wai8WNzMCotdUqoM6blHnnhtJ2s6r82Hf1vGmhQblvJEm8bSr7wd6OKO0vZ1ie9LlN20n5b73S77ZRuZjG0yCFgClsmCXaZ/11HCiS81iDgvpubv+c5jWIYMlFi6UsY25iVN3PAjFfEdBiPoziJ83m636wD4ycnJ2mRsiI6UQK41gBFTzKvVqj66MqTQLbJN+zbUpx7Dnr6zyDAtbYynQ8YazSNlrFrGkxQwu2lyuSmjJVamxEOh/pQM6hD/aPlwxBY6IDz0Uj5oInBfCpocj/Ewvsd7GtEZuHfvHnzwwQfw8uVLmM1mMBwOYTab1ffvouxFOWaFJlu1OqU4FCnBu5DOC5WLgRaA123Y7/dhOBzCw4cP4fDwEF6+fAlXV1fQ7/fX9FwKJHlPy5/P5/D06VPY39+H+/fvq/lgv9GgUayuFpqQP/j9lTmreiXZINXf49RbdLmHNg0SbVJAsURZGiS7KhRUpWNaopHbLSng47rX69XBylDQ1wvMA49Yx8UC9F3JoAUiFKRZrV5Nxu7v78N0Ol2755OXry1m4PYQrVMpPdWkDbRJPeopK0V30G+5rOJy1ev7W2yPUD+FZKI1mEjLsdCslafVPSWIKtkGXFZxei22R2odS6EJWXRTUCKWE0KTMpHyXozPQ76Gt1wNkq7wIBQz8fgV/G8tbykdTW/5JjamJV2a4mdKcT6aT7fbre+5xcVf9K56qT1Csi1UJwsvhWSKty9KfbtpcPtIg9V2ssZILW1hib3FyrbCyy8xhNJ66s7Ho6a7S9uNpeOJVv2t2V7S2JcmWqVyY7LQ0oalx663fSXZuovw1ssSX2wSG5mM3YXO2gUabrF93EQ+2AWaqbG8Wq3WJlXwPa5am8/nsFwua2OXAoO+VsPCEhTNdWJKTQyEvpHS0za0BDdLKwVOl6ZkQwY99rnFObEEVj1Byl0YF1ZojpnUp57AFEdojGwyuOqF54hklCvcWN51fiht7H388cfw+PFj+NrXvgYfffQRfOtb34KzszP4wz/8QxiPx7BYLEQZvOuQnBavMyyl6XQ6cHl5CR9//DE8fPgQ3n33Xej3+3BwcFC3U+rOWM1RDWEymcDz589hsVhAp9MxyQYLUr4LBa5KoeQEnrdcgHR9YWmLUECmyfq22+16d/d4PIaTkxN4+vRprZsB5LuQkCZ+NDMH1esYrMSJ412Xt02B7pym9ux8Pl+zU6ldJ/FCiXHW9ETsNie+NLuotM633k2XitJtmJoftlcOz3l1M/8WwO5D7bK9eovdhZUfPZOVVl7V/DlvED4U88CFWJb75bls47YA1e2xSTBOq0a3lL/0ToJVnsQmWWKYzWbiAjgpv9jEiNdnsMRK3jaE2gN5E/l+G+23jf6KxYE4TU3YaNax6JG5TUxUe9N44F2Ewb9Bmry2/62c2A1syvd5K44p5kgNcKV+e4ubCc15LBWsLL2SKDRpViovzE9aQUh38NBjGfluuHa7vXYXLW9PqV208ScFsCV6LZD6NWTweAJWGs+k9L1l1VSorFgaT3vRyeTYuLA6t7F83gRZHJtIlH7T4yGlNtImBCxBh5SJkpTJYk6blJeUn5b2pk3IlsTz58/h5cuX8O1vfxvee+89+K3f+i14/vw5/Pf//t9hPp+v7TBrAimLLzx5S85oqCxLYGo6ncJoNILBYABHR0fQ7/eh2+26ygrR7KETFy3Ro7e4A2aV0bStaRmePijVXzQ/riNzxmiObg+VHQpCWumV5FcpPRUKClZVBQcHB7C/vw/dbhdGo5FKU4hmiV8oL8UmFj31iNHAv9F0Q0r5dPGYVqb2rcTP9L106kMsoLLL+qqEbZrKIzF5rNkDqfou1xej44RCaw8u4zXbjf4t8VJsIoHTFvIRrf6JxRez+G6hPHc1CBlqp10ey01j1/uNIxRjiIH3tdUOpr9D/pbFjrXqGMsYtdab6zYrQjLKIhNyoPElvbpEeh/jZypTrYvRpfxi/eZtg5skgyyxKim9lsYylnPtE/rdJmSd5hdK9KT4evy3JybD4ZUnobJj6UvYprx8nrdUn1C5ofy9p05Z5Qnmn4KUNkyNMXrhoe2m2BwxvDWTsRaHAAWatJLcU04TjNmkkk3NnwdrbvH2gDsEGhaLBTx9+hTa7Tb0+31ot9v10Zqnp6fRSSjruxBS+RPv6LMcQWEpJzZWpCC6twwvNIfOGshdrV4dTY1BTn68p9VJfNtB+13jgdVqVR/5jZhOp9EjVflxpPR5Vb1eHIH9SHme3o9Rkvc8eUmG6dvIP3icVqfTgX6/D6PRKGqr4PjEfrTIIPzOA/5dU/3Dd/vxY81i8gb/n06ncHl5WR9b3PT9m7R8rjctNikeOU3vjvU4pVIZnU7n2uSap983EYDlwUOr3LCk6/V60Ol0YDgcQlVVcHp6unYv7yadPLwHGhELtNJneLwv/W7X4Al04wIFLUiSgzt37sD9+/fh9PQUrq6u6hMEQsH1mzJRVAIl6hbSAZqe8ASfculC2YA60Rso4zYale3eOliDxpZ8QnZjilyQFtzGJk+QBmsMRRpruyrDer0eVFVV21P0+oNdpblp7HJ/lQAf5yE7MRYP8d5FT+2dqnp1sgvXi1ZatKPYtf7z+GZSvjF6eFr+PmVCKfZcypP7t6HveRmdTqfOw0ID78832Y5IgcYDUnvl6M1tyWwrX3nSbxueMdu0b8ntuNTxhWVrd8OGTnGz8p8n1oppbgI/5OJNtydCeGsmY0PgCjJHUTbBSE0zZ8zBihk9mxg8lj6JrRyK5W/JJwfbMgJCgr9UgEkKsmBgbTKZQKfTqe8v7PV6puMzpT4PGfRW2nIQy4uPlyYmKSwKKzamMU0o0GsxDLX60nys5cbof9OclxAv8TGLBhzVVTQP/CaFv6ju8xqJnB6eb6jPNEfeM8EkpX1Tg+bYP51Opw7M0CBLt9uFbrdbv6M8g2loXpIusMiEEjrEY2OF+ljLNzYWVqtXk9QYXIsFpzwIBaTwf+vYonnR/g6VY4XUbzE7qGT7aGVZgmkWnpN0E+UPvMeeLm7xQOJhT7CNpvHIXalMzxjR8gzR7NENpR1qHoRL1XGr1et7YMfjMUwmk2t5Ut5cLpcwm83UYKsUxKX/pLRUBuyafrLITP73LuhaC0+kBM1C8JYnPdd8G208W5Ez/jz9SWXGJvznEA2bKAMDsbs2bjcFzcaPpbFiE+1qjSHFJoBKy2+LrUD1Sogumt6KWIyP06rxgrf/Y7agVmZO/IPn67G9aPuiPR6z91PwJsoYzc/P8QM935XWEx4ZYClbi+lQxHjV20bbst9S4kU87mWJLfG/Q2k1+Rqiu5TdYyl3F2xtDqu/EPvG01/edBY0bUNacDsZ+/8HVfZacDo3312Bh6YStO9iG9zCB0+AFIE7DujE63Q6rY/QDOWHYxDvNLOutPYoaY1uSxmxwGXJgHWTYyc0+WIJznH6cNVYbLfm2wpucIccEhrswjGAweFerwfdbvfa/UGYj7TbQzIk+TM8Yhx3OmMabfw1zZuUTk4DbcO3Xb+022342te+BgcHB/Dee+8BAMDp6SkAvOKFXq8HvV4PRqNRvQOaw2Lwp7R1E4FaafKElhEbCxr4Pd5W8DKlSZnY9wg6kR4K9sTAy7foUBpwpv/4DgJrm0p9z+UapQ3L9oxtPoHG645ltVot6HQ69WkCjx49gvfeew8eP34Ml5eXrrrwZ9IuMqQtFAxqalJOCuzQdxKdPD3+Te9Ws9Dq9S1o22Ef8WssOK2p8r7X68Hh4SFcXFxAt9uteRt1HZUZo9FIPH2A8/RsNoNutwsHBwf195PJBObz+bW7qPn3NxGWiUYP0M6n15tofVzCJ6fl0v/5315otKXoP2miVgrMeiYPvDQgqA+WQ0Nq+Z68m0CI56iPuktB0l1Aadldgh5EbDygjkR7ZLFYiGOS55VLmyUvukBImkyk+l3bEVuKXg7Lkb0hXzdko1r6zyKLeNtY6cTv6O7kFF/oVk68RmzyrYmyLGO/KWg8FUob45dNxvI5Sst4SU6hHJbKlkBPusmpc4mdttqmoxBdnvu7b/Hm4I2ejNUEn2b48CCQloYjNGh2cUBtmqZdbIMQrMG/0uWl5htyFFPTptCiGTt4tOJsNlsLwnY6nWt3d2jQxqU2hnMCQxKobOAOj+ZchPKLlUXTYH1C/cnfW+RUTD42iZTg0E2TIxJ4P3l4lTuRGAQCgOgqXS0vy7McfrD0mVWnarRwXnoT+MQCbAvc4YlH2eLpA3t7e3UgSXNoNFCZE3OYPfyhOVsSrH3pdVyq6tVxc3i/Jk4E8DyaCGBZd9ZwmZ86CWb5nuozazta9E2MNunbkA1OeS2kc63ldzodGAwGcOfOHeh0OvD8+fN6HMXqEpqQSpU/3MbAZ/R//Jv+G4/H0Gq1YDabwXQ6vfYd5luKv5uUr03nTYPssfrj5CBtO6lfKJ9KvKHZqm9CYDYUWI/50hwxW1dKH6LLkwellfooMdsiNxBK28Y7gWGFZ0x5gsWlyy6BXP8vlO9gMIBOpwOz2QxmsxlMJpO3wtbMDazHnnn43jverHyQYsNK9k9I1ln4MiRjaJ0ku8Brw/HvrJDK1N7zZ5aYSSlI/aPZQbxsqy2Z6vs0Ic9T6doUcmgK+YtNyHoObs9446gWGiXd5YnnNBFHs/rp0t/ecmMyW3ofs5889IR0TciusPKClq/0P09X2s5o0uez6LgclBzvu2S/7eRkbJMBVatjeIubgbcp+L5NpI6b1WpVO6/j8bh+tre3B3fu3IHz83N1l6yUFwa0Y4hN3HgEOg3I4fcYzEvdAWoxbCzp8ZvccUDbK9WwCzmS23YOdkVOSDxsbW+cfMWdjb1eb+2eXlzwgOXQ/OkzyQitqgp6vR6sVvIu9F04no0GJTw82rQ9sY2AIzXeLy4u4OzsDMbjcT0Zs7+/D9/61rfg2bNn8OWXX9aBRI8c19pYWrkpBTOszpf2PMSvPL31BAXc8X11dQWXl5f1AoZ2uw2dTidJv3nh5V/+bQ4o72Bb4N+8Pz3ji+ugEnTSv6n+LXk/aqvVgu9973uwXC7h008/hdFoBN1ut15AhihVLw28/ejdyLwf6K7RxWIBX375JfR6PVgul3B1dVWnsy50u8Xbgyb1VYqtl0oPt8elYD+VG7Q8DzxBeUvedKKX5k/bYVt2Fi/Xej+l9C1+bznKc9eDa9g377//Puzt7cHl5SWcn5/D+fn51m3iW1yHJBc0eCZJYryV6ofHaKiq14uHaN5Ut1snqEoH+L1Beo0ua9ulynLJf6Xt6T1umPoaWszDi12IT2wS1kUA3A6Xdht6bQ6JllCa0n0Ti/9ZJvJ2CaV1eEhOUX+TP5PSW8vEMR3jS6kcjV+4jLbGXfjvbduGt7Ahx7/aycnYHIETYtaUiY5YnvT9rgrKNwWSQJKEdmj1Sqk+yhGOu8gvuROX1ok8VJp4VLG0IymGkHKiz60Tg7kBIQ5uJEg0hPJMVbi5ilpqHz7WtIm8GP9Y21ga2yUMEU//Wh1b6Rup7UJBQXyuTXbGysagPTooeFwxl4uhftLSa3XcJlLHaVPYRpvgJAzto+l0Cj/5yU+gqir4zd/8TXjx4gX84he/qPnCOna8E6HWsUGD0JYAtzQZ5ymXf8PlCjpeGIThx5SWBg++e4KF9JhYAFjrUy5jed4p+lXrJypH6N9WeAJtSAf+T8sM0c1/82Pz6ARDu92GbrcLe3t7pnbyOtIpdg2lnT4PjTvsZz7J4w1Ex8b8JgIBKWPdA9wRj0dVA8h2iiUohry0XC5hOBzCu+++W+fx5MmT+iQYLvssvNwUvONV4xFJvuboQu0+7JJBKKvssOoo/q32jbZ41GPvhXwXiS6LbxJ6XlUVDAYDAIB6EW0Kz2rHllr6NccGLTG+sA1RTtCrO7BPtzGGN4Vt2vsp7VqCXuxzj4yWxr8UD5HGQSg+wGnRbBTN5pD8uhjdtFzpXWy8ctsxRK+3j0P964nhpugqr+0nlZuav5XWN0UWhezgkvaAVnZMR1r0ktc/TaHHWp5FBljy8ZQdkmtSOsmf5HxgkaMe+yBEr7ddUuwNCx/F5L2FtlxYaLjFK+S0y05OxpZCTLBisCb0Paa9xS3edngETczYmEwm9TFPJQO6NF3IAN/lsZ0aSODBvk1BckK1dCV56CaA9on0DPUPOtuhtpTaAgNENIgstRu+k/QdOvmeY2x3Cbs8lpsA7tqj9R2Px/Bf/+t/hffffx/++T//5/DJJ5/Af/yP/xF6vZ45Xy0Aldu+m3CiKWITWSHk7iTEemr15WPN4rTP53MAgLVAMO56jE0ic2c3pw+1/D150gms0M6OkjRSR59Oxvb7fdjf34fDw0NYLpfq/T6pZXM9nDLB0xQsuhXbLWV1t5aXRIf0zDNR5cF4PIaTkxO4urqqTxHQJgLxnQQ8mWI+n8NsNoPj42P49V//9Vo24+65drtdHyFNA9W7oms1OSUFxxAlAnicH0I7wXlZ0pgqZSd66hKbhEVYZYD2TehZ6HvatxY9Q79tt9twfHwMi8UCLi4uoKoq6HQ619LGyufy4ibZ89JuxFtcx5vgpyH9eNWHF7E4o+U73ob05BJpkjMUuLfqGUmGpfYltxVovpo8S5WH3sku6+SQ5b3H5pXalX9L++ht8WE1aDwd8plKtJlVhpXsH40npbGdaw+XlM9N8GjMjrOOOYs9aF004fVtY2Wm9sFN1623sOGNnoxNUZiIlOBhacfwFjJifWMJTvK8UsqPlZWSb2pgA0A3UqzKh6eNpQkZCFIboaHOA8QWaJNZUjop/9BEbCjwEWtTnAjTAssWwzHET7SuPNDf1BGEsbpzmmN8JuVjHUOS87lrDgu/f06rM8Crewrb7TYMh0NYLpf1vZUAebLEMpkaCoohD4ec8021u0dexb67KfAGtFarVR3of/LkCZydnUG324V2uw2np6drfIXpubzQeABgfUdLLFATGrv0GFxMZ73b2NoeqTqdTmTmOkpeO1FrW4tuxbTaMZJWO5TqFpzYDZWp5WF9ToPznuDfavX6aHaeXmqvXJtMc5w9ARtPOm/gD7/D/j87O6vHF955S9sqZqdtU65LaJIeb4AlhtRJs12zYayQZBQf1yGejo2N2FgIpaN0Ub4OtbUkP/h33O729p00oSLJ6BSdGPMnrEAdsFqt4Ojo6NoVGNYyqGwCeK3rNdvT26ZN2nicLl5Wt9uFfr8Pk8nk2oTdJuXoLsATa9C+QVh4IEXvWmIcIf0Y0xVUTuT2fYrPE/rGYrOHZIe1Ppb2Cfmd/HmofA9tnrRWvvP6Z6E8c3yONwWxPtL4pwRvWmmJ9VFuH0r8JcU6c/Omv1N8pVz95ukzy9i1yHbre26PWcZmzIbR/PoY/bwMqz5rYkxoZTWRrxUlyonpoKbqEsv3jZuMTTUmuCO3K5Do2QUad4GGFAHHUaIeb5IjZgmSeutqMbpSDd0cHogFQjENnUSgZdIglPROWyUqlaFBC9qkGLLWIH3IAKCBrpRxo30XGkNSgK/pgC2njT+ntNDADE4caHl2Oh3o9/tw7949mE6n9aSZFBzX2kSjxxPklPK1LijYBlJ4roR+2GUg3z1+/BgAXt0T2+l04OTkBC4vL9fSrlbX7ziSbJ/VaqXe9Zaq5yhvWndAecvSAtwWmvD7UrRYyufHylrtVpoe6dICcNJkguQwUpnOJw68COk4vtMo1F+0bphOmtiXvssFz1+jD0Hbb5PA9nj58uUaXXj3MW83Dt6+FnuoBEr5DpZ237aPomEX/CcveLCQH/FO34XglesWmrTnMZ0g2bfScy2IZwH3EbwBX5rG8q3Hr6G2Nf4+ODiA4XBYn8gQy0N63m63Yblc1nmE+CPWth69HqPXmo7LzKqqoNfrwWAwgNFoBO12e+ds5Kaw7bql+pk54Cd3hMrJKYsH9WP+vPYtlVtaWiq36Xf0nddn0uxJ/o7GSug7HkuJ1TNGBy8HQPZrNfmiyZqQTJXaLGaTWPOywOo77Co0+kMxLMv3nvJDfJmaJ0LiNVquxGsAso9coq9DY6AEcmxbiQ4rnVpbhmw/baxKsVtrnTwyU8Mm450hGjTcVFmD2LTvZWmvN24y1gvL5MI2lZ3Vedk0doGGXUKpYFzpoN62+kkzrHLya6Iu1vYOlc+dj5SJBIku7Z0lv1JtpRkEmgOiGbG5MnSXgpe8jovFQp1sCNW72+3CgwcP4PLyst7dJE2CSfyFd94Nh0Podrtr+WIQjNIk4aYZVCX7Pye4um1YdpbipIw2EYPH5VqDtqlYrdYngXOcNClYUqrPmsiPBuDp81R9w2WCxznk8lmiV/odmvTkgbyUwCTnT/o9353tyVuqJ8pF7JOXL1/CF198UY+n2WwGAFAfAa3lswmEgqtS8GiTdJWeFOE2RohHabvE9Jo01vB44sViUR/1rumCkI5YrVZrxxt3u104ODiAxWIB8/m8PtL1piHET1QGl5qEsPgJ/JnniOem7EZpooZPrOCEHbYVv1pAQulxnZLP3t4e7O/vw2QyWWs/yTbVykS9z30CS/2kyZxYWopS/Y164MMPP4Q7d+4AAMDp6Sl89dVXa4vdmjqh6G0AHzMp/Jpjo1I5ZpFt3NaRFmHTvPkzKS8rjdK44OVJk0maLWSFdYxp+tk6seUZ99r3q9Xq2uJo3l4xvR6jky6q2ZWYxJuCJmKfuf5rUwjJGLRxtJMprNDGXspY88RMLGPDM9looTMlvlCiXFo+l6uh+Fson1uUQUpblp6DseJmeoyFEQp84QDXjCFMo32bUnYu3jYjQaqvVxF7BmBu+zYdAC+Vr7WemrEuTSjR91bj3JPG0y/eoCYNRmn143JDo1Oqg7U9qIGVYwx56PHyAneyrXnEJiBouk0rTKlOnC76Ltb/7XYb9vf36wmCUNtwvsK76nr/P/be7Eey5DoPPzf3rLWr94UzHM6MyCEpLhC1eBPgnwTI0IthwDCgJ7/6zfA/4TcDfjXgFz8YBmQIhgHLhmVqgWwatASatDgiKc1ohjPT3dNLVXfXkvt2fw+Fc/vkqXMiTsSNm5XVXR/Q6MrMuBHnxnKWL7ZW68xkLIB9sk2TXQv4q0RVtlArQ2of+vs621FKCHCSfDqdFgsEfH2Kj6OQ9/XpLeoz4Z2cPn3rGuMxxOt5+WAaWYX/W+wBfUYi2kL8FYt8ElzlU1tokccih/buvCyaVvP9uKwAsDQZOxwO4ejoqLhXGSdL+CSCpX9IhK6rD1iQ0ncN9TF8aVKNF6nvSDYp1G/VyhqPxzAYDJaOcnbJxf/mafA3eoespHc5KbyOsNqBsu+i+YaSrab/az61xaaUjQ8luXyg92Pj+6XqA6FxDx1Dkl9P9SQex4u+BH5v8Sfxd9euHtd7+L63/G7N0/cuuHhnb28Pbt++DYeHhzAYDOD4+BhGo9GZfNfVV4xFKBEdCtczVp1viZn4Z5fOAbBPVHI77/KDfe9K5ZP8HE0m+ozkn8WmlZ7j8mrvQtNrNlbTv1J7xPi5rne1PM/l9JXD065SF6y7X6FBGheudwn1A13jkaeJqcOQMW0tA20sXehHEaoTqc22jDVfftpv3FfDv61+iY8rs8oZwlH6fouNm/E5bSLW0o+lNC497BtHZcdNmXGSEiH9xNofqkRIfV1OxgrQjDddqZ8KVXSWVXfAKsjMEJz3gEOsi8KyIIXxCwW/8w2JCgkupzykvS1tgkrbeiwRwPJuSIDTiTUpaHIZXu4UusaRNLmG5a8j0ZdaHhfBfd6gDjTto7xt8jwvvjs6Oip203Dwe4jpZ1oPtVoNZrMZjEaj4vvt7W2YzWbQ6/WK/Hj/cDkpoYRVSlRlC63jQ+pj69rnEFmWFSvBB4MBfPbZZ/Dv/t2/g/l8DsfHx/DixQsAOJ2Ems/nxW5ZbcWtFoBoRO46IM9fHg0eqhNDyJpQmco8m+f5mXvpXAixYS7wozT5LoOYnb5U3/BFJ1IQ7wKf1KCTBDyPWq0G29vbkOc59Hq9JR26CqxCd+DkCS0T7/+lZeOxi9ie6xCohiCUiEtZroQ8zwudCgAwHo/h+fPnxc7YyWRSpFsXPRmC0L7L/RyA8voU85Tuiqa2mvaNMnVN8+L+uDW2801u8H58HmOQ1inKQO9P156hupO+Z2idx7QRvd6Alh9bpm/yCcup1+vw7NkzGI/H0Ov1iv8x/rtEWoQQzBxWX46Ob1oWj7skOaRnpPwlWHQI+kfW6zy0Mrgs+L3v6HH+rMbDuNom5OQC6XnX75I+5u1Ov7NwL1r50jteRFu+jrD4F7h4t2xM45tQrxKafUR7i1eKcF99MpmY+25VsNi3EH4l1J905cPzivEHUtYjz4/GYanyv4QNlgUAAPELAavC0mTsqgPeMmSF79nYIMHnzGjOCU3zusG6WmQVxBSWxb+T5HF9dv22bitHKCnhg9S/fWPFWoeW3zh5KpVdxrCvcixyQoh+LzkLvvryyezK19L3aZqq6yeGzKsi3xTgxD+H63upb6Oz7RqzFmcTAxV63CIl2zUZ6DtZcB51vgrEvlcIsbcKYPnz+Rz6/T58/PHHUK/XoVarwXQ6PUMyxcjrIl/Om1xGGTiRp8mIv+P3FhsYK5Mkm/U5CVzPl/WBpXz4M5Z7ZDkZRvN0+dQ+4pJPtkjy8Wcoms1mQXBy0m4+n8NkMoHRaHTGjlrzt6LKcUEDfn6EnkROuvzXqlHWB+L5SP2jLEJkwHLn8zmMx+Pi+GPtGNt1s6Vcd5cl1aQ+ZiVHuDySXfGVbcnfJxtvJ6tO8MVg59X+oW2qTWaUia3KjM8QMj1V3dJ3HY/HUKvVoN/vw2QyKU5X4BParyOqem/NZ4jpg7Hxj6Qn+JiI4VyoTbbwAvyzL2Z0cSO+/ELGqYvzcr1XWVvNy9U42nWbwIitZxfWzZ+gKBMnZ1m2tAgrJGaw5p8ClvqXZKY8KF9shpwOT4vlxcjo+uyT3ZdnSDwR479Z8rG0pyWGDJWB6hrNzsS0nUVW33M+WMfAuuoXjtA+IenjVdgMTa5z3Rm7TuSGpFRXMbFThTFdFwNtDWhTlnOeOC/n7zzf3TVGXPepIFwkvwaLQcf/fSuTyvYdzWjSnaxotCmpzdOHlknJVgllSeUqJidCwZ3QWHlw9SHmg45urGMrGX3axxuNRrETifcPPCJxc3OzONoQ75fDZ6i8FNJOOT628D48LlMMISHVubRLJRWqsoXSd3z8uMbSutgXDVJ/xn7ebreh3W7DYDCA8XgMAOnuOOPBCH4n/V4VYoPUVTnf3A6FkGscPrLf8ryGmD6O74J6jt+Z7SvTJaeUB/8/tu3q9To0m004ODiAg4MD+PjjjwHgdNdIvV5f2mVdBqvSGfxO5rL95Lyg6RCAl+MHFx654jX8W/PBtLG4Cqxzu6QiOgHc+oS2H+5+mc1m4gRgDGgeKXYmaJOTAGd9vxCbJ9VPqj7JTzjw6X46robDIWTZ6STkcDiMLp/aWKyXKv27Ku0o1gsubtOOkbzE6pDCv9RsCQfGXpY2l/q6RvxaxyfAS9tHr/ug+VdhW3gda+X4+AYpjk8lr49fsnJMvjrUJn3PE+vsT3C4JsDob7iQOAautqmivVyxjmsyul6vq3xOija19mXX85bvYsqm6XwTxWXk8JXtKtdSHo83eB8OlRPrw3UywyXC4au/KvV4iI/ySh9TfN5GUypXcqJSY10Gb0o5XEGXpU5DlLxlksL1jOR4S89bJsxS9l1X0JG6PG6oXMaPl+2qv1ACwxdo0TJRcUrBh0bE+MqX0vJgTfvbJS/maakf1/eWcizPuxwrV7DE86/aMOL/rvb0wUoqSRNV6GjRydpGowEbGxswnU4LUtJnxKXgFv927coJgdQmVU5MroJMiJWhyvemZbhkoOBtQ+Xjxwny8WepDx8xLvU/TbZVwKI/+W9V9mtLsKv5h/S3MsSVRY/w9K7vLe9kCXx89s0XgPveif6GpA49uhrlxGNmMb1093YZQkNKG9OOFoLJR/wi+cP7vFRWFYRpCGgb+dJp4H1E8vPKvhuVsdFoQKfTgUajAfV6HTqdDgC8JGVi7O8qIPloPn9U0gchfqdks7i90XSXT0e5ZIgh/mja2PbTbGSonQxNJ9WzJW/0TaUjUlPphjJ1WabcELIb+x8eO4473nHx5LrwLOeJsvE5fzakz7ryD+0n1DdAWahc/DsffM+EjGWr3cfPFr0cIpM1FkXUajVoNBpFPOvTcyF6mPs21tjD59fE+HmaXbTYy9cBKXwel9119XMXhyilC+nfVmh9E22QpGPQ7vry8sHnd1nSazEFfq6izlLllWqsWfV4qH8XovM0mVz5WZ7xpV2l3oqxk74+Sz+72oL2ZaveCElrrc/kk7GpSa11Q5Zl6v2Ql6gG6+jEvOr9PBS+AF0il12Bj/a8pSztOQmhToaWPyez6O8uogr/oRMWEiTwfLgsZY4lrRohBFFZ+TEg5HfrhcInj3SvL4J/N5lMoF6vw3A4hE6nA2+//TY8efIEDg4OlsqSAkiaF94BxMlM/I7fbUzz1iC9g3bH6EWBlfhcR1tD4Ro3uKIYd8ACnPaP2Wx25g5JF9leFehxsRZw2VKQ1tr7xhJYPhli+hO9ezoUVPdT+8J1g9Wu+H4PlVPSZzwPvtMzJv88P90FubGxAYvFAvr9fjG5QO8DbDQaMJlMSvnyKQinsn3O1693dnag2WzCycnJ0i5EivP2E7h+knwal4/DfTDtPr8U74mnWqD93dzchC9+8YvwxhtvwJ07d+CTTz6B+/fvQ7fbhXq9vnS/bCxCJyhiJzM0Mll7FsvibWYFjkmunyQixUJsWcvk5aW2hXThHcUqyUV8jsYWkj1wQbpLM0SeGHJPiqPo86F16CNVXTg8PEwWi7xuoPoh5BmEiw+I7QOuyR20G/QEBZccZcHzpSdA4GfphCULZ6KVR/uyNLatsZKGjY0NuH79OhwcHMDz58/V/EJthc8O8DqRdh5y+Gzbq4yq/AkXLKeSaNc8ALgn29cFmux5nkOz2Vzql/yKkdFolCQWtcS5LoTaS9dO5jL6qUx+2rtqMXEMQu/01pBCllcRVhth4VxTlBOTtxVnJmPLGuJ1UoqIGCJWC0jL1o9LQawK6ziRaFGclrRVyeD63ZU2hkyuEpoTo/XvUMcglhiRiFf8PobcQbhkpu/sCtB4nj5o7+FKI72/jxTzjeNUkwpV6IqYPMvIkef50sRlGUgkHgUPCunkCk07n89hMBgUO2p4ftJY1HQRJ6to+TETGvw9yuRH8z0Pu+PS30i+SGQ+9hcpP6svkfp9LQEK7yc+PefybWL0r5ZnaF6WOvQRNC5w2cpAIvNdBBqXwfU3zUuzERZbJuWHf9OjF2Nsni+9tQ1pXnw8Ss/Qcevz3zRygi9UcLVjFSjT92jdUDnxnXDn7+bmJmxsbMBkMgGA08VA60Zo+coPJaBdbRir11xl1Wo1aDab0G63l+5uT1WvoeRC2XIs+ouXRfWQKxbiejskpuPxQsizmo3TfrM8x2WTUPVYC7XZWptk2enxxHmew3Q6hel0uvSMS09KZVvqlkOypbFIFQMBwJKdWIdYviq4fKqUekXSFRyavyr1cdcY4P1c8k95vqH6Q5JXGjNSPKfBIhNPL8G12CyE1+JoNptLYxxP4BgMBku6g/uWPlsi2Q6f/6zla40NUunki6IbqvQnqA7XbE1MzOayzdrvUjpXnpqeCi1PK98Vw2ncjaRvfLrZpR8tcvJnXfwS/Sc945LN9R6u8e3TuzEI6eeSHfL5pTH9JUa2GJyHbxMax1HwvhVjH2ifLjM+fGMP07jKeKWPKY6B5CBZHaGLglflPS6xGliIGJ8iQ7JKU3ouZWYl6WKNiGt8W/O0kh8aMJAJMQo+4mddyIx1QJ7nMB6Pi35Y9r3omMA246sDqZMgpZlOp/D8+fPi/tj5fL4UtCKhyycFrWODjjnfLml0IufzOczn8zN3muD74ncxgdR59yXuDFGSjZLnzWYTFosFnJycqM+7HCtK7MQGbqmBfcGyO8u1wzukvDLvS+vQVUaKAMIaEFh0uAbN5oXKrwV+IXlIyLKXd127VqZrzyLoc3w3vo/IlOCaaJHIcWt9Uv2FR8nSI4tDJgPK9vVQaKQH1Weo01Cf37x5E65fvw7j8RhOTk6WJmPPWy9f4mKCE3BWnUGfoWOuCtlC0iMskzHa7y6sarzFEkuoTw8PDyHLssIPdeUl6fIQfZjSP6oiTkSfF+0NQLrdMBcFIfa6qnJTPCuNXeqnh0zYufwSTQYp9rD4GbTvcbj4FM0v077nslnedWtrq1hI3Gg0oNvtwuHhITx48KBIZ72nneoPza+T0mtw8U3WPC5RHinubaeg7Zk6b1dZAOExHn+O9u2yfc/HQaScXMM4goOeNoeLERG+02B8/qJvIpbrzvOwyVQ3l+VMeL6XOIsQ/9tahzFcpg8xeuK1moy1zF7z713kdZnj5Fxl+sp+3WAN+F3tFmKYQgi9kGeqbs8Y4+tytK3ks6vvSitPpGCAGjVJOUryWAKZkPagslYFLchAIoTfGSE5IFJQJ/X3lM6YBVWMMZo+xXtQ4jrGMbaMF97XpWewjXGS+Pj4uNi1ROsmZFKAykL/DwENbubzOdy6dQu63S6cnJzAdDpdOkZn1f0rJWhbYcBAJ2RpOo2sKaPPpbxi8pOe4RPvKLuPRJT6bEqbJY0LXzm0/3O5JN3og+t9yjj3FkJM6z/4jvR/izyhiCFVqQ5y6bUQIl4jRel3rnwssmManHR09f1Y/VXG30o11q1psE41mUPa7zzA5QslxasgbSjJ3Gq1YGdnB7a3t5cIan7c5bpBG8dlCAqXLtfSuPwcV+wntWvouNR0Wqw+xvTaMcVWWVJC82l4GoxBuDyh+XPE+LGuMiRIdRdbnxY/6SJDs90uSGM2z8+eLBECqa1c7cgR0hbUr5C4BN5HuS6k/2JRxqeJSVsVycw5imazCY1GA1qt1hnbZ7F/KeMfKX62cEeS7auas3uVoNUnh5Uv9OVjyVeDy0dIMUZ9z2FMQmPzmLtiQ2JSV71Ln/GKK5ccuIGg2Wwu8bfS0eox7eOSkXNu1jxjnuHQ+qdkI31/x46bVPzbefF4mu629nnLONXS0v5Y5XtLPoQGdTL2IhOtVvgUsqZEfSRbKrxODoGrLWJIVws5qqXjbewK8rV+cp6K0vKOlnJCCBMpL54nOh8YvKFyWiwWxa5QWhYtTyNoadtQok4yfD4jF0M8aHlpaXnfov/zOsDvtX7nk28VOioWPkOqjV+pfixOJgW/T9Fq3F19j3627j7EPj4cDotdu1RuaTerpd3LtDUGz7PZDBaLBdy9exeuX78Ojx49gn6/D48fP156v/PoV2XsouTA47viGMTfYsuxklsu+PSI6zl63xTqW/q9NT+fXpR0GKbX+izt09a+w+2ARWaXnFVAG3vYBnR3O68nWhfaQhyOkHFXhkDU7vl1kSZWf4P3EYtfbW1DTIdHbvLjl3k52lj3vYv1XWPqP7Q+Y4H1ft6ThhIZyn/DvyVCRktfBbLs5U5ygNPJ2CtXrsDu7i7s7u4WOwTwXuJ1juG4HwSg6yH8WztpwxcjcL0hxVj0b94nrbEf70t8Z5ZEzMXEWDRO0Qgfn460jPNQHSLFuloZVPdmWXaGSPX1XYsPTcvx5Wkh2aR0+JmfyPAqIcYn9T1j7Sf8dz5pL9luX8zKx5HFFsdyIi4OQdJLdGelNlkilaP1S+0zlQ9/d9lCrRyaj/ROZcHtA+oJvD8dj+jHyVi0fb48JftCP/M68Nl7aqN8+oimT11frxtoW7ruTbV8Zy3PmgcfLy4bo/mfIbGB1I8peDxCj/R2PR8SC/jqWiqDtl/IKVp0R+xisRBPc7PadZd8EkJ4hNBnQsFtjEX343M+35mjzDuExrkpIb2jZgMkOX32k0N7N6k/uGTT+AMJrvhCs92v1c7YsqBB1zoH1xcZ0qCSJk/w6CAA2ZhJCGk3V9pYcu1VgFQvLuPvUpIUs9lMJDho/vh3FeTkKtvT1bekIxMluOqB5x8TvK4TLASP5Uiier0O7XYbrl+/DtPpFIbDIUwmE/VuUF6G6zcfeaU5aS5nTctHchx8Y9ACfBc83pKjVqvBlStXYDwew+HhYVDeqUDfnU+clunfi8UCGo0GNJtN6Ha7MJvNzhxTzOELBsuMX+m7Kurap09T/hZDJKZASD2vGpQIDw0q6YQIJz9C88TVzbgaejabndFFqepL0pn8dyyTfqaLuDjpSPPCo96lo8ZTIoYESFUurQNO4vrITZqeHmNPV8JfIg68fk9OTor+WAVwTODEsCUOCgG+i2WCi+ojbTIhtn9ZfX4+icwJF8k3Rj/CcizveUEih/lvZXR0bP8Mac8yZGoZvSS1u08ebk8A4usoFXhfttRJTH/gsYlWDj8Zjsvk+00jrbVYxvW+2hhAXSQdk8snjrh8aBPxb/ze4vf6ZHfZaAti/XILNFlRv9JJ2GazCa1WCzqdjrhwhk/Y+/qUT3YfnyTZnZD6WEfdfxHBeXLqq0vpuN32xdZWXtGVx6rbGt+1qqsZpPI4Ysu9ffs23LhxAwBO9eXHH38Mw+FQzF/itFLrpBg+JEQG62Sb9NnKR0l9vCqeRyuXln0RIPlmFr+gCjlCeFXpM//eOxn7Okw8uYhsiRg6TwL6dYCk2PB7/NdoNArnbz6fm0kIyVHn30tpqVwSmagRiKlgybdMPykjL9ajtBJRM1o8nRboxii8UGPjasdQOULkkn7ndalNyFnlDpU1hY5ZtZ7CYJsHzVKaTqcDN2/ehMFgUKTzTcbSPKS8KXx6wBVkWMgHrgtdz4fKjum4g4Nl1et12N7ehlqtBs+fPwcAWLpXtkpIclMSla80Rbk5qN6WJntwwt71LA8yNfmsiHXqYvKQnlkHH69s+auo/1XASlLRvq75SNy2+PoPXdwg3S9s7SfSmNDImNAAmY87qRxa3nA4hCzLoNVqmctxlU+h2fbQQD4EUp1y4ssnj/Qe/K7fFLtkY/0J7l+HTDr4iNqUek7Li8owGAyCicMQ4LjFhRRlJmN97+OzdZpd5d+XIVGt/nCIb0T1nkWWVG1Jx0eqfmnR85osLt/SBykWkcq1xECh5Vmh9U+uK139u2r+p2z+mp0NLdPXJtzOhvRjjYzkZcWOZ247qD/E68bFT8zn8zM7Yn060lX3kl/Gn7W+owu+PqD5S5JMHLQ+kIdrNpvQbDZFTsy3Q9IVD0uQ+gF9B832WPK6qEhtQ8pA41fxs/YM9z99flzZtrOMjRj45AawLerx6eQqQXUm4tq1a/ClL30J8vx049PDhw9Nk7GhtgjLd32mefPfNZ8zNs50PeeKkSR/yCpDFT7GefUlCRJ/xr+n3/HPXFfwtK62s9jYEBuiPev6TRsTS5OxMU7xqwxrgJ9lZ3cmXCIefCcsriyfTCbQaDTOTADUajVot9uVrAx3QXKsqw7WXhVgveGRbi9evFDbDpUXvSid5lGlfLS8VYGWh7tV6K4gK+g4Ci33IgDrYj6fw2w2g3q9vnTUc6vVWpqw6/f7ZyYY8FilXq8H0+m0OFKwTBAnGVuN0JBWbFvK0OSSHImQiQKOTqcD29vb0Gw2YTqdwvPnz9fO1lGHzHqUGCUsXHWCzl/IM6GyU3uGq2ZT5O87pisFyky2WL/35UVlWSdfTOo7sflIf0ufJfB6oQt9qG2x5Ed3w6ySHAB4efw7P1LchzzPi52+52njsHweQJbtF1gPdBcPL+c84CLxAdzBMtez/G/8XK/XxSOoaezWarWKenERxBcNSIxNp9PivvkQcEIk9Xim7eIjXSRY4m8KfmcZfldmjGky0bJS6RSXr+aT3+fj+drYFWOE1F3qPqT5CZLdl+ySVR48kYjGFFZ5UqJs/lI7a/0hVVuVIXpjJuWsZCmPhzQ9QHkF7g9xmTC+dNkQrFtr7O1qK6l+zmPyjduKa9euQbfbLRYBPXv2DKbTKfR6Pa8tCtXrvnwucb6w9HPp5B4OHHc+vp3vyE8JjYex9FVrf6a+aKo8rdDqDsvpdDrw3nvvQaPRKPTlYrGA7e1tAAD4m7/5Gzg4OIBerwdZlkG73T5zuk6ZtvFNxIbmXUU/sfB/vu8uGteaElbuRxoj1P+mdpr6+z5oY++820TdGRtqMC1BSUoSrgqEOIScHJCeiyEW16EeUiL2nehz6NzSY6SoQ2wh5lIoQzomXONDkr0MeH6STC6kdt75u7vkk+Sg+TQaDeh0OtBoNM7cRUmDGl6OJosmq0sO3p6pJ1xcZVvSxbSbpofK6KcYGaoqg74HrtbNsqxwIgGg2DECsHwvaLfbBQCAyWRSPDsajWA8HnvL1d7HQhD4yGn+fq66c+XP29uXl0tH4fNbW1swm82g1+st3QOUktQpixgn2ZUXHtcc04+teopPmljuaZFgIVAlmarwxzgBJkGyIaFlu0g412/S3zTPlDprlfpWKpOC1wtvA35cn1aPWZadSZsKPr8K/T4+bsrkmwrWtg7VmZr/phG+0rjDBUuWQJT7XVVB64/8bwkuspv7o3SBVqx+lcqg9UzJKH7Ed4qytLbA98FFe6H30/piWC4Hl0nz/aU+GBIb8HJcyPPcqQukeM0as2jl+eSWxrjVnyvja4RyGPR/Pp6qID5j9LDPnmv9LwRa/6kyFsT8LX6ZheCl75DKL7f4S1ZoPmoMV0LjdO13XpbVJ/TpKUlOaaxrttkF3/hI3Q8teldK0263izh6Pp/DeDyG0WgER0dH4jOWMRTS/ppuLdvnV+WjxyBV/aWO+2g/l2wK/ezLR1uczsux5onPuXgZy/MUZfoYlcOnj6R6tcpIvwvRKfV6Ha5fvw7tdhsAlnfCAwAcHR3B/v5+8RxdxMT94ViE9EGLXYwpL5UetvKAofnGPh9SX6uyNfibpDMsfh+mtfonPt1i1VWuzzH9MtmdsZaGW5WDkRKaQ8W/o0fmlinrVUPIO9F7YHEnbK1Wg0ajUeyInc1mMJvNllbf1et12NjYCJYtVRCq5Z2qPV0O87rA4izQSZzZbAbz+RyOjo6g1+vBzs5O8ftisYDhcAjT6RRGo5Fanos0CjWWLsW+inGJu7rr9XrR5+v1OkwmkzMEtPbuuFKIr0I8r35SNfFNCVncITMcDot6wF2HVCffunUL/vE//sfF9/v7+3BwcAB/+Id/CB999BFMp9MlUjNV3WE+fEeFFtRz3WRxGHkAjSQlJ5Tws7YCnJL2/+///T/44IMP4G/9rb9VBN88v1SBsBUoNx4jhjvq8Z1id4Rh4IH3x96+fRsGgwG8ePHC+VwoIeUaF7iYgBL6qccR6hOa/6qOmw7BefhDKW029tE8z5d8GwoX2Zta97jywx12rVarONIXfTBqb0J1oo/w1wIvqU7ws+sYM21SY9U6ioOSuNSn4Tvjy5aBeeb56a5J1IkPHz6Eg4MDODo6gtlstuRLtFot6Ha7hYy4u4XvFqsCUv4p2yrLMmg2m0sLtlIgz18eYwkAMBwO4fHjx8U9xXhXsY/ct0Aj2rSJgTLgfgr9XhujrlXpMe9vIWO4DPR/1zNcP9RqNWi1WsV74IR6GWiTGBI5uiobJ8UEvvJT9a0yts0nn+v3UP9psVjAeDwu4q9V3O3nI9Fj+oePywipe2lyBPkY/H48HgfXkyu9td+52p/rKemUKK1ucPyXeafYcYW2mXIlWh7c3lfRV7kPhf1hOBwu6Umejvo0XDZXn3fpfkl/0jIQr8rJF1UhJQ/ve8bSFpI/r/Eevn7uswc+nRpqky1pUV6XXrHkk9rXQ45xNBoVsrkWEmp1j7EGlRO/D4GvDiy+4HlD2gGeci7gVYbVhmGdYp/V+KuQ/KwISRvqe3knYzmJ+7ogRMlq9WN1zqyoipytCpoz5YLPKcP7/IbD4ZLiQ2LEWkc8XVWk06qJLFpm1f3EUodSGvobTvx0u13odDowmUyKyfbFYmEONEIcHFe/pKQO/iY5hJbyLeD9nB+ZxPPnQY9Lx/j09jrrE6vsmBYDRbzrkE6s0TRIuOzu7sLNmzcB4FR38DsFMRjG+2RT15UWSPI2jXHkYiZLNKKw3+8XxyAiqZ1lWXEsPJWvauIeQccGEi0SQmVBInY+n0OtVoNms+klRaz616WrKTFK05Vx4n0+Ce4W0+5LLtPfLfWu1QWvs1Rln5eOkyYxfGQAPucDt1M+OVz54jiSbCPXRxbEEiY8DzrW6ekHeKLGdDoV7y6qAqlioTLPaj4W14m0z6G/PJlMYDqdFrso6bO4CMxHRlU9jrSJCFdspQHToA8ZSrRZ8scycOHCaDSCwWCwpFct/mMsms1mMaGIvk2I3Uhtr8sSvZLstO0k36isneTXn0hpYurJp0urGEuW2ITbAjqpk2XZmUnIWAJKsuUWjsRS31p8FAsaL3A9eF68V4r+IfEpljJcZWvHWfvaLSSG5/K6uDZNv7reQasHi98SE1/h89y/t8LXTpYxo+lOV/7S8xhHI3cDAMViaCtfEtq3pf4g5RHTruuMdeRmAGw+TYgukN5T60ux488SV/v0vjSetd9pOtfvLlj1teVZ6XkaK2xsbMDGxoaoo8bjMYzH4zN+raafQ+HyzS3xpzVerhIW7kHS/WXjkthnz1MnWnS3a5e89Jx13FrlsaS12nIqo5Y22c7Yi4DYoK2solk1ygSn5wmcRGk0GlCr1aDT6RRHoACc1v9XvvIVuHHjBvz4xz8ujkTB+yABTt895W6DMrio7VAGrkkH3PmJEwF0Zcvdu3dha2sLPv3008LgNxoN2NragslksnSErJY/nZTBXR0xzjgNmlK2nyUv7QhGzQmV6psbsVe5H+J473a7cOXKFbhx4wZ8/vnnsL+/D/1+H4bDIezs7BT64OOPP4Z/+S//Jfz6r/86/NN/+k/FPGu1Gmxvb8NisSh0TCpZERLpzJ0yukpRcspdxDwHJ8YwoAaQd7TgOJ1Op0U94MRHo9GAt99+G168eAGff/750kp5mm8oLP3UMlnA7xH05YcYjUbFiQvNZhO2traMkoeROfRznucwmUyg3W5Ds9ksxnnMHYAW+XAi5urVqwAA8OzZs6TlUMQS2NLESUof7Dx0oetoXfw+hpxDYhTHH+6G9D0rpanVasWkEj2em58u4IOLEIupe+wLeKf3zZs3YXd3F9555x34/PPP4f33318iFV518D5Ed3zyOsC6GwwGZ2zNRQKdQEagz6fpBnzGEihftPrASaM7d+7Azs4OvPPOO3BwcAB/9md/BgAg2sCL+J4xcPk/q9APfKJDk4kidbtY3zPP8+I6D1yQ0e/3i/5VNTR9FOJHUd1PfQdLneJJJKPRaG1sR5V91TKZqdUbv6cN/QT6DI09U9nj0AmJGHLbpxt5TM19U42TsNhbyl3QY+ZDJ14s9R1qCzmvwtP2+/2lPkAXr3L7Y60LDtckzetgz9Ydrnaw2sAyk4y+iZ2yeiikT4ZiVf0XY0w6PvFo8TzPodlswi/90i/B7u5uwUPQcf/JJ5/Az3/+84KbRX4Vd8RqPldKG0bb0dKXQvmfFLJa441LvITE1dVqtWJhAMV4PF7ahS0hZLz7bJFlfIb42q6T+4ImY1cZ0FQBixNX9t1SK6BYGdYRIUYUHWp+j+hwOIRerwdbW1uFYcGV4aPRSCSXXe3hC5x9TrY0GcIhOaGp+khIf6uqb4Y4xbR9kTBaLBZwfHxc7JDFyR1Me3x8vDQ5UYWR521UhaNvzZOSq/Rd+QQx/eybxLiogYs2Nvnxu9ifms0mbGxswM7ODoxGo6WV7u12G2azGRwfHxe7qer1OrRaLfjCF74As9kM7t+/XxxVjL/hPXAhQaTWR3k7WNuE9wONvOLptDJCx8/x8XGxmILWN82P3x8SitBgbT6fQ6PRgN3d3WKlNh69gzt6NTm0tsnzl7tFKdlEn9F0hEv3a79pNrHqYA+dQjzeH68AGI/HUWQWLctnb2NgCcK4LOfph2HZm5ubS4sapElNrQ/53pnrEa4DpOe5DcFyNJvhez9JFg0xfUqSAUmFdru95CdobS6926ptIS0Xj3sHWL6TqcoJG94fqP1stVpw9erVYgHOaDSC0Wh0ZqecZFtSw9WWkv3T+mHsOAqRE6/aQHvz6aefwuHhIWxtbcHJyUmlfQzfqV6vF2OBn+7B4Xr/UF1Z9t1C/SCXfBZ7xX1lWibVd7E2g9ehlYSW0lQ9xjS/Q6rHsnY0VKdJ7eQC16u1Wq04VYmSyVI5AC8XNezs7MBsNismoqu6E53LzRETR2v2nffH0LiDp+f/eDrrGJTy1/q8yw6UgZYv1wn0XTV/i+cr5enTX+gTIDFt0QESR1AW1v6HPgE/HSlV/q60WuyWqtxLhKPMGNXs9yrbTONTrOn59yH1YRm/IfL4OAn6G9Uz9Ioa/H44HMLJyQn0er1iEsx3go6Fc5H0vMt39/lmLi7FCks7WDiOmD5QdTxd1j6Ejg/Xs9yeSpOTfOEXPbmE+nXalUWW9vGlLxOTaOW6xk2ynbFlyP51mCiwlG9xkLBjWXfm8PzPux7WAa6g4bPPPoOHDx/Ct771Ldjb2wMAgFarBbdv34ZPP/0U/viP/7h4zkUq0ny141V4PjHQ2jQk33XsFzxwCTUmzWYTms0mjEYjmM1m8Jd/+ZewsbEBf/fv/t3iuGLEJ598AsfHx2fy4GVQgrHMZJCLBAx9lueT57lzxTknELJM3k3lKl9bxXuekxNlQAkGfDd6Lx7HjRs34Nq1a/Dw4UPo9XrFTvsrV67AeDyG58+fF23Rbrdhd3cXfuu3fgtGoxH823/7b+Hhw4cAcEp07u7uwmg0KnbIlh2HdDeq5hRIJAgtmzu1IcQzhcuZ5qT4J598AhsbG/DVr34VAKC4E4+Wicf64h0kVd7dg21/5coV+JVf+RUYj8fQ6/WK3z/55BM4PDwMvv8tz/Ni9R1OwuP3riAnFYm7SuC9uPheR0dHMBgMivGSWi6XHaZjWyJRY/X5quuWBw/37t2DK1euwP7+fnH/sG9cSLYUiS9ahlS2dKw//k2P47TayFXdv0XbGXUevb9Z05c4wU2DNx/hWwZl8pjNZtDpdODOnTsAcCr74eEhHB4eLu2IqRpZdrqDBXdBX7lyBX7xF38R2u02tNtt6PV6cHh4WByBi7tqadukguSju4Jl6hPRMaG9J8CyzU212w9P48ETfB49egSfffbZUrnaPdGhqNL/jyHHOXEWE+fi/9a4W0tH29RKpPHYEH2EmDtCXSSoK461oOp2D6kvlCe0DI2IC4VPhizL4N69e9DtduHzzz+H0WhUnJbFFw3id1mWwWg0gna7De+88w4MBgP467/+6+K4b4xRq7o71hozYz3SPov8El2QztsLbagvfytQ79Ij7bW8acwmTWy6/GctnXaqCP3fFbtbdU1ZUh/B/TWXDkM//OnTp8UiHw1SfBgqoxZjWp/Be+/pMcU8Hba9xea6dF0ITxZbxuuEqupBijl8cOk87FMWLj3V+6zSB+djMIWNSZ3v06dP4f333y+ubUJIetZVdy677eNVrT6mte188QX9nBKp7MpFhvTOeCoLQjrVdDabibyiFjenrmtLGb7nfTKYJmNDJiNicF6dUirXOhhdxGIZYtaCEML9PGExBNKgwePFMNDGgAiNMj/yDwOE3d1d+OpXv1r89ujRI3jx4oXYLlId8vrkExKx78yDElddaDLEtLn2jlbD5krn6+su46a9JyXN8H7KPM9hZ2cH7t27B8+fP1+aXNOOweHy82CWy0NllAibVUILYNEhkSZrNXByaBWoytHXxika7slkUuxG2draKnb80bScjF0sFtBsNmFzc7OYgMO6xuN4O52OKI/WfyQZXb9xksX3ziF2x5XW9x1/HndN7u/vQ5ZlxRE3lJRB0gq/w52pGokf2yf5RCHqi42NDZhOp8VdRjhJw8tylUvHmDapJT1DodWxqw/QfGII7hBg/14sFsVRMKkn3WLkj9W5rrHo00W+8RSjy/jz0iSoRl6G5I9/0/JC+g6vI5SBH/1aZoKiCuBOwO3tbeh0OoV80mR+avCyYvs5/T+VXLz9KVEr9Tf8DvUnTsaiTY0heVMipOxQMjk18jxfItDpAoKy+lUa75jf1tYW7O3twd27d4txS69pCV2MFCKLBO5DS763lqeLsPPJ5IsveDr6O14HQXWzpKe5rpXGsYU0luJBiw+WAlxWGktTX06K3yztGCKv5f25DHThNNXFVH5XXqi30Te8fv06dDqdM8fDhkwEpILPN8d3w2tUAE6P7ZN28qbwITUeQwNeP+SLy3nekr2SytcQq/slXaD58prfJuXv4n+4bgQ4e6USwNmJXF6Wxe+L9TGtcSON67QYT4r5tDrkNjLGd3fhPH0ZDXyclJEx5XgJfU7jMFzPSf0dAJZO2KKgu8ZddaXpFp9cFn7CWndl4iZXXUqySTqF/kb9fAA4c9/zzZs3YXNzE/b39+H58+dF/nmeF5/L9JnQeJR+Du3TFj9TSyfZKZ+MljSr8h9CYK0n6TP9LiQf3p54EpPUbxuNBuzs7BTfHx8fF4uCAeTNLNifpVgrdCy7/HwXJ+jSdb46e63ujE0F7lDEknavA0Id6zw/Pf6LBljtdhsmk4n3Hr3r16/D3/t7f6/4/L3vfQ8ODg6KQCs2UAyFZlQtpEKMDKHvFuMoVAGXDKikZ7MZXLt2Da5duwbvv/8+HB0dFYThZDIRlaEr8LLIJBltbqhdxBF3lKTPPgcVSQdKqnFjZulPlFgqC4ueW7UexKOuh8MhDIdDODg4gLfeequYjKWgk7HokLbbbeh2u/DixYtiJT0em91qtaDT6SR3RH1Otkb0SflqjkJqmzSfz2E4HMJnn31WEEJ4TDACdynjBB9dQJMS9GhSBO5i6Pf7MJvNYDabwXQ6hU6nA7VardjhinCNYW28SHUa4ozy76kMqcaoBXmew8nJCUwmE7h58yZkWZb8jtpYYN+yoOr6sowfjbB3BXMaKcd/s7yfRuLhbz5dQ+XABU64GE7TQT6dFuvHWJBlGTSbTeh2u3Dt2jV49OjR0u5ZXm5VfYSS+ucBTXe4/BKalpPBrVYL2u12oS/xmcu4Jg44nuikTgqgD4P2bG9vD27fvg1f+cpXlnxLtJG+Y9FjIfm02qRK1aDlh/o/eZ4XcQQfF5L+4Hdixrxj6DOhMbQ1P95faLwQ0l/p+1RxogaCtjEnmZvNphr30QlcHJc4ifnGG2/AxsbGkn+I153M5/Mzd6JWgZCx0mg0oNlswu3bt6FWq8Hjx49hPB7DcDgs9A0/yg9RJU+FsSr6D74+IMWlUj1YYmUpX3xWg8WHofLwncguWPo/JZP5CQq0z6IsEvB7GmdpadEOWXyFkEkgjQd19TPJV+T2w4p14LFicZFkL8NNur7PskxcvIGxCC3P4mvH1qm1z0mxu/Z8DDcQA24PeTn8N1xYj7+//fbbcPXqVfje97535gRCfs9sTP2G6mGJf00Nn91Jka+rPBdS941YVOEr8EUXmj1tNBpw586d4vfPP/8cnjx5svQ7PwUs1G/1+RYu7px+57NbVt0QNBnLj3O9SMYkNXyOLW3MKmXAstYRZfoJH1i88z948AAODw/hrbfegizLoNfrQbPZLCZPaHpcBUsDtjzPlwIwKWijv/E8fXVvJVJdaaX+o5Ub2tcsRG2KfKR8kewFgOLIo+l0CtPpFD744APY3d2FL37xi0sBHu0Lk8mkCDxxNS5tT06O8/+twUjsuKIkh5aP1Kck0BWydMWgy+hI8qfQ2eugZ6hxREcRnXkMSm/evAnvvfce1Ov14rjF2WwGDx8+LJzQjz/+GH73d38XvvWtb8HXv/516Ha7BanvKpPutuTgfUvSIzxfF/izUrtyApSn5eklhBAedKGM9i44prXfQ4Nt+l58zPR6PfjpT38Kb7zxBnzlK1+B4+Nj6PV68Mknn6h5Wpx9PKpOqnfXWAoN6vBv1F/4fbPZhDzPl+69TTH+kKSntq/VasH29jbMZrNi53O9Xg8+ns9KwPFnLD6lZn9j4dK9IfWtkRRZdjppeHBwAP1+H65duwa7u7tQq9VgOBwWQS+Vg+sLbTzzskKgtQG/q0x6P/zdSjJYg2qXbqD2DsueTCbi8fQUfHevlr9Wr9YA3dLnURfOZjPodrvwzjvvFEcEz+dzODw8LAJT3KXnK8sXf1xEWPQpJcfpZ2536W/0DnipvDL1SEnCVquVlNixlo/6nOp0zUfhcQ7AWT2T58tHS1r8h1DiUerLEsEZG1/xfiH54rFxKc+X+iVVxPta/WD5VB5rfnhX6sbGRhEXo17N81ycvJHg8lFd/pLmC0v/+3Qd7urvdrvQ6XSg2WyKC3U5Go0GvPvuu7C7uwsvXrwo4qtarQatVqu4e7YqSO8k+YUW0B3OPj0aymUAvJw8pLtPtHJixpjFLnP4+gXXayG+uaZ7JF9F4op8+eP/d+/eha2tLdjc3ITpdKpeYyG1Fz0pTrJ/9F1cckhluMrXnpdkc+Xj42Kq0KXrBs0Onqdv5yo7hLNwPS/tgtZOZ7CUGxp7lvUHXDGLL04K8Wn4uNaeRZuFkOIIfJYeOZxlGdy/fx+ePn1aHD2O32s7lDVw3RPKj7h0gfVZn3xSnpLM3I+x+llcp4XGGDGcQwhC/XT8voyv7Co3yzLY2NiATqcDrVarGP+NRgPq9ToMh0N49OgRnJycODlF7XurPqJxOn+O/o28mHURNtUzvv7tnYyVggzNkb4I5EDZQWFxWHDwruq+rbKoitjxDQpfXbomYx8/fgydTge++MUvFvdaYUCG5dEAFo8kpTsa+G4pyZjEBhfaO6Fs0ueQ/EPaLHZ8+gyQRW6pTmm90h2ws9kMPvnkE7h69Sq88cYbRXvhkRqYD05a0LPm+cS69L4uB8z1jJVkofVlqWspcOL9HNOgkcIdia4jfXzvf5GDHC47HmdNSYLr16/DO++8A8PhsDhmuN/vQ7/fL3YA3r9/H+7fvw8bGxvw3nvvQbvdLiZ3NedDC3gp6LNSf5AMsjX4CAn0ad+RyqdptbylIAMn6LT7Q3BMa8eIlL2zj9ffYDCAjz76CK5cuQI3btyAVqtV7JItWw6f8LEGySF6lrYL3YWB8iM5mso+o77FsvL8dLX/3t5ecQ+w5T1DCb8U8I1Li4+xCh2Y5y+P6n7+/DnUarVit/5sNoPj42M4PLgvkUgAAQAASURBVDwEACgWf1CbSI/rBzi7+5K+bwzJqPkhFn/EFWD6PqMNDyF0uP3N83xp0kAD1X+aPL7nU405qvPa7Ta88cYbsFgsYDAYwLNnz4o0MQsgXLCO4RDSaxXg/Uvq53S8aDYV6306nRYL93gZsaCyzOfzYjcdPaJ/FfEfxja+ewYp6D1/0viSxo5ULvc1AMJ8bp6P9DxPXxZl7JLmp7n0ZSodYiGeeLkuXw/7LO6Ez7LTydjRaFQQYT5IcR0dl65Yyhr7Uh9W+w139nc6neLIYVyk60K9Xoc333wTrl27Bg8fPoThcAgAL4ltzg+kRJl+IXESrnel6UP6PqblkyTUd9TK43m4ZON/W7kES570Wd/zVFdp6awxmGW8ZlkGt2/fhmvXrgHAaSzTbDbPxB3cvnFd7bIzrsktl/30wVU/1nx8ujKlD7ZOcHEB9HcXtJg+Ro6UcNlv+r903RY9SSSmT3IZqI2xcBuuOJKmk3QWLdM1Hq0cQqhPjv4nrTctbsTJWPz8+PHjM2mzLCs2OoQeH+7yyV16Q8urLHy2kaaT4l2fz2jto658Uo/FGF0uycBjMC1/nz8njS/8f2NjA3Z3d2FjY+PMZhg8jQ/g7NHEqeMC32QvpikT17lkNu+MXQWJVTWqNOxSZ6yCkKwC6+rw0BXcSPDTs+45ut0u3Llzp3if3/iN34Bf+qVfgj/6oz+Czz//HIbD4VIA2ul0zqwopyhbL5JRKuPIc7iIjIvQ7wBsx7eh8/D222/DrVu34IMPPigmDlzg5ACFhUgKcQhjx73Pqeb3I0vya33Kenb+RQddFUh3wXzxi1+EGzduwM9//vPiCGKOR48ewV/8xV/Au+++C3t7e/A7v/M78PDhQ/jd3/1dGI/HUKvVoNvtFqu0BoPBmTxCnDFfeklfuJwkLS96hAcnY3zEqa9P5vny0X4+UFlSBNiTyQSyLIPNzc3i+GQJWZZBq9UqyLr5fF7sjPaBEhWh49+CPH+5+0hqE2mXf2rM53N48eIFzGYz2NjYWJujilPAR4hJQXRKYJvyY564jPTucxfpxmXFv/muCC3gsYLuaqfEghaMWfOnxKEv6LNgOp3CwcEB9Ho9AICl4xGpbGXudnXBlx/vY7yNkOwouziFg06EuPQXXdA1Ho/h2bNnMBgMoNVqFToS63MV8QEnhiWEykLHSJZlztihLHBClOpvetw3Egnr6n/x8Uf7EIfVR6kSoSQoQtJh2K+su0FjwMs9j5gb2wnrKc+XrwTy1Z/PJ/SB2zlLvErHMH/GV640IYsnELh8HYwn8LSmVH6rBKtOwF2/X/ziF2F3dxc6nQ5Mp9PC/vH4htsACzQCnadBgp4vlreMm5TjipdJ9awPfAcxz8P6PhyW+s7zvDjFDRdXf/bZZ9Dv92E0GokLyzFvaQyG+LB8POFzWptbfGgrYuryVQKOGdxEQBeLYaxgfeeLVjfY9vzEGnolhgbXHdQuWGJ4K8eXqr5dMRrVPVQHuOIl5DbwOfTrcXzz01JoPIQ7/NAmcn2YcmHoKqDxXK70ljxD4NKlVSNGJ2vpQ/Jx+ba8DfI8h263C7du3Sp0YLvdXvp9MBjAeDyG/f19GI1GZ3asSvlbxzGH5jNInDueZiUtTnCNUd93CO9krI+Y1dKWQap8qnKey6QPURAhTvRFM84W8GBfGoh4NyAOKLxPtNFoFEcv/vmf/zkAQEHG4C44KQC1tI/kxNPf6f+WPF1l+MZeLLGcIk3Ie4WMAwz46E6xLMtgb28Pdnd3l44gxfd39X9pfFiDVClNmbb1ycfz1oJC33iX0p+XY1WlfqJEGiVCJ5MJbG9vw8bGBjx48EAlvXu9Hjx58gTu3LkDu7u78N5778G1a9fgP//n/1xM+qE+8R2NKckmAdtCGq+S8+JymGL6p0SGSc9rcqGjLsnB/7a+oya/BDwqWrvPN8tOd5biRCzahizL1MlYqS6p7LQc3n4cvvfxjYdYh17KV2trtIHj8bhYjV/2/ssy+mXVAYxvXKUC+hlo03gwzglyLqMPlOSQYA04qUz06H9fQG4lHy1wBVk8v+l0CkdHR8XiGKzfkPKssoSmt+hkC3HsI5Bc/VfyI+gz9Dtc0IL+NBI4tE6rGpM+HarZD/xsnWyn489VbixwrGC+dLIbxxQixKe3lIsTwb57IiW9w0H9UGssY+nDsfVt9Q185JtmF3lf4n3e56vE/pbaJ/bFi1J70neV8pPa31VGaDzlGwdSv3P1WT4OpCN7ud6VxgHa7KoXUGj1C3BW3zUaDeh2u3Djxg24du1aobNxQY9WL5Y+7Brf0rjS7qQtC9+Y0OqJjmXL4iaq/1x6w+eHu+IcV79Be4DHg+OiyF6vV5yo4Orn0vdVxNgp/ajQGG8VqJKX4OXg/y6/xcdjlcGq6jvEBkp+iIWvsL6Ly764+Aj+vPYZn3XpWJ+sVA+hbZLicE0W6U5XbaEF7+/IsUonSVD+1fX+Enw6U+JSLND0L/3d51O4ZJXKs3I8+J3PPw4Zh9q40PqWNda3fEe/d40VCzfA+0O73YYrV66cyQf/TSYTGA6H8OzZs6WYSgN9NkbPST4DXSRC5dfGpkVGX5qgO2OxYMy8KqyDoU4F2iFfpfeKhdTxtfslAF4aF6nDTyYT+NGPfgTdbhfu3bsHz549g08//RTeeecd+NrXvibmR4Mxl0J1DbAqArTU/eMi9DX6zrgyazqdwmQygUePHhV9BY8d3draKo7vzPO82OmMOxe73W4xOS+VxYMneg9ObHtyg1OGdKK6ledDd8qh7D4CSho3VZILGrhTkapvIiGBqwPxvf7P//k/8NOf/hR++7d/G9588024evVqsQNAwwcffACffvopXLlyBfr9vtiHpLtSXfD1CWtd8HScKHM5gBJRg+9ASUctoI9xbtGB6na7zp2rVljqCYm4er0Om5ub8Lf/9t+Gfr8P/+t//S84Pj6G7e1t9VmJpKS/UcdMI7h88rtAdYglSHTlo6HVakGj0YDhcAjNZhN+53d+B+r1Ovz+7//+mbR0l+FFAtZfzBitEovFAvb396HZbMLz589hPB4XAbTV9rhIGxp88x3xPA8XITSfz2FzcxM2NzeL+0xdd5hq8qGMWFYoccvlpERFnudwcHAAL168gEePHhX3x0syhALrFYkJn1+aEhZSSpLB5cfy/Ol31nZdN9B78rTTQrSjGS8KXHqc74R/9uwZLBYLeP/99+Hx48fFuJGussA6QyJkPB6L17WEwmKfY8lKC3zj1GWzs+zlDvVms6neB+WSM0Ufi/GLfeX66hhX+tMFQ3QhTshOLUnfuJBlWXFUYugiR5S91WpBu92GdrsNjUYDPvroI5jNZjAajZx3VlLfBp9fh3iZ6yxqBzkh+OGHH8LR0RE8efKkOA0IAJYmon3ktRW0zqR2xqtdpDQuX1mb3FgleNwTE49JeUpp8zwvrtLCjQAnJyfF8eCTyUS96zhkAoraRbzHHHeC0wXuKJOmJzhf4vJPOMeQihepEquSyeJLcs7xIvotErguwP4I8HJRB/XttaN1y8DnI6fqB9Q39eW7tbVVnOa2WCyKxZCxwHJdsRavX9xkkOJ0nlS2JqbMmPareuxXceJRFXVqmUgEkCeaXfJgvjQO6XQ68MYbbyydYjiZTIrFAL1er3jGJwuCH3eOkOpfkrdery/tzEVQGfL85UmA3M5Z5bTUcdBk7EUzFOflCJQp1+IYXpT698GqYDTnN89zOD4+hul0CtevX4fZbAb9fh9u3bpVDKbFYgFbW1tw5coVOD4+PqNUaCBqIc25PJKC0iY0aBqen+/9fb/TuuRyhjj3rrQ+5etK4xoT1HnHtuj1eoWjgAqdB810Bal2vx4tXyvbhap0ni+YoX9rQXCZ8kLziCGLJKTWxfQeQnTqj4+P4eTkBHq9HsxmM2g0GtBut2F7exuyLIPhcFiknc1mMBgMCkcAA1esc5zETeEMaQGB1PYhjg9HrJPKx6g2OekDTsbiWE7V5lIb4Gc8ghh3RuAdFKg/6HNW8kUiaujfrjYp6wOkBp1kyrIM7t69C81mE3Z2dgoCE0lR2nar8DVcfcTSfyQS06XrNbsY208tMg6Hw4J0o+QpldsFH6HA+6krLc8zy7IlAgHv17TWJ83fStjFAOVFYhH1uDWgdOWJf2eZflcSpgHw+zna92hTsmz52Fw61kLGXEgda22IC2YWi0WxQ57rvqrg8qX57/QzTgBIcmqxAv6ful9KwLiC34FWBlI9oU7p9XpLi55c47/dbhf9kBLBKWDxly3t7HtW0vlcBvqZEsAcdBdkjM+k+eihKDPutTRSXWhklg/ae8aOJ+1oZFdf4PoaTz6p1WrF8Xbac2jnsiyDnZ0d2N7eXpqsoicC8PdaNYfEkecvd8BPp1M4OTmB4+NjGI/HS4tuQ+2SKy3Xu7TttZglxoaFQPPhyrSPNbbz+ZTaMzR/3MmGfXY+n8N0Oi2Otdd8DqsPzGMU+llqv5TtZGmDqviUdUaj0SgmIABetgv6f1ofjunbVeqpWG6QpqUL2qnvhro5xXiWntfqVvrd2je5fXD5ADwt7owHgDO7/yyxliQzPxlIkoVzpnTSKtaO++rW8kxouS6+wJpW6rursCNW+PKS5A4t32VbpJjJlb8r7gKA4jS7er1exNd4yh3l6bQNVa68JTl87UHto5SWvjPfuOJ651gE74ylQqQ2qKsI/quGZkx8jnLq916XuuRyaLv1+DMcdAUVJYqlybfpdLp0h8pv/MZvwC//8i/D7/3e78GzZ8/g+Pi42GnZarWg2WzCeDwu7m5YFVIGe64g6bxhdbCyLCtWjR4cHEC324W9vb0iUMnz05XbMSupfeXSYNO3qqns2ArpY9quH+0uWf4sNySxWJe+RMHbAcfycDgs7hTc2NiA2WwGm5ub8P/9f/8fPH78GL73ve9Bs9mE7e1tePbsGfzgBz+Ak5MTWCwW8I/+0T+CbrcLAKdE59OnT4v7faTVUalRlgSX+nAI+VlWJ+V5Dv1+H+r1ejH5zfthCuR5vnS07snJSXF8eZ7ncO3atTNHQ1J7YV25qI0/GkDGyk/vFEwJa//Z2tqCv//3/z58+umn8Cd/8ieFXm2327CxsQGDwWDlNlFCyokMa7qQMl154/Hpz58/h8ViUZDF9Fh1ngf+TXcp8R1xvnKt/dvnl2LQxMeSNqlhhVTP2vtZx1is7qLkhO+EjRjQHUP01I/5fF74qXQCdFXA3YBHR0fwwx/+cKlNms2m996qsvAF07Q/0PLb7TbcuHEDRqMRHB0dAcBZQkvKD3WZdtJOCiChfvXqVdjY2IArV67AYrGADz/8EGazWXGCR+xkWgwo2ZBlp3eto/3E8U0nI6lfaZU1RiYOOsGSipSlk+LaQs0yk7EotwSu060TZSnaXPNXsF2pPveVLb2Hq0/4eI6QHbcITV6ePyX36fe4Cwjj/H/yT/4JfO1rX4OtrS3o9/vw2WefFTvLtbvBUiL0/XHB3P7+PvT7/eKIfnxfqX5CJkalNrXqHxxXGpkZihAfDBflaGWG8CL86hWNpJX0BK0rbTzT9tjZ2YGtra0zE7L81KJY4L2kSHij/2iZpAod26F5xCBl3L1qbvTmzZvwa7/2a0WZjx8/hmfPnsH9+/eXxjAitd5ZFy6YAnVWvV5fuhpDS+uCq0+GTh6FgvZ1X7tZ9LF0z7kEXNSRZVmxqI6Wry3swGepvZAWq19EWMZN1eMg9Y7YqmDxdUP0OJ/Y59deYX8bDAbOk6wWiwU8evSoWGRW9h20cmq1GnS73TPP00liOl6lKy80OWKv+zJNxlqD5rKoaqCkCuxiy/UhVC5LemsnrbpOfARJiFOL6Tnpluenlz6jcT85OYH9/X3Y3NyEbrcLGxsbAAAFwQwAxa44NEyxg9qHMgTbKsm5mOBagisw8uVPA/X5fA6TyaRoL4DTY9XwSNqtra3CkUXHg+/mcvUxV9+npFDoO9PvrMaM1xmXm8vjCjBdZWp6MDUZtCrnn76zZLjpEXxZlhWTtfgMGs35fA6DwQDm8zk8evSoOF4XQfN3Tc7Fyh8CX9tr6X02kP4u6WBtPEh9FeuLH60t5emT3/Ub3b02HA7hyZMnsLGxAd1ut3AG6dFBoRNaXI4YXcxtFc9rVUQ3rf8sO91Z1ul04Pbt2zAej+HGjRtwfHwMR0dHZ8j4qmWrAhZSaZX+IPZFXAkqEdySvdJsGH+Wfxdif+gzuMMc+wjA2T6s6QcJPjIkxrfg9SP5HBIBKj1rJVolOSyy4vNUDuwL/Og6zS+RfBoNMeMVd8Ri3j5/OIXtC/WL+Pd4tBXvExrZnErf+mJebKtOpwM7Oztw/fp1WCwW8NFHHwHAywVyloDdVa/422g0gnq9DgcHB8XENJVDgkYsxIzhMmm15y1xX1lI446PUx9CCN9UepDq3xC9QJ+P0XH42XcMIo9Z+G/4v3Tlh8/HlPLCiSzXEY2YlvqCyBW8ePECDg8P4eDgAE5OTqDZbC6dxlQVLD47/y7PT0+MGo/HxRHjGnj/pmWGyGh5xkKaohyh/ADtE5pfhLFdlmXFCQ98UkOLsfGzZQxrf1ueRTkxLhqNRkuneSH56/IBtXfhoN9xP8Micywk3yWV/U3pq1fp99N2Bni5EAQXheOx8DiRRvWhS1ZNX1vimCrfV2pXGn9g2ahXkX+xTlxypIqdLb5VCKz+FNodOvbpblXNjrnGlhZLWN6Hy13Wl/G1iWZTQtqD6+sU3IxVnrL1c97g9ihVnq42zbKsuA6Cth0ueJ5Op8VkLfpz/Dh9yzshrPqB6lyJJ/RxhZJuLtP20TtjL3HxUaWR9pXLBwKAHBBaBtRsNoMHDx4UO9jG4zHs7+/DN7/5TXjrrbeKdHfu3CkmZgeDATx69AharRZ0Op2lMsuCD94YJV2F87lqI1GWQOn3+/Ds2bOl/LIsg1/4hV+ATqcDf/VXfwWj0ajYiddut88ENRpcO0slY79uwDEjrYjmztyq23/V9bVYLGA0GhWfpVWWSGTg5D7ez7O1tVXohNlsBn/0R38EWZYV94/S1VONRqNYXU8nGlMjhXGPDVhcQRUNMrmcUj79fr8IwHzONv4eMn7p/UpPnjyB/f19eO+99+Dtt9+Gfr+/dP8b3+EZszuqrD7jZIsWPFUBuugoyzLY3t6G69evw7Vr1+DWrVuwsbEB77//PvzP//k/i2fonT7rqANdSEH6VNkm0g6I2HrmMuOYowsifO+CO4fQnt64cQO63W4xwWMZkxyaHfW9p2ucZdnLuwbpjj4+mULrlfpjIe/A89SCPu2zlEcM8F1RhlRjMc9fHpmMZHaWZWdWyl8iHNevX4d79+7Bu+++C9PpFH70ox8VO2O1e0lDgPrj0aNHAADw0UcfQZa93CGHE1RloU1Q+sZC7KSFKy+aj0ZGx4wNvjiiir5f1nfAPLS8rPoZYx46Ia/tmrPCWmeoXygxj4uTaF7Wd0C/Hxfl4m8ScCEUjrtHjx5Bo9GATz/9FJ4/fw4//vGPIc9z2N3dhdlsBsPhcOV6kNcj3dmIv3/22WcwnU6LOuN+BLUPku3xtTE9QpTKZZE5xaSQdSxzO7i3twetVgs++eQTmM/n4kIy+hn9JF++1t8kSPnjtTjHx8dLkzDaZE7o2MA02Hd53GO5fkTTL5ayX3e/ASfaaGyK/x8dHcHDhw/P1FGr1VIXv3L/luO84jL6bhJnQP+u1Wpw7dq14qjm2WwGR0dHpSb1NFA+7Dz4Tvo/gvphGxsbsLm5WcTiaGeQW6E8lpQXBy6k5HDFTwBn78RMgZDJr5TlxUyqXiINaMwB8FIf0AXn9Xodrl+/fuYUi16vt8TvY37SySnSnFGKfouxtbb4jp+W4erDPKZzpZVkTzIZe9nhT5GSJKki33UBDgA01tQh5c6pyzGW8szz06Pgjo+Pi50+AKcOwJ07d2B7exseP35cHFNK78nSHHSpbC6fy/hZ05YJiGketGz6P/09RpH5CBiahr6zzzGgf/N+0Wg0zhyzc3x8XKwsRQePThrxgMNF2JRR6Fp7huaptTm+AyWg8UgS/J0GdNT5tQRGVfbD8wTK/vjx42JStV6vLy26QODuWdxxDXB2DOX58k4WbeUiLVv6zfq99C48vbVttfGXghzUyqR/UznosauS04bpXPlKwH6f5zkcHR3B/fv3i3sfx+PxkgyNRuPMuKHlWkhOmp8WKFsJKl9ZKYCkDMDLo7x/+MMfwpMnT+Bb3/pWcWR/u90uZI45SvC8YfUVQhDTjvQ52qa0Xn3jU+pTkgxl3o3aTF4ukuWbm5vQbDbPBPzSeAmZoNHeg9eHVI+abbcShi45Yghsa9m44+rg4AAAYOmYYp+/IgWnqVFmMqYsqK8jgX6Pi6ToMe9af0hVT6H5UF+MxhTWyYZQufjdtC47NhqNCp+GL7aJ9V0tPr4FKKemO1zlSL4SjSskv04qX5OLy+LLy5Vf1Yj171yxiPS36/nQ8ul1Fr5+o9kfF39Ax8aDBw+g3+/DwcEB9Pv9ot/hhG2VE/Ncbukz1xOUp9AWyNG+LuVJ01nb0PLZ9w7a99ye+/xxGot1Op1iES3A6alZo9HIuavFZ9NjfTzXu2rP0X4e4rdq41Dy4bRF2ZpM1rQhaazcyEWLNTgoZ4VotVpw584duHHjRnFPcJZlMBgMiquU8FmAsz6/xkXG+KdlEKL7XX2ZLyzABVAhd8VWpY9j/R/+vC8/9AfpYihaFzwPPq5pvqHHC8fExyH5xyBUZs2/tTwbI1cofyM9U7UPaPH1LHGHpW4tNonXQ56/PLmUpsM4xCcXHQecO5Fk0L7D9PyqS+k5l0+ilevzKXxttDQZu+pO9DqirNJ/FYCGhO7UwUEWUi9aRx+NRjAajeDJkyfFBEu9Xof33nsPRqMRHBwcQKvVglu3bsHh4SHs7++fyXfVTqNL+Yf2mZQkVAqEyEJ3fOK/yWRS3LWX5zl8/vnnkGWnu7uwfXEXECpavGcWgXXiU6SxDk1VwHHS6XSWdjoBnB1HCO0ovHXqE1UC3/Ov//qv4YMPPoButwtbW1vwzW9+80za2WwG4/EYGo3GUl+idYdHd0plrBKolyxkM+/vUtpQ4iw0De+TuJuBHstFv8fPEpGgIcuyov/XajV49OgRPHjw4Ewa/B93z1vug5SIYdf9y7E2nZNHKfsW5o028fr169BsNuF3f/d34c6dO/CVr3wF6vU6bG5uFpOxIUf3X0Ss8r24T4M7NiyEM+p67T5D+p3v+EgOKbihwFNGrl69CpPJBPb398/0fTo+XOSwdVzgGOa2iwd71t35HJYJFSxbap8yPjvqqclkAh9//HFhy7EcyV7z58vKsG7gJCT+8+1YarVasLOzA3meF3eBakQC75cW4oIjdHfSKoG7DNGuDYfDpd/p++J79Ho9yPO8uJeJ6nqNiKgSLv1khTZWUZ+47qSLhVXGmD4T6ptJstBdji6i3FUu9zetcXEomekinkOe43JK+iTPc/iLv/iL4nOtVoNOpwNZlhVj4jxPB+C6Hhfx8JhWegYAzkxuWNvAuhDdihTjWsoTJ2OvX79e6LfPPvusWNjk0/HS8dj0OdfzZfSij6zF/Pn30riTSG8Kfge9q20l39EVK17iLOjRs4jNzU341V/9Veh2u8Ui2Hq9DkdHR/DkyZMzefBxK7VZlUenl0VIn0H/N7VdtozPlH3Z4k/SiVd+XyvAqcy4k9qXH/3NV3cx9ZBl2Zk+pk1qlUHVk6mX+kqGzx+I0S88PpfypDtgtbbXrq6QTuuIAfIolqPS0f/DtBaUlU+djA1xvFOiyiAwNEDwISZgjHHwq1CG6wJpEslyfAsFNWKTyaT4/cmTJzCdTuH27duwubkJh4eHxepJi1zaqomyQbiFWEsZCKbKK0QfaO9Ix6AWeEhOHT12CJ1WeocszRvzwEkeqfwyR2b43i30eU0voeHE40twMomXNZlMxElZi8yvIiQiazqdwv3792E8HhdHBeIRjQAvDTM6BJ1OpyDxKGHOwduuKhuj5as58BK5iu9nkZ/rYQm+vkRXveIxqHRc0rFOCUM6Ge7rz9pnDkpOSJM5GpnvImU4UekCfU8feL1Y8pee9T2PxBZObkg7x2OwSiKflwvwsi+5fAerbS77LpZxRNPSv/kEVQixGkuOYxm4YAEJE+3Iapfe0WSRQOub6zRfH3bFKr7yfTGP1I9ibSjmhQtBqJ/i6rOaHCkR0k/LloPQbJs05ui1EjjpOBqNir6plUHzRVh9P2wTbB/fZDlfSITfSVdJnDeoH63pFUvcKRExKfoQ9ncrQUnfAfUlwMujXl2LqKh/V2aMWWxL6jEcSrhK+pL7MhxcN9N8pfbR4jlsg1arBa1WC7a3t2EymZxZQBADLKNWq8GVK1eg3W7D9vY29Ho9uH//fvEb9guqN6js0m4jX3waA8l3lMYP50fwZBeXrtTicVf/tryTRUdYYPENLGmk8eaLgS1jXNN7Zf1A/J/HYlrcL8lC0+DVAgAvJ7c0WSU9zf+2xFqhvp8mQwiqiCdS58nfrdlsFv+o/ac+BULiF6g/WNYuhSCkXqS+w/tKt9st6mCxWBQ7glP3EVe/dCFUF/AyrTEmXoeXZac7o+kpjmhzYvwny7ta4h8eb1ryj61zCzRbY7VfPK2mUy0+bihCYtHQekvpf8TKQGGJCbT8facGaXVllZfnQcvjdpPLqckllSGNW5+sUp5Lk7HWBnIpjVDy0CLkuiK1Y+vK83UAJTNC6oH2Obrj6enTp3B4eAg7OzvQ7XbhxYsX5slYzFcjAF0y8DShZ4e7YHGeNUgBXIr+5qoPazmSkaFBC52MRWcOJ2Nx9Qqte0qOWR0m+r0Ei/MRG5y6Auo8Pz3mASdNeFq8CJ0Tu1qer7qOkd5zOp3CgwcPIM9zaLVaZyZZKSFVq9WKYxBxtTWdQLSgCqcpJg1/N5/DT9No/ZKXJxGdqMcBoLjDCSdjuWNMv/MRllLbWo7URSI9ZGer1oah48flWGqI7T8+PcLLwDvbtre3i4UeZbEuPpxFDl7P1vb22Q8rgcvHGwUni12TOhYyx9ouWfZyMhYnZJEwwKPGNbjqCn+XxrhWB/Q9tB2x2rHxvnYNkT+lzaSTehggnodt9hEYqwK1Sdr4wX9ohweDAYxGo6UjRV15I2J8Zmwj1265LMuKXbq0HCQhqyB+y+SJup/bJqne8XveNmXvGuXySG3Pf8PfNVtN02or7Xn6FP3eEjecl/+ttamF73HVjfY+Up8BeKmn2+02bGxswNWrV2EwGIi7xKzvw8ut1Wpw/fp12NnZgS984Qvw6NEj+OSTTwodi6ctSRP03MZIfnBVvo2vT2Bd0uPIXbZd4+YsvnWMbJY+HVt3Prlo2ZYTXUI4FJfvzuMYHyzlusqj5dLd3ACnC7LpSSp8bGs61BUTluGapDz4O1jzrWLMVR2jNJtNaLVa0Gg0zhzPSccxfmfRv2V9GQss44HL4nqm2+0Wx4kjn5JiN2yKuijDrbh0nlRHyN31+30YDAZnFhFyX4v+T/OS8pbiPss78XeQbJ+GUN2H6Sx+kvaspc/RsULfR+LgY/wwV/1r7RXCIfni51g+Suo/mm6WEOMb8DbgwKuQMA/pKhGtLIsvw+uenwCEZUqn5NH7bTUuwec/h/YvdTIWCz2P4PwSrwforikXCaBBUn4UeMfKT3/602L3ZLvdhi984QswnU5hf38fNjY24NatW3B8fLx0dwxO/sWMAV96zSiFBBGufC4qaHBAiSJ0XrG/4OpggJfHGef56ZEC9ChfDFowb4SP2LHIGQqpHIszg++Gq143NjZgPp/DZDI5kxaJSVffPS9C6DyA70qNLR3bAC/rDPsJv7MYJ2Vxx/1Ftol0dxHAWWKSvpsWALqAedBdxlqgid9jvw45DsQFXI2McBH1GoEVQj5pgQ1+Rx3C8x572Dahi51eNUgOOf0Nx4hGhMTYXMsu81arBfV6HabTqRjE0InQMuOUlqkRdb1eD8bjsTpBz3UGrytXcBLqt/BypB0lFn/RgjzPYTgcqu3tIkVSgdbPOh9Ld4nzBZIdeZ4v3Y2uxU/4N+/fLoRMGmgyuj7HQLK5dDyiP4c6N2QMaTEl/u3bVW0htCSdbc0f05atR95H+IJWF0IJefQ58F76vb09qNfrxUk1mBffUW4F9kU87UYjNNF+TqfTYnEgpq3iGOtY8D7Nxxq3txxlY5RVxMOhQE7AN5Zp/Gbx43ndSnc3Yvk+olx6Rvrb9awlv06nI3Jms9lsadG6i0fjcYkma0p+iZfxKnFXCLqwbjQawV//9V/DYrGAfr8Pw+EQBoNBscAbQeNl1H0uu7uuoONJmzTCxZ18wUAIUti+2N/5mHGNFWrDZrMZ9Hq9M3bGspCUp0/RB9DeWvLi74qcfQhCuZYyfqN0TL9rYk+TNeSZUBlTIVSPuk75iynbCj65CWDjB2Og6R/Jx3Pd02zhFKjfWhYN149lCIfzJh5dSEXc+PKnsBKymhF7FUHJNa0tqLLRFKxGSOLdhI8fPy5+29nZgS9/+cvFGf2NRgO2trYKggLT8TsgXI6t5T3pcxJBwtNqeUjfu+qOlrHKfhRSVxK5wklXmg9tF2wnbEuucK1OX5V15Aq6eP/GOsB3ppPQSJpkWbZ0HDeOH8055O8U6mRcRNB35DuRKGjQirtfEPQIbJ7nRQW+q+ZwSjo11JHm+Uo6HIGODHXWfPlJwHwbjcZSG9OdUyFEqSsdHafSb1K+PvlX1be48ygRe7SPcIfZ6secB2LrkL4DEvnYh6Sj7q15hQKPNOU2DFfX4/HqqKN8fdpHfvEAG5Flp3fnIWntG5c8j9g7XSXZNd1T1XjhZGzIuLXqQ9d3Fv3zukAjDajOChlvrrhMI9WkMWP1aVHXUnIotb7E/OgCRKq/pfLosVzWse2LXSzvFfLuVsJI02m0vrkeDJFBesYVb2n9yAVX/pIfZinDRyDRPNDeWcYUxiWueJjLh+Og3W7D5uYmbG5uwnw+hxcvXiwR8/hc6B1hUnzIOQVMg/5gq9VaOokLF7eu0g+TxhKvV1//DimPl6OlicmXQypH6i+u7/j3/Jh4SafyxbQ0reRL8HTUv6flS6QtzTuGG/KNUSojfcdms7k06SrJQf18zi9I/YqX60LKfnLRIfUxehT6kydPYDKZwPPnz8/YavoczU9biLLqmCumHNq3qO4HgOL6ITxhROrb1jIkG5NCd1v8NIvNlfTHaDRSy5Py5TJoslm5kdDfLKB6ymULtDiO5sHbMFY2XqehfBXASx9EawNLuSEIaSMLf2uxLWXhK5fWPeVUpOe0RQla3q5y6Xc+318qQ+KItf6q+WIxusg5GRvj9F3i4iCVASsLNNBI/PEdjpJC5HJL9znRe4MATp2gfr8P3//+9yHPX16aDgBndhpyAxK6upoPWMnBCnVEQpwxV3CwjkS6D+jU4Y5ZADhzFwc9Jg4hBST4feq+LxEVtEwriedLhwsIkKTf3d2F2WwGn3/+ebHSnMrE5aga66JXJCDxYhnPeMcJJ8Iu4vjRiB8KFwHgy5s6JryucJzSIxxxEYW2k4HnzyfFNKIKd9rySSS+G1Qi/6Ry+d9aECj1D1/QVhXxoZXJ5UGyAO+Lxfbp9/swGo1gc3MTut0uHB8fO+9LfJXASdEyARaHlBcdI3gsMB5vNp1OYW9vD37913+9+O7jjz+GDz/8sJgslYCBf57nSxO3fGe8b9Ixz3Po9XpLBJ5EhMQQKpKNoOPX5bf4YLWzMTKmhNTXXGTQutrUWFjIG06GY99++PDh0kIb+gw/3tt1NL0LmCe991XrEzjWsMzj4+PilAZ67zKNOaqGr/+iTqALFrVYS7KFodDqzZfWQvjxeIveEe/KP8uyM5PlqfS8a9LD8iy3P6ExC/dLsL1TkIYWYpPnjfGbdvIDldkyRnBsoh1899134erVq/ClL30JOp0OtNttOD4+duZBd1tS/7UqXRvSnpZFQZqdlPpPalj8dimtNMY0gjnPl3dh4ZVFo9EInjx5UqTDXaFWu845GfQ9JJl4n5QIWx98fVqyXTS+oOn29vag0+ks9Y+joyPo9Xpi3q5+bZGpLC5SnBwKGpvOZjNotVrQbDah2+2Ku5epL4K6mF9TofVDCefFtfj8AXzXk5MTGA6Hhf+TKo6MiTmsiB0TGk+E/hXWQcgkjksWy/UmnJORynHJQfssLTMkFgvpn2XbNMteblgBcJ+MBvCSQ/a1ayhC7UMIXPKU0QfamOJt6KtTyhVI9Uv9c+15CZZ3cz2rwXI/bMhpGbFQjymOITS4wxKKdSbxy6JMo1VVl6uoa4scUj8K6X8uQ0R3DaLT9OzZMwBYXoHrI/o1ea1GTqsHlwKkefiMrhVV5RsKqc2lNLR+pP8pyUz/WRRliK4KJUHK1KcmOzp0eDQzPZJ1Pp97CUOXvCmxKh0eay80Z0L6jgcP1vGSgtBLVY+WAIKPBR9x6tJ7mo6h5BMfq678pQDF5XShTpCOddWe0crTdLb0nU8unm+VwaT2DjS4ms1msL+/D+PxGDY3N2E2m8GVK1dgOBzCeDyG7e3tpcDmVUEIYYfg4yJF23HSHidzaMDbarXgzp070G63oV6vw8HBQfEb38nPZbf4RwDuu2j5HZgULl0RA63O8TdJ57jsvI9wsMqUsv9LetZFzrxqKFOXWEd0d4WUr6aLY9vS6rfTth2NRtDr9eDg4GBptzUlY13jMraerH1IGltUX1jHTowd8+lQLf5yyae1B/c5JDmk8svoCy3PFPmEtK/U/1McqRZbNzhucTFkWZ3HY72trS3Y29uD3d1daDQaMBwOYTqdqn1pHfSutWyu69aFK/PFDTFjyacXkMcZDodLz/jK0ngE/NvFQ2lcAe1DFr7NwglxPcc/t1otaLfbhV1xEds+WVzckwSffottawtHmNLPTDl2aD+hcS0ALPkqvL7xs2tSzdenLe9Rla5wcXb492w2KxbguPqOlU9xcRDrCjrWJO5J80tctpr3Mw2az+TKlz4n/e7a4SjJSPPlskl5lOHWqHz4meoY3n8kHW+RwZKuTL5W8PFmlU97b1c6VxqeXuon9H+q+7gM1j5tkccHl/3V0vh4lVg4d8aGoqzSvyjK9SJgXeoyRI4QpcVXu0vnj1NFUqvVoNVqLTnx0uQAv+QZv280Gup9ImVRJvj35XuRgcSbZhBwVTNOUDabTajVarC5uQnj8Xhpt/OqA26pP1pILvyO72ICABiPx/Dw4UPY3NyEa9eunemLWN5kMikuR0+FdQn+KULloau0+Gp4Cb53rmrcYt4p87GQhBb96zoGzPes5nBlWbY06YOEAz2SFX+THCGqw/F7fr+U636KEPDgAvsIEkSulb8WIj4FXH3n5OSkkLfX68F/+A//ofj8jW98A/7Fv/gX8Ad/8Afw/e9/v7iD7VUH9wEAqr2rk5J3UiDjurZhNBrB4eEhbGxswObmJvT7/VKrzev1erErmu5Sp34PAKi7cCVQIgp9Ki1NDIkn1Q3WGydGaf6xRE4KvbGO9vMSNnAiFceGRqzWajU4ODiAg4MD+OSTT4p2bzabJuI8tJ9IpH0sOGGC8vJdZFTOWCJeA5YnHRGvTVQgyUltbAypI/kS1N+xTrxYUabONBmk762LAFzw+VA+gm8wGMBoNIIXL15AnueFTZH6mAXUVvLyDg8P4b//9/8Ow+Gw2EWI5aG/qdnNqnS1pa198SH9nZ4KwG2s5I9XaX8km+uDRHJSubkfJF2ZoNl1F/mPv3GfhvteNG/8n8sU4xto+lMDjSt4Xx8Oh/DgwYOlU+SkCR/p2G6rHvDFKxZ7liruSoGUeSEn2Ol0Cv4Jr0ajC4IluxRab7Fyr9LvRJ8Bd7BLMlx0PzgklqB2LhZavGOVT/qdcyMSJA7Sx4dZZUQ5NEi7xjno0bc8P+yHLhk1G2FFVZNyFlivlbBC8zUkf8NV7xosJ+BpvEgZYD786jKXDNLzvnQhsmh5qJOx1GEI7aA8kHHlf55YhZNKy7roRig1uEGjRD9+ZxnAviCQAo8c09reFRT6lLfV+EhOsW+ghuar/W7JN2bsVjnOeR1LJFisw1/VmPT1R0uwzANTdOzoSkt0fF35+36z1EFK8uk89S3VLUj2+erK4oCugz0LQSwhRxGqs1z9jo5hrd0k0tkXlIQSEKF9U3PuXf3ivPoKddzxLuqjo6Pi+xcvXsBgMCiOisX/L6LvItW/j+hcBbje1+SkeqrRaECr1YJWq1UcxY/f+9pH64e0v+PuZ7p7z0IaWXSjTwdL7y7JGYJQUjhEhhAyQisjxF991cB9mhD4+jj/Tqtb/E3qvxY/1kKi0qNYs+x0cRFt8xh9GuLTSd9L9panq4o41/K36C4NVjklTiLUB7a2V6zOqQJaG/M0EqGn2aMQ8Gf4hLkV1vGCC3MnkwkMh0M4OjqC2WwGnU4nyK6cl88TWx7XZRaCVkrr04WuOFyTqww0eajM2rtafH2ss42NDcjz/MwVP5Z3cNkY/ruvXTSdhN/zk7BwknY8Hqu+JM8r5B3o7zE6OsRmXnRQPgYXfuBELdeftP/x7/DvMrpgVfwKgK4jpL5exnd2IcX7Sm3iSuf6nfv3oXpTSivpQj7efTZNkkeSX8orNHbWYjCLzPydXZ+5T43+RYgO9I3H0O8sv4Wk4bD095B8fbESTye1KW8jl+8Q44eHxMuSLGXibasvFZqGf5d0ZyxCUyAhz79qxvtVe5/UQEeGkoy4GzVk54fr8mXMv9vtFt9h8OaSyzKQfYQQGsFV3x27inwwj6r7ONYdP6KOAh1g7a7Y1NCME7+Hy0V2SN9xBw53ddO+incMbmxsOFeQ0TrgRMiqHPcYgrwMLORa7LHOVUGSowrZYvP0BVP4u7Zjm6+mw2c00o473XRM0XwkcB9EOjIF87XqBh+5gDLyZyzPud7FCkv/4bYQ72efTqfw/vvvw1/91V8VK7qHwyEMh8NoMnYdEUoSxKQLlceVN94Jvru7C3t7e/CTn/wEAE6JuU6nAycnJ97xzMcd/sP239nZgel0CoPB4MyJEqHy07qVdmO4QMc4H/+8TOl3ifiyvoPUJ6RdDdb8XLbYR8xJn7XfLvK4RPvrmpyhfVULqrHf0J1i+L2PfMJ0rjZeF/8gBWhdYP+m//Au95jd9qGT69wWI2JIW4mYA1jWCTiWsb+Ekig+W17Gjof4x3Q3qK8sy8Qnjb3591aZeHrat+h1QBK436jVKwe2JZaDR4M/fvwYer2e99257j3PMe4j63ztrPnYWt6pZHTJQ/8PgWtsYl9FeVxjTiKJAZb5g3a7DV/72tdgOBzCX/3VX4nlaWM+1A5LNl6ST8vr6tWrsLm5WZzutlgsiglkeq+5lIcWG5Q5Aeai28QUdh1tyWQyKdqC1yuNs+hCekke6e9QeaqGRTbpVKt17y98PGv2UHou5N20UxwlSN/Tce6LG1zvwPkP/qy0I9YVl/nexQU+gWrZYCK1B+pErg81pOaFuT1K0edTjx1LfmiDeTu4nsNxYI0D+Biw+uQStLgw1HfVgPo8pD5C38U5GcsDhJQd1+dErRIXPdhehzpMBUuAKT3jGniSk0O32nODxI8v5pMCPE/6WQqqLe9jnRQoMxZ9JCHPNyYYD8lfet5Xnlbv9O4UOmljrVdJTsu40si72PJdMlHSESdJarVacZ/g1tYW1Ov14ihS2l9dO0B9DlxZrIsu0pzfVA5TFXmsS91JCB1XvP59zrWmTzh5J/0m5YF/h8htDcDwbzrpayHQUjvZru8kshr/bjabkOf50rHE60BSlkWK9va9fxkdL/UjboPxNAQarIROJPDvaDn0jlprHqHvy30s7g8gkUwX4MW0mxQMu/IJeRfreA0NAEPsb2ryYNXIspcTn0iW0ONDEVRXS/0G07vGq9RenICSnqXl4T9qa1z9gPY7jDGqiJ/LgMsvEYPcntHfLKRY6DtLeskaK4QQYK4YTso/FJJe03wfXywREg+6QOPjUB/IYvuksuhnVz5lfQtuK2ezGTx58gT6/X6Rv+/0m9Qy+fKtIs539TOaXyqkGPOSbDRudfnQLr5H8nlpfhgvt9vt4nhZugAN+QO+OMA6FqTypYVCtA60eILnT2UbjUYwHo+ddUHh48m09NbfY3TmecYWZcvmtgTrgx7Ri/Y/VAdhniG6NBXKxkuSP5uab6kaUtuGwOXba2Pd5w9IaSVOS4snQv0dzR/X4GtXXo8x8Q/+jrJwvgLjSP7Olom+WP3lkt8ah1rLwjy1PmmtOwptvLr6n1Q+f47+zjdShJQZA+kdfbrK0j6hNtQVZ3FUsjP2IsJKtFzU8i4S6CrdsgqMK3wkN/GuNCk9H3C0nVLdPSghhcIOxToRRAD+yU2t7nFFVKPRKI7yCQlQXDIhQsYrXYEf218k56zRaMB0OoVnz55Bo9GARqMB3W4X2u023L17FyaTCXzwwQcwn8+XVobxI3O0IPBVhnQHxuuCEN3i6ve8P1v6juTUW8rVgO1H7/3VZEmhq3077mif8t0duw76lr4H7oLtdrtFXU2n01fqrtjYvh+ivyXiM3a80fLm8zmcnJxAp9Mp3Xe43vPtiuC6ko5dvtPcCqmOaMCMd0Uj4ViWBHEFrCGkJH82Nc7D9zsv4HuinzYajQDgZR3QxZDS2OA+jJSO5ucirmie/DmpD/r6PT6HO0xbrVbxjiHBfhXg9aWdQEH1HrW1fDIA8ykzPjSSVhv7XF5LfXGSjsoPcPbkgFi4/JqyNsH6my+ti8zl0IikEL3JYzeef+q+Pp1O4Wc/+1kRC2ZZVupO9VXBNYZcNszil1gQOklnjY1DJuto38QJLFdafs2Mi0DG3f7z+RyuX78OW1tbcOPGjUI/I3AiDe+4CyWJpbazTLJYfqN5zudzePHihXpNkfQM9eescZHVHr0uvgtC4xEajYZ4Eg2Pp0LGeBmk9Ces/YWizG63VSMmHoj5PTT+0HwkX1ofrLYf06bgUXygixc0mXDX63g8PmPbkSPFv/HY8FartTQuNVlCfFmr/xnazpZ6ttZlTD5Ut2FbaL44fca1E5nrRKoPtV24vAwXJN6G/hbbf6uwa1qeQZOxZQIKl7P2uhhyOnDLGKgYo4hYJ8Poanved1L2EcwP73XgJIUUQFCH3BVcWwy1RP74nrFAI4NDAiILQvVASFrr5A4nZGg5NPCIPYaHtzfmGUM8ha6O5KSURBRS9Pt9mM1m0Gw2i0lY7N/ScR0x+mOd9EZK8OC0TNC97kjRhjG6SuqzvrrmOlY6+jikfBd8cmifqQ7iOxeltBKRr9kXl3ypbaFE0GrE60Xo5wDyBIsvDX6npadI4ZNoMtG7ejXEBhe8j+FkL11A4CI1pTx8ZdG0+F6U6JTy4s9K6VyTH9L7Wn0u/v4x/o5FT4bY2FfV/mbZy135KQgfKX8A3d6gztYWn5QhMyUSlsrkknfVkCYdtHiHx7GuOIOP9TJjyWfb0eeP7UNU5pD0qSYrQiY+fGWHEssh8agL2B9csY5m92LKRr8qyzJ4/vx5sVg1pa5OAa1tLT6XBk46WtswNP6z6KvYuImWJfkdXA58ZytPoJVZq9Xg5s2bUKvV4Gc/+xkcHx+fibWx/DzPTUdeWmUIHbP4vpPJpDh+GycZYu2T7+QRV9zjakP6+6vqs0iQ7Cd+77MrITErluFru/NqA+n9q8w/db7cb6GI4RZSycV9K9e413SYlo73T02/Wjgb7RmJ83DJy3+nafhVdACnp+zs7e3BfD6H4+PjpWfpAgnMW1rE4xufPrligOVauIoYOUL4G+5PSOktMZqLA8R6536Lj1uI4aytaS3PlfVzLPGtczKWDk7tNx/KBLOrRtWyauRUVdDIRkmOUFligmpXPlQea4AYMogkxcvvRvMFAiHGiMsuKVL8ngaUmMZSvz6nzCqflG9ViCVjNAMuGXv8Pcvij6jCNpGMYAjRQYmoGLLRR2bleQ4nJyfQ6/VgY2MDAE4dE7xfttFoqHdMSGODp3nVkWWnK7r4/SYAr1c9ANh3/UvjzadbfM+4QHem+saepAd8OlTKQ5NV0+P4Ha7KpE6/Dz69IhFSrjRWuN59sVis5RGbKRBqNxGuoMnq3FtIOcsRvdxPsvquvC/NZjM4PDyEer0OjUbjTKBE0/pIJd9vNC9Mi/3Zt3vJR4RINrqsH8PHpS9gjMnfIqOlz6wDYuKnLMuK3dB4XHFqmVzAo4RDj8W2lIt6FBEyPjUbStNoiPWxXSvpKZkCELYzHvtF7A5UfE7SEZgv14W0XOk9uHyWd8Dntbx5Oa68Y20QwNm7VbketBJzrr5pISe1ZwHktpJkDek/0vfUXu3v7wff770qpCBt+eeYupTyLdMXJdk0HcbLCYmjAV7qAR8HQ3+nu+EparUa3L59G/I8h+9+97vFsdbSjhqaj0VOCp+OcHFOiHq9DlmWwWg0gtFoVEzEanliPi5imz9P0/raKMbOx2BV5cSCypfC3/SB2lBrjBHCWblsla9Mmnad28wCi32jv8Xwi7wczVeRPvMTwSxyh/wmTchJ7yj1LSmdaxcq7S/I10qgZfD7iAFOd6TfuXMHRqMRHB4eFnI0m83iBB58jzzPz/B9XA5NH7qg6XLfWPXVH/1NszHI8bp4KqkMLrP1rl6t7V32DOsd5eVxbUhd+9Jppyv5xoxWv1ZbTdPztD6ZlyZjL7oSvUhYRV3HOI8XHSEEF+4gdO26kpTEq0hQrwtCnEcK2k64s8jqKIUQ2THjlspAiaOY/kPrhzolWZZBp9Mpji1GB6Rer0Oz2Sz+n0wmF+LYrqogkfaXOEUqQibEUbLaKFew4tPNLn0tHUFMywxxDuk/FyxOoqucMkS9liddmMSDpFcVviAbJ2roKtwYG8D7Ig/2XJhOp/D48WOYzWbQaDSKVb/T6dR89KkkB5cHf0e/yHU0kRRExYCOFWn8uPJuNpuws7MD4/G4IFIt8I0dl/5IDdoX8L1dfsu626xYuVz+EG+PEFLJ0i+lfs4/o42wkpFlUGXb8n7O624+n0Oz2RRPeIjxGTEPejIMJ7xc5F2M7XXpplarBd1uF8bj8dLuSavdlt6Ny3EekPqvj9i15BnjU1j8Nfo5xZjCPNBev6rXkPC+DWAjfH354bPSzlAOl11M0f8t45Df362BHjk8nU4LHba3twc3b95cuiu21WrB3t5eoevQ5xsMBuLpBpT8ljgkLl+sfy+1B90RaxlDIe1E8ztvP+O8y7eC2g8cQ3yyAaDceIm9FuSi1OFFRSqbr03euHw2LoNLN4f0A6sfjTK56sDCcfh8BloH8/kctre3YWNjY2mM5XkOjx8/hslkcqYeqD/AJ3Ix/xCfIfWYsk5Kau2fYp7HN4Ho4j20ukN9yPlvrQ+H2EgNUlyj2eCYeLFKqDtjfQ0calhcBv5ycqs8YkhCKQ8K66Sm9GysXK60WhlSYKLJxRWf9ex43CmkyakNbJex4mMiNqCyjj3fdyGyhAbr1j7g0hM+sg7rgh4ZmjII8j2jpeF5+gyuJgOtmyzLllbI0nfF+xHG43FxdxkuPKDOSMjYXJcAjSJW/pjx4sOrZMNCHfeYPuHrT9r3fDxp49YXBEhjS3PiLKDBuJWAsQQymh4MrTdNHo2Ivkh3/Wiw1pMr8KH/LEEvfufrPxa/AACK+8GzLIPNzU0YDocAAMVOQquvY/md7oaWFqjx4DtF/+DBkqXeAE5XQm9ubkKWZcVkbIw9kPLmaWJINF9dS8GvRgq8CjbFB003SeNEaheXvqf9gvdfvjtQK8tCKtF8LOliEJun5ldSWbl/6SrPKoekOzVZuB7QyCcJ9PgzidwCgGKhIrXT+HfIO2nw2QVrGgqpT2q2yJon78uhdkJKI30XE/uXsSnY9jhRtq733pflQ2LskSt/bnetfdfnQ4XIYM0j1C+v1+swm82KvlCr1WBrawt2d3eXFkY3Gg24cuUKTKdTGAwGxffj8Vi875MT/C55pe98frpGKtP2suwU5r9bxramPzVZLUjlM8bGm2WfdeWJoLFfqgUhVr6ySlh85fNGFW1L806Zly/O8Ok4HvP5fDTug/Hfted878FlceXhy1PyPaU0eZ5Dt9uFq1evLp36NxqN4IMPPvDqal5f+Hto37H6RDH54TiXTi6RZLX0AR8sp6BZfE7+Gz8O2nXcf4px5osJY+rJ96w1P1/9Bt0Z6wIPcmmlrOvRMa8SVl23VuNXhVzWoNdCTmbZywu/ad6S08PfuYzy4AYYV9RJR3lVSe7Eour+JtWzqx60oAHr8zycWAC34YoNqqnDT4/Y6/V6SysoJceGj4uLvIo8pg8i+aYFu2XyvkQ4sJ/y4w+1tPR/F3wkAs2TB9Auh61Mv5AICU3OqnW96z1o8Ka9M9oqSmavIyQC0VW3NA3dgdBoNEzHw9FyfUS3NhGB+rxer8N4PIb3338f3n77bXjzzTftLx4JHjzhSmM8bYIew11mPGA9oy7G4HM0GgWR8vV6HTY2Nordbpg3ysjBdcg66fl18u+qBLbvdDqFLHu5qExrE9ydrk32+CYSXL9Z7I6Wn5ZnVUjdP/iuf4CX9TGbzZa+d61+l/4uQ5jTCZJ6vQ7dbheyLBPvdfQRl1L+8/m80Gdcbin9OumILMuK3ctoJyyTjiHvETJJzG2qbxxS3U7Hb9mJWAAQd6NdJFh8sqoQY89p+1GE5BGSVjutwzVpSXHnzh24fv06tNtt6Pf78PDhQxgOh8XibYrRaFT4FFj3aKtonGA53l7ayYuxO8or6TFu38rEPzzmqIq7Sz1JYcl/Fc9q+Wjth5+xf2i6D/92gccEF1nHVYWUdeKKEa1XOYXClyfVQaFXr2nl0bzp/9bnYsH7vWZ3uH7d3t6Gvb09aLVa3jIajQa0Wq1i8g9PBOR8v+WdU3OkMbbc9UzZWFzLUyuHf4f1KqXBv6VJ2JTjCMcs9YVT+EwaJ6hxYgBn5xqsMqiTsa7G1YyIdVC7nquSkLB02FWTNDGDqOzkXEqFugpoAb/rO1deXHYtoPTJElqe5dmYtgkJsi2OXxXll+nnUl5a+hj5U495FynlIuO1tJoDTx20PM+LwBGf4YsMrO/nC3gvOiyE0bqRcKlR9v1iiD1tfFrHbOjYDvVDpOdjxoJvcoB+77NtobD4bT5Y9Ci3matGivEpkcAS0YIEiG+ix6VPQkAniObzObx48QIODw9hMBgUE44xBJ0Fef7yvmCUxRU0xZYr+fwY2OFJDvx3PmYajQYsFgtotVowm81gMpkErfDl8rjSp2pbCyRZzmucpQatMzoR7/LpfPm5nnPpbz52ysZVWjkxOC//g5LIdBG1a8e2zw5w0s36blguXrlBv5eIb/pZm3zAyWdpfJX1T6oCl6vRaECj0YDpdAqLxaIgoELGSigRxu2i9L1L5qrhirM4zrs9JYRMjtHx5CO0tWetZfJntN9c4yZFDMD7q49rlPLrdruwt7cHAKe7WQ8PD2E4HC6dCIKYz+dLV3dIeaOv5JJZg49zovpIam+aj1aerz9I9RlidyTfjOe1jmMtFbgPjqDvr23qkNJrZQC89MP5ZGxI7FzWnwjRURcVmn8Sozc1WNpM8l9iOJfQ9DE+cKz/LPHwHHSTUrvdhp2dnSItnvo3mUzEHbGU/1wsFjCfz6HRaIh34kp/a+/k43Z845u2pUv/a3mkjsWtz2v63OJXuuT31WcIQnSrBVqftsSVoXIk2RnrC25Dz+OuyoCvo6FYR5kuEjRnUCJ5XI4jh0Y+oKGWFGpZY8SdgFfJkU3dzzXnkgcwKaDdLbxqxDiIi8UCJpMJNBqN4u7Yi7wbNhVoIEXHM67Ee9X18rq8H69radeyBZLDG6KHrbqbk0Dcvki7VHxOmqSz+I6tqgOxi9bnUwfErvyQwKc7ZWke1M+12h5cTSr1U0k/379/H37v934PJpMJNJvNpaP3UoAe1YnyYAAMAMVRwHx8SvWYoi/RIHw2mxVEFMDprr12uw1f+tKXYDgcwvPnz+HJkyfQ7/cL++YiiTVIp5LQv1fhm9HrFVxB90Uaq5cIR8r2raKv+Mgi9Jc1+8ZtfOh44ifeUNIaiTr83Gq1YGtrC2azGZycnKzt8bVW7O3twcbGBhwfH8N4PC7uDrcuvqRt4YpjXaD1TT9T+Hwqfg+76wg7izwx9xpfdGhEsq8NQ9rYmj4kHebv6nMu0pb3W6mPLRaLpbtiEa1WC/I8h7/8y7+Ek5MTmE6nxW5zjJNRv9B4meo0fqKAJLuVLwjRfa7YSPIlfZwBj30vYYfWHzVeSvpbS0MX2Ujgvqqvr136i+WwSs6Mj/EYPkTL97w4ZZ/89K73PM9hMpkUfbrb7cKdO3dge3sbrl69WvCYWZbBbDaDH/7wh3B0dLQ0XlD30/z5oj4Oy2Rk1fCN5Zi41oWQOQuXLZHSWvot918s/VxKYzmhAp8NeVctLc0H/+f2M3TMlpqMLUOAUqSYGQ/pKJewwRfQcVSt7F15S7KGKJrYlQ6WiVhf/6a/V1F/MePKKotVgZbRCygP/45OpEnyhJYplSdNVsSQFq58Q/Ogebn6H51sROCuI+k+gtST2KlQFfmM+bpIb47LoMYPVx1J9S19tjpxoe0R+pwvsHaV4UprlWOVEy/SeNDeHyfK1lFfAIRNtvp0si8Aig0ifLaMfj+dTuHFixdQr9cL/c3vsdfKkWTU0mgTw51Ox0tASnlrEy6avybZNElOnCjGyZYyRH5ZWG25Zmv4O1smqS7qhKwUxEpjlf5m9bMsMWBoTLNOCLE7lvRa/nl+ei8XTk4sFgsYDAZFmhCf1aU7Xb66RnRLMruulMF80Fa5jpq3QvO5Xb5C2b6F75LnuXdhpcuvjZXDF3tb5NZsDv0b019E3ZYCkg6j9WJtP+5PWHxS/E0aU2X0ZhkeIba/8vfIstPJxvF4DPP5HObzOfR6PRgOh9BqtaDVahXlW2Jjbp98/TWVzSnLc9J6tuhWTZdwXy2FbBcdIX3Axzvgb61WC5rNZnF3Mf0tlW3h8r1O7ebi/GLg4ilj87LEA64xzGGRLWYs+/wALS23U1zXNhoN2NzchG63W/g+dGJ1MpksnWIg6SafnCFpXWlC7LMGqb1dvnJZhLS1xIdr6Vy8Slm7zuXV4uqQ2NzyHS0zdb7J7oyVCiobHF7iYiGU/PDlQQdzzODVBqO0+4rvoj2vvsqdZfxu3WANQmKBO4d8K9IkkrkM4YBEb8gzWG4ZxMitjS0MJvHIRyTUAE5J9Xa7Db1ez7wSNvbdUpEqrkC2TP6utqvadr3OhFNKWEgRqkctO2+5w+kiwlykJy8jZIzzXZbr1lfq9Tq02+2C3HoVQftWaDtwUjmWrMuy5eOWMBCVjmaKyV+SmaPVasG9e/dgNpvB48ePiyOBy9h/7mvxYwJpmir9DF6eNGZT2HafL0uJUR+xso7+YAjwPfjxqi47r9ljPjZDSaRV9a11BOrtLMuKRR54R/TXvvY1uHr1Kty6dQsODw/hu9/9LgCc+o/T6TRI90h6ULurl44P3C3RbDaD24n2i9lsBoPB4MxpAqETW9bvUwHzxnrAXX4uQlYi76i89H8N/Fk6oWWFdIKCNGa197DIVRZaHa1SH/gmObGeaEyX57l3l48LLh9ZsjEW8tP1Dq7feR70HmtXP3HVG/eZUIccHx/DZDKBk5OTYnKr2WzCm2++WegY1BXz+bxY4JXn8t2wMX4h9XN8i0Is41Qr2+crSM/gCWDSe9LnKC9Thm+JgWV8rkJfazEfr78Ykp/u6Lt37x688cYb8LOf/Qz29/eLu84lf3kVWFfeooxcIc/G8tAhv0t8ps9m+vJ0jWkNrvjVN7FmrU++oEw7yeDGjRumPl+r1Ux3ylKETrjG5gHgrxd6RQ/Aqe/qOn1kFQjtdz795ivL0nd4OroxQJNhlfUXY6Mqm4yNeXHuXITkkZq0XFcSlILKVlVHC3HmyqSrOi8pKMTPGmJ/szzjU1iaE7cqheIK5lGWVcrha4sQeWL0S0jdW/J3OTAxeo/nw50lPPbGeuypFICFouo+kqLNrXre1w9dZIYr/SVkxARXtC15/7fqMs1O+Mr0ycO/dwVgWr6rIH5d5V80WMa2q8/4gM9odeebZNLKkvrjqsDrARfzbG5uFsfdhxzlbrWBPjKX/43H7+PEUOxutxg/P6av8OdCy62iH5x3jOPyMWL1j2syQbLhoT7uqvViiM/te3fXc/SYOACAra0t2Nvbgxs3bizlg+N/sVgU92/hjh16zJxLPh8oAWnZjW/1t32EZozcVj0YGrtp/gGWl2WnpyX4FsXQupRkkYjfVYDazlREZowMVZcRIwNCsjG4OwgX2PZ6vWTxrysPy28hMmj9z5q31aeiz+O9gXx3PJL/eZ4Xi1FonUr9U7sCS/usyZc6TrTaCzqxgf/TRRcuXajZUJ+NSQGrrk0tg8sXcPktln5K86nX67C7u1vY462trWKhgJSvdP+5FTHPVVG3KVBmnLh+S5mvCy496PJbLHrZGsuG5G3NV0tL89b8xnq9DleuXCnGw3w+h+FwCI1Go5iw5JO3Ph8vVP4y/pA0Zl1twnWyzwalRqgNo5B0YIh/F6JXuO3U4tgyvq3VL7M+Kz3Dv3NOxnJDEaqYeEd6FQi+1wllg+qqyrc+6xvgPmfaRRDSoJjnl0KBXo4VHVjn/J67qldr0t1qZcdAVZMtNFiiASfuCsD7cC7710uEOHCWvM47MLnoKEsQao6PFBDEtFWKviL1E8mhjZWxaqB+eRX0SBlSgrYNnzSwtBudJAhpa26HUts8zL/ZbEKn04G9vT0YjUbFztiYu52pjKETgXwyZT6fFztchsPh0m4Cy8RLCKS6jR2TKdupKltT9Zjm7RN6L3ZK0LtHQ2KAVw24ewzv6rp+/TrcvXsX3nzzTWg0GsWEbafTKcZ/vV6HVqu19DkWfFwg+ZbnOQyHQ5PuoPFYCp+hCsT0J/peSNjX63U4Pj6G4XBY7JIM0XmhpDq2P5bDJ3As8J1+cB4IHePnpRNQP926dQt2d3chyzIYjUbw4YcfFgsjUL4Q8D7j43wkO6gdle0rl+arlYn9HcvBCVVJDqof6A5CDpzcwonX4+NjAIAzu/153WAZmD/9XnvG9/4ucPm53YwljOlpAxTT6XTpOem4Zs69XOIU1naX2oz6HhsbG/DOO+9Au92GbrertjHa2ot+//l5gvuf+B3v96vU95a7gH2L3ujznKMGWP0Evgt8ESBFt9uFb3zjG4Wu6vf7sL+/DwAvx9F8Pl86ohgACt2P6VZ53y/CVaY0H4Z2LgVc8xa+NKlh1YmaX+jLO3SC1ZU+Ff8ei6CdsSGERJkJqRSTWKlIj/MOFqyI6cwayjqTZeqqTL+R6kAjvEPeMZRwtOa/ij7lev/QCcGqVuloesUVGPpksMgqTX7g35wcT9VWZepOm/TX8pfeT/rd4tSFThZcVGh9y/rer3r9pEDIBIwvD4lAd5XH+7CFXONET0pn1zXpuqq+5NIDmm7GnfZZlkGz2UxyF19VkPSlxYZIOpPCVW88/xR+DQbn0+l0aSFSGYKbp7WMBU02CywTm76xlmWnxwm+ePECptNpcaxgiI4ObQfNV0gNuktHIoNTwJVn1X5raGwRo59TgpdflU52jQmUgY9V7ZkU9SGReIhGowHtdhtarVYxUWvtq1yuVLG+Ky+cPEl1VyzCEitpz2rfSc+ibd3Y2IBOpwMAAMPhsFgQE4rQZ/gkqvQ3jw+0cVNVDGlFSBtKWGXMTo/svXXrFly9erWYeD88PCwWKSChHUJOusaKJI/Ubpp+CPWXNBuvfYf93scbUBua53mx0ITqgTzPYTweF/kipIV1mn7DeijDm0myl+1rVj/QdyQ0R8j7vmqQ7JZVj/u+p7+3223Y29sr8sejV/E0CqvNfR3byAVrzGdFjD2z8Jv4u9X/12Lc84JPHmq3AKA4sYC+73w+h+Pj42Kh0XA4LH5bLBYwGo2KBSRS/FqlnrLUs9TOFllcdkjL15fGxYtZOLSY/K15SP6Fpa9LeWmfLbJIPrt1nsH6PeYrwTwZW9aJjcHravDXHSkcRR9C294ijzbgy5Szjv0T666qNlrluESFGLu6ySerRLKGkNkpQct16VsfCeQjRsrI9Trg0u5cTFjGemigIxHcHJLecOUnObDrOLZc74sEMd5huu4TsVQnxhLCvF1D8vFNlLjanxKt8/lc3MGRAhehD6KMs9kMnj59WiwKmEwmxQ4aC9ZJx9P+4NrpQPvwusi+CmgTWbSt+YTRq1I/lHQNGZ9VxE+IZrMJm5ubxXFxmowWcphOKJbRPxoZh3LxXV/noeuob66RWJJcaGtv374Nt27dghcvXsDJyYla36ljP3p3potApvaR20bXfW8ufyklLpJOoHp+sVjAW2+9Bb/4i78IH330ETx79gweP35c7Iqmdo+Pe+md+SQ+/Vvz46TJSI3AxP9jJyh8fpWPE+DjDCdgcaFTq9Va6tODweBMv5X6Y6ye0upIK4NOINP3tcI3ycPLpXXjwqrG6bqhKs7PVZ/dbheuX79elNdutwHgZd/NssvdybFw+SDrBM03COE06XeSHgl5b8uzVrnq9frSvd7T6XTpdCOA0xhvf39/accoHTO9Xg+Gw+EZWyDZJp/vVzamsk4G+srQTn4og6r9Hp+90b7z9T2X3uVl8h3lsfJxhMQMZXXI0mSs5ARpjpEmpORoWJVHzAx9arjq4BI2lOn8PH0I0WmViypq3z0ZZQkCl/wxk1xS/wwdJ1aZfBOCVY1PV73wcclJIE0XSfVFn0HnNoagd/0WU0fWfiHlrxGXmH42mxXkjjQhVUWfXSeEOpA0jYXsvaj1clERW9++nQSSbpGOKaf2w0VGavraRVCuGlxml62hv60zKZDCfnPyPNSJ98mm6VTum5yHP4zlIqGpHefqg6Z3Y20k3h9kJQj5pM95jS+p7iSd4SOkU8q/apvO/QwL+a597xuPViKV63PpWen5VP5EFfDVK09DdQzeRzoejwuSjE6C4HUXVhnweW53XYQN6p3xeOzUExpJKU1mWOokFtK45bJZCR18HicxsyyD8XgMx8fH0O/3YTweB9cH/43KHfuePC+ep0+XpRoD52EbV4Futwt7e3tw/fp1uHr1Kjx+/Bh6vd5Sv8DYFcHjWdc4jfFtpD6EzwP4j6522V+pv7om8n3PS+XmeV6cpKHpFYvdDakrKX2sDYgZu/iuuLNSgxSv4PMh7cDlvKiw8MF8/CFc7cv7XqvVgi996UuwsbEBu7u7xQkIn332GTx48AAODg4A4OXYkuKBV1UHrgLUl/TxhQDuyR9LWdpnvmufl4tpXL6vK26nMSVPXwYaj6j5H6iDtee3t7eh1WpBlp0eJ9/r9c48j8cTx/rgXCbX+7jylLieGN3umoT12VwOi/3SOCnpGc0u+MqQvtP6p2ZfJL/C5UNoMY1PlhAeS2sPSXZrDC/ujA1pcCmolp6xkC6xQbkmc0zg5SMmeENbZDkPVBV0lnm3mGDM4nhKbaa9v+RIWftlCHxjQUJI/3bBZaS5kQlpEyupEwrtWdqu1t9W4ZCuw/gGCJuQlwxaqDPvIpsuMnwBl4WskGwhd2Behbp6FWANuOhvksPNn9McRNczWjmh/a8MLPZT8/HQiV1HIkDzY2kd++oW01jqXQvmY2Sm/iU/gtfq2/hktaShbRx6nJ2rPCm4C5EfJ2nw3kqpHKkP83qMiQ20z6HkrCVN1TYjpU6xxGDau8X2K61sK+iY1eRMjar1OYfUz30EFO42H4/HS3dyIWlSr9ejCQzr99gn6I4JTae77lGLJcdWDR9xPx6PodfrFcfzuXYxWj+H+LaUYHWNdZ63VqYV6+hbrAp4XOmVK1dgd3cXut3u0n2f0qJCq6+iffb1H+k7yZ7TtFzH+vQPLUObPPSNaSk/aUGli6sM4UJdtiOmTWi+KcZAlmVLu9G0sqXyXOQ3TcPzuuhw9Wf6u8uXdNUbTkC0Wi344he/uLQDFgDg0aNH8P777xfp0Qc/jwWwko5Yd5uK8LWNFjdIOmYVviEHLZNzeD55LLytZexaeWFXDEx5Mtdk7NbWVnEk/2w2K+71pnDdN0vLCpVfg+V57W9Lni4eRdI5vBxJR7tk8MmncUC+PMr0R+szLntE5bXq5JC01J/xcQIaJPmXLLPFmZAKDxmk1g76qhj0ixAEviqwGiYaXHIHHXHRjz2zBDspUXU/98mODqolaACQ6wf7wTrv9JKgBU9lcJH7fix8dqcMkX+J9UMouWAlWXg/oauZNVj70nn7E+ddfln49CR+5jueXWQV2h3fTjFNp563LpHeDWUdjUawWCzg6dOnxaRw7JUBFGXemY5LnJTlAWnK+lz15FlqW35ewHa4qPKfJ0LjZBepGIrFYgFPnjyByWQCR0dHcHh4WKzaPzo6glarBe12e+n+RdcR4aH3WXJQ0s43YcjTrVqvxvZ3l97C3waDQaGPaQxLy7bIQAlR/Ezzs9SZj5iTCMLXMaaIAd4VO51O1eNjsV7579h+WL849ujvFFZC1kUUu8hPLR6X5ODfcZ3i0yEuMpUedYnf8R1mrjHjmnyK0W2a/2fJi6bxTYpp8lKOA+/T9ukM10Lu1xnYHlbdj30N6523xWAwgH6/D4eHh3B0dAQAp2MhdGdylbByresiL0LThb7JHYx5eDrKOZaJZ0Lif+l56W/pudTt4YqPuazUV6Tf0R2h2M9fvHhRyCrZOCvPG4t167ccWCeh/n7smLROVLqed00au9Lzd6TPu+xlWZklUD3gKy+0fOedsSEKghM0LkFcCjGkXKm8kInk2PxCnl33QS1hlUGTpcNyZ9nnkEvGTSItqCPLlRR1fKQBH9I/LIrHhzLtsKr2LJt3WQJFaxNLf7E6MWWcLt7nfLK58qF5hMAqf9Vk1ro46paxodkoyQnl9Wa1g5eQEdJPquxTvr7hI3J8/YGWw/OS+lQV71lGF60bXPpLI+753zw/zQcI8ZO5H0N9DwuBzmVKBUreUqIS7zDt9/tFmanKddlpyd5K/lqen66wthJVvrEjyRDazlUjNAA/T1jbJOR7zDe1n6iVkxoxdUL7fohus4Ln1e/3oVarwWw2K46Io0cG1+v1JSKZ39kVQk5b5Qrx6635hupcH3xxROhzFHjvLfYBbQK8zJjD533EklY3Wr+15rUuOvY8IBH9SPbn+fLpFDSNRlCWHXs0TyR/Jf4EP2vPU33A83CBczAuuGwIr1f823IkKP1O0j8aGazl4+KS+G8Wu2jxCyVZ6AJR2qesvpELqxjL5x0X8jYLjc3Qx6a+K7bJeDwu0uHfvl2Ase+Qyj7H2qFVwjVOrZwY1SVVb9oI8U81XSz1S02PlZGR+wzWY7tR/yBwLIxGIyfn4jt63/WZf++K+SzQ9HmV/d/n+/s477JlIUJ0sJZfiM/MbXnou2hjQPJ5ff2GPufzl2l6LV9xMrZKAt6Ki+CclyEELmFHqFKztknISj+q/DUjXOVkQChcu0R9Y2ud3sOCWAPqI96rMKop65YGmtSZlxyeMkTWeRGS6wCfnCHvwZ2+S/vhR0j9xjiGIWmtTul8Pl+6kyp1EL1OKHN07SrBxxvKHNs29J1x9wndOUp3g9HfcFUw1wVWQi8lJJtw7949uHv3Lnz44Yfw/Plz9dmqV+lrbaMRvPQ3mkdKW5siT8tYubQLLyERJRoBRKH5Q3yigrYrT3veCJVJ81ktfQl34kmxTa1Wg263C5PJpFic4ZKX20z6j08alYGkz7k8tD5Cy11FX9DsTyrCN0SXuOJBSdfSZ3wEqE9vXrSYMzXQN8jz/MxJDwCniyMODg5gf38fDg4OzoxDrtfo97QMH6T+aJkUlN7HRTy6wG1trJ7QdDu3Hy5d6ZM/ltPUeBnu1/BJcE1ui4yLxcKpvy8SqogLrZDsGy9La19cxIS7AWu1Gty+fRs6nQ48ffq0uHYDn6/VasXR0qkn/1z8Fx6FTtNMp9Ol/vOq6WzJh3DpsBTvHqPbXDGrdoJBGQ6C6x4LfHw5TsJmWbZ0zcxsNltqB+1Y9XVDVfEaveOb+oR0HIba2arjSyoL749lx5LvBAcXfBP4fMe2FWX9E0RlPZ0HSvR7DalJiqomU2JkceVXhbPAnYIQsi9k8FQ9cV9msiNF+RK0vk0/WwgjV74h0NpC6ltaEC09a93tnhqhbceDEy2gctVPaBCmIaRsqRzu6Kcmk0PSV+2I+spOndb3vG9SxEfclh0fnDi8JOSrg4Uc1OBrGx7UWfqYtWzMw/XsKgNkzQ6uCyT7V4WOxcmfMv6tlCd/rgq9QPNsNBrQbreh2+1Ct9stdmNhkIwkkqb7LHUZ68dL+biIAqssvrLK1HesL7Mq+PzDVcFHvLv8kFByWiqbyiDlbZUnplxrXjGTG1a/FskxxGQygdFoBFl2ukuBPotpJeIvZvy42s6nr7X2ifHnffFjTB6u+nHF6PzZMv3NNa4sfTA2NpL85nXyXdYN2E7oRzSbTWi327CxsQHj8Rj29/fh+PgYhsOhuquTjxX8XoKrXa1tEWMnfL4z/2z111zxfEg8q6W11EkqX9KaJpQfs/rrZWzqusYCq4LFN5Z0e6/Xg3q9DhsbG8V3ZSYfrKCy4CJLvtiSLmxbt/YNjeVdeoJD0wNl5NT6AS1T+pt+LsMTa7K50lltCE/r8+ulvDkPpvFvLoSMGV97uGTE31KNCam9kYdH/W3hKF2wyhrSZtr31rJi+nVZngzTWPoopk3pE/G8GtKPMR1L2okn5RdKtL/qqMLQvs4BDaJsYEeP35IUJK5wkwzEquu/iiD2IvehUJIrNL0LFqUeW541iNXyp84g/22d7sn11Quf3DpP0Lp03asUmuerhFeRZOPj3HJfNb+/qyq5Vg0r2boqWUICRw3YvvSfr315UCeRnfR+WZrGdbfbKv3g58+fw3w+hzt37sBbb70F77//PhwfH8OjR4+WZImZGMLn8P8ykzSpkNL2Y36u/mclElwEUiqcp66g5bve1Wfn+Q50C1me53nh13P/nRIfqUg4noeP7DqPuBfrD1eHP3jwYEkuGg/N53MYDAZLz1sIN+vdsXxMliW7eNna+EqNmDFL9SqXE+8SreqkjSr6u4tIvQj8zip9Glof3W4X7t69C/fu3YNf+IVfgB/+8Ifwp3/6p8Xu9VqtBvV6Xdw5KeXra1uNq7PaLJ5P2TqjvhLKoN2fi7L68sN/IT6M5pO5ZDlP+OwIn5C12N6qsA7xQlmEyC/14cViAY8fPz7Dm+OOWF8/S1WHmE+z2TxjX6bTKYxGI2g2m9BsNou7btcF0uQfB43fcEGpy/eXxkCZei4bN7nyBDjL3/F6iJ2c1KCdwqflR/Wu1Kep/8nv9+bp1gHSnECZSdIsy8RdwLxvTyaT4LFXxUQtwPLdv9yWlOFCQ95PSquNMWvsJcntunPeCt9YOTMZqxlw/N0VGOEkFUITtkoj7Mo7pFPS/Oiz/PvQZ2NkSIGyytjV5rzO10VhuoKQmP4XEsDH1EFsvVkDCiuRHJpmHdrbpZcs7cTHqNbWof0mZd1oAXOVOC995UKVAZzPvlmcqpBJlSoIsHXDOgfcVtksthztTavVKogyDPx85YX4RJb8zgupJ7dCUdauW5/npB7Pz5UnbWuX75SKCLAC32k2m0G324WdnZ1iV06/309OKFh0n9V2h+jZsoQjJXY0UluT1SWXy9aGkMZaXqkJJk2GdbNpPmJqlXY5xM8u44e4nrcAd8Jjea77G0Pslksmrc+6CFbpb5qX5tevm90EcJPCCL44uAzpmtKPsPRZKe06twfAauXC+sAyZ7MZ9Pt92N/fh6OjIxgMBkv92mWHrTrCJ4/lu7Lw6Waf3rDk79LnvA+GkrlamTG+nM+n0PxGq13xjU9LPqn423Ud8xQ+mxcbt9F8pMkpXHhjlS8GEsclHSvKFxrTBWurhKWuLX3citAYQSvb5/OU4ZG1PuXyJSw+mMRt8DT4vYVXjpm04mWnmLfRvnPlr+XhkstVJ1Q2yfZgGun9tXiuqrHo8i9iIPWXUP1p1bmh/m1IPYbWt4UzEY8p9hEbGur1OrTb7eLzeDxWV/a4AqyLYKQRMcqmaqy6Di9Se5UBOisUPpJAS6MhtWK1GKV16rtlkKofouLEtj6v4COWWNHyKeMUvi7gbW8B1pt154eLYOTpaP6XuBjY3d2F27dvw4sXL+Dk5AT6/T5Mp9Ni5WOV7Vm17X/Vbb1PR1Knmvu2OK5dq4Yxf3rXrs8XXsWdw3jPLZZ19epVuHXrFjx8+BDq9TqMRiPvfWPn0Tey7OyKYil+Sa1LXwXdvKr2uvQt7MDxLsUaFHySwjc5E4t6ve4cT/Q7V9xTZieNZaxZJ3AvMrSdCHRxCIWLJCy7s4nulKYTxGgTQ8nQV7G9QoE+Qb1eh9lsBvv7+/D48WP40Y9+dKa+EZy85f2ATzpyAvci1Dl9Nx/BKukKzYeSJqN8OtTiT8RM4vDPvnxD2y2lD3kR+syqYdG9/HtsE8mvXpW/xPXDcDg8k6bRaECn0wGA0/fE3Yur3iEb2+9CxgufcC4LCxeE493SZ3z5hNQRbzvtnSU9mRI+P/e8YOkDaLMtcbprglva2Sx9p+Xp+s5Sh1rekq8hPcvlDemzFljnXqTYydou540zO2P5jL80U8+fwd/xYmF0GDGQ44EDJbG4Q+gL3K0kSOoKdgUXZfKpQtlU0blCJxQlxLyrVO+aspH6jtZuISsgpEA/JJ/Qto4lr0JXi1jSrouisgQ/CO0dXel841sKBlOAl5ty0pwH5TwfKQiU5ON24XWDT4dYg2/f85dYLWL0m/QMHxu1Wk087omuMNZIMkv5WKb0uaq+FGJz1w3cQXf5EhQ8HQ0eeCARqqMtizY4LMFIGWiTO1hOvV6Hra0tmM/nMB6PzfVohaUvUTtstU3SWAlpJ1eeoXCRydqklks/pPATJfK+THum8l21duLtGKtLzxuhBCGfTMHvJPDvQ+ukXq+X0usWe0Tbt+x4wrxcfTn2fVLG6pxPkeR2PafB5ZeE+heaftD0k/Ydfk8Jy4syNs8byJNRnwXJURd5r7W1q11pGhcsdlPKU9JfFlThV2K9lc07hqcsE79b/fsyZVziLDSOSOpDoXVJ/Wru12LMUlX7oOz1eh1qtRpMp9Mz79PpdODatWswGo3g5OTkzMIs+g7ngRAfXptjsIwrix+h8c6+vF0+UIi+5bGpTybfO6TgOy36MfS5mPzKwOf7peA/pFNneFtY+5OUxseZa7+7xgaVU+tXnBNzyemqQ0nXNhqNM3lSjkd6D0yjvZtU95LPKrVFSF/X0i5NxuLL0XsouDPFgYYEj+Sbz+fQbreLM+855vN5sfrmIgXOrzpelbZIGTjzfDAYSnU35CXKo2pnlX93UcbIRZFz3eFrc2rcrUcLabhss/WAdUJIcuRwwlVyFrFvNBoNJ6HGkdqmvW5oNBqwWCxgPp+bSS2XE85JlFUgJiCz5Gkh2hHtdhvu3r0L/X4fnj59GkTKW2GZnKAnVljzo581hNQvj5Us8I133gZlyb51h6RHefuHEGA8Xw2uSSHU37Ts8wSV1dV/XDYpBs1mEwBO74sLkdX1vY8U0mB9D5/OwPpZBztK29LXV0PytBBHrudpPtrY1EheXhadiA19l9cdeZ4XGxuazeaZOuQ7kBGxdRwyxkLHT2xMZCknpH8vFgtRFj5uQt7PVR8uAt9XjjQRK6Wx2Ab8/XL8xUOaZAgl5TloHEFtE128UjVarRY0m82Cu6fY3t6Gb37zm/DZZ5/Bs2fPoNVqld4xel79MERPhvgkoRNjKRDqE1ifl+x6zAIDK6+hYR38s5D3dk1WWmIJPPHE9d5ljiy3xMDc3rjkpqd6pYQW40nvjnqLYj6fQ7/fLz7zKz3o9xyab1BW34X0I/HOWHrcom9Wlx6fQtPMZrNi1Q1FrVaDVqtVfOZGIBXJxPOyBvjWvCl8Qd55OkJWZZxSPq1+XUorRXmuPFMELRbnuez7VGWIqjRwqQggS/6WdkP9xeXRDKSL/AwNCKuA1nd9BjZE71jelaaJJdbKogpd6nOssUwr+V+v14MWbEi2ySIvLfMS8UD7Le2cpH0jNFjZ2toqjnQaDocwGo2STdaXHQcpdcO6ENwSssx9fJA29tEPbrVa0Gg0oNFowGAwgMlkouZTNgCV7BInyC2TeYjQ/oF++2g0guPjY2i1WjAajYpV87VaDbrdLty8eRN++Zd/GT7++GP46KOPxLuRLe/J5eRtEUK0xqQPhRTUWic4rPJIExqpwOu+DKlT1SSappcwL3pfmau9JYKdfufSfyH2Pga+WCHEF5CeTSG3dtQ65m05BszX30J0phbTU/jqFeWpOl7hZVoh6X2rrK6+wm0L9+HL9jNL3CDJYr3W43WDNoZ98amPh9IQmj5k/IT2f2uf4mm0d5dsdKgNx3T0f8328L9jx6zPNrl8qNg2SRFTvIrw2WlfOhe0dqsqpscy6vU6NBqNYiL4zp07S5MbuND0ww8/hKOjIwBYPq4YY4VQGxL7Xin7liaD1ZeP4b4knel7Jz7pRSeXeL8JyT9VXUq6MFbfhcoV67NYf7fISv+5dL1FN/M0ea5fU6LN37jiJpcMrnelMsTGsK7npXfEuszz0ysbNjc3i9/wtBC6S3+xWMB0Oi04CPrO1neT9K/L5kvvanlnVx9fmox1KVasIE4y44pTWjl5frpTlk6K0HxwMjbLsjN3UVkJR2vgJeWbGjHKzVXXmnLzkVihZWtIVVcuhzJFWb7+4XrP2EA05jkXyaghtm19cqRwIKV8EVjvKcuRlKuVyLL0dT7eLHrjogQeNHizOmc+xyLWyUuhV6rU4wir0ZWAthAgfNcUPi/lGSLbKuroVYLr6DeqRzhZRD9Ldb6xsQEbGxswm80gyzKYTCZRk7G0DG33dRli1VXuKonrqmCdjKXvig5/q9WCdrsNnU4HZrOZczJWyo/WodXu+wKnEMIyFDgZe3R0dOau2Hq9Dt1uF9566y34O3/n78Af//Efw/3794t+XTaY9vkMPrKQ1n1qv8l1zJLFfq567PjqSvKlQmSM9eFDiG+pLAtc/iIfj6uIHyXdjHqc7sSlv5WJKS3prMSYKz7lR6j6yvLFY9x3l57xEV+xSEkUpoSl/lx17yOLLOVrz2ixnk9GGpNkWVZqgdqrAp8N4cSvdQxUQVqnSpuSI/DlLZVjlV3Sb9KYtPATKeDivMroxsu48Syqjq01rrdqYGwDcPpOt2/fht3d3eJzo9GA/f19+MEPflDI1Wg0imfyPIfBYGDW/xach411+TcSl2jluHy8oeVdcb7Fl4+VX+a/+3g+i3zrgpTj0qrHad27xoHUVloa/FuKp116ny5SleQrC19ern4U25cWiwU0m03Y3t4u8phMJkun9aBc4/H4TJ35+DwXZxFqy6Vy+Lv78hEnY7UHUUlbkOc5jEYjVYBms1lsNa7VagWhw2fiL1dPykRCiCP5qtbdRXEeUzosKVFVv1ind3URozFkeUi6EBlXgVhdsK79t0rE1BU9Ci+VDBRI4IZM8l7CjTzPi51/OInugqVtj4+P4eOPP4bt7W3odrswHo+XVhGH5F+WTLWWE5vmoiDLMvOxwlqaxWIBs9msOGYaFxxubW0V+mIymcBoNFoql/5dNmjheYb85gLKhStMP/roI/jss8+g3+/DdDp1EubSEWcpIJH9fDKGBlWp7JQr6EVg8OvyHUJJXwn8eNWYiRSK0PjhEumA7YdE6HQ6FRd3YF/WYl86IROD1P6JRPLh/ynKCrWbVU3WpsiTTkBaiDxESFqrHJifS3fRtFIaWi+W9qblWfyt1x1W7ovW/UXnfFKNMytCjiIMkS3lRB59lscS2PbaeLq09euJVY7RLMuWdr7SIz0xlgF4ueDynXfegU8//RT+7//9v2fkHA6HRZyQClXURWjsrPlZLt7dF9P5bGsIUuaFeJ10g+Q7xfpTVrvsmlPDcqUdmmXaVcujbOzo+y2FvaO+4fb2tjrfiBzMyckJzGazM9dh8COK6Vj26S2f/2Th6GLyVidjNUhb5XESlT+PlaQJhWfQ12o1mM1mS3fV0nQu2VwV4xto1tUPVQSUvlUUvs/UgfQZmFDnvCwB7COhQlYLxCDkfVNPNFnIufOQK0YGyfHw5aG1vfQusRODVvgmW5Hw4nlbiIgqUEbJW/L26RbX9ylkSUFOrxKhegT7Wpl7BlzjJ+aewpSoclJ+FXlLdYvOGeoCi82S8qcYjUYwHA6LNkPfxteXrHVAJ2e0ALIKaHZb0y1WOaqUmcI1qadB8tvwu8ViAbVaDdrt9pIv7HofqUxOpFrld+VJ04S0Q56fTm4eHBws2Ucf4YB1kYIIDm0T386qFHWDiJnM5P1BIwVCZfA9x9uiqonYkCDcldbqn2j5Wn1Mq75x+YFldFaWnS5q1uw475v0s9ZvJXmq0KlUJt8kHV2wQP0jDaExsqZLQ0mylGl9QF1vmbjk5Vv8dStZzMddSH/OMnk3q8tecF7GIuPrAFdMTX/T6i+kzWJ+K4vUbRvCHUlpqe8spQPQj2j3leGTKcROutLxhRwAUFyHgum1WCclLvqYtei82LER6h+kjoGkvkZPr5zP5zCZTKDRaECz2SyOLcajiG/evAnHx8eizzidTmE8HieTzZUupk6q6Je+mE4Dj9OlmF3TIaH+cJnfLdxuiK6LiW98z6Sah6H5aH+7no8pU4PE48S8N3++zBgIsWEayvq3eCWSxM/j78it0Z2ytHwpf58/oj1H38kaX7j4Ggmmba70YXRU6CosVPTT6bSoGF+HmE6ncHJyspQvdeZ5+bQ8zHsVzsB5TxxgffA7eqQVAy7Ct0qn7KIjlSPkMmixZbwKgWqq+g0hUDGNNH54Gvr5POqaGonz1jeXeAlrX0i9I5baNkpqnjeqJm1WlTf6E7jLGHdMUvuJhHkZcAdM821o2tR9qSpIhFas7qzyXfP89IQWbE++s5wTnjihWKvVYD6fL6283N7eht3dXdjf34fhcFjcuRQqjw9ImuCuOZSr2WwW8nOSxBJA+YIJX155nhcLL+lE9GAwgMViUaxWDT2y2Cc3tYt8bPgmKmLKq4qgi0GsLtAmJtdNr1gCZAQnTvjY5f3EUi7PD20BxrExBFwKZNnpYuXFYrGkBxDShKSvfVfZ9vV6HTqdTqGvQif8AOIn49etj0tAO0N39dOxwNtX8ws0kkcjcrWxhmUAvLQ/PgKa2xUA98IYOnFEP1/0+LZqSPV0Efo4x3naH9pf+akWCBenGCK7Nr64PClBF5RaT4B53bFO8ex5jYvf/M3fhO985zuwubkJ9XodxuPxGX650+kUv6+KdwdYTZ1YJzBDZNHSoo3lk0qh+XCsCz903liVfcH4O3VZqSZQpXx8viP/rmy/D60bWt7Ozg60223Y3Nws8pnNZjAej6FerxcTsZL8vsXjLpktMlp8sNjx6N0ZKwW9XBBpspYCd8BSzGazpbtiLeABgCav9l1VRsSXr4sYCQ04pXxp4ORz+mLrwDLJ63tGa5vXxXGMUXCYvkwd+SaJpbT0t7Ljx0USaGPDBZfRlQiC1P2rinxj9EFI+os6xlzk0bo5Q7GkuYuU4v3ZN6Ei5XMRiZuqwesT4CVJGOOXUND2xOCLrrbX2kebfJLSxxLVkpzae2gI8b3WAUhk42QhwLLPhGk48vx0gh4nY/FqDf7+eFwx7k5oNpsiaeEi+lAm/r82/hFlSQLJxtMyuO3Glah4RwsPflJNtvj6ly/msJThgmTjXX5MCoS88yrKriJfnx4KjTMsMY/2HH82y14u0qkKfAxLuhm/o+SnNY7z2Q4XQnwYX94ovyQrf3cryRGCVceVFt2Aaejx06nicwmuWMhni6i8Wnre16R0Lj26SmK/alRNBFt9CcS6+mKWerKMJd8Y08aVy576dKpFT/nGVwh4/vTkEVoOxiuLxaIgqzHmiOkHtI1elfF5iZfIsqyIV27evAnvvvsuAJz2H7yW5OjoCHq9HuT5y4WgZfnq80QKfajFaZbnfLZO0+9WXanxSDFccxVpY2D140PSW/PQYhJX3VrimFi5fHD1n5D3k/KVxr0l5nLFbDQPOjayLIN2uw2tVquwZQBw5tRcfqUp/S22D7t8ilAO2sK3cSxNxvIdA9pODiS2+O/SsUuNRgO+/vWvw8bGxtL3jx8/ho8++uhMetoAGnhQwxE6EFYduCGsJAJX5LgKDo+WoM/zursIAU9V9b9qh1JTgCna4Lz6aBlUHaCGlC0ZTkqIrGvwel5Y9/6WyrlO2e7cGUZi10KcWNI0m81C91/eHVseuMKu2WxCs9mEr3/969DpdOCTTz6Bfr8PBwcHZ+7zCOkvw+EQ8jwv7tjRnEf+Ny+r7Fgs28dTE+XrCOl+Rs3PpZjP5/Ds2TPY3NyEO3fuwNbWFly/fh329/fh+fPnxULEkKN0qU3CZ0OCcjrRxPuvFXTSOc9fTkofHh7C48eP4cMPPzwzPlLBN8nD0/JxWbXdyvPlnZOpbGWVEzO0DGlyJiWsetJKOFnTWNLT98fxhYQj3pc2nU6L3fQxZfuANofueKVtgnYd7RM9ArwMfO0SMhGbZel2wGvjp8yYXlffFY+BDDnqMTY+0fwLbWJUAk/LiWX832ejpHdY1zaKwavqF503YmyrjwiV9LqPi3P57q6yUgAXA16/fh263W7xfa1Wg9FoBE+ePCl81U6nA+12G/r9fmFfQuvwsi+/WsAYJs/zoo90u13I83ypPwGc9vP9/X349//+38PR0ZF6otzr1kdCuHr8n8d0tC65Hx5SVojuOU8O9lWAxN2X1f10/ir0WReoL0Zh2alpKTu1XaO+JM0bbZhUz5PJBKbTKUwmk8IuWucLfQht15AJaAu85/ChEsHAkH7Pg0g83oAflzuZTKDVasHm5maRx+bmJuzu7i5NICJxaTmSB6GRmNLMv0uBhjosVQYSkrxcProKjqaVlAcPnCx1FiqrBK39XJ04Vb2ueiLWV35s/fqMfsizFhmsBBmfLLCUnxKuVSxaGkufCCERU8M36eHSf5b6wM9W+ddlQraqsazVccrJqxBZLBOySBpjOSkWeryOkBZh4HFMrVYLRqPRmYme0H6B9/KgP+QinenvUh906TWus7XJKav8luBjXXRDCHzjhb8Trc/5fA7T6XSprehvdIGcZUEhz5/KqKXT/Daelk4QhupOzV7gZBBOytJ+fR79wDdGyuTjSsv/ttppipBJCd72XF5pHLp+5zpP63tlbGCoD7UqwojWpTZR5SIaq9R5ms6m/4fUUYr69JVpKcPlY4Xqppgxn6LNrGScVBbVE/ivXq/DbDY7Y+9d9RFru7VnaV3iaQ7T6XRpgZ+PR+B5xcSklzhFjE14lZDCBoRwJVzXumyf1hZWe6mlC9F/WD/NZhO2t7eLU15OTk7g6dOnS7sX+XUrvnwv8eqBtjtdyNVoNGBnZ6f43Ol0IMsymM1mRb/BRZf9fh8AYGnhtxafItahP5X1XUP8kTLllPHnXPqLwxcfVImU/aEq+0Dhi8VTyKHlwe2EFrdpfpn0Gy9P+j20jWJtNZWB/wM4XQCO91ejTgI41T+on3BHLP5N87WUHSon/T8k35DxiFiajKX3KyLJhGi320u7MJGYarfbS2larRb0+/1i1edsNoOf/exnsLW1Bd/+9reh1WoBAMD169fh6tWr0G63odlsFmm///3vw/HxcZEuNThBFesclYFlUEnPZFl2ZnWNdK/deDx2kr6aPJcoj7LkRZn0q8Q6ywbgdxolrGr8nzcu4kTKqlC2X4cQ2tay6OqvWq0GrVZryVG5nJQNAzp06PghCcl3EeLuN/RP8HsrptMpzGazM4QslsMneq2kDKbnz/km3/L85erckNWSWj/lx6Gts/5EkiEmWJnNZjAYDGA6nRa73fmpLPP5HAaDAbTb7TOrzbV8Q9IgiU/Lo+1J24D+i20LGuign0/HgSZ/lUe8YhnYz8vsFrTqaZ/PXGVfxzbn9eqakPVN1EpYx/G6bkjl72L/1XaVon2gaUImalIiZAJQSuua8JbShkxKWH7H+LjqU0RCJjzognU8LcM1nqsElru5uQnb29twdHRUnOYRQ0BJPsClbrGD2jP0V14HlJ3UsOZL9YKWLnQitkoehPpxiHq9Dt/85jeLjSwPHjyAv/mbv4FGowGbm5swHA6LSbRLvN7ARaE0btjZ2YGvf/3rRZ+6ceMGNJtN6PV66kkNs9msOLLY4t9bFy9dRPh2M7relT6bkie+RDpYJjbLgut0vnkxFtxvw0lNKV0ZpOBIJX/8xo0bsLW1VSwoOjk5Ka5FwueqkkmDdjKAS4bY+hXvjKVkBzYwXlqMDiMle3jQg3dmTafTJQW+u7u7NHmLL0sdm1u3bkG324UXL16caTAsn36WlKEWsFmcsyoGYOxKAu7wcdkWi0VBENLdUkjg4Gc86oofJaTVR6o68E0Ir8roWILb2DaiZfD8+G8pV6BUoWS1sn3tFfJ+lrRSGh+JrqWzECWuiYSQybXzQGrHd1UkEIB9pdp51XsICcr1qo+c5LDop9lsVgRX1BZz5+aSAJPhm6hsNBrQbDah0WhAu92GK1euLB1ZqfUHSX9Y9AmVS5PJlQ+Xx2UTQscQ173rqPtCQevCN0b4eEb/V/KjaDpcxUkn3H3gbaz5aVpbWvVKWb8L75Ta39+HVqsF+/v7xcK/shMI+HxIHnxMWn0Ll7zSOKf58t+k4635cxpcz/A+4JJXmsxxIbWfHwIXuR1CkseWac1HI+5TIWYsWnVJ1bqa90VaV1RXoR7E8RHjq4fqFd63Q3aJlYE1b4zZ6U4j+r+ke6z21xIvakclck4nFtzeSP7Qq+BLpIK1rte5zlL4mIhQ2xTCU4T4fJjeZzs0P9zlW/jGmsSzAgDcuXMH7ty5AxsbG5DnOXz22Wfw5MmTwlfgi9NC4tdLvDrAdsfTLOmiDlxIurOzA7u7u7BYLODRo0fw+PFj6Pf7MBgM4Pnz58UzyDWE+ubrilD+UeLcXflZeUpM69KZFu7XwpG6sGoufp3g0/dl83OlSc3VS+0o8VIh/SVkrPi+86FWqxULFAGgOIGLT1RLd8WGyBL6Lq7fU4+ZpclY+pJ47AVWCv7rdDpLk394XG673S5WerbbbWi323B8fLy0u+TevXtn7o59/vw5HB0dAcCp4v/a174GvV4Pvve97xXPFsJ67u9CnCfZEIIYp5E6cLxNENJu2dlstrTy6bzq5ryCsbJB5nkAlax0FPUlZFgmLQDWvz+cN2lx3uVfdPic81AsFgsYjUbFbk7puOKYO9wuYjtXEUBkWVbsasSjm7a3t+HFixfw85///Mz97Fwey/0fIc6+a8Io1SSF9Vluh84TKfqr1Y5SAptOyLown89hPB4vESC8LbVgGtNwIgTTcSI9pD3o87E7SqfTKezv78PTp0/hr//6r5eOY6a6KBYWm5yi7/MJDvxbm4jlASydfMJFqKl2BPPTiVz58n60aj2e2odyjUvt/Xw6VSMqtHIw3UWziecpr9Rui8XiTLwZO0kSKgeWTyeBqe0O6V+pgSco+PqtNKkixTY+8L5MxwJ/X3pHcQxi5LvEJTSk7j80JgtdBBOqG6Qxiz4bv+6NA7lX+lyWZfDNb34TfvEXfxGeP38O+/v78Ed/9EfQ6/WW8qYTcWX02UWNCy+azFUA+xj2ocFgUOh0tMm3bt2Cr3/96/CTn/wEPvjgA/joo4/g+fPn8Nlnn8FoNCrywTxeV77MNXmVZcunFbkWl3BIp2P5nvP5r+veRuuKKmIYKW/U4/yUozIThDQP6tNpsdI6ArnM0WhULFJcLBbFnecAL8cJzkcC2CZPpXg+xL91LZjiKFu/3jtjucLB2epms3mGDMK7RxD09+FwCD/60Y/g+vXr8OUvf7n4rdvtQpZlS7tmcfX9s2fP4OHDh8VL4q4DPikrVW7IChUpjeX5lKsoXOSrr3wkChEWR8z1HlVP+knvWpUTtaoJTI3wkUhYTQFbVkmVVdw8nxT14yOZtfxTtHkIeetKo+12klCmzkJW6vB6TdmXXeNP+r6K8cMd0VXog1VCGwPau0n6n9c/nj7B64rfs2DFRaznlJNx6FNkWQZPnz6F0WgEk8lk6WhofEbSnVIw5fMfXLqwKp3CJ598z1I5NZmqmBT3IRXB5GoH7BfNZhM2NjZgPB6fOcKL1iUS2IPBoCDFcBc7ptFk5/2H1zvmBwBFP3UF6jQwo+XSXfQxwHwxHz4JGeJ7uMqwpkVwcpPnJbWB5mtrEyCuSSTqy1nl5+NQGnOx5K9WBpWZ+jraGLfKETMefYSFSwfx9qR5SEQEz89VL3meF0fL83xS+T9IBuDCZQn0fmZsK+vEm+U7gDgiz6WnpDTa2HERnK60ZXU/gN5/UpMrUv6tVqsYfz4SDp/h7WKRW5JFGs/oN7bbbdjY2IDBYHAmb0lHSTbI107cpl1Ev7NqcL1zEevI4mNKSOlLSn02BD7fIBRWHczTop3Y2tqCjY0N2Nvbg62tLej1esXiknq9Dt1u98y1bpq/X1bmdcZFlLkK0NOzsO1brRbcvHkT9vb2YDAYwNOnT6HT6cD9+/fh8ePHMBqNCtuEeWBcg/mE2qF1iQstsvliXQ2hfKw1f1/MqOkOH/dwEZGK7+Fwxf8atLrnVwy40vI0PjklPS49R/2qKto6Nk8pNqUxe6vVKub08jyH8XisXi3CF6S7ZOPxXujY03xmy7M+uSR4J2P5Ebij0QgWiwU0Go0zBeN9dvQzYjAYwJ/92Z/BW2+9Be+++24hULfbhY2NDXjrrbdgd3cXAE4nY589ewYPHjyAR48eLc2WY9lUphSr0qWKd5GaIY6ONEi0vLkMPB8uB8DLSWpelgsSeeHqSCFGyhJk8nd1Ka1YJZDSoU4FzehTktD1nARLHYbK6KqrVPVq7e8h8kvkBX8fyRGjRLMGfjeilSTjZfl+cxEd1vwtbSKlQQdca+NUpCTC12dj6hifo/n4Al9ets+IWmQq0281+TBA531VmoxdB323zsB+jnX2+PFjOD4+BgB5ksdCNEnOML9/UwpuXYFbiE3QiFf+m1Qu15X4OdSJtcgsjbGUhFwssG3m8zm0223Y2toCAFDvUwJ4eVRtr9dbkh0JM4sulXQL/o/31M5msyV/XMpTu+OETkJIbeBqO/ob3nnY6XRgMpk460VCiI9i0f1Z5t6dSt+P222Xjrf2+ZjTCCj4syiXb/eMJV/NfmRZduYqE6t8COsY1drQVc/a0c8W/aL9bomLcFd7mZjDIguu+tZ22qOseMd1iCypZXflHao7pPwoQglVmofvnfEELytS+rk4nlutFszn86UV/65nLPJocTQnB6W74lEPtNtt2NzchMPDQ9P78JOaAKDoq9pkN8CybUodR6wjfLaEtzG90x53pYX4X+sAiTAOITB97+rizVzP+HxNrtdcPltILOnSWz7eEk+zu3XrFty7dw+uXr0Km5ub0G63odlsFuN3e3vbGT9cpP5zifLg98QCnE54vPXWW9BoNKDf78Pjx49hOBzC/fv34enTp0tpsV8ByPGkbwyuI+9g4YMoLHGHK46X9Arma/WJpNgFQJ+Qcn13XrDEU6uQl8d/Lpkk/e+zUbyNLNyJZGMk2VyyIHwbB0IQ8qyrf7tsItVPrVarmDfM8xyGwyHM5/Og0x0s8V3ImA/VZyls7NJk7Obm5pIA9Xod5vP50gw1OoiUhBmPxzAcDpfy6XQ6sLOzA51OB46Pj4s8Dg4O4A//8A/hzp078Pbbb0O73YZWqwUHBwfQ6/Xg5s2b0G634Rvf+AZ0u134/ve/730JJBak89y1jlxGAYQMbFeZLjLV1xG5cp5Op9BoNCDLsqX7fREYDOI9Pvg832WM9Ri6wyoEVsLARdxan11XSM6B9o7SJOC6I3Tiap1QxpDFYh3qaB37VQpy0UVkrbszq4E7CxZn5BLLoMQXwKlv0mq14MaNG5DnOQwGg8Kv8TnX1MaXGct0IsJFIvmA9p/nox2n7PM1Qux12X5Ytg6t+VvlbLfbsLOzA6PR6MzVGYiQ/GIIRQS/i9YXJGqTUq4+JsmVQrekaFPaN/B/1+Iha1+KJZOqJMvr9Tpsbm7CfD4vAtSQsixpfcTOJdKBjj068YLgNoQTG1ZCK4XPJMmMeWP+vpi36sk3lGGxWMDW1ha02+3ivQeDAdTrdbhy5QqMRiM4ODgw51uFrIvFAobDoUjehrRViD5z5YsxJR6b/OLFi6Vj4lzxm2R7cOFRlmXFroZ19Elj/amyZbrKQeLxrbfegjzP4f79+8VxfMjDVWlnyqCML6PlV0WfsZDEFOg7p7p+QJOFIsuyYpPLaDSCzc1NuHv3LnzrW9+C9957D27cuAGLxQI+//xzePjwYcHl4a5GeufeJV5foA7HUyxpH242m7C5uQkHBwfws5/9DPr9fnEsMfrRrutP1lEHhUKywfx3Du4HaWl99Wctk3OQISf3XWIZofMIUptq/Z5zb9xPpun4c67PVtksz0p9q8pxHGrDx+PxmSOJrVcwndeYiKk/n6xLk7GdTudMAk50oGM4mUwKB4Cj1WoV98Y2m03o9XpFul6vBz/5yU9gOp3CnTt3iqONT05OYDAYwNWrV2FjYwPeeOMN6Pf70G63xXKwwamS5MSCr8IsqxBCn9dgdQQtJBn/Ht+bOu08EEJHj27/Rkefr3TFu2it7ybJ53tOC+i1Oo1RQrEoMxnH25m2o6Sced/T3kn6LeXqF8mY8LQaaFtqixRcslonBKTnLflTGX1puByueqkK2phImSfNd1VkfAgkEjKUJC9bNiJ2wjZmfIY4ZdxpWUfya91B9cLJyQk0Gg3Y29uDWq0Gw+FwadGZi5jR+qjLjnEnnvoykl8VopNpOleZkq/An6f5aKS/ZMcstlxLI026pejboZMWWZYV9zTPZjOYTCZOGx0iZwyRiX6uxZ5qwLYJIRpXTcJotkny1V3kppQHfqfVneS7aPlzXz1FPWF+tVoNNjc3ix3I/D19vg4ds+tGornk8dW79kzMuDsPe+kid/B3gLP2xjUWJD9VejdLHCX58bwtLHW4Kl+ZHilPuYBmswk3b96Eo6OjYjLWNZarlhknSihvwW3vKvsm1tN4PIYsy4rrGXj844uXAF7uxOX6hr6fpC/PA6toa6lMV3m1Wg2uX78OeZ7DgwcPAOB0UoUfN7pOSCWTz2e2wjV2rDwLlwsnZVOA+7SSv0j9zL29Pbh58ya89dZb8N5770Gen/KuL168gOfPnxfc7HQ6FSdi17HPXKJ6YPyI+hyBur3T6UCv14OPPvrozLN8cw7PV/obYD0W8lljIiketXDt1Kf2+XA0nZanzw7xPFz6zWUjLLxq1VhVOSExuGQjpLr29XvpNBCfnx3C1fn6Gc/b94wkTyg0n1WCz97ioiKEayOi1O+5HCGyafBx4r5+Jsnpq2/vMcWz2axYOYPodDrwD/7BP4DpdAp/8id/csYJOD4+Lu4fyfPcucsS72gDgGKyEDv3m2++Cf/8n/9z+PGPfwz/9b/+1+KZyWQCs9kMtre3ixWZ2JjacWU+nIfDKyljjZB1HbHEyVWaJ1UWAC930SLwbjMMZFPBEvCcd1B23gjtb7yfcBIwtYMUSnC5yM+qEUvYSwGSb1f6q9xvUVdIk0HngVe5rmPA9TdOFF2iPLAeHz58CFmWFTvR8EiwKkDJyVSTjZgn35nkIs3pojuL/yTZmrL+E8pHT4JI7ZPxOxhd9dJoNGB7e7tYwNbv92E+nxeEha+erEQ2f0YCDfhijsal9Yn9HHfe0OOUXSQDbZ/hcFjJrhFajg98l7APvK2l9rEQOugjxMAa5DWbTWi327C3twej0ahYPYztV6vVnPeOIrQjf9cV3MeVdvdjOmkyiwK/xwkNnj/3GZHYvgjA9w4dAxSS7lvlZGBqYPtlWQb37t0rdpZ9/vnn8OGHH0Kj0YB2u13wB1WUH/OM1gYx49Y12SwRjRKkaxV4vKm9C3I51F75Jp1XAan889KJKAvuWvvCF74A29vb0G63C64ty04XgQGUPwq/KkgcRFmscpLHl7ekC/F9LfaHl4XPSTa72Wye8Snq9Tp0Oh3o9/vw8OFD+Pzzz+Ho6AhOTk685cXyIZe4uEB/ibd5s9mE2WwGP/3pT4vNT/1+fykNP9bep+el79a1r/kmyVKB6wNrWdxmh0y0XkKGFOvF5BEK11U5qWG1XzETtSHlxuYXy2VocrjK8cU6PlTFdVAsTcZK94oAgOhA7O3twXw+h62trTN3oIzH4zMTuBw4yYvEAgbd0+kUptMpNJtN2Nragq997WtwcnICV65cKXaq0OMUkEjCo17oe/iUmBSMU/jItDID3FUmfs+NiGUWnuYvBXW882NAwIlbKR8LQgMurT6kevANJkn5xgbIUnlauSnhKlvrn1obWeS01JPkHOAz3IkoY3hSBXPavUW8bi3E6zqgTGDlew8+ZqwE5yrrR+vjq3L+NXLLCmtaq+7kdmGdA6GLBKxDPE4Qg1u+O8EVOFkJzzLyWSHpDW2SUwtYq9bnLn/I6ntYfIjQPOnz6J/ifa3ahJ4W/Fn9UJpeqnfLBLCUjy+4p/aQHoXr8n+qWqxjJTZRjlBoz6SyrSH5uEgt/NdoNIp+h4QZ9sV1nTh02WnXJAjVndp93Tyt5pu6vsuyTF2okkr3+aDZ7LJx5bqkt6CK+kUeYGNjA7a2toork7A8baFlSPwjwWf3pf7qq1P6TAq/2xUnSkdKh5DElF8AgKU7B13vULXfukr/TCtTS4O6cGtrC65cuVJcI4V1hXfFr4IIjEWK9ltlLOniMqTP/BnLmODPW0B3llNZarUazGYzGAwG8PjxYzg4OIAsy5Zs/zpxFZc4P3BfHz9j3IB3gkt91srdrXNf89le+jfnAClCOW/6nNVPlZ7lCLGTZdslZVy0CoTwAgD6HAn9bOGBQ9pB4wMkSHbD0iah3GJovbnKDoVU37FzSy45zlNHuTgTH5YmY/GYvp2dnSLTra0t2NjYgOPj42KCdTAYwH/5L/8Frl27Bv/wH/7D4vJdxP/+3/8bfvrTnzoLvn//PhwcHMC9e/fg5s2bcP36dajVavCXf/mXsLm5Cd/85jeh1WpBrVaDb3/72/DWW2/BH/zBH8B3v/tdMb9arQbdbhem0+nSqldtZbiLQLM2Jg2ctWel+1j50ZK4ApKCvwfewUJ3QfGGlwKh+Xy+dNSipnD4SqnFYrF0ZEXIxB7/bp0NeFmEkie8v0l3wFnzo2ktOxrPw7BSB8V3vGJs/qn71+syucVJT0pWcWKeY9Xj+nVpk1BgG2G7NZvNYiffq6x3qwRd4KUBfQo+fvA37ZlQ5zkELkIJJxQ7nQ7U63Xo9/vmO/14IGORjd9zLuVnCVRXpWeoTLVaDZrNJgwGA/jwww/h2rVrcOvWLbh58yZcuXIFHj16BIPBoNgxTRf/xcrvChxxt5d1Bzw+32g0oNVqLfmSWZYF7QqT2ntVeqUMae863QLHrqtvxrSbBb7JACwfF6s+efIkCRnPJ05iViRXbYM5EeEizDANPoP6jX7PSUbqf0rt65swiplQc4HXZ9Xjir+TtexVTGBdZFj1BPY/7KuhcaM2SWp5Fp+hYwJlGg6HxUlmlvfAPOn/uCCfX5XEFy+FIJW+wViGnzS2DvFElmVw5coVuH37Nuzu7sLR0RH86Ec/gjzPix1tZfS/Zr/X4d0pXP4ihdb3feNB4vli6yDGJ9WIZz4WR6OR2N55nsPf/M3fwIcffgjtdhsAXvbh6XR6qZsvcWbhBt4/TPtHo9GAbre7dF0dAJj4gos2YUch8f+a3JofCLC8Qw5tuRXSJreLinW0IS745A21KS5uI3QCl5dp3V3ri8tT+U4afNeoaNDe0TWWLL4Bl40+o8U6WXb2+k6ejyZPKHzj/czOWOqwA8DSzlWa6dHREXQ6Hdjb21u6azbPc7hz586Zyb3JZLJELOAO2L29PZhMJjCZTKDRaMB4PC7uLEWya2Njo1jpSsuhx6yhzLhblhom6wQQJyx88E3EaqCOmRYk0YkRK3wBNf1dOt5ysVicuUgZZfTl7yNUQ+W1pF8HY+B7Nx5E8zQpyOaQ/kfTasGB5LjQZ13QCJ9UxJOlDkPGIR1zsbKkcKpSk3IWco3qGi5DmXpZFSz90hJglDGsqXVQSN/F/6Vj5S4RD4m44XqNLqIJ6X+aHoxx4kPJdPSV6GItl/0qY7dTjo+U/VmqY64D8TPep4fHwWL9aflY5NXsq7W+fTab29t6vV6cfsLzQL/edZTtKieLfO2slR8TaK8aoT406nUk0jA28+2Uco07Te+EvgM+v2o7I5Xneg9Jt2r+Dv2cyh+ncvj8bklu+nfMJEUZn1aTY12BYwN1nVRvdBxZUUUf1/S95m9z2xIbB0s2iuoV3wIW/plyL0j8hyz0CfFvpN9C2rHZbEKr1SrqHicfzsNX5j56o9Eo/LJQzsdSluW7qmDlDPh4tfBJGlen+WLch9dk0TgLfI6nkWSSyvSVS2M55D4nkwkcHx9Ds9mE4+Pj4qoMepetxXe7xOsJ2gfwRBV+gmSIHtX6c0ouLBau+MAKibPUnudpXWXG+NmhfK72mwspeNgQOUNQdV+S8rfGZ/Sz1f64bFHou4bWp8/2ueTxpbfKZemjmr8ixVRa+SFjz8f1uSC1Z0y9IJYmY1MQuVmWwW//9m/Dzs7O0veff/45/Kt/9a+g1+uJzz179gyeP38OAAA7OzswHA6Llf0ajo+PoV6vw9WrVwuCEScZ+VHJ+G4x96GVAZ2hx398tSNORNPjlJrNZvGPGs9+v68GEZg/XfWJzv1sNluaaL1x48aZNhoOh3D//n11ZUZVyjGGaLgo0MgU+n1V7xdKrtI+gw4+/tNWrXCSyWWIqmxDnxL2GVmLbrjI/VACkhKoMxC0T75K7/sqgq7myrLMaS8vEQbfPe1aAGYh212EfQh8+hwnb5Dsa7fbS8cuh5BevDyfPpRItlBYA71YPYXP0V1zHNPptCDB6A4bftKDj8ST/qYySL/RNNLqdUqqIymOk3jNZrOYPG40GjCZTJauIul0OsXz8/l8bY+91XwkV5u7diunwCondPL8dHcDLlqdTCZFjICT7Rz8BB4pz0usBin6INcp+JmfzMBtUJmyU+jvKkFlm06nMBqN4Pj4uKgTesoLwOluc7yCwILUk2LSKVn4mxbPx9xNbeFxuH/Pd5X7nkVbtLe3VyyUn0wm8PHHH3t1D+YRC2rnrMflX7t2De7cuVPozwcPHsDJyQm0Wi0zL5QKuGFgNpsV8uf56QaH4+PjpQnyi6inU3CIVYBPHGmw9IUq37HdbhcnBT58+BB+/vOfw3Q6haOjo6V0Ln/wEpegE/t42g/vH3yhpgva5NU69bnUE4Oh44vadUyPtjA0huHlWiekLrEMS5vxz/Q7yZeR2iKmr/DyLXlo/JElnYaYMVH1uHf5kNz20WP+NdA5OAu0xRhVvfeZydg8z2EymRSraIqEjQa02+1ilwDA6d2wH3/8MVy7dg3efPPNQsh2uw2tVmvpmNurV6/Ct7/9bXj8+DF89NFHxQsOBgN4/vw5bG1tFUTyeDyGBw8ewN7eHty9e7fI99atW/Ctb30L9vf3odfrFROTtIJw4qiswrUouthOKZFLi8UCZrMZtFqtM4Q6zZ/u+tVIPLrKFY0Bl3E8HsNwOIRut1sQdp1OB27durUUoNXrdTg5OYHhcBhMekpkrvZe2nfWCTX6u0R8xhiukNUXoflJxApNYyFoY2Tz/eYqi9evVLc0jZZfSifCRYC70tO/qawamcXbq+qJ5SqwSgK5LFx9S0oXkg+HTz+to9OrOfbrKOtFh8/Oc51HcZ59yEXy+p4DcDv9NG/JftH0Fhsg2Tuqk31twPW6zym3+hK1Wg3m8zkMBoMlv0sKFFz1YJVBel7yDSxBRbvdht3d3eKkmcPDQ5jNZoXsePyxRd7zhK+vufwRV7+kv2vlVKFTrfnhzmycXK/X67C1tQXtdhsajQb0ej2YTqfiTgf03VF+K0m16n7gG6eYRvInuf/Gv6dl4D+Lf2vRN1pZVqTwrzQ9YHlXnt5a1roB41scIzi5NZlMYDQaQa/XKxZlhxCfKeSi0Gwp7buWvmaxK64yLc/RXXeYjwTMn96njt/hdRmuOCoWkg7gclKOBfUiPzGNpksBn27Rfp/NZoV+t14dcd44L7/BZeO1tBad7/pdsy+a/xbjM3A7TXUaLiAAeHn07OU1NJewgOo3qltQN7t0Oz4fwoVfFPhiectz1rrx2ReuW2K535SwlHtebR5SPy77bvFxeDnaMxaZrBykxiFpn2PGp2+OxPIO1r4q8Rexfdyqs3y8F5VJipGt8lnHgCW/Bv9iPp/DyckJNJtN6Ha7xYMbGxuwubkJz549KxyDw8ND+P3f/3345je/Cd/+9reXCKper7c0wXrt2jX4Z//sn8GPf/xj+Nf/+l8Xx9ns7+/DwcEBfPnLX4arV68CwOkOze9973tw+/Zt+K3f+q1isvCXfumX4Nvf/jb88R//MfzsZz+Djz/+eGn3K395any0WXYXKROzWlIbtDR/DFzoTlW8L6Lb7cLe3l7xfa/XW7rva2NjA2az2ZljoGnZuNoJ76Llx0wDnO5EfvHiBXzxi18s6ndrawt+4Rd+4Uzan/zkJ/DgwYNS9RKKdQ3+Y+F6H67UfMo4lTw+hJaLCo2vsqYr1asgNy2InZhwwUqiXARQh53vKHhdsWodFDoucDxRfYxH918iHrH6yeVwWXV/GUh5IVnqcq61CQ4kLn13efD8QqGNMzoBE5qvFjRrEzgcdKfpZDIpTm1BeX33t/p2PVlkwDTUbtKrRHzY2dmBt99+G8bjMUwmE+j3+9Dr9aDdbhf+JpbfbDaL79cVNJizgk8s4POS7cY2XZc6mM1mcHR0VLT71atX4caNG3Dr1i3Y3t6GP//zP4eDg4MiTsMjjbF/ttvtYveVdnRrKqS0lSgnn5ig+kAqC5+jYzPP86X4if4vwXI6Ci8zZNIzhb8pyaNNSmk2yUqcrDuwL+C1R6i3j46OignZFy9eLMUhKW1uWfjsGz3JwJdHWfC+FKsH6/U6dLvdov5TH71rBS6kopP0HKuIc2jbItdCJ0NGoxH0+/2la7guImLrsYr6T5mnxUcL1Zt0zKKN4s/iiSwI5FKHw6H3WPFLXIL2D9QzsdD6NfXJ1g04LjV/nyPEJ7C+bwyH6nt2XXyXVwVWv9r3TNkyLfnGnJRSNULGv7QIJMQH813Tg+D15IoZ+dUaVcyNWLA0GUtXXeH9ofV6vfge4HS1fa1Wg/F4XJAET58+hT/90z+FN998E959990iPzz27M6dO8XE4GQygd/6rd+CTz75BH76058CwOnL9/t9saP95Cc/gWvXrsG9e/fO7Pa8cuUKTKdT2Nragvl8XhxRhLtyO51O4Yj7KljrUC4jxNO4HDKN/JFWC9B88F22t7eL+kFSjcoiEU48AGm1WkvH7AEAbG5uwvb2NgDA0jEW3JDxvEJICasBtJAFFxm0fV0ENE/vcyQkxYakBM+Dlqv1G1dZvDzf55h2rGIy2joRe5H6nZXMB/CvyuIXngO8PE5L2okfkn/VqJpkllBVP4kZO9adDJcoB647q8jfkrfL39AmZLkdl/oLtwv8XX1jIXW/89kqlyw0D+l7qRyNGMe6s+QdY095PaOfhyel3LhxAwBOF9n1ej04OTlZSq9NUqI+Rx+e5k8XckjBiK8PpmhzV79N4Tf4wMso804hz2rvKY3DRqOxdJQctmksGYQxVOx1LZa+Hgu+WI/3Q21Clu4IxpgJ70bDyRh60lOInHmeF4tncbIbY1kaE1nHeaivnEq30slITZ+55F1nv1iro+l0Co8fP4bBYLB0dQ8+s0o/yVWe1t/pdzx2tILbeTpmLP48b3+qP7Isg93dXdjb24Pd3V0YDAZesjCGuOfvwP9pxwhSHdFqtWBnZ6eQEXVBiC4tC1r3dLHX/v4+9Pt9aLfbxQJ91F3r5su79JF0DDetX40XC/XrQuvE5btp31n6hGssWvwZzQfHDTF8BzftD9SnX2fdfInzg3VsabDGAOsIybennDbAWT42NG8t1kZoiyW4j2uR35V21YipqxT5p9DZljy1uNCFFFfC+GQJ6ROx8agljavPu2Ic6rNp8mqf0Z+gY9Y3bvlYt/imrvL5b6nH49JkLB4tQ+/GwiOxsBI7nQ60Wq2l1Yaff/45/Kf/9J/gN37jN5YmY3HC9vbt28WE35UrV2BjYwO++93vFpOxAKf3v47H4yXher0eTCYTeO+99+DevXtLv9VqtYKkAjhdLfb48WNoNpvFUb/NZhN6vV6UU1vWkEn5ScQI/Z2TYlmWFZOx9+7dK1bG7e/vw2effVakoXlQ0F1SeEfYeDwu2i3LMtjZ2VnaiSsF3/P5fEk2XN1peUcfJHJFeh+JlIkpZ50gvTd9N8lp0Ihy6W8eyNP3R+Kr6nrhAUNVZaV4D0se6+KAppYD747FsZ1lWUHan+ddglJQqwWxrxp87yaR1fR/17OXKAcfOSS1nVVHlXHefelxBb5GtlJw26QFsquCVpZmEy32jRPhEvFrkYHKIZXhmmjhz9FjZ5vNZnEFyHw+h4cPHxaTsb4ysP3o8ZGo45GQxiOMY5HKf3DpeP57bL70s6s9+Heh5IOkf3kftaBWqxVXw6SywfS+aC0oPg8/meoaVx2hbJTowskhDNYx9sMJVNxd5LtnUrKneZ4XV/TgxC4ubMDfU+2kLjPh4ALvj5zk52l9BNBFwXg8LuJk6teWGc+W9IiQ5zSSCfsYJ3ZpGpd/KMkhkWK+dqb2A++pzrKsuIt1b28Pjo+P1TusNVsaWkeckKNxLAce9QpwegXT1atXl2xfleDtQ98T9Qje6f7w4cOlxTZ4j631Ptx1AeWzrLJXdWQ0RwxnZIEkc6itp2MD2/3w8BAajQa0Wq1i7KOvhp+xjukmFReHdonXB2X5a8kX0+zFuvgIGifKfUZu/yz1JI1xnj//jZ/Ewe2Xq6yy/HaZNlmX9iwDSyxhzYN/p8VNNL3lhB1fzOs7+SB13E1l0dJK6Wk/d+Vr1UlS+XxHLMaxoXN72ji2yJDCh3A9f+bOWLzoG8FXlLowmUyKS+azLINut1tMIGIeGxsb8NZbb8G1a9eWnh2NRjCdTqHb7RaO8nQ6hefPn8PHH3+8JNOzZ8+WHG2A04nk27dvw3g8XrpLFlczWypEC0RDCDmaxkIo0bzq9TqMx2N49uwZtNvt4p350XRbW1vwta99DZ4/fw6PHz8+Y1Qo4ULLns1mUK/XYWNjoyj7008/hf39ffjSl75UtNX169fhq1/9apHHV77yFXjx4gX8t//23+Dhw4dFIGY9JsUXdHHyVHvO6uS6yM+qFFiZvCQjalV6NK00SeUq1woqk8vgWw1gzCSCJhP/jjtZnNzwyWZJ62qjVSCk/BgZNRIhVf6hWEfnMMYmWFCGkNUcCF+aS9hBbQu1R3zMcD2p6SsK3EkglcnzsgaSVFfM53MYjUZqIIlyuxzWLLPtqqNl+MhiyZ6F6F5OXPMyXQEUz8en81yyWcerLx2SbM1mc+m0Enx2sVgUO//oMZa8bkajERweHhY7BbkMo9EItra24Ctf+UpxP9mzZ8/g8PCw0gmL0Oe0cYF5ALgX7pWxgalg6Vs+7OzswBtvvAFvvfUWXL16FX7yk5/AwcEBtNttAHh5EtFisYButwu3bt0qdtU+efIEBoPB0gJNzddJ5SdXlV9qSH0Ld6bhgoiNjY3i3mg87g/HHj/eOsTGcl0eUlda3BQKSQ9eJFB5MfY9ODiAPF8+Tt5FoK4SXGdJOirEDnHfw2W/fXbQF4NzGXBiEf9xoluDjxTT4t9utwudTgeuXLlSnBA2mUwKvab5G5PJBHq9HvT7fRgMBoWNddmWMtDaE8tF+83TcF7rIkBaKIB+opUjqnpyHCBscZ2PcygTp7lAeU4AWFoox/sqv07oMra7RGrwq/5oH6Mnkqyy72njTYr7siw7cwKlBtc7cD+ZfpZ4R/6/zyb6+GqNT3DxsTFI3Y5W3tWShwUuP0LjsS35Se0LcFYHh/jRvN9IfVd6J/58DKzccYo5Ba2+Xf4a/47rHq3eJB6ElkN/41cD+Mag6x1jxiP/fWkyFjPik7FWTCYTODk5KZzKVqtVVBo6Eu12G27fvg1XrlwpjuDK8xwmk0nxO135dXJyAnmew3Q6PVPpdJVJo9GAvb09ODo6gmfPngWRZlojSMSq7zn+PQ/QXUoddyrgO/N8MG2324U333wTAAAePXpU5IO/S04+yoEEH+LJkyfQbDbhC1/4QvH99vY2fPWrX126a3YymcAPfvAD+Pzzz5fklt7HElhpkMjUmHzWGS4DFWKwaT78fi2rDK7fJeeG9mdpHJUlqjEf3zOhfYrm61L+PjJDyi+FjBaUdZRC6tVa91U54a5gN6ZMy7ufN/g7x5K6rndN4Rxf4iU0ApTD1YddZGhseRT0eEp6T72kwzVdGTN+YvqY5lfEPOsD9/F8wQ2t9xT6RMsPbSxOomo2iR7rStsYMZ1OodfrwdbWFnS73TNlT6dTaLVa8OUvfxnG43FxOs3x8bFpBTeXp8z7c9ktaWndac+WIbapDySNk1g7JLWlpa43Njbg1q1b8MYbb8DNmzeLu2LpEdSYT7vdhqtXrxYrip89e1bEYBpBXia4tyLFuLEE76mQ5y/v38XxRnUoXuVgzYvCpX8lPawRS6usj3UG9m2A05O2AKBYqBBCwFGU7acamUq/1/qAJo8rfcgY9sVqlrxwp/lkMlnavW+tb+4HSXIg6vV6MRF79+5dePbsGcxms+KuYG3iHbmkwWAAw+EQRqOReF1D1eAcjUY4xtqW84LEN4XAxRv4nkNYOQ9X3YbmlxpoyxF4hQTdjEHrSvMlKNY53r1ENfC1eawPRu0rQDnfehXgYyXUB7Dw/nyihn6miydCeF3fMxp3cNGR4j1iuXWrTFIevD+EluPyCfD3UPsY866xeoHKx8eD9Dcdk9Y7cLmtc12zoflVVI48P3v1JpVNkluTq8zvFEtRJN6tsrGxUXQqfGlccZplp5OGOzs7MJvNoNfrFQJ/8MEH8Pz5c/jOd74D7777LvR6PRiNRvC9730Prly5Ar/2a79W7L78+3//78O/+Tf/Bv7jf/yP8D/+x/8oXrzX60Gz2YSrV68WzjU+wzEYDM4c34WrHmMdPAuqcJbREZOO0cLj6drtNty8ebPowNo9rvR7qR7yPC+O6+l2u9BoNODg4KCYjD06OoL79+/Dt7/9bfjVX/3VIp8vfelLRd7D4RB+/vOfLx2VsorLpS/CpEpZaO+Gq3/pfTdc0fDVHogUilaS0TKB5CIeqgY3FDGB4usG1Pl8TJeZkHmVx+slXi9ozqcvPXdOQ8kfasvLOomSjBZwh5hPJob4AJbJTzqBhGVa8kvho6UK6GLLrtVqMBqN4Kc//Slcu3YN3nnnnWJyAXWz7zjAPM8LAhp9ZXpaze7uLvzKr/wKDIdDePbsGZycnMAnn3wSFChZYW2TkLYrY8+loG3VdgploMcuUXCfKc9z6Ha7sLOzs0TcUrKW5kt9RLzapVarwdHR0dJdtOcFjVi29hMpPb4rXq+Du8vX3ZeL7XuoJ2ke3OeVJnn5+L7oPhqdbEEddx7922WjsR/yvmuZILKUSaGNj1D4np3NZvCTn/yk4IKyLFu6xormo/UxfgwdjT3wuPZutwt3796F2WwGDx48gJOTEzg+Pi74DFqPuIN9e3sbvvzlL0O9Xofj42N48uQJvHjxAobDYZHuPPQC9W2wr5a5LuA8gG2NbYVtOJlMivhx3XXueUDiTDiPM5/PC35uPB4vnfDnqtN6vb60yQUX8120vnWJ9OATk640+LfE/4Qu1KwaPh2DVy5q8UysjpJ881CExJjcT1hVG1y0xUEpINUt96cwXgzdCEURG2dX3faa7+rzKcty/L5+xuvb8izOByJcE7m+dteAz5YZJ0uTsWiwqVOA/6hzjA4k70SHh4dweHgIb7/9dqEAAU4nSEej0ZLje+/ePbh79y784Ac/WJpsRcIInQr6otRhz/O8cFKokqIVzysxJMBPrXx4J5bKoWQQrXuA05W+uNqdkjA4gUs7qEs5cPKn2WxCrVaDwWBQOIT9fh/29/fh7t27S3JeuXIFbty4UUyaP3jwoHAcaSBcBr5AVvstRf4++FbFlM1PUna8P0hHAuHkLDrd/B1dk5GW+nC1q1SG5X0tY7PqiTxXvqtyPlZF+PsmPmjZnNjF5yXZXPrydXPgUmCdgpxL6IhZ1CJ95xojVv/FqsckR5r7ehZok55SWT4CwGWrtPdwycPLt+bhkos/Z/FzQnWfJu98Pofj42PodDrQaDTEo4tdec7n82KBFvrGdAdRu92GW7duwWAwgCzLoNPpwHw+L8qg/WIV+pxOHlEbFNIffO3jslWWd7TWfUgfwWMrsb4xYOQ+E5JK1j7A0+A1MCcnJyubiAgdixbSUMpb8m0ti0RD/CIAWLo+JtZHrSq+pOPGEnNKeVQh3yqBkxAAZzmNKsF9Zl9ariNifWiX/S0L3zilx9vj3cz4PX0/re/RfisdiYl5tNtt2NzchKtXr8Lx8THs7+/DcDiE8Xhc3A/N80VdubOzU1xf1ev1xDvXVwFeF/huKHvo/WfrAMpJcA7OMhmLz63C1wjRb9byXRMnUv+nv9FyuK+Dz2r2S5MP09PxJNmDS7yeCPUZJZvG+9Yqwf1hadcb/R37Pb3ORYLLj5N0EtXhFrj8L6sPuUpffVW8pJUv9sEak4XI5ONVuM2ywGcPVomY/hTDQVnLkuJ9SfdI/LQmi+RzWRdoWnm1EO7ABfV8JU7a4E5K7mRLODk5gadPnwLAqfK7evWqmH+WZfDlL38ZfvM3fxMATidi//zP/xwGg8FS2ul0CkdHR3B8fFwcPwQAhbO9t7dXTFC22224fv06DAYD6PV6Rdoyd1JQkiTFsy7DgKQMHqszHo+L9LhjGXHjxg3Y3t6Gzz//HPb394vvx+OxKiuuht/Y2Fg6wunk5ATq9Tpsb2+r77KzswNXr16Fw8ND6Ha78I1vfANevHgBH374YTEh3Gq1irbAgCg1rCTNeRMKqWTg7yqtVqsaNDgAOLvi3EcGrRKxBFksVtnXqiyLEhjUiaXHxsfW6arbJATroCtisY71+bpjHfqSr08jYdZqtYrj0Dh48OmbMOXPUntRJngNTc//dzntKKPPQS9rz3xBpxRg0J2L4/EYnj17Bru7u/Cd73wHfv7zn8P+/v4SGUH/bzQa0Ov1YDAYFGUvFovCj/eh2+1Cu92Gk5OTIB/O1e9ov6EkLP6W5y9P9nCRASHjSyNgpfaM9fFDwNsZ/ebr16/D9vY2HB0dwXg8Luqd9oHBYAAHBwdwcHAAW1tbZ04FuuigY9DXxlJbYYyHx5Zi3WE8hfdlS0G/pNvwu9lsVsRhjUYDvvOd70Cn04GnT5/CyckJPHz4cGkn7jrY5FB/y6oz1xl8QojivN/LN1GbkkzE/Kroh3RXQa1Wg/+fvffqtSRLzkMjd257XJ3yVT1dPa7HkboihxwOh6R4KQoSdHEhQBIucPWiV0I/QdCD3vUf9B8k6EmAAIkyFCFxdIdDzXBsj2kz1V2m69jtTd6HrMiMjB2xVqw0e+9z6nzAwdmZuUwsFyvMMp988gmcnJwUju6mNFhAT3NqtVrZQvwoimA6nUIURfDo0SN4+PAh/O7v/i48ffo044/0ZDaed6fTgeFwCH/5l3+Z8dkkSTKZp2lY9YqrvGuROl2p88Pa9r5xwbFJh4VLDrE4j0OMxXQTShzHMBgMYLFYwHA4zPLDjRMWPRyPDcdNM7hDtgl7nAtXWbe+LpCcBSHzA9XjAIpza9X2LRPfRTff9Ybpl7X/S85fjQbKB330WsPSuqFl43pTE2PM5/Qqk9auIlRWqpOXSv0VsY06a9p27+tT3HHK58uQuTYEIfywiXYRnbHUIO9TIKSjdS8vL+Hly5eZw28+n8NkMoGXL1/C4eEhHB0dZenev38fvvzlL8PZ2RkMh0O4desWtNvt7I4rakyaTqewWCzWhHcuzErGJs0og9+kdzwsHzSu9DRozBc7HlWi0RiDdTufz2E0GkG3281Wxg8Gg0xIw3j8Pl1OJ+aF96xEUZTVIVWqXr16BR988AHcuXMnOxptNBpluyh6vV521y8tBze2uQwUlnqX6LcyDB5O+t0Uw6tTyODheL+kxu8yx4hYjTdc6eLxKU0a7Zb0ff3F2vZlaKBhfP3QRZPkIPDRxr9pfTc0/ZC2wvr3KZtWhBoGaVjJcFqVHo2+KqijnjZhxN1lgfiqQmp76/wUOiYkmSxE3uDv6hAsXfMBP+0jBD7+baXbpQhyOcVHT9mylAHlv0mS3/Ha6/UgiqLM0cTjIK3L5bJwvB0a+vj8Ii2wpAZxTd6qohRR+Z3KLWXha7+6nR1W0PaQDCkYpt1uZ3cEU1me9gHchYZ/cRxDp9MR6cZ7HDE+HvW5v78P7XY7u0OWX2lSpmw8vo8/aQbuEPlXAqbrOsaK8juXrIl9Hvsl6pxxHMOdO3dgf38fJpPJmi4qyd4uWbiMfBgCi9FDe27aKLMJbLIMFpneEsYyD5Wlpy5ZF3fg4fH39HQsGs7S/3CnOX9P267b7cJgMIDDw8Nsd7+mJyFwDpxMJtmzNAc2hZA8mrZFNA1Njqzal108OlSvDOUFIbyzbDjK/1utFhwfH2cnoAyHQxiPxwXbjnQ1BaUT7Xp08QENs2meflX781WEq225HcXHm2l/abLv1Gl74fIy6jCSg1ZLQ/tOafXxo5B64nqB1U6H/EIKVxfqTpf2OV8bbBuabFGHrcT1bM3PJ/v44vtgTZ+HCaHFJy/4xqHlfZ19yiLDV0HBGYsGnsvLy0z4RaCzjh4JgwaE8XgMJycnWdgf/vCH8LOf/Qx+//d/Hx4/fgyvXr2C09NT+Oijj+ALX/gC/ON//I+zFfrf+ta34Dd/8zfh3/ybfwM/+tGP4Jvf/GbGaF6+fAl//ud/ngkfR0dH8Pjx48KROKvVCk5PT9cqiAssqKBrK2R8k1NdcSSa8De961Y6emcymcD3vvc9ODg4gCdPnmR581WpuPJzOp2qeV9cXMBwOITbt29Dp9OBbrcL8/k8O3oYAODZs2fw7//9v4c/+ZM/gb/9t/82fP3rX4fRaAT/5b/8l+yoH1R0EPP5HBaLBfR6vcKKvNDVnxZhwSWo87CSomjNa5NwGT3RcDqZTDKBHd+jEQ/rmy5i2ATNdafTlHFK25Vu7QNl+USTqDt9HCu+o122hV0ZqzfYPLhAv0t9YRP08DtUXWNfM/BxpwR9L4Xn36myS49T5fwb6UySZlbkS/UdaqBDSCeYaAp3XfzWpWxrbTAajeD8/DyT7ajDiNcHygOLxUJ1UK1WKxiPx7BcLjNnIKaL+gD2Oc3g6oPUTrQPodFksViIO6wkSMYlV1j6n4bfBf5Rpj9FUQR37tyBBw8ewGg0yq6nQIPt5eUl/OIXv8jS3tvbg7t378K3vvUtaLVa2SlDuFt0G3M8H6vcKCW1keYwRBkYHTB0Jyz2sW63mx3brfVHPn6wX+IOvG63C5/5zGfg6OgIxuNxllYURVlYy6ICi5He5wxw8Q8reD1jmpb5ZRcRSm+T8sRVq7sQ4CJw5D0crvkex+xisYB+vw+PHj3K+Nann34Kr169Eu00GGc+n2cL8yVIeguOZUxHSnvTc8EuzD1NIHQzhA8WmcuaZtU6t8qXVmcXnuIAAHDr1i34R//oH2X3G//0pz+Fb3/729DtdgtXudH8+dw9n89hPB6r9G1rh2zT2GW9cFuQHKoAtnkJF2Ja0t80JLlHOqnv6OgInjx5Ai9fviz4J+gCVR5H+g3gPlnTdxw7/ebToTSHEqVn1+xxVxkupzp9toQrI3v6vlv0gDpRJT1LXGtZLH6dMmlWRZMLU9acsQDF1fI+IwddyY1YLBawXC5hPB7DeDzOHHOLxaIgKCRJAp1OB9rtNvR6vUzoQKE7juO1naG4E5MKJ5g/Fc7rMrZoQqTUyD4mKxkspbzQCMYbPEmSzNlJd0V0Oh3Y29uD2WyW1RU1hGoTDzqA6dGzaFDAtsJ7WbCter0e9Pt9mM1msFgsYDAYwOPHj+Hy8jI7Qhrz47t1JVq0/sXL7ur8moAcMljKKgtl+pmPiUtCpVY2Tjf2HZ6ORmOIMd/iIJUMn1ZIZQqlKSQvzRiI8I13Sx7WMJIjxDJZh3wro7DSMVulrutAiOMllFdcR1xHhZQrNrsAl7Ae0s985aki00j9nhpytLnB9R7/QvhcKL0+Wnh/qML3LGn4+Aqltyoo70V5Go3R0t3wGk2SAYDydHo0sKUPan1Jg/aN9iGNt0s0c2edK07oWCnTbnXl65vHZrNZdgVMt9uF4XCYyep8h+tyuczk9iRJYG9vD9rtNvT7/cwxiYZZKa+mYeV1ru8+JVySjS19XAI19uHiAUn39dGswepwsBhoeJ5lnB/XAbxvSzp4nfKES1+TaLLOnb5wm2wvfuQp/pUZV2gXwPvQW60WnJ2dZd9pmq751TcmuMMK35XV+bU8fJDyu0p6CK8zfl+jZKOw1IvWxphGGUh1XbaNy8rdLjmS9u1WqwWPHj2C+/fvw8HBAURRejw3Lh7A/osL4yT0ej04ODjIZAH8j7vW+WkbXIa66jx/F/XCTaOq7sPj8bjaTutNQrNN4VgBSMdTp9PJToFBRyravC0ylEum13iLy05mmcd4OloYjZY6oNVJXfmE2OpccM31vjhlZCmLfmpB0+1lnYMtduaydh1f3fi+S0d407nP10eldq6zj7nSs9gkNKh3xuKRWGsRXq+YsWTy6tUriKII3nrrrex+UgRlpKvVCvr9fnZf6XK5LNwNi7i8vIThcAiHh4dwfHxc+LZYLApxkMY6V5FUZYCaAiClR53QPkZw69YtODo6ghcvXmT37aKRjaYjDUy6whTv351MJoWVRDyNg4MDWK1WcHZ2Bvfu3YM/+qM/gh//+Mfwne98J4uDK10ptLvpyoJOfq4ByifCXVWALEyMMyjEpstUd102RT/nVZu4K+i6gCvYruP/bnCDNxFl5payvJPOd9a43AHB5Q88xoket4kKq0V2sshYLiVVCluHQljW6aKl1QSoUUz6Rp2kk8kEnj17lrUVLkrUTi+gNLuMpriDEB1LNFyTc6XWPtb2x/pB50BZGmh6WN5tyIf0WEFaB3THM71P9vDwEH75y1/C5eVlVpdINx5lSHcAJEmSORHxGhi8j+4Gm4VmAKdtWIbncF4ipSU5sVw0XgdY9MS68wuZn68S8MS04XBYOH2J8q2QMsVxDEdHR9DpdKDT6cDp6SkAFHey4rNLzpDqHPk5PwZ5F3GVxhvSSk/SsGze4AhZUBIax5VfCI0Wx0gZ4Fw8n8+h0+nA3//7fx/u378PrVZr7XQQ7PvoWJVw584d+LVf+7Xs+fz8HEajEfz4xz+Gy8vLwtUWN7i+qHOBCQc6+XcNURTB3t5exov6/T48ePBgbb6gm5UAig5cPq59u10xX64zWeELe5Xmg+uCMg7eOsHHLj/ZA6Ae+3XTDvfQfDn6/f7a2MXTUCy4qmNHdcZSYwetGDQQUQE3jmPY29vL7jLC+CcnJ7BYLGB/fz9zxn744Yfwn//zf4a9vT04ODiAx48fw7179+Czn/0s9Ho9+MUvfgHD4RB6vR7cvn0bfu3Xfg1evXoFv/rVr7J0UVjhx6rR+8lcK6UsCmhV774WVlOYOR0u+ufzOZycnIjv6cRA7/yihhoqlOEu23a7XXDgUvzgBz+AVqsFX//61+HWrVvw4MEDGAwGBeGQH6OC/YQ670PqjLeFq200gyYPQ9N1TaBVDCIWuFZPULok4wwNiyuS6b1W+L3J42g0GimqMkQtXd6fy6SLkJwEVl4Rmqc1HWnxgIuOKgKgtlqPh6V9MGTlz6bHUVNxbpBi1xez7AKsc5Fv3nelIY1BV3hNlsD5HgAyp6x03BOPGzKXlgWXgXyGdPwuHdnrc0ogsB7p/xB6aR5Wns/nUClf/D6bzQr3gUnh6PyotZe0yJKGaxpchkFHIX7T2onv7sDf9Bjl0PwpeN939Z9QuMZsHMfZdR94DynPC/v1bDaD09NTGI/HMJlMxCOkeX+S8uflCZFRXChTR7Q9aTks9PjkeNx5h/flXlxcrC30dfEFqjdhXxuPx9DpdNaM4z651CU/Ve1jnGdJtPh4nkTPJhAiU4ak4wpXh1OnCg0h6W9T3pLGpfRc1QknlZkujplMJnB+fg4ffPABfPzxx3B+fg6z2cxkNN8EyvSp6yJH4xzOd680WR9l7HuuME3xA+07p39vbw/29vZgPB4DQLrTlTqLeFzKp7H+8fTB+XwOe3t72Y5zgNzxdN2OJ76BDS5b3VWENH7jOIbBYAAHBwfZ9R2vXr0CgNTBI9m2MS38w/nEx1M0mzbXl122NYu/wScvvkko6z8ISVOrX4u/wJW2y4aq5Uf9br7yVLEDh8bXoNEb0m6aTZrXh5SP6501X1f8puVypzN2Pp9nx8cg8Ig0ekRTu92G4+NjuLy8LBh6PvnkE3j58mUmaAAAvHjxAv76r/8a7t27B0+ePIE/+qM/gvv378Pf/Jt/E77yla/Ay5cvYTQaZXEePXoEP/rRjzJnLEBqsJhOp3B8fFw4aosfu4Xl2BXGhcyZTwhaZ9UG7nQ6hY8//njtPRW+oijK7kiix0tQ5QV3P+NEliQJTKfTNWPdn/7pn8Kf/dmfwb/8l/8S7ty5A5/73OeyY4kxbL/fL8TBnRv7+/vqQLKiqvJ8FeEzCKPyg0ZMalTHYzrwGOqqdOwKqLG5ShoAurORog4jLDfwl4nP6ZHSbxLU8F9H/e8KP77BDaqiLI/Y1jjgxvrZbJYdW6rdd0h3X0rOEo1vlpW9tHmPyjFa2aS7DkMcDRK/riJ/WPuHqz9EUZTdFU8NB1pYACgYRTk9s9nM3DZljKpWoI6B8oqvnul1JLRt8Bg+vkOWz53c6cTLH7LquGqdcHn88vISLi4uCkYeSivezzydTrOrXngYuvgyBDhufONLilcmL4qySjsPrx1DGkURHB4ewuHhITx48ACePn0K5+fnqtGMy8uYBl3ciPHpqUIoj2+Kp2sGfsnQ54svjXG+SOIGbza4o5/PtSF6pmWco+6K42o4HGb879NPP4UXL15kuwt98/kNmgXamMo6YuvmmdK8FDJXobxVN02ubwcHB7C/vw/D4RAA0jve+WmCCDrX4ZjAeWg6ncJwOIS3334bDg4OoNvtQhRF2eYZvuv2BtcDlv5dxRbepB5QF+I4hjt37sDt27fhc5/7HHz00Ufw/vvvQ5IksL+/ny10QPA5jcrkPJzmjN0kbu6K3RysbVvW6SvZn2lY3r+aPNGgjvnXsoChCrQTsFBGrIK6bNtVId4ZSyEdLRtF6Z0GcRxDp9PJ4vV6PTg6OioIB1EUwfPnz2EwGMC9e/cKFZokCfz85z/PmORsNoPvf//78OmnnwJAKpA8efLEWwhUDHq9XuEoBc5seTldFe8yEmjxNUWYh5dWEISsrtAgHWPiuj+UtgVv416vV1hJlCQJ/OxnP8viT6dT+OSTT6DdbsOtW7fgrbfegj/4gz+An//85wVHMc0HhcKqTsKyBl5KUxXHWN0DVlo1Y53suSJMnfESeH/ylclCjyTQcAO4FFbLS6LV975OB62v3ssYIDVeESLQuepjE5MI5hNKe1VnhsWRwePc4AabRJm5ocy4pY5CblDn4Xgc6btklNfmIZ/zVfqNDgqfMlGFH1Zx6HAnnY++KoZfTq+rjqX0JAdSVQfiaDSC9957L7tbCe/soyfcNGl0wLTn83lQWTqdDhwdHWXH8dJ7dF2yis8hWwdCnGKULv5b6hMhyj9deDmbzeDy8jKT2SeTSWHRZSi9NB/tnYsH0fw0XuTLR/pG+SP+brfb0Ol0st1G+B0XmfE+QYELVheLBdy5cwf29vbg7OwMLi8v4eOPP4aLi4ssrGYYCJkb6hxrrrR87YEnYqERH48IK8OnfcAjaanu3rShs2kZcdcN12WBd1HTvh46R9Axv1wuYTgcZndkas4iXPxwcnICk8kkG8cUTennodh2/k2D8ldpAcou933rIhWXbCDZkixlposZMXy/34fBYFCIf3JyAj/4wQ/gk08+AYD8eFieL/LmdrsN9+/fh3fffRdOTk7g1atX2e7xy8vLNZqrOOVusDvwOXS0bzyMpldIstAujG0cb1EUwdHREfR6Peh0OjAYDOCtt97KNgAhqFyhOVoleZSGcdEiQbKJ0vdSWJ6epMdseo5rOp+y6bv0uzphmQNC2kzqX1zvkU772JSNF+m0QtKbLPqc9O7Ro0ewt7dXkO3G4zG8ePEiOwUU0+d/ZaDZCeqw/5fhk+rOWIR0aTf+RiUXv+O9H5zgTz/9FPr9Pty5c2ftqLH3338f3n//fYiiCBaLBfz4xz/ODEJ37tyBz3zmM076MB90xqLiTOFTSstCMpZpTibakbQ7vFyKvIVe7Ux/KQ0c9PhM4+FOGUwTIO0H77//fnac2nK5hMvLS9jf34ejoyN48OABPHjwAIbDYcEZS8uKyj06eUOMqFWMHFI+XIguw4CsYZsy+KHQZBW0NaMvfqMow3C0vk/Duurb2hb0OHItP9d76nCQBC9pEikrBIUYY+sQdEOMZSFKtKtey+S1bTQl1FYxVm5S4CoDqgS5wryJ0HhhCL+z9pmqwqBvfuAGI+5cClGE+DGe9L/Gg335YFyepsWQJsW15MfD87T4s2SkDGk3nzGFtpFFIdHKNh6P4Ze//GUmu6NzCe8bDZm/XPn4aNKOTtbQ6XTgzp07MJ/PYTQawXA4VB05vjm+CuqYR0LqzjpHcD49m81gOBzC8+fPod1uZwtmsY1dx5M3BZ9hgoP2d5oG3w3PZT3UU+m1Nho/k+oXx8Lx8TEcHx9nR6Q+f/684KREXudrR99c4foewqekudrV17AfJEmS1VWv18uOx26qT1Cn7y7eSdcUtDbYBYO3BLQToO4eor/zdDAuOmNxl6tr5x6eCBZFUWZ3KrNjJER3tOo2uy671w3J9iDB9X2T9VUmL0nGlNL1yWqYFtrc6CYIvIMZbRpJksDZ2Rl8+9vfzvo2Lgji463T6WTH8N+9exc+97nPwWAwgDiO4a//+q/hvffeA4D1zR9vUj99E+HT0RFSP0B77bZkwhBEUQS3bt2C/f19AIDsJE3qg8A5azqdirIi/00h6av8O9eNtXCcbuk3D6PJB01gF2WOTdPkajeXbVt7L80frvkB/1ttSU3ZgULSs/gANL2Gh7l//z7cvXu38P7k5AQ++eSTNV4kXallgWXsheikvjxC4HXGAsgKAgrk4/FY/MYxm83g5z//eRb2/fffhx/+8IcZ8b/xG78B9+/fhy9/+ctweXkJ7733HlxeXsJ3v/tduLi4yBx9o9Eo69SXl5fQbrfh4OAgSxfPjaf317pgYXhVDOwWWJR3i3ERf0uTqG8Q0QuiUfmOoggGg0EW/he/+AW8ePECvvSlL0G3282Onn769GmWDq7Ew3xHo1HWJiiM7qLisos0aXAZj/DIIAD/sY6udAHCmTWdLMoq6hjeNflFUVQwqklMmTsUQsoSegddXXAZYiz9M9S5UAZSHrtsQLpBfbhpYx04LiwCooW/aDKHFI8aclyQeAg6Eaix3UdbnSukrfOuxajncn665oKyhosqcDmTQ+JLc7aPVpTtOp0OjMdj+O53v1s4LhdPL2nSAaOBlovnzft5HMfZEcUAab/kR/XS8Vi1z3LDi9UpVhcwPzyNCHUwbbxSemezGSwWC/j+978PURTBcDiE5XJZ+mjjNwG4O5Q6WutMG0A2+GFb0rypMZ/2vZB2K9vGyCuWy2Xt9YAOhRuk2FUZqym65vM5vHjxIkt/sVhkxvTlcpn9fv78eWab8B2dHbp4oQrKzt/XAXS3CkD9NpRNyWmbaDdOV6fTyebeVqsFT58+hdPTU3j58iU8f/4cAIpHM2oy97179+AP/uAP4M6dO9l9sdPpNJN7BoNBdnVVk0dd3mD3UMdYpH1mV2RESd7FRZkff/wxzOdzePbsGQyHQxiPxzCbzWA2mxXuILeWxWpzszh3Q9Pflfp+k1C2X4T4keqg56r0Dale2u125lei4bQ70mlZrSethdBUduxa0g6ByRmL4E4fXHVCCeEVhXEWi0V2mTZHFEXwuc99Dm7fvg1HR0dZo0wmk2wl5P7+Pszn8+xI4yRJsmN59/b2CkYcPPJIopvn6ypjXbCsdnDFtUBa8cPz43RwAwCdWNBQQ4+9PTk5geFwCE+ePIE4jiGKIpjP5zAcDjMHGd4njIMG26jf7zuNvGUc3nUOHL7KqSm4Vo5YjCy++uEKki9vK1zG7CrCR2i7837MFx/Q99qYcNWtplxLzuWm+gqvExcdFgcMj2dBiJNk20YI35ii/0PqY1Pzw1WBZaw2PTZ2FaHjsMxiFc0Bh+9cfM03J9AjXiV6pXihi100Gq3zVWifCumvWvq0vSxOgxAaLc54SzxfGfg3/N9ut2GxWGTH4eE7dHLWKZOF9nHpvdbvtW9VZQ0fXVXnvlBnLpYzjuPMKeda2EHbG3fBjkaj7DseDyvlZaG9rHGhbL/XeAeXmyUehnUVOj5Rp6HOUM2oZ+0PFr7p4tlNyFsaHdjPaH+zyoUA8jzCZXRX3922bPmmwzp3ApTjIbgzFuOjzQHHFva74XAYNCdiepvQ6d9ESHoVtyM1gapyhDWcVI4yMjvG4zIangaA/09OTuDy8hJevXoF5+fnWR70Lndev2gX/epXvwqtVis7FZAu0kKnL6e/TDlusBsImX+rpM/lm21Ak/kBijZvvE7x4uIChsMhfPDBBxnt/LRMSa6mcOm8IeF933YJ26IzhP9YZWsXqpazrM6jgdJrsbnUBZetQ0Id7YTpt1qt7C5zDI8LX2lY6TpLfB9Ki6tOy8itUjo8n9C51eyMlRgRHp/Bj96I4xjiOF5bWR/HsViZSZLAt7/9bfje974HAPkRuJ1OZ23bMtJAG3IymWTP7XY7O2J3G7A0gMbUrQZVX4fEeqYdTZtA+Hs6IFarVXaXCwp0s9kM/uIv/iKLh6tVHz16BJ/97GfhnXfegQcPHsBPfvITOD09zdJCgwaAvHN6V7AN5S3EqMfbje4KocY5fM/HnGas4mnjX5WjAELqkdPFlRdXWpT3YH+sqmQ0oaQ07aiSDJJ1pWd5v6u4KnTe4HqD8lTf+NQcr3Re54bssuMS05PSQtC8rDsiNL5NZQdMW6Kbz3UuZy7OcavVKqOVO6x8ZZTo5/8tjiTNOWrJT4ur5aXBZxzFfpgkSWHx3C4D+wuWaTQaBcsn1raU4tUpE1RJi55+Yu0vuwSNT4U44DS+SNNBufD8/DwzyJ2ennqP3+NjBvO6desW3Lt3D54/fw7z+RwuLy9huVxCt9ttbPy4dDgLOB+g/dhV/3hE8d27d2G5XMKzZ8+CaPYBeT4ursZ33W630L/rxI3joR7UZdDEo4ZRntB2RrRaLRgMBpAkSXbaGbUhcHmibDtzuxLKEYvFonLa1x3W+bFM/Vl3znM+Z4FVPqujz6N8miRJZoz+whe+AHt7e/CXf/mX2VULq9UK+v1+5mCi9pwkyRdWHR8fw+HhISyXSzg/P4ePP/44O+YbbbLT6TSzw+6Cc+0GzaIqf6J2wl3G4eFhtglrPp/DrVu3ssUNq9UKJpOJuSyuay4khOgCN/PFm4Ey+iG3RYT4jrYJn7M19N3du3fh1q1bBb/ddDqFn/3sZzCZTGp3Qu9CHUoI2hkLsN7pqEHNYiCi/ynOzs6yu2JpXvP53CtsU+OgZHyyGMEsDaQNuND8JGhGFSlPycimGRQko4XmmOV0oODInXmXl5dryvL+/n6mWON9Q7RN6FFblL5Nw+IIr9ORRX/7jKvWvsudpppRxUKfy1iOv13jo4zhv27wFTUhTgnN8EbT4++rGBFDwmn5udKUDPouo7yUDx2nFkes1akRoqxLvO1GsH0zcdWc/xRS362rH0vORZfwK4WlcSy0otGUygQ8nEt+4W0ZKndpafFy+GQcba6t0se0OTw0DQllFT2LQxeNfU0eY+eiQyub6z0a8bEfhtR5FcdqaPtqfbcqysyJ2M5Nzaeu9ELykurMKrvwuEmSZAbqOI4Lyr2PZ/C00cCNRnV0Gvrkq7pkZ04zPrvCciOPVTbE99oxwha5UKOJAo+h5f2yzr5pmXub4NkaDZb03gRZl5aRLvaS6pMfzy2lgXFd+otlHqLjRpMx3iRY6tKlH0thysJnr8Dnsu0UEk/ipa506R9fNH56eprtiI3jGPr9/lpeNG6SJNl1BcPhEE5PT7PjjVE24qcZuGwZbwK/uYHbVr2Lejbvn8iTcdMVbghD+zLeD0tP9nGhrF5eh7ygzWVV7bch2MU2p2iCL2n1v6t1UAa7ys/xVCdKH73yErFareDi4sJ01agFZWSCTfePYGesBLxfSnrPgatfOWaz2dqOyel0WjhCDQULfpQa7s7F44nxXtkmhGcudHFDUBP331BBSku/ivDpMnpFUbR2VxAOKHr0w7NnzwrHUMdxDAcHBwCQ1tF4PIZWqwW9Xi/rA3ikCs3vTUadSnjIXQ90nLiMFUliO6qRpqulIxlctPJTgxGPSw2MUpm5Ya4s3Rqu0wReBlfByPSmGlGuC/Ckjfl8vvP3HrkMV6GOE8mAUkV5lBY40Lx86c7nc+h2u3D79m2YTqdwcXGxZkAPcbJSUJ5etY1DVndTuSqKoiDHHjdqac7sEDqkd5vgme12GzqdztqRXpuAJKu7DOoUy+UyuyONLgCksgKF7zqPUFjvpLWWR0NVBzLGRd0L2/g6zYuSY3W1WsFwOITRaATn5+drRz76nKjUqHdxcQHtdhsuLy9hPB5n70N5xjZkIBdflnj3crlcO/ayDuD4m8/n0Ov14Ktf/SoMBgPY29uDp0+fwg9/+EPodDqZfrjr870VIeP3TdCDqTyDd2dqSJJ8N+A2QJ1oAM3YeK4SOL9rqr+GystVUaV/WfKnvAwdRn/xF3+R2ccoHbS/4xGOko307OwM/tt/+2/w6tUreP/997N+yu2x12mev8GbCWmMnZ+fw3Q6hV/96lcF+cXV3138W5PTd238vAkLtuosn6Zfb8seuSu0VIFrTEjf2u02HB8frx1JrNXHcrlcuwbVh7r1+6YgtXcpZyw3ErkMSRq4k4TeTcOJ5GdHS4ZJmq8vb8lQSn9zBV0yXPqUeA6fk4u/s6zu9CkwVkgdwxUfw9JjhdApjoI6ruxDxy22K083ZIABVDfUbgpllRVtbGmOy7KGPQ7X6lKrUZinKwk9Es2+BQFS+i7HrdbHqhpDXfTwZ1/7bQMh5beEKVOmXRKALChLb9l4u75SEaC5Pq2VnRrOLWlY5uUmDUhl207iGRa+Y0GIs0Dru9Q41G63od/vZwZ7dISFyl4aDVpYV9/jjrgQOqqMN19+vO0kh2FIv3E5LX1tx+nxoazzPxSW9uIyyWKxyP54uevkn2VlLYu84ssTsek50yLruXSakLTKIKQ+cVxouoPUbyQeNJlMYDgcwmQygel06sxPg2+O85VD+u1bBBCKKIqynVu40AH/QvLQeDQdS71eD/r9PgwGg+zYWrxHcdeus6nSj3dB/m8KdfFan3FPs81UWaSizZkhsgQNf90RYtvyfasjbymvELscf++TnVz5hgCPIJ7NZtnVGlIfl9Lu9XrQ6/UyGWg8HsNoNPLeq3yD64m6xthV6TvY72ezGcznc5jNZtlR3ChfaA5XiUeE2Fya0jF8NEj236p2hl2GS/cpI1+73rniWPqGVQ/ywaK7V4WmQ7gQai+Q0sXF3ugPSpL0ZAeU8y8vLzOacHGSdJ0M15O0uZu3mzZeLGVrgi9K+dayMzY00/l8nu12QeBq2MFgsMZIJ5NJdoQHBQ/HV6m7KloKaxHsJSMJKq88XR8d2EGknQi8fiS6Mf0QRqExF8lIqKWB9PX7/ewbOsyn0ynM5/PsHt/9/X1otVqwt7cHy+VS3EHtAg5ihLQ6sEnU7TyqYqznoEek0RUhIc62UAMhzdMHdMDz9pJ2sroMNzQeXZiB/QLTwftxOc1o4MFnKZ9dwLbo0AQAn5JNJ7oqhuZdRZn54AbNAfncLi7ICekHIXMApulTMkIM4hL4/EHzkRTbvb09OD4+hpcvX8KrV68Kqx2rzD+hhjRMI8QZyu9Vp3ORtoAIw0nOU5yPrEZJyjeroqrjFcPi6Ta7yM8ojQhU4Kg8QGVRGrdKeVxzHH3GRYiWI10taMqIvQs7YnfZ6CfxCmz7k5MTGA6HcHl5CYvFwsnvQgz8XJ+k/Z33u5C6K9uHsNyr1QpevXoFSZIUeINFd9DkedQJXHE7nQ7s7e2tnZx0g+sFi1PVos/ysWTRWywGWOk9l8feZCD/a8pBQdPk6fL658dcW2QyDNsEfHIHzsN4pRfyemkHOJ2HWq0WPHz4EPr9fsF2qJV5l+daH3ZRFr3BOjbRTrwfD4dDGI/HMJlMCjICv3c8xMHqktM0eaaKQ/Smb8tool6a4oN10Lpph2DVtELjt1otOD4+LozNKIrg8PAQHj58CB999BF89NFHWdrD4TC7AsYF6xjSTvbZtRNOanHGulabaGEkox+G45WEd/XQMD5G6FsBwJ0JljLx9KUyaXlIabsQx/HazlOA4j2uWj6SkiO1h9VoJ022KAhi22C74X1ymCY90iZJksxhZjWoo5CJwjb2jdB7wqR0kUaEpR9XycuVjytOKA08fUt+vvylPhXqUKC/JSNLyJiTwuGz5LCR6tMyNrU8LPS6aK9rArYoXjxMmf60CaXONxZ9kNrGl07IPMLTa8rwgJCMvXXnaXGG+fhXXcq/xK+wv1Jnn2Skpmlo9Lja2mJgrhNSv6RztbUeJdlDqhstTV5uS94om/R6vTXll8NiGA35rrWTlaf7xhKtO8nxQOvbosS78rcgRGl31ZcvHg27KX5fFWUci9rYoN8tkNr+KtTbrtPngkt2scgLVduHGsVdOmWZPKR5OFRelMJKczfKxpZ+z/V0zv9csoCUNi4ynkwm0O124cmTJ7C/vw/dbhfOzs6Cy7pNXOWxtG1osqPU5y3jNkRG1gzrWvw33XDukqlC586qeh1Pi9Lhs2Fpafh0Ahe08lj7C71Sw2WvSZJ8odd4PM7u0kNeijuLQrDrfXrX6dsW6qqXXUvHB00G4ZuWfHbcEN4j6YBl0vHlgek1WZc+2WzbcOllVpTRfy12U2me8NkYQ3wsV20savlqNhXpirHhcAgnJyfZggr849eT8Hr29ZOqdV5XHYbKBI3vjEVIxivukKGdl4bX7pmVlEqepwYU3vj9YlYnSShjtnYQBBo7eRq4WpjvpvVNNj4jFIdkfKTv8QirOI5hMBhkkyKfHHFFNQBkd8b67gKieeEKbdwhi8ZfPN7FVeYy2KXJyYImHUI4RrAdqMKAu4ssoIsrXAZfyZHiYmj8G90hS595vjStsoYzH2+pmkddsDplLOlobdFk+Zqsv20JLlahG/kpX9l11XhUVdA5ZbVawXw+N8/X2jxN2wD5TNOKUJU8XI5ULTw3ZvKxRMvto4uGRdlkb28vO52AG+0RPrkkZHWiNAYsCmaIIo5lwP5mkdvoSQ/UaIbfrHlzaO1i7UMuh5Fl3Gybz/icXigDl1nhSuuBz9eSbCrNo/iHbb7t+to1hPK7UGO61WHJ26qMzrcp0HKGnELjS4/yf5fRv27wtLvdLnQ6Hbi8vITBYADf+MY34PDwEFarFVxcXDRGRwiNN9ge6hiTZdPgcgKdB274+zp8ctUm+GoUyUeScluiL41QB01dWCwWzjmMyvAok758+VKUcaW5YpfmthvcoCpQfkHHTbvdLox/yadQ1Yla5xgKcQ5Z7fhvKix1UXbO1vTuUNnCp2/veluWoU+y649Go7W0JpNJtgATIL1HXToZomod7YItw4JKzljeMS1GL5/CjcfccqVUOlquDgFZMlByOi2NSe98oGlpg5E+02NKEFgHeIwJpw3fobEe752QIBliKR1cKXcp6dJAo0cPU8crlg0nzyRJ1tqW1wenFf9LR1ZpcULAja2bcP6EGkOsjr/QuK7v3JBvicvD8jHropf2Q80ginlK7aQ5HLT4VcH7nhZG4gdNgvcpjZ/Rb9o713tL3lXSQFgdMBzSuK4DZQRkaxxaviiKMmcDvY+zaaHC0lZNG3N96XU6nex4UkkOcPUTapDvdrvZIi+cxywnNviERWwnnyJYh6BL30k8W6oX6R2Fxh+wnqfTqXdHrI9urc6k76GGMq40Wfiuaxe6T5FytalVYdTmNAt4XVnqyzXvW8sdipB21PqoVE8h/Jf2Bxf/vQrKm1We0MJULWOVfhIyv4TQECpTW+Vn5Hv0juKyCB3j2twvyaBSei7eyuNzoL6m8ahQYBr4R++NsugJVWCV063xbrB5SDKMK6zL7uLSa31j6k1FmfnGFcfXHr525vM4vds6pN1cuoIUpk6d0gXa3zl/xIWQ2pHMTelnN2gWm7BBXjdoJ0ZyhOqSEkLmIFe6Fr3SpzdfB7j4lnXu0N6XGUvWPK38tqweXbWfVU0rpK9pdiRpnoyiKPN5jUaj7L12nLBGi69etVOMKE1N6cZl0NjO2LJMYzKZqN+40RUrVbtXxmUIpfFp47nCcnDjeZIka7RoSj9NH4/gpbtd5/N5dreudGwzXw3EV1FbjG3ScyjwrjGaHv3jzlgso4VBUbr4GeKdTkcd7BzW8oU6GVyG7BA6yiiIIXT6aLEa9Xh8iRbJMMzvc5FAw9C4PA5vc04HH5NSnhbjVV3QDMehfYfGDYXGg1wTnDZ5uya2OoWGuoXOphXTsmNIAo6F6XQKSZJkjq9NCgiWeaFsf6yCKIqyo/DpqnKJXq2vJkmSnbawt7eXfccFP5YySf3UpzyFGBCtBmLrPE/TdtHjMmBimnjEpEZ/WaeW695WDZLyLckEGr/leZZRfnm7S4sDrMY7i3JgUUzK8FFtDi8751jmGx7H9RwCre9JdPG5jo6/MvMbldW0fmdpn23w16YR2qYuOcklw9YhG/P/k8lkTf6U5DsJPnos77W8fH2ojKyPYfA4TP5N42ecJokH0HfojAVo7g4ni5zrap8qMqk1zq6P9Sq00X4bUpehY0ULy3VFH//lMgwtRxkarhss8ofvvRbGx0u19kBY7pqzgM7/Lhp4eFcYC1wyOrdb4L2xfDOEpLvjb43HNq0f38ANTVb26ZQ3SME3M0l15NrgocXh4aR2CdERokjeyS/Rw9s+VJ/2YRfGOte1+Dctjs82oukIPlpC8iiDqjqxK12JV5RJqyykOUay/cdxDJ1OByaTScEZy/1a1vxc36WFWdzXsCn4+PjGjim2wjUIqt4TaskboLoRCOEqh8VYiO8pc6aGPh7HdfyWJli6jAdl6gPppUZtq1GMIo5j6Pf7sFgsRAc93leLTllMU7pPsAlBs6l+6JsEuEBA45VJT0qXvuNpVQWm0W63s1WstL/w+x8Q/Ax53rfpmKALE8q0U0gb1JGeNV1fntzoULWPWgxVdWLXDVIh4AZby7Hs7XY7W7ySJAl0Op2Cso31U+Xo07qxiTabz+ewXC6h0+lAq9UqrKDT5kIXfHNt6NiWjI08Pc14HQKfccpnYKRxOJ2u3QRSvovFAobDYaFvUrkG/0vvOLA/W3iWJl9ZFSkMhwI5ttHdu3eh1+vBZDKBxWKxdgcXLQNPmyohvjamJ6hwHsHLZAXn96H9t8r3uuPVkQ9V7uvkjzQ9vvhRaz9sb0qn9YqHptpml+Az4ocYLzSDjmbc0tKgaVGZFOcdPKnCZwAp235lxnEZuOqeGx3xnes0qrJjbTqdwieffAKnp6cAkNazdMfUdcZVGct1yXu+dMrkY5lDffJiiFF927L3NrEJndCVh2arsNCDvMzHX6Q2dsmyVO6oEzy9brfrtG9I8r1V/3jT+/WmcVX4/i6Byl14XDEHt5FYeYjV/hYq82l8Q7ONc5rr7ie7MMYlG33V9Oqsp6vEC616TZP5SXUvzbG4gY+e6CC1naU9m7B5YJhNt30tzthNKY80Lw1W46T0PUSYl/KTnn1OUF+e3FDqYuaSkdDH/H2TSlmhmw9CixGVQrsnmKdDnRO+42ksk6kWnsax9I8qY8FnEKftaqlLl1JhTdciRLggjTVq5OL3vdKw0iIMLX908FLDuMuATvMpUy4JlgnEx5PKpEvDuSZLXx7Wug6Fhf4mjOgSDVL71+HQKwssdxzHmZDC76Jsok4s/Kppw4tPCUKFS3LGhtBlmeu4guAzdlTlHRof5mn70giRWXxhLPxrsVjAeDzOFtFgP+V1SMviamdqXJJkB0lesioEWl50N+z+/j4MBgNotVownU5hOByWUrh9+fvm7dB5lvNLPudpyr6W564on1qfttIn9beyZXOlIxk6aVtofaIJo+11gWS4Cq0rOs58cxsfk3xsoixJF3r6VnDzdH16I0KTx63QZHgXndI7ngZ9R8dmVX6RJOlis7OzMxiPxwCQyvBVjoIuW2+7hl2iqS7ZxppHGXnUyusl3faGF9thkXHKzt2a/cyiz1p0JI2PSXn73mlzfp2Q+qd0Wp4WV5JPpHBvKrYph9VhV/PhusmZfMxKtnGpTjlvcNWJz1YawsfKyP4SrVVsMLvU/pwWq03Qkp5v/rfaBkLjWKH1hSZRd38JtSVJ75OkeIKspk9peoiWV8g4ddndmgKnlee3cztjtwXayNL9r6HplDGo4q4oitlsBovFAnq9nioYdrtdaLfb2Q4iDXxSchkVqq5KtggB2rZ0dM4Nh0OI4xiOjo6ybwcHB9Dr9bJwL1++dJb5usJq3Gkq3RDhQGK80qTHFQ7sq7gTgTqlfOXFsJgXn6jRiVC13iz1gPlseqW/psRWSQ9gt4xEZVF33Uig/TQkP+z74/EYer0efOMb3wAAgFevXsHp6Sl8/PHHZoW8LL2bhNXwtlgssrtirbvLENIRuL1eDw4PD6Hb7UKr1YLj42OYzWbw4YcfwmKxyI5PlOZy6uzytXEThhqXQ80KLuz6HBjIw4bDIUwmE7i8vMyuUqCyBU2XLijQ+C3OD8jn8T4RyQlG7yGnjltJeXU5U30KB72vmX8rwwf5QrEqc4/UnyxGSJ4GNdbtIiw802pgwe9lnTQ+477EG27w5kEbU65+6lLS+Vi3jglpbqg65ml8rkdSSM8YFvkq8thnz55Br9crlAnvqS0rL+8qP7uBDkuf1sLwo/C4XKbNl3EcwzvvvAO9Xi+Taz766COIovQ+Tu0ktuvI2606qmts0RNOeN1pertPn5dokvQevmC1aR7QZPpaffB+jnxSit/pdKDdbmdXugyHQ/VEPlpnbxrv3LXyNmWzuW7g5ZLum+d6J+dHZerGtckoBFYH4w3KoYr8uAu4jjIGAGR2d7StAZSzoyC0saLZ7HzhNwFNlt2qM9Zl9HPFKZNPKEImRd7wIQIhN15K33EnkObFRwMmvXPWSncVY5zL2InfXe0rOYOpwo9HEdMdsnt7e9k9f4vFAs7PzzOHtcVAoLWVVC5fGrsEn1EyhHafcuQKJ+WjGZtoP/DlxRdIWMaYFobXQd0OlCq0WdJFWOLS+tba3tUedfV1XxuEoMz41CZnn5FUmwe0fu7ifZZ+mCRJYcdeFEVw9+7drP9TJ2HdKMvvNuHQoUaZMtcVuMLjHRa9Xm/NAYu/rTzVJTeEOI5oeK3fWJxPPF8pf5/zgMfBncqagyC0P1AZiMoE2iIrbjzS5n2LDEfzxbyxr1nqpM5+WDZNH6h8qZWh6vi11HOZuHXOG1I6ITxOo0mKbzVs+sbmm4AyBkhJvvTJLTScJp+G5G+RW13wyRacthB9UtMrXbJvSH8tO2ZxMRX+Pjk5gW63C8PhEKbT6VqYEITwsZA2b4oHaShDm29uCqkXX9g65T1XWa31wI3tUh/X6MUTMegiP34M+XUHlbmonG3VL/lvqe60tvHZinhYTW7l9jEr/a68LOltq38kSVLQgyR7YLvdzq66wTAu+8yb0t8lbEKHpbDwWPrfEofHv65yJJVvpG80jAtWvVdLxyfja99cPFCLW+e43NUx7tPFpPrRbG5V5LuysOqQV3FcWu0WIbqPJf0QPc03X2t6lSVvV7rSO02vcy0QuNkZC7kgR41yALkDSArPf1sbXgJ1SGqG5sViIebBaQ5N33U8bB1Mu4yCTGnpdDrQ7XbFuwHiOIbHjx/DaDSC999/v3Cnk3b36FWFZFDl/TBJkuDdcjRdixJWVUigYw0N3/RoVjTy83LQdzQNXmarAknvrJWUPEs5rPltE7SvhPQPTZgtOylXOW2gKsq2VR1tG8L/FosFLJdL2N/fh06nU7jcvtvtwuPHjzPj0SeffALPnz/P7pl9E04H4E5ACTiWpZ2VAEWjzenpKVxcXMDdu3fh4OAA9vb2RGFJ6j+8P4c6AasCjTFU+bTGQ1DZwSLIcjmCni4gLZYJHT/oFB8MBjAej2E4HKp08zJJSplL6cW6a7fb0Gq1YDAYZIu8mjBklFUU6PdWq+VdiKAp9pLRlMsRmrHRZfxoCpriTb9TWSFEZqGnZvhAFaiqdRDKF3bNoNYUPb4+G1pnPF2sd20+sBqBsJ/RfqfNAXXDYhjw8V4q59P+7zJKhhq1tHbD3+PxOAszGo3gP/yH/wDL5RJOTk6yUxbK1uMujZVtoor84ZoD6oSPX/v6uzbHAxTtNlznwBNlZrOZc+dr3brKtni5j+d1u13odrswn8/XFvNbaebj3mePsqRHaXAhZPdTGT1fQ1PyvUWP0MqcJOmOWPxDXoqyEvL8benhu4xNjU1JDtdQpY3elLlQsjPRb1o9WOpH08Ms2DXZ/bqgSr3uSpvsCh1NQht7Ze5yxrBWuPS4qv4LK8rI4LU6Y0M7mUtI1NIu04mrdP4yHaNKHIsThCu7NK7mQHYJeZpBt6xS5zKcckg7UNCRisoSCpJoGFsul/Dw4UPo9/sAkBrV33//fSetFuVOisOVPyt8Bk6JBhcsSqgFrvGlwWXc4fF8dEkGGtd3qY9zumgYF8PlaVgUs7oEsqrpWOJZ2oIqZDQ9yVhpMYZK/TykP28bZZRzK3+T+qeWDx/f1HB6enoKh4eHcOfOHVitVjAej+Hk5ERswyaxiTzKwMWb6THlSVJcTY47IdDJG1o2n9GwzHwUCst8YGk3HsZn0G8CKL90Oh2YzWbeOZfzfembJW4URTCdTjP5IoqibAEYD+eiXcvX5ySRvmk831VW2s95PI1my7xH6ZfSsMDa37W5iOdHy4xH8YXSF9JnLPRL6Un8n4evYjCyoC7l39J3XfIXXksiOUGkvkjfuerKpTNJY8qnkGsyEP3N+5u1fikfsfBbLQ0Orf/zMFIaknzi+26hSeNV+A53xi6XS7i4uFDTaRK7KM/sGiS7QF1pVUnHN2dS0LC0H9OF29xQyNO0yPouercBjdfhOMQFyfwKoDLjgvNNi/4o0YjvQviZKx/NviWl59J/tXnCJ3uXhU9e5M8YHo8njuNYPDXOlc4NmodmK7lpi3VI8n7TCGkHC12hfKwqQmjxycJlIPEt17MmD/M0y+hgVhqs6TTd/+q0C4WiTrkuZP4vS0uVvuvqa3VB06G0/Da2M9ansAPozhT8VhZlDUZaZ5JWl/nysE66UZTfHUtXwOFqbGnHJ9KCigXerSflw3cX+kDpLnMGu6tepMvXcZdKkiQwGo1gPp/D+fk5DAYDGAwGMJvNAADgH/yDfwBf/vKXAQDgJz/5Cfyv//W/go9pDqF9W8qUC5KgUlc/1OLxuxetKy2l8eIyBPN7ZtFQL/Vrl7FY2vnNy1VF0AutwzqESovhLlQxpQYyrGvMh7d9GVr5jmc+GWpl2gUFpaxxgvZ5qdzSfMfrYDQawX//7/8dnjx5Av/wH/5D2NvbgyiK4OXLl4VwvqNd60LZughFiCECIfG/fr+f7biczWZwenpaaBPrThytj25yd5SLNgvfdxljsO5Q7kiS9fu2LeNTk90shsxWqwXtdhu63S5MJhNnefg4KnMSBrbbYrGAX/ziFxDHMTx69AharRbcvXsXxuMxvHr1KqNLKpeWplRm/kzlH76bpwykPmhVOix9yEpDXWPAklan04H9/X0Yj8cwmUxM49lnyA8tAx//dKzRb9b5s846RJqahEVOTpIkOzZxPB4XdtVL/ZLKtpLsKLWdpI9J8TldGs38PfKY6XRaaO+Q02h8Dh+JBgs/oH3LJeMjX9e+0/e83mhdle1TNL3VagUXFxeZzrdcLmE+n5dKtwwdu6jTlUXdcplVx2iiDn3zlPSOyi0u+xEuCMF3e3t7sL+/D7PZrHAdkpa3lVf4wm8TtL5w3sR67XQ6wX3JdzIFgK1/8nQ4f+TfOC/x2eOwPZq4S7Bu+V/i265TgfB7q9WCXq8H3W4XWq0WvHr1KmvfXeyLoahSjl2rgyrOhCrYxTp0yYA8b8tJkvwOaVe6PjpCgfRJNITKi3VjE/abEH+LS4e20rkLNsIbpHDZerhdH8NrYTX/WxW49P5QlOWDWrzanbGaUGJ1bG17svQZtFzxLIK6yyBKDYqS4IUCNE2XKscuJURibpow4CpHaOe1GNV5/aBTlRpAl8tldmznYrGAdrsNg8EAAADu3bsHf/AHfwCnp6dwcnKSKVwvXryAs7Oz0pOfqy9b6iFkUuLhLcoNxuX1V9cYcvWDMgyN11tIPPxPHbK+8SYpNL6wlnL56HalofHFMnmVVQAtSgBPWwvjc7SEtNEuC1VVBQMtnqXtFotFdn82NSYB5M7zqseyu/qSa4xUgatOLXlo8SmfQQcAHk93+/ZtmE6nMBwOs767WCxgOp1CHMdrR7VL/dNn7N6EDGPNg9aFtU5d8xs3xrvkPCvNLhmFhtGcF6F1gf/xjz8D6IZBnl9ZxZ6WJUSu8oWrMmdxBchn3JTS3VTfx3za7TYcHBzAYrGA8XicfeeGG26ADaEzRC6zhLPoSNcBtG+g3IbXrVBei/CVn/ZPOmbpM09H4xkWYP/h6Wq8j8tDrrHhGv9V5lmfPBaalkSPb07hZeFtwOsBjTTSKUlNoal86kg3RNbk8kaZ9pf6aYj8tS3wucqns0jjFeeM2Wy2tgDMpReF0LeLwHLgInd6Z7PPlsTTkOrdJ9Nb+7Y1HM/DJ6/UoWta0rLySYRPFpTsPbzvR1FU2O1M39Pfu6xva6gypnZpPPJ+usm2uEp1KI0xn00K/1t0kybqvc40m5hvdmEcaLyzzrqz8riqeV4XmaAMNB0If+P/0Dp26dxV5/Ay8TVdPZR/u9r/5s5YB1ydSGIiSSLfQ0WFHym91WoFcRwXnI9JkqwZK5IkEXd/otGg3W6rnVhaOWgxfkjlCFlZ6KoXGoZ26tFolBnZEJeXl9lRVr1er7CC+q233oJ/8S/+BTx9+hS+/e1vZ3T/6Z/+KXz66afZas864WP0mzQqSMYPrb5dzgJuZJHKKPUby6TnMqJZ6aR5S7uqtX7JDc1amNBy+RTOTcFXNgqXk4G/u26CwzaBfd7Cd0MManjE7mAwyO6OvYpKthXcII/vEJwX9Ho96PV6AJDej3Xr1i14+fIl/PznP8/ijEYjmEwmmWEOIHce8Lx5Ppa63vTcE8IPND7Lnf4U3EFR1aCAaaBB3ko3jeuSr3he1ICF5cdj3TSFXWp77dlaDyFKgSQPSgh1aGi8hs/RrvKHQupzrj7Lxzy202KxgH6/D/fv34fZbAbn5+dZ30V68ZQZlJtpWazjpIyDQyvHmwg8gWA2m8F4PIbBYAC9Xq+wI8s3hjTDvwV8gQ3+drUHX/hE+4rkSLbwHVeeLh4aIl+XhUsn4HqBCxoPdtGPTnqa3zYQMm/uIqrUnTSf0/e7DMkZhe/xnYTVagUvXryAbreb8Sb6bRMInQtD0pHAecndu3fhnXfegffeew+eP3+e1R8u7uQ7WbitQfrmu9feUhYu71h1Jksd+OS5bcIiv/E2kO76nU6n4ilmmk1n1+Hr31V1nk3iKsxvddZ3FYTyEarXcVTVU0NokBAyP+/CvLuJNrY66q4Cj5KwaV5TV35V0pF0o7rbuKzvJXRcSWk11Z43ztiS0BRkyVhMQY81lAR+TBedq5LAmyTr270BckHOMpDKCKOa8dBikPXRxAV4NODgN4rlcgn/6T/9J/jggw/g7/29vweHh4cAkB6xIx2bi8e34NEtPF+sSxftvLw+o4oLlr6jKZKa4hYifPC22IRiQmmxCkVan3HVva9eaXxqjJfotObroh/TdLUFzVei21ImTMM3SdFjiH1xXX2KP1sMhlZo/bFqP5XihwgJrj7Beb5mtPD1Z2yj1WqV8Ss8mh0Asjs1Hz9+DK1WCz766CM4Ozurbdy62txSZyGOKV53dQhsnL9cXl7CbDbLFvZI/RfnHtwZwNvO16Y+uGSCkHS0enLNEWWM+Fo/t+ZbVgYASOfj+XwuyjchTgENvv54eXmZ5TObzdRj1UPbM2TedtHnmkuq8gArLdq4teZvUXBcMgoFyom3b9+GTqcDFxcXziOuQ2UHjUbOs6lM4ZrLXWneoIimDVIhde+Tw8vmQ8eQdV7VZD8tHl+4yI302vjl+h6Xk61GFg4aBxdLuMrgS6OuMbRr4xPldK6vSOHoN4sxqi6DnYS6jd4WPQQAMnkZ78iUwklHRy6XS7i8vIT5fJ7ZHGj8JvlQXX3O1+bIM9AOcnx8DG+//fbaiTo4n0qLOjX5l//m9euTkXxyIZV5pPhSeCk/Cx/WvlntAT5eaoG1v9NvdDMGd87yutP4+S7DR19d8zF+b2LMW+qbz7musFXyrxq2zv4S2t+1E1Uo76lSfyFjN0TnkdLFtKseXdzE+K27jcvyRE3XLosy8knZvK3x6uQ3oWlZZBCtzlw2iDJj0GLfqxK/DCzytCUNX9jKzliX8QGJuIrwGYp9nVMyHPL/kjMW6xMdsVID4m4oHo/fs2kpo8twxI1MlrSkOFRZlBgrfqP1gTtV+HuA9NjOf/fv/h3cv38f/tbf+ltw7949AEidsRJQAet2u2u7X2azWeFIaE6nVlZfPVBozM5atxYaQtvbJQBxw2KV8e0yElkmZ0m40trIN8nSONYj8uoyLFSJzxm5qz1cYTAcb1c6brFepPyqGCR9KFPPFgO3pvi7hAqpX5YRqnwTsPYNF4j0ej3odDqFUwDQmPLkyRN48uQJjMfjzBnb1FyrzWNNKIxl4DIin5+fQ7vdhr29vbV4uPNpuVzCYrFQ76vT5qwQhPShTcHCR+i71WpVMA5LCqTUJyQ5Rhvvq9UKptOpaFDS5Acpf+m7b9fBarWC8/PzQnzJGSvlJ8FnQNPkP1/cEPB68+UjzbcuWNvVFU8zFlrSiaJ0F8+9e/fg4cOH8N5773nvG/bJ9BKdLt7nQxOGvasMl85xVfTGMvN6mTxov+PjQpMLpTpMkvwOcK4najumMF6TbaLpeBqq6kpV5nAf6qofOr/yq4ukRUo0nqSzSfr4tlBFDnLprAAA/X4f4jiG4XBYqCc6h6OTkeuCFxcXsFqtoNPpZIsh+dgro3PvAtD+geN8MBjAkydP4I//+I/hww8/hF/+8pdZ2DiOIY5jWCwWTvlEek/ryCVfaO9d+lyZunbpeBq2YTy35qfVDS7Q7ff7AADZlTaaDIzxblAErZO67D40PZ/OIj2/6e0UqqNquosm3/jqV7PRWnmSz855HXQDa71K9mdXX/fp+qE0NYGQfK7KWK5Sdxov47YiTa/Q9G0pHscm6leTBX00UD6gxa3sjL0qHawJuBRY6Z2LgS+XS5hOp9kdd5i+S/nS8gx1UGjpuYypUliJ2brCarQCAMznczg5OYFutwt7e3uwv78P3W4XLi8vsx1MHJ1OB27fvp2l/Xu/93vw7rvvwp//+Z/Ds2fPsuOPB4OB11Dqg6U+dgmWyU8CddS50qVMKqRuLcZWDEcN5FT5o2miMsl3V4UaIsoYbbTxTfMOUfbKCI+hKOswlCAd7crT4g6RshO/xHPKwsoPEb46q0oD9l26uGSxWGSOIuow36Yw30Q9VAXSg3fEolNPGoOaooWQHDDS/LYNXr/Juqd81ldnPj4rjVc6xywWCxiNRup1DC7Zqkp9cMOrtFjHqkRLDlyXTOabY62Q8qPtpfV7n7wooSlFmddJFOU716nxXEtjuVxmO5zQmYGGaKn9LOOY8lntKOuQMvryuy7A3TrL5RJmsxl8/vOfhwcPHsBPfvITODs7y46Pn81ma3OZpieUMZJK/MY650sOBp+MI+XZBCxyG+333W4XACBbdBTCz/F33eXa1rUKuya3cCyXS4jjGPb39zM+eHFxAbPZLONtlv5ohdS2TdRRE+PCpXfRuZX2d5yjT05OAKBYhyE62i7zcGkXcLfbhbfeegvefvttePLkCSwWC7i8vISPPvpITEMzriKszhLXe/q9jJ5lsSe54liwSb5eBniijCQrUewq/W8KQpwLbwpC+qSkK1EZpizv4XRouh63QVpp9vHRUFqvKqIoynQybfE7RUg9bxq7Stc24LOh+cJJ6YXyhTrAZUnOE5rk1zfHFHvgEj5dRsBQwy0aIumKNlf6PkdESBxN0AwVVl33lErpu7BarWA4HEKSJHBwcAD9fh/6/T5Mp9OCM3Y+n8NisYA4jqHT6cDh4WGW31e/+lV499134Qc/+AE8e/Ys2wXb7/eDaCkz+ELK7ArD0ymjQJQNW6Zv4fcyzNFaD/hHHS1USGq329nqZs3o6hsDljFoKU9Zxl02nqufSEZJS34WXhbqZC7DazQHQ0jfteZFw5Wd6F2KgUvwXywWEEVRdoc4OiQuLy8L94JvSxiUnJPbyNvVPjgX0SPoqXEO4eOvZfo4De9rI0sYiTdVqXuro43n7zL+SnIRp11ScGmZkGfjMYN1zNEhDkj63mqclfih5OTQHLRSHIkeV35WRV8zMEh5+r5b3oWCz72SPIm0cQMM/uHuMXSaojLv649aOUKVL6k9ffV13QykWG6UyXFMP3r0CL72ta/BBx98AC9fvoS9vT2IoqhwDL+UDsB6fVnnfGq8C5WHabwkSZyLAFzykTanhM7fZfUzjIfyhEaLJT1NdgmdUxB4KpFLf3gTjV64aLHX62UneIxGI1itVpkMiHUWsoMRv9G5pwx/2zYoHThPuGjTZKbLy8u1dGharrqJYy2/0Dqqq39HQIuXJABJssq+AaQL1u/evQv37t2D+/fvw+npKRweHqqnihWo3MA4dMnfHBY9ROJPofKzT27a5JjQ5gCcY5fLZamFBW8ytlFHrj5VxW50VWGRbSTbHD5XvadaykuTiTgdlBafzCqFq0pnFWyyn1E51LLJjOtSWt2GYpfknU2Pc6k8VWnw2Qo0G4yPrlDaLDKbj8+gzUCDtvDR108s5bhxxlYEVyRDYDmiSVoZgsdYSpMCQH2DK4QR8bDSwPAJwNJ9r0mSFHY6UJydncG/+lf/Ct599134Z//sn0Gv14MvfelLMBwOs7vDpOMO2+12lhYe+4lOXquBs07j47YEL6vxhSrvUr243vsQwoR535CO4kFlJI5j6Pf7MJvNCuOLGsdDDHRWo14VJwmlr6n0EU0IGSG8UOIxLkNn6Bipq560tEJocjl+tH4OADCZTDKD3GQygW9/+9vw4MEDePfdd9X0ut1uwaFVJ3g9bFtpdM1TSCvOG3gnGEDRAAcQflQi5pkkydriqU2N37Iok7drnsIy9/v9zNiPTrHVapU5WiT+KRngqUyDSrZEC87f+J2Hs9QzVxTos6seaB5SXq4xzeuSyneaDNUksN9zxXfTdCAtFNKR+RTooPjggw+ycT4ajbI6xdNmaFoUnJdZaaQKm3a3sYtu+m1TbbwNntNqtaDf72d19NZbb8Gv//qvw5/92Z9BFEXZosjRaCTKj8hfAWyLEvgzDxNqCMNxgbRQWXgTqLOPtFot6PV6EEVRdiSrxWjh4gV1zP3X2VnA73AMrS/c7Ya8TZrrmjDq7rojQBrvuPAjjuOsf9Mjnuk8hzIb/qbfrEb9O3d68M1vPoB2Gx2gOH9K9BafXcnTb0U7CA+TZO+ShMoi+fflMoH5fAnf+c4LODubZXYjmu54PIZXr16tzZMW3sDlJ5/8a9EXyvIkbf6gz2Xm+10Cyth0/C8WCxiPx8Fp7foYf5PxJrWN1TZCZW4+rvG71R7h0/Nc9GmOGpeu6rIlc1qabvtNyK+0rXBupnUxnU6d8juAXs/btp/cwAbs13zODbGx+XwwmCb9j79D7fo8vTrh6+uI2pyx2iDZpNFhE3A5DCxhJUZMBUduHNPSduXTpBPCAp8xSjLGahMSdTyjEoWK6Ww2g+985zswHA5hNpvBwcEB3Lp1CwAAptMpzOdzaLVasLe3BwcHBzAajdbyRwPyfD43GdEkGnm5tXAuY2tZJUVqe4mOsg4tGl/L09VPQsY/N4xrtFCDqKYM4nHf2H9C7qRyGaQtjJXSX3YsutrLUt8uGkP6uZaulmYoygqfnG9yGnj9Vy0rd9b4eKOVP7iAfK/b7cJyuYRnz55Bp9MpCLN8rsAxIR3zKpXHF8ZHv4+vhNS/K6z0zdIGKNSjIxYX6PCFHGXGq0+Q47yEPjcp9NGyhDqEtH7uaz88ElarA4SPr3F6NF4cWkYJ1rHMaSojb0l5SGUoI0NX7UvWfuOak13vfOm46HKVGfncxcVFNp5RjkM6tBXYlrmbhnUZgDU6pXYN4V91YVu6FxpikAfv7+/DnTt3sl1Y9JQHXzr0f9m5NaQeKN+j7RwCi8xukfvLtJ/EMzh/pmn75Cj8bZkLyugam8AmxwHVT8rWh2QLoN/o/6q0SmlL35qEVZbkz7hzmOuC/JnGo4uxARLo9XLjcRT5dfNbt7rwzjv70Om0CH+S6bSgyBOA/S46XvE5IU7YVL1N369W+f/5fAU//ekZTKfpPNjrtaDdTgBgDrPZEObzMSwWY4jjFfT7MXQ6EbRaEczncr3R32V0K97GLlmqyb6n0V6n/FIXkCZccEDvPeYnf1Stv03JJGVRhb6QuHXPX2Xte01gU3VYFRq/0RZWctq0Og2xidVdVotd0YWq9ITafHzxNFmcOlNxfgaQ77236s8h75vGLsq3AM3PTRYbgC9siE+gTD4hQL7C9fkqeYXY5ylqc8bu8gReJ7iAiuCGWVd8GodjsVjAarXKVnlK6bfbbTg4OID5fA6DxrVyAAEAAElEQVSTyWSNDlS662AYLnq5UM0NudLEaJnM6a7F2WwGr169yu6N3dvbg16vB2dnZ94z5weDAfR6Pfin//SfwqtXr+Bf/+t/Dc+fP8/uokXHbdNwGWLrSr9quhajdqjR22JgpvmHgMfH3YCI4+NjOD4+hiRJMkcW7S+aI0IyTFNod8/5sGv8EQVaLgyG8A2pX7t2DNWFXavLUIQ6fmazGbRaLeh0OvD06VP45JNPsu/z+Rx6vV7Wz+mcUYWGEGza+Ip50R1w3PhJ707iZe33+/Dw4UMYjUalVpVzWixGREnQa9rYZFX0rGWg4fm38XgMk8kE9vf31/qgZCyy0MR5lO+bZlgLrWerLNfpdLI+p+1G5/Uqld83t/L0JPCdwnXCJ7OhvFk3z/e1QbvdhiRJsl09lC9wWE7C0OR63n8xHS09yncsxqFdQt3GNloHeIUEXVR5FeZybHPka5Z2tNSjJG+6wmkyqStdS3gNFt5aBb4yXxdIuy3LtAmOH26U5rvHr2Ldcf7Kv0njBI283W4X4jiG4XCYLbzFOZmmIc0Lq9UKDg878Md//BgGg/j10cMRpEHzY39pc0VRBO12BAcHXYii4rcQ8GaSHLL5q9wBS8PS5/x7/rvXS+Bv/+3PwGKxeu28i6HXOwOA78P/9//9AsbjMTx8OIJbt/ZhNnsHVqsEJpMl/MVfvIDh0D2fb7Kf+Yybmh7vi6+lwb9p9GyiDqTy4DVe0m68OI7Nu/Q4mnA+1S1PbCPuJrCp8XTV6pDy7TqPI+bjvmy6LnnLqntfByDv4ZBOtXSlAUAXGdWvz96gXkj9l7e3Nm7rXlwQMoatfTI0XUt46ftOHVN81RkTp58ylhBhEu9O04yayPSk3U8hnabMKgffxMWNwJJy5aoPSaheLpewWCwyZxqPO51O4f3334c7d+7A8fFxdjcs5nvv3j3o9/vZiny8Y/YqGst8aMrY73IoW41ToflZw1DDJ/YZdF4BpI5BerwP9ilXOWjfLVNun/FMUxa54aHpPqnREeKQDZnUtHzrAK3zEPo5fLw6FFbnq5Y+Op/QMTubzbKw7XY7O2aXhm0SZZxcrjLy/l5FOdIcaVgvuHNOc1byd5Y5UQpL+ZEWNpQ/V1EWKQ1l83LFp8I2Gj4t/TDUSCTVnzSHhziXaVzaB/n8IuVBjbxan5HyouUJUdi1clnbVpMPfOnzuFq+ZZ0OVcY81iHORS7ZUhurFtrKhHGVS/tWRm6raz5tUv/i40jiwZxvSuMZ29rHwzWUkZGlscLTqgO+eTJkfEoGfF8cVz/WeKAWXkp/U9D0zibB53TLka8aMB3UYyUHixSe/pbkql3UcTX9isJnb4iiKLMTSHEGgzYcHOT3otJFo0dHHbh/vw/9fgxx3IIownRzR2s+P0o0uMunVTl/T599v5MkgqKDFnVf/A2v+00Et293s3BpmBUkyQjG4xGsVgn0+wDdbhuSJIbFIoHxeAG3b3eh26ULj/P8JpMVzOf2u9Mor3bJ93XYLly80WfvseTf5PzI4eNf/MhpTr/Go7W5tglssr52GXXbFK4LrGM+RKbjccrYJ6voWK6wuzoHV4GmJ/Nn9Gto8TGO9N4VR0JV+bNOvhUiz+wC6ujnHJqdo4z+VQW+OZG/w/Hqo72Ocb1Tzthdnbh5pUtefpdy6puIuVHBZ7BG4MpQa0cvMyn5JkiLIlW2XamTZzqdFnYBU2fahx9+CP/8n/9z+Bt/42/AP/kn/yRro/l8DqvVCm7fvi2mTVcZc4eSpNBKaaASWGUgVh3IkqGqjIOsTH+xoIzjwQJcAY0ro9vtNiwWi+yeQkQURbC/vw/9fh8AAGazGZydnWXl4yu3XM4Vjirl0vqWRZCoo07rMAI3bbwFkAVlF0/d1XkkFHxOmE6n0G63YX9/PzvuZbFYwGKxgG63C61Wq+CodcFXTz6Db9k69vG6EMeHNH9K4zRJUic2PUmiqrGnjj6G/GtbhmvJ6UHlidAyRlEEnU4nO9UD7/C0AusDF6Hx+1RxrtXytrzTgPnw3TS8vV3joi4ZzJdmXShTPy7FsgqtuKCEtq+VR0lGRUv/pXRr87sUh/KaMnIWpZnSge/fNGjjhr6nO+HrnJt2QV6g/Un7hihDL/IRvCsd9Vepvpo00HNDW9N1v2nDJy/fZDIBdKSGlhN3/Z+fn2dx0ZgpLTjx8RDuCONxtHI0DZ99gd7pyoF9yNLGX/ziIfz+7z+EVit1srZalIcD9Hq4OJs6VyOQyAupHom09F0ihOFtmv0CdLBK6ebzWDH9/Hl9V22SFN/j79Uqgb29NvzxH78Fq1Xy+i99v1ymf9///gn84hcXWVp19pey6ZWRQUJ5g1VGqAsumZLSgldtSeHK5Lnt+fBNQ9Ny/lWBJo9UgSRj12nXrMOGVjbvpvOqag+kp3smSQLj8di7QFu7lqEKTZvCdeadITYqSRe3jjlrHbrsENZ86rYjW3RTFzbmjK3TiLlt+DqmRQm0xOVOX1ROqPLebrcL57BvipGFOGHLOIF5GrQuaF/C+hgOhzAajbL7AFGBWy6XMJvN1i4NXy6XMJlMsrtF2+029Hq9zIHrK5v03Wr8q7sdkHFITisprJYOjysxVUtaIXS76LXE1Zww0+kULi8vYTAYQBzHBaFAytvnFAkRFOuulyqQJhXfhBEyXrdhTGuax9VhpLI4EVxxXH2RGqmow4oLPSHj3QLu/AiBZS6QxrQlHes45AZon0AXomj56pnmW8f4DnHgYJ4SL6iLHlpOyUgq1YMEq+CuxS8jpPu+a2niPbn8+FJfP9HS4/3eNweX4cFRFBUUXlc9avNgEzyfO4iqQJITy8oaFCHldskZdfOCXQfVZ+jCRd6XNZ3C1S8kWVDK2yXfuWRBiT5rX9LmD6n8rrmuDCRase5dedFvWpldfVbj83T+8cl1VfTqbYHW29HREfR6PRgOh7BYLDKnrFa3Wlp8HqX156pHF427xHtonyvTp/Bd6qRewoMHfeh2pXEH8PjxHhwedl7XG5D/nJZivNe/FLry3xr5eZjcOZq+o2WQ40rftGf+H3+nz3TXbP4+SfL3+LvVwiPZU+dvev9s6oRFh+z9+32Yz1ckbu7Unc1WcHrqXhCq8T1NZvSlEyKTlOWpZeTKOhFF6ULE+Xye9XmJrqrj21I/IXqRNb9t86JN0bAL5bwKsNisrPMG/c1tAHWhLtuQD5ocFjLefbalkD7qk+Oo7C/J8a78qsqBTYw1a3+7SrDYj/jvkPrX+khdOk8Z3d7CXyx2ozrnr53aGduUoacqOPO2MIMqyg4e8Yd/mA4a/5COdrsN7XYbptNpdm8WpZfSYkUTwhEKkvS5ajujQ6Lf72e7E3q9nhj2/Pw8U4wRs9kMnj9/DoeHh3Dnzh3Y29uDwWAAJycna3eQ+SDtqvTF5xNpHfXexNjRjMG0TzYBn8DgMyafnJzA2dkZfP7zn4d+v5+tHpWO9kbQe/fq7P8+A5hLONwlZUVCUzxbckxY4jRpZNrU/CQJP/wZT0VAPqgZrHe9/1SBq54QZRWvKsKmRbgtY0iygqeN8gQ1iPvihgLHHt6dalkgpr3nd+GVoQURWh4LT8a67Ha70Ol0oNvtwmQygfPz88KYtOZPje58brP0D59hv4yi4TM+WpQZK5IkKcivtP7KpMXrsSkDjI8GvoON3zd/3UGNxgCQnUyA4wcXBfjkZC5/arIfvb/ZNRdiOtYyuOLsYntinXKjPZ4YY5GfpSN2se5DHCYSbQD6WNDklRDdW4pfBmV5xRe/+EV4/PgxPH36FC4uLuC9996D5XIJ3W53bUxYaUB+Qt+Vmce5zFSnY6UMrO0qyS5Yl7PZDFarFnzrW2/D22/vF3a/Rq8drq1WlD0D2/FKnaOu4kvfLN0sSfL07aAJR2v55M8JpEcWF9/nMmD+vvhufVcsQOp8xf/0Gz6vVgn8+q/fhq997TjbObtYpP9nsyU8fz6Bv/iLF8APMNH0ExcsDlCXwVdKj44nqx1P+r1Jvo/zGtr5tPG/i3PRDXTctJcNLt5BdaRNyfhleBnG2xWUdSpa7dsAkN3fjmGt9vC6ZJImbYHXFXWMHVrn0sa2Ovw/Vexmkm3Bx2Okd1yW18pl7YMFZ+y2hA0p/12HpjRqBk/fRCEpGjz9JEkyZxINi0cXSQytiiM2JK6PgVKHQchEINFChVHqgPn000/hz//8z7Pv1CC8Wq3gS1/6Ejx8+BB++MMfZvUYqhxzcMOE1C8sxovQicNnbLLG0eBzbkhhQxikz4CMYaR+xePS9tPGQK/Xy45C7HQ6cHBwkO2YDoG1LSn9kqDo4h9SOr48q8CqyHI6+HiWxmiT88g2hK0kSQrHWtM62AQtuLuI0sOxKSVdGvfWvtQEXVofrRuW+dFn7OFzfZVx7ZI3QtKgtIXKDdQZCxC2oEVzuLh4o/RuU8o4lTk0/heaHoXWh3k782/8HX8vpeGivYo86AJvx1arBcfHx5Ak6XHiePx6GflT63NSnwqdt2gatP0xHh0DvE9rSui2da4mge2JsvbLly/h5z//eXZ0+Ww2K9SL5oB3KcP0mV/bIo0NLb6Ul0U2c9FbV3ta0/PNx5LszIHftXrw0VCmzD7+sg27QBmjCva5o6MjePToEUwmk6xfLpfL7N5XTd/UdGj6nuv5VXm0pJvQRanbAOpodDzPZjPY22vDF794C9rt1mvHar7LNY5bcOdOD3q91usjiNPjh7FcWC0Rc8ZK1RUm+1QpqYy0PaT+pz+v/6ayAaz9x52w6TPvA0n2f7VK6cAdskkSQRynjtnlMn3XbqfO2HY7gjt3evClL93KHLWpfSWBZ8/GMByGzenF+vC/o5DmWYuMQ99tQ7+kkOQSgHVaXYtxfe9C28NSH770LfP5JuCbB0PjuKDJ3WVou67gtjGOqnXmk/c0OYu/d/XvMnaQEGi0hcS1jn+LPILvqfzukjFddekK76LLQuMmsOkx26QdjcJih6GQbKNSulV13xC9xBfPFd9lU5BQtlw7tTMWsSmjWigok+GGFxoGETpYfJ0+SdZ3ENDfvk4TamCtAs6QUWBER0IdNPHy/+pXv4Kf/vSnYtz9/X34kz/5E0iSBH72s59lBiLq3NAEWg2+iXHbwnxdaHIc+oyfGqhBlDqnNAPCYDDIjvmJovSe2cvLy7Xjq5uAzwCmGcqlMKGoo+0kIZnWmXSPVR2CgoVHSIJDU0IKpof3EyMWiwUkSeLcde0TcFzg9T6fz9e+XRdeUweoQVm7YxTDVckDUWaMUeNQHe3m45V15aGVFQ2ndDWsxZjrEtZ5OC0MF6it/LYs8HQSSZ4JAS0Tpkfrg5+4YTFsWfpUHXNCnTJ6p9OBR48ewWq1gvPzcxiPx9n9llY6+G+tn+B7vqLVCip38LyxHfnY5joDOmU4b9o1facqlssljMfjbL768MMPIYoiOD8/hyRJYDQaFRxALoOz1q9R9mi1WtButzMeJKXjg9WY5+MtVmXcGrYOXQyhneKj5RkyvkLD+eL5+HhTKJsnjul79+7BZz/7WZhMJtlpVovFIrtSyCUn+uiSeE8ZaHWL9GJ5NglqT2m329DtdrNTPcbjMdy61YX/8/98DP1+/NohC2tO2fQ/gORwLeonPO/sV0nqsT34fFwmrfWdsJg+f1/cFcvDYDq48zV9zsPlY5z/xnD5//V3dLds8to5Oxi04d69fnak8WKxgvl8Bf/zfz6H4bBcv9dg5ZfUUeAD58lVaKtL93bpjvS7TwcMtbFsG03z/121M+8aPT5UbaeyY85lf5VkibLQbEp18QqeR5PxLDv5MF1LnVGdJpQeX/pXbRxcV4SMH9TFEKmc4Jcjq4zR0Hhl/XFNQ3XGWpWtUJQxsO8SJPrLKpwhsDj6XM5KzNtiBLY4dqX0pbA+mixxXPGoYrtcLjOjTKfTgel0mn2fzWbwX//rf80mjsFgAADpUc/z+TxjIr1eD9rtNkwmE6chX6ojS31K9eeqU5/CIRlL6hJsJFpcxy9ajVBSvmWcVTQOXXGOxs4kSRcv4E4MPNIK06a7pheLReEIcEvZQscC/e8SgrTxGVJHrvR94H1bo5n361DDZ9XJrowzSytDSH+T+ouUhstR4uOxVMHGd5xmLayLdikvV/hQ5d6HOtpdShMhjU1fHB6XfrfyeAm0T7jqn97h2QTqqm/adlbDsIWfatD6eCiv5TRboPUPWtbZbJbdGUtPLMETGLQ0Oc/kjiheDo0eCmsfojRgHMmYZxkL+K7dbkMcx6+Pi6xuwEfa8AQCrCde/5yfuuSPkP6mPfM8pX4lxdHaN4S2qwRaFzguut0uPHv2DC4vL+Hi4iI4rU3Cl6drbubhNH3RohuVMTJofTY0LUlW4XT7ZAr+nR6ZjH/8+hqehs+4R+ehOtBkfws5LYLKmtbwvN5DdLDVagXtdhuiKCpc6VJXvfrkIN72X/jCHjx+fADtdgsAEpjN9mF/vw37++1sZ2yrlTtg0fkaRXR80vTTMPx98XsV4BHSVdORkTpLqU7GvwMAcL1N+5+mRZ/z8bZ+jyxA8V3qfI2g1So6Y9PnBOI4gdUKst2ynU4LvvzlY3j8eA9Wq5SOxWIFw+EC3n//MjsauVgefS726Sz0tyQb+OL68rGgDj7CZV6Lnhqqh1v0E0pDKK/l/LsOG0ZdqGIjKQOprjWZ+irJhFVolXSisum67CkufUDKJ1RPtIy7EB1As8GVoVHTnVz932JHkeL75JVQW5uWT1MowxNC6KuDt7j0Bmsf1NrBdzqRK32q5/JrsTTbB6bt098l+PT1sv2mrF2TpxGaTqmdsa5CShV0lSYWK3xCDIWvI2t15Bp0Upo+ButL3xVWg6VsljyttHEsl8tCx2+1WtDpdLKdkGgMms/n8J3vfAfiOIaDgwPo9/tZGrhqudVqZff60Ls5rGWQDKKS8Opq79D6Cp3YQhR0qSzW8oTWnSuOLy8E3SWBfWI6nRaO3cJdGklS3NW0XC4hivIjf6yQjFQh8SzhAGRjS5n+wtN00WYVQLjgZjUGufplWf5qqVfKJ0Pv74qiKHP8S0Z2Cy8PGY9S+4Ya21wImculbyEKgTV8aNo0XohyxKH1ect4wPgYnv4Pzc/Svr4wdfYRC0KVlVBhu0yf4AI/pym07ih/SZJ0hzoeP0nvxy3DWzT6Q8eX9M5V1rJjjdKHJwXM53NzepwmjY/S+44pvVIcKp9IO19pu1qMHVo+PLzEdzi/53m/CcB2wAULr169gufPnwPAZg0sZeGap3mfou+1tnb1Aan/a3lL6blolNK3gsq2lG5pTLlorcJ/tHrE303PdaHpSm2HfCGUz4TApf9b4+POWJeu54ovwVp/UZT/PXkygK9+9RA6HXS85vfAAuT/0/D5b0pH/lzIRXhXDjwNt27rT89VTWkdch7Bf6PjdD2M6//6b+p8Tb+lxxWj0xXn2PTdaoXPALmzNnXGxnH67XOfOyjcLzudLuHlywl89NEwo9UiLtn7kl/+qCOfOhBqCwAoxytCZWctvk/HkuaEqrzJV0dV5KoybV3GplYlvzoQqk80Vd8Ibscqo7NzmqT0pXFTda7S4vhkNQvKhnXJQbwOXJtqLO0gjWeMxxedlR37FpsLDYs0vMlw6RHSsw8h9e/aEetrnzrHfdNw6W5V5PvGjym+Ckp3CFwKrw9ahyxrCAMIO3aK/vG06urQPmawSQwGA+h2u9kzOkul1R98J6xrVyyCl5Wu/PaFvcqQmE9TRkaXwwLvlcMjMgCKK3IAAM7Pz2E4HGa7bHD1N/YD2heQftcdLBLQMdckqhjNyyJEGGoanHfSNsRveEc0V/54HNpfMJ4PNB/sG3jENf3TBE+6C40auix5c9TJr33wOU12AZQH0Xaqg1YUKqW2o2FcxmlOB/Idukhkl5w0ZWjBeuGOs7KKJXeYuQ2dabh+vw/dbjc7Knk8HtfGm7VdTUmSHxve7/cLY5rzHR+2qVBa2kqiL0nS3Y+uuxC1dJAXDwYDePjwISyXy2xX1vn5efad9wUE39lryZP/pnybftcMjpKMEGrkxDnqTUW32812k/sMWXSeB4DC/O4yBEuQ9K46dLE6gHMXgFuPCE1T08d88krZ/DQauO5JxxF9LoNtyqkS3dPpFC4vL2E0GsFkMilt7JdkXZ9uUodsuEn5EvN55519+PrX7wJA6rh8/HgPBoN2wQkbMcdr+jPsOOL8Xah843pXn4NXQpLkeYB6XDGGoTtec/rycY/feNhimOJ73PVKjzmOXu9ozXfKpv0m3ymbys7a/bItiOMW/MEfPITlMoHlcgUffjiEDz7IrydA3hG6qM3HS0J2qG8CZWVti1xblz0O5ZZutwvtdru2U1CssMqmN9BRp0OwLt267rmbzplWxyjvx1rZNNs5/qe/fWlp2HY/LuuIrZMXaLraDeqB1L58LgmRAVFH57bMpm3iALb5zOos3TZqd8ZaDUqakW2XjJJ1oa7O4KubUGOehS7eTtpkVLXNmkgXV+Qj6ITBmc18Pi/cxViWkXC6Q8pRF6PQaEBItGiGFBqHpldWiHIZ0FzCkyTgYBty5xqldzabAUB6HDUep0jBnbGWMaEZassaXXhcnk6dfUjKx+Lo4PRqaW/aMCY5012QBEkfzZrBkhvLfPUkOe00hBiJ6+LBGixlsbZ5U30jZKy6nHyusW2tX9eYpkZpfpyt5IC0KEahsPSXsgolzrFlHFUUWHZJMdPSxRMxcMfqeDz2yjUaeLtod4yiEoILfdDB5KtjH7/ZBMoa6ni/pMbNUNpxJ1av14Plcgn9fh86nU6WltVZFDrvSP1LCgMgjxcr/5bCcTlUy8+VT9M8v07w8qBcTq+MoN/pb254xhNMaFjalvhb4qFSvZYZnyHl5e/LGud88nkILZqhhc4/VfqVFFdLTzuJho9nrZ9YeYOURp2g/W06ncJwOITxeJwt2OP90kIv5X1WPliGZtd7aY7Qvlvrt9uNoaheR3D3bg++9KVbEMfU+Rpl4fKdsNwZqztf12U7E3lryONFa2nIaa6HC0FajbSO6bei4xerPIrye2GjKH2fh8H+B+Rb6kDlzzQMpp+2edERW0wr/Y/TGn3O+Qm8zg+vZkiPMB4M9rO7ZS8v5/DJJ7l+jjT71qtadVLKB8oseNk1Q65VfnPJRmX0UMneooW1pmtFHfZhrT6qtm9IHZdtjzpQpQ7rqP+683LJMogQeT1UtqZzomS7q1pfrn5p/VaXPMdlEmu5Q3TLbem/Esro6Zq8WYdeUFVfsfKdMu2l3Udct60jRIamz1I9a7pHHQhNJ8gZywWaJpQDV2fbxQmkDMPj4ahDwbdqT+pMWseTaLTSGmrc4nlxZbkOQdbVjvT9YrGA4TA//qbf74u74SaTSSFt3g4A5ZyykiGaGorqRFkm2lT+ZcH7jaUc2Kb0eMTBYACHh4ewWCxguVzCcDjMjqrG3VI0T9exxFp7Se8l5c5i6PWBj+NNCCq8r4b0W6r8NgmsB3q8NKWBGmc5fYvFIttlgN/5rhQeBx0uUZTfc/a1r30Nbt26BQApzzk7O4PLy0t49uyZSjffzdVut4N2lVXFJpUpHx2bSpcbEC11wPsw5Ut0ruD9zKIYYt/Du61dYTcxlig0ozFXwPgch7tR8YjDMvfjcfBdQJowjQai4+NjuH//PsxmM5jP5zAajQp3ykug6VM+4lKcOB24I58u5qLhXWXkKKPASvUTKnfxepDo4flxXeDg4ABarRZcXFwE7ZIdjUbwP//n/4S9vT149OhR9m21WmX9ioYvo4xpYWjdURmxiiEDjb2aIyPkjmjOd0J2A28KPr1wtVrBbDaDdrudOd1ns1lWDukYak2upd9xvGK98IUQPD7l1VL7SmMvlBeXmVuqQJujJFrwvbawhMaRxm+ZPsfnRirrYPu5dLq6DTl1g9Y1XnXzwx/+ED788EN4/vw5TCYTiKIoO8bdmqaLBzelS0p51Z12txvD3/t7b8GdO31ot3OH695eG3q9uHAPbPpHnY/5e/ou/w1rvwEi5b2LzmJ8Pe11Otxp6VhvShoxEb4X47julF3fBZumn/fd/DkPk8dx3SkLgMcVQ3b3K90Zi//TI4zT+2STJN8pm/9vwVe+cgxPnhzAYrGC1QpgNlvCeLyA7373U5hMlqa+KdlrND54FeCyP6EeKp3Egqhif9vFeqqDP21TB960PqfRsI24ErhcVzWdsnlzOjaxq48ipF5DwmJ5cOF3SD2hnOGzY1J7gGY3oLRIuzDfZGg6tiT3NQWLvq7lz096ctkM6oLWz7T5/yr0sSBnrNXRQL+HDn4JLmNclXTLwGd09eWnGQK076E0+MK46JaMbDQMd9CEwsWoLXAp7TwfPMIWIHeAUIYjOUCs6W8bWjv42trXLzlcSkzIuJbCWurUN064IACQCh2dTgdarVZ2FzDt3/QoBUnQCK0z13i18KsmJ4mqSofLwFo3XOm76ogaWC1CgM8Ia6UTjfedTgf6/X7mjPHt9sG4Et2WcaKNQeucs6l2bFr44U4KhLVO6Hzm4wPaOPDJK668aRo+p6NUp3XIV6FtROvLRwvtby6ZQ4tv7ae8/ZIkgU6nA3EcZ+OS3ufaBEKcaxwhsqIlHO07rr7q46mWdzRd5IfcmW2Z/5bLJVxeXmYONdfOUddcS3/zPkX7SUiaTRqfQtpkF4x4Wn34HEd8vqPPIXn5+mySJKJRoUq9WXh+CC/UeKgErfwW3dsyTiif4PRaddTQuuXznGQ8qUuG2JTeRtsljmO4uLiA0WgEZ2dnMJ/PodPprOmfVki8XOtb0ndrHWjyVB1IHa0tiKIW9HoxPHy4B/fu5c5Y3A2bjg/uhA1xwK6/Xy+nm9biWJfi6t9D8nGFX6/+fAdrMU7uPE2/F2krtmO0Fi8dx3lYfE7fJZDvwl3fNZtkzlbcvZwU8sjDIN15ekgWprdapTtmDw46sLfXfu2MTWAyWcJoFMPhYQfa7ZRPLBYJzGbyQj+XnhUC1xxNw+yCXaiJ8UqBPA3zwcUzLrvTNhAyl5Zptzrk+13oL7uIsvZBGrZsH6zDdldX/+dyj6tckn7jS1eT3X15aLCMuTKynM9+ZrHz+ehqAiFl9fWvEN3Iml8VejhdND1tR6wrfhPg/dxqO0FY+1BTZVhzxnJDxi5PINukz2ckdzEQXAkuGa5Q+OFhpTzxnW8ykxi3phj6mIAvDA+rPTcFqe7pDlgpnCR8+1ZGSQzRVS90p20VQdZiiCmTrg9Wg3rVPCx04+4rgPWd5NgOaBg+ODiAxWIB5+fnmVEej5TUaKAr97WJH9/jWG3qHhrfTi0XQibXspCM200C86I7YqMogk6nY+Y5dNLmO6Ndwik9inS5XMIPfvADGAwG8Fu/9VvZ0ZroXMA0cLcE79tIPz+q1lJ+n7B6FdCkMu+afyWjs2t3DsbV6pw6F6R4kqEbj9FNktSBtb+/D9PpNDtSPYQOiSZeTh8kJ4lmPPbJG1Uckz4aAYo72JFX47enT5/C06dP4Ytf/CLcuXMHPv/5z8N4PIb33nsvu+/KtQvdqlzyuQffdTqdgvOXxnH1jzpQxSBBwWVR6b0G3MUaotTgOGi1WrBcLuHs7KxweoUWj9LEf1P6tTu5JfnPl5/0nt5Rzw0jyFf4qRk0LIbZ5BxaFlUMktgW0i5YDZrCz8NgOFyA6Zq/Jdrof4kulzGL5u8zEnEjmzQ3UB5MZUuJrlDwcnB+ptFaNp8QY2UVOZfX2zaRJElB1wAoHq1dJV2Nz/DfZUDnNFxQWJcO/1u/dQ9+8zfvQquVOl739zsQx1HhHthozQmbOz+x6vA5/w1rv2lZfCimITtZ89/60cNNdzmp2tN3EYBwh6zvd8h/zCftD/gen+l8Fr2+VzY9Uhrf4X++a7b4P71HdrWC7D7ZJEmg02nB3l4b/vAPH8NyuYLpdAXPno3hf//vkyxfra3p+AvhQxxaHpvgM6hL+vKrwjs14LzQ7/fh7t27sFgssl3+oXLrtnnytrDNcu/CXBiKKvRabV3cDl82PR9PqWt8WMca190R2pHiUv5c9+P5huh1kv3lqvXHJtF0X68bLt2HjqNN7Si/jn1pzSNRFEo3I3CE5ONTEEJpDnWq+eAy3Gj5WeNKcfg7ibHis5WZlhVa60yvLCzGFRrWZVi25OObjEPqJYSWMgYPC7R+WmceNC3Ob7Q8uCELf6PRCo187XYb+v1+Fg+dZ6vVCubzeXaPoMt4Q/NwGaVcY43SVxZaHyrbDnUb6xFNlJGHsRiH6NGvGo+0tKOPXnSgzufz7L7DXq8He3t7sFwu4f79+zAajeDy8tKZFhdkXHmWQWh7S/VjcfKE5GPhyzxcWWhzII5Lbsz0GV0kY3pV2gB0h4zFIO7jnz4HQRUHi/aubmOxRTFGwxUeVdpqtaDb7a7dMelqT41OTB+Pl8aFPLjIi9cnn0Ot7VIWknPH13e0/iUp9T4ZBsP5nGFafPqbO+ukPsTHHw0vyX+hkPoFf5bqRuoHfO4KHQe8L236+LS6YJGVKKr0IVf6vrGofQuVEXyyvDaHaPSFGMK0vH1zFu9rWngrX5fqFU+tQRkK71StAss8aUHV+HQeotdaUBpdeflk1ip8xAUXLwvRSTudFty/33+90zV3tD58OIBbt7rQakXZH36LiBMWk83HnO4M1d6vf9fKHJ7u+rOtv2jB7E3oCsgTx/tZ02/5b5pOXr9p/0odrPw5DcPvoi3OjfgNXu+MjaLUoZp/j7L8kwSg1aLO3jQOrQesq/RdC1qtBA4O2rBcJtDtrmAyWcKDB/3XztsEhsMFTKduHSpUJslp2w34dCZJ/sOw2hxjBcq7aFtZLBaZPaWK/hYyn9YBSV7UaOJhXLYOS1qa/aJJ1KlfbBI+uZqH056l9nPpNFZ9O4Qul+7lS9sVh4fz9StXv3fJ4VZbjY9eX3pl+HMZ1DUmQtOpWramx7KFV2vyqqTzuuwhWr6avOnrRxJC9LuQdOuCRkPQMcXXEVUEFR7PynzRoOK6z8w1AHiamtAlxfPBwrCvG6oOQtdxxzxtKWzdTMDXTr6+UiVPF/Osq//galE07OA9ZNPpFPb39wv3zk0mE1gul/Dw4UMYj8fw05/+FBaLBcznc3WHrM9QuE3UTZPVIB+KbfCMdrsN7XYbptNp4R5hCslZ4XLgSuh2u9DpdGA8HkMcx/DgwQM4ODiA/f19WK1W8JWvfAV+/OMfw1/91V8500HDHXUi+5yzvE2aMMppz1ZsQ/iU+q8rLSk8X0UqrTjndxNT+BR4TUGUUJZHVzE81dmXXEprSD68PJbFC9Rpivwdx42vP2h3fa5WK+j1etDtdmF/fx9arRY8f/58TYajfWa1WhWeab+kO3zr4LO0npqY313AfHFHq3R/egioUuc6wUXrY9ywUkb25W3FT8twGdc0w1CoQQ7nJqwHPBGE36N7g2bg49H4TeL1/H/I2LQaIFz9j+Yj9UdfmbQ8ywJlm7t378LBwQEcHh7CfD6HH//4x1nfpnleJV2Tzh0WGc4HlAsB8nlil3QQDUdHHfi//q+3YX+/8/r+13QnbLsdQRy3Xh9nG7H/OIbwd/qt+CzJpiA8u/q09Hs9H3teeRquvEIgd/l1h6UWB52b/FsxjPvd+v2y+XPy2vGKTljtXtn1nbG5ExaHRnqHbPR6ZyzO9fBaDk9/p/8TiGPcKbuCfn8fHj4cwHy+gvl8Cd/73il8+OGQ1UGKKIpEGd5iH9kFcCcSPSHBZfCWyho65/A6QB11OBwWFhlLpwqFzje7jKq6KH23jX51Fepeo896jVxImjwMHR8W/dDShk3Vt6brhcgbFrnPF84V3xqv7HjY9b78JoEfT0ztZ65xpenBuzLvbguNO2PrUK5C0tim55tPfJLRnJZFMyhZyqvl5TJK+dKU0uJ5uAy3roks1HClPbvyoXFCJoVQcEOr9J0a8sqUkX/T2i/EMUPrRRPSqzJEnm6ZvhxKB407Go3g+fPncHR0BIPBoHAMLW8vVNZ8fdpl1KLhJAOw1hf5ZBUKq5JlhaudfIKT9N3Kb8r2N96X6bG/ljqhcaoYHzGd1WoFnU4nM8ZhX6NHG2vxEdzQ79oFVYfzJVRRdwlQvvGrpeHiZ65wrjjSvKoZDLijr2xf8M1vUrn5nzUfq6Kp0YWGnTp4R+j8Y/2u8UxX/8D44/EYLi4uYLVawWQycbaNTymQ+g3n2dIzn1Ossqtv3IeibmOMVDbKs8oaK7BPDodDmE6nQfF9RpuyhgVedy55mCK0zjEdbUyinNLpdKDX68FkMikcdb6rqLPflVHesd7onXf43hK3KWhl0Y4lRtqt8xwNq/Un+l8auy65NGSM438sE54gcnR0BLPZLFvoIF3l4EpXK9sugPJvFy+yyDSuNvIhJC9XXWrzYRQBvPPOARwcdKDViuDwsAOHh13o92PodFpru2A1J2z02pGKSef/i3lpZZO+y9/kXbDufNJ4YfmUA8YvNlWkfNP0NPoG+V3uSE1/F3fP0vDpe/suWeleWcjuj02ysKtVsQzFHbLF30hz3jfwfbpTNtXzUif/w4cDiOMIFosVLJcJvHgxhcVi/eoiK6xyGkXTfMhnd3DZ3ULsMFKeuNh9NpsVFji78rwOKCNDWuOUsWmWxVVrjyp6sMXO6hu7delLddvlJITuTvfZBDg4D/XVXd19LYR+axqub5Y5wyVXb0sXC7HBSHEoNFmP6haSPd1Sz1IfqrPOyvSPXcLO7Yyt23hUF6x0hdCPCihXviVjgaWza3e88d8+oye96ypkdZKr7BaGUYdjxkdjWdA06b1w3HAqMRtXG1gdIlb6dpkRSf2al79sOTDeyckJnJycwLvvvguDwcAbhyosXLiRDO++/BGScUvCLvA7H4/gYXYFdAzNZrPsflYXaPkWiwXEcZw5cK1GRtpmSZLAZDLJds3hDm1EHMeZk5bfJUnLgO/iOM4ct7tY5z7UbfgIAW1DbQ71GZklZ5ivHcqWA+dX61ij/d2lDFh5aJ28p+62lBxhErCdaT2enZ3BfD4HAMiOVAvJV8pDu1cYnSicL9DvPiN6GUO7hqb6Ks9DUlx9d6370lwsFvDq1SsnrdzASNvdl6emfNPxwudCXx/kd46HOKp8xg5Ox2AwgKOjIzg7O1N5x1WFq565rCx9k4DyQBzHsFwuxTu5d2GOpcYNbGsrT+C6n8vY4Zv3rAjRT5F34sK3/f19OD4+hvv378N4PM7KjE5ZK6+mY5Maini5rO1bp/EUT2OowtO5rKL1hzqcImXlgCiK4Ld/+x587nOHr3fCAsRxC6IIXjthU8drWg6q48HaM6WZkpL+jtgz/75GGUu3SLMrD3f6chg/PTZQR6T+Dds/dXzSsPkz8suIvS+2NaaZvHag0vD8uRh2/Z38nO+MjSIo/Me/nNfld86uVvlO2dUK3yfQauGO2RW02xEsly14991D+PznD2AyWcJotID/8T9ewHy+zMpKFzhdl7mSQuPvXE6i70Pqod1uw/7+PkRRlJ18AuC/6z40nxvcgMLlMLTowdJ7vpPPkrd1QXxTNmeXzOa6T7qOBb2heg3C6ie5atgFXQGgut0mJK40h6De2e12CzRZZPdQHe5Nwk44YylDa7LDWxXb0G9aPjw/zcgbqjDS9F0DwKKIS+nTZ0qzxXDscoxKE5ev7V2DN7T+qkCb3FFBjuMY7t69m63Cn0wmcHZ2lrURX0XiEjYA3EYVLY7kKPIhxOlWJV0p/TJMWBN+tLTQIId9+bOf/SxcXl7Cs2fPCjRpjhuJfp9jILRcrsnV4lDhNFghjXeepq+efe2sGcnK0Ozrf9QpY02TxvGNHbx3mBpM+XeA9Phs3OWCxuButwur1Sq7I00ytmll1mih8Sj9Pp5bFlYFxsKzXW0o9R0Lz+TpW5wzdEcOn7fLjMlQOWG1WmUOQ43fSL9Djrfl/cLCm/E5lP+40rPCWi7ez6MoXcwwHo9hsVjA3t5e4TvuJOQyh0UubLVa2X20R0dH0Ol0svj8KGL+W6OZPpdVfF1pa3KohR4AeXFfHYqTxguiKMruJ0uNr+tHDPrS5ceIcxnRKhPT8NIiLYku3p+k45qpjCb18263C61WCyaTCRwdHcE3v/lNSJIERqMRfPrpp+LR2FcZWhuE8g6JN3Y6HWi329DtdmE2m2WLpFx8XTIwa2OaO+Kr6I9c/rCA9kOf3kX7HO2XfO7D9xovkerHVU4uX+GpBe12G2azWfaN82aap5Y2D1NFxtH4TRlZ3hXXkp5LfvPVv5ROFX2N46239uCznz2AOG5BHEfw4MEAer0Y2u30GGLNCZv+BwC2AzYvF5D/1Ryj9B1PX8uDp+3OW06rKvI88mOC+Td0kBbfpXF4mChCh2eShUv7D5DvfDdsGn79mYbJ4+R5R6/DJABs52xCnK/8D/PKjyumZcI+gmVKHbLLZQuiKCG7ZNPArVYEX/7yEZydzeDnPz/PjkR28UZ3ezRvV6Kw6EQUmq4nfZPSd8mnrVYrM7afnp7CZDKB8Xi8dvWGBKueqMFq29kEytKy6b6zy/DNVy4ZMKTtpbkS33O9z0ovpcOiz7nSkN5b6NHg4mm+fDTdMDQd6Zm+8+mgmxzbVposaVhQtWw+3SgkfZcejHDND1zv4eEk3SjEjlOnXWFX4aOvsjPWqkBaOpCPWdbVaL78tbybSJ8ahK1AWvhKYmk1jNQ+lglEMhZZjHO0ja6qQCIJ75rRlJb17t270Ov1ACDdoYnOWGoIoWm68re8K1O/vraRvlcZcy7+IBnT6e86jAhxHEO73YYoiqDX68H+/j68evUKnj9/LqYhtVEdhnIr39MEpjrqwzK5l1E+NKM0T7ssfHFpPUl3+7nSoHEAcgOrtot1sVioR4+jQY86Y5G/d7tdSJIEptPp2jHGPA1KP/72KdKasZR+t/KLkLBS3KphaP6+/qPxM+t4cSkomvHXYiT25YVpaTuatPjUmG7JIwRSuX3G3jLGapehH//7lFceB8ceQHpPOO5Wx3HIxzSlRVO2eT3giRg4niWFw8dvrEaykHaswmOtcoXvXV158yNly0KSZaV5Xhvj9HfIHbi0LdDRFMdxwYCp5R1FUcEZe3BwAL//+78Py+USXr58Cd/5znfghz/8IfR6Peh0OqZ6kFCFvzeZhyaHueYzV/t1Oh3odDqFRRn0u5aHZrThfNdiYLLwO0t/t8iAVNeQyhEi22l1Y5kjJZowPO6GBQCYz+cFZ6yVtpAwIeHqQlP5aXxDmz9cc5AEC91vvbUHv/d7D6HTaUG7nTpkowhe/8c/dKIVf6d5F3/n/6V3GcWgdTPpvZY+DZt/4zxYSt8dxgKMY+sakRo+fV901kYRAHfSpt/5McPp+/y4YZSl8JvumM3j545Xnn46zss6ZfEeWUpnRGjKw6T/UwduFKX3yrZaAJ1OC9599whOTqbwwQeXMJvl/No3FjbNI+qAdiqbT6bh7/N6Lsq76Iw9OTmBxWKRLZ7x2Su1+dqFJvXNbUGaf3eZ3roROv/Qb9q4tOpKXGbxpeODT0bbFB+R7EMaLTy8pQ4s49TSfjQtSX705SHBx3OsdgsfQvXxptpcs0eUzU+rH1fflspO74YF0DfpWccwp+dNRWVn7E0l2mFR3qtA2i2DzgBXftTgROMhqDFJgtU4XdV4tyloRnOs23a7nR0nqhnGe70e3LlzJ3vmd6G5jj2k/13ghkKfEXsbaJI/LBYLiKIo65+9Xg8WiwUsl0sYj8dwdnaW0XB4eJgdH4bA1fi+421dgoyrr9O2rOII2xaPtY5rF+hR7E30STz+Do+5A5AXjWjQ2tFa1tlsBt/+9rfh8PAQnjx5kvGGy8tLAEgdQ4vFAgaDQWG3LC7aAEh3b7fbbRiNRjAajbJxjOXQjoSyCNOSU0IK50rnKs7xFuMLV/zKlFNy9Fjj+eDjMT7ji8XIr6W76Ta3KNQA+vFL0px9eXkJrVZLHD88Xdc32j+SJIHz83MYj8dweHgIy+UShsOhiedoiixPvyk0LRvUdTSWTwYKmZdCDQFaet1uN9tpGUVRdhcxyoUuBdPV5kgXlS2xv8ZxDMfHxzCdTuHly5cm2suWr27UmYd1fGAdomMPF6tS2SPEiUj/0zj8G+WXEu90GQzpe+RV+A13QNc1Xl18nRrkJVkoRC+xhsP+zvMIQZ28bNd0JwpNL7DwN4tR3KerPH68B7/zO/fh/v0B9Pu4Eza/E5beDRt5HLCR0/kasis1EsPIzlhX+JweKb/iczXHrCU8ba7otfO1+G3dWZs/J+S5eJRx7tgsxkfnrM8xC46jiykd0jfLH+a3WiWvy0jpSrJ+tlolr//Su2fTo4wB4jj9fnzcg29+80F2j+zz52P48MNRkM5jRcg8F8rjuE0H5wa+cAVAntdC85KwXC5hMpmsbfx40xyLIbiK+vJVgmuerqvu+UJbSZe25lXWrqCBj/UyTuIQXaiKXLYpHlFXu19HR2Hd9POj/31Ocun/Ddax8WOKd1nhqRuaga/s4LAYEiSF2mWsRbiMidrRb5SmUEgGC0u4bYHWPe7e4LvnKK3tdhsODg6yuNPpNDPgAeROKslgF1KnmsGYvtu2kUOCpV2tBjMMS9tlNpvBcDjM3h8cHIgTA+500pzjmsGCvnM58rixlre3VcCzOJd8KNMfrMZLX77cWFnGGWhxpqBzVqIhlGYLlsslfPjhh7C/vw8HBweZwX4ymWR3pS0Wi8IuPQAo9LlOpwO9Xi87wjiERknI3tQca3UW0jBN0VTF0RLyzTdeXcbuMqB1bHEYhtavy1FgeedL24c65net7LPZrGDQCjVW02+Ub4/HY5jP53B8fAxJksBwOBT7ukRjKN/3lXFXUKcybJkbJPnWZXjQ2sfXbhim0+lAv9/P7geezWbZXOPiub52o7RFUVRwyLVarezee8lJdh2h8SOffMxlaWyXJCleXcDrW0pHA29rGp7zaWtbSf2FLiyz8CYePyQ/jEP1Rq3+XXUXUl7qJMfy0jys6WkGnrLjhOZfRU+vCxbeRNuFh4+iaM2BIsXn+WHZ2210xEVw924P/o//4w7EcbR2L2z+O3cC4u98TBa/5fmvv8vfy3RK4Xg6eXDpXTG9dXrSeBotvvf1Q8pI4wuRI4z2TXofOcKth8F+IsurURZmtUInq7ZTNnXEJkkCrVa+A7d4ny1keaTpJgDQyv7v7UXw2c8ewHKZwHy+hMUigadPx1ncdAduvcZhKw8KdW5I/NhqOwuBRu9qtSrcte6zK1rpkuxe24bPrmpNw6dHWvj6mwrf/M/tSNI3LU1LvjStEJmzzBi00B8qj7pQl63eEp7LIxZe4Pu+KfqrYps2Lsu4kdKz1hGGs254sejzbwp8dbwTd8ZeZ1RhQlI6NI5rxwcFOpyoso1HRFmAuw0xHzRIAawflcxpdk2u10kQiaII9vf3sx1vSZLeLUedsIPBAE5PTwuGPNxpgXEwLfrMf9M8rbRdV4aYJEWneJKkxwKenZ3B5eUl3Lt3D/b29gpOOu24OW7ACBFypDrWDDv8t4VHhCpwnIY6II1lbvhE0B2rlnSr8gI8PqlsOrStfMZa/I6Gc3S6/uhHP8riHR8fw2/+5m/CBx98AC9fvszqA/nlcDiETqcDh4eHa8d+YB7IZy0COX3eJjR6Q4ysrrRpWiGQ8vf1O23ORYOyRJ+VRvy+XC4r7xovU7dSO4XOEyEGijLw8VQtbWrcrzoepLGFJ2JoBj2NT/KwUtr0/3Wdsy3QnGscfI4JORWB5oVpad8GgwEcHx9Dv9+HKIoyuc5ydQeXD/CZ372mKa7dbhfu3LmTHber8Z+rDmk8cZ1DGjO8/vD9ZDLJ7orlJ2houpPVGMjppO9ov8U29jlXpXR5+fiKdB5f6lOh0OaE0P7G6zaO40wuPz8/hxcvXgAAZLt/ty23AKz3v23y3xADMr/3ni4+CDHY0jYbDGL4+3//bTg66kKrFcH+fhu63fj1bljsb6kTNqWBOl2pAzR/n/+Xjwym4aVvnFZXuvz9ej7Zr7U81vPUj0n20WkBb2oprZwn5DQlSTFs/oz9l++ApWmt75rFOJSm9f953GTNUbp+7yv9Q/r5e/6HYZDl0D6c/s93yEYRlhOvicFji9PvcRzB5z53AHfudGE+X8F8voKf/OQcXr3KTykLHedleJU2b2h2AYv+oM1Vdej/y+USLi4udkq3vMH1QxW7pjUO161ceSO0Rf1VaLKOxap1Urf9700f9296+TW4dJkbJ2w4dtIZa3HgbbqhyxhzXWnVMcAlR4hWL6mg2irE5eGjKFpzDEg0UyNnqMOKvwtJY1fAnXfUsJ4k6S4KWr/z+Rx6vR5EUQTn5+draVSBS8jfZUHaNQZCxzg1UiHm83n2h/edUIcYHmmMxqCqsChPljYo63TVftM0q/Q5GpfzAk53WWeZRpdVOOVGb41+V/pl6h8NvDi2AQD29/eh3+9niy1Wq1Vh0cByucwMzJIR1aK8a/TwZ4sBmCK0LXh4lyOJh90Ej7K2vfSNlkUroyanuPohf1dHPfh4jGRo96HONvH1C5pfyDjUyuVzcFh4thQXHRM4njXnm4VWKU7TDtmr5ugNNUS4FlPR9ufymwtxHEO324V+vw8A+jUTCM3JZ+WLnOZut1u4/5g7Hq9Se1pRdt7C77jQhfYHrZ7rGBNS2r65jssempGdt7eUXkh/tpbFKhv55h78RhcBo77ZpG4SWheW8E3rrbzOXXKLNlfQvuDigzRMevxwBAAJHBx04O239+H4uAdxHAlHEq8fSwyFHbH5c5pP8Tl/p/Hp9XrJ3+np8jTX81t/v/4sO1+tzW0JR7uZKzyGk3Q6+ipJivWTPyeFb+lvDEj7uvQO37vCRez3+rcoSh2mef8sphlF6Y7Z9F3+v9VKnbvpjtf8GcuP+aW8EfOAQl9IknQhQa8Xw2y2hNlsCQcHHRiPlzCZLF4fiRwOy7xr0Y1DdCcNkuzIaZDi+NLkJ7/x9JqWOepM31ovZWioM63rBK2vWGxhrvAhczSnIwR1tJeLT5TReX16q9XGEVL/PLzEz3zto/E1l92yDEJsGpqOVjbdbSLEll5WJg6Zm940XlcH1pyxVqfBDWzG7BCjrCtNF9AwRHevSunStDudDnQ6HZhOp5ly3Ov14O23317bzTadTjOn1Wq1grOzs0xQo44EqRy+QXmV+hoKqPR40Xa7DdPpFGazGXz/+9+Ho6Mj+LVf+7U1p3av14NOpyPugrNOINiXLA4RS5g6sIv8gvbJk5MTODs7g08++QRarRa0223Y29uDX//1X4eXL1/C+++/X4hL67fMJGSBz9hWJT86zkOcBFIaUl+jRjqLQCcJdU1N1Dg+6zJKWutL4rvPnj2DV69evTZy9WGxWMB8PgeA9TrAPkmduZLx3lLfPgeBr17K1plkVNDS2xbPKJOvZnjFPqbdx25Viiz0lakrl6IhG/Z0eWXTBhjOe6T8tf7F5RwpjPYtZHytVis4PT3N3mv1zfmxz5C/ybquiqbkCQ5psZWFDit9uLPMAjruq5Qd+4Kvb+KcQfPjC3tCFORdk9V2BbtgWMYd99jH2u02rFarwoJBTc7X+J70niPEGOiCZe7DHbLa97phlQN32aDOZW5psQnVHzqdjjM9OtfTtv+933sAX/7yLWi3WxDHEdy61YV2O8qcr/Qo4twJmzs3+TOn0fVu/ZnLW/Q/dQC7HL3ld+BqdEhhy8CXBnazYriEvI8KYWm4tB9kOWVx8nD5Xaz0PeUteZxkLY28PwILm//RZ+kb7nrFd2n+xb98Z2zxffTayRpFCdkhm5YJd8bmO2XT7+12Au12BN1uDH/zb96G0WgB3/72Szg/z4/gdbdHzr/oGHRBkvt8YfE3hqenOPATdHyypC8/LT6+r3rKgivvbWKb+e+6TN8UuD0j1GZssW1ocV3hJZTtH5KNwEpLSJ4+pyYNFyr7WHmKy0bAv9clX2p0VGmvMjRtQo9qKo8q9rgmedeNbio4YzdVIaED9Co1FlV2EFXKKRm5tXypAKU5UjRnRZIk2f2Gg8EgM/pQY9hqtcp2fuJdEhalv2zb+SaebfQLyfGwWq1gOp1m9z7yyYj+8bQwDIf2TqvvEIG/Lmx7TPqM2th/EehAp0d5AejOC8054eqXrrhlYBW+QmHhwVrZywhYIf21qgCnxQt1lmlORikOv1t7NptBu93O7jLWHA34rd1uQ6/Xg/l87qW/LK6SMqi1hyt8iBIR0sdo2taxFzL+6wpn4VVVBHIa32rk99Gjpa89VwFv/ypz5mKxUPmIpW4kOYHSWFYx9qGu+mxKnvDVn7VuaVhLO7vqe7lcZnwZT0LQjirX3kn9muaJNGC6eJx9FOX3FGNYeq9o3Q6nTUAah9JcS+vIMi4k2cvizOcIqdMqc7Wmo9H0XfKmZJzX0vfJpZJso8m/VftS0wa6UDrqSFfi5WUg6RFWGmgafLzwtAaDNty+3QN4vUvx/v0B3LnTg3a7Ba1WBHHs3gmLvzHd/DcAOHar0nfF334nbS6DlXHC6s5ZGlfKV0Ld7JQ2rZQ2PXYYsqOIuSO26GQFSNbSytNJWPy830VRnlb6n4aNsvwxHsbJ00nU3zmNCUBhN23xXauVly+Kis5ZgNzRikdkp3MFZHfN4h/WRRyn4fb22hDHEdy+nS42WC4TWCxWMBrlC5w0UB2gSV2K8oBQfVvjPRIf98Wn+ddZ5m3KIi4+rc15VfO5QQ5ev7Rvh8ppId+tYUIg2XnrSMf1XYvvkxMstFn4TNO8j8NiJwz9VgVa+eusk7r6kU8/qJJXndgFGpqGr4yljykOMd7VgaveWGXpp3eKIqjBhoKvNqJhkiR1tGorkwHSHbAffPAB3L9/Hx49egTj8RiGw+FaOW7dugWz2QyeP3+e5RHHccHJRcM3iSbT1/o4rX/JyYKrGRHaCsMkSXc+4I5NANtEZ7mH802GT7gbjUbw3nvvZUfFAkBhp0lIHpiPFoY64nzKT12TucsQ7XMo+Qx2rnxccNGyC0pLVRparRZ0u93CuyiKsqOwNSfZbDbLxv/+/j4MBgP49NNPYTQaqTRaFBZX+zbFMzctE2g0IKxOrDLzVaiTp0r/qtNAQLHttioDTrPUDppTB79R41KZeqVtalFa0YFHHY3oTKPxfU4jCSFjbhf47KYgzXPW8kt1OhqNIEkS2Nvbg1arlS28045ZxTaWxr+Ljvl8nsWZTCbwi1/8AqIogtFoBGdnZwCQLijr9XrqnbXbRJk5gDtcJWMwvcOLhtVkYS6j4xwbIqv4eAMdz1L+PlmrCjBvvgBMOlqSfsf3VvmuLmOjlPauoerd7XUDeQinieqTdPxL7UPbkH975519+Lt/9y3odFrQbreg12tljtg0byj8j4wOWPo9pw3Yb93xSt9R56v8nOdbTEt65897nZZIee+GFt7VvXicYlh+LHGRLgwbrTlZo8K35LVjFdOg8XOHa37cb+6YjQrxpWcaB/NN+18eNv+jYdx/GJfWEx57nNOANCaM5vwu2ThOHa9xHEGn04Lf+Z37MJ+vYDxewKefTuG73/0UrNNpqHM0RPaQ3vE5Uvrusgu5bBRl5muehgVV5o52u702v1WFJrfdoDlgO2py6y7Nv1Xhui5FC+saw1ZZX9JLpRMZ64RLTtw1HcUKS7vtcn/dZdpusI7SzthNTFouw/K2DPkhDghEldU+9JiS0DJzo4ZEBxqTUMjBFf9RFGU7teI4zo7Qwry1SUMzAGgo036bWuHhazf8jgrzarWC+XwOL1++LNwv1ul0YLlcwnK5hIODA2i1WnB5ebmmSNO0rXT5BOPQ77uEMu1JFR8pPvZtPFrW4rDxOQC0764wUlpWY5mLF0j5uejDZ03B0yA5bX2OEckwVIdztkw/KcPHrWnydLUxmCT5MZQAAN1ut7Aow5VPlfmHt0lIHlq9acZn7gjTHBRaPlVQZW7xjRlf+lL98fHN31WpjzK8oirKODJ5fIB66AqRsSxt60tL469VjG74nstkZdO6qijrXA7hmWUMkKvVCiaTSSbLWeUHjUap3XC3davVgtlsBj/96U8hiiKYTqdwenoK7XZ7pxfjVZlPfcZRrG8+p1jkZU3GkX7XDescy43tvnnSJW+V4WlXCU3TrMlyTecl5cf7LrYxyor0yiCLo30wiOGddw7gyZN92N9vZ8cSpzth+d2w647YaM3xWv3O1uI7f3qyU5bPy+v5yjTl+Wq0ud6HwJIGNp1EW/4tKYSnYaUdtMVwUeGb9p7m63pHd9rid3SIrsePXv92ved9N32X7nhFnpmGbbXSHbPpLlo8xjkqPKOjmNYPQATdbvL6jmSAo6MVPH68B5eXCzg7Kx5d7NLf+Ls6QdO3ODSq6s2aI3gbsM7z27IDS7D0gTfV2etqp7rG0bbiInxynsXuUZUu1xjx2QyroKpNqm7QMtfhg9gl3ihhm3z6Bjmq1EfBGRs6oG6wjqp1yOOic5Su6pYULt+EhnG4IafT6UCSpKvw+YDudruF3V6z2SxT/EajkTMfBL3vyEWf6/suMT0EpRFXHc1mMxiPx/CjH/0IDg4O4OHDh3B4eAi3bt2C8XgMq9UKHj16BPP5HN577z2YTqdq2nWVuc60rgPosbCIEINqXfxxE33c5fi0xLOGtTpCfEZF/nzV+i11nrRarbXViBJvn0wmMJlM4OLiAm7fvg1HR0e10EIVAMkZXlUgdzkRJacsOjPa7TZ0Oh2YzWbi3KDRVNe4k/prmfHhog2/W4ziVRyD20RVOsvGD5WvsN9hnmUcpy4nkY+Pa+3LjWs0XrfbhVarBePx+MrxwE2DjjUu27p4k8YHfTg/P4coijLe5boWhK+MR3o0mSxJkkwm7Ha7MBqN4D/+x/+Yfe90OtDv9wvzynXR2bQycF3HNX75N2wb3uZWA43LeW91AGtHSdPfSCfqerggg7ezFdKcrxnpXPVq7Vd8d24ovdvCVR83vV4Poii9LojLHNox6gAAd+/24R/8g3eg349f74SFtd2w+Btg3RlL36W/83fFZwDNwelygup52I4+1vLNf1toou9t/cTanXxDA9ORxyx+K5Y7D5qwZ14/ydq3NHzR2Ypp2HbL5k7Z9GeyFp6GpeFWq/X363/4rbjLdrXKHcn4mzqCcWdseodsGgbzW60wXkprrxfD0VEX3n//Ev7qr17VooO69F2f/mXRm7U8yy7IqdNJo8k3Lpq4fZPGq7Ij9qrz+V2HRQYtewLdpiH1vdDxZ/1ukSFDUNZ+4XLg8t911kVT0HRzREg93fCO6ripRxsKzthtVNh1cxaF1qElPBqaaFjcjWldseEyKErhqSJHlW0Xg8NjkLVjeTX6QmnbBUh04ZG09Hi02WwGFxcXMJ1OMwMe/ud932Wko+ATpc/gaBGAtTI1iVCjT5158ndljW2WOrM6K/GZH1fpa78Q53KZcD64JltLPYb2uzr7i4t2K2/W0g05pgYgPSb+8vJSPWrQZ3y2QKtviReFxNfosrznqNIfLHFpm/vmGQvNdPyFlrFsX66Db1OHxSZ5v8VB7ZMduMOBf5PysfZLXzqu9DSDkhZf4t8Iei9oFbj62q7LWSGQ5lJ+zKd1vsG4GH+5XGYyXBzH8M4778BqtYKnT58W5mvJ4WflLVY5BI+9v0qOLyu0/qjVSxm+HerYrAu+vkfzWq1W2WlE9Js2hsvOJ77wUjv4ZBLsx1elX/I5pSzdVfuKZb7Ccd9qteDo6Aja7TaMRiOYzWZweXkJrVYLOp1OYd6I4wi+9rXbcHjYgThuwe3bPej14mxHbBQV74WVdsSm9MDaM6UzfwZwO0PT77x4ND2eVvF5PU/9nT8/Hp+jbvXUnp6uW+hp0A+SrivvmoVKu2WLz+iIBfXeWPwWQauV72alYVInKnecwlrc1SqNl+6ETX+jo1ofxujQxR20rdd0JHD3bg++/OUj+PTTGbx6Nc3Kk9dfeWeEJLuGAOPhqRyUNo1XlIE0l1jtEWXB66TsPOay72zLIXBV5sGyuC6OFq2PuGRy2u+q2BAwb8s4ttj3pbFk9RVoCLEdhozlsrZDVxpN67XXfUxT1C3X3kBG6WOKNwmLwXwbjqRQRZYi1NBPGTUaUPG4NEu+IQIlGp9ovr5JClfi0mMoQ8DjuBi/y1C7zYFPnbFII+58WywWhaOgAdJ2pO1nrTM0/nFBfNMTEkddBrCmUZWWEMNXGSXJlz41yJSBNE40Z5xLoZTeW/ILFdaahs/wWzZNykOl/LgzZjKZwGw2M90dyevPxy+580oKb+0DFv7OeZLmVKqjrn1zm/TdMleEzO+83nyLpaTxV5Zf+8pfF7/j+bmUT1c/8hnzfXloxn7JQBVFUaHvufo0T9s1xlzp8R15Wtl96bp2XbrKwvOkz9vmtRZYjZa+vqLxNWve+D+OY1gul5lzrNPpwDe+8Q1otVrw9OlTWCwW0Ol0CvlSmqSd2bxvWA0dAJDJklehLTVYeaurD2hzmC9syDeefhVHnSQH4X+qZ6GxnV5hQGUFia4QaLxN4lHSvE1p0ep9G/o4pa8KQtu6jr5B/0tp0rpG+fD4+Bh6vR60220YDofZMea8r8RxBL/92/fgrbf2odtN74SN4xZEEWRHE0dR6oQFoP8B0HGV/iGdOY20qtPf0rvsCXjTFMMWd97id+kdzW89HVteHFq34WWwIopcDkEJ1sASDVJcHo6HiYT3eX0W+7MeVnPKguqEpd/y92mfxfkwd9Ti8cT4n+6SRedrGu91Stn/PP28DwMAtCA95rkFq1UCSbJ67dQFuH+/D8fHXfjBD87g5GSmztOhPEbSFXw8U+LTcr916w4+JxGnh9qnKB+xzj1VeL8mI4XE12go23aW/KR8bmDXa7V+jmOuDt3Fl79Pj+a0anqZJW/+zDdb8bAWmyHXe8vIZFp/rsLvdgUhNF1l3eoGm0fIWNP61pVwxgJcHUNSXeDMdLlcZiv1tTAIi+HBxeAvLy/hvffegzt37sDdu3cLxiTMfzAYwOc//3m4vLyEjz/+WKVfurDdJxxq4Sztv+1+gmVeLBbw4sWLAl1JksDBwQG02204ODiAxWIBl5eXACAfW2gxTNdN+y5OonWjbP+QjCV1to2k+LjGhORk07Dtdi3rGNAUxqbo2ibvSJLEZGTXFHKf40rrs/yb5mS0Ao2FfK7CXRu9Xi9zblQFrwsfD3N9L2vY5nH5mNwU/+aog89ViVt2Lg6Zh3zGJ94P6XvqhNDodDnVLbRYgDQiHYPBILsbdD6fw3g8zsJhPm+CLOxyQAMUjYZNj61OpwOtVgsmkwm0Wi149OgR9Pt9+OpXvwpnZ2fw/PlzWK1Wa4vryvSbJEmyu2P7/X4hndksvc/uTWj/6wRpruXf+fyMsgDnQa75WTMoav2lDgMn5rOtu4yrOkG3LRsDuNuB1q/vtATUtbE/ff3rd+Ezn9mDe/cG0O22Xh9LzO+F5c5YAM0JqzlEi45Od7m0uPQ5f+d3wOZZ2OngZNE0XOFckMLSd/5u5svMlYDP8ZqGidacrMW4eCzxeprcqSq9y48HztOixxAXaeDh0u9JFoYfJZz/zylId7bmYQHWnbKYFv7m39ApC9DK+v7bb+/B/n4b5vMVzOcr+OCDIYxGi9dxE/G/j5fyRfQSJFkAHTU8Ht4ZLfFfn+wh2TJ4nG3b0W5wAwC/7BSShut73bYgyalsoaUsKK+4wQ1ucLWwE87YXVKKNgVfWbmwhEqWdOyaJT1JyNMcpLibs9PpwJ07d8T8ut0uPHz4ENrtNnzyySdq/toxiDxNyekUshpol4A7Xi8uLta+oaG13+/DfD6H0WhkNtpRuBQA66ou6b0vvivNqmHqQpUVYWVWT7kcAj5nqi8tXx/X2i2kHLvKd7c1tut01rnS0XiixXDqc1SEpMu/VykndW7xuQrv0UVHU5lxaoHFmS3xP58hosyc7YM0vqvIQy4afOnSflDnwpyy5QjlxS4ZBPulr4yuOpPGkYvGEPkE6YmiCDqdDnQ6nWyHnMWI96ZBcqLXUT9S20ZRlPGt6XQKrVYLbt26BYeHh/DWW29Bp9OBTz/9tEAP729Smq6yoazf6/UAADJH72KxKPDOXZ27rQhxVocuvNkVSMZ7aTEILScd93SHEi+v7z7sUDnQMoZcNFw1hNC87fLRvqB9T8OkzqYoiuCLXzyCr3zlGNrt6PWOWAyjHUlclAPxHT6n/4H8lx2gNucnTb/olLXnZXPAyvmn8bUwvvdCSPfXyLrATMs3v4f1dUgxLLY9eWP6ln7PnaXF/KO1sOvv5OdinokQVv5d7Eu4MxZe75iNXjtQ6bdkrb/gUcbop1ytcgcurcu0zABR1AKAFdy7l+6QHY8XMJks4dmzCUwmy9d5+u1TLhk7RLegciGfI+gJefTZx/tdeqDFbtGE7GF1aFtRJp0ytp+yeb1JKOPgD7FnW+2PIeMVw1dpW+6MDUXVMRdi9yz7vSrK2Fl88UPTCMEm9A3rooAqNvsb1Is6xqXXGburDq/rDhSMfKvdQoy+FHT1LABkO1jpyv7RaFTY3QmQGjaPj4+zVXkc8/kclstlZnCX8i5rWJSEzG30TcuYQKPqcrksOL0vLi5gOBxmz7QepZ0VN0LfboK2jWQIq1tRoXndTLzbQVNzodZ/+HGnfEdEiGJDDcA8vuTYoGGs/Y0r1C4FezAYQLfbheFwWOqodg2bdFLQcklzHVfGtLrcNRmrTmesNIdxhygPF6JE0nh8ZxavU5fTwCejaO3GaeCQjkjmcfm3k5MTaLVaMBgMnPn7cB2VtdByYP3T+i7jWOc0XF5emseI1q8tSvZ0OjXFuQ5wtQl1UMZxDHt7e9kYnc/nhSN9tXSvGixO906nA1EUZXMo7dv4X9qxynkWXQAAUHTIufKn8fGkiziObQW8QQbNIc/bkF+Bs1wus+stkiSBz352H373dx9CHKcO10ePBtnRxOs7YqnD1XYcMXeAUqcmZU0Sm7Kmq+Xlzl93vmIcN21rb9Sw5WFLLIpyh+y6A7SYXjGsFr5Y9uJYLjpmMb20/xXTxHfFNLhjN6+3NEzRuUt3wGJ6PByGQadpq5V+T3e/0ntipWOLgdC4ft8s9i8kP42D18Ikr3ffpvngTvFOpwW/9mu34PJyDj/84RnMZm49TLK1SbqXy2bA+S8AZDa1breb2eoof8AT2SiP4HA5L6jTtyws84QrfaqLclntBlcPoW3XpB1tk7YzVx+XxraGUHpDdQz63XXiBs+jDI+4zrpLHQjtn8jz6zpl7gbbhdcZqxmuds0JtkkjLKWH5u2iyUeXT6CT3vuMpiHvpTLgzs0oylfd4a5PGh7v1MJyLpfLxhTyTQtmUp+zrsQCgLVjpebzeeFbt9st1XfLrgiyTNZXxWlghaV+qTKiOQY0ZxO+s+SjhQmpW9o+VdrJpbBtWwGyGMnLjgGehjV803OhREtT483XvzUHWghdWt9MkgTiOIY4jmE8HjsFybrLX6VvW+dN/k0yspTJty4FKMSJpJXZIs9wZ6UrnnVO1fqh5tR19XMKGtZVZ5ITg5fRlQ/PUyrDbJbeVTYYDLyGKytCxqtWhrrHYhXeKdW3Fo7+pn98rtcMQZJsvlgsYD6fF9q/DF+R6oC+4wsIdln+qtqePB1tnAKkJ/Pgsa2oc0jGJNe4t/Sdpg3TLnDeJYXHxZzUAO+Tc2na/LfEk1zzD12EhEdr7wqsOjXHtmRfX1/l7TCbzWC1Wr3mQyvY3+/A3bs9+Oxn96HdTo8kRqds+sePIF53xFJnWt4HoJBv/pxRJ7yjz0VnIL6jcWx5uZ2wrrzlb4U3yntXnHpBm5zWLf3Gd9cmSZEu3NmKDlT6PU+juIs0D5O/x3dJgvWbiO9cZSmGoU7YPC+kBwo7aKmjN8ni5sceJ4Vv3AlM32N6UZQuQEBnK0A6Hlar3Omaj7m8QtvtdEHM7dtd6PVaMBjEkCQJzOfyvO2yuUl6Ff3Owb+j8T1J0oUz3OnKZQYtLYk2GqYs3wyBliefw8o4iLR5uy57gYuGqwxLHTYJX7/ztZ9LRnbZ7lw6nBbHlY/VduUrr09nrQpus3Tp53xcbqN/WOBq+5A4PljtJ644ZeuP9nP0L2h99CpjV/uYC1XsW6WOKb5qFXSVwTskP5JEgkUoQ0bMw3Q6nez3eDyG8XgMx8fHsL+/n6V5enpayOPx48dweXkJJycnKk0hd68hfXEcr8Vxla0JWPu6xjjoUXO+tOM4zpirtKNGK3MT49Fl+G4Ku8J8NQOUZNjF73TxAY+jKQbUwE/DWo14GJfvZrgq0ATkq1SOpsaexkt4fylDi09wk/gt5cVWHs55WBRF2S4O3BlbF7S6cDmTLI4mPtYsDiAE8nPqtHHRX0aRKAvJ2UP5EdKj3VFn4VM8Lw4fv+eGq9yImMs/2m5xdNAArO9apuXk5fYZW3g4SpOlDqyOkjiOs7uVtbCWfhjSTptGHbyT8iPf+NHm2ypAZwje6yvtzsYdjtiWLt6kGWWvwpxYhkY+jrT06NzX6XTgwYMH0G63IY5jePHiBUyn00b6etk+IsWj/a+Oo8ejKIKDgwMAAHj58uVanjxtyuulsJKsS2VLpBvL0Ov1siPVkySBk5OTjellVcENkfgOsWs8kzonkJ88e/YMAFKbwGc+swf/z//zJTg87EC/3xacsBGgAyotO/2f/wYoOjej146r/BtSpB1PnH6joOnScDQfOV8uA+jveHwpf4luOYz0rXn+W7yvdZ2G9JtGR+INR9NPxzNNu+iIxHTyODQ97rRcd2Kux3PvjKW/sY3wjtiU32DcfOfs+l/ulF2tcudz8tqJjLtk87Jhn1y9Hhfp3bHLZQLpztiU5vS5DZ1OC37rt+7C6ekM/vf/PoHl0m94dc0f2lyvhev1etDr9WA0GgEAFE5eqzqPoB2B2wQ1+1tTKMt3XfPeDWzYlTqUbAyWudk11lxj0NXneJ2EOPZC7TQhfV+SHaV8qHzty8tqdwxFGbtLk9glOzOFJDvjglNEu91W2/S64TqVz9LnduLOWITFYHUV4TMYYRiEtRPyerLUW0jdovK9WCxgNptltC2Xy2yVXhRF0O12IY7jwmRFDQ4I12TmclppYXfJeeMSAnz0UaOw1bhrQRlnDR2D1vFYF72WNMrkxZ0oljHA28HXb7mBXkrPRZ+UpyWuFi5EsHKlvy0DFa2T0HmB8xmprFI/d6W3CXBaLA6iKulbv3ODuWTEtM5F1BgtHafVRF+3QKK/rBEe/4f24TLlKMPbXAgpM3Uu0LjcoMNp1cYmTUNKU2pzrR9wWUT7JoH38VAFnI8XazyJDjSSaYq9L10LHVdd3pbmYA5tfFjGOeVZ+IwnxkwmE5jP56JBtO5FUlYjbxVsylChzclWuQVPVqDXoUiQxnEVvq6l70Io76d6gJY/thMukqLvJKNqKN+wjCm8Ax6dsbugh1lg0cl2GUj7fD6HOI7g9u0O3LvXgwcP+tDp8N2w2i7Y9WOJMW18jF47IYvPLmdoGp5/k9Lx52PfBcvDr9Nmd8DyMkioq+usD0lOZ9E5S7/he3yHR/RCtvM0dzjm4dNdpTRu/lveLYs7UWlaIN4Nm9NL49EwOf9dL3eed0TSwd90ty/Pm9KDtOa7Z/NdtEDe5eXH+2fxO95Li8Bds+nRyC04POzAapXA0VEHJpMljMfyYrm0DsOdMC7ZDfmtS5bhcaS8LPYJKX7IXMfTqHPOrQtlZOky6dSlm11HSGOkar+xoGy6mlxmGdsYrmqZfPIdH+OusW2Vt7ktypp+CKrYdq1hrfHq1Jct4V36BaWTX11isU/Ugask328D1jZ21WFpZ+xN42wGUh1rA5Aa7zT4Bi+dXHBVxnA4LNxzCgDZ6nTtOGI8ssp1d6yWN+bvirMJhbqOPk4nMSktdGzTNnMZPzBNmnaSJAUhfRvYFD8ok0cVwcuaDu5YL3M8N23XTQmjPkgKncVYWhaagMvHDb0nZ1fQpGEcEWKw1oAOUOyjrrmA13vojhfJUEAFSTyaeBttGVKH1rC0LtFxg7vmut0utNvt7F63umCdT11lqMuZEJqexYChyQO0XLQva+BxXOWhczV1wFEaXDIZD8P/W9t/tVrBxcUFAKRHsvL75OvkN03y9U1Bcx65nLMhZcZ7SbENfvKTn0Cn04FXr17BaDQS54Berwftdju721GjIwQuWbIO1CHv1mlQoTwVsVqtYDqdwmKxyO7JwzB1y051jzPKVzhPw+8oD6KsI+2ipdfClKVFog3poXQBwJp+gvN5u93OTlO6avYAzZmxLWjyFu03tI2iKILj4x78v//vF+DoqAv9fhtarQjiOL8X1uKMzfMo0pE/A/ico/lz8TdNaz1d+k3Og8eh9Mjv3TRpdGvhQr6HIookh2whhCMM181yh6sUjn6naWq7ZbmzNY+TZO/WaVm/H7ZIQ3H3q/Qtd6oi/4leO0wx/fTOWKSH3iOLztY0j7yMmE76Gxz/80VveZ9Md8sCRBDHabna7T5885v34OOPx/C9751mi0o1Hpq3kT5vWxducd0C08dNE9pJMTwN13eOJvk6raerNn/coBqk+Xcbc3AZm13denzdfV/iNVSfpd+sujNNOwQhtpamULW96mxvi22N+wQkrFarbJNc0/zzhjdXh68OSztjt9U41KgmIdTotWlYjKIWRkmVeYnp1gmJIS+XSxiPxxnDQKZADe4htLn6kzVO3W2/qcnBZzTX+gMNLwn/0rOPwb8JqOLQtSxkcIXX2lczJlvysNIXCqnf+fiulQZfGTUe4lMurXk2VU9VodHF+4dPofb1U9kYFcZPuWHQB25QXywWa3zLWpeh4Tmq8gCLUw/j0LBVx6k2n/L6cNEkpaOBG4BdaVYFraMQWi1KvOYc9UFysFaB1QmYJAnM5/Ps9zbk2W3J0D7eJPVJrY1CeL5lbsf0Tk9PIY5jGA6HMJ/PC9d7YHsNBoPs3l88ytjVnzTZwGXE3TWUpZPLw9qchrvELy8vs92x0+k0q3NNBnO1rUWmqQKfTM/DdTqd7Ds9lUjqO1Zjv0aXVY/mOkoURZlDYNsLQa1oisay8ievf1c/ofX/8GEf9vba0GoBHB114eioC4NBnDlhowheO2Fdu2GLzkv59zrdtAr19wDAHKt5v5W/rz8X49Bwcn4S75fr0hXG/b7+/pPmw3VEnRb8lpeluNO1GAYAnZOQHROcf0uIg5O/p+ljmum34k5ZDJs7YIvPaVyeR0TKHGVlyNuXl4mWlaZV3AG7vhu3mCbm22pRZ22+6za9QzYCaiJBOlotdMi2AGAFg0Ebjo468PBhHy4u5nBxMSNx9HlcCqPpMpJ8wONR/kxPGqJypkt+tzhvN6VjNS1vhqR/Feaz6wpf3Vt1KAqrfmgJWyZ9a96uMGWdopptWHtH05by1PItW2912C53abxK5dHsGVa9xCLb76rP6wa2/rlTxxRfV+BAKmNUc8XRVk/UMSh9acznc3jx4sXae7wn7wZFaIxZeqawOkikHTwWmnZpErsOwEUS1t3giDIC5nVFVUfbVQU3KNN5A79L762gfNnn7Gqi7mme8/k8M+jyMHXmzevP5wCx5q3VmWaIwUVKTTgvy4wXSz3zMPS4XImWUOVQSwf/W4zVdMxoc6N2v6yUL4Lfm2VxyLraA9OgtPj6wmQyyeinTrk3bZ7gDkludKzKL1yyGU8bV9H/6le/ysK22204ODiA5XIJs9kMFosFLJdLuHfvHty9exeeP38Ow+EQRqNR8F2hfHHjdYQ2rqWxH8cxLBYL+OSTT7LvVA9yGZy2XY+asxj7w2KxgFarBQcHB9DpdKDdbsN4PIZPP/1UjYu7guuawzXexXlgkiQwnU5hNpvBfD7P5oZt1/GuIorSU6KSJFF3yQP49bhWC+Bb33oAX/jCIfR6MbRaEXS7cXYvbDrH5DtjozUnLHWK2pywlAzNAZs/23bc0rCuPHm4Yr7ae7n+ZHrztFxhm4UvM9d8L8WVwkeO75ZvifguKjhgaTgeBtt1/S5ZIDthMS46V3ma9H3Kl3CXfnFHLN4PC0Adr8X7ZvEb/Z+PE94HcYdsK7t/+cGDAdy61YWf/vQcfvzjfOGcBmoD5PIfPx2LxsE/voAVoTlbfHMCP20Ff9OFZZuCTx+9wZsBS9tbF7dhWEnv42PMklfT/ZLrdj5bhRVl/A5XFU3JoFKaljrVFsD47Ai8f16VBY83KI+ddMbWsVJik/Ap+3yVmq9cmkJM08N3fHWcb6WLlJ4FmlOQ5ms1WIYwsavSB6oAFXRqtJeYr7TyMWSsSIIJplHnaiekz0fLtqHVXZVVd3wsSHlKq1F9/MH1XqK5LkHOihAhyKUkSm3hSrvucm1S4JHayOUYwDiSo8qaF587fDTR95R/SLRLCo7PcEB5D5/jpLAc2zK0S/MdvuNtSO+atKJqeSTZwSp7SE5Enm6IgmfNnxv7ffKEJPdYFsFospQrnA++/l5mzGJZXAvuqo6JXXGgWOcxV1yESwbmPEUqv6XN0LGC13GgswUdaCjP0T9fmaXxQfv1LshMdcEit1r1JEtYnu8m4JLPXfoUtvX5+Xm2aEmLP51OxfR4/pwOaa6y6mY0fToGkPZNI0TX4HM1visztpow1Lp4zpMn+/Dw4R7cu9eHXi+GTqf1+ihieK07ohM2d4Lm/9cdo/h+3Slqv6+VxsHfmBcNW8w7z4N+L4YvplnMV3fCSvHWac3DaOHkOM2Adz2eX37cLwDd+YnxaPgkkeYV+g0AXu+WxbTy92leUVSMi2mm/bJAaZZOTottlyxNA9gdsXnaxXtk9ff0e7FO1vtvHh6f052yxR3E2F+RnWEd4f/0DtkIkqQFd+/24POfP4QXLybZDlnLvCbJ1TwclR/QESsdR+xLR8LBwQHs7e1lxx6fnp5mVzGgDcrCF+u2NfhsmJpdtIn060SIre5Ng2sslLHHId+x2ji2ZUewwiU/8nLSfsZtD9qCfC1trndI9ppd6s9VxhjtAz59q0qZXX0M8+Y6I1/AF0XrduQbbA8WG5UrHMCOOmPrQFkFqymECBBWA1mS5E68MrSE1o9L0UaBzpKva6JEVGV2u9T2HJLBfrFYZLuKkSHziVNbUYOM2dJvrMLJrtdhk6hiZOE7X1wGVu1Zg2XcNtVuIenWQQPlD6vVqiCghBoM+e9dFbglcJqtBsQ6FWRqIEQeT3dsuQy6Wv/Hd3zRCX7T2rpq3yrrfJLmb60/8XqR7jm2lkNTfELKUNV4EQpJGbbSG2oQwXkvRGZCaH24iToKSRPrTrpHbJNzMu2jTfNMNPy5dgyXLTsvh0/2pPlpdd/r9QAACotTOp0O9Ho9WC6X2a5mF02Ur7rKfJXmqxsU4eMrUvvGcQzL5RJevXoFAOmd0dq8SvuZxst8PLWsQxbHETqMr3I/bZL20LrRwn7lK7fgt3/7HnQ6LYjj1utjiYt3xFJHUqpHAlDHJ3V6ag7S/LlIDycL49Bved7FZ54H/V6MX6TD/W69vmQa1+nkcDePO25ZUOefK0zxe8Te5w7VdRqLcxd+y+Pid2m8R2vx+LvcQSk5WGm6RecvFByw+TP9BgDZblfucE3f8/D0P2RHEdP6wHd4B2x+xHHxe1YKNhZWK4A4pmVO5bPHj9MFEn/5l58WjiuWwPUbDv5utVplOtJiscicpdoCzxBZ8fj4GN5+++0s3el0CvP5PLNhtNvtgs4nYds8/022U111hOjAFschBY4z1/igYV1p1QWrHCDZyTWbpPSN6hbUiWfhDZItw+LArQOSntZkXhJQ75bayuL89LWvZitCSKedYjta+vINri6urTN2F0GNbD6HD2UGVKGWJhjLZCINZJ9hir93GeIp09buoQhxpljCXTVDFa0rqXx4DA2tX83hIRktfU4B33vtnRW8n0o0URq2LUT7BBLX2PCNNeqUpWWl479M+V1tR9/7wpVBSJu5BL8yjhMpbRctZXgkTT+k3izHoFqgCb5aXYY6aULC8DbC391ud03Ip3GpEwnT4vMdTVtaYKLxR8npFiqg1jHmQhQq5AUarXWPT4RPvrCkJSl5tDxSuDLl8fGDOupNUvKkRR4h6fJ+wed3mrdv3IaOZQ4p/Tr6VhPyFaULeQW9H1dShC19TAujjVsuY2m7/jmsdYLlQAUb40mLGqU2w36DxyBPp9PM+XaV5F4Jrr7JjTIA8hzLx62vv5fh49sCHQOSrM/Hu8arQ3kzrUsqv9JvljQoLbuIJvqAa/4N4Rkc77xzAF/5yi343OcOodNpQbuNC3aj18cTQ/YMQJ2ydPxwp2f4na05jWn4YlieZkTer6fP09ZoAMUJK9HAw2jftXc8Lx9CwkrDhpZBDrvuqMVvtIxJweko3yGb9yvORyhfBOB3roLDKQvK0cXFd9ozD1/8lrx2whbLT+PwtPi7FOi4TXeypmGo0zUdp1Q/z/PA+2OThIZP6zVJWqSuVgDQgidP9uHwsAO//OUFDIf5ccLaJgZpnnMBd8ZSfYLb1hCSzMn1Np++ajmNo6oNri4Zddu2JAuuAo1NQrNB83ch8fn3svaAMjYlC038ncUuaoEWjuqiWllQH3EtfOW6Cz3SnOu7dUDT+0Liu6DZKSw2RnSE+tra14cke5oUV+LLbzrvuIqw9AOKRp2xZSZqLmDgOykcDbMLsNAklc3HWJuG1XjnU+w1YweW0WIYKGNILBOnqhBZFVqfxgkvRCjR2gLrXBJWLe1hySeU1l0crxQh9GnGePwtrXDCeFEUqXdH+ZQLC41avW/KUFbH+GqCx0t0SU4Uq4KHAiuAW7m11Ac3fErhqaGUx9X6c6hBVgqL+XU6nUwwxz5urSdMkxt36VhxOWF8tPoUHDpO+TxsSVOjzTJvhjrqQ8aPRV6i37X3vnJgW3Mlro7xqfVd15Hu1nTo+NbmQytoWUPuf6XKHOUZGt2u/ll2jGj5bFOWloyErntS+ZjTeCT9z/OjcBlKfe9C5geaT4i8irwRjxMcj8ciT7pKyro2H2k8T1qciHMl8ghXf2iiX1etd+z3PnnEZ5zRHPuSAVBCiM4KYF+wsAtwyVDS7zpRV/20WhE8frwHv/M796HdxmOJ878owvYG9XdOU+4AzH/TMQXkf/Fd8bfsuOXp53ny9H3PxTSksC7a+DfpmZdD/FpjF/elRbshL0v6PWHf8jjFd1imJAuD39Pw+Xf+LYrQGVnc+ZrTkpBwVJ4qxsdji+kzKV2hLPQ7p53GeU0lK3NEwuJv/h/LLMkC9Fuedzpn53SgUxbrKUny44vjOD2qGGAFDx8O4PbtLjx/PobxeAnItq26t0++kE6f0+YPLm9iGM6/XToBOmF8aFr28PFSrlNqYcqmXxVXSTZrAtY20U4qAljX+0J1Yx89oTpQFR2S01DW/q+Vw6XjIi+w2KwwrHRcuY82q64k8aGmbf9aPlRvpN98+r1VdrY8czoseNP5yy6gTD/kbd+oM7bMJHcVlLw6YRE0rHAp6BYDLTd+agw9dPBz5qaFsbQ9NzSUxbb7mWsyR+aPxxYDFFczzWazgiEK06Npu/KjE/a262EXQY32HFbBkhrRuHHZagBzGY12vd20/lhWcKD9VXLSSPmX4VMhaaADweU8oGnVAT6OqRAg9dmydY87VjFOv9+HbrcLt27dgul0Cs+fP8/S5oJ9qCNx08Ik9iGrMwQgb2PfXLZNwVgz+qDyxR0XVrTbbYjjGOI4zk5voPk02feldqL8mZeZKnfYVtoc6WpLi3Bt+YZHzKFCO5lMMpok+kPGzlUFLd98Pod+vw9f/vKXYTabwcuXL2EymcB4PF47wlyCy0ggzaFYvxLPDjHI4BjAsNPpNFuggndonpycwHw+h8vLy+xuT2nximtuX61WMBgM4K233oKPP/4YTk5OoN1umw2luwjaLj6jES78oactWGWhbRspJDqlO62pnNhqtWA4HJZuW1dduAzw0rhJkvVTXHg6lIdZ5sdNwjWOQ42vVYE8P6Ru3nprD37/9x/CvXv910cTUydsfjxx2gZ096vsnAWvkzQNQ99p7/P/+XvMS0+fhl2nh4ZZp0Gjy0Uzhex49TV/8XtdfYXOSX46kkQybgNwB2PCnKf5s2TDyesDHao5inHz37lTlIb1v7M88/iJGC519PLji+lv2SGLRx4nCWROUnmHbJoWdcDyPkqPKwZIHbFR1Mra6WtfO4bz8zn86EenMJ3mfNzCcyT5D52wFnlT47/UoXLv3j346le/Cnt7e7C3twfT6RRmsxm026k5uNvtQqvVEo/G3EU0wcO3oZe+ieDyudUGbAGVt2g83GEemp4lvzr7Ih/LPH2fHsF1nFarlY1xCVw/xmPKrwpCbaSS/idd9xfqu3DpNNYjn98EO8B1hUufdeFaH1NsMahdd1iYCq0nHl5iLNtmFCGG0l1kaBbmLhmXW61WZgREhJSPt6XFWGEBdwpZ6Gt6TLrSt5bbR7vPMas5zSx0aDTReNwxp4XR0ikzRqqOp1BhW+JHVeFKxydYcecnN1Rymn10aOGt9GntLxlfQ8c0d160220YDAaiAdZaNs25pqHuObwOx6CFFl7+bTtp6V8oLegk0HZBcznBNX59sI4h6/jg+Wq0SelradH+rwnedOzEcZwd7z2dTgsLHULrJ3T8WOFz0DQFPCr67t27MJ1O4eLiIjOW+IwN9L2lv9D43CkWWlbu4Ee5DMdIFEUwHo9htVrBdDotyG1W5R0RxzEcHBxkfWhX4eqXkjyL7yU5hhsttLRd/MKn72goIw9Z28U1d6PxbDabrfGskHa38j/pu0abtS53Ud9ywVevPl5vzUPq41pdRRFAtxvD7ds9+PKXbzl2xCJ9xXHFv71ONXtP886f0zDr79bf53QWjyXW0l/PS86Hv9ff6XQVaQx3wPK0reBpursK5f1ZDDUuhqHvsb2SzCm5Hi5/xnpKsu9RRMPx3arFtIph0ZEbtks2Lzc/7jjJ4kNh5yt9Lu6ezcub/y7WreyQRbp42bAu6Q7ZVit1yKbfkkKY/M5alPPSdojjNOG7d3swGLThl7+8hOVyDsvlOg/Wx77MnzW9g88nVO7Uwg0GA3j8+HEhHkA+/+AiuE04Y7cld0r5hdjDLPKHFO9NQpmyW3UgS1iq81rT9NHi0/tcspfWVyz9j5fFIpdxeix8B//z03w0fcynT/vaqIo91CcXW+2FUnv46JL4q6VvaHqPFM9ia7hBOOqyIwOU0xU1XGtn7JsKutK6DtSVTlnDRVPhdxlolFksFtDr9WpjHnW1JUedDK4qNtH+VuMivqM7HUIcDlI8HlcSzJJk/ZjkXUccx4VnqlxiPWAYi1NM4ge+OkdHCV9R6coLdz1hWFxR6LuXAxFCn8bjNCFdckBod3q7jLI8vHR0DY1jFYLxz2VssDplpO9N8yRJMaiidG0KnH/wtqA7N5fLJSyXy8xJgN9oH6jC/zEezbOMk4waolz9RlOuKL/lz774vCxYT51OB3q9Hty6dQuSJIHxeOw1crkU+F3oO1UROj9b+BNXXBG4Epzed1R3HdI5Ch3JcRzD5eUlDIfDLJyLZ2J/de0AvWrw1TUdY5JRmc4LlDfw+QLnWm3u26Uxo829AEVnLEBR1qH/MWySpMd7c3klBK7+SPOR5CIt/i7U9yZoCMkjZD67c6cP//f//QSOj7vQ7cbQakXZrtgogrX/6Zgo/k/py9/RZ/yd/5fe6e+LaVZ1wtp2x1KaaLUXm2Dd+So1ES+fL3wZhKeDjlUpbvFIYSluFjIBkI7kpXnI32niScD70HfSc/Fb7sDNnbnUCUvfQ8HpCuQ3/5/vhC3uiIVC/03HZwSrVeqQxTrDP/yW3xnbgtRZiw7NfM75+tfvwNnZHL73vRNYLGRZ1CeT0jAuSHOfxp+GwyF88MEHmVyP8wie2oJzylU9eaMphMgT18kWuSuwzreom2rh2+12oV3K9HNuY3DR5rKTWMKFpiuB281cNpJOp5O9Wy6XMJ/PRX1kW3Key1ZUB03dbhfa7bbYL+jJYNY8Nfn8hr9uB7ugn0i4Es5YOrFxIWMXFe6qNEkTuYv5l2XiVsO/RlPZfFzODR7H6iDQ4uxi//CBGpy0y8MR3CilAQ19Wr1a2tXXB6QJ3tKernR8tITEKRM2FFrfDumz1rgaf9AUMZ9TcRdAaaROGoTFmC71DZ9R2MUzaHyq7FIBlzqnqHHZ4qTjtPrKE4IqzgdpPGM5+/0+LBaLTDBt4ljFMrCMA5qvZCS18hZt/PniWtukLscRlZu444KD9ld6NLOkhPDwND8ahr/30VomjCsv3xiU6hnjWOZLyQBG6zyOY+h0OtkcLI0ViQdJNFbl3yFpNG1QwjLhrvvlcpkdwYv5V+FdUl/3ydZlge1N2xYdwHTc8fqX5jtOq6sednU+p/UvHf1FQceaxZgsxdfSCU2rLKR+JeVJaXG1qaTj8XJgOasa9apA462boKHJdnW1ER+vVWmIoggODtrQ6aT84d69Pjx+vAeDQfx6J2zuMEr7Rf4fHZD5M6ZZdDJhWCF38r34nqfHy1rM07fzVne6FvOR3sl0SvGkb1I6vrAS6uhqrmFB0y+GW78HlsfBd1jG9DnJ3tHvdKdsMR46J+WdskWHaP7OskuW10GRpvV7ZCG7t7b4275DNq87/o2XmZcxioo7YQFSB+5qhf04Ic/UyRu9DhtBu92Co6MuAAAcHLRhMlnCdJovzHXZCHw6ixbPBwy3Wq1gMplkjpblcpkdhezj3WVsM1b40m5yDg+t2xA9fRM2yE3IOBJC662K3dqSlyQrS3JTGfsyxg210fhkQhd84S19i8spkszIdQ0atqqz2kpn03C1OdUV+a5gjKPZinyyf5U+z2msW2+97tgWXywDkzN2lwq0K3RsClhe14pqywSBTMNy1yJAcaBL9xxVRRlDLYaTGPum+oU0FkLHB58McSKwghoYXcJzFSFg09glHgNgE24s8TXBx5KGFBff+3ZEWJwtuwJaV6ggUgcGBdZJ02XgO2O5kX21WsHdu3eh1+sBQLqa8M6dO3B+fg4/+9nPsvue0RmDhnkLrMZ6CT4DsCWuNpegE3Zvbw8ODw/h7OwMnj17BvP53Js2pcVSHk1ZsBgKfH1ccopY6KaQ7iF10bMt3obKFNY7LiCg9+ZoRuVut5vt8OPH42O6cRxnjrRN8RWLwcincPN0+O48n7IuOUowHepMpGnjGMJ7MH3lcu2M2zao06ts346iCHq9Huzt7cGDBw9gPB7D2dkZLBYLOD09zcLwfsodWrztMExIWWj6ZcqB6VDHo7Q632rM5OWmTmqN/iplqBvIawaDAUynU5hMJmt3WGnzDB1Lu9Tnm4A0N3DZI45jWCwWhb6FcTTdDOuR9qGyepw2f9Gj61F2o+Gbbjvf3LvuoKumt/G4aLirijiO4I/+6DG8/fY+9HoxdDot2NtrQxzjvbDokKVHFMtHFeM7MDhHi89Ije6Edf2W0qV0uPMuPue/tfc6nRTr7b8exv1Nc4rp6WjgDsDXb9WwGj3r39Z3zebPEXmW8qIJ8XToXCvFoQ7YorOYhyvSnqjf6XORfyCvS48E5mHSYPieV1yy9g2dp+hMTcsJ2W5YdFZj9pyNFfstynYJRNHq9ZHErdfpJHB83INvfOMePH8+hu997zSrUw4qI2aUJ+6TXiRocwnK+3wOBgA4Pz+Hy8tLWC6Xmc593eddCu6I4ihbF5usx12R+wDs9UX1hzrpT5LEuXtRk8s1mwNPI9ReuylQeqW7cik2oTNItp4m7LwhbaHpHPQKGK2+ptOpaI+05EnT9PlgNIewNb8b5NgGXyzrlyo4Yy2efQy36UJWXVFQNY2qCKkzn5GCCmnSdylPl5He58jV0ilbn5b+VCZtq6E+NE3f4KprLGjpUEM3MmpJUA+pM96fEK5Jusr4cQk6nJ4q6YbAYqyn+YQImRjH4jhw0cPja9+kuDzsrvBxX79Cozb9o/3cpZz6DHAStH6gCZDYFxaLBcRxDHt7e9DtdjPnFX6XFtBoAiqH1ncoH5ba2mWwt7a1VIe4M3I0GkGn08mO/9TaQqPfNRZ4fUg8u4qRV+sbrn4k1bEvHUt/qkq7bxxZymbJE+s7jmO4d+8e9Pt9ODo6gsvLS3j58mV21FlVGSu0b0pzV5m0ePvyfqv1N9d4KiNruMYQP+68DM/W5paycMmVZdJBGcdiEON1xWkJKWPV+vCNwTLjgvet5XIJ4/F4bUGEj5ZtgI8dq6FNmmt98pP1W9l5j6IpWcmlT7jmThfv8clAvr7okjuuIrZJu6+u79zpwa1bXbhzpwdHR13o9VrZscT5+Fk3BufvoPA7BXdUYjztWYtXDE/zxu9aPulP7oi17o7VaeH08G+W7/p7W7wykNJCpx95sxaWdx/8lr/PHaH4jofB+sz5YfFbkmA6ydr7tC75zld0wHL+tL5LltPOwyBdlGZOk1SWvLwRqbf89zryb5gHLQ+vJ6nfFnfMpnWejockG4OtVn5UMd4hOxjEcHDQgbt3ezAaLWA4tC9e1VBWvm+1WrBcLjPn63K5hOl06l0svOtOAI0+Lt9r8kiZOcJiN3oTYLFFa9BkRJ89y/XOApf+aIFVr/D1S5dMp+lBWtrcRkV/h+girjwkWORVq43V955/c73T8uPpxXEM3W63kB+330mLzUN0G67LuMrExwSPs+u8+E2CVU9y9WfElTimGCCMwe8iqkzQ3EABIN9tyGEJQxkvp5d3oFCl3gVL5wzBVe4bPuAdUgDpxNHr9bIdhFGU77yzTrIas79BM3AZ9PE7PksCWRRF4i4Rn4GQ3x1N231b9xVQenGVLq4463Q62bfValW4ixV3BmE9YFxaDk2Y9Rlt6VjQxhEXlgAATk9PodPpwN27d2EwGBTCoKKL6Ha7mSLsg0Vgo8+aY4Lzdp9iIAmEiMViAcvlEj788EPo9Xpw+/ZtmEwmpnJY+ExdvEiao1wCkja2fLSFKpx0Dq7imOE0UdB7lbV5PTR/xP7+Pvydv/N34O2334ZvfOMb8Fd/9Vfwb//tv4UXL17Ay5cvodfrQafTye6X2QakMWqJI/FVabcl/S6NL/5d2oUg5auFQRpQUaQ7z6pg14xFq9UKzs/PC0fmIbAtyjqicSzw3fu7KvNw3t9qtWAymcCvfvUrOD8/L9zhWZdjfVdB5zL6n/8GkNvTcr8p/25RpqsipC9jW3N5jfIYAHDKFS79D+dAqhuEAOPRunXxzl1AmbHfFL/4rd+6B3/jb9yGwaAN7XYL2u2o4IyV7odNmxP/5w5SzRmKTVF0JPneradXfNZ+F9OTn4txaDj6TgrP3/O4/Jv8zh3WHbcaaDdaTzdaCxe9dvrJ72m6tA213bJUz6Tvef7F+Jg2jYfh03B8l2zR2YppFsupOWSlHbTu36kMz9/T/1B412rRRb0JrFbpe3Tmpt9xpyzAapVkYxDrDP94W6R10CJ1kP6/d68P+/tteP/9S/jxj89AAjfYY9ksi2cwvpQmQH7KShzHMJlM4Oc//3kWJo7j7Pt1RKi+RX/vqpxYBWXm+TJxeb+UbL4hdLh0Lmt8SpPLBuayhVghLca32jlcjlhu85JoRT2K8xJcRC8B06eLPkPshNa24f4Mza6loWx7aOh0OnB8fJw9z2azNXl6Pp/DaDQq6GWWHbmudnSF4XgTTgl6kyC1ZSln7C4qWmWNNU1iEzSFDlBtQnQZFV1phTJfKb7GsHz5bII5baI/UYOGb2LCHWqSgcYK62RWpf9a4lZpvzod+CGOlRBwg7vLOdKkw4oqeS4j5rZ4Jx7duVqtoN1uw4MHD9YEzNFoVHDOlhFmy8JS7+12G+7duwftdhtOT0+zsO12G+I4hrOzs8KiCim9kHb1OZjLpivlgQ5L6rzEdOnRida5gNJo5TFSG1jjSnOJa87RHGXaWMkNO3KZqvZFHy2cDl86VrRarexIJ9wZ++jRI3jy5Al88skncHR0BOfn54Ww9PhjjpB6oGUOKZMmZ9B+66JL6l++fKljhCtNqNiOx+NCPFfflRTVMn3JJXO5wjQBrS5x0c3Tp0+zHRuz2UzluUmSHw2qjQvuGNL4LHVENQELf3fRhr8XiwWcn5/DdDoV64X2jW0q7FifaAzqdrvw4MEDODk5gdFolPEI3iYWmrU5rU4da9Pyj28ewv8uOd83D5SR82k/4gsj+Fy3i6hzDtR0Mm3esaZ//34fHj0awIMHfej3Y2i3WxDH0es7YumO2KIjNnrtsEKSaLj8XR6Ghsu/FR1wtHj0PT4XZfFiWjxdqOCI1eiQ3+fxpG/SMwjO3rUQDXdrKX2py9Bw+Q7aohOVh8/f5c5T6XtRviiml4Yr7kjFuEW5mH+j/4vOWxo3p8O3Q5bu1KX0RABsJ+w6bVTG55VbdMTmZc3/w9pOYLoTttg+OAbw6ON0vKbpoPN2uYyg3Y6g243h1q0ufOYz+3B6OoXhsHjShYWnuviMlSejrEqf65AbyswJXNa1yKY+PcgHi35WRYfh8/euocrc7ZPDaDifbOarf0nG0+RGS5/AML4F8ZLOVdb2RtN01Tu3d+F/a36UPq4DAUDmhHU5chG03q0O6yrwjXmpz/lsplJ9Sn2K/ua2IdRT5vO5eCpRaJ+gdjMOSQ/ksvcNdhtVx0OjO2M14/8uK3K7Bp+xkQ5Yy114mgHKZRSi7ziTcxk5LXBN1E3u3tt2P+SMnO9ipGEokiSB2WwmTrghAskNirCMiarplnFG0HR4mq6xIzm90JBdRx+oc/y0221IkvROhn6/D1/4wheylbpI7y9+8Qt4/vx5If+6oPE1CdoKtV6vB5/97Gfhzp07hd21+/v70Ov14K/+6q/g5cuXtdFsBeczocI97z90BTUKjNpcoUFTrqyQymTti5TfVjnSmTodKE2u35uANC/gex/f4MB7m6Mogk6nA5/5zGfgc5/7HLz77rvw/PlzePDgAbx69aoQli84CKHbanyhZbE4B7Rdyda+Z+3LeHcuVdxmsxnM5/NsJa3rBAtL+a8bVqsVjEYj+OEPf1ioQ0nRleY0Dq6oS0q0Nh/X6djjaVrDSqdZzGYz59whyQbbQrvdzhZWDQYD+MIXvgC//OUv4dmzZ9BqtTIe4dNRAIq8TOIBrv5QhwFNQ5O6g8S/eVktczofN1ofoSeNSDuJaX/U2uOqIlRmcKUT6iD4whcO4Q//8DF0u62CI7bKjtj0HZXdiuXMn9N06DstPOZRzK/4vB4nTb+Yn06Hi4b19zntnP715/Uy6mG1MPX383XdTgojfY+y9+tHBBfTSRJKO9/pimlQR1gxHXQAFx2mKQ00Ds+niGgtHM0LhB2ywHYB53Sl39bDyb95HsVvmFbxG33GHbG4ixZpwLpD52te7qhQd/R/ux1BFLUgSQAePBjArVtd+NGPTgvO2E3eQYnyfEa9x+mySZSRX3yyhEXWoL/rkM93pT6bgqVOXXXP7QsStNNAQuiSwuOCYXo0rRY/9D5SWq4yzlTtmX9z6T4crVYL+v1+diQ5Tac4BxRlGMspbtsAlf9D52fX4lwO1OUvLy/XTnspIxf4bDOWsDfYPVhshRY06oyViKgi3FY1NDSlnNcNn+FcK4dmoKC7mrR0XGlKeVapS618TRpQOLZpTNAmQBekOuPtaqk7brwOqec622aXxqDLmCUZsUKFgDoMpJKxx+WMCBVaq9BTJQ2+y6nVasHe3h4AFI/nxh3hGI4f3cnhEspdShW2FToE0PlIHW/oIEbHynQ6zQzMg8EA3n77bZhMJjAej7MViSjY4ZhFZVgSDi3zptZ+lCfgn/WIE6mP8b6FAv3JyUl2dHGIU4v2XW1estBYFw/yKY4+47OmrFmVKSnPTcxNoY7IJMlXiGK94dHhEkLLEGLoQHq0ccOdMvSda2zx/snDU/7gks3waFyqwKES7DpyV+t/aJTARSuu8CFw1bmvLsrk5XNYJEmS9S/f1Ro8Dc24g+XAOtToKKPYS3RVTYPzIW3e0sJtQ67icwW2XbfbhTt37mSLqOhOe65zWPoHjyfVgaTLlO2/Gg1V2ljSnyT+I8Ei5/O6oXXgW+jpyos7Y2n+2z5CTRsvGqS53iKDSemE4v79PnzlK8fwzjv70Om0II5b2W5Y3BGb3juJfa34n+advssdTzRM/o4/A4BnFyqNmz/T/PI0eXo8rE6DFE+nDdNdp3k9vvRde5d/25w9QMprvf/x7/x97hgEYcds8Tnf2ZkoTtmcL607QbW7ZFPeRZ2SUUZLnkb6jpSsEC+ti+Ixx0WnK5D4UeF3kZcmLH06xvF7fr8r/ubfQHDa0j6ZOmGTQr2mf8lrB246jtMjjtNIeHfsahVBpxNBkrTgwYMBtNst+OSTEYzHutPD6jjIaleZQyX5B/l5Wd2wThT7YLT2zRqXwyWT+eRMV96uOWeXbFt1w6UjA4S3XR35Yx5xHMPe3t7atVwIPHXHpbtZ9MOQfkrT9NmgtHcuXReBYVC+pvBdU0Hj0/Rc9Enhq9oyfLq1RlvZPhbHMQwGA+j1eoVFu4vFIrPVSTT6dABfP0C4yhkq095gu3C1rXU+uDJ3xlpRh+GoboQaaaJIN6C70qFll35r8V1GRi7YVjH6+IwOLqHKUu7QeNuGhTZtUPPfmmHKkq6VBs3gWSbNqwbJwKcJYy5jcUh+VccYhdRHtg1JQGm1WtDr9SBJkswZi/yQ7kKU7owN5VGu+lgulwXjMaWXOluQTrz3ttfrwePHj+H8/BxevXoFSZJk98eiwIfpAhSVZInmUOMvFcq1Mkv5+NJEYDvQo0RD06DvLEKtT4lxxQ2hyzrH0HBopOZhXPExjdCxWFa24X2oDA9IktQZO5/PMyej5IwN7a+hNNQVT6sP6mCgipdVhkO+RJ3WSZJkzlhNmfP1HeQ7lA/WCcw/9J5Na7pxHBfSpos4KE/iO82leg+REakBReInXBatMk6oDF1FD9HkLG5IpdiVeR2P6o6idMHR7du3YTAYZN+0eYm2j1R/0n+pjkPGVRkjapV2dfVDa/6WsFq6Lj7o6mv0WTPCYbl2Wd+iqEJnqD5PcfduH771rQfQ6bQKd8QWHbJY38X/Kd3r7+h7/E3LmD8DAPB2Xv+N4aJoPd3i72I4OU+ZBjnfaO0dp1uK9/qJPUth6HurHGkKZoY2bH28AD/T13kUdMzanLI5D8u/FefbYnzXscXg3Q2bO1hpWYth0u8YnqdRpDUi5czjATnKGIiDlTty1++0leqTpkfzy+mjd8mm+mhKa6uVZDTi7mJ0yq5W6e7YTgfg3r0eHBy04exsBuPxuixUB2ibop6Juiu+L2PXq5NGSfby1YVLXquqz/lo4r/x2Ur7VYB1fnP1GYvt2mXrsMpCXBc/OjoqLKCn+vl4PBZPspKeNTolu6uUDu9Dlv5hqXdfvbRarcK9sHyzgys916I6jV4XXSFjQKs3LR/e7i56tDK1Wi04ODiAVqtV2Ogxn8+dOrYkG/vKJtlgrjKPaBK7XjeSbaKMrYDj2jljrwtwEvEddyEZdUMFAl/n552ujDFYuqOC0013kuyKcWmb8NUBbXvNGCK1l2tHrdSf3mSUnRjK1KG17jVhwJrnrrTvcrmE1WpVUBCHwyF897vfhdu3b8OTJ0+yO1e/+tWvwjvvvAM/+tGP4Pz8XDXqArjbzGUItYy3OI4LdANAdifecDiER48ewW/+5m9m4Q8PD2EwGMAf/uEfwvn5OfyP//E/YDQaQbfbhdVqlTmcKc8uo9C5xrClXBpC0rHSGJpWU8JZ2fJwg3oURaUcZE3OdZpMEFKXuDs8SdIdi0+fPoXbt2+rihdXOuosl0+Z5HMhQK6koSyF5XEpftaxQIFHXuPOVZTbrIYhGkZqH+3Y3qZQpwyAdXHr1i24d+9e9u7p06cwGo2yY7CxvqTjw7HN+J07UZQuCEDjQ5IkmSKt9YUQuuuWoy0Ijc/z3Pbcju2IbTkej2E+n2e00e8A/jlBc/Dhe97Ouw7NMKPJH1zO0+piU3AZG7elu23acMMNgXgsN33Habp9uwu/+7sP4N69PnS76Y7YdUfs+o5Y/WjiooMzn7+KNNIwPidoni6VbYrh5N/2/Nff8T6+Hp6+L/6O1r5JzzyP9W/qp9rhyosOG81xweNjHKyv/DkRvq87XvFbHg4zKDpfMW3qyEyIE5S+S/lyMSwIO2Qxn5wm7Q7ZPD2MS7/B2q5YWkM8X/qu+B9pwOd0h2sCdNyk/9M80MkKkLzeEZuWH+sS/6c7YyOI49XrtFvQ68Xkm38elxxXZbCLNjZNbgqVpyQdh5eVyh30j89noXWzK3VZB9y8sty3snT4ZCLuTOThWq0WnJ+fw8XFBUwmEwCAbBGxdNoHh9Uex+kC0HUOqxNH6pNS2ZMkyRa7Yp4PHz6Efr8PURTBZDKBDz/8MNvtyTcZSPJnqHO1rK3KlR+FxA+lXcC++Fx2o5jNZjCZTJyn1Vnzk2zu14lHNIlNy/NVEDpOXFCdsaGGpE2hDkFi14QRCl7XLsGgTDmo066M0Z/nJwkzPlDjmnQvAA+rfZPSvQ6wjD3XhCYpcppyx9N80x2y2phyGQ9DxmFdSpWmbFji4G9LGZsECoBUKJrP5/Dxxx9DFEXwxS9+ETqdDnQ6HRgMBrBcLuGXv/wlnJ+frylSocorH2OWuyQwP766cjwew3g8htPTU1itVvAbv/EbGU3dbhf29/fh8PAQxuMxfOc734HRaCQ6k7V6l4R33pZaOCtc847FEWZNT+MtVsW7ilyiKfzW7zQMnUeroAlZROrH1rql4ej8vFqt4NWrV3BycgLT6RRWqxX0ej3o9XrQ7XYzxbaMPCAhZN53hXONKem3ZZ7UwMck5dGWeVpKA8NXrU9uhLKijrkA+eDx8XH2/OzZM/WYcqm/cl6Pz61WC7rdLqCjT7oj1lWOumWdqm1VRt7btqzGxyrSs1wuYTKZFJyxktGnCh/nRiqLcauuPk3TCjGq4X9aF774FmNQVVnSla+rnXZF79okHZKxTaqrKIqg3Y7g8LALX/nKMQwGMcRxfkdsfjcsdRBA9r/oCCoeG5y+o32qSFv+XEyHfiumIz0X817/ncf5/9l7k11ZkuQw1CIyI4cz3HPnW3N1s0tkN7tFNikBhABBAsEH6D19gP5B0E5/oH/QQlsttJcW2mglUeAgkBDFBocW2VN1163pDmfOOTPeIo5FmFuYuZtHRObJc+sakMhMD3cz88nchnB3jlujT2nX0+p81Hmu16f+vOJVAutQ6XpI+UQ10pLyaHImSXgQF3EkgEFD/hz/uz4gTrtevvhd31la3ZHKd8Ty7wKnVO9cCOwCuPxRPiivRdv4gsRIl9Ln9oi7E9bdgauN5WpnbHX8MThpRUA3gTTF+2eLoG2vl0KW5Te741NYrTZRa6GWV9OdeB4NduUbtdIJtYlms/Ny+vyx61u+MpY2fZNA05vb1tXi46U7Ibk9IOVfLBZwdXVVptGgpUX/t8wFvjuTjx+fnsfLcLtP0v24Hp2maXn1VZqmcHx8DEdHRwBQHM+Mp7MhaLisdjEH2v4xvjhLu4TohoDXg+vg6ONYLpfOnboUeP+G7GmaTn2Lt22rvYXmELM2Nym/052xTQzvbcFdmRRdtVdo0UKQ3hYK8WBZzCTHW8hxtS9jJQbajvEmQRRLGUlJoEfXNMX7TYAYg6Bp3/P56TO2NJ64M6gLvihdi2OuK8C7Sfv9fnk/LN81lSQJDIfDMq+k/ADI4xvbO7RjigZeufzC+UNl5mKxgJcvX8JkMoHLy8vy3tgPP/ww6k0+H2A7WHEh3/TFFzrGaBuEFGkfaEYFxxMbEPLRigXKW+jUibY8WAzLfQQcD3hHLN7D84d/+Ifws5/9DNbrNXz88cfwr//1v4a//Mu/hB/96Efw3//7f4ef/vSncHx8DL1eD66vr8WXrbriDYNuknHFx502DilozhsNqHylPGkyVwoE7Wp9bRv8agP4FvZgMChPQJB2kSNf9IgtTRZhn2Mg9vDwsDy+eT6fw3q9LmWtdlcs/U2PMttH8I1nTOP5bgvo8dzn5+fwF3/xF/Dq1avyGUCck0VySEl2g8+pum99a5EtWjqVOZY1rOnc59cn0GAjzWPRod5EwL5YLpcwHo/h6dOn5VUUdDf4wUEf/p//5z14+HAIBwd96PcTZUesG4jVd8TqO1ITJ1BUlcPn9Js/c/HKO2IpfvrMxV8P1NZpa0FYKp9B+B0OwMqO0VqS59l2ZahLj69vUh7+rC77aZKLg+8orQKj1W/Xge6id3eaVsHOKhhZpVH9i/4v6Fd0E1Zvvps1cfACC6CCs5O23oZV/9EAK8VT4XPnUXGnK+bB44ZRvGJ9C7r03tniaGKkW9wVi21T1L/XS8o2AUgBYHNTtgff/e4JfPDBAfz1X5/CZOIeVxwKUOzDet8WQvanBUJ+RE5PKt+1nfImA/VR4X8LWPxokl7uG/NY5smTJzAcDsuTdnz+kZj+5nqQ5NuImYfW+lt0NVqHo6MjePLkSUljOByaeZL4oLxiH9ATmmIgdPUN6pCSb1rKj8F0DDBjn3M7Sepj9AXi88vLy/JZF9f/dCGT3wS5/hb8IM3vVsHYWMfOLgdZiLddG+nWhUtyPMQ4Bnl6DISch7H0KYSUzFA5X5rmnNKeW+k2Kacpe6FFuA0fofr7nlFnV9t2exMWEauzHiBuLLeRNdxgDuG2yo0mPPDfXQJtz81m4xw5Sd9mpMDv7JTaSnLEY6DIEvTGb5/TkTrnzs7OYDabwWQyKZ+98847TlDYN+8kkPipO1L848RiQHFjoGlA0bpuxKRr8inG4UzXVovDg6dL5XjfaM+t9doW8Dkh8c2f47jP8xxOT08hTVP4m7/5Gzg8PIQHDx7A48eP4dmzZ5BlGaxWq5ohLLWFVX7IjtW6DJb+N5VRmrFvyU+P0Y0dQxreNmPDJ9us7dh2bNLxgDhDclSiqzlkqBzFAKxVnmrjXaLj49WHtwlo8oLWVZNDt62DUR5XqxWcn5/DbDYrecX1PJbPpuuRVO6224jyYFmrJcA5he0tjRlrnaX+8K2L0lzZB+BtEFMn/G0dG/R44sFgAI8ePYKrqyu4uroqddXxOIWTkwG8++4BnJwMyiBsNX8xEJQABnMwHUAPjhZptJ5lqsNjVb7OPy1bx6vjd/NyHHogNsRX+Le2s7fOjy+P/My3vus4YkCeKhS5G/TU+ODP6rLNzVP8RzrSTtcKDwY6NfyYX8JRfct3xrpHGRe0OI0Kr7T7VuaTluFBVs5rvU3d3bFSG9fHM5UxuVM/nDPFb7p7tgra5nmRH1/COD7OoN9P4eCgD+t1DosFHmVct9d2KW+70v8sdLSdjj6Q7CvEJ9nI9HkIn+W5Zt98E8Dapvx5jM4Q0/8AUJ7QJJ1wJp2+aFnnff5Qi24hPbPaklQ2cTy0HfF6nMFgUAZgsQwGF7Ujcrn9b+HL0nY+u93S/0mSwGAwcGQDBQzC5rktqK75vdBfR/9rfkNL/3K9s41c+CbKlbsCXfSLNEdaBWO7cDrs2jDeB4dFDHBhpAkfKjhoGoVtTm6r0OLPqeOWv5kScmJbwbeoamBRBto4lduC5nSJxZEkSe34im/im+4xoM0rSZmKBRoAuSugOfOs4x53XdB7VBeLBbx+/br8fe/ePedtP26MUXr0zbk8z8tdWfhsOBzCdDqF8/NzpwwAlGUkRRXfDOQymO4wf/36NfyP//E/oNfrOTQ//vhjGI1GJc7FYlHWmTqpY8aMRdZK48gq/6wO8CbA34aOlZGhQEqobFe74egxvpQXzqME23Joa4EmgGqNxV2Klp1V0+kUAADG4zFMJhP4b//tv8Hz589hOp3Cq1ev4NWrV3BxcQF5nsN8PoflcunVU2LqwX/zwJ5lbcc89E5XqayPD83A5H3NgyNafaRg2i7BqhP5eIydtyjv0IFQBSVkXYan87ZerVZwfX0N19fXcHR0BIeHhyYecNxLY4nS6MohGdNO1uCQr93eQjzswjay0Kb6t0824x1hOJZRrtPj9yhOTWeleoI03n3t8iY5jHwOfA54JCDuxH/27Bn803/6T+HP/uzP4NNPP4XRaARHR2P4/d9/As+ejeD+/eHNjtiijfGI4iJAw48pxjFQ0KrSePAzFAjV0iqcIfw8T4VH3x3L0yhtmo/iqvNX57/+THP61pIcfJb824AQnSpgSvPimJTxYHrdWe7mwf9Ig94nWz0DACUISuVCktBy8j2yle2gB2QhYodsNQ74scMVXlrGTUeEOXmupRXfaZo7u2RB2BGLeXAX7GZT3yVbyNbqHt88T29wbsrfKG9+8IOHcHm5gL/8y9ewXG5u1f7flY80SYqTUIbDYfliy3w+N9OX1h66flp0XMtdjtJdpBJdjac3Bbgescv1n9OmOg/1H5+entb6dLFY1E5UC4Gme6HdHNKRfLq55EOyzHdq9yDO4+Nj+OCDD2Cz2ZTXX6VpWvqXAKC03ylI9pTGm4Unax4+Zri/ebPZQK/Xg08++QSOjo7g+Pi41jY//vGP4Re/+IVYJ/pNwXcqXRs/DJVVktyy7ra9SzGpt7AdcIKxPkcIT+sC2uBruvhxwdAEx7bBJzR8+Zs6fDge3/OQgyy0QGtjzFLWh5OX3daYRdi28PS1k8QHX1Cs/QEgH+NqAR9f+zantglNxkJojscaRNI8pOn8dwxPIfAZJxbgfKFjcL1ew2KxgOl0CqPRyBmnVBH3tRl3+OOxmfxtXK3d+JziNDjveG8hBoSR3vX1dRlMpkelUPqSUthWjlmDLj5osk76+Jb6aJsQkp+hdRVAr3vT/morH0O8UT60AI/Eo7SW4ssSOD4XiwW8evUKfvzjH8P19TVcXV2VBp90nGVb0NqY10ELONDnPsNJA8v6izh9YylGv+lq/dTkmJYv5GxpytdisYCLiws4Pj6G4XBoxhPqI3S84LcUTOV4qNzlz6Q6tx3P29ZBpfVjl8a9Tzbiixm70pd9Y9vyvCndbUKb9ZeWl56F0vFlMbxLizvG9tWJZK0zzd+0L7Msg+Pj4zJAe3KSwcOHY3j4cAgnJ5mzI7YIuuInYd/VB3mqqoFrNtXx3WesRiB1jSvr6jgofp4nSSq8lEeXF5cfSz6aRvmR0+v1kJ5zXPqzMLQd4pZhhTTcvNg+9aAslqmn6TtlKxoJgLpLtrr/tV6e72Ctnte//QHZqn51+8rXLqH6YF6k5+J3aUp8I18YyC34qf4XOHJwg8v0ztiqz4oxijtm3XmPu2TTNIFeD2A87sFmk8G9exnMZmuYTusBka7XGqufrivg6xja4dRG9+nzGm/cnqG6UMg3ym3wEC3p+b76kXcBFp+xpV1867VFx8BT1FarVe2EIkn/9Nl/kg1Mx2ZMnX22uQaa7S6VTZLECRBjfReLRbl5YLFYOHxLoNnFml9Z4zvG7yG143g8huFwCKPRCIbDYXlFEgDAbDaD6+vr8roTia5l7PnsdB+/ljwhf6s2zkN+xbdwO2C1b3z9ZbVFdnpn7F2EGKfdLsC3UzakFOBz6c0XSx2bOi+tgkV7o82CoytHxT6Cdu8ZQkjh4coBr//h4aFz791sNuuS/TcGQs79LhZQ+lafdO8Fp/cmLNq8HlmWlXcHzmYzmM/nkKZpqXBjOt4ZSOUZvZuathW937Xf7zs7YfHeCQyeSnNF6gdMQ57yPIderwej0QgWiwXM5/NyJ9inn34KL1++hF6vV+7gwvvFkKdQG0kGqwaSQSDVQRpDbRyTPnrbhFiecWdcr9erGXBWoONKetbEMOkCLO0fU09s29lsBv1+H46Pj+Hrr7+G//yf/7NjAFLY1h1MdK5ZIM+ru26avHQUc5+Vr864E7TJDvi2EJIDFLCdaJCT44mlnec5vHjxAr788kv4zne+A0+ePKkFTy3g45u/KU+PcdV4QqOe7tLdJ30/xMc+G+9pmsJqtYLT01MAgHJ9sxitIScGd4rhrhrr2rivQMcg/tfyrddrR1f05aWgObL5M9yh8PDhQ1iv1/DFF18EnZd3AdrqNhL0ej0Yj8eQZRkAAPz2b5/A9773AA4O+pBlKfT7KaRpdXck3hWLvzFAI38DuAFQN4BJA7ZVF3S7I5b+r/JJdOp0pSCsnFbnneehZaVnHI8vn1zGApbMckBRzU2y87x5XtFMkgo3lqH5qzRXjmIet4x7n2yeu/kwkIjpFHc9IBuzQ5bXMXHqhHTxWUGDBjrdZ/w+XCABUxfqvFTBUvqNZYu0NC3yu3fHVsHZNAXYbHJIU1yLsEzBH35o+xe/i52xm01Rh8GgB2mawA9+8ABevVrA3/7tGWw29kDgbUKID74u53lxEgOeFEV3j6FNZqFJ8fNrjKSdk1KghKdJLxtJa2TXtts2+7Ir3E18sF3S5vjpKSDn5+e1067Q9sO83Gdm1a+p7SgFR7kPXrNrJB3WAhQfb8/NZlPb+ZrnOXz99dcwmUxKvVvybWkQ47/39S9Pp+2EPq/lclkeFZwkCXz44Ydw//59cafwF198AT/60Y/EY6eb2ObbmG9t/B4+3fwt7A9sw4YAeMODsV04hW9jQvic5zwfVxS0YB3HLdGUFhoNl5aXB0EkvkNlpPxNHZghAXcbgQMOoSC6BE37iisL3LGFii3F20TxDPX5vkOTPpGEtG++hIIl9ChFyZDwgdRnVmV6H5SA5XIJl5eX5fhbLpcwHA7LFwWs8gCd7jFGXmw7cPmKjuF+v18eV3x+fg6TyQRms1kZBMDAjI8XiYaUjyv6ViNIk7WcvpSX1tXKWyid8xDi0RJEoXk5XmmNtc6dfQuG+JRE+qwJr7Sd1+u1Y0QBVE4ULcjWVLZY5WkMLhwrofVRmlNNeUc53uZY6zZgDYLR9Z/uiOb5OL9aP3F94/r6Gvr9PqzXa/HIrxi+KR/4Njh1qGF9eF/isfU4VvHYL0keNIGuZYHm5NoWvS6gjf5n0aO43npXgMqgLvpNw2NJk+YGb0+uM9Ey+zLuJPmtyXfMI6WHntO2wTtjAQo9bjabwf37ffjudx/Ao0cjGI16N0FY3A1Lg6x87Er3xILzjD6v8khjv/sdsTwf/V+lbTcQW9fTeP00vmQIiw0/vVBZeWhp4+3mqfC4/gzbL6+VSRL+n8tMKX8C4Nklizy7z9vskJXkRp0Hf/2l+12TWptg/XjA1uUJd7i6+ar8SM+lS+lzHal45uYt9KqKDgZ50dXS6yWQ5wkMBj3IMlm2WnTf25DLsYElrZxlTbfUTTp6WNOXQj5VDpa1o4k+v009pkvcWr1jdXifztGEh9VqVeubEF363+pv4OOozVyjtLnfKWSvY571eg2Xl5e1ubNYLGovKXLeNf8Hr5vES5MxxQOs9CX4w8NDGI1G5QttyDv67jA/v1KvK39AyC/UBeyLvvwW2kFT2zuU940Oxt5VkBQCq3OjiTJhHVCa4d7GSclxdQW7oHGb0EYRoGWluwuyLCuf0wUTwN+GPiXmmwJtlAMKkrO+LbTFFZItXcJ8PoevvvoKVqtV7VgSAFmploIGeZ6XO2vH47GTH98UpLh8b7ZpbcePHV4ul+VuCdyF++WXX5bHxVjwS8ohD2z4eJKMTAvEyk06TiVcIcPaIjMs4846trnBI/Fu5ZkbA1S5DxmbbeZiF/MwhjYPrM1ms9pdKIPBAPr9Pszn89qYaMqrbyxa24/Oc/pJkvpOWYobHTr0dAILTc0JhLsv89y94/G2gY9Temwc3rvN88e0PQIG61+/fg2np6eQ5zn0+32TvA3pHEmSOIY6P2WAlz84OICTk5NybXn16hXM53PIsszJu2vdJSZQ6XM27gvQuWd5Y1yzezSHqVWu3IaD2gfW9rDi0vQemsbBJ9NoGZSRXE7sUheMgbZ8WcvSnViLxQJOT0/ho49G8J3vfAzjce9mR2xCdsHS3bBV0AZ31ElrJeYpkvzHA9M8NJ3n1XBiep0uLy/RCQdiMV89zS2v8S4943il56F0zlNXIOOjawtNrwKeTioLnLrpyHc9AMnLU7mAz2l+X0C2KCvfI8sDspQnzC/lRZwcKhpYCXpnLM3Pbb3cSUccPOAKbGetxIOL3z2u2J0jADRIW4iCBDabij7mxXtl8zwp75TFNsN7fHu9BABSGA4L2VHIcCzvvhy/j3LXAtLdq6hja+tVrB2b57noL9BgG215V/unCeyDXoV9zvViXKMlXSdGd6R0ugzGUuAnEIXukEX7dbFYwIsXLzrnCXVU+pI1PT3M0n6cDwy0AlQvsCE8efIEnjx5AgBQzl/qu6PpCLRvfTpsiLd9GMNvYb/gNmIZajBWElpt3orYFnQV/NgVWNsw5IjU8mhlKF7NoRMCFNDaAsUNex+fPI0fM6YJV1+7xDhK92kMa6AFJaxOYRocAKgWL3yGi+t8Pod+vw8HBwcAUDgz8Tk6TKmTnUPIWUp5uCvzVeOvKd9NHNgSPUtbW+nFzoddzRnOF93FhEDvldX4o47gPM/LI4nxbbuDg4Nyh1+Mw1ijR9scjxHs9Xrl3BoMBjCZTGrHtdDghzRvOW06h6X1JEbuxoA2NmP1Am29aJqP8mfBJ+XVeA+1odTWTQwV/synDG57HoaMrTzPIcsyGI/H5TgHqBtL2wQ69nwBB2tAj+LFT4zxbh2frmPU38YhXpsCp01/0936vjphXZIkqclmXxm8JwxlLuchRj7RMug4sPC8WCzg7OwMTk5O4OjoCM7Pz8s7MfdFP5H6ed+CiiHga1QIYsa29BJQjAzndLfdrpwGnYNSIM6HB6B+XHtM24VkIeoiSZLU9BVqg1D6bSG05nHetbVc8leEytNn9LnUR5i+Wq1gOBzCJ598Avfu3YOvvvoKnjyZwOFhCr1e6gRhi/YsAjiV3Kz3Ow30VHnAeablBxbQlPK6+Gg6nUM6LR9djtfN55ajZev46nj4M15eeq6lhcrsCihtDMjd/Kvl4UPVTcc2zGt5k6ReVnpW/K7jqfLwu16xXP3oX15W+4ZaMFSjUbURfe7SKnC5+Kt0t12KNJefancsKIFxXsdq7CP+6t5YpEvzoAyg7YN507R6KaPXS+DoKINf+7V7cH6+gFev5rU2p+CzaW4LLD6LPM/Lk3Wk/Hx9l3QJTTbz523bRMNP69IlvX0HzS8BEKfDdEGb4w35QaQxEwKKUzoiV8onAddxtPFE5zHHr12jRel3YSPSI6Al/qx0qB6F1wUBhI8NHgwGsF6v4dNPPy3zXlxcOEFq3t+cLv325WkKFruiKezK1/oWtg+abcPTtrozVmIi5ITaFh8ArgC2Oq9vEyRnNP8dckB1WScUrNpbO00VQ5/TnRv/nI4GmtJ6G+OvKWiKn7YIWYIv6BClx0nOZjMYDAbOWf0YuEIcfIesxFOMAzm2P5uAz3CJBYsSLuWVHDo+8CkYFpBkmW/M0zrE0N32PKJ89fv92hEl9ChNzMeBBwswEItH2hweHsL19XX5VqVEW8LtazP8j/zi7lh8qWE2mzk80x0WlF9fe+Bc0wwBaayG1gkL+By/vjbT6MasD9J6beWXArYdfakodj2xzOnQ2NFwSzRinnUFISd/lmVweHgIq9UKlsslzOfzMpDXhDepXKh/+JoeWockkIxjbuyG3lLWQDO2dwm+NUpyTOC6b6kz1T9D+gg+p3cFWeQJ5ZXLADqXAfRTDWg9e70ezOdzuLy8hEePHsH9+/fh+fPnKm1f2l3RI28TYnaAamsGH6u0zzGNHk0dS8/nXJR4iwXOuwV3KB/qNG31Ra5XcJmAwVifYxPTfXxYnZaWNTnUNnQtiIHQWk7pr9drGA6H8Bu/8RuwWCzgiy++gMPDHN59twf9flIGZJNEuheW/pbS3GBQ1Scq54xfNx1xV8/kdKQvP3NxIx6XJ9oHOu9SWam+Up2lunGop4XaL1S+PfjEEm/DKq8bGOQ4koQHGQF4QJPm4XPLfYY0kpKum6cKhlJ+qrlW5wWcI46Tm++c9SENorpHDbu+LmC0i7K8DhxHVTe3XnXe+e5Z5K0KpuJ/qB1XXNEs5lBRPk3xTlgaqIXyiGIANwhbfKdwfJzBJ5/cg1/96roWjK34131DdwHyPIfFYiHyi0fAcx2A6tN0Vxx93hU0tWHeZKDzMbauTcdlLB1ut0inNFl54fKyzRgL+d+kfNKphZR/vhEh1k7ltHl5vEZG4sGKE9O4bPL5uPA+6clkAj//+c/Llzakq8YkG9Jqv3GwjBFp/If00TddLryJYO2zJnJNK7PVYKzmIL9t2AcemsA2lI0mOCXHe4xw0spIR/eFnN78TRmLsnAX+l9yMHXV/4jbevwwAJRHK9IdzDHtGOsk/6aC5CCn36FyGmjBjq6Vy21Br9dzxl0M3zRwu1wu4erqqnwW2s0XG8TkCjsGgHFH2L1790oe+By3KPuaUxPnMleopfwaDcm49Tk2MbjBlW2fU7PpePPx0BQf7qYL4bTMvcFgUI4vK2+3uQ61cVbT+zmxHdvK9lhecP2STurAb2280HnAA7hdjjGKl+4g9uXrGqS6SQ4AmscnH/C5FMQJya88L3ZD4MsweHesxgvlWcIVyhML/DhA6fdtgSabNR38roG0lmj3kTfRPaXftwV8voTWZS6jrE7BUHAx5NDP87w8Sk7Tg7CfmgCvh9bXPvnFx4Ik06X5ovGjAS+3XC7h7OwMfvSjH8F7743hN3/zBB48SKDXw0AsDcIin1ReAvu4xwcXNKk9QOsLLI3y6fJLadTT60cTa8/CPPA8bj2kvHXe5XSOT3oup8m7hf1ltgMSHW24Yd5qx6wblKVlq7xladCOLq7+V/Oo/kwKitYDsi6/9R2ybjkfuEFeHmQteM3L3zQ4C8qxxNJvlxY99jgp25cC0nPz04At3PCZkG8ADLpiuxT3xBayAOuYJNVdsdV3UQiPK+73c3j4cAi//uv34NWrBZyeLu70+g7g+jYkG4uuB/xbC95Y9E5OnwI/jYrifgvtYBu6FtcHQmNJsgMt/mnMR23eGP3A4o+z5JPK8N8xINkJ1vax2GISSHfFpmkKg8GgTDs9PS39ckmSQJZl5YYG9JNJdr6Fh5i2svSHrx/2wb54C/sLvvHhBGOtA6mJINk2hAzafYOYNtQcZW3a39JesQ4PLqRCzgBO3+cE9NWbO1sk5crCiwRNnNZNQapXTCBW6gNfXt5uIUcFbVf6hpKmEOEzH06KwwddLHqxC20TfBqfVgcY5qUBREswqIu6tXHwbRvQWavdH6EBb1s8cps+l2jxsdlE2UNHJSqfSZLAaDSCfr8Pk8mk5viUjAdtvCB+Wi8rXyHgcqdyttTHMB/fMbhjgfLQxTjM87hAom8NwcASDcbSMttU2tu0adM1HndQ+spvU1ZQmedz1of4omtak7Fl1eO0wJLEUywPIYjto6ZrSchAxvkGAOVd2r67c2NkSlcQM5c0Wc3XY5/zxxoosvB12/aYbx20ALYBHSeSzG+ik3P9Khaa2LzWucWDhzQvXYe1F1CstK1AaeJ6hi/D0ee++lntFkn2xqzHFgchjqfYF+sQv2RfFqecTOGLL67h8ePH8P7798o7YpMEy1IcVZqLH3+XqTd5ab4qv8BlLZ9bhyoPpeXWyc0v96ucl/LlFqvTpLzWcen8SPg0PJjXN/ybTA1rmRg1jOKUyuFzHpTFZ7RMlRcADLtkJVr4rPidKPR48BSfSwHZel45n0Rf469+XHGVt+KZ40OgvElBWMQj7QKmuLS2qOY03XFb/Xc/7tHGSYJB2/zmuOI+9HoHMJtt4PR0ESUbtwUhXcYHmE96AVazxUI+RaorhGj77Ddue6PtboFd+gi7gKb8NvWNdW0D03Lay+caryF/j+bH9I0Fi++U845p9Oo4Ka818GdpS9/4t4A2b0Np3FZH/bXfr8JPeEKdRpcGY2Nf/vPJTd6GXczjNjjukhz5pkNXsTOEre6M7RK2teDdpYW0q0AsBU1QhZxJvnRf3pDw48oVD6zelb7aBkjOYt6GPucmB3qnpkSL7trztXuv13MuZ8eAE0ARNDs7O7sxMOrHXuwams73bRpCUjAB+fT1UZfA72zeFjRpf9ruMeMbwCbHKGhHvXCFncslTgthNpvBcrmEw8NDZ04g4C4x+oZuaAcdOmYlvrXxEtPuMcGIfQLJWczXDu1NaARLcISXxWN18LjeEI/bbLfK2dXNPA7pBruGJgF5Pi40WUfXqNg+ktqcBpdovibB/y7GDPKDcoi/OODjUXIKYDvyZ5YjY3GnMA+Gb3Ns5XnuHHc/n89hMpmU/6X6tAGrkzJUnqehY6KLHelvoVvgY1jS7QD0O7O0gKykG1K8Fr4oxMo4zemmOQRD8wjHcZZlQIO+0hGVWl00eaHZiyE9WpO31FFKnadPn47hn/2zd+HBgyH0++nNrtjig7wVO2SrYAumVQEzNwhZ/ZXvYq3+V3mketTL1Xfp1vNqZeW8Wp46ny6vlGde//rvpPas/l/OI+fV8nTlT/E9re8q1crRfLQtqvT6rlaatwoWunSTxA2gFnnlAKZ/hyzO/y4CsnQnq0u3qneu8MXz1nG4d8FWvyl+IEcTS2lVOfxP29zNQ+cm7owFqO6MrdozJztii7ptNgkUO2OLPHleyA98mYSuB/u+9qMM1AJcmp2GaZiH64hN+NCA2txt9M+75Edu43+h64klwNUWQuOcvrQnfVvA13eantTUlxJ7bYePTtPrcySbrUvgPPMTGIfDoXMdHr2yZjAYiPWKDYaH9NvQcctWuCtz/i3cPoTGyp0JxoYWVMuk0AKC9Pe+KzgUrG/NaGVCeUPtoS3SPp66XqglOhZDPpYGxW1J6xp8Y1YbwzFzJs+LY6LpG/AU8O0kHiivnA7VApplWRmclYIfoXEj5esKQv0UM294ua6UNotT38JfGwMmhg6ChU4bXtqOB5/RJ6X5DERfPegz3MmCQVfuENSMh1DfacEfCYcPjw+nDx+HJmuFL48Vr8ZLCEJ9aJHptI/o3b8aT9sOwiJPTQ1Fa7mmddmF4bKtNm47Buk8Dxn/Uvkuxg+uI3iqBQ/Ghgx0KU2SZRLPmn64TacAB05vtVrBbDZz+qOJM0cCq+ywlJHGAg1atdVpJZ60NfC2YRf8WOru0xFi2i7GsR5a7yk+6X9Ir7HwKaXHQp7n5Sknw+GwvHfcQs/Hr8+578sb4zsAKHavjUZ9uH9/CB9/fAzDYQ/SFHfFuscQg7NzlQc++e+k9sytt/ztptX1txC+Ko+kC8v8cvwcH8Oi0Ke8yuWkZ+5/OY+fnzr93QBtBz0wC1DwLj3H8vSZlJen0f/1Z/W7WavfCYBnR249rciPaYhDOt6YYSnpyHSL/zIONy/HUc0tXr5eTk6rt3vFDz/CuD4+i//uM5xveB8tv1M2TaF8sSPLUhgMUthsoLyDtqnuroFlHWuiA2trFtf7NNxaILaJ3rNtP902/C23Cb5gaxs7MxYsvoW2dkRIv/H5iTR8Vn6a6JkhPDF+zia6p7WcxBff5UptyDRNy5eFsVwogC3JqtCYaaKn07Ix0FRO7SKu8Bb2B+5MMNYH38QB21XwxeJwtwjuLgUHd2pL9H1878LpHUrbBk2pzvjBNsOdPfxtJN+OPyxzenoKWZbBwcFB+RwdfsfHx3B4eAinp6flEZX0QnVKDxdYfgfbcrms8ZJlWYkjz3NYLBaN2mgfoInDnI9bqqRI+SwKo/XYHgD3LrBvghwNKTmhYIm2s5Lnx+Ac5l0sFo7DEecc3enrU/ikuY9zkCuWPuM2BE2d+9sINlK5tw2ZbjGSLHn4PdrceRFr+OwCtjXntx101uSlljfkUKLHwQPUd97zNcwXLJUAZQC+jCEFKDXeQ3liQdIDeLtY+44fo6/xS+UgAMBwOIR+vw/z+bzW1nwudd0GVC/q9XpwdnYGV1dXsFwunWsXaH6kLwW0rG0VMvpDASGuy3H+tHWD4uV3isfwviuZhX1PX/zj7Y714PLWcnSvBjFOmSZAx4rkLNLuvab80XbQnNJYDnecoh5O24zj19qM6ocSTzwvraOvL/Bo+4ODAzg4OIBnz57BZDKBn/70p6Wc5DqYNPc0PrRxopXP81w8scSnHx4dZfD//X8fwP37QxiNemXQpArIQu13gZMGYarvG4rlcx5grPPC1x43n0vDpUNpc55oWY63+l2nJf+v867Vh/6V6i/lAzXAW0+TaGrQtQmkTxvOv3QXq46nGstFWcxL81Vp2J55mYfnd9fbekBW2iFb8MB3vbpBUJrGd7tigJLn4fxxfrBOUn1w7BTyQ2uTijaIu2I5j5XNWN0Z6wZgKW6km6Yo+4v0YodrdU8sBnOrb4BeL4UkyWGzAcjzDWRZCh9+eAgPHw7hpz+9gtev52V/YT05dOGLS5IExuNxaWeu12vxGFHt9DRLIEQ6AY+u6SH9r6v1OkkSGAwGpR7Rxn6+LbjNwM226Mb0AbcXmgYYKV0JR+zJSVadX7NL+TPNVuA8UV2wDZ9I05fuiwnQZ+iron6wJEnKjTuSfYr6oIUfTtfSbvsIXF99C83hNuViLDjBWGlSceO+a2gjNH1578pi2pXDidfXYnD7QBIIkuEv8aE50Zv0icVhuQ3c+wKa01fqb81ho/UHf447YxGXtJBq/FAnKg0SAYBzGTvlHfNThZ7f6+QbZ1L73DaEnMhSH9C0UH15OQ04Dz4FVerTfZGf2+DD7pip5hpf1K1yCfNyx7JvHPhwh+ZwF+3VFEfbcROqNwUfnRgFLITHimO1WsFms4F+vw+bzcaRdSFjJoYWz28xTDg9Ll/b6AexcqkLiNFteF58gYi/kSsB75+2dbUGQXzrQxvAOvA1nq890vorrf2S0asB0sIrDZbLZfSR810C6ilS/WLWSQ3oy2g+56JPrnUxj3x12dUa7xtD9Dm2Gd/xa1nbLDJW4ge/JZ3XR0vKa51LVqA8abq9VAaDsehEz/PqxS1eD/otyZ2mjk3qWJd47PV60O/3YTQalU7+bY3HEF6LjozPHzwYwqNHQ3j0aARHRxnZDQvk4wZZKQ2AentgOel/xRuI3zKu+lHD+Fum49LgdOq0rTxR2jKv9f91Xtz/8nMtDQL3x+rlugGK2z8M60cKczx6egLg7CrVafCAI83v2q48IKvx48fph6Is5q+X4/fDNtnBSwOmdH7LtCVcvvbQ8vOy9DedR5XMkHbIFrJlOCxOKzs46MF02oP5fAObjd/H0Bby3L23HfFa9QnuB9F4aurvCNk1UhkNQmuqhG9f/CMIu/aD+fySVh3Wqmd3wZ81n88PF8tXGz8Kflvs/JANFhqzFj5DPs0QXqpLSum0DJU71n7geramy2pl3sKbCV3KRWm8NPVFSRDcGdvUWfcWbg8kQWSFNn0tjRW+EOCb0dIODc1ZTPOGBLEPrMGUuwhWp6iUN9S+ANUdb7Tv6B0mq9UKer0e9Ho9mM1msFgs4PDwENI0hYcPH8JisYDT09OStkan3+87zjntUvddg6Q0+PJZ7qbShLumTNBvCWKc4/sGvjHRxRrEneEhfLGKm8Ww0OSjpuBiOh9LfLcKdXzifNGOB/cFFDTFYt/Gk08B4m1Cgc4hDMhZjB0fII7z83MYDAZw//59mE6ncHV15TXsKM19a9+7CBZHepZlMBqN4N69e3B5eQkXFxdqfrpTssndnJrMarNDMSa/xA8GZsbjMQBAuTuVB0V9c19zunBa2nwaDAZwcHAAs9ms9owGnuinyzWN46Z1onVDPacJbQz041GsCCFZw9coDajDIgT4kkiWZa3umEK62wKsz3K5rLWdr12azEuKB7/5Tm8KnCbupOQvFwJU7Y2gXfthBXrKDNWNJcA53u/34eTkBJbLJaxWKzg7Oyv1c4seSZ/jPPHJCAtwByPOr36/X74c4qsX/ab4Qs4QrhPXg5OuPYPtLcmhwSCFP/iD9+DZszEcH2fQ66XOjtjqAzd43R2w1bf7mwYYZV2QftcDqlVd/HhpOuWjyuPixzKcjv9/vS98abRePN39H3pO0/SxeZtmv0S7Puz1o4xp+Xo63idb3xHq/nd3lOLz6rcW8Czwu8FRDGAmQIORmFbMITfIabk/FpzdtklZp/rz6jfy6P5Hfir+/Ly6d9difwC7O7bSb/gxxVDmqfqhSi92xuJueYDNJr/5nZQ8VnfIonxLIM8L+fTee2O4fz+Dn/70CqbTuBfZYm3ozWYDV1dXZdl+v1++4BNz76WVN9//bYC2uQBAt8nf2mnxII27kH5lCcA18fla0vlzrjN3PfYRpJN5NOA+naYQCnb69C4J+DOu12l+LAqSvzdGboWCvXcd3sbjbh+2tQ6Yjinuyhm+jbJdD8w3wUEqCc+mzvU27RFTlhvJUhBBwtfGOemjua/gezuDtxN9TuvnW4B5AJQubhp+mhedNpvNxjn+Tzt2F/NTZWSfFhurIsJBcxZJzmzqKJICqnVjse5I5rR8PIXSbmMeWNq2C9nclXIWcgzSdF9ZiT8f8ICBxosFh8SXJBObrh27AF/wos3awHH61gecr9yRS+cy56/JePfV0WIkhdrDgkvDLeHpCnxyS1qTQvOLvkSk4bc4BKTnFt1E4nVX8i/PiyPTNX2Aj3npN8fH80hrE83Pj92l88NCsw3wtueBGqsM1/paWqP58xjn07bsJqsO3VSHt9DmLyRsNhsYDocwHo/Lk1QwOEtptFnjOA+ITxoHmszHMtLO7sFgAP1+vwzKSs47yZahY8a3zljqRmmE5m2Mc80KlnJ4X/Pp6SlMJpNWtDVdSMon4Zd0HD6PnzwZwsnJAO7dG8B43GeBVnd3LKgBUyjLkKekXFwbVHgT5z/Hi7xp9Ogzmkb5lujI31zP0fnmZWSeKp7DeH1jWX3UKq8GVrGNtOT87s5QXo6nF2kJgLJLtvpf5ZHwhXwhbl5fXQs6mEf7bkKDPwfg//lOTTcPx1N9Y7l64FinVeEAEuwuxmNO+gWA7nyt5iVdi3LnGcqWNC12yK7XVcCWr1sVTak9w7or5sGX9nggBde7mJe6+LoaWo+sa1ysDc3bCl/2wpdyF4tFuV6jjRBD08LzXYOu6mOxOzXd26rrhPQ1nu7LT8vtEmJ0bZ/+rtldu/LjSHJJykPz+sBXv1i7JBb2zd/1psmYfYaYvtds+hj/mBOM7cIBwIm+HTztQGrDtu1qdRpiXt8zKx8xTjbEKx2TwoE/CxnjPiP8LgGvJwYBtDestDe6eP3X6zVMp1ORDnWicXzYXzT/bDYrlVrJcYWOYQCAg4OD8s39JkGBLkEbF77xEiMzJSe4FVdXc2Hb0GRubZvvyrB1dytJd/JZnfL0ueY01pz2VvnJj+728SndRRsjp3m/8bLa0aJt+8wXEJJwWxwQITrWvD78NM9ms4H5fL43u/nfZMA+kU51oGOGO5R4ujYe+D2L9HdIX7LqU1YjtMt1MM9zuLy8FPmQ6sq/OVhkC60nBthooEPCsY21n/cNOh3plQohZybVgTSnA8prqsfS//yeYorX2p4hZ0eovA98baCV1YxRDnQO9vv9shw6Qk9OTuA73/kOvH79Gs7OzuD09BQWi4V3J0sTwPaT+gLro+kw2j3tAAAnJyfw4MEDuLi4gNlsBpPJpHbvFY4BiSblr60Ties2Wr6ugbeLNDam0ynMZjN4+fJlo7WcOlPpkeAW3vhcpnzSZ5VMAPid33kE3/72MRwdZdDvp9DrpZCmeDcslL+LvuXBFAAeUHSfUd7cdqj+13FQXDe/bvDST+Lkk/LWaRfPXfqh//I3zaul8zpxHuVneh45n/R8W/Yl3115k+qZajS/m08/vjhJ2gVkLTtkka88d3HXaUu7XqU6Y0XdOY+0cicgWtF074eV74ekvOIzpCPdYwtA6br8Y5kirdr9WsmJ/KYuOfD7cKu5Wg+yunMUd8sWsmOzqQKteN9sr5fAZpMAQAqjUe/m2XbGbZZlkCQJTCaT2rqBAcvBYFDe8QgApS7nA9xNS0+7SJKkZqtSPD79ikNo/aBpGGwdDoeQZRlkWQbz+dw5yYj70CS74i10A018PiE/rtVusuhYNE+T4IxVr7f4PDT+fL4T6beFB0u6lb+m/EhtEFuPbdiRb+EtUMC1SrK1Yuy4WjDWEiCImUjbXrw0J7WlLndhomrOu1hhrRnFsbxobecLPPA8+MynOElBEjS6Y4/4oyAFrPZZydIWJM6z5BiieSmu0Digjmjf/NKMIg00BxbSpI5Z7JeujhOVjnYNjcFQXSz1tc5ZTVnjRx02rb9PfnO+mga6KPjKNVWyQuBzFNNxS7+lulvGhNS3PvmogXavoFYfDT/eCTcYDByZb5FrobWSOq1pmV1AG7ksOV21PBY8FrkZugtTM7oshtq+rlEcdjE2LG0h5cE5kmWZs7aE+jY0R3zlNV2Jr4UWxwCd023WApzTfD334Y0Zh9o4xx0INEDlM541/TcG3MBKXJtJ7Y26qeYslP6H5CvXo9rOIcQ3HA6h1+uVcglfeAu9nKf1tdQfvH0t/CdJUgZjKS9ZlsHR0RFMp1OYTqfO+sh1do2vEEhrLMoBTk/qN7xqBcvQz8HBATx9+hTSNIXr62uYTqeObst5lX5jMH+9XkOWZXBwcADL5RJms5lYT5+eENseIfy8D6T8lH8pj3R0N/0f0rV8fFpkKC+P/UNx0w8AQL+fwnDYuzmWGISAK/YtAEBC8BT/EX1VhtYlXi758FZ0KX7KF6efOHlBCNRWz7TvsCOXl9Pr5dat/kx+7sct598OcEJusBAgHJitP09u0vk8qOMr8iUO3fpz5NNvk0r0Qvez5k5AVjquWP9260sD0AVNmk+uh14nzpOEtxrLuLaBSJO2e/Vbol3hp2WrOY9yFNOqYG8RoMVjjIvAbJal8PjxEEajFF6+nJd3xzYB3BmKgPrBd7/7Xej3+3B9fV220/n5Obx69Qp6vR4MBoPyigvppUW3zYvAJ9U15/O56bhXTdfVfHY+HRZxDQYDk08ltJbsyv69KyDZ2JIO2eS5lleDkC3ne6bpNLHgs9EoTTov+PNYu4LrLD7eNLslZKtKfPDyfBOVL28T3dXid30Lbxb4fLuWtKb2kIRbGreWsR4C8Zhin3D4pgz0XTtAt9m2IYVJ4gXzW52SMYEDqYyURzviy0KLOzp9cBfGNecRhQJ19KADhAJ/y0/rE64Q+ZRrzSGn8Y1Ad/jx/NjX+NYl8kCPfPPxHwL6piU/SpTXzweS49EC0li31IHf9YY7Kiy777gMk2RaSM7FtHfTvuHA7+qLPRaJAm9ri1ynTlkfTnyGn1hFnivP0s49ia7Un7jLCx3cmMZlv7aWS4asJn+bQKicJK+b0IoxxHw4KA+aIcJp4c5Y6VksXQ7WNcxC97bWuq7kA4Cr02iOF6mver0eDIfD8jhRukuT8ynxDiAHE6w6hNZHPj2lCx2Uji2fPItphxjaqKvM5/NyjgC46zIFzVnWtC0keWcpo6WF9EqLI0XC06UuutlsYDQaweHhIbx8+RJWq1W5PqCeaNHNfTaANP6txjDuxFkul07a0dERXF9fw2QyUa+vaNpOdK2megY9mhFf+JTWoiSp7mXnO5s3mw3cu3cP3n//fQAodv6+ePECNpuNswuYluW7qJEG6gKDwQCePn1aHucrOe+6AKn/NJ3V58TDe2D5kY/aSy8UBwVN19F4860t1D6SeOAvgtKdz1gmy1IYDNwdsUXeehCUfgr6bp1u/jl5XH6lb75zlQd1aCCJ1luil5DyiYMLakFLitvPS53/pJYm4XR/+55J/El59HwSdDmd5CWBEsBx6i+Dz/kzzX5JEjdv8R+J1HeyVv/doKdOF5w89d2qFT6oHYHsD8je5HL4pN9aO1Rz3s1TtFH47ljkqV6Her0pDtwtC+R+WNoemCbNmaqtcbdslbeSIflNABYgTfF3Ar1eCllW3B17fZ3B6ekcPO99BqHf78NwOLypV3FiSpqm8I//8T+Go6Mj+Pzzz0s94ec//zm8evUK+v0+DAYDmM1mNR8El6v4fzwew2AwAIAi4IvBWNxc4dMXNDuM5/PlwXx5npe6v8Yrh9uylW4bLH6xkI7If0t6A12PNX3aorf71v+29pPPLpP0Ep/vRjoNJWTfaDoXH/vcZqL6i68sf8Z5jpkDIbuI5431l8VC2/nr88lotLqw199k8PVJU/9C0zwWepqfFMvzE0FpGc0ekZ6Z7ox9C7uBLh0xTUG629MqlH0OqCZlqVFP00NOMKuidVcgxuFrdTKi06kNP9J/Sh+Vdb6gUcWJ45KOrNEc602AKi0xigOFNottqA/5kQfj8Rj6/X75DI/Vub6+Lh2ICCFlwLJg3KYigW2jBQ18EKM0cZqxjnrKp8+RrhkrPvy+eviCAwjU2Y6KAp/nFqOHg3QagebcDIHmGPU5eUP4JNBkjpXHWD58ci2Un/Mr5bPguytrHVVqLW/JA4TbgQdP8DeVqYvFAq6urpyAIOVJo9VUvrRdqyg0Xa+wLAJ3gFkMB44jJMNoe9EdhFJZ+iwmYNMVhNabWGcEAt1xR4NuWN9t6B5JUr3Atlqt4MmTJ/Dhhx/CfD6H2WxW7ozF6yGkvojV1Wla6NQaOtak46HxLlF+tG9XQOnR8Xjv3r1SRqDDmOZHsMogXj/f2kD1cZw72I5ZlsHJyQlMp9MSLz8thtYtTVNYrVZweXlZvoyV5/r1JZwP31oUcqJo8oPKA8zjOz0ihibm6ff7kKapc2wml0MUn6UfAQA++eQefPTRETx9Oq4FYhMngMJ/4ziD2ne9Sgl7Vg92Ci0j5JF3x3L+OF5evuJFqoN8nDHH5a4v9fwh+nHPqjxyupa/e5BouEONZpCDiRI+/qxoX/fo4iSB2n9aVvqfCwFZTqeaT1JZmedcCW6SXABs524lIyq+pDaS+ZCPXQbP3bF1PHRnL7YvD75WZX1tWY1XNyhbzUVaL7oTln4XPKVpQb/XK4KyWZZClnX/Us7BwQEcHBzABx98ACcnJzAcDuHzzz+HP/uzP4OzszO1nKbPDYdDGA6Hpf8Cga5deHyxJKt9NPj6HQtaEJjaJJJ/rKkdcJdA8reFbHUpraneHKNzNfVBSBCr6wHo48RKw0pHK9sFXg2ovXJX/Apdw5s+199CHUIyntt30lH9TeZMLRgrGSt3aSLGLNBtFvPbAM2Q9A2cpgsi/x/joNEGpm+xluoQOlLNx4vmYPQ5vO/qwtNmrvocpKH+8eUH8DtcNKcUHm22TaCKvzUgwvmkZUIy02dg8DKYhmN+MBiUb5X2ej0YjUaQpinMZjPI89wJeNPxK/Wrb8Gw1L9LpTc0D3malhfxhfBq+NsENzSDxBdssDhn2wAqCL1ez9ntYzFyfe2C40u653CbEDMvEWLWxxBdioPy4ps31nmy7/rHttZCHnBoeq+hNs8QPwKls1wuYTqdeu+60uoc0xbWvKH1p8n41/ihAbMYZ5alPaS1j66x/N5UCSwOnrZgWV+aBnAkHJY1tska4MuPwToAgPv378MHH3wAf/d3f1euCzHtb+HBqjNJDlU+HnD3tDVYFwuUHh3/BwcHZSBzPp/DdDp1ZBTml2wZjtMnz3g70HGCOGn/9Xo9ODg4KHVA5Ek7tQLX/clk4vAi3Tuv8RcCbTxL/auVlU5r8q032pzF736/75yio+k1vLzfwZnD++8fwA9/+BCyTArE8t9YrvqW0oEETd3fxX+BE+BsVjiT8r+Lp3oupdNntLzLZ50PMbVW70R5ljhp4XT5meV5Pd/tAeXBnV74wBaUracnZdlwPqjldfPXd8hWv+WALKdPcdVpWdN8deE8yutmvR1poFbiuUjD31I74Dh15X8VeC3SOV2sIwDtYz73AbjviR5djI5flP0J9Psp9PtpKYssoMlWqpMNBgM4PDyEx48fw8OHDyHPc3j16hX84he/8F5rIMlmPPJ4NBo56fgt2UuaDyMEVnue2wShttN8M980yPPcrD/wchws4zXUn7Qf2urpsbglviSdzodfw+OzE3y6FMfVRL/32Z3auNdkimU+Wtqoif+hK39FaAzdls8mtk225cNpAxbfdCi9K4idQ3ye93o90ymVPpoI0Ttjv8mL0jcBfH1rUXS0PNxAxjI+evjWHB6lgmk0v/QGvXUxbKos3CXgwsNavybtgEq2tBNP6yP85sfm+Y6JDQF3VuV5XtsJRRUudFA2UTatSpgEdM7wu5CTpAh8nZ2dQb/fh/v375e7G4bDITx69AjOz8/h4uKidjxJzMsLMYt1l3PDqpTHBNbQUekLPnKg+WlbhI7ojZGFvnlH5aK02yWG/yRJyrtjOQ0cY7F9iHixbJZljpOXOs25EeOj5ZO9IQMshBtxbEMRDfW7dYxYcd4mdN12OIa4wzxmXErHe0rA5zKO4dVqBWdnZ46M8L3ZbDEcLLyH8EjjO7TLMAZQNiRJsQswTVM4Pz93jhNtMnYl8N05r+Xl+Wh6F+Mw1H/auqnpqJYXCWibWoz7LuQF4sE8uNPTUlZ77huHlvWZ8oNt0vRUlm0C6llXV1dwfn5e6z+6y5Q7dnGcnp+fwy9/+Us4Pz+HyWQiHuWIRz3i7uWQDbRYLKIMfpzTnF8ug2Kdl6E1FdsId13TvJpOgG0XO9/pOMc6DgYDmEwmpd1oqZvmbPzWt47ht37rQbkjFnfFFmNXO54Ygyvu7lhabyxTpQdryupdp0dpIq2KN7fNaB6Xh4T8lvhNBL6lALSLR8Mv4bDmd/9LZd18vvzNQZJz4VKUhyo/JvqDslK67Lh380n/XRxxAVm3nHxcMeav/mM95XbTyxVlqjzFf5c3xEPxV/mktsA8Fa06bxUv9WC0jBdpurTdcY5HEtfz4N2wm02xGxbrhEtlr5cAQBGMHY978J3vHMPl5RJ+9avr4NiT5C5A5WPjOvh6vYbz83O4urpyyuV5XjuRSwN6DDLipGuq9GIY14FDvjyr7o15l8tlefIF9T1JwUbJPvim+L6b6twxPkYNQjoAXfcRYvrIOmZ8/oZtjAHJn+gLZtK8/IqrkE1N2yvmZKo2/s5YeNN88V1AUx/zbUGsjdEEd1dAeeTXyki01us1rFar2ovDUgzDAo2CsTH5aAU1IbsNp6nGw77DttqC4ufAjXMtnxW0RYQb5LSuNI0vssPhsDTY6bHF3Ni3BD+6qF8Ib9OFO0axtDjGfPh9TrSYtrPUzToW8JvXz1JXPo64UxIFJh6ZQxU6Xx1i6hcayxK/Ujp9RneJYHq/34csy+D6+lp0pGu8tZGHfK7FjFUf+NaJGH5pGct489G30LL0a8jQ5OkhZyd1DvA+5zh4GY47ZOxI9aU76vh85en0mVQHnsbLNJGZtFxX8l0bNxJtjT/LerALpXnX+pCv/6kBaFVaLbokz0f/J0lS3rdN+yW27aV53GbNpPPHN/ab9hufX4PBAHq9HvT7fcjz3GkPaW7HrmGx/GryZpvjNUZXpKCtH5ZyvnkfWisl+SrR5zrNer2G5XKpBr05Dz5eurAPQjgweEyP2OU8cn6byE5OG+86HY/HZTBRKuPTI5KkOP758vISptNpeTceB7xuIs/z4N290k5haQxw+eLTbXn/avPMp6NrMlvSAWLGilWmc76SJKkFYENrt0/O3buXwbe/fQxZ1iOB1/ouU+0/pmE5kqNMr/Nk+xZKkjw0uFnRktuAB4oqHC49PtY5TY0vGqSqtxPHG5Of0/Tj2wZQxFWgrkwxDHnMX+VFBG7gTyrH07W8dZ79uC246HMLXX8e/YhkCw46b3l72trEzcv7UKorT6P5Jbz1cvQ4ZIAioI3yit4lizjyEk+SFMHZfj+F+/cHJY2Y5bjAUQVjsyyDLMug3++XO1kxYEnvc8f8/FQD35rIXzCnz0I6uJQm2bZSHg0f6hR8PY3RNWPs030ErX2430Uri+Dr/9g2CtnI3K/nwxHSkX30rL4mLa0Lm6Vr34UEsf0Tsg18dGJoSP1iwdG1/8QyzjRbxuLv2RbE9s9tgeYXsspinx3ZtP60z+nmKA2kQCznwWdbcT6jg7F0ZwKH0KDzOSzfQnOIWYR2xYtlQqFSxN/iobtdj4+P4f3334fz83M4Pz937n/L87x0KFIHSojmNmEbbR5y0mF7SNDWYUWFE8UXKte2HWiQEQUjvz9YAzoG8U1IAIDRaASffPIJAABcXl7C5eUlvH79ulauiZJCnelNAd9S5W+MJklSGkubzQaGwyEcHBzA+fk5UGc6f5tHA6pw012T1sUvxgFtgZDzLLZffHcCazKSG418sbe0jaUNKW7NaeoLFFgNC5SNR0dHMJ/PVQczB80omc/n5YsxEq3YcW+ZL5rCFuJ9GxBj9CPwAEoXQYS7BFQO43EueLw6z2cxDkOOAopHmvc8CMv7T5vnmk6D+fnudEleWYx9lEHWnQdtoN/vw3vvvQfX19fw2WefOfQpn5K+T9sJ6x8ayz7DBtf4PK8f8dqF40uag5wGgH50Ku1Xvm5qODluCtopMZznEG4JcJxjXV68eAEAAFdXV6WeHMK5C7mU5zlMJhMAqMZ7mqZweXkJP/nJT8o1a7lc1vShrhwOeZ6XjuhHjx7V1rYuAHVXOkf6/T4cHBxAkiSlbkrHPT2ieDabwaeffgqLxQKyLFN1fdoe3EayrNFctkpzwVdHTc/S9HXtPr4YZ7CGl5+aENLpqC5SyaAcsqwH/X5xVyPuhsWjQesBWndXLNQCnLpeWyWHA5ycnvvhwQ5QedBpus/l7+Y7YqU0f3rC8tTTpedYNzk9BBYbt06Hluc0fcMW81Z5sLB29K1cJkm4U9jNg21cjXspcJkAiEcPu2sxTdfKyGu3m5fXiZaTeKJ1kPmn9S7KVWMrL/Hhbl6arrWBzBuWw7zVkcX0ztii/jT4WtGu5mgVbE1TgM2myFPcGYv1KHbOAgD0eikAbGA4LO6OjQFcS/GUmOVyCU+ePIFnz57BD37wA3j06BGs12s4PT1lY6l62ch3xQeF+XwOV1dX5ctgdB3iOxkpaDqlRlPiE+W4tP6ijmR1/EvQhV56W6Ctr7dtj0r2lfR8WyDZaz6I4UfKy8dtE1zoQ9dw+3xpOEfa6lxdgc82a6PzW8pKeajdIdmmEp/as9ix1RR2OYcttJrIVfp7122FPnStbpJ/ggP3lVh8tgCeYKxlkQoJmNuEmMnry9t0sb5LINW/qXOoiVCXDGUEDMClaVremwTgBmzX6zUsFouacU35sfRfl05yX12155Z+kPDF8G0dx5JzRVpUNIUpZv75lDBre/A2kNo5SYq7wQCg3CGFY6oLh69Gk6dZlEwMPmvjmAdeab4mi1hovDbB1WY8NukPia62Rvn6SoKYeWmVc768FqD10OZQ6A0vqc2keYjKqGUc++oU294hOeIzOqwyNsSnj5ZP2eLtKPU9bzM6Rm5L5+gq2KHBYDBwHCT8qoGmsouPGUkf8JX30fatKxr46EoOpBi8bSFJijvCrC9pSNB0fHbVhm0hth01HZUDH3eazI89htrKL5XT0+kUzs/Py2NupUCwRMNS1yZyiublR/SiLLi6uiqP8N2GLOJjKkmSMiiLtoaU16Iz4J2z9GhhnN+0bUMvMGC9N5tNef+rVQdB/ACu80DSESS5Jun+HD/nJ2TXaPxadUUuo3lb0rrG2B1YX/ydZSkcHmZwdJSVxxInN4ES+qnjcp/RPPy3XF7rS1ouEWjwMVHHj+U03JyOmyYFXkVWBdwJ+e1rkyQiXTvWuE6vOXAE9TFNadSHPD6kckLL6+J0nycljvozKw4xF2h1ykmwEvFYcfp2uCIO+ZvvFA3RcvO58lyuWxPQeOR5EORnbvC1kDUVXoqjGO/VMcaVTKG2QSULivtjExiP+7BYbGC5tL2oTmU1rnd453aapvD111/DYrGA09NTuLq6cq59ouuDRY/gRzlKdg6FkL7clS6I9dD0cF+5NwUsfiiaHmObSHlDvrtQGl3zrWVCPFj8cxINzZZvYrvG+iM03Tzk67Lg3NfxHTsvQz7AEH6us1vx0Hx3qX2bQht52bRNurQHtX7nfEn+PB8vTXgM7ozVHI2aI2GbzpNtwrYdkLcBMUERCtvoQx8+6b5MzH9xcQE//vGP4enTp/D++++XZRaLRakgTqfT8s1/LCvtuN0HQEe0tENonwEVV+18dK2MtKhRfFIZ3/8QJEl1XJnGX5ZlcP/+fRgMBjAcDuH169dwdnZW5s+yDNI0VY8g8IHF8USdsVr7DYdDGAwGMJ1OAcA9HkhrE/oWKPZVqP0sd99tA5oGXBBCzuKmyhvvo5AMRYNWw4njXFov28x/ipfyTu/CofxZjt2geC2g6QZNnPNt5XRo/d71OiD1szTHLIpdLN19W/PyvHgTPU1TGI/H8OzZMzg5OYGjoyPYbDbwf/7P/4HZbFZeR2CVu1o96c4oHviiPNFv/O0bj4hDG+M+B1MTJ0UocNYUpGNgKS8YBOJ8U2cIzSNBrMHi27W8bZuCj5EuaNEgj3asXwxv1sAXzdPv9+Hy8hKurq6ce9G6bEvet9KY1fQ8vus6SYqTTOjuXTrW6P+ugN6ris5ofEEvTVPo9Xrl0clUV6J1ojtDT09P4fT0tDVPAFDWe7lclrwghOYE1bu16wXotzb3JLwIljlO5wEPAtBy1j7lNNGeQt2Hr7F8zGvzCHl8990D+H//3w/h4KB/c1esuzO2qEcVEMHvG4wqDSwjpetA80j3vdZ5kdIrmjwAxIO7nCe3LAiBWSkN84bTOH4prd5OdQea8y/Qpj7Q5hMd8/V8Er08d8uB8ShjfF49wwLuTlBf/iKfGwim5Yr/iYpTK1ek+e9PpWnFt5S/vrO1TrvKU+DmwdA6/zQvkB2x7tzPa3mqOlTPsZzLa7XrFW52wxa4ERely+uGxw/jbyD1wzHr4qBzOE2hvEe2uDu2OKr43r0BfPe7J/Dy5Qw+/fRabkzSppINOJvN4Pz8HP7kT/4E1us1PH/+vJSlSZLAaDQqd9GG5DS1M+lJL/y4Y4rH53uIsZc5b9w2pmteGxv3LvnttgGWIJUlCEP/+/pE8pNhGf4shi7mt/oNQv1usb0tPk+JNgAE/X+xsG9+gn0BzS/rrmXN227b9uy2oW3dKXRtjzbhAdN8p/1SHtEe7BqcYGzIUcQFkyQgOa6Q4yCmI5oOAp+h2BTHLpxDMfX18WNZJLS+beIstpT1BUPQAYJOD3zDPMuyMg8a9HjnxeHhYenI0cYxN8pjFlorWBTGJCkChjwvdVLQ/BZ6FgGvKbZtHFwxY0tq7xieLc9o8IkDHrNKd1hTR9vV1VXNEWjhcZuAPKBxhHMAAGA8HsP9+/fh+vq6NJRCSrIG2ny8DZDGpk8mxio3bdYkq0yT1kbfYl8Z/bZ213jkznDqaJT4igFu2IaCTD48sQGJtn28zfHsmzuU7yZO7iayh9MJze1dyrckKQIu0+kUTk5OYDQalcflnp6eRr0UEtJXfXNEyq/pLdr6qM0rn75pMf75WKd8hZ5rdGkdUEfK8xxms1nj9V+rc+ioYV9gRPvfBny4YvRbqy6GVw3g8XzamoVlNBnFdVXOq8XxZD1OmeIM2Ut0zEuyWZI3XAbyNC0fr3+X4wJpbTYbmE6npd44n8/L5yFnAZ07PvlBaaLd4jtpgtZZs6V9817i2zd+eHtb9XJp3mrrdZt1RuMJ6yntspbqo/GQZSm8884BvPvuARwdZZBlKSRJFeCpcCHu6ndFj+ZvK8N4u9a/OW88nZd1cfKgZeLk5d8ql2I+CVci5OM4EpZW57FOT8dr4Z/lBgAMomkOcprPJxeA4MIyXC7GBUJDZXz5fP/l3y6/bp5YXdzPc/HctrPWgs/CQ0x9fM/r/QwATuDVzcPrUclLylfR9oVMce+Lpd9pWrwoEnNcMV3zaHBns9nA5eUlzOdzuL6+Ln1u+HJSSN/kLyqiX4XeV8/LIw5pLZHWRUlf0ECzdy3+spD+c1ehKf+SPqe1a2ybamDRRdvq6xSXVk6z5a0Qw4OkR2o6T8hutdK32MvfBNDsz1i/qNV3eJdgW7a5pT0kOaON8xi+fDY554/TjPVdWiG4M9bnKMjzXHQwt2HotqBLI78ptHE2tBGqFppd8GV5niQJDIdDWK/XMJvNynRpZ9dms4HFYgGDwQA+/PBDuLi4KO8/AyicYrQMKpj7ADQgiLBarcRjA63joomyEAtNlFj+XHPSdDEH0cjo9/vOTgKAYjzcv38fRqMRABRvhI5GI3j06BHkeQ5//dd/Xd6xBgDqTgiJdw3a9gneE/v69WsYjUbw+PHj8tnTp0/h8ePH8Pd///fw6tWrGl1+1LHEt1Xp6NoRGgtW5zP9Haobd3ZSA1VbmCW6mtOUlqOyiDrK2+5I5nzRoxFDvFsB65gk1R13uOt6W+sCxx3n/Kn6l9/JZ9FX2oIvGMFBcxognhjZ2KUc3QagTPr6669hvV7D/fv34d69e/D7v//7cH5+Dv/lv/wX8Y5IDWj7SHeaSu2Bx9PjeKbzUgsihHjgdZT+cxnBgRoTmvOqTb9SXZ2eAgEA5vbmwA0gzcDxOQt8ZUOBsLbQxMjyBXhQnh8fH8Px8TG8fPkSJpMJDIdDSNO03B2i6RU4/ix61LZOtND6gf/n7RCaN3T3qNSGNB/SwDEbcsw1ASoj1us1fPnll+U8wFNr8Bkvg4B9ReuGdooWBEcnNR5jTIOyXclv5NvqxNacG03nnm8HtuTU57zF9DXfdUXnRkg20Wf37g3gX/yLD+DoKIPBIC0DHdWOWGA7Y7X7Xbn8x+cJyZs45ar5ALVvSgvLyjjquF0eaVtwWv4dsi7dej7ellJZf30l3V3mm+OCWsAW2PM4KMZeRYc/c2mE9VPMkpcBTgAe5Kye28omST1/Pc0f3MQ8IByDXP0OH1fspiUOfxSPFtwWuaqVl+nRfMDuwgWQg61Fn9WPRK5w1XmtaNTTKA0gd8fSeuOzIr+7QxbILthqHuaQpglsNni/akEnTfObb9wVWBxTPBj0oN+3+WHxRBS+UzXPc3jx4gVcX1/DaDQq70/fbDbly0mabpAkSXltUp7n5S5apMH9cFjOt77wuyxjdUcA/0kniNtqF25bF91n0NZsDvwl11g9hs/TLm0Crl/RcRUTxGzq/7TyTMdhyD8kzY2Y4OEu/MVt4Tb8jlbfX2yeNwGsfSHZStZy++a/yvO8tl4C1OvUlm91Z6wVsTZwqaDwKa0xAiGWv5Bx26bxunR2Szgt+ax0rUaphD804LTAmo+WNCboMWASXF9fw9dffw337t2D0WhU5qWKXr/vvltAdz1Sp4m0AEvOtS6EAlcqpIAw3tmB39yRYu0zySkWIwQtZUIKh9VxLM17zXnTtB/QSEjTtAx0f/rpp3B8fAyPHz92FH5KB8cMjid8zhUjn5NSqqNP1lGHLublONfrNUyn0xqd9Xrt8MjvPJN41eogpTdRrENgNbJC7clBW3+k+Y5OU22nnMSvlWfucLYYfV2tR8ijr314mZhxqsnQEE8xECu3pPFE57avbAw9K08YSJDwS2sqdw5YaPD5sa1jbbsC6gzCuxCvrq5gPp/DarWCLMuc+WoZX5Iuoa3teZ5Dv9+Hg4OD8r+0e1EbSxxnbN0t+ppl3YzV/6wQY8jz5z55Q8c0D7r4HCSh+bst4LTpmLS0Pe4m+eCDDyDPc3j58mXp0OR0ANo5RTR+JHluWRMsuH10LHxqukWIt64Mdc5DnucwnU5LXtbrdfki33q9htFoBFmWwWQyEY9qlPD56OKLpnzXEG8H1OUODg7Ko8WbvEzE7Rqk4bPdfWNd09O39aJTyJfA50+TcZIkxe7Yfr/YEVvdF+sGKqVy0oflqpVpBm5AlP6mz5My0CPzGs+PPxDL01x8iSePvKbiM52WvmPWxReo1g3oMswNZlbPpLtD/bISi+aeoKwmZt1nCUDDgCx/XvxPHD6sINtUMfjcfFjWfxRxVcZCy21zmQcaOK0Hr3X8yJO2dhdyA+VuvRytGx8PdAi6870K1hb2awKbTfHSyHjcg8ePhzCZrGAyCR+hiKfP5XkO19fXpS5MQbvGQqtvUdccRqMR3L9/v3x2eXnpnDiG+XhZDm11Ih8OyXbQQDoetq0e0pUOH9LdrH6WXQH3i4R4sfAWslu6GEcUl69Nu2xLi99Nm59SOV+a5icLld82xOtx/r73tYH2DF80Aahe5vbRsNr6+w6+udiF/IqZP9v0dUjzxWrPUbD6iDUI7oz1QcxE4UJYWtjehAG8D9BEaHKnNv5u0iexxjB1SHAHNtLHu5i+853vwGg0giSp7gbFPHwnJDowhsPhjfJa4N7lDll+19NsNqudN97v9537qvCt+abQxFGM5azOYC1oYOl7afELOfxiFSzMj0fsoAPsRz/6ETx+/BiOjo5UHLhzajAYOItwG4c6VZJ8ODBQId1bsFqt4OLiAmazWblrPM9zWCwWZWARoB7wCznVYtt+F0DnK+eH/7fwJzn66Y4Wno/fUddELtIy9Eh1Ov4prhhHeSxYDGHOh5TPMg+6NkgsbeCbW03XsTagBT+0tqHjTNONpOcS3duYrxbAl6Nwbp2fnwMAwMnJCSwWi3Kdxny+ezmwjjFv3K/XaxiPx/D06dPy7f3T01NYLBaOwRWCmPZFfiwvfNDntA6SLLKsf1oevrZI98NaQXbKumn4shDfvUzrxnU3xIN3t/tkpBVinGlS4McqR/r9PoxGI/jkk0/g6OgI/vAP/1A88QT52Kb9E3IcWeQFXyelORZTB0nfDK1D2okVscB5R9zokAYA56XI1WoFw+EQTk5OYD6fw3w+L1/Sk9pBS6Pfq9UKrq/l+/3o/M7z4uWRk5MTmEwmcHl5WfLXpM6cL7qDlMsAbaxrdZPqwXfIWmSWr38pTxb/Qawc6/VS6Pe1u2HDd8UCCS5inuq/G2Sh6dq3S4s+qzvFOH6ev3rGA7pVeYk+TZPbrc5HnUcpTz3Y6qbzALC8IxiEQGyciMhLnDy9CA7S/5ymFGzzy0HEl7PgYv1ZvRylHxOQ9QV96X/5d+zuWDfN/63v3uX5LbSLts/FttXK+9JlXpDnCj/vN6mvkL9Kj89ruCtcuHvWnfvFjlmUrcULI3in9fFxBh99dAiffz6FyWSq1iXP89IntVqtYLVawdnZWe20FPSZuO0g25A0bbPZwNHREXz44Ydl+k9+8hOYTqflyRNcdvvmTIzOxvPFrDc+h/s++qW34Rdok6cJPe772JavOcZWalLXbdjbVBeV0vlv5APnt8aj1M6+ObaPY78N+PwvEqRpWsYbAKCUmSHw6cV3Aax+qxgc24AYGtLYpvZE2zuZ2/rexJ2xmrFHHYK8jGZUa5M7tLC/hebQxqmvOVlCtLjSEjKqJVroEEBnYZZlpWMW806n09KJy+n0ej344IMP4PLy0snjo+mD2LbAPNKOKHokGYfNZlM7kpneDUrfUGwTBLH0j5bHIpxDbcvnvu84M422NRjBd+NoNKgTWKqTpZ18vHBckpPXB5w+jqPValXWC4PHCNSI0uZniA6vx7YW1hgDizvE6TdvU5QjfIxJ6xSnEcoXUwfqXKW8YTq+ocwNX9/aaeWrjVLB6XAjwGo8xY4b3o+W3Z6UH0lOaX3atd4h4dXkJq0b1btwXGh3/0p8h+Yu/W46xrsASjdJEri8vITVagW9Xq8M0uZ58YZ+7FriA7yffblcwmAwgAcPHsBqtYL1eg2TyQQmk0m5bktHbVFFHaDqJ5yzdE7z+c2BH51G8fuOVYtJt4xza5oGiFva9SrRjpFXtN1xvQPo/ohxLptpupRPykPrib/n8zlcXl7Cq1evYD6fly/gSW2i8cCBHn2rjS3OX2hcSOArQ8c3zxsjQ6zyuCl+K/C+ox8K6LyW9FBpjZZkLC0XqstgMCh1vPF4DB999BF8+eWXcH5+Xl6/QW2iNsBlG62b9D80ny1rIID/CEkfcN1e44nPE2ls5XkOWZbCb/3WI3jyZATDYa88lrgKyEpBWD4vqoBJnV+enpTp9D8rpaZhOZcH97luO7nlJV5BuUvWpc158em/Lk5srzoeKQhbT+PPJVo6SGNNCgjSQCyOeykwi/xjHspLQvIJVBMgOJoHDS1pGj6So8aDpZy8xmhlqnbGPPzbxxttr9Dxy9hPmIf/d9PculdjiNo7VN5rQVedLuKk5Xl9iv+0jar0uvzJnf/VccUp9Hq+uejKQnr6F80TuuMVoHp5Dv0Q+LIZzXt+fg7n5+fli0fj8RiSJIHJZFLa5zH2P6VPgdv3FvuI33Er+Qi6tg85z9Z0ri/eFkh6AELI7qH5pP+8HPeXdMW3L4/Fz8DL8N8aHWu/aXoXPov1F2I5X/2kdo/le1/A0v7cB4OA/kKpzlo7+K6wk3ij9KTrgbYpc9qA5GP1QVvfVRNfRJOyXUEXPAR3xloFFJ3s3Gi3wrYm/q6MeqTV1WJuNXy7At9EiXGqNS2DYwYFIr6dTh1ZeJwY4qVBy+FwCO+88w4AQC0YS+tkdSQ0qXOSJDWBnud5+Za9BPReDgAoj0VDsDindw3SrkKrAx3ApiD5INRX2OYaH3ScYZkmOw6a8t0kPzqnAQAWi0WpCPBFne5EsvC4bbm7TZkRCz5Fi4/PLgxFCahy3O/3y8BQjNzZppKsOTclHkJK2rb70we+dX8b8rSJIcaNTk0GYVvzu5Q0/D5j38JPkznr44cC1nEymcBsNiuPMEN5hnLb91Igp6WtJ0lSvfAAAJBlGdy7d68Mdnz55ZdlPj6PaRo1uvAUC+7EsayHMY4K6ZlEy+dEkpwc0vMmxk/ICcbza3XC39yG4LujuwzG0jr45pImNyifHBaLBVxdXcHZ2RksFgtYLBZiMFYr3wR8Tkhtzmtp0joUsx5K9CzjC/NQvUVq7y5kNx/31DkrjQGq0/P2kPRaTUZJDjY+/rIsK/WB4XAI77//PkwmE4cXixPI6jzxyQ8pH6+rlsc3BiQZ4uNPajvpP6VD11Nax6rtcuj3E/jBDx7A48djGAzQHgD2kY//laYD5tfAOt05XUqf4qA81dMpLokGL8cz1evqK8P5q/+n+F35SdvNnS8yDnfO6Pzy+tTHWg5uvXkgNoE8B3ADrvwI2gRA3KkqH1VLeazKIz3+LFxGy8v5wDw8P/0v47IFQKvniakuMg63rI8Oza/xXeGq8knjQOdR4qfaHVv0L+KjNOr4kF8ecKXP6Zih84h+ijtjcS3Ib+63TiHLemIwVrMP0P7kIK0t/D+uh/iyHMpaPPkpTVO4vLyEL774ouRhOBxCmqbOWma1nX35+Hpq0a+QR1rGshZt21fiSw/ZbgD+NbcthNrex4eW3+o/4Lit6SF9UdL1tHpqOp0EIZtMA9848NmTMfr1NxWkFwAtvgut7zW7XwP03yBQv63Fjr5tsPIV649qCzHtL82XtjxYbeMQHTEYaxH6nJk2YDUa28IuHMK34XS2QJNJjkKI94+ljtqxfJay1AFHDWqAIhi7WCzg6OgIsiwrdwXisSt4Bx3nhdLFnTK++/lilSCad71eQ5ZlMB6PYblc1o6oy7IMvv/978N4PC75o3V+/vw5vHz5slReKdyGsI5RcJtCSNm2KjD427ebZrFYwNdff13ixN0GJycnkGUZfPnll+KF3btsd1878GfSUY90fO/zAm8FukMKoF5X3/j0HXHIjTKch7FjmS7I6Ezm9/cijSRxj8DG+uFzyneME3yX0FQ+NqVlMTp8fISMp9sA6WQA7G90xoeCQRRwXaN5JYfHtvurCeR5Xr6UYA26SXqjpmzTdQGPdZfeTJVocNxYFk+6sBh0ktFPgepakt7Fy9Jxsmuw1FcDrB8PrqBzD48lXi6X8PjxYzg5OSmPhnr9+rX6Ytqu9BNOkxvkqIdOJhN4/vw59Ho98b5YDehRfnQNp2tYr9dz7nzrGmi/+JxjPJ9FzwitZ3RsS/RxjEj3vVuA05fmNq1PmqYwn8/h4uLCkU20730OuSaON6qT4Msjo9GofG6Rj7wv6K5/2mcx4yfk7PTJYA4+h2eMzkPlicQTnSNUB+j1UvjhDx/CO++M4d69AfR60o7YehAW/yO56pvLd7fcTaqpPnV8SflN6dEsEh88j1uHhJWrf/M0iX9feeTXpZXUnsl59fR6Pd266YDHy9b/h47iBSjSCvwYgCvKFc8qPJj3BpuSTnkPBV7D6TytnicBf4C0eq7Rlcr6ZH6IhxB+Hx8uD3o7AbSvS8VPfXcsp1XQw3pWu1uRD7luVfBfnj/8k5fHFOd5chOMTcoj1q2gyX+f3OYbDQ4ODuDevXvw+7//++XO1/v378O7774L//W//ld4/vy5s7lgs9lAv983nXiEoPkPpbUohFMLaCVJUtPn98FnEus7lcCnZ3QBTdqpSRmLniW1l/Ydw0NMIIqfFtRUB6R5uhqLEj+aj+FNAs0nSEE6gjhJEscXrPmRHj58WOrom80GptNp2Y7z+bw8DcAHb2K7bwO68md31d6avycWvxOM5QJAI9LU+JTo8PJvEjQR+vsIUkAWwdLfPuedRRmkDpDlcgnL5RLG43EZkEHnBQpT6YJt6syy3EXpq4dF4UuS6phlnh+PU7537x4AFIsAvQP09PS0XIB9Tp/YwITfcLKPVY2fkKIs4eC028oWjl8qt16v4eLiokwfDocwGAxKo+HFixel01dzXMU6mhCkdtbaTTMctHy+eerjRYJdy6yQHOBzWKsrH+N8/viciTxAQJ9r41kzCH19Qh29AJWBq7VBV0aTxG/Tftac8k14aFs/q5yjfWOV5bFgldWh8dMEYuZ+LGjj0DdvQ0Yfz08D0BYZyvnic5nmoc755XIJWZaZ74mtO7iL/9rJAzFzVpqPlr5rM05C9CkNa7kY8DlJMBi72Wzg4OAAHj16VL7QdnFxUR6Lp/EjrQ2++jSZM74+Q2dMnuflHZ8abSzLxxS2gYYf8/h4a+LE43qY5JTka6VE24fbClo/Il2svxaMtYwBn+yl9Vyv1zCfz6McyCF6WltJ42EwGJQ7mJrMeUk+ctvCgiPUpiG551uXKU9N25jLf6mO2LZJksD77x/CRx8dwWjUu7mLUfog7upT4ZK/ZR71cj58Ba912rRMlZ445VlOFQd97qtHnb/E81/eweu2qRSY1Z+5NFxaPr7dOvp3eAJgsKwIpuHvahdkFWxLEv4bebHsVmWclbgAIGpXaeLkbwd1XJS+tU60XZrQlPHZ6IK4+1nCU9GV8cfuBvY9d+uI7UMDtfVnKE9lvJUcq/7jyyS9XgKbTcV7yK8SC/QUidFoBA8ePIAf/vCHcHR0BAAA9+7dg6dPn8Kf/dmfAUDxsvtgMAAAMF3H4QO+Plv0Vcu6K639IVxYLtaejbWX2+j5sb4oX3oIuGzmPIR0YMwj9S2l0URPp+u+hltL9+ks2wKqg1vox+jieR4+gatrH02XYOHN6qug9fW93Jrnefky5mAwcMZ0r9eDg4MDODw8BIDKj8H9GruAEJ2Q/i7hie37bdZVkzHWcl34Uy3jrUkbBI8ptoJUSd9bxLsanG2ha2f4rqCNosPL72Lh4f+504dPQhpMS5Kkdqwv3TmAx91hHt/xtT4em7QDOlLwWESA4m33H/7wh/D06VMAAHj16hX8zd/8Tbkz6Nvf/ja8++678OMf/xhOT09LBZZeJI7HHms87WLMNm2TNgGgpgtDv98vy69WK/j888/LPE+ePIFHjx7Vyk2n0/LondgdGFbQlAbeRtQAQqC7QyV8bZRs7tjqCix9SBVF3DXO2x+PfdTucqOOPboTHmUJPwJTgjbykAZYqXGBb9mtVivIsqxU4EKwT+vlNnjpcp3VlKVdrWMYLGii61iNQf6cj9UmSnmXwRQL4Np8dXUVpB/C4+OP7qqfTqfwxRdfwIMHD+DBgwcODknvQLlB881mM0iSYnd7r9dTT1HQ2lhT3H0yJhTIiAUqD607kXkgp+48T5znEj16NQCVj3RnLOIZjUblztjlcglffvlleTy/xh/SldbGEPjasuv1n9cb/+MR2EmSOCem8HEjXYXRlVxGfrhjTNLDYx2Lu4Jd6L/SqReUPm0vLkN4e9JyVN9Zr9cwnU5rMobOHwk0WaE5j7tw+CJu3/UYkrNPGsc+uybkDKHORm3eJglAv59ClqXQ66U3O81Cd8VyRxD/pkHEIp2yWme7CiImiZvfn1ffsSvxwZ8BC17W21NvX16m/t/l0+UlYfwnN2nSLlk3QCvJnYq+y4sMNLDmBqrcNByb2h2fRR5wdsZKu2T5cbXIY07SeBvb0920ih7NV//PXzSNCbQmEAoS+9LivulRvm57Vm1JA6kubyL3LJ/bN24bYR6dH/cb2wfHDT+6uDp2uMBN8VH+6BipZA+d88WO2M2m+p3nKLcAer0Enj0bwcFBDz777BrOzpaEbjvgVzoBFDrW97//ffjoo4/gk08+KW3Z0WgER0dHcHx8DMPhsKaLcV3bpz/QNVbSL0N1C9HYF9+uz2/jy9/EzouB2KAcHyNagMeHs4lO2UU9+f2hEl8+Oj69hufbJki2mG++SLbamwToZ6CnJR4fH5eyBa+VkWAwGMDv/u7vwmazgf/9v/83rFYr56Sjx48fw71798oA7WQycV4ql16c7fV6Ufdl3za08c11YZd22U6xdgWCbkd0x1swGCs5+jRGYp15tzHpYwdWk8bmNNrW3aJ4tGnLmH70lbMuPqGgJ1/AqXMI02gghT+nQRdq3Gt8WBd/CY9FOcFj5Xq9Xsk37ry8f/8+rFYrODo6KoOxR0dHkOc5/PznP68547iTocsghlYfn+Jnpc/HcBvHe9My9OUQuqDO5/PyPxW69IhAi1LJn1n7pYki3qbfm/BF/2vjgJcJOc0swJ3WroPHfzc5bSOJd8l5quVtAhp/eZ6rL1JQ2l3MOw1/2zxNwTd2fHmsEDvmrEZ9Ez586yp1xlOHQdO2aKv07kIX02Rj7NHgmoPAEpjYbDblPbX86HNfWT4fuWyxjOsuIHatCMEu+p2Pcasey9tZG+N0Lml0uwDf2i7Ndd5XFv2YBx+kPPR/rB1h0VebOvja2DS8r0PlujDykb7UtlxmcDnh6++2ehmlt1qt4PLystRPu3JuaPpayHHHeaUQ6r9YvZXbZ1L7+tZLtL3oszzPYTzuw3jchyxLb4KvOO+wnBscYbUo89BvH8QOh6qe7ifEi0RLqoeU3/8dqkAdv6unF3mqdk7KclX96gFYYEFZCR+QADbFWQANeNEAWD24Vvyu7outnrn+B/ebBwrrv7E9KB/g2TnLy3pbXcHhy+Mr4+fJRyPmDlYRA4TqS/FZ+Kn63rIb2rZjWisLniB19b8+HqpxrZfH+mCA1g30V3MjTYtxORwW8q7ft71gZ67ljSzla+Hx8TGcnJzA4eEhjEaj0q5Fnwlf32Psm5j1tK2fVuPPgiMGQnWK9R9ZfLeSPqnhCLVByMbapu/AR78tPsnWoBDj47SU4+3cxC8m0aF9LfkbfP+7gja+SR9OH4TmEz9+HAOi+IIw7twHqIKlAMWpiQ8ePIDlclm2LZ5Sk+c5ZFkGw+Gw/E83eeB/qa8sPsaQzzJU9xDElGs6H7qy0UL8dAG+MaT5FS3y1wrRO2Oxga1v0+8bdCkkfJ10G9BkwsTg5Ya7RKvJYAy9xczvTkSB6Fs4ccecZcFp4kRCOr58dHwcHR3BwcEBnJ2dwdXVFfyH//Af4OOPP4Z/82/+DTx8+BD+yT/5J9Dv98vdu6vVCv72b/8Wnj9/3hlPbyr4xp6mYOFu1/V6Da9evYKzszNnnNPFGdOlOx7bApchPsc+rwf/5uO967FgCXrQtmpDg8Px8TEcHByUeUajESyXS/j8889L5cd3lx51ovAXObo09hA/4uV80PtkMU+v1yvHW57nsFgstqos7xLoGI01aNrU2WfsUMfCNtoVxwAehYtvZUo7sQtHSvWSSOgoTL4OYjmAuN17kiOC4twFIC08taBr2cpp4a5DAIDr6+vy+FHaDlZZQPPhyRf8aFmfEdG2nbsIyGC7NynbtJzm/KKGLLbj2dmZs0t0MpmU9/1SPJvNprxqAPW+6XTqGMVtockcQT41g5wDzasd2U3Xryb3pd4GoIzj85vakpLTRAJ6ZzC+dd7EqSDpTHlenVyBaWmawmKxKOXELtpwsVgAQCFXzs7O4I/+6I9gPp+X85XfYdVmDsfUJ0YH8jkCfbg0B0dMPfO8eNmt3+/D/fv3y/F3fX0NFxcX8Hu/9xi+972HcHJSvyu22hlLg4TA0gBo0K9Ko/UwsUry8aBjkYbPKjry7lk3Xd6dW8dPaUANr/yt4UvEtOp/dZ8l9rHbtu4H89ITgbjuQ+vrh2rXKwCOT0x304r/uDZhkM43/nIAkIOzmI7tUhWv8uhDOin5rZfX81vz6Xh9eGKP7pVo+XeZamXrfLm8hOtd5QMAsVyoLdxveXcrxcXx8TEBLEBL87kyJyf/c0jTBDYbgDQt6OPdsXhv7HqdqnfH0rEcI/vRRp1Op+X6BODqILPZrDxxLEkS+PLLL2E+n5cvxCyXS3V937UfFW10qkvtg41N+6Zr+9/S57F0pLU+BpfvuFwL+Nqpqb62Cx0vpp2b6nicjuQT2YaPaRvtF9MGlD49kZLDarWCi4sLODo6gm9/+9tl+tOnT8srBJMkgeFwCOfn5wBQ3JH97rvvlvZ+r9dz5CG1R+bzObx69cprp8XGHrYR44ldC5pArO/Pgq/NeN2mLdeUL/XOWB9yXyW4wyIknHe5AErOFKti4AtAWMo3ydNV23SxQNHyvnRLe/ic5Fo+6b/Uj74825h8Wh/h3XQYIOIOxPPzczg7O4PFYgH9fh96vV55vAtAdYwpBepM5sqjtV+30ffbBOtc9c0VnxMVhTpdsH2BfglP7IKqATeSQuM/lEdqO18fWtqyDWi84X8tGIMOdxrgGgwG0TI01hDxGYihNgr1M8/nOpls8+w2Amix9KjS5FP6aP0tbedzqmvgo99FW8bOn9D6RfF1xZ+kj21zvof4pf2u7T6L4dMiX/GOdrxf3jcm+JGbMcZrjNPJEnCw6tRWiMVD6UtroFXP48+5jMA0NKTxDWZJ58G5gdcJ4NqNd3zuwtBsClqbIN+aLYUvbGAeOoe2yWto/FkMZKsOo9EbDAaQpml5ygwGZ2PqblmPpDLIE+crdtz70iktfEELjz5rOv+1eobs3BjdScIRMx5ou3IZy/Fo7SDxSAP2+Hw47MHxcQb9Pg+8In732w+6fRkzHet5EyVdym+x+6zPeEZt/NafJQnXY/E/DxS7wVi0ad0joqUPxWcNxla7XQHcwGq1A5UHDKuyWEc+pvVvAHdna/XbxS3R42kUT5Pyeh4LhMrR5765Hku/y/z1Z26bVnm0dPe3RaZJ7Q8gp1W0AcDZVQ01fmg5+r8Y/1XANk0BRqMeHBz0YD7fAFWrY3UFyX+W5zkcHh7CwcEB5HlenjIDUPitzs7O4Ouvv4YXL16U+gz9hPAjDdTreH5Nh4jVf6geEKtHS2tQF/pXrB4eg5e3tVa+jc/LcjkzDwABAABJREFU2i5cx5NwavYqzxNqD8m+oL95/zfpx65s6Bj7sgsIy7L9tJ18wPsS/eh5njsnU9IXqLMsK68ueuedd8pg7Gq1gk8//RQWiwWMx2PIsqzcyENfoscX7qmNimld2KBt/I0A8b7PJtCUB4vPwydXtum/avOcQ6gPGt0Zu00hse0Gluh1vaDuC+AiQ+tnfZN81/2ANClv0j1LvrLSoiope9YdBaGF0Sdkl8slnJ+fOxd7c1iv13B+fl6+WTMYDOD4+BgAikWAHrGVpikcHR2VaVdXVzCdTkVe30IYsO/wyAmA+tzg42RbcyG0G47StjjxtP+7ghgeQ3mw3peXl3B9fQ1Pnz6F4XAI4/E4uPuWOqvpR5KLWjChqWMVjVBKkwLd8YX/Q3Tos13K5bYgrbHWdo2pJ18D6s7R3cwF6qDz5eE7Yps4BShQfNzQlIxWqa34KRRtgbaD1J+SkdyUhgXHcrksAzhYDtdUqc2QbwnQAcXzU7584zzk9PDJ/LbzHw1IOg7b4OIOD81o4voY0qa7R9M0LV9Qs9LH+7cxWIc7Y2NliBWs6xhApYdaHJF0TNF0Wgd6RYWVl6aAeDEASh0alAe6g83n5JNkDv2vyW98C/3JkycwHo/h/v378OrVK/jFL35hklea3KHyjstk2gY4FjXnn2Z/NIVerwfHx8ewXC7h8vISAMB5McTi+NBsFok/i+OhTX0sc9DiWOXPcN2MkWG4g6zYFcuDgFWAg/8ueJS/qzqUv3jt1HJ+3DJPFJ+Ly79j18WfsDReT/l//VlCeOI7iaWAagpJ4t5DWcy9+jws8lRlCp4Th6Z/WNJdsPiNH4A8r2Sp9sE6SvoZXfuq7yq4hzxWeOqB1irN7SOeT4OYvBI9+p/yrtGwHukr1evmSSM+/c+q9nbr4nsm1xMhz3UeML0a93QnNe17rW/d/ufyoP4pcGP7u/Mpd3b29/spPH06gqOjPnz66TVMJvUTeWIB130c57/2a78Gjx8/huVyCWdnZ3B9fV2e3PDXf/3X8J/+03+qBT5iT/Io2sK+5ljWKL7GdKUbxvDp8xfQ/9vSXTVo0h40v1VfB3D7gaaFdBYtn5Vvye9D213i6y75WihI44zqSV2O/9sAyzwaj8cwHo/LZ2dnZ+WOWA4//OEP4V/8i38Bjx8/Lv3wp6en8O/+3b+DV69ewXvvvafygqc2UViv145/GXloAne1n5raDF36oNqA1u4og6Q1rSnfjYKxALKTjz/3pWlO6tuGLviRFo8mIDlPffg0J7C0+PgGu+QkCkEXQibkPLcY4dIY48CdEF31lwTcMU4B76/r9XqQZRnMZjN4/fo1HB4eQpZl8Du/8zswGo3gz//8z2E6ncJkMil3BaZpCsPhsLxnNjQ2dg3b4MPn8ArJEys/dM5Z7+W1OJAsss7iHKMyN6Swh+Z3aKHx8RkKJPjw82fa+kEdNQjL5bI8xrff78PDhw9hNpuVDkvEJ/FCHcvYtzGLfsi5zvFJzlr+nwbhNFnlG3/7Mt+tYHXKYl7LWqc5yPizmPnXFrhc8q1DmqMvhNsn80Nz3Kef+eax1YAOQdfrVVP9wyK7eT7JmRMztpr0lwRN2xDrgDvvUJY1GYMSfW288PHO83KYzWZOfl/QBd9ypkeCN3H+aeBbo6R8lOfQfJXawyf76LqxC9D41fpQGsu87klSvbGO96HyQCgv3+v14PHjx3BycgLvvfce9Pt9+PnPf95IhvA5zPuNj1urztOVPEPbQDravk2/41y32uwajph1xQoWB3TIvsP/OPfpyURPnhzAe++l8ODB0An8FeWqoAfBJuLGLFpX24aASydJ6HeYho2mPjYt+H28VGmYKAWN5R2ufAcsBmV5MJaXAeGoY14vF3yBWPykxjGLR+vWZTkdt9U3D/ZVv4tnbpoVqrJx+dz/8XSb82OlpedrWufQMz2/xEs4rY4v9LxOt8hTjROKh46x6uhicP6naZHW76cwGIQ3XsSsV3SeTCaTMqCxXq/h//7f/wubzQZ++ctfwt///d87gQnNab0NaLs2xuKQ9FvL+mXplyZrrKU/JT3cR1fL31QH8Om1VgjZofS5pFtruCT/TRtdyaLzS7xawWeX4Dqq2fr0A2DfqHVb4OMtZLviCyFPnz4tA6Sj0Qjef/99ODo6gocPH8JHH30Eg8Gg/AAUG6QODw/L4CwCnmyJtLWjkEN1aOo/kXC1zdeGblu/u5a3Ce+heRXTbj4Z17X93TgYS40dCzRxMr2FeJCO9QCoC1+L4PU52boEiwOKAzopQkfKSsAnqWWibqMtNpsNXF5elkfsXVxcwMXFBXz44Yfw5MkT+Ff/6l/B+fk5/Nt/+2/hZz/7Gbx+/RoGgwE8ePAA0jSF4+NjuL6+hul0WtYj5u20uwBUUQg5a5oo0z66/G7RtvegWvhDJSrGeGmzoDfBaeExZi6HcNBdN7PZDDabDTx8+BAGgwF8/PHHcH5+DldXVzUeKR7+DAOyeMcglwO+RVi6C5D2sXYXoyR3lsulaNBxnFo97grQ8USNBWsZno7Agx10pzFf+zhYgghtgBpE+J+OF63fNVwcLO1JHThWvLTcNnUxiyNgW8DfEJYg1CfaHcCIs6v5ymWMJKticSdJUp7YgS904V2UoT7AuSXxQeegpIv49Cje/1dXV3B+fl6m0WsaaFmUxXg0cZIk5Q5o/mZyU9B0Rpx3lG9ph7oEoX7zld2GczMka6X8Ft2dPqMyEe+Ap0F3H2RZBt/+9rfhnXfege9///uQZRn88R//caN5JdlFPlkoyWrJ0UXHQ6z8pDRWqxVMJpNyl3ibtd7nsOP5utKdNboh3iz2GOVd0slRHiRJUh5d3uv14Nd+7RC++90+ZFlK7omF8rv6hHaX8nazrN9yGqdF6+zyQHeA1nfI0nKcHuWP4uB14nzw59UzOpexbGhHLAZYgQRf+XcCSZKKQVkajKXzsT6GacBLC8IC5PmGpW0gz8F5KanuM9HnM7VNq++Kl+J3AlpA1uWb16UqV6+j1E/hOezD4ccfhiblsQz/DuG10LLmAZDz1XkLvazs4irGKN05y+d6fazgeCl+5yQ/zUOfu/deDwYpbDY9aHnoiQovX74sg7HD4RDyPIfLy0v4i7/4i5puIumDVturiW6rrR8xeGL9fVbcvnzbtn8sbenzm9B06Rl/ycvSJtx+jykbakv85nKcQxOfaciHR/NYbW9J92k69rl+xHV1yW5DXxjHdRcgpGvjSUm/+7u/C48ePQIAgGfPnsG//Jf/snYdIAU8jYfD1dUVfPXVV+V/3EC1K+hC3kigyYhYO7Wtb7IL36ZWl7a+aau/KMYOAmh4Z6zluc8xaMG5TYhtpH0Di4OHLgjWfpUMHI5HUpY4xCoyEv8aTom+b9JJ4FvkrAqBVEcp/3K5LJ0qSZKUu2CXyyVcXV3Bn/7pn8J7770HP/zhD53yo9EIAAAWiwUcHBzAaDQqnVYW3vZ9IbUqatLvUN81XajobpOmDu7QM4sSF0svZtGJWTh946hpoME3T2OMKNwFBVD0G3e6S0olbw+qqPv41WQOd8bGKOj4G+9E1JRmqyJvoXfbQNsSZTA33HmwJUaW0Xz09Afetny8cece0vQdK2rlxze+2iiLsTKe49RkpYXnWFoxEKMjxhr7PN3CB28Pigvnv0/PkJ6F2pbrb6H2tOpLKCPxnvoPPvgA0jQtj5r78ssvTQ4A2j94dw6VYRjU9ZXV+OVrmuWlwTRNy2AsvtxiOfo/FriDR3rOZZq2joXk+jYMXAtw+4Gm80AF58mnf9ExjEceHx0dQZ7ncHV15fSX78h+dBqhTmx1gPD5RNMsslRaN5rKJ5/+StsAg7Bt+12qrwZNaGEZbdxbgctS+tIHPpdwc72Cps3ncxiPAT7+eACPHqU3RxO7wcOqHMcLZVqVD5xvG9gdyy5+Sa67tKX/SDPEo78ulJ/68cRVH/AdsfVgLN/5yoOwvR79j4HyehkAeYesDL7dsEVgrNLxcths6sfs57l736ZIJXePIk4SN6Dnjs3mQcqu8pESEBu01X5HUU3CQVeNfp1n+T/tDwkfgA9nrYT63M97xQvPo+sP9TaWntFv/sGXTNK0OIbdInsskOe58/IxzpHZbAbz+Rx+8YtfwGq1gvF4DKvVClarlaq70lOpKH5N99F0oRj7h9t3PjzSOhljT1t1Il8533PN5uB2gxVCOjkFqptR3Zzev8l5sdCP9VNY9Gduw8Xga+M38dl8fGw1uTKP4tR8ZgBF/4zH49oYn81mzhV39GVxXx0k+ruwSUI8ABS8D4fDkh88QW+xWMBms4HValVr+36/DycnJ+UuWDxF5eDgoLQruA5+eXkJz58/h1evXjl80GPYUa/wHWFr9T9oeX06sJRHohvCGzN/JTxN55TVX2O1wyTg86aL+e9bwyxt2fq1cU0YhBxUvsryCsUugLHQZAGLgbaOlRglheOWHEQ+PkOD0tJ/TZyHXEhIeaS00JHLMcpQiL4PtPyomOLb2fj20Wq1guvra/hf/+t/wSeffAKffPKJEzQYDocAUARl0fGEx7nRemn8vwlgcWZZ5pZVsQgJ0DbjgpfltNre26cBda6GnFoSaAaTBlgPqyJiVZJ5Gapc5Xle7kblhh4vF5KhWh9pBhZN58YI5tXGI9YDj9GTHMUaL03abR/AJ/s1BdNqeEt9zd/2DB0tzfmQFCzLvEH6Pgd1k7WJ5tedOnFBQM6zNA6bOD6aQqyjZZu8SOOFylRNt7LWQWrfkLMohEsDnAvz+Rx6vR588MEHkGVZeaTc8+fPnaCqDx81ONEpg8HepveDcZoUJwCo1zFgH6B+hOOXvyzTxbikvzVHD6UvrQPaGqTJxl05PCgtyQbjO8FpHp8ehs9xvvR6Pej3++XO7NPT09J5C+BeI8D5w+fj8RhGo1Ft3bfUUVtLNYcZfW6xuax2mkST/s6yzCnbZE5JToeQ48aHQ/rfBDS9iOtWsWsvP4ViPp/DYJDCt76VwnBYBSoSFsQoytCPZH8CgBPk5PpKPV1il9Om9IHtUPVXV7OP5N++NPdZouCo17fKX82ZIp3vgq12vdaDsD2SzoOx9Bv7N7nZ8VftzHWBzlccO5U+RuV2NRfcF3GLuZZCmkqyJb+hWXwXxRAXAN7tScdsNWewXNF2RXICWuCOtHZZLgwWfKxELa+PnvzMp6vE8CLRoeWb4VIoeHDhuC/6FIDvbMVvhOI/D77LdeD1c+ki0uoo4qrueCQxxUtfgKh2yaKc6wJw3vB7TXHH2cXFBWRZBvfv34fFYgHT6VS9SsFnV2vjx+oz0PQQpKOdpCC9eBvyKfI1LGQrWX2iMWuzD5+v7ZvYWKi7IWRZVurY9OV4X9s1gRAuzVblY7UrPkK6blM8vrIW/JLudHBwAL1er6ZHXl9fl//RN404urI3twVSuyVJAqPRyJnf8/m8DMgCQO2EGQzGoq89y7Jylz/NQ+fK5eUl/PjHPxZ5wPGPfj0rhHTvkDyx6MYx49ICFl+SFdrwbZkzTehb1qEmz310OwvGdlmhpnnfQgHUoYagHcVAnSBWaLKIx5aNcaJJzhjrRNSO3NslTCYT+NnPfuYYtC9fvoTvfve7pTMyTVM4OjoCAHB2yKIz9C20hy4CWH6DtHAqSAs1vQO56SISa6TEQMxCjfUEaOZAlB1hRRo65F++fAm9Xg9Go1H59pt1obQG0/j/UDAN68yd1jTfeDyGPC/eKOaObloH7sjnEKoDleu0P/YFfIEMAJuCJhmtmpJsMT5xbNH1ANdSy/rAn9M3JTmPuGZRh2Ov16uN41hdSaKFz3zzynVM7jYIxMEnP/dFH4wxWK2GUMjJ0xboWEuSxDHCEaiT2oILA2f07WM+Bq3zh5aJ4QXnKdYnTVO4vr6G9XrdidyT+oUGtTh/0n+an8qZWKD0tzEXpLEXWsMtvNC+5PKbtg0vg89x3F5dXcHl5SVMJhNYr9dwcHBQOl1i60lxU554P9O1ytdvriO+nS5JbZrbtk+sQNssBFTPAZCPfKd5rb4E3v6z2QyWy+Jo4l6vOgKX31tasewGUvEjge+ZHxL27ctDgy1VOqft1oHzlbA0fiSxXJbTq+jyY4LrJ4vUd8FWwVYMwuLLQUW/1D/4jK9b9FOvKwau5B2xNKhE5VHxvYEkAdhs8vI7z4ugrOtjkPuvwFMF4CSZlqjBPz2A2ibN9zyUvwug7cGeCGlNcNd/y3koPZe2lCe+bapArVze7V95/kk84X96nyy9M7bCW83NHNIUoN9P4OnTIRwc9ODFizms1+07G/Wr+XxeXguBVw4kSQKTycS5KgbAld8xOmATJ31Ib5bWC8mO9NGWdFwfWPU8q50vy5Xm+kasLombSkajEeR5cTw11Wm1+mpt5qOt1Uurv/TcN1a6tnG70Mtj9CgE6jdIkgSOj49hOBzund+nKfDxwn1q/KV7Dr/3e78HH3/8MTx9+rQMvj579syRUfj92WefwYsXL+Av//Iv4auvvoKf/vSnpc/94uLC6V9qcwI0i6fEwm35ZTjE+MP2hWcf3LZ9ZQrG+oQrnRRSZWKM0zaNERLOvjJ3YaBIwJ1WmEYd+Vw54UINgwAcn2VBbcKnNk58i5ivHM+DuEKLPXcEhe6/1CBm7GiO8sViAS9evCgF+nA4hPl8Du+//z4cHx8D3imLfNIdsjQYe9vC5DbA0v4W2ROTx0JPG+N8XEpKhs/ZF0PPCqE6U76t7WNVKLV5KtHD8Y93LeMbf3THFMXlk2GxMt+SH526vt10ePwJDSBTOZzn9d2csXwiPsrXvgFfs2iaNE8seoRkJGPA05KfOujwuXXsS8ADq5rByNciDhY9JdbZwYE6JbuCJrhC/N+Wrqb1C/ZZyFlgpWFxyGC+2P7i44s6vflR6VZ5h7xwZ4DGe6zOHeO8Qz1J25HaBkKGpdRHPt27KficTl1BV+tjSF/X5J40l3BsTqdTmEwmMJ1OyxNnlsulqEtJfElrDaZb+Q21T9sxx2V5l33cFS7fPObrpSavuF3ns/8s6RRXMaYA8nwNSbKBXq84thPTqzLVN/+0AWv5xAnG8CBNU1p8zNv48uOp70It+pLyrh1TjLti67tdi+NUMSjbYwFZbYesfmcs1I4nBqD3w1I9pwi04jjKIc9TyHO42Q0LkCRFILb4prSSm/z1O0CrQKwvmFfkwTa3T8mq3C4hjkd7mXqecP0kvBqtuj1gq0eRr7u2rsYGALCgrUy7+o1zqZJrVZ5iHtQDsXTeHR9n0Osl8OrVopNgLOJeLpdO0HU4HJY77qzrOgef/R+jB4ZohGxLC35tPfPxE3qu2WAhna+JjUrpxLYxnmySZVn5Eqa0GcaHt0l/0r6S8sTaYJq+KNnlPnw+21ACC55Qn0ttS/kdDAZl0JE+19pwG3bEriDLMmdnrwTf+ta34Ld+67fK/2mawsnJSWm7AlRHbb9+/Ro+++wz+NM//VN4/vx5iTfPi5MA6BjBl4AxD/oitU01oTFqsS27hthxasUnzSkrbR90iUuDWHs2BL61DUEMxjYxJu/yZL7rwB0Fi8WiFMiWshxPyHFkWfgtCo6mdFh208U6ISlPsQ7BLoDuhkwS9/g9fnzCixcvymNfTk5O4Pvf/z48efIE/uf//J8wm82c9onZuRWCrp3xbxpYHKF8bNEy6HTA3UTz+dxrHPhoa881RT1mboXAdwQx8mA1bGi+GN7yvDgKhL+pJtHAoG2b+RFy1nJ6lE/6DVDM2cPDQ1iv186dFtKJBhRviC4AlI5pCjTIi7svbxskYzYGpP6gzjZUhmmQG+cexcGV5n6/D++99x4Mh0PIsgwuLi7g888/B7znMPaOFy6rueGMCrwEsYaTVW5o6zum0TXlLbQDPs75iQHSeoFlun6JAmUM7dfBYACHh4fQ7/dhNBrBV199BS9evBBfcOF1wvXs2bNncHh4CElSXL/wq1/9CpbLZW2uYVn68h9+tMAKl5uIg6b1er1SluJdSF3KOD5n+dHjtA7cyYX9iO3lo0HLUGOf50F60s77rkDC2VTPpGsgfQHp7OwMAKDcYaPJdPxeLpfw5Zdfljrw8+fPnV0ZMcBpScYypmv2gqQP0o/rRA+vc132o2TXIR9tdXwLn9o4oWOWz3GpT2IdRTT95GQAv/d7T+H+/UF5V2yaQvldtEUVEIXajsfqG9mo2IlvQ6RFPxRnNb9p/npAtOLX/e3yJ+WT8vKjTH088EBr1YbSHa8YTKU7YlFeFzZwD5IkLb97vZTsku05gVo8npjywuuLUI2B6ru4/7WSP9VOrvXNfxx7a8AdsklS7I4tcG4Abo4k3mySG15wHaMBtLzMR48rdmVBN8FNP54EpKCw+z8hbSThc59b+LDYSRpPtnap89QEcNzY2tRtS18bchzxfV0FWPPcpc3x4nc1F9HGyctjigeDFFarnjhPYoHbMr1er9wkgMcSI/hkellT45rIy2jjy7opga/TNF3y2/iA3nVPoYt11gIWf4HFx2uxxzEAOxqNypceu9Kz28QbqG4do0NJerxGi7eZL1hj0fl8ejS3MbiPgtednrB1fHxc9g/HP5/P4ezsTDy5renJktsGiQ/JJkLA6/+0cYnXgr3zzjswHo/hs88+K3Hgkcb0CGeE5XIJX331FSyXy3JDBUAVb6H8hNouZoxyebcv/WIFTd7sE2zLzxVbXzEYa0USQ6xpha1O8LsGMUY6giUICgCOY8OH3+Lg1xSpNhBLVysXWux8CyZtS77Adl1nycHEd7+hQM/z4gjTJEngl7/8Zbkzdjwew3q9LoO6lNeuHOf7Kiy7Ast4iCnrm4+S0saDQRrukPPP19daPag8aDJWLGXajp9YJQYdtJZ29bVdSNnhgRKpfKjdEVA2o/GABo1mDFn7ijo26fjBO/WQ1j6A5nCngQ2pTIxegh+UjfxlGJ6P8nB0dFTeSYg7sUNjwFJPrR5NlG2q4MbwExpflSO1GpdWsPBuoS+l30XwGdx0vu5Kx6X8oOzcbDYwHA7h5OQEkiSB6+trePXqlfkoXdyNii8v0KOKLfJcqnvsmMOj/+m9VVS/qjvDm69TsQ4XSt+KX5sTFBdf27al/0myqQ0tLLvZbMoXh+jb5BJdWmY2m8Hl5SW8ePECzs/PnV0ZMe0s1Ucbhz75THFIzt3bBIknKY8GTe17afxqayGdRyHdzMoDzo8s68GzZ2M4OOhDdX+iG1gs8rufiu96WntI2LehhMCDjy9ehxjetLIVvYQ8cwOy1W/8pOWHBmarwG3PScedsUVAFp9VwVjef2otknowdrNJIE3dnbDFMcT0s4E8T2CzSaEIbBW7Yot5wB3x1ZHEFb3iP7DjcJMEg3jy3bF1/uODtV1DmAed/+Y4pXxxdDQa22jTWJw0f6UjOTnAras7frBcsbNW3mHLZVrxQkP83bEW/xm1Y/HFci2/5iPxPfelx4Ckq2nr4i71ccqbBrH2HepRTX2ZWr+jDMYXukO+BMtaLvnILDib9I3VrxIawxrPGm/aHArVoYkeWeg81b2nPOi6Wq2cUxUp/rvk++X2D38JhAZLUbdAPxieJDkajSBJEvjss8/K9p3NZuVxxKvVCmazWemXn8/n5QsnNPBPTxZFehabMOZ5KO7B5VosdFEmpMe3pe3zrzYpH7JXtLwhG7kNtL4z9i3cPlCnbMjw7vf7zrZ63Jllgdt2LlDgykDI8a05SnapeFHAewx7vR5cXl7C3/7t38J6vYblclnm+au/+itnJ81kMil5RuDBgl3BXVrAmzrpmsI+tUvbRQxgews8NR7a4EKliAbfMF1SXHwKd9M3PbnyK+1yzfMcrq+vodfrwcHBQZkPecS53OaYYgpHR0fw/vvvl0GKly9fwuXlJfT7fYe329wpy+Ww5JDX+l8yOOmO2CRJ4MGDB5AkCbx48UJUIPM8L41LHD/Hx8dw7949ePz4ceN+4GsP51PDS50BVoNRajtLGYCq7yk/+Ab0fD733uX3FgqICWiE9BQpXRrn3Cngk/OSM2qxWMCnn34Kjx8/hvv378M777wD3/ve9+Dy8hJ+8pOf1I7slgDfkn/x4gV8+eWX8O1vf7s0hKmjDucifqhslMYf/qbHIMc6YnDHBhrTXa3J0py2rGG0PN9hGrtGIw76Es8uoCtau+S5CUiyGyDeeWi1Ldo6U0K4ufNql21P24yubb7AvmazaSD1EQb1siyFfh93xeKOWPopAm0ufTmISdPc34mYztN4oATpu98APCh6U4qkSc5yKViq88Hp6PWhQez6EcRu4LU6aaTQqYpgKt0RWzhGcUdsv/xPHf3FPbGoF6NcTcjHbZd6sK4ejMXgapoWgdj1Or2R2wm5IxZ33+LO2E3ZLnmOAbECV9E26Q0Nd27RMhqPiRNgw9/xAU4OFO828ncLzesrtVlcXVza9T6TaNG0ejA1z7V+lXHx3/Qbf4fzu/fHFvfFVscUF7vN4+27UECBBjCSJHyvPMet6bUIkk+Lr78xPoYYH1DITqM2EV9bfeU0kHYlhsrTNuS+B17Xtj7OLMtgMBiUeNBPIfGurdkhG74phPQIK11NP+LluX+iSdBUoh/y22vlcc3lcHl5WTsljQYS7ypI7XZ1dVXW88mTJ/DP//k/L+t57949OD4+hqOjo1p7/PKXv4R//+//fRmA5XbmZDJxNj9J81KyW7/JEAps7hNoJzzGxgp8vrwYcIKxbaPU24Jd0butwFxb8AUYJKWGHueBgVnt3sUuoAkeS5/HKGUSaM6wEN7Y8agtvCj8V6tV+YY/VapwkaB4qAIWcrBsc95sA3fbAK+vPO1rqX/5WLA6zS2BQooXwafAW4MwWvkmZS3lQn0To4TzPLGyN5SfK8p03ki4rLy2BZTH/KhODpa2lMYUddL3+304PDws5crZ2Vkj47Rr4P3gq7+0Jvmc4nx+o8NvMBiUxggeC+1TpJKkOOYf10dsW7pOtpVVMc+0McrXAov8sqxvlnw+/pu2jdS2+66T8XaK7VuOyyr/ffPANybQYX5xcQGj0ag8uokecSXdAyXRTZKkPCL43r17MB6PnTsA0VEkyWIJp7RO+wB13IODg9JplKYpnJ+f145KbgPavOMBJskJFjuWQ+t4rMHYBLhu1MY20nilpxVIZbgsSJIiuI4vME6n08a2RWw531yT8lmgqb4UC3y8WGk0cS5SvUua43wsxdhYVn7SNIEHDwbO8cSJE4DUd4D6AceANX+9vKWsj7eqHvLzNlDHlZTfSLcaS+4a4H7S8hvvi8U7Y+mHB2mrl+JoMJZ+QPjmvzE4Sr/duuU5Hrm+gTwvAqqbTQppWuyMBUig2HmYOPUtvum6imPYpVP8h5u8tgAhzyeVs+LaFTStW9f4dwk+nqzPLPWqjwcce3U5imMbn9F8eBy7FTQdk9qNvvwhnE18Z741oqmvhPMirUdWXrnOp+HxrfeazdTGpxKTR1qzJV8X6vMI/GXdrn2TvF8suGh7++x7K21eRtJ1ML3pWG9q73LdDjf0oE+ZgsUu78KuaKO7+XhAHwwCvhRAT/BKkuJkM/SDjcfj8lTJ6+truLy8LPE8f/4cvvjiC+eYYY1+kiTi0c9NfMI+aCMrQ/g4dMm3D7pYf2LpWe2MNiDZhG1kc3BnbBeNEwu36Sh+kwDvjqX3k3IH28HBAazXa7i6unIW1q52S+2qL5s6jkNl2uC1AF0w+/1+eel6nhfHFUs7k/CohbYO632bZ2156bouTYMu1nbFxYIfg9oUtj1W2wQZeB4+diVDz9cWmkOfLsAowyx39VnBN+fojidJUUeeMDiq0ebjznKfB92RsF6vYTabQZZlcP/+/bLMq1evAADKQCTuHrsNQKUa6aOco3OHtyM3XKU7grAN8C3IPC92vj569KjMM5lM4PT0tAwa8T6bTqcwGo0cvHjUTey9xtxRCSCvrdh/lqOB2wZjrA4ArDO2ZRPnxJsAobprctfn2LDgQboY1IwBiR7KnMPDQ8jzHJ4/fw7L5RI++ugjOD4+hoODAzg5OYHHjx/D5eUlLBaL8ijjEPR6Pfi93/s9ePz4MfzVX/0VLBYLGI/HsFwundM+EOgYQ361QI6v7hgI/o3f+A34wQ9+UN73/B//43+Ezz77DI6OjkpdqiloDiCfMxCBHxnncx6G5rXUPtta6ynNbdDJ8+LNc6xTaH7hOHn58iUAgHPXUxPg7WftTys00ZXaOIR9IOlJ2x43lC6lRXfLh8YW3xlv5Xk4TOGf/tOncP/+EIZD3KGJu8XcoKIbyKBtJQX9moPbBRVuSp/Tq2wCL2anLM1Lyxc/5d21+Izz6/KWOG1GdRo8arj4Xd31igHX4nev3AGbZf3yeHvUMfCeWCgDr+h05Ttj67xWkLPfOfudAwB9CbLYCVvslpVOacDxi5+8PMIY8+U5AN4Ni3nx+Fh8ToOy7txLGM9aWszz2wGs3z4C563OK23T6jcOg6LfYupXHSWMwXtddmljoBhHOA/52KnPTZo/KXd8U9nXJVBdha7P/B576zoYGxyTjgPla4SEn983iS/noo5K1yzNNvLp9WhTxthMbfxM9DsWrOvqer12jrfFq6Eojhj7xsob/b4rQOeEL9il2RRN6NExPZ1OYTabqe12G7Z5SAZYeer1ejAYDMr/19fXom0JUIzRyWQCs9kMzs7OAKDwe/3RH/0RvH79ugzW8kAs0uE+wzyvH/v8FsLQdrw1jVGE/AddyRWf/ywW1J2xIaeABk0XlDY4ugQr7aYNvu26hRQIVDzouf9dBIJ8YFE2YttzF04TyZkQ65AOjW+fA5fuMKHOIm0B4hBq9zfNaW6FJmOtiVzj/UyN/dtSMvelz3n9LYEMqqBz53WMbNGck5LTXMIbmr+WYBc9VpkG+rRjO7kiryn6nLf1el0eTX9ycgLL5RLOzs7KF3Vuazxw45gGIUNGC4XQc3r3K5Whp6enDv1YvBLEBkikfrTKBq3/Le0ljV+aRncO444VS5A41qlwVwztmDXft95r+gSXN/Sodct4iGl3XIfwe7FYwPn5OVxcXMDl5WW5SzbPixM7LH2EeWazGUwmEyd4y8eaNkekNrKsu71eD7Isg+PjY3j8+DG89957cHBwUBrtTQLZUt1CoPHpqzPPE1qnfM7GXYJlvIXGLZdXfG3X8Gvrfeh/DF9Wfbnt2rRt0NrEpz9I/5uuURI/lHZo/ND1WqqHxDc+Hwx6MBymzs4wvyiRxlqoTBwgLsQr4dbo8XQfb3K6fQ2j5Yu24zt65Tti3aB3FaR1g7L1b7wXFkDaDUs/vB70d07+428akEXAYCoGUlMA2ECaFjSq+2LpLt/8ps5VILoYdjToVtBNknrwrvid1HihefYR9oW/JnxoZXi6H3e9zwJUAby7oRFfhdeda3F80LFWlK3oF8/xXtcE7t3rQ7+fwNXVKsqfodm3mu3IZbxaI0UX1uhqfEn2my8QxX0G6Fuz6roaHkrbp6fF+D0s9fLpSk30E6seK9VTy+/TQ2L1iBjdw6d383Gn8eTTwS0+Kx9dH9/0RXOfPqrx55sDTflqCr4+a+p/4nXEF+4fPHgAq9WqfNmP+l2pXYr+oNFoFEWna4jBHWt/bIOHJkD1eKufipaNyU9Bk7uaXUHp+dK2ZYNH3xnrE1RvwQ4xCpEVLA4d3KkwHo9LhxV3AHI+dwUxygHNb52wmrJnUYi2Nda545UC3tNwcHBQLs7L5RIuLy/L8cODN7ftANp3aNo+1GHatK1xFzQ6iC3KWyyPFlx03OwDSIEeNJQ4SIs5lV9NlHv8blrW6iykfY7HLQ4Gg/JNPNyJxndTofLg6zN8a48GH9brNUynUzg4OIDRaAQfffQRvPvuu/AXf/EX5c5QWnbXgLsjAKodw3wM+/oltF6kaQoPHjyA4+Pj8n+/34ckSeDzzz8vHYU0CM7x0/EWO2csynMbxwinYzE6LXxQHQF3T282m/Lt6Ld6XwV0vKIM4rsDYnHhvOTGZFftTneNz2YzeP78OWRZBg8fPoTJZFIeUzybzZyX9iSgdf3888/h6uqqXOd88pgf085flqAvq/hgOBzC0dERPHv2DN5//3349V//dTg+PobxeAxJUh0t1TSAFALJEac5KvlcbMsPbd/bnJM+Z1FMHX3yFZ/hbjo8AYLfAxUDPocp18122b5d04pZU2n+bQHOdW391urPZYE2r5MEoN9PoN9Py3tiMUhYBdTqH1re998KWIaWl/BU/ULz14OOSVL9puky3kRJr/MHwvHJbrAB87hHEbs7YlMn+Ip3xfZ6fej3C/22uiM2u7nPN4Mi2Nkr8Rc7YRPlw+vPIRe+tU/xvGpr99jXakgVwdbNptpZXRxhTNsFdUTOGyIJBemaQ3ucsQHHbUMcP/X6Y4DcjltqQ71dJRw6zxQP/w3gHsWPY0/Dg9+VHMjLsVs9o3fIFp8sS+CDDw7g8nIJP/nJlTpeYvxnUlrTwKBkA4V8LFqZJElKe5b7awDcHbVof9IdctY2QFuSw3K5NNnTXQd5eHtZg348aKr5LiSQrrbbBcT6zWL9yj6w+ABCuH1t5gsM87Ix99fuWofdJuDJcrSOo9EI/uE//IcwGo1gMpmI5ZKkOMKY2p6SfXl9fe3sBN8nX+ldBfSN+K6m4dClTzyEvwktaQ1qIw/VYGwo+kuNIOuCvC/QBW9tnSma8kEh5HyleSTFA59LQn29XjtOsyzLyuMdEXy7Ydq0YexbEfR/7ATwLWaxZS08xjzncwV3JPHys9mszEMVTY5rn+fcmwCxTt1QEKlpANFHAxUMyUksBWYs/MbS1+an1nbUqAkt2BSHVTZZHONaPh4UDfHkoynxQOvK66WtpbHBt9VqBdPptHSIae0Ra4y1BV/ggoL23Mdfv9+HPM/h66+/hsvLS3j06FHpyA/J/Ovra0jTFF69egVXV1eAwaLY43p99eH6lSRbtPUPy3BlMmZtswAaPRis3lZAax8hpp+pPAeI142wXfEzHo/LcYovVCB+OlaaAvKLjqhXr17BZrOB6XQKX3/9NZyensJqtRKPguN46GexWMB8Pi/1Rp98pvMwpj6a7Mrz6rj/Xq8HBwcHMB6PyzbcJrQx5HzzXWs/yRnhczhp60XI4dklaLQ1nV4D/nY7xRVD37d2hoz0GLtsF9BE9/A5/DRc0njR9E/pufZboxFqw7ozGeBb3zqGBw+GMBr1SHCCt0ci/t6O/cSDiLFrQ/d5aT73d53HpAw4gtOe7m/cEcvvg+2V3/gCRa9XHUucJLgjtjoyWA/GgvDNgQdhMa/kTE3KuuU53PCOayyU98cWweJN+V0MSQx4VTtki7bC44nB+a63f+io4q5gm7hjYZ94uT3QxoSeL6mNK54H56Zbvhqj1S51253VCLvw/YVsMWkdsOikmE/SL+hvtG9iAfVMTjumvLWMtG76fBEWmiH/h0ST2x4WvaHrNdXno4kB3o4WfUMah5rerbURpyMFA33ty9s1pNuHYBt6qqUdY/vRd40T+np++ctflr5E7AN65HCe544vHUE6hluTCU1sDam8VeeOxS/hipUxsfxQOcvTLP69puDq/rpfQOPZh7cJL7HAeRCDsTGdZ3WUbqtDfLBtmtYF1WfQWxZPDfjCqE08eiclAr+zcDgcOncncD5j+LLk8zmhLGV8OKwKA8fFy1gcRU3qwfNTZQeDM/QZ75PQnLuNudYFdBHoiAGLc4mDlUdfXyAOehxkF0Dx8rpRo0NTFmMcj1oen5KlzUt0zgC4LyT41hCNL97ukoObp3FloomTGhVFiaYG0o5MfvdODD6AusEEAOWO26Ojo3K3PS9Df+9iDnKDWXtOgfe/NO4wHRVw3PV3eHgIAJXiLgGOAbw/vd/vw/n5eZlOj+71gTTerfm1+tLnWEceLKPrlW9OUjxSOvYJDcRuY22xGgq3AU11Ej6eY9cWgEIXo2/sTyYTVa62MRyyLIP1eg0vXryAFy9ewN/93d+V/KPzPISHyqnFYuHcVyTJIvzNdxHH8s55WK/XpU7b6/Xg8PAQjo6OSsN6GzJNc/CFHCUSDsvahn3D56QGu9anmkJIH+FziDtQY3Vwy5yU2o7LTSnoKPXjvvSBtZ0k/cgKVK+lu+ZDc0FqN8u8pc97vQR+4zdO4N13xzAe98vgg/RhWAg+97+UJwYoLfxd8JA4vEh0papz/uX6hNLku2M5PuQJ+aW/6afQQ7SdsT1nZywNxhZHBhff4NwVmygfANx9Kg8LHowtPnmeAkAOxQ5WlBtJ+V3UKYXNpgrG5nn14lNxdPGG9FnFE+5CRN74rswkoQG0hPDYBvx4XJr1/7uCrunuqh4hOlY+7Pzq/VnHQccYLUd3xNJALMBmUxxV3OuhvaAHiEJ6iM925MDXyxhfgrWMbz2hR71qZenxxJIt6qMfsgM5PxJei39C4iNGt+P6ldavvjXap6v7dF+Jtm9cxcQNutCrqL3M9aNQm3UFsf70GFvBl+e2oImf3HeKG56u9pOf/MTRzbkfNEkSOD4+dgK2AEXw9erqqlOe20JTepax0Qa/hkuyGaSTbLrkR7NTdjneY33EtAwv2+eZ923ivqmwrckd04d0QV+tVqqDoykfoechhStG4ehi3ErOitiFchfwps7RfXFa7Qq0gFJbnKhsaDuCaCDHpyBboOkCSJ3KuAsLd20OBoPS6crpUIc0lR+Yl7enFGi08qrVzeJQtD7nAXKJv1D/aHSvr6/hF7/4BQwGAxgMBuURpIvFota+SIcG9LYJdNyhso0BQAmshgg3GlEh/Prrr2EwGMBoNILz83ORBua9vLyE6XQKk8kE5vN5yWOM8U35oXON10kyXgHcQL1Gmxv0koHfRkGlzvRtBRbuus5J+edjV5vLWhviOOn3++Xxulpwqot+QH750a/8Rb1QeeTx+fPnMB6P4cmTJ7BYLODy8lKU4fgb5TiH0HjnaZvNBv7mb/4GvvjiCzg5OYHf/M3fhPF4DEdHR/Dy5cvay2zbAN/8sMydmDnQ1Kil7c13cbcJWGvOta7mNZf5bZ1jml6A447T0Opyl+XWtoDqFdyeDI1/yTGN6yf+B/CP8V6vOp640qno+goljiTRg5ndQF1nqdPid7T6nvsY9c17H34trQq+0npUH+l4YnyJp9oFiztT+v1+GYytArC9G9yhXbEJSG3pQg5VcAq/i08RhMVAbAr1oC3c1JVeNVDtiK12yfLjiTE4nNzQocFivEvWLyOSWwqUvoX20HSNs/a5bDMAYOAV/xfjMmd53Gf4Yop0rRW1w0K6RcgOx2ehQKgPfME6yW9oCfZR3JvNpuQPTxjx+SND61bIj4nPKB68Hkcqtwv7G8Bmy3GeKezq+NZtBVn21d/o6/+Qfv8mAvdVoZ2cZVn5Ypc0NqRjnKfTqZPu8zm9CdDWr9sU8KU8Ce8u5rG0McbqQwzBtoLctWBsiJgEXTsb2kDbQRQq71MU2kATZ6fknItdyKkjUVIqNFw+x6/EnyXdSseXz5LXStuCI1RHC+x6zL6pi3bXoAnt0JiMlYdt+oMbImgIWZUMNKqkvJY5IhllGh7NqUqDsXiPCwYFMC91BPF6A7jOZC1IRXHR36F6Wg01q6JBHeDaOOD9quHgvynM53P4+uuvYTwew+HhISwWC8iyrAxOaPekbjtAJgWZfMcH036naVK/8qACKoQXFxfQ6/VgNBqVx77SsogTAMrneDc356GLwCR3anDgThJfkCeEX8svOb81HqT8XYE03u5SoEOSM77+knQ0/F8d81jsLpN2p4bWHSsgH+gspy9qWHDy44hfvXoFo9EIHj9+DMvlEs7Pz53ALu1nKs81Q9oSdEPn2q9+9Sv4+7//e/iDP/gD+Na3vgVZlsFoNHLWkbagrStN1gAJL8Wh/bc4/qwgtb/0XyrHwYdDK6OVtwDmDx07L9Gna1ysbaLNDV85Pk7a2DIhWRzSOZvY+D79Q3rGncyaTuFb733Pdf3OPY4TPzyQVzURnbciKYE3//M8d4Mhbjl/4Xp+O11/vhinOwYXq7JJGdRJav/x4+6Kpbtje+W94xigxR2xeZ4ABjn9AVmZLzfQif95utYOifCNQeYc0nRT3hMLzn25btAXdyPqgVcfP29h36Doy7hnOHVw7rt5iv734WXYQBov0rzmOKvxWZclxTOUlfpLvz5/lmR/W07ooDgQt9VPKa2Z0lru40WjledVkIfbWJb1H//z9S5UL64PN7XtmoKmh4TW41j/RhNdw4ePQhd2qU/PtoCvXhZdR7PrQ7itebZtQ4fGS1N8Unl+UhzarRpIYzbP8/JuaCs0qcu2/CSxNC39Y5UzsWMJfXq0bNNrnEJ0JDkm+c00H571SOqQX8Rn91rqrN4ZawXrovoW9guWy2V57CICVSwQ6BtcEmzbUbsraLuAtMHxTYMmMmObcsaqlMaAb17QZ01phdojSZLy+A7qeJxOp7BcLqMcgjydL65II9aoQMAA2mg0cu6P3Ww2MJlM4OrqqnTo8J09PGDEaUsLMP2m+HiwwAcUB72Tgit/FCTlnx41azFiQs5WBNqOq9UKzs/P4fLyEpIkgeVy6SiyMfS6VvB5f2Jam7duQzxSRVGiQ5VGPn66qj/ios5K7JvNZhM8wpyOMd+OXWksako2Dc7QubPtdW3bRuMuQZrLXImXZBLNe3p6Cr1eD46OjmC9XqtGZ1fOjhiHGgc6/qbTKczn8/IlBjR8fWNIGotW4wqgug8b2+lP/uRP4Pnz5/Czn/0MTk9PYbFY1Hb6+pxg1jpLRh0C3eXvC85JaXy8+BxRdL5qoDmcsKxPDu4jSO3dpj9pWWwPX1to7b0t/VRzkGsBzib4uwTNYYFjVjslQgK6Fllpp2lxJKcUlC2aEcd/VLWiytB8chkpUQ426Hh9O2brdZTy6rLBpUH1gOpuWCn4Su+FdXfEFi9a9oDuiK12yMqB2CpQix9eRz4ucvKNMjKH6mjiFKRjiqtvDMQmsNlULwimacELANWH6M5YIL9zgi8nz2BnwGndRfVq123WFHQ+ef9L45XONfdbwlfg4TallC8ncxfKeYsvPK/X9ZeDQjoE19O4D8AafKLPLI5qy5rKT2hBfVl72Zja/Rb8mIffV99Eb7bqCPtgE2m8NrGDm5Sx+pQk3Yu+zNmFjmvhI2Qr0/z8iiGeL+Q7+iYDv6YE+xf9nQA+HaqZ33MXYO3jNmMhRt6FnvPjnvG3NA+Wy+XO2tbqs2oiD5rIPWt/tQ7GxhLcNmw7OGgVttsEi/MlxEvM4hhj9GuO3rZ4KfgcmhpdyxiNEYYhGl2Nw22PYy1wtE1eLAui5ihoQ886b2LGcBM+usAdkkNUCZUcl9JYjXEch8Z5yOEs8V85bargUuhNNlS6Y3c/8TrHBK20fpMc6TFGrhaYCMkSX7AHAMo7FamxGho/PmU2po4ho4LuZJUUOatiFeKbGuG+8UufoXM+1ikc4pEDpUPTpLrQ4AEfs5bxQfNRPNwxo62xMUaiZc1t2qb7pHMChB1KFl0IYT6fQ5IkMB6PO7/vVGu3pg4WgMoYXq/XsFqtyhcItKOKQvhi1sk8r15YSJIEPv/8c5hMJnB2dgaz2Uy977iJrufT+yhOTTeV5k4buWJxZvLn2vyNkbO7Ap9c0/RDSa5b1mHtv4TXov9jmZi+teKl6fR7m/2n6UWW/NJ/K1idR/0+wGCQQq/Hx7F+DDBHjf+7aEaJDv3ukpZGz14uYf9pu3Nk+r2xeFRxsbu0HqitZAx+9GOJq+N/6cflA9Rdp3n5rAro0nIAVVle9+Smji5t7LM8r77dMjn5Xw/Q0TJv4c2HZv3tjiM6xigu6T/9cDz4SdMEsqwHSbIpA7IVDllH4HqB1fZt4i/UcIX8Nxa9yucvlNZdy7qjBWOb+Hkob742bgqxNrqvzzmPTe28UJ19fSaBNm4ojxa+m7azlV/u57DYhtvQ7br0bWp4t6WTSrJGuqM0dn62nWNt/R1WfTcGp1TON1e0/zy/9kKBZPNLstJi0/jq4AOrL8wHMT6mLsZ5J8HYNxW6MHItOLp0LMbgsgghH/9thTkuMtt4K98i9No4gt8k2Lf63IZTMDRvJMUuBPgmKi+PsFqtOm17HNPX19eQpikMBoPaghly7OFvS4AHdxxJQV9Lvfr9vuNMB4DymGIEvitMuj8MecAFX1r4mwQa8jwXj0HkSjQPmEhKdpMxjWVijuzkfUfbh/Mh5evKiRoCpIUnNNC3V60KK+4eDSlwm82mPHp4MplA4bzte8t0KYO0t7C5QRar+OG3dA+UFQ8//qdL2KYcv401wgJUJqD80IzpkMFO53MXxgXilWC1WjXekc7H0GAwqKVLQOvF75fE75ixnCQJ/PKXv4Rf/epX5csnXeiWVC5Kjj4Kof66LdCcTk1fZtoltFmDsC98zmIeWKJpTaCps6Qt3Ma40+qq2VehuaPhBdD1oCQB+O3ffgQff3wEjx6Nartiq+BaHbe/uZrobP7fblpSpkl8SOk+fmUc0rz3/edzgOrYlS6J/+vHEvdvdsb2od/v3dwTi7titTti6ztji12zUP6nO1CrdAy2AoBzRHFxL2yBA/9LO2IT9r9qM7wrtjiquO5ABxIMTpJdB1qtxG7Xrm/TJnvmkgAgAU4AEPvcNg6qMQMQzs9xUjlSPHP5os+qcVt8j0YpfPjhCC4vV/DVV/MQozf82TYYhHRZgLidSFJgRfotBbVCukxM0Eyjmed57UoPi08xRqdtwvMuQRsHTXWQJvWSXmK+a+AbN7sIZr4pYJ3L24Ku7AUA+zzSdGwfjS75jClrHXPWFy9iIdYX0HbMxJYXg7FNHD/7JgSbOsK5g7otWHDEBjHa0rOA1n4hhSB2IqHQ2dXi4OPfKgApv6Fxto+OuabQxcsJuwSLghOqi+Rs4sEQbfGjTkAasLPec9YUcNHhAQEOTR35vrsamuCj7aSNMc3JTf9jQFaSJzzNOoa76CfOtxbc9dEL8cuNVV87+XCHZDHtJ9p/MXIf80t97mubED++dqaGOh6nF+ITy/FgzLaA8osvJHDHQsjRbzHYYxV9KZjRFcQ4Rd5EAxJBqhvdzW5dd9qAZKw0oWVZ37Qx6EuzjNnFYlGuAV06abgM8M07nzHcVfC8KzlkcbTG4NkmWNoutA5y0MZIzJoo8UBlZldGvcaHpttsS15q+oXkuLeCVjc+LrnthemHhxk8eDCELEsBWavKgPNdp23nM89D+d3gXmzX62OFjsc4nBY6SeLirX4XQcciPwY+pbtUq2AtP8a4ksWxHxD+O1zffNNArJSPP8dxRvO65d0xw3FWd3P6IEn2MajIYe8ZvGNAx1dLTN7xI9Pxybg0TWA4TGE2266/TdONQnaUVI7rpKFAgwTb0E2onqf5MH16a2wQV8IbE9yI8eFKPPKyFnox+K3+5BieYvLG4AiV6Qq4DXMXIcafY+2bWF2c49lHP4LVPxuaVz4fp8XPGOIpBniMxIcvNlArzY1t9XUbHCF/JAVvMNbKRBeddteFzl0HywQPTSbqhNgG+JwRPr5Ced7CW+AQu3BRoMGePC/eoMT7mZOkOH5yG8DHON1xikcAI2CQJ3QfIQW83/Lg4KB8c3U+n5e7DhFiF3q8M5PeK4D3TdG6rFYrGA6HpbO/cAC5d40ibv5mLabRwJ2Pr6YLsBZcpLxJSoRvvOF/6X6eUH00oIZiEyWtrZLD21mrh6TM+5QaTZfA4GaoLIc873bXGG/rzWYDq9WqnFvI/6NHj6Df75f3Xs5ms5pxH1rb+I7F0BjjRrTkCJfKvoUKfHNDChBqY3Cz2cD19bWTj77Qs6s+wHmDpzg0ceBI6dJOWICqjdARpxlf2lzFeUTnbNe6H11fJNmAdYt1sFnlapeBWOlFrS7ke9cQy0+Ms5OOLZ/zaB/aJNYG6sK2DtVbws/bVApM07mNupn29rpPrmCAFO+KLWi7AcYqiEj/S3XRn2uB2Lqzmwcz6bcOddxaQDccmJXS5bxu0JPy7bajHGgtbJ201OFR/hY7ZNHm0O6G1XfGAgvCVu3LZZUWaK0CWfWyCcj9UqXRADLWn7YRjgXcsQs3Adpdi4ht0usW9+3LzqaA/b1bPO5Y9s3zan5yPQqcT5oC9PtpqVu5eFxZjb/pN4C7YzU2GOjzDXLdkvKgrXc+h7xGC9PanJii2ZDbWmdv23cp9U2sz7WJHmW5ouW22yYWrO1w1+p1m7APerkV9ilW1vRlixjAE7ea8qM9j2mHNr5cq6+NgyVWxqEWjPU5eyyMNHEWbVvwNDEmu8B7m+BTerYJFuUktFj7gDojJAWyCxo8f0ybNQ3+7vqFhDbjoO58kBUMTYY0qauljBWvr49C9bIqh3QBos7ZPM/LY1m5wyp2nIXGNl9MtONSeRnfMwweDQYDODw8hDRNYbVawXq9jjJwNDlBg1/SDis+vqRdUBJe/J8kSXm8cqi+MSApCjy4pZWL4UULQlDQjFTezto4kMoiDewTKdgd4tMHPoNbU8IkZwEvT/MkSSIebbwtuRuakzSNfgMUL09kWQb9fr/1vGoiV0Jtu0vYBx5ioCsjgfdBU90iFihfKItjx5DPcPLNV6vxE8IX0jPazHurXPcFkPr9PgwGA1gul7BYLERZJ0HX65YPuMy/LbCsn122S9uxAdDdHOVruW/9kOhuQ1aE9EcfD1mWlcEA1IWlvL65Q5/duzeAe/cyODzsl2UxOFHh5Px7KtcSJNyYFkM3hmf3mY9IYuLB7b+EtWuVxj94Zyz9yMFV94P3ulb3u/KPr14JgLjztfiut83u5JhFFN0x1eYt7CW445qP+SShwdDqueRHc0p6/Atcv+tSP5B0QCv+Jj4i31rjw6Ol+fySseALfEr9xnWBNj7MEF/W/D79xWoDWfBL9pLP1rCCb1748jalvU37rosxuY25HqLXxo+/j8DnQNfzM0TXh8MyPlEmS7aH70Vrmta2zk3awVd/n5z12VghWhoeDp3dGbsrR9Fb6B40p7Evn29gxQr8GGWL8tFmYenCgaMJpaa4dgm36VxrUldLma7bsHJCVDuTfIBvhq/Xa5jP9TtZ5vM5pGkKo9GoTLPclSnxZn2+Xq/LYy+lC9al8pwfdJwtFgs4OTmBJ0+ewNXVFazXa5jNZt46WyHPi53EvV6vdNrxOtE0DKzSXbQ0LwW+i1aTHxaFGmnw51KQL8ZxLzlfKc+UtsSPxYDG736/b54zlA/cEdH0jkkJZ1scPoMJ2zdJivss1+t1+cbeLvQWn7NDo5tlGQwGAxgOh95x6lNSpZ3UVn7p3ONjuQnObxpYnEKhslL/dmFMWyHPc5jP52Xw0KozNdlJznHHOEA0We8z+tq2oXRPc4yTaTAYwMOHD+Hi4gKWy6UT1NhVoFUzpiXYFV9WsDpKNRmp1aeLO4a7AC5vaXoXDsa2fEkg6T60XJqmcHBwAFmWlXfFX11dmceV1Dff+tYR/PZvP4LxuAdpWuz+QtKJNyhbHblbfxYHPMgh05PzUh585bYBnGe3PWjwhgZdU3J3LL8zFu+N7d3o73RHbH0XbLGrFAOy7q5YfFb1n7VRaCCWl83Jfz2Ii4FhPkaClJVhnOfdBF23IX67wrmLpWGPlp/GkCRN6lG9WJDnFAd/uYDen0zndyVzijnrYud6Epfd0m7YkMMdf8cGR/Elde4P0exdTj9Ey5e/qZ7Y1te5K72qC1tX6lNfP/CTV6g+FhOItfKM4ybGfvDR7zJItg+xkX3gIRbuIs8+2HV9fLKzCaBvNnSFFkB9TsTKui5ko8V2RftEo2l5Idn6YoGGp7NgLCV210AyHu9iPSSIeaMg9q0JX/7YNy9C7e9T7LoIqkrlfcoLL+MLgtwWbMMJacGFws+neO7ScRRy3FkcvT7HJf2Nx/7ijrbNZgOPHj2C4+NjJ3+SJJBlGUwmE/j666/LsrFB2RBwvnn7WwwTGgTVgo0YDJ3P58HjZXibY3vgUc74nO4aonyE6hsCzemtjU1r4CRE0zrWNKD8SQGyEB4pyMbz8/rwPKi0ZFlWji3cGW2tU6zxbAGtz6Rvn0LUtXyyrln4ogTOscViUaZLQfgYmeYro80Dvt5yed61/G67hu8bcJlrba9Qv9E+2FZgFmVEkiTw0UcfQb/fh7OzM1gsFuWR9NZAfyx/WD96eoHl5SEOTRw5Vt5CeTR+NBklyW+LEWupY0hO4GdfdNZdwjbq3HZuhnRqmicki7n8pt++PD7a0n+LfoRrGO4I9zllqZ6i8VvJhgT6/ep4Ygy0JSyItpvhzYN/fvqxPDWtQ6icu+bIz7BPkoT+dnfFFt8YsE2hCMaC0y/6B5z/xRjjzySggVQgv2kaK5GH2iUnH718lZd+bxv2Rz/ajqq2P/VD2E499fFpxpBovPEji/Gb7lYP4ZZ9XlKQVNJXqGwACAdCETS7UyorrbGav0arE6Zb7EG+BmtrvGQzc71eag9Jz6X6mdU/IKVp67WGN6btNNpaHovOYQW0mS1g1ce2YYPuk37dpH67sMtj2qiNzdKVryHGh0rzS2W7tqO18j6/ocVG8PEa8q1J5Zv0QVu7SlqzpL7B31zG+Owunx0eqqs3GBsabL4K3TX4pjokNJAWUN4+9A5GCbRJzQWC1Ukcy/+b4ti9DbAKYK0cVVb3tR/ayi5J/uHdSUmSwGKxgM1mA++//z58/PHHIp2vvvoKPvvss9JJRQNbXbSdtkBaHXr4LEmS8t5AWg4B76TFOuPbU5wXCdAIQfwYgOL3rHbpVEeamiLfRmHT+KTGlmTMaYu7ZoRKfacZOrhzQaqXdR5gH/R6PRgOh2X6dDrt9F5VCpohqq0ZvueoVElzwqIsdQGa4Ys713E84ksN9Ahwy/ig81MaXzGKMp8jb3WkMPh0oRiZQmWeNDbbBn1CsNlsoN/vw/e+9z04PDyEv/qrv4Lz83O4urpy5KdvTMXwxeduG9l/G/qGlT/an/gCBgKV600cb03yIw8xhuVbCEOMkzCEZ1f9sI25jID6XL/fd06EwblAr5vQZIuk76RpAr0e7taE8lPkc7/99Yhr4zzXg3kuPQ03DyLE8UPr6ccjpWvBYho8cIM4mJ/K42qXbFr2G/0U5fSP7TlvC/wtBV+B/M5ZmSK9CPDi2im3F50Cxe+8/Jby8fxdLD9Nceyjqb2PPO0KEjVg2gxHMSf48dtVPv7tS6uXT7zfANW6xq9Zwm/ftUHayU48wBmr28TqTG3W0xh7Sgt8NNVlm/Ld1IdhCTzzMjF4Oe6mQcIu+lXCK8Fbnbg5dNl2d7Uf2szhLurcBQ7fZhtu99C1oAu7PPbFbEneSDLZV9763Je3VTA21ICSk2Rfgy5WCDl4d0VTg23xog1WLV8XE4zjsrQ9d8yHBnisI9rCqxXuwmLB20O7BzKm3bbtJN4GWBRePtZ8bYMBK2zPzz//HCaTCfzGb/wG3L9/H0ajUVkej/bFo43TNIV+v19z1Datk1VZ1YKsWC5JknK3L73T9eDgAJ48eVIeU4wvaPDjg7VgAp2XNI3uvLIEkCx31lIHf+zLBbwOPN3qyIxZvH35pOeSvKRtMhqNYDgcwnK5hPV6DcvlUuwXSSZTubvZbGA+n0Ov1yv7N7Qbug3geODjROOPyh7rPclNjeUQaPOPpvPnSZLAZDKBXq8Hi8UC1ut1edetz9nB66M5N3hZqd0kvmLq3KTcmwJa/X06jiYftXK7gpOTE7h//z48efIEkiQpT3Gg0IVzi469w8NDODw8hOvra5jNZntzdKwPfGsDTcf/eLT/crms5fPhjqXvK4/yRBuX+2LPJYl8XYEPuK1ggX12wPn0szbyVlp7moK2rlBYLpcwn89LHYTSlfLTvqcvk9FvPJq4wCEFIfQ6adUtAnVSkM8fiA3hjclL6+EpbaUS+dwNiLr+Hr4rNiEB2OoY4+pI4gpn0XaJQ6P6+PjibZ9AFSS9yRFsiuqo13r+3Pmugqq58LyiKwVkJXzOk1zK1zVU9bDSps/cukt5uuDbhsO3DO3JEqXCrvjzjf1KNualjKznqds/3IdgscUln5umy/KXk1HWb8Pf5lvnrD6GGH+3ZrNTm9ynl1nxWUCz/yQfPs2v2YUh3D5/hzSmpOdWiLWTmui0+6D/3RZso7120Z4+Pfk2aEt5fDp9U7zWedoEN+bz2UkxfksL+GxZi9/eZ1dIx+9z/nwn/lntbKmsBI2PKdYEbsxibcl/22BdGNvgiy27LWEmLbp0QZboxzo8JJrSf2ugwgJW501TkJSWfXVItxUYHBcK4BgZsM8gKaK+fBqgcwIA4OXLl/D69Wv45JNP4PDwEI6Pj8vjjE9PT0sjZLFYwHA43MpxxRSaLtj0rgBczEajEYxGI7i4uCgDRSgreICM0/K1MeKX2kHKb9mZaQnMcR4kmpKM9AW8YuYS/qbjkBpPFsORAnViZ1kGBwcHpTMU703V+JbqhsbkYrGAwWAA/X5/K/IYabU11mIgZp2wjA0t2Crh4+Vns5njnMD09XrtvJUeCrRS45/Px9AY9RnhFmjrVLlL60hXvPqcC7EypS0kSQJHR0dwcnICDx48cO4E57IoZk5L+Wldx+MxPHnyBNI0LV8asdxPsy3oSu7QuuMLLfSlK5984DLGYkeFgot5Xr00tW3Z2gRCOpgGTWzQru28LoHq2aF8AHG2k1XH6QpWq1Wpe9CxJ43pkHMnKQOv1RG6PHhHcndeFw7IjyeHCUeTcjIuzUHl4zNx8iGeqgw9qhhq/UePi676o/jQO2LlOmnP+Xx1A7JAArOWYevmsThOq+9qOOakrB54VTA6eN3fmr1pS7ttuP01JN9Su+yyXjiuDTlv5qWlzlReuulyAI0GDaU1UnNyI/h02ZBu0iWEdKdQmZhyND/FhZ/YE6Sa+tZ9foI8z8VTsjSdMuQD1vzCPpD426bs2JaP4i1U4GuzkKzwAfczd20PNIU24zfWj9cGfHEdfG7BEfpNgd8V3RXEtJnFLyvJNgrSi+CWtaDJ2PAGY6mQ5ci0HRrfBCEW46Rs69DcNVj45QM6dFyxlda2hVNsgC3k1NiGA/s2wbfrSmo7GiSS4LYNs7Z94dvtx+tOFW5tnE2nU7i8vISDg4MyGMuBHyfbFqijlSszlkCOhK/X68F6vS4DyQBF3fCIYgmkBZx+a2sJ363dtk+19coa+OB9bKGntXmovbV+wrL0Ob/DEduO3l08HA7h8PCw3I2FR+PS/FSOS/IZ54R2of0unPpW+S3xww3KWAUav5uMQSxDDXKLI4SmazgxL51LSZLA8fExHB0dwdnZGUwmk1pe6ehsXufbWs/2MUDUFUjtKunYAM3uTN0m4PyPfWHIlzf07Lb1qtixGMqPL7Twly26AG0e4zPf/32bb5L+YilD69PGecNlc4xD9DZA02+SJGm9wxz7wjJm+TPUaVFP9PUnfYbleLs/fTqC733vPjx+PCp3xhZ03Y/LU7N6FzxJQbx64FICypvwlOS7jbHj1iEhgVY3KFoFWKl+Uf/gXbE8sFqUzfNid2xBzxKcZSliE+WeZ7jWVnmLvpTmcU7y1D9Q7ootcBT1yGvf9bSKDwvo2UIvY8ThtYrFWLxt8zXN30XZbdWlW9CDta6soS/yVv8r2eiXN9wejA22xcgzLvPrc4/WUX/J22cnaWX4em8NTjTRK7QjPCVeaB5Oz9K2Wt9pdCiETrqy8oI8NNkN/BbeXIiRHyE/823CPo3bXbRPm/repm+QAj21UirbZD1oyxNAxJ2xFkcddwzuMtC2a/AFXaS8TXG3BS2IFloUed9rRj7+li44joGQ80hSSNpCU6c8Ly+l78PCERqfvvlpVUg5nhCOXbYLX8Tb9LG1T300lstlucvHEujdJoT6xjdm0FiiwR260wEd9Ygnpt0kOSMF1KS8TcA697lD2MeDJiulOWa5d1taZ7U1mQMNmvZ6PciyrNzhTJ2rGn+8PtzJzdeVGFkQA9oY8IGPfy2IqeWPoUv7W8pvGb++O2I1WjQN0weDARwdHcFkMoHJZCIa5XSOSfjarmexTgQKu1Dgu4aQ44On+wISHO8u2oLrRVwHpGsAL0N5ldIxzScnkqQ65h/p0HvKOI/bBrsTPawP0bmmBbMtdWuj02j0fM+ldbgLkGQDrot8zMWAzxaVaEvPfG28rXXutqAp39ZxiH1J9URanuLwrccIh4d9+OijQ8iynpCPr5Hx9eoCNLp7YBoaoAriFH1HAzhugLYK8tAjUOXganITkA0Fgjgf6tNECozRdan6rvLyArnzO8+pfkvTqg+w44o5Pf7bB1U++xz0484NebYLPtohvu6oCN0zKI4lBuABWrjRr1LYbOrjV/Pnxq6/Pns+xp7Q9EpNF+G6amiNt+L18cSB49B40eyEJu2jraMafxIdydaldfHVO6RfxR4/vQ/+0y5gH+th8fPF4ol5Fou7S998l9CFT2sXODWwyLGY/E3odsmvlD/kQ+OyTfO7NOUlhufGxxQDbHcyfpNhF20XUlZ8C3mIP9/zriZUlzi2Ibi74HsfwSKo2jgK963daB34G5sc8OjBNE3Lo4Y5rNdr+Prrr2E4HMKzZ89qb+jgnazojF6tVlHt6FuAYvsFFXF+tE6e5zCbzeDLL78s2+Lg4ABGoxEcHR3BeDyGi4sLWK1WZZk2u+el/9seI75daVIba/xQI88X+JTSfDviYo1aCgcHBzAYDOD4+Bjm8zl89dVXjjJCA4G+QBHec0wDJXSc8fHP+y7Wud/FOuDbzWcNgjTlmQaa+FzwKajIN0/TlGVp3PT7fRgOh6U8keohORHuanBhX4GOMZ/M4IHPXUKSJHBwcADj8RjW6zWsVis4Pj6Gq6urki/6wk0MWIyfg4MDePbsWflssVjAcrncWkAwBix6M5+b2npM5yGvG+KR+l5qh6brwb7pWwi0TZIkMR/v13WQWnMm3wZoazHqFfw5noiBL1+14ZuO667aFnkEcF8a05zk7q4iuLmrVAoYgpOPfns4AijvNOW8YlqR5wZjyVeSAEmXadn58IO/vAV5xT+2l1SHOq1EKKN/OC0JL3ZzRUfiPxfTiz6hwaZq92rVVzkkiburtdoRm5MP1H7n+eZmzG9uglbuDtmcBGVp0JbWq+K1fj8czR8CS974KcntKvm5jNfuM9J5t9y766Plf67ltbSTlsfWxvutLycJwNFRH7797UM4PV3Aq1cLNS+/3kSyCSW7RBoHIb8h1WnoCW0+3ckCqD9b8od8hJagpFaOByM1WtzfFMId4pWCDx/VIzTQdKsQXl5mX3XOuwJvSvu9KfUIQUwdmwZAm7Zj17aM5K/w+cy7AgtutINofo2vbfMrQVQwNrSAWIKzoWAOnaD77gi8Lf5C7W0NFmhKkwRthCbtz6bCJpQvNK74s1AwhObh43GXC0jMgtVmceNBAyut2HIxfNxFoM4l7jRFxzbuDlitVpAkxVGis9msdicfQuzY7hI0fPyYxSzLIMsyAIDarpYY/vdN5vsMHu4A12Qbl3+Sw16DmLkv8cfT0MHf7/dr5XgwQJOT1GimRxZa15iYeml5u1I+m+gaIdohXNY1sM1cwP7Ae4Kn0yksl0uYTCblSxIxjo4ma4vUtrexhu4SpDqHnEe+OcJli2QkbKMtcVfqfD6H6XRanubAwTKfpGCjr/xmsylfGmgbSJICO1JaLFj71KKHhhyVPno+3ToEvnaw8rUNaKvHSmvXbegVXck63seSPkHpcYdul3o5voRBg7+x+H22V8xaUb+fFHktf4EtQMl50YOevmcVTYkXMKU3he1NUx5kTmppLm2tzS0MyoFXOT1n39IzQt05lpiXrQKsNLiK31Wam88N7jU7krjG+X6ZPw649dsKhVZ5mvLUVV0seHbRv5IsKORkQbzXS2A87sHVVf0I+JDvsIntE7KPfWk+H4Jljln9gLyOXdiDPhyxa6dFZw3piCG6XepITXWvN9Uu7BJ22UZNaFn9NW39KF2V6QosNhz9HZqrMYHYkE+1adwlNm8TWbgNkNawJLG/2N6FTRN6xnlstTOWErJM2raLJ8e1z4L7Nvmz0vVNYl9fSbvG2jjM2kJM8NCKI9aRsq26c+G8y0Ac0ozBve0xcJvO/Ni69ft96PV6sFgsYL1ew8XFRcn3cDiE4XAIWZbBH/zBH8BPf/pT+Mu//MvWNEO8t3Hk+4I3k8mkFkzu9/vRi/6u+zW0iFIHaJIk5Y5nHhSJkbmULsXTZg219OtyuYTZbFbmxV3YvByXOVJgCZ2ydOe2rx4WhWQX64emAGMQaJvQVQBZA76jOU1TePbsGfzO7/wO/OIXv4CvvvoKfvGLX8B8PofBYGCus3Wc74NOti0e2uKlQSKKkz6nfceDLrsGvFf6Zz/7GYzHY5hOp3BxcVHyslwuo8cOgN8Ixfp+/fXXcHp6ClmWlXdeA9THdxewTX3C1384P/O8fo8YL+OTkdq4lPTGJo4/Ce82xqPWVvRoaisOPHmAnswRq+dsa85tU0ZSvOv1ujyt5PLyEhaLBfT7/UYyH1/e6vV6MBwOYTqdOldU8DKSrKN5UH+wgKQfUZ1Mui+W/+YgpYeDrG6eUF7/87j+jx0uzYZX4nwnN4HXoh0T9p/K66qcPK599mqIJxqE5esITSsCo0XA1U1z06XPxvlf7ITlnyoYy3fJVh8AN2hb153FGgYCnNY08lTM4/737xDdhuhDnG1xh8pb8NfbXApM2ctb68T7oGuQ5hNNo3MZf1e8VWNXk83UHg7zEtZJ6A5Yba74grFSIFniuanPrO06LQUEfHkor7TeIRniC86G8khlYoJAyCOncZtBsV3CPti8EmyDr1ic+9guXUJbO6GrQHebMrcZb2vrT0Fo49PuEmL8hxKPTjC2iXNZK79t2PeJvu/8IVgc56E3ONrS3zZ+gLBSsy0HTJdCbNtjSgq6WEBSmMNGaLN26UqAhyA0Vnx5pABWmqblnY2bzQbG4zGsVqty5xruKsUA1zYD6xbw9T9X8vE/XYz4jqZ9mVuWOlnohNZK31yQFAmNfij4asGFfbRcLmE6nTrP8PhPnt9HN7Zf28gRzYC14NT6RTJSm+IL5Y+tOwdt7FCHtJYHj6gcjUZwcHAABwcHZQAIgxxSIChEW+LFVwdfvfZJwe8arzTWeMBCG48avl0BrkNnZ2cwnU5hNpvBdDpVxxxAxTsfozHGEgbRVqtV+bIIbSOfzG/TPl21rYVPrUyIj5AzT3oWa9NJ/RXrgI3VMyzPkK8QH1QfsdDYNVjmt6Zf8Xz4O0mS8qQLAPd4SepYl2S+jw/KS5IUL6JRvc7SH13NSaSTZSncv5/ByckAEhYgvMlpwFvlp79DeTnw9Fg+3Pz7A3Kf+hi1VCJ2HGAgFssl7Bn9nbN0Kegqpddp6sFWujOWHlNclbUGCuUAoC8gmAtp3UHXOGMDorugtw3wybZ2PHVbIVnG6DarFhTk+aTyfE3w2SkVf24wVpI/fOMH1wf8fREf0OxKj+j1erWy/JQZ3tZWvjV9UMMXsjN87a/pIDG6674ETbqEfa1D17aHFWdoznThL9qnQH/T/o+d67TMtn0mMb7vkO8zhMdal67sYktsqykfbaH1ztiuYV/fNLlLEOs8seKkZSTFq+m9kDFOayuE2sDnTOyKl205nG8D9mkBvAtAd2X0ej3o9/vw8uVLePHiBcznc7h37x588skntXLL5RKWyyX0+/3OjphrCnw+aM5CNDjwv2QQtK0HlxFaMFAyoroA64sGVkd2F31LZXBIWen3+zCZTJxgLO5cxp1EEqARHCPX6w4se30sznbk13f/a4gO4mrKR1PcTXAhPk0R5mOp3+/Der2G2WwGm80GBoMBHB4ewsnJCWRZVrZhkiSOnNLgTVi/dgl0PsYEWy34dgE4bzebDfzqV78CAID5fO4Effjc1pxX1Bkn0eHOANypnyQJXF9fl3l8MsoHXbedL7gZs9ZxhydtT8nJuMs5KAU+29plXfSDRl9zpHbZ912OIYsDjI4NDKqivF6v1zXn9NHREazX69rLVhSyLIM0TcsXHGL47ff70O/3YTAYOKdr4HOfo5WPdW2eaP8prvv3B/DP/tk7MB73bo4pLima6xMHGBT0Q9fTU8e3XTnQpj3lIYWBTymYyr8dTkh6wvJYgq/8g9dpuGn0W94VW90dW6yJvp2xUP7m9kJ+E4ClbVT9bmsHuHh4P4T+15/5A8NyHVSM/qe5+62VlZ7HiOR6Xq2wNM7s+Lvq0+0A3+nuv9+VrjGoD0rAbT2uG1IbUqJF8Uh6T5qm5cvqANVd6Bynz56T8lt4k9YqawAiSRIYDAbllR8I0+m05h/i5Zr4UREkm71L/TGm/r4yb2G/YNd2pgS3Tf+24Lbavus4kQTcR9lVANuXT5M922hjy45YC+9qMJY2nMXJ0FUQNSTAv6mTFaDZ2y7bXoT5M6l/Yt6U8IHP4I8FLvxihKEUCPK9XdIl312DzzESmveSwrgPC/q+AbYHPW5xPp/Dz3/+89LIePXqlXjx+a4h5i2pLvDHlkV+6GXsCDRA1/Uc4w5FzpeUnyohUuAsxKPknI9ZEzkdbjRzh65UJ1pWa+8mjm8Jny+4QesiGZnWAAjH32SsWILf2wSNPu0HfD6dTuHVq1dweXkJk8mkDHY1XacprV1BTB/vC/j6iIJv7mrzdpdtj/JUc1qFeJF0Ua0eof6VZGBXumVX4BurnA967LIFrzZncd5Lxzj7+svnvAzR9ZUP4bSk+57HjDmeRtdlC1gChDG8+fjigC8grNdrGI/HcO/ePTg9PYWrq6tS/1mv15AkCYxGI1iv17BYLMoyh4eH8PDhQ5hOp84VEr76SfwhviRJyuPJpbU6NJ64L6GpkyTLEuj1cJzT4EKV1gTyHMsWwcPq/92C3fNNA5xAvqV8GmP4jJeV0igNiW4ufKT0Iq0YezToih/fzljXB+DawlVQVB7WvmBnOK+tXHtoi7tJeSzDv2/+qXjltHYVkPuvbYPvRoeV5r+UFvJhcX3Btx7HBhG5vyPGByj57xDoyRCcH3whCddJSzCX06c6lw8wT5LU7ypEnVryrzexLTW9z+c30HDwNpHscFoPDfbZ7/mmQRu7jJbv2taO9cvcNRvfB1bbQap/jK8xhgcJj8Uu78Jv2yYuFZNfarsuxvW2fWZ7tzM2BG+DPfsBTZ0ZseW3CaEJuu3A1F0Bn5MFHTP0bq9dtNM2Am7bAKrA0gDiZDKBP//zPy/zpWnqvCHZ1Pke6+BqojDvOhBFZT72O955ic/RUYg7uLYFVuNGCnxSh7mln+gbV9QADMml0LjBAAt925iCT5mR6un7r5WJdeTjbiCLwRoD21QKt8mjloZjDGlfXFzAp59+CldXVzCdTmG5XDpyW+Nbkwt8TGz7nt27DDEOEATJOcTvqN7luof9m2VZOQ+7BIsDCIHv1LgNsAYnQ+tErBNQKu8Lzob48+Ftw1dXwNdHq91ncZJSnBb6tEwXEKKNz3u9HqxWK1gul3B4eAjf+ta3YLlcwsXFRakv4rp479698hoClBcPHjyAb33rW/D69Wu4vLw08yeN3cViUR6vuFqtanf5Ir8AIJ62oMkuGnAOAQbD0jQhu2IpD9YaOlgdHBUtFx/+5zR2P0Vs/O4OfPqf9FsLnibs20JTC7JuhPQNJMkG3Dtiq9+bTX5zLH71ke6N5TtjeZ3rwUPOaz2fHlzUy2htEhZRIZx2GefWYftByjbBXem37393kIt9uWugsoHLMWqjUqCBx6KcrKvRb4Bq52rIxrXY0nyeSfaGpkNL83M0GkGWZbBer2G1WkXp1HzeW8vxfPib75hFHUezqZrqY031ZrqmcxukLU9v4c2HGD/PN8m3HhtX2NYc2+Xc7YJWUz84B/qyjrUvQj7vLuRiVDC2TYN2GTx5G5DVoe0bDBR8ChQ+9+XxOVFixoMPB6cXwz/PE1IONT6szvLbgiZBUi6o6LGWXbxd0laA7UP7xvKABgq93wvb2aeE0zYLLTI0r+XN0yZvb0n4fQZKk+AtL4O08B7B+XwOg8EAnj59Cuv1Gi4uLpyyNHjZFCxygM8tfBaiy3FIbcSPnw052TUcCFxeS3cTU1yhoIPVOU5hm+u2Nk+sCpZFr5D6zCf/LTQ0pTA0hrizgQfver0eXF1dwS9/+UtYLBawXC5LRzreFYzGtrWv6dwKHfEVo9i21S27wNMV+PQQSV5oQI9W881HjrsJr5KziNJrG3TnAVZJfkq8WF7A2LU9ECPTbsshEatfa/Rvg3fKj7TbV6NtXXu18hINCZ/Ej7X+PpvIt45g8FXKk6YpjMdjyLIMxuMx5HkOs9mshqepfs1lz2azEe/wQ72W2ghuoKr+EhDHbbm+oaBXfbvPzFWEPC/y47eeLxS493JrZ2gPIDSM8XmeY9/R3+4O0iqwSn+D59vEofO76DukwT/V8cP1PO4RxZvNWjiaOP4DUF+raZvV6yr5NYRaG9P8efz32tJncj77vbj+tLi1QqcZbsumNO08NMON82bXUMkq10en56+vh3y95Os1xSmtkbRMyKbF37guSHqottYAVFdEIfAX3il+Depz3F3HeRsAFC8v9no956WlkI4t/eflJKD4m9gAFv2G+qko+AIb32TYl7YI+Q63obdTuKsva2+r/yx9oMnGrn1psfYhpRlaF2hZCx2rbyPWJ2bFT+lIdZNeFg35nTRcGgSDsU2M2y7AqiTs0glD6d4GbQtYnHwIkqMV05PE3WFD8Utt4HPq0ecSrzRv12NNcvqF6PicPm0cf/uyQFuB8ouKJb1vyte/PiEUat83FXDB6vf7znhP07S8C4xCaIzyNud9QwMtMQ5ALCP9pvhoHbihokGoj7VFFI0apLNYLKDf78OjR49gNpt5d35Y683HNR/fmmzTwGpEaf3DDSC+uIdkmlZHzI9HD1rGQAi/NL+1OR9aU7qWATEyu4nDuivcsWuL5Bih/PR6Pbi+vi7v3kRAeZMkSbnjkRrVEi4EdFbSt7rpvORj2lIHq4JtTb9NiJVvPuDB2F1DyAjrgifNkRYyZPZRT/AZqpostuqhMXp9SE/1OWgsfdpl21vmvnWcWWVOF/Mztu2oXLTqI3xNlHajAlTB2NVqBePxGJbLZZAP33PN0YI7YzEflfl4rx+fz5o+hzSos47rk7qDg7eNt0qdwx6Knk4hz+t1LPotL58DCaQW48ANWmCZCg+W542XE1wm7mo8VXSkHbE0D/7flGnguSuWB2erXbH1utK2o7/xP0+Xfqs1DgY4czWfD491+Q7j1TLobdMFXS1P16pSU3yx/Wyn376COC81XavIY9f1pPlA8VrSpecA1YtI+CKP5JuQ52JxFPBoNHJw8Ty4fkn80Hr5/CCuzKvuisX6UNw+ejS/BbS8El++fBIuqbymx7zpvruuoWl7xdgBPH+M/RTr25B4k8padOS7AL55a5lroXbtyodggab+lTZjOGZt8fkoQ3S0NN+6xNeIJi8UIK6YebSzY4pjG/MuTcxvCvicTfR304njezsN6e6jA/abBFmWlUeVNekLq/PxTQa+OwCF/XA4LIOylsAaOgq0+1OXy2VpyLSZN3zhxOBN00Wyazg8PITvfOc75a7Zzz//HF68eFEGvanhYHVmS7IopMzGGFY+B70FB3fK+owmXl4zEiV8ODY12dxEacdyPqerBDFOec7fNuE21qVYBVoK1AK4R0pyZzgvz+cF7rKV7kHGOYfPtmms49vvq9VqL9/E1QwPq0GMv6U2jDXOLbDN8Rwy0KkRg8Gfhw8fwmAwgJcvX8JqtXJ2N+wD+OZLCLBPLYYv4g3xQvNbjf62TkELvliwGNM0na/1Ur4QSPzzeYfjE/WqbckclGdpmsL19TV88cUXMJlMIEmSUgcHKF6qevnyJazXa7i6uirvhz09PYVerwfT6RSSJClPQ2gDkiNFcuZSeSU5sUPAyw2HPfjN37wPDx4MoNfDgGwVVOhK/CHJInB3e/fGNqPrBjtDOPTn1Q7IPK/yFWl5+dwNTG4gz6v5V+xGTW/GQF7irQKmCfnGIGlCPjn5lupZ8VLUgeJ2d70WxxPjf3lHLK41+F0/npjeI6vvnK3ahvNZtWf1WwtWxshOPRAbI4JdfsM8hejR8cNy1Z7J36H10PvYox/7cYfxep/6C0dBPK6mS27Irye1Jd31ib4GH2hBSw0/TaN3ofNd6xotLDccDuHBgwfQ7/dLf8B6vYbr62tYLpfOi/FNQWon9L1QnlCm8GP8u9K9NFza0c60/aUXvaztrPke3oIObdoI5w69Zor74vBaiduAtz56G+xivmi2aRc0m/ryrYHYGB5jx5zWJjE+Gc0navHNSXScYOxdC3bFOvi6Dh7tGrqavKHy3BEhlfVNKKuDKQYsjnuLcqe9EWHlgeOLwaW15a7AF0SXQBpvdIesj06orvs0r3wQGnPWMcnL0LZFZRjvAKNlfc4vNE5QkU7TtLbDjeLx4fKBVgdKmz+TeJCgaVCJwmAwgMPDw/L/2dmZOj/byCbeZyG+ucHD81h5sPaRz+kpyW0pH08POaWt0MZBLvEYUujarBU0vWlwISa/pARa2qgpj9K41OjRfFRWaUEIjReNTowuoj3HwAg6OzQcsbTaOESkPtXmo3Wt1AJQXQDy4Lv7XZr/ljHny6M5ohD3ZrOB0WgEBwcH8OrVK68Tb9vGrbauWdYUn/yz8M1p0DYKOVNjoIncsZaLAb7uSDta6G+q30jrtMRzyBHQVIf1yWMrfRz7WKfFYgFnZ2ewWCycuQFQOFsvLy9hs9nAfD4vnb2TyQRev35dBmGlXaht12WpLJ8TUp2ltUtq38rxmMIHHxzC8XEGaRri01KP3Jjv9iHPbycgTDgAKI81rQJaxe/c+U0/AHQ3qoun+k+/dbr1MkXAHOlUz8Kfqkyu7IClRxVXAVmuD5cc5e6nosXr1sTmsKUZMJlxaM+a0bWU7cJPpB+hzNP1/zn57+83v+z28ek+j23TLnxqSfkSi1+/wzRpPeX3ncbY61agOHFN881DShOf93o9GI/HMBwOy+AV3rOOzyUbJ1QvpMPzYZpki+DLHhYI6Q7WMphO+1bCI9krtCzH71u3u7Kj3kIBWr/Sl1LR/+fLvy3YNb1tgcW/ZylvzcNlRltfCMXhk8ex/qLYtuD1aTs+rPIj1h/C5ZmVX1o/ac7RE2Ul2cnxIOxsZ2wshBq2S0fUW5ChiZPbV7ZraDIGmioKPmeQdJzzbYK1XTTnElV4sd74xvDR0VF5LNpyuawdgfmmQagdu5JBm82mfLuUGgj06GGNLuZ59uwZDIfD8jneGfnVV1+VOPr9fhm0DclXBO6gpwYF/89xhHa7h2hzwLtY6Ju4vV4PRqNRySPeEYMLbL/f9/IpAd35qzn9+f+QY5MbkZoBFAJJhrVxvOMOH58yiru1sW0l53dT5eZNXsu5wR5y6McohNTw57i1sdsUqGMcd6IOh0NYLBYwn88dXiiEHCcA1drKg7ya8c/xUgcRBmU1mUlfetnWm8OWNYMHY+ncswZsdg0WY7HpPPaV892XeRsgzTXJkecDTW7G0N0V3Ga741yO0SO63qnqc14mSRItR+hpAppzmdLs9Xowm81gNpvV9MEkSWC1WsHLly8BoBpLWZbBbDaD+Xxe6jLakcAc6FjmskkClNnL5VLVIeh6pAe13Pz8f5oWn6rt8Zn73QTymwBMtc74cd7WlMjz9rQpjqqJse5VALQYBxhklHaCVsf3FmMMYL0uxljx0i5AkqRQ7EJNb3DTnbGYBiQtIfT5mKsHyOT7YqUdsvUdsXm+KXef052x6/UG1uuNc48sDcoW/3lgqPrkedWutH3pkK/bEPU6SsuCm5ab8/mWGBz7Gi4fbp22FhiSvw1UWX65nWLVJT2ApadxelJfx/BT4QiPCQufYbqJ8416cSjwiGsIDzQ2cWQD1E8Ik+tRP/pco4M6Aj21Ddcl6sPQfCo+fn0BRwkXXgPDy+xKl/IFfXzAbad9sj++yUD7cDgcOn7Z2WxWPkPgdyXv44lR+wpNYwQh4H3AbUgObf03IR1bordvEHrRw5c3hkbIP8xxS/ZoTHkJasHYfemQbQRBuq5bV5H/WLBE2X0LsCZsLI7TJjw2dThLuKx4thEIkIRnrHDYxliRnIOxEGpL7oinTnMfviZwG07Hrmla8VnmsgTUGYjzFncQAUB5hxe954uX1eZ7KJDjc+T58sc6nylge6LhiLBer8ujndFpL9GWcFloSr+1PFYaXchGyenJ+ZWCOlq/+hzOmlLnCyj46s/rGDPvKF2t7bqENmsLz49ltqkvSG0S0zc+wKBIv9+H0WgER0dHcHl5WR4hptHy/ed48zwPHjcs6S/84zOoLG1kyRPDH/9tcdRYZc629NC2xmAItwRSAMeXd5s8+kDSuWLnFeU9VE8LP4gnJs++ONuksc+dsCG9hJbV8HYFfB3y6c2cJwD3xRPLPEe9Bx3i/Dm+nIb58IW79Xpt0ok0HS00rmg5qS6SvPPpFL7nSVJ9YgHR8bJ5fnuB1W4gBzAcTdy0nvLQdOel9KkCLTnkeQL1HbLSt48uT+D4tM/G+V/wjcHVzU0g2d0hqx1DzGkW6fibBtX87VjXiep1DItlPQMvG/pvAb1MV/4iP06Jfkw9trHMuX0qPav3s4+PEI/bqAPXO6y6xmAwKPX1PM+d9Yfi5uuHtM7w3UW+tUF6ztcNajvQdQnXQ/rSUAg3rQun5ctvwRUqb4GQ3eCzRWLb2afPvIUCtqVv0vlDx570UjHVAUO+/ZDN6RsvXY2BXft6Y8HqL7OU5/ae1r6xsYOm/NCyIXkQAqv/wlK2CQ4rnZC9FWM/avKyie/ftDO2qfNuX8Fanzet3k0g5PzAAB0X9vy3zwHAYdcLfdt+ttwdlWUZpGkKi8ViJ2/ud4kb8adpCqPRCNI0Le+lsgC2L90NEKJpxdkVdN2GXeALtVO/33d2idJgbL/fh3v37tXuJ0Ggb5FKQB2fOF5xd1KT3a5tgTv6kqTYkfLq1Ss4OzuDL7/8Ek5OTuDx48ew2WzEu2AsDutYoLik41s1Z61PwZPyaspZyPkuGcR8Dkr9yZV+XlfEwef0NoIjmoOY86SVpYbMrtd0Ol8sjvcmvFnKcAd+kyON1us1ZFkGT548gQcPHsB7770HP/vZz2AymZQ0kBf+5rx2d2yeF8HXLMvgwYMHkOc5zOdzmEwmcHV1Ve7kp/ml+mdZVo5ZDA7jMwxGUKcMPvMZEFpAtsvgp289lO5r5nMN09qO6TbB5xiw4KTzRNIt+Xzigapd6Y++ORs7TrRgrEUuhIzopn351uEmA11XY9sIr3bIsqwcq9QmkBw0y+USPv74Y/gH/+AfwKtXr+Di4gK+/PJLmEwm5e4HemIFlu/1erWTAprKCe5k53VCuYs8WBzR2jONV9wVWzwDAIg/WaTquyo4SX9DGTwsfsMeH2Xs8i3mAKjde4tpdM2o0jC/GxiUjyGmO+QqG2ENAFWApZDNAMB248ntmpTper/mwrf2cXfDFgHYdXlvo/tN74wtds6u11XQFutbfNN2gLJtoAz4AvkOBZKEGioixZK3nscvn3hfy7j8Omudbu6k+fHI7eF+a/gkXt00qbz7TP6vpVn5d9P4mNVx0DFF8fn6OTwG6lCsM8Vv33UjWtl/9I/+Ebz77ruwWq3g8vIS/viP/xiWyyWMRqMyH74k7XuRp40PUAvw+uCrr76Cy8tLWK/XZTBZKrsrG9Gqm0n2eAwN+i0B+oF8fYIgre/fdD95l8DbF33H+Gw6nao+ZHpy3Gq1gsPDQ0ffRB3tLewWJJ/eYDBwfBP8JREJJJ9A1/Cm2H1aG8XEXyTfinYdVlswBWPfNEFrrU9sviaDuEvHngSWwJfPcNYcPb4FXgpAxAZkfdCVE5TzEeoL7iTgios2QXlAxHLXxj4Bd8TgDkR+X6impP3/7L1ZkyQ5chjskXdWdVXPdM+9O6vhco9P+5ESKSMl0UwmmfT4PekP6N/pnS8yvfBFRqNoRooiKZHctZk9Z3d6Zna6p7vOrLzje4jygMPhDjgiIrOyesrN0jICh8MBOBwO9wDA83dR5/suk6R2srYLbVPqNMVdogDuaMfJZAJvvvkm3NzcwHw+9/hPcxRayk/Vxxqn4dacDjzdzc1NXZ/xeBwc2aotttpAymjIw2J9LTkL+XMb+i2LJkk2I19R/pLqzcd8jvPAsujT6mENp7R34bSS6NIcelw+WvimKWg8mMtDWjtRgz7KFlz40buqm9CLpy0Mh8Pa6Ml3c1lopnhpHbjzLteJ0nbOiulQg8EA1ut1faxZzOmh0d01H+XORUgb/Y/xvWUc0vLX6zUsFot7oSsBNJNvUvrY/CdBrn4tyfz7AjEeSukiUr3vgrdSay8At6YYj8fw5MmT2shGP26R7nnGelqMq5Z+t6Rp4oDlaXibhH0lOSBzHbIVDvyX4r7ZUIJzzpLQkjsgaRg6aKt7Yv1wd0xxUTu56f8WXB+Wt88lhP1asueSPeNvW4c7JyndDRv+qt2w8j2xiAfrDMzpSp192GTuPyaLtLrZ0lpEFk8Ty0Pj3DPngbzyuoAQZxmJy8JsTtNtvdqtSTmPdQ1cb67KqsbA8fExTCYTOD09hePj4/qDH5xn8OM53K3HZbkm27lua5kb+TMPQxzogNpsNrBYLMRdvBpd0nqiC8i1+6bqLMnqpmDthxg9sfAHyIeiKOqP3k5PT1V+QP7G8STZ+yh0YWNqAvedN2JtZa0b7l7GDyalo821I9U1edS1neJQIGdtEbM9NCnDmjZl803Bwd4Z+wD7gSaGYfzaLWYwReVM2iWGgMKIg7Zbb5eQUrboHZIIqIhifn4kLMWJx0nwr5zoLp77AkVR3VuAhiCk37orxbpD9psE1IkYM6BJcfh+cXFR71g+OjqCJ0+ewFtvvQVvvvkm/PznP4ef/vSntRMFwPGsVdmmzhhOuzbpWe6F0UCTTXTRd3Z2VodPp9OgbKkeTWiQgC76MK0kFzUDMMXPFYiUPLIYWTnEjJwAvtOKLq5pXrqDJ1UWp5GO+S6doinHr2bo7QpiixxaNvIsve+YO7+s9OUs4lPKfE5f4Becq9WqNnIMh8P6K/jY3Z4SX/d6PTg6OoLxeAyj0aieU6STFzQFl8sxzueUh9HZ24QXuaOD3ttD+1dyTPNF72azgaOjI3jjjTfqo57xpAPrGDtkaLtYpHx7dnYGvV6vPor+0PUGi9OZ8+gh93UT+dQWrItnSe42oVFb1O/KuJErfx49egTvv/9+LeeePXvmxY9GoxovHsVo0b1iBgQrbRb8vL4p4zKnqSy3gSPWz0ZfqCMv5txz6d1uWFq2K2NXw5OWEUkFnHY9HzpSeXxVR4AwXGoX3zHHd8ZuYbut2mu7re6ExTmrcsL4H3lW62QsF8tyfVLRVQjxjg5HM3fkckcsd8qWNX24BscfGkCru2OrO2TpztjKIbsl+kJ1V+x26xy06JSl/C3rW5TmPOeqNS0PCx00Ok0xMZcSgRZasJ1onPwfpkuXGTqiXDxHEq8M7ye/rPjduzEa5bbPx8NigjRtp2eUzbibDmXzcrmE+XwO/+Jf/Av44Q9/CADVWuC9996rT0tDu9ByuaxPy6lo0uc5bcwgvph9Qpuzke5er1ffp462RmlnoKQzaOv1XUDMHrZP3dDSDlrYA+weFosFjMdj+KM/+qP6BDxuz/ubv/kb+MUvfgEAu9Fp28AD34TQ6/Xg0aNH9UYayX5Kj6HOtVU8gIOUXcYKmqzW1vvWPntwxnYIlkbP+YIpx7ueo7DsCixOBAr0653UFwy5g4YrgDlfRlhpoQZZbkDVlEz69Qs1DHN8+xammqOGG5e5IKJ9l9odZTFMftMh5TCTjGcYNp/PYbPZ1I5yjBsMBrWhH411mD9WnlVWcWdkqg4xyJF5PP18PoeXL1+aHDltIEfGAcTbtQvDsXWxqyniEk9phlOap+s2pbTsu78s5eUYthFnU6cnp8kyR9I42j9056qF9yTnC52bFosFzOdzmM1mnmM5BkXhPsxCwwjKpOl0Cv1+H25ubuoy0bAjtQMPQ6MqL4/+MA9+iUpPEZDqTemIKd5Se0p5tDEk7T5IjYVc+WOBrpxtXG7E8Er1k5w0aDjXHEep8aU5hLoCqa+tej1vJwv+JpBbRs5apslcaNHzc3R2LYzzTM68xedOHsfHqxVQB5PyazSuViu4vr6G+XzuHWtMZTzFzcEy/2lrsZhhWmqjVHvExi7P2+sV8NZbY3j8eASDAcrK0HEaL8/mTKXprHnaQFdlNMWD+bDJKxzOMe36wjlyMR8A5X96DULlqK12yG69D/sqFqU7ZB1Ud8pSpzmWTZ3qwJ5L8gNwO2Kd8xRujyfmTlh0ttJdsXh/LL0zNjySuLzF6drC51lNfoWOs7BeIVjT7moJTfFqz7lhJLYpWTI2BR2nm6dDfk7hsZRlyS+3435tIOH48/Uu1E25fMZdsXjcPl4jQnU16Q5LO12+zp6aU1Jra3xHOWQ9wSelK+TqECnbyl3CIdHyTQe00QGAN2dRO+xgMIDpdAqPHz+GwWBQf4gHAPDjH/+4fi6KwtswBFDpkU1sNym7USzdfQFtfdkUhwbj8RgGgwGMx+Pg43VqS08dhyvJliZ0H0KfNVl/xnB1aUfcFQ5exwdn7D2CXRjhKG4NdvU1DRoOYrtpdlGmNomgsdYKVGmM5aMGC+lceIrjLu7jRNCEOyoDuDuF7jSiO1VifcidOocwARwqxBYekiMfwy8uLqDX68E777wT4On3+zAajeqjemLlSHExIynv267GsgUPbY+zs7PaQbRrXpN4Xvoowcr31Bgag5w24WWmxildvOIzjnW6OLa0p9X424W8k9ptV3OWFbD89XodGCy6wg+gOyOwTbBcfp8xV1glYwxfCOBC8erqCnq9HozHY7i5ufH4SnM6UtpQFh0fH8NwOITpdArr9Rp++9vfQlEUMBqNoCgKePz4Mdzc3NTyiuKnu1vR+MPnY6w3/fK83+/D8fFx/eGKBtQYo/Ub/0hJ24lmnRe5g4UuovfFy13dSUN5ou3CFvUPSU9MOWLvGnKMebs0AOSkOyTIrRudwzQ9v4t2oLI0F/j9UJKuxWm8vr6G3/72t/Dq1Su4urqqPyThTtSmc6qmf8RkOnck54CGl9PU6xXw//6/b8Jbb01gPO7d5gMA49HEZdRRqd0PS5/bgh2X1P6UfqkuOfEhTX79q64sbh2jUNONzip0ThZFWe8OLYrqCGK3M3ZLyvRPpKiuNCih18Py3b2yQO6LpWXLtOO/5JR1v+3W7XZFJ6z07++IdccWu52xbkdwWWJ9Qn3ZtVX4TvuD10UbQjlpw7xcpki4tbnJL1MpQQ2XaHTtIv+nyomlp2H6fKtgN4drdwDT8WHHz9PIeWkg739Jf/Dppbgl/Jr8pc5YnnYymcDjx4+9E94QNpsNzOdzUQ/WdGmuH3IbmLbuTNku+HyG64XUOoyvVdo6BWL4U3Fd6vxa+78udrhd2sb3Bb1ez3Oszudz7wQqCtPpFH74wx/CaDTy8vyv//W/vHSj0QgGg8rNs1qtYD6f13HW8ZQD970PELp0NHPbyuPHj4NT/Dis12vxQ3dtDL8u7Z4L1j7JtVnG7Gq5YJ0HHpyx9wxoxzYZgDnMlHKwpIR5yhBFFS36PBgMamNHDr2ak1MKsyglUn76pS8aCQeDQW1E5pekD4fDejIsigLeeecd6Pf78Itf/EI9MuVQQKr/1dWVd0fI0dERrNdrWC6Xwd18AHJfP0CcN2NhsaPnsE9ubm5gu93Cr3/969rpsVgsaqcQOok0h6tmKONORimvVg9uMKThlnEbC6f0LZfLelx2zXOSY0F750bSmJGTt4fmaLMqiLzuFmMvQHjMeMoZpTlGpLJic4Glf2LORxqu4dqHXNXKSNFuNWxb6yCNzVhenp4eDSbpANvtFmazGTx//rxeMAKAaETh5VAHKd4Vi4D3p97c3NRf/GpOAl4ffjIFH1/OyFrlG41G9W7c5XLpfXSQGuMxoGNeyo/huFt5sVhAURQwmUyC8WelYxe83XShnhrr0rvkSKP4aHxsrPBx1rWukRpXTeebrhZ4FKRxS+nNpTHWr1I5GuTwsKVMTCfxSBOwymBaBueD1FzH88agKKrdDRcXF/DTn/4UZrMZLBYL76NIAP9DjhwncU5/aHOCZU1q1WWkcnu96hfn2RJSTs+ylB2X/LmiL4qqJcjHIsfo6qpcuD3CGEDHjfGUR4sC3/l9sOiw9I8r3m5TfIA7ZQEAeuB2xgKAtzNWqgP/p3fTOrtBtft1S3bDcies0wt8R6zbESvtjHX//hiWxzSVC2E9tOEvpU2nwzA+z8bz0HcLPZb0fpyUSKJRP8qY5vPj9HaU8uZA1c/xeP6s063hK4N4vQ9CXqJtkEM7Qkxez+fzehce6u2z2QyePXtWy/3nz5/D+fl5YMuy6BfSeOG6ipQmVx/n9KT06rZ2g5gOq4GkOzXJQ+Niul5KR+LtxddgbXSsXcDrYFcsy7K+8gYA4OTkBJ4+fQoA1Xrxn/2zfwaPHz+G3/md34HT09N6DQsA8POf/xw++eQT+M1vfgMAbvcl4gSA6MfHbSBnrN83sKxpLHmk8YTPi8VCtMfGcHO4r+0rgdV+FeM73vYxmyq32eTYypqChOfBGbtnsBqVu4LYoppDzBmk4UkZXiTnC+Klg4AaFvDeNLrDTduynzLScsUqp+48jhtLkT50TuLOQ6qYDgYDePToEQBUE+oPf/hDODo6gs8//xyWy2Ur40UbsPSbdGTy1dVVTc90OoWnT5/Wu5fQyC7t/uW4LTS9DgqWFSQDvrRowOOBpPua8avP2WwGs9kMXr16BScnJ/DOO+/UzliKRzPa0b7H9BwkoyS+038tnMsEiq/JYqgoiuC4Un7MkiaHpHrxuNTET/PRnXgYzmmJKRwxxUErn0Oq7SQFRLtTQVqIxfDFjNMpZ5fFOG1JJ9EHAKJMs+LSlGxprGo83FTGxeQmx8fT4QccFj7Bxdtms6k/MuKw2Wzg+voarq6u6vJQJmFbSLuzMB11xlInKDpjr6+vYTqd1s5YlHlSHXj7YxmUbnrkD/I4fjGMjg3Mw41Bmhyj7UWfNTnH5RvKiPl8Dr1eDyaTCSwWi9qxLckrzsMcb5fQhR4qyZgmdGqGNKt83jdIczl/1uYlnp6mldLE8Gh5NeD9k7NI7Rro+iAWj8+aHmItCyBvbaDNlxJohgELoKx89eoVvHjxosbB75emhrYm4wzpivEaXc9JbU5x0bypdRvXlSQZ7PjcXqeyDB2b5a3zoqJ9107XNlCC7lwO47S6opMzXld6NDGmc/kwvuoLtzsWjyQG6EGvh8cTVw7RzQbz0rFV3jptSyiKHhQFd4JTAiViS/Zces943DA6Wp3jFed+3ymLaeh6iJ64QZ/5z7V7qfwzyr13OU2TtGFeq4xO4Y3djxrmRT6RaTKSlCinCZ6QRvfs3kv2HsfD6UuFtaFbqnuct/x68XCeVpPh+KHgZDKBk5MTGAwGMJlM4Pr6Gj799NP6w+d/+qd/qu+HtZzIEFt30fypDxNT4Rgn6YiWMaLp+Sk7QE76ttBGH4vlldYwufU5JH18H9BVfbkz9t133wWAyo78H//jf4S33noLAMJdtJ988gn86Z/+af0+mUzq9TPaxHKuKuLwTe9PTU42wUvH02azgdlsFjjKLePzdYOYXVRa2+XY0mL2OG2tbsHB9T4rSHV9cMZ+w2CfBhWEmCBraqC7C9AGId1JtN1uPUeZpKAOh0P4wz/8w9oZe3l5Cc+ePavLwK/fESTH2y4g17i5Wq3g1atXsF6vPSeYZFzkxx9Kx2Y+gAPJwYNA24yOH35/MQB4R9pxHJxXefkcJPwUNGeVhJdORjFjXRcLDs1gzQ19sfIsBsjtdguj0QhOTk7qvrm+vg7usNUWiRwfdepq9OUsLCXjteRA0mjKgZjMb7pA7oqGfcgazZGGdNG4Nm2d63SI8TfeAfXGG2/AZDKBV69eeccaUdDuNucLd2lsbTab+sik1WpVG0dvbm5qWbVer2E2m3nHcWr11RwIUniv14PhcAjj8RjG4zGcnZ3VOPjdum0MD1Re0LFG60EXytguMfoPWU+SHK6xOSyGg4I1PxoxcF7bx3UP3CHI4wB8+vmpFhZHo5WOJiDxmNR2FnrumjfxCo0YLU0clFJYrs7K+1yaD6x9Xh31Gt7lh2uJNkajWPvQD3p4HbiMp3MDd6hajB1h24DnuNOAOhtK4ogkKdi7C8N8+2djiSYhVeloo8+mEiLpab2xzcpbx2jVbwDVfbF4N2x563gFqHa0Vs+bTQG9Hp4W1QMAXBOXUJZ96Per56Lo3fJIUfNUr1cAgHxXJKP2lraS4HY/PF64OipZ/udp0OnjnLL0SGLZEcsNcOG/o9d/p3XQ+4KmlcO19Ok02H6ptDllWvKl4qR0WntY6InVU8NV5S2DNH79rLK1VNrF8YqOyqch3hel92yfk+R1cVFUH/rwNflisYCbmxuYz+fw1Vdf1eMNT2jA/LhBock81JU9qO16SrNZWGEfNs0c52junEvj6Ae2qTssHyAfJH7jcHx8XJ9ASD98oH0hHWmLUJbV7kvefw82Vxk0h2BuPguUZXV1IXfGxk5A/KaDJl+7krtN5L0EuTaIB2fsDqFrQ/O+B6dlEo+BZKDbJUgKoOSQyQVuXKaTGjXOYFp+XCNdrKGQ/eijj+o0z58/h7OzszodTpwIuYM6p460brnloBOWKtFa+TQN3Q0VGyM5Cud9BW6c5+EaxI6Cpn0xn8/h5uYGxuOxd08Bd8RRkMaRtMCKGZa1dBSXtBiUyo05kCTaJbA4XLuAfr8PR0dHNd2r1SpwxiIN1LgptaVlbFCIOfm4LJbaXFoYpJwMnPeaGKjxfRf9kjuuYqDVVau7xnMaTZqhXoKu2wtx9ft9ePToETx+/Biur69VZyydC3Palxpx8Gh7dMjSRQnebZ3C3cTB0u/3a4esNBfx8ixOQqsDiH+UhEbg2ILv0OdBbR7ghpscnZHnj+XF9rFeaxGbCzSHUA5IcyWVlzlzkYX3moA092s0SnRYeLJNG+bkQd2V9r+WN7e9uaGa92lOvSx8l6IXTxSg6w90JmF8E10nlofzRZu5v5kMy9tNHEIJmsOzLKmj0pquBSW3TdStKHd0V3Ta6hGm9fMhra6/q/tkq12y1Ejpjiru9fy70/22xfKqY4z7feQneq898oifv2TOJtQjKhrQoeqOJ3bvvuPVHUPsO2PdL+2ExfKRJr+t/Pr6QyLmgAt6SshPYoXwcNzG81hpaTLd8HaQ4vz/nLbxHZEuTNOfXNqKbzVa5XcpnPernr8M0uh42kCpPGtpKtDW+vQkmrIsa0cQOoMQhsMh9Pv9ev5xH1i4D3Iscwtf+8TkvSUuR0eS1r8antg6Toq3lq3RY8nP9c2UzcRi80GcVJ/AdVoMDnWNcqhA21ezx0wmEzg+PvbuZEZ9l/YNB7ouoqc1dq2n7dKedghgbS+r7EH9A5/X67Xp1M9vAlh5SZNjXa7JYmVb8HKbUmyuALhHztjcRm6Kd1flHDq0qXPbNkOj7Gg08pQhfnRxTHBpdJWlfGRiV1CWpUc/BzQwoxHlxz/+MRwfH8Mf//Efw/HxMQBUDrPT09O6XtfX1zujl9OOUBSF1/54VKWWL3X/gCYoJWcDFVq7utfg0CGlxGMYXeRIO1hoGv7lHD0ChSp0NG+uwdwK3GDPjyvFY5Galpe7+KKKKuXBJk6umGwaj8dQltVxpPQ4VE6PNGlLEzqC5hCM1Znm1RbhUj5NhobGqerdKm+bKEJNILdPYwvxNvMc5TWKP7fu1Plg2VVOaZbu9cbw7XYLNzc38PXXX8PV1RVst1uYTqc170q8SMuihk0shxpZkF4cJ9geeKw9jo3YSRBSW6WUcnqHNB6xjDRRmWg1BuUAx0fbw8JP2G4oK6V8h7oYThmFME0qv6UvkPe4IZB/GCeN7bZ9zvsC6dCM+RbHG5eld9HH2txDIWWc3Afwfm2q71vob6ojIG0I3Fgda2esE/4kyDm6XDKAc+M719di9aU6pbVtJF7n5TlaaJzkyNSdjxX+MA+tI42X0lpxNk2P1ac08PfwuGF3tHC6PJ5X0zkpMtwVS51mJWy3AL3eFsqycqhif1S/EjYbqhNsoSwd33Ij8naLVwOgM9bNkRUKnx6koaIpdJpKjla8C7Z652lCh271jvipTuA7gkvPgegcfUgrHwKxMRFGcXyxtDL+XPHkp485DvNoc7zj42hKX6pc2gc6bXL99HCpPHe0sfuVSn3ds0Y//8k8FMbJdec0SR/6FfVJOOhk4zoxrmvPzs6C07WGw6H3AVRszrXqubF3gMN0TnAnKEA7Xa0r/YnqKVxHw7tE+SYSrp/w9sbr2BBw3XaI/XJfgK5X8ANkhPF4DG+//TYMh8M6bLFYwD/+4z/CbDaD+Xxe9xmerEjT8VOlHsAGXfI0bXuUlWdnZ57+/7DbvAKJT+W5S4d9yqKux9W9ccbuqpE142LXZWiG730Lyq4MJjnKk+R84O/UYIqAxkeKL+XIsNKbMn7E6Oa4UJhyY0S14Nx6i9CXL1/Czc0NAEB9h+dgMIDhcFgLnrbHEucYOinwr7Qkx6iu3Du8Kdp4n1ryfZMg1racvyQ5IhnSqPOD54sZvWm8RE+MXi09/lMDI369l2vIs5YfN4akjw3mOGgf0EUpjhu8D3M4HNaO5pjhOtbOEqScMVodcseZRlfbBWeOzLYYwGP11Qy/Voe0RlcT8I3AsoNGq2sqrWRg1WSERs92u62dr6PRCEajESwWiwCHNDfG5gXeB3QBgotGXi/eDk10F942ZVntVl8ul/VHIDH9xMpXKRq47mIZ7zmywELzvkHjmRx5TecMaaxKYan26IKnNAdaahxIdOTo0rtcL7RxMnI5ZM2TomeXIOG3tkHKgQoQryNd21h1YKucSukZsWcJZypMo0mbl2L5qS46GBQwGvl3i+ZCWYZOzqocP47kgJhjN1UGxyPHmTGrtDTHGzpxfVzYSCHtVb8A4P2xGAZQ3h5fDOR/CwC9W3wlAPjHjzqeB+j1sK0KFuc7Y8vaEYU/AOqU1Ryt1BlL/6t8mKasy3C4y5r+suSOMP0Y2pC1Y3O8nC5HDNvkbfzdGhfJ1Sg/pg3/S+89loeml9JZ6eB9Qfs8D5rO0WEbhryWrqdWb14fnMPo6TCoH5dlWduk+I5IXPPyo1ItNrV9QY6+JMkbSSdLram1tVFTsNghpDjJliHZjCy4uS57lx8Hvm7A1+Y4V9HxRT/0R0ft8+fP4fLyEi4uLuo8V1dXHm56dR7CQ5/lQ06babo1T0N3KQOEHzkAHM4a/j5BbB11H3j/3jhjc8Bq7L0v5QDIu43uA4PlgPWYuRhIStg++okK2bIsawcrAt6PBwDe7iDLV/z8K7W2X9KgEoAGoc1mA9vtFmazGQwGg/r4xl6vVx9FjOXzSR6VhRyaaH5+dPF9hiZ8pi0aUo50i0JNF1k8LnU/IU2bazSk0GSXZNcgKUlNlB++MJHyzOdz+PLLL+Gdd96Bd955p77/+ebmpj5+nJ4CYNkJrhmNadvm7lSPydnYIjDX0E6dI5Z+0Ohp6iigZeTmz82XcqJaDQOpdsJjfkejEQwGg3ouwSPjLW2lpUGe3G638OTJk/rI7cViAbPZzMMfcxpZ60vT4jxDeUf6IIvjTskv+rxer+vjni4uLuo5me6QjeHkdeXON6SZfvyC5Ur0ccNJSr5gvq4NP01BokWiTZK3Vv7gJz1IbcblTQ7E5jUehnJ2MBgEcfzIS47bel8TrVPXTlhru0s6HudNi/Ehhrtt3ZAGKvsQX5cLcuu45IY1XibnM41XNV0Q8e5yzGtjgOrnmpFP+keex3HD9fyYjPjhD9+Ad9+dwunpSKUtBmXpO2Kr58rxx1KCcwRmFeGVkQrX0rYB7Ao8Ptjhr+oZK7Pqp+ro4apNXDtozjXcGVvtaq3S9XroaMXji924dB9cuiMv+V2xVTj2r6uD62/fGVWVUd4+O0cqdb5WtIa7X/07YXFOoTgcXr8cSY8L6ZLbWAoPQpRwLb2Onwf57/KOy3Q5eek12iRnohzmcJeBQ9LlkducP4dpq/7Uy+b4fFpsQPlFanPKOyRGLF96l/ohTZ9PS1EU8MYbb8DR0RG888470O/34W//9m9hNpvBarWCXq9X74ItS3eCwl3rnV1BbP6R7JGpuqccqNZ24+VY1pBU9lHbANohJd0BdYrRaAS9Xg9ms5l3Kh5Nj+tNupP6AZoBrh9Qt8TjhwEAjo6O4OnTp7BcLuGTTz6B8XgMg8EAPv/8c9hut/D8+fN6PTmfz+H8/LzGiYB2XYSux+s+fR93Dbm2Jy0tOtdT6e4b3MWaJCeNtHZNyWkrXdL80PRkJs8ZqxFy6INOMmrtA6SJLdcYqRmwuEFHYniJGSxGWGv7NDVeW9Nx/NLOvRQ9Gq4ULSmDkNUAQ/HFjOjSIpGmwaNDAACm0ymcnJzUipFk2OPl5IKmlAGA50TG3X1INzV6acfkpuiSF5DxetyHyb8JfVKbSTyZO2ZjBj/qULGEW2jW6JZoo+/ckG6Vmbl8nzJ+twE+7umXxePxGADCYwS1OmjGUEtabYzEjMc57ZLT7po8pseJauVZ5XyX/UbDpHrHwEK3VC7/t44Dml6aLy2ylNPGdQ1czKGDlMt6nj5WVz7XSXRqepCGl+KwKtbUeYP/0s5YKY8FvwUkJxZdlFvGRRP5d5dgqZd1wcXnDAkff7aCRo8kZ/FrZvoBBE+TS0NK7nTV57nGRK7bSpBa++T0sTUNxWkxdlrGTY7emrP+yuWFlEyNQayeGp9KcwiN42XnjllenvZOYTrtw8nJAPp9/Theh8d3OvL3WL6KTp63hNBpm4+LpSA4q+dUWbQeOXUqiljesLwY7WXttCpqvAB4fHToqKyWudUOWbfu9deuFV/48171g7ocgZK6bKdXALgjhWVnrO+E9R24Fd3u39UHSBzWn/67NuPPfptJ4WG99DgdpPRdqgU5uGJp8+vFM1jbUY6P9ZOUz0KvS5NDm6/vU16zgp82ndHxshTnTnEajUZwfHxcn+hEQdNLrGv1WNqubDpt8DSZY2N4uL4k6ZLSeouWnUOTZU2s6ZIod/GjmaOjoyBuuVzCYrGor1my6FrfFOiC7+iaFADqDyBWqxXM53MYjUb1mCzLEm5ubuo5Dj8ultboFLrQv6267q4hR+7k1CcW1wWvU126yfrwUGGX9WiyBubyqe2aLoe+FP4Y7tdiZ+yhMPWu6KCTtXTh9z7BYghoCqvVCoqiEO9epfj30d9cIZFo4EoU3fnA71zVdo5uNhsYDAbw5ptv1mFvvPEGbDYb+Id/+Af4+uuvg3bpuv+pw7ff78Mbb7xRl0EVgfV6DT/72c+8YyuRHqospECaiFI7aw9ljO8SchTpmKEMn6nzgeOj91RQPqa7j/iO7Fy+4w4GbshDRw86+/c1tmMQm/w1+iRjNX7E0Ov16i8bdwnYz9JdLxpQHtCgq/5IGecl3uL808QJ1URW7kJRxv6RxgL+l6W7e4neD5rCqcW1hS+++AKKooBHjx6Z2yOn3ZBGHBtYF2cwDXdC8nJynSt0lyXfiavVQZNjljJjfE3fY7j5Ao4fi07z3aX8TPGq5JiheoeGT5rrOPA4ugsrRSu935jHa7rf0dERAAC8evUKACoe1u7dlIxzWpyUJgVtx3rMyBeTMU3KSfF6G9xd4KDrLB4GoMsGfmexxjcSvVp7xMY0p5OXJZWDdEk7JjjvSjg1XuBHVXK6+VxWlmW9M4SuPej8V7Wj2zUZc4yWpXM+VrikY3j9naPlrbMsZRxD3DlhlB76n8Id0sRxlmo7aGXw+gNwmrBdKtzxcVQ5Md0cJPEnPTmjIFf0FNDr4cfWVZ/Svqbjg/a3q7/vwAJh9yrdIQsQnlSg/Vxe8MJcOfQ/XGfxtpacZHKzlpG4WD5Z3klp/bD4rthccO0RD9Piwna1linLyYoXeDxvY2mXdVCKl0Yqh5bHf1JdffqkepUCLp/nfFy8zpyu+G7cogBYr1cwm83g9PS0TkOdcwBQn5CGp+UAtD+Z7VAgR1fuyhmTAq7PW4Cu/emmDgSc77nteLvd1rtdASod9qOPPqo/IEcn/bNnz+Djjz+G1WoF6/UahsNhnacs5evMHiAOdDxpOtfFxQWcnZ0l1z2vw6mCXUMTG05szN21XfIB4tDEp6CBxQEcs0U2Lfe1cMbeJ0hNsk0Mzl3m7xJihkX+TNPGmFkadE3rq+FJ4ZcMDpqxUeqPzWYDn332GVxeXsLp6Wl9nyQuHqkjh5eL5cUM1bn1poBHqCIMBgPP0RozWGrxEmhtY6XzdQF5UW03ymmQ4zzhRjjNOJjCaamLFJe6t1ErO0Zvl05E6gyU6JOM7+v1Gm5ubrxFz9HRUX1fNKVTM+6kjNa8zFhaqQ5a/aSxKY3VlCGT18kqp6147wOkxpSUPscJ4xsV/TK19xQtGI+GcjyuTKJRG3M5PE35T5pDMEyTERq/cno5n3MjMKUhBTH5lCOvJaeNFaSxu+/xYpFR9Nky38d4WcOt4eLpJB6SxlyuAUSSlc5pEd6rFhvnuXNhrA9i+nIur3MZEKMphos7OqWxbQEpTxM8lsV2Si5bPoKicorLCEtfcDll1bWl/BrOFJ7YR0La2OLxEv+GOgK2T0hDWfpOOrndS0DnYoXfOSE1vBS3X4aeXis3mSoLpz2vHyfTklO3qv0AqMMWw6nz1unyVfrqKGMn/6o+crtfaRu7eRhq/Hr9aHnOGet4TTtyOO6MpbiwXXgYLZ8/0zxSews1icTF8snhlrCUiKDxOWVbcKb+rflTYU1prXghzG/HEdNT8sJTZYT11xzalFf18t9880349re/DR9++GFg/8ErUaxrtwqvbW5IQRP92QKaDZLa1iQdvomdIaXjWddtqTVFTIeS9A4A8O4jpWH4cfzx8TF8+9vfhsViAR9//HGNazgceqfloZ3jvq/V9wm8b+l6Aq+MWy6X3tqBHhEes4dx2NU4OgSI1Tk2HnYJFlvYA+wGrPNMzhwVk7ld9me2M3afQtdi5D0UWnLSWoSm1Xir4bmPgx7rjPe48XD+TMMk45DVWBeDHKMTTgCpLyMWiwX8+Z//OTx69Ah+7/d+r/7KbL1ew2q1guPjY3F3MDf4pL5IazI++v0+TKdTD4eGOwWpPmjKo6+j4qcZUrnizw2ikkFee5bKQCVQugOEl68dg5Iaf7wOlJ6yLOtjViy8EqtLm4VZquwYbnrvMdZnNpvB8+fP6zF7cnICR0dH8OzZs1q+UcVaclrEvngsS7fTkhtltfbWIHYfeVfzSBM5knIwWZSlQwLKR/xZg5QiyHe27wJubm6yHCa59NC2oLyIxwiXZRnchxOTVdpCldYh9qETH4+SzMoxyGA+La3VSUJ/9GOsNrririC3j2LGhVS9Uv2u0RAzfmnl4ByM/MjvB6Y8hB+y4VHG1AmZkm1WmlL5mqyfJF7XHGg5MpbSVBSFeI+yFc8u1oVam2Eb0N2jHAaDAUwmk1qHT/FW6koWiQ4MQ97CNuRjjRpfrcBln9QGWC4eXx+jk8oomo7vzqHl+WMTHXXmKgAw5yPiiKWrynPH76bKs6TpOj/N4z/zfqL1ksqh7UN3CuOuWcTnv1e4QmcVQHl7d6y0Rg6PIK5wFrd3zOI/n3uhppHSX5XNnRP+ztiKf9y77IyFIMzhA5bGlcnHl9cKjDYXJkGZiE/FSevEPBzpNFXf5+CypYutsfA/bB8XJ+XjgXwHqZy24hOdDh7m0xWrqNxuHC+vbwxieKQx4cYF52d5J/APfvAD+OM//mP47ne/C5vNBv7sz/4MXr586d33jcfYxum8X3aZlC1Pe5fm2iZlWMDCH9a+ofPxYDCAwWAA8/m8tkcMh0MvzdOnT+E//af/BNvtFv7n//yfdfh0Oq1Phlmv1zCfzw9q7XFfgLYZtfeuViv44osvgvTj8TjoZzzh6ZsC99W38QC7h6Iogo8adnGKg2Znt5QVmw9Mzlir0aLriTiFb58Tf05ZXdHFjWyagtDWMaHhyRF8mlFBMlpK5WnKjkZXjG4Jp/Su4WjC35KRHZ1MGM+Vps1mA1988QUcHR3BkydP6vDValV/kdgGUk4MTq/UH5PJpP4KbrlcevRz4RczdAKEOytyDdpN0t4XsIw1bZznGLY1PJwGiSfQgMiNqrKBIH6XY6zv2xh5rZAy5uaUy3H2ej1YrVZwfn4OR0dHMJlMgn7SJm7anjn8oI1hqW15eZqjyTI+U/hT9Gt9T++msYDFIaXRyvlnF/JFMpDTcrWxHZvbrXzSFPDjgi7ahRrbNWeHJMe0NuPpaDxXlqlBmJZnodlaZ6l/U3IYQZKr2rwc41XLGNgX8HbnbUllDU2L457qTjQPB4l3UnoI0qfhTrVjWZYwm83qtDHZmNsnms7fdE7iuK3xReE+KkRDEfYJptMMgDFZZtEdUnBI60KAqr6DwQCOj49hPp8DQKXDoxEb09D0lNbY+JbKAnAyQ/qITkqv4bSs7bHf8MhKbac3TY/XMyDQu820ciggqbHxVZa6s5UfSVzcOh2ps5KW0wT08kN6ZCeow0NpqdqmCGimuGjZMTowzpLGL9uVw+l34Jx2uCO2yo9OWiC/EgB6BFdRtwOfyxydYZmOHq7/hM5Y+d3lwXiMC3ECC5No4W0SOrtomhjbN4nLE5++k7UZHnTW6ynaqh+Yn7f3bahaBg2LPfs8JMlAvywdp+z45fh9HKXIR44unlfiN7+sWDqpHgjf/e7vwP/z/7wP3//+9+Hx48cwnU5htVrB48eP4fz8HM7Pz5PzR1BSpp6Tmy+Hlpx0Gg00P+qm0ql0lnUnX3eEssje1rn1p2XR46ZPT09hMpkAQKXn/e7v/m4d9vTpU+j3+zWO8XhcOwTxozN0BFptsg8gA28valfV1lAcmujTOevbfUHKhpWCJnkw3wMcNnAel64YAmi+fuZl5dCSWrOl0j0cU3wHkGsUoeESWDu7LV00jWQ43Qdoxoqmhp2ugQ5+dKZiGO6UwPftdgu/+tWv4MmTJ96dsXg8BXfGpozSVpAMJ5ReCsfHx3BycgIA1Y5eriTQd+k4G8kYLtH/MBHaeJge6avdF0bvRUyBNJYpLkzDy6bxObil+uHdjZwvu+SJmEzVDJA0jQQSD+OYWCwWMJvNoNfr1Ysdmo8atkNjlG+41gy6vE48X4pmyaGjGWdjxnNLH0t5JScKTU8dAtxxYwVKvyVfW56LOdIofks7Unyp8JjjqOnCRLs3UUufUz6ln+4sT9FB/zV8Mdq4MUWjT9stbhlbsTbXeJ7zaazPMD71NfxdA5Uv/X7f033QWUXHQ6/Xg36/H9z1h/E5QOWGRA/+N8FfliVcXFwAgLsrVtoFKOk8UrikI7W5hkKClNzhcw2Nm0wmUJYlXF9fe3Wj9cqlpanBpC3Expckk2ic9Iw8OhwO4fT0tNal8YNKaW7UDLISPRItAO5UHHofHC+H7563tDmdZyWateOYedsNBoN63VCWJdzc3MBisajTp3XTFK0lgLALFpuxuHVk4vG6eF+qo1fOnyrHSo9EV4jfilun0dc1AOjduPw9pCfcHUvTAbh2cvypOfSq3a5ux/eW8R3VWXH9EspjhOoxLKv0HF36f/XMnbH+M4hOWPDiaVto7z5tHHgeGWLxlBYLSLhcmO6Q7RqwTK1ufptLMlBal+nlhPGlEh4DTlMYz+MqfuNhPH3cgU3pdHyq4Qt5SqPX4fPxAgD83u/9Hvybf/P/AUA19qbTKfT7fXjrrbfg+voaLi8v93YfqNWwvUtI2WRjOn2u/qjpASmcki1Nw6GloTvGPvzwQ/jggw8AoHK2/v7v/z48ffoUnj59Gsz1R0dH9bVqy+USrq6u1COdHyAPuD6EJ+/gOi/Gf9wOdNfj6C7Bsi7OtSE9wGEBtyvwuF3tiNUgJf802zOHTp2xOQz+OgqJ1GQuvWudFOvAVMe2mRwtwlxaPMXooO8pg76FhyxG11zIKT8FsSMQaVkIs9kMfvGLX3gGFIDKKUsnZX60Wez+phRIfdzr9WA+n8Nnn30Go9EIxuMxzOdzGI1GcHJyAkVRwPvvvw+PHz+Gs7Mz2Gw2sFwua0MrKg3r9Rq2220tKCm9FPhX/V32wX0FbfxxA7xFwGOa1B3MbRYhGt1SGimPli4FsbGekjFNQGprSS7zsKurq/oYIHonNG1XujiTjMUxRxuPt9RbWrRRPpDaTyuL1gOfLfyU6m+UbXSHLN8tG3MsWPqapo3xrpVmilejL5UH86X4OwapcWlpm1Q7a+lTaaW2ke6j5fyolafpUb6RmhtpQ3ownn7IIjkkuGNCqrNEb+wocA2oc4PrXFI70rh9zaGpupdl9eHJeDyGR48ewaNHj2A8HsOzZ8/g+vo66Bt6bL5WhkYH9p+F5yUHKk8bk6US3/E4aecArxPV53g4T2sB6zys1YumQx1uOp3CZrOBq6srNa02p2hl3LWOF9NLLOFSOnqsegqk+Z/G0XBpJ2qMzpgc4LoGpuO78yW8Wh3xGU9SKMsycMbiWiHW975u5f/LUAKQXaL4nwPlraNEnmN8fPRde9bypsOquoS02epkqXuVJtyZS/P77SEdXwzAHXplCdDr0f8Sej3c+UrvieWyjuqNiC2kjVBJysR5w4X7OojmfLX8h8+uLIkWndaUKIjF8/It+WziyqIfSDI+lT6lz1jwxPKULIzTRhHzI3nDvqV08HdOZ0izVInS+4/lx/I0nvLT6n0glSHjDmE+n8OrV69gsVjAer2G58+fw3w+hy+//BJevXrl6VK5ayANurD77st2zOWVhY4cexa34Ui6ZAr4uov2E12n0LUzdbCjXv7+++/XO2KLoqjteQDVscRPnjyBwWAQ3GOau058gDxAXcui9yHsa3x0Ddb1MIWcusbWIw9wP4D3d2oNT99T6ygqSy12bys/SmHSOtFzxu7TiGOBlFHSanTdBy1NIWbcT4F10Z/KkzIAxWjMFWgWw6XFOC7liZUTKy+GV8JlMWzFFDiefz6fi3cEDIfD4MsPbkSJ0WLlWUrvarWCFy9ewHQ6hePjY7i8vISiKODdd9+F6XQKT58+hUePHsFyuYT5fA43NzcAAPUdVpJySP9jbZHDQ/dV4bAAdyjx+kpOBuskwEEbj7GxwPu5bV9YjN6YzmL0zZ3DUjIs1r6p9ri5uanHCIA/pjEdnZhThvTUAjAGUjvlyPNcmcxB42ctHcolSeHiOLhclOoSmyPa8LBFyW8yT+aOX6v+1pRfcvNo/ZPDz5KjSgNqhJDmIumOZWtdqBOD027RlbS2sJRN34sivDec478r0Ppys9lAv9+vr2N49OgRvHjxoj7ql+PAOrb9WEuTV1b9SQJJttA+oTxCjV5a27SVSZzHUjglvCn9fzwe1x/YSTswLTofj2vDt03WhbHxpOWndeNyQ+on6/3dKZ2G4o/pJCn6pbIAIDBKWMvCsczlIuKja4BerwfT6bROc319HbSppn9U8Sn56P6LiDMzbJ4qHea3sp+Mi/IKrUNYFt+JK+HUadKOXbbSycv26aK7Y30nHD2u2L1XdDrnm89DVQnbrd8O7khinzeLAsB3DsecsYiL1iMcK6l/EJyvNI7Wwy+Pl2uhUUlhjpdkQzyvLb3rv3xweZvSYv3XwngcrUtZ5tOFOFxeX8ZZaJFo4rikvJVMdHmkdLxO1XvYB+HY0NtjPl/A2dkZXF1d1cfr39zcwIsXL+Dq6kr92DAHUvO7dU24S9DsK3RnKNcVtXUz4pPKkECqf46OZLF98HvaKQyHQ5hOp/Dhhx/Wp/PxNLgZY7lc1h+Wt+GJ1wV2xa+Sfc/qdMqF1NpACm/C3/y9jc0ud+0sxR3CevkB8iDH9pljD+frGQ20dClbZmztSOGgjym2TuT7gF2UJRkGu5zkuqJ5FwIspnw1dY6k4K4FMDdmFEURHGGK6QDcPUto5ECw7hrJrS81tK1WK7i8vKzxPH36NEg/GAzg9PRULBedKPiMfUaNrSkjkAZ33Y/7Bu6couHcsEWdERQkR4J1wqJHPlLDMw+PTZbcWJ3i25w+bmJUb4pPc8pIizW+Mzwm77ihUktD6UjVwZKeG5wl5dziBJHmCEsfWvqNypOuwOrY6ULW7EJe5Tpt9g3aUUG03amssowBCQ9958qyhRelsRtzGEjGGY5buu+YjzOeD/mblnffDB5It/bxBDrzBoMBbDYbWK1WXt8XRXWqBm373PHJ+1NywHMZzvUVPI0E8/OPZSRZznk3NhdK/U9pKstSPLI71QZUB2gDkhODP8f6JqWfW8e4Bl2uC6U2iy3auc6F6ReLBXz99df1bmjkdTomiqKA4XDo8Tpe0aCVB+DLk5SeFTsamfMdl8UUpOOIcQyXpX9fMD2hB8tZr9f1+gGguuKEyrfUXK7FUzLL0jn88Bnj+TuHQnTg8ncQ4tzRx1paWrbGinKcjDOsZ5XOhYf18I8qTtFE8UnHFbu6S048JxN9J6wvK12akA+hpt8+dNNOWTlM3v2aNg6nHKz2Y2jT8TE9uznuEDjvCymKQqHJ5syl4zGRMiuP7BCQ81RySU5D4yS6pTAfl3PgUtxcTvllSXYPCY/mHPbf/XQ+bbSsajy6dD/+8T/B//pfP6/nK4Dqg6KLi4v6A7pvAki6HF+7A1Q2MU23wXT0Azw+70rzLJWFg8EAyrKsT1ORaEM8OWthfjWaBpvNBn7961/DcrkEgOpUr08//RS+/vpruLy8rPUVhH0eBfoAry+0Xa9I6yhL2ge4XxBb97SBHBxSWjx5oC1kOWNjhuIHiEPMyI3vWtoULo63KTRhbG6c0pQNqZyUEyBFW8zwlTJKSfTm8ncToymfLKjhj6ejhsl9w2az8e68pe9o8On1ejAajbwz2jVjsmS8thrgH+RL2ghH0/FwbSyknGuSTLIYYGPjoklfthkDFnnE42J1jOHUDPaas0mSXzGZpqVNpcP3VN9JC7bc/rLwYy5IBvAmtGi4LXFdLRja0iRB13pZ03y5baTxuuTwSjlLYn0lOb+k/No8xGUhd/jF6NB0PC1PV7ALnFp9U/MI/qOeQH/SKQE8nzb3URqkclN0aTo5d0Rxo1Pb+UhzlqVoTgH2Rcw4EdPVuS5M+4THUbwpxytP05Ve0BVI7ZBykPI8m80Gbm5uPF1YkgX0Oo8cY6amW0m75Gme2PpGm1djcxWvG1/D4ft2u4X5fF6nQ4O/pZ97PeRTHlOC74RksUo4zWvJQ8PiOPPKQnwAPk4eVt46W+LjSnZEW2nleaR/pKEKw7bnRxj7zldruVUZEv6wfRiGGk/4HvJy+tl3xuWukyzxPr2pNLE5qx3+OGCDa4jormi9fP6vg9TOsXje7+my5PBSfC7LMH0VFvKXFSRa47QlMYrt7I8Ffhepzp9ff/01/OpXl0E41W9z1pE5IOF1NLfHn4NLooXOqzFaJVzWtSpfG8SuzuCQWvPReZnbImj4druFzWYD6/UaVqsVnJ+fw/X1db1D+h//8R9rXLg5RKLjwUbXHVj045iO2nXZnAaLbX5fNHGI6bz7pvsBugPLGjOVbldzDJ8vNNpScNA7Y62wK8HUJUgLfrpA32WZqba5S6HUdDJHpSXni4QmeQDSypi1/SRDGFVuuBFwNBoBNWJKeLoCzTiJcS9fvqyPFeRf/W82m2C3rnSkHcZJXw9qQGk49DG+a0i1gcYX9P4P3lex9pUmudw+sKRvirsJ5LRhrlyMOYlwTHAjNjemWvmcLqZSdNC0KfzWxWuTRbnVGLvdbmG1WgVfnDVxyEqwLznS1nCRK/NiPLEvkIzyXC7R8c6ddQiaQ5Y6zDCM46Vpabg2v3FIOWTpvaap/sUvyR8/fgz9fr/+uvzm5sYzwMTmQYu+0cWRck0hxqM4hufzOTx//hxWqxUcHR3BYrHwHFPIC3SnoIWPaV7JQSi1i9ZG2MdIM3UkSWkp/hhe6SQJSmMsbVNZxceCRG9KPiGOq6srT5+jbd12Lrkr4HWhbaHp+7H6bLfbmneltsf2w2sKUIagPpa7VsMTdvj981oeil+6+oTr6lxex8YiHX9FUe3w2W638OrVqzoNOmPpLh2prLIs4VvfOoL33z+CJ0/GjE500lWOOwzz+dA5DZ0Dye0SpWmqst29qM65qB8LrD1zvLQ+6HCscPN0YR6tzv5xvs55WRR+G1RhfHes/d05nQpGP9JK//V24XSF/1UZtA0xTGkNMcwfltpdr7r8z3XAcnx6mjR0iSsH/PFA32nb84K5w9a9V/kLloe/+4DlS/Xz4/ydn9zZyHmgkkVaWvfM+caFc/7gNIROUTlMLlOiVf+VXl6pbTgeKX1Y3/Bd2uHzYHeJ60na3Mvny5RdRgKMs+DX0nGdGm1vR0dH8PjxY7i+voZPPvkE+v0+PH78GBaLhVfGzc2NpzvsyqHxAHlwyGNyn/YVCqn1omWt8wCHB5KMlK6EaepL20Xfp2za/KMWgI6csU2+PuryixoJ910Y9nOM+NQIyQ1Fu5jkuppErQZNGpfTHhqOWLq2vNSEf1N1S9GkKU4xo5CF5i4NZBTXcrn08saMkJyfY7wXcwKnwg4NupA7Uv9oTgYLDmqUzhm7TdKlaGrSr1Z+zZFvsTaUJlGp3SxlUDxNHYkxA7FvgAvT0bqkFlIpvpOAO96kPNI8Z+En7lyR4mO0dqlftIGYnNf4iNNukedSv8fSpGhsAxZ8WrvQeIm/Y3hifEhx8jSSo05yqNAxFNNLJJpGoxEMh8P6CLD7YsiQjOlN8axWq3r34GazUQ1ZucZxjM/Rnyz0SotA+lFTDn3aeE/N5xr/txnLsTHFxx1A/Hg+Ka8ULo29fY4BqV5SGoTcOT/Fs1yG8A8vJdro/MrjUJ9DPDljRtMZrG2TisdnfqShRbctyxLG4z6cng5hMOiBVqxctRKA7ZzF5+q/iu8apP6hNOj5qn9Kq/8u82sMd7xcXn/53W8zTgemoTtkfecefUaHnBt/Wt9ZQcocOmQBuLMqzE/jY2F+nB7vp4lDrJxmuDSQmEGTC7wPse/0MsK4uANWoxfDYnEp0NqU9ltZ+vj4u6VMTivFQZ2ncVyxY60lnqTPnIdl+vSyK6DrQmmN6HDI88R90WFTIOn/WrqUbhmbc3lcr9cTP4yi+HN02NhameteqDfM53NYLBbw1Vdf1fcG46kWqKtj3i6O4nyAEKy277uG2BrEah+PrTmk8K5opeGH1q73HfbdppJtEK9y1OavmFxvS7tlHCAd9J/Da7EzlsO+GCOnnNhinhp2NIbiHd5m90uXhhCLM016b0K/ZETgBtvcvre0g8WIoyl0MQOxZNCld8o2gTa8H1OycVcsKnF49xWC1EaWncivi0IPsD+5oxtp0gZbqS9yjeLcEB2rt8YDh6oQIV39fh/Ksqx39mnyirad1l60rvx+NZ4vpkxQQy4HXNRpSi3dicNBCtNw0TrxeKmvsQ2bAM3blF9SbbsP0PpUc9A0Aeo8kgzc+wI6fgDCXYXUgUDpsy6eNEeCRANNpwHGW47mRlpQJmjjne4Gxt/p6SlMJhNYLBZwfX0N5+fn9VimeTguzQDEece66zwXrDilcSbJxevra5jNZnV78/HN+QKfpbah+Wk4l5GpeZHra7grvyxL73jVXq8H4/EYer0eXF9fBzsasT/4MbRSH2J6zTHdVV+mjIcScL0aj5ttcqKMNEYsu4l3ARaHItLM+xUg3E1LceKuIkme0bbEq0cob1nmR4qjKAo4Pj6ud9mu1+t6FyreOxfjeW3MaeVJ4ZZ5C3fI4q5gipPzkj+WAPp96Zji0NGAOzoxHMO4w5A7paqysP4y/b7D0TkV8V3edQu3OMN7W3k9XFhIn1Tn2I5dKY9EQ/hPjwrm7zQ/pRGfsdK+A84vw79jt6LX30lJ6+D6Kwa6riCl84M1R5buANPLi9EopbVlyMObluuUX25DlPAaax3v43f95njC4YOE45bunKXjNUwn9Zufvixdm7rnUD7QZ/89vDuY9xFNQ9MSLEKYj9PVt/TCeT2qXyk+c/pomhAHzV8SPKHzt9+vrpmaTqcwGo3qe0E1eN0dGdKciTpaaq7jV3UhSHevI/T7/cCOtlqt6t2p2nqgDRRFAePxGBaLBXz55Zd12PPnz4N1k3Q9xevc/w9wv4Db/h/gbmCXMsGCu9/vw1tvvQUA1SlOHBaLhXqSQO66OGVvSgE9mZLnC5yxh8rcu5oION5dTjjc2EIXtpymWP6YENIW4dR4kNO3TdpCcwg0wcvbKGaYo3VLGQza8neOgS9m3LWWk9MPKf6JxWl9x42+1IDI8+IXf/zYSSudD+BDTCbFxgIN0/gR47gcsvZNzoTGabCMzVg6Pt4lHNy4L6WLyX8qp2NjOtVeUj1i7a2Nl5T81mRhr9dTna4arU3lp4XOXJDaLoVf4iOa7y7lD52frG2Vks1Nx3GTdtCUUpwfxuPqiMl+vw+bzQZWq1WQT5tzYnM9pTmlGFv4gzokctrKwkO0HmisiRlUUro3bxerU2QfQJ1YqY+vco1KWj9rY4cbkHLKQR6mZVAaUvOd5sCSyuFjocu1F8UnGdVyIdWvKTo0Pm271mqzXtN0B63faZzWdxpw3qLGTm1O4nMEpWE0GsF4PIbBYFDLVoveH5tDJJ2pTf9ocl3Snfx6Y925EwTp0p2QDqfvbPJxpfNbcWfmBHoUMq2Poym8i1WnocLh6hffSYt5NAetRrOjM3TU0jQ+Tsmpi7to3bHHrl8oLivk6KbOcaXhiMX5+E3EkbS2DHliOZ8B+RiQwis+KMAfd9QxSxFojnMabnGu35YUSUbpsbdTTlqdBhqGz3K6kMf4c5oead0XSZ3VZpzXnX6QswmgybzQdp63Qo5uE1vb4pH6WnrLel3TC9BBy/UpfoVULljsjJodVut/zcayr/58gDgcwtqvCVjWOikbeyp/Li0PcPcgyRhJZtHrTvr9fv3hp2aXlfik7XWV3CfC08ZsExLP3ZudsbsaMNrktAuQ7svp9aqv0xBWq1VwJKwEVsON5mzZN7Rd2COkHASWMna1i+R1gZhSR4UbCkEEVCSHwyEMh0NYrVaqQ/ah/dNgaS8aLn1xk2v4bgop5ySlTZpkcQEUw8lBWhxZnJUxvFbZYG1jaVLmbWCV9bQsjlfaIUbLQqdYjkOW4rHm4Y5BTn8upBaIUlpNaZcM6XcBXOFsOz55X1Ejwr4Wa3RR3+/34Y033oDBYACbzQaur6/h+fPnwbFc3EFBw5HP+d3jfMx3cXSWphtpPBbjM4qTws3NTT3+8NhXzTEZc1pxR95d8zIFC69RXkUdIpWWP9MwTfZanOVaeeg45ztfY7sc6O5ZrU8xDR6ppNWL02OhmUOv14PBYFDvxIwtDC0Qa38rzV3IOgtdXeLWjAOS4zKmA+DaD/sDwNc1Ym1D6UAePDk5gePjYxiNRjCfz+HLL79UaaD3ENM0MX5GkOqZqi/GS6cNSLJW0o1okqqs8PhhdFwWzPlX4XHpCs/hSB2Y1KFYlwZ896mEjz/T/JKjTE6rQegAdTh8/L7Tk7dJmF6m0bVJLN61M0DoXI3xAncCU10dbp+pIyvmjE7ZO1JpUg467rDKg1z5ll9Grrzj9i25bM7vzgnr95G8Kzb1LJXp4qU2wLBq7LtnPz68KxbjpLRaHK8zTcPz8rLpL6SLykr37vKWpCxdh3E4wp2zFS7pF9aPtzPiv7m5qU8+a6NzvC5A5y7pDl1pvpL0IK2dhsOhZ/PF8q6vr4P51gKptFJd8N56fm8trcd2u61t0ffV6fcAhw85699Uuge4/0Btllr8yclJ/cE/gvYhi2ZbbstT1EYlgWab0uT1vXHG3ifQFie4mxCBGyYxbDgciobzNpNizDiVY3hva8ChcU3qkspjxRkzIsWMe02gSd59K7xcwbSkxy8qaRivq3S0Gy1PclQ9gA9NJg3NAEvxpRxTPH+qzBw5wtPGPgDIgSYGZ83gyGnizkY62abqbuXrXLlocT5rdFgcS5Y+1ZwmUt5YO1BaJHmcopGnj6VJ0aLR1gX4BlZZDvJ0nA7uzJGMBLuEVHvghzrUAUv7VaqbVCcprSaTmsiQVJ5c44jkwCnLEmazWW3YWK/X3l2PsTpoziApTWys7wM0J5VUT+t4amKUsshgTUYgrZRmmg+Po5XuYKcQk0H0GOsUDklO8HpoMr0sy3q3hSZTpTJThkXOr23nvH0C50GLHJZAksuIT+pb2vcp+igOjhtx4vpwvV7XOnhuvzSZE1NjTFpnSvzJj/KWdKk4pHd4+u8lgLKzFknFfwlXLvg0VWXTZ16e9p56jpdbh9Zl6un5fMzzhE5eyREuOWh5HAB3ykIdjmW5MAvEZGg83q+ftTxeRhM7RpOSpPHK8ebMlyEtrn/p/E37BxMXXn9C1AkrO2YloLRY24j2sZZfwsXz8TRS/hCPZCty/3q5YRj/aWmlfLGyYzh2YYOLgbaeOSTHCjWwN7E3WvRzGoYf/knzcs7aJTVv8vU+v9YGacE0lqtbvolwX9vCYiex6PK5fGeF3HV9DO5rH31TwWrbG41G9ccs9Gq25XIJ6/XaS49rI77m4h+hWmzGTeyyGmh4HpyxOwKp8/h50ZLnHHfKLpdLceGeu3uMQspYdxfGOwo5C/wUdG2Y7MJ42MTIc6iAhj76gQGvX2zXC4AbI1ZB/E0DKy9p44jv8pTGO9010QS0/pMMiNJiw1JHft+YhSYJdsFPUpvG7pfNwZnrAE3JF2rgLYpCPDoW8ViN91J+LSwWHzOSa7yeW8ZdgeZUlcZnF0YJiwOva+ALfXTGFkUB8/k8mZ/TyZ0RKRkXk0ExmmNGEIshRiub0315eQkAzumAd1JzJ5vmyMk11NwVpOS5tPCxzv9WORCjAds2ZkSLOVopX/O8KTnMHXK8Ly1jNFUO6mV0ByYA1B9G0HQSSG3D8/H5PAd2Ie9yIVaHpnVDWUId9VL9LO0em3sRL94tR3evAMjyUBo3Eh/l1DnWd5LswvpRnY6n8WkBkJxPFQ5+byp1HOIuWtr+fKxWYVVerYZ+PqySXy51dPjpMY7++/UI6dYdpnx3LATPai1KmRYJp5bG1V12yDr6gdUH3ymfhI65CpcfbqmbUNt4rNdX+dAmfzsxZ2kIHNfp/JwWyk/4Xj3b7hPGMUfbpUof9rVGh/xcBmFl6WhL53dpY8+cJl+uhTtzkQb/l767lsdrNHAaw3L8siTcAFTeSu2Yf13ENwVo2/B1aFcGeQp4d7ykU3bZPxZceGrPA9wt7GO9foigrWkOfd37AM0hZkPhMJ1O4dGjR17YZrOB+XweyFAM50BP8wSw8VPMBsUhZRPSIMsZazX6xojQDL+vI3ABgh55PJ9/vV7DaDSCjz76KHDMnp+f10eHIKzXa3j58mWwOOdlScyQ4+1v2s8p5UEyrNOdk5KhrAlvcBokh5CURzNcW9uhS0OTNinFyuwSunYMpOqTMqi/rjLCCjH+TTkFLID9LR13mxoX9F9zoknH/Wj14XSl5FnbeQllM8dtGW8WuWJJb3U8IOAXrNLR9zz/druF9XoNg8GgPh4J82p3WfJxJ5Wh1VnbDU+dHNLYpzIn1gdS2dZ0TSHlZGqKi/NDLi/zscfxaI68JnSnoCjc0TIvX76E4XAIR0dHsFwuo4Z/Pu9Tp5j2dXbMyWGRKfxZ6wcpXSxOo0Xq31h9Us4YqU535dziEJN5+JM+WJEMYJiPv6dks9afmo6J4ZJjiNJGnZyxuZjn13BKOjCvH39Gh590z9dwOITT01M4PT2FJ0+ewMuXL+u1xGq1guFwGNAsldMkXktL25bG3RXPSvpEbH6jfGmVz7E+jOWRaKG6GcbhTnuUkVQPkMZN0zVVjNel9snBS+sU5kVHDh3T6DgKjxcuSxeOqGh6js+n1y/HLy+Mc3iTtSR5q2fsBpqfh0lpOF7qFIWo0wwi/+Fu2HC3cSoN8hVtVwB6N25Fo2sHRzemkeY/1w7tIUdutcsfx9MEUowmxWt5XHtzCHna8WvIU9J9wZiejjVedhgXthPXHeTneHypPFdp5PewXD8tjY91rly3kJ6yDpd/NF5rrzKg08lBrR7hO8Bu7EixdWlqzdoEdyq9tM6IlcnnzaY0cTzb7bb+EBrjYziazt0aLQi4OYifbsfhm2572zW0tdt1AVY+T+mBTXCmytvVmHjg68MAbT0mXaOi8QMAiLJM2vBI11FteJQf8Y74JJuVZS5RnbFdEGsFzRC1a+OhBXIXmRpQZQCN33hc3be+9a3aSIJpvvrqKzg7O/NwLBYLODs7g/V6HeCmIDFgTKBpRq+uQTIKSMpZrhHDUq6lD1N8GKMrZ5JqAvvG0aQPJOVWmzSl9juE8X7X0NQ4aVFONH7kBnKpD6khHcNiPGIZH7nQFodFBkpxkvNGSptKRydq3p7Wfsf06ESlCovmBMDF32g0gtFo5JWFO2vo8URaudygri3cKI2SU4QrK1xpSi2QeTlavn0o27n6QY4xP4cGKV9XRncr0D45OzuD4XAIRVHt4qK6Dz2iV6KD6kpSOt73mk6h1cc6r8fyamGSPOFjXSoL3zW+iBlJYu2xL4jJf8pb/Gi0VF7an035XFpPcN1TWvRJdHFnrFZPK2CbaH2vzcXojKVhAJUz9o033oBvfetb8L3vfQ9+9rOfQVFUu9M3mw0Mh8PAkZvinaZrID5+uUF0l/JZw895IedEkKbjKiZTpPlQopXPz7PZzEtLP/TFMqleR98lOjS6Y/pRTJ+UgIZzXTNGT1k7D0qAwDnrO2BvYwDvNAXiAPVpcWljDi/Mi+mrMv2y0g4zKZ+YiuBytOtlh/hdGk6XTGc6Hx3HLo3vDHb5HC7kG7p7EtO6Ovo4bmMLuc/8NGIrRPPYh2/eOO9qug3x6M5Tmeds+oori8oaDKdzG/KGZUds6j8NtP7hM8Uh3xUbPvs4eBzlXf/dhfO0Th5ymmgamhfTaGWE5amxBH8lmzmdpVcO/fFyLMbhXJDsiHyO2LWNcZ8Qm+ekumMcrseb2CRj5ebALvr/AQ4DUnYc/G/a/3y90NZemSrLYhfOsR3H1v8PsF/Q1iPUVsAhZiOhvjG0NeXgiNHIAU/J4niXy2WjMg/ymOJdL9RzoK1xUjqqlRpCrq+v4X//7/8Nb731Fnzve9+L4kNjZmrxmzqelOOUnjX8KSGe015IpzZguoRd8RQ1VqSO5b0v0IVhnuKRQMJtcWh9E8BqqLbkT6XjOyv5PdUWkORRakzTcYMKl+aQS41dmpfiTTkYJXpiDppUu1oWnJLSqDmcpPqMRiM4Pj6u70549eoVzGYzrx/5vIPHVl5eXkK/34dvf/vbcHR0BKvVCubzOTx79gzKsoTRaBTcVY708aM1tTbRDO0xoy7HG3PUYVoLT+wDuiqnq/kJ+YQ6Pu6CDnQMnJ+fJ79EpAs6vvjisjDHmaDRRcvhRhPN0SaVa9GdaDwtSxtPsbpJY4rLvUMErQ/5Ql7TCWLxOWVSBxB3TEkGRIkO3OWNc4t05LBGCy1XMmLgPFYURfDBpQac3sViAV999RV8+9vfho8++giurq5gNpvBy5cvPQdeG37hfcJ3sFO6aF17vR4MBoP6eN1d6v0pXun3+9Dv9z1aKI9oQMcc/7BKO6UiBdLX1ZQXUJbSEyxouxZFAaPRKLnLhfN5qp6WNNJ77n3KsbJ4MDoXnPPIdyZienymaW9zADo5Ma37d3GIg+dz+at/Wrajx79PNUzn7yx0feKX6+PVjwz26dPbJTxm2NHip+VlaeWDR3u4CxbpcmGuTWh/+U5BXUckWFtPd3YEXU6tdlyaHOHh3GErx/MwXUw5vvTD+JgFr1zKF3R88HEj/4d4tWc+bt26wk9bvYf3ANM4jq96152mvrygTs+SlVcy2uTdua6sEJf0TOsTx4E0lEH7AgBcXa3h2bMZzOd5a33r3HZI9lsAWWe36j/aGkpyElltV5rOKOVp4zR7gAdoun7i0HbdnVNGV/bnB7ifgOsoSe7hiUAUttttvY7bB/R6PW+td3R0VG+m3G63MJ/PA9pvbm680xAkOEhnLMJ9H5SSM5YrKqvVCr744gsoiqJ2xlLnhGQglBaz2jGgmI+GNWlPi7HcgjtnIX7XEGsvyXCjTXw5BjDNKRNLn4O/DS0aLi0sty4xfF0ZD3PoOSTIGbuaMVlqB7qz0mJYThnZLI4yLIM7M6z8IdHA72DEdNwJotFtgZzxxZ9jYTH6aJ3RaDyZTGA6ncJ0OoWrqysxD+1XdLDi/c7o0N1sNvVRxQCuDblDvq2M5vMW52XeZhYjMOezmFOr6/nlkOSJRIvWzppRwWI41+R6LLwsS1gsFo3qwGlMhcXGUGp8pdpQW4haHalxZ4O+e4CHWcfGfQJOb8yRk+uM5XMBgHynZk6foWy0yJtUOdj3XLeO1UMDWj9c9D1+/BhOTk5gOp3Wi0e87xbvGc0tzzcw2z9AxDUKP8L+rmQmX1DT/9wxhPWI7XBG4E7U1FoK8SLfctmO/3THubYmkPgvViepjql0vJ5WsPBCWfrOH3zn/1Ja/2hV37Fno0/OR8uG4Ljg/HL8skoA5W5bqa7hv+24YvCOb/bz+mXGwyg++V5ffHbpXT1p3bmD0W+XGMjtHePzNM420C3+HEcsd7hqjCj3Bf2YoPovvDHkO10pL/qOVjc2dODxYfpSCU/lc+G+LNJ1MZoGZQwITl0rHf6zf0Qxy2XGG6OFpwnrDrBcbuHVK3n3Doe2toAmedvQZCnTWrZl3WFdu9J0/KNAnibXbvYArz+k+Cq2hqXv1nUkxw8A6oe/kj0nZ3zn+CdSY+Nh7Nwf0Owc0slp+LxarQJnLNpGm/Acx2/NS3fE4omDAO7EQo5vsVgkyzhYZ6xlYN5HsNbnzTffhJOTE7i+vq6NK/xoKgQ0LGgMGTsGS/o63WJ8tzoaLNC1ATHmEOy6HElgvG48e9dw3wzMXULKkRJ756DhwHwoR3ByS+WXxplmJIzRxOWTNBnHHCG9Xg+Gw2Egt3Bi5LQ3cdpIaaT2SDl+uGOS4tUA2xCdqf1+H8bjMTx69Ajef/99eOONN+DLL7+ExWJRH0OJRvLtdguDwQD6/X59HDHuUMLdNLStB4MB9Ho9WK/XdXm0zbgDQQJsc75zCPPTNoodWZsDdyUjqMzflYEhh5YmTo6UQzIVFsPLHQj4rukktAzOM1p6mi8VJ83XKecJOpE4Hdb5nvI/r79kzEFaY2nuK3Da+X2ptJ3b1pO2YS6NGr9x+W0xHFicWDhX4Y5YfvwRTyvxAcr6o6MjKIoCzs7OYLPZwGQyqWX+H/3RH0G/34e/+Iu/gMVi4TlTY/pEal6Twvj4x7krNX/sEuiYl8YyT2ulM2UgluZRGh/TCWj7pfhts9nU8gp5iupUdIzFvtTm9KbSSfTiM/8AwirDQoeC29EqHYMLZEcedRZRh+QtRgidUzRMxkXDq7r44To+RzN3Zrn28uvh53Nt6fdHeH9reGRz0Kq3/3bnK/YDTcfDqudw5ywP92lACNsO6xQDqZ53MTV2X6bUgZqjNXTmxNJoTlnHYz5/8TGhOzIdHjc+sd/DvLzNtDbE8e7eSxJesjThXbF+Xglv6cXxPBRnJaOB/cIwvSz/Xcvvh5WRd+mfp5fb9S7hrvVXbf5popNIc7LFdsrlbczO8wAPkAu5fJTL+5q+2lavz7VpPsD9Bkl2Wnh3uVzWax0JLNchafTwD4Y5TCYTePz4cf2Oa+j5fK764DRfG4VGztg2E0cTh1XXE5RVaHQhXLjxmr7HDPKDwQAGg0H9BTtAdR/UZDKBxWLhLaQlwwfHR9PG3jV6JANpl4JS62OLIUtLn0uj5FxJQa4DLFc47Eo5swjBrvo3Z7x1jRMgNMq+ThO8Np65I8Nq6KMLBa0/aNvzuUDrF4szJZUuNe654ydGdwxiDh0LaGNcM0Za5kQeh8csTqdTz1mEabljh85BuEsWHa8I1FGLR+lrBuCYHGsqs2LzVYwXNbpiOLqa21P4tPBcJ47V+cOdH7xMKgskY0AT4HRKfJPDI5Khwsob0hjQypDKa9IO0hjnbWxxalA6uhhDdznPxeoR408enjMWLE4eviDK1cd4OSkaJP2fpqPvdKemNl4s/NHv92G1WsH5+Xl9VyzS8fjx43p3rES/FmYBPvYkyDVcdgVSe0oL51S7x/BrfZOSASkZRWWqlIfO71Lb8zDruMldS8XmF61+epqSPftOIZ9c6uSk+KlzCNusCOJDurA+YTrtWcJBy5bSS+W0LTcsP747Nk2zdTdsKhwAIIzD+Kreft8gxNpYgl1Ne/sRVXxs8jD52bWd5IRN75LlvAfCBwau39xdsY63aBiA2yGL5eU1Xlnq7S2Hl148TePPxzROvysWw+x9Luk5YX5adg4+iUZaRiV3abl5u3n3BV2tFZuCZQ6jYKEvpttZbAFWOES7VU57We22hwr7pLGJfSLFq5a1g2XdZimrCeTYczncd976poK0ZtB4j4bT69SarGdi9FjwSCfe4lUyEt2W8XywO2N3CW0GfQ5st1tYLpe1YxVhMplAWZYwm83qzsa0fPLu9Xr1Fuh+vw8/+tGP4OzsDH76058GjMKPAZPunZLuk6UCeJdtIzEx0rQLiB3dbIFUe7Q1nFqMhxbowrGwS9gFbal+iSn9OK54fJd0do0vZhBJ0SEdzYgTxHw+h6Io6p2lWBa2IZcXALbjjGk59F+qDx9HmgFeagNtsosZPiX5x+sutRWvE69Pzh142k67mCGbyneE8Xhczy+0z+j9chxevnwJy+USPvjgg7rc1WoF6/UaptMpPHr0CFarVU1P7r2UWLbWHjG+0croWobsQ142ke1WxQ2B8gt1uljLarKwSS24nQE4NEYgX+S2f6xcOoYlORM7PpTKHE1+tJnn+a7a9Xqtyg+LMyPluOkCupy7aL9pDiQaZ5kncMd+TFZKi7vBYADT6RSWy2V91BEtD+c1iT8luqSwGK9gPNV3UVbjccJvvfUWFEUBP/vZz2C5XKon11BHIp03yrI6GvzXv/41LJdLmM1mcHNzA7PZLMCDawu6I1dqT37CAR3fWl2ldsMFK22/u9Jb1+u1NxY1HtVA0i9pG6Z0lxjvUsC+4cZbrvdMp9PaGEDvjkX5I5XFP+CK1Y3+p8Ycr6fUtql2xuiqjvyOV7o7k+4GdQ4heqyqvGMUaSoI3irctXHaURpWuXJiYVxR+P1f1Rv7snoOcTscfv143QHCe2Djd8Bq6WRcWplcvnLaQUjv2ryonXVSvUEI90LFNF4PdDYVdjmnpukOnaThe5UP+Yc+F0qawsvP83HewzB3JzDlRze+oHbWOkc7PYoagg8oQHj3gY5xnqYsufwI87jnMsgjx1H8+k5axIPx7jm2qxUR+WkB4nlknJjPtjOXxpHaiG3+TQVp91MXugi3JaRo4HpkVzbBB7jf0LXtMLWe4WXG+DCVVwvrgq9jeuoD3D+IraMobDYbL7zLvs89HRZ9dRxWq1VwxdtqtRKPKJbGS9IZmzKCceh6gMQMhl0ILMlg2DVeNJ5woG27XC7h5cuXMJlM4OjoqM6H6QCg3gnFDSuIv4mRk5bDn5sYdWMGKg26VkCaGlK7pMOKp4symxjuLWVaDKM8ftcTZAo/N1phHok2Or4OydmTkrdN+i6VTlsQxOohGRi1MjR6pEWRJpMlHBhGj+OTcMTqYJnfYu1J+4Xyn8RvMQXV6lgoyxKWyyXM5/P6WGLpPj7NWI4GXjzqYzKZQFEU4l0MuW2h0S+Ny1hdpXLpO+eptuO3ybyfk96ijGG6pjqIxZlH08XwaDRrY1DK03WfSOMslUeC3EUi14+ksVAU7kOzoihqxwjKJD4m6XiItbdEh0ZPV3NvU97rgoactYbkoErxtsXAIOFtA9r6gvIFnkhwenoK/X4fRqNR/XEFxWMZg3hv7Gw2q0/RwTw3NzcwGAxU3QfxaHWnbczzafMbzSPdR87bKAY5slFLKxlAKS08P6eRz8cpGixpY7oNPsc+9sK4wWAAq9VKXA9S+aG1uybf+LPUZhrO3HWHwxeEAHci8bS06LKkzkfn1LDxjytLoitEoafX86TzV/mqOAkHr6OFljhdfhtjnD7uHG0APD2IdLt+ADGvn06iL0wj5b8L0Nnb7xML3X645mSVw+W1OkWI6UL6pTHknmk9qPPe3xEryTs3Bmn+sN40rCy1Ni2DdGlIz/1+mVL6WJjOm3JYjt7p59PahdKdLn/3EJtndlGOBjHbVVs7tjZHWvHlzLe50HQtmYMfIJ++LteJDyBDTru2HQMcxy7He0z3zMn/AIcJkk3Daj+z4m+CpyiK+jRBbf1blv6H0tJuWQ063xm7D4cMLaftwLI6FHKA06VtX6bOg/Pzc/jbv/1b+M53vgM/+MEPVNx8ly2A+8p7PB57BsEcYwHmaQIWA/tdCkDNmNIVNDHK84lrH2Nml3AoE5zGa/TezVg6Kz5r/F0Bn8S4Aa7pWMitb+xi9X6/7xkYY87AmLFys9nAarVS76Oz0GtNE1MKuENYopfXiRq/NQWWl7FcLmG1WsHZ2Rm8++678OjRIxiPx/Xl9qgQSMoCfT87O4OiKOCDDz6Aq6sr+OKLLwAN5ugI0HgmpWDw+Zk+S44oXmeKxwJtx2FTfWJf4yiFC2mhPBpbKMcM5vgvHVVtcRBK5Uj9n1M3/mxZPMZoo23Fx4bmwIiV0+v1YDwe10612WwG8/kc+v1+ra/RLypRT5PkAaVPKzMVvguwzIWxtNJ4x7SWemh8LDnXpPf1eu2dRiPR3WRu1MYHhqNTjH7Zix/PcKf9Bx98ANPpFD799FMoigKur6/FMjUnGNaTOz0BqvH87Nmzulxeh9gY1vpIGj8anev1utYHdrXW0NLG5EUOT1vp4HKDnk4ixaEMofmtBlzEizu/y7KEm5sbKIrqAxFuIIhd2ZGSOdYwWmf+gZxkyNDowaiydI4h9185hkriJKLpeVo3rn3coDjKaBlIFuJzz/I9rTSuwhWmo+W4dtB2xFJnlr/TFQQHqlb/GB7erjTM7z/aPogHSF/Q+lEnHa8vzUv7oxDShSC1+WGDz2d1aCnJk8J7xvYFwLQuLPwvIvk47pCW6r/0+reSRyi7sB74TOsBjDcpXnsH4XjneVx4iLeKK5XwEC/Hw8vDsKruYfv4aaT04Z2umJenlcJcWjnOx8/vi/Xz8Ta8D3BXthWrPsrz0P8UaLpw1zbKLu3ju1pr3FU/f5Mg1sbSmj7W1035YNd27qZryAfYLWi8Zx33mE46VbVJf/L1bMp2hTAajeD09FSV3QDVmkeyMVjA5IxNGUxT6duCtmg+1IFlMRRKaTebDcxmM3jx4oUXxvNeXV0lF7O4uMeFeBd1kMCyOJeMYzS8ifHLml4yysUW/9KEkapjEwMeLbtJGzQBjU+k91h+yziUeCCFv4vxbFFwmxr0msTvG5oe+S0da6s90zA+lvFZAz4J4g4OAKh37OBRexxXjM/osXyUHkvfa0qiJDt4Pq2OPJ828aPs4MZ8iR7ERZ3WV1dXsF6v690wkvEX8WHboMN2tVrV8YvFAoqiqHdV8baL9akm36V2STmZtL5oMs5yZem+x7JF7lt4k6bV8FvzoNKLukPuxysanbtoWwvPaflSMkpzQEntiel7vR4Mh0MYjUYwn8+Duvd6PZhMJt6xsJa6xMbIPnnWMhfG5JYEOfoGfbc60DQ6MR1NGzuuKKZX4DPOXVSmU2cU4qP8gHnwSGF66o0091nH4WKxgPPz8/r4eeS3+XwOg8GgPooej+rV+F2iRYtP6XZN1yJdgqbfY19Z5yMpjB77K5VrpU/DHxtDOJfzo+qxT5usKyzGs6brnvi4x/8SQHW2Vu88j0tX/cvH8XqlAToK5Xi/PIq/qgd4uBEnjROwAT1amTvHOB20/pQe1/YQ1NNyXDHSwtuR00XTh+WGNPJ6uzhQ42l9wdvZFzq6eT4/7+sAhfDsrw8KxQFb/YcOWpqX85t7Lwm/8DFaACjOVOxP5DE37kjuAsA55EO8KfFRlrS/Q4dkN3l8p6eEL/yPyzGKhtMTB92RivRh+S4sXo4Lz58LHI5QT7Wui3Oha902hY/q85Y1r5ZfwsfzNl1LNW0Ti56NoNn32tomc3XYB4hDmzZssn5K9X9T2dDEZt4Gdmljf4AQYryQshfQtYvW9xJ+ax9b1/cAlU11Pp+ruPCkwab2y2/knbGHDGdnZ7BYLKJpqBEdQWIA/Cq66WK8CUgKiWSEp0ANIbuiM+Ug4GklRSplKGnq5LMYPbqCGJ05/RATkE3rsg8lLWYwu0/AeTFmBLQsKqRz+mm8VIbFIcAdgviPjh5qsB6Px/WXRbSM1F2siIsb65s6ayx1k5yK+I4GeZS/MceO9T5Wiu/m5qZOv16vod/vw2Kx8Npgs9lAr9fzvibDHVpXV1dimUVR1AoHdZLnOn5yZAIPb/MB0V1CWxnOnUKUv3JxN5XJmG84HMJwOKx32FEezim7qVJqKSO1yEsZH1JzjXX+o+nweNmjoyO4vr4OTgXo9XpwcnJS72qX5lvfqBrSwuO7MpTsGlI6VQp4O/JwrudK7UfbDB1X9F0rTwpP6ZP0rk6UwavVysPR6/XqueL6+rr+EPP4+DiYN2L9LNFydXUFFxcXXliv14OrqysYj8fwzjvvwGw2g88++6zezW2pHy0zpx9pP7WRAV3piDnGIqtTUpq7pPEstV1TQyWmnc1mNQ30VAwugyQ+p/TwscDjpLK5HLPqidpYrX74DgDkKFzJuerajO5Edfnp3bFAHKkhVPGOFqwnS1Vqzj8/Pw3DPBJOvZwqr18XmRb+n0MP37Xr4lz5FK8vj8K2rp7DfqjeS/Iup/HbInScyfpNEMTyxOPbgGXqjZdPHdS0Tajs8B2sLoyn0Ry0tN34P61LyfgC+QB5qSQ/VzfKB5wfCXZWFo5ZfA9bpirf5XXv4bOfpvRwhPhcfTGMl494KA2cVpcn3OEqlxm/41Wih8dRnCkcQotKgd9IsK5JAeL6XhNcTXWYXP1gHza1XDg0eroGS5u37ZddteGu1uxtoGn5mh3kruvzAA6k9Zc/d7efr7qyjaxWq6gzVgNtTcmhkTM2x/B1KHCIg1CiZ7PZiB0+Go1qIxQ6LvilxtvttvWdTPsA7AvtHl1M0wa/JYzT0wbusn3btJXVQNKWjhwcFudhTlkxY9MhgsUQ2hXE2rGN802K14x0aAwejUZQliX0+/164pOMmRLgIhQdvJIDN2VA1+IsOHgdkec0+nOdjZKRtyiqe14RNxpikQbpaHxqfJX6JcdwyuMo0HrzXZY8j1VZScFdz/HWuatp3Sz5Y32q4eWOAO5MiuHWaKBpOe1NZY7kDIg5VbSxy9umTX/RONyhvlqtvB3FuNt8MBjA+++/D2VZwnQ6hfl8DpeXl+KRstxJwutrpX3fQPU6iVbqMOL5KMR0uFwel2ikDiSt7Fj7chqoI4rWlTqpKH7kC3zGI/Y///xzGA6HcHV1VZ+AQPHEgMbzKwCQntlsVvPncrmsxzilsUvjB43rglfbyncrDbFyYnwYyyPJUnxO8ZxljizL0rsvVqJNmvdz9TdOO76j7iW1D9eDtDB/nAAA4PGochg6EjG+QoVOWf9Y3VsMdRgNr8rF8Oo5dN46py6/G1PqC1p2UXAe8I8wxrIRJwdaVxlflRcdbFV67d+VR8Mkh6yE09UPPDyuf3idpHjEDcAdt2E63hZ8XoeaRg3uepqk5evDjbaDPzYwzPV3eKJO9Sw5ZLUdsi7M0Yl9gs/+R0FlCVBN3QUAbG9xb706hjzC278aOxLwcRmH0nsOxzSVF+7Zr5+PKwz38VdpSvYv0VwyXD59fh5f5sl00zAfp8uvO2HLEmC53MJvf3sD19fyh9cSWOY2y5y8az1VmlesNFjXIzG8XdSP85WlHm1tRTH7Rkzv3Mc627ImuK+Q237S2hegXZvk8JGFprbrhxR+TU/MwfEA+4MmvJm7ju8qXRvebTqWeb5OdsZ2IRjagMUIu49BmWsMlhwG3MEKUNE+HA7r9sXj7pbLJazXa2/SlAx7uwSrcZ6Hp4xcGk/lGKTaQC6/pOosGVIlg0wbo1VX4zCnT7X8+1ISYoaxmPEL03IF2AJ3McHHjHkx2mOTDK1/avcpB80IJRl2U/ThvYr0g5Obm5v66Fzr7lE83pga+yWHBsUVM/rHwOKgoe3Dd2RrzljJSInhVLajER13LuJ9lZy36fHNtE1iC62yLANcKVpjbTEcDut7aKX8TRZ7TcagVa7kzuNaO1kN6DzeUnaOrI+l5W1C5YHGI5w+yst8V+8udcKiqHYd0g8QuIFSohvlSew+a5onNrdQXlmtVtDr9WCxWHhtUpYlzOdzGI/H8OTJE+j3+3B6egpff/21t0s9Jpt4vbSxo80Lqf7gfa3NG5ZFi4SjLN2R9DHZ0wT44txCW2rekujn6Xn5/Kh/nLvwXliaHj+cxDyDwQB6vR58/vnnsN1u652qWpla3SiPU57BcmazmUcTHQtSGbH+tvShRvO+dShNztH4mPEnNn5SMgLDuWyl6YuiUOVRCjcCPf6cf5il6X+581xsTovpEzxvTJf19fIQT1lSh4/v3ML0WjyjDCBwSvq4KB6Kl6fh1Zbw8fpouKu6y3fHhjS7tFWY5bhirR65O2SrPKA4Xe1HE2NfFx4O3l48zk9TRtNAwlm7T/DbQqLL11+qf9wRC7fP3Bnbu40vvHg/v6wXuf6j4ws/cqAOv+rX6+F816vzVHixfq7fhdqTuNi6kNuL/H527/4zlu/eSxbH04Y8RsunZdC6+XmcvuPn88PpO6WNlxW2gbQjlu/E5Ucsh5VaLjfw7NkMNpvd6eS7hJx1EQeu27XFRyG2qUR7b2p3kEDS+dvo1pqu0DQvj+uCxn1Crq66a92W65uWNRmm7ap8K84U3zehSRrLFtj3muMBdgs5Monbty08ZLUNSesiXONreSR4LY4pPpRB1gUd0sK7LKujKSUjqLaovUvo0tB2HyBluMyFfRiyc8HiWNgFxAxGfIxI7Z9Lo9Wou29oy1tavax15Hm4Qq0ZO2kfSEqcxuvaJKfRZDWc54JV0dXycR6MOUO0NsTjifFOyslkAvP5HObzuXcUMkB4zC9vf62dc5QTxJ9yeuQ6bPYJMfr2RYu2IMe+1sYOhdhca5F/WB7iKYqiPvIaAOrjijWHFyq62pij/Kg5LXKBOr/oUedanVOOlCb08HanzjWM546usizrOzvpXZ28/TTHBe2nWH3aGmLa4sX6UCcMPQY35rCh5WG4RIsUx/lYy68ZMDQe5noG/af56YIPHZ14yoN0dG1ZljAajWA0GtX3zfB2om1olc/UEUcdf/hP776R5h38WU5vyOGLQ1kXaDoL/Y/lo9BELyjLsv6IhDvBOT9qC33+Tu+R57TF+FhKK42J2NHgnG5J/vK+5/paWEdM43ax4s+VjfldWu4cBO941aLGTd99CB2SFZ3he1V+mJ/irdKEu2DDsuQjlmlZsXIxjP9zmly85tjWd8hKd+9iWzoek+hHfvHrF7ZvScLCtDQ9gjT8ZBHD+V1Kkwd+OZzn03nlMUP/wyOHAZzT1Y3VAnq9ok7H43w54O+SletEHXz8uYTttoSqz7cML5dldKy5espzQAG8j5AeX274OPkzT6vjCR22rp5Sm/D/8LhhKX1Ig//s2peH8TqHRxhr+Xi5DyCDtj7S5iQpfwokHBbcTfBieFMdK2Vv6RpyaD0EvfEBfB7pQh9uSkOX6R5g/9Ckb6x21Jyy6BU9AFBfzSXhaCq3rXk6dcZqE09X0MUkdmigGaEwDgHvm6JADX7SIp7jkPJ3DW2YFiA+yFK8ROucM1h5uSnaY8ZA6d1i6MmhVSorlk8zSFppsiiluxyXbfDHjERSOV2Vu29o4lRo0/c4HqnBWAMaLx1RaR2rmuE4xt80XRtIjRetDjHHg3WhRo0rk8kETk9PoSzL+m5xaiiNGWAl+mMKTqpdm4JFHmnvMbDIPS2+y3HeZCxy4HxAHVypfNq7ta9RIR0Oh9Dv9+vd19oYiMkIzanTto2oQ4Afp5yDI2aMoeWk5pGyLIMdkFRGYprVahVNq+HntEi8QMc+LTNn8RpbYMd0MInPqCMHdVW6Q56no3JR4pvUfGCpL+bhTjCpLSU+kMrh/1K/Ss7Y7XYLw+EQjo+P612NeL+sdoe7Vh8OyGOYhn8ZvFqtgnDfiN8eJHmjyfcUtNXFeF7LbhbJeSilk9JY6cldn2n8qF3PIJ0qYikzNtb5uEi1TWre0eRZFU8dKZiOOwslRyHfUQoAyp2w/L/CIzuI/XJDGlx+OS0v28LS/no+jpfXE9NIOFzbhzjlcjRHLeICAGUXLOYH4ijnafywkoTzfgzzcXwp6ECN5RiRChF/nuii9XXPlWym6xn6j3agHknXI/n8I44xvKa+phd5B6+SKqEoSqDiktLj/unYKmpcFS/5R35LQIN1OVAq6bX+LFm9ZDw8DdLg4sIdsrQMCVeMPsQp0evTqeH05wBKq94Wryfk2ARzoEtdwwJN1kG55cR0LiofUnN4U4itLXZla/gmQ44N3DqO+PogtR606MpWO0xsjbkrnn2A5pBq/y7sZJZyU/aAwWBQr0HQ1sUhJru0eEwTs1NTeC12xrYBvujatwMmZcjsEueugLeZVaBa0lgMcDn4qPBu205W482hQa6BlufVcN4laPVBo5v00QLA3dN9n6Hp+OE7wdbrdX2vIn6pZDVGx+hp07eSgdAy+XKIpcPJX3NKYPmr1ao22r/zzjvw/e9/Hz7++GO4uLioceHOw9FoVOfFdo2NWXRm5dBtTYfGYfzyLGZ0pXnaOOjuQgHPKddaN25Ay22zNryPeZfLpceTlC4O/OhfTj/92pDWKbe/Eedms4GTkxP4wQ9+AC9evIBPP/0UBoMBDAaDgObUGNR0lxivajrjfD6v243ufkPn4hdffFHfDzqfz2s5Jzn+LDyV69Rqmseq39E0dDc0HkWPTmhpUc95xsIbmmFBk9tI12aziTrxUXZRR6rkgMUwOqfRMjANx4vz3fHxMXzrW9+Cn//853B+fg7D4dAkJ3m9tLTaCQaIX3Y6hbtxc+fBruXwLvBJaz/6TNtAGzMp2U/nwLJ0H1DxXbGSrM/RNzgvS2PMAlgOztmaccJCHx/HKYOGe3fHo1Z50JHjnIj8zlgMd2X5d7sChLLm9g1LFtqiivd5xeFGOqt47pgMd+hjOsSJ5cfujnV4+S5a8PBhHYrakSodTxy/29anH0B2LruyXRu5NJRuDKfpAOg9ooWXxk/nO2Z91pGds7Ehsj+1UOYn2r4hOCdmUWC6cHdrUaCzlTpd8cff5R2yiBsAvH5ydPoOvoqPqjFYhW3rZwC4ddZW9e71trDd8nGPvIHjEMt34wfjSuZ4pM+0HR2Nocx2eaSjfTkeqGmiaXw5Jd8V66enedyRxBjO36XyOE5XDi+ret9u9WOKJYjFPYAP+1hDdrFW1eR5DuxrvZxavz5AM2hjL+HQBE/b8rugHXHErlp7sPMeJjSRC5Z1BEC1hhkOhyr+1Ol+bSH36r9vlDNWmrxS73cBMQMRBbrA5QzKjUa7BC6QtbIlI5lmKKLPGn7NQGSBmEFSa8tYORaDr2VCSNHVVX9qNEn4pfbOKSeFvwnExoiFTomnDn3CthjRrQZ8az9IhllalrXNNKcHygTcMYVGRe0OOw00IzktX6JJwqG9W4G3S6rfOB1cpmMb4V3hb7zxBhwdHYm7JalMzVUGYjRR/LG6aHliclZqd94GbeWGxKsUt1XB00Brr9S8FaMvhp/zdoxWyTislesbtO330XCc+JOO4JVoy8GNdA0GA3j8+DEsl8t6d6GmD/F6SOMzBjQNH1fcCbJer6HX64njE+/sxONrKV25c1AsvVb/GC5rmU1AkwESUJ7gjpwu9R+JRt7PluPYtfxlqd8bg/GDwQCm02lwx2csjwax+SUm6yxGvdz8Eg0SrV33awoo/bE5KUc+aLoNheFwCNvtFpbLpSiDY7pHjCe4/ADwd/1S/U2jmfetll6iLbX2k+Ypy5rLj3OOE3TgYfKypI5A987jeJEOpxcKIOzclHDyZ5rfL1ve1UrrQPH577k7YnmdJYes1Cau3rEy7DT4dNM6+Xnl9tbah8SQvtN3zUq4OOxJ7NzS4O94laEI4ooCf/6xxamf+wA5vE/W4cZnycFfejRU0AM8jhhq53Hhvft14Q0vhemg9RsNj4lnVxcpre7AxHAnV8o6nOLldPjxIR1VGllHdTj4xwehY5nXx+H1+y1Dndw7dGnPSkFq3ufhKbtqF9C0/traz7rWxHhNj+PtZNFFLOWmdMAHsENOX+fiy4Vc3T9nLZqyy1jGNeLZ5Vi+K9inDO0Kcu09FFJX59D0/AhiCpJ9mNu8UrTQsBwbr4b/G+WMPUSmbTuYcg14+4ZY/YbDIYxGIy9su93CYrHIMoak2i+mrHQFqX6gOzQtA5aGSUqRlj/XgdDEyA6QFoqIf5eQw/sWA1gXsMvJsSu8uXiQZ2MTFUKs/lpe3EGERzTm0JnT3l05OjRA+tGAn2s4p3KqLMt6Bx3G3dzc1HfDHR8fw9tvvw2vXr2C2WwGAKGTSDLU8jhangRcZuYce4h46dGkiCelZHcN2AaS3NqXQqu1mWacLkt/13LOwlrCJZXDd//lAjVaIH9IhkGksw1wPl6tVvDy5Ut4//334U/+5E/gb/7mb+Af//Ef1fy5u8VScswiHzAN9iPujON91tVcycdyjmyMyQgeFlswc7mD/EWPzdV4Hk9HSPE95WlpbtfqSPvDojemeJeebMBpRVkttSum22w2sFwuvd23vHzZeJ4GmpbyflH4d/hKtFHZE5NbFjnOx0sTObBrGS3V0bruoKcBcJybzQb6/T4cHx97fa6tB3CsYPtzGvi40GQ6p5/3lTb+8L+pPOI0xT4wiGCBsnZKFN5zVQY6GgEg2EnqO/h8A3Nxi9t3GmH+cIeqvxuWlhHbeYs4uCOUloG4kEbnyPKPO3b19dMhzQAuraur7Hil7cbTubrRcuUdsq5+wOjx87r3vJ2yNJ2fNowD5hDz01nWD8kkrYCTQNv3NkXdRo5e/zji6ufrVdUYd/pWryelC3WxiiZXDqfNH3v0ftjSG8vbbQm9ni8rHP4eAGyhKOguacf3KXBj1w/DnwsLd8LSOmB5Lm+p4PLTUDwhPWVQhstTBu8hTk6LXLb/TOdlF4e7Y6v/lGNZHyd3Bfu2x3ZRnj+f7A9itOfaNWL5+XqlCVjXNftad79ukGPzbMOnlr6xrBmttkNrmTwdtxvydDnl3zd4HcdP0zql8qE9la6vEObzOczn88Z2MIQYn6Xo27kz1uJA+iZDrvPsPgBXWLRFPr4PBoP6PjEA+5dYViMcpUkKj+GNOU1SeGK0WPE1Nb41BW5IlfCnFKx9Qpv2oXW0GBUt5d315Nilgst5ge70svCAxSkgyQNu3LTio+ktDipaNwmoIhejO0anlkfKlwKqRAyHQ5hOp7VzZz6fe/3SRh5R+jQ5ZJXRaJCmeHj6fS7KLIuHXBwcTxtlUpozOf4UdNnW0lwYw8nHDPJkm/6VeK3f70NZlnB5eQlvvfUWnJ6ewvHxMUwmE1itVp7zX6M1p2wup2I4YuNa04U0npLa0yqXEK9mHInVI8VvKTponficocluK89IdbDqZJyG2EI9JU+leK2tJZ4oigJWqxVcX1/DarUS65oCiXZt/McMJU3L5ri6hK7mMCtOrY+t9Urp7NQpIuHV+pHmb1J+SleS3jl9kj6mQc64l+vh/8Dbuemeq3eq73FHInXeSmVIfes7a7Gq9F16pvmpk8vR6OPh8Vo7AHAaffxhObnpafm0nWk6GQfm0e6RlfJrfVGFIV/pu2UxvRbnp9utfEqUDrwtdSiE54L9bkPruY5/8BY6YXu9Kh29ogfz4ntN7W0/8eOEe71tXQfnZHXO4iqO/lMHPsUl1ZnOTXS8u38gzk//Hby8ElB8QmwyDZU/nC73HzpaNbpQ5lDcsqyL4Y7pG1pd/Tp3Dbnr2Kb42+Sx6DlW+ruUK13pXhaQ1lExW45UT4u9zGoPwTiLjnbXdrVDgl2Ns1yw9FtKp43hjaVN2fof4HAhhwekcKu84nio/JLwxxyxVjtJG967dztj92m4fYDmYDFOL5dLWK1W8PTpUzg6OoKrq6vWXybQMrsWyim+o/fmadAV/1qdIbuCXbRvV8Bpi7U33ut3qHXJhS4dsdgmeKwmhqMDUMojhcUcnhTwHjU6fjSjoVRGrC5N2wWdPtS5o9WTtku/36/zWoHXG9/pl3/9fh/G4zGcnJzAW2+9BU+ePIHNZgMff/wxXF1d1Tu1ytLf7Whpg5jRFp9zFWU8mpHDLsZbroJurU8upJwwElAjPe07y70Wqb6gfZ/jnJBw8TxaXZEPUb5ieFvDBeI4OjqC7XYLv/zlL2EymcD3vvc9OD4+hg8//BC+/PJLuLy8VOvAd5elHFYSHTHgY8aKF9NjHv4Fp8WRxGWttW60zzS89J+WRedbrWysC59rpfyxNpPCttttLW+xrSSZE6u75JRCB6k0Lml7aPRqvE5Pgnj58iWcnZ0F9NIytblPMqRJ/cT7gafZhy5J2ygmA3D+t+xc7hIsztwmshPrgbyEPLRerz0dgY6LJrp1rsOTA8pF/HBK2qltxcPpis0/WhnOEeF2xwLgs3N0UUcsxgPbwUrDNaduVSbWAeoykFwah+8FcbKC4vREXL6MKOo8lHbwdg/Sst07byrtbliflpC2vB2y1FHn17sosN0hoNFvO9wB699TytsXaaspLzndpFYKa2pDoDvZpo8xqWzaln5+7oSVdsQ6B2u1+xUdrfF/6pzFXbToRMVnTmP1j+OucsJutzjeqp2ulVgoAKCKr5y1vds+K6Fy2Lq+rspC/sP2L+pyUkDHJk3vOyrl3a/gOVz1XbQ8DcUD4OfjNBGKGI6yzsPpomW4/9gO2XCHLf1tt6W3O1anLd3eD3CYEM4h3YBk++JrRivs2in/ABVY9cMu+8Fqw4vR0pYejQbtRLgHOCyIrbHarvUk3LFjijWQaNkXP0Up7cpx1BReB6frPtowF/+uaNIM3lQx1WgpCnd0Gr1LjRrBuLNCqwNVJiQjWy7EDDK8TJ6u7aRpMbJYnSxthErMUSNNtFpZsfp0yZMxo4/koNCMqq+DDOoCJGNqzvn9OQbf1MIjd2w1MW5KZcYcWhL/p5zKOTThommxWMD19TVst1sYjUawWq0Cpysvpw1YFmZSXYpCPhIY4yz15zzTRgbSeQbfpTQA8hFNmlPK2odafansQcclbzepL2PjAuMlOZbjOMrlUZoWn/liPwcfdUjR/BiOR99eXl7Cs2fP4Pr62nNuSLTRdsilRcLH42J8GBuTnL81/cbKd1r9yjJ99HXOWJfaReLDlBy28rgGqTk7RafWv1x/jc0BsfIkQBlpuR89Nm/E9BqNPh6WK995fAyaGveaAKVTMtKk5oCYfp8LNA86Y/GIYirXJPnIy7PKgpjeG+Ohoijqe4ulOSgGTYy2mlyv4qhDhL47RyAtUnrnafU0SEMh4kMa3DvWgebX6u/imvK/Tws+U7wVDfzo5RgtEn6/fVy7+2Vr4XIZUpsD8PkBArppG4O3my++Y5bnr3N1LnZCnuFlh3XS+qeo8RS1A9OPczIrdU9sD7gT1oUDVI5SOl7p/Ed5vYTtFp2q1Lm6BX93bEFoxB2xknwpwPEGPrv2Qr7w2zB0goLoVNTmJdkBycOkNOA5aKks8mmrZJiGI6wbrUeMflqeC5OctbJD27Vb9b/ZlHB2toTr63WWTpUCbY7q2nidYzOK2RofwAHVyWNpYusQTe9osq7aFe8cAmjtvKtxEoOm+m2MVzRd1oJXwxcDad0m2Scpba8jX90XsPQnH/+W9WYK72azEU+cktY2dA0u2Wr3AVFn7L6IeJ3hENtwnzTlLEKn02ltYOUDZrFYwHq9rt9j58QD6AYgSXmzGqVSQMvkA/k+TgaxNkwZVQ8JeD00nrTsbP6mg+Y0ovzedgx1AdQhY1EkU3RTpY+n5XdcA/g7fGLOPY6bxlN+LcsSlsslXFxcwG9/+1sAAJhMJrBYLGCxWHg7KWl5kvzJHaMSfZohOLXoQCMR0qopPJLDqAuD/mAwgLL0j06OgWTIxj4tisL7cKgN9Pt9GAwG9RzHDfaWRStNw+/oBJCdExrtFFdO+/OFGb+nNacPNdq4jvDVV1/BX//1X8OjR4/g+PgY1us1rFYr787lGFD6UkfVYNtS+qRxkaoLH98ItI94f0mLTC4jYnRY+VRKJ+3QprIwhtvCZ1pYWdruTdZolPDyMd3mRJOu5ivLTtBU/0m6Z0x2U5yajkflNZcnOWNZ0yWldG3uK9MgxZ+7WBNRnNfX1/Wz5Ixtq3NqRml8pmVIfMH1FGmXvBW4HLLwrRQWOjPorliMr5w7VTq+/qJOoNJL63iYOi/QGeXCsAmoo8ovx6OalenCEGdx62C03h3raPHLCx2wSJdzrGF6VzYtN8TD60LzY1sBxO6RDeUJxem3pXM+SmnkvCWL43UBEXa1JJUc+bzMkCZ3pK+PC52all+P7YT132O7ZGlZEs1Or8D/7e29sdUu2aLYQq8HsN1i/Xvef1GgHJN1AzrewrK5I9Hf6enyhU5QpF0qQ5YlkozkdEg7TaWdruGuWIke/yftcpV2yPJ0YRl4d6zQqlCWAOt1Cb/85RXM5/LVHQ/wzQPUB/ipZzRe0sWkudqqn+foiq8THEJ9mtDA9WLetzRO0l+1MjXbUS5Y1gmSL8ECTdYEUp5drS1yaLhLPDGw2At5+hxYrVaezyhWLreb3gXc+THFhyCoYtDE0HrodTo0oJN+UVRHEKJBVTMWSRCbLKx5mkDMMI7x3KgtwSHyTcoB0yXk9DXPQyFlENeMsg8gQ8qQy9Na0lj7WnJi8HdNudPGXEpJlMpJKVnD4RDefffdWo6h/Lq+vob5fF47hqwyihtP0ClxdXUFv/zlL+t08/kclsslbDab+k5ffhRlU/7WFCXa3nxXV8pZon1EE+sf6iiTHA0p+pHOwWAAk8kEyrKE9XpdH5OfUsIkvkLc6NxFpc/a3rR/cP5DXBwPLRN3L0n00b7BtJIjTAqz0s3nMk6DlseCg9MTw4u8gEfTbrfb+qMIGo5pAdzirav5V3J05eSRxqg2R6XKsdDQRhYgLXwusNDpjIqlONZi/ZGS1Vxmc4es1N6psrkhivOrNk+01d80uRdbGKdktBWP5kCTZAXH24WRDcvo9/swHA6T9z5bcPL0tF+1Y3i19ozpK5Y21YDOaTm6bAwkfFKb8blMKreLNYllruaA5FZtX5B3rItz9hXEYcmdhEXtxAsdi/QdgOLEceIfeyy9Q+B8DfGFdHKnY5WW0lal0e9jlfDRsOpfdshKtEo7N2l+SjPFI9Ek1YnHu3rSI23l9qHhfhzXK7j8hJ2Co8m1qV9m/D7dsB9ouDuyGIA7YsP30DkbHmlMcUl1QZ5BBx/2Ta9XOfWqI4l9x3CVj+oVBbgxkQu8P/1/fPbb3fGR9OzL1HC3LE1D80rlY14/XNIf9DwgOJi505XjwTiA0BEb4g+oicR1C7u2o8Tm4G+CDSdVR6tehOmsV0FI+qOmN0k6R5P10SH0Z45uuQuI6YNd+yWa6J4pvVVag8RwaetTaT2J/ynbTVP9tUm+nLXBrqCr8vZFd045OTyfWi9T2yW+59iKc8u1wJ07Yx/g9QAUvpadJXxQ8a+y0RlL732TjGE5Ru9YfGoC4ApG15OaRtddQxNlah/QhQKkCWKAw6vvIYBFsUoZ3TSlygIxo6nFUNql0iyVN5lM4Lvf/S4Mh0MAALi5uYHr62v47LPPYDabMYOITCPHzR02vV4PLi8v4fz8PMAxGAw85xs6PalcjslP+hxTcLlTRZKHmtMi5gSkeaT5AetAx+1gMDDJ96IoYL1eQ1G4u0bX6zVsNhuYz+fJOnN89MOh4XBY4+N1iuHggF8oS/3EeQAAREcFzYdz6mazqXcBxxZPEt2xhbVUR4mHtLEpHc2aYxjA/IPBoOb1+XwONzc3teOd00T5XnNYWWWURnduemmMcEAHIz+COeYw4U7JnLk8xrsWXSg1/qUv6bUxgXWJjQmKH8cFl6O8DCp3sB6cp3P4sQtILSABbPqlhQd5OtoGPN6qH3fRFoPBAKbTKQDIMq4pSPNqqp3a6gwxXsLytRMamrZlTCZr8i6lt1F6m4A0VqV4jPOdDfKxxUXhnCHckYj5+E5Q34GIvO07ekHYEeriXJjeFNKOWefo8tvAd+DR8vGdxvF7WyFyXLFrI32HrGtDLYzTHNIDgkOW0le9y8c8+20rO2V5Wh7nx3Ped/g06E58u7bgeDkvMQpu29dyFDF1xMbujO3d6n/+rlg8rtjxHeVT//7S6r2K3G5L6PWqo4t7PX+uKApgNEqnDMmVd+OahvlOSffvHJI0L8Xl18NWjp9fOgrYhQNzpPq4/d2wtD05XX5d6BxM49M7YkNcchvzctrCodhHdukIu09gaQdpzk19nCrltTzje4695xD7ctc0pWzJVhwIObhiax2t3tZwyls03lJGDLidyErTocirBwghxQdN1mJU/5DsABhuuUJL4x1L2lx+f3DGPsCdw3K59JwH4/E4mh6NGFzodwUp4Z07iUoG7ENUPjToQmnoCrpot5QAfoAKkF9xlwqOUZzEqPNPmvzov4SbGsRjYFH0aXjK+KfRI73H8tKy+v0+nJ6e1s7Y8XgMk8kEXrx4UcejM4U6DTj9VD5g+9Ly+HFk2Beas0uqQ0yBjSkUWpiE3zfYOLnX6/VqB+Z2u61PP6DtzR0so9EIRqMRfPDBBzAajeDjjz+Gm5sbsQ4SrZQncfcpOresOBDojkyp7pLRWhsbtK6cbxFPrtxF+sbjMZyensJyuax3AEtHT6aUTat8jNHJZQSPk9ojB5bLJazXa5VmyzFaqSNuNeC8ocVLPEAd5ppzmtbJcrdoE/olmS21U+5cyfszRrc2RlK4efukeAzfqaylOwSKoqjx0HSSw2ofuoNkMOPzRMqZpvWlNFciSLqqlDY2tnMB8QyHQ1gsFmo6yZBE5WXsQzsLvl1AroGrC+A6ljTX0D7epbE0xaN+WdzZQI8k9uPRoVTRxx21oQOSxrsqVXlp+eAdJSw7GxEXx+GHO1xF4egsiDMVy/P7RD6umDpAabm8npQ+Jytlh6yjOTzC2dEMHg6ap3qWHMvNnLIuPO2Y5fFhutTaos4RTRcDGw94OYS8VTh3YlbjRt/tSo8irnbI9tfEIwoAAQAASURBVOt00jHF8jyG/26sAWzr52pHbA+KYktw0GOJnSPZb0d8L8m/Xya2Wzge6Tj0aaV8QmUBx+vkRpheSsPLp7SB54jlembJcPFjirnjNCzXlZE6phhYPK83rSdvs9cHHuw27WAwGNS2CgDHa8vlUmxbzvOpNd0DpKGtztymnduu5XZVjhWftO6RbHYPvHj3EFtf7YKHpbUM1ZV43i7XPW3k4WvjjLVUuEsjllRezIAfc0poeWJlxXAeOnC68chIgMr4NBqN6rjUgLMaoiyGwF0Dd0wcAmjtw41dPOyQQaKdhyNoxxo+QAVFUdS76/BdcwACpMebZKDX+isG1nG9S9nJ72adTCYwGo1qgzL+MC11ZlvusdDmEXQq9vv92pHDFRD+npp/UuWl6JMcYUgDvwdzMBjUbSDd6cAXfDgnfPvb34aTkxP41a9+Ve9ojc21Et3oEEdacoHOO9oxwFZI8aAUb5nr0Ol6fHxc75jebDb1kcwpozwNs8wD0pjWaJPGZGyhZ5kvN5tN7bwpiiK4K9aCg9Y11u4WPHxMafiQVhzDEj/SvDhXacfnWiHWX1r/tMFPy7DyfM7in/Yddzpxfsb/2O5i7rzn8sLaHk3mNQ6cdvquOedTMl0yaEhOO6lcHhczyjUBvmjOyUfp5c80jPeLVmeOOxcOYc3By5OdMaX367rcXHlCHRB+eOiMxDDnqK3infM1dET6/U3zIs1eqSA52Nyz5NQM6QrveA3L09/lMsK28cuNsVgsnVxP1xaUTkpjlT52NLHv7JXq7IeXJNzmmOV4KcSHXIrvY3qXXIbUTz6+on6m6Xynqfzs//guWHTESrtjC688zjfueOIqQa9XwHaLjld/ByylnR8RLbUXHbOxtqRjH/kAxy1PB8xx6uL8cC5PaBqKh5Yf0uHnkdLx+sXiXVy4G9hPX97WgTt5/Xr7UIVtt9inrzd0NWffB0itRaR1HQduZ0UbAr0ajgJfk9NwTee6L/bC+wRt2rTt+raLsqUyMV5ba2i819V1XA+we2gqj1NrS8sarykdTdagMT9KCl4bZ+xdgNWo+DorBhyaCMWbmxtYLpdwdHQERVHURw1SQ32/34ejo6P6fkRangZWh82uoUtj1T5BMmS6RVovmEDvw2SoKZKH1D8WfmnCU235EMejpZ+ldpUcdk3BYujGyZHudLLiROAKH8eP/1dXV/AXf/EX8Pbbb8OPfvQjGA6HMJ1O613+6Ixtcw8eTSMdbygpsRanrwSxNqXPOQ5Jmgbv9OTOF/qOu4lxZyc9ani1WsFsNqtxWepTliXMZrO6DPqBQewuVv6MeWl6y7jSjNLIo4iTOtd5e0sKH3UoIM5+vw/T6bRu4/l8Xjv8JFpzHEyx/JJzg0NqLObIKXpcMcUv0cbpo+noBya5jkD8j+3M1GiR+kNalCJ+idfvau6NOQRToC3++X2eEr9r+Gg74BHm/G5Q/OeOb+0+al7+Ptu5LKudCsgnSI+kc1Ge5TKD0s3nRIzX7lDFuKIovDG2C8D6SPfFxuZEjUckHkOejc23+x5LlHfblp3Dq9ywJenDbenJdcRWaZwToSwLwGm2ursSed7tKOUOT6gdpO4d01NnLnV+QL3zjeN3dLvxRp291Cnpzx+8PJrOOcR8+mm9XB9Ijt2K1lvqAB1i1LHmO8iwMohDS+fw++XTOmI7aY5jIPWjca4tkRaehqbzw0sWFx4FLeWn0I6VeWbZ2c3rSsNlGUYdsvEfPxWneu6T/x70+/SYYpceoIBezzl0OW2uT/w7rCu6t7d6ftW/eNxxtVO2vK0D/hfkXXIsghfOf7S9Q6ejozXEUwZ4aR0cTj7u/XBM78ZpiNsP47theR2144Wd/SEWvt3yNsJwlI+8bVz5220Jn356DZeXK1itmq0DH+DwwaL/8zHPr4bTcKScaA+wf5DWTKk0PK6Nc6xrsPhRJDtWzH77wKOvF2jru7ZX2bTlE2mt3RQenLEgf4HRFKRFvjahaR0pGdm1ifIQhU7KkK8ZtqUfzTsYDGC9XgeC2WI4iMWljDHW/rgr0Gjp2qBiMeJbDVua8VACboCM4ZVobpL2LseV1fi8C7xa2lxDIXcO0fBcaGIM506+JrJSMnRz/Pi/Wq3gyy+/hF6vB6vVCvr9fr0rMVYfLc4ikywLpS74OKbw8j7OkTn0Hl2pPmhIWq1Wtczv9/swHo9hNBrB9fV1UBbvaz62l8tlvRDVnF4az0pyoomzm/MVlqntcLY4GjTZXBSF5/i26hxSmljamHNDCos5V1J5JT7R+C6GT2pbSW7F5FiOLsD7ldOei4MC5SPexzmyL1dP4s7YnPyUPnyWZAov0zo/clwxnPTfom+n6EiNhxikxoCVhljZsXFtrVvTeTVGT1mW3pHjGq2UDgtuaexJZe9Cr7f0UZu2lMY7gqU+OI4tZbfRj6VxpqelebAOzolaFFRWU+ein5+GV/1LnYglgLCDj9Jb0eicuvTdOU/De1UpbZwOXkeJZlf3QqwbbzqpDVL1c/n8dLQOevlY97AO2Lbxo4sxjTSv8HRSnOMJLQ3CbpZy8jHWEi3p8nkC59Sk8xiA+6+e/R2veJ+su1c23EFb0VqQcsq6f11fuJ2vctmcTqkOYTtYAWmh+WiYS5c+wljCiXk1vLcp6jj38/GG9NCyywi9YZyLp3Sh7OO0WPVNgMvLFVxcrEzpkYa7tH3EoC1dh1y3HMB6pNYxEtC1Lte9OR6fH2WdiZa/C90pF16XPgbIs7em1qxt1iNa2XcNmp2Hv+fYpB6gPVhlUVOcVj7n+SRbS47slGhK2bVy7CEPztgW0GaQl2UJw+HQJHABIHp8xOsy+dBdSwCyobvpTq+2EBvkTWAXAmsXIE14NO4QQXNmxOhtY2R6ABkk4yZfAOwDdqWM4VdZFO9sNoPf/OY3MJ1O4fj4uHYY3tzcwGKxgKOjo9oxlksPr4ekhEhta3WUSIprTMm10M/7eLPZwHK5rB3Vk8kEttttvXMzRufp6Sk8ffoUnjx5AtvtFs7Pz2Gz2cB6vfYcrBJfYdzV1RWMx2OYTqfegjRliNfkf85x05JCifTirnPc8Sw51ixQFNUR2fP5HH7+85/D0dERHB8fw3Q6hcFgADc3N8HJErzufIGHHxRodZUU4pRDqWvIle20fVN0UYdjURTeO+0jikvqa67bIO9qH5dhODpK6DHnGt27kq0aPol2S99zAw7KRH4vuSTjUgtwDKM/PLq7qa7O65CDC/V8HNtWmTEcDuGtt96C7XYLi8Wivv+Z1q9pfTQjG+KmZWj3YwOA91FLF4C7YmM7ru3G6LQBahcyicsE+q+1d5v+pHjwX1srSrRp9ABAtB/agja/4a6v6lftjC0KOmfij+6OBUDHKJCdelTOVP/OocGPJ3a4nOMV45BM+o648LkKd0f/hmHUgRe7IxbYe+HV39GFdXXtU/3TNnVp3DuwfBIuEMqHIE+VJn10sdSGlG4SIqaj6f04rpd5byqeNuDKcG3m11l3wldtSR2YRd2GmhMWf/QuWHcMMf73yZ2x6WOKKW0VXbIj0O2ELQMcPt3cNsDbXdr5yXeGlgEdbjy4+crRB14YL4eXSetG04ThUr5YupKVJ7/HysBdrn5bVO/V7li/vfiuWA5h+9ugazl/SPbJQ6GjKWj6TBO9AdfhMf0aw1K2z7Z28C775b738T5Aa/Nd2XO7wHtf7OWvK1jG6V2MPW6z1NaoXdDWdg2ZShd1xu7baN5GMLehUVu4xvCnJsAcejhDaYJHoim33vvuU6lsCtxAmcrfVZvHwKLctGlHy8SSwr/PyagLA1GusdyCt4lRzgoaTYe0uLgLyHGyWOSqFM8XGlr+WD9Ii4wUUJ6i/5pslgyVm80Gzs/PYbvdwmAwqB1f/GhEqWxOv9QO1jbF/LljSsMnjTcqjzUHCc2L/9KpB1oZ3MGFO2On02l9bD29LzRVN3ocMO9bXvcmyqfWxyn5h+0izXG87bBsiX4at1gsoN/v13cD4dGtMRkWi+eLdBpmbbc27Z2bjoNmbMjBGxsbTehK6TS7nOM00OZWTRZz/dUKUtqUnMzBHRsbMVqo7MT+iY03DZoYEPDDh/V6DYPBAJ4+fQqbzQaur6/h+vq6dt5bcFn0qthYj43xpuWl8pRlKd4jbsFhAdqvu4KU/MvRYXYl6yRadq3bajqENo/SpOWtcwGT4rsbm87pCeyI36psmt93it6mEGiQnWsujjo8yhqHX5aflu5CrdpCOq7Y5Yvho+X6ZQQ1EetnwVWVLx9bzNtIx41zvV+/sHxsByDtEuLkOKR4xBWma8/ftAxtV7GWz8XRRAX5L4Q0BYmTd8vafr1b3FQ35/Xxxw+QXbI+LfgszaXhuz9OghxBXv8/dMA6vCV7dzj995AuEBy3EnBapHo4eSSHSXSijJPyVM/SccypOvn12wXkzrex8K7mYctaja/vm6w9Dgly25CuowH8qym0dciu7Yz7avema7O7hpx1RhObaO56xmr/k/Q8LX3KfsjtWLm25EPox/sOTWwzMRt6rszKjW/jN2lSZmqtb7GRRJ2x+56g9l1eE8OpBYqiMJ3jjkcm0ovUNdAMMLltdhdKh9aenBZUDqS2Q+j6S3yNln0L8K6V013BPuizGoViygE39ucK7ViZhwq7NqZ13fe7WgzFFEFeXsxAyZ2NXNHAuOFwWIcvFgv4xS9+Ad/+9rfh8ePHQbl472mqLS0OrX0CdwIC2BRs/KcyHZ2hNI/UH3jPLsYtFgu4ubmB4+Nj6Pf78OTJE3j16hX85Cc/qZ20dFcVd14intVqVTs2kK5UnXIcbpZ5mvMAdw7jbjTqmMC68bt2JUC9YrVawddffw1HR0cwHo9rRzjtj7Iso+0Qqw+lBfHSXcq5jpWugTrUqJMNwK9rSsHW5ABPKxk22i4ocpy1Gn1WvLkL+yYOOAmQLzebDfR6PRgMBqr8jd3VTNNoRibeVwgxvRN5xHpPNK4BiqK6rxnLwnFJZRMF3LF/fn4Ojx49gn//7/89rFYreP78OXz66afw85//HObzefa4ShlAqLGSy+5drZM4Lmxf5IHYSQcc+J2/GtC727nM3QU4Z2H66GeNT5uUJQGfz3j/WgwpTUEyhmv4yxJgs6G7Y92Oz+q5uL0/tgorb50k220BOIQxDB1G7i7ZKg91QmHa6p/eC+vSuDtiHU50VCE+2naurnRXKyZy4a5859hDeioc/NnRQkqs48OyXBo/zLW/zy7+/bNIH8Xrtwt3UsUcfdj3RR1P60/zhc4x3sYgAmenMF0TmSU7hh3+sD/99La1bFFgPu5Axf+e917thA13ykrPFe7QGVvR68ZFNSWVQB3wbjcvzaff2UvbhqbB99jPpfN3h/rxpZheLlfbHQtBOMftnqUji/00ADwt3/GL65EwzMeFO1+B5MGds2X9zuvr17UkdOXBrufDfQHXg4fDIfT7/bptFouF14avE8TWHv1+37NXIOCJJLnOOSvsyzn2uvBvDCS7SZO8EnTVNyn7QQ4URQGj0ciz36xW8aPX74IPvgm8t2/IbdOu7chd4LPieO2OKW478GOGh5RBIxWu4ZWcB02FbI4BzYIz10mpGQM0w5+UntbfYtjuCtqU2YVzxdJuu6i7hjNV9q6UqpxyLE41azn3CXLkUSyPpRwLxAx52uIgB7eFF1OyJ2Vsj73TMK1sfF6v13B9fQ0vX76E+Xxe5+n1ep4TssnYTjmNUnm7GLOazI7Rx3nPoqyjwwLjLy8v4ezsDJbLZb1DjH/dy8tFGAwGXjq6w4wvbjRZYnVSaGCdQyT8lL9zxjG24WazqRcwlnnOwv8SDXg/7Wg0gu12G5SZgl3O7dQRkHJcaBCTuxqPa/1F+VuTlZIOps2PNG2Kp5tATEbGxrBEM6Wt1+vBeDyG9XoNV1dXxJgY8j/Pa6U3pR/wfsstSwKU9Y8ePYKiKGqZg6clSDTQjxuKojpyfDAYwMnJCUwmE09n1vRnrENM56ZpNONObLzvQvdL8RAHTo9Fb6fzcAw/H48pPo6BRTfpCrR2oMDlStP5bFcwn2/g4mIFg0EPBgP8SIiOS/+IYZ+HS6COIgwuS99BhvlijjKMp8cMo7OW0kF35HJ8krMWy0d6XfvrNPtzhHPcUlorHnPOzLRDVpZ1iJ86TSleyVErlSG1ObZJ9e7wS23D8Vbhch6eN5YmH/yyNfxSG7kwCzEFOKdu4YUXBdQ/dNa6fxdGw92zrhv4Q56+0B2xVl3T/1Vh1DFY1unoM77TfKkykF6anuIK08pp/PDQcUvjXXmyc9alLdUy6L+fnpcd3zUrQSqtRc630b9z7Ga7mPe0MqnORefH+2z/QZB03Fj9yrL0rqmR8DSlw2rP2KW+kWsf2bVOuwuI2ViaglUmWPu467ak8xd+UIkgXRd2F2P7dZAndwGSjYNDEzt0U3wx+1YuPslWw+U0wkE5Y3OMjF1BzsSQmlwo5AgGy+L5LmBf/cEnkpRB4VCFXmyisrZlV4bTruB1UFytyhjA/VbIdpEnll/j6V0ouJZx0cWCQhuz9J5GySlRlqXn7H3+/Dm8ePGiTjscDmsjsIXOfc+FucpOE0ckzxPbzVQU1S6p5XJZG85/85vfwNnZGaATa7FY1HfylqW/C5MqVEVRwHQ6BYBqp+lqtaqd5ADhnRKSc63rscPDJAVNM+Kn5kepTfHOSQAInBGUHu6oidEl1Ws4HMJoNILT01NYLpdweXkJAOAtnvYN/DSN2J2rEkj6CY2j4bhQRB6N7b7jx3VzwHwUH5VBGMbp4LRLdciBNguclB6MO9o/+OADuL6+rp2xsXbR9G1uaLPO7Xz88/HFd41bAI1eRVHA97//fZhOp3BxcQHX19fw7Nmzul95nfiu9+12C8PhEN58881ahnHQZLLkbOXjUJO/nLfQiYlxu9SbUn3HZXVO2bjrWjJISvh52U0hZSyW4nJ1gBwnLPJfSga1BdkBFKfz5cslvHq1hOGwB5NJ39sZS50M6PDw745FpyhNU3jpnKOEjhsJh78LFPHRMHx21UNcfLeqXybfBeuccNQJyh2inCaKD7wyKS0++GFSPlcnnPulXcIgto8rAxgtro0oHvceOlmlvOA59CjEHN7NwceJCJFvaDranz5f0DBOs//zw/l4rX494RnvhvXvlMW5JLwzNlZf2mdIl8RHULeBPCap7ohzEfIwfy6DfA6vv4PU9X94xLDDCSwPBDhDumh/SjhCRyyth4TL/4Vp3I5XmiZ8pycE0DScVt4v2213c/IhQ2w+2Ww29ZoPoSgKGI/Hnj7D4w8ZNP2H662SHoPt0QVI9hJe9qG3JYVDs71a4C78JW1twm1tW/1+v17HlGUJNzc3qj3jAQ4fsD+lzTJoA5Sgbf9KY33XPBNbbx2UM/YQBk8TR0Jq8Z4SPlLnoDKNMBgMvC+8OG7NWCjRmTPpcMGLRvJdANIVM4zx9BLE6iYZ3WPpKD0cb65RiBuBJT6JvWu071KB4MoeB66ANXXWdAGx9rJC106X+6bc5UCuM6OJ/NEM7xiXK8ti+Hh5miNMowvlIu7ClOJTTrRdL2Jy8UpyMAdy5icpLy336uoKVqsVoKNgvV7XR/3jvMQNTtvttnb4oBNys9nAZDKBm5sbb+dy7pzIIad9UnyYk1bLJ6Wx1jMl9yleCSddMFGcdwFII/IJ5QMum2Ltqs0viAPviZ5Op/Xx2hcXF7BcLgNZJeFKLXI5jRJOKS+my72P1apfxRxImgyl43Sz2cCrV69gNBrBj370I1gsFjCbzeDy8hJubm4CByWvf4yWVP2ccVPWbbRyLVCWJfT7fXj33Xfh9PQUvv76a3j16hV8/vnnIr0ATkfE55ubm1rn32w2Iq0x/VTjB6wbNWrw9Njux8fHAFAdD4bjpmu9huLjznFOO6U3lkaDlI6qybQmYNWPpfp0KS+1OYTzdIy/uio3BdxZ4p6RPtyN6pxHVTp5RyyQY3wxLb4D22VL/wvmAOVx+E7TuXr7ca4dZDp93C6N/+zodfn8eFo3TB860sKdm76sC52IDh8EtEjtgf1YPfvtK7cl9rPfhrxtpDhXJy+Fki4PZBHg14ums5cnJeSOWfm56ie3g9a9FwyHC/dlOy0b+cPnSw50bLhxWAJ4DlR8p2lLAMGBSn8UryvLd6QirTwfMOeoX67Lz+vF0/h5aR1Den36OG3hu5RHpsenTS/b7xMJz/n5Eq6u1rBc+tfBvG6QsvXxur/33nswnU7h+fPnnpEf7auHbK+J9WMO3bF1pmWdb7EDcrxN6Nwl3IcxYbVjp9K2AW0NIdHSlAc1/L1eDyaTSf0BJcJms0l+THkf+vd1A8saWfqwmZ8GhfH8yrEY3i5B4mNJhlloyZF9B+WMRbiLhrcYnlKdZClHAnpWP8eN4cPhEMqy+gqkaTlNoKkRnoNVYFvu2uXGkl3wSYre3DI1Wps4KboGjTaqnO2DtpSBbRc0NOVvTTjvS0mKQVdj1gqxsrjDImWoB7DJf5z46Z2ilkm0LP0drJrDJWdhQo36vV4PhsNhwAu4wzNXUdznXBiDHKWcg/bxjtZf1LmE7dvr9eD8/BzKstoBi2m0+yVp2b1eD46OjoK7cp4/fw7z+byuW9eLiS4g5szidMRw0LxNHEscKL9Lc5jkjL1r6Pf7MBgMYDwew2KxqO/yTOl+qbbCPtpsNt6RsqPRCObzucdjFJ8VJIeJNs9Iaagxtuv5yLLYiM2VRVHAarWCzz//HL7zne/Av/t3/w5evnwJn332GfzqV7+Cq6srGAwG0O/3k1/08wVdii5My3fo4/xA2yu1A1mDXq8HH330Ebzzzjvw7NkzGI1G8OMf/1iliX4gsNls4OLiAiaTCQyHQ1iv154jVJtPaRjXp3l63CWKd5nz+OFwCE+fPoWyLOHVq1f13WIcuuItiU9Txr9c/BbYp64p1XUf830T43Mbuui8E8PvHBHVHYtuZyzubg13uTqHagmSU6ks0bEJdbyfxsUBc3BSvPSoYprWr4N/fDHSTtMVzJkJynHFWD/nPPYdpRQf0ut0Ulo3jUY/n+uD0KnKjy1GPFUa2WGN9CNeHk/fKT7E6bcXkDgIwE9TqulIjgQOHXyaXZlhm/r1rNpWv4MWw7kcpo5V7mBN/YA5eR1vcB72/908g3XDerhw+ec7Zl2Yr3+6H3jPcpk+fhrm2t7vF5oW6dbSSHSGdMR2vvL6S/+xsOrd3Smrt1UcqjTPny/gq6/mqcSvJcTsWb/7u78L77zzDvyP//E/4OrqCgDc6Sz0KpdDBqt+22ZtR3FY9C/JBpZr69gF3HX5VujCZreLtd1d9mG/34fT09NgDUM/UOXA128PsHug9k8ezt8lm5Dm82kii9v0ecre3JUfTMNzkM5YabKxNoTFOJST12KMb2pcw2frXYZS2lwG4QablNGjC0gxOX/PrZPWVynhkAqzCJeYgdVSl121OcXdxHDvL8xtNFLniYQnRUOq3VO0dGlsTk0u2jN/R0cRQDPjVxPYpxKSKivmQKBglbddTrb8qyuezrro4bTT3U0Y35XxuCuloA0NUliT+uXyA4bhV5K8nTV6yrL0jjtGR6GmGGlhkkyMLT5pv2tyMCZHeHjOXE3jqcOUO8Yp7tgY1PQqLu9x5/JsNqsdPDztvgHLxQ8ljo6OYLvd1k5SCtTpRndco5OMtiV1HNF8/X4fRqMRTCaT4CjanPnLMhdrMofHpyCWrolOkKNzIIzHY3j33XehLEt48eIFTCYTGI/HUJbuCPJY2RJ/xfQPHjYejwEA6p3MEt4YP2t04Zfc0+m0vvdVS7taraAoKifpYrGA//t//2999Pfz589rZyiWrdFG20qiEU8MwCOwAdyHLfRjF6qz9Pt9b3cuXY90qdfEeIe2ndSXKeDG7Zx8Xckuiw7cBFK8j2ExYzXPG0trlQEW2RKm047+9B2xFQ3hEcM+abID18VhnSmOyjGI+Cra/HfHExUNwJy41b+/k9WVzctw4VVe+gykTHwGglff6aq/+7RhG/C0LqxKX9VBcrxim8d2EXNZ7MfTMMTpwjn/QQAaO+rsJ63ZvZxaxrrdKf/Qevt9oce5cgryjPhceFFger7DVXqWaI0DHRf+uCtZWMxRGHey0rFMy3SyhqeHIC+An9anndIf1s0PC3fZcnlG28PHKztbfdp0uuS2kd7ROavR6MoL8Xc3H6egzdrPkte61hwMBh7e1WoFb7/9NnznO9+p07z55pv1M36k2+/3YTgcwnK5hMVioa4L24Kmz0ggrcs0fDn6hFWPaaK/a/ktOvIugOsW1rrHaNzVGjYXZ2xdYylL4x1KB/c15JSZY4uNjQG83gsA6pPQyrL0TvRJ1eMQ4a5sIbsA63yD61peb34KLEC1Zl4sFlkyMxea4qE8J/G5tmaieSQ4SGcsgE9000brwmDcNWiGAIk2KSy1c9RS564m2hQOiyKgGQxSfR5L07Z+Ei4tzkKnNqk1Aam9uqxv19CF4LSODSwvZUiyTtypMlL5+CRDJ637pjxoYJ0sY4Y+CaemzEtjzmKUTfFAbFzF8tEw7Gvq8LLQloIu5sIU5BileZ5dKpY41mgZ1Bmr9QfnNzxiE/OjU02T4VqYddxaFyOW+TOm3MXy8PpJclGKa9OX6/W6dnTirmRJ39knYPnobJpMJt6dwZJsoveucZ7n9ZB2Vg6HQ+9eqpQzQ5pT8Dm2KzOli2lGnZTBIfau0SJBjiFmOBzCkydP4Pr6GsbjMYxGIxiNRrBYLGCz2dQLcKtcpuGxDx5p+QBQLwK5I92iZ0myB3e0Yn0k+jAPfsDQ6/VgtVrBJ598UvMT7tyQFoPS/BCbZ5Ef8N5QzIsfIGA83nEjxUn1leqktVMKYvoXTZNrPOXzRqpfU+E5YyFVb+vaJ1VurBx+F7DUflyPzpXdqXVT7J2WWwbOC7pzFoA6JKkzCqtP41wefkwx1PEuL3WS+vgQDz7LwHenujB8pk5fTjvSzR2f/NnR1d4h6+ONHVtMaZdo5mMUWFpu1HUtRFnBD+dzEuchUMEgapT8PGNYJ9qntH8kGuS4QnimOgC+F0LagsRj+oKlD/PJ7VGCGwt0DLgx4/4lByJ3woL4DN59srI+4o9LGuc7RGlafKZ1o+UDc+LKeCS6/R8Q5ywvw/+FNDu5JrWNX1+tTSmtnG4exsEy5+4Kmuj+OesdALeuA3DG/CdPnsC//Jf/sk4zm81gNpvVeY+Pj2s9L3b06a5AW0/m6OdS/lhaPt/ztUEOaPYNKuPvku8otNVHUzi6BktZOW2bwhfToy1rxy7alwKu13F8ojMW4yx4D4X3ONxXey+H3PaVnLHSfbGW9bqFDos8pGlz5W7MVpI7Tg7WGXvfmDXHQMTTS8Y2el42Be2S49SgyFVsDkmIUYOuBlbjeSpPG+Bf60igKV+pfBi/DwfIoUNTRbWrPFrbo+EV8VFFAsAZ+KlB9ZvahxJIC4SUs4wbnGPjIjbW2i4adtmPh8QjfPFF+4c7pZqCqqzcLrbxzk8ca9wRIS0QLy4u6uOoVqtV/ePp29DIF6CWhTXGd93HvF+k8Bg9baAsS7i6utqbDpFqP+roit13T+UN7hrEI8fRsRwroyiqI3cvLy8BAOpdjKmTT2JzSb/fh5OTkzrNcrms5w+uE0lOKq3MLqEN/6LMkPpovV7Dzc1N3R8xoE7CHNlOZcfJyUnNuwCh3inhoTxTlmW945Tuqv7Vr34F5+fn0Ov14Ouvv04u6vgzXwto82SKz2g9pPZG+un7ZrOpd5BL6wxNL2/jvOM4Y3qABLE5aL1ei3IA8aNBlubFvuV32XZlvKV8ldNuSBM+x9Lx+uC/5hjtct3E52jbWrVyQGy31VHF6AwMf5iugF7POVbBO2rVd7z6O2R9p0zoFA3x+I5JPx0wx2+VJtz9iuGhc8ynw3d80vpVaanD1+6QBfB3xLoyad0w3C/D5UE8frgrh+J07Rw6ZV1Y6CjkeWk7UTb02yWEFMvapsSwTlXeEsK2o2W7PvfLDI8rbjs1Yz/7YZQHyjodxnHH4HZb1v84H1RhWxK39d5d+vCZ/txOT323rRunpVcvN6biDk5XLzk95W+fFu055pxN1SeFX2p7uD2e3Zdz6b4v4cWL6njiq6v4lQ6HAl0460ajEfR6PVgsFjCdTuEP/uAP6usXfvCDH8C/+Tf/BpbLZT33z2Yz+Ou//mu4uLjoqBZxQN2MzrdUr4vZBJuWt8v0KdjXuu8B7KDpeRT4GqttP3K9NmX7TvHhZrPx7nmm+R6OJr4b6LK96YaJmJ2mLTRZ27QdC3ztKMHBOmN3ASkvudWoZDH2a2VIIC3ENaOStIDWDCIcZ0ogUnzWQdbVYORt0NYxouXPNXqknKXcwMXbLma8kiZIq+F+V5OOZhTMgV0qg234IsUTlvwxYY0KNgDUxku+u0Yq8z4pEJaJLKaAYXxOP2pyMEUPpSmFT+pbaZxK+CgtFqU3h9ZDB2pktSpQqXlYi6f3kKJBCNNzfuB9t1gs6vzozMWx2mQsSmNZM6qn5hAN2hjEaXtY6kdpT6W3pKX3feyar2P46ZjkjiaahgM6/aljzULHdruFxWJR797G442bAM4fdIdtWboPfmgfaPIwpVPw+KbzqyWfJoudsbj0juFF4xkeVUXTtqWP4ymKAkajUeD0lPQ7Cbc03jD9y5cvYblcwng8hsvLy2w9BGVdTO9LrQF4H9MxQdsf3ym+1WpVy0xJTy9Lt4u47SKa94mGz+LA1PqKHulN11TSOKDppLIlutvOJ1IdLPI+NgYlmnL17lj6lO4UaxO5jujQlJwbBXt2zsDy1vniypXpd/T4zlcXFx7f68eVtzRKO2AlR2gpluVwy7tNq3csK+5ow7Rph6z/T7CB7CCUd3/SevFwv15Qt2cYT8PQwRq2k8R6Uhv6ILe3BHlTSthXWIbkeKXtzctDng3LL255m0cU4Ncr3B1Ly8WyJBrcGKLjLLXLNbUzVsOFY6cEEJ2g4Y/SSPuWjnP3LsUDKSvU+aSySOuwf4eL0+/ooI5eXh/NgazV2cfJ6Wc9XT/NZmv4+uuFkm43kFrPxfI01ecoHtTRUdd+7733YDKZAADAhx9+CB988AHM5/PakXN9fe2dUJIzX8d0LC28KJwzlurxqOdy/E3bw9IPWrtb7MBN1gZt+7crsOpRuevzQ6ibBhZbFOcBrtfH1oa5doWYjivxIpZPHXSazabL0ycfYHegrckAoN5ggc8AMg9rci7X9sHBalPOAbrWSu32vTfO2EMXfFagi38OXQuQ+9he1n62Lejj5aDy1tSBIpWZ6tdUH6cEwr76tA0vxvowJiC7GOO5AjiFCyDdFlSxRqPuo0ePAuX78vKyvvMAQD+KoW073IWs7Kq8GG/QZ+nu7Db9To9gzIG7kLF3ORdypwj94ldaXHJoYnTGfun3+/WdhjSOy3CuqFNlDe9kREN/zMmTo5whDn6sbayuUllaWmm+a2qg522i5aVl8TblOLrkx13xNy7m8NhbHoflYt0k5R7po+80fr1ew/X1NSwWC+j1erUBiDuBrbpDr9eD4+NjmEwmcHJyAl999RUsFouok0oqJ1YfjN+nTOG8M5lMYLlcwk9+8hN49eoVPH/+HG5ubmo6cbzGIJd+xIeOdzxaG2my7PTH8Y66JB7DVJZl/fzpp596dUjt8pXqZTGKSQtY/ACF6h0UD/1AAe+2xXR4EgH2Ax8jRVHUXzO//fbbMBgM4Le//S1sNpv6yOeudTGKMyUzJRwxgxIdI5LRkp56gkbgfYyZ1NxI01jnKsnwJuG2GGljbdBUrhQF6tVoFCwAh3+1A9Y/drgi3z9quJqPCwAI07u0PC862vxdthimvYf/wMK8VrnlRfDi/Z2y3MlL8VD8qbRaGMcBNQ2u3hjm8yCWU9TOvZI8FyyOO2WrNDTeL4fShnnlo3UpW8lsz+c7KQ3Pb+PVcFdz2Af4ju1XjQOXjzpuOf3Su+PtkqRB3qb/bocpAHg7y32cdMfq9vaf7ob1f5tNtRO2+nfv/k/eLUt3zNJy5R8Ez45eWm8+/uNpXDuGaWib03heRkiL5T90PuMOWJ6GhrvnkLl9fvB/hw587miqI4xGI+/KGQT60S6uS2m51HagXSmE6SmtOfonjneqI1jnzK4hpS9p0KUtrWvgR5tS3WxfcJ/s6zFatY+NNd24SdmWvJyG7XYLr169qsPpB94AUK9VDpVHv2lA5aNm2+Yf6dOPaDD/crnM/qhXSt/GptFUZraBe+OM3UWj3JUwlRa5EuNIhgOL8TQW31Rw5TC2payUYbANaPmlAdbVoIsZaHm8ZpClcbvmd1nBb/+VYioOy9CMPzwtpzdFHx8jVkWA55Fo0PqWlzscDuHk5AQmkwlMp1O4uLiA2WxWL3qlcjS8TaBL3mkjNyxGRCuOGL4YX1vHvMWgKMnntmMmVXYX6S0Q43PJ+Bobv03KlMKpY4y+x8aNxC+UNvoBDu6Q4nksckyrA5dvljaJyb0UDbF+S5VFZZbkfLDgaiJrrTR2AXy+xXs3ed9rupblCgg+t5dlGSwceTmaTNHk1HA4hOl0Wju5tDpq9Ek6R9P+0sZArl7FeWe5XMLz58/h4uICrq6u6vtTm9KXUzc02tFdkzljWOpPfEcnL4bhruk2cyotQ4vDeGpsscgvjhuNHtJdowjD4bDebdLE8KLFazJdm7tz+5zmSc1pu3C+SjRo/NeFHkt1FknmS/qzhDunnSl+i8xxtPjOEKh3oHFHrORYDe9TpukLwTkV0u0ceJhWeye5QHfo0bL9+2OpY8+VEduRymn1nX8yHXoY5pPy+2XrNFW0+/j8uLAd/DpI9arSV+FcdvlpU0PTwrL8blqtLx1dhRdG247Xx/ouhbtneZczTYdjAx3rbhzwdL4D1OYozXGq+o5hTh/9+W0bdhRPJ+UL20p+d2G+EzekLXTKamXwPtLycxnqp5EcuGEdpfpa0u4LLOsnbe6xAuaTrgZDfKvVCubzOVxeXsJisaiPKr6+vq4/6KU77SSDvjQXa3Rqa1IpPBdHan1uBYtOa+mPlM0lZvPJ1WMkelGvteLT8Frj7hOk2k4KS+m1TXT6trYBPGUK8fK1ONdVH2B/YOlbiafoSWFSPqvNhdKQI0st+HgYl+FWuWjBT+EgnbGaMN83aJOHlT5tIm4DaKBCg85dQRMDSBOlqw10YRSylpMyZlPDADoCpPxdGbR3CYcwNjVoMlatxiH6PBwOvaP56D2wJycn8KMf/Qj+8A//EP7tv/238F//63+FP//zPw9w4hje5fn4rwtox1ZYITVxt8G5S7m267lQwq+FdV1uLFwztgP4d5vQ9HRxzr+aRBy4CKeymDrRrG2du5ihtEr5uHOs7UIj1r60vpKy2QS4g2ZXMq3JeKDtulwu4dWrVwAAwdGrZekft4oLA2qwiek9kuFGGkc5iwdckE4mE+/+Wqlszkt8EauNrbvWN7bbLSyXS3jx4gX81V/9VW1E6/V6MBqNoCzLetw25VNpRz+Ab5Cez+dQluGpCxw0GnCnPR8D4/HYC2t6hHfMkCY53gDAO2pbO54X32ML7LIs6/uPpfLx1IKu58K2RkMtH8cbM8TiXPKtb30LHj16BACVHPn1r39d73TexRyN/DQajWCz2TT+OEGCoihq5znVraQd1DQPwj5kBu7C22zw/uUqvNej98i644wBqFO2ALh1im231BFFjz+G2/jKcVXcOvwQl6unw4XveBwwj/chjNPuj/XzAAnH8rhDQMov7ZCFII0Uhm0Zp4WH+3FFATVd7rlgcZi2BJ+FYneuAqlvGEedxhaIDaEQh1xXR5fWt7SOvA38PqVl4jOdlzDc/8kOz+22vB0fWwDoQVHg+EY+BIIv3BlbfZBEd79u6l2weHJCFUfD5Z20fIcs/dd/ro3oOKXtRMNoXXjdsP/8NuP4wzLkMEtcfEctPrudwlC/03TuvlgX7tfN50tXn8N0TnAH7D5gNpvBZ599Bi9fvoTPP/8cXr58CRcXF/Cb3/wGzs/P4fLyEvr9Ptzc3Hg6tXayEdprcIxouj8Pk8LpVRyptDH8+wZqw9Rgl/xHbd5dt8chjpuuILZukMLpyWMWsPJ+zMnGZRc+8xOs9q2DPoAOkk2Vrq0poF2F81ZOH2r2EUkWx06f0ubJXa9ZU/hFj14Tg1eXYDVs7opGijvWgCmDdcygrOWxAjcepGjRmK+JYTMFuxCSqX6QBEMMtPaSjFAxeqT20NrVajzax9jT6M5JH6tPrgKQKn+XEDNIxxQNbZHR6/VgPB5DWZYwm83g7bffhn/+z/85/OIXv4CLiwsAqMYv7phBo1u/3zd/FZQCbUHRFprgaDvh4niiYzw1xnLK5/14KMZIXuauIFWXGC9ZFqWWslLyIgWpuazJHBHDJb1TJS9Hf6DyJNY+uW3TRum08rrV0BIbr23lQ04+NKZwGS7RCwCi4cVKG9ZZctJq+hnGoWEIoHL8LBYLmM/nHu05YyZ3brfgsspfKy2bzQZubm7qOTFloOLl0vGdGk8STfQ4u6bjRupjPn81hRQOaixzhtz4l8ZcZsXkTEq+8h/it4A2j1h4zNq2nG81XV/ju0ePHsGTJ0+gKAq4ubmB3/zmN+rc2JV+MBqN4OnTpzCbzeDy8tI7KjoGUvvz+Y8e5Yi/9XotHs+do/ukdAKpfWRDSwmbDXccAdCdrTTMlS3tMvWdcGUph4F3H6hz6lb0OdyY169GFZ+6t5XSRct1fcZpR7x+XIW7inO4+A5ZR5cEtB7SvbYVDn8nK8Xt20r89sY2xDYL6+zTWIXJO2Z5m/lx1BgIal05vhSE5WHGsL7577RNsY2kvqN19Mev4326+7QM4otCbns3P4TOUnSmascM0zD/F9LlP2u7Qd070kjzOtpl57XL4/qJ4g16sqTtEMSK6aW2p30S1t2vB6ff7yuOk3+sINcBy18ut3B1tYbFQv8IMndOTuFxdKRluWWdkMLLgX8oib/ZbAYAUNtTrq+v4eXLl/DVV1/Bixcv4Pr62sMRK0vTdS1tifTQtFQ3i+G1QFc6Rk75OfpATn9a6sJPlYutKR/ADjEdMQaxdYLGH9Zxw59T6/QUTQ+wf4jZOzBeWz9JYVZZ2cWapS004UPRGXsfGHqXNFLcOQYhDpZFMy0nR7DQL0bwzqtchuqqDTnTtxHkVkgZVnLx0PdcpbAJ5BpT9wFdGLrvGprygTWfZHDUdtJ88skn8LOf/Qz+w3/4D/Cf//N/hj/90z+FX/3qVwAAcHFxAX/1V39V3ymIRxovFovgiMsHqID2Ed/lQ/8B8nmR4kgtmDhwx8EhjIO2IDkQJGM1Gm4A8ndDWucKDvSeQx7O5+smzgFp8WAByQETS0vjcQ7X7qnkC/sU3RpdUpwFmhgJrH27r/kP24HvYMQ43k7c8RHTNSw6Q1EUop7mG/hcHDpLzs7O6nni+vq6/kKfykCtvhJtGn1dAX7BnvuFdVk6R/loNFLHeQoHQFj32GIQ43DeRV6gOwa5IShFA8fb1kEnLUQxTLrvGAHv0qIfFUiyG8NjXxTTMcPrQnfgxtLlAO3DHD6wtLU0J0jjhT6/99578OGHH8JoNIKLiwv4yU9+EtxfjtC03rzsJ0+ewL/+1/8afvOb38BPf/pTmM1msFgsgjvTUjKKy+SiKGA8Htdh2Gfr9dqrE51TLfWzrmEt65/NpoTVagObDc6NSBPmA6BHFkPtSHWOvaoMfzesi6MOEP++WYorFQficbWUFt/JCp5zlH/47Rx0SFdVz5I9YxtyfA6n3xVhGh9HmK4oHM10l6cfLtHjnH+OPgTK36EjTNoxq6WleGrqg/J0KBKOW30Iy+1P+8mnGeP5zlnqFPR1AH7/q+P5Eno9uN0BizK8Ci8K3AG7haLoQVlyfdiXdxR3uDOW/uMO2U2wOxZ3xpal2w1b3fNMnbnuPlpaJzceNWcubR8+fvVdrth3Wnpajuvn1K5WIHj9H73bVf7HfiqFZ7czttoRi7tnebmUGTk9Jbx6tYSf/vQiwrN3B7vS7/HDIQDHQ3hixenpKbzzzjv1vPbVV1/BJ598EpxigTofn0slfV5zEnC9nT5Lx3J2pXun9ByMwzbItWumdDhJ12ir51Lgd/suFosgDZ5QJ+m+XUFq3X2fQOIBvvuUx+fit66Fc+wDdM3blLYH6BasfZjiMQ6SPV0bf/1+P6BBS6vZXbqCtjLiII8p7hpyJiFNcOROZLllUWOrZHiJ4eTGH55uH0ZROnFbDb9dTZ5NjNBN8GlpeTlSuRpftaElZRxp0p9N8DQx0nQFVqU5lofmk/LzvqXGwZjxEo3Jk8kE3njjDTg9PYXT09M6jtPEDWwW0PoLjaOclkOF2ARKZYvk8KILAakPrQpDSu5aoK28OSSl37pYw7SaAZjn4X2Uo0zRY9CkciRDusVhpUGqDWIGZa1eEo3agr6LOZLjzeVziQZN7qa+NM+hVSqv7VjRHFGWfDmLctrXWh9yWRajdbVawfn5eX3fLaXFIjslPkstWjQ+kWgtS7eTl+5WkOpqAatMSKXRdGqtDm3mAFpOTJ/IxUvpk2jVxobVQEXjqf6BYyRWDuZ5++234fT0FK6vr+Hq6qo+AaSN/KI8lQJOW6xcxCvpCJJsRkCnRL/fF/W+NkY7ie/6/T6Mx2M4Pj6Go6MjODo6guVyWR+nneJhyfhr6Q8tTUqe5NSTjg9NF5jN1lCWAJPJAPp96txwDtjSc5boTlOeD9j9s1A78LhT1dUd2A5PKR6Y07MoXDqfP6hjrspTFH64XA53kmKYX65rXz+NtmPXx+0fW0zTI31aG1BctA4urWtnLY0f5vqJp+V5aJtbwO93Dnw86uVK7ULfadtTXD6v+vVwvO7bcapfQeKrOOec3cJ224OiqByylZO2AMebdGz4O2Gdfu2cqPzYYbcjlh5DzOMkx2tYJyo7wrEs7zx1bes/+2n5HBU6Zf0+lB21Pj0UZxjn14HXR3L0SnG0TyX5G4R45WrqbBP5nANanthc2gVwHR4/ZsXdr9fX13W5Z2dn9UeY9IoKPh/hs5X+1HqX69tdtkNq7RnTO7V5u6mezdsxt54xvWS73cJ4PIZ3333X6z8AgK+//tpz0vIPAduunZG2XUJqzcvfJR09hgfzxurRZL3F+Vqza9AwX+bLZUq4OK/HdPvcejxAc7Cul3PHYWxOsfYxT5eS1RqOHDlpsaVpcHDO2DYLWit0xTA5IDGGZgzMrX9Z+kes8bh9CqhdtmGsvFwjadc0SIad+wT7GHddQYxWbhCleSxgNf7hF8IWxXM6ncIbb7wBT548qY2U3NDY6/VgOBzWO6AksPYROmInk0kdhkddHjpY6qgZUbW+t/J1Spltk78J7GpM7nKsW+Vgk/JxjqNfRAO43Tv0XkhLGSknTQpPm/6WcNJdSNqC5a7AYsTnTnK+oNLa2hrOQeLjGP9xQ4HUxk11JSkf/aWuleA4ePzNzQ1cXV1Br9fz7k6y0BVbuMb4Pxc/4sI5rM1dmik6UsYmioOmzXEOSryitRfXG7jTKrdsDhZZSnkMHYb0yGeaVhsbHB/2L5VLvC16vR787u/+Lrz33ntQliU8f/4c/uEf/gEAoL7zt8kOZ26c0RbXOQt3Hm8JQ8Cjwk9OTtT7cbuS10VRwHA4hOl0Co8fP4Y33ngDHj9+XB/BKI3r3LKlnfVa/VO78K3Ax2Fsnjs7W8HFxRoePx7CaNRTHBgA1KFa/fs7Yiv8vhOkKh9I2SEOIM7cim4fv+Mv3i5VmHN++jih3jnpl+vwxJ4BgO3CLAoQcMAt3QChUxC8+iNeDKP4ML/fh/IuWZ9GXgawtP49vjRNFeYVCejEDdnEd3DKaeIgszUfW66skCbXn3zHdBVOnfg+L2BYhSf8R17Hu2ArWVrWZaPTFaC6I7ZaV6IeifzB56yqTP9OV9zVWp2gsF5voCzdfbC4QxZ3x+J9sfiPdPmO23B3rP9z49EPw7aP72AF5kTFNIjHtSEwvDzcz2eLi/1rzudQfuEO2HB3rcSTtP98+ji/3gXsc71K5w50wKEz9tNPPzXh1fQKxI9ppF2zMb1awkPrIeWjukQXtsQ2enfM4WWxd3UJlSxaw5MnT+D3f//3YTQa1Xfdl2UJf/mXfwlXV1c1bdPp1NNfpR15u7R/7BIonyNYN1ns2uaPNHVlJ+MfOx7yRpIH8CFl24ilzeXTHEdsE1kq8Z20tpfKz63bwTljdzWZa7gtjCMZyVJGri7BapzsqpxYvGZ0zK0zF96pwZLqJ82I2kWbxZSnWBrONzHDnNa2GjQxLsZo7Yq3rI60NmMk1+FjUb40wWkZEwCV0XGz2cBqtYL5fA5fffVVneb6+hq22y388Ic/hLfeegu+/PJLT4GhMBqNoCgKWCwW4jGPkrLMjcZ4NKFUr1zoWpalIDXOUSGVxj41Gkt5tbK4ESTlRKJx2lii49mqMLRVTKzQFC/nV2400vBLslJz1FCel4xT1KijfeHMQaOn6RzB6WoCdGFeFLZjOHOcB7w/Uu2izb8pHUdrdz6GNHrbyqkY36XyNelHS1pN/qT0yNi4oWOPfwRk6aOU0SmVTqML38uyMuQOBgP4zne+A9vtFn77298GjsDcMROTvRINvE4cnDFU1gkk3V/rTyk8V8+wQux461ge7SMAasikclX6IETSN/C93+/Xjkk0hk0mkzpNv9/POqIK8VrbidOk0UrD6LuVH8uyhK+//hq22y1cXV3BYrHw6oVtJx0dnFMPzIe0LRYLODs7g6urK1itVnWZeDxf7D5gjovSg8f+cRpXq1VUpjZda/A5IHWPsf8OtVOnqo/sKAHPocqdp9TRwXfIFnU57p87bJF2xOM73ar6OVyYh++I5GW6vFhvf9dplU/fLUvz0PJcWbw8H1w+qpPwuLJuQ4qXO2WldqqeiyCOvkPCMeun5XGlEC/j0MDO0kinXx8sJ2y3GH6fl6t02M7uHx2vOIYrp+wWyrK43QGLxxNXeKrdsfwqHZ8ffH2a7mx1Rw6jU9Y5Ybf1kcTSjlk8ptjNr9z5Sseq75gE5mBF2ugYxzaj6cI8ob6lpfH/HT6XhpYh72yN4eOySX7WdsYyTvHq5P/P5xv44osZXF2tvXQxOLR1JYJGv6TnSrokpkMbCt9BGPKGrDsgSLaGJiCtAax6bS7+2FrLarvm9MZsIIg3Zx2npaE2gbKs7FjD4RC+853vwMnJiddPqLfmrIlj8V3YJXcFUvs3qbeGO6U/IlCZRenia6/cMSONP75uydHVH2D3EJNfKTmT6kfJJpFj38M0fI2hrfet6xCJnhguKjuldSjH39oZm7NwvmvQJgxuLNIYKCVkpElXKo/HW0FSRrpo+yaCk+fNoSOmMKRoylU4U+l3NQmnhFCOMRXT0/9DAonOJu2560WCNj5pmhQNXBnBZzSOrVYrWCwWgTN2s9nA97//ffjoo4/g7/7u77wjdCgNo9EIhsOhd3dXapzThQf9GtAqq7qUJU1B6w8O0gLJsvsnJacsaVOKgNaGXHnVcKXKskJTWRyjIbYg43Mm7wfqNKVtgV8/Iu7tdht8SMD7Gf/LsvR4XqNZC9Pqo/EOXXRYFy8cDweqUzSZR2mZ1nlOoyMFTdJYFvCSLmBpZ1peyljA86TGYJM5TKu7pKDTeG7IwHFA0+Bzr9erjaM8XqMFx4kmlyyLeitPowz+8MMPYb1e13PgPuYVusCRDEg5Y5bmsdCuyb+2gDjpnV98ISfN4xQ4f/E4bczF1kCUt9EZizAejwNnbFmm7wyKjTltPpDAMkfzdBa9EKA6Em82m8H5+Xl9MgrNR3lPo98CiGO73cJyuYRXr17B1dUVLJfLeuwPh0MYDAZwc3NTjztet5jBpCyr+/UwDepQUl5tHs3VUahhwiLfsUz/+FPJ6SHtjMX8Ltw/3lhy4OJ76YW7ukoOSVpOlR7U44otxxQDKdfRF+6iBZLHd8BKxxFzeipaIEjnz4+0rpqj1q8LrYN79nmKtx1vP5fPbz8KEuu4NGUkXcpQH40m7U/rS+sfOsNd3/n9FspyxOX/o0PW/Vc4q12x1OHq9AI/3NWbz5P0mGK6M5Y6YOk/D6dyw3fs+uOWluWPv5K0qT82/fASKI/QeP5M0/M0FA9N6/q3ZGWEfeS3IbAfrZeUjjtgpTDKDxx83p7PN/Cb31yrRxTfNexyvavprsPhMDhBBvl0vV57OjTNx+e8JnaEGFjm1jbr/hhwHSi1LqX/Er0SbgvtsbUavf4B9ZPBYAC/8zu/U++GRdDuwbXSEaNPg330jRZvObEvZf+y2G9StEhrSx6eysdplj7yj32cvqt+iJV3l7bRfUFuPTVZEFtPpcK1cmLrOm3NKK3LLfIiJh9zbE0xkMpo7Yx9HZlU+godIM1AXU1KUrkpI8OhgNV4ZU0r5cuhwWo0iBkcmxgeOMQEncVoqOXf98R0X4Dev8oFMz3ag47ZlPGKAyoNVJk4Pj4GAIAvv/yyDvv888/h888/h6dPn6pKVUweaOGakR2g2j11dXVlHmOHKEsQqPEOj2DmCmRT5Y23OzewNmkXbR6wGiAPHTSDtbSgLIrCW2DhYhif8StmC9Av7zVaLJCae6X6xRY6qbIkPqBxkvyn5fD2tJRjdURJaa3OtyaA+KU+kOraRdm5elmsfKtDiNcPw6T2xXD6oQmXb5hH+iJck3+7NvDwOgBU8vOrr76qxyqO/9QCe1f00HfapnzXBM2jvfP0sT7tEtDAiB9a+UZen0c4PZqspnnou8Rz0gKbvz9//hw2mw28ePECzs/PawehZPjMAel4XM0IFJOzHKxjgo7L+XwOq9UKrq6uPBo2mw189NFH8K/+1b+q2+qf/umf4Le//W19Kkouf2Cely9fwt/93d/VRyTP53MoigLeeustODo6gl/+8pewWq3q3ckWXqRjNQVS2+fK5RjPWaByElXOHIDi1vHgOzYBAHq9uGO14lt0eGgOXOdYc3mrf5oWIIwLHX1SnHv2Haw0D0CIi+e9DSnDOMRdljh25fxVPHUK+zTQvEVBxxOIeRCncza6WJqf46ZpeJ38MMn4RygwsKS7s1YGH4fOp2HfUWc17UOZB2h9EIdbn1b3v1YyoLr/tXLA+nK+4v+iLpeOfxoX1tE5GsO7YumxxG5nbPXxyRboEcW+QxZx+ffLUudsVY7vjMWxHI5Pf57FMFAcseH85PqFpuF5ab/TdqF08D6S04aOZl4XP9z/wAQ/MgHibPX7zKeF64j3EXZBO64r6ZU19Gc91pWeEKKVc59A0hlz8lr0yS6gLCsnLMqZoihgMBjUNoTBYOBdEcEBTw2SaL2vQO18fO2can/tAzv6zmWn9ao2npeGafaH+9gnh2wb7RLa1HMXtobYOkWTzVS+xdZ/sfK4rSBVZhOQ2ungjineB6SMLTSO57MYRjnOmDBMGSQlfCk6LWmaDhptMk61S46hJIbXSjfNb83H81Bad21s0wyqHHi7WY3DvKxdQ0ohso4dK0h8SZ1AVEkDAG/3aIwWSamgfUCNzPTeV7zHAgDg/Pwczs/P4eTkxPvCbzQaiccRx/qIG7b4PZlIBy5KwsV7CLtWsJtAjG8ko7OUV5Kl0vhJyYqmyiTnHevc0RaajB+JntQY5byI4TSOLxywfelxizxOKzu1kMyRg9Y01n7yjWBhuMaLkqMDAMxfnMYgd96LAe0XDW8Kj8QzXKZq9FrrEVOgudzW8rUxPMTkFjdqSOOHly85MpoehZpK38VCarvdwsXFhcfHeFxujv7WBCyLLzQ2dGWwsS74tPKs+ekpAJIhVpoLY2PKum6QcNIP2ZCO8/NzKMsSLi8vvXtNU8fopmjj84mWNlWGJAc0+aut09brtXdU8Hg8BgCo7zT7gz/4gxrHV199BWdnZzCbzRqvH7bbLcxmM7i4uKjHPbb98fFxfXSfRa+gczCtK+U/7SNkmie1Kz+WtylUzhzuhEDeA3DOU+48QUejvzOWpi0KP48jV9pd6vBW9XL4qcPN3x3pf7AhsWmFW95d6spCOqoyMO4Wg1cWrQst170D8J20VZ5wlyx1rFK6+NHFfvtpdaHvodzjaWgY9omLK4R4P68EOeLed9xyOVjRU6WT52vkB1cv5BM/v6QDOV7GjxCqO2Odo7Zqi2o3bK/OA8B3y4btS+ePSkY7Oe2OJ96Sf2knbLgj1j1T3Lw88P4hcMRKO2Vde9J28eOA4AQvr4/X5fXbWnagyv2i/fu0urJkh7BfjkXvlRzIYradQkpnkmwm9H3XeiDXkaSTkyx6cJP1pNXGksKprQ2a4MrNZ8Fl1bto2lQ67C/8YBvzcv2M9isvv6u77Q8FuN7GdXJNR0eI8X4TvdqiL9N8sfWwRK8FXqf+va8Q6/NUulz5nyPv+LoYy9OuWJNo5evFpjTm8vg30hmLkMsQVLA1EQhaB9PLqrVLxw8VmhoaJGiryOwKmkwcViNJU+DtvmsF9z4ArT/uoKTvGL9er5NfPkogKT10rBZFUS9mh8OhtysEDXRlWcLV1RU8evQI/st/+S/wi1/8Av77f//vwfHCObtJqPI6HA7hu9/9bu3kOj09hQ8++AA+/vhj+PGPf1znGY/HtYHxvoBkJKXQlP+potuV7KUKQMoofSjKJZcpmmEa47TFFncW0Tz4lSsatfv9PgyHw3q83NzcROmTyqNxnMYcpwuvU6xfuHMthTdGg7TwpnJDwpfqpxygyica/OmiltOPaS3zm9T++Ex3T0p4eH/TPrE697jxh/Mjxa3xUAxoW8Ro4gsFbZFCHYV4ZDd1ekltlFpY7Atwznn16hX0+3148803YbVa1UfySx8O7Qp4/WM7h/EZZT/Kr6Io6i/xqROO81NX9FK8kiGNn+jB+VXjO/yX+JvvtKX/o9HIkwfL5bLGQ9t3vV7DT37yE+j1erBarWC73da6F8XfFLS2bqPzcnlgGS84NvGDOlq30WgEjx8/rndtHB0d1ccktqk/HgNN5QfqkFy/1CA2h2Mb4kcTAPJYuTsoYLMpYb3ewmaD9FV1rXbCuh121X2ZVa7qn++MxXHk0m639Khf3KlX4a7wlB4eBL25qQPYdxg6HBSX9RnEuCJwmvK0HJceRu+ADcM4zgpHUUCQJ4wDQh8tTzP2QgDIwi6O5+PxeXJZEuM+HfSFtg8w3tD6GEi4D+hYxTbDo4grx2rvNs+W8FEPytK1VVFUjtqiAKjukUVHrE8r1qmilx8hjDtY3Y7YSrZvoCy3sF6jI3ZDji7GI40xj3PcVuHhzlhXHs7LVb2RLkcffadpaHz4jG2E+H28IR75Pwxz+FIOWbf71+0CdvNvtQtW2ikMhEaf9/h4oDQdos2HziupNfsuabBc18TzaGHSmqtr2FVfxtYHCJb7FTnOlNNdghhetEXRay6KooAf//jH3ppotVrVea6urrzrjl43QNnM+4bbCTAt/U+B5KRKpe9iDHRttztEGfhNBc4jOWuJHF6k5VFosnZpKzckm0aTcXJQzti2RsUmeJpMGjxfzlcC3PGaYwzQQOr4WL26Fl6p9o6Vl9v+XU0ATdJyw24sr0UBygWpnXMUKImurpVlbjhrgq/ryRqfNZos8iI2xmmdERc1PF9fX8OLFy8AAOqj/NbrNTx+/BgePXpUT0LUMZqjUNFFLgDAo0eP6l0bb7/9Nnz3u9+Fly9f1mEA4CmwVkX6LqGJPJcmSS1tKo1FHklOHhpucWB1sahpAlo5qfpziI176nDgDjY6L2J8zMHQdn6PLbyl+kjA64r8ZtUHJECDPz+SWTKgUzos+C0KIm33FM6YPNWA0i8ZOnL1oJRBQGobrU9zdL5Y3l3qnin50ISOnPK1sun8ulgsYDgc1vMNHuVPeTuX5hwdMzX+NEPSaDSCsnQnSiCufr8f3BGaAs53bedU6Yh2rm+Mx+PaCKmVb9FhOcRkARqLLi8v63R4QggtNxdy1lRWWW4Zb9J44m1Ojyem4fhhET1WLwUWGYsOcdp3i8Wizm/RXaV5nM/FNNxCc856I6ZnpvCs1yWsVtvbXYG+Y9W/B5Y7M3yHKKZ38ZgGQHJauSN86U7PEoA4Z91ux7LGUeWl//7uVCzXpUdcIJZFcVLawLvD1uGgtOvvIV1hGTxMu082pIe2cVgvKd6VUYWF/YEgsQsfRvpxxNr8oiT3cNapgfaLK68I2gW8nc0hr/h4HZ+69G5nJZD7Y91u5i1p1+re2Kq80BnrxkZsZ2x4bHGVDnfDSnmlna/+jlAQ7n519QOvjq4dXBuGeHhaOteFbcnx+HRI7SPLFPk5dObS8n18fv2kumtAq1KWJSyXW1gum304k7OG4vly8EvrFyveJgbtFF5Kj2WtQfVVa5vl6FfWNVaX0BXOtjotxUF1TH4V1dnZWZ1+uVzWug9AZceifalB2zXZLsC6/ovpslw3lZyzGm6p3SS82jovVgetLjy8i/ZuY295gO7BKlct4ZZ+tJRnWQ824RltbYzr4BwInLFNJ+kuILdcjdaU0abLyUgTBJKHfjqdwnQ6BQDwDBgUer0ejEajevcegnVxj+U3BctgiA2kXCOPhYY2ZeRA17yfi2uXdXtdwaoY0J0aND32edN+jx3bhgbo//bf/hv82Z/9WV0m3VGx3W5hMpnU8oDjjQHSjUbY+XwepHny5An84R/+YdBOn3zyCVxcXNR30d2nHbIaYNvG7tLlgLt+qFKfOwa5wRFpQJwAbme2xaB/n2UANVZjPdC5wY8HpYpM0/HXpq1iiwwrPdr831SWHx0deceX39zcRPWMFL1WOlB5HAwG9Y5MzIeykx5lh+1lcaKiPoTprV8vxhaKUt0lXuI8JtGtta3Gm9KCVuKltryZmz/XIJGj21mA4uv1ejCdTuu5xeKgSul9OXRwYwKOISqHqXN4OBzCH/zBH8B6vYa///u/r+cEdCxSB21KT8T+p0473tac/3CXI+LmH22uVisRB6Y9OjqCH/zgB7Ber+HVq1dwfn4OL168qE8dwB2rKfrpGKPHDRdF4e3Q5HnwpA23W6rdKUIxGq0GUSlMa0N6ckrMYKydcLFYLODVq1fwxhtv1E793CN9Jfr5HXeoU+LRxWVZquPKMg9hPJ+P+fjRjjC2AtJiOdGAxpclwPPnSxiP+zCZ9G/5HXVnmqd6x6ausvv3wqLjttoZiztkXZrwvYBer2R4cCdxIb77zjasoxQHDZ9BibO+Q0YYD3dxVR+BGEfzFYFjkr7HxoVuG0ixoV+GDW8EG+MpCQ/vj/C/LHFMc97wj9asZKjjw2oHdwll2avrVTnWcT7zx1WFh+o04fq4wgdAjxbmzlh3XPGG7Zh1RxXznbD+jlh6H60vX6oxWNbt4uhxTsnq3X+mMsGl9Z+lHbF+ncPy5DDbzlh+By6tI8XvnNYA/q5YRyMHLoNdvQDm8w385CfnMJ9vwKhOe7APG2mX9rSubWMW/W1fePe13s9ZQ+7KB0B5QlvPISwWi0D/AcizhcfK3xe0KVPqE25D4mli61argyjGk7Q+ljVlF8DbcN99KNGQCt9FWbuALspqIzMpDimszXgHuBt7qsUWw+kKnLF3weQcJOaQwtoscpvQ0FYhoIyFxg2AygDLy5rNZt4XQNIRb3Qyy6lXikaaNtcgohk8tLItBsFYfilP036ytmEuPSnQFCJrPqsR9i6EUhfQ1PgmxccmDetkz/uLj0PeL1dXV3B+fl4bf7nRejQaeccUW4D3KcqWoihgNpvVR7ksl0sYjUbw5MkT+Oijj+Dy8rI+NlIyzh46j3Aj5y7mq5ghl/efJmuQTu6Y1JTYrhebTcFiqAcI5wkOVhzYTtTIbeHFtoZh+kz7VsOdKo/Ha3OgFodz+2AwqD+u6PV69bHNGm2cbovepJWN7/iztrF1oaTh42Mip9+1PBaDv8Uw0pVeZYVU3WML7a7Kjcm/HDy4m5QaYiVc0hjkZXPcXQDlgaIo4OTkpHa6avIgh4ac8YPH22rH+krHhtOxClDN9QDVMW/X19dBn+bI9V6vB8fHx96R8rgesa4RYuWk4rgeJc0NtE4p2aKViQYqXF+ljhrXYLlcwtnZGZRltbN6Pp93duWB1DYctzYHp3RTDQedF7rUTSRZQMuktCLgMcXu/knwflUe6d/tei0D50xRpyvLyoHn6KvyFIWLq+gNd366+LqGTFcEhqdKQx14Pg875x+th0vjl0d3z9K2c3T68VgmDwvzubS4o9Yvn49HYGlce1XpaH0oba4vwnpzWmxrZYlVm0+P1FlGeVUu0+1AxjamO5K1MVQQHCVA/WGAuyO2yotHFUt3xFbOWmxX1zah3knHYOg45f98l6zT1dGZq//88eh+Zd2uLh2dY/22d+0CQtown5SG4uGyAmrHuCTzwzpoz5JsorKOvocyTKp/+EzzLxYbWK3sntgc+1YXek5szdN2PunKVpdLR85aNzdNU9Da2apLSzpcW3qt9jMJ0L7D7QJW2iTdIlXfVHwbyMGVu3aO4dDW5TS+6TiU+MyCK8ZnqfW6hZZdgsVuvOuydgFNyoqNyTb9ERuXWpquIYfXctafKTnW+JjirgUWhdgksk/QFoqpCc/y9Qkaf8bjMXznO98J8nz22Wf10aYI2+022P3WZT80FZQanhTzSV89AcTbjxqKuVFq18CV1C6NFFp5HPY18dxHwKNNYjuv+v2+eEyi1Nb86FQJL+alCiSNQ0Mf7l7B++ewH3H3G0LOrs6y9Hda4rGQP//5z2v8jx8/hsViAR999BF897vfhb/8y7+Ejz/+GBaLRV1ur9eDyWRS40sps3cBSAtXztGI2sXODU05pUqsZJzUxinudqL5+Vde2lH1XS9ec0BbrFjlHf3ogP7onYvYFjTMumMyZlBuArH6psrVDEMUYvyCbYGOq/F4XB8zvlwu4eLiwuMhiR4JbwwkWmI72Sx9ju0l8QjnbS5v+TvlGUk2p+jB9LEP2DCehknjLlU+zWsBi3MoVgbKv5x5QsKPtOTqdTH5iO2Hx6q+fPkSVqtV3Q+r1SrgBamOiBN/w+EQiqLwdnfmgKZP4ryMND558kSkUbpXldabg8ZHEuAc8e6778LJyQlcX197jj2Ndjo+BoMBzOdz+D//5//A48eP4Xvf+x5cXV2JbZBqP2zv8XgMf/InfwKPHz+Gr7/+Gr7++mv4+7//eyjLMrgLFfs21SaHBEgP7timumPswyAqk+hc/vLlS/iHf/gHGI1GMBqN4NmzZ/WpBk3Halcg4eLzOV9PafnbrLWo/JLK0aDqE4DNZgubTVHvUkNWRjS9ntsdW4VZdsZCHSblASjq45GpI6dKT++SxX/qpClv8dF/CNLLzzStlIbH5bznhMXCXVzVFlpc1fYI1bufzg8rlHQOiqhzE9NQnSKa1AhyfcI2cH3oHLMAtD/K0vFpr8dtGfQO2W3NtxQ/vyM2djyx3wb+Dk7JGUsdr9VOWCcX3U8+2tj906P1/fIA5Lti3TsNo7I3DKfpLWl4WoCyliPuP75Llv67D0T0nbE0TXVnrNspG/aPX2daB+QzzP9NAGkdZoXYelpbU2nprSDR29RO2HZ9G5tnY3XcpS1Vax8ahh8VarSlHCBN6aBl7AMsa9uYfaHJOp2mja3ltHCez2Krz6HPaps9tPXENx34eMpZp+/Lf2MBiQ5uM+GQs96PQWNn7KE0XlegLVglsAgsyRAo4ez3+zCZTAKhNhqNYDAYmBevfMGcs1CJxWl4LMyX4hHNeCu9S5OwNKnHaE5Bqr9zJq+cMlKDPUWLZixpo1RyiOEpivD4i31PltzYj0f7UYM7dTzEnAEIEp9JxthYXbmxi+6W1CaslNGb4qZhiLfX69XOHXr0Id4rd3R0FPQXGiPxCFJOSxcKcFvgxkN8j/VTEwcVra+2sNLaI7ZYsPbpoUJK5qfmJ24AxvDNZlMfy8/71IpfgtyFTgo/pz+HHi0tvUsTy0jJWou8kcYKjZfw8fQWOWQ1lvB2i/WNlC5GR4oPuZzVdqxJ9U3pHJw2Pg/tG1L0pmS51s5SHq0PMXy5XIptLfGoVoeydHe40rnMApJepcmA7XZbnyiBZaCzDWUTH/+WttDieZqTkxN46623YDqdwnw+h8vLy9rBGasblZfr9TrYWSvRSvNLp2Ogk/rNN9+EJ0+eQFEU4j20tHxanjYure2SAmkeiaXV3pGvsb6SPqbxKpXTg8EAFosFfP7557Vz9+Lioj7uvQtoMufQfDlxqfmH/ufWLyVHY/ILHRjVvZkA0n2xZUmdePLO2OqH5TgniPzvdozSuKJA/EWdBm6dcI4/HS30zlZS45o2hxPrju1M04S7V3nzu/J8PIhLuzcWcbkw10a0DlU6205ZmhcAHYxhfaV2dWFFkFarN4c0b/L+sAHWh+PA9nZ1dm1+m0LI4/I5erH+WwDAtSK23/Z2LkT5JR9PHM5HjkY3DvDZ3QUr3RnrO2OpAze2I5Y7QekO0RKAOGKxzjS9ozt0ytJw2sVaXh5O+5DjDvtA3sGr15PLI74T1r37/eL/S1CWFR+cnS3g+nrdqUN2V+vOtnibrN9pvtR6SsLRhd7eZI0k5aWQ05aSntO03LuEGE1t6G2Sdx82sNg6ImVf0XBJ64FcsKx5dg0a7YfIt99EoOsybX1msSc1KbcrXBxHKrxLO4/njL0rA1Ib2BXNlWIaGpJwYktNEngXY8yggmmn02mwY2o6ncJkMkkedyUxvfQltkUpadOOTfoBDV7cgCQ5y/YBFuPEoY8P3m67UBwkfsPdEgDh7kV+qXxToZbDY6vVClarFQwGg3o8YN7NZlM7HwF0ISvdP6q1qfaFGK077uyZTCYAEP8CsAmgYXE6ncJ6vYbr6+s6Dh1e0+kUnj59CsPh0Ms3HA4Dg+uh8jrdUY9818WEHhoM5DZIKeXU2c4d7zH+36WSv0tIyWrkKX6HHjpYAMDbIQsgt61mWMex3XX7SYb4rvQNHKvoCMD6r9drWC6XdXtJ5aYU3lw6aZvHHBI0rVRGyoiP/R1z0iAN2DYYxvtawi2lKcsyuA9b+uBEozkFtM58p21byFl84zu/39eSV4tvooMhX5elu3OU6syaXJXwo5xHHRrn4tgdMrkLKbqb56uvvqodaHROxLurKA18nNCx0KT/3333Xfjoo4/g5uYGrq6u4NmzZ8HaQesXPnfwE2fcDiV/HEkGFqzjaDSC9957D9577z04OTmJ7u7s2khlHXc55UrzOpfBlE8l2crbGvXD8XgMl5eX3klG9L74XYA0H3BaDx1iY5LHl2V1XPFm45yx7h+Cf5q/2nkIwJ23uEO2arpwR2zVpv6OVj+Mz33OIRv+gyGsKqPwHL0QpK/6G4I8/tj2na2OPVwe0upCPiwLwN8Fig5GWi4EuOQ4Gs9pADV9GF54eQDiTiyeluK2iyxN9rm2QJxhPkmXregpivJ2dyv+A6CDtbondnsrp0oShrtnfSesGy/SUddA+FvaHevvdpV2vVLnLHXgyjtiAapjjKEuA0C/Kxbpw7DqnTpc4+GxvHJ6ecesoxcITdqP75DlYX4Z9F3iCYlH+G+9LuFXv7qGy8u4XfGu4RDmH67zHCp03VYWXaDL9fIu/QZ8Lfe6ArYhtSPydTdv49xTgiy2rVReBMvpn69zfz2ADnRdwkHyZWk2oZSfDSDOl21lfxMbWps0njP2ECbQXOiCZm6kaFKm1PG8M9HIOhwOvSPSvvjiCzg6Oqq/Qqd40JkEALXTUtrKLz1bGZHXh7eFBU+TfpCMCbEyrQOzjaKRKjc1QHdhFJH6h7aTVmbbyVDDI9GzXC49XrXmTYVb02h15btpqCHVavTjbSwZQGM083S40wd3YzQxeiNOdFxwHPi+Xq/h8vKyNpBzxwRN3+/3YTwew3q99tJ1qbi3AYkGzWDKn624pX7GcE050PoPP8iJGY6tY1WT0VLcXUCMPhq2i3po+aQ5PWXE1nBY4zQ9QnKgoBzAeR13WCGg09C6mI7RI/GgxLfcAZyCXF1Banv8RxnF+0vDycvEtBg+GAygLEsPr8Zv0gIiNVdJODkNNFzDxfPHANPnzhNN0mPbIQ/m8AOAa//cMUfL6/V68OGHH8Lx8TF89dVXMJ/PveP1tfySIYO3Mz0ivixL+Pzzz6Hf78O7774Lq9UK5vN5wH9NDE+SLOBtgA5U6hi0ANYD6cL5HuWIpLvQZ9RBuPO+LEuYz+f/P3t/tmRLcpyHwl/mGmvaY++eATSIJghKkEwSeUTT1TkX/M+13uC8gd5C97rXQ/AFZDLRTDKjURIJCRSABkA0etjoPdWuXVVr1Zoz/otcnuHh6TFkrlxVtbvLy8pWZgweHnOEf+kRmM/n6Pf71Z22Wr5C40morpuse3x7rl2Ij73ETysLOTbID4fonY7TJl5tlF4U1xcvdQ2kPbeh2Nzahl+sD2l74F4vY3fH2msQyELQAqtU/oAFXjTLWDh+cEBYenetSFEBpPZ3KzHCxWGAACAr71fV4oUtLF1Z3Xh8ngLLj4wj5XTDknw8PJeJqtP14zJyP3o37N3NP28edXej+GUiTJ12Gy4M48vXJ9YfXnDarW/UAOmyHOnDADo6O8+LrXtefWigWcK6a8T6McVu+3b3tGUf4s/60cP2Xb9X1v66/YyDr4D7sSuFJRnJjftTeRE/33N9DVZ3RxIQi5oM7q/m5vOz7i5YKz8CCK3jTfXL6+w2UGxdfptJ7jG64LNLmC7puvU1qfnbNVxsTdmknPdV5035auHl/nI4HKLX6+Hg4KDa86xWq+oqk10oVNapvFP1BaF9fSjubRnvvsuUuo/je5cUHUiszzapey29XcbeNmP7Lm219THFbyP5CqqJMowoVWHIFUaLxQKLxaK6OzLPcywWC3z55Zd4/PgxHj16VEuDW7CRZZ38uoDuPJJ5iuWrSUfQ4re5C0mjLKsfc6vJoSm0tTBdD94yfd7JY2mlKjB9ipcuB6umFOLN657AO16PTSbXrhernJ/vLsQmSiautOVusXxQHAlw0PHJdE+r1vZTyoQrYWXe6H25XOL8/Nx594E7ZOE8n88daySi614UpdRRDFhvosSV7iljpm8eIAX2crmsydhkPANupg52Hbd8blYxaMOEyqXpYixFWd10kRYby5qO3QSAcMt4ai/z+dwBZIEw6OSTkbdFDSCQ8SgMt6JrQlp+tb4hxyruzvOpWfNpaWr55Za1WZbVTiCgcPLDIflM76HNvyZD07JLbe8SyEhdg0jS+pkWpm0f4UqEoiiqD3s0IEZ7prZAZfnHf/zHeP/99/F3f/d3eP36NabTaXDe9JWLdOdtrygKfPXVVzg6OsI//af/FNPpFF9++WXSeJJaTnKjytsPrevlKSMynpY+fyclzWw2U69D4LJSH6HrDDg/YwxmsxlmsxlGo5GzD/HVYdt2fx1zmm9tRutWyrPcW/G6kmMkvVO9DYfDasxZrVbqh28+uXwKrdgYr7lfF4UULzIMp6ZKjl6vh34/x3ptkOfF1iLWoChK4IkfW0z3u1KyxvD7FS1YZv9DlrEkv2YJS3JSHA64mW1aJS8+7rnFwXm6cSTQWqblBz9RA1I5eEv+cMKgBtq6IKpL+tHF1p3LzMvHsOdM+PGwRrjJ/irzC+HP55+arx6J8U0ht6zrvN2y4+XF20XpZo98JpCVLLuthay19Ob3wdb/y7QzIUu9rfH2ztcqxmh3x2pWrxKM5WEsbxeU5aArB2V539Of7fgm8+A+63FD7q5//Tfm5+NDR6m7ea/fK8vbk95ufWk1NIb7VtCu85tP35HKOzZfda2/0mgfe4oU68Yuqe26WdIu5d1Un9CUugBnZJzRaITxeIwHDx5gOBwCAKbTaQ2MbSKvrHuf3D7+sX2RptORa2h+WpyPQvvQ6+h3dxSnproCIr7P13juMubtGjbUlttSLP53CoxtSqFJvAvim3WuBMiyDI8fP8bh4SFevnyJ+XxehWnTSH3UthN1lTaRtATgGwAZJyavVDx1mb8UJWaXvFOVFl0qY3xlnDIg0ccCMkzoWMF9klxQaGBAUx6aIjVGNOFwUIAUoQQctKlDqRyUd+QOh0M8e/YMf/VXf1WFpeObp9NpdVSzMeWRkv1+H6PRqMafnq1Cqbv2FqKUhRiXqU2/jMVLWexqfaPf7+Po6Kg6/YDuIgzx4vWpyXBTStcQaeUXktPXfnyA5j7I13+7bEMaH+qby+USh4eH+P73v1+BsM+fP8erV6+qUzPkfYOh8mm7IQvFTSl7X90bYxwwTcoqlYgUjh/LSgt14hM6konCcgBXrqcAOCAX3antu9IhZb6Tc/a+1gdaHfHfLMuq/IbaRChPbcdQrR8RDwlGpfZnik918+TJE3zve9/Ds2fP0Ov18OrVq+qqAWoj8jQHH/nWz1lmrxb54osvnOPCuUz7UAwCwNnZWdX3F4tFDRRMkYPm88lkop6YkUqbzQbL5RLffPMNFosFRqMRXr582fpYNB9dJxgr0wTc48pDeeNjmnTnzwTsxviF5Mqy+hHYmuwp7vuimHK3ad4l8XZhTHmSVK+X482bKUajDONxfwtaGQfIKuNaEKvkAXBgtX6kMQc9bVh6LwqyWLRgGgdn6RfK8cSulS6UsHCe69avKc9w3i0AWPcv/aSVrI2TZVZW3XLWxzPFj/tzmZmLygsiT/U4gExHEo2dik8wXkq/qt+Fi9pR0nVAltK28htkmXtMsQ+AtW4uCOuOA/W1nG3XdUBW3gPrA2V1PwNA3iEL5dldn7jv9We335C7Ho73WRkGkDJAkQsBv/ovB5wJbPVZBtN7OUbVGxxvg+7YasuqKIBvvpnh/HyJxcJ/bdkdpdFt3Ev76G2S9btAbfUEKXz52mk0GmE4HNY+zgTKsZ7rzdvoXLok3wefRDH5UukOgL152uUjCr6H6rIuffrUNu0+Va/WVZsmugNjAxQDpXb9QkeCsbxyj4+PcXR0hMvLS9VKTfLaF8WUQD5FnO+d4nC+3LKXysW3oY/lNSZPV7QvRZOm0A2BF03BEBm/qbtUQHHyWYveFBgL+NtrG0CWSCq3Q8SV3NwChazjJHDRpL3wOiHLGh6/1+vh7OwMz58/r9zKI996lT8pfReLBYwxFRir9fsQkBZqo0RdjVOyLXYxFu8SVstnv9+vLJ8BC/744qWAPreVUuv5OhbSoQVYStuNtfOU9H1E/Xyz2aDf7+Ojjz7CcDjEaDTCbDbD8+fPq6Mu5cYslo9UitVVCAyIycDHL21BK+NKQJZbkGugY6hdcSCAKw55fNq8EuDFP16RsskxpQlQ3RbQ1NLUNgSaXL52G5urdlnPxsJrG/QmbZeA1vv37+Odd97Bo0ePMJ/PK2tOqlMCUX0Uaouc6Fjlly9fVjLztijJt9ZNHf94uMlkUq2DtfUv7zO+NQ2NL4vFomrnqeXNZaN7el+/fo31eo3hcIg3b94k8dHy5kvnJoiDpXy84ncC+0j2RTlvhI6Vj/H0jTW+9Jrw33eZU575GLzLulv2Ixq3p9M1Nptsa33GwVjX4hU1IJTAEXtnLIXnACiJXKabOf7kl2Wcv7SItWEIlOHrf+InAVlKj8fn7lnmPvP81ePUgdT6McP1Y4vhgMKcD5gMEjwENEtda/VZ93PLUNZ3PT+8Dl33ehwtLqfm3UfOpTbdOl8K697fi8raWQKy9XBQgFpZrhKMpWfLw5MT486D9C7/fWCsfS7ggq7yH4K3TY+Di7wuXNmkjoH3y3o4G7QOykp3VzYo8qb/yrrX05DgMAeY9V8tz1RmZ2cLvHrlnpqzK3Wxl7jO/WnT+SwVrEr1u668dq0rkbzbrgm6XE+03WP7wnatQ2m6l9o1PRmv1+thPB6r/hKMjV0vlFquu+rCNPfUvfNNjCdd0nWstW8D8T1O031e7JS/FN1Kahl3pRP27V263uPegbFoDsw0aQxaWO2o0LOzM/zud7+ruV9dXVXPg8EA7733HubzOV6/fh2U36fI08K1IV+80EDMw2hHv/LNd+grdB91MYi3VXrsi5pOrDGF7q5yyMGUW3C9++67ePjwIebzefWhwXq9xunpqaPsIguOm6SUvhGLGwJtCPDMsqyyGP7e976H4+Pjyp2OHCEF8NOnT2tHjqcAI5rSmCsa+/0+BoMBBoNB1fckcAvY+2X5wo4vQLVjRSiv/NiRmyC+EI31jybu3I+UrWRxJMuIymG9XiPPcxweHiLPcwwGAxweHmKz2eD8/NyxYuP1RBRa6FA9a/FumlLGfkm7bqx9c0hMNorLFaaSZ5dlTOmQrHmeYzQa4fj4GA8fPsQXX3wBoOyrw+GwaiNdWRk1jZOyKNYWrJy4GweGqFxpLtlsNhiNRvj0009RFAWurq5wfn6Os7Mz57hhDbAgOZbLpQNs86PzyYqSjhGlj1D4naCyL/K20bTs+K8cI2Ll2jRNOS9r6ypNtts2dgA279Tmx+MxDg4OKkvNe/fuVcfv0jhcHmHadz5o4vnT+jdPT1KWZc482YZSypfLOhgMcHZ25lwnAFhLbjl2yF9NTl874uUi76snIjD2s88+q9bim83GuQO9C7oJxYXsL1QPVNaho9NC87QcO7QwMbm0PU9ow8/7io+uq4ybKElCPDhpazpjgPW6QJ5n6PUIjLX3eWYZkOdZBdQC9p38XStae2Rsee8sYIFWbhkLAMQ3A1WVWz3GcStB3PLYZCjWrbZfg/mXaZVxoMbTn8Hepb8WxhdHurmgbJ30OOSXVWCvC/TqPKoUFV6xOBL07abd8yZpjJ6uLENjeFumdzdG6VbWEdW/3cfZdx/wav1s+vX+w59t23TXO/JdA2UBYyQ4S272XljteGKAu7l92vaT8HPcTwdV3fzW/f1u/Khh+87zQnnV8izv0LVhZLsJzQluWsTju05d7ym/i7RL+dyV7X6Ir/0GgwHG43G1Jj08PKzujSWK6Sakn9Tb8nVjk3VnSloapegL3nb6NveNJh8iaPvfVLwoRYYm4X174Cb6gKb0rQFj2yjAUimm5E6lkIJH4yuVvtoGerFY4PLy0guoEI3H40qJ0lRhSm4pFFICNKVUcEQqCzlod51gzz7any+f0i/GIyWOVuddKtBIBnnX2PHxMd59911cXV1VAORiscCbN2+c+rtJS9kY+RRCWriQn7b4OTk5wcOHD6sw/PgROlqQf4gg+WtjY0hervAlCyIO8migvTweNZQWuWlgcGp8KXMoXopCk8vE3VL7S6yvxBSkFIbKnMACAM64HctTqCy7GJ9i82xojpRK55ji38cvJA9PI3UO22WcC4FXKTybrFs4kDQcDp2NF4GPKfxjY1AsXAg8SM2Hxk8+h+Tgc/2jR49QFEV1d648alWTl9zpQ4l+v++ss+iZyo/KXfKQIJOvPWrp+9y19iPLIGW+sUr7+gcCvrWEto5sW89tqOnahoiHp7par9eVRSyfM30bRDnm8zILlS8v56YUm5d5vcv6y7IMi8XCsQzn7ZiHS01DhtHWEvSrjS1FUeDi4qIKRx+PEDDblm6TwkKrc01plLLmiu0ptbHENw60lcHnd1spdc50+y8ccMJUQEgm3gECqdz1lvsPYWVq3cvfLHPDlnxIlvoxxRRe/m45VjIBBNBZN+LF49blt2HAgFAun01Xu6dWyuaWjXUr88flj1nKlmFcK2Iel8rM5t2Ws+tWt5qVYSUP6ceBrnoTa6LrSQq1TUNfv7p8qP64tSzFtW1cy1u9bVke2tjPX6lfkGy2n+jWre49sPIIYgpT5qfkq82xccvYlGcwsDXk57q7bvLZlo8Gzmqy+sL509D4hcjNv+W/XhusVkX1QUlb6nofQ5SyHm67L+uKUvU6TfncNrrt8sUottdvohe56TbXhPgalHR1gNUZ0TU8tEeQ19LI5ybk2xukhg+F0XRxRE31OG97237bqe3emMfnlKojkpTajgD/hwZtxoom/UvjHyu7WwfG3lSHa7oISVGC+tybKI2vrq5qd2Fpx+vJ+898CoLbRCTjYDBw7qokP57vxWKBxaJ+RMt1tJeuF5VtFrxSjpugLMtwcHDg3H3I70H9oz/6I/zrf/2vq0XDixcvcH5+DgC4uLjAixcvUBQFlstlzQI0RiFFpgwjZd6FYn3VpwDleSM5x+Mxjo6OAFjlJsn36tWrJFlCpCmhfdTv9ysrTtkeORi8Xq8r8IIrZvnGnBaM/X5ftbjdF/kACg2QaMtf46MpruWCc71eYzab1T4goeOK28rW1RjQBZ+6krAbasqLWwPqSqlmiyhtrg4p3GP8id98PkeWZbh37x5OTk6qr10JdKSPJQiY6aIdh0CGWJxU3iG/0FjEQdE8z6uxESjnCx9R2VBd0TtZoM9ms9r6AUB1/CuNWdI6zhjjXJeQkreUTafPremGgIAw3t75mBzjEbt31xe36VpSaxex9bKc1+ke2Nlsht/97ne4uLjA5eUlLi8vqzmG5i5jjDOmavKGyp/PY0D4/iNZ3r78aulocvB2J9dDPC15dzKfd+U81WR9GaoXOiKN2oa803lXuun9CW8nKcdca8oIbe3XdB9J4X2WylyBIOu4yV5yn0TtkbdRwK+U4B8e+PiRHz92O88zLJf0UWcGgO7ZpDqqUkae0x2xHPQqw9CdsWQ1m+fWjXgYY61lLR/rrx0/y++YzXNZL25YcjOGrGfh+BtD7Ym7o4pLYCkEoJs5wKBNh95Lvja+jcPD8bCyjni+mvhJ/1C4UHgX9A1RxgDhGM900vqobYM8jB07eDgrEz1LYJUAW/tsedr6yDz1ZtOyzyFw0QVhAX7XqWY1W8YncJBbxvI06mlpe1QNhLR+elyeBmppljLV48p4dTfN2pXGNvsLGCesdmesa80q53wrm8yzrKuiMPjmmyt8882sGvf2STetY9qVmuxdbsO8eUd3JEnqVS8vL6v9Bq2DeNuV+9wY+fYg+yC+TwlRkz3jHV0vNfkAAthfvaXoUIhC183E4sbS3BfdOjD2JmkXhZNU4Eq+WnieHoFUkpbLZW2wDSnzY4oYn79UGMWUZ7H4Mk1NDiI6NpWsAcifW8ZyhVSTepIK7VCH7kLprbmHlJxN0m2iQG8ycDUhslahZ06j0Qj37t0DULbR6XSKzWaDhw8fwhiDFy9eOLJJZTiXvQ2o0hYY0hRq8l1uIkPhfWnM53NcXV1Vx9dy6xdeFqGjJlPzoZUdv09Rkz80hkm+sky0/t9WKekjnmZKe287kcbAVymLL63Q3WkaaXlroljfJ8XmlFDY1Lkkpb5S+njXG+3Q3Cb9Q0QAIH35Oh6PkWWlVRzN6fKYTF+/alJW8r3puJpKTdcdroLQjnv8dADafGrWeFxuCVLQWoG78w9FpJ+Pj5Zmkz4Z6++pcwetfzgQrZE2hsv51Te/cb5dbrJS5getTdPHQmdnZ9Wx0nRtB/WVLMuqevWNyRpvLe3UPrWvDZpvDU59gsaI0LxD64aU+qM0Ym1Dlk8ThedtJPrwpd/vVye40Piy6x5AAqZEbdqMr63ddLn68hdrSzF+khcRvx4CAJbL8phiUwEf9ijh8p/aq7UYdS1nLQhWplO/S7aUg4NlJZ+txIynqd4J9C1BTtfitsyn5V1391u/Wj6aFSvxoHRtGRJgaWXXgFPJT8az+Xb52/AcFOTxSl6oypfySuHsu+XPw9TDcXdekFnNX8aPUbMu5aatpyXLxb7b5zqY7/b5rCpDt1yhtg0pD5y7U6lf1ddd5OZ/50ArxdcsYetpgAGitp55H+NxZRjD3OHE1fLlhk2ziJU8ZXvhPOp8XV683DS5NdLSo9/VqsB8vsF0usFs1v40ireN2sxv1xVnX7SvNeUd7U7X3U6k3kjq+0PHFe9L1n3y1fZeb1N/uC06uq7Jp0vQ/Il21bn64od0iKG9fUyeJnrNJtQm7h0YuwPtqpTgDWk+n+Pp06e1MNzaVboTtVGUdEEpaWqdVx45TF/+vPPOO849WZyyrLxbazabOV/oyzDaoN5lmcSUcb70ulDiyc1PytcfqXz31W5GoxH+yT/5J/jmm2/w+eefV0qvfr9fWUMbU975F/taPkQ+hW8bipWH1jZlHA4eUP/85S9/ifF4jD//8z/HycmJE5+I7jocj8e1u0l3odVq5VgSaWnTu085RnnyHaMqeae0K3fzGh9PUsELSpuXn1zEtjn2PKTEJz/fmM3Lht+XqcnOw0tF3U0sVJsAp21l7TJfKaCtz4+PQ12MixqP8XiMjz76CG/evMFXX31VzYG++5y7SFP6p4AzXRJvxwSiEW02G7x+/boCSYjoo5WQpTAB3KvVqirHw8PDak6hvM5mM6dO6WMvPlZwnlxu/iufJaW0PaKUr4aNKcHY8XhcrX+0+c63TqSyI3nk/ZghPk37cmzsbjI/rNdrrFYr/OIXv3DcyaKarISbfvSiycXbpa/+ZBvRxmeNZLtvs+GU62I+f0mraN6uffzkr1Z+8iPQXYFKLqN8vi4iC+SPP/4Yjx49wtnZGWazGf7whz9gtVphOBzWZNM+lCN32SbkmoPihdY2beaZ1PDXoSiiNELHV1OZUFnyj21iRHd/l3cWA69fL3F83Md43ENpGWtASRMgmmXu3bCuLPaX7ozNMjhx3HtmOdhaAp8amGbvk7XgGv/l99huJQAYiFaWDwfX6s92roIT14bT340hubm/FsfnluKu+Ul/XxgtXChsLF6I5J7HD5a1S9uWf1nu5GYBQJsmB2B5O+P9tm4BW+832n7DylC+27nDGPmeAsq6Y5luCWuBSHKHAGSbPXP+rp+WFoWhfuzKJsPWLWIpX+RevyuWfl0rWm4Jy++b5eWv1Ynr7qZ1errAb397ic3m+ufJO/r2km9NkKqv+TYCTzG6qXzH9p4p+9BUkvuClDQo/K5reYkJaOvq20p8b6OV3XVjMtex3u+CusJEZH59V1qS3uCmyiemr7kDY3eg0KDlU5aFlFtaJYYqVio4UuL7OoAGynShSOdKiFAYzeJDU45KPrIc2iihUyg2QUllS0oZ++L64mvxfIrTJhRLt8ngxeOTYms0GlVH3nGeKUcryjg+WboeYJuUrVTKSqUd0Xq9ro4goaOaKYwPlGtal6E+pvFrU27aOKeNQTEFdWpaWvtMHf8kafXYZPzwySjToHsOXQVFvZ+n5M23cdJ4dEXaOOlT2sfGNR4/5C/dUgAMn+w+/r42I93bjqUaEQ+y+FytVpVF1nq9xmKxqI7QTU2TysRXTyl50MpCjhG7tjMNmKBfCWrQIlouplPrgMozJAPlT35Q4gOo5AYxVNayL3e1aQnJGVpfEUjNLf8kHx6XtycOKvHyStloNO3nXF5qC/KofA1wlbxSxwm5Bvd91KaNBb4+5ZuneHxetk0oy7KqHmN5DJV9qI54XWv+PjeZRipdt5KCiI+xvL2FyLeXo2etLWjjqE/Zxfuaj9oqEa6rjGV+tfHQl3+fm8+/KOjfWu1xS1ljsup4YRLJGP0fzLrQDcstRA04cGotbjmIYkFetxrdMbXkZ9PmIFrpXrrJZ5KTP9s0rR/xddOSd8e66ZZ8XB42fVRhXf6AtJS1fMDyoJVN3WLWV37yrlkZtsqR0nX8TUr2V1+4GsfEcO5R0bauSzdet1aeDFIuKSPPT11mbY7lz6Zyq6/39DWg7U/1ZwjL2DoP3r/cZ5JXD1OX2xeH50eGkXLZPq+5+ccJmYYWr87flpGvPlx344Sh/83GYL2+mY9vu6Zd1g43sU74NtMuOrSbqotd0u2i/7RZszeRQeqJQuFja+eQvkhbm2r7gqa6taa6a7l+Tomzqy5i39RmXXsdMrSl2L461g5j9UX7Ws1dEl3vtgtpeeD7wSZtfFfSeN2BsRFqOsho8bR3jZrcoSl5S2WKj3z+EjySd1SlUkxhFgpDfrGO27XSIkUx1KYdhBRbTYkrSrvi2TXJwff4+LgaQM/OzmrtS96rGqN+v+8oTn0W0iG5NOp6AuN1JBW9RVHg8vKyAg4obXkfcpu+x+MSpQIyMn7qJBvinUIpcVOsx2K8UzYgfOxIKfuQ7PP53Dl2nnhnWVaz/KM2owFCbeefLkkbU30LtJRNQpv200UfbbJB4nWSCvKEeAGoPki5vLzExcUFZrNZ9b9YLLBcLp2j+mPkKnlNza8NtQFBeXptNlX9fh+DwaBKf7lcVvMGjYMp9UCWkhRGA1L55tLXz2jclta4obWJ5BUCD33kq8eUspXjFa2XRqMRjDFV2QAW/A5tsOifrHDpw6qUPKS4SX+SdzAYoNfrVXN9lmVVeyBQVl7nod0Z3bTPNmm/1010rG5RFOq9rSQzrTVic5cPFLuutWWqgmcfRG1osVhgPp9X73ytJscaOV65gIWpjRG+fZg2fqTsV1KVpNddnqEyShknZTxfGtoYWBQGqxXVmz1GlZLNMm7l6oIc3GJW3hlLYYuiBMdK9/LZys4BHysrWdmW1q0GBLbRXbRkOUu/Ww5wgbjyueRl/Y2xwKQMb/14mWvvYG7y3eeW4l76ZQ74ygEyX/vlbQYIH+scaifXtReO9S++Vi/D225gy92WEQ+rgdHWStby8N3vK+O6ctj2Kq1VjeMuwcQ6CBkCYTX+evr8ncet85HudT+eThuLWPq1FrF1N2khy+PKu2J5Xurkjh1SLyb53NEd3dG3n2L77lTwVeob5Ql9sfj7oBB/nxWjjBOymr2j/dK+9LsSAwDKuh0Oh7X6XSwWmE6nreUgWTTdY2i/3NXpo0n4RicpfQsppfB8G+6u0osNnl2mvwv5gNYQAKLd/yotOJqCUVKhGpPVFz8VvOu6rKWypumkfB11z4Exmd5qtXIGTHlHH6eYrHwQpK9ijCnvEX7//fcxHo+xXC4rPrPZDK9evari8HsHjakfuScpta+ltB8ZXvaP+XyOLCutJ2lC0sBYX5qhNqIpB0P9MMZLKvm0/u1Tfqcqd1OApNS+4asfmnRJsU1uHKRIoSZ5kuUWU5iGxi+tjEJ12wXF5qQmc5aPv2zjmsI2lb8sY62MYiBUKL0m/VAj3s4WiwWePXuG8/NznJ+fV/2fQCni6VtAhsrIF0Zru/Ko2ib1p5WZTMP3LuMsl0s8f/68ukuXyoP6bazeKQ1tzNTGKeIbGgOpLih8CEjwtR8JJvjuvo3VJwFxNIZJwEjyyrIS5D44OKjWVSnW1zJvBwcHAFCBsjItjZrOlUQ0FnOLRZonOc/UsU8DvmK0y9ouJNOuG1pedxpfLneTOUobL/dFKf1l30Ttij6Io1MJyE+Tk5Ovn2rvPI/ymZM2B8ao6d6gawr1wVS3GH9OfB4wpgRiLy9XODoCer0SkC0BTwuc2ntkS8CSA7bkTkcHyztlwe6ZpWeSA8yi062G+pGzqI4zdsvMhkEVzubdTdPy1UqK+9m8+Pja9Pl7GYfKhctLeaSwVDfWjXjrFrHSj5e/KxfJS/mv55c3CVnu0t+GSW93u3cfWUHSGtm68/KktkJl6saXR1tD8AwBsi6gV/Yd6+4+u/tVcnPdNR4hoFd/5rLxuCS7O/7yMHp6bhwNfK3LH/7XQVeZpgbeuuUv26nuLtOczzd49WqBN2+WeuSGFNtL3iTdgSp3lEIxvYMM8zaQbz0o1+EpehBNdxTjy/dYPt2TDywN5UPbR8g9Ng/rA7z2pWe/o+6obd3wPT6tSUlnr51WFOrzvr1QytxCH6xL4ie1Sj4hK91QmjF5vpNgbBulQ0rj8DUMLXxK+qENb6piTKadmu8mCp2mRAMwVwyS0i2Unizf61zIyXpoMlFch+IppOxpQrG+QUoRoA6Wz+dzXFxcVO+DwcC5G9OnONZk4NaDpEym/48++giPHz/GfD6vZHj58iWeP39epcGtrXzpa3lr4hdqi3YjVwflrq6uHAXgaDTCfD5X46eQT3kolfyyT/sUiPI9JkvXbTs25mntvK7oQi3MZrNBlmXO5LtcLlUgPEVGjfjkHRqjffFDX2KlLNL3QU3my13H6NRFVIxHSFmdkp+mwEGMZ5Zl1RhkTHl/6e9//3tcXV3h9evXuLq6AmAXqUQ0J2oKe9+awlf+KfND2/k8Nb5vnFwsFvjyyy8xHo/x8OHD6n7XkFV86hqFiD4Ak3LKzSetT2geonknNl5qcsljd33AcigvVA70EQ9vH75xDyivCaDTKfhRv3LTTO9UPpzn8fExsizD6elpBZRqcaWb3PRT3nlY2W5ITh/xkzG0/Dado7R2u8tmivh0rTzgQLx053L5xrzYOmVXajKe8vK5jnWxJGo/Z2dnOD09rfonWWT78qGVIeXFp8ji5Cv3pu1Y82+zn+2C5JpSK4vUNX+sLchxZbHYYLHYAMhwcNCrQFWyEC2tZUvQi0BYe5SxBVPIjeKTFSsBYWVyEpSVwIsFXoknKqCMA7k2LzzO1pW5QfUnEBS1Y355OPkuAVotfMgNLF0XlNWBTtcvc4BXI9414BYsT9zdB0ZbAFP3l3x0Hv74aoqJ4ThDt/yNse2Mh7N3ENu2zMtP4+WkaOSzcZ55G+Ru7vic8u6PW3/mYXg8+azzqL8bhy8P0+6uWDcv9Xg2vn5nrGHHpssyd+vCdasDuMYA0+ka//iPlw3ao598656bmC/u6I6a0HWvDa9Thtg6yaejA5qt2X3rfw5+yfAa+NSWYvocn//d+HS7aZf6obbH34Fyf+87HZbaiUzXZ1Wd2m/7/T5OTk5q7qvVytvuV6uV9zosjVLl+U6CsUBYgdhkQ931xlhT+PnSIvdQfJ97Ci+NNGVmKF0fkVKR89G+/pd8pXKWK0RSZGg7uWpKx1A4TVGZogzfhbriG1IyL5fLKh9ysPrmm28cEHU8HuPg4ADf//73G8scqk+K0+/3q+fQ2fPGGAf810jzjy2YpEw+hRL/0ifPc1xeXtaOxFsulzUleyitJu4xRbQ2xnBevnFO49OmDWr9QlNWUj2m8ON1IQEQfpF7zGLaJ5+UswtqO37te+HaRGlOwBE9c3f+HAIIAPf4Zh/IIGXkfrG22NVYzNtYSD5KK89znJycoNfr4enTp1itVpjP5/jhD3+I733vexiPx8iyDH/7t3+LN2/eOPzayEpx5NG0vvHKl06b+Z3SkWOFjxeNwdPpFOv1uppLfOMC7+e+dZOMz/1D7do3/sl8hTbSlKc8z6tTHHjfaFqmvk21zAsf2+i49NgpFfRPG3SyRv3kk08wGAzw5s0bFEVRzbmpX0trz1qZDQYDPHjwAO+//z4eP36M999/v5Ltiy++wNnZGZ4/f47FYlE7zYDnu2nbTamD1HayL8WNMaaqD94WYx/uhPYrTfplCqWMT7dBwUL5llYB/D5erb+H2lbKGOQjvp/xzUmxvepNlKtv/JPrLi4nhdVO19HmJmmprK0FjDHYbAzynPiYbdol2FX+u6AsFWeWWaCFA5v2uGK6e5aDsoaF5YCXBU8pDL3TscRuXDfMlht7BnMDCwtP+Lpf5oCwvJzLcip/Y2Cf7p5lsu7cMrXp23j2ncJycKoOzFIcwDeHl/FizZ93w266SgoTXxlaf15ONg7vS7H0tTWmm5Ztp8bxt+2+DqjSr3TnvFw/l2csLfLj4dxnPz9djpAsbjw3js/Pgq6anxvPhvXWltF/tTri+SOKrWVD5FufpKxn7uiObopS1+VNeaXE2dc6PsSfrz19ujXAv5clCunqYrKk7ANSefv2tynxtf3W3bh0OyhFpxZzaxKedBjceIn3ldRjhEO6D5mu5gaUeAcBsZr+YzAYePfcKe1+r2BsSInRZZxdqWkjkuRTBGsbzZQBT/MLHVEm3XYZBFNk6WpglAM2t4z1KYlTOpPmLiedNnmgsvXFDS/I64viNjLs0jdiSsWUxToHr2SbfPXqlXPc5tHREU5OTvDhhx9626r2LNP31a0EYzXFEOeR0kZ87SZW95ynHNhJ+UdEVnCAPQaEW8Q1bR8hQCBUjrF0fBNYTBYZx9dHZfjQWJPStyQvX/7kMZicT2h8JqVtTA6fXG3Ix5Pz3WU82ZW0sm6Sb67M9vFvKkub9prKe1eeWZbh8PAQq9UKL1++rGT98MMP8W/+zb/BeDxGURT45S9/6YCxu9St1mZ8VnW+8mvblrXwPitRskwjC1B69x2t69vwcX/fmiY092jrDOnP8+YboygPeZ5XAKKca2LlKds0T0NuRCS/zWZTbWTowyktXcmz3+9Xd5N++OGHGI1G+NnPfobValX7aCkmv5x/aNyVPHq9Hu7du4c/+ZM/wQ9/+EP89Kc/rerhb/7mb/Dll1/i8vLSKcemisYUkjx97SA2znQx9vP2xdddvvaXSlpbStmX7EJt1hL7JG0Tn/KVtVSYUZgYae2Vl4m2XtllL5dCu7RRuVZKrVcKp93nra3PtXUFj1MUBptNgV7PHv1qTHlcsQVR6T5Y2kPaXwJKXcBVAjw+y1jfkcT2HezoYhtX3gfrWr3aeFYe1IBX95mKzuWFSp6sAjp5XHpHFYfKsPyV+wWbb+sm1w7c3abB+VlZNd6Wv8vD8q24VvnRwmQi3HWTTFT2Mc0/xU3nIfPI3207lu/G6+bGcYHIWNx6PPns8nef62nzcDJ96S5ldZ/9bvV4PtDWBWwtaFuX11dX9Tqx8Tcbe//1ruRbJ+xTp7cPiq2Tm+zNdomzD7rN5X5b6abKbJc241vHdJ0OxU+VSVvHSj2ob6+YmoYWt4k+3ifnHd0eojqKjdMUlr/73IBShzGbzZxwXAeR0hbc9Un7scOY0hjNd7qZ1PMD8ZPQOO0VjG3TaW5LR2s7IKbc65SSNtFtKY8QpSgU+S+Px+PyIwJ3SU+mfRNl6FPwNrkQuimwsAu17avcEnY2m2GxWODevXvV0btFUeDnP/85Li4unLys12ssl+WdKNog2fTu4AcPHuDP/uzP8OzZM3z11VeOn91E6WXZdpDW6icEKlF7l0cw8wFeOy+/iTwhGWLE8xJSnjaxTk2llPBNFpnyl+eHrJB7vR56vR4ODw8r0CK0+LzOTcB1jltafcb6TAr52qPWZ+ScdxMKZikT5+fzl2Fi6W42G0wmE/R6PTx69AiLxQKTyaQ6UhYo75NdLpdYrVY4Pj5GURS4urpS55SUuVeWSZZZi3DfGNa23kNjg6aIp/dYW5FtUbs31ddeyU0DL5vKnzpGSp4ff/wxsizD2dlZdRxvqdBLu69abpABW26yzOh9tVo5AGZITl5G/X7fSWM0GuFf/at/hfPzc/z+97+vgNoUmaVslG8ae4fDIYBy7fDgwQP823/7b/H+++/jo48+quK+8847+Prrr/GrX/0KL1++xHg8hjGmdrT/LpTSz1N4+NrvruMRXz/4+qwFfZrNu9e5Pr4N+5nQnO5TQskw1IZD45WPYsqtFOWU9hyjXZRqGvH2nmXuBxa+9qnlLUXZznlwt6IAlkuaP/IKVCUL2TKOPYKYAFP6JSCWjjSWYfNcs6ilPFs+dDSxBYGzrbWuBXzlr03P3l3LgV3Khy0bAz8gC7ggLxweGgDbzi3FXfOT/r4wZbhMAWL94XUe10sx2UJzrw90lfUW4G60dxcY9AGA9OyG8fv7whJvfzqun08OmZaM477XwVNsrdslD/olP3vnK33Awd9dN/tLPPR0ZV3Uy89XPgaz2Qa/+90lZrON0vbrFNuj2PzX9U4pcW8Lxea4t1nPfEdvD+2jzaTqD7l/aB3XBNT0hSE+dJqSDzglXT2P00QeHob+ffI10Zvf0f6oC0yiKAr1REJtniqKQj3SuAlxPYvW3w4ODmpxRqNRLexsNsNkMqm50/VJmmwanuXTrX5njymO0ds+WV+3/KmAbGoYqcSKKUlS05dK31SFqiajxqdrarvQvI5FtqwLssA5PDzEYDCo7np99uwZZrNZrX6ltQf3Dyl2NCX2aDTCe++9h+l0qvKT720VU00UZT6SCxgpRxsFrk8hn0K+/MTyqQE9TdJrUwdNlOY+gIcf2ZllWU2pel19OsY/1d83prWRyZd2TGEqeTVtF75wTce/FMBJ4+8bG9rwjNFqtUKWZZUVLFBahQ4GAxhjqvshi6KoxlEtXQ3E1uTx1UVT4EZSCAjk6frkkW6hco+NRT5QMzRfa8+pefCRr9/cv38fvV4Pi8WiOmo31OY0eemdj72h+Yjuum1iySrToLjvvvsu+v0+vvjiiyAvCdBoRGGyrPwwie5EHY/H+JM/+RM8evQIjx8/dubJw8ND9Pv96vhqWd83tf7ylX/IPUayPTZdb8TKYl97gxDfJmNqVxSbs+T6hfep2FgUCuPbU7TZt/BwTRV3Tfh1sV6M+bdZz0oZJY+iMFivCwwGdK0BV3bUjwY2FaADcEtVC5jwI4hdN5s0yVQ/triMVwKgxJfKupS9DA8GtNlxnOfMiDJwAWDKD49n08QWzJQWt6XMBHRKq1kZh/JbukHwpvguT562W49w4to8umVu03SqeeuuW89K8jXP/apE6kCcSD0aVw+bojfxvZtau0QUWLVh3OewP+ehpSXTcJ99abqy83Zs+zlEWM16th7O5t3NX32MkHzq/j7y1wuXo/xfrQosFhucnS2wWunr9ZBb073id5F2Wdff0beDZBu4yf6Qsk7y7a+1dWsq8f2ZT3/A936htaJPH89l9KUvw8bGqH3r5d4Guok2u8te1EeavoafjNqWr0a+/kEGOfTxOQ8nr9AE7MltGh95pUpMfi3/d2DsNVPTDXCs8d/EZNIWIATSNvKhC8PbKLhu60J0n/JcFyDLiY5knEwm1VG8JANZ5hD4BZSDLz+2UFN4ybtgjTHOnat5nmM4HFZlSVY7ZFk2HA7VgbVror7YtE7zPMdoNKreYxZM+6KQoq8t0MtBkhSltiaHpFTreU40idI/HYPKefjGnJSFSEj22zbmNCHennn/TQm/y6JRU5K34dE2/VSAVm5emi5GV6uV0+6yLMOjR49gjKksBgeDQQXcaSBN6tzXpH9LkscKd92m+UKW13voDm1ZHrx/83YY2yxSenyekXXaBtwiMJ0A0Y8//hjHx8c4PDzE2dkZPvvsM+R5XoHtqRaykvjxw76+l5oHCsfvRHn16lX10RSddJHSH+ugSZnHR48e4fj4GGdnZ9U9usRvOBziyZMnODw8rHjkeY7Hjx/DGFPdyUJl1uv1vF+8XifFgNem/SWlvcr+ITeS3D3G99tKMSAWsGVFYTebTVW2vjYlx6vQ2KrtPXj/5H1Wjq/a2JWi+ArFkTJ32Sa0PHE/Psa4AGWdj9wLaLJmWYbFwmC1WqMEBDNkGR1ZbEEZ6g5kvVryLMHELENllVrGp2eAQNPy/liyluX55BaxNp3yvtpMvFM61iLX/lo/CKCX/FGzluVhSFbA5q9uJUv+JQ95d6yNY8FXWea8nXPA1nXnZOXT/SVfy9MX1o3jhvdRHRDuitKnndSAvA2kpSP96qBoGCj1g7LuWsi6heLrPEL8jQqSSj8Oguph7HPIre4nLWL50cOuZaz1I3deHlpdQAGkZZ5WqwKffXaB6XSF9br9OiZlDfRdtTAbjUaVnoV0APJDxTv6btHbvh7edc/DT6QCXB2Y5C3XuZq+U9ujc/KBsHd9MJ1uc5v11W8qaXuppjxSaTgc4t1338VgMHDcp9NppR+W+VmtVjU8oku6A2M91IXScZf42mCo8YwNgJpMPgVtCu0TiNWoSZyUdFIUJ234NokTGrRS00iR6aaAelJCE0mFcUqbpXtUNf6z2awaFPM8x3g8rniS1RnxDU30qe0lBkDxX/kseWnpNVWch+TwpamF1xRenFcTwCaF2ijxtXixNq+Vs1x0SqWgryx8bk3KxufvU0T6ZNgnaWWVMgc2yVtTebrg0UWY1P4ckllrwxyEo6Nb+v1+deyJJoesm6ZpxupLa+ehdurjn9p+m8gf8uMgAx8DQvmVY4UcE7WxwcdLyuUqMQ3G4zGOjo5wdHRUHTltjIl+KBQCWUIky9W3btTKkc/dk8kEQDnPXl1dRTfOoTSLosDBwQEePHiAyWSC1WpVpU9fqA4Gg+qkAvofDAbVR1XEl89RXYyVu65rZVtJBdGapmMBGn//66pM9kldz3O7zBcSJOTly48C18YGSpvc+LtMg8upjbOyb6XsTULE5fLJu0uZ7RpGzmcahdZ+lKf12lR3LZbzKvVFwN4PC/bOQaNM+QUs+GPDl+lbPx4ny2wYyjb5ATxM3UKWg6AcgMwECAvHWtaXFrlbK1nOzxg4cth3G8cXzuVh5XLz7lrLSlnrfcWVz3UzzK2elyqU0nTcpifbUD18d+Rv82nphgNpPKQbLz/u57Zdvkax77pf/Jhd/i55Srlsf9ItZ6UsgAtgyjCuTK5sFF+Wj40rLWR9Yepgbpzqeed+xK8oDK6u1phO7dUhbcbl2Nr9Nivy21LqHEnry1i4t5W62C/fJLXZA3bB/ybJt07nc6RvzcnDNSUff21vF9s/8zDa3vum9mZ3dHuoSRtIwQa6alNkEcv1Hev1Wr2uDrB64y7S1vpGEhh72wf6fciXyi+l8fgopDD0WUvsen42TzukNAhR6I7BXUlTYl2XwqZtWinKmBi9DQq0VJLtg9+RSiCEL478OosUtrzdf/PNN45lLLcsXa1WNUtTDga3LeNQXLkoCfEgmTh1scCSFGvrbYATSZqSWAsTUrS1VYLLeya1MpTpcgu/0OLfp+j2yUJtUx49ehPU9fhFbiHQyBcvNDeGgIXrXmu0Bbx4HOLhu8dTS3OxWFRWh1dXVzg9PcUHH3yA8XhctVWyHtTKn29+YunRmJPyZbxPAa7V5y5jiCaTBhzwOUM7DqauiPPLRWVJvLjVMV/DSCUPxYvNIXJMGo1GODw8rO5IPTo6cgDOfr8PY0xt3ksZu/lGQlO6tdkEkSUvzdm//vWvnTLZ9cvQDz74AD/60Y+qawuWyyWyLMPDhw9xcnLiWN5SHuUxQHTvbJ7nSZa6t33/kkJanfryTWMFjUVdzElaGd6mcm0ihzbe8xM8YuAr8eBzo+TL40nQ0Vdu1Lfk8XChfWITknu01LkgZX5u0xZSy4Wn4Ut/szFYLjfI8wz9frHtAxwcrNNmU1qz0m+W8f/ScpUv1SnZ0g8A6K5ZU/mXd8zae2TLcSpjYXULWbKmlQCODQeAWcJSWBsGLC6VD3+vW8DWw3M3605pum6o8k0yuGTTq6cheephJD8/ae1RArLXRS4Y2YpDJK7mz92MAoqWzzpQqr+HLGHlu+6n8fXF1Xnpfr4w+rPfMla/MzbdItZX1v7f+hHHRaHx7G5e3UU/uQ8K5S0139q6EEC1LpRznNyP0bpzs9k4p6rJPUBb+W6CbqtcdxSmEMAq26G2XpL+oXQkz5AeUvYZ+d5Wj6DJ+F211vdRE73ObSJt3Ex1A9rv4WJ85TxBYV+/fu3VWadQSO8f05Vo/TcJjL0Nm/BQml3IsguPkBI7hVIaZ4g3H9C7UL6kLog4paapKQ1Dz235hhZUKeFSqU38LhfE19kP2/Z7GS9Uv752xd352fJZ5gJzTY7SbDsppAAtqXFDYZso4WTY1Dhd5JUvHrR4TSY3n0KzqXwpCnrfxis0Rmj5IuV3274YWmC34dWk/XGKKdx9IA8PYxUv12PZuivtkgbfoPiOS9U2V1zJTm6z2Qxv3rzBxcUFsqz8am80GjkfZfnKX8okw4Ti+caj2IYgtGn0pS/TDfUt4uHrE7FFdKrSp+kagNddbFzieby4uMBms8HFxYVzhL92VFqTfhNaQ6Vu2EPpkYILsJuatn2G2vVgMEC/3682K1QO8shu/tvr9fCTn/wExhi8evUKy+Wyxt83X3a5RuIf9PA0fbSv9VlKHXS5oU9pN2+T8iCl7/L27pvjeBweVvLS+Evi/YHLGBpfeZjU+YHCNplPQu6hOY+Hkx9ayDixsVjOSTzsem2wXBoMBmYLiJZgYVEQKGrBDzs28l8OFNExxxZ4LNOyIGcZloBYaSFKblzOrHInHn43KjsrD/m7dZbVwpQySD7W4pWnY2V274SVRPnivLmbrRs4clDZWRkBeCxmbZ7ILXPCuGUi3Y3jtw1Zixui0LDV5TK0Ca9QWJl/GZa/2/HKfbduYaCV3ONh7XssvhvHhuXu1q8OYvLw1D/dX5+b62d5a9avdV71MnbL1kfuuGb5TyZrzGYbZ1zS9vC77lOuk9rs1zW/0HqCr69lfC0OffRKfLVrscg9Zc5rSjIvb9NaaV8U00XcFF133aSsw6T/LuWTwkeucVPrSlsbh6iNPvTbTk10uNdBKfsD37o8Fj8l3L7qnc8JRL69mU+OJvrzkD4LeIuOKd53w+xqsmxamSFlo/zqq0viisKUATeFn4+kEjqVV5NOLL980JSRUul5HV/k8DyHJp62yuHrpNT2oU3Osj2Tn8yrvLvPd+coxaO7F7mMXJHWNA83PQHeVN23bXd8gkndGDUZA0Lxdlk0EwAg02u6iOTtWtvk3XbyzXtdKAK0vqvNN20WOSG6zs0UjVd0LzG1qaYL0tPTU/z2t7/FwcFBda/mkydPcHZ21uncz+tX9lG5kZLKbwlE+fjH8qqBhr42wsNxeTWZtfvHU0CXVPAupCziYyCVFckyn8/xy1/+Er1eD/P5HIvFomor8/k8KmdIjtgc13ZtR3VM97QSH9/d2hrx8qHyIN79fh/D4RDz+Ryr1QpXV1eYTqeOrFzmw8ND/Lt/9+/w29/+Fv/+3/97nJ6e1tLaJ1G90hHiVIfXvV6TgF/b+fW7Slqfl/VIv8PhsGqjBP7zuNwSp9frYTgc1tYAmrUrjQ+yHuko7sViEQT7eTy51k5pD9QXNfC4CaWsmUgmLT/aGN5kj8HLbjbbYD4vMBhkyLIe8ryABUstoJjn9j5ZAlJ5mLJ+rIwE7AIZ8ty1YC1FJStYezesawlbt5Dd5n777AdpSxkt4MvLKGMAJ5dZs3q1ebX+JR/+DpZvLguEm+vOQV6Xh41Tutfj1vly8rWp1HmsWZve95CZyj8UTvOzbnVQkJ7dMaIMWw/XxBK2/m77sJtm6WfD6/5+Xq6fDrQC1EfDlrEUprRytX7cIpbClb/Wvyhk/kJlHs9Puf4z+OKLKV6/XlThb1r/8DaR1PHwtSYRfcx6dXVVW7vy+YfrkPhatStK3WNcB+2qN/m2t9HbmD9tvQek71XbpCfXarJf3cZyuqPrpy7bga+dd00SN5DpS+JXJO1C6/Xaqz9rBcZ+FzphE0A1FKepUlbjp4GNkmcqmNCF4lvbUKem1zSttl8pxBQTUomWAib70m0jx3eNfAp28qN3n3KpiZKGA/EyXd6PQgpNqWTn7rtMFClARQr/WFnG0qCwIeXYLuOCVnepAIl8p3jcKiu17mJpxMbnpvWtgTNNKTS2pfBrAqS2kY/3L54OKZpDZSpBK1+YFPl84dqOt03mMsonbUq0til5S3eK2+/3cXl5ia+++grGGBwdHeHly5eYzWaVYl8r35R6jq1JfP1Hy4sEFkLpxtKPAZv8N2W80PIUao8yDFHqBzwp4y3/SGMymSDLstqdJHy+0vhrY2cqiMLjaHng4LrGi6fRds6T9XJ2doavv/4al5eXWC6X1VHNi8UC8/kcz549w6NHj/Do0SOnvdF9Ldr8vW+S5aB9+Ee/KfNJ2/Tl3CI/XKNfbXy+Dnpb1rm+cZNAQyq/PM8xGAwqcFTOMaPRqGqTdOc3J20NENrPEC/tyo6mlFL38vqOJus+uWYPrXXatMOUfarbJwCgBDg2m8I5EriMWwKrxpTATZ5nlR8BqdStyzD8HlgCUPh9shYwBbs7lrvBayGLyq/+a/04yOm6SStTbhnLLWlLvzJtOP6UNwtMxyxlqT7k/bg2vpXVjVPnZck9Rjpj4WU4Kgt/u4g1s30MT22G2Fgc3b8O/Pnf62F5O/a5tXvnc4991+LUn2VY3U/Gs+5GSSMMyLp8dcDW/trjiutlra2X9F965v8XFytMJmvM5xvWl9wPE1Pm8NDa1KadPq7fJkrZj2nls16vq3Ul8Xn8+DFOTk5wdnaG2WxWxadrYL5LtEs7eNvaENFt6QOhPfuuusUQ+fQrbXnw99Qy5R85pMoj187ftb56G0nbz6RgX6k821BM9+aLk6or1XSWsXhN9+B7tYyNKd1uiq5Lhi4UIhTfB8Zqedn3oEX5ilmW7iqDTyHZlveuk0mbNNuCa99G0izlfBsHn38qGWNUZVYsPR+vXWS5CeqqHEP8r6s82swhvjFDTqix/tnmC8AuANmuqM1c4ANmNABVA8FCPDWAKJSexj9kmdmUpAJEm0tlHvgzB2Ob1LMxplIajEYjnJ6e4tmzZ/jFL34BoAQ+syzDYDColQEp/1MAQZmHpmXH2zBZ/6a2qVB5SEBX8ozxl+2Rnuk9Btpp7Sq2Uea8ZduXYBj905f5b968CS7oY8TbaazeQ7Lz/kdtiyz8NJC9yy+gsyzD06dP8eLFi+oueLof2RiDy8tLfPbZZ/jkk09w79696p7d9XqN5XKJxWJRO574utZN8jhpumuMr8+7WO/7SJtL+B3GfL3T5fi4D7rJOdE3xsjxoiiKamy+urqqlX+e5zg+Pka/38d4PMbl5SVevXpVtVlfmtJNG9v5HfQ+0gB3TYkfmkPX6zV6vV5tjmlCqfGkDG32rHIek+tyY8rjivO8QL9P94JTGI0f8aJ7W+39rNYiluR1gd0yrgVniyLbppVVRyRrFrIIHlXs+tFxyZQWGCDqxrfPxpRp18OF3utuOh8eLtXd9Q8BsxrApfNivllaG+SAdJfk8kzZSzblGXKT+gz5bBx36+8HWDU3/Z2PYfZdi6P727jlP393nykOt04ld9v/+K8NK++F5b8EvMp3eV8sz4NezpzqOiaZf2MMnj+f4w9/KEFBPm6H9lc8bCrd9P5zH0TlIvdANIcsFovqOgyaS//4j/8YP/7xj/EP//APePHiBQBgtVrh6dOn2Gw2tf1bFzrUb2PZ35GfblN9c1l23Zek7Dc13ZAk+jiC/Pn6VgufwvOOro+a6reuU4bYaW37/gBFy6/UncT64V7BWC0Tt2GwCiHlN0mxLw6aDKptQKc2pCkVduET4pUCmmhgixa3vpHXlRqpcviU+DFFsOZ2G/rIPslXF/JdKtplGE1BKfmFJnR5zA2/n9EnNwdDZDrXUYehthfqH10vFGO8ZB22Jb7Qi/GU9SzHA6ozqXjVNnRNiYNV2n00Pjk1f+mWWoZN+KbylEpPbu0XSqdJGj7SykC2hS7IB8Smysbdmiinebvr9XqVIj7LsuoIFXn8cUyG2HyWqvDm4B/NraS0pzbO7+7W5EndpDXJS4h84ISWjm++DpVfSFYeVuvv2toklo4WjsoeQK29xCyWuVtRFNVRu5p19z7mL2Ms8KsBh7PZDF999RWOj4/xwx/+sDrGeblcYrlc4uzsDGdnZzuN002J1gTvvfceHj58iCdPnqDf7+N//s//iclkUinxrmvNxts4X4uQH7nfZroN8smxQhu7NpuNc6yUlJusbw4ODrDZbHB4eFjxDR1X79t7UFryKCs5JnOK7Rnl2EOyHRwc4OOPP8bl5SWeP39e3eGs3WEdKkMOCmtrA0mh+TvWLuQ6Tet3i0WBzSbDYFAAyJHn3HLTTZOsY+leWftb5XAbzlrOlmJbwJXkKo8wzirwt5SzDAtmIWsMD6MBsaW8fuA29gyPn+8dapgS5AyF87tza1cdBKVy42UE4WbDum6hsHWi5nEdc0VqErFw9XLX43C38lkPb9cO9fDkxtN03dJAWHrX43BrVemfaimrg5qWr10fWVl0INaCuhx0pbUVhJu/nGPlqc0vZRr1E7skcf0GENZZ3ob5FLj5eX21WqHX6+F73/se7t+/j08++aSS6ac//Sl+9KMfYbPZ4OTkBABwdXWF58+fAwCOjo4qPuv1GqvVyplfZPtKpesYd+4onWK6mF0oZf8WCt90X3mdsu3Cn/v71quh672a6gHuaH+Uoh/por5C7em6sK1d9IG++T3Uzt+aO2O/zeQDnfY9+IQUoykNcV8LwVi+m4AMKbz2nYdU4GrfMnVFXcoXU4ilxG0LxmZZeUQoLXT4HWBt8qFNSrv2sdB40LYOmpQzL2NfHlN5NI2nxQ+Bslw+7tfv90FKyJQ6aluuBGbsYpmUAlZ10fdifUcD8GJtPNTvQjJoFKqXfY6NKYtAn5IlhTeVJ38uiqKyqBoMBsjzHNPptHLn5S77o6/N+8pPAyG09Qcp17nimx8b2/QeW01+TlKu1DqW7ZPnMxaP/1I8X7pt1hWctPvS+bOvbfsW+QQC0p2u/P4TrRy1eY2sUwFUHwOE8tJFv6NjmoG6Nel8PsfXX3+Nd999tzo+jv5XqxXOzs4qC2Oepy7Wyb55lvrnkydP8KMf/Qh/+qd/itFohF/84hc4Pz93wNh9rtdl3yUgVh41LfNxnUDx20Jam5GAK60XeB/h/lSuHIw9OjqqrLfleCfrieqGfwCxWq2Q5zk2m03SWBhai3GwUh4Pt1qtMB6P8cd//Md4+vQpnj59isFggOFwiMVi4RxfnFKWmlwxxZovbpM5QPuobrEosF5nODw0yDKDXq/kVwIwFmSUIGyZHqpfYwA6lrisL3t0sQVd6scWl4AsyVT6WZCV/7p+/LdMn7vB81wHYd241s+CopwHavF1fmB8bTjy08LXefuAWS4jIK1mffzq7i5IW4W+Af1tOE0+t6THr7tp1qz8vZ4Or6sUN/edr5ni7343/9HDvnByrcb7ZP1ZuqX/uhax1k+Wuyzvejm5fm4a7tHHDmfPeBjTAfjWZ03m/etScHdFmnzr9Rr9fh8fffQRPvzwQ/zZn/1ZNUf85Cc/wSeffILT01MMBgMAwPn5Of7u7/4OxpRXw1BZTqdTLBYL5+SRO7qjrimkF0sJm0pyb6npL2JypOo3KGyKfk+OXSm6rzuytC+MJlTeWtvx6dh9bSA0h8UodS/UhnbRV2phYvmWdAfGfkfobfu6RFPO7trhuEKE872jZtR0kR9TsDRVbO9CbSYnjULgQlOQtWmaqTKlUJOwMaAqZTPZlJrWPQEVXC4CY5fLpaO0lgsInlbMyoPnix9HQZZUb8s46yOpLA4BH74+3bbeJShIxMt5n5vk1I0EpyagEFfGy6O2SBFOv/IDEV+5+pQymoKG0tXcNb6klCDAj7dvqfiXijOZb8mbu0teGsWU+b58c/fQfNRkvtLk5+78tA4tPg/bBHzmROA93YPli8PrcTAYYDQa4eOPP8ZqtcLp6SlmsxkuLy9rp0XscxyjMRkARqMRLi8v8V/+y39BlmX40z/900qOy8tLXFxc4D/9p/+EL7/8Em/evKnu8dTy2VQG+uWAnKy3Xq+H4XCIDz74ACcnJ7h//z7Oz88r4Cx2UsYuxOsuyzJsNptauryOR6NRBST6+A2HQxiz2wdobzOlKJtWqxUmk0l1jKEMP5/PYYzBaDRCv9/Hhx9+iBcvXmA+n1dp8PZF/2RRK8d1ssTlddkkD9xdKgWMMVWaRPwDjCzLascrh6ip0kHOSdrHAz6K7f3k/GGMwWpV9uVeTx7dSzwtKMJBWP7LQm/dSytNO2aXPK3lLAGyLi+qRnKn3zJfVNfWaraUKdvyd4FbykspAw8L5x0CYC3LBoIff9fceB1nrFwsIOXWCy9Prb5ku0gJEwqrx+N1GqfUgKlru0RunnDW3Shu/vhuf5ThXADR78b7kp+vL4wxljfn6/OvP3PgUsbTwVnuxn/tMcUhP/c4YhvWdzSxtqatnoS7LINSltevF3j+fI7JRJ+bQ+Oqz/27qsOifC+XS+dEB2PKk4ZOTk6q+a3f72O9XuPw8BAPHz6seOR5jvF4jO9///t48+YNvvzyy+pkCjp15ru2Nrqj20m7fGzRBd/YvjhEtNfwkbZ/kmm+jf3wpnGXLueGLvKQoheK0a55uq3z5R0Y+y2nmDIxVaGZujBsS21BulA8qWQKKT5Dbl3nMcYv9YuXNvFugmKTfUr5+sLE6lIDdni70X59ynUpxz7KO0WRpSlPeR5D/ToVJGmSN0pPUwJK+VLBlKZ9To4FPD0NUJQK7lD70pSNMh++MYfL0pa0ce46+rqcJ3xAVcrincfR7lKQPEO8YnnXwLIu6sCXPm9XTdKT44zWdiTwqcnQtK9qcoR4cBBIysRJO769TdnH2oY2jzbtw7H0fW07lY82Dobqr0kZ8XbCjyqOEY15vV4P4/EYH330UaXIMsbg/Pz82tcQdNR1v9/HYrHAP/7jP+LTTz+t7t/M8xwvX77E6ekpPvvsMzx9+hTz+bxmPcjH9SbE51N+/DP5SX7Hx8d48OABjo6OMB6PnftE+bgj5+ldypXqjeqOZNXGDSpLrTx4mF6vd+vvlpXUxThOlLIOIdCbyl6O8XSU4WKxwNHREY6Pj3F2dlbdNyvT4Wn3+33nWgz5ERflNQS4pu6ZfOtdOc6lzqsxN+7eZC2ukZRTm9tlusZk2GzKu2M3G/tRHQdD7bHEgDH2iGLDgJMscwEfOJaw9G4tXUtZLGhJooWmDJsGgasZcy/T4uCom28OwmYOPwgrWZ0fvcMJQ8cMl2MYyVmmYfnYtMrfutz2uW4xa2Xz+7tlZ5i7bmHLm1H6dG8QafYNeDWP6+8/MbcuLWNdfvZXhtXi+o8klnHK/zoPGz52LDF3D1vGWt66JayNb5QwWvnXy5P7yTRtWAv4rtcFptM1Xr6cSwbJFNqLXjdweFv0TfQRExGVyWg0cj4wWi6XyPO8+hCt3+8jz3MMBgM8fPgQs9ms9lFj2zw2Xat0uba5Tt77orb7ru8CaXv/pvvb0L4kta2EwmnyaPsNvk9K2c/7dGuh/HfV9nfR671t/S+kS2nLo6s+3AWfXfKxrzh3YOwdvRWU2rhTFExdAxtv20B70+RbHEqFkDZBp4J5KTKQFQmn9XpdKTx9liWaUn1XAELyI5KKdlqkaHdINuFLlFKG+wZ72lAoHalUJ+L368UUgDHieeJf5Gpt9ttAWr/jCmOfv4yfooTVgDAOmBA4cXh46NQBbcpl32hbB5oC3sePW6jF8sd5Eb8QINB04yTHIgIH+MaHnxIRU+yTH8kSU7RrcoU2VvyoTi1/3I9brEu/mDIqNtZRWfnyINPxzU2+OaENaXmUbZ6eQ+0EAIbDIXq9HqbTKYbDIT755BMURYHhcIgvvviiuj9Lpr9Pku2p1+vhV7/6Ff7jf/yPODk5weHhIX7+85/j+fPneP78eWVJ2yVRH3j8+DGMMbi4uKjkomNov/zyS7x48QL/8l/+S9y7dw+ffvophsMhfvnLX2KxWDjKQBqfugI7id9oNMJ4PMZkMnGAPN7eyNIjBJKt12tMJpMqj8T/ts9VXcinzUkhhQ4HwvlYTOVYFAVevXpVWcnOZrPqOgSfhflwOMS9e/ewWq2wXC6xWq2qjxI4f14/mlzaeBeqd94ei6Ko0gXKdS/dIZ1KvrS1NRYvDz52NwFiU6koDK6uNuj3c/R6BUoQMQPp5TnYYgyQZQXyvARwyzzkyPM6IJhl9p/esT0ymJ7tPbL8jln3nS9LS9C3BIPtrwWDiX8pJ1nSUtlKK1rAWrByQNVUcpf+vN4s0GvDu2CpdXMtiTk4a9Pn/QlCFpum+y79qdwyyKrnaUniZe3mLUzd6vldsLFpmq67zqv+rgOFxug8yL3uxtfnvneXpxZO8jdG8pGgZ9waVoaR/nW3ujWsdCdLWPvrKyutnCqXWj55mZDb+fkSv/vdBMtl+ppAG/tiY+Ftn8O7JJof+QkPdG2HpM8//xy/+MUv8Ktf/QovX77E8+fPcXV1heFwiKOjI/UD013Wb03rYZ/19l1qE7eVmoDLsTVYEz2ApkuJUcpeMkRyb5zCJ1Xndtvpbe9rt72Mm4LE+wZutXbedt4IgrH7UKJfJ/99phmq5JBSMhY/ZSDuqoGl5kF7T00DqJd51x2+KQAUy8suk2ETcKtpOXRV9xpp5XVd/TO1nvjmpMmgHArLFWb8iEbfYmIXZVXbsHxhFFMgpii5UsjX/1PLXVPUcdlTQauYjJKPBEA0MIN+tfIMpePrf1KB2oZkOdyGRV0ToIuTT0nsmw/a8CIesj67ptR8d1XvlCb5+QAC/huTg/ORCv4UwJGe+SJT9oc2Msl4Go8UhX1q2BTaZV3mc0ttP6G1ojY2UJ340vbNYXSk23g8BgAcHR1VHyX5QJ6m1LQuePg3b97gN7/5De7du4fDw0P84z/+I16+fFnJJ60OtXGfk29ukmPGwcEBjDG4vLyswtCa4OrqCtPpFJPJBIvFAgcHBzg+Pr5WELMElHpVmhoYy/PlGzvIGsQY+8FZ27p6W8g3Bsl+5etLBK5L/6IosFwuMZ/PcXV1Vd0xK8dZmQZZxsorFTSZtfbsG/dC8wX3K4oC0+m0+rjBGFOBzTHlQ+peTitbuabwrc9ClDI2rdflnbHl3bCoQE76N1sQpwRisq21bGn9aQEcF1i0wItrISstY+2vTYt48HeWIxDoWgcQS7esAjUzESf0XL7zPNTTt+GzjM/rHHS11q8Un8vDeVoevJwgwlC7tunaMgZzMywOb3NuCckmY/21vlBz4r7iPbQnC/FpFl6TVwvP3eprYvkcAhb9VrCamxs2bkErw3B/99mG1cJp/Mnd/vrcQv8+a1lfPcXbgYxnxxeD+XyDq6s1Li5WIoy7BpYUWre45VIfU3VZw+siHu465/c26fE5lj6eB8o8LZfL6iMnWiNNJhOcn5/jzZs3ePPmDZ49e4b5fF6lO5vNah/f77KfvyM/dTXHd0GxPijD7qoj3acOVyOfzLE48tmno0jl6xt7UtZ+XZVXkz180zJrK89t20e1bZ8+HV0sXEiOptSkb4b2SbvwT8mfL50gGBsTbtfGdBMN8bY1/ja064AeU/p3XUZt+d3WttU1b+0+qn2nmcK/C8V2ygDHFf+SYvdmpcgQ8pOLAQnGpo5xTRTvKUTH6yyXy4pnr9fDaDRylHmahWyKYo77+5T9KXQTintf+pIPfeFHmyxugedTkvq+akqZC1NAp1A+Uug6xgFffXLwQztqOKbE5f+cnxZWpknPXL7pdArA3q9KMuwKkHD5UjcuofR8Gw9jjHNUNuAf71L6WCiMbNe+o6KlmzHu8a2xTZlv7PGVKQctQiBDChHvrvrIbdosyTqgMry6uqrKrdfrVX1BU9jRkboExk6nU/T7fQwGg2q+6ff7GI/H1fHFnEcTalNulMezszOcnp5Wee31ejg+Pq7aCr/nlI9JbWSksuz1enjvvfdQFAVOT08rfyormkO+/vprDIdDTCaTCsiiO0D5UbMpFtZNymW9Xlf/BKbSHeiUJo0dy+WysnjkZZTnOY6Pj3FycoI///M/x3w+x29+8xtcXFzg9evXnW2Ub1O/0UiuEcjNtwYm936/3C6T8pfuhgXKuWg6nTp3zfmI90E5J/J0U07xSP0Km48Z/X4f0+kUf/M3fwNjTA2Yj1Go3/nmw16vV41PVEacl5YPKpcm87kE7RaLDTYbGjMzAHnlB5RWqptNCdxmWa6CKzQly18uEj1nWxCSW8jSv3y3//auWG49awy1P2sN61rActBTs5h1/UiuLLO8t7llPFGFpzIoy64EUYlv3QIXgkfpZ935nER8DfNzarHmZtsVasTljFF4iOtW4Upl0ESOurupufF3mUbdr87DtvF6PLtecPnLflEPpx9XTO88fP3dfZY8ubsbpvzQAqjfA2vD1y1jyzjGuTNWlp0sW63MtTKRaU6na/ziF+dYLt1rFSTx/acvXL/fr/Y3xpi9nBJCsuxKTdYAbdPjHxXS3FwUBX75y19iOp3i008/rda28kPSxWJRHUk8m83w8uVLZ17iYXeR8Y7S6LavGYHddaT72Jdqe402AFEq+finrkP5fjTG97ZR2vpi/+PebSNNnxMK810jrt8KkQPGtlF+tRGqS2rLk+LJ+D73rge4pjJrilPtPaYE0Hh2XYZdUZc8u5BRaw8+wCulfbRpX7dlAE8BX/gvUWqb67pNaXVCSjEiuWCXYX18eJ54n9DChOQL8ST5NOs0Tc5QGjIvqYvM1Dbpm4xDfaYNaW1MG8991mNAs/7U5SKjy/JIqZe2gIo2t6T2zdA8lSKTHB8pPH2QAJQbcq5E5vf7tZ3T5LtvQ57S13x9S5Mvtb5SFQQ+/1j/DPn55juNd5M217R9+tY8KXW+S5/3ySnrhLfXNuvklHh8E+xbc8h5hN9ROZlMMBgMasfsarLsg7Q5kmSk+zoBYDweq0dZx+q9qzUEP8r7m2++AQC8evUKFxcXlTWhPNI8JFcbonIhIFo7ApfKj47PlelTvNFohI8++gjz+Rynp6cwprwveNf1BVHqWHHTlLp25+s6Kj9jTHU0MYXxWSpLXvyIYH70uy+eT6a2ZUn8lsulo9xP3UfGZJRzH/lxy1ueXmw9nZofbe23Xpegnz3+1z2yt7ScpftiraVr+czdyB3Vf5kGB2csEApmIZtlbhxWilt5XQtT/mv5ls+orFgNwCx03bajWau6cbLMhuXy2PLkAKtrLUu8KJ9uWva4YyofK4PbPqR8tj45AJZVYXgcG5ZJ720r9eOOuyKbZLidhpqx61cH//zvRvXnMmnu7hrNdauHD4OsOj9+vDD1Yz0sT5f3NQiLWRnWylGPY91kvDofmReZD0n1vGt5tL+bjcFiscFqVQg+7pwdWy/ysZSfDNJ2vb0LcXnb7Ku7WpcRL3n3+mq1wmQywZdffol+v+98+PP69WtcXl5W6yig3EMSsN10L3FH3dBtKetd16xN9OGhPWysL8sxo21a0i2Wf9oH+cLGqInMIR67pJGyzo3t465rrL3t1EYPuCvPJvuULihU96n7E95vfOSAsfvO2D7477Ih1eKHlKg3RakNvu0g1XUZ3kbah4yhsmyrKCc/qbC4bdRmEA5NfKEv41MGshDxOqFnUvguFgtVXu05VYYmmw0Kl+e581Wm7w4T+poTKO9HGQwGwa9pYxS6r3EXSlEg7pJuk7hN7tfV+l0KSNWUuhyPdlkct02vaVq8TJtubrjFV5aVdzsOh0MApWUgASRAaYEzHA4dQKItdTH++uKH2pSmqOZAFS8TmYYc6/j4kmVZrVx89ytLvr6y8IF9oTzLMUACihwc0BbCsi2lrn2a0nXPvaH05NwlwxKYGhsLyH+5XOLzzz9Hv9/Her3G+fk5AKuY2mVOaUO8TvkJEFmWOXdBt1E+xMJQ37i8vHQsTfk4R/ft/vVf/3VlkZFlWWXx1+/3hdLXAqZdjCHGmMpamR9VzInknc1mVfq8zZD/eDzGv/gX/6Li9/nnn+PVq1fV0X5txunroK6VuD7iawBep6TYffjwIYwpAezNZuNYcPvGb14Xy+USb968ceqGfuXYxv+18di3fw2tX3m7JYB/F5Jp8rGK0lksFlitVhiNRpWF7L7Hl6IA5nODzaZAv5/BmBzufaP0kQWVJVnGlvfM0q8GspT5tJzoucy3a4lK/nQPrJ1q7V2x1vpV/vM7Xl0L2LhlLH8GuDUt+VM8+w4mswVC9XBw+HNg17YFes/Ys7WYpfLk8e17yd9X5mDHINf9ONWtS8PhPVxaNNd6HBPw87nJfZT2bIJ+mrsdo+pp1du8dNcATR4mBMjK+H4QFnAtV3lY+2zdQhay3BJWylAvX1951utPzzcdkW5QjgPuCU68vLOsfjJAaJ4jK1B+L/11rtV21ft1ua6g9Q6A6kSKfr+P09NT/NVf/VUtPJXXcDjc+dS1mFxN8tnl2uY6ed9RnXYFqOT+XtuL7bM++VgVS6eJbo3zb0sp+3xah2uyxcZJTc+xz3Hiu0Ah/f1txTdi5JN7l/wEjym+I0ttCrnpZLwPuo2KlRRZQmH23YG7/NrDtwhvCtZ9W6ir9qgBQpynnAAkeEHKoM1mE5wsfGlz0tpCLJ+yLfANDgEUtHHo9Xp4/PhxpYQlmk6nmM1mtcWbPKrSJ7+UUVPgpeQ3lk4obiqlAo6+NGXb8Pk1JV857TJGpY4/sXCpgESKQjeFR0gmX/lLsIDcuEKcrF1JaXF1dYXNZoODgwM8evQIP/rRjzCdTvHmzRtcXFxgOp1WHzfwL6CbUCiO5ic3MPwjB6445+WkjWGcl0+hHpsbpbIkyzIcHx/j4OCguteQyjBlLEglnl8JRMnxTeaVyy4BjVSAsalfLB/yue04EZunUspa9gnuTtZ6AKqjU33tCrDHrL548aICRiaTSVVn1w3ESqL5j48NWr5lHF87SV1zLBYL9XQMvl4AoB5lp23iY2N0rO7lupGXiZYmbx9ynKDnxWKBxWKBLMswGAyq+4Ll2kLKECNexrE8pYwxWp11tRZOWb/IsZva5Hq9rsBuTanu66c8LVlG1L7v37+Pfr+P1WqFzWbjWN6GiJenNg/L+YA+ROT5SlWWaON3iIbDIY6PjytL4Pl8HgVitX4j64Onr7U5t+9mWCxK4C7PS1Awy2jstIAJATmllSxq/1CtX8Esa31hSv7YWrbKd/vr5EDxq1vAumFDzyXIyu9pte1FAq7yuGJptUtlzXlRepo7pW3rjFeXjE9pcqLm4FZzHdStl6Mb34ndwRTn5yHbYzoPfT+pvRvV3z43AWHd8L6werg68Ep+9fA6SCv5kLuURfprv27YOgCrl5Verlo495mXj01jszE4PV1gOo3vP0JrNR6G1nr7mBP3TU3msbYk5zE+H5MMXL/C11Vczi7Kt2m8fdbj29JGOO2yD+2aUtaLTSl13+ejUNwuyk7qYmLh9kkp+lYK16bvdpWHt7GfcWqj62jSxkJ79l3Sua5y9+1BUikm5x0Ye0d3dA0kO29XR6feBKUOonLBsYtSWlMyhaw6CcChuFyBStY/pBTiR9mE0o9RKliQ8hUs3Q8HlMey/uQnP8HBwUFlEQgAv/rVr/Cb3/wGBwcH1deyxL/LRWysvlOV3ZJXkwUp5526GEslqfRuEk9b/OnKlPQ+c5uoqTxNFnSyvmTbIDe6k5Hay+npKYbDIT7++GP88Ic/xP/3//1/+PLLL/G///f/xv/4H/8D/+f//B/cu3cPw+EQV1dXO1v++PKn5UfmS1u4cSVBlvnvywulId1ibffdd9/F+++/jxcvXmAymeDq6gpFUWAwGDjpkaIiJV0pr++ezCb9IbUvtuknTTepTcG1tuSrPwnwaGGpbzx+/BhFUeDFixdB62QKb4zBb3/724pXr9er7o6MfczTNcly7XL+is1N3GJ0Mpk4/ZXLQBajDx48wGAwqEAl+tjDBzCF+jGtX0L1xeUhWbklZUqeeX4mk0l1vHKv18O9e/dwfHyM4XCYfGcoz4NMM6WP3CZFmwSgtfUq1RGBsXS0M2879MvvdNbqVkuPwnz44Yc4OTmpxudnz57VjpxOWSPzdzl+AHCAWC7XLhYAvrZ/dHSEDz/8EEDZXn/729/i6uoKg8Egad4KfSAQUhhS/owxWK0yFEVpmdrrZcgy4smPNbUfEG02uiVlnpegogVzrTtVM7mV8rgWsnQUMr2XchPIUqZp74x1wdssgxO+5GstYOkIYso7pes+W1CUeJC/C7jaMO67DUflV6Ynx1deeBkLY+vGrS5Zd4Brwczja2EdF2hE9dnVlNZk6PKF9bV96WzfTc3fDesHGt1xjf9qcdJA2bqbYX6STxsQtm75qj9rVrB1dx8gK/NeL9d6+cr8c7mKwmC5LPC7311iNrMfPMb0Ia4s9Y+W6AQO37h52/aO10WUbz7X9vt9HB4e1k4cow+dZrOZ16r4u1qOd3Q76KbXxXx8ienUNB1s0717m/xqcbgOtEtqonPZl46gLe1LnhQ92L7pJspZ0+dJf41SdNN3YOwtoZgi/44s3abBjsi/sWo30eySx5Q0d+HfJG4KiJZCPmVfCNDmmyA6woYfXUGKsNBxFikgRAr5+jcpcklJLsMD5Sbs/v37uHfvHk5OTir3p0+fAig3GEVROHdptpGJKxFluCZ110TZGmsfvoUQJ7nBjYFhGnUha1fkq8Om+fD1k11lD81Rsuw5pfZVH0g3GAzQ6/Wq44ppw/3kyRMsFgt8+OGHODo6AgDn6NDUvtwkv7Hw/F9TkkvePKwGUvvkl6AuT5cfaTwYDDAej3FwcFCNNwAca0jOU5uDulqj+MrCx0tTYEnQ3sdb5iO1n/N68cnZhI/P3xc2NMfJ/BhjqnqlNqAdmSqVVgS+8jZ6E2tNXxsI5VvjIeexWFgZZrFY1PotyUJKB5prCSTT+m/KZo36py8PPCwnzfojlE/tfbPZ4OzsDL1eD1dXV5jP59Ux0PKkEN88GpKBykuOF9oaLqTQ6HKdH1p/NVEO0XrNt0YPlZMWltPBwQFOTk6qvHNgN0S+eVbOKXQ043A4rNofXwOHPhDV+IeIrPUfPHiAjz76qErn66+/xvn5Ofr9PvI8rz5ykGOUr600XW8TmS1gsl4XW0DOHllMQCaBsPxoYWKTZUBRuGAoAbNFkW0B2ZCFLB1TrFvGlrwlWFWCtFsJnPDWDY57Kb90hydO6L2JW9w92wK59lmLq8WHiKPVf0qb3abU8fSWxk8H/3zxrZsfGORhuL/7bILutq3VefF2WA/rt4Sldx6e+7vPcv3rupXTY/hYYulmjzT2A7OhsqyXlV429XzQ3AC8eDHHZLL23hNLFNsnaXOV/ACI3JvykvH2QW32TUB7/RKfK4uiwGKxqH1kxNfIGo+Q2x3dERDfv6ZSk7VhajqxcL59sy+ctubiceWJg3KtL5+1fUVKPlLGEu1Uoybki9OE120bN25CniZtte16vm2clL15G/9YXMIgQrRXMNa30b3pBpsqQyjcTeahy4Fm13hdlUOq0rIt7320w1jnlJNQLD1tAmsCbDWhNvzaLpIpvZiyMVVhFpvANUCDviiVwCtXrqXkIySD5harP7K4oPtftQ1Jnud48OABHj16hHfffbfy+9WvfgXAWtGORqNk64ZYvrgcMeVpjEKLuRjflH5Kda0p9Xy8NUBD+jVRdPv822wwtfBty132g1j9tiFfHiVAohG5p1gokRJ5tVpVymUCY+neS/pYgcBYit+2/FPnJRmOb/h5+5S8tc2L5B0j+tAkyzLnCMqiKCq/wWCA0WiEw8PDSqFDC8SYklsbj7mcMdl5fjXrWf7Lw2h3bjbZ2GlzjkZt+lrKZrJpn00ZU2SfpjQkGEttP9QO6ZQFDsakynId1HX5xeLJY2GlspPAIwJkd5GVypz4+u6A5nJwP996kvvTnXKyrWw2G5yenqLf72MymVRWvhyQ045DlP2QyyD9JRgrgT7fmCPHLa08pAxNqMkGXStjY4xz0oL0l30odc2fZRkODw9xcnLifCiTuk+VcpM7r6d+v49+v1+dhkBtkI5eXq1WtTS1dukrd+7W6/UwHo/x6NEjfPzxx9U6++DgoJqP8jyvyjI2p/jSoXxId02+oijB2PKoYoMsK++EJfCVqo4AnSxzwVj6J0tY+qUweZ45ca0cNH4AqIBXw6xfuYwu8EsgLcSxxcbAA9Si4snztj9QNtVd+mn+ZZgscwGxENhaho3N78Sv6zmtDt55Q3rCWHejuPnD8TDus86nfHbj2t96HNvX3fj8vR7GMD8b3hdW89Pc7T2wnKcLvkrAlcLye2JlmbDSUcuM+8sy4/m0spRj0TffzPDmzZKFa76218ZYvm7nfJrqLrqkfehzd9kz8zJZLBY1d43/vnRsd3Q91KSdhNaS10FdpRNb66S6x+SRHy5IPQ0HmLhhiy+N1D055xHT3/H0U8JJCumkiW9svfttpn32jS70nDGenG/T9GK6sVSSJzRo8+Zewdjb2oBTZbgNst7R7gu+fbTDu4Xb/qht3cTaCSmBtDS0CdfHSwO0UuUDUB3RBthjI+moZLJQkQsEOlaZrBuA7o/luM4FadM6TpVNbrwkABGKpynid6G3YYxoO7amLGpCi1wOHnLl7Gg0wmq1qu6wlEp9DjS9efMGb968wdXVFfI8x8OHD6u7M7taRGnyk+wxILKpglkDZkPtV1OO+xaiX3zxBV68eFHdS/jee+9hsVjg4uKi+iBEA/lCzz5ZZb60eFxu+h0OhxU4ENtI+o6vjIFVKdQGSA3xItm4XKHNqhaXlxP3o/Iia/H79+9XH+fwjbHWzzlo75P1bRjDiGT5xPqFFp+IAElSRsiy2aVc8jzH8fExHj16hOl0iul0isVigfV6XbOG1CycZfr8owWSmwO8XEnR6/Uwn8/x13/918jzvLprezKZOCCj1ga0MV8CfsaY2saTHwdI/pI3haOPRgj05vMElyEGDN4UyXE8JB/VEbWxs7OzyqKH7vTmZUuUotzXxj8CYgeDQXWqBI0fp6enlfJao6btnsaV9XqN1WqF4XBYWcPysmk6ZjdRtPA+XK6dT/Dw4X0sFhOs13NkWQ5jgPIYXuO8l/E5L/tvi4DGFt4XCajl7YD3IYCmLgJeSzm5JWwdpIVj+coBW2zdCWAuw9p82Gfy25ba1j0GyvrdSBYXzLLHGJdlSs+877rx7Lv0r7gqbvX0fET1JY8+3pVSpwCzBSZT41t3HUDk7/X1WN3PdavHk272vZTBfdfCpVnC8rCcN4Xjzzy+5i9/Lfhad9fKgedPL7vqKZA3N61nz0oQdjarn7SlkVyraH6uvMb5aK7r64ja0G2aezndVrnu6I5uimLryDb85J4kpCvQSAvTtO9qHy1q+p9UXeAd3RzFdO5Nwu9zDtD2Gk3alSZbK23+bdsAvw20jy8AuqY2MsYAqZgC+rZT1209xqtrQOimKRWskLQLICuf+aan3++rVhr0m9oH2iw6KBxXSvX7fRwcHFThyEJF8l8ul1iv1+j1etXio80dXyn5aUuxsUALt690ZV3GQHqt7lMWeCF5tHRCcnPlbUpZhpTkkm9bmZukF5M3xJMsWcfjMYD6V+ASfMiyDNPptDpmEwAODw+rjy32TbH2RL8xQEgCbm0pVAfGlPfsbjYb/NEf/VF13PlwOKzAWG2slMpyrY3I/MVAVC0+8fB9XCLHCVmeTcaQkOK/i7poGjcku5wDqN1z/qSYW61W1VxCH+7Exj9+TGmWlVbSofuL37b1iGwnbdoLUWy+T50bqP4ODw/x/vvv4/T0tALTi6Jw5nSa40kJy/ukr27Jj7cV3n/IGvGzzz4DgAr05FYkvnxz+UkODpLyuBII9pUPxeHHax8eHmIymWCxWNSOdupy37RLe4jxjbUXDkhTGLqzeL1eY7FYqBafGn8tffrlQDaB5L1eD8PhEMfHx1V6l5eXlRy++arpOEvtdrVaVVcM8Pxq844vLzzfqfUm23+/P8TR0X2s10ssFrPKsrS0mrNWrUXh3gtLxwsTYEoAjbWKpf7gHlkMWMtUW2f6McWWL33QIMuDwvrc3OcyPXoG6IhgqKAr5yv9/W4uXypzAq/cY5fLZ14WPI4LjNn3TAnjkk2v5uPEBfT4XZHl7dtfpcQt42thpZs7vshwdfCR3OtuOlgp3YzR3Orvxuj+GojJ/bh7nV8aIMvj8OOK9fKz5aSXlVteofhFYbDZGLx5s8Tz53PEKLQPCLnJ9Ti5SZLrg7brnZte7zWVwbdPkPya7lG+bXSd+5vrolS5UtY0qfqbFP1SU11QU7rpuvCVe0o/1KjNuCVPFgJcK13JW+rbfOlzOTT9yLeNmrZhX9mllGkbWZr2paZ9qul+MKRvjsmo0VtzZ+y+JgFt4fK2drTbKHdMcdAk3NtWN7vKqikibpLelvLnyksAlaKZH1vKQRsCQIna5jG2WCOZ7t+/X6V/eHiIDz74oAr7+9//Hn/4wx+cut5sNnj58mVlufLw4UO8//77ar5T24gMdxNtq4v2FAMz+OYrFFZabFwH+fq0PKa1LXHF/T77rSzjNmAUgXF05ysneYQqWb9OJhO8evUKv/vd7yrLGwpHSuB91aUvn0VR4PDwEPfu3cN0Oq2OAA1Z3u8qo+94HuJP406/38eLFy9wenpaHYnOv7Ln4yW32OKy0rMGCml5aQKEyU0P7x/0LEEMjaSfD9TYB6WkQeXm2+TFxikC1Ai8y7IML168cKzA1ut1TWkn60yWtQybmp+2tI/1hBzvUusDgPORk1YGXY0l/X4fx8fH+Oijj9Dr9bDZbLBYLLBYLJx2n2UZRqORYy1OgBqBbFxOPg5IYFfmd7lcVuukoijUI935+EHlQyTbqywbisPHGJ/Cmcp9s9ng6OgIH330EZ4+fYrJZFJ9fKaNcddBsjx4//Qpc3jdEPmOXKexudfr4dmzZ1Xb48fNc95SNumn9Vsq36urKywWi+qjjePj4+pkFgK95VhAckvFVoyKosBsNsOLFy/w2Wef4fDwEMPhsAKcyepZUuq6NLVcyLIcAMbjMR4/fozLyzeYzdYA+iDLyhJUzJHnQHl8MT+eGQAKEGBKyVF3KH9pfiKZtF8CZ/nds9S+eH641Sz9c8vXUiayviV/VBakNix/t8+o4pHcPGz5a61RbRnp4UgeW45u/NLftZjlZUPVZdswKh5uHdg4gBvW9YNTnrIJ7TrlNJkG6mF1cNDvJvuDFqfO0z5rlq31OPZXumvh4scVy2f9vRsQ1hhUxxHzd3+Z2vynlpsvj8YYPH8+wzffzHB1pR9fv8u6QZvDtY+1u6bQuult0QNJehtl3gftUg63tQxvq1xNKLQP64La8JIydVHOsbElRhJ8TZHJt/dIBWP5c5M9/k1Rl+nfJPbAdVFN9iCpwG3T+D7y8aX9VYoONgmMlRV7E41sX4uDEIAi02gqlxZ/34NZTIaUgfA667eJous2tDsNvNfCdzkQaum0pS77yr4pRVnjI76Q0TY0pPSidLqaYFPGqX6/X93Xd3BwgAcPHlRhRqNRTR46um46neLs7AyDwUC94y+0eJMT6k1NrpL2IYcEcIhS229IsdmWtPmTgzI+kvK3Ka/UcV/KGZOhCdAWk4/4aEcZyjDcWmw6neLp06c4ODjAwcEB5vN5pQyX95ekLLwpnK++NLkpDCnRe70eDg4OsFqtHFAstW/G5NPk9cWTANxsNgNQKqa1uUqCD22AENn/ZFnGFOyyf2hyaXlPacdaXtv071hbD+VRAjop85zWHjmATu2eA4my3fnS0sqgzbjZlPbFVxu3tfqQeaR/KkP6+EnOrbE1XihflAadAjAajbx3vWdZ3VpZWrxSPmL5k/7cKtrXt3z8UtdKsh3KuDxNeqaxs+srGHwycjlCfTo0hmn5S2kbcpyczWaOG7cK5mMpzW9yfPTli55pzUhzFJ20wgFLKb8236cQzc9XV1c4PT3F1dUVBoNBdZy67x6u1L5L7lQeobmVeNGHDMYA63WBzaZAluXo9SjNEmy097Va4K68D5buaS2BSLKg1SxkKUwpJ1AHxUrwFMwyNss08MiIsKWbm2frn2VUXlR/7jvA2xwcvhSW/EieEliV8vG0wfx0i1k4FqN1q9myXOR6isWowrj8eBOqp4laGJdHN+TnpwN+sbj1daYWRwcbefm47c3l7brp4WVY7Z3H8flz/lI+XxjuXnfT/Or/GvGy08vBX3ayDDcbg9WqwGSyru6ITd1TcD5EoXW4L06TPVdX+9lQHrukm9D33dHtol32JU3XdRS2rZ6lDcXS6boPpOo2Qun76iSkfwzxiOlHJNEHmsQnZf8ckrsrui06VaCbdqP1NW3+Sdk7plBoz9RUT+Or/5R2Eev/XJaYTPKqNZ9sQCIYe9snxdsu33VRbKK6K6fdKaVTheLcFO2ieH6biRSOs9msUm7JL0uBtDrapez4goOsUoDSMpYAWAA4Pj527v3jtFwu8ezZM2w2G4xGI0wmE2dS4NZSlG8tD75F07etbfjABx91tQjX+IRk8aXbVP6QPLuSb2EmlbZNZOZj0mq1qpTCXMFK7hygJaV1v9/HV199hf/wH/5DteBZLBY4OjrCcrnEfD5vVZ+pYAMPT/LSvYf37993jugsigLn5+fYbDbVndG7KlLkApkU3NpdkVJeskyiMZEr/inscDhEr9fD1dWVej+VJgvnYYxxwEEJIPG4NC4CqFntavwlD86HL4AJFPDxiJHW1tuQBuA0bZvc2pG3BwJauLwybTnua0CYT+63lZooVqi90RGum82mAo40Hlr5paRFdTCfz3F6eor5fK7eeUQkvwKnMZFk9aVN6ch+S+7yK2PZnjjR2OBTumh9XwLZkrdPMbzZbDCfz6txlNxi1NVcmUJN+q1mEau9Z1lW5VfWF//VFAcyjm+spHKkdeLz58/R6/UwGAxwdXXl8KG21WacIj7GGJyfn+P8/Lxq41Svcq3gSyMl7ZCiiMBnAJhOp3j27BkmkylWqwKLRVEBqmU9kfUrUB4XXN4hWzb/AnmeIctylBabubCMLX/NFgjyW8haC9oss/9E0r3sM8brBtDxyW48/g644Us/3ie5FSs/WpmXr3HyolnL2vxZ/pyvfZZWs5SuW3dcBl617h6cu/vakOrM4oX922wJQnH8bd33bmr+blj9+GGZFj0a449jx5v6eygM5+3GcZ9lnBT3+q99lhaxnFe9LOX4oPv78gJYi9uiMDg7W+C3v73EauU/+SE2V8qwvrUGj8f3FanUxb72jm4vXef657tA+wZktTXLbavD0P6eiK/NY+XVVK/ii0N7NPI/OTmpXWcynU7x+vXraHopdJvq5DaQNp81wRZ84fh+lqclT/lqIp9037Uu5UfTfM5uwlvTp701xxTfZvINrL5wbehtBk+0DqY931EapUxYkt6WtsLJN+inxuGKLAJg+T+nmFIoVb5YGAJCCDSgY+pokKev98n6lSaiq6srrFaris9gMHDAWEpLy38XC8tQ/NvctlI3wik8tI01L1tfGfnGv5Q2l6KwjKXXJG4KyXbVtFw1gIsDB5KnBJE48LRarXB6elqFHQwG6Pf7FT+e3q6UyocABaA8ktR3d0lqewmFkQrz1LboU/LzsqdfH6DgA/g4+cbZ0JrJN1414a/JJdtUaj10tUnuYv3H27UvjEwrdTzYpT3eNDUZUymcL4y0BvflXxvXU+baoiiwWq1weXmJ2WwW3GySO98ESmtGX55CY0HTcSIUN6ZgbuJGY2cTJU9Mhhil8NfmpLa8OEmwWvJpunZLHeM2m031gSKd4JACJqSmy+PyK0M0hQvF9435qfWjxeHluFqtMJlMsFqtkWU5SoAwR9nVDYoi2/4S+Gm297/SkcAlCEPHA5cWtBwYcsNZENIAlaWscdz4u5XbukNYxEo3slp1/V13OhrZpl/KRbJb/jYeB3StbBzorVvL6vws0EUgrkbu3a/8SGMepl7XVLcyrJ6G7t52aZwazz9WhNyMGsZ9vx4QVotrjB6ndHff634uqMplJjfub5+lWzsgNlSmbn5luNJxvTa4ulpjMlljNvN/BNfVnjs0jqesTXxzzLeRQrrGbzN92+uVaN/5bLvn66qdST6avsmXnm8NJv270Ilp8mlrRcm/aXpaPfByyLL6FXS+66na1tF3pW+lUGw9vgsgqwG6KfuPLvreLjryNvtsLV93YGwH1JWy7rbQty0/N0mkPA1ZP6RSqqLxu1h/sTyT1RVZj9F/23s55WCa8kEGfb11cXGBPM8xGo1wfHys8n/w4AGKosCrV6+wXq/x61//2kkry7KawlgeXUwycjn4MYcpCusuKEWJSX5tgL0uN1xN+ElALBSmDaUq92V6+9iAykUFWTzGQB/JI6a4Xy6X2Gw2zjGVdOSwtNACyj51eHhYva9WKywWiyR5uiReLufn57i8vMTDhw9xcnKCyWTi3PlIYUN3A2ugIvdrCoBIvkTyXlgOvJL17Hg8BgBcXV15lTrc3dcGY+2Sg+epbZiXD79PlQP2/M4OWZ5am7xpBY4sY14u9FGRPOaT50+C6GQdprUzKg9ZPrJMCPy7qbs7U4nmNw5whhSWqXMOB2h3aS8ETp2fn+Pzzz+v6oascKXM9AHWaDSqTst4+PAhjo6OcHZ2hsViUVmhcutDqkdffTX5UMXXl3nZpa5NtTAkb57nuLq6wtOnTyvr2C7mz12J+DRp+3KM10iui+S93Tyctpbj7Zf/a+ODpM1mg4uLC2cdPBwOneOr2xJPlz4upNMt5vN5dTyyr//F6oyPRVJWWaY0D/T7fVxdXWEymaDf72M0GqHfL2VYrZbI8wJZVoKppYVsDmMKALljGQvkW+s4ayFrtiARH15JDBfUxDYNG74sfwIwzdb6lt8nC/av+VlLVu0OWRmmfIYTjp5L+VxLWXJzwwDy/lxyK9/d+JSu2YJiFKfuByc+L0cbPlPc5fpIbzfXNa2H0nH90gBCCaBKfypXn3vdzXV3f6V7HWCVcVy3OtBq4+sgq3X3gbBp98RK4uXiLze9jGQ+uUXsZLLC//k/b7Be19cX2vqyKfHxnsZxzkeOzbH9AOD/oPKO7ui7SqH1oebeFeiTSk31PrG4MaA0JkcMKLuusYWfdiLHxsVigRcvXtTGyG/DuHfdev19peWbr7r4MCB1/xlLq60OS5LvrluNzx0Y2xE1UR6GqMkkEFM2xSgl3j46ZIri5m0FE2PK6hilAlepPN5W0oDOEKUM7hJQ4gPudU3WXFnGN1xcJgKdtI0YyUp+/X6/WpzI/JJylixw5bHH+wIRfTxik2AX41jT8VUDHzQgLGXyjpFMp43iel+bhKbE86K1z5R4nGjRQuACP95W8pXtVnMPzTH7HB85gLZcLjGbzbBcLtVjO/m7TyaZn5DiRWvHsbqI+QOowEy6v9LXjrV8aHmV+fGl6+Ml88hBxqIocO/eveqI5aIo8Pr1ay8Y6ZOVU6wcU3j4+DYh31ylzZW+Oa7t+Bs61va2ES+D1HGbg5i8jWvzAlHbcdcYU1np0Tv/SIwTXyfwMtfyResGrsxNkcXHT6Yb45NCsbZLZZNimRyjLttmaC0QG7sBOPNZSK7QWiQ1TtP6Co0f3C2FUvpbyoepvnzH1j+p81/pngEo74I1prwD0hgCVek+WBfcJMtYzUKWABvAWsgCZKFKgI+1fi15kDzuL8sxULOINYofzxPJX78XluK6fiWvLONlycvZiHdbPq6lq+S1ffPwpaqy/UryqxM//tjPL8jCCduEmg73bng/KOgLL8Pwd7fudL+6m+vu/uogrBvOlj0Po/v7rGilpavmHj6euOyvxomvl2W8zPWy8+W77P9FYbBeG2w2+1vrWRn8a75UvQj9G1O/nuCO2lHKvPy20W1ay3ehB/XpCLQ0fGn74qak6aOu2k7K2mhX0mSUY1KTtb9PH9AVSX2qL0yKX2p57qvcU/cZXaSl0b7HgxSdfZcypOic+HNXaad+2LpXMDZ1wbBrnNtGoQ1gWwXcHfnpptpZUyVtU2UOxZNh3vb+cVuoibKRwnPyASRNFpIE2vAL6ek+BK6IHQ6H3vTIikTKNhwOMRgMcHBwgMlkUil/m8oYoq7a4k2BjFS+PqsUThqY1IR8wFtowcvj3maK1VVsAUxW3W/evHGAP27h6FMaS6DzJsZKko0rmqfTKabTqROOQB8uW0rb9wGJcgzTFP6+NkvtnvykkpziHRwcIM/zClTm45KUlacVmvN2IQ4gccur+XyO1WqFH/zgB/jggw9wfHyM2WyG//yf/zOurq6cu2RvklLm+5C/LG/+Tkd0U7/hltgpG03fXEZz1HA4TJozb2odL+9YTSEuJx0hbIxxyo6HiwFZMTLGYLFYVPd0AmW98dMAiEgW3o/49QUkM520AZTAuQzThGTf5mOE1jb4l+q+Y2g5b58blfdyubx1+8DUcox97KCNz1SuIWtlOS5re4/UtSyF4fds7VPRw9uSvP9dUizvobWTb33F/amP8Q8u1usS1MyyAr1eeS9sr1daxcp7ZEurUQOyiAXcO2OtXJSm/5cAXvolcLVsD9pvGa+0rK1bzpagMFmlWv/ynYOVfktZ68atW33WshYc3cas3Hj+7XHJAAF4xIfXqdkCaLz63HK0FrScnwzLy9lHMdDXEyseIhBE9wuDrtZNz6d9jh9ZTG5UznU3LWz9XfIxFVDqykFhjXH58Hf6gIHc3F/NzQVj6+Vk86aVRazMZH65RawxUEFYPh7vY9+Wckesb9yj9S6t22azWas1wU1SbC1w29YK3xa6LeW6K2jXVXvvojxia7QmacgPFn37nl0/BImlLcP69BkpOo3b0N6IfLJcR3u6DeWQqqu8SdL2UrdJd8r3zzHaKxjbVmF9G+mm5OIbzDab1y7S3id1oay9yXYWKyM5CWmgQmq9yji3faDskrpqJxLQJCVY02PZuuh36/Ua0+kUf/jDH6q4p6enuLy8BGCVnKSAbQv4AsBwOMTh4WEFplA8Xg6Sn69dpigL2xJXeKeWp6Yk91HKQjgUpqlMMfeUsYDL1ibtpuOLlIUW+poieVeSstHRuOQXkp38U8BNLa1dKVYO2pjV5UIx1HZCfTgkm8ZDHu2uffjB0+P1oC2WuyBtY0e8+/0+hsMhTk5OMBgMKrkHg4FaHj5wTZPZV56x+ZrHT5m7Q+OHD4jhCkHqr3ze8PUPOaZz/gT0PXnypAI6l8tlNUf55mX5Lo/Q3Rdp661YePlMR0GHwuxKWZZFwTDKi0yTrlwgOeW6Rt5525ZkW9XaD+9zAGprC194/iyvVtDCXidp6wnpps1RoT6r9dfRoxHGj8dAVp9vFUNEGAIZOFBCbAnPo3BGxDUGZmNQrAvMns9gNvUPduQYHxqnms6xGj85b3B3LQwP5xsvQ/LJMPQBWNn+Sms3Y7LtccQAUKC8W9aCjgTOWDDTSQFU8HTXLPmX5QpgezdtnhO/8tkCqdl2/HYBWjDLVgoLx9q1DGeMBXmtTKjxgLCURdAS1hfG55bqnuqvhUsJH6L9zEH+6cF4/aWbiQCK9jkOwHJ34luPE7aCpXcfH2Okf9zP/vr8XSCUfim8JF4muns9XCjPvA7KPUY5Prx4Mcd0unas4K3c/jbVZH/M593YeOfKXedLazZaE1yHTq9rStmrStpXHrV17m0pz67XSze1/mpKTco/tL5s086apJfKN6ajSuGr7cl3rU/Ob5c9URvdGPc3xjin/E2n02ovRde68Dht+2eKriulTH18uu5fXevm2vBM0WOE2rAMH9vHppZrqG11OX778ptShnfHFF8ztVWMN/VPGeBTZGkyUTQlrUO8LQsAPjE0Haw0JUjb9PdJXaTRxWK1y0mGf41FFlV8Yg9tqtqAL6Gwq9UKl5eX+Pzzzyv32WyG+XxevdNkRHdO+mSLWQMNh0MMh0NMJpOKPwdL5FGfKcrc1HzG4sYmxhQFYIosWp7kIpWnpS0spEKvSdvsYuxMTS/W71LGdU0pGuPZNo+UFl9My3bpW+hwwEmzfOyi3LsYf1LGljYgEO/HMr0YcUBEAgzyQxBS6oT6o/TjVlDUf7rqB/xXgrGj0QgPHjzAfD6v5B4MBiiKojbe3wSlAB1UVrLMtbZC71RndDQ9gakhi2DfWob6Vq/Xw4cffoh+v1/dd3p1dZV85F2WZdVcu1qtHLCzq3ldyh0DazjJfkYfhMTmmxSlqpSNiNcHyavNPVo+5vN5dS82ufE0QmNgk7mK9y0f8b4FuKd0hJQQ1Eapzd4m0uSWY2zKfsqXdyrb8btjPPrpI2T5FnzNgIzAJQXLckBWDiCY8t3AAIV1M8W2XRWl+2a1wXq6xvx0DrNx2wMHAPh/KH8a+ZSd3HJazunymg5fmXE5uZ9vTeabnygczQMExhaFQa+Xb48YzlDeC1vA3g9bgrDG8N864FOm45aBtGwlQJWDtiRullk3fr9sybcEb8mt/K3fFUthKV1ADwNmzcpKvApb+mUizxnLuxuO8i75sZJhYXj61t9913jYMnbTkX7h+N0QnzsCoTx+hoF+vrD2PWRFWwcXJX/X3xfehtXCcX8KL59jfrp7/JhibkWr5V8vF38eZT60fBMAvNkYLBYbfPXVFPO5u+5JXQuE5t6YElf+1vMRTl+OuTe17gXS5kkKtwsQ0JRCc/sdXQ9dpy5FS+829Q1t/RUqnza6M5lWaHyJjTepdRdam8VkAur6yYuLi9ayhCikq5G6MRkvVI/7on2lk1oOPp2GJpf2QX/X+8BdyqPt/sdHKXHvwNhbQF0p2K9Dli5l8Cmgr2vwug6io2KJ5H1YQJnnJgORb8K8qYUEKVs1mUihe1tIHu1ByiEuM1cWt1l0aMogzY0moNlsVh3JSgp0In58cdO6Jf6LxQIHBwc4PDzEcrmsLGsAVEcZpo4/Uo6mi8PUsFJJSM/a4jklrdBCMrYw9CnTY0rnromDACltkCilzniYGGgTIl99pJaPVBqkyk50mzbSqRugkL82DoUADiJfG/GVDwdNZTtYLBZYrVZYr9eONR6PJ++21OpkX/2EAFbqj1dXV7i4uMByuURRFBgMBsjzvAKwrnt90bQuOPENqWwLfCyQ4TabTWUdTPcWS5BOs5QgkIzmbDpR4cmTJxiNRlXYr776qgobygfJstlsqvQ1AKgr8q2jfDL6+pVv/PStC3wbtzZ1H+rrvOyknwSRCQAH4Bwv3rS8fZvpoihwcHCA8XiMe/fuIc9zPH361DndwLduMaZ+DPRNkVaX0k1bP2jlcvTREQ4/OCxPuAVKoLViXIKtBKqOHo3QP+w7fjXZFCtXRx5T/jvtkrsZVKBsPsjRG/Tw6KePSjDWWJ4UhuIWqwLFqsDyxRKb1aZmLe4j3j43mw2Oj4/x4MGDqr28efMGi8Wiuofc1zbajJeyPWl1GKrHEnwBVqsCRUHp5zCmQJYBJbhJv2b7nzv3vhL7LKsDrNo7pV8CrCVIqr2Xd9eW6ZZArXWje20tiJpt+RtwsNUNw+cPkl8eWUxlQGXmvpd868AsD0tp22fOR/Kycd13XldOlVYyaMSr3wfa7kopw5fZgnuxuO67iYRJP5aYy6DF4eFluLQwaSAsULZd1z0OwvJnXzlp5ZBaZjJvPP2iKI8l/sMfZphMVlit6kpk+o3tMfm4pq19mszLsbGQ75341QspcfdJTcb7Xfne0beT3va69s9X4WPOYx9UdFkuTXmlXA2zj323pl+OydJWT/5twiV2oS7Gaq3tdrEv7YJ8e+xQv+2C7sDYhhQq+K4bh7aA6zKNJgrzVNCjCd0UeNglaUo4nqd+v4/Dw0PHT04epKgIKXl8fikK+K7I115IKauF1fJLcZrUPeXNJ0MKL1k3HOjk8kt5Y0BIiDSFOedTFAXm83l1x5uUxXePY0q6xH+5XOLw8BDj8Rj9fr9S0PI6ShkLZFnvsqiJ1VtIIbdLm9fSC+UjBv5dNzXJb2zeaFOOPpCN/EKARhOZtTih99BC6W1YRIfan2/T5cu/1ke0Zz5+S38ebrlcVnJIfxqfyI/7twUgYyTzQx+ykPtiscB0Oq0+fKJ7LAmQlHdzNlkHSWo7H4TKwbcJ4HG1uuNj/mazQb/fx71797BerysLYZ4G/fJjqCXPwWCA8XiM+/fv4/DwEFmW4eLiAuv1Gv1+v/ooJTSO83ufaf7Z17qPl61cP7fhFXpPje+b61LGzZC/zCdZsNM/Xzt08UEcH4uo3fT7fRwcHODhw4fI8xzPnj1zQGFt3cbXQ12PzXK/pOWhCY+aHwzIirXiyQDX8btj3P+T+8h627zl2zQZ8OYK5DBXZan5G1iQVgAKDghrbBhjDDAAzNigf9QHAbAVEEv/m/J3s9hgM9+gOC8As20/XFaB02lzUlEUGI1GePToUbXHuby8rKztnWJQ9lE+Cq1lUtaMHq5V2PXaAMiR5yXgCqA6VnizsZaxeZ45x5VmW6C2BEutJSwlTSBqGdbGz7YAJR1TDISOLSZZDQhYLS1jKU0tnM0fxbPlAnDAth429O5z4+5N/aS/L0wovBu3rJcIix2o5B2az2PuRnHT3tscS+zGs79GCdv0uGK/1azmx8OUoGwaEKtZxGrlrZWzVga+/PF6pPQ3G4PVqsDLl3NcXrpHYBL55jlXDt2/i/2rTyYOxtL6+Cb0balpxtbhu8reZA/6tusl78il1Lrfd73vAjhJvZncz8VkD62HY3Jp6/eQrPvuyzy+1J3LU4c0aqNTlfFCMr1NFNKdNQnfpA019Y/pArmbxqfpvBkLE+Obkp5M5w6MveV0nYrkpgr5rgafb9vihyu+UvLVZJF828CFXq9XWXdqRApYol02BF3nnTYqPrAihbS+IPOogWJaGCqnrjYd3EKFHxPH01ksFt468fVzfrygb5L08ZOTnVTw+uIQ+SZauahMWUjwhdu+7zK8zdR2PN913E5NV4ZL3UCkhrkp0hTYGnHFSkzZ0yRdLW1ep5SudqwvH1fomVvXSp77JH70cK/Xw/n5eQXCGmOPnSVQ9qZIAhXcTY5xvrYR6gs0ngGlJeTh4SHee+89zOdzXF5eVkfKcnCUeFFcbr1KAMpqtcLr16+xXC5xcnJSxae7eZfLZRTse/fdd/Hhhx/iD3/4A87Ozqr0uh5zU/sUD8spNn/xetPS4P3BNyc1GTe1dHzx5bpTytK2vOX8Ktc6si3LZ8mLfrs+MeU65u+8n+Odf/UOBicD5L2tMixHadWaAcP7Q/QPS6tP5+hhWRwhfIq5GXtGseOWmcy+G1OmQc+GtTdjw1S/BdwjjQs75pDFbD7I0T/oo/dPejBrg816U/nT3bPz53Msz5fBcuftQ7oD/n6UopjR5hkOQAD2zmvuJ9N3+ZSVVoKuxZYXnf5A85y1kCXQttfLYQzQ65UAKt07S1kjQJD0p/ydhyEid2Nc/zIfFujlJI8r5tawNk4J0FJ8fpQxWcby44jLdE2VPvHiebBglAW5bFxe1uTPAVJumSvrl975eFMvK2PcgnDLpX6073WQm2Zdfn/YMrx04+9Ubrq7G9/1d+MQn9C77ib5mFpYGU6G8VvIhqxhtb1fzclbFlp5aHko+3xpEfv06Qzn50tcXa0brS04tRnf2oIFPD0+1tFpWG/THve2yHqb95B3dLupbdtJse5sAgzKEwE1nWQsvdD4dxN9hPan/MO+VDl8OshdqQmA2eX4dpO4QJN0uyzn1DIN6c1u09jeGoy9baDQHXVHKYNu1wul29iWmrZxn8JcU4hJhbh81xbUWljJX8q/C6WAJKSgJEscPjFyixuuvO96EtolrgYo7kMWrW5knXepnJb8+RGFPtAkJK/mH5rkmvCVR6Sm9gVOsb7a1u+mqMsFYiwd/rtrf0oN5xurfHWhjZGpcXehJuXSZHNEblaRqStf+PgZkyG24JR9S6sHbdOl3e8h+Wr+IRl3qSttPCAZ+XHEL1++BAAv+Jjax3ztrqm8Pt4x4CplLObP9E5Wi/xjqBBAKOdq8t9sNpjNZuj1ejg4OHDAtxDAzd1PTk7w0Ucf4fLyEufn552vI33gqeaXqlhIKX/u5+sn2jutm9qO83JelHMn1Y0mh0xPy6cWRysHWvv58iLHG+23C2pSjqljad7PkfUz5/jgfJTj8INDjB6NSjA2Q3Xna5ZZ0LUqqzbDnFGeU36N+55trSort6IEhk1m7K/JYHJT+pnSDabMkzHl0cYwQLEpKstZOsJ4fbnGegtSVO3DwIK8sOOHLHPZnprWH+fj89famTbfSjcKXgIyZWH2eqUj/ZK1Hh0FTICmPd7YWqmW/ErrU4pHlq5kCUth6OjhUubSj9wJbCVLWHs8stnyp3xSPDg8SC7rTsCr7ld/t26ljFDDZZmsFzkOcoCsDqS69QVoYKtb7aZyB+DlLXm0IX8T1dZ3qTzC4Kt9NzV/Xgc8jvtslDhpVrD0rsWR/ry/2Tjuu+yTroVs/W5Yme9QGdXd4tawmnzGAOt1aRF7ebnC2Zn94KStst/K4B/j+LpUumthQ+mmzPEhCq3pJS/fuK6N+U1k0OTQ5AlRU/0dpelbu+2yZtmX7vQmKaZ32YVvilsK7VO/F1rjN+Gj8dB4h9pQavsK7Ydi4VLkDul3mvLUyJ1nwjrNFB2nrw2nlknbfUfqvHBTtI8xdl8yAP76alq2TefWrqg1GHsbFdg3SV2Xh09JtO9Ou0/F9ttGbRZykkajEe7fv1+9n5ycoCgKTKfTSnm3WCwwn8+rMPJuAK7k62Iy49RkMZVlGUajURWelLQk009+8hN8+umnFd+LiwtMJhP8+te/xmqlH/GzT3l3iUMU63N2U6l/eaa9c3fOw5d+2wmJyzSfzzGZTLBYLCpwolTs5NWvjCPllOloY4WvrEObzOFwWKW/2WwqMCXEg6cvZUkdI9tM1BTvOsZHLS83MS6nysAXxykAQKiutLbFj8T1xUlpizdJIaU096Oy5Eep+5Qb5N+WQn2HNjq+utXkbFKnu5AP/Lm6usJsNsP5+TkA12JQ2+Be10bItyGVftTONctBOWbxeFQ33CqMW63yOqR4ZA1rjFFBtc1mg+VyiVevXmE6nWI2m+Hs7KziL++SlO2Znn/wgx/gL//yL3FwcICDgwO8evUK8/m8Wj90Pa+n8NKAmZT4vI7k+MTLI1U5EZNVGxOyLMPh4SF6vR4uLy+rr8TzPMdwOMT777+PTz75BKPRCP1+H//9v/93PH/+HOPx2Jnr6QjyUPkQSavgXq9X3UdMR8/S3XTU5qg9adct7GoZ6+vLVKZ0VzT1Cb4GTen3J5+c4NE/f4Qszyzg2sswvDdE3i+B2AqEBepAbE3g7W8oWQPHGpYsXstXU3czriWstIolQDZDVlnEZqaMbwj0oOOKaWwxcI8wNgbZZhtnY2CGJSjb+7SHox8cVUcbF6sC66s1pr+fAkXZH+bzOV69euXsGfh9sU37fMp63Bj34xxKVyo55bjj9tsMxmRYr6md2jmu18u2vEtAsnwvw+d5hl6vfAa4ZXoJepby8/WPBRfp6GJeJGQha8PY33rebdgso35KebL/cCxl4fiTpSy58bA2fb91rI2HKn+AtJot+dpygcNr+8be+TqHh3H51ZuFK48sq64ozMtvmSvd7buJ+nM/99nU3KkM3XdfWJs2j6f7u2Gln8bDuvvduMyxMtPd04BpKVtRWIvYZ89mePFigcXCzl+Abecha38iH6jC993kJ6+KkHx8634fabLI/XMTSt2vaWv81DQ1GWnO1vaBbfLRhG5KB/s20XXtr/dZ5k3W4PskX/+Xa2eSh6zdKQz/+FLbo/tIroF8YXepa20/m7pH81Gv19vraVe+q/ekW2yveF26wi7T24fcb8PYGcr3rrLHyvTumOKG1GQA8Q1sPnBDhtEGYG0TG1LupcibkrZGTQZ8nyy+PL5t5Ms7HaE4GAyqyZIUQzQ58WMgiUKLzdiAoSkdfNS0rPmkTwpAosPDQzx+/LjyI/6Hh4eq4lVagqYMdm3aRmyybNNum6Qbavc87ZTJyqfUjdFms8F8Psd6vU6yyJFycUWnFjZWRlp+OYCgfdnGN6pSlhBfHx/fmBnaSMqFqq64666P+fi3odRNe8p81DSNNgoDwN8HuEI/dkdlqN+1pV15NVUexMrVVX7q7VoDK2IKFV8+Uzar+yj3FJL5IsU7za/SQlAbQ0LrtJS+3bS9a2nG+jyNv76y5uMz5X82mzlAhEwjy7LqqgG5DiEZN5sNrq6uKqBxNpvV1rgx2Q8ODvD48WM8fPgQ9+7dw5s3b3Ze66W01ZBiQZajT5naVKbQejxV1pDilN4Hg4EDbFG8PM+r8j46OsJ4PMbPf/5zBxjN8xzrtT160XcsWmgvw8fi2Wym3h/sq+OuxohQXfd6vVpeVVnyDIPjAbKeOyaMHo8wfmdc3f9aAbJ0R2zG0mdso3lTwSFjeRLYmrl+mSnTh4G1YN0egVzlzcBiGNuw1VHFOQNlyTrWmMoKlkBazeqWwiJDaUWbZ8h6GXpFD8W6tJotlgWyPCuPaV5nKDYFMABWWAFrlKCtMbV1v7csZLF5+kPqGKyNv/44vN2Xd0cCxfYuV2u9R3e+2nHEWvuVfZgfG1y6GwMYDpozINFsASJ+Z6xtDO6vXbdyPyjhyQ2KOwLhAAuW+sJzNypXv1uW2TzaZ218cAE1W8cynOVX57GVwtT5d0/h45B9flJ2GU6WJfd3n33+2pHFaVaxPEzYP80SlrvVn13w1l9WMfd0C2HbF4HNpsBstkFRlHdGT6drTKd2PSQBQD52xNaH2jo8tEZI3SNocYl/Svimc3Boj629c1marK34WmY8HgOwuiaax7nuoIkeI0Scpy9OKI93dPOUooeSbT9lv7ArdaVjpLafcr1ak3x1kW+tr7Ud03w6Ps5HA6l3TcvnF1qTxo6UblO2oTkiRd4UatMmfLrR1DmnKYXmjSb7bC3+dVMs7VZg7K5KlDtqR7GFRxva1+TTlm5bu2ra1mV5vnnzBpeXl3j//ffx4MEDAOUkMhqNKpCpy7uz9l1+ElSO0Xg8xk9/+lO8fv0aP/vZz6q8jkYjDIdDrFarJD5dkRzMQxa7TSaalKN/Q+lQGtxqhRZdbYkvEq6urjCdTqu0hsOhky9S2JNiXgKgAKKLP5knLX+SRwhYI0BB1lGWlVYv2oJNsyKnPszLgwN7Mr9N6G2eC5u0VQ1s8cWXVimp6cb622g0Qp7nuLq6qm3IQ3xvG4Xk9YFavn6itT/NjY8vfFzRFBAhuUObKy67Jv8++glPS/4Oh8Mq7RhYuI+1lY80JRYfn2Q++DHLst3Tl8EElK7X62p8nEwm+Pzzz7FcLqujimU95HmOwWCA9XrtgHPEnxRgz58/d9yJX2j+5pvnwWCAo6MjPHnyBB999BE+//xzXF5e4vDwEACcr7yvm5rM86GwVB9y3pZtj+qg3+/XFLsp6VNdHx4eYjwe4/T0tLKKzfO8Op76/v37+Oijj/D48WP8t//236q6I7B2uVxWa4KYQoHkBvQvxieTiSNjaJ6QZbiPfkdrnH6/j36/X30MyNMl6o/7+OD//gDDB6XFKwGv+SBHPswr8JWDsA4f2RRShjkJKikWsJWfEeVkbHgO1Fbx6B/uc1Zsw+SojieuLGfpd3vMrmMZC2PvlS3qz1m/BHiLQYHeuIfB8aC6V7ZYFSiW2/tlL5dVW9t1zyP7lOxH1AZDa1eNR30uLf9XK7MFZDPHMhYojyY2hixl/ZaxQF6Bh8YQ4EgWoK6lrLwzllvI0j/50a/991m++ixl5XMJ2Fo3aS2r/fJ8cpDUxuXheRw4wCwPx9f3cgyx9cNcPX7p4wuXr+2wFEpX4ynDyzD83W3HMowb3/7W49TB1TI+f+dh4v7++1d5WPdY4rq/L99xvybHNLvAb1EAFxcr/PKX59u7os3WStb2SzqFgk4D4R+u+eYvcufzJVlzrVYrh0d4DKrPn23nTG2c3IW6nLtpbUNzw3A4xI9//GP0+32cn5/j8vISz58/r8KQLor272/rPvxtp9uiA0mVoUvAqi359udaunIvwfdpqZRi5elz37Vuu76aLkahtLpup6PRCIPBoOJNH8dyWiwWuLq6CvKRY3pMR8bD3VTf22e6TerwNur92szRrcDY2zDw7ptuA8Lua3Rva/k3WVRKhY4vz9pA32X5dLFYJUWntoBPVYSH+PtoX+3Ex7fX61VKWlIW0sKajq/jRFa2tAi/bpJK0JCinsdpk07KBNLlpksDQ/hRSL7NS1swWfKI8dZAWRmXg6Tj8RjD4bCqs+VyWQOMQ+NASIluFWGukk7yjaWhxQ2Vx02Tlhetrae0iSZ9pIt2zWXz8Qv5XRfJ9EMAhK/9aW6hfGnrhNg8q8mZujFLBbG6roeUsTvVPxQmpd93BSxp442vHcu6k/4E2vGxVcpOG0h+p7gmj29uCuWX+BFASYArXyPsuv6J0T7XzFr/Cs0zPGyKPHKOlGXFTymRYUlh3Ov1MB6Pq/mTlMmcV0wWbVyIrZU05YKcD0Pl14ZCwJuk0cMR+kd9IAN6ox5GD0aldWx/K1e+5ZeJX8BiRAKIaiYsCQh7LHGJgVXWro4fYO+uzUR5bcORP90F6xhIGjiWsdJqtvrf8q6sZrf8SdZKzsI+51kOkxnkyMs0sgymKI82zvplWfaPyzGG5ComBcymXk+yvkJjvGxTobGIW+PG1v3uWrDMZDk+lhZ0FnAF8pxAJqqPOsCZZTRWW4CzKAi8pXTKCiGxjCndSv71O2Nt5TolAluxZXxK07qzhgeI95Aff08Nw92pXOt+0j3LLFDmvsf6WR3UdUnWs8IhMH3X/UJzXzoP6VZ/N1E/7m7bUD2eDE/l7L5TH9GeNR6adWvdnadfvxfWn39JWhvS8u/LL5dlszG4uFjh4mKF5bJAUaQBlU3Xs3ytxt+lnCnrWG09GNunapS6vk+Jx+PG9iextRGng4MDDAYDzOdz5yovLc22cod4xfZYWvym6b7t1OXaOrR28/WR2LuWRso+fN/Uptxov8bXMqm6vJA+ylfuTfpEKG0tHzFKGcfa1FVbXYDcN9PHr/JaQcDVd8srMnxr1VCd7JKXLinUpprGvS5qWkZt5i25L26j8707pviOOqOuFa6ktAP85+b77pe8bbRYLDCdTqt3OkKNlGm70D4Vjk1oNBrh5OSkeufPcnCiSYysl+g4xX1TaLEnN0j8qOUYryYKTY2kdZFPqZlCsc0OKcblBpHL4VN8pba12IKXE19MGmPQ7/exXq8da6l3330X77zzDowprZl/85vfVP68HfmstJos/posYr8N5MuX1vZ8gA6nmJWVr11obUYqW7X69d23dNN1lapYAerKaB9IlQqi8HbM2zXFkXfRSnk4nzaLWeKTYnHXlLcmj1S2A2knN9wEaYo0IumeZdYSUlPk0cdMi8Wiso4koo9ZQnWaZZlzSodGZG1JG1BuGRIrYwIDN5sNXr9+jcViURs79tVPUxVpEhwMzVc+ebV604ifeJGab5889PGb7L/r9Rrz+RwXFxcoigKj0Qj379/Ho0eP8OrVKyyXSxwdHVVxZFq+OT50lDEH2MlN26DydGjtq13TkUKheSvLMseCQK4tH/70IR785EF5BHGelXfA5lCtYKs0MsvfTbCN8Dy6GHeN/c3ALF6FX+3X4+fcG2sAswUQuVVsZWUrf7f3zDrWsAalxax4Nr0yXJEXpeybDL1BD71RD4PDAQ42B5Wl7Oa3G2xmbp2kKN5kPw21AR6Hn1zDPzwJ9VXOe7MxFYBU3utqLWTJMpYsYo3Jkecl6ENdhlvGlu8WGKJn7ZfCSrdSDgn48v8SfKXnuKWs/65Y7m/lsxa9Mo59t2FtGVg/6c7LhdejfTcsrltXkqek0l+O+2rQRuTnUQcJY/Hq85L27PLl7nU3vq7kfmnHFNO7MfI97Md58DDy11cOGtXDhUHsUL4p/aIA5vMNfvnLN1guiyqstrfhV/vEwAyNyvGiV3MjSlkny3net0cPhdknyfVpaC+dQnme4/j4GMPhEIvFQgVjr5u+7cDqbSG5l0sJn9q2Yvvm20x5nmM8Hld5oLV+V7SP/O+yx2uj0/GNzV2OhYPBAKPRSPXbbDY4OztzLPzpuHWgPAWqDeB3G6lJe0kFbN+2MiDaVe47MLYFpShjQmFTiCts9tU4Q0CP7BTagLbrwB1TPGvHuPRDDOXFAAEAAElEQVT7fdUa4LYQbfy1hagkrhiQ7rvmbZd2F1us0CQjZeRHymaZPdoHKIFa38TaZT022SilgCWaW8rGK6X8U/MdUhalktzs+QCd0MIlpqQO+YfqYLPZRIHv4XCIw8PD6l6673//+5hOp3j27JnT5+T45BvH6GMATS6Zl9TFXEq7SAmXklZTatrXUto5kaYE8KUr+4a2WQ+Vt1SsynkyFYDRSBufeBvisoeOvpX5j/WbpvKljluhsZzLHlPsxNKQSnLO3/ceo5iSnYejvszrZJcNWEr5NeGj8aX3JuuqlHL2pe9bnxpTfpgjrSV99ec7cirUzoqiwHz+Cm/e/ALGvMLBwQV+9KMDPHnyeKtYAJbLsZJm9eS8c2UvvWvKVqC0ZKMw0+kap6f6x3vUjiiPWp5SxhZeR7JuCSwfjUbVWomXeWpbIzknk0m1sSdQntI5Pz/H73//ezx69AgHBwfVsX5ZVlr50ckSTT6W8I3tPN+yXFIUX03mGh8PTabNZoN8lGP8gzGGGGK4GpZ3neYZDt49QG/UK++JzWDvg83cX4cnz0oGa6nK3HQhFaftna+O3PROIFeJpzn3wlZuFD5DaRVrWPzQr3xW3DKztWxFVlnZVnfUsvnC5FtAdlt+ZmNgclNayprtb2Eqy9nq7t0sw+idEYpFCdoWywLL8/LDujbjthZHzk+xtWlo/CplzpHnZDkHrNelhSwdVewCiiQPqt+ShwVEbXL1o4NdkJLiuVayZT8u+RHwa9PQLWLLMK47xXOfATvmunfdlvVf8nHD2ziUL597GU+6yzhaXF+YUPgYpbSzUNuJxPT4a+1ROtGcJv34vKi5a0Annx9DYeWcqvnLZ23urcfnbnp+NaqHqeetnldtveDKtNkYnJ4uMJ2usV7XgV25DuKni+xy7GYXc52mX0hZq3ahZ9HW1yF9p2+9IIn2dcTvvffew8nJCQaDAYqiwHQ6rX3IR/z1vpS2LtboNuoV7yhMTfdpN1nHKe2Py8cNkXq9nqNXXSwWjp6c69J4er5xp0k5aDoxmc4u/FPjNtHbtt3Da2nzcV876RFA7dh0jlc01antk7rWuXdFqXUldY6ptMu8neLG/ZqmdQfGdkS7KP98/EhBJBc734bFAs9Dv9+vKYWKoqjueOJ0cHDQiTXpPonfLcJJmxj4wO2bLENKsBRq0mZCbS3L3OOE5aTPv9LK8xyPHz+uLBbpbrh9Uwx8SAnbhlI3J0Azi61UhXAsPgexQjI0Kb9YnFQ+8qMLuoOB02g0wvHxcXVv6JMnT3B+fo5Xr16VStctGCPTCoE6ZOWVqqjbFZy5TdT1Ijm2OJJ+1E/aKDYk8JDSn5qOnxKY4soCSjclTb6x2hXY84F7WlhNDnrmxOce36Ztl7lHSzOFfONeyN0HJLaVKWXd1WZM8IF1UjYNfJXhZd3I8iA3H8BYAqXzGjCntYE27cCY0lLz8vILPH9+hSzLcHIC/F//1wkAfnKGTMu6W0Wu+0vASJk/q2S1vyVoUhQG67XBH/5w5QVjY3mK9WEq51C4oigwHA5x//59zOdznJ2dOQrI1DZJ49/r168rd74m3mw2ePnyJV68eIGDgwNkWWk5TR/E8bW19kFSSJaQn5wrYxQCUlPJ1/+MKU/Q6A17OP5nx+gf9NEb9ipL2Ap81UBYoMRoCHAVIKx9VEDamiDW3zly2Ai+23BkBZtlmRuX59O48aT1bGUBS24Uhtoms4Tld8+SpSyA6n7ZrHDvlK0sZI31qyxk8+18t7WQNb2txezGoNgUJcC7vYv36HtHpfuqBGKXF0s0xtEQBig48fEvNL/53kv+ve1atSzUXi/f9idq8xmAHECxBWnzrTVtDrKMpSGWb3erJhf4lc/234KteW4tV8lPA4D58cV27pfPNlwZx/XX3ykOHHcgY89ueAJny7wZ9mxldd/5HMTriJenNh7UnMjHefPxbELh/YTPzahh3PA+61cb3/XX3Pj6wr7LeNr8y991P/9dsDJsiOphjMe9vm6Q7pp85XqgwBdfTDGZrGo8tf07Bzl8a2l/fpoDhqGwvv1VKhiy6x52F0AhtH7ie8NPP/0U77zzDgBgOp3izZs3uLq6qp2A0+Vpal3rcO/oeuht1stosmt7Ldqb9ft93L9/vzqJ5urqCovFogrvM+7RTpbcReYuaFfd5nWSHGtSLPX7/T4ODg4A3NyY4ps3usSRQnvFfdF1l2dTMJaoSRnfgbEtyacQ60r5qqXjc0tJ07dQa9opmypZfIvEFOWVRqvVqhoUucKxiXz7JB/4RccIynBACUbJxajGt43SF2hfJtqkvl6vq3zIhfB0OsWrV68A2KNj6SiH8/PzqBy7yptKsr2E2mjsPSardhyhTF+TIVXxHevvscl4l/EqVj4pmzG5GJXjAtFqtcJ8PsdoNKoWolwBLfPgG5MBXQGdmqcQva0bghh1Nb7K8c2njPf1x9hHKylKEp62BEG4G4Ee9FFN03zzdp3af1PTiIElIV7S39dnNbl4urG2rim0umg7PnefwmsX3inhQnG1sde3+Qbco6NlW+T543MKv4+GePC1R6y+aJPJPwqT8TSZ+funn97Du++Ot8d31us+y4B33z3AaNSDr7g0ZTC50fGg/Jcrd/l7r1cCs72e2b6XFmT9vsGTJ2P8s3/2sBZ/symVs8+eLbBc1j+y8LUrOcfwZzmvGmMB8dFo5HxZrd1nyeuP1wmvb27Jy9sLjVvGGHzxxRe4vLzEq1evcHV1BcB+LMjrSBLv6/IkglC5+E7g0MLHZGhDWZ7h/o/vY3BS3v86OBpgcDxA3s+RD7bAd56pd8JWcpAoGepg7NY9XSD+mFnMhdwNStA0K5+d9GTxht6V58wIkJa/GxaHvVeg6zbvlWWs2f7mBihQPZMVLQxgsm27pyOMC5SAbV6CsKYwKHILytLv8N4QR987QrEpUGwKrC/XWE/WavuKzfGx+VTueX17YN98UrbvcowBCqxWQFGUxw8bUwKxxuTo9YAsoxM7yBq1tKYt+dt/e5Sx/9d9LnnyO2fd/FvwqrSadcFXC7Bad3m/rDEAt34tw/Cw/J3GCx7HhqPx3FaNLQOIo4d5+mV+DAvLeQASqOV1Z8ujVoVBartECcVz/YzHvR6Ov9efjdfdnUvl3OS62XnWD7hSePlcf/dbymr59efdloHPr152Ut66DLRWePFijsvL8o5YORbQr9yDSCBWUmhNTnM/P1Es9jFnaOzb5cQ8vnZI0TGk6GxCukXpprlzP1o/8GM+OdhEsu+yXmi6N9Lah4wT4ntH7SmlnlP0Tm3SS9URaRSSQVuDpPSzlPcU/dUu5dMmrk/PI+k26M9C4yCvp48//hg/+tGPauGGw2HF4+zsDD//+c9r+5x+v+9cwUj8217XEqLbUKZtqAu5ux6Pm44zoTlcI6dF+CbK20xNZO4yfym8tEVd00E31U/y7wJE6GLg1WSiMtGOFZRySXdpRcePvw1NaqkTQlvS+HOwaLFYVPfb+vLKy8dXj7tOrm0WGDzOZrOpFslyQ3F1dYWzszMA5YL54OCgOit/MpnsJLeM07T+QhuApvGajDf8V4sr27h81/LrKwOpuI2FzzLX0lkbr2J50/Ll28SklKVvU0tg7L1796oNm2bJ5VOsae+pcrXZEGi0781aaE5KTTsGnDVt+3LMT+Xp6680Z2h9KpTH1Lma94Fer+cswtusH1IVFSky8vhN0o2VlU8JIcPF8u8be7Isqx0jvCvJsSo0hvriS7nbhElJQxvTSXbfOEr+sflebvT4f+p6iK+p5KbTlUnP5w9/eIw/+ZMH6Pez6j7FrAIQ6nEta5/iuFTGl3Jga2VmKgs0HYw1MCar/MiNrMWKwmAwyPHgwbC6/5F+V6sC8/kGp6crrFZFJT/kXZ7wKxllWWmnNFD7HwwG1djiU/pKfsRDqxuaw7mSkn6fPn2Kr776qgo/HA6rtLsiva3UldySQke9p5A2bmW9DCd/dIKD9w/QP+jb+2AzlBaxWeYAsQ7gmgk5snpargAJQsqsZ6I8MpSWqsSPeRl+9K01r/XzNx436W6EnwzD/zPxXti65cAthc2MPa7YAWW34OvWcBRFVtgjjnsZ8mGOYl2gWBWYFTNsphsHSK6yk7Bm95FvnRAb5+v7MbrHGygBVm7pus0g6Gjj8qh0+lClCsW+WaDkbd+htKx7npfjn3b3K7m7/q5bmQ63nq2DsvyZj900TpflYOXbSlCF4W4Urvzlbry/Sh5Q+LthLD+bpuvmxrFlq/nvTvWmKNtWSry6xSh/L59NkrvrL/20sHVgVcaR/roffaDA3f2WsOEuXM+rL56Ul565O18nFIXBy5dzvH69rMLH1kpA/cPz2JpR6qRCc7wWR/qnjnupe2z6jc3RbdLj+fWloa2hyvVauYa5uLio9GXy9CPaT+wyF2gUWot0ndZ3kZrsn9vqZ7tsx13riDlpcqbo7LSwof27b4/soyZ5jo1bTdPpsrzbtANtv+3bw7///vv4i7/4i1r8o6OjSi/529/+Fn//93+vnvxHJ0YSFUWxFzA2RG3q+qbSD9FtGpdDssTkdMDYfQ4++6ImMndZ+W0nlRRFYReUImOK0q4LOSgtSfLYR251eXBwgE8//bT2pT0/g321WuH3v/89lstlxU87wrjJsbD7otjdXG3L/zoHImPqX+/0+/3ko0I5yWOcb3JATVXM+2RMAXochWHDcahJ/9TCpQAoXZBvrAspr2PxiSaTSQXoHBwcVEcYhXj4gJrY4lHWkdxY3xSRXFQOIcV9l2mG8qz5N12UpyjkjTGVhSrf3O8ytmv1Keud7iPl86QE0rQ2LkExXxpN5W0bV8oRK+vUzZIEfzgPcqdyBOpKrbYk07uOvtCWfOWptQteVpJCii1eD3y84tauEiiUQJ9MS9KjR2P863/9Dvr9HL2etYJ9770DHB72mWUsEEaqSElrleU2XxaIhQPKWiCB7kg0hixOqW9aEJbcKA4dX1wU1np2sym2VrQZ+v0cf/qn97Bama27qSxm1+sCr14tcHGxqmQNtS/fkdBZVn6AeHFxgfl83nhekeOJ1vfkOJllmXNnES/rEPE8yjYXGkuaKGi6nksf/fNHOPr4CIcfHKJ/2Efez4NHEteOJUb93fHT2rR0klnSopCFaoQqkFbhb+yDE9YBMA2c44m144qNMZV77bhig+q/so7NGRBbMGtZgxJ8NaYEu4vMvheogNkqPv32tnx6GfJNjmJQ4OC9AwxOBihWBYp1gdnzGQpmsS6V/SHgI7T/9rVR7i7nfqJ+v8/6WlGNMYOBgTH5dvzB1no1345DJTjb63GQiI/d9t0YAi65e+mW59zPvvv+AftBC8Wx/6V7/dnG1X5pjNeAY+JBxaW7leM35duWPQfWOIBtFP86L9edK7dr3p2TnkZzYFHzt8+6xayryOe/fktZ7b0eJw2M5e50goUvn3WK15OvrOplUQeISbbnz2c4PV1iMgkrvUNrNb7+1/z5uxaG71ma6i5T90n815cXPn42nYd96w6fzPzfF5/LZYzB69eva/yLoqjWMrdBpwfstif7rtF1lNN16de7Jnf81p/pfblcVvvo1ap+zPq+5ZPuXek3boJS9LG++2EB4PHjx7h//z6A8sShjz/+uDoN8vHjx/iHf/iHms7866+/xsXFRZU+Xcsmr5F7G9sx8HbV/22i1scUf9snoS6UCTFgIJXagkApct0UyQWZMSXQR3mleyEluDoajarBaz6f44svvnAUvP1+P7pITCW+OGwSB9CVAJLatInYglYL24RvyF1OvFxxTOAQTTx5nmO1WlX+ckIKASmp4N0uJOtV1nVque7aPrTFViy9NhTblF0XhQAsGYb7L5dLTKdTDIdDbDYbPHjwILncQ+n45ElZpIVkj7n55PJtavlz6JjlfVBKOYTkicWP+fM64mNGigJES6PpfMq/wvaloW1ImipbNJLp7VLvISV1G9m4fwiM5WH2Md5oZa+N7U3ix+LGxuRY20ztLyngljZeamNb6tjE+QwGeWXtev/+AD/+8X0Mh/n2vkSqV67YD5NUnlrFLnczgABirdKX/5d+pQI2c+JpaRoDJrNBlpV3OmZZjl6vPMaY7pMji9nVqsByWWA6XWM6XTsyxroir3Mq56IosFgssFqtHGWlrAut3aWObbJtpqwVpdwhN5mnUH/Z1xojy7LK6tVs/w4/OMS9H92zlrC9rAoXAmFrAGyG+H2wIffYEJ3BBVp9vDQ+BuVdrnTk8TZuVRfsLlrHjcelO2OxrRuz9cusn/w3RvGjvBZMVvrdlvPWSNT+8zAFkCMvLWSB8jjjLEN2nKE37mGz2KBYFli8XqBYFzbuVh5533JsTE5th3Ks1MZO2wfsHZRZlm/HFdrDUp+nfkK/FZcqXFHYsRQ1AK20+CddXTn+ZFv+2XYMsx+p0PHF5VqRZLAAKhVk3QrWVl45VtYtZLnc9fcmbtxd85P+vjC+sJL2uc+h8TsQQvGrrxG0OHXe7rPm77oRn/pca8NpYfgcpz3X3133MIXz7nN358i6O18bkPtmU/5fXKzw6lV5z5+mf+IUA2Tl3O6bM0Nzc4qugfzb6idCYXaZl5us5X3lE4o/m80c0LrX6zkfxqTIF5Inha5zj70L3aQ+97p0SLvoz1OoCx3bLmk2ibNarZyr4rosk5RxMIVHqk4nlMa+6xzQjaTkeKUZeA0GA+R5jqOjIzx8+BB5nqPf7+Pjjz+u7omdTqf44IMPaidPffPNN5UBGY1tXJeuyUBuN9HXY+Wfsk/VZG9Trzc91rV1S6HWYOw+C8VXcbcBRPSRNnDwRVtb2VMUx/LuqKbUVNm7a13keV4Bqpwnvw92NBrh+9//fu1s9ffeew8nJycAgMvLS/yv//W/qruwuqZQucQWl7KMJPCo3a3VtO5SB7cmfNu0H6rPZ8+e4eXLl5Vs/Pz8zWaDwWDg1CdNSNdN1B/lcX0S6OF1lKrMbtovUsJnWeZ8ie9LW6M2G6HUsFrZybFO2zwScM+t3I2xxzhSWJ/V9WazwbNnzzCfzzEYDJBl7nHLdAcipSvrkcsrx2uu4LstRGDgcrms5CKLzZsi39jD21uTu33keKkBanS3trwPU5ODyxibr2Sb4GOWbHu8PWoy8vhdUBNe17lG8qXlG2/a8GrKw0f7LhPZztoqe7QxVAMGQvy09uhLVwPVuMKr38/w//6/H+HJkzF6vRzDYY6Tk4FzFHEZD0hRlFvlrVRQkpv+zJW8rhtZn0llsNlayFprWmsxWwIfdGRhCXLYI43JUra0oM0xGBgMhwU++eQYH3xwiPW6BGh///sJFov6nae8DVBZ0pfVtOleLBbVh4eyzmLtJzS37jrPyziyPWoKbA6GkZtvD9Q1HX//GO/8+Tsl6JpnGD0coTfqOZawWZaVlpoofyv5M/YMOEBs+SPcJclwDSnK30C3nqU+JCxgpaWsMcZayxrrV1nGbp8J2ATgWspurXezwv5yvpVVrLFWrtVdsnSHrLSMNaayoi3yovzdFGW83vZ4475BtimtZPNBeXTxyQ9PUKwKbOYbbOYbzF9YQCUEmsh+kaJU4m2cr0219PI8x3A4xHq9xnK5hDEF1muzvaM6345NNEaBvZfHubv/NI7R3qQcV40hUNRnLWu2Vq8Q/vVn+i/zEnbj7+6zZg3rPtvy1H/rz+V4L93d9zKM5q9XaybC7h9YKeXwzbkhN6OG4f7cz32Wc2s9jv2VYWUYd551ebhWsBSnzsPmx0ex5VG9HKTupe4nZaPrCjYbg9PTBZ4+vXLma22/wX+luxYvNq5oPH37Y98d8ZKfNg9L+TQZfPorOX93STT3h056kbKRDqDX6zm6IvlB7D5ol7XSbaHr1p3ftvx3Qdexjw7pDWV/lCc+np+fV8/7OGEwdf/RdtwI7WevU4fR6/VweHhYG4+n02l1RPrBwQH+8i//ssIciH7wgx/gxz/+cXXc8IcffoiTk5PKKjaVSLerjZG3+bSvpvS2yt5E38Ld2/CsgbHX2Rl8pKXvW3g0lbVpnNSwsYGp7SAZkrcNT20Dm6JE9C3mON+mcoSo1+thPB7XQNuTkxM8fPiw4uH7miS0YI1RrFwl2ECToayrVOWstjhPpaYTog9E2TUtUjL6JhACbLmiL7UN7ToepQAxTRTpUvko3dvKy9uub8ESaiupSnsKu+s4mNpPZHpS+U9uHCCVG09adNKxLIvFogIn8zx3FqTkpoF2XI7YUUchJXcsjlYGklLaPx/H6OOGXq+nAoVdUKxdaG0xpECQvCUPja+Moyn35XtqHw+F8aXj6+tSTk12ze26N8ZN1jAxN60v7TLHtol/W9aoWv/1zSOh9h3Li9bPQvJo66BYOqNRD4eHgy0wUCq+hsMcH354iPfeO6gA2HJIlUBsJQXPGctjVoU1FWBgqjj0Tkdx0nMZR7OM5W665WyZrvbrKvXptzxWtNi+U5ss38u7H/sYjw2Wy9JS9uCgD2BdpbfZuGsI3q6pPPl6URu7Q+NjU/KtGZrEk2CUxiu2WQ35Nc5nBvSPSsVFlmcYPRrh8P3DEoyl/6z8BVCziKVfR+7M8q7ujhVpuq9KGHJPkD85/FYeB5A1jId85m78lz8D1qo2E+3N1P3oCOLMZEC+ddvKVDuumMrTKDJBPBfb/BdAbnKYzJQWsjAoUJTPmQHMVrZjoFgXZb3mQD7KgQ1gNunrz1rxKv0jBlxoYWitWfZ7WqdmyLKiAknJMpYAIq3ZZxlZr5aVZS1ZKQ1sPxwhS1hpGWs/UCF3qnxjLNBLlrJuQ4HyjCpuCb7W/VgJifdQOOnG3TU/G4bmj3A4jWcKhfil8/I1OdfdKG71MPy9/uzysL+mFseuC+y7Gy/VIlb34/L4KGULpYWp90W/3CTDZmOwWGyqj66m0zUmk7Uom/o6LXUdRs+x8SU0BzfVM2jzbpM9eUzHlMordc7W1qDcL7bfa/Ihb1NqqhuJrcualMm+qcneet+Umt+uZO5qX7jv8or1UZkP2de5NSzXm4V4p/r7wmvjT5PybroWS+HXRT1p44wcux4/flxhDkQPHjzAeDwGgOr49MFggM1mU+kiyZ14LRYLLBaL2lVNmmHFTes3JKXMK7vyD82pNzUXhMKk6vxSqQbG3mQj6AIgiPHpMn9aOrFFWpdpp7g1pdiirSu+2ln3u6ZHR8CNRqPqCxWarHa5q863KD05OcFwOMSbN28an93vW4CEyj+2uE9VAO9CkidfCPCvGbPM/eJns9nszRK26bgRKivOh+dN21xpfDTicUOKHp6+XGSRVSBZ14TydVssJmNj4WAwqD62MMbUjlyheh0MBtVC5s2bNw5/WuzweEdHRzg4OKh4P3v2zLlX2nfML9XTTc6BpNzjQPJiscDh4SH+6I/+CCcnJ3j8+DE+++wzfPbZZ1UceTw7UVcLZkqnCz6SZyqYGkuzyaZf6yN8DNDGOQ18lOOAr59r40tKHtrQTYKVIaWO/NXC7bI4bsorFfzS6l0bp6SMISV+U1klxdpTaH2oxfn003v4f/6fD6v7YMla6+hogH7fWsK6bd8vn7R+tc/1X+lGIEAZz71X1g1ft4glf2sJS3Mpt5C1lrHlvENWNNn2Lln7S0cc0nOvl2E4zPHjH9/DZmOwWm1webnGl19eqcrkLMtw//595HlebcQXi0U1rzUhWsfK0xtS1+xN2lme59XxW6enp46CgacT22uF+nyoT2g0OB7g4//fx+gf99Eb9tAb9dAb9+y9sDkbuzOUbgAkEFsDXpn4tbzIsEDQqrUGsoZ4J5JjBWsddetYCcoYUVeGKfjZc2UNy94dN1PmzbGIlffIZsya1hjHUpZ+yWoWm61subWYNb1t3I2p7pE1G4OsX/7m/Rz9wz76B32szleYfTPzjr2SYmvRVDBCjvt0BF15fcYa6/UGq1WBzQaVlX25Ji/HFG4Za8fZ0q2UsfwApFwDlmMZv0uWAFl5j2yWUVj7W/5rVrV27ObxNTd65+4pbrZMXWtW7dm6WatbLbxbT8YbJuzu64NtdA86UKiGrPnVj7nn74aBi3X3enw+J7rvblj+rsWR/tLP5V/PQxPyxa3vkeWzPz9FYXB1tcavfnWB1YqO8nT50RxWFEU1XzQBjuS821TXmDKuaDxCugIfaWs+3x5X2z/5/JvM3bSnJUr5iDimJ7lOui6d7r6py33hTe4xfXTb5OmKpJU43zesVitMp9Mojy7xAm29RfJpPOUVdSFebWVoQ7R+C417xhjM53PMZjMnzGQyqXSRWZbh+fPnmEwmTpjz83M8evSoGu9+9rOf4Ve/+tWNnQjpo9vQl1N1MN9man1M8T6oq8JuCszIBU9q/LaAb1dKQi1OinsTuZtaX4UWLqFylnGKosByuawBYjxeaAPdRlnZtN7pnHiaHOUXSiGwLkWJ0GSyTFU0+Bb9IYoBCKGwTRUgbairiTnkxtuTdJeKSd4G5aYlprSnsBxc42Bbv9/HarXCfO7efeNrazFwiMsZa6+hstA2ainEj1inY4k5KCvzxy2qObDK+x4dHzcajZDnOU5OTjCfz2vHmWvl3mbs5ZSqGI/xkPnO8xzj8RjHx8d4/PgxHj9+jCdPnuDi4qI6UiUmT4xiivU2PH3pSN5a+9PqY9e5NRReaw++o/9JZt9JAD6FSqosu9A+F62+OTc0z8ZAmRDvttSGVwqo5JsHUpVSsbA8jG8u5e58/NR4afNLOY/kePfdMXpba8IPPzzCw4dD9Hq5AxKQst3mu+ISyKlrxURgAPnJ+BxYsHm1v67i1SqF/XfJWhlL3nztaO9PLJ8zAMU2Tnnno/zNsoK5lfIeHKACZzcb4Pi4XwG8y2VRKYKzLKvuF6J5jc9fZX66U/SF2n3TuaDX66kfO7VRlMYUmsF5NwPG74wxejDC8MEQ/aMSjCUQtgbEbp/pntKKZwYVhHXSdMAiz5xHfAJ5Vfl5rGqDJLuL7137Ndtw0m37b7AdY7bPyGABVrKQLVgYIyxijXEsYw2275mxx0JTny1MBY5TPG4pqxlXkqUzDGAyY3kYwKwM+sf98ghkY1AsC5i1uw5Xi9PTzlL2/aG5r/zPkedmuy4ty4c+5jDG3iGrfRdsx1lqx+WHJDZdujPW3o1djmN0TLFBUdAdsPZ4dpLD/UUVjjcoGh+pItx3f0Mkfq6/DUPjr3SvdwY5Pmj1oY0hTTrV/kAV//Cmg5bSzR1jtXBhANZ1c8PTnKnFs3NmqoVsexA2FC8Ewkp5uYwAqo+uJpMVptM15vNNDYTV0/DvmdvuebS9q49HV2vemB7Gl25s7u5CPk0PQiTXFruk10RPFaOm5dmU303QTe+vmpCv/FPb7T7SbkKh9p6ark8G3p9iPHzr7ia635BO1659XD1KqJ5Sy7ONrnpX8pUVuS8WC5yfnzv39mZZhvPz89rHta9fv8bLly+ruJPJpNLV8fas3fu7j1PvfBSrj5hu+aboOuauNun6KCbPrQJjb4I0cOTbQqnAQrl5q1sK7WJNuiut12u8fv26dmfsRx99VLn5rMFkfvZdp/fv30dRFJhMJs7F6hwk0SYsvpEnCl3iLSe529BWJWjE2wx9eSrD3mYKAZIaSVCmaR3J+qdjLp48eYLDw0MAZTt/9OhR1TZOT0/xxRdfNMqXTJMfz0HvEtQkIMq3oJRtVda3TJPHlZTnOQ4PD7Fer3F5eemMXTwdkpvfoSEt3/v9fgVcDgYD3L9/H7PZDL/85S+jY9pt2TRReVHeCYy9f/8+PvjgAwyHQ3z44Yf427/9W3z55Zedpdsln6bAtgZwcRBvV4tvCQpqSheeNt31KHmUYFZp9c8X5ddBMVDjpkiOdbKs295nf5MUa7f8HqtYeN886Crz/f3GNwb3ej3keY75fO7wkscvSZ737w/xb//tJzg+HmA4zNHv5xgMcmQZGAhL/QNA7Q4+P+kKY0BDXEr3rBa+VAxnlRtXFvsUxfy3KPi9srqFrL1XjoAKei+q382m5NXvl+HX6xJ8Xa+LLRi7wWCQ4/Cwh/XaYLUq8OzZDK9e2U33YDCo1qp5nmMymbQay+RcyPsXD7MrybUp3ZOtySz7fUyhFFPUUDhO+TDHh//3hzh478BawvYsEEvAq3MsMeDeEQu4ftt3mSbxKr0zNYwjqwRYMwbURuKmUoplbAWgSoDGiHbiea9ZwG6fqzwUNt2aZWyWVcCuMQywLdg7uz+WAFuY7R6hKI9DNoWxvz2DbL2VIy/TJz5ZL0M+zDE4GWC9WGMz32DxcoHi0j8PU5vW1uS79h++9h0OhxgOh8jzHFdXUxTFeju2WDC0389RFNnWajbfjjvlxx72l98dW76XlrUWdKWj421f5UAsHfkO8UthLfhb5htet9hz/Ne1eJVh9OcMEFa1MtzWBdKa1h92vxRa3tj5Tw/rvoeOKDaKmxuHz4uxdx6H+7vPbcCs1HCa8ls+S7nrstJHUL/+9SVmszVCS3LfGrprwE3Oz22BEd8eRAvn4xXSRWjjX1MdSExmTvwDwtS8tZHhNtFt3be9jfRtKsdd2y31l5R+n7LOifVHyUPTwXc9jt4mevnyJf7rf/2v1Ql1QCnvixcvasYeRVE4VsHGGPU0pNtmKXtHLsX2DF3Rdx6MTSWtMlKVCTG+vgGz2ujuWPEpg7C2CGqrZE5ddIbeF4sFnj59itFohIODg8p9NptVg9dms8H9+/fVM9j5sQldTHjES1rqEihEaXJQTpZ7bAHNj6BtU+cyvSYTKw/jo5Bssck9Je3rorYDK1fYaeBDKB1ZH7G4g8GguhyeAEUAuLq6CvZhjZ9P0a+BsbE2FCKZfmx8lG2C91kJHshxMQT80t2ym82m9jFHan5C43ss3q7ExxlfXzs4OMDDhw+rNkJ1eB3AYJfzERDfUMiwMRmIV1MlK8XTrF3lHE0gmHbMDY/TNfnq9yaUEbHyleP9bdpk+eZibQyNtSXfGiNlHURtPyRPbK3J26UmvzvG5vjRj+7hyZMxTk4GODjoCxA2ZA0L9b0uGk/bF8bPo65Utr9WEeu3iuW8ShDWxs8yaRmrpUXH2JfASGlhY2CtbMv0y2NE88rirdcrkOfAycmApZtV1sd0p1CZTru+kLI+62rsoTlUtlGuZE4dV7XnEI3fGWP0cATkQG/Yw/D+EL1RD3kvLy1f6X5Y372wrP3KZ0cO8e6VNYNrDVtF9/Blbk3yrZJxeWnXe2Ymqx1bHLSMle/Sr2BxDezdsUAJvCKzv1u/6rcQ7syiladrjLXALTMh8t0r5ch75R2ymcmADZD37YcmfZTKwOKkQJZnWE/X5dHGLfdRvjG0SXzX0iGr7oxdr00FrloqUH50Ulq+loCqHZ8AIK8+KuDv7lHuPgtZ4kdHHhMozP3KfFKftu6UBslLfvaZyqsMuy0BljfrRmNvvSHLsBBpuvHsu+VRdyM++vy1D7LNTOo0QmHL8DKMOxeaoLucIzk/+2vDlo/pIKyUr4slnB840MNp+aFn+qjq/HyFq6s1VqsiCYhtMydp8189D+F1oo/kfrcp35T1tQYKh/IiKbbG1/ya8k8th6Zjc1e6p5Q2cEc6heosZT//ttIua33KO9dx8w9tuXVmSjohnXRoH+vjId2lfkIbm0L73esg3nd9RyjzU4u+/vprvH79GkB59PBoNEKv16viGmOqa9RkOhIvaPIRbmyMu+k+cZ06p+tIKyWNWJnvMlbtDMZ2AXa9jdRlR4hNUl00klj63NIsRa4UnnLxxxcyMWB2Op3i5z//OU5OTvD+++9X7m/evMGTJ08AlF+UfPDBBzg5OXHiyiNJU87Ul7JrJAdXurSb/EajUWNluQSZ2pJWpjfdL9sunG8rhRYlGpjZli9QArB0Qfx4PMZ7772H1WpVu7sgxkdb+FhljFU6ccvYJoClL/0QeEBp8UVlnufVscIpFFqEUjmNx+OK33q9rsKl3BUUAnv3QTwt+XGJJuPR0RGOjo6qNkJHSu7jK7vY2JWiBEgFUeU7H0N8PLRwofYXk4MW2QS4cp4Uj+5x0Rbz+2g3WVZaqK1WK+R5rs7X+6Cu1neaIuimSRuvNEVdCrDvm+tSlUo+xV6KAo8/83GLp03j4Hjcx1/+5Ud4//0D9Pt1S1gLAriWsKEmEFImu/HkPOS8CaUvXytyN348MVnC8qM77W95NyNZldnfEpjglrF0FLzZWp8VKIps+16693r0nNV+Nxv6zdHrFXjyJMODBwMsFgXWa4PFopTx4OBg57Yv24uvvTXpZ1rbzrKs+vBLWuOGxmVfuk37/b0f3cOjf/4IvXEPeT9H3veAsBKMJXAvY2UjgVL+zuJwYDCmrHeAXu3oY+1IYgqbQKYycRVxjPXj4GgVbtsvqmc6OtgwMNWYKpx8p2cOxNZAWgh3Ok63EBayWyC24lWIuXprIWtMGSYrsuo4YlOYyo+HMb0S2C02Jfha9Arkw7J9bO5vMPt6hvXUzsm+NXubfpgyFxpTnqhh0+9hs9ls19VkhV8ej17+5+j1AGOKLVBabMsI1dhlrWItSMatZ22/QzV+W2BXt5CV/6Ws7rsLAnOQVo9nw1K5y/tiXTfrV7ecpeqhfFED5H718HIspLoOVllnVE/Hn359zjSqH8973Z235zovLQzxs89yjnXfu6DwGkZ7l/K7fLiMdAz4119P8ebNCinUBoj1Uer6jN6bphdaA7ZdS/h0b13rNPl6IJZvWkeQ/mFXw4Q7+vbQtwljaJIP2ufLNQW3Rr3OU7lixMeqprrEm6CiKLxXfJERR1EU+Pu///vK/fDwEO++++61yHdbyQemp9Db0pd9cqbsY9vquBww1ncMVRMF6h11T10OaDRIymPsgG7qUipqZNpaeCLfUcn0NQoBD0T9fh+ffvopLi4u8MUXX9S+QqE0236JEysPOr6NnjXFFQ9L/rssMmMgtvRrW8dd9+vbPCn7KNR+uwLO+WYlVleDwQCPHj3CYrHAeDzGarXyftnVRibfsUFteGluchPMjxemvkRjk7bIDJU573fr9Rqz2QyDwQCr1ao67lmSHCNC6ezSZ3ftS71eqdB7+fIlDg4OnDo/OTnBu+++i8lkshMQq43ZXY4BWt+RZRqbH3xhNF6+tLT0ZN/TLLQ1HqG5pStFAn24QApdX9721S5T20CT9N/WNSPN3/KeVq1tpSjt5YcDMm6oDZGfbBdSlizL8Omn9/Dxx0fI8wyjUQ8PHgwxGOQVCJvnNj2rWCe3lHKJh4mRVLxKt9Az/5fAA1moau5Z5lrGWjCC7oq1bpuNzWcZJ68s3sgyNs9tHLIyXq8NgPX2+oEFimJZrQF3mWtDawWpAE3pm1oY/uW35O1L27eJjX18QO4H7x7g5JMTHH18VAKxg7wEYHsZkG/n+QzJFrEVb/FcAbCir2lgqtf6Vb4rfloZpRClWasXg8oqtbKKBasTg8qd/zpHD5O7Aqzy44q1f24hK/NZAb+aRawpw5qCxZdyZuw3Y37b/9yUFrKFKZBnOeieWwJ7szzD8NEQvcMeNrMNinWBYlFY/rBzfZs5M1SHul8pWOnHLWRLa1j7UQn5Z+D3VfNxrZxy7IcofDwrxxrqX9wvc8Yk/Z/Hda1lSV4ehviW/Zye4aQPZMo7qjhU7LbvGeZG/jaO5ePOD3YsIRcX/NWqN94NecPzU6zp+Pzr61Pt2Xj9NNC2Dr6WPOScGgZl6+HbUNpc43PT8iHlLuWczzPM5zmm0yvM5wvMZvErtVIVqb58dLHGjelTU3U2uyi1UwHkFP4yfOzjF16+vv1XCsX2ganhm9LbqMe6KdrH3nHXdG+i/uS4k7oup30/fweguvnS4mGa6rViug3ABYNJh5hCbcbXfegNUuqAf+C8WCxwenpaC7PZbGofyPOPUWLUps02KY+u2v2umFEs/L50jk35t5UzVf+jURSMbfN1Q9uKl0qEJvxrm2oR7qYRed+CKlUBndqhfYoY/ss3pDFKHQh27exZljlfwxERGHv//v0KjKW0CIw9OzvDV1995b0PUrMkkvdhhhRIPuJgklTMS37cGq/JwJu6cObkGzB52ilx+VENu4KPmly78OuKV0i5KMtLLjx4eE3B4yszLYzvQxhOw+EQ77zzDq6urjAej50vuwgoSGnHWp75ON+mrlM2cXLzRZZ+QJl/Ot6N8sJlC6XLw2dZhs1mg/l8jjzPsVwuMRqNvPFlf9TaehvFXZfU7/ex2Wzw4sUL3Lt3z/lK8uTkBE+ePKnA2OFw2Jm8Kf02BiikjK8+eVM2Ldp8T3UY6ouh8Y++RiVramOM074ovhwPYhsXmX7Kgo8+TJAfXWhrm6aKlJumXcfxWHzNv2lbkv4cjHWPowzz427aGBPrRxrRmMnjUDy+gfzxj+/jL/7iCfr9EoClY3PpuEtrAUXzXpocIZlTq9WykHOn/eXP3E3+l/m2v8ZY5b4GytrjPAF7PCcd61lavFq30jKWful40ZJPmXivV1rI8jLu9wsYs8J6XeDqao2i2KDXI6CleftNpdAcEBoneJo+q3+au2X8JvOOXCdTvIP3DvDkL55U1rDO3bB5+rHENStZDXzl7hJ81fpA5r773B03AeQ2JW7hWhaUdXfqkR1TzIFXFag1FXNwALYCYoHKyhWFiLf9p/AwKO905b88DRkXCb90RPJWjqJXIDMZCpT3ywKAKQwKlKBs1SZ6GUaPRyhWBeanc2CBEoyl7Ir9V8pYvOs8WqbXgzFFZR1bpoHKMr8EY/PtOFxsP44hwNYd46omF/jl/1vXLSjLwVY9bJmGbgVbvvMxs54ujaN2rJXvbp8nN1sf9KwDtDyvdv1oy5tXpb7mDNUWYBthMwrv033vJurP/dx50Khu2rt1k3F0/32QxtpXDjF5i8JgPs9xdtbD6ekSk8nUu/flfDjJecdtk+F1oI9Sxgq+z/bpijR/HqbJ6Ws8XyG9QwoowfdBmrw+GUL7vFQ9ZIqM+6C3YR+VQjet/96VmugQu8qrb20ca4dyTazx0vw0nRxPW+v3sv9InWVKv/blwTc2+MaiVKxolzG2Ke8ueHH5FotF7W5YANXRxaH4ofroSl/nm8fa8gGajdFN6CbHozblE4rTRf11fmfsrkLFCqgt/64r/qYV9CGKKSA1ufdlKdsVzWYzrNdr/OxnP8OXX37p+C0WC7x8+bKaGPr9vmNFe3V1Vcvzer12lE2ped2l3mMgTwxACPHzLVZuSx12KUdXvGLgiU/RqPWnlEGawmhHGtMzHY16cXGB2WyGPM9xfHzshB0MBjg8PMRyuXRkSgF0fZulFAArlVLKg34JNDCmvHchBLymgFdaepeXl+qXazyeL//XCXLJxRSlR8rvyWSCFy9e4De/+U0V59WrV9XisMuja7Vy2JWfb+yMbRp4/YQALim3lr72LoEF2lSEFBXL5bKqF2OMU/Y8P75ySy1PzvfRo0f44Q9/iKurK0wmE5ydnWE6nVbHFt3W9YiPulB07+IfA6WkOwGxVCf8o4iYDLJ9aptoLYzGg8uoyfn++wf4sz97B/1+jsEgx/e+d4ThsMdAWO1YYp5eNFuVYp6jTDxejIdsqqZStkuFMi+XUrlv32lc4GCFezwehdHe6VhiDiwQCFuGKUFc+58hy4rtLwd+DYBsO5eVxyCTZexmkwPIsNmU89xgUI4ps9kGk0nYmmeX/tHlWMDHR66k0RTLTYjHGb8zxuN/8Rjjd8boDcu7YSuL2AwlEJvVwVjnGfqz04/kO7Y8OCi7dSt/FH4M5K3lXeHhy7OPVPCAH0lcPtSAVv7ugLPbZ/5bHVNs4PCowm/vaKUjgn3grDEMlJX/2faXx4H+W8lOdbpNz+SmtIItDHLk5Tvy6vhjk5dhAMD0tnnvZxg+GKJYFuj1e9jMN1hdrsp0auPDdc2ZGfK8/Mhrs6F7YkvLeQJly2OK6aPOrPqww/23axe6f1YeV8zvi7VgKHd3jyDW/oF6mPqzZgFr1Dj8N+amP1Njqs8t9S5F/ft610NuUzIed+1dzut1P9et5O9zc+fPNIC2SwqxtH6+fNXzTB87FYXBxcUST59OkWUjZNlBZ9fJaHsv7kdEc6DcO4SIr+261M80qbvY/igkEy/jUPyQ/sC37wOsPkSCT10CK991+i6V477yet1lqOki2/TfWJ/1ub9t+gSg2zri+wR6puupJNEYRqTpE7uWzyfvrunc5rGiqzlh1/3qPqhzMPbbSuoGuUHlNBkgm8gg00jlqy0wJZij8WuT5zaLRsljuVxiuVziyy+/xPPnz2txuGL06OioOprUGKPe7Se/4okp34nIUsk32KbUUeidL5pDba6JxXoIEEhRSPvefXRd4FUbSpEnRcnvKwsJ+KT6U32Tsn8+n1fWnRz0IR6DwaCyJOdtpm3+fEegtiWrGKrnl343m0017lAfDpVr07ZEZTqbzZy0QmF9+ZB58FETGUMbVJk+WUFfXFzgm2++qer94uICi8UiqExoSl2UQyrfVH6poGYsDdl3+aZflp+vPEuQZeOE00A3riBtS7zNHh8f4wc/+AFev36Nfr+PyWRyoxsmH9AYC38bqOlcxtdIbddAPE2+1vCNkdqYJ5VUXKFFCvpHj8b45//8EUajXgXCkjI/yygvcJ6tvICKIkGGccPHFeQ8D3V/m2/LyyqP+dGc5bstC2k9ZgFX/mv5uO9cJi5HUegZMKY8RpTk5PKWwGsBayJI9z4abDblsZ+9nh1/plM6VcVfVqnE22lMCaq139BaX7rTfM0BrdQ+IcfWLMuAHjC8P8SDP32AfLC1iM2zyiqWg7HIt2Ant+YmAK9CeMowGTt+O2QV68ijWcXKMIqbz6pWdqUs0Lequ2B5WVLRZ8q7Udz579bfGFNZ2FZYLoGthoGpXOZC/BJPZv1KcQkYpTtfnV+URxUbU76zruHIVYHEsixINvIqAPTK9xw5iu1Zy5nJgA3KY63zDDgEigFdZosSjKWyiKyT9jFPlTzLO2FprCqX3GRhT/2otJDdbELjggRB+ThsgVi617qct8oxi35RO9K3bjVLYyA/uhggK1d+VHGZtmxEZTgensJKy1mSwbBndx7gwKrlk1XvvCxIjrp7jGTA+MAcGrvrfvW7WPk7zXfSz4YJHz1s41k3O4f64+za3FPmL56HurzWj+evlDNDvz/Y9pcN5nOD58+vcHAAHB31GwGFRL51uW8foJEzFwTC8nBy7pNhQpSqiwnth1LyI9+1/UxqevxdlrkWzreGaUNtdFBt6uGOuqVY+9o3tUlPa2uhcUEbi2LytBmbeDwtTmzdrsXtom+G5L2NxMu93GP3amWsWTHfhrGiCxluU/3sS5ZddZtd0LWCsV0pizVqqvRsEtZ3l6JPqUHydEkp/HwLTI14OFIyamBsShr/f/b+rFmSHEkPBT+YmbufLU5ERkQulbV0VnU3m0VWD9l1eckmb8tl81J4hQ8UuSIzwtd5mF8y/2N+AV+GMq8zIqSQFMpQhGQ3e6vqbWrLrsyszNjP5sfdzTAPMAUUagAMZm7ux09kaMgJc8OiUOyAfqbALknKf3FxgYuLi96w8/nc/l4sFqiqCtfX15NceE51v16vg0cWUJjz83MLIo9NJ7aoDFknjOGfeuc0No19t5cx1KfApPrOGbCH9v++srm9vcXl5SW++OIL26Zfv36N9XqNo6MjPH361AJyU9AuFlsp4guZ5XJp3bYh6hNXV1e9dcbTP9R2Sh+S0Bj2k5/8xN4VudlsvLurp6RY380F3w6RUm2A5sHjY/PFPY3t3JJdfrATA8f476naVVEUmM/nePDgAZRS+Oqrryz/2D3L72gchepOAqo58QF06iY2xoYUYLzNcd5Syae1xuPHC/zLf/ktPH68wNnZDGVZMCCW5jH+BCCA1FhT9deLvpuM09fcwwppmXfycwAAhTP59ZXV7q8LxPrAof9OgIUBTB0oQVazTWP86Y8DCO7eWRPe/CkURYO61i2oYuLQc7Mxz9msxGJR4va2xnJZY7lssF4fxngq1zp0bDv50Xvs2gYKF3KXNDuf4aP/9SPMH81RLkqoUhmr2MIAd1EQVgCt/Dd/SuBVKstiYKoH7AbCSuCX8/DCWodkMbi0iThYIaxhATY+cYvZ1p/7eYBn+9uCqKF30T+g4FvK0nzXgrAyrGcRS/nQzL1xv4mvF0e1foWCrrWXlwYNVKHQKHNccaPau2PbI3h12T5bcLiozP3CxbxAMSuwulhh9XKFo6MjzGYzexILHfUe+1BvSjJtkq5BaNrxGahrY3GvdQOlgKoyH9dUVdc61pxwAPuuNUDgKwGvSql2XDLjGR3JLj9EMfOCqSh3dzj9OUta391/p9/y6bvxOcsPm/s75z3mFvfnL7GxSiqx0/xDYbQAWmUY9zt8NLEEKp2/nC9Dbl0ANCXrtsRljqWRypeb3zVOTh7gX/7L/yuUmuFHP/oRFouf4ac//f+iaRpcXFxkrXlTIITpJz4PqRvj7/xD/G10fcR3iF4vpuvJ1dtssw9Jycv9YvmJrWPlOjkUb1u6j/vUd3Q/KDS28A92y7LEbDaz/qvVqnOi0hT6gRQekQukxnhwumuw/L7QuzHnHQ2lt9oyNmegyBl8cr5u6UsjtUgZKtNUFEvnLsFWKYP077unDYAFKIjoS5ahE02MiE9d197EKheTdORsLkCeSivXnfPP+appCAA7Jbiwb9BvKiK5pwCuc9oj3av65s0bu6i7urqy7W42m3Xus0ylwfvBVPU5ZGxLheNjrdwQD5XHKLv8Y8hjfTFVn1NtZseSTH+z2VglBL8vksaa3I8fxoTpW8j3hRnKcwifWJi++YWHobI7PT1F0zRYrVbZR3HuciyTvOkYfjouN2due0c+jS2voYBsB8hBfM3X9/GDdKP+XhQKZ2czPH68wCefnOHkpMJsVjBrWAnGAoCvZG9/RRXZLmxIoe679RGFo2z59wP6VrDmqey71iSns4olFEcpWEsw/gScRRh/N5Zf2ubBHAHqZNPaHdXpyp3k8EENPx65mSdZmFWVsZydz0tW32jnKo261tj2e4rQfBVrV7ltjStb6XfuOB4ag8uj0twJWxSYn89x+s1TVKeVAc8K2D8PTJX9SMFZodLvFrANgrIhkJXcuIUs/Lg2TZFeUBY4v1QZZ5HyAVbLWxt37mYBVwg/GUcph4+07kH8SQG67T/cQpbzJotX6DYslPW3z8KBttadWclq6E75QwEoWp4tf2mFqwr/uGUAxloWcMdal4ZhMS+s/PWqhqqMxXTshINtABaKl+p35l1B69qOMVrThx0mTfqII2UhK8clOZYr29Z9y1h698dJeG68kdAYRe5mbKbx180pfsOCFzY+nrs8U1j3W2Y61I9idZTuc26uSfGIx+sPE5qvY+9xa1neBn3AsgvAxkDNXLm3oS7/HBDWhJPzLblprbFaNZjNgOPj96DUHEVxiqI4QllWaJo1NpvNTte9qfEhdNVQblw5R/v1HF8bxojPy32UW15D9Zs5csbkaJpmsg9hhqxDQrJwPtvOBV93is2Fd1Ge+0yT98WiKLxjbeUJjSnZhupIY+Xbtw+Q4WIU4it59tXxkPQPqd/FdOqhMO8+INkt9elrx6wJDqG8PTC2D3Scig5JcdinJAMQ/BKcwo8Byyhu7ELusZSjcInVMR2Jyu9aPUSazWbBPI21Ph1CcsG7Xq8tKEZgj6Sp7jTJpdSiJ9XeQsBrCmQ7pD48BU2dn5zNUUypyUG2qjJHMf3oRz/ywkmrFP713VAaUvfbUs5ihn7nLNzk+B3amG4DvBwq0d0Vu6yrfdDQDQfFIYotgEPtg4eLtZvFYoEf/vCHUErh5z//OV69eoVPP/0UZVnadQDnQWN+zLpmm7qhNQLxWK1WeP36tU33bRuDp6a4MrwbLvQuw1JdpCzpY8q00L1YoXBjlFnHxyX+9b/+Lj744Bjn53OUpbL3wypF95fyPgEgCMZ2+bsw3fDdss0SHYBUyvr3wsaevhu3kHW/nZLfKfgJPKX2QO/+nYpaxCWLMncUJ1mZmbDk130WhQOFy9IHP8jSrapMHVVVgcWiwGy2we1tgzdvNths3Ji2TR/fdm6gtet8PvfkoFMZZFpEoT5n+1Sh8ME/+gAnH5+gOq5QzkrMHszs/bBKGbCMH08sgVXDSLgptp7iv8H8Oegq5gfLt3DhZPzgb5tJejh/vxD4TzEnSfBGB8JpF84eOYy2jZDlKzvq15a3sID13Phdslo8W4tVe2es7TfMQrbR3r2y8j5ZzyKWflMYXi5aPJu2zZDVLMkMbe6IrdunYu/tbwKSAVhAuamMRa2qFKrTCusXa1xdXHX6xxTzae66U6kCZWnObG4a2PEHoPGtaa3yVXuPtbKnHJBlLL8D3Pxp++6OKXa/uYUsvdO4zo83dopkUyHc38jOLWal9SyP4/yNXzeMKw8TNuzu4kh3v0zpV3/YqWgIECnduusO+TtkJdsPulK4OG1bIDG9QJ9bSHbnrrWbszYbjb/8y1e4unqOP/7j/zsAheVyOeoksJTiNhQutP5z10CU9vSc1WqFq6urZBp91AfESvlC+5a+OEPLKyd8bH/VxzcGDIXG4rvc38hx/D7vse+KttXBvA37WxozODibOx714Qt9H2jkyjeWhu5PcvGJQ6t3XpZ1XXv62b54h5aXt4GGAPoxOsS62btl7NAC2MfReylAdqoK2+Vk3jfIhRY+Uib6nTp6bFv5chePufzoSUojngd5bCuBXDSQcgVDjIYsHqcGLlOgVWqhGAMfQry2WWQOXSjIDc4u+kNOWYfKKhVnG6ByyLgS6yPkLj82kG1g6KYolG5M1hDJfhFrp7E2l2qnqfhDSNZvaJMt00gtiHMUdzEgZyz1LTzGbLSHLFhyaNu83sWiyAMIRFs+PT1FWZY4OzvDzc2NDcPvC+dtK9Wu+saWvrzz9NbrNV6+fGk3d+v1OtgPd1Geqblwl2ltE3YbGUPjM19fpMb2HJ59Y6bW4WPdOB+lFJ4+PcJ7783xwQfHePx4gapylouhO2L9+DxdIKTAzo/rx+8vC2kR5Pg6YNRZxLqyAZwyWAV+d48Q5n7cIrYoOAhMbdspiJWCPboToOOI4QEaIcU4PwLUPM17WSoABcpSQ+sCVaXRNCYQAbDzubLvsTUCJwuQJdb7Mrwry+7clmqX5Cfvyw6FJ948neqswux0hsXjBRbvLVAdVw6ELRwQiwIIga0dq1QRJvg7BKzyspRhAu88vVhcV1DoWqb2kARnvWYNOAvS0J2q0iKW+g93V6rDL2jJKp9KO2C0CVjfFm27aVw5eHfFRnhyq1mbdcVkbS1jbVnSewHDu9D+/bOFy7M9vrp0zwIFdNUCuxqoFzXUrYJeMbB3wHg+xVzo+o2rbDf2+JayLo7zN2OLagFTG8LGMTK5D0koPo1JND66Pw7O6nbsJH7uKGSX19Ddsc7P5MeN3yQ7jeHOshaMv4tL+SHiYzK9yznLufl8tK3jTjUEyM9DilLNpOuXf19syD00z/TxiOd3ur13bhn4eyz+dEDsatVgtWpQ1+bv5qbGzc0Gy6W5jqNpGpRlifl8PmpfyOei0D6eu/N5TWuNqqrseoxOpgFgwdhu3tN77FhYKYt0k/H61gg8D1Os2UP7ndhY2FcGfXvvfdOY9HN0AvukvrXfVDKG9ptT8M9Z81JaQ3ndBdF4Emsnqf4Q8ufUp0PL0bXH9hQh3rltfeyenI9Vh0TbyBMbw3edx1xd+L70OLtOayhtq5cbE7aPesFYvqHOHQD7wsWOpBg6mOyCUgWbs0AChi26pqQYEBBTLEqgu2kaq3wGEPwCJDaAD5UxJlsf0f2IpJAmfvxeq5ubGy8fRLLd9R2NIpWnObLJsEPrXC52+wbvvvro+5hh3wPkLgflXU8sgANH+Bdusc1Un2wxJaZc9ChlLPZ4GOoH24JxueM6l4eORwVcf5RhYnGHLkb6NhapfhGLw/1kPYbK/9AWEkRjPlQ6xHxMSTnrD1kGVVVBKYXVaoXNZoPj42PM53O89957dh4hJdBqtbLzIk+LLB+JUoqJmBwhomONZrMZXr9+jT/4gz+wfnS8FwcH9zG27roNDeG/rSyhOTvVhvj4QGMHjcd1XaMoCm985MBqSvlHdTmk/ZYl8K/+1Xfwve+d4+Sk8ixinbLePH2lPLWVMG8X1v3m7y6s/RXlJ6lfIe3/JkVtyC30Tn9O+e+7EwhBv2NFrTtAgwMsjAVa0QK97t5Fw7uAtJYFyFLW3R1blgbYNceYNe0cb46WXq0avHixQuYH2K28aUA2tLdKrUlCe4mqqjqnwRD1zflN0+DJ/+kJHn3/EapTYxFbzMyxxEVpjpIli1illH0nANYb3xS8MEopC9op+KCsF4cBp1F+IXfAj0+/W3fzcLy5u3tVUT9r5RoCSbSLS8cWW37auRHgCQ1rRWrdbUeB59+xiEXYQtZba1F8rQ0Iyy1jFUsbCFvKEnELWd2WSeM/5V6oUY1pL3VhgGLlwheqgG60AV5bWaylbN3KRsD/BwqzhzMsP19ic+WOOh2zJp1OuW34bDb8zljyozU/fWii2nW4Zpay7m7w7tH03GqWW8OCvcsnQEAsAb7S37i5p289C6BjNevceNywm0tfusu4cl4Kh8ulcTqa1DzCecbnv/BdsX0g5hiZpqZuOv1HL9M7nx+//HKJzz+/xXq9Rl3XqKo5Tk7mmM1m0Frj+voaWrvrZ8b0vdicGHJXylwLo7XGgwcP7OlTs9kMjx8/xps3b/Dq1atgOiGQMVde6rM0b8bk50cl5/DOlaNvDTpGByj1jWYsKqwOTuoy+F592zH2bd/zcurTX0+dzj73hUSHAtb1yUEfLS6XS+smjynOWYP3hQ/F36aMYjJxnind+depv+2Lhuogc8LuU49zn9rEPvVPnHqPKR5DQxvC0MVKikK8coGssQ04lFbfFy+56aV49MkS4yPl48QB2NQRu7vqXKS4zAlHiztZ57lg+C7zEOPd1w5iAF0qfCofU07KsY8lZDjZr/o+srirgbpvMxZ654Bdn9x9Zc/LLyesHKv4gjjGI5THMW0itUDkvMeSlD82Lvf1deKTqttQWYaAWk67AGSn4nfXC51dlU1uOx0ynoT8JCC/2WxQliVms5kHrPEwfXMvb0t9Hw7kktb+EeahcZeHPdSPCKamsfnctj74+Etgvfw4hYOxsbZHiqjUOpj8nj49wocfHrdH3RZ48uQIJyeVZxGrFLyn4en/dnkAuMKb3um3jMP9fR65ZUb5cXxJuex+E0M+P7p331/+5mF052mO7nQgA7eILQpaf5J8DgBRChaUIDe6Y5b+iI+veHbHitLdse5ZQOsGWivMZgpAgfncrH2Pjkqs1w1Wq65SV1Kq/W8zjpIbtWf+AVhozgyNw0opzM5nmD+e4+jpkT2amKxhrRUsO5q4A8S2QKcHuLLji5VivyHcWzmCICzgLCkLP6wtT9WNI3nZcAKg9QsjUfAUTQcCKbbm4VaA3DK2DeOlr104aXkrrVVlHBkuxoeDod67ieCsYHl6yn9yHqpQ7q7YxsW3lq/UV5W29UVpgbaMrbWsrc/GPQtdGLlmJqPVaQUooL6u7dHGd0G82yhlMmDujKVx1t33Cig0DVoLfxfXjat8LHMfirgwzvLVf/fd3RxC91jTeMnnCf83He1O47gbIygs9SMt5IEN5/LjLGh5GVEckqNNuVMOftl2570pyNVbaNxMvYeBV/fu55nPfWm+hvax5AtPKfkgrNYa67XGmzcrW0fX1zU2mwZ1TdcH0Dzp1lShfVu+zOG9YsxN7s+5+2az8fRjOXLk6qmkPNv474JieqEcPVXOWr0zd08oa4im0nsfil7rHRmaan+X0nnl6GtDbT61x4vpu3bZnsaU1TbyDElvjH57131v6L4qd8wfMo/E5LoL2vUHEkOxsilpXx9/ZIOxh/I1SopylFmchg5wIeuGEM8+xdoYiil/pxwQueJlCv5TUGzQG2oVlrsQnJr6AE3pN7Sf9bV1Xn67zDtfPEswPfTV4yFQrFxC4GvIj6ivDlKbldz64Up9GZ+/p2Tdtv6pHskyBoAFrca0XUk542sf5S6OQ4tcWb5yPLwrettBtRS4uauxgtc/3Qd7e3sLrc0X+EoZa3T6Gt4BXcMWhUqpURbsMaL2GfvYgLt9XQDZbfKXu1ZMxS2KArPZDOfn57i+vsbFxYU3tjdNY++6525kGUDto65r2x7lOpLo+99/hH/2zz7GYlFiNitQVYV3j2D4aGJpneQrp3l4ypeMy4vJn3OyiqpDvjLagaq+AjoGcnZBT3MnLPdzwIXvbmTm7ql0OTjB3WJh6WmmDWMlS4plrY0FkNZg1mauvM0dksB8bvxub2s8f77uKLj9cgyvLXIpJ956ve7cedwHAPOx8uzXzvD+776PcmGsYYuqMOArHU+cuh+2BevoN41/1iKWhZXgawd4tRWETlzvCZYuhJvgY/klgNjc8YlbvnrxCYR0CKsFN62lrPbfrRUs+i1juR//s/7it/1T8NOT74wvgakeMCvBZ9afbXk3XX7W+tUrJLiyb4BCF8YyFjCWsYB5b5d3qlRYvL9AdVvh6udXNsxdz5UGjAXW6007RhT2aGGzt9Ji7KIPRuh+Wdg7ZE14gN8RS/MD+dNd1tzP/XHLVvfhih8G1g3MEtZ3l3MNz2/4mfs79N7nPjQMEAMfrW80jHTr7kXk734LWSJfdvfSN6T35TlvKglb5obyQ7/dvGzmwcvLNf7yLy+gtfJONqPf1Be5ZVk3L3l7hFg4vs6iNKXFqVLKrs1MXsweYbVaoaoqeyrKrmlbUGgMb+4v98fSj8sTk1PuoXhcO7cr5e1zDkVfdB/p67D/u0uSfY/2+6kyD32kEPLbRv+xrd43pDObmu4KSN03vW35eUe7oaw7Y6fuiKGvRPYx4eZ8sdIXd4qBbSh1lAkBv6Hp5Sye9vVVToj4wldOXrlx7wMNAWtjcUILAs4rNtkPSUPyjYH2tJCWi2nyl8DEXdYVlznW3siNx8nZuMh0hvZJ7sbrUZZ7Ls+hi7OQLBxQqOu6cy9zLqU2b33tbgrqWwRyf7Jo43KFwLUx/XgIDeF3CH2KKFfu3DGhb84eOlcA/oc9m80GX3zxBY6OjtA0Dd68eWPDrNfrzmkMobRo/Asdw7XNOoLHCymRYvK8o90Qlflms8H5+Tl+4zd+A59//jlev36NsiyTH5dwMJaOyeY8ZbynT4/wW7/1CN/73rkHxJalO57SKbtI6T0ehHXy+HntKs352B0vqw52wu6MJaCyDWl5pe6MJX8O5BLw6RS/DlAYc3csQPfE0tqFW8O6tMhd5pOs0lw+nIUsPQ061LR3xzaYzQyAu1iUUAo4PW2wXmvc3nY/Ckr18dCcOmTdJf1J4Rwbf+W41jQNFo8WePi9hzj51gnKeWlAWDoqVjFL2NbaNQiM0jNguRoEVCHceF5YvBQIS++huPa3AF85WOsKMVCuAetWz09ZTxeOLAm1S9MCloxXyHLV1pcWbgSMcj8uN1mmauWBqd5RwkR0d2sj3iHcuZ/qvms4q9i2W1hA1cph0Fh3Z6wkSreEtbYFDDjboDHWsVWbXgvAzt+bo17WWL9Zbz0/j6GQApbaqdb0QYkW98Q6INWBsuiMffxDEJ4l8ucALIVxd13zpzyyneTl79LqNvzkc4orbx7OjMtcXj7fhO7SDZWnnFNCYccsk1Jxwnu40Lvu+Et5+2Tj/rJMgoNPRJ5+SsvTzZ8fnuZLwMynm43G8+e3uL6u2/nVv9phtVrZ+SZn79y3P0yBg6F4PE3a/9V17V1R1DSNtY4d8sFuCIzs288M1QlNCcJKOUjeqXSaEvTe1T7m67Qf4m3qEHWhh7xXDenL+qhPXyFPm+wDOlO6yFicHLlC493Q/h/iu2uaqn1MrUecksbqh8eEITrEsWEI7Ur+u2ofg44p3uWXDKkN/tB4IcpRXIyphDHATIpygbPUIN1XlkO+eskdgEM8UsBKKkxKptQkeVcbaKB/UU1h+ig3TKgcd/3RBHeP3WWilEJVVXZzFTq2MUZDPo6YgmIbGGkdGerDOWNGzqIzBZjLtOXHEaE2IOUaO7aF2tN8PreWsKvVqgPGxtol9+d/3D81ZsXKLVQG/O5FySdEMTCLZCJe8uMCeWzWEEX3rmmqRfMu8pG7weDtYsh8NSQMtR8OlG42G3z66af2iOLLy0sA5vj+1WoVTEPKTX8ckAuNI2Mpd60UUvrcdds8JOpT0nFKzQF1XeP09BR/9+/+XQDAX/7lX9o5kAAsyYPaA40vNF9SG5TpffTRMf7Fv/gmFosCs1lpQVh+R6yRiRTe1H8AMMtY5xayonVx/Pjdd/m7dQmWp1Ssm3w6mQgYIHfnRmUmj7LkoCyBr85yy6E9BLR2jxSmoz4N2OHSIJl8ENb9NrL5oG+sS5UlpcMtZM3xxEo10LpFnFBYGU34BnVt6rhpNG5u6iAYS7Lw30P6d2x9Eps7N5tNVGEaAmNnj2Z4+o+eGiB2zixi2V8HcOXv7RG1fEzlxwpbWSisgieflZO7c/7SjYVNWcN2gFdya393CzpS/iEPbT3DbvK3EmE0nNWpFuF0ID6FV8r5a/iAqkIXaC1YWAJowd6BDiirG2YV234AoRrlAFbtjim27Yn6NJctRSLPhTb3yza6QYEWkDXoP/RcGwvZJwtsbjZYX6xN+nuaI1Pzj1tvmqPM/Yw7S1a0Fop8uqCxzcwrQAiU9Z/+fbEOcOmGMfL5f4ADbt18Ef+dfrpG7s81roHJYvPfu2Btt3yT3r2UWsY5Px1w64bhfrnLw5D83bh8TZrHN1eGcH66+aV5mf+ua43b2xp/8zc3WK0MSEFgLI3H6/UaEsRweYlnZoxurW/+pPUZrclIJjo9Z8gaMuYX0xHm7mFTvEJpjtGr8rIZouuLpdW3d5JhDnHfcoigDhCu60Mqv0MtN05j9bmhttvXB2Jxc9LbF8XW/UNp33lIjVtDdLchvjl83mbKHZd3NX4P4XmIfUpSlmUscFhC3wXFFHRDgcE+Rd8Q8HNfDXwIuLFtWveVcvNyl3kemvYYoFG2X7L+yWnX+y6b2GIqtiGQ8WJ5jlHKvw/IzOHRFy6330qQSvIgpeyDBw+w2WwsSKW1RlVV9svhEIX4pTZtOXLnAFF9FJKLrNZmsxmOjo6s3+vXr7Fer4ObZor7No1t+6Ahc0pf+ab6ZQzYB9xHGK9evbIK0c1mYy0Xc+b6XCBvn0TpN03jHYH7jrYjOp6dvxOoSgArjaGbzQaA39aoHgi0n81mKIoCL1++RF3XKMsS7723wO/+7gf46KNjaxFblopZxHYBVaf87lrG+or0FBgbit9tu3lNmebSbjwOsJI7Kf/N04Gt9NuEc4AoIS8mLrlzwNS5+dawvuLYyaNaYNSBsAQKU9jQX6hcKD8GIHHzqlIEshhA1oAlRWvtVmA+N5ZwdW36a12bY4uXS/cRUGwczBlf+pSnPigzbKyYnc3w/m+/j+Onx+Zo4qpwVrEEwhZwQKsAYT3L1xj4qrrvHcvYhLVtyM2WC2/rst0T3/Z3x427Bwue/Q4Va8hfsXf5m4fRgSeFleG4e/tHlrBaMzCX/opueI8vD8N5MytXfverBWYLZnGLNkzDjiluZeaArWGvg/UAtGmV7KnaeMoccUzArNYautAoFyWggKMPj1Df1Ni83sha2Tt1FYgKdW2sZMtSB8BPZymL9ujiotCoazcG0binlDvKmOIQeEvjKoXlcdy8wI8j9q1z/fnHf4bcQs+wmzzOMVRmeW4pcvPSsHghMDQMWobCxxJTQflDsqXyuc1SLxTXzbndMDTf8t9aA7/61Q2urjbtWkhjvXYfqfF7yFMA565I7uNS+4bQMb1D06I5lf/JtPr2FLlp0XPb63a2qZNt9hqpPde+9jC8HEP6oEOmt1EPcQj71xS4M7bMU3HvOr/3mULlmqNTzAUav650HzCP+0RRy9jQQmTIlxxDgYd90BToeEqZyym2qBwyKKTKty/u2EEiJPeUdTUEpH7baOiEkKIpvsxJgRR9PPsAKN52eZtKbQqGftgQi7vtgobLK3lJK98hMueAQn1gNS/XnDyPJblp5PwJ1Dk7O8PNzY13p09s3Mttr0OAq1SblWPnkE0UD0sgycnJiS2Py8tLr0zedvA1p43valGa2gDH+mifPBJwIDfiQ9awgLsPlPe3vj7K05li8x77gKFPFi5TbNw9hI3tfaDQWoyDrQS+8nrhdSOtPAiMbZoGVVWhqiocHR2hLEu8evWqHXuA8/MZ/qf/6SlOTirM5+5+2IKBU6RcN+nSn3tvc2D9KKx8OoW5VKiHleAUNr8MQ/fM8fg64M77Kg/jI1GON0ejwH6bp7SGdUp+zcrNWdkSIOssadHyIT/YuxptLjRYWTurMbJ0LUtl37Wmp0GszL2xxoIIAGYzgybVdYOm0Vgu0/dRpSh3rJDKx9S6tbNXKBSq0wqPv/8Y1WmFYuaDsCGLWPnHwVIJvHrgrLSGVfABWMoPixO0nhWyWB5g8om8cnDWukmLWecRKWzxLsEbpQENH3TUXSBSa/fO/bzf7MjhqCwcVAGzYhWCdtKgsmsYr/ZdF9odKdyCsxRHK2cZqxRLiwBZaSHLu37RArSA40/ALy/L9qnaPocSFtAtmgIaGnqmAQXMH82xqTbYvNnEy2mHJNuXv8b3P0Qhoo9K5DhHgCwdG0xjkolvnlrzo9T93zKOScvF5/MMpUHjMB9H+RxCcks5/HnGyev83Ic2rny65cbnB57HcFl3XALh5borzCvl3127xeN3ZeLzZRiY7ePbN+TnLv0kAMvjuqcPwtLx2k2j8fLlCi9ehK+1Ce2j+/bwY+bA0Lpf8urT76X24DkUAmOJV86+Qu4nYrJLOXPX+WMAiCFxYmuKHDnvYo/N1x6SDknOHJpSTzGGV67uHOi2d+nepxuXcYbofQDfAGloH992jBpbRzkAYy7tow3vMo2UziS3HMbEOVQ61DFp13Sf6m0ry9hdK6FJwWUWdOO+7OpTyuZW1pC7IWKT99Q0djE4Jp13dBiUUoz1Uaq/DlHK7wOEkbQvwIvGGqXUoK9gpSKlr4xC5d23wUqVQV/cMUQL0vV6DQB4+PAhFosFAOCDDz7AP/pH/wifffYZ/uIv/sKm94tf/AJv3rzBfD737ssMHb25TVseQyFAOFSeSil7X1FZlvaPaDabYTabBfm+o3GUWvTG+sqYzWBsHUP8lFKYz+cd/z65Qzz7iB9hPJT4GBM7Ml5uLsmNPjIgy2+6D/cdDSN+BPFqtcLz589xdXUFwM0j9MfHQiKttb17e7PZ4Pj4GIvFAh999BFmM41/8A+O8eTJHKens9YitkBRgB1N3LWGlSAs+QHhY4kpHil7u7+dG+dLlNsFCcTk4bmy35Rj92hMd98qAAJtmBKYFL/uCODu0cWmLsifysL5g4GvBErwLtlNz897qAzIzViyUZ5IEdu0/gZBUso9CfQlENjI4xSYZQnc3GisVo0dF3nfvguiNlcelfjwdz/E4skCs7MZihk7mlhYxVqQlNosf/IPDQSAysNGQdj2PcS/kxZX7rF3CcZyoLUDupJ/+ztcSIkC1OEwSit7X6wNp0ScmJt88jSkO/0p95ssZKPWsDwchIwyD9CeDEorNGiMX2sZS0cray3AWyGrBZ55Oqr/WcAAr3RMMZWrLtq5v72rVikFfAxsLjdYv979nCjXpPx6F7kuIaprY/FaFA2KQqGqaD4w40x32+IqvWn88ZUDtpQOt5Kld4DcYf0AGbcLyrq5xK233biprb97h3ADAMfL5oj1FR4v5N8pjaDfkH10jp8MFNt3x/n6coY+ZHJ8Y/nNnRLicnf58LD+3Kjt89WrNX71q6Vt31dXYWtzWgOv12u7BqX99z73gzF3uc8Yo4MI7XP7ABsZpvtxRjoPY2gqECjFp0+HQfvuHNo1UOLGQx+Y2wZsu0uaUt5d531f+r5dpJ/bPvYxxr2jd/SO7gdlg7Ex6vvCbBtlZSp+jI8M3zfgjfnKS1Iqjkw/ZwEYipeKOzWNWWzkfjmWq2wfm+ZQismzDb9dLCbvAgAdSrv8kmifCzPZX6cYq0IbsqnqdJftgSuCyIILAB48eIDf+I3fwGw2w8uXL60cX3zxhd1QxcDs0OY21Q/HgLY542lIHh5fKYXFYmH/iOhYUaLQcc5DqG/z+rZSai7MHUdzx5sh83zszujQ2iL2zuNNASTnUoxvSJlA7lLuobLtWilySBSqY6XMnWKvXr3Czc2N58f/JHE/AmmLosDDhyc4O1P49V8/w4MH7mhiY2UZA2J9BbY/xnbD9QOyfPyFx6v91fHLI+oTMq5ElMgt/O4Doq79GZn5EccOWOjKa8JSHHpaX1uODgwgi1heXuRPIC4HJ+goUH4sqANZ3VHK5MatZumptUJVFZjNNBaLEut1jc1Goa7jimLZx3c9BimlUJQFTr5xgsXjRdAiFoUpcgI+Q38SZJVuEkztBVQDcTpuEPw48KrE75avefjvNs0Y8hpy1l13Dm5yXtYSVLgROKlVwCqWufP40vI19pRySf4a2isz7zhheufl1brZsiT5FEtbCRkEX28+5n6NiwsF/3jkhslFQHJhfpPVrKoUChQoT0s0mwa4gA8Ib0Gh/ibXB3IuluHIj397ZT7G4ICnG2Nc4wo0MtAHLCEwlcaw7vguw5kxL2wRS2H5mGjKwfFyYyvviy6Oybo/zpp8uzjuN9+3cZlleW4z7oXm8fx4cv7x57E43/hQ7c+HnHefLCkK5akPhN1sGmht5sfr6w1evXLX15g8hE+iAdzJIVOsIVP7xaHzXky/mROvT/eZs24O6Q5T4XN0ENuW8dC9dA4/Tjk6ub68TLW28dYdA9PY9X5oG73BmLhD42zb3lJz5tg9quTTl/6Q8DnpDvX/utOU+5QxdTgkzr4+IBgz/g/FGPrS79OF5aa5DQ2tmzH899k/k2DsLgpzCLgxRo5YAcYKlVsqxCbdsZTDK6Wo20VDuEuFaUr5fp8mpdSC4D7nY8ziicclpXIKiOjjdUgKfdogpiziYzLnLIZTAFFIsSrriftP3Ye4bMfHxyiKAp9//rl1Pz09xcnJCZ4+fYpPPvnExvnrv/5rKKVQVZX9yp/KMWcCJz6xvKaIj99cfgmuyd9KKXtfI+AseU9PT/Hbv/3bOD8/x9OnT228//Af/gOePXtmy+X2Nnz81jZ038bEKWjKvs+BmD7+IaBiCnnquraWkSQL8SRrVLJO3Sa9vjzy8YHSWq1WaJoGt7e39ijmMR8VjN0cvw1Ed2XP53O8efMG//7f/3vrVte1tfSQSkhyI6J2YupkjR/+8BTvvz/Do0cVZrMCs1kBpWAtY5WiY3Hd0ynPadx07wS4umOJeVxYfxNVWiX51qzhag4foWiyKpXQzvrVheEKeG4dqzvv3FK2qxB2d8WavPkghNYOMOV/XFZzhDFYOflWszJ/nAfFc2VZ2GOJjYUszU/sgsz2t9ZFWwZ0TGfRgrUOvOV1WFXA1RXdCRlft/Up0IYohGMbbqXa++WhUR6VKI9KA8b2WcRGjg/OtoyF+x0CWTtHGhcIxumAsoDnJgHaDuBqg7EwuRQLL/Ez6hsEpGjEn0o8KX7AStWGSbkF/jzLWZ4drdDoxk9XmTtibRsLySwsYbVmRxi3oKkNK2Vly3O6CxaAuzNWt+61hlbGOtY0h8JYxsLcHesBtEqhmBVYv1pjc5l3h+y2+8LQvonvq7r6CbO+Xq81jJWrtsfYu/GC+oX8YMR9oMIbDAFrbgzTXnw3VzjLWQnoktw+QAt0rWN9f3rn5cXDOVn5fML9jH+sqHmcXVGsnuV8R3L47nJ/xEJmipzKYy4PF06Ldz5fajbvaSyXNX72sysLyG424cSofORak89DfR8njCW+9pbp5sYfCuLId8o3t7bso1ScUBlue6/trii0p5d6EFnntL4Ixd1mfzYEnJPpyytHvo6Uo5/YVofRV0dT7zljH2EDcZxgCsD2HcXpPukV7pOs29B9y+euPqSYmoJg7NQTn6QxvIZMnrk8iM+u8snTHaPgHfM1w5RfRIUWekNoDLiWG36XHSVXhm3LZ4q4u+IbU9KlFA20gGmapnPcTKxM5cKmT+ZtlYe5NAaQ3oam6l9TLFglD7IEXa/XdiNCoENVVTg9PQXg7pKldENHc8ZkSrWBnDqX4WNgbGijJ/34ppasYmezmbUMrqqqozCQgPhUG5H7tvAZQrH5YWxfADiAo726iVFf/9mGZJsgherx8bH1J9CO+kvoww/Z/kP9QypvZX64IkcphfPzc3v89mazwdXVlddnD2EePnTiCvK6ru3d2XR3LPdPKfLIb7PZYLNZ4+yswKNHJarKWcBKS1indPatWQH32ynO4YWRYwtXiLtwMRA2ruyWRHxkXkPxCWT1lcgOTSIAAXBgAbm7vHAEy1l+8fCct6kPAhA4QODSpd+u7LpggnQ3f5r9Vu3Rww7AcHfOcitZwD+aGK1FrQFyq6pAXWtUlcJsZo4n5UpxXsZDKWfuSq0t5g/nmD+cW4tYFDDgZwumcuDT/sE9FXzrVx628w6hnBVhPB4ijBdfCT84/jwtK6PXIZzcHUBVydfEnisAmpBVaSgMt3blvKN3xUJ7VqpDrGI969c2rZAb8bZl0h6vbNtT68etXnkczo+6sGchq+O8bL0oWECV6kApxkNpC/gSSN8BYNuPB4qqgG7MhwX1ooa6VdAbxjtCY+fC1BolNJ/7a9g2s9CexWxRuLGFj4tuvHQfmTjqgrNxdy4T9TnfOlaCvl0/2DGa/N3HNvRRiisHktvPB2w+aEzmRcmrxC9iFQwzhvw0NHOT9dRNy3f3575YPlI0ZvkqAeIQnxAIu1zWqGuzdlkuG1xfb7DZpE9eIR789xg9UYrG7v+H7hWGykO/x+gW+sqR3mMfHuemk6LcPVUq/VQ6ct7mY11qPzy0XiSvqXWyMp23BaQbqu+cUi82BaCyC130Nvynom11Te/o7aFt+sm+dd77oJTOpY/2nccOGBsTYMoF06EOWvKrPOkXotAiKcU/x60vPfn7Pkz290HGryul+oVU9MuvLkP1ulwuoZTy7g2lsPehHexaxtyNz1BZZJyxX8jKeiIAkstd1zUuLy+htcb5+TkAA07QXap0J+U2cgyl2JgdAqrkuM1BMPrdNA2ur6/tfZAffvghPvroIy+cUsq7d/PruDDepr/0AYmpcSnFLzRPpmTgNHUdEji3Xq+xWCzwgx/8wN4P+otf/AJ/8id/gvl8jtlshs1mk3U3PS8ruWbhH8VQO6cPCi4uLlBVFf75P//n+OCDD/Dee+/hpz/9Kf7Nv/k3mM1mODs7w+3trf3Y4h3FicqbPjw6OjpCWZaYz+dYLpfRMpRjD42P19fXADaoqvdwcmKsYo2lk7GMjQOzXMFE87Tzj98Vy+MAAOfX5evnwf7qKSWpPJegACnzKZzy3Lii3Sluu/EJWCWAlIBPOgaY7kp0XYvACgeSUvoE5Jr7W7kiGhY4pbBclk7OtSsnfnesk7uAUtIyFuzZoGl8i1niW5aqBWYb3Nw4ICakoO0by/g4MmbcU6XCx7//Mc6+fYbZ2cwAWmVhADFmBdu5w5VbrirVfVI/ofhg1q7K8eqAsBGL2xD4GnwHPLcYGGtB1lCRcf9U2XEgEvAxsJBb6Ld0k+5a+IG5a/Fbhmki/iIs3f9q5yLKl4Y9KthaqNoOxeTixuKMr9YOkLXHDMu4vJz4H9VBA3tPrAazjNXs7lhlZKW2w+u/OC6werZCs+yfl8eSbH90lya58TU5fVjl93WFplGoa1NmVQVUlTsene6T5eHpIxR4wCnQbThuXeHmCojffF2tmb8/R/lHIbvxmuYe/zh5Pvf41rFeV+T3KrMy7JYxfwsBRS7NbvjuO8kRAk0dCO7LJOcKP3xXvrj/mPWpnBsCITy3+J2wTQP8/OeXePNmbedkYxXbzXNSosB+7D7sn2Iy9s2hcu2X2jsppewHk0VRYLVaeR+59wHH2+7LJD9OfHzaRrE9JG4MkJ4azJf8Q4YF90GP9TZSn75dAvjbgqWpDxAlST2XDLsrff19GC/f0WFTDt70daN963I9MPa+LYaGfsW2zYJgF1/VjKXQIB9TaA/lu63cXBkeWpi/rYuYIZN2LP62/W7KepdtSvpReqmPCQgQkPLlAimHvmjZll+sjHM3Oam4Q0GsFJGlMycCKOu6tvck0vG+9Jvqftt6HNq3YgppCfTJMAReEdV1jYuLC2vt+/DhQwDmWNLj42O7UeNpvI00dX+MgaWy78fmoyFALJc7FK9vTTBFndKmkGQ7OjrCyckJTk9PrZUs3zgO6cOhD8jkZpT++Gbx+PgYDx48wEcffYRXr151eI/J/1Tt5L72JaqL2EcZqTZfFAU+/PAI779/jNPTyirRSZnNny0Hj5ev8HbPOBCLThzz25fPV3r76Ur/cJlIPl3LVuJLyn5y41ZTlGfXLmV8P4zkyfm68jOgA4G2yir9lfckoILzdWHdu7SGdRa3/DhPB0i4+xa5ZawrV2oDBL42jWotZBW0NsdXmzi1VZCbMvH77pB90pC+p7XG8fvHmD+cY/HeAtVJZY8l9oBYZZ6hv5BFrB0LKYxS1prS5suWcfd3EoDlfoDvLtPg/qzZdKxhyQ2+Wy7ZuISBAZ6lqDfeE0jD72RteWitrSzSmpX4BK1fyZJVuoNZsgrZyI3f92rzouDJ4uWJ5BthIUthbXrM35Y3S9OGJYtZahutJawutG1/ZMWttXbHa7dWsuW8RLkogQZo1uwI5i0p1D9D/ZGuMuDXHXB/MzZBxDMfpBB4ZtJz6Zq5StkPS9xYR7xZhdtx0oGMLk0H2CoFb+xx/o4PjaU0flJc+m3i+OOrG39h3Sm/NE/w/Mn8shKXDs7Hy5sJy9Nwssm5zAeGu2FCMqlO+LC8YcDUhM1vhH3LMe7vt0Xn1jTAalXj5qZu25axhjXHEQ/TwwGuDfL3kPs2lNJp8DRjJNdoqfipfFI4Wn8rpbz9MefF3cqyRFVVmM/ntv/3faiZA07m5juXpuTXt1aJlXnfPq6PUmUWGp/fJj3mFPu2VB2nynZq3UJsjz9Gxx/bC4f2cUNlyqW3qZ3tglJl+67stqeY/m3fZXsXdblvHVTyzlhO2052h0o5E/CQcHdFcoK4y8Y7dLJ6R/stpyEAx5Bwki8Ht7gffVW5jRz3meTXe2PicfKUi4jfcTu2bFerVecI1cvLS/zpn/5pZ3N0fX0Nrc2Rm1S/+7pjRbYpvoHOAbZJ8UVhb29v8dlnn9k8Pnr0CFobS+D3338fX331lb0vVinzFXNOWu9oe8BtjMLgEOpFKXNiwMnJCZ48eYIvvvhiUFzZ14GuUoK3YaKiKKyFLmCs3U9OTvDJJ5/g1atXXj+563K6b3MAV6St12tsNhurQOPjoAzPqSgK/C//ywf4+3//CRaLEmWpmFVT2iLWuAGAau8lde4xMLYbl6/fwu9O/mApsN+8PbYu2oVzim+jVHa/ncLdAbPK40lhTJlyAMCF42HI+pVATfprGorDLWRJPuNHRwvzI4VNXows5Gf6jLvPleRwlrMUTz65wpvcjCVsVaG1fKVycB9SGCtfhaMjjbKssVrVUApYrabfj/SNm0/+/hO893feM/fEluaIYqWUtYT1LGNV+5s9bVj+VCp8VyzgWcbGwnUscEV6HLALgbLE37oL8JX7WTcJ0I4qbPOwRwvzNLQDF5PWsaFny8fOudp3j75rOEvVtp17oHPrp4tWXrKiheCB7m8L8MK5a62hGuV4M342be2XjyeTTLMJuDEia1mSXWmFQhV++QJQpULzsIE6Ulg/X5sji3dEtFbmV3wsFgucnp5itVq1R9lvvDs3wx+gFahrGueA+bxpjzsnS/uQxar7+IUDtZ2GZELAb/Dxd/8jG/5RCzpP89uN7c5PKsR5+PTvrlKdh3FjMfn5oKwbm7tzmT9/UX75/CZl8QFs7tcF1CVxuXOH+VS4EPBKv3nbahqgrhs8e3aLzz67YX55MoSI6wBCe+FdfZAneYbeaR9IcqTCc4rNk1VV2RNTiG5ubmxfj/EsyxLHx8f2o83NZoP1em395TqfyjPnZJ0UyXrYlt9QCpUjtQf5cf+2650cvUBOuHeUpm0/ELgrCu23U2Hf0eHQoeh83jba1dw8VIYhdNfy5lAUjA19gZRSAuYCK2M6R2xAHMIrFj+Wt6kp9wvBqShVV7GwY+tmiAx9cr0bQO+GpEJ/V+0lh38upT6YCKVx6AMy35RyZYuk0BehoTqZKr91XdsjiIn/arXCX//1X+Phw4d4+vRpZ6M0lsbKvE1bJMtXAPY+WNr0Xl9fW5levHiBzz77rD1ONJz+VG07Nk7uon6nlImHTYWPfVQQCp8r25BxSa5vctY4U7RNrbVVqhJASu2vT7kg8yhlrusaRVHg+PgYRVFgNpvh5uYG19fXqOsadV3beG/evMGbN28AAEdHR3j69CmWyyWWy+XWH08c+jg7FVE7pg9V6rrGe++9h2984xv48ssv8eLFC0+pLts/vX/722f41rdO8eGHx/ZoYqU4kMrL1JVtDFg1MnG3rlUsKbs5b6m8Diu5u35dkn3IV6j7fs4KygGxXaU9AQKOlwQIdCCcf0oLV5JLvk757yxiAQdOkJtfdmFLWQeEGzDE1AcBuxzgdccgFxZkdNa1RSHvjlXtsdUKWjsL2fm8hFIN6rppFedxq+ycfUjOWHr8wTGOPzrG0dMjc09soYx1ofJBWAl4crfUX1uqXlwFZyHrhVUuXck/Bsp2ANlO22cy8/eYG3Mn2XNJ3hsbuzOW85RuyTtjZX8MWcfSM2IlS2kF74xl+ecWq1ZOW5TKhlHKt261eCq3+HPdEElrWsX4FIButK1XXbQAL33L0ALLgAnntRPqg41CoQugBHRp4pdzM0fXixqNaqDX0+xRU+s6AkKKosDR0ZE9qjRkIRfeC1H/0ahr9zEKjVVlCVQVnzP4RyVpK1n+m7qBG2sRCEtjuwvjxnp5HL1zc+/hNBxPAFAirPP35fT5+WXuxzd+VEfduc+fTzhIGbaYlfGdnw74d+fRMRTfR3bDaG3mj1evVu19sMavrjUuLze2DcXaa58Msf0qH89T+8ht1papvRmXJ5ZGbM8Q4k1hi6LAfD63H2ASbTab6DUWtHanK3/IOpaOKw6t/XcJSvJ8Ux1NpaMbUp8pfc8Yuu96xkPTb6XkyR0vZFvL3ZvH5JFtNWc/H3PPBe5TdNd1dKg0pMx3VYax9jokXozGto1Y/u/72CXp0PJzF/002zI2RlMtBu6ado329/HepvymHLD23dFjoNldtqdD+PJjDOWWW1+4fed/ivoOLdTvUx2SUp8otiHNWcBOTXT08NHRkeW/XC7xP/7H/8D3vvc9PH36NBmfb+CmkK8PhOfPPuJ32yql7AZ4vV6jaRpcXl7asJ999hm01ri4uEjyvOvxa58UAhBTZX+fymWKepQbSq01bm5ucHJyYo8ho/uYCSzN4Rc64my9XqOqKiwWCxwdHeH8/BzPnj3DxcUF6rq2VppN0+D58+d48OABAHNk8be//W188cUX+PTTTz2A+B3FicYzKqvb21t8/PHH+P3f/338x//4H/HFF1/g+PgYVVVhtVp5dctPjfj+9x/h93//G5jPjUWss27lSkqwp/8biFvPEjBrwpgn5wHA42MxKKYQ7mBOo4dwGVFH/LRwS72Hf/t3D1JefaBVgsOuDJx/UajWElUCtg4o9cOZsBxk1doBr/7TKcBJ0U91b+6xVdayzRw5WrS8DKI0m5m7I4+OGpSlwmbTYLMBcr6lCO3bhiinHnzyAB/+7oco5gWKqjB3xLZHvaKABcM8oIvc+u6ILeC/UzyEeYTSUohYyEK8Kz+PIbcYICuByHDhxesAAKyVaCCOVUJKEFbBWYbmgLKqHasYmGrTkV1Qmz8PoFXKWalGcBIN7e50VQZU7Vi58vJQfvoeaNq06dOxwY2TQwK4FA5gICw/hlgrZ9XbutvslsqVJStTVbZPrVDMzNqwXJRQhcLmZAMUQL2p5fAxmPiaQCqc6eMdrbU9xYLm5dvb2+gVIOE+bMYmvqUwfOlDEX+cpA9IzNPEp7mOxj/imzNWK+XGt3AYCueDtBLMNfL54KoMz9Ny7mZM5iCpD6L6oKAETjm4LPPi4kO4afhVo4JhZd58/2nWyjI9Dv6SHwGsWgOrVYNf/vIGy6W7gsXJOHry93jJ+xWJN+2Dqe1PmTbxyFlj91Fszxnqj0dHRzg+PsajR4+s+83NDa6uroK8y7LE6empjV9VFY6OjjCbzVCWZfC0FSn3GL1sjCfP113rVO7T/vHrTlPsnWlfPJZon5X60HkX+kfO+x2lKVVGsY9c7htNjccM/TDhUOg+6OXvSr6twNh9A7FDvlwY85VDqtHvOq+5DcAqHRhNvWgdIouUYwy/UF3lfiUylN7Gr5dyy2XXi2o5ccg7OGNySuBxqk3XmH6y67rn6RdFYdPjoCAQP9pXytc3Lo3JT6rOJL/nz5/jj//4j+379fU1FouFtablPHZRtnzTzutcfnEtw3N5QnWSkpVbJkwxTg0pn0MEekNlHvJLbYgobKw9c3c5J4fCx9ykX6o8c7+ETcnMgVOyoPzss89wcXGB29tbfPHFF9lrC+Ilv/Tl5VAUhT3W8MmTJ7i5ubHprtdrO848f/4ci8UCP/vZz/DVV1/1tvl3FKf5fG4t6c/Pz/Hrv/7rdkyczWaeP6ePPz7BD37wHn79189RVQU7mtj1BaUQ+JMWsRyAjYGyrp06K0zOA8zNB2D9ZtEFZ/NJtu+Qgp67hxX9/C5Z/15ZAw4YBb357cYKUuBzINZ/8jhKuTtYqTw5OEEKdwOsmvAEdgOwwKwDbgmAdeMNHWNMwK1Jy9Ufgbxao7WGNXHKsoDWDarKIFezFjAyzwbrCaz2QmOZUgqLpwuc//o5Tr91imJmQFhrFcutY5UCAW4eoJr6k0cQMz62HgMArgVgRTqh35xXCKDt/Ib77QGwXv+IdIicfkJNkJd9zOpU+1au0uq1zzrWs2pVMFawESvZkJweQNoe7auVNkf88jh0fLHSXnl5gC3afBNQ2rR3uzZsPiWZlP8k61dVKAfcKuWOVAYDYluQSWllwNo2jCqUTdO2u/ZZ6AINGmchqwE9M4yr4wpN0aC+2h6MtUUb2YfQ3K61tidb8KNNc9YLqTm9rjWWSxdmPjfW9vJEBncCgJWuHWO195vGxjZ1G9a9S1mkmx9HUZtXEsw16RG46tymBWXNu/R3cobl6oKfNA9IcNb3j4O0Y4nLyvm7p8abN2u8fu2vTZpGt3fBcl75FqPklrOuDYUL7dGmpKl0S6F9J+df13UnLd6vY3nTWntWs1dXV1BKeVbxqX35kD1ibN+Us7c6FIA2RUNku8t89PWRbXkMobvSMcg+QR/GDzmauk8PENOfcQp96JwKPzUdmn5nl5QaA0Mk66ZvLJ+iX21LY9PJHV+nADjvAsPbZ7p9cowNM6X8HhjLKzUHjc/1yw2Xq/zMoSGg2xC++1gc5i5eUzRlWeW2hZQCfaxsfWkeCh2ybFNT7gSXA75wfmP6Yyhdeu/jd9ebCQnG8uNKSX65kJSbLqVU59iy2HgyRT5lWb5+/RqvX7+278fHx5jP57i9vU1uGLehVL32jVWpjYbW2quTGNGRpJJ3H92Hr8KGkOzrIYUE9x/Dm47pk+7yKceaVDvgSpQcuWTYofMvj9c0DZ49e4Y3b97g8vLSA0tzZQn9JlLKWHcfHx/j4cOHeP78ucefwNhXr15hNpvhl7/8pT2uOJXevtvt0PXnvomXCx1tDgBnZ2f41re+hQcPHtjj5ubzeVD2Dz44wj/5Jx9ai1h3P6xUhvtPIhr/6TjbeBz3m5TQFN88EfCDl46kcVXhFNxKyTUhKce7RxO7OO7d9+sCstKdlOSOh3u6+dYBtr48XcswXl7+ccX+McMGqDWS8WOLeRgOZhBQzo8npifVMx1TbJ6FB8aaZUDXfDG0Bo+tMWR4PtYevXeEJ3/vCYpFez9sqdz9sLQ+UaZ4+btCBBRlT0qjw4fihvwjVrQWoEUiTZa3kBwy/yE/7u5eVdA9Rp1jikVEbUxV/flWgK0UL/U7xDcExEbBW9ZXQkcMS1ksAIuu7JYfO3qYyoyOKrYysPRsGQkZbJxC2eOHOzLy+28ZmEvHFlsL2xbILcoCjW6gtIKqFAoUqI4q1KhtOtsQ72uxfkf9c7PZeB845lJqTUFHmtN4ada+aMcbSt/dle2PlwCNofTbgX9uXjHpu/jGzQGhoeOI3ZgLL5zJjx+WQE4K79KlOF138zsPlKV64MXowrg8tT4dPi6cjK+j/tkDh+PQddGhdzp2mP40Li7W+Pzzazd+bkFDdIBUvnxtT+vyFHiyb4qlz/MgQVnel1PHiUse5EYfThItl0sA7rSmFBCaU16x/XNoPxfT3e1DiX7Xdf+2UWieCa1zUvraWHvL0cX0tVXed2gfKz9MAJD8ED6VPj8BLRVO+k3ZDu8r0CrHhqko1A6ljiPVxmL8tpUnl3LmzV3rMrbl9bbpJVN0CHqsGHUsYw+xYmIy5SpTx9KQcgiFvauBdx9fg2w7MPYBtLH6fkd3S7scH6bchIUUjYdCfAFC+eRgLABvAco3rsfHxx3FJN0JSW580UlA7djNNo/DN4hKKZydnXXKt2ma6F04u6Ixi6EcnpLvy5cvcXV1ZZViHCjs+/AgR84cOqT23De+y48LuMKCKFYmvDxDQK/sA1KRMwRETI0TMRlSYeU730zQ5nKz2XgfLMgwMr98bKD2FxrjpOK2LEscHx9jtVqhrmt7JPLr169xc3ODf/tv/y3W6zVevnyJ1WqFqjJLQnmqwV3QISnlQkR1VZalHX/X6zUuLy/xO7/zO3j//ffxh3/4h/jiiy+C8cvS3Pc5m4WsYv0nwJ+woK20og0dU2yeIX6kGO6CsH77A/s9Zg5xymD3zvnwfqM8t+6dsoqF90EC/7cPznbjuXBkrUpheBbJIjZmGUtl7hTzvLxh72F01rPUX7ki1pUH6aYJAGka9yxLE46OLK4qDYAsZIHFomznfGPZ1N4u0EtybA6NobSuKKoCxaIw98QSEEtPGpfJSlaZIiY3C5DS8cHyGGF5XLFs+zyMtIQV7x0wmJ4SnAWTk4GCtp0H+oPDWl14v0BDTu34HgBOLG8JoKgWhKV0tAA7W37cP/TUuue4YrDwlDaBoI2zRiUg04bj4KbWzqq1Ef4NnKUqO67YWrTyMmN3u1La3CLW49cea+xZySpn6WqBVu3iwWE/Lh8EoNkPIYxlLDQMKIsCutHQ0CjmBaCA+eM56tsam9eZnSxBUhFJH00B5sjS9XqN169fY7PZ2A8BQ8rLHB1ESvm+Wun2iHPHryyBo6OCzTV8LtHeb4ojgVM+7joAlssSH/+7nWmcO59z3HzkZAnHpbBxYDYsg8chFjhBw9f4vky+FS4Br00D3N7W+NWvlmgaE2a53LRhuuvOcDr+OjsEqKQAu9DxxPeF5DobyOtzq9UKSinvWOJNz+TMT8a6vLz09p05e8DYniZn/RYCloly039Hh0dT6R/4epHcJP8YODtWBlp/8n6xC5BLtvlcYPpQdY33hVIYzzvaP4XG/j4d2aHSfWlDwWOKYx1jm8qQg/fQAoqlkVLmDqEYnyFy5pRZzgQy1cC+a2Vmn/I5J17fF1UpXqk2sU353ZfOSyQXRVOT7K9j0skB22Pht+2b92GhRItNIrLQlGDQbDbzFZToLoJDE+kUxL/yLcvSfrnIablcZn+5yGnsQl1uDPp4S6VDrmIBMHm7urpCVVUdpQIPO7bsQxsc6X8o1AfEphbWOf05NbYPnV+GtsOhNGRdZJRiRqG6XC5RVZW1nDRASvdLehobKB+kEAn1ewD2flhS+FRVZb+qpzC3t7dYLpd4/vy5jU8fhAwBoGP5HLMu65vH+trE0D4zpp+GyoS3yc1mg5ubG3z44Yd48uQJfvKTn3TA2LJUmM9LLBbOItbwAHu6P5OGe/phwmBrOhznqYQbVzDEy2pI0RnFu0lLKsHJXSqg/aOIKX2u1HdKdgrjy+bCO17ddHhcvwx0q7wnay5XjuRGZWfaBL1rr5wJkDDuFFfZd1nXfnzlWcaSVa0B7bW1kuWWslWlMJtRWxw/X3TWa4VCuSi9o4n5/bDeH8URQGcfOCotN+mdx/GUxMyNA7+dNPgT3bQ7fnD58No9j+ML2pE9hsF0wgG2SWphLW7vX20tY206Gp71KNDWlzJxLIirukpTpVoglsIxGawfyUhgLgtvLWXbtD2rXeXk4Pmy6YesaZVz52l6eRf8iIdmAKDNv2IWsUrwYH9KKQvc0vHF0jLWuun2WQJFZY4tLk9KQAGbi030Ht1tic/ntK4OWcaOWWeH2oa5V5a3Qd2OJ9p+JEJjk1v+0pgqKrDz27ybdGms9a1a3VjKAU8fZHVjMY3P3I14dq1dze/U8cVOHhrXTblw//C+tDv3oCM/ryJ5tPF25OZIoqahI/adJSxAx1LXePVq1VpE5+unQvulITRWj7YNgBOiXD1EKlzfPk/6bzYbFEWB5XLp9WlJnB9fq69Wq1Hl0Bc+tndO5S+0R9k1Dcl7rp556nZ1qJSjNx+qt0jpKULu2+pF+Nosh8e29co/sOdPSbkfr0wl1z4pJWuOnkbS0LLKpV3PRVPJINvBIenyQvLIvpbCBGPzR27a+6B9970x9bvVnbFDyFfyhAsm1UiHgrExii02dz05xyaw1ASTq+QsiiK4qN7FXZwp2aaiQ5m0tv2AYGxah0axQfmQJhQgrignv0Oj9Xpt+39ZltYqDQCOjo4s2Nk0Da6urqC1scLadmPMKbfdhSZcOj6Jy9InTx9Qt03cIWVBvOSXvrRxJp7SGpjqqSxLbDabvbWrqdLZdpwJbVCmGLeo7ci5LLQoDG30pugLuyaSj9oX/7AiRh2QIBGOxo8XL17g6urKHoO8Xq9t2dZ1bX8XRYGzszOr7JVlmBr3c8cMWlsNrZuyLFGWpS2r5XJpLYLGrB85OYXvNAouriS/vr7G559/jpOTE8zncw8UJ/rGN07wr/7Vd/DeewtxV6wEZcNAqzuW2N3vx59A10KWZCd+pHDmfubZzSfPcnd+tb865RICTFVQYS4V+JInV8jHfof48DAQ8dxT3iNL70WhrWWqvHOW8sHLnCxnqY4MiKpBYKqZy6meYBXlBVkWQnn1x5/GMtbcFWuU+UULnJCFLDCfl1AK2GyKVs4Gmw1Aet/QHiG2wZY0f2+Oj3//Y8wezlBUhX88MbdW5VavYO1YHGUc/GOWsiRXURSWn+UTCkthoDp3gHJZOPAaAmjtb/KX4Cu5UVMSNGYutKCiBGlUW0ckg3bheVhrYaqZn2L1q/0wVnYdTksrY3VqeZlm5vjIjEurWWEZq3VrxUrpyPySHPRsLVitVa5y/IgXt6rVhXYgNZzMumjTaS1ovTIngFlrC7ja44pLNvaRxXpVQCsNXRtgt6xbK/RHDZrb9g7ZgRTqZ/IoRa21/bjKysTm1RTvIWCMnKfNGGaOPb9q88b9Tk5KzOeFsJb1/0xY90cfxdC47/qeZv4ku5WScsQlb+PL8cyNy26u4TxsyDY8L2cevhvff/f5+DKExwBeVVLuXApVt1v/ujDPni3x/PltJ56pYyejbCM5a6fc+WIqGjKe7lKHwteMnPhHuSGrUdonL5dLXFxceO7AuPwN2a9LeWIn6oTi00fHPI+3t7dBIHlXNHStnqNn3hVIe8g6vBiNlTm3/cq9esoynuYc+k17Kn4q1FD5Yn65eQ7tXaduH4esU+2j0DiS0sNOSfelv4XKJ0T7yEssjft8YkUf3Yc2AiTA2L6JOpd23fCGLGpSQG9uY0zlZ9sySymd+3jschG6D4rldeyidSj1AUS77tBT8M9RRst0cgH/vjgy3pTtJnexMmQBkLOxyZ3sx2wYqH/TApQrJeV4RAAKxeUKRLlJzAUkuCw5FNq4y4V2Tl/NaVuxMDn1mxrjc9zkByzcUpA2prz+ph4fdz3ebjPOpIDYnDrPBcqGhpFy9bWffcxpOWlMvQCm/JHi9s2bN949czz/HOyg8SZkcctpzNqHeA35mp5kIEA2VwHVJ5uUMzQXDlHS8PImJdf19TW++OILnJ2d4ejoCMvl0n60UZYK5+dzvP/+Eb75zdP2WNmQItsBqG1KLE03B4TikVzmp79+6Ybz8xF7l2XV5R0sMi9MW4ptWRqlPCm4/Xd5lCWVvwsLZpkqAV8KS26hNDpSqm48nqbLv2bvPH98bpayO4ABkGCErHPNfnetbJVyIDxZ1hIw7/4Ke9x1WSp2L2T/2iA4rhcKs7MZ5o/mOPrgCOVRaUArdjy2tTjsFKz74+sb/mfTonKFs5Al904cwdP+hpBFIcjLS5PCiLYfsuCMgbDRsSlnyNI+X3uMMQNQgLZuKJiwalXUDxSClrHEh/OgdK21K60jpRUsd28jyztlyc2zkGXWs9ySl2S0cUg2BiJTfEo3KjMDdfmRzp4FLtq0RVv02kkB74hj1bR5oCOPtekHWmvzEUJ7n6yuzLHFup52PcHrnP74HJ7Tj3mY1JyXQ3Ut1/fG6t5Y59O4xMen7j2z7je8dxrvu2HTbm6e4OO2+8jH5Jv8eR+gsBQm5ef4mncV9CeSPH0/l4exy09/v2X+1mu6Q9SFubmpcX1dd+KETvPhYXLbxtA2FNunDdXp9IUforfI2bPLftOnj4utL2ldzdfAfC8Z68+pPf22+7jYWla2F3l9Us74MyXl7C/H8hzqtw3f+0BT1KnsY2PTlP1lKA1po6l6kzqeXYBW/t4qPhbssn0N5T1ETzck7n2iqcfgqctlSP2EZJH+sXVNbtgxskqZhuhnhvJPpbsPih5THKOpGsshdcgp5Ih1rlBa2wxiuXe5kTJzXw2Jp5sTpm/SHgMSvu2UuyHZps6HbGgOmbh1I6fQpiNGQzenueHlhm02m41a5M1mM8znc2s1S7z5GBECnceOvSFAeGraZlIO5TO1gAjxub29hVIKt7e3qKoKT5486SyW6b5Nis8tmsfSvufDbdKLKTFyFnQpnrnphtKQCiWp0ExteHY9pknZ6L3P0pNT3105Mp3NZoM3b94E+WttrG2kxc22C2hezsSLg7yhOLF0qV/NZjNUVeX1t6FEZVCWJZqmid7XNaZ9Nk2Di4sLGLC1xF/91V/hZz/7mbXqpbt667rGo0dz/Ot//V08fnyExaJEVamIVWz4zwfdjEx9FrH0dOWAzrv5DQDxd9/P70spMlXLldl0dKIEZH3FOTzTPT6XhfzCv3l7kZatISU/lQ0d8Wji+vEMOwfKGqtWfmcs1Qs8N7KMdWGNP037BNaaetSQlrFlqWwc87tAWRpGVWXeZzPzvliUKAqjyKrrYQot2cdmpzN88198E4v3FiiPSs8q1gNl6c7WAhbEVEqhUEXSKpaDY55bwBKWntYfEQvZED96MtmoyXi/I8CseTg/7m79hFsWKVfuHT4Wl+2xamUUtFxt+5XyBTZuBIBqdPlr+HfEKhirVfJvhBv8OGTBat+1ebd9nAFI1Hbsva6cp2rzRYBo4wOu3v2x3DK2TVtaHFswWTPrWChjEdvA3R2L9u5YmLwUytwdS08omGcNbLD93bFAfDzlRyfm6Br61gg5FFq/0d9y2WC5JCs7QKkCZQmcnhbs5AaKo1k4Pv+4J4WlMd7NB6EPd9AJZ8Z7gH9ww8NTftxvWdY+0OnmGTB+WrzL8uLzYrosc8mfP52b1hqrVYNf/OKaAbIuHF+jy7VwXdceGLgr2kZhv234FPE9w5A9uyzLGF8iuU4ifRyBTLnpEyDKP8rOkVfKFBs7hlBfGQyhQ9IB31faRRmOqdfY/JOzRySifSLfHwM+AHpX+seQ3n2fY9ih9ZMp87LNvj4njNS3HgLtWo6YXkm6x+SIzW/bYjW7wiYOpV6JQrrKPtrbMcUhkp1w7AZiSEWkGk7fBqePx5CGmlqkjmmwMdnHNNJtJ7x+Bd32X1KE0jskoHCKOhzqHwsXWpiPSesuy3fMGMDbRWqcOYSBvGkarFYr+07WVuRHG2cOyhAIGANciLZZRPaVVQ6vqdvN1JvJEFhGm+bNZoPFYoGzszP795Of/ARfffWV5RlbpAyVa58U69+yn4QWbjF3Ho+HG9I2Q2F4uFA/zu3PQxflMr+heWaIMifHTaYbCpva0KYoZ0zPHfdDG6hYGXElUO7GK6dPpfjE0kmtvYaQbIeU3maz8Y6f9+8BN5axZ2eVBV+7fO0v+5sU1VyhTf7uHdafx+V8w2F53wq9x8K5tHy5qUxcuuFqdKCoU7QTX24lqy0f4qsUKb67FrIyvuTPy1cquX1ZCYD14/E8cwW+X67SMtbNLzw/vD4onKtr/ps/nbUs3Sdr2pkOWMmivUfWWMeG6qFXiaaA2dkM1UnVAT5tX2J1z8FO66esZ+fPs2YltwB/zksp5cWT4WQc227Rlaczr4i23nnnbjkAbMxP1EVwfUrsyZK0tf6k8FrrDn/PUrV9t2Mvd+NWrczf+ok7YokPFCyoymWQ99sqpfx7bQkc5WXPwW3V9ZdhCTT17oplsspyJ/7W2pi1Ca1YnltZ7bO1hiU3KPh3x7ZPVRoLWTVTKBYF9EZPZiVLcwrvj31z55B1Sd/cGlrj+XO6H47GuPW6sWMTjVsUfzajj4fCH9U4sJTL7vzD7y6cmxf4WM7nBTnWh3nJuG7uUYEwvgxxv3xyZQtsNg1Wq8Yrb/JbrYzfZtN02oqzTDZUFAUWiwUA88Epv1ohdw0+lA5hXy0p1EfG5r9PCR3bK6fSy+m3ufuQ2P4oxlcSbx9jdEh9dIjt466obz8X20Pn6PF2qbdL8e5r7zFeUn8Q2wePkSknTJ9Fbkwn0hf2HYUpt4yG6GyIYnqKKWhIvxqjo4qFHSJ/LGyO/i6HX6h8h8S/77TNXC7pTsHYQ6GU4m4Ij5BbyH3MGfj7pn0DVjmLihiNafjvKEz3tSxDQNKuFfJT0s3NDW5vb4N+tJEuisK7p7UsS3vvJB9Tcib0sXRo7UMuhuXiPbSQ4feShkAu4rFer/H8+XN8/PHH+O53v4sf/OAH+MEPfoB/+2//Lf7gD/4AgFm4v3jxwlo5huiQPhJJ0RSLVqlEBHwr9V7lfyBMX3q54fo2TjFKKTpi/rGwUp5cYHrokU18TBgKWod4pcDk0HhK79wqNgXIhhb0m83GWpjG0gnJ01e/8l7iKUne6c1lUwqYzQrMZqVnEessYwGjNJbWrHQcLb8r1vmR8tuF50+uFEGHN7nLd6lI4Xydexz8NXkGCAylpxsfjCK+aaTymkBa3md9pTlX2vsKfKr/EJCqGG/fT8ruvzurWJdW2CKWwvrl7PJA9WT6s6sfujO2aUKWsbp9mnjm6GGTLoGx3FJW6wazWQGtDQA7nzcoS+DmRmO9zlMu8/FbQ6OoChSz1iJW3BUbAl5duwxYtso/dIFUeQct/ZZhokBsa53L3Tnw2gFhRfsPAYVt7UrcxoWV1De0kj+rEn5sr+fOjuCl5tuxloXPh4OyNhzvSlwODb+LaaQtYuVfj4WstXZtfysoNKpxvCkOt4otmJuCA2qV42HB4kJbNy631qzc2FHEHFztyNfGU1DuvlzA3R3bFMa6t72nWc81qrMKKIDN6w02F+MtZPsUzynF+hCle+7aRa6HedzQXqtpNN684TIBNDcopfDgQYnFgo5mdacCuHmKz0X+vBQ71l6mQ+MsH/fNb2kx68fp+jl/f26SYWR+Aa3jZeqTm4dcWdLTyPTy5QpffLFk/lKn5M/TMbBxNpvh137t16C1xsuXL3F1dYWXL1+iLEtUVXVv9ihT09A9Dt/fyL4R401had0pw8fW9qE+NkbmMUT7X8CdbrPNsbHbyjJ1nu9Cj9G3jwxR7MS0IeP9kLBT0VgdW0g/wNvdmHxIWVL8ZP/8uo6L72g4vWsr72gbGgzGppRyY2iqBnzfOkIIRJD+tAjiFFrMjVlQDiW5eJlqITOEzyGBQLugIQr+u6C+Rd3YL2KGLhZjYGPfVzp9fW4fxBWRRJvNBsfHx3j//fetGwewNpuNBfz44nyz2djjO2MbvX1Squz3nXaOXwwAlHJvNhssl0sopXB2dobHjx/jgw8+AACs12u8evXKAkchXndZLrugvn4jlRD0W5Lsm3wcmLJvhoDPkAwhirWREI/Q/Jiaq1NypeQcqkiIyTJ0HUHpcot8OoI3duQdV1zF0g7FI6t0fjyjBAi5uwcgifqg99DduVNRKA/kVpYK3/veOT744Lg9QrarfKbwoXdSZnffUwpsy4X58fYp40gAmNw4CKsE6OvXhytXwCmaORjrjiim3+44X4rjI0ZGkR62kKU0XT06EDYU1/E2T3/N4ADi0DsBseTmlyMp7Z2M9BcGEDhoy+tTW15dy1h31CeBsFR2BNRKcL8olD3eOEXB9VShcPZrZzh6fIRyUXrAqAXFqF0Efls3akNw6x4LjkJ1w4kwMi2ZHgdaQ3w9sA++nBxcTQGxHRCW3Nj7aPLYKHQsSBkIS1anULDWqdSkbTtnsnVAWWa9qqB8K1Zm/eq9CytZazHKwnKw1B573MoOwLeQpfSV8uJY0JiXSVt3Nm3lgFKPB8tDpzyZbLzuednJ9JRyFrIW0FXKHsvNLWPJOraoChTzAmquoDcaGIhb5M7nfK4L6QxC76k9UGgN1kcpQNZ3c2MgYCw5m4Y+NOHzjeM1mxkLWj6nOEtaCufGzk5jA421lL4DPPn8ZH76JxgEcsr8ef5THx/5soTo9rbBckl3ujr+FJ/XzfV17bl312zxdCi/BKTN53MopbBYLLxTmHZNd7nfzqHYGj+1H4nlJbSPTO0tp9CdxtbdIf6hMSEmAz9O+S51C7toN/tsi6F9C9Ddx8X2dan6zUm3b784FuDM8Q/1rW3a0Zh6G7rvl/t43s/G1sWh0ZTt/5D1W7vq5/vKY+68kxN3aHxOu8rvPsoxpWM7pDXJKMvYQ+psbyMp5R9vN/bLoLETx7v6fUe7ptAk07dA6gOCczZIRARe3sVgXFWVTbeuayyXS3z00Uf4u3/373phaAy4vLzEf/pP/wnr9Rrz+dyGWS6XuLm5AQDvThlZVoc04UxNY+owVjaxDedqtcLLly9R1zVOT0/xjW98AxcXFwBMHfz0pz9F0zT2C/Mhd/uMpUOvU9q45JZDaPOWAs1y+aY2gFMsTKccQ8Z+6JIK2yfbUEVZURSYz+cWfL25ucFqtYpuVOW9P9xSlvPk8iil0DQN6rpG0zRYr9fRcpZK4Fhb4eH23Xfm8xL/7J99jI8/PsXxccnuh+V/LjwpmklJ7Y58hBfef7owTtHdBW8Nf+Wl48JxBTgCMiqrSHcKdeXxIzKgKwdknfWUfFdKwy1xOSArlUk+mEnpyHSNIp4Ds8QvRPxuPR1452n4gCmBAn6dUVnEwNRQHF7XZC3sg7IEwJryomOJuYWsAV7pWVUKda3gTA37+zp3L6oCH/yDD3Dy8UkHjOXAZwiQ9f6KeDgbHu433UGLIsCL8ZNy2DhQ9s5Pz4/VDf/tuUXAWc+fuwXKbSx5QKtIwFrM8qOA4YeTlrIdIFaAmU74gJskBWNVCneELwBzR6tmbsoPa+9rbQSvNq60RIUGdMPG8hYQVVDWqlXBPz4ZaPcGPI8clOX1qmCsaBnAbeXQ8C1kNZz87W8Arm2VCgUKYyGrgbIp0WwalLpEfVlDr3a/h5ZK4hioxIl/3BS6yz11Px+t5+R8S7w4H/lba42bm/51ydlZidPTUoyXfB6j+N2nnEP5k88ZZn4A++3mBykWD+sale6ESxEHabUGXr9e49mzVXCd1gdY5OyTZR3QB3OLxQJlWeL09DQJxt7VvvhQqG+tLeeOWJ3weyZlfwulQ3xCa1m+dh269xlDIQB2G2DgbaBt+kUMGImB/9xtjB43Ng7nxp+Ccsqqb86KlRunITrtvrAxS+SYLOT+Tmf+jqaknHY/JGzfeED0Nrbj+7Ke8cDYMYPcPmgfBdm38BgjT6z8+OYlJ07OJiu37rat023qYminuOsOFEs/56vCbWmoknyX6acU3UOob2GZSidn8Tm0rO6qbENHWc7nczx69MiGefDggQVeX758iaIoUBSFPZYYMHf/8E311wGADY0hsbE71p5SbYk20Bz0rusaX3zxBd68eYPNZoPT01NrxXx1dWXrczabWYu+KSlWr6E65vNKavzatn30zS8dZXdAJr6JIXf54VGfnLn5kG2hr41wGXLS7JMjlJeceX0sGcAmbS0/NE0KX1UV5vM5jo6O0DSNtc7neQyVd+i3lINvmuXRaLG5I9am6F0eS77ruZWnT+N2WRYoSwdoxhTLvkI5BsJyP6moDgOxjidPTzE3DsiqDmBM4Ls7Jrnw/F26pHzmlrCNBWGVajxQFmgs2KkU0DRcUc7bBeWJ6tEo0JXyf8OCqb6SnZUqfMC3q5ynd+IRA35dufK1Er+v1uWBl7lvAcv/OIDrg7D8vSh0K5dq3YycIatYU54KR0cFyhJYLrsfQ5i8OWXvg+8+wOLpArPzmXcssQWvTHW7/CtYME8pZf34WOC507/WrQOYRoBYCfgG4/K6CfjZeKHfvE6Fu+fGQFuPthhOuEWpveNUgLMxEJa7hd7tb67ohwNAeboEcnaeIl4U7IU/Hsu4VBe6cXGo7Ky1Kx07rJTn5t1VywBqbqkLuHqVoCwHZkOArS40VNPeP0sWsG171O1x4RaMFXfHqlKhnJXQC43mpnF1OICUUh6oyedQ+SFRqA/TPCd1C7H1Smh9EPsdWneG5tJt59Tb28YbZx07Ba8rBsbhk5MSVeUAXB7O/4hG8ohZpEkXVx51rXB7a4DO9XrTCd9V/jvP5bL7sWZsDST9eH6lW6heANirHl6/fg2lFK6uruxJPyn+U+37ie5apxHbA8jfMX1Ejtxy/Znin+PP6yLVN2V8cgut/0Phx9Bd12eIdql4z+GbSl+65+wtZV3xeKG2ltpj9sWN0dDyTI0buXvRnL1yrP3F2nwsrRQAy+OGeE4xNh4KzvI2UKpP3VU5D+k/sTkpRTGdaCo8TyPWT3P779vSfu86H1EwdmgF32cakq8hm45UQw+58bvReLixg/629bUtuJPK+1T8xvJKpRHjt8uF3iFR32CdszkM+fUpE3LKd0jahzpe8SM9qc8vFgucn58DMHn64IMPcHJyYv3KssRms8FsNrN8bm9vreUZxdumfd6H9h2Sr29xPoR30zTW+o/4rNdrfPnllx4Y+/TpUwCubpQyYCwHYrdpf7F+wjfaY+fnXdRxTM5YOD6P5vThvrwNUXbE4o9ZB8j33Pl+yLg1ZjGfM9aO6S9KmWOKF4sFHjx4gKurK49fqD77lF6pMiPFcuje4b71gCwLaZmwy7GO0jGgmAFi6Z5YpUgmrix2yIDvHwNhweKHgD0X3vCX9eCn7aflg7AG3DPlT2OdBGNjChEDDhQoisZadTaNBkDHLxprTg7KktLbgalhENa8uzLwFd/SeklZvt26cuXBgQD/twNaqfx80MCBwF0/V0ek+OdhZX351mDx44qVgr07mI6+diAsAbJG9sWiQFUp3N42bfmH279SCg8+eYAHv/4As5OZA2IFQNoBK5X742GUcsArAWFefLA2JC3GxbHIXtqRdDoArNcH/PcgoNzpjwi7MXfKR8g9SdqBp1507WSyFrM8fQ139C8HccWcywFXe9Qvc+fAbRKIFccUS/DW8qfxmaXVeW/z1Anrhj/3DLkJfh4Qq9g8zurTA4GZn3f8MfVLygelz0FZBR+MBQwQqxWKqoCea5S6xKbI+xjPjQPxNVBsDg+FD11rFEuP3slt6DpLKutia73UWiBE67XGel17brn7EnNLSGHv3aZx0qQL6+be0fmdcnPyAOs1cHGhsFo1uLm5ZfFMxNAJIDyMXKM43mkgNsYvLKeJS3P269evAZh94+3tbVaZ8jTeNlCW/07lrW/9KvmE2nxOXmXfCvHpA5pC71PSlO3gEGhqnUduPQ/ZzxLlgCipONvSkD1rKkxO/5dh+nSQUs4p851KOzaW9LWDu9S13VW672haGtKGYv0pF7RNueXSXc4bsTlzVzKN6WOjjim+S+qbpIbGjdEUg2XuIiwnzX0vgnKV60P5AIc9GaRkO2S5h5BcQPQNyLENyNB05Bdo24AO95kI8KPfgNkgv3r1CoAphydPntg7SOnLZsDcXxpb9E0xXt1XGmJRGWvzHADidUTuv/rVr/BHf/RHSYXXPig1R+x6nhjLO6WYCikYckjWT4xCSsep5vactsDrRGvd+yXuNjJRGlpr78OAmPKPEy+bUDuiuJvNxh4hLNPlT/JLKZBidcc/TAvNP6mPFGL54vLseqwz853C//w/P8V3vnOG995bBIBYB7SaOC4u+bv7ZZWI11XqGjffn/j66Uh/nl5hnwTCGsvesgX3SihlLH1N2ALdcjegJSmk67qxY6o5wr1BXVPfkf0SHh9YENUBmACBncqm1Y0LC/YSmqWUdHNKe9cmwnfHOgtX8uNpEoDq5HLHEXMQ1sXp1pU8llOjKNCCqnQ8MdUR3bdrGPrHFZP1rPkIwMxjdISxKyPev7wxUQHFrEA5L6EqY/HnAajtH3+39R/4zeNwgMy15wAI27oRGCb9omkWXf6hdD3glf+29Qv3zoFCsPAsTJRi/uybARUIxK0qpb93N6tw9wBQbrmqtA0vw8XcOvlgxxRrLcK3gGUH3KQwBZwlLB0DTGEUk1GCsnTCNvX51jqWg9hKsbtnAwCrB8q2xx4DrTyFsdBFAWsRy/OndQuEFwiCsPQsdAFdagPINhrVaQUUQH1dAz6u6Jd7RDnNx9MckCg27/J0OMBDTzrhYrPZYLPZRAHEmCydsSOSt6F6kFj6fXR5WeP6uu6ET0UPzRk0btPc9+jRQ8znC9zcXGO1WuPi4gJ1rVHXBTvhAV7ZhtaHqfLry3PuHl2ucbV2x+M+f/4cALzrbHLK9j7vC/toV/sZ+s3Dh8oxtS7fBojPiSfbSR//+9AOhsp4H/IEDAMjD5mGAjz7yGds3gyln6Oz/LqPqVNQTvkMHR93rRvbN23Thsbq3N4WusuPIWI0CIzlirVdZiTFOzRY5soSCxtrlKHwfYCppD4AKleOsXQXgFefvFIhnTtB77vzDJl4pxjYdpW/Pr4hZTenbfLW3RhPV159aU290R3jH4tDm3RKe7Va4fLyEqQI5/fNyM09L8NY+ebkbQri/IeklVs3ufFkmL5NZGxhxpVIVNbkdnFxgc8++wwPHjzA0dERgPQX8DFK9YHcvhpSpEwFNEqKAV9SrqH174Mg8fE2Bub1jVuch/ydK2vfXJ9TX6l+uqtxMAZaxtY/5N40jf0IRNYpD8PB2Bi4LPmG0k+VI/cLjTOy7YR4hZSTfWUwhmIK9e985xTf//5DHB2V8O9+DfNx/iHwNObP43cV0b5/+N3MO8o+CYglqxr6IKiqylZJXVpltbs/1pUFjZ8GRKzRNHSHqQEYqTpNOAMgmrtSOyXbhjN+BKY6K1UFAjrlscQU3snlQFUvBc3bGOfn8yG/1tVLy5WlDxpLOUgGV0+OnztKU4uwvA1QGL9dFAWBsZrVIVnOUv369S/HUFWYo1YJhOUgaQdcBWtrrZtSvnWq9wfGB3684B8cPx43BfhKwFXK6aVvRVCdcJ13oCu3JM6vj5QPuALwmlJnnuJiSKtZ7k5uvD0r309B+WGY5WtHHuX/tscEt6An/1aCytamSemEZAuApiSLB8aSjPQhBFwYD2gW4CvF74CyfB4RdUwWsTELWbprlrc/XbRhWrCWjisuFgVKXaJZNtD18DVRH8XCcN1MbH0h1110HYe8EiCUVkppzd1kuH3t229vt/tIUspdliXKEjg7m2E+P8J6vcLt7QYXF2v7saZco4TeQ2uXULkO2afwuHKdLPPBP/jl7lV1t7YYd60QHbIH4XFkuNw8xHin4ufsa8buIXjbCrWz2Pr760ZTt9NtyzK2t9tFWpLXIZXDVCT7f+wj7xwA61DyxOkux9gYbbPOAYa1xZCOgN4PjVLjcYxywsr5Lactp/i8DTRWb7srGrUa20eFDNmYbKtYpfQOhYYCHLENDz/CNBZ26nyPkVcqbN/RdjTloumQ+sVdUF85jinnuq47bZ7uJH38+DEePXqEJ0+eWL8XL14cXN/IbWP7aj+h8SSltAJ8ECmmiAotyJ8/f27H1pubG2w2G2itsV6vg2PuPmmbjXNosRpTRuQq40Lvfen2ufP0hsw3Q8plyrVHbDMwhleMCPwqyxLn5+f2KO0XL17gyy+/xHq9jt5lLMtHAqdSubtcLrHZbHB7e2vvHpN5pA8ZQv1SUmjzS0Af8Viv196HKMRPrpW4co3yQeMtAYsxpfFURDLUtbFKrKpCWMUaDb/FfpQE15QF18y7DNMNT+EMP+kWCqeYZaW7D9a3hC0wm1X2rnL+rKrKA2vluNE02gL2db1BXTetBVaNpqmxXvP7ERsYpEODjiumo3QBsuhkyA8c8ErJcuDUxQuDtORP6Iq759XxcMCtD6668nSgKAeDfSAVNl1TPtqL7+oWgj+1AY2mcSCsuxuWLGPRPqkezZHPxgrWWMbWtbb+SgHn5zOs1xpXV3VnQ37+t87x6G89wvGHxyiqwj+iuLVUtXXdglSdMaLww/Cw/F0pFbWIlU8oWKtXmbZMJ+ZGVd5ZG0h/Bs5GAVjuLptUJnnxOfAJAbIq5Tfdttl2rFlVO/5FhBga3lqw+kK7bqpZGGbtCgVjzcrTbu9iJb5as3dW1jbdpn2iDatdXEpb3lMbqruQZay1nm7T8CxjSU7KR+HKSDXKt5AtFQoYi1gAKKrCyKU1inl7ik2x6YLugvh6KjSf2aLvmZ/MfFN776mwst/RuM/3JjQ+yDvXuUyp9UyO3IdEskwAs3b44osv7G+tdQvSmg/WcpSgfD0k0+njIdfbHHDn77yOYkTAu+R9V5TbNu4atJUUqoNYOE6xNX6IV07byElz23C57fS+Ul/bmlqXNpTX21TmuXmX88oY3Vds35maY9/RMDq0cVmSlG1bHcs+aYic9yVP7yhNHhgbqlSpZNkHpb4GiymHh9AUPEKUq5gdumDq+zpu6IC4zzoNyRaS+92AMp7kpHjIE+S2lMpbzC/nS8JdfPXXJw//vVwusVwuMZvNsFgscHt7i9VqBcDcWUrKcQlIpHgTTd0eOOjRF27sZlLyDymrOMn2HxsbYxvk0IZTpr9er3F1dYXr62tbN8vl0tYJgQ9Tj2Wh+psijT7FWk7Zxdxz+lyK9xCKpTW2T09V3mP6aahvxco9lmZVVTg+PsaTJ0+wWq3w/PnzzpHFueOTTI+UvvSUd1bz+NuAnaQgTil8eV5ieZBj0L7mxsWiwGJRYD4voBhIZHEf8aTfLowS7nzd5Mdxzy5/7sZisXA+yOusXYv2rtvSA18lGGssZKXyxCmIm6Zu+Zt2YupCoywNYGGAQprXZB8AONDpEB8JwqpAOOmOTjmQW6hrc/cu3zDJODJdU0a+PK7s3XHI8n5aHrdbZ34b6Pope3yxUkBVEdrVHR9nD2Y4/ugY5VHpACmv3QXWmEr85u22/U0gqn1XygvrgSACcLXx4dxCoGwH+AV7BuSUlpGdODwvXn8TjWiK4USylEcQk9Uqa9bKoI2enx0LFXunNgNhEauZhWubJr9/lfwoHrn7YisfbFTwrWARkVOAqDJPFvQV5UPHLXfuiY3wC5UzWffy+pfHHMv2QW52DcrCeG1OAapQKEoD0qpSWXA5dy1CdSPn0F3slUPr8z4Z+fgsZRrKayjtS/nL9xpa+x9ZKqUwm808eThYEFuPxMptW0qts2U6faeR9dHUyuwUr5Q+Y5t2kLvmDfkPkWOqNWdOvx9TJ9uAvm+TfilnvJuCcnUmPDylf190o7H+wNtYanzkv2UcnkZOurl7xpCeaciHCim53jbap545dx0yhM9d1NHbNFYS3TUI36eX3BVtq1vvk/Pe3Rl7iDS0MaSO9RvDOwbQ0NebnORmgMJwEOFQB5C+Sfc+LVympEOtr31SXxn0tYupy3BKflVV4YMPPsCbN2/w/Plzr5/ue7ExJF9cUTGmPEL9eVd9nOSjL8w5eFUUBU5OTvCzn/0MP//5zzuAq9YaVVXh5uYmyXtKOUM0Bvyekrap6xBxEEC2c2pbBAryOKk2EmtTORQCSHM2zUP6qA9GDVOQEEC2XC4BAE+fPsWbN2864WQZheZQ+ostfOmOOVk3UrnTp3DjbTbEj6wvV6tV7/pElhn9JutN6tu7Gj+UUhag/t3f/Rg//OH7ePJkgbJ0oJkJZ2O1cZ1fUfAnLNAp4zs+7l2WDY/Hw7m0ugCsOYa4xGxWoSxLzOdzlGWJo6MFyrKy72VZtfIXnfogwBUwR19uNsYqe71et9ZXmzZduruusU+0pnYEzjKuHrDJQU+XbteN3JXygVsKJ3lSeUmglsKYvIYsZWlc6ip7uJ9Lg9cpKenlEygK6hvuTtim0ax9xO6M1ShLYyXLj4WuKtUBlqntllWJYl4Yq1g6pphZxErwyfbVFoTy3gPhpbvHm1nfct4hvrHfQTcImeH7hUBZz8KS+7Hwba133CYh2x4ZoEnubOhK3vVKba6D9IbdLdDJjjIOPT0Zm+7TA2FJxkI5a1mybm0YH5IL2oKXqmBHKLfy2nYC5axn6S5bUZ/22Vq38uORbR3TXbaRu2NtWWsmj7w7trXwLRpjGQsN6JmJWJ1XKBYF1q/XzhJYVlNivu2bp2i9lWOlGZoz67rG1dUVtNbBjwj5O80P3C8VPpXuWMrhNYWikK+/tNaYz+f2Q1i+3oyVQawOQ/MkX+/wesxdp4T0IXL+oXoLnXgiZQzlQfK/ax3LXeg7xqQZ26enwubq4LZp50P0fNIq8Z2uKZ+GjucxHkPcd0m5428sDtcH5aYTSjO0x+uTdejcGJNlqo8s7iPtMr+hfX9f35Fz5F3PS5Le1vbxtuZrW9p27fkOjD1gmmLhG1uscwp9JbfrDheSa9u4Y8DsVNxtJvQxG6lDobFgxbbpDKFQvcnJu09ZcFfln5Jjs9ng+voaz549swvX6+trbDYba5GWs8Efmm6McnkN4ZlDYxfPQ/jE/GP8+VGvfMzkX8oPkbFvo9FHUyw+Q8BfbvnmLoRj7W7sPMPj96Ub4j9k7uFKkhTwmlsXctziirFQOeW2XwtesA1vVVXW0n69XgfTjMmfo0AKyZLTpkP1HyrfoWB0LK7My67mAZ6X4+MS7723wHxeAvCtYl34kAy+1Wo3je67C9914zy7fJXXbqRFbFmWqKqq/ZvZd6XK9q8AuBmZlYnAWONXlgZI5Up/AmLdfbNURwp0r6tSDgwNvfvoVOx3KGynVAHwcZDCOkvVeFwpH/Hy5fXLPjZ3hp7UrnUgnPLc3B+v164fHZ1d16ZeyuMSi/MFqtOqA75GAVVPbt6QXXj+tNatYP2RhyE/3hZ4MqKZheSzckTiSZC146a6YWTebByZjs90GEWalk1b00M73lrMD4q5MQtYa5XK+xGBkoCzNCUgVvmWsEELWQJJlfblYPXo3Q/LjwvWDrC19cfLvO1+Nm0uE5eN3VnL89MBY+H4e3fHwg9vx26lvfxQGGpjnuUs/2uHQvqAQRUKxawwIG9Pe5hin8/zQBQDXcidK8Zz1hl9665YPvapwJ5y/5Haa6XWJ6F1cWjN1ecfAuhSY2/o95g1dl/4qdprinIAw9Aaj8JL0Cek40rRkD3QNrqrqfiOoTF743eUT31tLbdt9/mn9jZj049RTv+RbTe3z8Xij6FUmfTtDYeMDe/6yDQk62Gbtgl05867pLH9fIwe7pBpW31niu8hlMG2Y1Y2GHsImd0VbVuZsUrQWgfvEJRffexSNq5s3/XiLkUhK90UkXIw5M5p23a5z43i141Sk2vfJDS0XvsmvEMav6Q8/C6f169f4+XLl/j000+99i/LMrTAzFEO7JqkIiIH+InFJ9pmYT+UQgoPrTVWqxVmsxmOj48tKE5+dGfsPsaPFHg6tEx4HmT99OUlZMU4JD6n2GYo1n5C8WPjS0ihlQIHY0RyDSnrnHKYqt0YYKvozJnHx8d4+vQpNpsNbm5u7LyasoThlqQAgmGVUsk5nco5pbilfFP/4TIQcCePAORhQjxT7lKeKfurVAaWpcJsZiwTyYrRtWXz5+KaPxeO+Ml3xdJyT3gAruXqxef5pXjGMtaAr0VRoqoc+LpYzFFVFY6Ojttjr4+gVAmzZSjYH6ERnMjCtYFSTXtnruFP7YravblTtkZdm3ouiqa9J5VkdQCr1ubd3efaBTulm4nTqS04sNhZ3Epekg8sUEzl7VvIyjtjSX7upzWVv4ZfvwC/p5YD0n570N5vbhnr6pWsY82fuUPW5amqCjx8WGG10ri4qHH6rVN8+E8+RHVcoSjdXbG2zVH6Ari07uIvBLISYGXDFCJuLE3pVjg5Yul5cwbJyeKQPDw/3D34HgByO4BfiKSzDrglyLs/VkQMWcZyN2mlGgwjLGJTcsQsZaNxVZeHLXd2z2zwztfCRnJAMvVLfrcrpS/qi/MhQNSCsgy45RayIctYXfhHNHcsY5mFbFEWaHQDVZk2WswLB1ZnfMwB9K9/+Tu/a12ukWOgFE+Hxl65144du8s/puFyxNaB93E/zdd5lNfNZuOVgywDfuJGrnI1Vc9Dyi12yhqXv+9qm7eBaO1Le+nb29tOfeUqg/vKKlc/MUTHd58ppf98R+NpivK7b3UQGkNzx83Ye196Kd2knAtj4y3QHYvH3HX7daMcHdIh6DUlbYvLvCNDsXIcOie+DXNQ9M7Y0AA3dcaGFvguC3aKBdEQwCmHx5CvJkJhY2DO2K8C5UQZAkly+OfGCQ3U3I3A7qmBvftGY+tzDG3LK0fWvgVSSp63qb5DwKZUjnA69E1daHGVC27JsSC3jkNtqQ+0CfGgJwFH3C0GaqV4xkjWr1Lm+FnAKRUO7QOSbdthauEtFVSyT8TCxMaRlPyhtDmfXAA2JIskyS+3T/SNdzQnrlYr3NzcWIvYFK8Y0CqPtwulRxtUCjO0bUqQXPZxPr/39X8J3scA+W2oD7Cn/uruu5XrJD+O8eNWobDxyN/xAXNHh6fLO/dXwTCUJgGyBrhzFrFlWbWW1RXKsoJSFYwlbNnypGfB0tGd3y5d3d4vW6IsG5RlAa0Llr/uX6zfKeWAUj/dLvnxw2E5Px7edzfPbvX7eeXhu/F9kJXz4OCsA4edu+Np0pNtwf9z8dwx1z74a+rbxC/KAuVRiWJWQAKWnay2Twt68nZloyn3JHnoXxvOAm8qnE4H/OThlEsjlJ4MnwRiRVremCXiB91D5ZOiUJhYPO2nTdamNg/8flbt3Cy4Sf7agZEWONUIWsRy8NCGbz8s6NzZKoFf932DAz4lmMzkVXC8OChLee+UDyt3a6EKOCvdSFlSm6Ny6JQdXJ6pndgyU0JGdn+sfBKIqxT7uKBUKBYFmqKBXoXXNrnriiFroVjcUPoxCq1h+vin1tq7+hBq17StHofzCe1rc9aKITlS+5jY/jm0fnsbiPZG6/UaADp6oW32JFNTim9qnzFkvBiTfqzN5vCSernc+O/obihWX6FwMfccndwUfSjVF2VaqXkqxZ9oNpt5xhF8HGmaxvvIg/a+72g7io07Kb1a6D3mNpRHTKYxYQ6FDlnW3HXoUIqNG1POSVPyilrG5ioR39H+KbbQ7gsXC5v7ZUJsIMvpTEMXt7GJzhyT5xYR3KrmHYVpSNlPteCX6dLkmgM07HoAPTTieeNHQ/Iv329vb73wofLg4d92ym0jUy1ClFL23kPJtw8kGpMW8VJK4eTkxLYBupNyW5qqjfQBXbK/D9kscWCGu0lQOnaCQgiYk3LnyJ6riIy5S2Ul/Q5ZnMZkyKWmaXB9fY3Ly0u8evUK19fXHcVUX5o0BpGFrLT85vEJwCNAltpm3+ZZfnBAT9mX6FhwqTzIWYdSGDlehpSV25LWxgKlKArMZjPMZpUFwkyanmTWrfunvN88nJPd8PDDqCR/wMni7ooly8nCm3fM0dbz9nmEoqhgtgpl+8dBWWXTa0vC/hnr0AZK1VbWqjJ3wZo2BZTlppWpBuDaAIU39aZAAKQ7Mti5mfJHxK2PHD+yXOXupsx0hBfFFa6qC+Jyd8qHqx+XfvcJ+7vbRtwdw7LtUN3yeqYyUQpoGoWybOMUqntPbNEFnEwe6Aesn9cGmbsERjk/bvEa+uO8pVsnbdWV1QKw/AkmB/0OAbH2wfLAw/Pqj1HAL2V52qEWLPXia1+ekOVryjLWO1645RcEVnX3eOJYeO9IZFbfQdkYKExhbJoM8LTlx38nnjY/PD5Z3moH8tq7axX8u2NJFuUAWW65a9+bNp8FoIs238xCVpXKuJUKBczdy4C5O7a5bbB+uQ4NF70k51u5rsnZh8t1ypj5T56UEZpXQzTlnnIflLNGleuUUDmE9gWpdZg8bWbbfQX/SO6+Uh8QQ+VCHx3yfTIRrW2mbH/70IPG6v+uFOsxfXBsj/Z1phydW86HGIdEOXrevvC77jfyXvMQyX7F9SmPHj3C06dP7ftms7Ft+fb2Fp999pl3V3usTO7LXLct7aLdxvSboXCh30RSrlwg9lDpPowRU9Mu8ruPuXsMjbozdsoBKFepvmseQ9JKLUr65ALCxxcYpUnRkTuWVoxiX0BK/xySk1aIZ2ghFpMrpHAdIoN0y/mia1+dbqp0djW5pxTYQ9sY999l+eYsVHn6qaNTD4X6yp/867qObmi27dt3UT6hBZYcN2JtNHdxtqt8yba+63SIKD1uGQvAAsJA/JiyXdCQsSlVZqnxJtTnZf+XCkjeZvraSaotxQA7Ui5sMxdzN9r89c2HOe2Ml427j7PAarXCF198gZubG1xeXmKz2XTaSqwc+PGFoXrhROPUkD6Rs8aR9UlK6JSVbshdKq63VUiH5OaK6Y8+OsFv/uYjfOMbx1AK9g8gEFXygHX3/ZXnJ+OHfvvhTRwZ18hMCrQCxirW3RXLAdnZbAZ3NywHYWNgLNWFOabYgYnmN7VNoGytZBurMO4q9RQIWCUnXtVKdcFWP5xi8jheBEZSuH4+Yb/uk9oXB4x52etgPJmf7pOAWOXxCMV3f9wytusOGHB29qDCe998gJOPTyw4GgJOO9WsALJ0te/Uz5g7WcLSMwjshtIgWaH8dHnakTiUrgfEKuXF9X57/QLddxmPhfErQIRJkQwWGoY5v9bfA2cJAGVgo3ckLvenu10JYGVWoRZY5Ra1HGwNrL0tWAsHoBLQai10CWRlVrAuOwwI1b4cnIeVhQBgZplry1GWQ6wcuYyszVk3iPQI+BZ/JItSyoCyZKErjjjWWpuPG7T50EFvptur8rmR76u5P19LD1FspuZE8ivL0n7gFZI9tvY7VCWYpCFKz5z1X+i9T0+SGz5HvpDSet/6kbHU1x61Nh/BPXr0CMfHx/j444+htcZnn32Gm5sbvHr1Krqeza3nnD1FTr/hvELr0KH7y33qYIZQStf0daGh5TZWz5nDN2e/FYub2i/JeSgUJ6X3ydmHA90THkPxQlf/DdUfxuTLLa+v4wcIobFtCIXaR854m8v70HTBMdlz5NxGT7RPmgoH3JZSeqWU313RKDB2SkoVwBCl3dj4OX454fusc7hMMTA2Npn0KVFjE+ZQwKavDHIVx6k8Dx28p9iQ3Ccau3CaKs1UHW/De9cbB66ACH3UkJKNy3dXJBX7ZBHWF17Gk/70+y43R6E2HWtnMcUSB3xi46pMY9v8xsbjoWH64vSRAUWc4iE3X7LPjS2PIQqnUD+XX6uGlHQ8bEzJF0uTiM8xsXkmpjRMLZJpTEmlnSIpC+/bQ+9ST/EmkLcsS/sVL1lz13Vt0+rLKwHGlO9UXyIwlo637ZOxbzMSqwuSRQK/MSVAiHdMSTCkP/b1hY8/PsL/+r9+gPnc/2q6G80fy9wf7B+PK9/DPA3fEA+XFvlxq8mCHU1cYjYjMHYOpeiO2BQYS/nRcMhS6HeDoiihlEZZFmgadzyyufdUdeT0gU1y6/5OUTiOASZzeZm6TFvIynRi9SNB1W49xZ5ULjx+t9347s5C1hwVrdA05lk9nOPh7zxBcVR6d7ZK8LMtLeakwEEtD/SkJiGbhpCJwvInd5egWQig9UBX+Gl56cMPnwJiPetK7gbBj8cLUcQrCNgGnOSRxDZuAJi1oCazeOVAYwh8pXgWWFUOfLXyaAR/e2BtwAKWy88tT4mP59aWr7WM5eVBMiuWntJefUk+yXclyo+3MwJ5W3BX+vM2aEFjBXu3rFLK3C9L/UibZ1G2FudluEH0KYxTikoJ3PF5OrTm4/NdaE1G8VPtWn4UNVTfcNf7rFxK7Vtz9gFD+XO31D5Ohk3xHKpryaVDAP+oDdP68/Hjx3j69Cn+8T/+x2iaBv/lv/wXPHv2DK9evbJr7tAaNQeM2VU+csPE9IUpnvve6w8FVL5OtO2Yt83+JDaej+Up56vUfo38QvPONgBpKB4HY8foO7ZprxKUTu1F90H3YY7lbWIMiD0EkH1Hw2iqMhsCPA/9YCOH732r+zsHY2O0bUHGFqtTTIwhHiEleVmWODk56YQN3XPaNI09aoWnFfriBzgsIGkIpRSgUukbWuDxxfR9yvfbSrmg19C+93Wp2xiYlwKI7gtx5U6Ooia1CAf8Lw9pXIwB7/squ5x2nVK0pRYQcjMzFe1qsTWmz8Y2UCFlGG3kpNKQg9RDxxgC+MaCc0PSUsrcJ/rRRx+hrmtcXFxgs9lgtVpF5/mxRPfbkFWAzGOo7nh/ojLlYbkClsKcnZ3h5OQENzc3Ni/brrNCG1o6tr1pGm8cSG1+Y2ukqfsT522ATTo+Nrxe5IAZf3e8lAjjlKsmnEMrXLyOVJG0fJDOWcWW9ji/2WyGoqiglDyWmD8L+EgFQGClSYqDse3ZoKA2bixyzZ9vDevy2M0PgadKSeDUB1Z5OeeArbFwJIdMi4PDKTlj6YTmQ9dWzPHO/pO3j254Xsdhd7RgN/0GmgbQV2vc/NlzzD86xew3HzmACa6N2CxTG1LhdwLSOk/W3mQ8+ZTpc/AvBspKINg+WfoeyMp/kz+67pyHwBm7Y01kqIvF7yUtZCFnBpRaYFbBB0QJlNVs7pTgq2rDSaCTLF0FCCxB2aw7Y9ty74C10k35cnDLWs8iNvLk9dYLyjKAlbcH8lOqC8LafJB/oaEa5bmjgAFgG+V+a2WPLS6qAnquUT00xxU3N/78BbC6Sii3ZZyYfyqcDC8/ZgopR2lNIK/okApyPq6NkffrRKF1r/zoXpahXAPz+JLXrsr3UPak1N5o3XJ+fo7Hjx/jww8/hFIK3/nOd1AUBX76059amcuyxGw2s/q3WF6m0lXIfsL5D6FcHctY/tsQB6DuSoZ3ND1tAyjydh/SZ/RR6rSvXJAmF+CTMhZFYU8io3fy51fw0BHFXEfzrs0Pp3dl9nbSFPjd122NmARjU4Wx7ZcJQxcYQ9MdQttOOlxxKf0Xi0VnUR0CY1erVee+i9ACfQjta6AbUn59MvVt4t6mL2J2qfzfJd8Q/xDoJgfUsXUS4hED8rgM96ENSEopZWLAbS7PsWPuUJJKmtRmLTU/8N/yYxe6n5H8d5Ev2T9jbXnsxwipDSwvH6kwG0qpPhHjN3aDHdss5WyiQjLGxpOQoqpvPA3JVJZlVFk4ZZuiupvNZnj69CnW6zU2mw1ubm6wXC5hwLE8i/4UceCUlKey78SAWJKBH6Mcuh+O5GyaBsfHx3j8+LG9n3a9Xg/60jXVLnhdE2DIlb59ZZXb1qcgLqv7S4V3f9yNP9Pp8fCq48ZCBvhz0M5ZptLdsXQHsDmeWMGBr/JPMf7UXzTsBYsc1SBArf3N7zR1sjiZXdicMScGtMaB0X1Sfx37+ZRhTFnoTn1THB7e/wuDsxS2ua2x/vQS5aK0wJMERkNAomr/dfNp4kogNAiiUpuF6vK0jwgoC3T4Sl4ddwrLQM6hQOwgEDanD4tA1npUxrUfByj77h1NTMAkAZncMrZNxwKgNK+xJmTXaMRHpMvDEn95JLAFPLWTi5ejHYvJTcPnIerAysOBYsWeuntEMrcA9tJmebfgqyxr1iYoDS8uuiBwB6wtFHSjXVsvnLVsURUoj82HxATGSiWwdON1HluL5ax1+tZeco0uQVX+ERQHtvidpKG9IOe1673ufaC+vKfAwVB9hvxiwMDQ9jNEvrE0RVugjxiPjo5wenqK8/NzFEWBp0+f4vXr152wtN4P6eCGyiX3qDm85DoR6PbV+6S3kHqfmF6GaEyd70Ix/3VR9ktdzLa0a5Altb+X7n2yxcbMFEkdCzf+od80J4bke0f3h/bV/3P1g5Lu4/g0ZT/I5ZWjW7wP5IGxfZU/BbASin/fGt2+J/K+9GIT1baLTRknBgaMASZyBp+QUpdfqB6KkyvDO7o/1LfADwE2h9wGdq2Y2Oc9otvQkLGClD9EBAjxI193VZ5TtSk+jt/lZnBX7S/ET25cOJDXNz+F+rkEBYn416y58x4BTxJ0DPEJpZ3bJijduq5RFIW1jNVa48WLF7i4uPCUnrn9IqTo4TKF5k/ZljkPspIkZRW3jKUyqqoKR0dHWK/XWK/X+M53voPf+Z3fwVdffYVXr17hD//wD/HmzRvMZjMAZr7OqQ+uEA5txOX6I9Q2QsoxWac8j9tQPL62VrFAF5DlgJoDyhRz5/4UBp5/vNsqL0w8LQ7Cdi1jq4qsYqUlbAqMdemZo4ULKCUBWXjh3XuXB3937ZVQHt/frwoDPBo5YmUUa48uTuq3eRo+vF609p/++EAZ050wdI8r3Q3L+6h78vII17Hv7/gVhbs/lo6CpqHTWHEb4Chk7NwBROm3aE9etSoXrhNG+PFnKrz3TmCr124EL17dLC99QCx393hz6ryqjpvHO5M6YVnT4cf8BoFG7WSQ1qjB44m5VSu1M2iPj5QlZBHrvP00PXftl6G0WLXuDMhVqscyVvl3x8pjhkPpeMcL87TZ07PSLVx52zthCw00rp3pok2zBWLpmGJyK8oCTdVYS1lViPJh87BSw44klWH4nBe6Z4/zD4EnUhaaO29vb/Hw4UN88sknNuzf/M3f4Pnz5/YDqVx5vy4gSA6l1iC5Cn55NUdo/dSX/n2sDyofWl8ul0tcXl7iF7/4BYqiwKtXr3Bzc9OJw09WCa3fh5bFkPCp8o4Bsqn6OxQlNF+n7EKWXbTPGM/7Pj7F5B+Tp6n1zgDsNTN91q+xMSx2FRF9QByKE9pP8ncOuF5dXeHzzz8PyrJer72To2LyvqN39I72R/d9zCbqBWPvEuzapoDHTj7b8pc8QkfPpDZcoUmEb6b2SaEJp+/+2pwFWShMn7KVx5XlJ+PkLmZziJd77ibnkGlXfSqnzvv4heqvj0LhcsDaUJwp+9dQfqG+FltQxt5zyngbGXOpr0760gy1CwIKyF8enbZrADo0Xo0dA1IbJj6WkfUvPcdudnc5VuUCn9Ivp/xkmL72OqaMeFvi/FPKShk/FD42xmitcXR0hLqucXR0ZEHLWJyU3Cm/HCVcim9q/qyqym5+T09P7dFw8/kcVVV1lMFDqW9zz2WMjYuhethFPyCeVVVgsSixWNBdqkB/dfqokVtnREIrHkc+U3FifLrgrFIFOzI79ofAO+CQixwaqvSMgau7pBYZSgC4XmglwVed0QYobjd/flwC7LX1o3o09SfXqboTxvj58ZULZMX2ADW/iVr+EnTzrFI5H9ZM+PzmWa8yf968vHSEHKH4HQBV+fL0AbGhLqVE2XTyHKpfWYbCr0OxpqWcvwVOCYC0OCRztx8MMOtX1nxDgKyXhmJHBYv0LeApgF0OnhJgK/Nj+YbyItKntDqWsPCBYHt3LLG17drlvQPCUhqKAb88n/zJysCTn9IIHJHM3W28Vk5VuHHWgrxbjGdD19BShxBb1/B4FKdpGsznc7z//vs2D8+ePbMfZ6XWTym6D0o0knHqvWFu+QCuTvrWfPSM1UFsXzZV3rblNXTdzsHV29tbXF9f46uvvkJRFLi4uMDNzU1HF5SzTo+5jwFut1mHj9Fh3ZVealdr632PD4cyHo3dt/TtnVIkx+8h+r5UfwntKXP2oLH0QrIN2ffzsHJsl1cF8tPX+DHFOW3zPsxvQ2hf+ZkinaHta2o6tLKaenwew29oeQwpw23Ku2+Nt6851QNjt1H4ft1IVj4HB6j8FosFjo+Ps/hdXV3h8vKykwZRboeTmylJsUaXA6bF+I0B4saEAfz7drkikd6H8MqhQ5hMD70/7mKgzwUbhoJiQzZf21Buf40BCkop74u93LFAjt+pRfM+23YIbJZ1R2VhLLOMbHTs6YMHD/Dw4UMb//z8HLe3t/jxj3+MpmmiZbWNvLsqn9BGoq5re/8mua1WKzRNY7/w1tp8Cb6tXEP7TEpu/ox99RpKi+bLvo1aKK/8SD/eh+q67p3f5CaXFDohSrWBIRtGkmmz2WC9XuP6+non66wQPy5DrFx5/XHLgdhHY6G8n56een2X98c+eaUCQK6rlHLHlEvLhticz8eYhw8f2vaxWq2skm7K/v2Nb5zgf//fv4WHD+dQSo6zIbnQ+euG5X9yjkg9Jbpgfrs8E/gaspAtUBRkDas6f8ay0rf4paI3vPvaNO/nofnKhDFu2r5PQUpxWc1v7kYoTGh8pHLN6bM+T8mDftNLqM/68vntw0eK5N2wPJz745axJh4N0UVh/jywSIX7ubWSpaLi4aiNBtz4uwRn5W8vXe6Hrp+0kPUAWnSf3m8WX7rLOB44GwJgFfMLxOn4SUoNQwRwUlDtyxmygpXgKD++t2MtG1DAen4EfKILiMo4BNiG0rIgrEInLOWHg8NRi1jxtG2EAbyddKjOuJtSXlivHkQ7lffF2mOMFXzLWG3K2lrGluZjAlUq414plMcl5mqO+rrG5mrjjTUxMDNnLTpEkRRbu6T2z8fHx/jmN7+JxWKBo6Mj/PKXv8Snn36K2WyGqqpwe3sbXMP17eNy6C6V2qE1765kCe2ReJrcjdZA/OhMvp7VWrOPqrr8d0G7LhfOn/Ya9PeLX/wCn332Gf70T//U7pPquvZOzAFgP96dUi4p2xg+Of1l6rhTE637SQ5+us5Yfu9ofzS2vMfES+mlpJVraAyT81VqbJN+qbl1s9l4p60R8XE2l9629ruvufBtKLddzoXB/cxbSF+3MgxaxvZN7kMHpDFg3ZA0hg4KUy9eYpuYpmmw2WzsMXA8vEw7prwMTT45lKc0im++UuBrTrhUvCGyybTGpH3olFrUjy2rXZCUMyXbmE2F5J2zkX9b2oCk3DzFxuypNopjKPfDjli4kLxFUdiNdVEUODo68vhN3Q76JuttFBuh+UcqWSgcAbVc0dI3RsQUeuQXAr0kjS3LKetCKqRS4aQMfcpJyTe1oQuNR7njk1SicfBXxpfhcvIRSzfGP8aHA9sx/qG62Gw2uL29zVa6DFkHkEKR1kYhoD41V1D84+NjFEVhN9nX19eTrv201lgsCjx9usBiUaGPdczfuBsEIMWD/Pxnn7Le/83jKsXbnvLkaEP18jekA7+1/XN1pzt/rm7DbWJXoGzKbSpK8eZ1kROWP1P8ZP1S/Znf2vPTqwabF0uUZzOUp7MQWxD4BMcqDjC2zaUz/lgZlNecOnxCcQPpB8EzCD/O0wkeB+ESFLOEjYGwoXwlKVTvJKv2wcqOFSyFZcf1ynce1oKqIj63oFXKHV3sWcSKPHKwNZaWBUIlKNvphy6vHQBYqY67BUxzOi/PnxL50c7fhuXxZBhq45QXJeQky1ml7NHFqlBACaiZefI88zkstDYOrT8orIyX2gvkUGh9ytee/MqQvnUkz2NOujk6h7ukfciSWhduyze0V9gXmJfbBkIgcqpdK6Vwe3uL29vbzsf6EozN7QuhthjbV+XoK0L8t/HnYcbKMDXJvY70u+80tnyH6GKGgIohnjFdbl+8sTLlhB2iXx4SdgwN6Vec5P62j8/b0N776OuQx33RUH3vfaNd998+PCKHz12XbRVyzDliLrawC9E2iuscuutCjNH19TWWyyUePHiABw8eWPf5fJ6lKI35KxU+cz9HIbqvhfdd0DaT9tD6+LpTqqy33Zzf9aZi15QD4siPM0Jf6/XRXZdj38ZC+ofu4aTf9GELYMpmNptZ5ZDWxoqUH2W8jcxTjSGcZ4g//S7LEvP5HDc3N7i4uOiEnc/n0Dr/SOa+PPD4Uy5KeF3JTXkMQA7VdR9/zo8s+sif37nalw9qU9zqMiderrwpIkURV2oCrt+P6e8kU0h+eVeqBF4p//yOV6moI77r9dp+vfzmzRv8zd/8jT26mNylAq1PZl4GPF5VVVgsFvYre1K20fHOIUWU7F9PnjzBfD5H0zR4/vw5Xrx4YUHebb7cp7RM2ZbtE0ACTHVgmRJP35/F6MSNy5L7W7Uyuqf789N0pAP5cqCee9cwR+FqAI11c38NtG6YFbZG02jWXrr9aggQq1QaaA3/5ihMViosfF7cUL1JWV0Yw9PUTxihM21Bd9qOfFIbKwpTtlS/RQE0jbGKXf3yEtd/c4kHv/M+Tn/7iQOf+B8TzbOQJTelHPhEY4VC0OI29pSAq+fWpivTt08B9AaBX8GHx++8c7cQCMvSCAKwsf6fQmRbL34kLm9mygXwjiv2QAIFZ53K3j2QlFnT2vGTQFcl2hsBj1xMDs5yvtwqldKGn54FYSl9YZ3qgb3KDxO0jKVyU4K/eOf17N01S/xYO0MBM3TROwNf6Y9by9r8F20ZFsJCtjDWsUVZoEEDVavg3bF8DqN1gPw4jz/pNwevQiAuf8aAEq5TCH2UdXNzg1/+8pd48OABzs/PsVwuvbA568ghOo4Q3fV+ZtcUWtfH6pN+0zu1AVoL8XYTWhfF+N8lUX4Wi4V3fQdZuS6XS28dGlqn0v6PeHFL2ND9xkNkiwHE/vqp26+JQuvbUDpTyLcv4mPG205TlO++62mbegm105wxOhXnEMbvlDwxvcWhjpnv6B0dEt1V/972g5NDoI7mOraoD1FsYc/pkAeuIV8sjSV+rB6nKdKTi8MhNOYLodBEG3NL8RoC2ueUU2qiHPLFxDaA7H1q91NS3yCYKoe+MPvon/umXQI9sTZ4V2UnwRzuHqKQsinFOxR/234X4xvzy40r3aQCrK5rPH36FOfn5zbc1dUVVqsVXr9+be+NTaUVSiMUntIOWdmOodgYG1KWpOSVsqY2RbKuORDbl5ZU6EjlI0+/r62myi80vtV1jdevX6MoCiyXSwu6am0soPuA9pw5X5alUs6aRQLWMl7ORpoA0bIs8ebNG3z66acoyxJaa3sSyBAwOVS3oXzIshkyfwDoWFwQjynm6hAo5uTw5T0EislqSJaHDvwmhEL6pf9M23NgrNayz8ae+yelusDurvhyN1knqbblwhiUyPgrEFDL68jwMe/EUylANQDWDdBkjJs+8uiPDwK09IBOAbDZ8DKNANDrpcfT4E8mC7eY7MiSS1Z0P08yDx0gNlk/PWQxQj//HQtSBXtccequWP7uAbIMILVhCZQUVrDEw7NS5ValupuuLR8tgFeRpudOWab4lL+UhaxSrlyUDwBLUNa7y5b4K3h5srKxcpZt18YPgcEqAOzytlkAqul+SMBJzu9D56dY/NC6Qa5vUvPuarXCl19+iYuLC7x69QqXl5d2DSmPleS8Kf1p5tjDmT+3pVi9xgC7WFhet3LtOhXtWpfBAeWiKNA0jQei0nqzqqqt9DuhNGMk96655RmqvxgAtwtgbt97fm4tL2W4S7kOgfr2JVOVxVR6shydXR84K/vjUHlC88UQfXEO/yHu7yifcvVfh05j8YKvE+XovfpoH21jirqcSkfUR0kzoqm+3kplJlUIfYuVKRczOcrit63zjQFw+4DX3I1X7CvQvkn40OvgkNrJPmTZ1UDVt+h7W4nyPdRiK6RYOaS2CPgy9o0bORuDMTTlnBIDm3Pj0tHL6/Uay+US//Sf/lP83u/9HgCjgPjJT36Cr776Cv/+3/97NE2D4+Nj1HU92mqSfz0PDG9jRCGgV+Y/pEjid9JzZZ0MT2Glu0yDg8mkFKRyzWk3JIsEJ0OWvaG4IZk48bxRWa/Xa/zkJz9BVVWoqgpXV1dQSlmrUm4tKylkOR6ygJBxiqKwd7ut12tvwxsDQiVPznu1WkEpY7H9y1/+Ej//+c9tmNlshtlsZu+QCwGgMXn5uwPr/LZDsofuDSYesu2RvNtazYfIV4CmNvt+Hv2wygsj4zCXLJlcWvRblnM3jtZUltYFgDs62Fi7krkYNx3jRJawdfts2F8NoEHT1KjrjW3vvJ75xxQkz12TUnmALIXjTxeXoU9pLjacz8+4y3r169f3JxTIWc86a1pAefGLAijLsHVPBzAlcAkOmOXApI3P2rv9x/z4swNeAUEeNn04GToych5gafE4oTQ4kBpyk+78fap9SiiK9uWwfYLS5lawlK5G97hgBc/y1QKb3E2L+2G1AD+FO6Vnx0CWLslIZcWBWA6EcuDW5ov4iPrwnjw8vVMeuSUuS9vWd4B/x/JW+XfShsJ4PBU68ZRSBoBtLWSL0gBNZC3uVTNbE9nmoJSd3+U6KDU2St7yJBQ5X/I1lJw7aU6/urrCn/zJn3hxyrK0Y3honSbve4+t74co7/alD9oH9QF+fB0aWpfF1t0pHc2h6rmapsHR0RGOj49xcXGB29tbz78sS5yenlqgNtSWYuvfMSTLIbTn4e6x/YJcV0+hxA7FS9X5lPUpea3XaxRFgdPTU2itcXNzE5ThkOltG1fugngZyT43Rs88JNx9aWf7pH222Xf94x3FKKdtpHSH95Fy9IYhml47FaFdLULG+A/58iflFwobSrNpGru4JGWxVIQ3TWOtSyS/2EI85BZTSubI3dcpuFI5RikwNrSYjcWNKeljcWNhdtWxY2V1SJPSociy7WKsT/kwhE9Mnn2Bv335yAUuiFdqox3rb7ue7KbsezRerlYrXF5eAjBHUd3c3GCz2WA+nwePVxtSjrn+oYVF35hG8ULpEEhGY+r5+Tm++c1vAnCKmJOTE3u81mKxwHq9Hg3G8nRDsuW2+VCec+pcKgI5Dzl38fAyHBHlo2kazGYzqxBomgar1coDa6XMlF6f0iUnT7G5mH7LdOi4taIoPAsAWYayHMgChSt/+oBnfjIHWd7mgNU5YweVLwc5+RphaHsKyVTXtVX4UNjYfBCbNy4uLrBcLjGbzXBzcxNtX9uSkS3l78JxN6VS4xUQRmmypeq4GKCT/+bHBDdtvWr754DVIvCbU8P8fTBWa/NsmhqbjQRifQtZI5u28g2hUPi73dtx5Gg60gBeNsCyAWoF6EKhKQs0hUZdKDSVRlMXqOsGTa1R1xq6PRIatUZ1vYbSvP0h2naVcoCTyZHqNCuv/SoxVjNAK0Yc3O2AnpwHTyuDbyAh/xlxD+YxJF+qHGJpQ+SNSDPQksdhTp2xsvVXylmqesBrCJD1GDI32VRJRNl8Wf6Jr2fRqtC15oUrL++OWUqXp8X5cQBUWseyu3F5WE921masrAoePwKzKQzx9uY9npYsY+LJ47G2qQoF3bThCuNWzAuUZyWaZQO9iX8UFfowLLRmifnZshfg0RAwl9xIPxHac3A3WtdSPL7GyUlrbNhD2e/2Uc7aKgTypQBIXi9SBzRkP7aLfWLfvog+StVaY7lc4smTJzg+PrZhbm9vsV6vcXl5Ca211Z+F9FM5+7Ep8yDX+SH/XDA8pbiWdb/LvKaI7x+1NqfjHB0d4fvf/z5ms5l3zcmnn36KX/7yl1gsFijL0u7JJL+7pqnHlUMGE3alpwzts2Np9emzQ7oAmY50S+mJ+/Z5ofixcfe+0D771V304SE6miG8ctZH7yhNOTiZpCn62rZtYoj+dgyvPj57A2PvA20LGtFCUbrXde196ScVmBQmBsaOpakHlaEbuKFhQ4vWKQb6d4Pr/abUJuU+Uk4/Si1IYzwlX3kf5X0k+rp+uVxapU5Zlnj06BEA4OjoyIJUZGE69mvobUhuKIhidU3Krfl8bsHVx48f45NPPrHxHj58iPPzc8xmM6zXaxwdHUEp5X19PFRGuitzCgopBXIoVSapsNKf5tq6rjGfz/HkyROsVit7pylZyubIl7PpCxHvo7zvhjZz1C6vrq6CfTVVL9yCkO5G5sBkSCkKwJYDAZoE7suwQxU7lGZVVR6/FAg+hKit1nWN1Wrl5Tenf3Nl9osXL1BVFebzOW5vbztlNla+bTZu4WJR1i8E2MpwEc4BNx1wd1avIUAWoDok5Rk9CWWQPDX7861h+dOAsV3LWP/eWJKJyzkNqHqXy0ClALJynYK+bDReNhz8acebipD2th9oQFP5bjSKdYNquYFqXNvqjJMMTDKv7p8XhoXN4WEtBtnTA66UD8raMBQf/m/7JJ7incsSih+lWFyRFxsk1KEDcvel6YWlauT3uBLWqJQDb9smZcFN4hUDZDkQ2fKw4xkHP+U7hDvxIBkZWOkBr2CykZzMstTOoVSmjE/seGKSwYaHnxYvNw/0ZWVB/HhdBZ/KycwBV24BG/vNAVl7f3KhUBwXmM1nWL9Yo964Y365JeyQ+TkFcsi1CekpYsQ/cqNnURSYz+f2ZJaU8qwsSywWC2gdvof+HRmSZSEBxtCpIjnlGALuhsqyL6K2eHR0hOVyicvLS/zWb/0Wvv3tbwMwZfL69Wu8fv0af/InfwKlFI6OjqxfiB+nbdafueFyAChOQwHZGOjMAftY2KnrlT7m5PTgwQP8w3/4D3F2dub5/bt/9+/w6aefYrFYYLFYYLPZjD6N6W2jux4Hp9SppcaonA8U+vjtuqyGlsVQ+d/RtHQI5TulDPvIz74wkDEf+R1CfR4CeYhgyFpz17TLithl40sp80KLbP51aGgzNERxTDyHyMRlix0R3Ecx/rnHQoZkGZK+jLfrOPugFNhwl5TTjmIAwF3T0D4g2zV/T7WbIfWVWpRyv9A9nqHF4pDN4l1SamMpFUa8PcVAJcCMN7/61a+glLLHoVKYbfIbqiNe9jF5Q/mJhUmld3t7a61/AVgAieaFqqo6XxcPmTMoLIFnUr4xC7ZY2imZQmCl/E3voeOKuUUmKbAePHiA7373u3j16hXevHmD6+trC7wNyVdM7jFjXCwOv/tKArVSabrZbDCbzfD48WMcHx/j0aNH+PLLL237lzJLN+J/dnaG4+NjXF9f4+bmxrOQ3WYO4m0x1ldCFGp3xEsqIUmhO3TOIR6kBKK/2Wxm873NeKGUwulphb/3957gww+PEdJvaw0oApmU+e3ij046QSGQlK+znBsHX7VuUNdNq2yvUVV0DDEHY6nMFfsDc5fHFHMQdoPNZm0t+2k8r2t5dywf//mcPE3pcOrj6QDhqYkhSC19uqzx4raBbuEhSpsD0xoKugAaKOhCY32kUHEBtXtay0QCZJuWV6Ohao1NcQo0rbWs1kCtcas16r9x8w8BudBAdVLh4ScPoaouCOkBlRyEYv4dsJSBmR2wUvnjhxdWsbT4kxetkE+GlTz4e1AWCcT2rcVCfMYQpcfuT/WajkLHqtUCjJr5B+6K9QBK+HE7xxOH7pEV7dc7LpnzBJNd5EkeH8zl5mElgOxZ01J4Vjf2+OPQcchcRlY+HHTu8FUMbIbvbsuIyWUB2cKVqwfIFsrI1hi+oY+X+JwYO81CzvHyWNsYaNO3Zgulo7W2d3dyWWK85NqC8vE207Z6idhv/iR3efqIBHF5PL6WDu2t+sC/u6CqqvDDH/4QDx48wOeff45f/OIX+NGPfgSlzGlB/OPcMWu4MXsdqSMgPrIOcq+D6dtryLEgFo/772q/TzoTfk1OURT48MMP8eTJE7tXffTokZXh5OQEgH+FzFTy5epeD5EOVcYp9v58HxcLH4sXkyNnnxbT3cTSC8mVCpta8x3CeLktbZOHbdtz7vyzz36Tk9ah9uMYDZ3nx65nYuFj68ox66Vc911jgDFZhuh9iaqcQDLM0Ea4q0a7bUFPrbiP8aWNDBH/slTGy5Ep1IBzyyJkgSPl4/Kk0uR+Y8oyt71JmfY1+aU2LX1lkRochgxysU2ZlGfftK0im3jsM22+WeJ9gB/lKeXaRVuTi7++9FKbsT75UmXVtynflqaa/JVSVhFE9PLly2A/m1Lhw8e83LLJDRfqz6vVCtfX15bP8fExZrOZp0yJbWRS6fI8hL5slvLLDwJy+XMeKRmGlKVUNNBmj/JCficnJ/joo49sW6FTJohH7OjcoXmLuXGZ+8LEjonmPLgipygKPHr0CI8fP8a3v/1tbDYbfP755zasbBcUn+f75OQEDx8+xNXVFVarFY6Pj1EUhVWsxPoqV+aGKHRc3Ng+IBWIvCxDHwr2tVF651aYSrm77qYY24+OSvz2b7+HBw9mA9r1OL+hRNmTPLX2y5rKl5Rmpv800JruhgWUInCWmMkxRLO/7vHEdW3A2BAQ27TH55J1LKEeRk7O3zx5tQ2pQgrbjbPb9aSGRqOBRtNv7ZWWBvCr2wa/uGn3BbyYJSkFlAC0eVaagVhtVmy7pt/sSb+bY/NBiG5a90Zjo4H1VzfOirY92lhvNBaPFjj/zrnpZy04yNOSxwxbABYiLwzIMtlx+bW/0Q3vWaKKp1XyIfyUv0NxOzJKssGU5xayFI6llU2yOSrj1rFCJRkkIMtAVw+QBTxw1rFXXbAxJgdz99JhvEwQ7edbCz+0c4uQReZB5oXniYfvhOXhKS2tXXtiZeaBzCyMl17bNrXSwaOeOTBLv22b5X+F+VON8oZQOX/JtU8fybVqaH3JKaZ/4PykG19D9SncCLjpU7YN2cvlrNXuak+co9DvW0sO2S/JtZLkwdd+9E5/UtdzSGAC7U+qqsLf+Tt/Bx999BF+8pOfeCew0HUtQ2nIniYUPvQ7tp+I7fFDfXSo7DK9HJm3Jb6foD1DVVV4+PAh3nvvPVtn5+fnVobFYgHA16+EPq4N0VAlPY9H8g6JM3QPeN+AmF318aFjVui0tiH6tpy5LUfOnLBD9Bpj0p+6f0re+2qjhzR/jKH7Lv9YysEoQuH6dMq5YwKFzR1fp2zPQ3kN6b99Y2DMfzAYe0iTUM6CZshmZF90SGU4NeUCrPsC4mJA1r4WJ0P9UyRlvsvN57aUWjSnwMdYnCGklPJALqn4v76+Dn6ccCgkFempcEMUA7umoRtQTvJYd6AL0vD6HEPyi2YCuuTJBjx9vsGIUSjf3FKP8vD69Wt8+umnVpZvfOMbWK1WNp90T24IzMtR3nHAJSQjz5PkwwG/2GZI9mkpZ99ReiFeXCap5BhDnFdojBmryAylEQufs2ahsqqqyt4tq5TC2dkZzs/P8fDhQ1xfX2O1WgXbX1EUWCwW1oLg137t1/Abv/EbuLi4wPX1tbW45mDsmE1uKE/5oGR8XI/ND1KZFRsDeTwC7bklBfXtMXL76QBFoSKAp/F3fvvaHMOTx2JzWrfuGlq7jy7quoFSBJiafm4UnxplCShF7UvBgKwSraAylJaxm/ZYYmMRu1qtsFoZQJZA2aYhUJYsdJ11rIMqu3kZ4xbyl8+xFIu/0Rr/7aslXq8amGJsQR1Kt/3/VaFQHpU+6OglQA8BXjFAFKyeLfDahpdgrH027L1xT60dUNvUDZq6wfMfPXfpsPhQwEd//yMcPT7yQag2u/Zp8bPAmi8AYAb7o3JhO0CoQvod6O+CAsDjbtH5KpSvTnYG9P02qDeusa7mHQGsjZ+1npXHErP0PcvathwJfPSsYTWzFOWWo9oBnhy45EcQWzBVKdf+2vKyxxSrgLUu1WvLw87RYE8O0NJdrW3ZeECo7WM6mE8qJxmncxSy8svLpiOOJA65WeBVA6pQ9kl/KLrreKUUTk9PUZYlyrLEer3GxcVFt3m0bY+vp/hHdiklF1FoPRXaV8j1Lc2bkgefizebDZbLpXe1glxby7zk0C731lNTzt48tm7hew5qC7xOeDnSGkZ+oDhEKXpXRPeNbjYbXF5e4rvf/S6+973v4fd+7/fwm7/5m3j69OlkaU2hMwiVf2jfNASgOUT9ZIiojXF5m6bBp59+itevX+Ps7AyPHj3CxcWFlf3m5gaPHz/GarXCzc3NoJMWY2UTA8i2WcfnjCt9dSrHNoozpR5p14DeLmmbvfs+QUU+bob6e0y+Q6uHQxs/9k2HWCf3hfa5zgrpnMbwj9V1TDe7q/6xDbZ10HfGbruYPPTOOCVImDv4hBpLSgmb22inKOuxacUAPQqbC0j1LYxzy3dsRw/la8pyDdV9StYhYbclqRQYq9DPKS9SNvMNLX11y+9sorCHOLEPHfRDeZCAR4pfXzmn+qCMM7RdUR3wcLKeJK+hm1wO0PB2MZvNsNlsomBszC1HEcOVVQBweXmJL7/8EoBRVJycnODq6srGobtQc9p8LP+U5jZ92Spse5QJvM5CoHnoPZS33PYSqsMQScWW5NtRZGfMH33Kr7HlXZalBWObprHHgdEdWxKc5LJQXMDc6/T+++/br9VDZaSUiipM+uqZh8kdg1NufWNTKK1Y35OKs1j649Y/Xd6HQFoDIZG0Jj9f8a61/3EIjTNFQSdI8DFDIl2AQSxoLHOWsXRHrAFfc+6K5UAA/WmWBnp/j5+qt5vja62xqunoXwNq3tYan99s8HxZo6gKA9gUos20xVlUiY96NAVlY5MsFs3+5Du5yVOnFfOn34UBrQiULVQBaGD5Ymnc6K82f1DA6jdXmJ3NoEvzXhQur+WsRDWvOpaCSvnvlD8f02RlxGlAd4tZyEqANBdMDY5dkbjbHFccHPuojlrentWo9sPYOYH7iXjeXBcKF7MEbduLPG7YS4+qTnflDB2T7Gc+4hbzC5C00rVWwbIM5X23tL5h7VXmnx9r7OVNuTYcsoy1+4k2rlLKALO1kaGqKsxmM8xms25+InOWBOb61qDSX64d5NwaWsfwNSB3p3Ut3RNL61u5fh+6bk+VwViacn8r13+pvMZk4FZjfP0WWmfLOg9ZLct4sd+73tenFKXz+dwCz+fn5/jkk0/wG7/xG/jN3/xNAPAA6W1kiLnltoHQ+n5bvZLkEeq3sb68K31Ejj6Il93FxQXqusavfvUrLJdLb19xc3OD+XyO29vb6GmAfWnJ34dCsTGRuynVtUKPxc3xl2Mo0D0CO1f/kEtTjZGhfWIsXI57Tvvg9ZKjj4nxk31/yFiQoiEyfZ1oirLcRg//jtI0ddkO1WNLGXJ0UzE+Y2SYgkJleNBg7CHTkMYYUw7ziTp03F8qbq4b4De0uq6zj3gJHWkc4s3zkTPxHSLlbJhy8jY073c9KNwX2ufkyq0HlTJ3U6Y2ldtQaLE7Np+hr4Bi7asPSArJmaswiZFU+uTGSYWXec4B4WIbHK01FouFHfNmsxkePXqE6+trq1ySyhMJIMTkjo3/dEfsYrHA//gf/wN//ud/bnl//PHHLSBirBwvLi6SgBGXhY/JNI4TCELWkDwMl5N/iS95y/BSjlBZTE00J5KclLZSCg8ePEBVVfjss88AmDosisIDLiWFlAyhtiIpd0ywCtiAUlLKQUD5YrHwFG1ffPEFqqrCV199ZY8ZJqsZ2YZDCtXlcomLiwtb9xL8knXXpySQROUs7zQOxe9bIOeOTSF5eBlTvNVqhaOjI3zrW9+yCs7nz5/j2bNn1vKYK42HkFLmLy7XVEoRng5DOvI52DimTTlFDp/reJt2dwSWqCqKX8ChC5w3QAhf02xaBesKdV1jtVq1H7Rs7Acl6/XGzrOm3XWBWY64aG3++Lssn1Ceu+79/dXVXyx9zsP9/tnFGv/9yxuArN+U8b2uCsxOCx+gAdJVKMXUcJaFLePOO/Uv7d49Pw3oogXX2mefpazW2lrxeZaz7A8a+PKPv0RRFv4Rx7VGs27wwW9/gG/+7jdd/uGe3m8OZjlPB+opF84CXkr5fJXyy5U31cQzBQJzP298CMkaytNQEnVv06Q6Vy6MN2Yq+PfLgs1RrazWXR5X3Mbl1qEeuAsXvwPOynQ4QEtgJ5UJywO3trWAJ6UVusvVSxCuHBS8+149kFfw88qtDWvTUAysFX82PLMWlhazFrgVPGwbVcp86NCOD7rQmD2aoTwpcfPVDbABjo6OcHR0hLOzM1xeXgav46B+Lk8eub297b2GglOuUpnP23KvL4nSXq1WXho582rfWuo+6hX6iAMGVWWOjl8ulzg/P8f3vvc9PHv2DJ9++ilmsxmqqrJztgRq+UeaoXX4oSqn+QeDR0dHePToEc7Pz3F2dgbArFG+/e1v49WrV1BKWeA2du3IrignndheaaiMh6wD4vUFmLytViv86Z/+Kcqy9D4iub29xe3t7VbphfYSU+vgpiCpU6C92xi9UaivLhYLVFVl9yuAKRs6OQtA9KPxXVEIoDzEMWZq+jrk8etIsfa7D53WfaJtMQ6ibcr1vvfBkPy9xxTveiGRQrVjyrZc2hWAItMg2jat3Pz2KYhlfM6jLMvgkZ+hO9Ro8TtU7l11lCFlsUvgTC68xqbXB8SO2UDtc9MVA2d20e+2zVNqYxpSYPQBB5LnGDlj7Sk0pvS5pd5zJj0JvIV4SoAnJLsMF5Kpr52H+oWMl8pPbriQTLz8y7LEfD7HarXKatN94zcvH65EofZ3dXWFN2/e2LB1XaOqKjs2kyIsF4AOyTP0qKgcvrL8+kjWd+6YlQpHIDN9bS+tDMbwDIUlnmMpNz1SepAF4Xq9xvX1NV69emWP/OoDdnk9rddr3NzctOBaEbxzdch6iyv+SPnAP9y6S+Ufycw/KiiKAufn59bq6Pr62spI5ZFDufO9BA+3KQofiB0SjtAC8vdBRg58GoBWsyOLawAKZUmArII5rtjw7M4L5k9rc9wx9ce6rrHZmD9uEWuOJG689LsIZH9+d0U+b7/cGg28WdXYtBaw0ECjNV6uGzxfN+4oUgvAGCiJg4npxP0wHtDWAlAECnXeOdil2bhMgFPj4hCwqpSxglVwIK0H5MK/J9bmgf4aYH21diBso9FsGuiNRr2qcf38Gjcvb6BgymXxcIFqXlm5QtQBVW2y4ztSdlwG5EmQNspPBdzHikrxZPumOhWAbJRHwL9zXDHGr9c9q9IE/45cYGkHeFA4Cw5zniF+mqULV/4eICysV730+HuqzhSTl/NSIh5rP6nfSilrDa8KB4QrpTqgB9Bdz8/nc1RVZY96ff36dTA8xYlRbD0Xm+tSIEMICAzJH3KP7Q2k3y7WFUP3KbvUedB65ezszPsAM7RH4nUl/Q9dgezP/c5QgNYNALzjlylPMcOFfdEQ/Rvgt5u+Phlr47n53Ue5hGS7ubnp+FE98Y/Zc8oulYcx/axv3NhFerF9f276qbJK6TdS428f5bS5lD6qTx+2q7YZGuuG9J+h+/+7oLvcT39daOpxYFc0FhcI0dh83VV/GrKOjdEU2GKKxpbNwVrGhhrc2AlmVwvn2MJLUuhoyRCvbRtxTB7+tdTHH3+Mb3zjGx35fvWrX1mrGaLr62vvmEx+zyan1F2AfbK9o2npLiaNPnCtL+4+ZOZtlDa7RIvFAkdHRzbcy5cvvbC5tM0EGYub6ktSNm5FTwqdmCW8vC8xR9bYBJb6Er9vgR7yC901mssntREJjbHyfbPZeF+fSzlCpwCE6iPVrmUdEc1mM3uMLAC8ePHCy3voI5pYPuSJBqEykeV8V+MxlS2XKWe+IHAHMJafX331FRaLRe8Rf7ENa2pTObRseLuQ7YPPs7IN0e+qquy9cQR0vnz5Ev/1v/5XG3az2di8ho6r4m35zZs3+PLLL1EUBU5PT23ZxfoVXzfljFP01fbt7a13hPjYsT0nXqqNaK1tH7i9vcV8PsfHH3+MBw8e4L333sNqtcIvfvELe+wzt9IcMhZrAYBqAcL68XuzxOJyRI5+C5TOjwlAtfK4cIafeVfKvDeNRlGYJ0BjmgMcCSQtS3Pna1mW9kOHoijbMdrxd2Cus7ynDwjqmoOyG2adX4OORiYgmCtnzR/sk+Qjt1jZca/Y7/6yj7trDaxqjf/Pzy/x/NYcPawUgEKh1kB1XPkgnsXl4qCeYUwP7b0DcNaO2vnJ44rtu2aAHf0mdw4k6TZe0SpJixaQJSCWWc/Ku2RV046fzDJWl84iFg2gSgU90yjmBV7//DUufnmBZtMACvjb/8ffxqPvPvKALKVUFMS0x7kG/Fggzy8G5tokJD/2jFkvR2XgdZyQcSiQ7NUVSysEyNrxmkRg1ptKKViQXsjj3d0q74aNvXOAVIu0tZMRyqUprWVt/ngeqNwDsgrB3ZOGOjk8snqUFrc8bZsfpbr82J9nEQs2p0uwWLm2Z5/Ux5TyLWOV6XdFWVgwlizJ5vO5vScecOtsurJAa40nT57gyZMn+N3f/V28evUK//k//2fvgz6vyDIU+6mrJMhNrp1C82VMUZ+jFwjpfHh6uVa/Qygmg9Qd5axJxq55Qnu5+Xxu1zC8HHl5pNYsEgDrq999U9M0uLm5sfvTZ8+e4cc//jG++c1vevm+ubnBV199ZT/kur29tR+xUpj7SmNl3wfINYSOj49RFIUFXgGz7iYL+aFEPKQVLqecvplbNtvqiHOPC84ZH0Jx+MejMbnpiHtuOb4roj37FDr6MTRmbCYK1XWfvuGugbpDGK/vM8XWDbyfSP0eAKuLOaTyPyRZtqEhepYUDdFdcl2jTHNoujFscewYOAqM3WbAzc3wkIJJFWTf5Mf95eKV/HdJfLM1dELJ3RxwoqNEeNzNZuMd+ShlS7ltA1btcxEZA7AOjcYuMA6V9l3euaB/6t7MEJAif+fkKzfvOQqJnDQ4kEmb+fV6HT26JpWfoYD6EHeZtiS+cJIgeihMiPfYdscBKjr2J3REcQ5JRVRsfOVPrmCQx2XzJ+cfojHzrFT4cP8YcBlTXOXKGAMDY8TbpTtG1RyP++LFCwvGEogpN42hfHFANDT+DinnbZRxPD2qd552XdfeUYS8XYXk5kfvXl9f4+XLl1aRm2tdEJuPQu2Bl+U281gqfF/7j/nzMuVHkYfWjrIucvPQV5y5wwcPpzXQl3QsjHQ37wZt0JrqjMYaDaUaNI1BFIrCALT8ox2lFMqya5FNdW+AVs0sY2s7hvn3xHYBWEJknEy5ZRULyOsewd+5/gDw8rbGm9saGsBtrXFRa9xojUKTBWnb9gsVBfOSJMAiD5Rqf1tQjQFoJqcC5IL2f6sWUAUDhkRYDe38GmdFa+MTCEXWipo3LPYkMK4FUBu0dxDf1PZezIvPL1x+DVqG2dkM5986zx8rsoMNHHtYeO+3XKMJ4DULiE2JEmh3nkWn75EGZGPxWTuyfTqUBsmZ0QelRWpI3s5HAEwWz1/6sT4kQeCgBS7/nZJVhPPKLVF/FsAVQLcFlXl85fMiYFa6y3e6W/Hq6so74rNpms5YDJj9/KNHj6CUwsOHD9E0DS4vL5Pr1b55PBQuFD+URu7cH9un7XPPm9p3jd1DbCM/X0PVdW1PQQmBqXJts++yi9FQHRatC+hkoF/96lf48Y9/bK9v0VpjtVrhs88+s3mWa9dt8j12rT42zi7qaJv97hiKgYL8j9xyKaZniYVLrf33rXNK7XvH6JJpfc0/qD49PcViscDZ2Zn9KHuz2eDq6sryvb6+xs3NTeekt9iph0NpKuBhbN3JdjdV343p/YdiEKk03tF+KRe76Kvjr0Nd3iU2MnS9MISGhB+b91ibGqObndQyti9Du1os9t1rGiKp5CY6hAXtrunrkMc+GrOQ2HW5DV0wvavHPJIAgdbaKj0Ac4QnLXD5sUgUd5uNbqpOcxYMfbw5/7IsvftOHzx4gJubm859mTFFyCGQUsqzAI1Z8PUtIFIgYghIIOLWCICxKCRrv1hafRuIULoxt7smDuDFZAuBtfI3hYuBWhx0HjsOE+BK9+n++Mc/9qxHyLKUyxU73rcPVB4qG1HuxlOWw3K5tF+aSx4EaPWB1gS8lmWJr776Ci9evPCsZYfIHtpsciCYPlgAELRYCAF4uyb5YcWrV68sEDvkqO+cOm19WjBvbJ/mCEQYTCVSyr3Tbw60kjvxNPkAtObzYIOmKaBUAz5OlaV5Lwpl21lZllCqQFl2LdepDZh2qVvljw/GUputa3M8sXnSRwFkpUt50oyvK9dYsTt3x8MPq71wxl97YUK8OZ8/erbEHz1bQpUKKBR0yb6YVqw8BICUQ979nL7I3Sf91pHf3I37qYB77E+Fn3wtpHULTLUWtRyk0lqjUIWJ0/rr0lnSfvqfPzV1v26gG416WePJbz3B7/zffscc72xFZgAWuk/yp3K276G+nKiKUD1x8FQeR5wLxPYCsDH5eD9veYTaSPDIYeHG68qrywAAKo8F5lajBMB7QCgQTMcDKwVYG8yLiOPx5fGVkKf9OMEUGfvAQICjHQvZVl7rxsqfg66dP+4v6ozXdQecbf8IuLUfbRTK1gmNhcvlEsvlEs+fP7f7EPKTaye6i/vhw4eYz+f45JNPUFWVPVFFWnlIkus4fqIFufE/crN1oXV0vcjnSHkCi5Qh9c7p0NbKUxKt1wCzd7u5ucGf/umf2vUb4K9n5AeGHJCVYNih7O0kaW0swZVSWCwW+Oqrr/DFF1/gj/7oj4J1LS3D39HdUKhu6LSfsZawQ9LaBU2dTmifGdtbhq7Ims/nOD4+tvF++MMf4tvf/jZ++7d/Gw8ePAAAXFxc4M/+7M/sOP+Hf/iH+O///b/j7OzMO+mNH3U+JW0zVo8Bh6fao8d4Sne5Px/C89349I7e0XAaM6bk6F+nliUlU0p3mhrnPDD20Ba7+UqwYbIPHVjHXCI/Nmwobm780N2XADzLuMVigfPzc8+fvrCSxxRvNhv7hWJMltB9a0PKa9s2NzR+DKTJLecYEBEK1ydDyF0qsGNWgqE0xgxWuXQoY0Mf+BYj6c8VFXQnKOA2vDHLy45CMiFbSNY+UDRGfXXNgREKT+CsbENSeTJ20knJN5ak8qdPoZTDT1IuCLptnnLicyUK/4KV2iDNPyFQM7bo79sM5LbLIeNcSBEXG2NjbTfVHkMbIwmy0p88gnuoPCGaYvzrW7jJdsmVbNxNbiDleBSqP2eN6I9voTKRafK2xtsrp5Alr1QMDhlvpiA+X5KlyXw+x6tXr7DZbOyR4AQky3YoKSa3dA4Bh1oD45oQISgxfmH/UFjz1NDaIBL0dMcW8/VFDa0LABso5aywDXhLCIOrW63d3MLvuOb9ku6K7R5JDMsHFnjVnvx+eaAnTD7F4r1e1fjZm7XxV8CzdYOmbEEUpYACKBQD7Nhv45CTOAVlcRm4ZPkywIaH9/q7ZnEkgKUjlrIKzgq2PY6Y/DxATgn39rhaFDBuBKBqlof2z/YnVh5kIWvDKuD2zS0++2+f2XTe+957OP+Wv0/p0NRLUiWeQ9JR8lWNl0+0BeLXB1Zy9zDbLoia/Tslo3LPGKgak4e3Y5kvw1538xiQxc41rQwUN5Zu35HNkrxjijXrcxy45eUCNiYwv+A4oWDHFSqL0MdCNH/T+2q1wtXVFZ49e4bLy0t8+umnePnyZWf+jhZbYL/ZyXdgvUHukgffV8TWhaH0QvfX83VRTGG+DcXWXOQXymsfTbmuCV31IPd3fM0S2nvmrN8PhSgvpMOKrc1z2/Y+aag8feH79J6h9f/bSFPrs3J1R2OV+7n7yJTukev8lsuldXv06BG+9a1v2atWAODy8hLX19d2rPjpT38KwJ1+CHSvyBurLyUa2nZjbrF5p093keIZ459KLyeNIfJsMz5t04/H6hXvivYpY6pOuCGf+eC4K1fIsvzrRHG9R1j3mBt/jByH3ra30SUe7J2xnO5DJRClFOQ5ceV7jiKcwlZV1XunytnZGT788EPPjd/xxen29hbPnj2z7yGwl0AfkoXf49dHdBfeIRBfBMWIb4Z5vKnloGfIgicGLOyS+vIY23yPoV3lS26uJQBLbT8ENki3kNJ+zCJsSFnl8ObtU2tt73Hk1nUUJqdOYwqhMbINodQ9MW8TyXKTwDMdJ5+zGAwpsPoAydQ8FVOchXjHeMXS4gqkkLx9vPlYw3lRu46lK/usvJ82lecpKMVP1h398Y8nOMn7oUNKU15O3KpClkFq7OLjAOch60DO+1ImqTzMKZNtiSuu1+s1vvjiC9R1jbOzMyyXS5ycnGC1WmG1WkXnr1BZxjbpWhO4RwhFmnh0Uz4KoeKgcL5fNw0/HIGtgLtD1gGwTn4NU0x+PWlNlrFlW79cQerC+3xcP9TagbJkMcuBWLKINWnxp8wPL+NcC1n3PmZq0hr48rrG//sXl+0djwVQAOW89AEV5QAlS0Oas5SNwB04QIkDsUqp8Lt2YBGBsuTHw2ntwqBo4xXsyOHWzT7pLySzFr8jz0IVFvgl8LdRjb1TFBWgSoWbFzf48f/zx2g2DZpVg+//X75vji0OFGjHLVXmgbqxfVzUX+h46ZRV7CQWsSlyXdXyDR47LIDaFHgZ4hE68jgoA8+TTqcDsDmdeIR4iegeQCvqIpIhn2eAX8dSWGnfn/oc/W7bKv/zwinGU8oCNz5498sql7adQ5hbURTQhbbKc9pT85N6aEyl+fj6+hpVVeGnP/0pXr58aS0KQ6dpRItPrDmIKC36zcOG1kn0LtdUnF9s3pd5jIFPU1EuOHFXYFdsPcbd5Fo3Zz1+qMTb9WKxQFVVKMvSu6uP7pfNsfjepZy7XK+O5X1X7fS+0r72HyldS0yGoihwdHSE29tbawijlML777+Pv/W3/ha++93v4vT0FIABa4+Pj+0+58/+7M8AGL3BfD4H0AVjpyK51wzlJRWmb885ZVvO0Z3wtIfS26yjelsopEOjq9yIjo6OrEU5UdM0eP36dcdQ7W2gVN/lNES3HZsjU33960qyTJJgbKoCdj3xxxbMoYU6V0z28QLcRc0hXqFNRIhSm4YQqJfDN7Sg7gMIedhQniR4SF/TyjChr0IkUEqbRE4yzfl8Huzk9KWWlIUfa5KbV8lbUi5wJSdhnrcQX34UI4XZph+E4vIy4MfOcqAtJn8ODRn8cjetU8UbEz6XX6hvyc2tvKg9Vb+pMWmMfEMpBB6k5BjSVkP1FwMrdjUP8LG0LMvsr9OGbkxTSgytNd68eWPvPOT85W/53qdQCqUr64hv5GIgowS5UhaPIT6xMCFrhVj4UL766oHLzYG7nIWfXPDROykhYwoqLnfo6DzuzkGlWF5zaKiyj8qAFv/8blhOZAGc4i/LwYFpkCk57AABAABJREFUAYAj0C5kGUs5ZVuTcnJFWggo39dCnB/r+OLFC/zFX/wFLi8vsVqtvHGF5yk114Zk74KI3d/cTWuAWMjfMqzx42hGaCzxgVzOk/MlXu64YsPTZLeBUgUA+qBHWT5kEevGCJkfB+LKO2HpXf6mcpDl6//2yyxUlu2vYPl1w4VpVWv84Vc3uN40gFJ4eVujmBXQCs4aVjlgpQPsEeU26W41WoDLyKtdOMABZvxdM6CLwvI/5X5LC0Nr4do48It42mfrZ3kXjq9utANUZdPk8khSQAED0BZlYdMjd0rv2V88w2a5ga41iqrAJ//0Exw9PgowjBMHUvuOjPbGLQHAdtwTrHKB2KD1ZajAeHmSnDoSlsXp3Gsq20orQx9oG3uGwqbc+NjPrV49mcHmByGrF4Zb3qbKgAGoXjmwMJ6soTQlW1GWNB6Eji723lX3NwGxqlCYPZihmBfYXGxo+LXp8TUS4I+XdJwtXWtA/kMptReVa4bQSTsUjstNT3nFB8Wv6xqz2QyPHj2y4AN98E157FvjjKG+uVxSzt5paJn3KUJD+4Wx+oZ9KjyHlq2MS/ssc+f8xvPj+pdd6x9DlLPW7stvjs4xFO6+0pg2m6rj1D5623Y+VHcwNo3cvXSKR1/cXfX5GN8hMuX0lSH68lj/SbUNLkvo5LFYWhQ3tTceqiuZmvr4jp1HxugP90WpcTU2xgLw5pjFYoEnT554/nVdY71edwzVVqsVbm9v7XvMqvZQaF+yxco6ZqCX09+Ibyr8EFk4vz45+vgP9Uvpj3stY6ceMIYs1nIbUKrQY4v5XQyEcvMQUxoP5ZkbJ9Tgpdt6vcb19XUnDQ78Ecn3kGWs5F9VlT3+j0gphaOjo07c169fewMahZWyxfxS7kPrl0AfXt4hBbhMY8pBToIEvE64lU+MxixyUpQDKHEgJRQ2BYjsc8MhF0tcZtoASkvtsRvsIfFywauh/KYOu2tKtZOyLKNfmIba3djNn6TNZuMtwmLHwIfkGbpooDg8P/LeGd7XOPjB0wttCjgPnkZKxhDQFpKZkwwTGx9jm5UQ6CXTk8AfxaFTBHK+nI/NMfyINK4YSuVlaiJZaLynL5vHfKjE+QH+/BIqa09hLtYtkmJlSOUU6of7KkNOXJb1eo3b21s8f/7cG+t5/4odcc3f/bzRMbscXIyBf13rV60BWSQUV/rFuqsfn6fRtY41ciuY44p9Pk0DKNXYcDyfReG3C0rTyerak7N69UHZ7p8cr3g7MvLH8s3d+obasL9iMgC3LRj78raBqloApCqglANcLBhronvPPrAvkLwQ0neT4Ku1RLQFDt9PWje2ZRkC0yyYCgVdaMdbhitaHoUAabnVLpOD0ota1fI4yr0X2lgFamh7l+bL/99LPP/L56iXNcp5iQ//3oc4eu+oW25jyjrXLyccr7MMIDY6/mnXhpJAK6Wp/d99IGX0iGLBUwKYsfDR45GHhKXXjDVbENyl/ComvxL9JhRfwT/KWJYnGE+ZFoS7zBePq3w+FMeux9iYMjuboTwqUV/X5m7lxF6Oz7U3Nzf48z//cyhlPkbj/mP3ejElJuk3+B5JntzB5//Ufp3WV4vFAo8fP8abN2/w5s2bzseXcu26Cxqyb95GBp5Oaj09ZJ8dkym2VzqkPR+R3PNQPuUHcaHw95GGyh8LP1Y/EYqfI1MOyDOUV6pfyb3nNvWeU1Zy3b/PdpYCJcYAB7vu531lk7uPHEOhPRlPK6VH6OM5RK8R2+PyMPeJ7qPMfUT5kbo7aiPcGGw2m+G9997z4m82G7x58yZohMbnp9ipoW8LTYHF5dCQcTBXnhy3UNoxvWwOr1jYVHgPjI0NLPeZYorMPqXbVGmn3t/R4dF9raMpFqxD6b6WVYw2m42dZKdamI9ZjOaGkzLxBUJRFLi+vvbARCnLEAXD0HzQxJN7ZHkOrxxKyZazgZBKEf6VviwD2edCCpUYmJkjmwEyuoBsDvWll/Lnmw364k+eChAC33KJAzJA/zwpyzV1n5ZUMIQUin3pHR0d2S/zp2i/Y4jykfrisq8OQ2687IhC5UEbzZiSVlLMKkfW8z4VgqH+yI9t5+AhlXPoSGaKn+rLPrDIkQkHBspo7t2Bpl1UwIXtFruP4BE/B7z6v7vxunOcyadCURikoGk0lKKPAxyQbMI5eem3BFrD4GsXjA3zkjJTOXf95e+cJvaHX97gZ29WQKFQA7hRCsW88O6FtaAJWHvi9SDBOOmPgH83W967tV5loCcBTAR2cuDT9i9p2UpPMBBVu7rWMNavFrxq/6zVrU7wJIC2cZaCZI1JT6010MCG0Y12d9Vqd1xxA/dE0x5trLSxxG3L7S/+X3+Bs2+c4W//H38b89M5OjTRUjRmTSvrLgi8JmTonR9Z9++Asn5Xten3WqNygJYNSaFjifuOHA4CuPDHxV7AN+SuXJ5D1qkda275wUBLdDR3SBZZDtZqmOdfMZ5cBuXvrYLWxsofG2QdWJ7ij8YWauuxNbacd+Xa6/T01CoWx+xT+PpWKWU/QpMfpmptrj6Zz+c4Pj7GbDbDs2fPsFwukx8Ny+OHKex6vcZsNsP7778PrTU+//xzOwfv6ijaPvBHrk9ia5WcdczYdc7QeCmg9j5SKP9vS95yKLSHSYXbx3p6rE6C3IYq2cfkbUzYGKAWk0uGnwIgkCdgzefzjhX4xcUFnj9/jufPn9u7ZGNjJP+IXOoPpqAUrxiGMPZj4vtK93G8uo8yj6V96iHeUT/x8S+15hrDc1uaik9fe4taxg5V0OfESU1w21Afch36YoFPUFNbPN7F4igXWOEK2RS/HF6hcKGJn752DSl9Ywr5IXTfBtUp5H2bJs4hbSA2WG+7QAbCluWxxWWKUqCc5BVSsIwZewFf/s1mY4/hjNHYdhiqA9nvQ8BNTnqxTVhsQ9HHMyeOBI1D+QjFDbW5EO8xG1neDnL7xxigNpQ/Pj/SuB26LzRnDpKyh+LyfkDP0OYtpw/JvOVuAnk9VVXlbWJz7ljehlJlw9s9z1/uhjilXBw6ZvaNa7F6kPnY5yI5tBYhZS8dn8zDymOhc5QZJr/0m8rEB0C7Y73T+JMlq9ZAKJmuO8V3/kb+cBz328WTMkgUxFjJUj6U/R0rBpdvehqLWFc+IfCVy++sVLl/yC+M8qTI5K1uNNa1gUq0Bj69XOPPni9RzAprkVmUhQ/CKvjAm3wPJNUBXaWb9v08N/6uIk9AVlcsy+4v5Kbhjh5m/loL4JbumQ38aQhLWS5rw/i2v5VqQVctjituNFTpl2uBwqTRaHz1o69w9eUVvvu/fdfUkQKKqjD3+E5NSjyFXwhUj1pGR8In06b+3ANuDjleN55cHNRNHlEs2ik/FrkDcvI5IgewFeGSQHHLIxpe9K+glS797FEEBUHnmExK1A/x4HLxMYWA3gDF1ln0ez6fo65re/f5UOU7jc80N8q1Hp+3aE24WCxwfHyMFy9eeGlyy8bYOoTLVpYlTk5O7N1txCdXnzGE5PojB5Adu3YfSjnruhQoF9uz5O4nD40OUea+fhjyy9Gr5eguY+v4sbqCXVJoT9kHyPJ4OXkbqjfM0RtJtxx9NR/3UrLG2kcozdBpjtfX13j9+jVevXplgVat/aO7SQZ+OlTOiXpShlR7jMnfxzNHLx1La58UKoPQXMbnkiF6rUOgXcuSo1cYKsPY+ZXrdKR1K+3/eZ1LfWnu9Wj3mabO35i6lWvMVNhtKWdcp3BTUyp/vccUfx0oBiTE3oF4RQ2xpOGK4mgFVVXwaGB5oXRs0S3dlsslXr161QkXutNVnpMeIz6AnZ2ddc5dr6oKjx8/7uTjr//6r60sWutgXrUOg8fcP7cT9XV0TmM7/ZA0hhC10UOcGLaRqw9g2Ta9qcpLyiT7m1xAj5Vvm80Vj7vZbHBxcdGRk2+Mxi6Ah8iYAoa4O1fkbDabJLDD+Q4FlFLKNsCvR542gTSho7NSgB/xGDomcGCIyxcKRxs4Hi6keJLWfnJxKsuSPqLh4FUobEi+ULvuKwPKy5jxM3Z3mZw7CFyL1RmlXxQFqqrq5DtGvF/JcaBPiRba7FHdkBVnSIY+gDCXiH9I7pQSI1Tnsf59KMTvLAX8E1K4eyjf1BcoXPdeWYCiuCdHuoy7Ut2n40NxCeB1QKjhFdpEuPBGbsfb+EvLWwJ/BXLC8hIbR0JV6YpJHtnsj9ExNxee8+iWZSjNUJm3uRb5Uvjpq1v8u5+8gaoUilmBV6sG1VFlQUBVtHkslGVh264AbXgy0iI2Br5FQTkNB9LoNhwTXWvdsZK1YGnodxvHsmx/cwtY60ZtXrhxINbyEn8WgAPs0aqepWyhjCWshrWK1VqjUC3I2lrP6sL4UXhdaDRlA107NyhgdbXCH/w//gCqUGjWDT76nY/w/f/z98Nl2kchkNSr1nzFYwqcH3x8dSB+EPhLAJmD/XN+86g96+8OSNw+k0cFB2Sz4KVi7jmk4OqX9a2Q3PbYbu3k4jw6oCmYVS2NDwrOjZeB6srOwUalWkvyNqwqlC2j0EkTsXmYrh0aM89SnKZp8PDhQ5ycnGCxWEBrjV/+8pfYbDadY4lJ96CUsidNSPlCHzHRb1Jw0lr/1atXNg+kS5D7lKksq6RMofLlacu4Ms62soT47UqH8I7G0770LnLtJRXVh0qyX0m/UF/q24tPqe+SYAyt429ubqKnTw0BJXPyk0N1XePNmzee7lVrjR/96Ed4/vw5/tt/+2+erpbn6c/+7M+glLIf5VBcyu9Upzz16ctlfuRHrzLeUF3C0HYxdiyN5ZHvz4GvB2C3K5pKB6mUuQqR4q/Xa2tBrpTCD37wA3zzm9/04mw2G1xeXlpeL168wF/91V910pJXM5BbSO77PHfH9DexI5hj4UMkyy+V3n2kKeo9eUxxirYBq3J5D1UoxtxjCkKpvB06mU7dkELphAaCGKWUpuS3Wq1weXnZSXc2m3XS56BIKk2p4KevXIlmsxnOzs46+VgsFr3nrOeUcW497GKQHDuZ9PHb1YAulf4p2kaGvo2s3ATLBZYc3GT8XW9QYn0p5h/ajEw12YzZlDRNg/V6nT12yXCp8o3lPZRWLjAlZQ+1l1QbGsI/1AdCG7Ch5T6m7w5dxA0Bu3L4peq5b4Mt5QqFDYFbQ/jG+IXcpQyh9iHbTij/IV7k3id3XxlIN6l8kW0z1NZj/SzWL1KbXlkmoXVRivo21Ie42E6Nfak2SpsSKjN35DOPy+OYd+fv3AAOkBq/eB8iOYO58dLUmsI5d+PGw5m0lXIyO8A2XV9cFlm1sv1Rfv2n7++HjeWvm346DpHJT601LlYNnt1s8DeXKxSz0h1HXBqLWA6s0NOyAGsjAnDp+Av3oFQShFLOTYhuLRLtu2KAK/stgS/7lL8h3nv+tI5YxjatbAUDX5XyAGEOBltQMsZbljcPr4CiKaBrjde/eI2mbtCsmv8/e38Sc0uSpQdin7nfe//hjTFkRGRlRkZONXAoTt0UUUWxS91Uk2iitgIaELTojbjVQlpJGwnQolsrcdcrQQsJENED1BIgtqSGmkSxBrIqk1XFzKqsiBwj3ot4L+K9979/vpObFn6P+bHjxya/fu//v4g4P374dXOzY8cGNzt2Pj9mOHr9CJefXroqO3xwiMlR+ffF2wKmEcbD01l+m/DE9JIqWxUraXO2OdZkKc0/m1c3NKXLK/t4KCyVXss/R0732ur1FfS+Neyf4pruAy4PeKYogXURn19L1nSSN6fJZIKDgwPcvXs3eJyBte1Zr/QPpHcxCa2LjGk9US4uLjCfz9W0sTBed9tQbn7a+i+lP8tnXFb68JN/IDZEX0qBF19SGWl9aiywLUePp2tsLRGjXHlia4YQlaw/Y/lJfkNBmFyij2uJ6rqGtS0Yq+Vf0v4h2Yasca21WC6XWK/XXrwXL15gvV7js88+c+Ot3HHwxYsXTk7prFNCsXLKfqnd8w+JQrtKlc5TpXbWVHtu8x5pZdbsHK8C3bZ1emg+j9l16DkHDeU233fv3sWbb77ppVmtVjg6OnLxTk9PcXZ21uN79+5dFXwN9anbUpcpitnSUhTr52PPEaU8xiLSzWLPYzphiELlG+QZGzOmjtERSxXs2FacIYVGW0Ds+wsXLndVVap36mw264GYy+XSO3ga6BY42qTF+Z6cnODFixe9fEIDIN8+iACeUBmAFuylr1yJDg8PcXh42Cvf3bt3cf/+fSf/xcVFj58xJgpGD12MaQNpaKtSHidF2ywOJeDE62LoQi03v1hYTpptZMjJd58ky0OKe2xgnkwmvbaL9amSyUmTbyhwx/nGJo+hbSoBnRySQBZfSISUxZgiEKobAlLke8XjyzbOabMYgBMjUiAluKPxl3MWHw9C9U1pQvJp3tx8iyPA3/pIqxsJ6PG2lJ6DqXEldJ8C/ORvzkPKlmqjpmlwfX3tvcOxPIYSr7fVauXagofzDyr4c14+Hpa7JZWWhqfT2lOre/lM1jPv07Lv5sg5hIbOI7wtgE427hHPPzSzljySqL2w+W9Bze6e+APGwAvn9/xsV54GoPJwsJRf4X5Tsbum6sKJl0xDv7k8/pV45Og+xLf7zbtN10/8Z/q9jK/z7CiEoBg8vVzhv3z/BJerBtO7s3Yb4s22xMaY9h6mO6OUKpKDJhtAVF7bx91vd59B0gMWSl1JT1cOUjpPV5HGgZ2b5z2PWKD1NmV83TtvWVhj27RNF+b+q1Y222y8Z6tNGtMBLdbaNl6zed7AO0+2qjYeshvPWH41tYFdWzRVe46sqdp7UxtU6wrrao2nP3yKf/6/++dYL9Zolg3+nX/87+Dd33yXVaft6jjWJLnDhQn8DkbfYnwT3dl5WloZTQH+Aq9qNsiZLWI+SJzLO3vrZf6cDYfuPFwZnfrjJq4x7TvrzWssvWw7dxbyRjbXHlxuujfiH+j3FxnH+HHkHDnEq6l0LiTA4vj42N07cU23e818PnferKSfpI5D0WSZTqdYLpf4i7/4C2drKNW3Suf6sQ2mOXUs1zekS9+9exfHx8dYLBbOS6dpmi/c+YqltGtbwZjr4ZK8uE4t9fyQ/ec2gT8la7xcmWNrPkmx9TmddU3xptMpmqbB2dmZW1/l8AmFaUfdWWuzHWlkOm57BYBPP/0UT58+7ckm76UjjBxPd2Gf57YvXs8AcHV1heVyieVyGR3bU3Jp5ZZ2G+KRe8RRLDxWz9JTcCyP4y8ipfozhclxMjQWlvCdzWa4d++ee/b48WP3cQYR6UTyPV6v197HHTdF286FOXbVUP/WwkNxS3SaXeMAoT6mUWxcCtX9UPmTvWnI5KdR6SRQUtBYh0wNtjytNCCnaMyXIJZH7oCVM7HwL1pTVNd11oDDX7T1eu22B+AU2vKYAFrtS1zAX8hoC6kcBSPUThoQEUtTsvAaSlJhDdVLLK8SBTaX57Z55ijioXYduuDOTRvrP7kGAQlOaCBGCgiK5aeVKbZoDOUVqpsYmJUrJ38/QyBOLL0mYywsRmPMTUNBndz0Q+ZE+Ts3j5K8OPjH08fe8SGLPK0MpW1R8r7I56Fw/iFFqbIr48v5KfVe8DTGGBwfHztjJwfENWNNirR61tpUe49jcueM1fsyGG37zspyUNl4HffrhNogxJ/zNr1woANwW5Z6vFTR2njax1I8Lect8yEQDWg9ZQHAsN+cdLSEZOBy+/VL5YWI0+OklVAJkzJtfhlg1Vh8crHE48slXi4brNCeT2oq450L610ZG37fm3MN+oAsl0RrrIxXwG2pqgF5vMrpt2zKzdXajdeplsbCAc9oRLhlYRu+ttrwEksj7hlrmg1QRSAtWJoK/SvJ1Gz4e0gUK/KmDKYx3T3a82KbVYOrF1ctGLtocPLTExy9foSH7z3E9Nj/8FMD2PrVm6HrlQDtrwLpr3E4LvLjF4G1A+Lnpk9664o4Emh14Kt8Tu+c6cfxsuBzCdviWMoh5+fQGiqlt4eeyflc6iV07qz80FuStd1HS/J8WU2GmMGP9C1juo+u+fPUzlkl1M1v/R1SQnN7Tp5D14+kZ2vbAA6h2wLK5VKurqbp1PumEllLwkP5hNZecn0v6ya0Ttt138hZ86eeleaTSzFblGYnoTw0u2tqHSz5DyWZP63/YmXnuyhqa5qQ3GP2DW4Ls7Y7h1zrgyX9JWbzCskheYTuc3hsS9uuS8ekEH6QynvMcSTU9jG9R0vPib8f0pZ/dXWF09NTL35d197un3x7b85Tc9JLvYu7ol3OhbG21RwxcsFoblOTPG7qw7NtcYEh/FP8bh7aj9CQibeUbuKF4nmnQKpQA3KPJ85Py4NTXdfq11qhPf1TRu2qqrwvoS4vL3tflxwdHeGtt97qecYul0vP02TIC7JNH5EKbwqk3odCy/PQtom+qf46Vr65dSiV+xgYs63yn/MeSeJehVJx3kbJDe3Nn0NcDjJuEKiUSpeiHHBL3g9dNHFesQ8kSiY83k9CHqYaLy6TjCfPaS0xymgL7RSFlFLe7pJfCGjS5h4qL50DVte12zIp99xUXtbQmbdaX0n1Lx4e6geyDqy1PY91viWc9AwmIqU819NUkyUUpr0XoX48nU7x3e9+F9ZafPbZZ7i8vMTLly+97XKBbkcP2rIq9e6l+hyvr/V63ftqnPddrU14nH0YgsYkrZ9TfREY3h+j6d+iaTh4y7co7oBOekYgJ20Z3OXFx5Owx6tE4/xxqNuGuL3y/iBRPKIOmbGW2tQHYrtm5mNHr8a8MC53Vx9lYakrJyrvxbLBf/2TU5ws1rATg7qqolsS89/0zHnCyn5ufMAtanQPAI3Ss5V7vnrvjNV5xDxjvd8xz1jyaKUxwcL3coXtzn2tNnMEnQtr0QG0m65DZ8y69566lOYhu269YKt11YVv4th1my/nw8+VNZWBmWy2ma4NmmmDP/+//zk++Gcf4O/9r/8evvKXvhJti7HA0uCW1PtQ07vXVQTvFwQtzaM3JwTKoaWX12h8fmYrGzJD3sQaCNv7mEHI6t5XXjYWwfP0hd//3Hiz+XfnL7P5VVvnDyVtjCIgdDKZ4OLiAtfX11gsFq6NNFuBMQar1ap3riGn0E4eUhZjWi+10DpF6rZaXiVUAlLw+7EBC8qXdOtXSUcai3LXiDdpo9s1yTUm0F8vlKwRQ3TTevjQMsTGv9wPNYzRd/XjZ8Vqa1K+BTCXJcdWWkrau8D50TFyoTUroDvajDFmlpA2lqYAl5y6i9WPZvMI1VGJLS2UTrb/53H8DrVJST/PtSvm8EvZTKy1nhMY112MMfjoo49wcnLipanrGoeHh+7+k08+UeUjfUiGj0k5NhupT41NoXdVs//VdY179+5lef6v12s8f/68NzaN9REa0RCb822iKBg7ZsGGTlY5aVIGdW0LiW2ppG5yjfSlnWmsuKnJK5VPaqDiRvAQ711PZqFylNZ/bp0PAZa151Ej357qblf5DeGz60lRm/C0RZKcuGRfDikymnEipGiMpfRo/ELvgmdIVZ6F0m4bX6ZJkWyLEE+eXwzk09pMa6tcpV/jo/WPVJvIOBrPkrrg7av1c/q6tq5r7+yXHOJ5x0C6kNEBCG9nkppDtTrV8uPKIz3LMfZtqwtpRkDJlxYQVVU5EPTNN990bfz8+XOcnJx45aA2AzpQduiWMLw+YkB6ah7l99LYcRuU5VydUsZtmgar1cqre2v5FQA4mEr3AAdmuzz839YCXfUQekAy0FbBMT2uvRIP4ufz7fh358ZSuk72NrzfT2NV19fveFm0tCVArBZXksEvTud4cb0GKoPLVYOrxmIN9LclNh2IxkERz9uVja0Ux3SoSg+IywL4GJjTiy+BH/6biHcB7bcVaa3C0yLuGcvT8HxpGVWx+81v8p61zQYoI29altZWLZALA8+LVs2Pl3uzTbExBo1t2rpvDCpUXrpm0WC1WOGT73+C+cs53vmb72B6OI29MuOQ9lrGX9VBNMjzc4u4u6Qx5ZC8Qls6a88kWLoJ1PujzEu2r/GvxghwF4FwOQyw+TJHPxxCmr5La/TLy0tVf+P3IX1G5qGR1BN5Xjm8xtTFYhSTp2QdqslbVRVWqxXm87ln7BxiN9i2PrYFLoby/zxRbO1cQlJPDtkSct6/bSjHBhKTaWg+pXFybSXSM4vvOCfrWFvH5lDOexSzQci8NR4pW3eqr8Tyzl0XyTLID+Y56B372GRXc5vkmVOu2JpWa4vUuz5GeUp5DJGlxO4/ZA0/VrvmvIsyDv+tHbMFdB+jUZwcvvsYb0ufj0m5ZdVs5ZQm1A67oBzbWizNmHFy7K8hCoKxoYreB5V29pjXTsjbMbTI+JJ8+rzUy7ZK35f0+afY5ELP6Sq/muTxxgRzNAUod6IbcpbFEMUN0BXWIXOInMxKF7cpGUt4yfYsnWBT4DDgb3cSkl37Ojj0hWzoXFzKi+5jeU2nU29roZiSSqSBeqXn5Qwh3l80L2p+/nBd1zg+PnZlm8/nmM/nHmA4tqId46mB3eSVPJ/PMZlM8N5772E2m+HBgwf4+c9/jg8//NCdY0LlpN905lgOUZn51970P5lMep7/Us4QT3mveee/CvOsBu6vVivXr7txiQOynTdsByBy71iwONxTFjDOK8qPD+fx2gGlm6fw0TfiYVy6ljoPWWn197ci5vnBhfv5perMu+uFdb/zPWe7egzl6qGh+IPHF/iTT69QzVovWFMbVNO4R6wDVjdnx3pxwNJIIFb+7kmmhLNm0DxjpQedlt554Xke1P49nZVK2wXzONbangcr3VuwLYcN3BmvzlOW3gvL5maLFpjlZeH3VC4CfhlfTy5j/W1cqQoqoEI7TlWoOq/e2nbn/9Yt2N6sGvzgv/gBjl4/wt//3/99TN6ZtG1a0kavCo1vExqN9uVtC9P1dw8kVbLeCszmPNk7Sv3VGMXbVv42SjgfwsWYsw8gls/tq9UKTdPg+voaxhinB/K4uYa60m38OO+QcW0XRlApw774kf5JW0KXAj9f0u0h+c5uA8hyb80c2vU7UUpDgYtS+1zIxhIC/WJbr8s1Gm/DEiBV3odkGfKeU7+Ire+GALFDSMrPbQ30wSq/18DY0n7+eaOh/eDLeeLmaZvx/VWjIX3tVeyfsbG61GYcekdTfAaDsSEj4xA0eltje2pRoPHQFhalk1lupwt9dRP64oaTBiZbq29fVDpR5zzLUazkFygy3nw+d0ZkTldXV+qB2RrvbQe/VHqt7kNgW4jGGISkUsjbNLVlVY6CWlqm20C7GNw1QFMb82J9QoubUuBD/fkmvowqWQCF5N1V/0kZZmQ8+XtofjyfHINY7mJN9gvNe3EIUCwpdMa0tkjW6paPObT4o/lGk4H4htpLhqfmmpw2JB7aNlV8bjfGeF9EG2NweHiI6XSK2WyGFy9e4OrqKuoBvCvFMtZXeJ3R/H/nzh1vSx0COquqwuHhIay1OD8/z+pDWntxUFeGy7SyjXn/kO+OBHTHJKks5+ieVM7JZILpdIqrqytnPMipO2qT7p0GuxIPbZtieGCp/9/f0pis9hSnlR3wEDv04wP83FeeN9UXkPaIBeNFPFLtx/uErDM/Dn/ul1mGtWm0+FReku8nJwv87HSOp/M1zLSCqas2ysajUoKxbVoBulZCDyCglV3bnMXvAKnPNuALbbUaTB7qipaBR9R+1r/Xrl6cyL+3nSwY2Mp5avxkvuxcWGuFlyzY+xjzjN2QaQyaumnB3BqAASpbdSAxeTbazbjTWKyXa7z//3of06MpmkWDh996iG/+1jfD9V1K/ddwXLr9armjXQKvxbwZaCq3EPaea20XAnEl0Eph2nwR6hMaCCt+m8pg+mCKal5hebpUx4/QHBczHIXmcBrnuC7Ij96Izd1S703ZTkI2EMC3W6T45OjbpRRaQ2xrl8qJW7oO3JboY0vSY6S+r8nyKtgIxqBQ34qtYbS2HNNWFdJth+SRwyMXcIzxyZWttL+l1rA0Zg35CH1bCtkPPo+UKl8piFEy5mvvXsjmFuvfOWXg77M2323zvg/tGzfZp0qBqRxZ+TFSQHjL55zdTWP6z8XFBebzuRfOP2oH2iMWQ8cyaFQ6d6dsX/sm7T2J6WmSptNp1rmx3Pu4VDaiIe+YnC+IQkdRheTIGSNyeKXIq0l5NlhIkJAQkodMs22DaGGpgnNlkxP3/Bg6qGovYw6gw+PzZyE3ei19CIwdohjF2lJOWqEyx/gtFgv8/Oc/7/E3xt/qVQ6OkldMSUvJpJGcBHIo1Gd2ZWwOGbe1uKHwsWQr6Vv7XmSm8o6NJSVjSqg+KU3q/Iht3seSuLlluomFdskiMJV+TANCzPgUmwv575A8obw0Hjky8vEnx4CUkp3icCMNLWy54Y4oRzkOlSt13rlsh1Re2mKJg4Pc0Hh0dITDw0McHR3h8vJSNUTFzuUZQqlFa6zs5I15584dHBwceOnrusZkMvFA2lJDCK/buq4xnU6xWCywWq2CILXWrtoCfMj4WkI5bST1KwJhqR/Is+9C+YQW/m0Y0DR9z9g2GgdsCSRt0YCOj/SQNY4vFbHj5+UMbLxaKQ6Ft23h/zamy8M/p5byBTgoK3mWkkzL5efPtHBed/00oj/B4Mcv5/jvPzxDNamcJ6wxrcckAAfGesDq5rcDYSvTga+i74b6cqoPkoeqJ6+xDmiJemZa9IEo2/F1/cf69xwo9QBViiu8Yx1fK/hL8JbCN32dvF0pP28saExXTpY+dCVvV2O6tuGAFXksN2jcFevWY7YxDSqzGasqixo1mmWDH/03P0KzbLA4W+Bb//638N7few+olTq3LK8Y5cYbGj+H39i0f/VvaxoD/HVetQE+brxnz40Jb3/M5cqVz5guPgyAGpg+nKK6rrA6X7ltwXMNPnwNEtNlKZz0JPJe4mEyLvHX1qRaPiGbSq5xLMYzRqn1bg6PoWuIXa9xh6zhZH0YYzCbzVx7cy+2WJqcvF41KilXbt2X6N+x/q2BP2NTrL8O6cula4+h+fD8eJ4akLJtveXY91JjIBEfV0rteKlnJXFS6VJjtjb+y7i5cpS8dyXvYKoMOXLG7A5j2ze3AfJCPEL9rNQ2HuKXY2tK5UU2B+Kn4R1kgyrpK3J8zdk1jOwpGs+xxt/c96XUtiHTlaQf0ndJj9gGjM3FacYka3U8MNS+8mMBTkOdH0P80jX5BaHQy16iCKUWAlp87TcnbhRNyTq2wsbLkztphepwNpup/EtkzgEU9kWyX5S2fSmlXu5910MJgHQbKWZUHbIwo74sB+iksXagwUFLL9sk5+zIWN+RxpaSPliiFHzRKTXG5ijqOSBBTOEzpjuHlJ9hFevrIYqBcDngNND/MEzLj5Q8aUTk76Hku1qtsFqtPKW/qipnlLzpsYzkooXJp59+isvLS8xmM1xcXADoyjefz7FcLt12grQlcM5cxBc4xrTeosfHx7h37x5evnzpvGz5OBJT/um5Ni/w/iAXN2OMD6lxio/NVB7qL2Pk3wGxYFf6LT1hu22KfRAWALiHbLeFMLURpdFRHvJi7TxsCXzt0APjxaf7Ll7Hp7vnY0S4Dvwqt4FwPx/+jH5zebXnfhkMfn66wB89vcTHl0tU0wpVXXVb1xrjth52VwJaxZUvDF34WF6xJvIsQS4u1Q/3iN0AnT3gFfABWQJfA56uPXCWdTE6B5Z7n3rpoBi+IEArlh/J0QNlN+1AoCzQgVXWbrYnNt3VgbMbIJbO4KR8m6pBbeu2P1jgxU9f4F/+p/8S7/7mu/jmv//N7PrPJu2V3IaXGpwxN20zfaXS2ow4N0W8bw55TtGMv92xanBmYKvnfWv0OD052HMH8PJ3rnBOCq3Tc9buch6W2wuXAnFcb6N5l+sZUr6Uzltq3N8GiI0ZB29ijR0jTX8i+Xmda+noA7+QvvtFXLOVrG9Dccey0QyJ96q0WQ7Is08KvUf8Gf2OAagyfah/3JSNcBc8tDE9BFBIoLzU+UXKFqvvIfOnTCvbKtUXSufJUNox6abHhNC7znf7PDw8xL1799w9HZXAabFY4OXLl65eaUcwSRKH4PlPp9NBttaSeDl8NNtEjp22JI/cdg/ZSrR4EnSt69rbVS5GqZ03vqSWkmBsjiJPdFsrNyQnNwyGjIOhzr3tC8rzjtXbUG/XXZAmq2b81cqjGT5DXr+chiyucsCJbepwbGWrRJEoXWynKKZgyvtt8ttm0ZfKe6gilNu3QgqajC+BBi2PWJ9NhaXiyOfyC/kUvxRAElNOtXRDDSpD4+5inCYq6auhdKn63UYe3je1etcWTjwOgXly6zLJR5ND9veQUStleMsJ5+Xg9Un/GojM+azXawc2Ey8CY3P6dCmVpucgadM0ePnyJZbLJQ4PD70t/fmihq68HCV6BdXddDrF3bt3nZKd8lhJLVj5b5KLt9GYFOtz2iIoZnjlcXLIWvrnQKsPxG5iemHG9NPq8reWel8eQn86FIjyaaN13q+Ul8a7fW5Yuj4fXk4dcdLmpdj9UCDWD1tbi6dXK3z/00uYugViTb0BUANnxDpglo0Z3njJwBB5lb/b2nDoSqw6/Lgyfog4H4MWvLGmS2vRApMUJruE7dK63w271+Q0LA69prTlMNt6OOjtWjG50HnHWti2TRrAVv1ti9Fs0lRsPGls21YMTOYgMdBd3e/Ns8q0Z8vayqJualw+u8T7/+x9HD48xLu/+a4D7p1nIskS6t5Dp4Ft0qb4up8FutIO0NRdbVFcTJu21+Qp8abV4qrplXZ1HyJocRL9IDQn5axTQmteuSaheFKn4/O9XG+VGPekvCGdIKSLxtZO+7YvyXLkAmrb2DRyKAQMULuG9B2i1PbEMRrD5nCbKHdtH0onn5esG3LjhuxuGo31jsTaN7cP5Ni1NJtJSfqcvHPlC9k2Y/mPuaYPycZlLE1XIteQPFM2JU3PlvaFXArNByXvRwn/GC8eti2YlvOujUnbvFechqblYCwds0S0XC578xLt3MFJc1CTxPtFXde9DwJkGu6EMCal7NOhuWcXc22OLFoabbeUxWJRBMbmxI2V9aZ0jn3lO8gzVlP2xqYxlRktXc5Lt49G2PcCYywqWaS9CpRaCIbCtqWYQvh5H3w4SWVtLIUhll+IcpRw+RVWzocFobyGKNklaXPlkHxzJ2siabQuNeLk5JETJzQ/bdunYgu2UJ45W2KUyrLLcZfzTu14wEkzCnHlq+Qr/FjfCckHwAMieRgBjXVd4/r62gGypEyW9NUUaQBlCW9aqNCXnH/+53/uQNbVauXOh+ULB7mACbWVNHzwchOPuq5xdHSE9XqNs7MzLBaL3lYt0uDH211bnMeMxGOS9gEB5UXXpmmwWCzcPV8YDqGWJ/2TlyzQNEBVdR6zTdOiMlVFY4Zxz9p/zSMWG7CU8mqfe2hcz1NW/qY66O77qIBA/eIlzqsYdHJTOn7f/20D4ZyMu35yucT/+8MzvFxszoitjPuPeb/2PGHlM+jXNlfjVU/Qw9UEnvduE4YuH3HzQEPnmWf9BXtwi+INK/c+bOJJr1hjWzDJ0wGaDS+2PTF5zNLvxjRe2spULi4sWmCXumbTyeN1SXq2+W0M44fO+xW23Z7YNpt81rbzjN141tpqc11v6qVu2/gXv/sLPPuLZ/ir//Ffxbu/+W6o4vuvFT2S43sAzM0CebV8R3jGvadz0nhjsUw3cJiOAp8j5ZFLOUBs0dbHWlvKMOrPGkvD/mVcHp5J2lolB8ANpZFhoQ/Vcg3SmlFRvkcxHeJLyiP6+JbqT34ATzpb6liGLyKNYfhOpf28AdljUgkgFQJwY8BuDMjbVj7tufahQwzs29WaPsZbG9NLbZBafC0NB8JK+/+2703M3kLybgNay90kvqSWQvXKdYX1eo3r62sXn+xEtHXxl/TFoyH4Yu4HETRehT4a0WQZI98cflEwdii4EKIhhc2JX/JFC3+WGkCHLgxKQYybJm0RFqLQgmpbAGXXlNvesfucNLHnOeXP+dpr6MSfq2jte0HsGUcDlAIYJL/cfImHppjS7xAIJ8Eq3j4lCl7MOJKamErG21Dbx8ar3EWIXPiHACmNb2wiDE2eGu9cGgrEhsK3mWdiQLT2bJt33zOwK/nxuBLY0oxnoT7C32dtPNPip/qxfL9CfVt7Z4xpt2A2xjjwjX7H+t0QyplDQvy5zLR4PTs7c+F1Xbvzvji4HQIUc9qb5JDbNtO2NGMZp0LG1214a+OZVrey/67Xa3f8Q+6XsCmjhrV07XvGitggT1fuCevhIZbiAYCBf8asjxIZ08X336/WK5bLbi3F755TGOVrnFeXL3tuc+nlDcfx+0iYj7XAxXKNxrbt+Wy+xs9OF1ibDdBWsfFmA+RxUM+FV/2xiadRQVjebwUg68IipPabVH1awZcBO84bdhPu+qYV8QgQpDCLbmtUywBZ9K9e+kp537inK+97xvp1ZFieTB4exuvbVham6X47UJm8Zm1XFqonBzSzs38BtHwAt1WxnVlcPrvE2aMzfP03vo43fvUNHN4/RD2r/fLmUvca5sVFIH5qiN1GFd9F2lu6lI16r9pIPIPsMqlpM/tAUD7Wx4Hhc2NsfSjnwFBcOUeH9O/SdVdMx5O6m6Yz5ujZKRlSlFM/mtxShpJ8hpDUe6TcIR0v9oyey7CUDLfZrjWExrT5Sb4Ub0jb76uec+wJ+25zaVdJxZOU8w7n2i9z2q7EFpqye41BchylsNAYPmZf1dZ8Jf2nZCzS8g+Fxew5OSTLmMt/X7TtHLNt+hgvOeeQ/YLbVMcaY7hdIKdf7IJKxoObpNLxU9rAQ1R6tuqYdREaG0I6cohK9d2YPKHyBcHYXSgkryLFJssS5Tv27KYH7qqqcPfu3R7Kv1gssFgs3H1oy+TY1wEpg/EuqPRFu800thGb07bAzpgyyDMi99lfOJW80zHPwbHaSRqOtbxD6balkjaOjWMlRouYIi8n0tRCpqQOYiCoZrAA+uOhtnUKyai1V6pepCGKvsDkX5mGzhPXyk6AOT+XdF8L7JBRTwtPvVt0z8+xkF4BFI/CyBuS6OrqynvOQdpdkLYglsTDqfwHBwdeH1qtVl58ay3Oz8+z5ebnvxrTeb1UVYXlcomXL19isVi4fKRBli9qNMNl6D0dg0J1yBdckvgYQe/rcrnEarXC9fV1dr+PlaFpLNZr6SHbesY2TbsVcLPx2GsaswknL9n2WVVRmg4EtQ6UJbSgf235c8RB+92/N4aDpHGEyBigX00KygEtnh7etVksTvf7emXxX/3ZCzy9WmFyOMEKgJ0YVGbjDcu2HvZA2I2nbGWqLozF4/2j17cIJJS/Xb1E5h4J2irps2kDojpW0hu2RTc7j1jm9Urxop6woXA6K7aB83ql5z0vWcUj1nnMNhugqdnIwuq0162ZZ6zbJtluPGHdi9HVqbs2nbcsgJ6HLN++uqor/PC//CE++Gcf4O/+r/4u3v71t7PaIPiaBF4zFdwtnWZdkW0vDBBjXoy3VeJsM+XbwvQifq4XqhYvVBecYsBniFwaLZ4Slrt1sfbxhvc+G+POOt7lOrWqKhwfH6NpGnf+vNQtga5Pka7Aj3SQ82XI+5LzyVmPS12X89PS1nXtbV+Ya7RPzfearvkq2BM0PT4GysZ43FYqsZWV2tViOuTnibaxN960rVKzhcn1OIXzOHztIkkrj7bG4bxk+hKb0T7qT7MrpPLW1lUxOwgQtgfLNiGbwxBbw5D3scTeRPG3aZfYOes3RUNkyLFRyHi7koXba1arVdZ7pp1XT0Rrfmkv43ZmsoeMIT+XI8VryHwcq4tt+3IOv6ZpcH5+XpR/ifdq6Xtf0idL2zhmbw+NtUNo8DbFu6YxJq6xBsXQCzRGQ4xtsMzNT4ZNJhN1oMoFDGL53YSCm1OfQwe0IQPFUBqj/ktpF+1VogjKd2vX/aeEvwZKpOKX5BMD0nicksUFzzvVH3IU122U6VDa0roMheWWM7QwKKmfWP1TO+5iDuP55o5TJAv3BgzNXzltFFtYpQxYOfKHjH8a8CfjhtJpBpebnHdz4ubOr7y/DcnLmBbsnc/nWC6XDrDXxq9Q+2r1P2b9jrXApP4/5My0Pv8WRG3bAJt/eo+Mi8NSsPA2Td+YDYB5ptI1LKb14lO8tg24B2ybd3ffxevezX5e+nCQa4CS91Z9FvwN4MXVCifzNT67XuH5fI3atOBaVVceEOtAvA3o1pZjA8LRtWLer4aBstCvgPJboV4fMixu75Ee7grsfloXj5+N6rYoNgYcqHUercxzNuT56jxTm/BzOq+Vg6Mur41XrJNH1FmLD2/yqGwL6Bom38YTkHvKUpvw394zkQYG7Rm1m3qzVfss6SFrLeanc8xfzvH8x88xPZ7iwbsPUB/4Z0o5vpQnb6PYkJF6nkv0/meAj91jq/ch/lvjsY2KnUprA3LcJtqyvYq2OU7JYML8YvqqpnPyOY/W+aW7QUidUM6pfL6PgZmaXiZllbqc1CPonoCAMQzDIZ1+CHiwS8pdS2p94jbQtvW5awAgRbG6TK2LY+uYMftXro2BKNUm2vsXe4eGlCU3LR8feFhIVvodWg8OtZ2VvF+yrnf9Pmq2tJA8obS54RrPkD0gFWcMGlKvux4bh9q1YulT72BJfiX9Q6YPxS2xeTZN422brwH8BMaWyilJ64dDyk+UM3bm2BeHlCU2b8TGmKHvnpYuBNxuY5cO2Y3GGjNycIibokFg7E3SLiezEGKuhYfOwNs3DakPGb+qKnemHicJxt5UebdRgofQTb+UN02pRfPnnYaACWPVj5zAafwhDzkADizJ6fslE2OKNKOKVP5j+Q5RHmKypBYPOQsAihv6aosbfVLypJ6X8pDgkSajD6TE+dd1jbqu1fONre3OIdXO3pSKV2oBQeeP5sQfQrLcofdVk5/iS6+OsYn30Zw+JMna7nwvDVSk3/JDDU0OyZcbZ6lvzudzXF9fezKHtvJNvbP8vRpS9jFJGqnlLgzb0nqte8bSvTHSM5a8YVsA1Vq4eHCgKgdlW3SH0nRoD0d9eBhEuHbPw2S4fDac+uOMfN7mrYcbNNbi//PTU/zo+RzraYXJ0QTVpGqBws2WwxyMpWtVVd0V6G9jDLGlMfS5LDSeeGEChJRgaxR8jVAPgHXYrPEALvXcWKpQ2/4bCE/YhgGyFK5crbVetzIwnles85rd/BFw7J0h29j2uvGO9bqpvG54ut8irucha/z/ymzOkZUeshbOQxZV+29g0Kwa/OF//oc4eniE//A/+w/x4BsP3Gukjm/a64ZIXKDbera08V3z2V6Yu7XhZ16YvEq+MswKfvKex5fxuOzW6nJp8mp5JigEfsaA0Z5X6lAQlffLnOhGz8eFb94bdy5yiSim/0EWEY1/tNPFnTt3sFwu8eLFi6DOywFPfi91WJ5XaieTmL4ueaV0hfV6jcVigaqqejaLXMrJS77XJWDbPig3T9L1Um3wJcVpKHgXo9tgQ8yhHAP/LoHYlAxAef2H+IVsGtr7U2J/3KXtegjIqsWJ2f1C4FWOrXCoZ+yX1KdXfQznc/ZyucTJyYm7DwF8cp7P+aAst9/z/hjKP+eDBO3d4PxC9qbcsFwqsb3m5quVjWw7nEJlzP0A8ItMo25TPJRPyICYa1iM0bZA5VA+RLucgIFhcpUolbkT6C4n2iFKcEhBiCl/JXV5WxSK0EKZU+4Au03+pfFCCu9Y+Q3l5YyTI9XZmO8Pr7OUnCWyDnl3U+/c0HYdYjDQ3m35PsT4pxZ4Je+VrAOtTkrGoBjQqOWZwzPU3vIDIzkPpOSQdZsDFO9qkZ8iLhd/n0Iy7NPQoim+dE0t/rU+Zq3FgwcPcHx8jJOTE8znc2eI5dv0hEDTUB1o8vBtkGVZdj1nhnRDPlaWvv8pshYMhO08y9v/Dmzty2VYHKrHjmcnUrdNMY/ToUEdKtSdLYtefOkVy3nwMMp3jLFc1lP/3vae8d9PLpb47LL1hl0AqCuxJXHFwFTDwtCFuXDe9gSYGjFm8XAGnuUsljUefoQBgJxhfZh4Orys89bsecayZ5yP5/la2eiZsZInAHd2rAScpRetA3kJZCIvWtPycB62ppOPe8ga07axbWzvmbtnHrESlO15yNbd1ViDylawkzbO6nKF+dkcj/7VI1x8eoF3/vo7qKcC4OleMb1+EZnHRNosYm2cipMdXsqnlKTMOXwLytCriyFy3+CSLWvuM+KaSbHxSc7DXMcL6YopXUjjq6WRekMsjbYe1GSgD8en0ymWy6U7RqkEcBhCWtlS+rxmRynNcxvwKccuMpS2sWvdJlBmDP20ZA2eKntJm+W0f4kNoMQOq8UpyW8b2jYPbT2Ta/fl64hSWXZtB46t/be1d4Z4lMgzFAuQfHPCQ7aLkvxz62fbds1Zzw9Jm5NmF32ypK9Zqx9JlaPT5NBYekFsbi+RaZdjwBg01PYaCxvrvU/FSbURhZXamGNzW0lfTMW9cc/YmJFW0q4ns1eJ77akKdO3Vdax6TYsAoh2qcBusxjLVeyGyi+VpW0XrqWUs5gMDeb76D+5spXKUgLklMiTS/tYiBMYkrvPf4zo66+hvEgWDajk6TUlVIJjOcCldi/TkSzaucwhRSWmwHBDmjHGGfy0c8hyZd9l/6Cv93idx4yQQ4nqYagH7jYLSLrSObNf//rX8d577+GP/uiP8Nlnn7l+PZ/PYUznIct5DmmHWP/lsu5Ll+My0Ne14+ZtsV43WK0aNE3tecR24xD3jG29WzvPWAnatl6iNNwY03rStmVpn3fWevqthcnfdA/AA2B5+2jv/ZA5JhZu1TgaIPtHH1/g9x5doDqsUR/UnUdsvXlfA2Csd90842fGEqDHf0sQNbg1sXie8ooFtutvBJiCqs70w91vqkOL/u9NN/E8Y9kZsM6b1nZptLAWD2XhBt35spbJyeTy+o9NXy2s5xXs5c/jukqC1wYVqm6rZoMWfGUeh85btTKABdarNX7/n/w+Xv/26/iP/o//EeoHNRyATfMXAbCbMjsZuZih+XlTJpKvB8rLdyEDeNQ8ZmVYCMzlfUXrNyFvXGrzQSBxxnPnXc3jin9PBgs/bii/nOGrcNofZVtihZ8xRv+YI4dHQje01nrnwQO+1yTpKcSHnxtPcfm91PE0/Ynv6hIDNHPKQ3rKvXv38M477+DTTz/FkydPgulTNBaoMwYvjUqBWKkHcj1XrmG21YE+D7aim7QD7dqOEHsnZZyUTLmg5RBAtiSdtn5OUWrNrK3NY3EBZHnjD5H1i0Lb2CU5D7nW5c/krg+loElq7P08jH+3gULjzdAdL0pp6Di8z49Pvmg0lq2sqqreOGCMwXQ6LRqDyIY2VI5c8sDYki9ZXqUBaQw5t0XFbwtZa1UjvEZyG6DVavWlu/mGxjSuhxS3nC89eLzSrz3GoqGKZ+hjgJgRP5SHtmAo/ZImxis3bxmeEz8EenBlk08s2jabu2rP0LNtAPjUAonPLTn5hPqGrP/Utmza+5YD1EljFQ8LxR/ynuQoELF6I8OZtsU+KSkchMuVUYKxVL4QGMsNRLkAs8wjVMaQXPucqymvyWSCuq5dOVerVfbiH/ANFcRXjvWhex4GAIeHh7h37x7eeOMNWGtxcnKCpmnw8OFDNE2Dq6ur4BgU6/dDxliebhvdLKdNeR3yfEvG8RjN5w1+/OMzvP76Ab7znfsbEBYOUG0aOOCz++88YrsrNiBkC8x2ovS3K3aIkF8bLoy8YLvfbXqSw39O+fpx5bMh1KW1Sph/r+ZTG2BawdRV693ItybeAHAqECv+edweACvG1tjc7wG09MwEwjfPXDqfUZhk/bDzX6np+bambZK+p6YDE0k2Br7FPGNh4LxYbbMZe4TKbyvrzmElnhowrXqykoesiEP3PQ9ZikOet7z8G89X1/XdRwu+ZyyFm6o9Z7ixTXvm8MZDFgCqSYXr02v88L/6IV7/9ut47997r0vP89Day0TulfhFIJ4SVQO3e+CkfO5eNJ23um0xjZUZ4LD/OBnB/x2QqZgGpvU+eMjlU5JXKO7mvTRGbE+cMQ2F5q/QWoyAuevr694REpSWp0mtR2Qcqdvz+T00r/JdNEJ6oNR9lsslDg4O8N577+Hg4AAAcH5+juvr62xdZB9ASaosQyikD6f0aLdVv9An92XLuY12wlyAModi/UnqyLKdQjaQmIyl8UvW87nrEk4la9AQvxQAJuPGxifJq8SelKpPrT1DPMZY4wyl0jEmFn/bMTI1V8VsNvx57F1J3ee8A1KWXPuCJuurgg3k2pg1yrGNlpLWZtvIWJrnkLRS5+HPcusox7YXi5tKG2ubmH0xlj7EM3SsVSzvHIrZCUO2KG1MqOu6uO/myplj9w3ltfNtim+SQsb3GKWUKR7vpupomxc3ZIjXeFRVhclk0ov3eaWcASsUPsQoXRo/V2GVsr0KlDsRjPXO5bS1Bn7wOFKJ04wVOYpoLB8iPoFsa0zYZpGgtUUpnxwQR8szZ9yz1npGnpRyl2orIjo7M1duzi93HtIWKFJ+zlcztmnbz1Ja7rEqFaa6rnFwcID1eo3VaqWeK6uVUeYfkpWHh3jkhPEySk8NXsYcBTOHhqZvmgZHR0c4PDzEYrHAer3GcrlUDaGxfFMKXIx4usPDQzx48ABvv/02JpMJXr58CWMMvvKVr+D6+hpXV1deOp537qI2JgdPXzqPbZMf5SmfhwwwpXR9vcYPfnCCr33tGN/85l3UtVG2LIa4SiDWONAWIM9YA1+sbrtiZ8WHgQ+g0jOAA66UXqJGxgAaKNs94/nL+U8+92X17iSWw3GP3vjd5WfqCvWshplsgNaQR6ziDasBs63cLC2/Zx6tBuyZIDU9qx7Nq62of7Go1lqfH29Cvxu4q3u3eLhlvEP37J+AWlSbsM32xKbZyNKge0bTSMX4ale+TTGFcTmMKHMDt92wi8fz3bxLJJ+3rTT16dp4dePC0QKxDRpUTesxXR/UmJ/O8Yf/+R/iG7/5DXzj737Dec462eDLY43vLevicPB8G1Ler+A8YP3fPY9X5Zr0rk3JxviFwGDu1W2t7/na84SVaW4TjS3SZpyxRtRbQZ+Rc5jc8YMT6UyXl5cA2g/F5DzI9coYD4qj6QU8f3Xs5UUVum6O/r1YLHB0dIRf/uVfxtHREaqqwi9+8QvM5/Od2GOkHp5jZwnFHVM+qePytQZfU3LjozySgq6y/l8lu8EuKce4G4qXw1e+HyF+uev9bXXzFI1d9hjv3LqXaUplDBnyY/mn4u56fROjoaBCqLzaHEPxc9o+NL/QR8pSLll3sboNjc3avTw+R5aT0oQ+UAnJetNUCqDdBiqxoY3Nd8z3MseGkGv7K5F9iF6Ro7dwkrpe7odb2rhQOmeVjp8h/TLkGauFp+owtLNLSJ5QuWLj5o1vU3ybSOsEocqLVeptVmZDHeXk5KTXQdfrdU+B1zr3F4FuUsH6ItBtqt+QcSDHs7K0DLlK7Xq97ims+1a2bptyF5ocU+3AJ+8SJTxE2kTNiW8Fl0sh4Fi2e2hukkT9h/7lYqiua/fhTe7OCVIJ2qZ/pNqB4nCjI9UFpYnVRQhY0YA5CfLmEn28tFwusVqt8NZbb+GXfumXsFqtsFgs8Gd/9me4urrCdDoFgOjWJznGiRIiMLiua5d/Xdd45513cHl5iZcvX2KxWGCxWHjAujSupoiPTfw9XK/Xgz6Oy80vtoDnfT51Zt42tF53Z8fy/7ZPtXFou2LaorhpWrSoqoBWnO7MV2sBaw2qym7CCfXprj7gCvaMfiNyz8NkuCTqA5s7FSgKpPTCrXcv01gL/OJ8iR+ezPHh5aoFYKv+tsMclOXjgQujbYmrdtvPKAjLrm0tdGBa77dBMJ2MD/T5ZdEG3HJ9WmtGk3kFOu9azoeDaRDhBJyKqwMaOTibAcraxvperFRG2wGX1loPoCIglLZUhgFstemDPF/Kg/onTAe60rux+faFzo6t0HrHVqaCbWx7nbb5Tw4nePnhS/zL/8O/xNf+B1/Dt//H3+62I5btsslXA2S9/HnbpSg0JNmOr4yX8uos3lbYMl1qA7J69/zKdREGvLqr1s+0fGU8Wd5tacyhfiAvWXeStt36WM7P/KMv+rguZpQm4scryLihdUcuaElxSI9L6ez0nB+jQKBsXde4d+8eDg8Pnd411pyeAxqFdHQZpt1vu9bVvF01nvzjRL6zEn2QeZuAhZumHNBzTDtFbE14G22LMaBsCHBSWvYc8EN7dhO2klC+u26/FBgdqveQXDxcrgtz7ARy/Zhjm0m1VQr8ls9TNgVtp7lUfpLHl5RHue8hn5uIxgaec8cFbZzOAShzbX454x3nmZNWS1dSR9uM7VrenyfaFVYR3aa4lG5SodMGyDG+lAjxuG3b9eZ2jlC90BezMZLnyhG/sQ3HuTT0hciZcMeisfnmKqQ3RTkKV4pu88IwpGDnTl65i1+pXHIwNqVcciqty1T6IYpobhreb3YxF3H+midnSqYQacBVrhwhuWM8pdxa3+NxyCBD+dKX8nKhRWAVBzpTC7dQf0kZ13j6WB5a/fG2GzIP72q+MqY904wMnw8fPsS7776Lpmkwn8/xwQcf4Orqynml8G2LNdA9JDcHkHPHWQKEqf2ttZhMJnj99dcxm82cVzTV55AzWzT5OHEDby6VzHch3YYW3A6w28G8aS1tS0xesWD/3EPWsLDwmbEAbVdMKI8PvBrT8QbCHrJtXM1LFi4O8QJaj1jKm+fFy5lTF0qoFy7j2BbzQWMtPrla4V9/et0CsRyMFR6xDpQ1fbCWvCVdW7N0wS2KY4Asy4+n6QGy/JkL4D8T6w1YcC9Ol56BU8RDu5e/vTCzOStWPPPOjoXpecRqZQTgb1dMcRsRd9MWtrFemNtGuEHnYWo2clftGbQurGo7h3rPhxMLf/tlqsONR60DpC0c2FvVGw/ZScuontW4+PQCP/gvfgBTG3zzt76Jqq5c3xON5YeJe2/7aPlOGOjhGkWASc0jNbhlMRgfGw8LyREEey2LE+Kv8QuEJ2W6LUsEWSclcvGhesCUFNMh6et/ikOGczlHa0CrfCaN6Vp+MUBQyizPpuV8tHtpMG+aBsvlEsYYHBwcuOMgSJ9K0RB9T9PL6TpEnyzV32Tc3LUL/02yyo9Hq6qKAitjGB93ZcAM5RWiFOiUs/4sbbvQGi7H9tjTN26YQu//UF5j2fBSNoZSMCJFsXoIrc/32YZD7CjS5iT7KB+HtXWr5CNtCKHfJXJxCtncjOkDxan3iNuFSrZZpWe5NqJYfd1mu2cOjdm/Y+9zztgck6m0vqWtEEDWznGUNkW5Y6ocR3LtzDFbXo5MQ+bTbWnIu6DNCaH+sM08FuuLJfqDpL14xsYaLGSwLWmMoYPYbVFwboL4VpXT6RS//Mu/7Dxm6MtTTtZafPLJJ7i+vvbCq6py6SjebaR9Lgb2Rbe1TLdRpl1SCBzJHfBDCgMPXy6Xan5DKLQQDPHMARhLeYbk2iZ9Cck6pLFQU7xIttA2xaSYaWfG5ipCmiIhw2Leu6lteGR8ildVldvuTW7xq6UPPdOMdznEt9YrUYY48EkgI/cWiJGWT9M06pnM21JVVbh//z7W67W35T+XQ3u/+PsUWhyWLGZ/8pOf4NmzZ24bavKSpe397t27B2utA4vJQBfrW9rCWiqjVA7tnI4U7VKXILm2HUuJrLVYrxus1wbrtcV6bVFVFnXdApzkEduOE3AescagBSJtC+a2HrMAYDdbF1M88pBtibY1brcztmxbY7LuU1yJ+kj0CLC22xLZWsAY2R8Bv+m0duSLN61+tHs/zePLFX7nk0u8WNpua2LxD6C/LbHwnHXvjoH/G91vQDesuxLSbyOeGx9s5PHaiwLaEZ8cxCXUTCbwO3SV3YDC5DbBEkwy6HvGgqXlaUq3K0YLiDZoAAvnZettRWzhPGkJwPUAYim7pEbEM92V1z95uxprWi9qdk4uDDBtpvjo9z/CP/tf/DP85f/JX8a3/kffcmkdaL3h7QB0Xo5NXUrAvGOiyC5IHZcs/2l7dSyBWMfDsmc2L22wjolHzODQR4j9tAxstdZCBV8pyNouP00mJU1EsF45YnJG+aXylemV98F7R+k+Y5iI2U2sbT+0ojNVrbWYz+feEQkhXZKDdaUgQkgn2Xadaq31vF6fPXuG3//933c2jJOTk9G2KU6BNpquo4EYFL6rj/a57hgCGqgNae3IAXlarxCQHaMx1vOvgk1giLF6rHLJtYAEl/a5Nh6Lbmub8/qMbVfJ46XWCbngxb5J9p2QbNrYUVUVZrOZV1d8Lag58GgAruRbKr+kFA9ppwnZdL6km6fQ2EbPSkizv21LxhgcHx/35sjJZOLhHp999lkPGwH0vhqzr409dnyR+720yQKI2jhDdVWiw6XaL/Y8CsYOaciQwW5spWWbeCH0OqSID31BbuKLghSRTHzCMsbgwYMHODo6AtACP/P53EvXNA0+/fTTXsdMte9tAQxvUoZU/wmBPzn9TiqP+6SbzDuHtjUA8Ks2ZoTGitSXMzJOzmQsv/RLgb8xpTtlRIil14iDRykZdtFPZJ45ecg0vD5D27PFxriSsV4u8ErlTcWLKXsaL1qsaNvzxsb3bQ0EsUWbRrI9tHN8d1m3Q2k2m3mySdLG+tB7yuPG+qTk8/LlS1xcXDhZqN6WyyXW6zWm06nb+ULWbapOuZwheXK2R0xRajxJGUu2UZRT9dyCqfKsWPrvPF8dNqKEWwImLADw7YqNy6OTp73vrtz71UJH77R7StvmSfx4PjLvNOKhpeFh1rtvLDBfW7yYr/HB6RJNBeeNyD1iW4G6fw+QZf/ecwJQObgKEYbImCfTynfS9NOrwGvmtKeBdnYDjvNn0guWP+95xW54eN6wm/e45yVrrVfXBFryeIAf7pWZ5GX17MpPfChf8oDd3PM0bjtgyoPLBBEu+gQMnDeu8/ytjLe9MQf2YdF6YKP1xK5shWpa4fzJOV785AXe/bvvwnna0vvA6p/aqdfGLCwIyioUHIcs/2mTryEHYmX6GG8VRMxJK64qEAzWZzJIi5valjmLvazL3HQjE3+n6H4oSQM07cChHeMQA5PkWqfEeMjTlOrlsThcz7u6usLHH3/sdnO5vr72dg4K8dbkz9VrQ6TVjRtb2bWUcnWdWDtyW4+WZsgHcjmkteNtsQONoevn1L2knL6pAbG5/DV+Mn3Jek323RLbwNB2LrF3hd67ULxcmVLr59h7edMgLK+DnHrKsd/x3RBpvKW0Wv9I1bP80CdUjhANte9ov3levE5uqj1L3pucekjZfUpoyDut6QY5Mg2xK+XkNYSMaT/6lx/SHxwcOLzEWosXL16oMqXmwtw6CdGubKwhvW7sfHLzz8lXS5MLpHK7b4hvbjul7FAh2rln7JBBgwzDmuC7HCBDvGNfkd5m0jrXarXKdrEfg257Hd1mGrqQ2wftavJL5bML/jmDe2xyiim1OQpvjow5+ZXw518LxpRjz8it5K+BYZJfLL2WXy6FFhbUpqXA1VCicVbOEyljFK+rofLJNLTNcK53Z9M0uLq6cvd1XaOua8xmM0wmE6xWK69cuQY9GTd3kca3VM5RwLepu130jW3a0VrbOwpAKvS0OODPYsS/ZiaPWKrn5XKJx48fwxjjtTN51VxdXXk7aOSMxUPP29WI6pJ76WrE6yFkSLG22xZ6yBnOKbLWYrlsUNcGq1WFum49Y9frFsmo61a+1mMW7gxZD8Mz5DELVBUHZcmo2p0f255F2/eQJfSn7TNdevq9kZbXEC8FrPVlIoC3tKpakeWcqcUBXszX+H/+/AynKwvUBlVlvO2JOfAKswFqjQLEinuAgW7GOCCvZzgigI9+G5GGpe2BryLceyYpVoc2EEeCYkb8jl1jv0MeslbE2fymbYxh4XvE0jOwsYinBYvPy6PJAXTnyzZotxzeALwyjtt2WKtK2wKnVd2eCWvqlp+pu3aqbNWCxhawppWdPGSbqkFtuy/hq0nl4nmArLVe26tjkOzzQxC/3ntje88koOi1hXjuAaObNu15zaILc/fWv/dkY/zUbYu1+KJve2kD9SbzLt4COfUsFp/JpeYbKZtaH6a7H7LWi+nvNG/yudta/7gT0g1oTszJh4dxO01s3pUUW1elaDKZOG9YXi5Nvn2QtvYB+l46Y69jQ+UGurUdHUexWq1Q1zW+/vWvO2+e2WyGO3fu4OOPP8ajR4/cx3g550CmSKv7fYG+pekBH0AfwkPq5xql1r+5NoRYHmPSmEDOromPRZL4+lDaSmg8jJG0JYTqXn7YELJf75tCc4MWj4/Z9IHu8fGxCz86OnK7LTRNg/Pzc29HKS0/bZ11m+ya2twXGr9i9oJdlSfU514Fu7ps51yZc+pS61NjzF37plDbhupKvmu5ZY7NS1pfzsHeNBtjSPYcW9VQitmFNFmG4Hlj7pYXoiwwdpcvfmxg0wzNu6ASRaiUX2mcbeuad8DQy6JNzgcHB26ireu6l1ZOujGZc+vstk8oMZAhtvjUAKncPOQiNgfoyKXSBccu2ydnsN9HPypJy9s2xXOMiWcXk1dorIv1WTlGhwwQsbQhgClH0Sw1tsQWTyHDEs8jth1wjFIL7pAMHnig1FNJvjxdyiBGz1erlceLFpbyfJhY2bj8vC5lulDbls7tvG5kHwstPnPfp22MPLy9aAtlql/eL2N1qPHiRF8o04dVPL7GRxoJefucn5+751JOzivn3Uv1s1Ky1nrny8lxIMVXkz1U76VjrYy/Wlmcni5hLTCb1cxDlsaUFtDswjSvWICs8/Qc6DxeO+9XC0KAWp7dldK3ZWrv+e9NiXlJXBhVJxWtvbde2BCSaem+sRYn8zWeXrf/cwtU08qBqj1vR+PPJ71/6YlJP7XxlcVznrJ05XF5/iK9Cs4CHn/V042BMDI+wIAey/KxcB6ysKzPGnRequzeecJSGHQvWOc5ysJJBum1B9uVmXvIkiesVy92E8f069rlJ6+wfrnYMy9Pw+5F/7DG97Sl5xTu4m3OnYVBC+ySh2xlYOzGQ3ZSwU4trl5c4cVPX+Du23cxuzPjrx+kxywAV69R8D2HlHcuOk5ZcXW3NptX0us0JFcgMg/XPFB7MlgRL/SfQ7ux/YxL1EdYn4pGLzBoNk3jnQPPSXp6pHSnITKV6l0UV9OF6Z7GB340yDbbUA4xFst0lDa2DhqaT27+IZJ2Cdp69PDwEHfu3MF0Og2uhcaiXH1tLPtETr+TOmFJuTl/njZkW8uRgd/H1tucZ2lb5bbDPijVNrm6Pf89ZLyR8bV8Y3YEfs/XzJwvtymE+IeelVBqnTOEOMg8mUzczkq0VtyFjWoXlDsWyHeqxOaUQ6VtXMJ3iJ1oCJWs/3dBmt1QGyPHlDNlrwnZMXfV3kMoJGNu2qH2+Ns0RmwjyxhtE6vHJBh7Gybum6ZSJesmiSsms9lMBVX5+ZMA3FeT9+7dA6AbgdfrNX7+85/j5cuXvfz4wi70Rdhtra8hNMakfBN0m2WT4NHQgX8I7WLyGLqojSnrKUotYvjigJ+BEFr4kTLBFXIyhIRkloYfGhtii0ui2NdH2sKVG+I1uUvGbPIQ0L40o3C+Tc/YpG3jygFHIK4Elxh7ZB68zHQGOBm4FotFcHEi5eJGCS5XyLjG49CcxPtaSHmkfGlBKPtniGL5y3dnCIhorcVisXD1eXJygg8//BDWWjcXTyYT7/wzSfxcr1Aes9kMx8fHuLq6cvlxD1atjxI/ekb1+PjxY6+8xrRfmJMXqUw/dHzS4oS+qI4ZPoboFrH3iPr5truFPH8+x+/93qf49rfv4a//9ddQbzw8ySO2rttDKTsvepKFl4PGLoDObW1l7TxbjSGjqt3wadPRFWiBV4pH5adnmxqhHDfP2/hUfJJpqFcsUVedVgkDrpYN/pufneGzeYNFZVDVG49Ys/GCrdD9Nl1b9c6MFf8ctCVQz+u/Bt1veTXiysM18NVd+uBbtF/G6tSKODbyO3SleDIMLDwGbhn4Z8cC/TNjOe/QWbFN/xmBtZVt59wKm+vmnuKFzo51YKeLKrYMBrqzYylYXCm+85Bt0HnIVlUnJ4Af/tc/xI/+Hz/Cb/1vfgtf/ztfb9uV1aUDZBl/DoB6soXaPTL0qGAqK7uX3uph3jPOi4fxeKQrbp5599jcW3/c5m3nrraLK2VTQVdKam0Q4PXy4PeyTkR4EESW74CWrXwuy6gAzWo6JY730YNJjBsBkmm4XkDtQrue1HWN4+NjLJdLXFxcBPOL6VRD1mhyHi/hEeK3zfovpBPkgJMSYNHWHCkQJkap9WMuP9LrmqbBo0ePcHx8jG9961s7W8dsQzdpnxii78u0OUd4DX2X+HPKh/ShV8U2mUM544Fmr5HASMhewO9j9a7ZorR1CT2jNjk4OEBd194ab71eYz6fJ8fZsWhs8GObdyNEQ+1jKSrlqfUTSa/y+xSifQBkY+RR0ve4PaFdI/ftidt89M/JGON2mbDWZp29HqISm4o21uXwC9VHSRvJd1bqPzEay4a9T9q3LEEwdh8TRI4BNYcP55WT5xDjYazT72NgG0IlLyp/oeq69g6nBlqFIjTYaMpRTr67ojGU033KGwMdQn1sW/l2Xb5Yn6By5ShCKb7bkDaplSyKhr73qTLkPNcmilR5YoYFTeGgMNqylsJoOyt5rrTMo2ck31Boa7MUaWWJgUSh9KG8OU++XexkMsHh4SEWiwUWi4WLLwGrEoWDX0v6YUnfCbW1lkYrx7YLG85XA/botzEGh4eHnvEqtACWvGJtGUrP65iUVG1hXbpg5PJPJhNcXV3h+fPnDuCmvsPLGGpPOfZba928TNvPEQB7eHjowtbrNS4vLwH0z+eJGSMoPyoz3y469Y7Jehpjoc3l47LRM1lHlGeon2lhKWOzjBN795rGYrFosFw2m7NjqT+02xJbq/23nq78N8C3J8bm3g/3z4ftSS7K1YK7xMtHg7oyUhV0cYkXXL5lxN9RUVcW+ORiiefzNU6XDa4bi2piHPjKPRr5b7p3cwr9sWdeXKADSSUYx/u0QQfYsnxde5uODw/jfLx47L6YrDKGuyw37boBkFw7UztCeJUKPcsY44BD54UKxQMW6Lxr5dmwXM6N5yq/9zxWOUC96XrWsvxEm3hXK+Z4wZe2GHblIu9c1gc8z1sRx5i2v9nNRw20XTKFu/OKa4P19RqryxWe/tunMLXBW3/5rdZDlpeLAGEryiLaJ4YvSgp5tHqgY69ZrB/Hdvc8vjfmRfgFQciATCr/ELF8Yx65UVA2l3gZlfDse/5IqcNgWtsP0967ZD7oz2shHYl/YCR1CTornvQGb4yI6F6llCPrGPpCqRyhOpX6gxYu9ZJtZC+pa7muisXR9CDuJV3XNQ4ODpw+SWl22Q631U5GNNT4WtJ28vdQXlKPzdF9Q+lT8qae5dorSvKI8ZJpNf6pdWMq/5z1t1bvFK6NNyW2iqE01jtGZVsul07exWLhjSVaP0rlr62/YulLyxOyjW1Dsb411E6zLWkylLaFRruY+1NjX0pOTYcplSGULqcPyqO6gPZdIDsL6Vo5vEJ5apSy1cX6eU54yTw0VE/R5I7R0Pk3t0+E4qZsRcC4Y6tGk5xI22ZcOjiOqeSGZPq8kjTi5nQoa60HNBwdHeHBgwdeHDp3RBIZs/n9q06lZRgy+efE/zzUJVFqkT+2AjUGxcag3MUV5xVbRA+RbZt0EojRiACZw8NDHB4euvTT6RRXV1f45JNPXFzyTpSLJDqXisureZ8OfedC/SY0znEjSmgb96qqcP/+fTfevfHGG/j2t7+NR48e4cMPP3S8Tk9PsVwu1bKHZE7JuC/idUagHQC3AKM4dL5mSIHR+hNfdBKPENV1jclkgocPH7qzwOT2u5JyzzDN7VOHh4eYTqeYz+dYr9de3iV6CNXBZDLBdDrFyckJnj59ir/4i78A0PcEzZXT2nYL4YODA7z++utYLpdYLpeYz+dYLBZ49913ce/ePUynU1xcXOCHP/whgBYQbgHBJvi+0zZ11M70nHvVyHFLGgW1suQYaOS9Vs8kA3mlU9vkLEhSBhoqNy+LVka6z9EprcXm7Nj2/Ni6bgHN9uzYziO2vbbA6oYDWm9WeP/EE+jqh7xgjYEDersrjYkkUwvitrw2KFcnNavDLi+/HijtkIW9FmaxtsB//9EFfnq6gDmcoJpWqOqqFUd4w9Jv72r0ew+o5f3Q9Pul9lyNS+AdgbEcYKT7rir955JkuFalRjzT7i27euw274JFB6SyuNay7XMZsOZ5lvJnG29R02zS8GG86uKo92YDfFVo01eInx3LedAj8oyld3FTHlfOyo8H2/GwVVd+8lp13qssT1O1gD7qtqyYAM26gZmY1mMXFmiA9XKN7/+fv4/ZnRn+0T/5R3jjl9/o3hOqR/Jm10BXqo8cCkVj7SXjubEpEKYCsTbCiz0L3ss8rV9G7/cmDaXrecVqZbf9dD3gWEsv5PBI63dcRijPefliukCANy+vJxd/h5X3uce+UGcIzaf0wdZsNsPR0REWi4Uzumtz+m2lXdiHpG5Dv/lzufsX1ZfUlfgaYxtD8lDjMxHJwI8jmc1meP311/HZZ5/h4ODA6b1jrsFv23o+Rtusp3MN3GOtV4jXUJvJPttlV3mVjIVa2iG2KAkuaLJo7RKzx95WovPGLy4uXNh8Pvc+yo8dXUek2Tw0O9iY882YdrZXgV7lsuaCszn6Tg7l6Dby3b26uurFubq6cufWA/7cmpJLliV01nUOv9vW9poeBOTZAnMo9m5rdZMax3P5cPvYNhTjMToYW2oYKwFNudE4h7ZRYlMv7W17CYh2pUynJricfG9rnUmSg0mOgp1S7iSl6vNVWAznUMyYHVLIti17rC1SaeTv3IVWiEIyDFloD6FS+TW5+FkhVVXhzp07arxYn5YfbGhtP2RRtY3hSFs0ES8CkYF266GHDx/i7OwMd+/exdnZGa6urpxn7DbjGjfuyLO6ueJSCm6VxpPvaW69aqAYf/9yeFRVhXfeeQfGtFtiX15eOo9S/gFQTGkNLZR5HO1Z0zTOKFlVFVarlduameRPlUPyp6+G6YvKyWSieqlyo13KQCBlJt68/0ynU29HCy53qJ9LWag8fLvknHeV15VWL1q5Qu9OyHOY6qjEEMMNotoRCrH5OtSPUguC9dpuvGPpvwVfjZFgLHpes2AesU1D4CrdG0jbh8NDrN2kba+bUPY7dE9tR/Uh+zMQ9sJNUbf1sS+zha0MmtpgUvkgKP2WwCp/poWp6YU3q3fl4QTIGeUZ8WPpe6Asf7Z53l4S9aY87nmoboA9eV4sj0sedtxzlnu0emfIchCMyek8ZG3nTcq9UKWHLPdu9Tx2lbpxsnN+kSu1n8vPQpWJt4/0muVeusaIM2MZ6Gsq40BjAnONNd022Rvv2MpWaJYN1vM1fvL//QlOfnqC9/699zA57HbQUEHZrmGHEwcgNX6Bd6x7rEXo6tbFsYG4kXx6AC/9JkCSAZPB7YNJHgnSeo8DZY/JGog3is49gIWaLxuqjcnzlC3JS+oYTdPg+PgY3/jGN3BxcYEnT57AGOMAudAxQz2xBxrX9r2uzTGGavchnY/POyFggecr4+cYWXdhw7HWegDLZDLB2dkZVqsVptOp22UlttWiLBPpVZoH9m2nXDtlbhytv8h3r0SeIfbSHHlDsgx9L1NrviHr4330IW1tFNLvQ2tcbdygHQd4utiHxWNTrv0xxYPScJBJO+IuNZam8iH5SvvJkHE9JkOM775I61u545G2/t43jdH3ND7eWi+TJ9mSJEn9JqS/yPc/1k9S9oIY/131t9AYL8NjOgmnkLyx/qbllUu5tsNcWXbFZ0ieoTTJM2O3pZjymfqqJvRS5uazbUePKeRf0pf0JXW07Tuxb0UiBBpsM2Zso5iOSbl1mRtvNpvh4OAAQOtJ99prr7n0fKESIz7WS0/ZXHlSCyT5TKah+9SYLpW/w8NDfOUrX8Hl5SVOT0/x8uVLnJ2deXGHkgRj+fnbEuzdZ38qBWKBvoEuxwBhbetJ+p3vfMeV/9NPP8Wnn36qntEbUh5z+rK2yF6v1zg8PMSDBw8wm80wn89xeno6eKtiAD3P3oODA0wmE1xfX3sgJ38PchR3oqZpsFgsnIzk1UAeudLQUNpv+AJFyhgzRMX0uZjeJo1WsYUEPy8rlQ/V8Ww2g7XWneOkAdEa0Jsire2axmK1arBatZ6xk0kFY3Qwtr3n/FpwtvV8NV78tiwE0ILlh0281rOWrq1cnbctNiAvnQ1rDD2nNgBLw+sdACwKuxBL2w+zFjC1QT2t2zNiq84T1gNEuecri8PDQ+CsHDNdOEQclr4H4LJ7CTK6fuYu/n2PDHxwztWHWNxqcQgM3fBx7zYHXyO/vfREwgvVxTem9TTlgKqBO1e1l498ZuDATWNN5w27OX/W2x6Z2qZq41E4B2PpuQOYqw7sc6As877lXrLWtl691jDPWVbvBps+RTIAqJoKDZqWn23PlCVv32patR6y/6fv48E3HuCrf+urmBxOHC8OrFEdZQPzfkP02kUL98BTUTYvzIr4ItyBp1J2y+Z4WC+uu7KMo9smc9lYHr3xludJcdl/tC7UAUepj1gc6Hy8MP6Yy4c+H68MW9IQPVDOUev1Gvfu3cNv/dZv4YMPPsDPfvYzHB8f4/j4GJeXl0nggOZUfrTDTRqwh1AMONSMvjIefVgndQ0tD67Pp/SoHPm2IQJjX758iaZp3G4ws9nM6ZOhtRkn6gP0keH19fUr1wd2QVp/kNebrqfUeplTyEaijUMxO0CJbUdbo8Vk2+YdCaUNySBl0c6DpqOb+Hu0rTdYCWnrvdAHNrE61LzpJZ/QjmCh/pVr20nRLt+h0vX+EPtADs8S/jdhHxqLQnOwvJdOCjn2Rj73EvGt+mP2jFeZQnUjvTtjekhOu8TCx3gnct+tm55Tx6KgZ+w+CjgEgMkd6MeQPwYk75OGlo0PPLG0tD0kbVN89+5dHB4eevmGto7UjJi7HsxCim1uvWzbfqH0ciHD++ZtHVRK8swZuPc5kcXGq6EgGe9bJQsITikALVVfY49dXJbYZCzl0s6NzM1bA734PRkG5IImVzmIgTKhtqf3MLbIJDCLwFag3aZ4uVxiMpng3r17PSVP8tOUSa1sxhjMZjMcHh7izp07uL6+dou5fY+pnIbMyyWy8vYhT9TFYuHOr5IArPQA1eozNsZq/ZrPjdQPaVvfWN/RykztuF6vsVgs8LWvfQ3f/e53HWj/9OlTXF1dwZj2a01a4GrjAJVTM+as12tcXV31vk6mraTIuMaBS61dcseXlGEk1ualfZfrEXLbbGoT+R+SVy625I4qUmfk7xp/FnqPY/V4crLE+++f42tfO8bbbx9ivW4NnLRNMXVtAmM7ngTMUv/re8bS2bGth2x7X1UWLeLDr+j9buuQwl1NsOfYPOfbGruS98qZQ131dPX0o5cLPLpc4cWycUAsB2GNMd5vd3aneCbTeGHoz3feVcmrd+VxYyBsoI/4geE6CoF0HMTicSTYyp878JWFp8KkVy3Jy0FTXgc9sJfVR8hT1tULA2V7+dC2wlRfBi5+VBZ6F8lrloBYwdc2tgOgN23sQFrAXW3FQNoarZfsxMBYg2qy8bBftX13U8iu7NbvK+65aM9Yu2txNSAvBA5y4LEHhErgNJJWBRw1Oa1Ix/PepNMAySBoqT2HXlaVAs9VQFYrlxXPlPi87iwUb14LdW4YAsrKuap0DqfdVubzOYwx+PrXv45vfetb+PVf/3W33p9MJjg4OMDV1ZXTPTSdlutOsXl4CI2t36YAdZJdm/dD8sTWhrJd6ErbP2s7A6VAGr5eGbom1ACki4sLLBYLXF1dYT6f4/r6OuoVK9eA9PEf39a4dNe6V5k0nZi/IzJcSxejFHAmx056FttJSbMB5IA8mm7M+fFdZ7hM0gZSUg88rfyIm/ooz497ZudQbD1O/5RvDt8c20XoiJoxKSZHbDwr4Z+ztqdryjY/tB62GQ9jPIF43YXeg5RtoCT/0mcpGmve0GzZMbm09XZJ3qn1t5w/Q7JoY3WpDkW2FMl36EcWuemG9J3UuzVknKR0MZ5j9HPJsyT+mDRGnqH6ivGOblMcM7593ihmpH8VSRtAAH0gaJoGp6enbnHWNA3u37/vxZFn6cV4agDJmODCkLbZR3tKRTe2eCvhSTxugkoHlG0G0dIySoVZU65z+IZk3UZZHJtCZcslqcjk8pN1W7I44TxWq1W0PbQFXA6FFhk5yq3WV2mxd35+7p5fXl66s2Hv3LnjbQWr8dPKplFVVZhOp7h37x7efvttPH361H1lPtZYOYRibRzTEUIGiZiivF6vsVwusVgs3GJbzh9kAKQ0of6jyablTf2R36/Xa9R1nVV27d2ZzWZYLpe4urrC22+/jd/4jd/Ahx9+iCdPnuDFixc4OTnxtkKW8mgyEm9azDdNg6urq16dkxGVzn+j/sONZaGFTYxC+lBqQcb7b8wQE1rk8jFKfqwRO4MtZPyhduXGJS29lDtUFxrR87OzFS4uLnH37hRvvDHDel1tPFp9z1hrzcartfOQNYbCrQNhu+2Mu3Cg84C1lryS23BsgNUOpIULpzK2oiqIEWS49jyfeLe2m/ufnC3xxy/mziuWADRjjAPhuFGM/3uAKfRnan/f/DTGtF6UBLYZ9hvw82D3Hr9NGg4oSiCTU9RjljVRDKyz1nZy8O2HFVBW9Yzl/V2ESbDWgZUQ2/1uZOjlYayXJgRM8niSv3b16tf6nrRyS2LeVqHtij2A18I/b5b3IQ7OWnQfA9TGbVdc1VXrrdvYzhN3I6tX9lC7K+2tRNCD5VxhlXALSIDQPbfiN4GmSlprrX6vzZFaPgHw15NNK6ftrpSnShY9eTTv3GBaJcyVlf1FZfSCbLh8hUMovZv8vmQtSHHp47arqytMJhO8/fbb+MY3voFf/dVfxePHj2FM+4HYbDbzPD7lXOzKaP0PK6fT6Y0BcdsY5bmOIef8kB6Rmy/x5LoG6bVS/8ldm25bv8SHdMjLy0ucnJw43ZIfyxIrFxmhuV42m822aotd0a5sJym9lUget0F1ra2lS9Zc2jonZquVa39ZhtRaWePPyyNl4uWj9PJ5ao2uxaFxivc/oPtYd9s1My9T6XvK02vtWzpGjrXm38b2KCm2ji8J3ybPbeyLMUqN56H8thlbhqzJb3qM1dbOKZvQNnlp/DU9JcVjG8rBUchLPIdybOra+JhrX4zFG/u9uQna1zuQU19DZAml2fk2xWMqaXIbRyLazpFTKM+UEvAqUK4Srw0iBABI+vGPf+wUq8lkgj/7sz/znltrcXp66qUl/gTiUrwc2ufA8KoOQjGFcKwylU5oJRNOiXwlY0Rq0XhbiRYMUv4h7bhN++dO6kT8APvZbIbXXnsNxrRepCHQhYgAoW3ajMay3D4SNMoDHsDDw7TfRBcXF/jwww8xn89xdXXljXdA2Zduh4eH3llLV1dX+Ct/5a/gt3/7t/HkyRN8+umn+N3f/V08evTIbRt29+5dEOh208q4RmTwo3LRlmex86d4GzVNg+fPn+Pw8BCLxaIHlOaOe/KZFk8zLFxeXsJa6xb6vL/G8qZ+aYxxQOvZ2RkmkwkODw/x+uuvo6oqt8sEGTzpS24OlvK8QmHWdlvt0jPNcDCZTDzvWk3unHOMQvWp9UHNABHjpT3XDDByXJFf4nNPHkrP3y8u03Q6xWq1Uj2T6V4Lk/Mfl5Vkojgk13K5xnLZYDptNm1iNzL5V2Paf/otq4+ek5ds01AZLYDuvvO0pfgE1lK5OOPOU5aet/UEdFscd3IBxpMrNe30u4DF+y8X+LfP5/h0ZVswK7A9sTHMG5ZvUxz5d2kRMDoy3qnfPA0HGIMArGu7QKXE6oqeWcavV3Obfma7+zap6Z5HfgfDqk0fEHFg4Lbl9cBNY7pwnpfppwHQbSfMti92nrG0nbDpQFYn0ybc29q4YuAWbX8MdEBoA+88Wb5dMXnEeqB0xYy9VZc3gO668Xw11sA0BhUq2LWFNRbVqsL1yTV+5z/7HXzlL30Ff/1/9tdRT2sPcPPO+I12gjT1xlSeTwhM5XGs9Z8p8ay1Xpgbz7V7Hp9dvTnAwnvu4oDdQ9xveGgAqOMjZVXqxN3zf/jXnkerqEOflciP110oH1H/Kqhr4D40kKTpKUOI67vr9RqfffYZXrx4gbqu8eDBA3z729/G+fk5njx5AmstDg4OevYUmvNWqxXu3LmDe/fu4ejoCNPpFI8ePcLl5aWzC+xzS85S4uN7qZE/BEjJ9Fw3oDo2xjjvU9I9OL+YXsXzGqM/kFxcZ0rpZhSX5H/99ddx//59PHz4EHVd48///M8d2C/rYNd0W207+5aJ2pVoNpuhrmu3FhvSd/gHsKH+R2HSg1Wum1J9W/Kj33y9Qx/tSn60XTatq/bV79brNY6OjnB8fOzJYq3Fs2fPvHWGZrfeB92md6Nk7X6baBdySZ4x+5g2F4fi3dY6vAnK2XkiRJrNIfS8JE/Kd4hNPZYv1yW4fjOWHrlvGkPfucl3Ycg7OvoMEVJyh5BMq+0DTosNGVcLkx01R8YS+UsbX2uYmMIfU9q1vOUe4RRPO4fvxYsXybLSV7CSuGE3Z4DT2kCjkDE9Ral6jdVxbpoU8cEkNfjmKKo5Muf2j1RZSuKmaMikk6oPOdmE8pJ8cttd8hhjYugZqyJy5tCQsSaWPiYDbbVF8fgZp9IIIXkToJjKIyRvqi/yd10bK7X7WN/Q3tnFYoHnz587L84cz0aNjDFuK16gPV9mtVrh/v37+NVf/VW89tpreOONN/DHf/zH3phKICEHxW+SQvNySAGU47HW987Pz7Farbxt8HheoToe+h7wdLTtLzciaV8yy37GyzmZTLzFd13XODo6cme5Uhzy/uXbvMm8eN+T9ShBVG5Qo62XY4sHbdyMvSul76w2xw8dOzU9Qcqm1ZvmPUv1LNPn6iEUl4ySUh7eZu2X++3Zseu1RV37nrHG0DhKZ8SazTO47YcpHmBcOAGyQBunte7zKyceJp9r91QGrQZ4HSMQR6QQcZ5dr/GjlwvUs7rd7pVAPOMDojysB9LSvwRCN38cUHXPNwAd8eN5yTw52OoBsabLLwnCMpmyaRNVeqcC6IBH8gAlYNVaODBn43Xq+uBGTt6/nR4D63maStCW0pMMzhOXpSc5HFDLvHV7ALNBj6eTVXjE8rqnuPy82573MCsvtZOLI9rHGuvydHE3YRzwdR6xvL8wL1lYwNQGy+slPvy9D7FerPHX/qd/rT+WkKjGlzu7X9h+eT2+VB/WD08CsVb85nEEfxWklGEQctp+WBA0DY0jG/mstf3yxihDrlSaHqAaq49QXgF+vM5L9X5Nb8lNxz30Li4ucHl56c4MffDgAS4vL3FxcYHDw0NMp9Petp8kK6W5f/8+7t+/j8PDQzx9+rT3QdQ+jX+lOsa2eommE4bWoFVV4d69ey7OcrnsHTER46U9j8ktn4f0ONKF5FExKaK2PT4+xhtvvIGvfvWrmEwm+MlPftJbm+T001z9K0Y3YXAdy6aprXFi+q7kI+d23ren0ymm06kD0IccOST7UcweF5N7rA80+A5JnOhjYHkUUkrmEOXYV2k8rKoKBwcHLs7BwQGsbcFYeZTSGHakV5lSdtbbUjcl78c240/uux7Lc4h9NUeWWFvEbAk56WW80DtaIhORtFMOoZx21WwTId1Ha6/Sts9pD/odOy6xhEp0qm14jjGHh3gMkS2kzw3pjyW0l891tEkoVkmhTj2ZTLyvkCgufS3Fic7DkHlq3jqhSbJkkBnSoXINgbeNtIPrY6QNjNuUPfUSlPQtbmiV8UoWbdS3eBpuFNfO771Jyln0Af2vHEvOvihVVnLiU71KgE/W71gD5dD3LzV2yIXUvuShq9xWQ5OXnzdF3qAETM7ncw+MjZ3bYq2/LSz/UGZf45szJieUGtpOme8AcH5+jj/5kz9xY8d6vXYLMCB+Vg8PlwtmGffu3btuQcfTlWyBMjaFDAU57778GEimp3NaAeCDDz5wQOVqtXLgLoGWJfpDiozxv1Sm89C5QSnXk5vak48/l5eXePr0qQOpSTkmY+dsNsP19TWeP3/ey4fiUl/jc618ZzioP5/PnYev5vnN33vKp2TBxPMNzYtcbnlGWoxvzIDL52f5/kp9Tj6jNiYDKBkeY30n9YzLoS3IiJbLBtfXa0ynNYwBJhMDayvUdesa2IKugDGAtXSQJhltfC/XtmwtcNs+h0tbVfDidv/G8aG4xKuV2bJ7APC9ZymdrJch06q1FqhMuzXxxHhescYYD0yj/u+8YoV3LAy8bYVVoJXkZWHc85E/ozCZhpdZgrw8fFNzCGJsJg7AeX2WA5IEahHQynh43q4EVprNGE3h6P/OvXryGQvTbPg3Cn/NA9Y4QZ0nrLsycIpAVte3KtvFQ5vGGNMBpXSmLNUNeb2SfKaTyYGOdlN/jen4ch6bOnO86R0j2Wz3rJpUaEzjPiawa+sAWrUtWTvytisiLb0CaMZAWHkf84jlv4NesPDv+b8by8Vz9xt+HJ6Gx+Hl0sLdby6zCHP1IutOi8PuVYBWidsrP9AvFxTZjfgtswsMsqXrbgBOnyW7yenpKT7++GN8//vfx09+8hOcn587O0loHua6wmQywdHREd555x28/vrr+NnPfobT09OevlIqZ4y2NXprxOvSGOPpBZQf1xfonig095Pes1qtUFUVvvnNb2I6nTqP5J///OduhzfSa2PrJnkvda+UrSP0XNvaNcaH6mE6neLNN9/EN77xDfzar/0ajo+P8eTJE3zyySf48MMPYW3rXR0CzjjdRtvWNkT9I7YjUIhydWzKR+rY1JYETB4eHuLg4MC1gdzNifLgOrsmD4/L85P9hz+jM6jpw+VUH+fPaK1LH4B//etfx2w2A9Cuwz/++GOVjyZ7qY2R17lWfvnOUx3wfn50dBTMe2zjvUa7GCu/aJRbh2PWc2rdyfv0PvpRDo0hR04dajaNVHr5XlKYpBKv1xwqwQxK+Q7lqW0ln6KSvLZ9D2K4iMY7NwzIe5dvy5jpgbGpCXkIhcAujVL5cYWAd3rtrLfYZCif3ZbBLUSpiT0GAMTS5cRPPY/VZU57puKmBrecPisVLi1Oqv/I+pbPS+5zgKGQXCmjdYxKBnTN+D+EX6heY+1U8n6G0gylMcaCkneA4qQW1ZxKJ/zSMkmwQXq+0xmqY+RfMkbF3t2Qwpozxmh5yw8prq+vHS8C2Hga3oaxPHuAAbovfsmbUi7mefx9zVUl77W2UM3hTwYFay0uLy8BwIGwNKdvM1+FZJaySkMiAfEUP2YE5W1IfWC5XOL09NTblpji0jEB3Eihvc+5ZaP301rrDBjyoyAtTWgO4u99yZxcooPI/LSw0PwZWpTSb16nvG3oOlTxzl0AkByLxRoXFyscHtaYTAzWawtjrDsntvOUbb1iraVFZwuK0pmxgN1cjYvTWfM1T1b+HPCRse53m2eXN21pDHRhbRn9cpXSsrG4WFlcr20Lwhrjg5uGvY8E5Bk4kNUD+Fg6+cxrC8GDe0m69Ju0Ia9aJyf89DwPFYSl8EwK6jqUJ/c63TSh5w0L4a3KvWRZGuLlecQGPGQ9+TZ5eXKA5Wu7evA8ZYH+2a9tpPYZz5ddZdeNecZ6dUF9RHlOfHg/4v3G85AV8by+udki2VTGXdeLNU4/PsXhg0McPTxyMnh1A0W2GCmvmrrNrdWfuT5k9fteuOTFeWqvfUg+Nar1fwuevflHgpeZ+Qcy93nYvpweMK0XLJ+86rR+/iUyb4jPeXx+G2JU4yAhHbvx9OlTXF1deTuRpABf0pMIcOE7vYytm4bWUbG5OEdfjK09uV5Ukr/kRfEPDg4wm81wcHDgjo9wHxwZ/SgpKQunkL4WKlesv5S0F/GhDyan0ynu3LmDu3fv4v79+zg/P+/p9F8kkn0l1EdzbWK5tpVYXyyxjcTyCuUT0sVpDRIC41Nl4+sT+nCB1mSvv/66+3iWy5EjYyy/EIXee75G4h+aL5fLno16n+v2sexg29JY5d2Gz1DbwU3VYU7/jdnB+Xszliz7HMdlnqHxRcYPUY7tXLMFbUNjvutj8AnZUUr535b5PGZn1HQlWd5cO45Gu27XoGdszBC6y8EqV1nZB42hxObQWANoLvEFACkO9PUZAKd0S6LtTobmtS3RQjC0SALCC7VchYtIlj+Vj7aAi6VPTS4pIELjfxN9aN+Ki5YfGQO0s6NLKGeBMJTvbZnMiHLGWakUAe0Xto8fPwaQ5xEaWwxpixviG3rH5XsptwKi+KX9Ur57fIFVVZUDSauqwmKxyPrqjvim6vr6+hpPnz7Fa6+9hgcPHnheuSSL5iG5C8qtOzmHyPkjJx8az4HuHaYFON9ii+KX8E+R5uFP2/DPZjNnKFutVri6uorm2TSNOxPs8PAQJycn+OM//mN3bhN5jsznc3eWbq6RgHtmaMomBx5DXqKcCKjVFnlyKzPZ11LvMjcuyrN3Nbmkd4pWrpQRmgPdPIx7XVO55JwljdyhsvEy8mtIt7HW4tGjSzx5co2/9tdew9tvV5hMqJ8bWGsY2MpdATtPV6omEoeu1lKczpPVGP7fecTy3y3wyuO3qJfPv43Du05XHUYJCxPx+MX5Cv/dk0sszcYjduMVC4Oel6rnDRvwjHV9RYJl8IEzF7cS9+y5d4V+79rbYWqGV4XfX5R6SQGzPfBTxOfgZ+/esPdiAzSFvGG1sBzPWBi4s1uhdXfyQm3EPTZXqjd2fqt7Rlf6beB7r248Y90ZrxL0JfAZXRtZ2O5cWYvWq9ai82A1Ih8C4jZnzHpnx1oANTrP2KZCA+YZO7F49uNn+G//l/8tvv33v42//Y//dq8N+dmxxRQBIj1PUHrEX1wCHiUQaVlc66fjYdQu8hm/98LYNfkbfd4yjrW2X0YrflM9WHj/FiytrEurpBF8NE/ZWHmC9QDGO0UGalqvCIm5METWWlxfXwNo9Z5nz57hn/7Tf4rr62ucnJygrmvnzahto8v1T9r147XXXnPed/fv38fLly89UPe2gAKcQkZePodowI7UPVP2BK4DnZ+fYzabeWuGmAG4RHcuib9Ne5AeR16X19fXePHiBU5PT1FVFe7fv4/Ly0u37TFdb4r2aQvR1mPcy1rqwClggQN5cgtpqedrfKy17uPh9XodtNnxOtLW+Zq9KvQ89kx7Th8jpPrIarXCL37xCxwdHeG9997De++9h9/+7d/Gixcv8PTpU8f7j/7oj/DZZ5/hzp07rv7W63VvZ0QiaXdIkZuPRLnkrmEAcHZ25njSmlim3ffYuG/b4Je0W5Lrd96+Ibt0Dt3WfhLzis1Zr98E7SLvXDyuVDfMoVL8pFSOfdBtk0dS0DN2SAWHDIax+PJ+yKHLsfPdhlIKXBiTSpSDELCTW35NUdqmrjR+Ug4tTANPchTAmEIoJyaZJ48Xklfyy6VQu8Sex9q9ZBItkZFfc+LmPJNK/VC5YiTbLHROUWoRHWrXkKEjVjZtrNvF+BCikgV9Si4NoNDI2g6ozN3iQyqKofFLKpkyboyP9l6Xjms5c5s8jyEWX+uTfH6j37RlLc1/HAim+ubnfu2acsZEOT5Za4P9IaYTaMYwMkLwd1zStmMO8eDjB+VNW/vRfc6WxfxDkPl8jhcvXjgPavpamoyV1M45Z7uGxqLQOMV55JQ7RildYUi7yPE6lO8Y+tcY7wrvnykjLaflsj0vdrlssFq1Z8iu19rZsdTPAGJhTAu4tuw1D1nKl35vLPnSrZCjYZvfbZ7tfVsmr7QsLVjc7pkflqo7YGktzle23Z7YMGCTxBJhxpieNyE95+HOoxV+HPcscs/zatkZ9V4FZdH/7YGzAqxNkSsDgUC8uTb5qF6xmzjuPd7I6sBa8miFMNygC3P3JWfICmCXy63eU/EsK5uoL352rAeYGlZ+3l8kKMu8Yz3Qmj8TfJ0cSj5uzjFQz5p1YG8FNKsGl59d4uXPX+KTP/4E9756D3fevuO1q2jwMMXeK9fk1rt3j63tx6M41r/35l+Fn7W2S8N4ufvNcwmMevzkb7mO4/nyssjfSh5e+bQ6E+FBYFaJLz1lQ+UJkia/zZiLNnHWV2usr8JHfgwlzm+9XuP09DS5hagkY4wDel68eIGqqnB1dTXoPMptSNOrS9PKMGkf2HYtS/xevnyJyWSCy8tLXF9f947XCa0TNHm5DrLPdSblDbRrlouLC7x48QKffPIJrq6ucHFxgfl87unQqXreh6xjk2b3KLEPpIivLyktXwuG1lFyjURrRmutd3yKpruW2rhKqTSNLAutfQ8ODnDnzh288cYbmE6n7kPL9XqN2Wzm1p8hoDpme0vJE7ObaTZJKkPJmmwo5bxT+3jnYlTy3u9rXBvaH3YhQ2rNnOrLsfCS+ix5J7ahfc0DlFdunFKZhtT3rsq9r/qM2fLGTl9ixw7pRPvWk4iG2OCjZ8bexAAVUuSAVh7tPAYNjKUvQV9Fihk8cztXyeJIG+xz9mjP+fpRMziT5xMRbTsiZU2dORKSawySClbsOVHsPLqbWjwNyT8Wd1dfvJYsZqiv0FhAC46cRepYiuvQ/nZTinFOueV7zxcVXGEZ0s9DoBInbQxIyR+a9GLlHQPIyyHZH61tzzfnW8YBwLNnz/Anf/IneOONN/DgwQO8fPnSS0Nb+N6GM6epPPJjmtVqhel0qgKGueevcjB0Pp9jOp06b9XSM0NiRGnk4v3y8tIzfgDttsmHh4fuK3O5yKbf/Cvsk5MTPHv2zD2jrbbm87lnJJlMJr13bsjCgBvKeJjkwcNIZwqd38wNOLy/asZBTW5p3ExRatyQRg+eDx+juDFEO7M4ZHzW6kAzfMYWwlrc+XyNq6sVptMK1nZnx1ZVA0vbr9oKpNZaCxjTXlt5uqu1HUhLHrT0zP/n3rH9eNrvNj+zCbOeDFwOkrmEqkkFcI9Y1mYEenkesNwz1nRpPLCWgWjuGXx+rdwRPjwM3bMgCCvCvWec+PMI+lbqFUthqpcsPWNgrQeqim2N+VmnDmxVAC9jzDDP2M29d44rxTFdXGsZOGxZPAPPy5a3gQR7XR70jJ8jW23qhDxkqY15PhSvafudqx+glane9K1mM3bWnYesNRa2sXj0h4/w+I8e42/+J38Tv/4f/3ofuCPxc94fDgwq4fxegqlZIKy45+EujABY7Z7ly3m4Z5ur95vHYXn17mH9NBwI5uVhdcFls/6DvhxSFl6n4rmaloWFyqnGySC7trh8dIn19caDUowHcm4dQjSXLxYLGGOcbpNzvmdd11itVjg9PcW//bf/tifLkLPJbgvxvjh0/cB5EFj053/+555uwUEkCiO9QVuzS307FHfXRDr4er3Ghx9+iMePH+PJkyc4OjrCcrnEfD73zictWc+/qsT16VjZQjqy5FVVFQ4ODhwgK70u5W4zMX5XV1cggFKuwahflfajmI4es1mWUFVV7qgaoslkgjfffBNf+cpX8Prrr+P111/HN77xDQDtmuQP/uAP8OjRI7fOisnKy6LZi0JtI9cNvO6191Zbe+2CXoV36lWQcd/E+witw4fYjoc+u0naV3/Q1vpj5R2yI2iUOxaMBeTm2GBvE4XG4ZBtN3S0w20tXy4Fwdh9FCw08YVI20ant6Bk4aGXQItbIvOuFE3PcKTw1oyRQ/PRqGQwKBmIZH6TycTb1lJux5LLP9QWGm07MW1T32NNikNl0EC2HL4xozWlK5Up9L6ORaF3PCfPbSfu3LEhtdDfdd3kUqitqN21BV6ID3/O+01oLOaL3BgYEjqfKLTYCoXHSCrLpfMFJzrfk+puOp3i8vISP/vZz/DZZ5/h6OgI5+fnve2qZL43tbjTjEFkpKmqysktv/CWPGRdDnlfpcyyD4beOzIsWms9feK1117D0dERfuVXfgVVVeHs7AwvXrzAz372M1RVhcPDw955RdqcSPxlWagdl8ulCsDKskiZQ2WXdSjBb+pDfEtvaoO6rl37afnwtuZGiZCiLGWicEqTKkepwTnlXSzHHlkmmb/Gq+Rd89sDODlZwFrg4KBGVRms1y3C1HrGms21BT8JaG0ag6qyaIFP7hHbetTy82T5GbOt1Z9fsUnfgazW8rql8sp7sDR0D8cjh67XFr+4WuGTeeMAL9f+m3sOdnrPAAesGkM+sKzvcF7o4vN8OF8vnF1VT0nGKwTIevdQ0irhPbJ+3N52tpQ/AVCbZuX9S4KyLh0/U9Z03q8EVpInLG92z0OVAb7Ulay1XlmcF67t6lO7p/y9Mon67tUVaxO+DXEPhKV79oyXhb8KQ8+O5eHGmBbEZWfHujpuLJp1g2bd+K8fa+9eW+WSTGIFH87bBuL0WIj+Ztk8ZEWe8p7Hl+l43taPJ8FKx8raHsjqlUXw9soQkjVWzeKZCsrG4sZYWwYoR/KMyiaG5V3oesQz9wM/TffN1VFuA0lZQ+uVkA4Sa3dvTBb1JOs3tYagcSa2nhqyDhmLeL85Oztzx3OsViu3FrutIMDYlNJXNT20RK+VOo6my2p5yTylrFoZQuuOEuJ9Y7lcBj/wKLXDWNt+xHx1dYWzszN3XBAAz/OXr2NC9q7UOiAUT1KqfjR7xxflvSil21ovY8ql2dDkuj9mPxsrX420vPc5l29j++GUo8to9g0KT83x3IEshFnwD9ZD771mB5FjUUoWrQy3nUJzV8gulNJ/UmG3jVIyRj1jd0khwfh5apJWq5XzEpK8JD86my0nzxLS8toV35ugmDE7Z8DWwBIZbzqd4vj42N3nfJkbopw6Sw1W29b7GO22Sxm1QTB3AZ1SSiXP3Ilh1xPITU1YISXrNrzbQ0hTcOjcyVzlgfh4xvOAQqJRzPgQM14MbXONDy36tjkPiZQ1UuyMMTg4OMDJyQmePHni4pFHKBEBuET76kshJbIFkfztlvnW1RIgp3rjYw71IdqGSvKMyaHJVNLWVVVhOp3i6urK7aBR1zX+0l/6S3jvvffwj//xP8bBwQHef/99/Kt/9a/wox/9CHfu3MG9e/dwfn4eBC6JyFhAz0lB52eX5shrrb71sxYv1iepfvg8e3h46L5C1+bfmNFVPqd7+X5L41GoPEONuZqhisumGUT5WCLzi9W1VgcheXkejx5d4unTK7z22gyTSYXlsoG1dHZsA2PIRa+CMdiAngTAWpBIdKUsre28Yx1OaML/BKa2svmgLD9Lljxf+dmxPE9WSoSay1rgZNHg//f0GgsA1bRyXrESlE2dCSvBUw+UhXjGeYTyE78leOsBIPQ7BsrCv88mI2/FXMjQGwfKMo9XHkcCqDm/JTkPWuUako88XgmoVe95MgMPUHXgL3mvWubFK+ubebJqnrHE3xjTu5cgrOxfqODOjLWNdf0SFk42WPTOkzW1H07ySiAx5h2dSyFwTwVVRZgES+X4yAFVDWB1YbDevZYnB1Z5H/bC2W/+73nF8vzgy9vLn4eJOvP4KXXYm+dYmbzysWeSp1dnokxqvgDchwJCnn0R1wmGpOXnPo61ttoXYKHlE1t75AI4mj4SM/6GiGxg8j29yTUkycD12pcvX3o7qPAzMl8l2mZ9Hmob3n78Y1pNB9bsifwdk3lp1xAPrR/SfWh9p21rXEK0lXnI+J561+Tz9XrtPox9/PgxDg8Pnf2QdiwC/I9cQ+dXp2yYMv8cQIDHkV7LqfAv6YtJsh9su6vitvbhm7ZPpt651JgJ6LZKzU4Zwi1idUAf41MceZwY8eBgLI31N123MdqXzkWUM57G4sbq81UfW4vA2ByjaClpk5pmJOPnBAzhnaKQoX9bviXxtXjbgI2hF40bC3MUjxjlACqh9iT56rruAefaF6U5L2yoDCEwI1RHIUVS4yc9BLV8hpKmZFM+KeN47rOYgTynHmJgWUgGLUy2S0yGXAVl2wG6RBEKjV+yLNtSikesX2hxuGwxD+oUH7ovGV9kf6Y0dJ9qw9D7VlrPsn0kXynfGER51nXtbU+lga+0SB5bsYvx43Uf67/Ub+hsVPqfTqew1rot8bS+QvVJgO3x8TFmsxmOjo7ceVS5ZchtF2OM93X1t771Lbz55pt455138MYbb+Ctt97C0dERrq+v8eMf/xhAt7U+7wsh4n1Yhseea3Fl+eT7wY1kMj71maZp8PDhQ9y5c8e1ySeffILlcunpVKVzZ4xCZed9ODSXpeSRz0PzCF3l/KaNLbn6a8m73/Vvg8WiwXy+xmzWyjKZtChQVdF2wu25sQCwXtsN0BoaL9vnTUMgLXnYdh613TbF3W+A+i4f0wBr6b7Ls/1Naei3VxPQqmLRWPzZywWeLxqsgR7Yyr0fe+EijP5cuABFKZ2XRuEVAmUdoAd4snnPeNhG7vbi33cNVA6+eeAdsaUtrNl5pwb+Ga7G+GCpB5zaNq3nEYt+fO9KY4oIl7J6YLD168m9y5s8vfpgbc+9Zr35FbbXT6gejDH9LYmN3za9s2P5Wa/Gj+P+gV7eMp01G7DWdls8m8q0WxjXXR19/P2PsV6u8c2/9008/ObDrp4CXcLzjpbAqkYuiojLw1l6N15Z/5m14rcIc2noGQdiWf7W+iCrB0BaoQNa9H575UiULVg3AZk1cvJE0qjyAmqdyfJyeWTZAbh3FwivT/ZhvCv12JTxeNxdrHM5pfStbfmn0pToP9paMHddwvVm/uGeBpiHdJ8cGYeS5EvHbEiZXjUas29pun1o9yaeBmjfSTrGhj6S5LxDgESof/HxJbXeKFlDhdYmMg7v+5oOLmUH/GPq6NlqtcInn3yCy8tLtwU2vRPWWncuMw8nPnLbY5KDPLpTRGsoTdbPI40x1r4KdBvLmbP+Jtq17Lm2CU5D1vCxtCVxQu2pretD9Vli69Xk2Wb+k/mXtm9um4TsMqm0MX2jRKbQB+8ldRmKO2Z75FBun8klD93cpjMMpZzCkLFaix9TBnLzjCkqoRc8N69tSFO2Qvlp9aINUHJwylFItp0MZHoNjA0ZTHl+IYUulCZGMeUz1B9CaXJBkpI6C8VNLX5y+6LkI+s6puBri49Q/qEBKxYm85CLCiK5SNUm3pwBMyZjbPLNoZJ3OId/rrEkNpHKODFjQUomLX6uAhCqW21MCs1NsYVhqo5z3jG6l32ktJ5i+dBZN5PJBHVd4+Liwts+N9SHcknr39vM71r98jY7ODjAZDLB0dFR7wvCUJ8jMPbOnTu4e/cuvvKVr+DJkyc4OzuLlp/3txKFmjxzAeDb3/42vvvd7wJotyp+6623cHx8jPV6jTfeeMPNPXR+rSa/pNA2xKGvNzmFxkFJ0uDBeVG4te3Xmq+99hq++tWvunI9ffq0dwasJhMf31MfHZUYcrh8MpzzzXnvU+95SG4ZP9doqj0PtROFL5ctGHt4WAMwWK8tgAZVRR6mHBiluuhb8AmE7XjTFsdUV0ZJ1wGtbV4ciDWbqw/MtmXsZKDipoaN+cri+8+ucbq2mBxNYDbbukqvRAfgUTiERyzg/waLxwIpHU9L95ynfM5BPHkfA2I1b0+Sw6Oc4ZXqVICZHl8GphIAS0ArAaF8S2L3bMNXArTEO+YJS9schzxkPZ6snA7M3Mjggaa2qz/+zKsvpd0prjHddsEOhOVbD1P7GJanYfKyvsb7gSsnu7ozZzdn1jqv2Q0g64GxdN203cff/xgff+9jPHj3AR5880HXLwLDiQ09EH3Ei2v7z4PesJuwHhAL/7e14rnteAbvKY2N5LN5Lvk7GTbPNE9Zr6xKmSW461WblresahnG+DmZRN3wvGJrR08uGc0oYXumkAGrVC/ch51orDxieoqmg0kdKLS2DNUlhXFdh8fV7CL00R+BSbRzjCZ3SEfR5Cmxb4V48GfGGAdyUbmG7m62a0rppyV2o5z0sp219g/xITBWfpDLy0FxQ4bt0Hok18ZTSnJ9zNcLObvN8N+83JR2tVrh448/xosXL3BycoLz83Ocnp66tLPZzB23wvnxfkplns1mqKoK8/lcbY+Y7UKOCfsY+/ZNY5Ypx+ZF8bbpf0Mop5yltq9cviFeobH2i0Ildq6QjU7jmWOfkO/2mFQyVsTmXRlniBw5cXLtokQlc4m220NpeVJ6z6tKo2xTHDMajtGpaNuLEH9twr+timGMQoZHGSf3pQp5y/Cw1EQY6/jSmxVIfwUYy2dfC7vU1o85inMOxdLnKiq5z3dFqfqKLRBjIEms38XqPjToh0CJVF43QbtaFKZ48MUS1ZccI0J1qIXtsk53lY9cOIby3mXZrPXPKiUwNhb/Jt9/7d2VoCI/42i5XGK5XDqPWJoT1uu1A52pfafTKeq6xtXVFaqqwt27d/Hd734X/+Af/AP89Kc/xQ9+8AO8//77bnsqmnPIUJUjryRp5Lq4uMCLFy9cejqX6Pj4GG+88Qbee+89LBYLnJ2doWka9xW21i6aMr1Nfwst+FLjhDHGM1BMp1McHR3hq1/9Kowx+N73vueOfIjx0mTTxt2YUUPrL3wM8gzgwogl+WlzszSaanKE6ji13aJmaJO/07qvwS9+cYG7dyf4lV95AGtbz1hrK1RVu0Ux0G5ZbC1gTAP/vNjOC9VauWVxC7626brwtv7IC7Yf3snXxWnz4GBul5Z+0zbGIbKwqCYVKgKuqB0ZwEb33FBpTOcJG7uXgKsHrmleuKafnwYKu/is3Vz7sXhdZcAHYJVqiXnIqt6SlvVlBmAC6M6BFbwJPO0wv/AWxZTOhTP+XAYNiFV50lwqwFnPo7Z7Bbr0VEa+TXEjAFFKvtk6mNrHA3mNeP8ozAhZSEbezsTLGC+OqQzQwN/WWICuPTC2ZuGbOiTALQS2JvuGaBMlkgrOemMYxZHgIb/X4lhfVwzeb9JKIzzPh4Osbnxmebl7zkvIpIGvXlkC/Hp1auHLgj6PHiAsnnn8RZnksyLA9WbUuy8sSX0gtq4MfQQeMwjTlfQe+RFfSE8h3dTa+HEWFD6bzVxZaHea0jXkkPUOeezuyoC9T8qtr5x64usdTiU2DX4OqhavZD2YKltofZHiKd+B2HpH6vKx42hC9ibyGj45OYExBnfv3nVpNOA6pMvTB8+h7S6H9OOcOuYfVOzDzvklfUn7pM9Ln47N7fwDfqDv5akdY8btHDwsND7J31pajUrqP6T3lPLZNYXG512M0beBisDYnElaUmjyKalUabyWeWqT91iAR0nnjxkkc/OKgSFDOqLkp73YY3Z6jV+OoTlUV1zGEoN1jC+vh5AHE48TMv7myqClG1JHufmE8ighbTJI9YmhfTM1MfG4PE1J+XImNI22eadvcgKQ/TXWj/jv3I8ptu0Hsfbbdb2V9DctzrbjIl+cpfKKUWpMio03JZQz79M8bEy3zTIpsPIMLD5fcwXXmPbL5a985Sv4W3/rb+HOnTtYLBZ48uQJPvroI+c1QPWnndmRIy9fwBtjcH19jfPzcwCtcevq6spt6UuA7LNnz3B+fu4p3DHFPUcOHifXIBYzGsbikmfv/fv3e4A4fxe191KO0zGdLiQLH1e0d017JmXS6oobOamPyTqKndck57dQmWNjaKzu26vBixcLXF+v8d57a0wmrWesMQ3W6xb8bBqgaVp+TdMiOVVl0TTtc74tcfsc4Ge90ivVNN29tVS+ziMWHgJH5eFbEfMySh2ly1OjtQWWjQWqFmpydbsBx6S3qeflati/dq+R6fJw/EwHtrl7agcW3iY3jge/d/HB4jO5QiBsD7CNir6J6PAg6zWLAxOpzxm0gCzFs50sHFRy/XQTn3hIoNQDomQZuFym85QluRzYyvgRiOvqx4oyUXXS9ssC6JXAqCvjJm3P05XaiPJldebqTWkzDvS6/iXqQANtvf5I/Yi2LTad/PSsWTZYXa9Qz+ounFHUIzb0yCrpqJ342MT7lHxuWbhV4vA8rJCFpxH85dXaztvVwgc+OehKfPi9Vi61fJbJoZH1/714WrgsC2dF8lml3Baq/MVr6GFqZZrtCAa8XdNQnXqbPHLX4yFwLZQHzUe8/ckzkT+TfCg+HS0ht0eVcY1pvf5IPrKRla6NKY9c/ZOXict322moDSCmG4f0ZS2vkvUJr1vZT0tl1/oNl0eTLWSbybUFSX09FEfmH5OBzoc9PDzE0dGRi391daV+7KmVWW5bnGODDBHx1dYXsmwheb6klmK2wF3mt2seJWPOLso+tJyx9ki9z9u8UzEaYpcsyT/HvsfHkaF6VY79UeOXEyfFbxvb9y7j5rZbaN75PIyno3jGjkUlnY2nuQ1esKEOdts7Sc5CI1b3KdK+glutVh64HvoKMKXASFAjJutNU0yunEk6NQDxOJoCn1MvMWP5LkmTL1VerX+UgBNj0TYLpV1RatyRoEpscQaE+5mMEyr/bakXol0pi0OJdn6gOuRAYYqoPbRdCnZBvO4mkwlms5m7v76+hrUWv/Irv4KHDx/iO9/5Dk5PT/E7v/M7mM/nLr22bTEtrh8/foz33nsPAHD37l380i/9Eu7cuQMADti9vLx0YGiOAi2JvrKu6xp37tzBo0eP8PTpUwBw2yNPJhPcuXMH1locHBzAWovz83PMZjN3nlPMICHH430T6UUkw/X1NU5PT7Fer3FwcIA333wT1lqcnJy4/iMNLdo8IMcOHp/nTfG19DJceo9w+WUe1M/pXaEPAAgg186ckn2FP5O6IzeaanOqNhZSmfg7SLLQtmhtPODiYgnAYjKp0DTVJh+APE5p2+IWcG23MQYMmsagrgFrAbMBm6qKy9KGt2fNdvfyvy1L/55fu/qxEE3VuydaW+D3PrvG03mDq9q0XoJii+IeeFqZfhj9I+zlGvqnvLx24vcMZJMesZ7XLUQYWPjmt+xHPUq98tQVHUvjwkMesF48x8Z6YaF71TNWFUuJr2wr3PO6ZfXl3Yv6cNsA281YoPGn/lKxsWTjsUpbBxMoxtvZ23J447XqnsGSA3qvnV04ut+22oBrbMtizTPWWANTt/3VNpv8rcWf/t/+FD/5736Cf/d//u/iwTce9Oo55hmrgq6bcP9WgIIyDGxeVEDE3twpw3LvLZsDWJj2W+alxZVy9fKMgaEW/fxEmXtzlZQf3bguw1XePKyx/WcpUuS6TfQq2DFKKNdArh0/pKWVa0D+mz5EzJGH7BmLxcLlH9Mv6QM77ulHenYsHy57yvYTS09xc9cer3o/yllTh3TEGPF1OOmdMe/RbYjLqfGiflVCOYbzlA2KgxxS15bjddM0uLq6cmGhusqxe+Ws0XLrIzSu7NL+8aq/U68avUr1XQIE75N2UYfG9Hff0uLEZOLxNHv0xcWFOibJPOR8mDMHhGR7VfpaLuXOazG7nqaT0bGXGoV2mrht1DszNqezhaj0hc+NP8SoOcbgExs0SvhrRs1U3NgEntNBS6gUCCshjRdtcUPPx54oSmUtWZBsI4ucHEPPUvKl4mj9NsVfM6an0m1LIRm194We5SoYY9SvVg+xui0ZL0rGhCEUGzOl4hJalGkUmx9S40ZocRUirc1j8fh9qH5vSilN9VVN+Qj1p9DcsGvFTcpIXxnLOA8fPsRXv/pV/Nqv/RqePXuGf/Nv/g0AYLFYBMf7yWSCpmlweXmJ+XyOpmkwnU5x7949TKdTAG35CNjSzgcqKYe11nmIErh7cHCA6+trnJyc4Pj4GKvVyp3fy8FXz0grKNTHc/pyafuVjOmr1QrX19dYLBYOUJ5Op24eJjCWG4NiCrJWTtkvU8ZKLmds3CS+qfGcyx+rC81YlqsDhcYablADfK+R7st54PJyhaoyuHOnQVUB63W18YDlnrGWecDS1/eWecwC1hoXvyszydLGB3P7sxYw5L0HascW+O0QA142Wf5432ysxWfzNZ7M15geTd2WwW1KH8hzYFugTrXsgl607N/zjCXeIbkN+vIZISu7SiA2V2aNPI/RNsCXC6wPb5pL85SlcPIMhYHnxcrvubeqA1tNP3/5rvH3z8dWjQOnpGzUBh5otpGF5CYglV9dd+XlIzl4PF5PvKzEj5WPg70eCE3ydq9Irw08ANl0eXh9bnPvxp4NkH76i1NcPr3E8nLZb2PqA7mkpbX+c827M+TxqepfMr7gr933dBaZN8/PoieHyluWOZQmIrPniRvjp/DUgN5QuRxwG8jLlRvw+zbYc/q9smiWjV4XAUqt81I6Ua5d5fNmEIzpYzl1FtI9QhTSi0L8Y4ZImR+NO3zb1ZCeEstTu88FsnJpX/0ox9gfszVo4blxQnpqSV2FdKKha9fSdXcpX8kvlF/O8WB0lXUg80o54ITea257lFSypk7Zy2L22zEp553KeR92mX8o7lj1o60Pd0Xb2pbHopy1NY87tJ/sok5vUp/IGVdD8smd2EL9eZs8ckjjVWr/Ssmxbb9N2Y9TcYfoFvIoCOKzrbPmvsaWHhibM2mOQTEDam7B91VJObQrMEWGlSp12u9dUo5Cs1wucXZ25t3LFybX+Fq6XYCm6OYuWm+KQuBS6CwbLb30Ogopk7FJQ6u7XX9xEsuf10tqMRzaqjK3bccaaySQRPLtikJya6AWT5PiMXQSz33/ZLybfgfHoNI+FOr7fGFZVdVe5uuQfOQZS3qDtRbvvvsufuVXfgX/8B/+Qzx//hyfffYZ3n//ffz+7/8+6rr20pAXwPHxMdbrNS4uLpwXZ1VVeOutt5zXrFbWGNAWItmXlsslrLX4O3/n7+Ctt97CP//n/xyz2QzT6RQffPAB/vRP/xR1XePBgwe4vr5259fLcZnKRjKt12vPu5Py3tdczM+Lvbi4wKeffor3338fR0dHODs7c+A4xZ1Op5jNZs6rc7FYBLf/ihk0JcXKbEz/S1L5nKflZy8BcCA5vQvaWK953qZkCenCWl/jnrfae0phy2WDH//4DA8ezHB0NMF6Xbs+ZG2bT123rnnk9Uoesq1nbHuWrLVdnRLISsBqe99d5X9bDyR/d+W/u/Lpv7X7xgLVpELdoPUUJK9X5v3KQSvP4KaF8z8nnJ6e8+FxyOvRwLgrz88DXSmMtWsPnOXPKJ37aXphIeJesJRGAmcuH+s/H+oZy38nPWNN2pPWhUnZ6F6pO89zFaL+6bppM/Jgpbgkk/OQNZ2szpuV+Cres+5asXpm7d47v5bFM9aAgGHudUvXqq7Q2MY/M3YCmEmbr6rfRDqKB+5FgMoe2Ao2PingYu/ZBiz0PD43vz1AKHRvfR4SRHJzs+1+u/vGdmkUfj3wVoRp8Tg//s/z1cK8egn88/Qqv8a2fZDKuflQxmtLo7Tnht/lo0uszlYtIJtJ+zRCv4oUq5vYeiJnrTEUbBkqk5a/MQaLxcJ9FMl1II2nZk+J2ZQ6HaNc57sp2vX7ELI/8DokW1bOkT/a2mBMkEq7J31ZW4vT8xBxHbfUbiZ195J2Glon3NPcGIPz83O3i06u/SzVp+SRQ1L/3xXl9vXb+q6OSbd9LtxVXxizzDdZd6U2eS1Ozg4NtIsEJ9r+nCjmaU8UOnN6LAq1awgXGipL6KiBHJvsbSGyI1ZV5e3UNxbvfZVZ3aZYCiAVutJJdBeF0ZSgUBxOYyo7Gu9U/rkUeul2Qam8xlg8yHRkpA4tBkr6TWn/isUfMgnkAlVD8krlEQIkh75zY76roYVLDoUWfpqhO8YjJltofEilzclnjHd1m/6h8RkKCoUW4KE5Ylsq7YNaWbSxONeQMOS5BF6416i17da82rZnpeWQ+YVk2BdpYyGV/86dO1iv1/jKV76CTz75xJWPK83SW9Zai/l8jmfPnjmjASnKdB/Kextqmgbz+Rzn5+c4Pz+HMe15XI8fP/a8SUnWELDHDTBykT6mLlS6EF+tVri6usLz588xm80wn8+xWq16czBvvxT/HBliBib5PkqdQ/vSkeJRGxwcHLh37fr62m3TV1WVt01zqdEplC+XVZaL5ArpgdYCi0WD6+s1Tk8XaJopZrMKVdV6srberJYBse02wU1DnrGedKgqi5a12Vz5GbNk+ecIgNnEobJ14dYCLagLtOLL+pJ1pZTRdCAsBze7FN0zziLmvcrjev3FoPdvjO896+6NkjexNex5L/vIWCxlH/JaUxoLB3ryMC8fOmuVtjDeNK3zot00p+uTRvDdyG9hu7NnFVmcJ61ytqsf3fc+hUV3ZixL68lv4IO9Wp2J7srL49WRQc8LuAd2GVEe+Sps8nfn1do+WO154vK+ovQ/KZfrL0Imjy+n1HTmmt5694AYy2wgTIZb+GAt+y3TePdCjp43qcg7CC5Hyut4W+vfU15WxJWyynz5fSCtA6JlnQC9cC++DciWq55YOM/YUh1h3/rEPim0FtvWLpBj2yjJh3hqek5I79B0nyHrPX6kSWp9UcJb2teGtsG+KdWepQBiimR8qQ/KME0+rb61ODFeMRua1Fm1+KV9vTRNSEaeP6+DnHUFT5sTj9bhWj9IyRYKC6Ub0o/GsGOG1h+7el/HWoOPYeu6DXPhEPvhbaIhcu+rzDnjt8Sn5Lwqn8uwFJ40dL4updQ8ocmWy6ck/RB+JXaVmN6UagvtXjo/hOTJHe/3qefs/MzYMSaYIYpC7HlOY+2SpAyhSVXzSskZkLR8Yr+H0m1X0EOT6i5fNm2w1+QKpc2hmIdPKH+eZ8yblRvBKV2onWMTkmbQjwEpu2wTbULOIf6uxRb2Q9s7xmdXY5I0AoTOa5b3sl9pEyr9LhmfSuUeymOXY5Nc8BljcHR0hLt377rw09NTz9OQb+9LHpT0vpCnXeg9vi2KvrX+FiAk9+npKV6+fInlconpdIpvfvObePLkCYC23OTpaq3F1dUV1uu1VzfPnz/H7/3e77lx6NNPPwUAzOdz7/yHkrkwRev1Gv/6X//rXp1XVYWjoyO3m0NVVeqZIJzo68vVarX1QjhnDsuhy8tLXF5e4tmzZwDgtn7uzjP1AdmU3KkFMecX68skA8+X4nPZJK3XaxweHuLdd9/Fw4cP8fbbb+MHP/gB3n//fUynU3euL+B/McvLqhmryKBJZ72FPIM1Yyr1TX6uLX2Ewct6ebnGD37wEu+8c4TDwxrWAlREAmBbMLXaALTtPZ0Zay3J2oZ1nrEtENvWI2AM3H37u/tv5dN/0z2/yt+cjGm3KUYF5xXrgCvjA1d8LvG2B2bx1QUzTDCeiy/y0HhzME29B7ww3sb0jMvTrwz2PEA90IunsX6Yiw8RZ/O8pzcoQKIHyAqwkSWEA0sz4vfyYXXm3VN8w/jleshu0lF7Ok/YTRzHk4XRObNOFnof6AxYo/xD3DPPWnf2rEXnLUue5fzs2NrArLv6MDDuuTd+sZ8x72QlsHevgZwhwBBgcoh7a/txKEy9Z3x5eC+OCNPuZfzsK5fb+r/5vwzn+WrxYvL10jcsfqOUM0a8vdj9Ta2h953vtnrRWKStufjcnruu4bqC1A24LpPaSapknWqtdR8qkvcflzVWNq7rhIyhsmxyXtZ2m9rF2v029BOimO3MG5eQt2uY7CsaXy1+KDyUluu6Uq4xdhu6SUr1EV4W+viX26a2tcdpfErXpmPV8RhrxS8KjbW2/qLTGGN0bP4JxQnJcXBw4MKWy2Vve2EZfwhJ2xfR2P1Jm3O1eUerm9RcIXncBMXwEu2orNiz9XqN5XLZizuZTDxdJTbu3+S7HwRjb9Lgu02HTk2CJZU9RtxcpaYEiCmRS1PCZR4hpbKUUkZXIu7tRPdDZdgGwMpaNGfmHwKqZH70PGfyycmvhGeu0ikHrJCSWVqGXHlCfSH1bg9py1KZc9spVbac8SIlT4pXikfOOBmTMzbZa5NsqdIQk4v4ldIuJlveL+m3McbzjCVwiAA6+Y5p71tqvlBBiz0qE1p7WmtxcXGBs7Mz56VIXqUknzHGKck09lO91HWNq6srfPDBBy7u2dmZ24aN119Iptw6IH7UVtKTkgBLHq4Rb38JFI81v4xBXB5NLyCjm9x2l6ePvfM5ZS0ds0JjFYU3TYPJZIK7d+/izp07OD4+duE5+lZs3uaGSi63NNLKtFK34vXZhgHrtcVq1WA+X2+MtQZ13fJYr1sPVQJiu7NhPemct2xXls4jtg0nQ3AL1pInbSs/ycJ/83LwsDa/7nf3HAA+WzY4XVnMN9vHbsRjkm7+jBcIAuwIlOp5ooK1kVHuN1cXn9pFaXYvD8PqTAFVVYCQ/VaBWP4sQXJ7Xw2Y5eEuPwsHdNJz+d71gNSN52hvjuKgnd/kLox7lXoeqJIflYe/C1Q+K/gxsLfnDbzh7UBR25XBGNOW33Q8tTCvfPSbe8aKf1e+DdDL70Nt3+t/m98OuN2ENU2DJ3/6BPOzOd76q29hciDOV9dA1+6hHizHWA7qWT88BMT2wsXvoIcs/RMfik882L8b78Tvntwl86OWXiu3mHettb14FmGZvCuVh6ff3EtP2F49xOTPCR9AN2m3KaGx7DBD1wAp4ETq1iH9husImqyanhWyb8ltXDV+8nnOml6LE1tnyPxDa4190E0aR0PEdeiY3SpnnR2Kl+ITsgPx3zk2qVx7UkwGTnzdkNMHQzKOsXbS8pP5pChls9Le/VdlDP6i0y7GlqHj8S7y3bctqCS/IbbHEnszPeMfz7dr4c7hIcVzWxt9CcVsoyl+Jf0ppU+Upg2lD+lLuWVMjf/Hx8eeQwvQtjXZ7Didn59jsVjcmA6TS15pSl+mXcYnCp31GKrYIZN4SBkvSX+bKFQvJR0+ZwAIKWyxNEC7ZSIHY3e9/zrPnytM3MuKy5einLPncuWh+LmTgGYwzn23Sgzm0mhfKltpe4byk3HkonZXim9KEYhRStEYqphpba+FD32nQzISz5JJezKZ9Hg0TeN9ucSVoyF58fYfOr+MRbJNqQ6I6CzRy8vL3hd1k8kEs9msNx7JduDPqN5iRpV9EIFevB2ePXuGe/fu4eLiArPZDIeHh5jNZp58l5eXuLq6cmnm8zmMab9qfPnyJf7Fv/gXLu7BwQGOjo6wWCzcvDFGWQnYnc1mODg4wMXFhedNee/ePSyXS1xcXAT7Kn8HrbVYLpeo69prG3k+0U31Vb51NskhPWOXy6W3UOF9kOpGM9xwCr27ueGhOU4Lm8/nqKoKDx48wOuvv44333wTJycn7kOAmG7Hn1H7aGWXBib+7oXyoHvtnCzKf7lscH6+hLWAMe3/ZNLyruvWm7UFV9szZK1tPWXr2sBao3rGEq+q6ni2YRSnDWtlQe9euwIdYOuHt/Rn5yv85HqNala3HoJGB74caGUcPNuP02XpAV7qlden6dLxME0Wb96kMAJpGdDq+qG7mJ6MKviaerUt4xeKb9FtSUxpeH7sueYJS/fuN+lLHKglQJQ9c+EExMJ4Hqye3mU6Prx++DMO9LryUDrNQ5a1owNLGWjL20x65GphrkybLZS1vuDOieWALM+HvHMrf5tkGLTe4JtzbE21qZdNWzXLBn/yf/0T3HnrDv6D/+1/gPor6TOtZB8JhatAvu2Hu3EpACg6MJXChB5O5fGugXAZpv2WfLx8RXwNBFbzgJCB15Xt5yH5hcrC//l5sLBozy0WcbV6irWh2p4D6KZ131eR3Dyk1FssXNo7QvGA8Jo21l6l+rzGi+syPG9tXS/fGbn+4L9lub6kPoXW5GMRbzfNDjWGDavEprQLyln/D7H9pIzxobVdDt99vxOv4pi/D5lfxXoBXl25xyKad1K29VKaTCYqQKftDiDnXTl/xuZseh6KM6bN15j+7ga3kbS60BzvQvhPrIxvvvkm7t+/74XNZjM8fPiwV9c/+MEP8Mknn6g26Rjt+51UwdhUZ8kBTmLpKC+toKUvYwloIhWlnBctN98Q35J0/L4E/MjNJ7dz5cbh/ELtqZ2blyuXXAzINDn1o7VxzP09l2JtzcGWUF3GBpqUcTqUb8m7kIpTomCm2kl7prWfxof3DQI2htBY7Z3DO1W2nC0TSif1ksk+9pyDDjm8tDiSBwEY2nYhBFSl8tMMFLfNKEDvDHkXciCG6uTevXuwtvWUXSwWODs7cyB1arFIecTu90nWWuc1ytvns88+Q1VV+N73vofZbIaPPvoIjx8/hrWtB+z19bW6xQvQjZ2z2cwLJ+B0bDLGuDIQYN6CYXWwrvn8rBneyONWblsn+dwEkczaOyuBQ01p5vElT81YqcXXZOLE52mtzoEWLG+aBi9fvsTLly9xdnaG9Xrt+s16vXZtGNpOSJMvtPiR8XrG+kh5QnR9vcbTp9d44w2LycS4s2Jb4NWgqoAWQK1gLWBM53pqbQu4tvFJ1v61+28BVR4GB8TxspL3LOUNAG0Y8fSLZ1oYgZ0V64GXXkzTA9ukV2zw3TAdENcDMV35jBffPYNIx/L38pbyQcThomn8cknG1boL8bfdveZp2iZnfdei7w274WWtv7WwMQKQJWCUA7Gb9BwM9gBd4s+8SV04ldWyeuRnx3JAFiI+lVGWgcBQisKe8zaRHrden2Hhnucvbx/2b4z/3PVDdrWV9cJce23at+fBmUNW3tp+uATzGMjI4wS9ZPlYz5+zNN49f86vIh/ueerGSBvIU/nnfDz5FTl4mKsDJV9KI8NCZVHrmvgyebxySVliJOpjKKXWBJ9XI++29SZ1GPksNvdLitW11BGlzSRnLS+fST0ktV7UdCyuU/GjHWg9Iu07nIasE2+ahtqLYrqhxrfU4DuEYu3N+0bMjqOtXSicp8tdk+bG55RT/hxbyDaUWp/lypiq5zHpVRzTh9TrtnmU0jb9cRvahmds/H8VSM7DoXknt79Iu4HW7zgGoK3hiVL1qukQsfEkNSbnyCDbu6qqrOPmNJl53Fy7cc68H8o79AERt9cQ0W54IZt/SNcK5c3bnGx8Ib6pndV2QSoYmyvEkMGU5xGrjG3z0XjuqnI1vtqLOYYMGo8SgGrMhZ9WNjnwxBY8ufnQPQexQltH5gyeISBgCGl9VfLXzuSQ96V9I2T0TsUtodxJIzQJaUpCTNbYAk9bCJcsBnPqS+O3C4VR8/bP+UBAjs+83iXAq8mvTaYhZSe33JoiQ/z5WZAEnsi0OXnxPELKzG1RRknRoy2JiWhyv3//PiaTifPEPD8/dwrHZDIJzok5BheKV6qcl8anuNxoQzyqqsKTJ09wfn6O3/3d38VsNsPz58/x6NEjAO0ZHpeXlz1wldqUlDI6VxZoz4rNBatLiJdjvV67rU9ShjCg33d5HfKtfrUPL26SYguP2NzI3+eSs7CIrxau1WWoL9M/P3O5aRq8ePECDx48wMuXL7Fer915MavVyp0VEhpb6SMQY4wKnofk1uZvmS5nfLq8XOPyco2qMjg+nihgrNl4uHZgKJ0b2+bTXa0FKAtjunvuIWsMjc12k08XH+jA2k7e7p7zhYeGWXAPwd68wgAtAsV6OoECyFI8T6/kfKS+KfLhfDxAlsnh0rH0PdnRpe2FiaoYTBoP23/GgUwP4CQA0rZtwbcV5nOlMaYHWklA1NuaGP72wB5fBox6YObm4vKyrD43fDywVfHAJS9W6RHr5AF6YLEHTBtWLl5nRtQr1Y8JlJPiib6ledlSX+TPXL/ZnEE7SJfUklj0wUf6af12CIKwEtzkcZis0XuW1oGvsXxoXLRKHIirVa68bLJ87J/nkwPKumdAnxfL2+PBwoK8MmgISB9abw2NNxbdFh0nh0LryVBYjI+ci7R6D9mDNP0kZGSUeUo9I5a/XDO58WqzXpnNZpjNZlitVu7sNfmhLKB7C+273XPsEqm+P8SuEbPpxWwgIdLaJCSH5B/qqyHbkowrzx4MeUTLsFwbBc8/RDltEKvboRTKN7eMKZ77HndvO+3ChiZ5v0p1PYa9Nqe8JTa8XJ65+Q3lFZuXc/nysayua3VMlCCfxld+fF4yZ3C+fAyO2RFyeWry5tRLat5M4RQUps1/uaTNX9QW3MYEwIGzY3kBy50FpcMHp9z2HnPcCZ4Zm0spZUOjmPdrDDnPoVDnCIXtcqLYlkrKkYqTm0fOi79r0tpQkzM18Ml0uYqkXHzcNirts7I+NeU+FFcSfw9zDM5jUajfl05uuTLyvrCrPqAtlmML29Cz0v4ea/8cWbeh3PbKHZs1uW7SKEQKhbXWA2MvLy9hjMFv/MZv4OHDh5hOp3j06BE++ugjV07a0vf6+lr1IpYLPq2cQ+azbepKMxLQF/bf+973UFUV5vM5rq+vcXBwAGOMA3BjPBeLhbvf11dq2jbI6/U6OR9Jg1xobrpp0gwGMV0sNL9qcajsoS80eR1J3pwv79c8roxPRkFjDF6+fIkf/ehHuLq6wvX1NZbLpWrklLJrH3Rp95KH3JqbZApRqu1PTpZYLs/xS790jAcPZqgqoK617YpbD1kCZNszZSsY095TNsZgk6YL7/6pbv1nlC527crSlvvxYo1HiwafEcDKASrAAVKa56kJpUGX1l2dHG18l47yMF0eHuDLeWv8TSeTCs668vrl8eJJtkPfczkcMjaun1HWBDDycMveI4M+IMuAUWsZ6Lnhxz1Ve3IxftKztY2y4Y3umXbvgaTsGcnHZaPyuTGAy8fLxHjy9vTic/lFv3D5UjyjbJtMcTnQaow7I9alr9Bud2zYltAVsDhb4E/+L3+Ch+89xC//o19GPS3brrjnaWn5TwHm2X6Y6yfWv+fAYS+M8aGw3j0fsyOgrBtDLZPdieTzjP6j+63xU/NRyi0BVQ1Y5by8OhHP3H8D2Ma22xdrJMu9kWXxbIHl6RLr67B9I7am3Rfl6NS3QcfJITmfx9YQMf0hxEPTAbX2kx9scv0xhzhPCa7FyqbpqnVdYzaboa5rrFYrXFxcBMtNPEuOShljTcYNtiE9W8o4tgzb2AtDazXe16hdeHvmGMWJ+LEj25JmDyvpn7G2uY1216H9IzRG3KQd4otCt3UuvM10G/QJSTky5Nh7rfWxIrLfyDiaY8gu6kGO7ZxkG2gYV47tK2VHvY3E64PmO3KK4DSZTPDgwQMvzBiDBw8e9LYpvn//Pn71V3+1Z9O6vr7ubVW9XC7x7NmzYN3Vda2C07uct7LA2KECxDp4KFzbPzoGxA412JfyCylSY3R2WU/SGBlLF5JBk1crm5ZvTp5aHkPrQuMzZACy1j9HI2T8jfGRL2BscZGKk3qWG98zSiX6uyZXa9TtDECx90nWvZQn5sGZUychI3xIlhhpcoYU45Q8fIG6D5ILnZLxJPYex+oz9f6HFrg5bZl6Tr+lV/A2k1vM2HBTRIoF0L0r1rbgYl3XeO+99/DOO+9gNpv15jrymOVAZIq2VQ62VULlXEWGnaZp8NOf/tTJN5lMcHh46BmgQvOHtbYHRu+qTfl7t16ve2OjHHv5ext7ZzXDWCjuvkh7H3P6T66OJetJu48tTEIGTGP6IC8fTy4vL/Ho0SP3heVqtfL4hdqHFmXUZ3mbpgxh/LdmtJJlkOXkfM7Pl7i4WOH+/RkOD2tMJgbWwp0N23rKAsY0sNagdbVzEngervRfVUDT9MNafhbtFsS0bbEB0G1hTM/aPLG5ynkK+GzR4P3LFSaHE5iJKLsRv00XZozxn6MD0Xo8jN+3DIvk6pbF6+Ut6p4Dqj2Q2Phy8Lx65dF4b0MyOet2xhh4oFzbXH6bsDC673myCiDTbS3M86e4DMzkfFw+8LcrjoKwogw8rVoPmzz4b5KZePXAYOPHIV4uDgGkwqvV42XQ93oVsrkxTHjO8nB33fBcXa/w83/xc1z86gW+8w++g2oy4FwsUV29ccn69e3Fsf171RuWh3GQVN5bP430YJV59jxfuVwyPvz8pLy9OUyEyTrS6sCLz5NyWcS/S6eE8WdFnq4WWJ4vMX8278kdTBJZ06Tm6Vj8lN1jX3pL6RpyjLxiOsKYpK2lubGV1ui5617NqB46GoPiA7qNraoqb5vAWF/hulxqDS9l3oZCIELux5olcWJ6n6bLSzuaxjMWRysbb0+tj4belSHllHqpJnNuW+fkq/HSwrZdn5aSZostSfsltbTvuhjDjrGL+ENk2nV/H9q/SyilT6TCYhQbh6y1HgAb2+I2lu+2dkktv9h9KEyzx8ZorHmQ5z9WWslD2t757mREk8kEx8fHvfTHx8e98Pv37+Pdd9/t7S74s5/9DBcXF94YcXFxgadPnwb7RwiMDdmhxqAiz9ibmGyyFloDeZTKMfYguUtFY4jxt1TZSg1oxpjeNgGps1LHrA/PiGeMCiSOkV/Im1vKoD3PodIBkAMgd+7c6cnABz1rLebzubeIS7UpH0xD7Wmt7dXLLr2M5XhQuqjX2kP72ngIyQUN/7L3pom/c3wxxmXj2w3zdPxKRHG4QkQL/TFllvLcFpJ96uLiwnm6kpfocrnEw4cPcXh46KWlvgH4Z+lOp1PXX2hr4BiVjvljE9XBnTt3AHSgdMojdhdyUL0NqZMUEKel4WMc36r4tvVVTSHmxMdvqr/YRzz0jofOZ81pd75tMPd81Yx+fGyx1vek5u8R3VN6+udjEpWNe7wSoCvHPmmoyi2b1Ae0NI8fX+LZszm+/e27uHu3/ZJzsgFuWmC22lyBpmlB2rpuUFVtPXQgawu4tlfAmPa/BWfbOEDnIdtuW2xcPHrWykt12MXpKhYtsFQxvcCIvrQBxCQA2j3u33vGXsVD0eVBIJgEaLU4huUvwTbT5S2E8crghfH8cqnHXgRwjIh7qFohg4W33a8xxgtz/cvA92TloCorFwdmjWFALEvDvXEpDpWBe91qoCwAJ4+XL/dApfrZlJV+c89Vs+nbXE5XLwSEMf4krwTSPR58a2TA6z8SnKX4sh+aitU38TRdXZvKwNQGqPR1qwcqS9KGFocv2l6cHvgoQVf+TAEQXRjX70L3lLZpr7bZxGFX/pyn6/Gw/Tg9QNhGeIiw2L0LaxQP2KaLz/97AGyzKa9FdxXlCJJsjx2SBqrwZ7dhDXJTlFsnY9qZqqpyHyS++eabuH//Pi4uLrBYLHBxcaF68uTkya9SP5Hx6cgPbpuRO9GkPDNLyjyEaK1D5amqCnfu3MF6vcbV1VUv/+l0Gjw77yapxPZTanhP5Sv1ZdKrQ2NCqt9pfS22s06pjKGwsUmzY4zN90vaL31Z959Pusl2leNxDoA6dDx5VfSwUjlDO6Vp84YWrtnvrLU4OTnB5eWlF3c+n+PDDz/s2Zop3m0fIzwwNtbxxu4suaBYrAJjMoWUoFSDxJQBLXwb5WGXnWOo8TlUHq1vSJApxFszZEreJQbNEMXk0ozO2ks+VDmUZczpZ7sgKSsBOfIZDZKpxQuvE24kJRqycOTtNHShGwJZUvxyx4BU/qUk66xk0R/qsyWLim3kj40LGnHgYxvieWp9WIt/k6TJtlqtPEMHgT51XXtgUGzrLf7FurZ98U2WOzbP0vmrZHyKfbXP040tW4xnaX5yfE/Nlfumseowd4yRhr/QOKHVV8hgFOIT6zcluh0ZkSaTiTtX9vLy0uufIY+EmAErx3gZImstLi5WuL5e4/p6jdmswnRaAWhQ11THxJfXGdChWH6YcQBT+9+ucwyahspE3q9d3BbM5XlQu7X5U9Go2O5dIHCKI18cZDMM6IIfr+ehysmI5yKti5PgzeUI8eBX165GiSPk6lGkGwbT8HRWAHR+8zo+Elh1QKYN6FYG/pbEnCnLuycT58vSeTykjJJfKr3Mj+Tl5ZBtYcWV2sSgl8b1rQ1YxvVHa61XN16XMQyA9bL3PWTlPfFrcWKxJhBFDnoJ+5H8uJIHb2sJ9gmAMBpuRR48H+uHpTxie3nItFDSav+yvFYZYy1bqwT49J5JflpZbIA3ReFjfsmwr5ULSrkS4SV6cWgu137n2F1i83FIhpumnPXEELBG1mHIcMvzPT4+xmuvvYaqqnB9fd0zGpb2hRI7hZSPzonlfEIG05w+ty1JOauqwvHxsVv/LJdL9aPUofa4HF0z9U5s28e3aVftndRsJNL2ErOf5JYnNJbkjA8hOUplGJuG2iNzbH83QWOvrW+ScuaoLzp9ntq7tBzaGKhRShcYW49JjY2ltuwx5IjJs8v8QnUfs69wms/nvQ//Dw4OcHFx4YGx1vZ32SO+k8lE9ca9KVLB2LEaJsRHKzwZxXZJOcY6MsSVKOH7eokkDVU8S0kCBHKrUfqdGmBy+lWoPLE2GaoAjQW67etMw21J25Md6LvkxxbqOYOlbI/YYDf0nd+lsrHt+5wLGI79/ubwkm0dOjshp25j4Avna23ruZYDNudSLlBzE0R1slwusyb6u3fv4s0338T5+TlOT0+xXq89hYJ7VkpD0W0qd4xy+9NNE5/rYh6t9A7FPEF3rc9olFuHOWOcNNxozyeTifuwgAOpxDOUD+dNdcj1itD7nWP4kaCoHNPW6zUePHiA119/HW+99RaOj4/xve99DycnJ85bnT6g0HRi2T+ofriOoo2hmi7UXwACJydzLJdtnUw350vWtUHTtNfJxKJpKlSVYR6yLYjanjVrUVVm87z9bYxF07RXAl/bK9zvVq52u2KAe8129538LY5gauNAs0207p+XHaLspruKiO6Zq0PTT8OfeXmw9J4cAmDzQFfD0kKUBf4zCg+CuQqpALUk3g14dOvLQsChe2ZEH7Xon6u6kYHH87xfN8+4t6oXboyXr+PHeDsgy4TvOTDJn3HvVOe9a1gehslM7w393pRXrQvW9g5kZf+eHKbzaAXQ84iFgXtujIGtGL9q037kIV6Z1luSt1ONoGdslJSoGhBJdcJBPgnchgDSHqhq+yCjer9JU+wRK8FZq/CNXHthTdgTln5r99Za5wnby6OxvbQ8L/KM5f8xYNWBz7wNBur+Q+w0OWvd26xTj0FD6lub96VeJHUSrm/IeX4ymbg1wVtvvYXvfOc7ODs7w8XFBV68eIHFYoGDgwO3fpAyhOTzxumALHVdYzqd4vXXX8dyucTZ2ZkzRtKOPSUgVMqQOpRI3rt377rdhO7evYtf//Vfx/379/Hmm2/ihz/8Ib7//e+7NPSR603SrtZjxDNko6F7qeeG1vEpvT5GOYBFKeV6Ye+CQnq4FoeoJO5todsq15e0G/oitHfuu5vSfULjdo79pgQn4jK9ChSSs2T8i/G4yXo4OjrCd7/7Xbx8+RKPHj26MTk4FW1TnKIUGDckfcqAHzMibkPbAjIhyjEy5siTSlMib8jASfe5dZx6wYYMXLHnqcFCUzZ3reyN3Y5aejmwyz4Ue2d4/nwbIMkzt2+F3vncfq3x4DLl9oXcvGS++5wUZP2Xvg85i9+c/jf2weQ59ecZtgrTvookwRmi+XyO+Xzu+t3BwQEODg7cGbLaV1xaH+WL77HkJSqd+0LjBX2kwseZfVLOfDRUP5HvsTRwvMr9Okf2kMFnTL1JGhpD/BxAUjiP0tZ39+/fx8HBgfPk1uZEnm4boy4fu0Nlur5uYMwad++2xsXptN2iuKoaABXaZMQH7trytOBN4D+ncrceru0ZsjKd2YR1XrNteroHlha43vzzskmwjrwFg56qXaC7UhoN0A0SB9iURK4M4lnUS5XHMV5AHrjK+eeUg+LIriXCvf5n2vCe/iaAUvfbdFsKa7I6MFQCtQqvpPzaveXR+7y4DG1S6+q7F5fKTHz5VdY3y5u3nQN9+RbNDMh2IC7P0/h5Uv92dcW2O7bWr7/1fI3TD09x+PAQx2/45x3FSG0zG3lu/TAOAPJ7DxiU4Cw91+4pvQB/Yzx7slpF7lD5rZ+/V05ethQvkZbLIAFZj6cVOrJV/qlsGflba9GsGqyv17Dr8FrNJYvoerH1be5aXFv/ybghfSdFOXN3DuXqAike29oWpDxa2hhfyaOua8xmM0/vp+12c9bhXA8LyUa6Bu3I8+DBAywWCxhjcH5+7n7zNZo85iGV/y5oOp1iMplgvV5jOp3i4OAA9+7dw1e/+lW8ePECT548wXw+x2KxcB+xcl1wXwCftDfl6sCaHSfHdqO9j7mU069L1nsl68ZU3pKn1rf3QSE5iGQdyd+v8trv80BD7WK5cXdFsXd/1/nsKu/S9Np4ooWVtFfOeJyrm2j5ht75mM6UMyeMQdvMDWONZTH9QcbT9Fk6MkrGlY4QV1dXeP78ec++fXFxgfl8HpRNHkd4U+P3qGDsUJIGPSLqDKHnuY0cy/emKXeRVbL4iVHuAm0skopKzmIo5G0UW3BoFNqvXMo1NsXaLtSPY191lvRTDgBZa70tTmnhR8/Ozs6C508SmJSiEsN9Lg1d6GvK85BFNecfM8yXEvdKHfIVb+5YkUPyK9vYOaTaAjenjXjdrdfrG1NyS2gsBYS2/eLtvF6v8dFHH2G9XuOdd97BZDLBu+++m6wX/tU398KPjadD3qFYWE4e0gByfX2dJcOuaOi7L5Vmfn4vPZfvhLYFs/be3BYqfY/3JUOq75HHeGiBxscczaBN7bRYLHB5eYmDgwO88cYbeOutt2CMwbNnzzyjHvGV+gfXU7gyHzLIhWTuxwGeP19gOm23KT46ass7nVawtnZesZOJxXptMJn4HrLtFRtvWLPxkKVz1wCAPGXhtivmXrJAC8p2ZZeGMeCTlcWfLhrYaQXMKh0AAwvbPDfG9OIROGaM8YHPDQjH08krB8O0PD1vV5i+nPIZbxeR3guTeSnlCQGwSQBYPHZ9xsCBOZ4Ouwl3Oopyz8+K9TxRrQ8gelgS5cfqiADHNurmt4XH2wGYyj2vU+4hS9ceoGpZvlRm5rlLZXN5sPaR98TTO/OV6sn4svB43j3j48Z2Fs/93njGGrQetMa29XT66BS/85/+Dr7+d76Ov/Gf/I302Gv5T6uGc7CUP/PGbMvagD+zfcOzB0xy4NTaIHDpeCgesb08tLBN2l7+LKz3TPIiGclDlZ9jS/eWebLSnJzyjCWv1wZOJuk1m5wflcfzZ3NcPbpCs/bXAZpuEWQr1j+hOPwq1zJ8XmuaJqpf5q6DYvFK9A7JU+NRqpukZCvRhzQDoWwPaf/guvzZ2Rk+/fRT9SPMVNm0djWmOweWt91k0pr5FosFJpMJvvOd78AYg8VigQ8++AA/+tGPMJ1OMZ1OvW37cmw1Q9ozVc/E8+joCAcHB64MJycnuHfvHu7fv4+//bf/Nv7G3/gbeP/99/H48WP84R/+IS4uLnB8fOwMtSU73I1BQ9aOsv1CazEyGpOtSPYrSUPWsNw2Ie1wqXEplh/1J76TTIhkufZlo9XqkK/dU3Kk1uG3bf33eaN99pV9yrGPMu2rb5bWTe7cIm2Z8r0N2dxTY6iUN7S25+94rk1pG4qNoaFyDOE3lt07RiFdlGi9XuPk5ERNJ2X7+OOP8cEHH6j5xPoQ6RicQruIjkVaXwmCsdpkWzLpDzWESpJeNTkK4rZ5llLuAiWWPudl1RS1EkoZCHN5xuTLMTgOoSHtnlL8Qjxi5QsNWjGKDd505XVXoujG5JXPpPyk4BOVKJ8l8mlG8SH5aJRqs5I8ZHvk8shpL814k6MMaBQbB1IGHK1cqfaQfSbEN7ffht7VXY17JTTmmMUXoUSfffYZjDF4/Pgxnj175i166Tp0HOKUo4Dxa2n6XdBYc3dIiS81WmjvqhzLct6NFIXG/pDOs00+Gr8Y8bja8QTybNXcfpebZyxtjFdsnKqqCuv1GldXV86zYjKZYDabucXcZDJRy54jL3+3cozZ/X4KrNcNLi5WaBqLw8MaTdMCrB1VqGug9Vi1ACoQa7pytrI6jAOUCHzt4lC4Xxbr0q2sxQJAZYCaoYc98DJCOR6yHEyT115S0+Xt6lOCcZqM2u+cMqjim/izGN/AayPBRR5Peoy6/rWJJ+97vM0GgOTesAyoDaUTAoKDvA6EBfwzbRV5Y/zc71CZDTyQufeM56Xx5OU3Ji6r6ZfP+pHdv+NFbc3ytY3F8nqJ1fUKPRA1Rkq03jhilXDKQz4T99b243jAq7znV3Q8XBwOxILlaeGXxfavHv+YjKF8NrJ65Rb3XJ6gZ6yQ1UIArxZqvCAJedEAzUo/lzxm7witHaNZF8z3JUZDTSca0+gY0rmG8Odzb64tZsyyEA/+0d75+TmePn3qvD+tte7DLimrlD/VL0L503qDtiyO6TVaX+PhMl4u5cZfrVYeUH16eornz5/jk08+cTyurq6wWCx6AHKujWpIGXi9pHjl2tNidav9S/6xdXvM5hKTNbbuKLH1yfVNbLvlm6BQ/ZDcJeuvnPH4SxpOY+ENJbaGofNnaVoZf6g9fej6fteUspXsSpbUvDU0X5m+xBaUOy+UUI7tSD6PheXadEIyjEUh23hovpJAalVVwQ+ByB6UmrND4/rQPqTxUsHYkIIRUtx2+RJp6HRICYrJosm+zSD7eaRYvebEy9naZgilOnwoXDsfM7agkbw0JSz1DmwzeIWU8tjiXPKS9c5d/OkLWeLPF2O0UCT+q9Uq+O4Bw8963QXFFhopOVN9YEyKfamb6ykbUixS6fkCI7ftYqBfiZIYAidyn7+KRG0tJ/q/+Iu/wEcffeRAoIuLC1dm6UkbM7iVtOOXtD3R+Mh3GqB2GWPxdpN9Pzdf8kqlvk11ctNndZVQXdeYTCbOM/b58+e4c+cO6rp258Xy+iBgVtNtcsBgbR6nuuPvsDQirlYWT55c4/CwRl0bHB3VMGaG9dpiOrVoGou6NpsxhrYW5h6yQFV1Z8fSObLGYHN2bOsxCxDIGz5D1i8PYC1Q1QamMg6A4iCXqwMw7+IIEik9UzmwyoEuCXpx0FXl2d30n5v+856Mxv89BGzN1oNlNOuHu617OWjIAclNmh4gC+bRauCBr1r+HJil/DzQU/Clsku5OADq8rbWy4uDnO5sXC7PBsDywFLWVt6WwhZ9QNWILZp5Pobxtn4c3sconncv4lC4y4OlczIYwFQGZmLc2bGubnpN75dDPPRv+di9qS8vngjrgbPitwRhe8Arv2fXQR6xFkF+wauUSfBJ3rPzZdVr06Vz8cW5sL3zYpXyJdtEjPc0ToS8ElNra+rHKaCA5yf7Pg8bYgSW8oyl05CesS2NrWMN0fOoHJPJBI8fP8ZHH33krcOn02nPQznETzNGUjr+L9f1L168wOHhIY6Ojnr2h5IjRVIGzG3IWouLiwtcX1/j6uoKQLvd4MnJCc7Pz128y8tLXF9fY7FYOHthCkTbla4tDbsxmxAfY3hc7X2UhmTN6J8qT+h5qA21NU2Mh/ahZg7F2uKmbK587Mr1Ek+tCbYFfr6kzz9pY0TIDnwbaBfyjM2Pr7Vz1us59vWUvWfXbRSyAYfCS3mPJX/pWFcSX7N9kg2H7KpEpE/RMVRDKKVXj0FF2xTvovGJNKAipITvckKL8dbKmStLqq72NUkPVUT5YBUCVHIUwpyBS1MKh9YPTy+B2ZQbekiJjsnLFzSAv4WhRhr4UkoxJZpvf0RgAid+z9OS1xCRBJVC+aeeh/rOGOliBvAU/1AeOW2SC8aMYeQokW1ovcoFIQ/T3l/aGivEk9ogVi/yeSyupNukoHLSxnxr2y2hHz9+jPV67QwLVVVhuVyq/ZWPJ0O913dJ285dOelj82foneJ1qfWt1JwlecnttjR5xgQmd6UTDO03NJeMbczaZT9Ote+LFy/c9fr6OjlWyfShPLSFNE/HF3Yhvajtcxbn52us10Bdr3BwUIOiWlsBsGin8GYDqpJnjdn8A9YCxnTXqgJaj1rjhfP/Vgb/N10t+AO6RBa6gWc8nAO3LDBNhv80argXZvz7HNli8Vxc+TiRJkkMzOT3GvApwdWgVyjnBZ9fD6BV8vOAXnQ8eFwPdAU6MJLi8XwlmGt8fg7g5OO1LJe4egAq5y3z4fXC8nFlYNsSS55eGi4PD6N2MdarFz5mJD2Frby1/XCrP/PGE4s+CEvh/LcAW11cFo/fq884L5KH/rnMFl5eLs/YP/x4PF8ZHryHnq+7wpcjxEuO2V47xppUqbdQPI24Th7SNUI6EgFzGljUk0/JT+pQWnhozgvpb5q+GwrTKGRPSIEiIZ4po60moxY/VQ8Uh+wD3GNW6h9cRyj9ANNa/ziF1WqFjz/+2O0EcnJy4mQg79xU/ctyazaMMXS65XLptk0muc7OzvDo0SPHf7FYuA/HaTeTUJ/YhnJ4lAKYpflKYDAFyqbsGVwP5c95uFwraX1e9tmqqrwP/+kD1qurK9cXQ7rzTa1peb51XaOua+9DU/6OxtLy90fW1a7Wc59n2lV/yJ1fbppCc+tYlOqbsfxz58mc/Ev4aeNWTrqQ7Sw2FqXySI2xMi8eNmafC437JXNQT48PxLsJSulYnOq6VrceDqWJ1ZFGsu+N1ZZbnRk79GXU0mlfApZW0hgUqthddch95pWibTpVzPgYC8vhWzrwakQLn5Q82oTDBynqp6GyaCBvaMIZu39rbbBYLFwYbftDNJvN3LOqqtx5skDfS09OTLltMmYZt+WTk17G2dWESfdDFfUh7wQZY1JyUViOTLQFhPQ6l30nxSsnv20Vw32SXJARGWOwXC7xs5/9zIXxbTRkWmNM7wB7zWCTorGVP7lQvwnatkypd4jXMz+Dij5qobE0ZVjgffu29VNJsfmP5pLpdHoTojkaYx4wpv2I5JNPPsFnn33mGf3kGbA5eeca1rU+oRnA6bpeG7x4scZ8blFVFuv1xKVpGvJONrC2Yh6yQF1Xnmds+4wWsm0+LSjL/7l3LMnSvzYVYOrN+BQCHAnwAruiBcR6oKkSl+K5MZSBYio/BoZJwDWLFFmj8ei2YJEYBa617mNEvzJtPBX05CCtgXpOrI8l+h61vfLZLj8XnwOc6N4PJweLT2C0fMa3XVbBSM6DhfW2J8Zm7LZQtw/ugbCbtF4dGAFEG/TrmMJJNupnMg38OJ7HMpWBzpIluUOoXWx4k+n4T2v78bTnVvxmAKT0jLU2cm/Z2GXR4+3CZR4snKdrL9aXA2FPVu235K09D/Gz1vqesY2Sls6PbRLtJNpMBXgVovdJnkHPdULN+47rMppepK3NpU4pP4jX9NcSHV0rV4zkWju1NhpDl9pGj81dg2mgFukZvIwSkOUyaTpkqk0pnOwRdV1jsVjgJz/5iYtPO4VYa3vn1moU+yh7bOIfgwOt/eL6+hrPnz/vxZ3NZphMJt4HgyndPlePzG1jTrw9ZTwOJoTk0Gw5co2d2w6d3tfZr2I7BYZsbqF7eZ1MJm6XGWMMjo6OUNc15vN5Vh/bN8m6nEwmmE6n3vnOALztsGV6Ijluf0nD6bbU4di2ky9peyrpG54+uiHplEQ8+fg6ZFfFUPi++3LItsBpiD2/hG7qvanrGsfHx71wiWkAvn4kKVQfu2rLYjA2NUnHFgGxsBBpcWMNXFKBoc6SUuJy5NCeh2TI8abJBUdyeciFGD0fSiWKYSrNkM7O+U6nU7f1j1SUcgYdWR9cWUsZ1umrDHq2Xq+9l11ucxnyjJX1NObALxf2mtxXV1feZKTtqx6qB9m3QuWi50O8yUrGldJ+Ld+1nPc4xW9oWkkp40iMf9M0DjhN5aEtFHOMKTKeXOhI4HYoacYo+WwfVGp8onfu4ODAGUC08YYvoGO8cupRM96E4mjl0tKVfDwVMxLyNDlzU8xIl9vu2ljOw+k9kdu6L5dLFTTX+Oe2TcjwsU9KjaXr9RpVVeHNN9/Eer3G6ekpjOl7xA+hUBvmGEi3HZeNMc7gEhuTQoa1GF9Af0fonhaDzsgfeN8o39Wqxmp1hKurNVarBY6PJzg4aM+SnUxagJXA2KqCu6+q0HbF3CDog7DtvzT8svfORUIfjCokz6vUwAGwGuiqpkEkf+PHJx5emyhpQ1sO55DaB7kcwYSbq+iCvbHOdHHcGLMJC3paUppNHbh3axPfXalPhPjAzyPkgcsB11Bar31Z2p7M4t4DkfljYzxvVi8/UWeUtyvrxlvWi7/5N4aBwJu0Li8ex3RbEnNZvLqFbbf2BlpQr7SPiWJ745Wli/XjWT/MpeHh7Lc3F1sRn8J4XAuftw3z7gGfAXmkLBq46sZM8TsJ0m6AVJe2EVdrvTjW9gFYPmZH5z/lUXPdYPlsifV5tybU5gi+Ruu1tcwmojdJcCB0jfGWcUO6n+SXu2YNlTG2Ho6t9UI2I2t1z9ISHWMo5dixZD1ba93ZrhR3uVy6rXg1XrL8xhhPjwX6W15r/Ti1ruJn245hP9JIey9o/aR9BFxqR0j11Vw7UYhXbA2QWr/ybX9j/TkmU+w5T09rmhS/UBzJiwB+osPDQ8xmMxUASdG+1kXynaC+lbP9Mq9Tei9Ca8ycdc0Xkcasj13Ucc68dpNUKtNtLIOkXP0hRTlzrxY3NPaW7mbJ+2PJXBnrc1IHMqb/MZ3kkRM+Nu1St5Lpm6bBYrEIxqedP4by33WdFYGxMaMpUc6kLu9zJjoeN0fJKaGxKz134i7lGTOYS/4lssRoiIFzGyqRP0T8/DfOZ7lcbiVXTn3XdY2joyMXPp/Pe4dJ87P35JeCckHBF+ZUjlIKLQ640l9VlXd2TeicvBD/oe2eWzYue8mkVvrejKGkxHjJsXNIfiVp5UIgZOCQsvHFdq48oWfcyEB9Sm5XFJO7hHLf032RZswwxrizoUKGEPne82eSZ868XCJn6FnqPYoZcPhVbpUXKn+urDlxY4YEyYNkog9nSGbAN1xohq/cOorF27cSGCJ6V8ko8fDhQywWC7e13S6McNu+u7kyURtKBT1k6A3NyyEZQ8ZRnoeWv8aj/aALWK8P0DRXWCyWoKnZGKDdrhio6zafdrviBk1jNufKtiCttRQf4NsU+/99YJbyaX8ADcnLi5XRRCoYuQHBPGAul4eJx3dxc2XT4pkwn14/keldsoL3l6JaGawDpBJwdP3SwNt6OAii8ny1PMVZsaF4rcisX1h4vz0QlT33wEo605Xl1fNcJbaRcjpZeD6m5dt717h8ULxWDUsbAKi9uqI+uek31jLAl+oPcOG51ANZuwdhABZd+V25RXxr+78lKOo9s1YFY724CSCWyyVl4vlImTz5AC9eCIiV4fTXy0tcHQ8JwIozYtU6F/VNdWKtRTNvwdhm2feCpPvYnNHjn0GheaqEX2pNE5vvQrLwsKFGu5gtKMRrbP14G5L6oGYM5mtx8u7gwJamd3Pi9gZ+T2m07RtDOqi1fUB7V/ppyL4ItPaJuq7dx3SkR5XKEtPPc9ZTqfy2qRte57Jd+JpExtUoVhZt7VG6/qI1Av8nHoeHhzg4OAjuTBeS+abWPaF3cUg6TrsaQ24j3VTbcYqNB9ranT+L0S4Bpn1R6by5Kxpi68ix38o4od1EcvPU8h6ig431Xmj6YGhsz81zbBlTNHY+1oYxnm3e6Vwe25IHxqYE0oQJfWm4jxdd27YjlG/I5Ty17UQsfNtyaobom6ahyuW+J1/enmTUTMnDtx/UFhTawnhbOjg48IBhuXDlRF+9ciJQQIZJ2bUr4J8ZK9MN/VpRUgqAGIs3tZ+cWG/bO5RDpQvHnLg5iwAtX60OtT4am6y1xWtOu2hf2efQLoCgGIXaS5sDYu1AfGJfcPH8UuVLLWjHJCmTMf0vuLV+xA2M0minGRmIUnN6icyp/kIGLj4P0IczZPSZz+dRpVfev6pjEyeqi7qu8dprr+Hq6sqrH/Iq3ff8P1a9hsBX/lzmmbtoiY3xsl9L/UOWbz6f49NPPwWwhrUrnJxMMZtN8PbbB85Ltq4NplOLujZomnbb4vW6BWQ7z9gWtG3bjwOv/MrDu7JeVcBHkwpzY3yQMlBnvS2JvUjwwTWwduDPjPLP0mi/XboYcfll3IyurK0FgvyHEAMSHT/rA69qvAgfD7iFzkN6yQKsr1I8w3ghzMuJoM2RCiCc2k6595zqRALGIu8eCGv8qzHKlsKUDiId+3dxjO3x8upMyKKCwiHyqlip783vHvjKAVrr33OgMOgdK+Laho19VvAI8ZNxWJh71vTzdVeRp/tv/DAOkGpX27Ath7lnbODq/hvxu2G/I8Cr33y+7KvlCpeXl8GxQc4J/Mplo/7F7yksdhSJnM+kfsRBnpCxT85TkoeUWStbCcmxSOaf0hFvux6WAwRMJhNMJhNcXl6q641QOmv97YdJbyupE6mHh3RdWZZtKbauoh3HQv1dS1fSB0rW5715siBNjoxUv/wMU+1d1HjLZ/zjeyLOVyNuNwuVJaeuaPtfOU7F+k6sLGMSrWFy7J/7kulVp1Ib1z5luGm5bgPt0m47BuW2kYyXu9PoTVKpXWss++9tpdswVtw0JcHY1CSspUsZLEMdMTeMP+MKYuw8C02msV+GUoop0KWGvhCvGB8tTQ7PUJqctKWKDDfky3AKyxl8pYwxfiXE+zQZ7nk/5Fu2WNt+ucH7LK8PAmK3WdiE+jgpvzw/fs8X9kPyoTBtoTYmhRb9Ofntc1LS+rlWN7I8Ml0OH/5MGknGKkNOeE6cELhR0teHvqfbgie5JNst9U6E2p8bmmL9fKx+nTPuSKNYLt/U2BAalyWPnHxiMmsGpdT7RCBtqp6Hjn23VRGlNqYtmw8ODryPhVJttm3eu6acuSMVZ9sFkGbk1tKu12unO7R6hMFkYnH//sQBrU3TAqitp2yDqjKo6+5jCWvNxmsW4J6x/bNj/X+gBWgXAJ4ZAwsg9QlXCogs8XBVEkdB3igAvAuSfFP50PNUF5HgooEKyEpgU/WClbx6WenesiHvWpWHMfCAQZ5nJP8cT12vTMbfXtmTVW45zPlxvjw+r0cJBhufJ8UDoMsMv84duM1ka1YNlpdL1NMa1TR+LtUmo36QHCOsEk5tIZ+Je2v7cTyAVN6H8mL8e7+5uJalCQCxPI6MR/Xu8bUsLufBReRrHCVP/ozz6vErVLec7GuLZt1gtVx5OyTl6PMeP9sHYIfoHqm1Euef0kM1fbDU4MjTabJoz1K0jW5caqsYQjH9QeYfOyJD6u4h/Za3U8oex/lxW8uu1/ghkmXS6mgbftrzXCA3VJc566VUHqE1S2gtnVrHldq6cvqLbAvNziR3hZOy3hQ4FOtDOWuCUNx9rulu6xpyV2Po0HYZAmqV9MPc8SIn322phN9t7T+5Mm1j24uNl6F5YQhtW78x3SuWx77G0W1oV33vtvZrjYrPjOXEDZUpSu3nXKIgyIPVc+TcNu42jRoqW0gJHjJh3CSVGOVjCmUO/5x+om3/G+KrKbqhvOU9L89sNsN3vvMdd+4qxTs/P8f5+XlSFs6TrgTsyvyHKAuaoffq6sq9k7QVEvGm8xG3JZlnauEXUpxSCyctzW2j3L6+SyNADr/UYi60KA6NZcSHQJ2hZ8aG+sMYNAY/OU69CkqQRqVznTQOUlguz5Chj6ctkSVmFEwZICk+ALf9GT9neZvzjrX3KsXrpsYza63zFv7a176Go6MjrFarpEf3baJ9v391XffOpZft150B29dPtDT8vZLG+/W6wePHV5jNKnz1q4c4PKyxXteo6wrTaYW6Nqhr6zxj2ytt2cQ9ZGmc1q7d79WkgqkAbM6c3RbcVHU5Bmi5+hAgGI/nfhsWxqMJHr10UQEz4hpdrqCsYM9luIdt2S6t6MYa0Kh6iG6uwbmIwELr85KyyDyzwN6NTF5ZWLmd9y2l5WVVyqwBnV4ZFUDX8ad0tA0yFdF0WwjzOjLG+N6uBL6KbYjlv9yq2G1TvOFHZX/2F8/wB//kD/Dub76Lb/wPv4Fs0vqH9Z95HrFgY6AVz9i9F0fMkz3vVMHT4yt/S748LOYRS1fNG9fC82CleDyOtdY7C5buPT1V84rlcUP/oj5dPUGUldeZBezcwn5iAbYU5HoTp5hBjevZR0dHAIDr62s3X+esr3P0DwL/ZJ4hXtqaVKbT4sR0tVC6ITrRbVsX0tzH9eXeGGRbr1Y66oj0i7quvb4T6kdE/HnoXDmtT0idg/oYeRFKfeQ21HFMhtA8uK2eOKaeGbLvWGu9Y6To/WyaBtfX11G7EO9jWj+JtZ98v2NrKeqvTdNgPp9jOp1iMpng7OzMyTibzQDArSVSa8199i1rrffRo7Qza9tCcxlTtEubwG149/ZFr6pd5UtKU2rup7BYH+Dr8BLiOg9QZuvZt+3vNs25t5lepfrZCowFAgaVQLyYUh/yatXC6EwCTqnFQiwOj5tSDELG5pjMMb6lRu9teZRQalHI42j1rClroTzkIjImQ4xfzjMt/1w+PL4crI+Pj3tn1S4Wi14dpT4kKFnAlgInnKRyuVqtPBlzwVDev1OL6THapbTMYy+WtN+h/HIBJrkoT5HMI5YutPjiv3Nk1tqWG11ShqBt+m1sLBqLSCa5eKX8Y/UYkjFEoXkkt78MzbeUxqh3aWjKySOWV84cnMMrZZihMVDuIMDl0AwedD9UKU8p9tuM+SVE/Z8+CprP5x4Yu+9FcU5+28gU61ehMVbTg2ILpZBuJI9dkDKFDKaLRYP12uLqag1r2/NiJxPAGMA64MlsflewFrC2KfCQpW2LCRwRZRqhG3KgVHq1brXV7w1RkVew/wAdBhvwQo2AjzKP4vQaCDqEQnxK+RPQGUpDZaF3zkAFgHtlDjWPCRhSSI5gsghfkp89W14uMT+bY/5yrjO08tYGnzkAVDxzZXAX2/1mz7Tf1to+XyWtBHg5EOvJZ20/TACx6r+Sj7VWlUtNK2Vi/14ZRT2EgGU1rqh3XkavvGuL1eUK6/k6e82pzUekj/B7mU6StmbhW9VK3T1Xt9hWt0nFKdGvQ7pWCNjKlWUXFFtHyLJba93H5fxDr5AeIetBKyvXY0L9J7R243a8femhpZTqJ4Cuh+Xq6yX9XvIsWQdJeyN9zEwkdcactaNWbt6WJe9YaP1Du+cQv8VikfSoluvumyR650LbN2/T52/L+5IzVsbSDCnHrts1x0YyxGZT0i9z4sTe05R8JXU49jy3i747pL7kuKjxCdlNUvlouNJkMvHs4rQ9fonMksZ8F7TxvUSWLwK9CnWQdWbsTU2Oxhh3xgCnw8NDTKdTL2y5XOLly5dFHrOUx1Datl5KjLVjKL4phW3MRZgcILbZx/2mXiRtgOeDNf9yjgZt2S8PDg7cF8wAcHl5ifm8NcJUVeXFz+kPqbqIPZcfPPB2Wa/XHnBMX+Dysub21aEgRGyhPLQP3MTYlduOYy1mh/LhikyukqqF03uglZmH0SJNAv0aEJGqw5TiXTKuxvjxRar8CIi+oM1ZxIbCUnLmLDB2SVS23HlV60sUrslL9cnPQgrx0GTbRiZ6pslIRgUyhPEPVTS+oY/DtHbmz0rGin0TvdOffvqp225/tVq5smrenfsw0O2zLqThMjUmhYyf/JpKq/WdWL2u1xYff3yN2azCW28dYDarcHQ0wWRiMJ1WmEyqDUhrUVVAXUvP2M47ls6VbfsmvN8rYxxgVUQWPlAlwS1xbzb5eM80QEym2wFQrJEHbggP2JhHbBawLABZAL2tc7W40TAun42DuME8JPAJBkKm0mOTljxHY0lE+T0PWvZc3YaY5FT6hOfVav2rVieuDxp4ebu53nRxuIzGME9bdFspO3mrVibTbORqIpVhodev5T9Ffdp+uBt3lPugd6xVeFA+oWfiXuPp0o7lGUu/FU9YGVd6uKres/x/raShMVq2i9aMVF5rsVqu8OLFC6ABptNpb0wPzRdaHHoH1+sW2OWeklK30KiqKsxmM7f+o/M3ab4n42OpLaWU9q3X3JQdS6OYEVn2hfV67XStmC6iAVrcZpHTnhRHc46gY5hiurS1dpQdtUqJyl6im4xtuNbe5TGI6rWua89eVNe11y9KwGQOmA55L3Jsxcvl0o0tVVU5T1gg7GWak8euKWTPuC0G/X2ssbah2y7fl/T5opTdMZcmk0nPmaqua7z99ttu3L24uMDTp097/C8vL72xOHZkJlHIBkjvT0g/5LRrHS1FX77r49HWnrEhhWYsMEXjxc8eMKbd+mK5XOLi4qLXObUtjbUvIIhSCloMwJBxc8pc8uVLSDlIAQk58twWwDNEpUo2NxRrabU+USqTNLCvVissl0t3T2G8nWjxS/f8q5tUHikqXQzIxTs/DzD0JWMubx5v6ISh5RVbxIbijkUl9Vr6PmlgTSpf3nZ8Ai/NT+YVGldC/St3zATy+0LJOKhRDDiLyZfiKcdT3h+1LcVDAI3MO2aUy5Erl3L4h+YMrT9ID4sckn19yDw5dN4s0Uv4RwOhuTSWr0ybqu+YnJJ2qQRLEHC1WnkGW4qjyXCbFPMc8FSTV6ajfk4fJIXeY/6fsxAba35q26j1Xr28XGG1asHW6ZS2mWyBV6D1nPU9Y9vn1tJv+rikvachzZgNOCLArk6IuIwqEMl4DfYmvS2UEK9I/higGknjgYoFPPgWvtlALQNZHY8WJQ1uT5zjyVsE8CLxHiXqwIG8m37onccbkTEoTygdk1ECzMkxQHncA2A38f7/7P1ZkyQ5chiOe+RdVx/TPT2zszN7av/kiiuZ7E/JTJSZ9KhHfg19Mr3qQS96kNFkpoOiRPHQLpe2y9VyOWdPT093V9eRZ0Tg95DpSIeHO+CIiKyq7hkvK4sMHA4H4AD8CAA83ON2zXfN0Ro4G10TR5CXhAV0Udocw494mSNW/If972BnLMnDd+bSXbM8rfQf4HLNMgK5htXLEuZqB+VVCeW8tI9HJjdiGP/NZUcqi6bkeC5vxvQPK7RZ0yw2iZh9w5LOAnfRqIj0xGwVsTAtLiY78z7kOiYNpzyk8c9ttCmXXzkdKTlcSiuNSSlvCtrwKOUDdGxq9PQpV3KI6bE8Df7Gj1nxSGWJl/E/ZUe4SejazxI+zlddbOI55RwCJNuTRp+Fb9qWT+FQvNLVFnXbYLEnWngmZ73NsRPH1g6pjD7a3DJPot4/Go28nR6fsfbKsU/G+NiybufaQvseIxZ8tyFb3UV5LgUHccZKxwgfCgaDAbz77ruqM5Z+sYBQFEWw6w8hNQlZ0t4k3CXhxQrW46Xb4EVcaDhG4JMnlqsZlC3A6a7rGi4vL/2uV3r3BM2zXq99GvzSURorXNiOKdRtgE/kzjlYLpdBfbRFvCuPdc1/F8aeVodch1QfwjPm4TtOEaz4UfjQ0qYUfqkcWj9UziSBq08FQhN0NMXcqizw9qFKMs+La2BZluZ1pc246GMsScKaZf3Gnf2oZMfqGitfMt6kDJF9QOpONOp4xPSYDg0ilntFpPw8PnctP6QjlhvZUH7iuzPedIjNlTimURnj99BIeansSeWLtoA4KJ/GYLOp4fnzFYzHBZydjeDoaAQnJyOYTIZ+l+x2h+yA3CFL//f9z++RHQy2d8buGwqJpATD3gEWYZGoY7JQfithN+GkRSchAOv3WNFBso7ykrILNLXTNOU8DJyPjuWTnLO0b2lwBz4X73rdbjEOcQrOZn/freAAbuyIdSFuxB84gQsnl1Ps6CGO20aXEodsUezviPXOwgKCMmA3lKI7Yyl4f6BrhAGwtqJpiYMw6YAVwsR3J+DmedlvH0by8rjGk++MrV3olK2bvxv3yToX3geL/3w3LE0n7ZCV2hfbjXQEbUvnHNSbGub/MId6VcN4NG62N8knOVARD64D1HlB7+6kOkDMXhHbJUmdIimZONfAG8NlhZSu3gX/XZFpJL3cOef1iVTfaPI0xsXyIUjyRjB2duHD4VDk2ZsEy9pjNVoDhLZLSV9NlXMoPqLXhEynU9/20uk0mp4BELZXzJ5D68L1II5PA3rUb1GEH/sjnV3tWG8K9D0XWssB2OttyDPWfH3AIeaEu2D/awup9esu1K0tHVY7mrU8Om/H7JJtQfIJ0PmUHgnfpk7WsEP3+SHXpbsKfdb3ptqvlTOWG+s4xASBGPB8uAOW5zs+PvZHv2Ia3IGYY9SXBmMfkBJu+i4vh45YuV3oy2nrtgqVpMTm5uXvbSZIi3BP0zjnYLPZ+B1GVHHebDaeBvzqkdJhcRDxdokJ2zSMC8fapGNxFGgKoBSnOcM0yB0nXcZVzKHYx4SszZdthOQYn2r8rTm7LHxmjdfGGn3PaUupnjF+s0BqfKfCaftSIwUdX/Sokr4Xc8vcrhlJtPlA+0ejhEYHnbPqulY/LomBlSe6GOR4X9D6Ie4Y0L5Go81oNALnnP/AhstGhxDiDikYanMzH4M3aUywgmWdSuWXjJ18LGPa1DqnjTtpbuZzR1tl2DmAqgJYLmuo6xLK0sHRUQ2z2RDqertD1jncIbvlf+qULQpH4nDdc1DXBdSVgSbHfnPnaVHsHVwM7tzu1x39VrruHP0AgSPytnCYdrsq6axhKTqDe12dnidKq5S3oK8G5zU6a8G25ngQkgV50UHInKQ8zOdx7Dd1kNK87D1wxPI0+NuFv4OwhCOW/wfOV2im5b+luGBep+F1M17ELdRfc4r7d4KjLmuoyiq5hrbVOelVORRvTI6lul8sXwonl6FoOK5pVh3FYiPRZKocnf2uGiaRLukIV/7MkcVi9Y7pBlI8ptH6+yYhx76l8S3GcZ0H02gycN86J00j6dI0jJ7Qwk/vsYDVFpdj90nZmqS8kp7YVYZvA3d1PsgFbDvaroPBAGazmddXq6qC1Wplmg+t/JpKq60DqTXFSoMFtPmyK37rvKfZ4SjcxPyZGu996Pht2yNmL9HmxRjEPkqJ0YKAH5LEZC+an44nnJdT/X7Ta+ZN2HA4vOnz603Rn+2Mlc7CbiMEWNPzOziLooD79+/DvXv3snBZy9PAIny2NRK/6WCZKPuqvzYx5gqVbUHbfZiC5XIJi8Ui2C1bVRUsl0tRGeUG4JQSpikg0k4++t62bawLZxv8N9WXqfJi4/vQi6hlLon1AQKOF+6A4n3Pv7qmoO2STNGYEmLaQi5OSZmmoDlF6G90MlLlg7cjx40KUJtjutsIxjnKkwRIr+R8kr7AlgwYMQXPYoykCmWXuSMwrgpl0TpiHBo5LOXi/VnT6RSqqoLFYuHpTikWOfXoGzSDJ1ccaPul+u0uQF/GQPw4in8VSz8KpG3Spi2sBk8ebzUElqWD6+sSrq8LANjAgwdjODsbwWxWw2g0gKoawmBQwHhc7HbIDmAwAOKQ3d8dS59lpcxjDgB3DnqHpKErfNoCwuctAKU9qIcGGU7aPkBdu5gDUHMm0nCrczRKj+bcDBPt43KcnnqhOi27HcJFUXhe5HnVOQKdqi5MG+yGZeXRp8i/O3xFER5LXLjC3ykbOD8pxJol8AG6RlqPz8lhqd2xJicsvlO8Ci4fTn5LTtWYg9anq8Mw6bd/53fHYv7a7Z8O/O5X+rvxT+bfhiN6/yOsH+zLLKsS6qqO3iPG5UoEuubQ+zxjp3pQ2VuTsaRTHKxA1yFphx7VNaR6WQz3sXIRt+bkeRNAkkeprkHDJR2+jQ6k6Sqx9s5pc4vD4RCg6W9t8vN3DZfVBtpGJk3ZFflYs9a3jf0iJpumdFSuL9N3Sd/gv631iuk0twlWGvqmlc4Zw+EQ3n33XX8S5HK5hFevXkFZlsEVaocAyh9t9cebtLndFFjsZjcBfMyl5p02uNv2dQp3qo0km1Qu0NPeuByTkmGqqmrYDdrCbc9jtwl3YR63QldaA2esxmBWgcQCFiEOAIKj4TgMh8PGRct1XcNkMmns9lsul1mDUROyui72XSbY3H45FB2xcmN42wiLOXljCoLmKMmhS8OFky3+Pj8/D46/pry7WCxguVwmHTNcEaDvPK/FyZMSmCUDvBaXA30IXxQs9+bwclPQpU5t8gPIwpZkvKDhtDxNOab0SHRJ8xj9jUed8S/m8d9ybK1UL25Y4HRI9GvzAI1PCUOxvFqclp+mo4owpuNtMxqNGoqnJEBqBjOpbI1WKR3+1pRmTj83+HE8lA+6zgk5vM/DJHo5Hg4Sn3Gj13g89kIzFcBjBgPEE7vzm44dPo9rxjjaRrSefQmksTU2poxZ5aI+6OEQmzP6Aizj9PQUAMB/PY73dOG8eJcUg/h8u3WiAgAsFhXUtYPr6wqGwwLu3x/vnLKDnVPWseOK98cUDwYFwKiA5b0plEdDgKJoOKcAQHdgHtiukHKiYpgYdwOK3p3cLZsJfThvu+K3Op2lfAAgpy32aTRcwV24iAuPGqZpCtfMtwvzDljiNPbfLNTyuBHp4UHc8YfBdF7ANK75Lu6idS76HuSjaZyS1+2fNE3jCGL6rOVw9Td3ppJ4Kdz/1008NF5tU9ofEts4AFc5uH56DeV1CVDJMqCke/EjYiU5RKNHkpmkciQ8VvmJHnPMZZWY/kHrIrUBlS/bzMupNtLapK2e2ifgms2vzsI6cacWh5jcrPGPxiscJ6ap6xpmsxmcnJzAeDyG0WgEL168gNVq1eokHA1SOoUkk6b4LseGJIVTO2Ss/BgN1vJ5f0njk9IijSmNNik+RY+Eg9JI256PW4nHYnp/W4jpNLcJVhr6pDU23rX0UnzsaGoLDbTcPnXXrrzyJkCsvSxygAW/JV9fOn4u9FFHDZcEiL+qqoadeTAYwNOnT/3aXJZlcJ0fxcHXwZuwjUhpNBmBht/UNaJd4S7M41boSqtpZ2zXCTmFW1o48C5NyeE0Go1gOp0GYWVZeqMqpSFGe0qwtYS3hZzJ8KbAUl6KF6zOAmt5qbQWRdVCU0yBpXj4hEbTXVxcBHF0wsNdsRK0oU9S7CXlhKeJKZ9aXFchKEe4kKAPBSeGT5snrPxqaVOtPS2GEg14n+f2E6ald3/S/LGjzKw0SmktTpWYsSTVX7kGllSduMEoNleg8k7plAxxtBxL39E2S81VWKZEt8Wow41sPE2XNUCjkdZNmsvagmQ84XTiVQeYht+NGptPcQel1C+0DaVxrtVTM8QcSh7gxqRYm70pkNtmqEydnp5CXdfeGQsADQc9z9d2fYwpu23GnQarVQ2rFRp8CxiNCphOB+DcEIbDAurawXCIO2SLYJfsYFBAPRjC69MxuNkQRuiL5dVFx4REotY0h2YtjZ4D5HsbnK6doQC9r2+jzESXNBy8RdG8g7dgv5X3YKcwhkl38hb7/8ApGgFxbnGRNG6PW3r3af0jTCulEXGSNI0dovS3C383nME8Xnk2nK9u7zQVnbBM7qG7XRvx9M5ZyanL25b1BS0X6Vk8W8D6Yh2csoBtm6v3WORuSW6IyY1Yv9j6w5+o19IrdygOSb7UfmvxnFYuE6Zo1crBNG10zkPmwX+0F3D5S2vbmPyggSZjp3DUdQ3j8RjOzs7g9PQUptMpXFxcwHw+79XhkgsxfqJ8oelgKZw8r4XHculOydsWO40mg8Zk01zdWEsfm4u08EPrNN90sOgkMTuHdsyqNudwWwOGFUXR+MDIQosGMb6x2n3azNM5ENPlU0dz59Ji6ee2NrvUutsXWPG3nSuscw29QpCWOZ/PA1zaOo0bWnJ4Lwcs86yGX6rXm2rbeVuh1Z2xVHDU4qXOb3v0oAVwkEiClEajxMhvinDwNgykNgqONV/XctsAdbbSSRvfuVIO0DySiCsQbUH6iCHH0H7T4yBGCxc4bpr3Yw4T/G01MsTCY2DpD3SmWuZmLjRPp1NwzgU8ulgsYL1eNxR3nGclHuujLilHhFXROASfSMYmrqBLTmxJmZeMSF2BK0ASSDRxwwz/MlaikdY1x9gh4ZLuyk4pTZLCqNFgaWNJaaT4aFvhjsn1eq0eYU3Ljo0ZWlYMLHzfB2hlxI4yvyuQO+6HwyEMBgNYLpcwHo/hj/7oj2C9XsN//s//GQAAptOpv9u97XxnAeSRomje5R4DyfAIIPMyAEBdA5yfb2A8LuD0dASjUQHj8XDnpB3snLLb/62CWWxdD4VQV4kN0CFRkCdmE5rqxp2YDvwuRRoW0Atbh8u3DtZMuIVpQTt+Obrbtdh+UeCcE9NJu3ABBCfcPoGcF8Nd+BvLR6ddCqTdryRSjPfj3jXfG+n9q2uGuWbaBi4nhDsX4nBhuOXpf9dhXMwpS+OCNDWjQTiquHE0sSN13NUjqK/QIQ72eY+OjmBUjvzVNJpTDUHS+TT9kMuf+EEZyiWSXIRpLeCca+zURHpQz5CchtLalXLMSGXzesYch1JYTCdLye687W5K38R6jEYjLytSmZHrbRZ8CJr8nspL5VrkLbqTN3YyzKGBy+n0if0v8WisDVMyeoqONukl3ZDH3wY/WkBzdPB+oP1jsU8cQjf+pgE6iE5PT2EymQDAdiPTYrGAxWIBq9XKp+XXsmhOw1Q/8jF5qB14bR2MUtpD8hgfu33rzl3w4Ya3GOCHyBJIdtlD2QYoXr7RCYEeCVxVlUq3BhIf4BiidEgyQgyHVIdY2LfwzYRWzliEmJNCWpxzJz2Og97xphlc6SDNLTPXkJuj2BwC2iwiuUJ5F0jRJy1SFoO0xfhuwZMCTSHUymkaPvfHUdJJnTtDaHl8kdGE3LaQyn8TiymCpEBrea1pc2mIxeeUEaM9lS6lfFiUZvydMrpgGroL1jkX7PBDoMJ6ClKKv5anrSAcE/xiY9JCU6pcrqzzPJJBSmufmFKRM39a0ms0SXWmzlj6z9u2qipVKdOE1ZQQG6tHqr2kMWAVkLmxU+MjLAeNU6h08p3lEt6uYyPXqJoqQ3vX6D2U4mpRrrW51Co78DTYL/R+pR/+8IewWCxgOBxCVVUwGm2N6aljivtoF6RF4iNNrk7RIc2Ty2UNmw3AaLTdJVtV299bnh5AXRdQ17tdsXUBMGLj2ym/WZrbcmgG5TpQnWK4O/GNcLp+q7OHUMB+56mapLkztTEednENpyz9iCCXtKLwTjs8mhhppeXXVQ3lqoTBaADFIFGYw4drhOFv7mSN7Y6NpRPTS+/Ohb/xFX+TPGIYf7pmWsmJG+BivyUcDactv3tW2CnL25PWVeoX/3tXnqscTMYTGM6G/iPdmIPQMm9rtg+6jqWMo5JOyx0gXMag7+iM5c5RSV7geCmuFGjprHoWrVssfcoGYV13cyCGi/Yj1dViebX+spSZUy/nnN8RjTygHeHbF1hwSv3G+ZnyZ0qfzpGxYzxDf6fGJadTK0eii47B3P7UgI+LtrroIXT0b8EORbE9ZRKdsZvNpnGNkpYvpgPje5v5sQ+bjEVfjPkirGkttFAcOfkPpUtbygbYn4hHaeE0bTabhlOTz6uWOuX6YWJhw+FQPNJ/PB77cjabjXoSZcymkbJZSbtnrdB1ntNkOQtI/J0rY30Lh4VOzlgKdGLWvizTJkHJmItfH1B49OgRPHnyBGazGazX6yBOG3htQDMY9w2WBeW24a4PTC4wIMQmWO1roD7bP9VuWJb09bFGT5fJmOdroyC3hb7xt6m3VfHILQcdMffu3YOiKPxX8AAA6/U6uF+AfkV8iDa34MS+l+7gLYqi8YVkVzr7qq+kIMf67VA8zZVeScnWxi2udSkDkFSmJUwzfvEyuCFOalN6FItk1EC86KQaDof+mgA6Biz9JdWDPjWI4UP6+JEygcGVlafRocVVVeWPsImtQdxYKd0BZjEA3ZZ8cNPrRZ9gMb5Rh/qDBw/g5OQEnjx5AldXV/6ed2p07JO2oij8nbT4TmmmLfsAAQAASURBVL/wbYsXQat7VQFcXlZQFABFUcJsNoSTkyGMRlsn7PbIYtg+AQAcgEQSdTqBA39PJjo5nYs7O63OUJ/OQegk4+8kzNPAnlJapL1wxd55FyMrFX9I4A4ga1oalsJhLeOGp4LGztNdP+C9rK3poU5Zdv+r5JhtjM9CSLf7HdwZ65xP99XPv4Lzvz+H7/3r78E7/793ouSJ49gp8Q4ajtlUeICD43X7dHRnKI/3v1k6DBfDhCffCeuffLcr/a3shBV3vZK0wXsVOnqD9uLtgnWBJu3zz+aweb2Bj977CEb3R8EVNdSBlVpHUVbUZAUKVKaRdEouX8R0S+3eWjyGD08Cobj41Q4ctyQLpepkhZizSFv/eXhZljCbzeDdd9+Fq6srePnyZaP9NehqI+EbCHJ39FCQ+pGH5wDKPKPRCNbrNbx8+RLm8zmMx2NYr9fqVWIAh9XDECzOD+5oSDmtOX9TsPJuzOAv8SuGpfBzfSwFOc4hrRxrWTRvF5osOL4FGVCfwDFZ1zU8e/bMrwnr9Rrm8zmUZSme1JcDXMe20BabKxBSG1K0sBjE1ohcPBpovgzMd9f05tlsBqenp0HYYDCA4+Nj31avXr2Cq6srH89PQkh9pNwH8LabTCZwdHTUoPv09NS3/+vXrwO6EWL2dgsMBgOYTCa31p/a8eFtwGJz+hZuDkyzseYEkgR6rWM1xtWEC4nZh8OhP06TOmPxji/pAuaUIS5FUwq4gdpaBi3Lkq4tSEKfdWGytIPGGzyNFt4GuGE9J0/bNJZ6tpnULA75mEJpwRlL06YPcuvZVSnLyW+lTVKWYm2szXV4PBh+lUXnH35sNS3H0u8pkHgyJSymyrI4z3IVM8scbFWUKc6YsnhTAkZsvtOU6b5BagssM7Ue8nZPhXNczu2Ps8MxQJ1LHGL8lTPHxeJy5xs0wPB8qXUL6y+tQ9o4t9Ao8TWuxSmHYJ/rrIbT2k53BZDelHyGBmcAgJOTE9hsNt7Zju1/CDkN1xF68ktbPDlQlrTuNYzHBVTV9mjiwcDBYFDAZAIwqJyoKGjOTc8PDg7rsOT46fuhy26Qohx93A7Z2wF3qB5erjASFTuamM/t0q5a73jdvXt+KPa4VxcrWLxcwPpqbZtXFGcgjW/sjnVBJhGflMaHuX246IgF8ttn2afzayXsHZYph2xQHxIn5Y3F0XC+VjfuhK2hWQep/himtCUAQLWsoLwqYfzBdkeS5tixQmxNp7xoWePwnefnODV6qTESYH81CtLQp+6Zs95KMjbNrzm/6PtgMICjo6PAtsTbNdUXGm2pdqHx3OB6CB091y6G7YAfWtIPLlNgtYHRcnJw5eoNMdxctpdw8nRS2RLvpfjECpq9lMZzGlN6gTRHxNLH6JLoiOnuHL9F9zw03HWdJgacd+fzuXdS4fGtgfxitEVp9haOK8Un0jjQ7A996FsxHH32cWz9s9QjNa6ltBbQcEjH/Q6HQ5jNZj788vJSnQe1snLt6Bp9qX6jPIe+IaQbj/pPQRtbNtphLHPmIYDKe7lgqW9f61TfIPHWoefpm1wHWt8ZS4+q6RNwl4KE+9WrV40jIJ1zcHV15Q3AHDabTdKYSMPbDM5UfM5k1keZXfPn4LdMClZ8NzmZWdLchckophTzs+zpbz4WYoLPoSCnDbnB4hC7kLRFBt9jR7egwRwB7xB85513vBCg5R2NRsFupy51SwkokoCV4nf8mIXXAQ0UMYcSL4fPoVbBwSLEaQpEn/OGpgRo9BXF9r5dAAh2QfM0PG/q6LEUSMakvkBTlDUDBBro3nnnHZjNZvD555/DYrHwa3nOPFCWpReukZfxaDyNTqnuyMtaG9Hwsiz91/AYx9NyoyXipl8g07S0TH7nl2QA5TTR/EVR+DlkOBzCer1unAxySKDt2NXwdVfWVYBwncR+ev36NYxGI/jggw+gKAr48ssvYTQadf4aVqo3HnN9dnYGp6encHJyAqPRCD777DNYLBZJI34beVWD9bqGV69q2KLD9RDg0aMJTMcDGGIo+iPcbhcpOiY4GZZmYmmci9zlCsKchw7QnaOkKBQHMJZDHLX03ljqSE06VV2IJ+r8ZeWYQGo36gjSwkkbSXhofg2XTlLTMWXNm5XGCoQnxDgtnocX7Knh8z8LwB3XjfKkrMX+uOLAIbt7FkUBxWCbJnV3rDjvuEi80EemXbE0HvM4IZ1r8ppzrhGOYaLzFVzjyODguWsTadcrTSPFibtf+f9uJ2xd1XL5dL1n7cDr58uqnE+Da/R4PAbnHKxWK3XOpieM8D7FPPiP8grXl2J6RUz34E4mLBdpwTxVVcHDhw/h8ePHfsfM9fV18OEdpuUnkvDftH5SnERbaq2zGt1Rr+H5iqLwp7tgHYbDoWmnamqdtgDKhbQN2zgSKI/RullwpeQblMfXa/0DkjYyCc2Dco9kz8vFRSFH9uQ2lNhuc638Lu1g0Zs5vwDYd9N3lRvbyvF87N1VuCs6Sleoqgpev37t3y06A/KP1b6Aawb2K59buU2J/+Y00fx8DMTGnMXGxPGnQDpBTvqNeGNtq11f1YXXYmuqZKehu6FxAxuFyWQCZ2dn2WO0rV5s2SnNceN9x9PpFEajkbe/5cJtjXHrWhuDQ14NQKFPe03fvK6F9Ql94LfWu9M5BdICrzGYZsjiwgQVHiTjFReMUTCkBk9OG5/c6ZPTL01uKaErNajaMlHfjJY7+GN0S86KWL5cOtosuilnTq7zok8HR1uILa6aYCAJ8rFFuy1dFqHOClyBbOtoyuUPHqa1E3cMYfjx8TEcHx8DAPjjLBHwGNOi2DtyLYJljPZc5ZwKvJQGrAsV0DRBOYZToqGLsNHXuMyZm61zl8bzkhNbaqO27ZIaa9q8IJUjjauYgpEqiwIee3N0dAR1XcN8Po/SHuMjjZ5Y3fi8p/GipODFlC4NuKyhKbrcyJkDqOBxGSmHb/uANvOW1Pd9yAZ95kPANn727BmMRiNYrVaBrJkyRuSuhfReOFSAHz16BLPZDL7++mtvyM9ta8kQZ6HVue3/7g0AAOoaYLWqoVjXMLMYOlxLPoygFnffRsKzy6VOMkvaNxnaDBElD/b3XQC6M9U71flRwz3gjjqBMW3hQgf9Lp8/qtixNLt0yXHu+KvQ/jwNx+mavwM85MnDG+/Oib8bjltH0pC04lNJ18BDyuVxHE/s3znixFX4WQpvtNnuv1pVUC0qqMvtWr1cLv0upADfDrjcZbE1aJCzTmj4Y/olwF6/mc1mMJlMgiMLU/qlRaeL6Rr0t+RolPJYZTjUh5xzft232mwOKXel+pS2qcRX2vpP00iQcmxwPm1jJ6LyD01P9dSULKPRLv2mMnMfemlqrEj5rTyP4Zb+j+FN9aFER1c5OlZGqrwcPTRV7iFsp21wUr7rk6acfrLyKtedc8qS1oG+eMlqu5T0eik8tc6kyonRltPHdG7TaE/lbcNTmAf9KdRuQXdOYxqtbMSVM69J6Sx6KucrPAUVbTd1XQcb7+jH9by81Dwjzald6tgnWGQQy7zbpby2c5lVHtP8AHcZYrRa27C1M9aqNODA0UA7zrALXfToHADwzgYU9HInTOk+2jeFSShYBLwc6BNXmzKlRUyDHKfSbdQrBRJNdLGhfI0LU5cFOwVdcfIFkS6SaBi/7X7g5Y/HY1itVt5QPhgM4IMPPoCHDx8CQLPdP/nkE3j16lWWAUQDutMv1a+SADUej2E8Hvv31WoFzjk4OjpSv4LT5kupfM0RRdOnIHfxTQnYEmgOOgsOXFs4r0ppEOiO6LaGAI7fksay+zr15T2FGD4s78GDB/D48WNYLBYwmUzg6uoK6rr2fGcpi3841cYISecTxBfb3cB3t+aCRCdfpzSjUmwOKIrtTg3u2B6NRjAajaKniPQJmtEvBTdJVxeg7fwnf/InUBSF332MsiM3qvP8bcoD2J6wcP/+ffjoo4/gD/7gD+Cdd96Br776CjabDSyXy2yjC/JiH7Q6B3B+voFJXcBpBeA/M4qR5CLxlqo4aNzd2thdingKfG3ubHWww7FLh+90By0tx6cXmkfbLcvDRX5ktMbqrbYHjQx+ujBMchrxcCm/QoNYbqoPpXjJyUUCLTt1ufNROhpYQtNIJ4BPU+h4UsDvJEZ89J7Yxr22Bdh2xvpulPlASsvDkrzgWLxjbU7fXTOPcy4Md2E45vXv/El2wfL4xj2w6ISond9Zq90Z63e9kh2xUhi2T1AurtmkHYLfLO3y2RKuP7v2PPDFF1/49do5F8hbKJtgXkyDtgZ6ZL3kVJJ2nrbR9yQZmpaLawkaaQG2u2em02lwIpAmq0kGZk2XlZxlXWwWMVsBtUnR9f/Zs2dQlqWX2+kOlD7uYI3R2kY/iDkR+O4Zq53EqmdKNFgdHbQs5C9sc/rhc1/yJu3LWB1i5cVkeCldCp8UnzLq0n6JOQ1o3922HYVCzBnSpzzfN7TFqdkJuoK1X/kJegBxnmxrT7XUT1rL6PinayKfsyy8QfHTsc7nbo4ntftVG898De8CfaxxHCTZgAI6MelHVXVdw9XVlX9frVZR/rHYaDSaeFjbdlyv17DZbIKPqNbrtbhjNnZiJAJddzSacFx16fvcOSFmp6W4YraKPuCQdh1tbbjr0MYGxKHbDd4CaMZRi5BDQWK8qqpgtVo18tIjelKCkmXywHjpDloNtHq3gZtmwrblHXrAa/hznShSXklRS9GTC9Y8bXiHC3lc4OA4UgtzG2N7DsQWYY0GLU/ftGq8lgrjDh8+t9AjQSzlaXFaO2mCvnYELhWqRqORPyaTC65Umc8VtDThpK85LaWstik3lzakYTab+fuCsS3xCDmO16Lsp8q0hGlxXeYiDtQoQE+rQH4ZDodewNeMBRSX1RASU4wQl5RHK08qI1bXWFkcD5/DJOGeGr444FgtyxJGoxG89957MBqNYDwew+XlJVxcXJgVIauBLFWnPqDL2s2h65wizZvX19f+N/1Q8BDGV4TNZuOPJZ5Op3B2dgZnZ2f+KMA2Bsm+2tk5gFoq37F/DMsoRnKi0jgASO9+JWV6HFKYUq6Ex1JWDnDHcAOnHVGynCBdCreT06Scl8n0LvxtciKmC2kNFodsTjpjoZ5mv35gWLELK/b9JY5xS/81glwzXHkPyiQ8I+2W9WlpPI1zzTgM545Y9R9YPhfiCsLrMNynVY49po5X6ohtlIttSNvFNX/Tunn8SEOxT4MykgSSYRc/0sEPreiRtdTOYZWBc2QkKY7LK5vNBi4vL2G5XHoaMU5aT2O6HKcptnZpcl9XBw6V75xzUJZlUC/eR1ivLqDRq8mrGCe1C43nfSDJl5pzI1Y2x2epF+cLrVxN/s+Re1J0c9x9gjZ2rGVK/GVNb02T0l84DW31d2mstxmfsfHxtkGqbbrWGccRnRssOo2FhyguC71d5mrNlqmVY4XUfEZptsx9lqsC2vRpyn5rBWlNpzZA1IGxPLy+jOOw0qqlT80/2hrB8aJzlZeJuru0jnD7i5Q/B7R+ja3ZbcvjmzvafHBlha7jPQV92YTfFujdGQtg68RYWg3W67V4Z2zf90viV5r0+GMKuQ6KnLR3UeDoqvDcNejaxn1OSH2BdFcowpved0j/oe8a0RR+LYy/U2MKQLgjH6GNgsuFBi5A8Hbhzlgcv9w5XFVVsPsKDULa/VOcTuqsbaOM9iVg5kBXhZe2571792A2mwHA/ou71WoFm82mMR7vwhwRA23NlowFWDe8px0/ksL1GXduYh6rA1QTZlPjTsMrKaBtQWuLXONITMmlgjrulLm6uoIHDx7Az372Mzg7O4OHDx/CX/3VX8Ff/dVf+TtTqPHwW9AhNddWVQWXl5c+LT5TPNwGUAEeDAYwn8/h66+/hs1mA+PxGB4/fgzr9RouLi7UjwwlwPnbakDIBuKwCHYA0nccr0WYr4FKkSljO1S9Y6eA/V2xBXF0YjJyHCzuTMQjZANnLebXdt069kT6Irt0NYdt4Ci2ADp9tAy53RrB53cFMidbThkmPksksTpC+3Ka9up83SOFYBcsQMhHpFx/B61Tdsa27GMelr0rloc5whuIk8Q30lLnCg0zPhu7Y+sQD3eo8jw8PAhj/wH9vA6s7YJ2xCz19t+V2/R0TkP5TzsZDOdAtDcMh0N49OgRAABcXFzAer2G5XLpDXDcsM4NwNzIJ41JKpPStUXSJfhpIkVRwPX1NXz55Zde7uMfbPJ1h69F0pxP26CNIZ22Se56R2nD+tAPsfgO5aKI77BsUzYFyRBN42K46PrPZUr8TQ3YOfg5jVpdNMeoZGSn9NG+7Pu0vC7Q1tantaXFdkTbibdNW5yxeki6TVeHj8YHsTzfQv+A9nHJ/tN3ORwsDlwLr6WcZim7nYVWiTYLaGO+jc3CSlMb+zPmkWwFdA13zvkPkjGfJDNY6GwLmozA33ld6DHFCHQt5LYkKk/F6Nd0aYkm3j4SH7R1xhbF9gQP2pd9+76+hduD7Nk5x8AeC0vhkeK1Y0tyJjrLMcWWgXIoYfHQQihfPCyCW47Abm272OKqlZM7WUr5rI4BC57cPG0UzZx0Fr6+baE3RqO0aNIFU1PmJRyx8DZjTNpFCgBwfX3td7HhzqblcgkvXryAFy9e+Lwx52bMcZSaT1OCWUyZwzjp6yreXjHeobRrc0pqvLcdJynocz7FelIjFBVUJ5OJFxBz6tBGuO4C3DiWEjIxLNWW19fXcH5+DvP5PNjVR/8tdFGwtgXnQXxa5owYdO0Li1Im0Ued2ZPJBD788EN4/PgxfPTRR/D06VMA2B49Pp1OYbFYiB+paes4HYtWA89NgXVdpWm6jDUeFvvgp685CvlyMBjAZDKB9XoNL168gJcvX8KDBw/g6dOn3uAN0DxuMAaSEa8PkHaLObdzhDoSrpDonHB8MM0j5aVxoOOOEK3iDJyqCt3iDtoYbsyj7ILN2e1r3m2qdLHoRKL5uQNKoEH6naIL0zTmPYF/kvXEfBY27oPVFRytnLbokOX5CvIkDvzoMcUWSPUheW+0KRm/DadrxAnL451z+zQsPghj6bxsgO0QiXOOOWOd2++S1Zyw/EkdseBC2nd/vJ0aO35hT1t5XcLq5QrKq/gd4zG5Cuf6s7Mzr0/M53NYLBbijtiUEVGT6drIQ4gLP8BbLBaB3oBrZkqWwCemp85gKotKdeMyi2ZUTbUF1SNj9PKjGaX68btNU4ZYXganQ9KjLMbiFKTaNiUrtLV74D/9wJf2XY5jxVKupX142RJ/aThjZcfkbQuk5FKpXTSbAc1v4UGaP6Wnx2jnNEo6WQwseujbAn3ULdcG2bfjxmpXzYHUB/4pOmJHDgPIPBbTk/kY4Rsd6Lv00VWsj7rODxpeDTS7nGQ7aFsGgmSLoXG58ouGW/vQjdvmcmnX5kFtfdJottirc+cCKkdJG37wgyx6ZZ5Go8T/qXWuL5DW91Q5b/OaEHXG5g4SSSCNQW6nx76Ysxqq6DZvKy05EBNAuhqG+4QcwVKiO1aXQ0xAFkgJtIcsO6dcixFZmqi0CStH4L3rQJW12J0xfSyE1jSIf7PZNIQxvBcTYOtAOTk5gRcvXsCvf/3rIJ0k8GgLo7UfpfRaO/C5meZN8aPEf5JCyOulKWkSTskIwSF2DHcMeDpq2IrVWeqfwWDgjyKmAl9RbJ1mKACl+oTTlqvMxMa81MZWZZ0aUXKV46urKxgOhzCfz4Md17xPY8feaHRaDUJc8ZT6wbIG0Hxtjuvm5aXakisneMxzUWyPw/7e974HH330Efz0pz+Fn//85wCwdcbOZjNYrVbR+iJOTSGy9HMuL2ht3GbtPbRgTg1H1LDch1KqQV3XMBwOYTKZwHK5hIuLC3jx4gXcu3cPPvvsM3j27BnMZjNRcY3Rxcd8bzS78Mkdld7RiI5IrVgH4Q7VHf3+3UHoxNy9N5ynAMGuVtW5yn5Lu2O1Xbg03vcBw9HAR2lRcMecsmJ/Of7qGuE+H+unGB5zHE+z66eUQ5g7/ESHJuJyzqdxzgXOrxiojtK2bK/ky3LIIt+Qd/ohQoCn2NeZl9eV5gAn64tGGqmvSPvzdNhfwW+Wz/cp6VvYiaD0jlgMb6QnzlbfRgS3j3OC01UK4ztjgZQHrM68vVg7+LLrrTN28flCXO8lOZcbzopiewoXAMD9+/dhMpn4/M+fPweAve2DGoRTxiy6rvE4DSScFA9exUHT8Z0ztK50ZymnR9IbpLaLAbaHcy5p20nJMJQuvA+O46G04Qkx2C4WvT5Gk3TCkcQ/MZ1Yc3jStpVk6V5lBdi3D93VTXkXacK0mg6ZAxrf5PQLr0Nu+RpPWcvX2oTGS3qURmuqzFzbUUpXs+Kw5O2TH99U6Dou6dxLj3S16tMcF6aT7DY5tjQNL31KNGo0WehuQ0ssP21TgKa9sq0zUFuDNdB4RMvL3yU7K1838D324VVsXeLv0pyfA3yN4PnpyXR9zG0SzanrJ2J2N/7bQiNPS+1EEg1cJrG2Q2rdkdLF+M8COf3PbSJ9rhOpcdYn8LKiztguAhEFi3HvpkBz6FoGXwwsOPvuzC5gXeS1RTZWl74G6SF4JFbv2KKmCQaWxdsiqFgXJkoLXQz4WfJ9K1d9gEUoaquIWSF2lHOsD2O013UNz58/B+cczGYzf7QYhTbChkZnLqASvNlsgjDkE9om+BWzlcacenHhie4oltLF5p027aMJFCkjDceBY5A7HHH3tGYU0spoK5Sm0loVJM1YFsNDhfTxeAyj0cjfI1aWJZRlGfBWrC+lPpAMSzxfjAcQJ999QedGqd21ekpxnG4Lb8UA0+JYxfzr9Rq+/PJLODs7g6Io4IMPPoA//MM/hKdPn8L5+bkXyvFYwbsw798lWScFEh9ockCfbVvXtd9BPhgM4Je//CV88skn/qMGjQ4JJH7umw88Pif8A3sWLA7Ybx+k3N+6w0Hj0Znlw13TEesgHN/UAebbh+HmaUSaOH0FfU04ZBEa1XRimzTKoq8xI4hrvjfKYL+lXYBS+Q2c/LdCrxpmgIA2Kz7Oc7F8uXQZ03vHLTphaZ8V5Im/HYCr2fhNFWatIwlTeYH1aRBG39n4585M6igFgL3D1bkwTnpS5ywNc2TtZjtiXe10Z2wlPOnOWaktKD3EMSu1DdQA5aKE+edzqBby7oygC4gMMRwO/f3v9Ool57ZHBOJHn5pOxI2MbdYlyQAuyT78HWU6pA9lLe5k03DF6JRkqZgcgc4++nGkFXIM9DwcHbWoT2Eb5NhUtPBUH2B5sbviqJxL43ib9mXMpIZ6rk9uNpvgQwKehwKn+y6DprNpY8aiqyFeq93Rorfmzg2HtBshXkknvAs6y9sOFt7S4vgcgjqLpUyaL1UeTYdzepu5uivQcRCzC8bGfh9gXRO6gLSGa6DtXI7RlOKpVP424Jwz20OkOZuDZqPqCpb1jtqF0K7GabNA3+tqylbSFdrMU13gptcgXoesY4pTQmoutFEgLAJIrDxNaJeEaatQdJeFx67thU8tX8phovXZTQhimmNBS5uaGHPi2iygMUFYUmT4Dj9N6cqhIQcsC7DWLppRsU8jcgpPH2MbF/3Xr19DWZYwmUwAABrGdItxgdOcGncWIZW2t3RXkIQnRyHrKqBwBYHv3u0T2hqstPzoSKFQVVX2F5EWQ1VXsM4/PG1KYEbjIh63So8npjg5LfS6AL5O0HlA4k0NJy9PUzA43i7tnhor2nyXUrKogbYsS3j16pW/y+Xhw4fwox/9CL7++mu4vr6G09NTGA6H39i7Y9sakGJ8dBOAczKOh88//xycczAajfxRQwCy8UrDJ/HUoeVT7gxthLtmOu7QBAfN+1slPFEfacKJysvR8JFw6gAW0wv1UEnIZS2WPuDNFrgsO0idc0Fa3p/xIkInl+Tgdc6lHY0CXTcJwS7YNnQQJ6t/d+E8RR22mFZrF5GnNbokPE7+7fkpFuZIPzqSJvbbMT5yzTgfzxy29MnTBOF1+O6cCx259FmH6aS6OCD6k+KoDWioHVTLCpbPl363L22/mHxRFIU/1QI/XsN0y+UyuBKFyw9U/knJFBajXWzt1PBTGvhRvTHg9gTJ4G3Rf/EdnbHccW3RZzRZl8ukWv0BIHBIIy1SfS3G6BxdLgWS7Mz1aqQ5V99O9Q/ixbTIy9Jxiho+qV3ayGUp3YWGp/iBppHeYzrPoWRKjX8kulPtTCFXXtT0whi0dSi8LZDT9m3GgNYndJxaaWjLv7G5lNMjlYVjCj9+seo/OTYp65pFabbmtYKFBgsPxOayGOSORdRXU3RQfFI/a9fv5PSJ1teSvBTDx+fSlB4dWzclmU0Dy7pP3yV7lkavVb7Iga48n9vXOXS3oe0urTuHu9E7AV2FKxom7USy4teE7rY0fguHAT7h9CVIWsvuG7rwFp2Q8TgGep9pjuAN0HRg9MH3FuGJwqEvIm9reJfoogaIZ8+eQVEU3qAiQUzBi5WLcxvHZXXEalAU+2O1Uot4iuaceTZGT8w5zNPmli3lbQv0nqzFYgGr1UqMR6PEoflaAhzDXepraVtaR94OtHxq9MF/6oylc452B4iVLq3e2pwYM7ZYFB8LX0sKQgyvcy6YT5bLJXzyySfw6NEjuL6+hsFgAPfu3Qs+/ECF9Zsis9wlIborYF3wWGKcm6uqgvF4DO+88w5UVQXL5dJ/8MDHT+7OoGxgTpbCFcFvgN14Yo4jdNAFxxcTR0iwuxVxFvt0we7SYu8oKbbbDnWjOe54hcI7X33anfPFz5NCGl8XgjrYmUvLdRA6krF+xW68dz1ydkevlMaPd9d8bzhGaR7N2SSE8TJEejkOoVyeNpirHHtKZSj0RfPGcChxUWdxjL4C9jy04ymA3Vgpdm1eQGOntp+3CW7pCHAzPbtwjWcajlYpjLVpwFf8N03jCI6a4CJp6ZPuiBXjHKh3xQbvsR2x5Enp5+++vrQt2Nrtagf1qobL311ud8Sy9knJp7i213UdzOHorHr69KnX6cqyhOl02jhGUPvATCuzK9A68R2xPI1U/5Qhk8ZbZDBMMx6PYTqdwmAwgM1m449P5h/6cZDkJF4+TYN1RRlrvV7D8fEx/PjHP4bhcAiDwQCePXsGz5498+8WuV8rU3NwS7+ldkN6uU4Vo6kPvqFHUiMPv//++3D//n1fl2fPnsFisYDr6+uAlyQ4hAG5i6PxULYl2peSk0MzwlPguwi76n8SnRbQyn1T5PW+2+3QeLuANue2xWWxyabWAQptj/m1gvThf2xt4CDZpNvOo7F1Ltc+25bXrE5vLEOiFeP4qY19gGSXvE3IsZX3Nfalk11RNmkDXe26MbzS+EUeS9n5cqEPXrjt+dnkjO3DsHuoinLBk5er0ZMKvynD5m1MKKlJjU8y0qSjtXlOP0t4Y0plrqCZ66DPETiteTVlsC3EyubO2JhCKk3oXWlLgSSUpYwIfQmKWEasfpohJSZ40KNq6eJjacdc/sQ01rlONFKztrDSYDX2tO2vNopBLg91aTf6xHj6AQTPb62PZS624JFo0HBq6XIBBS5NuJLaMWd+aUtbrE3bjDlt3dGMjSk8Fjroe1VVcH5+Dq9evYJXr17BfD5XP6bQINYGbdZSxBmbYw4FkhHzbQDcXYPKLBrYjo6OvAGfHsmoja/YOEvNBZJTIUSAD9dwGPndsW7ntKSOjQaayC5WB8CjxN2x+NsxfBwt0lAkylVocQXZHUujKK9jutB7u30oO36lssTyrY7YqMexiV9LH+yK1WhyJE4r1im/admuWQ/VwXtISJWj1aUNfQWEvCTU07R7OEYDD5P4hoY71t+OpaXv/DfNS/ozeNI4F4b58oU4P5cl3nne4Envo4WQJu2d/6bPuqphc7GBeh0/dUPTo9EJRZ2sKEfN53MAAH8XGOoUMeNVG90pJg+kwiV9h+ah6w+2B9enYvKppq9x+WkwGMB4PPZyOL3LNqW/SfKWxeiOTs3BYAAPHz6EyWQC4/EYrq6u/D3wKfkn1q60HEm+serydB1P8UFMv82pA5bl3NahPJ1O4ezsDB49egTT6RQAtscWX15ewnw+9+lovQ4pP2ptKr3zMKyXVa+Syub5JFkr146p0aPNQTQ+x46VyhejMwU5To1DQ2qsdLVvdIE+9Z3YHH4okOYp6Q7pWB4KXWyG0vinpxHFIGbH1MrJtePk6ug561msvBx7oNWGnJI1kjqnUv4hIUWTVtdYHeg8l8tnEm0S3rbA15FcfBIvaDICf4+VdRvrQo6NsE/6TM7YQxvXLGVLDEi/gLTi0gyI31TQhFA+OC1GV4sgaVn8+/xqgtIkXVT+tgFVSDW46fGcK0jk5s+BlDE6Fcbzo9EEhcrY7mRLPTiP0nGGiyTfBaWlp19LObe940gbfxy3VSm0Ku7cSEPLzAGLYmmlM6dsDSdfh7ANAeQdDDHh/S7NTbmCcax9Ynna8EBuu9I0dNcBOrxi6TWcOQYODW8McA0cDAawXq/hd7/7HSwWC7i4uIAXL17A119/DV9//TUUxfbuYq7Y3gRY5ss2kGrDQxrsbhIo7xdFERxZDLA9Bh0A4OTkBJxzMJ1OwbntvYLSuHHO+TwxBdii/AZtLDhBGv9AnkAcGZgfnN8RCA6Co3+9s7NBxD5fQBM6SgoIdsBiubgTsXEPLOKh5VHHLoUiLK9BKzaNIztokV62o5Y7VC2O2cYY4K/SGCH9EOyKdew3kHhCW9C/Cm5xLgTCi8grILwLuIMdu4xnxLq1ASf8Fng2SMP4uuEcFeqCfObfkd+54zXItMNfd6mggJeH0aZ1Qjsznmn0t8ZLjuV1+/DA8MTjpDtiSRwNS94Va9gZ26AH9jT7eD4mKM1YXrWnxwKSDOScg8Vi4e/TRJmR9gveDYYG4pgeYjVmIp42MpeGT/qdUwbtk5QDiUJR7I96xjVzvV57RynFrckpdK2lDnKahtJJ+2k0GsGDBw/g4cOH8P7778Pl5SX8v//3/5L15TRQOnmbaE46iR9wRy69zxefFB+VuamumnLaWuoymUygqiq4vr6G999/H3784x97/fhf/It/Ad/97nfhiy++gKdPn8K///f/Huq6hocPH8J6vYarq6tGPe8S8D6yOGVj/Mf7heqSPA0fDxaHaMyJkDPO2sDbIp9zeBvrZLmXNZaXQx92g9sAyRmZS1vMmRsbE6k24/3TdQ2X5hOtLAQun2hrkwTIJ113yFrlgq7j1CpPATT7/FA2kRik7FgxyKkrb9u2ZaLshlBVldnn04bnke7bOKVQA6kevRxTfBOLlMbkbRyrkmCVEm6kst9EoUNToKR01gF6aFpSZcaUQu7IstAScyB0gRidFHIcR1yBbNumEj19CkoxhSSm6Ej03QTEBCeJx7oIcbHyNEj1MxcuJaMHx0fTcCHDUoZGH8BeaEkZO3LGKK1bm/aj/7lrCS2bfw2P9yTh/bGHWiP6HKcWQ16buFgazg+UjpQhQ8pjKZeOV63vb2KukeoZ+73ZbODi4gI++eQTuLy8hMvLS1iv117IzFWC7zK0NRLxNouNZ60Mi2IszWHWsZiSXfjuGlonNGzGgN/Dkxob2vhqhO8cE8Fv4qyw3NXqn8QBGjhJuSMVjw4GBT/mL/YOWn/kMM3vwqOIkQZatnYccRDGHL76xt50vKmttGjKY04IozgkXKQvY7tfozjAUA8tvZCN70g0424zlWXmya2ndB9sCr8f5zm7tkMkapi2wxN/m52wmJ7GkXfnXBhGcPt3+gQ53P+uQ3weP3XEUrlRKwfp4PWi4XwcCPVwzkG5KKGaN+9mz12zpJ2cmowklRNbb3LkoT6A42yzrmK+XJuDVXeUZLxYWTHjPPbBarWCzWYTrLlWOazNuizllfQsgL2TJRhnkMc/ubyC+ZC3UT4djUZwfHwMDx488IZjpBOdyH0Cbz8r7/G0XZ0eOeX3jdNKs9TXbccvL/8m8rxtkJrvb7p8DrF1rosNqws+zS6USieVxXXvNuXzMCmtZr+K0cjDLPYpKawvGaBvm2WKr1Jtk8qTKseCT8KTu9Z0hRz6c+hpS3sfdb4Jm79ku5egi+1JKtOa9tbujNXgkMyMxi7JIMYFQkuHtJm4v4UmpCbpNnjuKmiLAxcGrIsu/6qEOhokuAk+fZPHAhfmUnWRjqq9ifqndvRJwqZkNAmMWSzOAppQS3EMBgMYjUbg3P44W4of68L52FquxRDWtn5SWmxf3L1wdHTU2IU8n89huVzCeDxW15Y3Yb5CyDWSIeCaS3mBx1HAY1oxPlYu3wFhoQ/vVx2NRrBcLht3PbftE27wa6tAS0bAoth+STifz+FXv/qVH6/SXbFv8twLkG43HGe8vlyGiK2jVsUKga6p9D92TKMEEm7Kwzj/0XR1XcN8Pk8aLTVFA2m1rmlR/ifOCfrPd7k2HBkudIr6cgoI72BFxytxyPr7Y7F8CPP5cH5nK83Hnb8FoYU4Zb1jF2Dv2MW2wzL47lrFqet3AEvONaOTjqdp9I1j4cK7tkNWxM2dUwSXn2MYD1CcgRzhGL0+mO2SZf8NepW2MAHi7St9ChfvasJ/nqcL4qjF9DWAq/f83wqkbKTNgzSMB/p2xkr84dNE7ohFByz/nbwrNrIztkEfp5O8B/VjT1c5cKWDq7+/gvK6BFc1Gzxn7eXzfcygzNcmSe65LVkyJldLsowGbeSWzWYD8/nc7zAGsB+7adk9S+Pp78FgAMvlEv7u7/4OHjx4AK9fv4ZXr17BbDYLdqm0qROVXSx4uL6PMi7uFI7xRcpWoOXR0tP5//nz5/Dy5Uv44Q9/CB999JGvywcffODlb4D9jiv8WFeS49pCbt0sZdL+wTJ4mW37HQAC+2SfY7qNY4mHp9qzjeNQsz98C3tI2Znb8DkHKb9VjzmU7mnBlzt35eK34jokaPpmX3ZeOmZzx6M03rWy+7aTHmKebFN+LKxP2rquhzlAr0vSIGWPkCCnDtwe3PWjLU2u7gp94QmcsZIgTaFPT7KGqw8PeW56KkTQiciC5003fkrQVXmKKYkxYS8FsTQ5wkQsrs1k2ocwZC0rlS+1QPexgKWMAG0Vkq60tM2rOS+ldzwKKna0Qps5TGtHLUxbVLQFR1sEpbkuZ+5P5cFdXnRnLOcfXveuAk1MWRANcy3LoeVRQQHvfsRdsVzQlWiTaM0xZrWFlJKdOtZa6zupXXl9NMNGSqmXxmaq73KMJhq9Er7YXJsrPEt9rrXRm2S8oONfU/RyxmFR2HcD9yVX5PYj1jM1hp3bO9Vxlw01+gIAzOdzv+5sNpsGb9By8UmPK5TSSPWmvMYNtZb1C3edSjtZMd454rh0LC+GFc0nOpR8GTunLz0ieJtdcMS7fXhQBuxpDZyvFKf0BJKXOmdx1y008YeNEW1KMU2j/Ul9w2An/3ZyeIMWJ5RtIdjJv51zelwMr1I/NQsvQ0on1TUFljwkjDtULQ5Wv3s0kS62a1YcnwrtQVq3f5qdsuw3TePjHYtPPBvOWeKU9WnwXdkZS521nLagHhqvSH2wi99cbaCaV1CtKqhL2UlmXZu5vBKTvbn8LsktKdm+jTxvgVg9+RwcKy/XuI/xVVV5Rywe95yi1ypTpuwU+JEU5r28vIzKNzGaUuFSe0j08uMKY7RIfZPSBbSyEfA+e5T1qqqC+XwOr1+/hufPn8PZ2Rncu3cPrq+vYTqdwmQygfV6HXwQ2YYvY+OurW2G828b3qJXouCTynfamLXaAjQ6LGlieloX3UKSL1P2EFrnlC3gmwqpsd9FL2w7PnjemK6RKo/jyx23Uj4LLTGaNBql9Ll8K635Es4YXus8zfHw97ZjLIajrSyUAosdkve71IbW/tJoy+EtDZe13jdhB5TK65LXshbTNZbah7S1921fG+7UztiYoNxFQEjh5vGpu0VvkgkkIS+mVFjiu4L1CwVpMdF2Jku/eZrcCbMNtGm3Pto7pVDH8vVBi5QvNu76bPPbBlwM8HcM8J6iq6sr2Gw2Pk9qPKaACpAWgYPuxJSM7tZypXS5PBSbW6fTqY9HYwE3nOQes8qBL/AcFzrNsc2kr71y6hxLNxwOYTwee2NDil7p3VqWBHznaaoMSVCnZaMTCN/RoIC8H6NbUwa0dDxcotsyPmJAj0hrgys2R3YZgxo9VEgdDocwm82gLEvf/n3N/4cCnKvG47E/vq7L3e0SX6XGP6a1tEvsPu4YxMZ0rNy6rmE2m8Hx8bE/erqqKiiKwp8m8NVXXwW4MFwyqOJv7f4i2j5aP9A0/jdznhSuCBwljV2kbu9IaTh40Im5c7JyJ25gFN45QYM0uzK8k9btxqGUH7bpxOOKCU0NZ6vbhwW7YEkdfb5der9rlzplYZs/aF/lyOXw1YnhgZNSaFfNieZpJOHB7lf6js5B2oc0D4tzzoX0YLmcLoqH5Q94RcHTCCP0qGlZu4VBpI0ce5fKE8rXykM+8+kL2N8hi/GkvNidsfR47Cg4IQ2nG39q/MH6iqfzfUV/Y746zE/nC+0p7ZSN7oTl79I/LQfYUwj3dadjg9JYOZh/NofVi1W8/XfQxl5h0R9w7uFzviRfvU36GQesLzpi+d2osbo31oYd8DUf00hGQYCt4xF3xH7yySdZOqRmyOX0S0ZJjOP379E2oHI6l3u09T4mw6bqgPnwvnqqZ52fn8NyuYS/+Zu/gfPzc3j//fdhtVrB/fv3oa5rePnyZWMHMN213Acfd7UfphwLmgyOu38Rx2Aw8PKv1u83NW41nS81dgDyddLcuUnj/1j6NjTdJT3pbQDk35wdbDhXSWOMb3aI6evS/NV3H/N1gdPWFp8G0saFrmPvEMDpSs2XNA3+7mN+xt+aDYznSc1nfa09Eq67Jp9pNjhpLFvvXuXtS+UT7UMlmg9356K9mLaZNsfchI/oUHDrztiYIRbBKgRhmCZwpvJZ4KYXcEv75MYD2IQuii+nDzDcKnTxsqR0bQykAO0umW5jUKdpuhr4u+a10qIpETn4rXCTk2GuU00S8uhCQif+2GSvtVVbwwwVMHGXJRV2c8ZlbPxwPDG8Mf7IFcI0enIgRWeu4ifhabPAD4dDmE6nUJZldAd1W+NHLljbQ+pfOk5Go1HDGWtZo2KGw1j6GM1t5yH6QYB0PJpEW66xqg19SBsABHcNUwVQcqDF2r8vxTEHuBBe1zWsVqtGnGX9ocDHolQvTbHvCrG7rnOPy+aACsdkMoHhcOiPF5SUGek9FsfbhENKKfV0OPDOCXTEYrh4P6qDwLnnjwFGJy4QXJiGOVKLYu90DfDSOB9MHKySYxWa734XLdKFzldo0iA6ZLGd0QGL9FFnLy2f0JoEKQmhW8RJ2jVI7/T0Ac868s+LZjjVeuxwSo5OKT3lkcAZ3Cc44Td5avXgcVG60OEPrD2BhRfQoCcY64Kjvnd+kerOw6R313xvOF8B9g5WR3iMpnHbNJQHTTtjLccU0zKBPZX6Sv2B+Nev17C53EC1aMpwKWMeTYNA1/RYnpReLc3zvM5Subl2ji5rqCSDWPRLKyDelEyZK4tS/BRQVuT6IJXVNBpiOldKppHieL/jOzr6rDagXFuRRd/D8OFwCFVVwWKxgN/97nfw6tUr+Pjjj6EsS++k1erTBlKyo/Qea2/e9rljgsvww+GwIUdKuLT2bgtWHTgVn0NLysaQAonvU2MsB27ajvs2APbDaDQKdB7+YXYXm4Y2/jgNGB+z1VIZPjXXx8rU8Fvz0DSp8c7p5yeuUdDsSlo5faSVwGofS7VTF5kjZ+7HMlJ2kxik1is+f/Vpi+jbhqrl75tuXpZk/+mjPIvtsA0coi0o3Joztu1imJuPTsZavCXspiF3IrOC5HjRyqThuQwec4KmJi9NCM7BgWn6WGisyptES04/tl2EchwdN8nb2tjTjMs3AdoCrLULFYi4cMTBMpfEDOkpurs6gfgimBJ8c8qS5pXAoA16nWM80gVEg1wL4PRp7UhpRmesc65xLylN1+auco6jDwNGStHF/hyPx427HFJ9pwmmmqMohU9q/5hxkgJdl6T7mXg/0/pb+j1Go5SWlo87x51zMB6PxXqXZZk01vA2vS15BsutqgrKsvTHd+PR5fRYPbpWaG1E5xRpraO7uBEn4stV1qR6pMYKT29Ji8cJl2UJ0+kUBoMBvH79OjiOWHtKO0gwTnLqSzwZG2u0nX0ZO+eFd37iuwudtEWxj/PpiUOWpqF3sW4LhtBptcsPjq2fxAFGdw/SO2e5wzV4Z8cSB3g4P1I6CwjyeToLRi/APo0VpKHq8OHCNDSchfk4Op/R/LQcR3gDCI+4EDdPE+Df4aBlNJyImIbwUaOqTqex0Q4AIg6eR6Ijll5Ny+qoOlg5YPzuWRT7XbMOHEAN2398j/FLaiqP0B+MdSmcjjcWxvs5CHdhHs87PI4+yY5YyhN8Fyz93XDGViQc/yV+5bzM+RpkOp1zsHqxgvnn80SjHxYsRmlNR+drnybL5hj4UvLaTUJMj9DkS5qPPi0yAl9Pi2LvZJNO+OHrsaUMSX7gbYxl8b7k8k5M3myrc0ltKrU9XqtQliX8+te/DtJr8i0+YzpEG0jpSFbZjkOMb1DOBdhfXYO6YE45KfsEpyUHt1XXovjb0KrZA7lsH6PNUv63sAVt3sgFaX0YjUYwHo8BALzuopVjLV/qW67L8Q8ZNLuSc07cHSmtexK+WD00/rbu5s9ZO3HOQKDzCT+SXqPZOl5icoAElrGaAxq/ctnFAprso+FN9VkMf1e+12jLtelZeDeWV5JdYieYaeVZbR/a6YQ5ZeVAW37sOy1Nz/Pd+s7YQ4I0Cd81sA6iN0EQsbRzjqGyK+QImn1BrjDMQaKpy8RwWzwTU6xomGXR6aufLAuI9F7XNYxGI5jNZl5AatOu/ItqfryWRCdV+KliR3EtFguoqqpxdBWvkzQfxpTQHGXdOj/FjsZMzXeSsYnHc2MDv0OpDWjrCPbBarWC0WgEk8kEnHP+KKo2YBXCaPsccn3DciaTied9ei+UlB6gneAM0NyBKPW5xYDG8dJ0lAf5+MP219YpSdmTytYMCZLR1LntEcSTyQROTk5gNBrB5eVlY1e1plRyhYWPgdw+6QOwTkdHR3B2dgbvv/8+XFxcwKtXr+D6+hpWq5W/V5k7ZCWwrmuSwt1GdpLSo4ER+YcrMHTsamVzvhoOh3BycgKnp6dQlqU3bGjzH53TOD9h3yOdvP95+TQsKbcwZ4Xf4YpOTLrDdedsDZxbu7zeUUqPHeZ50TlCyKHp0aHl81NHLAiOWMeOJ6ZNUJA2oI5d4kDzbYw0SfXmd9j6au+dPrE7P8X2xvwszLcncXxiHbR31SDF8dC0QOJJP3KHXMNpSmnkfBBEkzjOK5rXUVvqGH2N9pNo4HkYbUnnNaGT7n71fFQwXmZlnH7nFE7eO4GjR0fhuMxZzqW0Wj0B5HKEPm68C7zU4Be2IzZoJ/5Exym5/7URHzmmmP5jvqgjltJP+Y7XY1fO+vUals+XsLmIX8dgga7rrzR/x3Dlyl65cXcJNPkN4zhobcNPG+LytSZDUD2D9o3FoGqR37W68fU6Vi9JF5Fkki58w8PwagqURfhuuvV63bgy5JBg4ecYDVTfsdosVquV15kkuTBGh0VmlfQITW6V6ON1aeMEsODVaGiL/67bQfuE26xvSm8A2I6Le/fuBelQZy2KAlarlbiDk+Prynd8fFqOqrWCpR1StMXwauOE9/tsNvM2vrIs/bHwMdDm9q7tfQiI6aa5eKxzKEKbta9N+/U1li32WgxLzcOHmmNy8cZsP32sSV3B6j9oC704Y2+CwXLK6GNQS4vFoYAbUKXy+4I+8Ept2XaSumlBI+XQoWlSSkds4bSUE8OdQ5NGA4/jE3MK+nL2pMZwjJcOAVK9+G/6jkojvQNUGrOpMnmelOOHAv0iGxVdzLdcLr1jgAuhMT7k/dK1H7Q5k85pEg9a5oBYe2v5ueOXOk9ifRejR+qrzWYDzjl/LyYvNyZMUKExxzgmpY/NV23mWZpnNBp5RUDabWehWaPDymfSeMk1WmCeFK92AYqfjz+JlrquYTwew2Qygfv378PR0ZE3VtFd1ZKhUVI6uBHxpkBq0+l0Co8ePYLf//3fh88//xyqqoLlcgllWXpnbOq4JT5mpflKkptivG8dF9w4Sw1WWpvH6sJxDwYDmM1mcHJyAtfX1/5Djrqu/XijZXOjG4bxD30wXtqRk6p7VKlDJwZxXgS7RckOV7rL0ofTvAB7Z6YLjyn2aemzEN4d7B2jlntgAbxTljpTxWOWyU5YX45zgPd/UlwBHXSXL3fM+uAMxc4paZweRt+1Haocf8Pxy9ufpyH4PW9Ac97xjk3KO+AaOEUHLKWDldmgz5GyOA7pt/ROy7RMnZw3Y3gZHD06gnd+751tcn5nbKHwSAov72+l7g0eEviGvzd+0zQ0DGkgd8hKd8NSB6t3qFLnKsXnnOiMDRy7nB4gT9o2vB0o/+zwl1clLJ4uEo29x3HTxs2U7npIGSBXVupbx7eWnyPbS3KZtuZKuiIvS9spZZVXJf2T0slxYLx0nYLEm13l3VS+oii8E7IoCn8FA8p79CqGPmXvQ0BKZ9ToLssykMUAIPjwkOOn+LraqVIg5Y3xi0SnRvNN2/TeduhLh+8TkKbBYABHR0d+/qmqKji2GO/1pnn6pgGg+XEKhmE6a9mHmg85TQipD2Vo2GQy8TbI9XrdGKexOYWGSfprbr21srS5MWdusPB7au5rK5P1Zf+RgNOTY7eyyA20bItuf1N2d0n2kOqTks0OPYa1cmPhqbklZx29Mztj7/oCbh0MsfTa3SIW4f4m4KYVSo0Gali0HMfQFqQvlriBVRKkNTiE0ilNWLl9dNNjK2eivQsQU66cc/6YTXp0JDWAdxmznN85/1VVJbblaDSCxWIBy+USqqoyzS0cB43XhLcu8wG2HXcMpIDyvbaYIS6+G1gynqTK6lJHpKUsS5jP98fZDYdDGI1Gvn81hxOWzZ9aWk2A4v3YRgiNtQXesQqwNzKkeEsrJ5YnRxC3Qk5bUEFRG9fSvEzD+a7EHGPc2dkZ3L9/Hy4uLgBg+6GFcy7gc0kBo2l4uTc99xZFAbPZDJxzcH5+Du+88w6cnZ3BO++8A8vlEi4uLuDi4sK3lSac07pxxZr3k5RPoisWn0pL+1bbccLzc6B9gvPjy5cv4fz8PDgpIYZfow3zUoOf1q6o3Nd17b+wpnzT4HEHfhebP2YYd8funBh+96rbO1GCeLLrlTpw0bnpHaqYD8DvOEUa/JHCWEaxD/dOF+60xTYiO1/pLlqAsHwHhCbcZYs7X4tdHfnu3l34tljnaQgcs7QPUl41Hu1YHu5QImH0nTpBuSOKOtiwPf0TXIDLzycuTCvhDBx8lAcQJ6WJ4WzkTdWfh7M2o32i7nQV2oOXI/G0x1FAE58UxsKdc00nbBeg/EfeeTx3UAZhLkwb8JJzzfYAsN0Ry5+RnbHSTlhwAHVVi+ESv4tylVRXRtPmagPXn1yLd8RGm77HtTYlk0r2Apyv+dytyYffRJDWQ4tBVDM28/VXsh3EjuOzGJTpv7SLlOalRyVLhl8qlx4KKL9ReWaxWAQyalEUyZOcUn1j1fEskIMn1W8cFzqn6KkqFrCMWQlXbrukdDk6p8RsYqmxdUi++6bCTbYp6mqr1QpWq5UPn8/nwZigPIEnhsV2cVp5NXZscezebqk8TW/MwcHzanExHLETtmIwGo3g0aNHvtz5fA5XV1cer2ajoGWnaM7lrZgeTtevGE2x+SQXYvWLrbmHAkt9tPi7JLdJ/Rhrz0Os0Sn+vknIlau0NmntjO2rkftevK1KzCHAMiFLdZSUq0ODdfK1CMSpPLH6SI4mPtC4I0NaSHMnMQxP1S913IVEvwapdsnBZU1zkxOWRWmQxnuK37uOB6vyK8Wh0FfXtepQSzkENOUZ4yx9JOWr69orel0WJ+tc3nZ+aBh0E/m7CmC0HK3Pc4XnFG/TvkCgxoaUgU2iUYrDvtKMQimI0RHDQ52xXZxQqXyW+SFHyUiB5qiS2tei4ND1Atssh6bJZAKz2QwmkwmMRqOg/FwjDtKUkzeGM2dcjkYjqKrKH1M1Go1gOp3C8fGxrxdf62PzpBTO892UYYIaqGJ9Y1kPnXP+63E8fl4yplvp4o5YrUzkVV4W5/uiKPyOVeecd2RQR+w28e6fOEKdYztl8Z07SxEnkHGywxWkxzq4vVM03iBhOd6BGjRKGBc4hHeOM2mHrKeZ9lMBjd253rFrPaJYqFODB5wQzsOowwnpoPgoSqkdSd9GeZD2oQsdno1dqo6U7UKa9kmcTI9GZ4quWBij3QdHZIUUBB8F7AP3HyJwEuh8xngk6bAPE6thkuMVnxanLOUX8TfmoTthaRydO7jjVtsZKxxTTNPQPEE7kjoFc4nUNqyOdVlDtahg9XIV5LGsSzw+ZtewQKxMiVelcmPpbwJia1ifRjqOl5evxUv0SLpDCo8mux7CtpU68lKjj/6nPgxtY4eQcNG2pCd+xOQ2SsOheIRCjt4rtYuFRpTJ+PUSbenUZM7UPJVjm6J9o/F1rm7TZm66Kwb3uwg3OZcj4PyBJ/eknKCSLmO1vSLwuYzPLRouq82BppXGc47txrJWaGNLSq/N60Wx/eAZAU8akCDXNk5ps/CYtr5boY2um8v7XWlEyJEFu0Abe0IXOU8bSzn+hViZEq9beavrumCxw1jiYnzKZUcL8LStnbG3uUi+qQv0ZrNJXlw8HA7FLwZvY+E9NHDjNe4ko/2LR4DSPADNrzOs7ZMj4BdF4Q3HCPTYyLsONzlOcpwwtzV+U8IbB5qG73xEgTRWBseRK+B4Y3hR+N2ICMPhsKFU9y3MxAwX9LemXDu3vz9EO56pLS/k5qOOCo7DMiek+s0518Cf2tV/1+d07D/8mhsVsZgiRBWlNv3LlZrbaiPuaIsZJDBsMBjAdDr1O+k5Pg70Hmhc9+lYkuYO/B0TbmOKYVvIUZyxLfB3WZZwfX0Nzjk4OTmB8XicjbvN+q61H8ZJiq6kXGBf4Bi3KHY5CjAaNTSc3EAZw4ftXpZlw1DCjYf0XVLmfN4Cto4WdIrUAG6wd5Bs/Y2Fd2rQI4k9XgfBXbK+TrgjlR5jXOzxYpzfUUvvjgXZ+aXtgA3uppXSSM9iVx7fIUt36GI/MLoCx3RPjjXsGx4eOF6d28c5OY7vIKQONNHY65ppaDqOh+88xHyc3kYcr7uDBl820jrhH8sAFsYMeVIdGzhpvQSFW3TAbiP2HxjgUKJOWQfgKufTBrxjhRSvkL5vxFE+QXpIv/E0Eq/4NJx/BH4J+pvuiAUQd8M2wqqmE5bS3OBzFsbr59PUDqpFBRe/uYBq1fzw97aByyI3ATl6cpt8fbQrXzO1I3rxGXMyWhwKdOxTfPRJHW9FsT+qN/YhLy9buuYEQdIhtXlJKqtv/tH6Gz/Ek+QK52SnsibXapCjv/UBvO0t+jF91/RkDlJ/x5w2UrxFRrUAlxlTab+Ftwdw/kLA0+Gc2+5w/8lPfgLvvPMO/MEf/IE/Pvfq6gqeP38OAFt++8UvfgFffPGF573YbvgcoHfEYlmpOdwK2phryKHK79Q1TtL8rc2hdIzTj/3xLmqNfrQXcvv1bcJNz9OHhtz1tIudo2192q73fcsJFqdtTpmH7GOLLJUDsbWbQjBS+zCMWyvRtSEtwoeVpkMxOjeeSsZ5XPDatGFfcNPlIfAFD424PE0sD0C67zWly6KAcaUrlb9rW/Yh9Go0agKEtdyc9Kl2uEmesxjeY3kxPVWoYwpzDKwTPVfgaD48Ftei9HEare2es2DSttRokvhNa7NU32h8HDO2cDos41hy6lhBuwukD7638G7XtZy3FzUypfhe4wEpj+Sk1/LFoA+hU3NSUYjxLa5f1qO7MD1tY/qRh3WtkupykyD1N3XgbzYbOD8/h/V67XfKpgxSGGeVi6S5judLrXlSv3PFnM7DKT6XwrV6c3pj64Q0/i3rbS4/7TM3nSrBzlgH3pnUuD+VHDvM39GZWRTE4UmdV470CezTAMD+mGPEGZC7xxM4YotmXGOXbiHgoPTRO2YdRPODI461VHNr3efoTxemo44nnt6RPMDSOWjg8TxNHZikTNHZq5UtlcFxs3+6i5Y/G7gFEJ2hAg2NePLM2qnLw3j/GqZiHOPBTmyFDhmBMZz1JU8j8UUQhu8uDMewwCFKw3AOo/NHraQTjimm7w1cwMrl/MnCgnca5hxUywrKeQnlvARXsnkB0s4T3o5W2TVnDo7JJG3wpeiIrVOpdVgK6yKbxOTdmEOujS5t6UOel6+rdO1uewxlrAyLDtmXrpGClM5FaaU8nMJpkZNiYYcC69hL6clSHg1nrs2rb7DI4Ck9sAv9t1n3uwSWevfVVs65hsOPOgcHgwF85zvfgQ8++AD+8T/+xzCdTgEA4PXr13D//n2Yz+cwn89hNBo1jhO2QMqeRNNIcTQ+17auzVESTV14UaNPo5d+4M1PNWpzHH4bfrLmj9n2UnhzyonlaWtfzAGpbVN+hbZwW3N+DPqiyWI70eL6to0dQnayzEGtPpvok5n7hEPdLZoDUrtIO2UQRqMRPHnyxC9Sl5eXcH5+3sCJu0ZzIKefDjnQuzA31h3hEHRK9I3HY9ExzL9Gii3Md3GMaHBXx3TfkKonOkgwrZTfeu/LIZQIPA4XBWMuLPNyrWPPurBZ8NF4eixVCvrkv1xcKaNCDB+uO5xvtPXoTRxr/KgtgGab0XawGu1wLOGXnPzDpJsCTfkqCvneLwRp/ufGE3yX1ofhcAiTyQRWqxUsFgu4vLyE8XjsxzK2R2xOQuBOXBx7XQ2CtH5WwRdPEZhOp3B+fg7/9b/+Vz93rlYrmEwmUFWVumMkhvvQoCmtmhFU6t8chV4qnxt0JWE+NsZGo5FKK/IDftAj1YvSWbt6uyttt1vNl4uOjd0/OmgxDnfCBu+1AxjIaYq6CO5i3RKAj116ujN29853yUpPxNHY8YphuPNVS0/DSLvTcO9AJp4cGu7bNuaZpfVlYfRdcsyqu2PJe+AEow40EsedXv4pOLx4viAcQicaTdNwvjJeCpxmUhpGj+TgC9qP46T1Z3ikunAcnueKcNd2EK6NceLA93enQoIvUiAVJbUTTSvwEa+zyEcO1P5PPnFHLIYp98NKxxRzfhR5XupPnoeUXW9quPi7CyjnJUB9c06sNqDJENLzUMCNjl3ayipPdNUftPUymMeFOA0PjacyIl41QGVGSfbCPDFDeiyt1uZc7rTIfYfilxynKYbzDxk1eBP1pxzgfMZleJw/UXZu4+DQyk3h0GTgb+Htg9FoBGdnZ54nLi4u/O7MyWQCf/zHfww/+9nP4J/+03/qd8a+fv0anj17Bv/zf/5P+N//+38H+Iqi8E5beudsrt3UOeevdEGwnESVAynbRdcxQMc1ndupw5ufmISnS2F++kRbIL5TPBK0of8m5t1c+yLNl1NG38Blib4ht+0tdu6+oW/nt4V/b1J+kcrvE3/SGSs15G0IQpyOHAfDoUCaOCRhcjKZwPHxcYO2sixhNBoFk25MCbAK8JQ+CZfUn7kTXF9tKwmenAbNgCkZwmm+WHkpXpJoofk4HgnHTU+IXfvrEM7DGOQIC7kCG03TMOK0BM1wjXHWCTzl+IvlRUBHC62jJBBQum5rzmyzGKeE4VQerd5thaY2CoOWvo0wH+OR3LbtYgCztr1FoHbOwWQygaIoYDKZgHMOFotFJ0GrS7tK4VbexfqkjGUIqExSpbKua1gul3B1dQXr9Vr8gKsP3m0LKQOlFl5VlXfOYjtJY0DjoZgR2konx5NqR0zL55EcOmJzr4UWNDqgY5XzVmyO0wDLxae2gz+gcefAoE6Rxs5Y+k/pw3T4Th1OO8dJcHwwOZKY7j71Ts8dPUVBnKnsN5ZD74EFAH/MsC+P3hNL4ihOpCHYXcvbHenDeuLu3f1Wx7BfRc+ZADyZ9yc1EDadUjQ9fac4HMHF+q5Bwy4e27/xm+BBJ2zDycfxUhwKqPG03FhzUtp4nSSc1nDKny3BOQdQA+zZJI5Mddam6qj1A+lb0bFN0tB5IEhD+6GOPGl+B+ExxXx+YTthJXo0nld3NzOanXOwudpAtaigWlXbHbF83pPajIBlPZTmdDr/dtEBb9shpelVVn3jUAZzSVbWdDaEnA8nc+QgfkpKDIckc1rbiOqCFhn9JoDrWjGbCaU9xT+3zfcIMbmwb8ixL3QtB8FiT8oZC33QdGjoOiffNnShX+JnugmIf9xxfHwMx8fHUJYljMdjODk5gbIs4eTkBJ48eQI/+MEP4Fe/+hU8e/YswE9PTbLYdtvU1aLXaXWXaOjT98BtQZrcwcMo3VI6jjeHXgtY1sE2ZXa1Z1EcMd9G23Zoa9eV8nfpi9h62KYNrXKatr5p/KD5SHKBt5tGg6XuKZtrrj3NasONyXkcks7Yu7Iw8Y6RlJxDl2uhSzo+9PHjx/Dd7343CKvrGs7Pz7N2hhRFAePx2HQXYdtFKlV+n8AHmHR3mnMuOCs/hUNLk+IXbSF7U4HzZcp5fxN15l93atBGMEuBZsTW6OP52ihc3GgrLU6a8KAZhCzzEcffh7BjhUPgzsUpHfPK33k7AXTnsxyeti7mEtzW/FQU8hfanDdxDeTORgqY5sGDB3BycgLvvfcerFYr+Nu//dsbNxqlQOMT/sQTMLT5azwe+35HJxstoygKePHiBVxcXMB6vQ6OLLYKw5ri0VUw1iCloEnHWtP/tn1tMTpod8hpZWpjlK8B+E53K2uGBd4f9KQASdGWFLfZbAZlWcJisfBjMNW/MX6h98qmDJ6+zqXzu2OLYrfDdeeM0nbEijtj3d7hAgPwzk/n2PHBOyfMloi940W8M9ZtafHlajtjibPV52XpuEM2wE1xERzBe0GcsswxpPJrbAg4hof+dC4IazjUuLPKNcO5s8v3D3mK8x3NR37THay07+k7L6PRBjyO0OnryduD1LNRVwmnC/8bch6L47TngJfp8MMAgruu66aTVWWTsL+VROo75xf8rfIN++1xsLaUeKbxzNkRS99pOTtatA8PYvUI6Nztur36+ArWr9a7Jk87R/uUSyzrl1a+JLvm4D+0fNWmbm3LoWuvtuZJsg8Nw7UQ11Yr7Vi+ZLNAkOw7dC5J6YL0mdP/ElhPdOoLeL/E6D6UfHoT0EWOtYC0y1qyEdwkdO2v2HjlZVh0n1zQ5qg3kf8o9EU/tg9+LA0g3/e6Xq/hN7/5Ddy/fx9+//d/34f/7Gc/g5/+9KfwxRdf+JMeq6qCZ8+e+Y+Mi6LwxxhTXc1iq8Q0lpO0JJ00F3LG2SHXPzoHxOrR12lYbwu0nSfflPngkGuBJjfw9ZzbQW4CcubxQ66VfdT5Vm53visMnkOHpcOp4YICGpspVFXlj+rj4a9evfLv6KDMOaY4N91NCMLa4KBHqxbF/hhg55w3XFKjNR7RSuluC7H8tC/xjk48RkLCITnBbhsshlkNDjVxSc7JLsB5t0u7x9qJxlkM+xJo/NFlQbEY0zWDRI4Qy9shVm+N71J931U5shhjNLpvSqm1tNtdgpjxhBuUsG6PHj2C4XAI8/kcqqqC9XrdcOQiDIdDGI1GcHR05I9FWq/XsNls/BoQo4PS0wek1sQY/9D1TBtvqEjimoLhWM/NZhPcCW0do7Q8ejwx3vtTlmX2kcB9QOxYa2l+sK4LWrvkzCHS2kHLpvwd6/ccujW+kuQH2o/4zo0PfN3j8z6lnddFWtMkGl3p4OqzK5g+mMLZD8/ADcKdsT492b3K46mDNnCYoJMKcex2qGI8PqN3xtKdrrjDFZgDjNAX3AtLd8IiTdqRxUXonKVlIt6gLRjbNfhd8LqpOz1JWICHOap8HSSHGqYDIR7xkv6UnJ5SnN8Ji+ko/QSfxaHaGEO8LSjPMZpUJ6Vr1rvh2KN0k/cGnTnLTKGn921W73k6KKeBKrIOcDo5jhTvSP1DnZy8rdlv05Ptjk05Y4P8QGgBJ9MY4f+A1trB5mIDm6sN1Mt6n6cIccYcdxRuSmbjczgtm8pIEq2SjGA1GEuyfM46p+G7CYjpPTwcZVOUmUajkfkahVz7Cect7vjAj/BQbraUw2UQSR+msqlkNO2Tt6l+QN+p/CLxlEU+uWuQo3vk1k3Sr+jvHP0kF2J81sX4r/VxLJ63V+6Yk8r4JoCVP3gczkNXV1cwmUz88cIU6PV7aJcdDAZwcnLi8X344Yfwj/7RPwIAgOVyCV9//TWs19sPoPCKHtT1KQ2p/uXzXc5ckeLdHN7QnJ68DIqTrtf041xNH9bouss83Oe4jK1LqTmIx6f6PWVX0OarVJz2nqIpB6wyayyfBpa6afE59pw2baHxRy6f5PJs3+lv3Bl7W8L4bcKDBw/g+9//fhCGO2P5UYSr1Qo+/fRT/z6ZTAJn5G1CG4aNAf3iAo2O3Bk7GAwCQYAblWMTaC4tFCjf0GMWY4D3JsSgy6RzE3BX6UpBDm9qC6I0qWs4UamUjo5MlS0JyM6FX1hLc5f0fhPzqUQXjs8+gdenS91oO3PljTssuhiXcuBNGlucTzmP0zkYDVi4u+B73/sezGYz+Oyzz+D6+hoWi0UwtyN+NM6MRiM4OTmBqqrg0aNHMJ/PxbXxrs+deJ8zrmUA4XihbUqdsfSuLHqXDgA01v6UskDfR6MRjMdjGI/HsFwuex+vHCyKD1eieRzNp82/ljaQ5pI2RjMNFw3n9YkZQDTjsDTekI/oDlzNSKHtzuFtyo2jPK9U73pdw/kvz2H2ZAanH52CG+4dSd4xuXN8OLff2erc1gHCd8pSp5t3ejrSptRhCxA4V6Q7Y7dJ5B2xwbHEO6Ta3bK+P6T8BeGDXfn0N3XQAsDWweb2+CRoONDCyGZa14yP7YblTinTjlhg7+QZC+M4aLhPy3A3yuf157TCHofWTo26MRy0HYInhOl9WSSfCDuHa1GQXa9CvEQj7tAM0iog8aevl4Bbeg/aOJdneB/TttrVQXxy3qFOV9jVnxxZ7NuD0SU5YX19YnXBNKSMxVcLWH65NK8Ht21HiDkueDqrAaovOfsuQEwv4uuqJCdxeW00GsF0OoX1eh2cTKLh0eQZK+2I++joCIbDIdR1DavVKpCbUc+keqdGCw/DkzC4/HfIfuc6AtKf2nl8aBn1LkAOr6T4rK0h3QIpfbyrfq7RleNA+Rb6B+z3sizh5cuXcHZ2Jjpjy7L0pxZuNhvYbDYwGo3gwYMHPs3v//7v+zF9cXEB//f//t/AGTmdTsE5J17JowH/IEDauUd5V/ut4cZ0KZBO/UrZ6Oh8DwCqLdtS/l23h9w23JR9VIMce/Qh+/BNl+8A7lYdtP6y2P5jcONevpgwIRmtYkY7C/TlveZ04F2vPA39yieGdzAYwIMHDxpp+d2yaKymUFVV9OheCe4CM9PFI3ZkDrahdmceVzSs5eYAfr2FZdy7dy945zjruob5fB4IGpjupto+ZhBOQUyJtwrhNykU3IRzjDv0qOFdm59ynCU8v4ZLM8DjOOL8mHJ25ILkKJCOH+0b2vax5uyW0uQquNb+fdOBKw0IkrEEdxLgbs6zszM4OzuD1WoFk8nEn/RAjUqoyKxWKxiPxwAA3ikLAP7u2PV67Q1QbQSgGPSllEl4pDFLv4LFdwrolMX2QTwxOiXexQ+4jo6OYLPZwGq1ylJ2+wKJbn7XtZa2KIpgF0VVVdG2SBmOpHm2zZi1KE4xOmPO0dFoFDjmcV7HUzk0HLRciRaLLC3R1egT3MFaQ+Ckog4af2QxhE5ZvjM2KAdYm1LnFzq7uBOWOkKRNtCPHA52s9J0WEfeNAWhjZWB7RXwEaWlCJ3JgQOx2LelWC7Pw+MF51TMYcXjojtiMY0TnpQWFobpGvhRVmJhQX6GN+h7gIBOHs9p8HTw9lPasFEuhPTTOtE6NoA6XMmQoUdiUxifjuHonSOYPpianbEcbswZK/UzQNjnEr+wPmk4ZvmdsXRHLKWH0B3QwtKI9aD01ACbiw2sXq1gc7FpzKcxGTsFMVkhJUfgPMsNsVwu7UPfyVk3eB6rkzcFvJ2xnvz0L1zzUmt0SiZIheE7l7dwZ+xwOPSyBwd0clL+5LzKP2TVnMFFUXjDPJ6cIulXqTWeOl4xDz3SE+NoXWkZh9Lhqa2M2kgof8XGCNJq4dW7AF3075g+YZFdrX3IbRq8/C5jn/OWNO40Xs7px1R7SHXT7AOSredb2H9kTB2HVVXB3//933s76ePHj+Hhw4d+jsGPgNfrdVT/QL3n6OgI1ut1Q0+V+MG6zvaxpsfy0bkU80h2JUpHil+LomicwBjTlb/pPGqRD6xA+8aqv1tosczVljmvrzIRl9Y2XdapHODjB3FKdhzrPEDDDykrSLSk1owULyadsTEG6EP4oY2co3z0qZykypHSDQaDxk7IqqrMi/hgMIDT09PGroejo6NGOmlnrGWxkKCPdtP6LEYbTRubCJxzXhHTdqtyBSdWFk8nDVRpYNEdStPpNOgrvssLYKs84rGcAPL9CjkG/j7AqszdVehT6EiNdSmehtGjIiVjiQYWgTC1yFj6TuPvtooFz8+NFW36I1Vnq4KZu+50WSBTcJcMAH2ApHBoSgYCOs4QTk5O4P79+15RowYnHEM4ntbrNSyXS6+UHR8fQ13XMJ1O/ZG9fd9/Igl70nsOb0j5OG5+JBG+Uwclxqd2Q2phRbG9V34ymcDx8TFcXV3B9fV19o6DNoJ6jmKUGs+4xlKDYmwu5Xyq1YMbXqzAjTVdQZObcK51bu+Qx2MLLeuApPhr5aZ4ndLggd39CA6CnbHo/CiKnYOycOLOWL+LlKTB98azAO9oEe+MZb/5XbHoLPNHHAtHGO8bZV8utiGvC3XUBkcTC/3TOK7Y4UPpQ61rSZ2jTihavmO/qZNt99vLC9wJycoJZHdoytC8TO4MbeyWxTyUFiC00DZy0ORPgcYgjpYbq5tr5mu0M77SehUgl22A8fEYzj462/JOncbHd1ZLu4OjO4YV3gjySu+cf/hv8pTC/DxBjyjGY4nZO9QJPiZxAS/wMPruwnI3lxtYfL4Q9UqLocciD7RdG/jaFVsruzgLuugBGlh18FgcypAoF6Y+vkqBtf+kuRvXYPyXaJHkCnym+k4Kp+VwfJQ+KS+XfyQaqFwR+5D2UE4olOV4HfmpHLQeSBc/XvlNAt5/muyagysXYgb7lN2Dh2n0anwj5UvVwzLnaHm6gKZDWMrpwzFxV3kbnbH8XtdPPvkEFosFAGx3vX7/+9/3doDj42PvYEW7uLTu4tUr+PFLzkfDMR0y1p4p/tL0rNTYTdkptDVEst3xsmPHIafgkLx1l/lWgi4Os7tQTysNFnlWg5y0XdpE4nOUCbr4K5AnY+uRddxYgY9rae5I4Wu1M/ZNG4BdQKun5JDTgKblSgfC06dP4c///M/hxYsXSXpSAgPCIYRqpKFrfr64FEXhF/w+6NYM7pJQwNPgu0bH48eP4cmTJ0HYYrGAr7/+OtixTJ3osSOCDtFPh+r7byJQoRHfKUjj4dAKFpaLY4nSICnbViWbK/O4OI5GI//lunPbEwDwTqM+1oI2CtAhyvoW0oDth0oUN6is12tYr9dwdHTU+LiI8xY6bJ8+fQqj0QhWqxUsl0t1N8Kh6iMZpKQdBKlxFJvXuUNNWnPQYMZxBI4hApJCWpal/0KZ4rztNUEyFGI4QMgbSDfKSuiQlIDyk7WfcmnW3jn9KRwpAwL9xzDccZ6z/sT4jEPqXmZPPzpPdv/eGTkQHK31Lrwu/JG9ND7oM0wDANQp5J/1jrbB3ikjHU8M0HTIBvVIHGkMvkj5COPYb8xH3wEgOK6Y06GCgwbt3LkmOWY9X1DnFXNWBWmwT9EZ6sgTlHAHjTCKh6eh8Tx9o26u+R/wOiu7UU/ET9uGpPNxSp0buFh9Gv3QwiHry8WjfMkHAtE8NuTiu7SLFCDkBXxqPCTyjfVJd8UmdsJKa58Up9VBKntzuYH5F/PtHbGpJuxg22iz5tD1SlsnaNqu8vahnG1toSi2u1DruobFYuHrhjpH33ILN4DTcIwry9KfJkI/vuV5NKe+VR9EvHgaBsrCKHvSncIaSMZFKu9xw6TG35zv+taRTk5OYDKZ+HbFk2/KsmxcxcD1WSr7DgYDGI/Hvo1uUk/IBYucdpsQk0Ux3uKstRr+MZ0kb8Zk6JTTLFamVk4sHR8DN8Ffd403KKzXa7i4uIDNZgODwQBmsxmMx2P4i7/4C2/jfPToEbx48cKP4+l0CuPxGP7P//k/8PTpU/ijP/oj9bo9nKekDTgYTyHVh9a2jM3XFuBrKZ2LUmt17OPanPpaeFOyHfSpH38TQLO/9IFXgpx58NCAPisOfW+SsNAhveeOF5QvDjGva/4lC+90OqY4VpnUghxLa11YU3GHXEQlh6J07CA3WKPywfNeXV3Br371qyRjSZO8JEBTITw1kbRpp65tyw34RdH8atJShlQvy6SFuFN3mCDQXTonJyfw+PFjj6eqqobixPmD1qeL845DTl2t6W8CbnKsSuXllJmaSC0KLE2TM9/lQmyRsSoXfOzReUzCoQmdtyk8fAuHB+3UBrzXm9+pEhjnd4BH7r9+/dob3/CuLjru+hojkvFKeuc0x9Kk5pYcobEP3kWllrZhytDbR9nW+lnnP1QCrGs04uqiJKQEfk6/xk+cZzCfFM7z8TGScpbGwKIESHN5zGiNxxSjw4MfQQwOgl2k24zg0/i0iK/Y4eA7ZIt9vKePHIMc5KOOVo7Lk7CrE+zzOLc/0hjLNd0Zi2XuaMFwANjjQnp5e+d48FjSYKzEHFK0LEfSszTirlGaFvuTOTFVp+gOp48jdGs7TsV6Bpkj8Y6lldLTd0J3sMNXSSM6AjuCg51TsoDwPmPD8G7skpXo4kEKnzTCWP/S+KCvsf0wL+5qrUndaDrNGas4YSV+knhF5Hvah7WDuqyhWlSw+npldmZanRCNNjTEpfBK6yNdK6x6U44NJZe3reuQVR+iH6DxcPpBnEV/tvYR7+NgznQu+DBck+U0nBwvx63RhrvCqG2CgqbbSc4mbk/ha7okWx9KBy+K7Wkts9nMl7tcLhunncRkZnynd+gCND88vg3Q+IjGc3nvkDSnDM2ch2PjKVd+zImT+DZWtlWfiJXTJU1bsNiHcvAgWObxNmXyPFVV+d3p+DHEaDSCL774ws9ZL168gMlk4vU1TPOrX/0Knj9/Dj/72c/g9PRUrFNq/uHzQoqnYnO0hFuz01qAlsXnIsk2ElsLKK5U3+b0a0y/vu25syu0kWVybOYW242FxyQaUnProew0tHxrWq3cmLzVN3/l2N+Qhj7Sdxl7OdDrnbFv+sDuGz788EP4l//yX8Lp6Wnj0nK8Jw+BH3mMwJ16uRAbSG3hEP1c13VwNLBWTpuyJaUJQTpu2rn9bhQAgNlsBt///vd9P9y/f99PNlVVwZ//+Z/Dy5cvYblcBnhSSvY3HXIWUquCkVu+pAAi4Ndrli+UAWwLkGZU6CJIawaDvsY8HjNDnSKHOD62D+BtajG+3WXQBPObrJPEsymlZbPZwO9+9zu4uLgIjE0S71dVBV988YUPR9zOueAjmK6gjYuUY6wrcIMT9h/dwaDdPSMZIzC9ZvhDY+J8PlfvsE8BN1z31RZtgLZTWyO5NtdqvMDT8D6xGqtiNHMeSCmAEo4YWGiUxmPMWOdKB/WwhqIO26Koye5ZF+6UBWRtdK6ig2YAPt4VOxwQhheDwscjDu9wqbfvfmdtAf4/2G3ri48faRx7NvK7Ijz2mDkPfRtGHK/abkhp1yt/bzhZIXRO8fhgJ6gURuKCd+Wp/q4JfsrXDuQywIm0NP4BGrhSzlNeBs8jvUv0ogMx0pUm8HTUAK7a8ivnj+SYZnwmJGiWx+IoD+CzwS+UT5wL8yZ4Q3TKCseb87pweoP5z5Oj8D3+3pVZV1sn7OXvLqFe5R3R3xb6WB8tzqXY+iDN53cR0GCPO2K/853vwO/93u95Y/4vfvEL+PLLL2E2m0FRFMGJU1ZIraOaLsZ3qSK9MTm8KMLdI6gb8XtvKS38t0W/5bIH6mYoS0inoEjyp9QWfQKXIVBmxX6/f/8+bDYbrx/w8rFuHGdZlrBer/1JTXcVNBkeQOaBnPGaa0yO4dH40VJ2Kn1K9u1aZw0Hl92pnYLqWRbZvSvcls7EaeiyHvC8y+USiqKAk5OTYEf7z3/+c3j06BH84Ac/8Gl//OMfw4cffgj/63/9L5jP5+Cc807Zuq7h9evXSdp5G1J66Dyr5aVjTGoH7To8AGhclUPXIT7np+rB4a6s0XeZNoCb+YBFg5itoCvcpTbuGyR5JZauTVhXsKxlMVlJy9OWXwNpJidz2wm+z4GfoqGtg4aXwUHa5iwdsXB0dATvvfdeo9Mx/2q18jg0ZUMTVHOFKA33IfJY+1hqw65gNVBqeaT2xqM5cOEfj8fBsdMXFxfw6tWrAB/dCd1VyOV1kpxgfbTdTYJUX63v2k5ufS3euQrITdDEcWptFFvYYrRICjxdhG5SMLIoXBrE2iYFXda4vh2IqbA2INGptZU2RqV+2Gw2sFgs4OrqCubzuU/HcdCy1ut1EI9rpObwt86psblFckBZ8FvmKauhIub40sqkabXxjooj3x1B6yYpqbzN0LhXFM2dFrkQo1cK4/NOCrcEEs9ZaOe08vaR6pLTNhIdKYUgZVSI4ZLGAudBTnvjN3XMEOeItDO24eyCMAydKsEOWQC/WxUc7B2vxd5xieXtEm/TFk3nKgCEO2R3aRtHFfMdslI41h1IfoqX0cTro+14FB21EgsEPinXaNOGE4u8ez7geShPSX0klctoDn4zfSRwKFMaXZhWKovj5Ls1pXryMsQ0WpkOQnpjgH3ZQfxx4MJ2p/zdVq6K8I3W3mr7YR6t79g8wMP8nM0csMGT0yjxLKuXmI/RUa0qcNXWEVzOSyivyq3jW4GuspS0BqRwSvN+bF1MySJWo5BWRo7s0ydQWWUymcC7774Lk8kExuMx/OY3v/GOTC4DpmR/qyEwJtPSfoy1jyTHUTo0eSG2PufUFdPEPoyN6T83ZejGI4XxYwPp1BykR2pfjEM83BGitf9NQ46+Zm3zNnKzBSfFrfGe1q5d+CWXdqs8zfOn5OScfrH0a2qM9w2WtUab+7sA/QAEP57Bo4yn0yksl0t/VQ7A1l56fn4Ol5eXgR2V28w1PZTXR2p3mt4y5+fEazTxqwqlK4batLuF33PqGBsHNO6u25BjOjdN0wVy+EOyY3Utp23fW2S4PuaAQ7Rvro3TKq/mrlMp+8uheetOfVpmWVwoxBbTQwlik8kEjo6OGsoSnqlvndA2mw384he/8BegP3v2TOwsvGODQl3XjTCNoW9DIJXoaBMvGaBzwJLeufALTGxvvqgul0u/8N6/f99/3bXZbBoLMuePrjTTr3KHwyFMp9MG/sVi0err4RQcin9QyeZfv6bytOGB2GSdMnpw/ui6oFl4vQ9o6yzhIAk/q9XKC+SHgNz5myuNnE9wfObwGkD7PumjXfpaw2J42jh06G86Noqi8CcM/O53v4PRaBS0N441abwVReFPiuhLeRyPx15JTOGiBgmsU5fyrUIdfadH8uWUIwmmaLRaLpfmNVCSFXD3gXPOyxx98CU1UOI70kFpKsvSpOhY1oWYcZWni5UDsP8YKjafWA1olO+kuYumi+2G5h8ISkojhqHRAHeqTKfThrFUAucc1OsaikEBgxExpA7c1im5O3rVua0jhu5w9WmLPc+7AflAw20dobhj1t87S3fEknwA4O+S9Ue+FjsnarHfKet3yGJa5rXyDttC2BHrXMMh3Ngl6/a0bSu4T7t93TuZosfQamzHwx3IjkMXluX7UAp3LB7DwIXvyEs1ezriYNsdNxvk2fU5hktlUhqDJ8UBjDZGL/8dOAJJGA1v/NchfcHvmoVHu8+4XuzarC7rJp8o/BG9Y9g3i2uENdKw9hcdshLfcJ7AJJwveHvVrO0oiTGjGq+TY+ES7zoHrnJw+dtL2FxutnPejna+vh8KKB+nZC6p/rn05RgBLWlSulCfgHoEljObzeDdd9+Fx48fw4MHD+Cv//qvPU25jraY81ajRcNPy8G1kZ5yRuNRn6VpKHAdBcNw7eY2HUyL6SXnJaeRyxJSn0qOW/rRXV9A+Zl+mIk0o/zB9QrtN60PXoUyHo8D3UFqQ422Q9vGJB7qS7+xlJ2SZdGZhB9tSkD7UBuLEm4LcH3Imp6+S22s6UQWelP9kprX29ioUqDRf5u2XeccXF1dwXA4hHv37vnwFy9ewMXFRYO26XQKp6en/q5ogK1+ef/+fZ9ms9kER7XjbwvPaTtku6wTqfY9Pj729BfF9sRLtDWtViv49NNP/bgajUbBaZg3edc16ocI/EOY6XQKg8EALi8vTTaym5g7NbhJGeVtgrvSVpqNy8JPfc2DEo8fon1y6bpTzlhrh6TytnX+WdNypck55w1ZFNbrNZyfn6u0zedzfzRvbGcsvTdFKj9m+Lsrg1ACi3KlhfP219JaFVVsQ8kYWVUVrFYrv4BRIzE6IabTqX/nAmzb41xpH1KauJOD1jOm7Eu4Y+Va0vJ4y/iMvcfolHDnOpQwz3A4VJXmFI4+BIJDCTOSIqKlyVGCpHnoUJDiFal8ulCneN9argUO1RZ98UcOHouww39LeZbLZWOutMwhVmNbCrjhJgV0/pcMopIRTcNjpU/C17bOEt+3Mepaw9sAN1ZIfMTLxDknprhqPEgh1c7S3MHTSIZDjkOiTaNZo1Gb2/qeZ2h/4IcTnP95m7jSweZiA1ADDGfDraOD7oYF2P8uIAwndUHnCb3/1TniCHUyP9D8uOM06DvFmcrvfMWyAEC8O5bviMW6iLtsMQ4Ij6EjCyBwuFn9dWJaipPFe96QnFXUoUYdbxiPfUvS8TQUp+cP1yyX4uT4Gmm1J60Tp4PiI5EiHRyHUq8Gfpav13HnoMH/gROWFEUdsDmO3iC90LZSP2g7Yul74ESgfepAd8aSNI3ypXcr/QKt1byCalVBtdg+qc6FsoA0j2oyh0UWyeUNLne3Xa8tkMJn1ce6lplqO3ziNUV1XcN4PIbJZAKTyaRxb2swh2fosFoaTkcOcDkuR/7DPFROleRCdPDm2MakNZzGx+g5FHC7Ci9T0zt4u06nU3jw4AGUZQllWfpTyubzeeNI6BjclDNB0kPa6Dm8HXLnLek35TEq+/VhO+xrzsQ8msxu1aF4vXJthbxdc+eXVDnWebJNebEycvuD8yCewITztnP7D7TpHHR8fAzD4RDKsvR2JH7UOIZb7JsabVrb5urmUp0luwA9IRFPdUBo84F1W9BsFgj8Q14aj85ZvI5N+yCX9/1NzaEcYv2ZM7ZiebR0h65zF3lEwtM3HApvjq1Oy5+yXSLkbsrR8LRJG2u/O+WMfROgLEu/mxUBFyUOr169gp///OdBWFEUcHp6CqPRKGuijn1xqQkrWN43BTij97UQbjYb+Prrr31b3r9/P3BMvfPOOz5utVrB8+fPA4EDF2iLYkQBF/rlchnUhX5hiseE8DwxBeAmgU+SRdHtDuQ+YDQawb1792CxWMDl5aUP51+MATQFvBwnz5sKXGijc89dqXuOgG2ZB+5KvW4TuICuxdN0dV37e1XwgyTcQYkfGEl3LnOhs6/5aTgcNuZEip8q8PRJ/3l9DwkxpSImYMYcg30AKmXYPnQ3SBecCCnlEWB/1DLyk1bnmKGKh2kGcYkPsf3RIQwQHkVFceQo+5QGHDdWwN0M1HAmGaMkxZmWi/lxZ2xVVX4nuTZfltclXP/yGmYfzGB8f7x1ShZuvyOW7ZQrBvvji/1doui8dG5/V+yg2N8hu7sHdltZCO6bpfkBSFp8Sv88Dd8h60ha/u70Z4ADINxJS8LQiWsGLanm0KIOLOK80pywAZ+zeAzzaeowredz1wzju2Z5ukZZ/MnTA8lDyyL9RtPSMiX6eJ2DdNJ9puw9Bxp3CJO+cvV2B6crXfNOYzo/5hTKkwbswdoTCP+k+IXygtK2Dacsz8PrHxIn08niOb0BLfWW964/u4bl10t/JDE1PuJ6iYZivtbfpEzP5+A2kFrrukIfzhiElAETy7i6uoKPP/4YJpMJ3Lt3D46Pj+HRo0fw4sWLxulTXH6T6G/r5KL5ubwSw4lrJtUh6TiI2WMQN67rKA/gnbo0XayuEl9T4Mdo0jR99jnFo8lI+Ju3FQXUK+hGhXfffRf+8A//EC4uLuDly5c+729+8xuYz+cwm80AoJ3B9Sah6/jvyzgMsNeZNptNQJOmQx1iztE+9KZ1lXgpx4jPZQGtHik73ZtiK7A6jDnE+leaW3GH7OnpqY/jDr3ZbAbD4RBms5naB+i8XCwW4g53jVaKL3bscZt+43qvpP9h2dPp1G/KAYDA0Yx6JE1/SKC6Mt6Bjvd1S4B+iaqq/IctFCx32X8L7eFNaNvUvHCbdNC1AX/jusbztuFli92pKwTO2FxnkQVSC94hyjw0xIQhKsCUZekFRoSiKOD6+roh6OCCJgkjXdpFE75vG2IKpcYTuQqD1UirtTHeFTudTqN41ut1Y4czd1hI5WrvXIiQ4NGjR/Dhhx/Cixcvgvtq+S6iXOW/DX9I5cXw8t99jXuJP8bjcaM8dA7dxljoy5lxaJCcZzcpTPKyJWjbHjmKHOftuzqfHhK0sYttQZ30WloKmjLWxcBABSxNgafPFD5L2bnzqZY+hkfawW8xoMWUbK4YSnRg31AjSd/Cp9RfUhopnoZJaayKQ6o+1DAbkxU02mLxmhHYgl8zCNB4yahM00l1jMnlrnawXq5htB6Bq932CODdUcPSfbEYHrQHjYe9wyu4d7YI0/gdhI44OHeeGb9DFtMVDEexo7+Axq5Wvpt1h3D/jo5jviOW9BE/ZtbfHQuwd7a5fTozNPxYzFnlhHAXf8e29vlJPMZhuwbzpSM85+QwipP/9jjBiTQ26uSa6QLnOeOxRlvxMEwHRN4nvCc6eOm/EaIOVAdQjAqYHE1gOBv6DxgCaCtKSMUq/AFAxr/0TtudtlvdbCP/FJz2Ih0CreJcl6KzBqiWFawv1p7OalkFx6Fr86IUznWklIzQxxqYg6OtjaQNnX075VKySlFsHeWLxQK++OILGI1G/v7BlO6fK7+naKTvsTaPybh8bU7Rq+nqAOA/QpM+gk21q7X/UnaItoB1l2QaSXahaWK2mLOzM3jvvffg3r178PDhQ3Bu67z+7LPP4PLy0uv21A5ymzpajAbLWGtjK5HmOU0O5LqSJmvz8jkdklM9V1+26jHWvDxe6wuJ5i66Tpsx2aYsbRxJv9vgy11r6JVF9D5YfOc2b41H0YlJd9FK9ZHeufOFQ6xvYnMfjaPX1OCxy0VRwPn5ud+pj9cjSXXsU4em9HK9no9rehUN1//p+OXX9HF8tw1d26/ruOZ4JJ25Szlt6bHAbfdrbB2kYF0TY3HSmgewtalJ91WnyrVA7vpGofPO2JThqe98dxmKogi+PFmv1/DFF1800kmeeTwmgAKmuesXa3cBbxxhC6F10PZVPv6mZY9GI3j06FF0gXdue3fC69ev/Tv/AjV1TrrEC6ndoz/84Q/hj//4j+FP//RP4S//8i89Hn7uP98pe+gFAkEb37xv+xC2ucBD23s2mwU7k29izsldXO464Bh50+chPgb6XoPepjUtZcig8yZVuvi9VhYlOVaOBTBvVVWNL+LxHhf+pW1qPskxIuTSyfkkpqDh/I0KUqq9pLm17dzT98cX2viwGCmoUY+OXymv1HeWdJiWv9N1QzpuL4UjBrxPeZ/xMDR64FiLGRc47bzeNI6m1eivqgrKstw6YysHbrB1yOIO1+DOWAd+R2xRkONYHYQ7Yp3bv5P7XfG+Wb/jFCB0yroCYLBz8pCdsQGOAvxOWH//LNl5G9vByHe4Uuevc9u68PwNfI6MwRyvHtIgvEtOLd/3KSeWC9e+wHGmxZGn5oht/AYn5tUcqf4JzbRiGCmP0ivWRylbdeoS/FgXDwWhKRMcOBiNR3D8/jEUgwLqKrwzFtNIDtlOd8Za+YS1NecFsb94H9N6cDqA4FfqkKSz3o/39es1XPzmAgCgMYfRuTCmQ0tr5aGMpZSWLrLEm6xHSIAG9NevX8PLly/h888/hwcPHvgjizFN6r7UPtpFMqpKMoa2w7QoCn9kJz+dxWKkwzUbd4jhB95YJr/3j+eX8HWFLjoN7Tcqu/H25eVJdOPdlE+ePIEf//jHgTy2Xq/hF7/4BTx//hxmsxkURQHL5bIVzX0C1tWiB1nA0g8WHYGmrarK70CO2d364qk+bSOSrKzhs57s87bo8LfhYMH5Co9Wp20+m83U+YvDZDKB0WgUzH9amTyMH3vc1w55rjMNBgPYbDbw+vVrX89Xr15BURR+d2zMXta3nEHXB01vd86J1yFa5krtSOnbAk3fPRTk2Knf1PnjJmiXfCnaOLDYZ9oAHqeOH0xYypXapm9ZvJUz1mpItEDfQsqhmYkq6hTortaYUEDzopMIjWtcybDW5aYcl31ByhCeyqfllxRqqS94GfyOAlx0iqKAq6srv8gNh0MYj8fw5Zdfwnq99nn5sdWpekhpqXDCj0X84IMPPK/MZjN48uQJfPjhhz6v5GRyzvkjDSnem1pELU4cfE9BSsGgYfyLPPqRAxfW8FgeFGRiRyZp0GWMHgIkXrDQYU0XK/MmoA+DFgeqMGu8Zlnn7vKcmwupuvIxTL/elwygVqFHA8mAg31SVRUcHx/DvXv3gjx1XcOrV6+gLMvgXqTc8mJhsbzU+JQy8PF6IeD8jfVEWSFGX5exS4VO7FeNthyItXts7tGM6xoeyZlqVTKkNPhFN66/KMRLd8hqdMaMj5xO/s5xYp9IBmFaFjeucZ6k9UOlBHeTSDJTkM/B1hk7dP6YUOpopQ4tf/8qu1vWua1jBh2sFLd/kt/UKRukwXoLjtVg1ypJ03CukjDtGZRREMewUs7uh9xHli2QDhr14U427vTi7RP0F3W07X5LO0LpTlkfJjx5WBCONND+3v0QnYYkrZdboInHOeYcZXUNaKH1AJnWWF1Ep2Eb4GXtjvLdXyOcnldNzl+ehDZzhC8a79h2NYlTeMDXT3OyUtwJeoN0nC7ihC2XJSy+WkB5Xfq5CmV4zCOtGdIH0FqbS/lj623fRhkNLOXkODskOYWnja0xVlqk9ZyXhf23Wq3g1atXXo/jJ3NoeCm9kixqoZPiSKXDtRVpPD09hdPTUyjLEqqqgouLCyjL0ju6Uripzo6ncd27dw9ev34Nz58/F9OncGpxN6nb8bHDbTQWJxm2sXMOvv76a/izP/szePLkCbz//vtwdHQER0dHcHx8DLPZrLEjTZO1b1NX02Q9KR2P1/jar5vsKeXR9AdeBpdBY7glXJLOINUjppdp85LFTiiBxosSbRpOXjet/25yXUjxs6W9JL5sSw/FJ/Ud16e445WOeY0e7d1qe0y1SZs1n9Z9NBoFc5yGq0+gu3apDfnhw4e+vLOzM3j48KGn4cGDB8HxygAAL1++hF/+8pewXq8bpz3eFF/ngEZb1zbWeMwqI2jQRxv23Q+x8XUX+5yCtobQa9Q45MjKOXSk4rQ0t3ZnbN8TURfhWwqP4eHHxlBlEN8ti+NkMgGA/RdFvEzuHNKEKE77XYXYBGaZuCRhkeOxAE9HF0s+cK+urvzvyWQCR0dH8PTpU3j69KkPx6Mqcsul4bTc5XIZ3Lf4wQcfwNnZGQAAPHz4EP7JP/kn0TsdsU4cLz1+4jYn19iXW7G0Eki8QOtInbGDwcCPOYD9F2F8Vzo/6lmDmPB+CLDMK1Y8AHl0cyE2lbctrVI+Tdmx4ML8mpDE43jfH/puzhj01d85eK3zQ8xop41Zi1EwRyHEHQRlWcLR0RF89NFHQXxZlvD69Wsoy9LfVaN9KZsz3mMQ49UcGQXbgn4IxI0AVqODVKY2HiyGLI1eSxqN92JzkjTfaMYmy9xm4S9s36qqYDQawdHRkTcQ4PFZ/B47jjsGGg2p9ucGCm3MUNlRkhVoPvywDHFLvMXLrKsaiqrwDll/72sB23cotk6UQeiI9XgcNHfIAvijjzEed8hinuCYYnwHaDhQMYyDlCbHEas5eP1dshGnsG8/q6ePJWvwlmPh/B1/O+U3CRPTkf/AgUv70hE+ldJq+Nh4kXbAik5YHq7hJjwTdb5CvC4eCvbeBhxsP2Io2BxYhDyBR2+ncMXCGw7SGK+QtuJ8EXXESmVm0BrgcUI4L79yUC5KuPz4EsDt9WPNqE6Bf3AbmxNTDo8uYFlTefltyu0qNx7K0EfXF04j7oaaz+fqmm+pl1VuScnAsTzUCVNVFRwdHcHjx4/96RHz+RzW67U/Nleii6/7yKPT6RQePHgAP/rRj+CTTz4JnLESb2qynVYPyY5ySF02ZrehPK7JhdwZ+/XXX8Mf/MEfwOnpKRwdHcF0OoXj42M4OjqC6+vr4L5oaxv0pWu1sUGl+C0mr1KekuarlB4g4eI7urHttXFlKcOi+8TGhlSOVraEh4/bGKTuFKT6LZWzNZ1Eotc6RiU4pO28rQOG66UxHY/fXbparWCxWAS2SonfKF5tDU/RSOnMaUfeLpb5Ep2xuXZXXk9rPqxTUexPaADYricPHz70+up3v/td+PGPf+zzfP/73/cfsmN5v/3tb+Hjjz+Gq6srb4vuS/5py79ty9fGYJsypHgLL8TGw01CW5vvocpuU0asD2g59Nh0ritwWd9CS5v5MCf/wZ2xbQ3pOfjvIiADSIZ/vnB9C3mAAmNu31sGH18s+B3Al5eXYp6YwBwDFEC0I42Kogguoj45OYHvfe97/v3jjz+Gzz//HAC2QuL19XX0eI/bhkMYOGJAdxmjYrfZbOD8/Nwboa2g9WvsTp8+4SbnOqk+OQp7W1pz81mVFko7NZBsNhsoyxK+//3vw4MHD+Dq6sofabtareDLL78E5xyMRqNWF7/n1kVzkvUJbfBqCjc36MQUcbo7NaVYx4R2nC+n0ymUZQmr1Qo++ugj+Lf/9t/C0dERTCYT+A//4T/A3/3d38FqtYLBYABnZ2fg3PZI+UOdEKApeNrcYFESpHZIGSowjDtwNZp5Pk0pb2O81NLnGL3byEk5Sh/FT2lDA+lwOPTHbOERXJhPorcNcBo0oDtiqRykGWdxzdPAOfnoqhidm/MNvP7lazj64AiOPzje3hu72ylLjyl2bn9nLDpXCyi8g9XviCXHDONRwpgOHbv+/lXsUnSOOdji88HpHbJhA+zLDt7Jb48T43g4wP5OWepUE8LMIGWhTi8Xhgdh7N3zg4OQx2i8ECc9tbAGDgjTqU49+oRm+RYnrFYXjl9z9Kq/Td0k7NaV0u12kNfVVlb0/EzAzyd98IvEKwI/BLwi8YfGW1KZMfJ4e/JXiaYawFUOrj67gnpdw9npGdwb34Mf/v9/CK9evYJPPvlELEuSVWJriGWd6GJE7AJdbAXUMJ5rBL4NcM75431R1rbo+Zr80IehT2s7XgbqFbPZDADA6xhIv3RNBnUa0tOZ6K6m6XQK9+/fh9VqBZvNRrQhcTo47VxGp+W2bScrcP5N3RtJAU+BQVvHxcWFp/vjjz+Gqqrg5OQkOK2Mn+5hhT74vg0Ore15O8XqlGtERrmWG6bpmOPpNX6TyrCkaTs2+7QrWPQvKY7mk2w/38IWaLvg2ATYf0SN8YvFwttheD46d1nXaYDtqZNos6Ef0XZZG7SyOHD7q8ZnsXWFprMAbR/eVqPRCN59912/4eTRo0dw//59H39+fg6Xl5fw5MmTYLMKwHYDUlFsnbtUT+SO8xw6Kdy2zNEnxOTLt6meKYjZAHOgr/Yqy7Jh9z00SHJjSg5vOGPbTFKpha6tkJLKZ52gc8vtKy2nL9eBKAkz35QBnYIcYy6m71pOWZai4ZLvprXyJVXWYvEAoZDxzjvveAXl4cOH8ODBA0+fdnyhFWLKUSw8l6+1yaot/hitVABD4/Pl5WUwnlKKAu9TLtTxsSkpx7cBsfItfMIVNin8JiG21nBDBU1P0/B7C6qqgocPH8IHH3wA5+fnfoxfXl7C06dP/TikvHQo6Gv9PQRoYyVmYKFhkiEpNu5iYwiFK0zz8OFD+OlPfwoPHjyA4+Nj+I//8T/Cy5cvAWA7Z85mM6jr2h8p3+b4XW2+ksaFRC/9rY0nWo6kOFroxGNsrZBSDnPnsj75se16ZAHKu5QXOU8ir00mExgOhzAajRpygNXgbW2b2BqoyRqp9tHmb1RWqLwRg2pRwfzzOYxOR+Dedw1HFnd2qUcUs/tgMc6HkzTijlgHW6cWpks4YcVdscUubHfssB+bOwewD9/tVvTjdkeLx1XsHVZSGA3PAu+jEhxgpD18kAvT0fcgjvVFwPukP+kuVylNo98pflqO5LlzwlOqL+GlgMdJPkpfkIfR7/92vwPe3dVNc4ZanaSNdBQ3HumNILFEDptwkoLmcY025m3UcNqTtg7CrOSk5kDeNBK/1uCd165ysHyxhHpRw0l1AtOHU/jBD34Ak8kEvvjii+ADOb5OxuRAbU3LXUv6WJOsNFjWQp42ti6ljMEpaGtkjgGXtVO6dKwsfLa5fgZp0cqU+Ksotqed0StvOA5JzqCyMXdEj8djOD4+hqqq/MfDEs5YHbQ2tMosXSAlu6b4k8po9E7Kr7/+GjabDYzHYxgMBv4EnDbyah9gGW8UYnqPZGvQbCaWcrjORXHSMK4TSfTF7CWxsdoXn1l0IWl8tNEjUnZtHnYb+lFbGqS8hwBqO6XOWAqbzaZxYhXXdXL6gm5eGQ6H/uMWXoalv1MgjSutLvg7Nka4XcBStlQOhcFgAMfHx96xenJy4u/WBtg6Y8uyhMePH/swvOJuMpnAZDKBy8vLwMlsPX4/BX2PBasdxzJ3NPSNlmW2nbvfJLDMP7H6W+VZS1qOF9PTq0Q1XKl+0sacJMPn6ha3dkxxCm7aidF3eVLDS0ck5ky+34IdUoMOQFcOUoAGWYtgmAK6OOMuL/xq7Cc/+QmcnZ3B559/7o2/VVXBcrn0XzkdHR3Be++9BwDglROKmy6afV5oz+Gu8zF+8XV1dQXr9bohEMbaRROg7triKjl83hbQFFR6rDDyuubsou1RlqW/+xEAvLPl4cOHIj40krzNkDOfUeWDfuVqFWa4EJMykkp46A5XvLv70aNHcHZ2Bt/5znfg+9//PgBs+/rFixdQlqX/YGU8HkNVVZ371GLswn/kJ8vR65gHDXDcMMXT0yc3lLSdB7rkjYEkwMYMJG3nMm5k0uZwTgdvR/yqejQaNdZTqUwrrZIxF/mD8lRMlsE+0mihuCVln9NLDXLSfBAY86rtf13WMIAB1NX26Ya7sSztaq0BikHhjygOdsQOIDyaWDim2D/xd8H+B1vHrj/qGPPzYeOaeb3jF9sE45zyBBaG7ckdp4jb6tUSkjV4yglxrvke7HoUHG/BvCvFOcILwm8tjDtCAycffbI0Qf66iV9yzgZ5FFr8fw3+XmN0+vl8tQvaYd/ULebAXZ2c2x7DPTmbbI/jroizt8BH+NGAyRmrkeQIHjZuRD4Rfu+zt6t3LFyijfPH8tkSVi9WnqZBNYDBaADn5+dwcnICP/rRj+DBgwcwGAzgyy+/hKdPn6qnXWjyRrIamXN4ru7T1nhFZduUnHXb+hilM6fdUc6JGa5jgGXm7lrT2lsyqlEax+MxzOdzePr0KZycnMBoNPInakg8qR2RTcufzWbwwQcfwGQygaqq4LPPPoOrqysYjUaBw5bSqdVBq1Mwf0I+D+cAl+9j8gpNp9F1dXUF19fXPg4dOrd5rQxt1xjwtpDw0A8SkJe7zGXUyULDUYemd+ulnFYSHl4OTROT7WmdLboRBW18H7L/NTsEl6np3Z0pfDdhp7mp9UArh7cD/ZiVfzxsaY+YbloU4UkEOHbw1AX60Ya1TWKOFcoTtO/bAl9fKF46z/M60jZGXRVg29Z//dd/De+88w785Cc/gfPzc1gsFvDkyRN48OABnJ6ewnA4hO9973twcnICANsP2P/Vv/pXHuff/M3fwG9+8xuPfzwei5sack5Z+iZB32M8Z73vWgaHNmVax3QOHbmAJ4ukQBu/fbQ1t8lQuHVnbFuPd9eyOMQMXlJei8AVq1tK2Mwpqy3k1qkNzq5prcpFbh5rmVxYwkWR70BtWyalnS6oRVHAbDaD4+NjmM/nsFwu/b2x1PAwGo3g+PgYAEB0MkrCo4UWTNvXRMgVCWt7pfo2JsxyAzQKMPSIHo0WLlxbyrtrQPuP0p2a2ySwjLFDCfwomFrS5eCUvmCcTqfgnIPVanWr/dx2fHSBnHWIjwPOa1Ieje9yBbXAIbQLr6rKf7k5mUzg7OwMHjx4AJvNBlarlR/34/FYNWZ07e9DzA04V0nzpzZHcUiNS4uxpG/g9MQcpW3o6DouON/il9X8mGCtbbXyU+uV9B5bn3KMr9zQpdGiGTokIxQ6sJwLnVr0uGI8qhh3yPrwomg6g+g/NH9LO2IBtu909yzuaKXl8J2sdNdtw/FUQGO37Da4aODxdBQQpKMOW8mxFdspy3e8+raQ4mkbkrSB85U6OzlNjuHAfnRhniAvjeP9JdEn5Gk4YsEFNPDftO6UlqAOQn1peY2dsQAq7wV9RuvIwRBeDIv9vcoYhmNY4D0VYsNdansaztos1c6dQWtHRoOrHbjNfh4pr0tYv95fITIej8EVzq/js9kMTk9P4eHDh3BxcSE6pySwODC1fH1BlzVVkuUPVVaMhhw5/9BruKSfW/NagOsekjyLxv/5fA4AO35l9eZ0SnIE/sZ1ejAY+I9ENf3HKgdo8rMFcmwGUh7aFpoOasWL4Xg3Ly+vqyOkLUjGVR4PIKylEPKRBF7WUnSsWDkSLsnBQ+nP6RvrnCnNGVyXkcaMVgcLbRbQ5F8r/ptYMzjE2kebby1zcK79hOPPwSPpIpjXMqenyufHcCNerf+suLX3nPWwLcTGKNfZ6DxY1zWcn5/7E51wrTo9PYXT01OffjQa+c08R0dH8OjRI99PR0dHKj1IE+1Ty7jg495Sfw6HtFH0DTGd+pDzRYoGLD+1pmD+2FxyyP6w8Ik0NiU5S0qbCkccEk2pdYS3r9Tet+6MvYvQdYF+U+EuOppyFrougPXmDhr69Q/eU9inosfLoztb/+Ef/gFGoxGsVit499134d/9u38Hjx49CmgajUYwnU4BoF1b5SjWMbgJYUTDxyc53DUMsL+rYr1eq/zdZlK+y2NeUoRT6TWHQs6cEFMOrKCl51/BIk18hzqNk5ytaFzhZSwWC7i6uoJ79+5BWZbwZ3/2Z3B1dQVVVfW2C/5NBMsRb1TY0eagVPtxQSlWjgRXV1fw6aefwvvvvw+j0Qg++ugjOD8/h1/96ldQ1zU8efIETk5O4Pvf/z588cUX8Dd/8zcwHo/9DtkuRkNeJ14XqwGK46NKJf2nY0Q6PpsroV3qctsgzQdd5iMJP33yu9txl8v19TVcXV2Bc87vwsiZE/gahc+YAkuNcBpOpMOy65obRFMGiOSYrRzUm3rrZAK33xGLz8HuWezG1s5JW9Q7xyU9slUiuxB+0yf+445aGlazJ/lHesS7Yvm7g2bZPB6E30DepfpoIDmwOC7F6eb7S3C+Bb+pY5Y54/wTHZ5OiHNKHMOvOm21/1pO75zbxhGaAjrqcKzQ3a4ch7ozluyKbezeFLuJjUst7a7sutyOEw8FccZ3mW4DEkJ+0JywQR0PARy1xK+kfzaXG7j63dX+w45yPz+hwwBhtVrBp59+Cuv1Ojj6sBO5ik5glZ1pnlR4F5B0nZhRrEu5femFfePKgdQVQLE1jhrwtR3XqJPgbis8tQogvSMOy+PrMV6l8fz5c/j5z38O6/Uarq+vA7yarEdp4/XhaTTQ+irloIjhs5atAT3ZBOlDWwwCb5fbBJyvck/daaOrx2RDygf4Tneu3bt3Dx48eOBlx6dPn/oPCooivM6H63Wxu5A1/UPjS832IMV11dM4fm2cWuRfDKfjuGFg39kO+AYAC31t65jSmW7TqSWt6bETqto4q+q6Dvic2oqksWNd46W5tgtIthLNlgUAwZ23ueVMJhMoyxI++eQTH456LcD+FDh0ul5fXwcnx/H+mc/nMBwO4eTkpPXafpfsDLcJXeSjtraR2wTNRmj5oBLz54D2gVbqdA4rxMYlvbIiBQ1nbIwYvtB2GUw5DpCbZLA2ZcWUOUtaqwDcFVJCkFXQy4UYnjaTSZtFsS2vSgowj+8CMfzr9doLFYPBAB49egT37t3zxyauVivvZLy4uIDr6+vG16J0wsmZfDSBTptIU3U8JHABndJH64zhsXbI5SlJ2eA4JVpj0IfxIibUxUDjxbZ9mJpjUul5Xg54DwDvU2oE4H2rzcH0iM75fA6LxSLgGW444TTz40UB9oIAdfhxZZUqHBS/RdGm9bHwTA5vdZnrqOEkZjCU8liAK/qr1QrOz8/h/PwcXr9+Dev1Gpxz3mAzm83g5OQE3n//fe9UK4qts0074rANxOaD2LumJPJ6Ut7hjkMM5/yeawSgv/uYu/uUKbrk1+iIyWnYBihw4+kVMeOG1ZCDcV0NL6kycnBZ5xAAgGpVwfr1Gib3d0ewur3zi/43wmH7bOxkdex+2YLgwDQ7h47fiUreuYMpOP61gPD+1114ancqncc8HXj0MqWD9gNzdvk2dU38kcLFMMlR6HnHpd+DNdDt2y+II2HJvqR0cnzcOUjq3NgVy/mfhUkO3kY5hB7RIUz/XLgzVtyJrIGQjtPQ6Ft0NKP/tWD82nb48mZjfY+/LQ5mEVJ0afgk/kRanINqUYGrtm1WXpdQLau9QxxkeRydXl9++SXUdQ3z+dyv81Yds81aKOkWvEwq22lyj0U/SEEMR1uZH9NK7RRzlORAG/2jK1hxxdY96zqO/EBl+tS6rsXVdQ2r1Qpevnzpr1Oh97rH6InpPfS3poNYaG3jIKF42tgP+Ljijva+HSU5EKNDmgssfCHJ/Za6aXYQPpdhG06nU39akHSqGq2LRidPL6XT0ki4LXNPX/MEdTjTPrPye8zOm2NL0fQ/jtMKmm6dq2PnlpezXkjt2qVfY2szQPM45Nwy+5pbUrqjVl6q/JgeC7B1Gl1dXfkyXr586e0eePUeXueGui7C8fExvPPOO/6aN4ynbS3ZDqQ5LFZnLDvHRnUI2aIr7+fWoQ30PWdo0EWuRJpS/W7l7Vx7hzZ3x9Y0Cz4K/LjutpC1M7avSTOGv42wlgs3VUYftHQ1th26nrdVVt+QWiAQpEX+UDTQxbAsS1gul36xfP78OXz88cfeMPwXf/EX8A//8A+Nuxjwi1oLvRovUuXyLoO0MOPxkihAYDoLaIYP2haxL6AtgocEbduZL1htIKbg9wGxcZVrKBsMBnB0dOSPqOVjUxNOkScsZeAua/x6M6bo4m8cowD7uzuurq68QUWiiQsNGu9gvdve/9xWQMzhAVR4EIf0xRs3FtG1PyWkoSJAv6g9Pz+Hv/u7v4PRaASvX7+Gv/3bv4XPPvsM3nvvPbh37x783u/9HkynUxgMBrBYLABg2zez2czMDzGwtI/V8JXKLxncYuklyOGD2zCQavlSQnSOMYDiin29iM56qS36XhNpn9H7aaXxYzX6SrRSZTtVB03pu/78Gq6+uIJH//QRnHx4AoNyt4u+2vEnHslabP+943LgoKh397rWu3W72P6uoYYCChjsLnl1hdv+LnZxSAuSVCT+6Z2ztJpun8bvlGXh4m+Oi8YBiQclLBc0ZxuJa+w4jLw757xDzMdTucE102A/et4U0uDO1YYDlJfjQnxiuXWzHPxNw6U45/Y7Yxt0KDtjXe32ztJkd+yduGL/UKcn4Yu63MnyhG/MO2Mp38lE7X/myGq++AgBRnSiM5vxHMCuvUsHV39/BdWi2ofVzbUK3/Gup/F4DFdXV/Anf/InMB6P4eTkBJbLpb9XvUFTZH2U5A8JUsZ/6eQQPl9KekTOvG0Fy1qk1fU2dbuuNg4NpLVa0xGkduFrbEwGkWR4gHBXJ83PDdkU73A4hOVyCb/97W993GAwCE7N4kcn07ql5EPe3s7JpwVp+TAvyifB3EtwS+1Er1ei7YB1kk56of2Az9h9oX3bZawgOSMAZP6O0UllM4AtPwyHQyjL0nzVBI1HnRFx4d2OqP9Mp1NfBgX80FnadRzb6Znb/tLcGeNFWh+KA3nJMq8jzx8dHQV6Ku6qpHY0Pv41ulPzPs9D+Z7Xr28etuqdXfTTtiD1JwXLx6+WsUX1fMmWB9Dk3UO3hTSe25SJ4zSGvyxLb/sAAPjqq6+CcmkfvP/++/Cv//W/9nPCT37yE/jRj34E/+N//A/49NNPVTr4jmdtfYtBbv0t4+U2eLpvaDM2u8wlNy2bamlSu+Z5mLWNJFkDQK836iAccP2UYL1eB2MuBnfumOKUIbYLSBMDL/MmgQtrKehCZ5u8N9kuOX2dStuWb1LCZZuJTVPyYkoSwmg0ChwbX3zxBbx+/RoAtgvpxx9/7PNdXV15AbKLsq+NkZTAb8GXgi4TdixeM4hI6VKQO28cytDQBWKGJ23+jS1Qh6JJKpML3ShE0juY+LFWHCcVyNFZul6v4eLiwitjknGFGgNSbYN5kDapXSWelAwl+I7GD37flNZ+KYgZlySIKc0xw4JGX2xMasYlKS0ar549ewaj0QjOz8/h008/hVevXsHJyYk3ODjn4Msvv4T5fA4PHjyAoigafR2riwVSPGvBHzMmpNo5pxyt3DZ5Y5AyXnIlDY1tOXyZ01YcUoYfDWcfc19bxdtitKLppXKpgzk2J0ngw3fOLe9MQacWHgFbQPOuWH6H7M6RgztlqfMMd9yq98GSHbHBfa5F6ATCp0+/c4YhbmmXqp/veRnFjnaAIDx4L4q9A0rYAdlwgAmsqu5mpHhJnO87R95dM47iDfqd9BHduRrsXiVP0eFL8RN6g7wQ5g3Ko/xHeCEo0yXidm3TqJNzjX/VmdpocoHuSHpsU38McrHnSwAA3NUtjq/cKSFnqqa4I/zZqkyFF51zUM0rqFc7B1TloFpXewe1pTgy5+HJQPP5PPoRlXVebzsHY97UnMkdctqaIhmZ+4Y+cR5ap7HKSXz90tZGSWaX2v5QxkvOMxZZ0VKmJJPQ+mkfDNDrV1BHwY+W8Z3n4eOQ1yumw+BvDW8wL2e2AYXbtOdJ7c/BMs45H/fBKzwv/7937x4MBgOvB6dkX0nmlujXwiXdnM+PkmyaM6+neIPex4wf+ErOv5i+a9HtMSylp1nLaQMWXG1shm1pca55opmUTgKJfqs9I0ffs+DMKU/iAYs8kKP3c/uBNm5iJ4JdXFzAJ5980vjoZ71eB3o6/SBe0tm1Omhrg1bP1FGvlrGRY+/KtY21hbZrHe/X2DxMIVavHB7j+LR3S54YtGl/3kZt5rTY/MJ/4zxGP56P4eF0IhzcGRtbsNvCbQlbNwE3sRB+C+2gDS+nBjXHTxfHo6Mjv8uuKAr48z//c79T7+uvv/bn/zvn4Pr6OnDcWs8p1+Bt48OuxhcJ3rY2kgAFNk05OSRIxhNtwaOGBf5Vq4QHcR0fH8Px8TFcXl7C5eWlP7bWOSd+7SSNq9Q9jbEdblYoiu1XWWgk4X3SZrxj/fi9P0hnV6MR33mnKap8bErKi6ZI4o6By8tL+Nu//Vv45S9/6csdDAYBX1xeXsKf/umfQlmW8OMf/xiePXsGX331lZ8vU4YgSahLKYtSvLRbQsOhKXLcIMZpsgjqNw0xAwb2AT75PUI5hs5YGAXaNilDRYwHDwV9rS9WY4G1PGy3wWAAxaDYOijL7b2YAxg0dsa6wgVOKP/c3edabLe9btNRwLtgWb7GDln8p1MgvzNWuDvW/wOA38UovTvlCSwMWDh9h3245vxtgBOcfYrDSwqTdsRqv4O52QlPcPudzk7BJ+ARcUlPXja5B1bCQ8N5WLAztm6GBeFO2ZUJ8loVpNHiaDmlC+5GDvh292x9d2xBfxbN/AK+6C5YgICXrNDgQ8J7uOt1+dUSVs9Xvr58hwr/TcOoLIJHa242G7i6uhJ3dPUJfA2xGFO1cGkt/iboECno2wGA/KK1dczoKOXFd6nfUwZzq8zIZZGiKGA2mwHA3sgtyUP8Gh4sT7qeh+sLeFIM1R3wSGR6XCXFgXmLYvshI5Vl6YlAGvA25uOKf1zBnVN3RZalkNKVaDqAuMONhnOgMjLnTwtPUeD9XhQFfPTRR7Ber+GXv/wlrFYrfwJTjIe72pliYHUw5OJEJxIAwOnpqV8/8ENs/NCH5qEfQMcgpQ/G8t1F3j4U4FjH08Jia3if7ZKDyzK/W+J4upgeGdNZ2+hp/EnHK7WTcXj16hX8t//23xrhk8kkuKubnkrC68bnGMvpY5pD95DzzJsIKdtGW3wpnLSPLX2S02+p9dOKA0C2A1mBrrMafloGjqPZbCbOY1YZsHdnrFWwsEBMSH/TFi6JXnSsUdC+VslRAnNp0gZ2DhO3Zf6bUkb7UoL7FJosSijto+Vy6XmmLMvGwKfKprYbLwU0XZcJv037xvJ0nUek9755702bkxC4sMadOfjOj5891Nweo5H/Hg6HwRfa1IkjGdCocQ/vIKPHSND6WhRsiTa8mwTbEp2dVqNdCiRBoe28xNtGog2dY1JeDacWZm1L+tTyUIPuYDCAyWQCw+EQBoOB3zXz6tUrGAwG8OzZM1gsFl7Rxju2JaOdhb5UfXPmmJTwK6Wn7WLpP5rOSlMKv2So5vgtRk2OjztiaXyODIRxeKRabPzhBxOUz6V5w1IuT587NrlRlodR0PomV7awpKVK2Gg08v+DYrB1xFYDcAVxPu0coM5tjyX2Tku3i9sdIcx3xjrn9k5YeswwTUMcjd65SXbS+nyDvQOK76AN6kd21QZPV3gnMY/DMI6bvqOzljrBTI5YzEtfeR85Fu4fLmizxq5VB+FYleL4k5fHf7tmuYHTNvYvpG/s3hXwId824oHEQXM3LK+ftR9ov6l9SNrFOQd1VYcfAkDz2dghqzhVo/cbF+F4EI82LnqUeV34G/u+3tSwfrUGV5Mv0uvtvbD+zjZCh3XeovIY7lySPszrGyxGFIBQbqTvNL4vHfRthNx+tPANXT9TMoz0MR6VV6j+I63LHHJkBQ24LJIClPW0I3w5fXhU7WAwgNPTU5hMJlBVFSyXS38kriSPj8djGI/H8OTJE38SDTqxUvY6uquKx/PxI+3O5fjuCrS1ecX4hM55NB75UpITJVlT0wvW6zVcXV3BarUK7EroEEG9lfdLriybkkVjc76Wjl8bEptbY/rG5eUljMdjODo68umm0ymcnZ15fVEq32q/kOwWuXqERHef0AVfLv2Ul4bDIUwmk8DGgKdepNZOjovXI6eNLWVZ9HlNN43pcRqdMZ0st7+0uZaevEjj+D3K3PbDT0TQgM9bdI1NjU9Kc1tbtkZPDuTIbKm1720BulZL/Gvpq7Y2t7brbKxcq102pgsMBgO4d+9e4xhj6YhirQ536pjiPgzMXQbtIZUjjhuNx3wyRKGW56NHZ9zFwZ0Stm4SLOW1oanPekiLe0wgdc7BarXyvFHXtf9CCcdJbMdVypirlWuBPhTPQ4NmDMF/ScGJ4coJv2lI0WdRjLSFrI86WnHwI1IofUgLNchxQV4bY7Sv1+s1rFYrH4dKHs7NqWPwJGWLOn+kY4+kvJxOjlNSxNv2BV9XY4o23YnLcWgKBf8qv43yILUr/Y3GAkw7mUzg6OgIjo6OYDqdwldffQXX19fw9ddfw3K5hM8++8wfQ3V5eQmfffaZdyb1AZqBLmUk4MaKlPDK8aXu09Du4aLlx+QKzTipQWwtQKVbuy+NC/ic7i5KmHNN4z3Fh7vO1+t18HWu1q99gNTuMWUdQTqmnOfH3xYjl9RnsfqjM3Y2m8FkOgEHDupNDW7its5Y3Bk7dFtHZL0/GljcGVtsnUfeKYv3yToId8ZiXiQXnVyWHbHEOetx7MoOdu46EkbbFZ2yu3z+CZHfPK8VpKSO/nSqM0x69/3rGF/ReCGu8SRO3QAHzQssjP2OPS1hPFwKC3bB1hCkC9KTu2lj7R841nk8qXujXWoAVznvmASAvWMfx+nuIR1jjODz4hjCeAeig1b60KA3cHJ7YJ2rZQXXn16Dq0Lnlbb+aDIPn99oGOpA9NSLQ4Mm60g2CmmN1/B9U0Fbt7S1yKJjSmtXTKamabnuJ8lmMTxa/XJsWjQOdRGtrBhNkn7A6+mc87uaRqMRnJ2dwf379/2OyNevX0NVVQ35GO1WR0dH8MMf/hBOT0/ht7/9LVxdXcHLly+TdyBKRyZjOum0H609tLrfFki8ptkTpN8xWY1+BM31QCk9LV+LAwBYrVZwcXHR0KFR55VOTEIZ3jJ/WWRRGq/ZJyQ82C6pPo/JunVdw/n5OUyn02BX92w2g9ls5u0JEi1Ud0rpPPw9xccx+u8KWMYa1xu4HDAej+Hs7CyYj8qybHyMaykrp51ic2dsfrbOwbE8MZtUDt5YedYxMRqNRHsPHQu4exnzbDYb0w5XLAf1bkpb7MSrmH1Lmx9ywLqW91HWXYE+18UYnyIfS/fZ59CUkm0skJL72kBMFhkMBvDgwQM4OjoK0l5eXprHy51yxlrhNoWuvsAyyJ3b7/TiC75kRH4bJo5vIqBgibu6EObzuf+yYjqdwuPHj9XjPLigHhMqLPR8U0AyOgPslQ6qpFi/CHvb4FCLuQZ1XcNoNILj42MfhoLdfD6Huq7h+PjYG+PoF9xS30gGAKoES05fTeG0ChHcAct368YMMlI8rgW0Pm36BfHXdR0cMYNxRRF+GXl0dATD4RCur6+DOknGSa28GJ0pxYc677iQjvOcdJoENait12v4y7/8S3DOwcXFBazXa/9VaJ9jWZpL6JPzgJSPQ0pJ0AwymiEy1X/UaMKF35TCmDIODYdDGI1GXuHmoLWPBjh2+VfytDxKR6zNEEajEVRV5T/QOLSsqdGUUnpoOsrr1vJyacSxQsdaURQwGo7g6vkVrL9ew9kPz2B8OoZBtdv9hscUD3ZlEodqURCHK0C4qxV2DkzcYVvs0wTOqAEL505XJ6ThuxR9JZkT1pF0bv/040NwyBbF/i5bpNHvou0yzQjOwoZDDCJOQRDGO3GgcQeqT8uPJRZ+B45SIczHCWGWNBanbHAsMUmHztbgWbvmkcVS5/Bw0o5if9J2BNjeibqptx8mONg7/CmfwP7dp9nxVOH2jllKR7EP3D4Yv/J4/5EDDdsjE+stAuMp5xxszjdQXpdBmrqsGzzniyviH/5Iefo0VLaBmAHWMudquhg3UL8NNo22QOU6KuvReOl3SgaK8RjHibICyhP4oR/Ga7KUZlyX6kj7muPU9NAUUDy4PmuyjoS3qipYLBawWCxgMpn48nl+lAHoB2uz2Qzu378Pjx49gvF4DK9evQrkMK1NuKzG6cU4dIR10XduClLzksZDVtwSz8TKseiXVVUFx/FSHDE7U6p8S1wf8zjqxG2M9PyI5txy6ZNDjv7ytgOff7g+OJvNAhtbWZYwHo9hOBzCZrOJ8nKq3zUdOJY+tt5redpATN9LOa9ynPkcuI2Kh+O8wO2ellNIrPzMN6DltmHbuTRmD0G8dxluiz7tqGHpSGkAW5tKMhjaGKybVzTI4Q3cna+VJdGCG2wolGXpHa8nJyc+/3Q6hUePHgW+HA16d8b2xTAWoSMnvQXHocBquOThODFKXnietq/JqS2ubyEPpAmLTzir1coPeq5kcUEDJ7NUWTl0aSApW23K6htiCh6GpYDmQQGEt/mbtIBTiNVfE3qpocQKqblZEqa48DcYDODo6KgRjs5YFNg1gYCC5HTDfuQfQNA6S3XhddDK5nftWoyQqXqg00kyWFmB5sd1BRVvqqhSYWI0GsFyuQw+RmgjEKfagOKW6NZ4McYDRVFAWZbw93//9z4NOgUl2mKQmkesAmTOfJRLEzeASXyVU26qr/juBW0OpvfBagY7zamaokXLw2mjX/hqMhlVCOga0AZy8mnzoSUPb8uUYk/zp+I5Dknm2LzawGKxgOP3j2F0NNo6uyrwzlR8Fq4InGaFK7a7BwfOO18DXiLHD/OdscE9swMI0nqDJD32mB1XTJ2kxUC+w1U6lpjGIS6aVouX8lqhwatOiPMPt493YXxjtyyJD94doZvjoOXR/MyhGzhnSXzjycptOFRJuOScDZykvA7Ck/+HzeqCZxugx/VWqwqKARmLOwer57uiyUOclmh4UQAnNaAdnb8av0WqyXdBN/qsBti83sDqpfDRCuUxkJ0vKWfBXYUcuUeSIft2SLyNoPGNlIan52k0XYS3PZUV6PGsCBajolUvxDxct+TxXG+RcFJZHGV6/B1zhCDgTsjVagWr1Sp60gr+ozESP5i9d++e19nwqek9Wp9Ksh8/DS4lF7bVS24LpD5PgcYz9J3PO5qsi7veeJ/jjjnpA+LY/KXxpxTXtp+kcS/RkqKJjnfpY2yeXypLa1erbdoie/cNMX30pmnBXZjIC9gn+JF97E5TikPjc+2qmxik4vuy98XwSGNFq6PEr7E1w2IfoM5YisfygYZ1Doulp7YpjfYUWNduaf2OzU1d5Lcua5Nmj5TWegyP8Y2lLPoekz0kemjemBzGeQHXJSttGkgndNByEQaDQXAHsgTS+JD4E52t1G6NVzrwe8gluLM7Y98koSoFaNyjgEfD4BnTeHk8n4hevXrld2l8C3cbrAK1lI/yOt19QgXFV69e+QVxs9kEX1pYt8Kn4K6Ou1TbxhYFmjdnMdW+1LEq3W2hLR91Aapsc+ekxeF5CHrwS+zhcOj7E7+YxOO0APbCW5t2w7xccEHcXFGjQg5tlxh/aUp3jEc5vj74gfYvHqsBsD1KoyzLhvKDAvh4PPYK0nq9NvMCP6ZQogchplhTpZkanijeuq4DnuDzIQpckqKhlZsLlrlF6vs2c5MGw+EQptMpnJycwLvvvguXl5dwfn4Oy+US1ut149jpnC/EOb/iM2UkQ57TDAF8zdEMODQsZgjB/9Fo5J2pZVn6neCcL4uigNlsBqPRyH/soX3Y1DdoShSNyzXmxNYnaX2XjrGWlH76j22KdzNDsd0VV20qGJQDGMBgf1xxQZ5IDnn6Y4wHsD+6GLa7VIsBcbpSf08RKpveWVvA/sjXRoPt89H0jaOQC/YOzad4rCxtMv5OccRAc65xXE6IIw4z6d255u+GU5Q7VQl+n19Kx/G6Zrzl6X+z3a4aXufCna8+rma42W7YwElM2562M2ljBy5oD97O/r/eluUqB6502w8NdvzmwO2dswYeo+PAg88uHH0tsXwhf2jAIRjv2LYbB4svF+DK5lwAsD2SGOcCaR3AeTS2rmlz/U3Lvzmg6Uia0aoL3IYucNNA+YTLClS+A0iv/7F3LQ2XgbiM1lUGj/GFhFtb/yXapHaQZEuKB4HqPS9evIDz8/OGA5T/xviiKODzzz+H+Xzu4zabjf9Qlh53S8vl8jeV5yldAACPHz+G8XjsZYyU7mGxXdzWeOpbf+b1sNQbYN/nNL1VB5DaTtNtOS5JJtWuT0nVgYdJ8iyvY2zeKMsSXr9+3QjHHYH8DmZJr8+Z+9/2+ZwCnz9iY3Q8Hgd8ulwuG3p8bN6X2rUvu2gb6NLPbfNyJ5HmQKXlaDYTjrcPOyC3oWnA7W6S8yvVRqmPuzlNEl7JHprKcwiI2UQkuM05hq4DsT6w2AVjYbHyrWWt12uoqgomk0nDKVsUhf/Q7OrqysT7ePQ9p3c+n4vH/lNIOmNTwk8fEFvgNbCk4QvobTCoJGyiMXwymXhnrLQd2jnX2SiYMuh9C/1BF/6iggpfsPB9sVgECyd1nrT9kihmDI7RepMQo8dibAYI2zdmxOaCnaSQajRo7WJZtC2KQ2xR4/S/aaC1Hc6VmAbrV5al6iiVlKVYuZLRw5LeGh4L43ej0H8a3hVwLcE2Gw6H3hmLTip8UqMY7hxOGVVjApRV4MK00ppJjXTcyFMUhTf+SEeIAIT3y7UZw10hF69ljtLyjUYjODo6gnfffReKooDFYuF3PVjuWdLK1dovR0a0COB8HEtjQSuTpuUfc0hp6e5wfgdhjoHFAlaDmUSnpY1jc41kAO0KKLNiG9br7W7A0XS0vTsWd8Y61zh2mO6ExeOKcecs3TkY9Ee9c0Dtdr/CIHSK0Z2sosOMpOG/LSDllXbIYp15XgRTmVIS4hwMfIiOhbG60/jGGMYwHkdxMfyiw1bIR8sJdp1y3OQZ0IEO0F245JxtOFf5PEXS8/9Ge3E6IcQdgOOvu7IqB3VZQ72poS5rv+sanbD4UYF3phYAxaDYH9G9c+IXxY6H6dHFO76mu2upc5a+B32CvyuhIpSnSL1c7aBe17C53IDbxOd7i9yV4zjQ8t0EtJkXcw1lUn4t75sqz6cg5lRM8QpPm5JFY+udJvtzfs5dP2M8QfV6jR6pDjSvJONq+odmTKaAp3DRk0C4vszzXF9fw3A4hJOTE2+s5/cBSvIebxupP51zcHJyArPZLPiQLgVWWSkXcnXrtuVovC+VnztX8flZ4rE+9c4cvS8XT0PuEMBqx8IPeXke6oTlerpWNwtdsfibcup0Lcui/1M+0/qQtnFR7HdfWuUFiV+tdgcNr9W20Xb8WSHXlhVLZ7HdSHWylG9pLymPtQ1j/MPLlPq+TT8dyh5kHXN03dRkgVgdU+XE2r6rPKutU5b1K1V2G16LAT2GWwL8QISe9qHJU3jMuuR0Xa1WQbhkW4o6Y/tmxL4gVzACCAXLNvnbgDaJv/fee3B0dASDwSAQqumXQTEcMbipun0LMvTZ/jhgN5sNrNdrePHihXdKYFm03JTj/pvEG10MzpPJRPy6UjrulirWMYGnr7ZHZZniwqOGuuCnRzJLdexjLUjRFztGFOlC/ud3F0p5coALYPgVIHX8UUEh11HDlbrUfaXaOoAnKFjvDaF9NxgM/PG8s9kM/tk/+2cwGo3gF7/4Bbx8+TL4+uvk5MTfFwuw5Q/OI9gXmpCF6xl+NJISqGkYN+SgolYU4fFZlF82m01gTBoOh8Ex79gGHDfdlUHpvQnoc63A48XwTtwPPvjA34G6Xq9hPp97B6XUvlalVzOmxQyj9IhraY7JAZpXuivYOweJ85nyqWRYxVNJEDeOk75lYIuiw9Mgb3a5K4iDZvSl8VymQB4DAFgulz4c58rL313C6GgED372AEbHIyhGBRRu62iqoYbB9qzgbR3BbZ2pfHcflg2EpwZbp2dwN/huZ6qnv4Bg16u43vI0dJfsLj62M9aBC8pDOmg7BmkIuGJ3LLMVJL8Z50UnhKNzjce5MC5YZ10zn+iEldLi7zpME6RlYY1nvaclCHOw3Wnq3D4N2wXL74OleYMn7lit97hS7b2PCtuTOi9pGznnYPnVEhbPFtudsYKxSILJOxMYngy9w7YoimAnOOUtHubpEMYRrZurHSy+WEC1qhpxeyJJ2K4+3BErgSR/0bkiZqhN4e0qe/Yhd0v9KH0IiPGaDKuthd9koPqstL5RWU+Su2lbY19jPL1PMmV83Gw2gW6BZVL83HGg1YfSw+UOfj1GCjg+/DgS6UntPAEI+Y3jxv/RaATj8TjY+cpxSWXUdQ2vXr3y15jgjjYLcHrwwznstydPnsDJyQlcXFzAarWC9XoNRVGIdrJDg0Ve64pfM7rTcvq032h0Wwz1UrzFgJ5TB2lMa/RaAevGx3js4waprtqpTzyPRd7/JgGduzabDZyfnwfxdI2k85fGA/yqpRhYxpdVLrFASl9rwxPaHC6lo2uWZDPmQE+gi5Wp0RF7l0DaiBArUytfKgvtRfwDodgpGBrg3BCz+3UZ55Ld/jZOI8yB3LVI66OcOlrXHCrDSZDaCc7rNhqN4OHDh778y8tLUcZ59eoVFEUhOmPpGATY2l/5nBWVDLsqQhRiCz9Nc8hFyypIU+iqCEqTG54jLZ1r3XZCojhSab6Fw0EX/o0tcM5t77zDRUYqN1W2hba++a8PsBi1NIOQli6VhuPjhvEUXk5/X3Nb3+3LBQxpzupKO82bs6ZIAolkWKH0ScqiNO+n6kfbwCKgxhTnmLIWA0nAo/1jFQBpfF3XcO/ePTg7O4PT01P/Zfv19XWjTKo4aTyQGo+ctyzzFKWD4+QfSVDcKHhrp0xQmvBd6luNR3PWUks/t1FgYviokImGu8lkEjjVtXK0/u1r3pL4VhtDsfmSj9sY0KOVeP/T/EUh77a+DYNfil8OQZPG/7Hxzg28zjmolrsPHzb11hmFO1/JDtiiJs5StytnF0ade3SXbOEK7+R0busYk3a/irtesWqxNLR+ZMcrf1Inr+cTYWdsA2dBaM0BKbn3/TXr1nCmCk5ZbD/RocrSejzOFxCW46A5HnfhjXLRCaw4fAO66LoLjBbmCOVl4nvjScu1tDEvS8tPcbjdXbGLppIf6/tqVW0/XCiK4AMAP/7IBwHgfxbBewOoYxUAXL0dn/Wq+fGKz2KUoa3A130OkvxC1+S7IC/H5IhYem2ejsmU3zTI0UdjcmaOLK3hwngq6/K5PkafBXJ1ay6vavYkjc5UGVz34+NQwkXD1+s1LBYLWK/Xwc5Vq17CaeT1HY/HMJ1O4fT0FJxz8Pr164Deth+n9TW/URx0XEvyk9Q/MZ1R6ntOe1taaXkSxMpI1cGi91jmdkk/T+FOrTcazbG52MofOWObpzmEzawPyOG12JiXxkJRbD+upPNG7P5XmlfC3UZvk/osNo/m2G66AK9T2/Jy6OVXfnF6UmCVi1I4ctLHyufzJwWrrU6jz2pvs/SfxQak8R+dt7T12kJnKk/XuTG3vBxI2SlidPAxxp2oOCaKIvyIDuUSbH+0t+FTcsZyn40ku9ypO2Pv6qLUFnDbshTedZeDdQL5Fu4+SMJgbJcrj/um9r+2cFkFXb5Qo5DIccT6AtPhrjQeDgC97bSjE75Gdw5o9MYU/0MC3S3qnPNHB0kfH8QEZonmoiiCHYEU+PGtXCDlPMS/lIsBFxBxUUeekHBQwxBAcxcG3UGcAuec/+p9sVhAXdfwb/7Nv4EPP/wQJpMJbDYbePjwYfCll3POK0l4WT1tX2zLmHBF27APJ5Jz+2OWY3fR4hf02m4Amg+/xMcjRLA+4/G4E82WdZkbF9oo/RRw13Nd13B9fQ3L5RIWiwUMh0N455134MsvvwzSYxtIygBXIiwKg2Y0pWMFeYnSgLTTtkgpPdLcJLXler2Gsix9uVS4pmUDgP8Y4ZB3xVrbEccb3/lvySutX1peiQdiSiwC0iauO27rXBqMBjAYDwAc7HfGFgOooYYCChgU27hgNyqioVUjjinqHA12qu7wBPdzFmGcJ4+ngWJ7V+2uLMznnb+7NPSOWHonLb87VtoZq95hawHeBdRJSJvdhWH0veFodc30MUcpz9tw5DoFP4tvPMluVwx3zu13w9Lf0k5ZxE92vGJc7Mnb0T9d+N6oB6kzrystPxfK1yWUF6XHqc17bQ2NWCd+92tbQDq0uRLlNZwnsE7SiQwS0HnJYoS/CaC7N3MNYG+bXaMPoOuMtGZRORMgbHfKH/SkD4yjYNEHKW9Kx5Gmxh3dUUT5va0jJ6bbtdkxw+mhcwzdjarxttTuAABffPFFgxbcuUvzdYHpdAp/+Id/CC9fvoTnz5+Dc1snLZ4GxWm0tnmOzG2FlNxsoZHyNT61q1dyQJpDOR1cz8zFTXlM6pscSI1ZCdrwHdcDMEyaT2IyNwdJd+dl3hZ04f22ebltAGCrGy4WCx/ObQp0/k+BpCtpH/OnIKX7YJoUrrb97Fy4U5uX1WXekugejUbB2MFTojA9lecojQC2D2Is7dBlTMTmVUq/BrnypVZnzR6dKjc2V3BcqfZO1aHLuLfm72rvi9l9pDBJ3rLQQPlis9l4ezONv3//fiPf6ekpnJycwHq99rv7rdcoICyXy+Y41BL3tWB0mZA4SBOJpeNue/HjUFWVupWZgqS05gj538LNQkpQacuHtM/58xBKBeLtEyzKQJsyY86EtuVowngsr6TsUjy5C4yUfjKZwP379/3uP4T5fA7r9bqTk57Pl3zusSzyuXzIFX7+jvfCUgeFdoxWrD68L7S6Skc9U4MMp4/eYSr1Mx+rFJ/UBlI7xOjNAVpHFDzQCUmdZJiO3kmtrcWcPl4v7hBta1TFI5LpBw8xg4dFAAbYK2t4ZcBsNgMAgPPz887HfluA8kIb4wMFOjac237I8PLlS9+PVN7Q5kepT6VyLPWJ1cU65+Ua2CRa8IM4bkiU3jltffVNW9pT85x1jQFoGhFS8jWte6rOAR/XDjYXG4AaYHi0O9acHBNbDAr/GwawvQd2sN/9uvWzFt7JRXfAFq7wx/363bOwd54hLgBo7lCtAfxdtc4B3tXpwPk4mk97AoCng5fDd8lqYY32Exy1ksOVvwd9uGsjzbnq07rwN48T03Bc3BFL6XEQ/GOY+CR5HLhGGum39M5xaWWL7dts+Ea8mJYF4f2quDs8B/ixybVTPsIo5PnJR9P5G+LXZoh0RGRbno7KRRoe6w4LPjfxdfEm9d2YfGHVIzQcVr0kJhe/bSDJ/QD7+97x48WYsQt5RjJUxvgU4+kzVQank/OstG5rcoSmy2trc45OZrWVFYV+NHNq/uD0aOXlyvsIqJfMZjMvm6fw8bZP6QddxpelXtY24O1IPzxFOTZnDud8FNOXcsFqkEf8Ek/H5ldpnMTGrwW3BrmyvTaGYnon1zmseA8FXcrKsbvkQszOENPFtDmxz/GZ0mPbjKuUfGDBlWoDibZYGTGZThrTqfVVo5HGtZ2DtDXJmlejObW+UDy5+bW0qTkkhvtQ61ebMcH5IobPUt+uMkQKr/aOa+5isYCqquDo6Kghr+H6PJlMfFjsZD6+6YfDndoZewjIEV4PARJT4t0XKRqwA2n8eDw+CJ3fQnc4FA/l3jPzTYaY4A4gzwexcddGeEYa6BetOTuuJNyDwQDOzs7gZz/7GVRVFexk/PWvfw3X19cwm82CL9zafE17m3cVcGfAcrn0TmbuUJLyaoCONclYgwIB3emlLdT0q2+A/bicz+fBzjsKscWX4o4JWV0dg/y41mfPnjUcrfyYMdxhKt1tQNPFeKWPr7mLooDj42OYTqfeMDGfz7N5FAVEanhCR/QHH3wAjx8/hvfffx/quob/8l/+CywWCzg6OvLjKFfAzjHu9WV4pncJX15ewq9+9SsvMF5dXfkypH6jgibyC71/11r/NoZkSdHuCnQOR17Xvn6P0dQ3WB0Nbfggt4+w/JjxUsPN5zqPs3Rw9bsrGJ+NYXxvK6sWwwIGMABXOKiL3d2xFWwdZYXbPwvY/3vEwnMAe+ctyRPsQB1AiA/TYJuz3wGOwrAzFu9/JXSh0zbYiQvpMRBz1IpRjuQh8b6PHHl3zTjutNXCVXw0rRPKcSwtC/NPfldsHabxO03dPo1PJ9wVizgxnO+iFY03EMaJ9aI0C23kagfr8zVc/vZS7i8DpBwftwEWA7hknOIfp9EdsZadFDxPSqa/CaDrY8ogZnFKWY2Qt13vQ0HKLoOO2Ol0CgDbE08sMjbVX6w6F+1blA9jfazRG9MxUHfBMqRrI1JOG2qwtRj/LbIFdfzF7mbkZTnn/Aky9EPZvgD1v+VyCePx2Bs86Wlz/KQjLldJMjYvAyDcyX+IuZcb3PE3j0coiu0JSvgRKkCow+WUaQULr+TgbOtk4eVKY5jHae2i6ThaPE9rnZ+5I0XLx8fuXVnnbxtoG2pzPIAsa9C4nDnQQlMMYienYZjVwWYBzVYpgSR/xPgO7+iWcKRol+ZYXFM49LE+8LWL02ehl+OR4vsam5b1B39bfUISnrZ8npoDeVrnXNKmmcrfFrquKYhDa2cqk+GHYM+ePYPpdAofffSRagc9PT31vzebDSyXywaduH5Pp1PVn9PJy9Nl8utLyejLoNbVEBoDCa9z4XEAPB01nmuGr2/hZuAutnfbSanPxaZNu6QcU23oijkAtAUgJTBLYYFBELrPddr8Scf7ZrOB0WgE3/nOd+Ds7MwroIPBAC4uLuDq6ipwzLY17luEmNy5Noc/tDmSHp+lHfkTE7ByDRcWJxoCLs70+FOpbHRqUYNRztHVfYxZbD/nHLx48QLm83lA7/X1dUAflovKER4L1tYY0Na5NBgMGscI4xix7pJGXHytxXyTyQSOj4/h8ePHUNd148jxHHoRtwaaICgJ5rExp/E6wJYv67qGq6srjwd3mWM6bRe91E5UFknRwpUzy+4ord2wHbR4qmTmjFs6j3PaY3T2CbF5KXe8S/zD24Ubiqxjxqq0Bul2TrF6U0MxLMCNt07YYlAADGDreB3s0xWDItw1O9g6vIp6l97td8gCwDYN3SFLd6/WDuj9s1gOHkWcvDMWd98W+9233iGL+cjO2CAvvae2gP2uWOcCBy1NH21/6vgjbet/Uv5wLMz4LjoYiUOykceF787t0waOTRfGq09o7oj1cw3B4d/rZjx33vpnSvYzDK+Go5y2CS0fHcIZwMckQo4TiY97DMd3Ta7JmWukMS4ZGmlZ3ADIy4jN+VJ4V7AataT0fK3QDJcavjZz7zcFpDbB9kYDVqy9KA/Sp8R3lCd5mJQuFyS+wI/a8N7Tsiz9P46T2Ik8Wp1zeJHztSQrSGMT09PxLMmpvOy2fM4dHC9evPAn+MzncwBoXmXD20h7p32POJA+epWGhovH8T5LzScaHhpO6yU5pbT51gIxGVpKkxpzGg4NJH7O/ViClq/J7RLE5FieTqOVp4mBZa1JlXOTushtgUUXPlQ5CLGycux2twWxeZuGp3ia6oupPtBku9h7bl20ci1hXcqI4Y2tLTmQy1c5MnoKUnOnZd5rsw5puo617SzzYe56qwEdCwiLxaKxXvFrtwBsG2e0+INvuZMGdtvFOwdue8K0CAj4tacE9E4Mzdj/LXwLbcG64LaFNouxFWJ4c40uKaCLiPZlV44QkUrLv5per9cwGo3gRz/6EUynUyiKwtPx8uVL+PTTT8VyciBHQLnpeZXu0pN2tklGCUmgjLUNfumV235IE+0vyVjBj9jFnc1thM8ugEYIvOuJ15l/3Y+/q6qKrlUWYVHLlzI4OedgsVgEOwtOT09hNBoFu3ul/qP8wY1OlJdmsxmcnZ3BBx98AM654M7YQ/E751tuSOxyf9NoNALnHFxeXvrxw/mU37srCdhIG3fC07bhdOIuC0xj2QkVq6e2jvD24/0spZXK4HWQcBxqHaNtKLVpjlGI5pf6iuaJjZdUufbKbe+OLQYF1JPdfbGDLR/i/bHgYO/UJKR4p+YAAGrwO1N9OuwuPF5Y+qdQ7NP6u2SVfH4HrCPhDsK7YdHZS+nmT7d15Pk2FprT76RVm9DRl8bvxu7YXZnqO83rDHlZGud28TStI+EAwW5X1THL0oiOWO2uWJpHuCfW766tBXql9iVxngYIx5AfNwwHpnMVa+MMkHY8oZwXW39u21gbc85Ia4uWT5Pp+r67W3IU5RrmUsYebQ3qW256G4Gv89hm1LglGYFpWtruMf1THNusD+gJKim6+X30mB9pm0wm8N5770FVVTCfz+Hy8hJWq1VwDK2mx/C6SHRq84Qk60hh9GM73ob0g1M+T3H5jta5DVAduygK+PzzzwEA4De/+U3gKMAyYnXW2hTfadvjx8zSR5iSHBibvyR6LMZZqu9gO1jk0tx1QKMnJu9a50o6t2q4aBpLW6dAkv81m3NuW1E8OQ6UHPv2TdjC3wSQ5n4erkHbtunSptY+4baoWJ7UuIyBNK9zfk/xcMququmV0jvHmapHl7krFywytSU+h3+0tagtvi6g6f9WGlK8htClvWJgpTuXV+iczNf1y8vLBj6UIShYPuzS4ODO2JjAlBqoOROxRRiN4bSG50yOaIinuIqi8McJakKrJEh8C99C35BaGHIE0BzcWnybxY2/c7rbCrJcsEgZxjSBJlcA4nOEpKCgw6VPg5WkXNLwLjglvBJIDpyUcUVSvlLKIBVGrAqac/LOXJ4GYTQa+T6iZazXa38sjLT+abR37Qf6FZd23IbUvtpx3bHxgLi4EU1bj3k4XRuLogg+gkDjyWAwgPF4HBhwLAI/Gve0o1aGwyF897vfhel0Cs+fPweA0HHZN0iyEK2/1lcaHgSUPbCu3GhI89G+0dqEj0teFuZHR/Z6vRZ5xyLbaHwiGTDoWKZ1sBrBUvLdoWSvmPLCDVa8b2i7Uj7mY4XipXHSx32cPzRljeeR2rkoCqjXNcw/n8Pk/gSGky0PF4PC3+mKzlXvbGNFeYcshu92uPrdsMUWl3q3KzpqicOWO2JjjllfBqZBGh1JBxCEB8cXA0kfVswGkgORvyKvunhYtlOWhTm3y8vfyW+aBts/eDpQHbX0GGHnXMPxyn8HxxS7vcOWP31eYPRK7YNyBk9L2qURXgNUiwoWTxdQzvUrFDTAo1hxrnz//fdhMpnAs2fPoKoq/1FNypkHsHdaaUbpNvOYZmzTcNF1cjwew8nJCSwWC7i6uvIfrvEPjLU6WY9M7RMkeUuak+k7nf9oGDd40TC6uw9x3pQhrg/om1ZNZ5NOkOFrDu8H2pYav7alP2avkeQGLHc4HMLDhw+9Xvfll1/C5eWl/0gTT3jR1lOJZom/Yuk13qa6QRe9XqJDkw0k+ngampfqApLsR/NpbSfponhk4KNHj6AsS7i4uIgeB2yxA1hB0kNjeHGtwP6S5GCNHku/0rmZy5+0DKt9g6eRxmJML6DA82o0xPQNq+7J06bsNxLOWLtL+r2Fp2LtfKi1I4d/ugDV4aU4K2hzEI2LQeoamxgvWHgmRrMUluLN1ByaC7kf0XC7SBs5Jnfesuj1bSGnD2N0WOdErexUPitfptaHWB5eDr5b51FrH2lrKq55h4DYfEvLp0CvcUOYTCbiqbXHx8dQliWsViuxbG2uu9XLKNsMrNQEFQtDyBWa2gJdmJG5iqLwx9R0hTdJgfsWDgPSAnJTQtQhQFvQrWPWquxZwdKGkhJtUS4kWvC9qqrGHEGFHr5TNEV3Sjmn9MeE2r4gNvenFnatbjmGAgteGp4ylnAYDocwm80Cxd45553s3CCXA7lrJv/S1OJcxLWLfzVvpY+ud5QG2oYxwxO/x4T+3mw2MBgMYDKZgHPp+50pXmz7mDP2yZMn4JyDL7/8EgDy7nvmdFiVQW5EtBqtY/xI7wLTDG6aIExxWu9adc75eWmxWGTddczrww1CuTwvGZJ4Wbxc+t6nwmc1yuBvycio4aQGPa1srmDxd9qnqbXMKlu40sHq+QqgBpg9mW3veR0V26OIC/DHCbva+R2w2wLAO1CLugiPLAYIjyeud87SgeKQdRAcU1y4vTNYJ3xXdsGOKUaepA5ZpBfzsOOLxeOMHWbb1cewpbLhSCV4AEhfOPYupI06Yclu10YaFk/jnGuGN57EQRo4Ysmz8Zs4ZX0Z2jHFtY4v1qZmhzeNJ3WolhUsvlyo5Yhl73AOh0MYj8dQliU45+DJkydwdHQEX331FVRVBdPpVP1oV5qnpHHbly4g4ebzAl3rh8MhnJ2d+XWHX9VAaedzb2yNaTsvc37U8Frl5pSsqNHK2+lQhsUuoOkCh9QnpTZDeVlKp+XlcpRFx7CMEd6vNA+X8QFCQ/VgMIB79+4FJ5YAgHfGoryr4dfojYGmR/MwKt9L/JgqN6VD8HfrfCTxHW9bDJPkpxid2CeTyQSm0yk8fvwYlsslzOdzKMsyMJZyfszdtcfLlozalrZAnR8gfvdiroMg1qe5uFKgrR8xHpPWsFj5sXa16mIaHRLOVL5YXF9rcxs8OX3Yt71MyqPJEm3p0OiK6XeWtd2SPqXv5UBOGRwkuaoP0OwD2n3pVpzSb8saxvP0AdY5UOOJVFibvmgzb2ltqc25lrWUQ65sIuWX+JvaSK1zviUuJhdKc48khwLs5Teefzqd+uvVaDjiynbGWoTY24bcxec2FR8uyFnSfwtvPsQG/ptc1iHBughoEBjwWubPpcF6v5GlbE57XddwfX3tFwQ8clS6j5EbByyAda3rOnAA0+MzpTwW6MKTVOnG+Zsbs6SPWrDMlDEsBlq6sixhNpvBeDwWHaq4IwT7COPxqF1JMee/8V2j6yYAeSnWXjljBPFQ3pQER9xRPJ1O4Uc/+hH89Kc/DdIsl0v4T//pP8H5+TksFgsYDocwnU6hqirTPbz8K/vhcAjz+RzOz88BYPu1Wx9tnNMutD3wC/jpdAoA4J2avC9SfYNAjfnUAW0xYHL8NC3nDzS206Pe2ox9xM95ixtDJIE5lUYqh/+W8vYpi+UYD2MfTXCjgrRLHP/pMeypMZviC1pu6qhAAIDyqoSLX1/A0XtHcPSdIyiggMLt8DjYOisxOT4H7AkQOj/xOQB/T2xR7ByfBfj/oij8bswt+t3O1QK2u2qRT3c7bH15BYT3xu5w4zHFGMbpQUcwhqGjT1TGBe+ddIctydB492mdki6VBuNZ+/v+c7s05L3xG18txxPjE9NqO2JpOD+mmBxLjLiCf5KG1080qNKfbr+LltZNqkO1quDqH66gWlTNvjECzvV4//m9e/fg9PTUj9e2X4b3MV/FDHjSXEDnC3Ro5Ojc0k7YPmUdaX3DMH5SQI5xh9ZdOsZVWksxHX4Yxtf1uwDoQKeQoq1tf0lyIC8rZjuJraEaXbn6HR2PEl7URaQ5pqoqeP36NUynUzg6OgrSaKcfWeik4zBWx5ixFWmXyraCNCakNHVdN4yXKaDtLsl8Uvkx2iiezWYDo9EITk9PYTqdwmKxgMvLS3jx4gUMh0PP/5ItQfuYUyo7ZkuV5HicQ7Hu/GQgrR26Qmq9SemkbfhHm09TpwZqOoY2j3axQ2i0tknbx1z0tkGOnKDl5xCbM6XdbDHQeDRVlhW/hpfi5jyi8ZG0u91CY4pODV8qT58y3KFwdoE2skcMF82rAT8eN3bKqpVW6xiyzlXamM6xi/UFKftKW8BTDiX5AACyZZ1k6raTTtvF5VCDzYrzUApHDHduW6XS37UJKxdy6Y+l58r3TbfLocrrurjm4L6pdssRHKzCRpd5KCc/GpOs/YJtalGunAvvlx6NRt74rtFiAantYuMoJw0P50aqFC7JyIDKqYUXUzxLFciYgQ0BlWLsZ6qo0zIHg4F3pFFAZ6GlryWnGaU5F9oqybRtpDbiaXJxc/pQyJxMJnD//n34wQ9+AP/8n//zIN3V1RX89//+3+Hy8tIbLNDpbRWA0TCEZa7Xa+/0xPjc8U9xW2iQAPl7MBjA6ekpFMX2WDt6kgaXsSRDSGz+1pQ6qb6akVgqE/shNR9b2oXyllYvGq/NLZZyrPTwci0g9QPFkYM3ZbDFMcDvkOMfCMXGa876FaMP0xTF9rji1YsVjE5GMKtmUFe7UwGoQw5gu7vV7Xai7nbN+h2xxd6p5u9zBfDOMbozdhsc7pLFcopi7+zEXbV+B27h9kcawx5/4zhi0J2mPDy2+1W6KzbmiA3ieDLH8rtmXJDOCbgcCVfS0Xjntv1BaaNhsR2wmEeLk35rafh/cFdsDBjdvO6NNqdZnYO6qmH9ag31pt39iABNR8N4PG71MVAferc2b0syAA3jshKurfSpQWqd4mV1Bc1owsvj9FlokOZkxCHJfJyWPvrQAjF9w6pLHaJvpPaXaInpC5ie82yqz3k/aO8ol0s7J50Ld7dSHHVdw3w+9w5u6YOp2PovtbMkQ0t0p9orFZcqxwq8njm6vmQ0tdIQawO6ax8AYDabwWKxEMdmSi6O1cci2/F4PM0mZuyN6WYpiM1PEo4UTq1P+5y7Uzj5upQaM5iub1o5Pm1us+JIzYk5oMnuKX7Ixd9FD4udBCLxQZf25Xn5+sGBl4m/rfKBlM5Kd47ufEiIzXmxeVPK27b8LvlTuBHa9gudrzV7i9Q20pot2ShQb7CMNam9Y2uJVB9OnwY5awQtV8vH56UY3jY8oeWJjX0+T8VOLqL2sP+PvT95kiXL7sLxj4fHnMObX1V1TT3IqO4GCROg/skwkGHY19ggVmzZsOVP4M8BY4dhxoIlBlJL3UJq0d2oh2pVV5VqenO+nGKe/LeIPJ7HT5xzB3ePzMhX76SlRYT7Hc6999wz3oHyu9oRfUzxNie7SzHQFDLX6qmqk12DuhkI9WUVBh1SzzaZVyyE4BIyOUPSy3e70gca1KUE1QGWANkVOgpRHi1hGNIGn7Di4BNyPmOY8NMuAweQH2P1xRdfIE3T3FmXJAnOzs4Kq9dDV0hpuLTbbfT7fdy/fz9/fnJyguFwiNFoVLiYPGbFT6ysICEWk96nOIeAy6ClsSFeTUcNUz4y6sl4Bi6NaRorekdKlLYiPkThqANiHBlljtKjNvOdBNJZJdPTkYyj0Qj379/HP/tn/wx/+Id/iH/5L/9lnq7RaOD8/Bx/+Zd/id/85jf49a9/Hd0mzjdo9zIFdj/77DMcHBxgMBhgOp0W8OZ5Q4DzGeseZl4ercSfTqdIkgR/8Ad/gNu3b+Ojjz7C0dER/vZv/xaNRgN7e3uYzWaYzWZe3sJ1C14npyW56p7GnOhdKp80/3m/cKCjWfj4c17HDYn5fF7Az+ewojHT+lK23ZVGvpN94oK6ZLRGA3IHswysWmUlSYK9vb28XLqvxHLWWffKckeEy3AIOaqP+Djhs5qvsBgv0LwwOZIkQZKuA61J44I+GglWWOW/kaGwW3XjMxO/Hf8J2DHDCS53vl58Jkgud8iKvHJ3rLVLlo4kzoOw4jePv4YcT5z3Qehz9qwwdtlmmvx95nhOAUntO0uXZeJ56Ke8G5bvds2K37V7YbMsQ7Zku2Ev/i+bmhXxBquf74BV+majrfxzlQFLFMazDCyXS0wmk1wuPn/+HIPBIN9h5zqiVR5jX5deHsIHpf4t9es0TbFYLPDy5UvMZrPCwjXitVJP1XanhrYp1i6R6TVbQfocpO4i5SlvA72XMkvybH4XOz9Rgpdfdz/4ZCyXhVI34O2tg94sO8uy2WP0ZZ5Xylr+aTnStLJbrdaGXCM6IX2fgMptt9tYrVb4+OOP82PJ5/M5Op1OXgbvdx/4fB28/3y2URmbItaWpnSUj3RIWkzsu66rDJ1Z7eK0m2VZfizxkydPkCQJptNpjg/ZdHRygTU+Lv+DpuPx35z+NHz5ncka74m1eSwI0aFdZcu+8dGVnMcaDj49n0OZEwe35cfidC5liWsuXidY/NYFnH9U9Q9a8yPGT1FF7mlA9KfZSlLnkb4OFz1aC0u0NpehiyqyOaQfY/i/xD/Wvt7WHL1K4LQgN5Jo/RGSRgJdDWX510LKiuGLPr+Tq0yXTibnDekKITtY69JHXX4Pqx4NvxDfnIToY4p972JAY8Iux5Mk0hii3abA8znLtN++5753MXl2iamFGINl8saWdZUQK4TKQgiNlRGQshyrnpiyfHMmdqx5vlhmqr0vwy9ClJOY+ckVq8lkUtgBSM46F08MBRJ4tCORjtyaTCaYz+eYTCZqnhhDPwY3njdESYhtc6yyI/Nqx9FZ/zKN/C7x0BT9MnjWCdoYxPA0zXnADVSucNFK9du3b+POnTu4e/duITjV7Xbx8OFDvHjxopA/lgZ4PnJ4vHjxAuPxGMPhMA+K8rRlwMUrOT/lTiIAuHXrFu7fv4+XL19uOKw0B4hVh6veENDGjpyPWlrXkXeEM3du8WB/GXx9OmOIo0mbb7F4+EDOnapGtyyTAh6080YrX+sra5w0Y8nC1dXX1NblfInFaIEkXQdh892vKxR2SSYrdjRwdhkQS5Cs09IdrAkujynONnfC5m1nu2TX2ZLCs8Ju2kzZ8ZpdtIPeiztgC7thWVr1vey3kGheXrRShnzk+s0CjYV3xvO87y+e+QKxfKxkEFSmUfOwZzyfmSbLirtgs802mW3U+iZjdKj1JWtvskiAhZEmAPh84XyUrqLQdIEQHhX63soT45BxzXX6Tsd48TyhelxMG0LLDPURuPCsYhfwcmmBH1/Ap0Fd/RAqv1xySdM7fPaWC09rsZFVnqyrDM36bFhZHx83qadSGtKHpJzl+cfjMZLk8hoHnsc3bhpesk2Svnhal50WAlVsD84TeFm+MmU7YvUvbd7L/GTnDgYDNBqNwgk0Fo5VfXLaeMk+4mldgR1LJrh0vKq2b1U71IWbNU4u2efCJwTfqnMjtNyqc6guiOGXLtD4aFW54Mpr2YZWHvmujK1MebU0Fj+SdryrTMkDfLiEgs9nVEVml6VrV74y9r1FxxqeoXw8pp6yIH1KFm78naUjxYxhDA8t03eu5zKNJQN8Yx1aVxUZF5Jek+dVyiOI3hkbCi4GuI0O4mljVkpVdbDF4BZaV13KkwVSOa6L0VSFOvC4yvbsUt/FQJ3KXUyd2+qrugWmqw5ZT4yB72Pa3CnD76yRMJ/PMRwOg8r1AV+R3+v18O677+L4+BhPnjxBr9dDp9PBZDLBbDbL87juMqyKTyxoDhoOku6095oywu8wkzuO+Wp2iQuAPEiu3XmrAcch1sG0bSgzb+VdaFoZnU4H7Xa7cPw2AXdWzWaznA6B9VFiH3zwARaLBf7P//k/WK1W+S6D0PYQkCOUdhL+8Ic/BIA8OMvv/I0FjUfEjCvdhfvNb34TzWYTP/nJTzCbzbBYLNBut9HpdPK7+ULLJFz4J6dLzXHG+VKz2cx358/n88JiEOpL2j1i9QntDqHjobPs8lhuqy2+fqvbUJJ11+G4kDwzJGhN/e8z7KlsuoOSdnXI0xYsh5/GH+tyRFJZ0xdTzE/m2P/WPnoPe0ACNJoXPKJxEeRsYL0zNkvyzzzIRlVrnxnWO2iTzf8kYccRI9m4Vzb/x2U9hR2wSbLxGyimKfQbLuviv9eoir5P3LylcCSz2bn8qxJIlIFJsLFl7/ju0Y2ALH+fFfNvpFkpnxdpNj4j7oxdLVd5Hnou/wttkX3C+kM7nrjQJmy2L8dlCaRHKbJhhvl0jmyVbRxHZQ6VmGukV5Cu9+WXXyLLspzHSrlozV+XY2ebQPX1ej00Go38qH+uB/H+DXGIhjg3Yu1on7PHqkcrS3u3QUMsj8Vv6f7Q0WiU69bbHL8Y55WUt4SzlCVlgU4k2d/fz+9TtYDqtvwVlsy29ButXF9bSD+R5dKuSb7LU/YlPWu32/lz2slC9t1isfAuSguBbfiKOPD5yf99c4X0viRJ8gUadEoQ9Z3PZ6fZWi4dxeXUpROLSL9//PhxnkbjuZp9pt1xLevR8Pa1S5ajHYldBUJozKVvy37X7IlY0OaqnOMhvoYYndWit7psiZCdvdv2V+2C/8AFPhxj+CG3p2J4n+Z7sOQL+YIkEH/gdhiVzXHhNEGyg9Jx/1qd4OLNZcCyza8SytRp6Ww+/utLUxZIn5I8XktHctMnI0mvqAJ16B5lwcK9Ko3F4OaSJ7FtjMXbDMZaBfkcQ75noUaZVoZLwQrBrwq4mHRofplPc7RZCp5WZx0Tp45JtEuCX+vnqmWFvL8OoeSDup3UVdtYhbn5aH8bOFoKdN3zRwPNGKFji7jxXvWYOsmDuJJIRyJzJZMf2esqM7RtMfml89RloGkGnqu8WNAUNaqXH0/M67FoOLQvY4z8MhDbFyF4yzSchrhDh9KSwTMejwvHhjUaDZyenuLs7Ay9Xg8HBwc5HYbeI+zDlYKD/DjeWOPORWvaMx4wWy6XuHfvHvb39/OjHtM0Rb/fx3vvvZcHY6fTaW68+eaiDxeNl7l4qRwzCfLu7BC+HDp2IfJ4W8ZnmXKsvnU5guR8l2OlvU+SJA/Ayn4PoV/N0SzH0Hqv8TXJ94B1EG01X2ExWGDWmaHT6KzLWF6+B7C+t5WXwYKZWOHybtmLQGW+y5XuhG0Ud71qO2KpXN/dr/kn3xGb4TKwy8vOsssgbIZCoNW8OzbzOAOKkVYb5Lts87sWbAUug42FtBlra1b8vfFdpLE+C7tXWd6cRpTy5PPCs1VWLFNp98bxxKwftL7NsqyYhwVtkQGNRQONZQN3D+9i2V5icDrI9bEQ8DkeqRztPnoLfDpBiBPbeubi4XxuN5tNNJvN/L5Fl11E7118idLwtFUhROeUekiIfsnzc34Y0gcUhJc7K68bZPu4zK/ic+A8IUnWAenlcol2u50vLPPVY8kaKtdqg5ZXo28p40heu+aZtrDKpxvLeaLZEVadmu0RAnXZyBq4cMqyDN1uF+12G71eDwDyU5foLl1aPJamqRnwkOVrdFoGbz6+Gg2V1V1dtgDnEXJuuHD12RexfWDp+L76rLrL0FYMb5Z1lqmjbB+H1BEjMzhekieE4uvCxQV12GNlyw8BjSfLd5YcjsUnxD6idL5xkTzWJa9cz3xg9U8VGV2mbh+E9G1V342vzS58LTlcho7KgNV+WQ8tWuLvk2Ttm+U2SFU+GQoxYxaDQ934x+Dpm7vaMx/txfDZ4J2xVzXBrc4rcxeiBmVXLJVlGi6D0rqvpA5heJVw0/B9Da8eVFGirfJ8sG26l4ofGa91lEt8kO9ekE7Fvb099Pt9fPHFFwDWuxL5aj7Xiq6y4Ot34pmxK6lj6/GBJpRJMNOxzrwOq69czgTpINw2hCryoWn4GFFbuEOG6uT3XdCdWo8ePcLLly8xHo/z4OSHH36Ix48fY39/Hw8ePMidmHwBQZk202ensw4QTSYT1WFWF3Blr9VqodfrYTAYYDQa4V/9q3+F7373uxgOhzg/P0eSJLh79y7+7b/9t5hMJjg9PcXPf/5z/PznP8fe3h7a7TYmk4lzPnCdwnLyURCVnGHyGD6iDS3gx9vlCkxwhxM3Jny636sA8mhmcjxzoP7Q7iuyDDY6Wm8wGBTGju/Wo7Er47x18ST5THNSy/Tjx2NMnk1w+/u30b7bBhKgsWqA7o5tJA2sN1Sud8Ym2UXehNWVJSjcGct3xRKwZ0mSFI831v7lO/k7Kz6no5QBbNwhS32X9w+MvqdyY8HKk/m/53OfBTA3ArVaIJMFPel3/hzIg+kb79h3cyesfM93v1I6ZUdsvmOWt0O0jbc5rwcCD4HvRpszACugfd5Gb9XDP/n//ROkaYpms4mTkxN89dVXlexTwoNOFfDd/cTzEVwH7yS8+/0+2u02zs7OVMepdJhlWXERkpQr9KzuNvmCIzH1a05ZagPnvS7nPNHQcrnMTwi5bhmoObpj7m/0lQms5RrtjKWxH41GODs7y/vOd/oOB6Il6n9N7vBAn3bnuVYPv9t+tVrlJ3rQmNEuTzophxbGyfIlrfCTK2LHW94VLXEPCeJoer4cI5rbXNeTY8LTSByobaTr3L9/Hw8fPsQf/MEfoNfr4dNPP8Xjx4/xox/9KNdzSBfmizAl8HG1giRae11902w2N3RXWiRB4ynnAI2rVmbomMp+ItrQyqjL/pM8rkp+7V0I/cXWE8qXrblcJ0/V2iftdDkXaJwlb9BgG36s65YpIcD5SAxfDAlkxQZLygaadqGvQ+dcqK/nOiCWh4TowZZ/qKof0QJ5nYEGhDc/AdHiEbdu3UKzWQzX0Qk6JycnODo6KoUngavPq/ggt30CwasEhdGNVeo4uAydULAUEPlZFmKVOB9oiqgsXz7jea13IYrYrjLSXYC6hOJN7+MqSqlUMLcBcg648I0VylY5oWVZOGpOZ199VdNKp0KZenh+K7jCHfn9fj93DpZx4of2cWy6uow9H/B6NENL6xMe2JJygX7H0o4l+65K8a8i1+UuSSqPnA/aEUHtdhuz2QyfffYZHj16hKOjI/R6PbTbbRwdHeGrr77CZ599hsePH+fHCdNO8SpAjhAfH4oBre3ae04rdIQbOXVv376d79AdDof49NNPMRwOsbe3l99zpekgvF0aPiG8XdI9jRs/HlmW4TOMyDkX6hTi+G7TyeKCWCebzEffuSNX00WtfBovkr/5HODOQ467xTs5/fhsAI0/WQ4R0wm6AlaLFVazFRrNxjrwurzoh4udsoXAKguKJgkLema43BXbuNjFuro4Tji7CAI1Lj8BbO6OpcAuq6+wK1bsenXttOU7XXme/H3enGKglkPMPbLOZ1pwkn3Px1kLXGppsuJvSld4to6ir4FipDIAK/Nm2Lg3OMsug61WwLZQt9IP+a5Wow+c8isrtpnwGQ1GWC6W+RGzh4eHmM/nuTMlVgZpPM1yDtat62hyoIzNz2W5FURz6RDyZBefrXvVThyrf1xjQmld75fLZeGUm10BjZ9rz2JtQy5/ms1mvujO5T+xypGyi3YYk97Nj3zkZcmjLC0bl+iY6/E0Zrxe/t2nZ2l4a3Tts2H5SSgu2at9t+hXk9M+oLolz+D/PKiyWCwwn8/R7XZxeHiIt99+G/v7+1itVnj69Cl++9vfFviHBUmSFJzXobqkS9+i5z7b2hrLkHpd712O+7r5nYW3Ned9/FjmDbFDNJ2e01JInRJcPp4YHqXlkbRjjX+WZYVrnyTP0PKG2m0uCLHhtg1V9BPXeGu05vNJyHHcZh9U8S2WrUeTmWXK8ckOK19sfS5+EepPraIDhuourr6x5ruPHkPoQ8NPLogHNgPKVHen08HBwUG+kG08Hgct5LbAag8fh1A6ccmQuuZlTDlV56uPX8fqUBwq3xnrqrwOIRGiWIbUVcfAcwLyHSu0LaYcAtsSQFXL9eUvW75mKO8qbGNs6qbtusqsUv8267lqkEZ/FcWGr47Ksrj7sYHiXbSUn8qgXVbtdht37tzJ0/D6XEryVfQtN/brABfeIUqJBuQgiDEqLRm1jT510WCdc5Dv9JB0SkFHDo1GA+12G+PxGD/96U/x9ttv4/PPP8+DsV988QV+/etf47/9t/+WrwSk+0tdO499Mof6OGYu+cp1OXPknKKdEsD6+LbBYIBGo4FOp4P3338fjUYDg8EAH330Ef7sz/4Mh4eHuHfvHk5PT/NdvD6Q9EWKPd1pJp3oXPHnfasF0S2QfUT5+HPJF13KboiTuA5wGVGx9XF+mWVZvruGds8TaI6gkHGle8/4sdWWY8syQq3xDMVDyjcOhIt8vpwusZgskDST9d2xjSQPjDayC9qjoBiwufuVf8rvriFiaZLkIrjauKhHPudp6ahi/p3yZJdtzbIsrz/JWDkZC8zyI49ztC7exWyV1ZJm+ve8/2VQ0rUrVrzPMvaclbfx3Pq0dsJmlwFPvjNW7ojlefiO2LzfOJ7KpwzCFnDhbYDAfZkhW2R4efQSjUkD3W4Xt2/fxoMHD/J7ssvoYsCmg8NyEJUJmJSFGHmSJEkeWORXWIQ4nfhzCn5p9ZflvTx/TBkhfU18V9vBp+nJ8nM2myFJktqCsVVta5/szbLq10HQOPf7faRpmt8xTH0gF4qGyB3gcocIzUF5Fz2l5fczuxaxEV2TPURAwXPNJ2XNW/49NBDDcZC0S8+4ozbUUS/vOeX4hNgDsq2aDkf1yGtISK9tt9u4desW7t+/jyRJ8Id/+If48Y9/nAdjfb66JEk2dp6HHPEdoitSuZozXDrCOZ+rYqPxEwJc+Grzs6wu6svLdfGqzmsXDqHt8dWpBQAA/T7QqsBpno8J2XC0iJ3qHw6HG/OXL/LYZV/lVYBFA3X6d/inLNuiHVdZGs+0bNMQvcM3D1xzMKaftkFrIX6/kHqtuaCNW2g7QvqmzDVPVLYLH+udVpfF6/nRwy4c+/0++v1+XtbTp0/zjQpAcedtVbDmEX8WM6dC66yLH1SFUDzK8PbKwVjAP0Da8212rrW6rk5G71IcNOZaxuAKdYaF4lYV6phU2yj/Jik014mrz/irCiF84DohBKdt4O1S2kLAEnqxDF8a8lRGq9XCw4cPcfv2bQwGgzxQdnx8jLOzMwyHw+DyLXyvAmIU3hDgCnWMEI55H2KAVjXCJcQ4JGPTqc5u8Z4Hq7X+oqDs0dER/vqv/xqPHj3C4eEh/vRP/xSffPJJvmCAgoSTycQ81szXjrK06jMctGfSCCcHNB0znCQJnj59iizLMBgMsLe3h+985zvY39/H4eEher1enp/vRLKOtaT33HHE56imX7hW50sDQ6NLn8OHHHWyfi1fDL+uU2GX9bdaLbTbbUynU8znc6/DUAO+S5wcxTH4ugw/lzPWZSjy31qbLJqSczfUicb56fTlFMvJEo20AXSBJE3QyBrIkgyrdLU+rjivlBXSYM9E8DVJLu6MvQiCJsl61ywSrHdqJrjc3ZqxvCtWB3tOu2KT5DL4miSXAVbpbMmyrBB45UHXPB/VIfrNF4Td2DGb8a/ZxrPgoGymPGcByfydfJ6J5zSXV8onS5tlmb3blZ7zoKwRjC12BcPV6keOI6t7ox9EcDpbZZifzjE/m2M5WQIr4MmTJxiNRjg9PcVoNAo+VtgCTcewdEbOm+rgeVX4J+EyHo8LwVR6J8uUdfkcpDw4U1Z/42WGliEduC7928rry7NarfLjb2OdjC6cy77XcJB9Ric6xBwhzMuiANdwONw4ppoWhRHwo/p9Tk/+3po3IfKK56OALYA8wEJlTKfTXIbz/kiSpLCwTsOVf0o85fywdDStbdZcc+Gh1W3hGaKTyXnDr74YDodYLpf4kz/5E9y5cwfvv/8+er0ebt++jeFwmPfdbDbz+srkcd5l7D6Xw1jjiZJfSVrT7g120aKFm6Xf+XQ6rbwyerSrfF/eqrZWWRu7DO4uPdolW6055pLd9M+vJwm1Hy2oy9YJKTvUX1B2/Kz3kp+E4MA/y+oMLnqK7RuJi5SnIXmrQh3lhMqWMvW55I1VbgyvcemBPvkQQqtykVMVsMqgK+M49Hq9fNMMwWq1wsnJyYbPlvSUsnNDmweh8ku+c/V/iH5RBlwy1wdl5WhsnYVgrNXYMsaQld4n4LS6ywxCiGMpBA9XOdpdKrHtC1WMX8PVgVS8dxHK4lfHPK67b1yGUQy4xq3sPApVRLcJLp4SY4gQH5c7ENrtNt5++200m02cn5/n6Z88eYInT554cQmFMoI21JiuApaTx6W4ufLwNJZMsMrQyiybt24owzu0/uAONm1VO+0KPTo6wk9/+lN8+OGHaLVa+PM//3M8ffoUe3t76HQ6mE6nAJDvMqyiJ4QYWaFKmeZcA1Bw1HFnI/VBo9HAs2fPcH5+jq+++gqHh4f4N//m3yBNU+zt7aHb7RbmMCnYfLcGd3STw5Mci9oxfQQuHhNiBGk83Eor7xKWdZU17LcxJ7JsvVjl4OAgv9uP796RYI09jZe8z046HjXDUZtHPoevxEd7JyFkt4d0FMc6QrMsAzJg+nKK+fkc7TttoIH1ccXZ6vI4Ybl7VBbFArFJgwVdL97lxxU3knVQjYK0tLs1UYKy9E/1id95HsA+vvhid691bDHl3eifhH9VZAsPEm6+VH9v5GHf87ozlj4r9jmNlfzN0xWeZfqz/NO6M5Y/X4l39L/arEe2Md/RygPG/JloU+EZ7wuGY7bKMD+ZY/JkgtVshSRN8OTJE5yfn+fBWC7D6rAdQngs5/PyfVWbMSbwAmBjlz+9t8rx9ZEmO6r2aVknqvXOWrTkogMuE2hHKM9b1/jVBRx/CiTI3bEhsprLOr5zFUB+dD99p7T0nXRFjd61enx96AqESNlL6WjnCR21S7vd6JQL0rGkfRUje334UBm8fyz9zVeXy04JxTNE36N+SNMUo9EIg8EAP/zhD9Hv9/GDH/wA9+7dw/vvv4/BYJDPCQp0W/Vx3ZfAtTggRo900bLUTzlOWlBFpnHVG2JXWu94v7js1bLgqjsmf0i6kL4KAaufLP+qpN3YfrTmaZIk+QkK9Hy5XKLZbBZodlf4/XVDrIyWoPEki5e4+jx0vGPx4zqDdm95XfZrqI0eC6Fynn8vS9suGVAGt9h0MXld+ol8pvlpfHglSYJ+v4/Dw8PC88PDQ7zzzjt5GmAti37zm98UyiO9zXcFAK9PtiGU5kP4eBXaCPUN1clTY/QKS+cPgaCdsbEOMgtC8ocwDMtYCzUeXRBqOIaW5yI8SeTbcCa+hnh4PQ5rqDLf6+AXZcA1X68anzocc1qZrrpiBR3dYfjJJ59s4DoajfIjLqQDqophdFMgVFkiKNPWEOdRVYN4l4CceuTA5jS1XC4xGo3y30dHR/kuiiRJMJvNsLe3V3knkg+se++40cQNbAuks2Zvby932i0Wi7yt3AlJjkrqp5cvX6LdbqPT6aDZbKLb7WK1WmEwGBTmfJZlhWAaOTnpfrbRaJTv6tTapOFN7XMpmFJ/4Y5XVx28LmmY8v4PPRZZc6pUpZF2u41+v487d+7g3r17mM/nOD8/LzheQ4HSS2ejxmMsh5zL0JPtDpE9ZKA1m82c3mT5HH9Oa9IhGgO58brMMPpyhLSfYv+9fTTaDSABGquLnUZZst4xi0YecMsDZnyHLP2m74nymz4pEEtBWVx+5+/k87wu/h0sQMufZ8p3lkf9nbEgrWeXbN4PrmdKsLKQJhPvKH2WbX5Xfm8c5cvfZfo717HE+U7YbDNQS/+FYOllAzfbKZ4VeDWr39UmCsLOXswwPV3viG+1WkjTFL/61a/QaDQwHo8xn8/zuy9joYp+eB26dVUdmrfVtZtgW22Lcdi5gjNcJoU6uIBNGSnLpDTXAVo7SfdfLBa5nJC8P8Yx1uv10Ol08P3vfx+dTgdffvklzs/P8ejRIzQaDbRaLSyXSywWC3Q6HbTb7fwuWC43uSOTdCmu/1AajcbkTlstACDH4Pbt27h37x729/cxm83wV3/1V5jNZoWdsVJviRlHTZfk/Sz1TS7zQ04ykc+1ciQuMl+Mv4vw5WXxBWzz+Ry//vWv0el08Ktf/QqDwSA/2jUEfPNTa4fPSarp9lrf++a7L42sVy6Mdh3z7oIyvJlotkx9dUOIkz8EpM4amkem5XdGy7Jd5dLR69/+9rdxcHCAN998M6eHzz77DB9++GHhih5JXzF+lSS5vLaK53Ptzt8m1Gl7hYI2PhJi/PexfKUs+PhTKGhxkCrgartrfLfp56yjTVq5VXCS5ZYBn1+E+16fPn2Kk5MTHB4eFuTL6ekput0uut1uVH0W39+W/nnTynWBxaer4hIcjOWfPkalvbfeSYWH1xOCEy+/amfEMOCyhmmI8JDPY4TMa/j6QYzSGQp1KB11zBEqZ1cg1jAlsNrkYuohfIAb5DLQwoUGd2BQWVmW5c6OFy9ebJTN75fleUJA4uJqhzSA64BtKc3bghB6kN/rgBi6tPJo+a13WZYVgrGyPFrF12w2MRwOcXx8nNPdwcEB2u12vhupDnDxGvmd9w2fTz4aIfzJwZgkCabTKc7Pzzd2mpCRTs644XCYtzdJktxhOZvNkKbpxh2hUuFO0xTNZtOcYz56sniKxds0R1xIPRy4scH7OIRH1OkQSNMUvV4P+/v7uHPnDh49euR0qHN8LdCOOa6iu7ryav0lxypNU3S73TygpN3bGNLfls4v500hXQbMTmZIpymWD5frQGyzgQwZskaWByvzXbIs4JmsLspsrANofCcs3xlJQVvavSp3sVLg9RIlkYYfVYzMDJgWdrsmm4FVWQe1vzA2niBsXoZIVvWY4kJ/yTRZ8XeWXaaVAVlfIJZ/5+XJtDIQu5HHEYgtyBSWNn9e6IzNMnIclsBqtMLsxQyL+aJw3+STJ08KzlTJg6vCNhxRrvlZpjz5LMRGpkAF6awh/FnrizJ8neeV8sWFr6W7akelWo57+s6Ps5VQt/4bAxbeUt+hhZtlghTAeuFnr9fD3/t7fw97e3vIsgzPnj3DV199BWAtb6n8NE3zAB2dSMGB6zv8tAmfr4r0zxjodrs4ODjAw4cPc71L9lHZ+e/ylRGE6uQcl23YLWXmn6QNGq+nT5/maWjBIOA+KYTyu/yM8nmMb8Tqvzr604WrvJtW4411+0TkeMTm03ByQZX+i82r0ZxPjsj3mo7Ov8v+p9+LxQJpmuLWrVt48OABvv/97xcCpl988UV+tQGvy4WLVg991+6D5DRlgcvPIPunin2igUv++WSJC48Qv0SV8l31WeWH8HfpR3D1TxncY+ePS5/j+LqgjG7nktmhPHhbfFLzafiuw3SBph/KMvjcPj8/x2g0QqvVyvnJZDLBaDTKT5Lj5YaAr099fNKVp2yaEHyuQ0cOBU328Ocu8AZj62x4SEeHQIxBGIJTWSXawiMkL4cyd7DUAXUJ2TqFdUxZdSsJNx1e98f1Q+gY8HQhilas0JR5+TtLieBHhm0bXErTq0LHV83P64CYvg81CqSjjDv0NGOU757lQHd2lr1/PcSAyLJMNXDpfcgzAums6/V66Ha76HQ6GAwG+QII3n46TjjL1veoff7555jNZuh2uzg7O/PWw2G5XBYch/zILJezQb73Ob+A4k4nntfiNS4HMDns+c4cflyhD+o6Amw6neLZs2fY29tDu93GnTt3MJvNcHx8jNlspq5K135T24Di0X2W4i7zuRwVIc5nnpacb41GA91uF71eD/fv38f5+TmOjo7y975jkMs6n6XzOssyrKYrnH98jvZhG3vv7yFrXezuXjWQNC/SN5L1Tln6TNa7ZpNVAjSwPoY4SdaBtASbn9Zdswkud8I2LnfEJklSCP7ywHDebvY8/w39WQYH7cZ2YyZ/ZhvPnLthtWc8MJmxNFnxd5aJoCXlX11+AlgHUum5yLNxFLF1TDG7M1YNvCpB2Pw7axevf+MIY2onkfsKSKYJmi+bmJ5OMZvNAKzn63w+x2KxyFehE0+K2dW4a7qNC58Ym9pKS7yYePjh4WG+IIlOeJDBBx6wLQsunVq2WfI0F/+mxWL37t3DYrHA2dkZkqS4Q4na49MjNLy2SR+usrMsQ7vdLhyhSad00MkJ4/EYwOZiKR+QTKex/uY3v4m33noLt27dwscff4xf/vKXaLVaODw8xNnZGabT6cZiPSvgytPIcdToJ8T3kmVZQf8cDAZ4+fIl7t27l8vN5XKJ+Xye7zChI6djToyw6FD2HdFXo9FQ7xnmfSB1A1eZUifh/WGdbGLh63su53en0ynMNzl+ZfW2bdtcrh39km+FyoMsKy4Qkbq37Bt6XqWfXBBiJ+2SDLMgpo/4Ag1uMxEkSaIu4iBdud/vo91uA0C+kJiu06Hn9+7dw7e//W18+umnOD8/R7PZVGVEqAOfFtsSHlXBJx+0d8QrLRuOp4vFxVVnmbJ4XskDJdDpRwTS/rR4blmoeu9onf53l/5TBSSNxpRp6Uwh+erqG0sOxuLDP62yQsofjUb44osvcOfOnYL+0Wg00Ov1NuoNOUXD5WOwdKcQCKXvUJ+iC8rIRBff09KWPTnBBUGe9xgnZF0d4WMIGoFYzN+Hf50KTYhyvW2FMRS2waSusqxdVAivW1HdJm2FMFLNqc8hBL8QI9WXv870IcaJ9js2nyudS3hLAy2kPAlcieZ11klPmiKiQdX5UxZnyznmSmOVUQaHq5QLrrp8dBTi8HGVzf+1/JrzzVImQ6HsXLSctmVxSNMU7XYbrVarMOd4m6mdq9UKL1++RKPRwK1bt3BycmLiqjlpqDzZj6FtkA4hDegddyzIsZLlSCecVbfPYKZ0Ln5G9ZYBcsjO53Msl0u0Wi30+30Mh0Pv7hqfU8MaB2s++MqV76V+azkPaee0dApZ/eoy1iwnJJVlOnVXGRaDBRppA8vZxY6Bxjo4iiXynbFJkuRBzaxxEfhrAPnO2MZlcA4Z1jtfKcC6utzdCqCwU3adPLvcXSt20W7slOX5ss1yqTz+2/cs7xdHZFbdAXv5Uv2tHd9LeOfPZECTByu175n4DuMzE5/sHlitnPwoYnFfrHc3LGtYIT3LV8ivtefiXYoUyTJBMkmQzYpHhfLvIfcra1BGHw5NG2OnaxCqO0qZGBt0oOPzl8ulU3e1+LdlH1TVG0N0GXrf6XRyGuDyjGQ8lac58a/KRnTxXJlOjg1wGYwlxxPJwE6nk8vEGKB7cmmn6RtvvIHj4+O8n+ikD44Xx5vLTpeuTu9CZKvVH1x/mU6nGI/H+d3IdLw/1amdJqHh76tTK4PjzgMcvGzZLqkv8P7in1wH095bOIaAS0flPJROZtKOenfpnFXxi9GTXHnkOxdOmi3J69TGjZ779MYqfF7DPaQfrDRWe3zg0olleaFg8YpQCG2L5Pvj8RjD4RCTyaSgF+/t7aHb7eYBWi4/QvC2+kbjCxLvsnaQq35gMyjDeZXkLxYeMfZGKK6u8l19ydug4SB1Plm2a15Y853jFDtOFg3EQKhcDOELdZXnylOVll3g42tVy3ad/qDpa1wOUNAVWC9wnE6nuU8JuNzIIHmK1GlCwNfHof3B8ZdyLbbsGBp36VIhMu+q9HSCQjDWtxqeg1z5YqXTwFox6iuLM8iQ/C58qkzm0AGy0sWsKKgT6iSuqybUXYEYgfQa1hBLK2WcQl8nsNpuOah8/CZJklyYXyVsY/w0Re26+V7Zun2KxzaV0lDjwoeHVMQI+P1eGtAKPzrCLE1TTCaTaAdgLGiGFTmOY4xICVmW5XfE7u/v5wEwCvDRziFyctL9bD/60Y/ydHSfGqDrXxwn4PKuN3KmcnqiftR4g3T6aQY1r2e5XOY7XWazGWazGR49epQ7by0cNYMZ2NyVwQ17V3spr3Qulp0jVP/JyQk++ugjdLtd3L17F3t7e5hOp/jss88wm81y3smPHrNAM/Ct/vXhxnVc2WZucFj9vFwuMR6P8ezZs3zXuctB4cOR+p6frsBxkc5F2ZbFbIHpyymae0200Ua2ytBoru+LTVbJOnhGwddGAqRYB+4aWb5jFhlAO2IzZJdHEV8cX5w0LvBP1v+FXbDUtKT4n+9qZWny4435e/EcKL67bLDZhRvHJl++sPMEBWJ5uky8o/RZ8VnBaM420/Hn8hn/5DtfkWHzjljld6Ec2SaJM4rp5LN8ly7hqgSWs1WGVtbCm9mbmK6meDZ/lvNk2iXB7y6n8i2d67pA8hUXVMXTZ19zfwLHK0nWx+1ru2dCdAme1gL5TlscJH+TTqLpGJyfJsn6lAvux+Dv33jjDezt7eHly5eYTqcFh3yIDKtLX40tg/SMvb09AOuj8WgnMJX18OFDfOtb38LHH3+Mx48f5+PocvQRv2+32+j1ejg/P8dwOMSbb76Jly9fIkmS/Cji1WqVX6sAbN5tFrIr19fHkhb5My6LSfc7OzvDeDzO74ml8bSc82UhZL7SP7+zONbxzU8eoZNY6B2/0sLS3UnOu47d9uFCTuRer7cx56jekN25dUOojskd3ly/kTwqFN+Q3bSW/cHfxzrIvy4+lBhewenbR3eUhk7NIDg9PcWTJ08K+jAtPnjvvffw1ltv4cMPP8Tx8TH29vYKO9Ln87mJJx9jjnuZu3/rGPtms4l79+4VTjEi/QhYnypAc91Xn+uEyFiZqPkvJA4yjexDyTNdNFSmLyVfkzhx3F1lVAVrx2osLnWCz/elvaviZ9P8IJJW+Px2laONaR36wWq1wrNnzzaeP3nypIA/LaJrt9sbJ124cJc4+9LEgPTtuMoMqSfG7ybBN9ahEHLqGy/fh693Z2zMZKBKtXQuJ09MnVqaUEIPSWcxaytNCIQoTFchROtkpl8XJU7CLra7Dka/TbD6LEQAWGmrjEOZ/vLxBU350+a6T3GrOpYyv1WfNDJIYSjDV6Wg0Rwcrrwu/EPrr/JeQgy+Vl7el6HKhVW3b/zqklMcpPOLDBkrGKopG77fIbBtfkt4u2Sy697kmDaRoUoBV+pb2oGp7Qbmhi0/Rjx03tBulNi+5+MZQl+tVgvdbrdwp4nlOPABOfI1miqrvJcBMq7m8znOzs7yFai0K4pw5U76kDLL8nhNBloBihBcaC6TI0nyK01vteY0Oa75M1c7NN6YLTMsRgskjQTLzjIPflIAlXa+Fu6QTS7KW7E6k2I9CZL1LtoEhR2yhV2xF0HbjThohkL6LFunUXfW8l2xGePpYkesczcsBQs5Hj5yke+zze+FMckuP+URxRvBSiVwWdh5mnk+ZSA2yzbS8OfymdWeQpsk7mCfPI3RtmyVYTFcAEtgvBxjOp5iOp0Wdm4Wujcr7lTiQYmq+ps1b2Ns3BB7s4o+Hep81PgJyTntGgKeh9L7+pSPBa+L183T8HSazuprD/1zWc0XPGVZhl6vh1u3buWLXci5HuoQuy4bk7eLfksgHaTdbufHdYf6a6jPv/jiC2RZhm9961uYTCZotVq5rkNyn2gEgKkLhNRJUNYGIJ03yzKcn58jSZJcVpbRbWJB0pwGVQIBSXJ5fUWof4wHJlx6KE8jeRK1x+IDVt0h70N0xtAyOXB7oNfrbfCyUNuwDpvXyqvRpVWfpYfFQkj/1jFHYvwmPh9riPwLsXs4X+Ppl8slJpMJnj17lvPKVquVL051XaXi6yvL/tTKivUryPchujy3+biPwMULfD6WKr4CrQ/K+OylPHb1pTWPYunfJ7Ms35pmC8bWVxV8elqZ+qvIcA1ifYW8vy26lL7UGD4V8p7joPnfQvw7lr+wzLzw4WvlqTKnffXFlh0yt0L4lOu55ZuxoPQFgZrywc+wl2lDDTheliakfKtWY6EqMdYFdRjyr+E17DqEOFco3XUBBZ6kY6IOR1lMOinkeX7aOWgJWQ7yPhRyHnGhMZ1Og3Dj+LzKUJYXS6dJSD/ReMjdl5qT8aqBnC/9fh9Jsj5+ie/y0PSAOh3SfDfoVQF3FjWbzfyOMAqmLhaL4PHg/IN29r58+RKLxSLfmTAej/N0ZLSTgt3r9fIxoJ2zgFvn4Y621WqFyWSS/w5ZQc0NZo0euQOacGi1Wuj1euj3+5jNZvi7v/u7POAsnbyueoFLfkX9TPXF0lmog9GFT5qmGI/HeTCW2kl8tKyhrxnOlpEfGihwGYvSAMuy9U5tOpaSHIuyTbwPNccTL/vu3btoNpt4/vx58NgX5Ncsw+TpBKvpCmgArb0W0m4KZECSXgRW0wt+KO+QbSR5kC3fGZusg6zqDljj2bpw5R9Q74t17YqVgd2NXa9ULsTzUNC6NCJwqT3Psmzzu/jNn+e0sWKf2Wbawm5X385YiSvH0/rOcWF1h+yIXc1WGPx2gPlwjsezxzkOSZIUdnnTc82ZQcd9LxaLK5dXEj/CS/6uo3wOLl1ePideQPKL5BuXKS4eEcLLSU7w+kkGynTyu68OzsNWqxXOzs5y/SBN01yWz+dz3L17F++99x7efPNNjEYj/PznP8doNMJ0Ot1JvZn6n8aE7yCS+E6nU5yenqLf7+Odd97Bixcv8rtkLaB+XS6XGI1G+C//5b/g8PAQ//pf/2uMRiPcvXsXg8Egv383SRJMJhNMp9OCH0gGAfmYhTrQJF68D+QzguVyieVyiRcvXiDLLhdfxJ5wFuMwpfQkP+XOO833xvPwNLxP5HvMPI+uAAEAAElEQVS6v5n0WqsviS643kPB87JA9xBrQQ/q513ziS2XS/T7fXz3u9/FdDrF0dERzs7OcHp6WrhvOQY0vur6zfNp76r4Gb5uIGlMfue/5dha+jqwtodWqxU+/vhj3Lp1C9/+9rfzY4sJJpNJLhN5ANM1fnJucltU3iWt5bHwluAKVnCgxTnk97cWaxOf4PqUxC8UQni8vIOZ1+Wid8ve5O3iekYs/jE6k08vcuXV6rXySLooy3Nj+ImsQ8p1K42mu2l4x/K0ELqwYlJ1gFWupENt/pB+4gO6EkCeWLMN/m/xjxA/UKxcCrENXHiFptdsGk1WUztj7UAzGFuFyEiB9KUB3J0T6nzTHGJaWs0pZeGwLSXQhWeMsHwNr+GqwWc0uIDTdohzZVtCIgR4MMMFVZSkkLkeo3zwNFaZXHhoSo9VHv+MaUeMY+SqoAoNh5RbZrxJ0dOMKe78kUHeq5gfhBPt0JSr8GJwsOjZlX6bQPTpo1Man2azmR8BQ89dwB3NUqmjFfW3bt3Cw4cPMZ1OMZvNcHZ2hslkUrh/FcCGEktlxBprIXxXjq+lN3HggWIeqJU0XYUfynSSlgj3UN4aAhz/6XSKwWCwMdddThmJd1k8rDyh4+9yzvAdSfK9Sw7L9A8fPkSv18t3BVBfaY4RU+/NgOV0icX5hZMpuZh/aKx3xgLrHayUXWt6clku7TLNjyk27n/NsgxooPA+L/8i8Mp3xtK7vP8TXO6uzcS4XOQt7OrFOj29l7tlL5ti8BgleYEO+PtMScP6T+6OpXFQg7CUhz9zffLgrHJnrPxd2KULhpuCPz+yuLAT9uK3GYjFZX2z0xmWoyWW0yWypdu+5HdwA5cOPy4fpNNuY1zE723J8BCHh+WkjHHsufDXeAd3UmiyRuIvAzT8mdavljyX5cjyYh1E0+m0QL+8LfP5PA8kuo7pd/2+SuD9yY9gJaB2pWmK2WyGly9f5um4wymkDymwOBqN8PHHH2M2mxV2DxM+Uu/R5LvVjtC20qerPBcdaeVpeIToAq48mj5m4Spta8t+ozS0wIzS86sWpH6TJEl+jHGSJOh2u1itVvnx0lZ/aGDNda3e2IV425hLhBvNjV6vlweyF4sFTk9PkSRJYTOKdvQyfXfxHO291l9VIFQ/rQt8dFG1/tj8mh1B3+WmIu2KGp8NyMePeKY8wlcuWKRyQ/UDno/n1fo4dF66wJLno9EoPxmJ+o/Xq9G+D2J0pzL8VQNLB9LsPRd+2twNaY8FkieG0rpFR5Yu5eMxobSj4Wjxs7L0GJM/hD60cqTckXPVqovaH6NXuMDHa6wrqzRcY+jHl07Oi9ByqtYf03cxcsHXnhi+IvkglevCvfTOWBfI1cFlV4yFgnXvmbWLNhau2lCKnaxXDTETehfL/zrATerDXaJ1YqLaHIzFs2q7XHxAGt2AvqOXgAwMS0nQBMW2eKVV/3XylDrrlsqur2xOc9Z7eZcMrVLfJmRZlhui3IjkOLTbba+ScRPAp9xTf9NYhOozFOSSY0VOrHfffRd//Md/jKOjIxwfH+PP/uzPcHp6ilu3biFNUwyHQ5MPaSvvpEEljUoZ0NfmhTQofMYHsF7lPRwOcXh4WFgtzXe3cvykwzDUEOTlWHSnOSXKzG/eX2maYjAYYDKZ4ODgIF9l6usfqx11QlneRfcSj0ajXD6E9Jts82q1Qpqm+OCDD/DgwQO0Wi0cHR3ho48+QpZtBmOtsaPny9ESk/EE2fIyTbpaz59kuQ5qJmmCRrYO0DayBtDA5d2xjcvAZ74zlpwk2m5Y+s/Yd2y+z3fByvfY/OQ7ZvO8SDbTiGdBYJBQoT95GiOYSZ/yWZYZQUzlOT3LP60dsmJnbJYVd8QW8ACrV2kbxzfHQ+Lj2xGbZciWGYafDzE7Xsu2JElyecYdsPwYWm2XJfF3OtFAu/PtqkDKsV2xAXgwQwvIWsEf/snLcvEojVY0J7J0cErZopVJcnwwGOR6G8kJSnN+fo6XL1/i3r17wUe383quSw8m2iaZTThTAKrdbmM4HOLk5GTjZIzQugHki9p++MMfFuaYXIDmskfqsFW0cqzykiT8GP66QOpKWZZt6JF8PEP9RjTOtLObTr3h9+Fq0Gg00G6387q63S4ajQaePn1qHunua5tsn6Yb8H6/LluDcKB7g/f29tBut/OFlI8fP85PRyBw7QKy5qHkhTGw637DbYNLDvD3LjsbQH4VCcF4PI46TpuX12q1MJvN8Mknn2y8JxtJKzc0eMh3xtY5N0LLWiwWODo6QrfbxRtvvFG4SoeXpX0nCKXbunUai16kfSPtZh+4ZKzLz+bqg6ptJlvVR/v8dxV60vrAsiV3hWdp4yJ5hmYDcOD+Ags0v4prfH06Id+ZzsE6ucKSO7Hg88Fwuq4r/rdt+V/XVRBcX+TgkiNmMLYMcZDyUcU5xZ01rnQ+fKsaNSGMJBTKEvquwrZx2+W23xS4jjFy0bl85ztit8rxR2WAB8Q4XjGKbkyQ0RVw4GVpvFDixHGWCqsV8KB3pFzw9D6jxQeWcukLyJSFGEfXVQHfNWOBr82EL43P3t5enk8eW1ZV2bHkMJ+HzWYT9+/fx3w+x9HRUW4MkmPO5SzZVZ7uM4QkLwg1kq06aNcgOezb7TZu3bqFRqOBXq+HXq8H4DIAYOHmo2VpAFu81prrIUopKdm0Y+b8/DxXNufzefB8c/WrdMxKZ5VPT6U0sTxCuxeNxm80GuXPQo/SK2toV+Efsm5trDXZ4ZMBkp54WqJjuk+QjBLaSaXRnkXf8+Ecq+XFjoFeBiRAI22AdqEC688VVuujimmnKRWnBUod/0ki7o2V78HeJxf1GMHYAs3xvAw/7VneN8b9ssVO0p/xHaMbaXlwkj3Psqz4nd6JAGZeBn+mfcYEY3ndjiCsxK0QgGVtCAnETo+mmJ/PsRwXF+xqfI+OASN+J3kQ8QV5l2QIuPQzrf2uMqic0HyucjT+WocMt3iMFoRw8S2JE9c95NhQOsvhGAIyLzm/+L3v9Pv4+Biz2QyDwQAA8vuHy9RTN4TqnADyBQj8He325X6aGFrjaWlHJu0QC8FZ1mfZatrvEJysMq8SXPqzNhc0ncjHh6jfXSeu8Lq57sqDSDF6GC9P0o41t5Mk2dhhWtW3Vwb4PJjP53j+/Dk6nQ46nU5+xQ8/5ptwDQGLnkPKsOx/q7xQCMG9TNlXxd8k/w/Bh2ifghgHBwfodDrY29vDcrnE8+fPc5ub+4t4fm0ckiTJFzHQu1AatnRxl30XCqF055vjpNvTFUZyvmpla7JYA00uWP0cCr78Lv7rsu3rBpfdXsc8D/EtVoFQXhaLu2V/xuQPwYPLQUs/t3RIq/9C6SVGDli+GlcgVqMryQ+sOk2bTMFbpvG9d+FZB9Q5X11zhOSDBNfd8oVgrOxUSYCWkku/y6we0kDWWzW463rvw+M1vIavE8QIiZC5ZTE/635pwL/6yAUhgsECvtvQUoRcbbTwKIOLVobGf8lBYgVuND7OQToZKb8rEOTCUT7THP9lnDhlIYSe6xTQoUqE672ku+VyiVarhf39/Xysz87OCvf8aru5qxhpfGECldlsNvH2229jNBrlR9WtViu02+2NY5ZdZV831GUkxMxx6dAig5WCsf1+H3fu3EG/3wdQPOpXq1fSmU9x1viX5ajW5qZWH+HRbDbzADPdF8qPrbMMSp+TwcLHx6dcxoKszwUc9yRJcnqno6rp/rQQA/0qHYguGajhoO2IdeEr+QJ/TvdL013HVD5Q3JEjcdFk2/x8jvn5HI1WA7QbNmtl6+OEVxfj0lgfYUwBt/VD9pmJzwY2gqxqYFYGXnmZ8rfnM8kuj0vO+4rKV6btxlHJPpBJKQjJ32XinXiej2VW/F4Idq5EGtdnRDC2UD9vhjanBf4Fvsbfye8cvxUweT7B+Mn6rkuL99HzxWKR7yLT7pijXWH8uO+ycq6qLsL1ONf85XVUwdcCF6/jY8ZtAA1nzUEk5ZbF7yVP09L7ZJP1W94ZRzyt0WjgxYsXeP78OY6OjpCmaWG34S77FHi/Wbp6kiR5MDbLMvMeU5fMpTnS7XaRZZenrrjsBolnrO5VJ8TqhTF4WPaldO5xOtZ4FtcdLd5KehpfJMXvjpdAJ97RcaR8N6xrvmj40afcsSVpj9Jo/XOVc4kfUT+bzfDkyRN0u10cHBzkdyZT/7RaLVUvjcU3hidrvNNlI8hndfJ/nyzXcKwKPlrX6pPfadHVcrnEbDbDnTt3sL+/nwdjX7x4UeDzrrbwOuVx9TTH5BHsMSBtoBCe5PJNhOoC1rvFYoHhcLiRhnwJEg/JDzhIm5G3T55oEQKaj8dnL8vv1gILq7+s/rTSWj46ny0bA2VpLbRezdcXW0YIHtocln4JK68GFn+UO1f5Tkef/mHJ8SrgoiPtmoAYHclFZ1J3k+k0Wre+W4vuLNxcfCK0jND8ss6QvC5+4PJ9aVDLMcVpmqLf76sEQAq7RjxVA7cuZyUQ7nR9Da/hNVwtWMoHf1dGQQ2tOyZ9TPnSeSHfcSFPCh539MfUxXdpyPo13OV9QHU54UJxlQ4Fl+J0kyHW6WL1ATc8Wq0W3nrrLXQ6HfR6PXz66ac4Pz9Hq9UqOIlpR6J0boTgzOmQ8t27dw97e3t4//3382PqRqMRgHUgcW9vLw9KjUaj4B0g1wU+pU+moT6l3QAuvuUDCrQOh8MN3YdW2ZPRPp/P1buKOF7yDuiQI2nkjk9pqPrmo6QnykMBC17HNhw9/G4l6RCkOkOVYI1Xh9AH5XE5wK4bpPNFw9XXL9Y9srJ8+v3ll19iOBxiMBhgPB7neSynk8/ood/zszlW0xWQAY3OOvDaaF6cPHBxJHGSro8nTrLiJzIUjivOg7IUmIXyKYOzF8/yI46x+c4MxuIin3VEsUIuheOLfSCHMLssI3RnLA9aAhfjkm2+y+ezFpSNOJ4Yq8tyN2iQ6gTDhbdL8JS8bCVAuxGIXWVYnC4weznDcuCWU4vFAp1OB/1+H/1+H51OBy9evMBoNCo4FjiNE7++Lp2G31vL+aAPp23h6woG8OexZVq6tcbLZT9wPCRPi7ELpAzlv+lezfl8jvl8fuWn/FSFbrebOx7n8zkmkwmAYgCt2Wzmx9yH3gtPQOXMZrPcd7RYLAqLC7U8dcwtaYMRxDj9dgG4DgLocpnaal3XpcnbbrebB6Ms24Foej6fb+gYGnDcqN/5TvKbANwOy7IML1++RJqmePnyZW4PXSdu0qavYqfcdOAyOTYPXxxEPKnX6yFNU7z33nsYDod4/PgxgM0FORbwY/l5Wt98scqSfNDyu4eUbclS7b2LR9KJQRq+sXTINxfQb85nuB8rZAF4HWDRkib3XD6XqrpQVZ9dTN5YP6n0O/EyypRXln+5YkJV4Kr0+7r4tuaHcdGljxdY4BrXWH7jg+s4gc/qtzJz2JXGGYzVlDWtE9I0zVfLSUSzLMuPL+CwWCwq3+kqHYmybg7XZSD7wDVBdqnMXYavW3uvG2L62qUkahdc8/K3PaYhDLZOvsH5FQUmrTbSqmXNqJKOIMkHfe3SDHgNYpxSIUBtrgsk/mXHalvKrRWsCe1vkrXk4Lt9+zb29vZweHiIFy9eAFjvVqUAXpZl+fG3sTwxSZLCDjnC5eDgAPfv38fv/u7votls4mc/+1k+hq1WKz86GUAegCk7b7fFx60gj2vs+Jyie3n44okyQEdVnZ6e5vds8kUKfHczHf8c6tjUwOeUsfSnGKB8fId9rHNbOhDpmUYPGh/jTiheRqiBESp3ND7jCgzskk4SY+wDm23VdgTIfjg6OsqduOTAp7w+ndyaowCwHC2xmq6Q9lKkWYq0teZTSSMBUmwe9Ss/tUAp/74qfia4oJvkYixpB6sWgL0I8CaJ2P3KPgs7YzPkQdiNgClrt7kz1ppK8nneJZnaLxsB2Yz1IX+fCVqQAU75KYOyWjCW1weBk/Zb4CvxUXfD8nZR3asMi8EC8+dzrOa2k5CCBmmaotfr4e7duzg4ONhYZAAUbWLNUXoVIHVKwkUGCstAGYcxvbecumVwcNXncoRKWWAtMClr02j5aNGWXIS+S/LAAtI12+12vrBP8nmS876TIVyQZZc7ykkvomCsz5EdWoeVzkebZWR31XnGywkpXxsXzR6MBVp0SHJcw4sWbFIwVjuVx8Kd6xNcp3ZBXX1bBxC90xHkVUDqnRIs/VnrD6lDh/BnSedleZXPBg7JW9XZbdnOMq9r3kt6XC6X+cKDVquFe/fuodPp4OnTpyo+rrZaiz+stln9oQUFNVsp1vax0lh6uyxHHk9M5cTqAdIvJn1G/HesbuLygflA0xX4M58MCeFf2nwPpbG6+KOm28bml+2O9QdICNUnXHnKtIOXI/1iPt4SgqMFZcqRPhBelqYnhPCGWBy0965xqKJzu3Q0bd6F9n2ILHPJTI1uNPy054VgrLznLkRAumA6nSLLMty/f3/jMtuTk5NcqHEkaZePfM5XFmk47YqypoGL8W/DQPMpLTfBKNTAwv2q23OT+/A6IWSOlp3Ldcx/TVkD4NyhJkHes0TPLAMpSZJCMI1gOByqdFYX7fEdZhpsg59KY8cnVF914IYFX+3JnXmtVgvvv/8+er0eZrMZ+v0+9vf30e/30e12sVqtCoEPKiMWGo0GOp0OAOQB3SRJ8Pbbb+M73/kO/r//7/9Du91GlmX47W9/iw8//DDPOx6PMR6PC87HMjhcBR1oRqQLVqtVfucb3QtYFnhdb7zxBv7oj/4I3/72t9HtdvG///f/xl/8xV/gq6++QqvVyuuz8JfON8sZ7QJuxPuc3fyT8tIzXmfozugySrlP/vscr7yt0rjy4cnL4fcF8r6XRzNfp07qczq50sYaasSvvvrqq5yf0e4p+u7DUT6X/ZotM8xezpCkCabPpkj7Kfbe2UPSTJC2UiTNBI20gWR1sTOWPi92xCaNi7nSWAdXk0ZyGYS9MDeyxnpHKn26dsPSc9r1Skca80BrTndg7y7yrotj5VL/Q7xzgRymPHaZbb4XgczgQCyydT9R3szzubrMk2Wb98LyujYCztkm7taO1w0j24X3KsNqsMLy+RLZyOaPmiOJHLH9fh9JUtxlJp2fVjlXCfy0FE0+cCgjq+tqG+cTEkKcm670WZYVHLaaA5Xy0WdZR6GWngfCr1sOxADh+vLlSzQajVzfc8lNeSJLSHCNw3K5xGAw8OphmlwKccaFgOXn2kW7RJsXQNHG1OS7ZUtOJpMNnVbOHyrDwsM1djJfr9fbCK4sFgvMZjN1vsg5qjnEr3KcqE5+Byjp6rQ4AfDbFVV5gtVPMfnrxqkKXMV88/Fil14sgXSDqwTuP3HZWTRXJH6WfeTqE1fg02U3WHNU068kLrTIg9sPPhtVw8micR/fuGreX0X++OZsmXbE8POQ4BXPZ8mv0PpCQfaf1PFignOWX9iqy1eeCyw6D/Wda3mte5fLgMZXrHpC9WpLjtHz0JM9QsovCyE8SPYLP7WNA/WhxKspE9GnNekspZifiU9Ad4H0er1ceaEVNLQLR5aTJJu7p0IdZmXfbxuuS6nXJucuGhihcB2434Q+rFN5cDlxYyBUeGjPrtsokL9D8bH4J+dpfKzouetODE2gWYZ1SHvqhlAFWToKZFs0Bfm6HSIuQyIGfA4GoHiUJ/9vNBo4PDxEu90uHG9Nx8TNZrONu5vK4EmGHtEplb+/v4/Dw0N84xvfQKfTwYMHD/D8+fNCPnKm1A0ajYc8CwU5Jtr8ovlPCmFVnkj5u90u3nnnHdy+fRsA8OTJE/zN3/xNvjPB5WjRxrqKYakFIVx18aBjiHFVh0wpa7SFtD22LiqXL17kTmteb0xQoS5w0YILuKPdojlLZ0+SJD/ClZy5nU4nnztSHoY4EmW61fRyAVG2yrCcLNFoN/J7Y1dYre+PBZAfSYx1IBbAZRC0kayDhCy4igRIVhfB1YtPAOtdrSzQmmXF70mipM2KuCdJsg4Qsh28eQAXl3gW+rmunbF8vLLLT/VoYnrHvmuB1MIxxZ7jifnvAl7YxCskEJt/GkFa/i7LMmAFLGdLZJMMq/MVVou4owtj7yhz6WihdZYFqTu45lwVkPKR12Glj33vcuJIfuty+oTIBZcuLct1+Uas37tk/4cA7VAlPcRqM++TEDlnyVoKBvJxJdDKdo2dC1x2lDU/Yvrwqsa5zDzWcCPZbI2xi2eUbWur1VIX5NI9tSFzUT6/DpB38hL+tBjbxfOq9in1mZY+lIfycnYBQnDx2RZ140O+ajqlCMDGccNVfAJl0mpjX9b2iQHiD6G0GzpWPJ3mE9J8Q1VsyBh7VcqjqvVrdbigjnpC7X8XuGzBEB9AVT5Tpv/lPLHoM6RvNLqpQ7d38e+6ZV0VXhCSV7M5eN4QP4uW1zpVK7Y9oTTu4lEWvVv1abqsC2/vnbGkYEynU/XuVwDY29vDd7/73Q0COjo6wnQ6LeyKHQ6H+OKLL/LdNwSdTkfdFetqBG/sVTi5bhrcxP7YtXEMxeU68dYEzS71oQaagyvLLldYXwfw3aIxDjjAvr+a3qVpWgimJcn6eC6ZZzKZYDKZFI68K6NMuRR0TdBvY5VnkmweOQOsd17OZrON+x+1/C6om86t8lz1VK2fB7bo0yW0l8slJpMJ0jTF4eEhTk5OMJvN0Gq1KuFCDgXC51vf+hbeffddNJtNvHz5EuPxGJ1OB++//z6Oj49zHHkA96aCT7dIksuAc5W28mP/RqMRPv74YwyHQyRJgrOzs436LQcoPyIw9sgmK53rOc1hWhAwnU7z8dfurY6t24IQHsb7g8rnDkatPM3Za42rlofK7nQ6efvpnjVKz3e8hwQsJNTJ26gckinylBqqj/9LHiQdExrQznq+cEHKMdmfrvkk6+Pfl+Mlhp8O0TpsofNGB41WA41mA1lrveu10WwADaCxuvhsrD9phywaF3R0EZhNkqSwMzZvM+2MTXC52zXBZQCWO27YM74bVqYFsLFbNn+eFPtX3SFrDEFhbHgaI2i5EXilNOJ7/izbfLbxqRxTnLdX4KU+08Y7w2WAVR5DLIOyDE86lvj0b0+RLBOk2eYx/FofJsl6cfFiscDJyQmyLMPx8TFGo5HpJLkqx5kvP5fhFoQ4ckPzh+DkcnxpfLVMXa50/J3clQds6mAhdYXww+uGWLtQjhOduMJ1DEpDd8TzPHJuucad67n8aG0Np23YspbN5HMQXpdt7bNHrXmkyVwNON9w2UBlHetEK3t7e7meQHdcn56e4vz83OuclvfFXcddzNr408LVMvdXlqWlbdBg2bHdVbDsj9C+Gw6HGI1GOD09BXBJw7G7/+sEslX4tYBke/A0sq0+vrbrwG2JmDyA3daQPrF0PItXhdKYLzBj4egrJ3RHfh16VSjI02RiNttZ+Pp8nj45LU+BdZW9CzxR0pY2r63FTHXgz8vlvpbQ8uX1RtaJOCHPrhNC+5KuGQSQ+0l9bSl4ZTQnDH8nEWk0Gtjb28P+/j56vd7GZOj3+xuCK0kSTCYTtSxJTNI55INdmDSvoRrs2uQLhavE2zcfYp0lV93nLqNO4zMxQtaqj/L6yrEcCiF18Hqkw0vyVQogaA5veSxDiLLC2+lSwMuOdVk6sZz6oceZhuBl1et6H1ueD1z1aQo99YNFM1wWLxYLNJtNdLvd3OgPFfAuXCTIeyGzLMP+/j5u376drxLu9/sbsl7DvwpY5cg+9tFzDJ/0OVelLhJKX7wOfhT1YrHIdxg3m02cn5+b+Xxll1W4Y8aL6C22bEnTPojht7zd/O46KxhrlVEGOB0kiX10D6Wl+mR+F26hOPig7Fzl/ePrJzknNYNLS6PhR2klXRfmXLbeKbucLLEYLZB2L2gzARppA6tkVdipWtiJSUHSRnZ5VDEPnK4uA6p8N2weF81EevY8b1eCQv18p25+OjG/SxasDPbA3CFb6KzN3xuBTiOAae6SzdiYr4ppCu9Z4FMNylr8lONAzzTHl4KvfF94d1F3tsqwHC+xGC6wHC3X75i163OycUfneDzO5Z9rDsc6ujSoIke5wzIEFyn/qAz+LES+VbW7Lf7In4XIOg0XTWfgv6uCz0G7SxArU/j9upquZB2DyeWhj/7K2nLW81BbiX7L8kJ0hlAImctamlCasvJJ28Jla/ts41j9zQVEF3SFAdnAZMdovNUao+vwW1DdBJodYvFdaef5xjiUD4fanb53dciuXYNQ2rX6n3gYbUIifkiLGa/K38zHhnzk5C8vewSpa/74ZKgvP+WxaMxXtpVHswl4GRZo/MzHD612WO22eJJr3tapi/D6Q+a2a25Y7XPVrdUnn2k2X0zbfbaojyZ9PFTWEeNbqlOfdMk9Fw5W2hjcrLF3ybc6+aDVxhD+UGU+uXiTy/YIpTee1+Jj6s5YbeW8Bvv7+/jDP/zDwv0JHA4ODrC3t1d45jvrnkOWZRs7aF/Da7gquC6F3wdSsa+jrDJQpv5Go6EeaR4KdRnLWh8Sc+ROhroUJc0B3Ww287rJMB2NRsG4hz7noLVXU5RCDMYQkApgmXKuch5u08CSAthnDJHD4uTkBHfv3sV3vvOdDdksdwW6ynXBarXK72rpdrv4/PPP8eWXX+I//sf/iD/8wz9EmqYYDAY4ODjA/v5+dJvqhNg5HpquzNhbiqLmXKLVy61WC8PhED/5yU9yg3q5XDp313OgPifngHViCU9fFTi/0nAMXekYk0Yz3mS+LMs27rfj/cHpU6tLrtgMAeJH0uHMy9Lu5LacnGUhxJmiGeDUJz6HIS+P9HZtZxkBpZG7YfnOJ07jPnqnMqhO7R7IxWCB+WCO9r022nfbSDspGs0GGq0GkvRi1yvb/Zqkib47lu6RTS7ojt0JS88A6Dtl2XPXjtiN39DHKSgAe5nY/s2+5zTBApdWEFa+o+dBnzxwy+vRULecdVmxjI3nrB0FnAmPZYbldInhb4dYTBb5O34vYQyMRiMMh8M8aLBtJ2xZfUfjffwTKDrtQpyKmh7ocxJxfFy8V3NIuJwiVhreHq1MCyidJQNCeJPEk8uFmwiS71sOZsupql0/ZdVjnYK27fkFFB1iFm1u07YOmYNWuioOSI038LHUeEYdQAv5Xrx4gTRN8eDBA7RarZwG6EoD+W/NadknVz3nqtZXhc5dPNVXpwby3s5XEWL6W+tfLSBxHUA2GOnS/X4f0+m04Cefz+cFP7vLn2/JUv7OZytsA0iXqYseY8ae81xLpmt8WdLYNvomxP/p00G0sawTV01fcPksY/W2KiB5XRVfKgcL/zInqcXckazhIOvUcChzigOBnPuxbUySJNcTQ07xcW0C0Hz1UresUy8PpR8tny+uUODS5ByxFETtWavVKgRXpHKnXepbBjQH0auqOLyG3YCvM32FGtQyrS+f5eShvFUFRFUIMUYt412mkQq87Cep9Fl18b6SznyXImXxTGu8tkHvUrnnd6OG5pflxOTTYFvtlN8tB0pIGZwmptMphsMhXrx4kcvT09PT/KjnOmmfyloul5jP5zg+PsbTp0/z9/P5HC9evMjHcj6fF4JSu84ztXnKv/sMB6s8Vx6Lz9FckHPCwlE6y6x57HP0lQHuICPQjnWXdUhDy8WrNND4lzavfA770LJDjAM+R8j44caNpXRf19yQckaOheVo4b9dCz60vuZzidOvlF+hfN10Wq8yrJYXO2TPF+udrh0ACdDIGuvgHZkg9Jmx74nyKf6TRL83tpA+U74rn4W7Yi/y52UWGid/Jpe4K1DIz9PIoGhWfJ7ny5Tv9JMfPQz2LsPmjlif/kR4aLjnH5mOn2NHb5ZlyMYZslmG2XSG5XSJxXSB1dy/Y52+1+FwteaCBXXwBD6PXTp0qBPOxw9i8dLKcb2TZbjqlzxM6tVaXaFlhYBW76sCMfqrlPkan5dpQ+1Gy/YJ6XNfvfT7VRg3TefT+lhrv6tMXxpXPpmX7BWyXcjOsPQBqRfv+jj58NNs+RgarvqujJ7sK6MuqCp7tbIIytCOzKPJ16ukR2lHaUeLa31ntV3zB7nK4PUQWP6k0DHkdoKrXiuvBrG2X0w+F8Tk5/1ZBZfQORPCl1zlaDQUQvu+MbV8Lj5dMVTP9vFHn03r0qVDeKlG26H0GTqm2vytQssx/eijAR/flfwV2FykTT4WLSg7Go2Cr7cI6dNY8MmCmL4sBGOtHa6xEHJvjYRQZgHcDKXsNbyGbcNVzoFXdb5ZylBsGZqwTdM0P1aWnyFPQMfekZApKyg0o44rEy6lldLF3OMQCmQwSOcJgIJg3fWdBHUonTFKLvUT7cQZDAYYDof5sbbAmnaWyyUWi0UwjrGQZRl+9rOf4ejoKH+2WCzw+PHjPBA7HA4LzpRtgtVXPkeGS2nm7/hRt5ayH+OgtPAhnDqdDprNJlqtFqbTKabTqbNuWQ7NLYlznWPByyIeliSJel+cq+46DATpjPUBd8pbznl6Lo/3lPVwOqJPonsKxspjTK8LLAOAeLzWVpmPr86l0yxWqxUmk0n+nJehOa3kUWp8fhFO9KmNj8VTNUfG/HSOxfkC7fttNPeaaC6baLQaSFspkjS5vDs2bax3wNL9sRf/SJDvmM13uTaywm8A+k7ZdUR1487YQh72PD+mGMX3/NnFj8t2K8f6Fjtm87sWfPUFNfN+zy4/Y3bHbqKVyQfF5wqu+bhnm+ksHLMsw/L5EsvjJU5OTrCYLwonj7j0PIveuK4ied62oazzOBa/bTgorHr4J5eDPpALziwHsvbM5wiifDyvdg+75WiRZey6LusD3mbS0bXjiDXZwecYLd5x6QVWX/l0LGtcy9K+bE8dNmFI3THgcw5Xze/TOS0bhd6Ftofm1mAwMJ3JfF5peFbVwXcRytoSu6Bvvsqwa/TFd4tm2XpxNPkALLDkmMX/fOALclQ5JcnlMynLM7X8IYE0/s7Fjyyw+Bs9y7KsoKMCxauiQvQ5zedn4WHlu2ogfU7e22rZ9yF6VVm/g8SFnoXMB20euHSamDlWhfat02dj/SYEIXqazB9Sp6U3tNvtDX90p9PZOGV3tVphNpsV7sv2QVW9Ud5bz/OGnCjs0ocLubUE5PS1os+hxwjP53M8fvw4vwydgO6MkI4ijriE1wpIfdBqtTb6c7VaeQX8a7geCHHUW++rKpZ1zLuqRmWVOl3vfQae5YzheaTSpjFsnp6OlJOKrBZAiBGkVd7HQghtSYVxW2MfY6SHKOOa8h47l2Lmq0zLg21JkhTuHCUFNVTxkWk0xyUdfcSPY/ziiy8K95muVisMBoP8NAyiYVmuhQvRtAzmheDvm4Nau7heoYFmlEgeJZVGF56cB/jaQwE8wH19AwfOXzS8Y51ivvnIedhisdjQz2JlgmsMNVp2OUnpHfWj5LeWsh9qGFnt02hBHpXsciheBUhjiuPE37sc5lmW5QuK7ty5g+VyidPTUywWi4J+GMpLKWhtGbuuvmo0Gjg8PESaprkDajQaFfNkwHK8BJbrz0argc6dDpJmgnw3bHYRdE0vnq0ApADtXOXHFfPdrvx44jVCl+0q3Pt6kR5AIVCbv4P7O91TGw3Z5vfgYGyWFb8bAU8zCCvrNPDaCKwKHOVYBu3kXQH39u/hfv8+TqYnGKUjDAYDzGfh19v49AYtGBgDZXmA5Wjz8WvAlvNlZGgorq46eFtCZQDPJ3Vrbcx4+SE6lmaLhPJFX5myvF0HX7/w36H9K/PwTx//12S9NR+s8kLwuwmg2aeaIzhEj3bpJCH6rhwjX1la/VraELtQ0ztv4nhep17IQfZ5FRlnwbb5n8/e5HjE0mpM/bKubYGUS7SAt9Vq5b56H3+W4xzbfmlLUDlAuYX1LptWq1d7HlOX9jtEnpQZ1xD7mn8PuWs9pI5QPU/rj5B5wsff1T6y+yx5T89dV9ZIX6iWn9K5cPZB7DyQfh5ffk2PjcHN1T8yndXfPlsn5J1Vt5bP0iUpr3VVhTVPJc+x7s2ugwdrvNIHZXyYBN5Q7mKxyBm+hCzLMJlMNhyJrVZrI0o8m83wm9/8ZiOK3Wq10G63cwLy3X/2GuqFTqezsf07ZLXVa3gNZcElWK4LXEJDA1cAhyumriDQbDbL74vkAp0vTvEppzyNJfA0p0YdEKLUa8qKhUOZwE4dbfGNfagQjlHoQ5xZki64oSX7vup8ssr/6KOPNtKmaYp+v58fMRaihBKQ8lQnHfrqTpL4+yJCjRvLiRmiOBN/oAVtrjkU8sxXNwfSz0jOhzjCuO4mnaNWX7jo3XKsuxziVjnUhxIvAoknfWoGndUOC4csW+8C7Xa7WCwWOV8nutsFfZYMfe3OV5ob2vHKFGR++PAhFosFlsslRqMRJpNJYeGGzCeBG15l5n6j0cDDhw/R6XQwGq0DbicnJ0iSpIDDcrDEIrtYINJK0Gg3kHZSIEMegE0aCZLV5a7YJFsHTPldshSULdwRy3bI5sFBfg+sEoS1dsiui8hAxxRzMHfKFhIpj3if8vdKIDP4mGL2Xf30gLaj15STGdw7YQVuWZYhW2V4+/Bt/O7bv4vPk8/xvPccjx8/xmg08uLmcu7QfOcOstA7vWUduzD/dwEsx5Xm8OBjEeLA0vh0LPh0Mo3PvWpjy/u9zBUYmvz26bwyP0+r2Q4xDjJON3XYHFcFMkChycxY3mI5g13y2KXHUlnb7sMQx/JNg1AHPk/vSqu9D7VJLdxeNahDFl+nPJf1kj7e6XTQ7/cxm83UYGxZ/4V8J+WfK5Bi8VpfHXWCj0f5+sXSUULyhgKvg/wB2+CpIf4mmVazg33lWXX7yvT5TLQrNMucwKoB6fghPFbirdGFpi/K9y5/iAvP0LkcU25I2ir0uM3TYrivXEKsrIuRxdqzqnO2EDG1dr9KSNMU7777Lvb29jYCeVmW4fnz5xvGMAV0tfQ88Bdk4N9wRewqQGOe1v29Pia4Kw7F11AO6p4vVWlBM/5cNBZjRJcxuOugbWk40zO+UIX4q3b2PR05Sw7zUIHqmru+MuqgCc1Z4qrDZRyWodOyBmdo2b66OFCQ0Xesh0up09pC76yL7Ouc2xQcTJL1Mbr8TljCIUkSc0eshpvPMLQMuxiQ9dMckuMRgq/m8PM5jzWwnJlWH2RZVtiV7MKTv6PyrBWoWj2kjxGO8k5QLY9sgzU/fHRBea3jrCyewcvWDB55/K7lRNf61mVgybIIB5qPs9kMvV4P77zzDiaTCQaDAcbjMabTqXc8rsq5Ix3k/JkL5vN5ThsUmF0sFvnOeF6+NTY0B2XdlpNV4kw8icpvt9sb9auyYwnMjmZIOymaty6OLW6vjy1O0iQ/sjhZrQOnjbRR2BlbOLa4cVH2BZvKVmKnbILCd2cQln6zgK1sc94u19nE2qts83vepyzAWbhv1XNMceFTlOPFEdgc54zl4WUE4J6tMizHS4wej4Bs3V9H2RG+wld4+fIlhsNh8CkDEiyHdqzjqc60sbyB6xiuIEYMD3DhEuPolXJem7McfykfJG+QbdTKk7JLkwW0GJwvTPq62rsufV7KdT6eUu5LCNGbNXks8XHRbox943p3Vf4lXz2+d9oc8IHLGSzrrNK/vrbJ41ZduLrq8OGx62D1gc+uJpD83CrfKiPUkb3LfRwrc6vw9uuQCz7fymKxwHg8LvjQpJyV5cX0g1W/PLnLZTP75APPb/lPyvgIfHyuzHj65lRVGrF8SLItml/DlV7WQZ+uPnLxnRDQdDYtv3YnaKPRKGzq47sgs2y9AJv8piH+Eg4uG5/e+3iqFji37AUuq3x1a3lc6bT28H6OHV+Nz/h8Kb62hLTBBZIWqEyNbmj+uHRHDZcQnYjy+MbYeucCc2esK3OapnjzzTfR7/fVtCcnJ3j27FnhmRWIyLIs2niuOrC7BD6l1TIwQxgtByJc+czHdFxHDOwKlDGersrgqguq9Heo0yfWORTCyLT8Wlu0YGyswuRyHJQda5+x5KrXFWDWFCtyBmn3t2rKLA/a+pQebayq0H+VvCGKk+tdqBIh88TWUyWtq26X08mql/PvOnivpqgAl6sNW60W0jQtXFFAOCRJ8chkH/5laKWKoyVJLnfLhezctfiDnEcuJcx6zh2WGt3KZ5qTzZovmoLv6y/CicaP8JNBYK0ejiOAQrt42VZejiNvo2aYyeeSn/My+fMQXdLFf0J1S+o3UvybzSYePHiA0WiUzxvrRBmtrrqAO1p4P/P3LlkmgRu7SZKg1WrlJ9/Ilcku+gmZgxIIL34ENVA8eceal0mSANn6LtllZ4mknSBbXjiq0kZ+dDHtjE0aCVZY5fkKxxaz/szrooArBWmNoGzh0/dsowOszgp4TsFL3q/ZRZtCjyleZcVPeqfhlcmfGw/8AVjtHW9HtsZlMV5g9GiEJFvLo5P2CZ62n+L8/Dx3StYFlvMkBKrI6bI6axU7yCVfXM+0MuXvkL7g9qZsf4iuGOME4TjRvW3WqVwu/e1VBcnzCLRn9Fzm1/JYTkNepwvKzAufHbltP4BLv4wpQ+Z12aCyDmkLu+ZkDL1b4+6bi6E6SKwP4FWD0Dkh88jvks+T/sp1+LKLmOqGMvw2pJ/KpN0VcOG7Wq1yW0OzH7X8msws42/TeI0Lf4v/7/o8d+lJMl2IDiHzWM+s/tLGs4zuJ8vS6is7JjH5rGBsp9Mp0AhfZE86G9mHMaD5dvi7MrqCxmvpt/bdpQvFQkz7y8xznq8qHppvS+Km5dHuGNaOKeaLRLTyfT6QqvZe2fzOYCwZtdrFtJ9++unG5KHOCTki6jWswTdwZZR4TuxJkjidg7PZrOBcpXvP5MXiuwxX4bR41SG0PyxmFqIMxBzzVodgClUUy9aRJJvHUIbUw40eMoJcQixEIariNLwuqKLo3ZS2hvDqUGfRVRgqPACyWq3QbrfR6XTy+mnBQEj/k2NVXk0ArHWKZrNZWpEmfCxwHb/L+RfnZzQWvhW4rnHSHAmWcm4tjqKjy2OdV65+oWedTgftdhvvv/8+Go0GHj9+jMlkgtPT04JBJPvHap8LNCPH1bfkICJ9Bdg8hkbuyCb8uCOdOyPkuHLZwN9puITIM15Os9lEu91Gt9tFu902j+PmQcxQmosBbby09tAzbcEd0QHdD/vkyRM0Gg3MZrP8SGiqg9rE9cgQCHG68TShJ7TIclfzFaYvpkga692wzYMmmgfrnbJJmqDRbOT3yOZHF1/80w5ZJBf92bi4I7YBJFjvmqV3FKTM+9zYEbt+iMsjiBP+OIEZhNXACGby74U+kwFZ+T3LIAOgeVYqJ4Bd++6H1fCVeBZwWWVYTpcYfjZc3wu8Wpe3XC7x6NEjHB0d5SeLzOfzjZ3TKo4OvU3jMVcJ123TVGmvi3daThgNuNONdG3Ka/FV4luuMdNkKTn+lstlwSa+KXpmnWDppNJh5ZKhllOav9fq5TLTJZ/LgOUg3TbUgX9dPMhXzteR3ncJJN/xjXmoM9uqi5zZ5CfkunRV5/JVQ8wcuQ6ZXieE6tghfLiO8aV4gW8hnJQnMXWXPcLXlyeWDjS71lW+6528iqpuqEPmXYX/iXa5NpvN4E0HtGGAx6pWq1XB38RtUi3g5jrFruy8iOXBBD7714JQPVeWtw0eaNGKlCWudJPJZKPds9kMg8EAh4eH2N/fz8u4c+cO5vM5Tk5ONjaNWP4C61ldfKVsnxairNL5ZzkNAeD09HQDkTJOpZsi6HcZNIVMOlEBqCvfiKERyB1PFoQ40r6OUJdyUydc1dj4jDzJvHzBp7KKRIiQ8dUdApai6wqUAJsKQIySqfVJiICT70Pnd9l+DE1XpzCLAWvc6py/Fo8sa1BcBfBxz7Islw/kDNWCp775ph2vHNMHPqe5K731zhpn67lrLLU0sk9CHNRybrvya7oXL0u+o/IajQZarRbeeOMNpGmK4XAIADg+Pjb1BqvOEJBBDasczbglfPmdoK6gqwsHWYerXWV4uhYgCG2nz1GwzblvObylQ340GuV9bS0UCMW1rJOP+A857K38G3NhBawma5m7xBJIgaSdABnWO2SxDrg20ABWANKLtmQXfZBhHSBtsDbSM/4P5bv26fqu/XaBJxgrd8Hmz6lvfMHYKFSUYKtWjvzJ34tAcLbM1v+rDKvpCrPjGVbzVSHfcDjE2dkZgPXYt1qtjQUGLr5ovedprlunj9Fpy/LpKiDnnEu+as98c5m+U1pLx9Xkjat+nrbdbmM+n2M2mwXjFAq7QEOh4NJjNB3EGgstj8s2sXSmkL4L0QNddHEToIzPJYQnaLLfp1PFgK+cGLv3uvxM256/Ibq9xKcOoCAFD4Dwa+NiIFRv3ibE0EndPszr4ivWHLfmsOTnlh/JlY/np3fSr2XJ6RhepOFQpp9D6MJHD77fVjk+qMM3FuJPidUhXXLbByE8X8r65XKp+orkmFM+vojEp6tpOyh9cyMkPa/DZW9ouoiL5/sgdBwtcOnSMeVqPKNKeUDxCgP+bDqdotvtFvgMLXqXZVXRF3zjzD/LyhCNjxWCsWWFMIFrZUyo4nhTFWVgd/DnRw668Gm1Wvh3/+7f4b333gMAfPnll/jP//k/b+ygbTabBSa5zQuZbzrswvjfRHAFHuoqv06DLsbwkHcdSCWZ7okNFf4c6IhMbUGFVc5VOBilcK7bwC+LS51pY8qR7Xbd6VIFl9hx9SljfJcIle8rj3YljcdjHB4e4h//439cWPEIAH/zN3+Dr776Cp1Op7AT1OVkpU/XyknLcehzuvO6fUEyy8ikvtcMDV6uT2mXK/okbmWAAlnD4RBZluHNN99Er9fDYDBAo9HAkydPkCTr3Z109A9vL4CNXSsSHzKMZJslUD/wdkpFl4yzXq+Hbrebn84ymUxynidBK8vV17JtPI12H48mP5Lk8m7lTz/9FKPRCKenpybPpd3m9+7dy+sZjUYYj8fBMkWb41peTR/ndG3daUzlEb48/Xg8VnEsa/S46Jkb3cB6wcBwOESz2cRsNlPvOXYFEggW5wssR0uk+ykanQaavSYazQYa7fUO2UazAbpDFg3kd8eicVF+gsJuWfmZIcuDsvnuWQCXG2HXaQtH+Sb8a6I+L3aO51kea2UB0ozRiQh6Oo8O1nBR0hTa43qv4ClxybJ1AHb0+Qiz0xmy1UVAdrFpe7RardxIJ5rlq6QL5VNTPA5HLgPK0vc24KrwKNvmGIdf7DsqX0sr74jnQQZL9pOsGo/HaLfbhTu/Q5ybMXCT7ELJl+vCXcpnqdNVmWsWXWg6QZ124C5AjG/NJS/l81elf+qA65q/1jhoNrxrvF41mrdgV3yw24ZQG0DLp/na6ugzqV/F+nwsu22Xx5O3z3XVD4HPr6DZtXTii5RlsRvfquhddV6RRaAF8ix/AdUt/URS34/1I3N/Bb+SKzR/CFh+qpB7gUPLLIsn98XUCTH6Q0xbRqPRhn+bdkPLNuyyrNPaqB5TXIUIXc5OX5kxdbrKuyqBvC2jJaZ+qtdnjJDDgqDT6aDf7+Pdd9/F+++/D+By14lG1FI4Ws7GMm3gzHaXBe91QgyTdjmPQ/KHvIsdb1cwxMUzfKDRTpXyYvPIcXEFH+SzqsJKHnVJaUPKDqWnqvMxFJ9tgabwAfUH5HkbLaPChaPF+2L7v8x4+QIiVsDMKoPTZ5qmuHXrVn487ng8zq8xoEAPBWNdOPjwj1XCy5Yhx1YLbG1Df3LhHZKP3/VLwcx2u41+v58fQy0DEFrZMX0dO+dknVR2mqYFIzWmj1zjUIW38fEnY2YwGGA8HmM8HucLZLS+azQa6Pf7ef3L5RKTyQSArmvRc1mObIPloLEcAC79WabhgS56Hqv7lnEG8HaSwdVsNjGfz4NoX+3Li92WyfSi/5MlstZFPWkCukt2hRWSVbLeKZusd8qiAdB9srRbFmCfCfuH8h3Kd/Y7QWIGaS8bZTW2+F3bFZv3hwzGyvyeerU7YTeTO4KzMgh78Wy1WGE1W63fr4DFaIHlcOl0XEh+FQsuXk/OmtAjsuuo10pbptwqzlZLZy1Tns9WL2Or+IDzDpeziTvhXLLuJtumsTqJld6nF1m2im9cYwNJrmeW3h1Cty7H4K74JyxfD4cY27lMXl8ZMaDpMlqaKjz+pkBM+0LowAeUj9+zZ6Wr4lfaNmg+z1cdfLyqzvLKQFmfS4hPLaS80P5wyQsrX4xPS9pJPns51n8k05YZxxhfFYG0VXma0Dq1Mrmuxo9xJpC6OAVoLd8ML5vjp713+aEseorxacs0lr1u1cvTaDiE8ugQfSsUXHaCq16fvNFA2zBKNLMrfL+s710NxvoGow7DTkKsorstJ1sM7Ipi2G630W63Aaz78fz8fIOpvP/++/gn/+Sf5Dh/8MEHePjwIfb29rzlz+fz/J6wRqOBbre7sSpnuVw6GZkFsQ691+CGuvuwzvKqGrPboI86ywwtK0TxIUWnjJCh8svMx6qgte2qArJXUYcFoYYRD24AxdWNu2Tk1jUviIY7nQ7eeOMN/OVf/iV+9KMf5fIkTVOkaYr5fG4qtaQ405xwOfx4EM9KowWSpDIfogPJdD6HUUhgzGqftms+hl4ODg7Q6XTw8uXLPHCYpinu3LmTH0FL9fAVvpbBFYK/xe8txw8FjOWOTn6XrdZ+aYRZDnRXf0mcqL+lk576iPAkmM1meUC11Wohy4r3K/OVxc1mE/fu3UOv10O/38cnn3yCwWBQ6v5k3h8h7eRptHRyzPnuMd4vPI1VlgskH9TeEVCddKS2y3nLZY3EUcJytMRqvMIiWSBJEzRvr++RTTvp+i7ZlnGXbJLku2TlDln1/lgWjC3slL145mq7F5Qg58YOVFfg1arOMYwbgdgY/MBoROCVrTJMX0wx+nyERnIxxxb27m0Cute4jMyyHFjA+kSgfr+fnxQwm82uRaeqClep47qclxy0e6opv+VECwna0HuXs0wrbz6f48svv8zrr/MO712AKnOjTPnyZAkuI7Rd6z7Zrf2+arju+jnsgo1wlbBLfW9Bmqb5wtIyO4220UYXnUgfAZ+jnIfyMnaRL1b1K90EsGSi9V5LQ+l8ZflwCLUHLR+IBVagpg6/SJkApQ8sf5PLvtd+k75BNqO0d2VfarKVIFZmu+SttfB2W8BtZgI6mU22keNNtnu320WSrE+qWi6XuY+J8vAyWq2W6Zuoox3blM9JkmychFgVb42vh7QjyzI1rzU3YviAlla7T5bXGQoWTdcxbmUD3WowVma2jJkYJELqiYG6iF1O0m0J9m2Uy89Mt5yH7XYbd+/exb1799Dv9/O89+/fxze+8Y1CeQcHB7h3717uVOS7mHg7uLAghe4qjIOvg9J108GnOIXSiRzrWEbL63Lldb2LCUKElGkJN8spbuHge3bdhnrdQi7E+RZaR4ygrNqP1o5Pl/LMnVI+g6Qug2KbsFwuMRgMckVZBkikMyC2z2MDQaGKXKyskQ5HrUwZPIzB13KOcHwtyLIMnU4nD8g2Gg2MRiNkWZYvtAoJvMr6Q/pI069C8OXfaaGX1rcuHELkB6dFrf0uuihz9ze1ZzQa5Qtt+BE72pyPBZdOy/mKRlscyurFsXOYt1cbM447540aP7Hqt8pNkovgf7bCarrKd802mg0gwzoQu0o2g7JZku+WTZKL78k68Fr4jsvvwMU7sAAtoAdEXV1tdG+h3TIQK48fDhmiGPLzlKfhlmXrvp6fz4HVGsfFYLHeGdvYXCTjRSHbXKBB32mcNZy0OugZ390eOx9D+HxM2TFOU58slXPKh2vMWJTpJynfXPLOZVtInibLdPWL3GHxdQOfAy3EKWv5i+R89PVz6HzQ5o/UkSUd3fTxLSOLtzFvQyFG373JII8StfiXTxctCzHlWvaki/9rz3w4+/w426KJMj4IzpfqxquKnzlkXGN0A5knxDaywEcvPjutSn+H2C0WuOZkCJ1Y6UJ1Pk2Wch8C+fP5d63ckP6L8Xm58oeMUxUZovHMEBqlNNxHoAUnOe7L5XLjajg+JjHtDPFpWBAiG6w+kHasD09fnTE808LFhW+oHq/V5eN1lt+kbB3aew18uMSANxhrgXRc3VQF10VU26ynDmg2m4WjhzW4c+cO/sW/+Bf5PX6Ey4MHD/DNb36zkDZNU/yjf/SP8jtjP/30U3z00UeFNEmSoN1u58HYxWKRB2+3DTeVxm4y1OmccClk1wG+ue9jzrGGhW+Xq+YsjBEyIauj5CqmXbr/+TqN9bp5Cyl6FHyx6nDJ0Kt2HlUxGC2YTqf4u7/7OyyXS7z11lv5fZmnp6cYj8eYTqdIkvVdKS5nYKyxGeKQlnkIXIq81ieEv0wny5ZGlWt86R0tuKJn8k4T/qkB3RV7eHiIt99+G++//z7a7TZ++tOfYjKZoNfr4fT0NE/Lj3/l7SN8XXWGOGZ86XgdtJiB7oklXGjnrkzP8ZXffQ4FyzmlPZcL3uSuXa0+jud4PMann36aHxU9GAwwmUzQarXMnQchjnJpsGgGTIhzmjsFYgycmHnqKwu43BFNcrPMneoakIOD6Gg6nSJbZlicrldlZ8iQdlO07rTWAdh0fY9skiZopJe7Zenu2CRx75DNn4E9x+VvjlfUrlPZByLYyssy76HleeQUEahsBJE1HDZeKumyC/xWGRajBU5+fYJswQJpKB6HW9VhJ3eqc14m+TrJbH5yBd13PpvNouu/SeBzRFUZg1jwyQqX44zzfEs+aHxe27H5dQFLTlL/uRx+lE7TvSx9KbSPq4yFtUD9VQHLXqjiHH4N8UB0Tos5aMHjLh2dqIHmw5W6c2zwZZfbGwJX5f+tGrSisbF8RpRum+PhC5AQWLa4T54QcF1Ms9W31cZQ30GInyTUl0InhXF/vcRDuzPTkqlWsKgMbZQNprnAmheyjZIvaTY+xS20dPwaKSq/0Wig0+lE6SMWyA1pZcu0bGjXiQTc1+gLQseCteu1ankhfmfph3DlifWVbtO3Ku2JUDCDsXU5Vb6Ohs1VgZzwdIyWPMaA75yVeZfLJRaLBZ4/f46joyPcv38/d1o8e/askIeCsHUwr9ewXdCEFVCNMdchfGOV+1CwnOkxeTn4mLXmDLKcQyEOoRD8LFwsAS7HnY7/DOkXq09cOMRA3Uacb7xcimTdvEw6peSRfJZR4lKcy4CPJnzvQurVaIIbSESb5+fn+OSTT3B0dFTYgeJqH6drXxpNEbbmmG8+uRyJIaDlLTs/OG1o89znrKb30+kUo9EoN0AWiwVGoxHOz88xHo8LRxPLdsiAhXzvwyeWDnma1WpVOO5X5nUZ+HXNa9/YcRqVc5+AdtglSYI7d+7gBz/4AZ4/f47f/OY3yLIM3W43L4cC+1rgnX/XnOSu/idnRsi8kvldPIpDqFzjwS+Zn4D4SKgTxzdfNf7Gj10uwBLAFGg018G4+XS+vq92b32UcbISwVgKziaXn1ljvQs2awj9IMlARxbz4CY/vjhxbEsNua/VzJOs0+flW4FZ+Y7KcNUl3/GAMAVgswzL8yVWsxUSJFhOl+vdyKtsHdC+qMfSaTTgNKfRdaxzkhvT8/k815t2aeGaBhp9W3LM4smh81vrZzkGlgPJpXuFjrl0Olt5pfzU3tH3unXSVxWsfnGNiU/OJMl6QZt13ZGrnJCyQwMHMeXuAvB+jtE3XXPGmp9lbFZeXlld2ir3uoG3q9FoYG9vD61WC6PRCIvFQr3iYpfwlyD5N6Dz5zJtcNlass5dgJsgC6S9YaWpCpx+Y+RzCC4xPjqtrXX4RmLK0PihxXdlHWXnDgeX7I0pw+JFIX7EEAjVu0J10xgb1IIQOaTprFIfkf0Xog+50nGIoQ9pk1TpF5+vLPQ5fxfj5wypL0TP02ygELutTN9Z89nHJ613pXfGVoUYxlQHE3tVgffLdDrdWB3ig9lshuFwiF/+8pcYj8d4++2383dffvllIW2/3y+s2HkNRXhNp9VgV/rOxbxjeJavPB/T9gk8LkS1crhiQU4OiYt1d0IsPnVAjLJfZ95tAPUVXwnmG2vNyVm3MVUnWPyO6Iy39+joCI8fP8ZsNiscyyp3fpYx+LRVlD4l0qdMW45tVxoqywpQSmelnMM8rewX665Cq520WpL6eTAY4OjoCFmWodVqYTabYTAY5Auu6M553gb+T2XSp4ZTiALqokFpvCZJktMSv0tGBtBijAgNrLRagEcq93zsrCOPkuRyd95kMsE3vvEN/Pt//+/xp3/6p/irv/or7O3t4eDgAOPxGPP5POfJ0+lUNei1NvP+0trA00iHATcupfHoqs/V/xpodbtW/NJdnTQXeDBZlhsL1Ga5Wz0vawkkowTNdhPtThvTsynG4zG6b3TR7Dcvd8KmIhjb2NwlKz/XSAu8+dckfoesVs5lvJUFXvPYqLGIQ0nrBa3M7PIzp5PVOug6fTLF8nyJZrO5lhNL3fmiOcxiZTyNMXeMh5RBecbjcS7LXuX7Yn3ppDPMkv2ud/Teem7JTQs/y6nI80lZJfPwz1BdLRZuul2oLZjRxorrM7EOc9qBLueZlDGWrAp1LLtgl+wHH1jymr+Xz1w6mGu+VqXdXbPNyoLVF0S7Dx8+xOHhIX77298WTnMB1n2gnaCySxC6UDtmLHeJ770qdMghZMFTWdD4SWgfhgaeqgbY6gDN5xKLv0sHicGBvsf6QngZdc65WP0xRF74gpR10VcMkC2q8WipD8b4MuoaC42+5L24lt9L21Euwadr1wmka8eOIT+6O7a+XeH7rvmxEYzdFtI+B4oLyV0S6LsAjUajcFQw3/Emmcl4PMavfvWrnJB///d/H//wH/5DHB4eYjabqQ5HX92vQYddoVOpIIQ4yWPANZerBNPkd01IS8e4r7y6+Fmsc4FDlmUbR4lI51MZYcjTySCrDOTQ+06ng2aziel0umEs7oJiHGMMlnXCW88tJ1MMbpqTyLczNiaowcfIMp41AyFm7oSCz4FDO/zOzs7y0xmWy2Uud2TA0QUh93HK9lo0zR2v1C9W/a557zM8LP5FdKY5GjU8XO2QZUn+0u12cXBwgO985zt466238PTpU3z++ed4/vw5hsOhemyMz5EeesSMzOdzHmpzROZ1tTcEZB1Eg7IcH52F6qtU/nQ6RZqmeOutt3Dv3j3M5/M8wNxsNtHpdPKFdN1uF2maFhYtyLplWyQuxHMk/YbMfYsGtXdaP4TMUWoXBZ7J4F0sFjlv6/f76HQ6+e/hcIjVahWkg2pt4HOPju8mnDRemSTrKzkO9g8wn83XJ8+MllhNV3kgtnXYyu+QTZIEaGB9L2wjudwBS/y4wQKd1Bc8OHuxU7awixWXz/UOFX2rTINsvRUWhR2xlDdT0oaAlizD5e7ZDFiMF5i+mObPk4u/1XRVoGONXkhv4XO+DFA5Lh4P6HbNarUq2EhloQ69aluBJc5LyvAFCbHOWksfdpWlHclmyQNXPVR+zNFpZWBX7MIQcPF+nsayMWV/cz3L1Q801wDkO2Q1/VaTX5ZOYckADhK/XXHahYA1Dj7eWraeKn1TV9+G0Oe2QLMFFosFWq0WOp0O3nvvPbz77rt48803cXZ2hp/85CcYj8dXjlvou5D5wcvgundon8ektUDjP9a7UBtdlhOLw66A1pZQ+Stlv6WHyfosWy0UV618kulSNlu4a3wvljdodKTZdrF6owtny9cj8ScfhVY+nbJkjUHInLP61+VP0uqyynX5E+Q4h9RZh24q03Kdg+MlfQK8ft63obtSY/gN7xc+9t1ud4MWOp0O9vb2cHJyki+01+aypVuH8DQXb5DpfO0L1dt8eaVuE+ODs96HlBVTfhldpxCM3YYiGsJQAX+H1mHQvipARw0S0HFawOURdwTT6RR/+7d/m//+wQ9+gN/7vd8DAPMOpBjBtqtKytcVNMcyQRkFKiatz+AKNRBdSgb/7qPHEAEZC2UZfx1GiYWLplRy5Y+vNO90Ouh0OjnPoLzymNJQ4RqquF4Fn/D1hw8sRdmqQ9K7DHZo/WPhFLsqWSq01wE+mqaFQYPBAO12G3t7e3kwViqbVJ6EJLGPGYlR4rVx8tG6NX5lwUVfvvnGA/ouvi6fdzodHB4e4v3338e3v/1t/K//9b/wxRdf5MdFt9vtgvGkKaWaYu9zimq/6VmoTiifc8ep6x7mkPIsPLU5FaP3yOdk2M1mM7Tbbbz55psbwdg0TdFut/P2UTBW0q41Dlb98rurTS76C+njUF4k20T3cfLjKSlQ2uv1cPfuXcznc8znc4xGIzUYG+Js1Jwh/J4fy6nTarWwt7eHwWCANE3XwdiLwHHSSpD2UjSaF3SZZOvjixu4PMY4SfLjh5Pk8hml3wjCsvcUN82SbDMgS/l4eyHknjKc5nHFrNyLhDZk/Gt2+Yy+ZhmQAYvhAqMvRwWHW5qm+ZhTWm2VdKyuajmMSH5I/q8Z4XJ+0SJXjr+PL7h4i5W2Tvmi6SSuun3PfKDpQ672SPxiHTjymcW3+Dwn2cGdcFZZr2ETJM/m8l/bTSz1A/lcA7ouqdVq5TvmfTiF2h4h6ULnzVWDhZMl+y0+Z0FoO2P14Fd9LpHOQvpIu93GO++8g+9973v41re+hdPTU/zqV78qBGN3haYIQuSX9t5FC7H8NMRfJMsP6UfL7t+1MagKUqcNhVB9X5Zdpv+kTRnqX9Hw1XhekmyeCCTxl+VbECMDYuePZmto+cguabVa6jUq9EzaL1ZbXePsG98Qf4r2LrQfrXQhvgRfeb733O8hQdtNKvu6zLwLBekfo0009A4ADg4O8M477+Czzz7D0dFRqTpCoY42hsqN0LyavVOm7FCItUNj6722Y4pjEH3VBGhVoBUd1C8uhpJlWeHo4vPzc5ycnBTSzWaz/KgVAPjiiy/w4x//GM+fP98oM8uywhEsu36P0muoD+oSOqGGnUuJCOUJIcw61tD0lRWCU5l3sXhkWYY0TdHtdvPncrEG31FPyolLUZd4VlHO64Q6x7AMEE2SEmXRnaXghb7X6ozFsS4ILWu1WuVH6Jc56rEszuTop+/8OS/XcsRJp6Ism3+XCrrWhlAjhQIInKbke163ZpA1Gg20Wi1Mp1M8e/YMR0dHuHPnDjqdDm7fvp0HY60d9fTdMthCDL2QZzHveZoYYy/GAJf5NOXaZVTTcxoXXv/+/j7++I//GG+//Ta+8Y1v4NatWwCQH8NM9MrvG5OBhKryRUvncpZTG7QV2vTO2rUe4sCh9pH+Sac2jMdjvPvuu/jud7+LLMswm83wP//n/8TJyUkBTzl3aQc+LTRy1U30L+cA9fd8PsdkMsF4PM4D53x+YQWMn42xt7+Ht999G6enp3j69Cnah2209tc7ZrPGBQ4Jiv9AMVibIQ+wZll2GSxN1kFVmQbA5S7UPHYrnGis6RtBVwqcJpn63AQeiM3W9WdZhvHjMZbjZSHdcroZ7KZFYNzZwI+SleMaIkNdIMdX8jQfcLreln5RxdHpKrOMs6VMv8jnMVCH3qaVofErSmMtAtvGOLxKoOlQloNcgxC7h+QAv5aAp3GNq5RVmo7mqpv0rpsEso1lbXSp827DwfyqAdfNlsslxuMxBoMBkiRBt9vFv/pX/wpPnz7FD3/4Q2RZhl6vh8ViodL2LgPn9XIHI72PgW3a6tftB7gqoHbK6xdcNiuHUP9EHTiGQgwPku92jV+57GMZBNTsbG4Tyrun6bsmj8uADCz6dvvG2OnWO5dstvLG0HcdwK/SkmNWxm9n2RGaziGPTB6Px2g0Guj3+xv5Hzx4kPt4syzD8+fPMZlMCvUuFovSpzTEbIbwga/ftDT8eYx/dJdBa/e13hkr4esgROsAUv4IuNOWG5S0eo8rf7PZLJ+o5OSif0p3fHyMX/3qV6aDej6fFwSEdA6/hlcDpJFrvb9qfKQwDmHwrvK0MlxQN43X1Y9SAVytVmi1Wuj1eurdnJSG3y8pAztW3/oCWi786gItOGSl8ZVTFjfNEaUpDC5l02qHC/cq+GqONKsPqhq3VBfdb2EdvePC1defsbiE0mkM7cSMVSGgI575xl8LoFmQpmke2Do/P8f5+TmSJCnswpQyXtIpGfwyACZx0Wi4rFPPxc9jHL0+Y9Wn2GuGn689ls4ErFe3fu9738PDhw/R6/Xye3r5kbkACkFyXn+IA8wVIKkSbJB5tb4t65STzj7SQ2/duoW33347p2Paxc3bJecfOfPlXTqSRql+66h+ALnjVFtEQulmwxmSdoLb3duYnEwwO5uh0W6g2W0iSy93yq6RwzpAevGZ4PJu2EKA1fF749lF0Nb1nL/baEPg9Myy9X2vhfQXgdhsmWF2PMNisNjIo5Yj+Le809UKjmiy1qpH1kfpNd7lmkt1Gv9l+WFMXk7rkm/55mcobj4eU4UPhODC22fxA58zUJblgq+TX8KaUyH95MofWrf8l+VqjkzX/NXmgvSTWPrFTfBlSD0wxLHt4iWaTA2pPwa2aQdeNfBdavP5+ioD2t39wQcf4NatW/jxj3+M5XKZ34m8y8FY1/zV+GasfNTslhC91leehp/8/qrwcd6Hsp2ueb0tXKrYE4Cu11ntKKOj+OxA/tyl28TW66pTs3G5vLLmSV0yydUn0i9E+El8rTEM6a8Q+aLxFh+9VaVFXk8ohPJArsP49OUkKZ4EtlgscnuI56UTpPb29vJnPBDLy5PBWJdNH9IenrcslJUfoXksvdEnc6rOszJ68MYxxdsUWNsov4ow4Iqn7/m28YkpkyYhQbvdRqvVyp17wNpIOT8/d+5Ems/n+E//6T/hs88+K9yNNJlMCmURTCYTr4NkV2HbtH3V9bzqsE0BcF1AQpgfL1IntFotAMiPcwSAe/fu4R/8g3+Ae/fu4f79+wDWTub/8T/+B7788ksVRw4uRU2DWIfjTXB4cPC1P1aR8xmKsU4RK9CpOaJDFOi65ho/Wr8uRTfUGa+Vw3dh8Z3MWll85x8FJrVjbKgebc7w97z/LaegNJZcCqO1a5GCSGma4sMPP8Snn36aB/roOe8bWUen00GapphMJhv3a1pKsVVWCLgMPAJ55CjVCyAP9FvGrPytlc/v45H0Rc/lHYMuZ67WT+PxGE+ePMlPHqEjeKmPx+NxoS98ThYXzYXosiGOMZfRKPNqdxrJcuh/Pp/ntCjbQjtTHz58iP39/fxUBzlneD+122202+389BZ5EoSr/do8GgwGGI1GeXv4XbcAcufr/fv3MRgM1uWNMqyy9ek1y9VyzSsuAqSNTgPd+10gZXM+wfoo4ovvG7tncXnUMb9vNr8LFiKtfM7yXf5M1AAtIAK32fp/MV5g9MVoHZAFc4xcFLycLIN0X41eLF4aAtYiMl4fOcGtFd4+niDx13iLxtN9wPlLVbvBlb9uHasOh5fkS2XbznkJ162lw0suXnaVR3nqsOXK+hN2yY7UeDn99u0kjZkL1E9cHrgWJvF5GEtHUrYT74+1X7YBIWNv6SgEMXxM1qnpotfdJ9cNckyIn6Rpitlshul0ml/7Rcdtv/vuu2i327h79y7Ozs5wdnaGJCmedOKr57rBZeNkWZbbEDG7p3z2mjUH65A7ZWHX/MxUhnUqTQhYdiNQlKsEPt9QKEgfsixHnphi2RGu8svgtA0IlSfa/NFOdSGokx9Le1bauSH1xc5zLX/oGPAdq5rct+zZUNBODIsFbf7wd/w7P5XQAkozHA7zZ8PhEC9fvsQ3vvENvP/++wDW7T08PESSJBgMBk6bR44xPb8qCNFxfGk0f1AMLVlpt90PWvkFT0UsQ4oVJNtgeFWMOC1/HcZh3WA5JTmuUsHjQoznH4/H+fni0+kUn376KT755JNC2Wma5s4mWacFu66sb5u2XfXsmoK961BV0apKi5aBG1J2iKPH987leA+pm8/9ZrOJ/f193Lt3D2+//TaAtZOb7iXk9/S5DCEOPnp29Z+Wtk6DKaQ+X1oXTq52u5y0oXi58CjbVy7aukq+5HJCcFzqNLRcwSX+XDOMY+gg1gEfUgeVq9GBD7hyT4r5+fl54b5GXzlpmqpBMspbxmCxgia8XMvxaz2n76QHyV12IWMTQiehdMnrlPknkwmazSZGo1HuvMuyLD+amAcOpCNC9h03+MryUJ+jVcoUOYerOKgAbARPeHkUjAUujx8mA9yqN2bnfQjwHf28Tt4PRHd5vUsgm2VYTtb34GYNNm6rDMvZEkmaIGmwdiQXfcmCrWgAjWajeERxdhG8zS4CrpmgV36H60Vwlv/m6bJVhmyhjH12mYZ+L8dLzAdzZEsRjC3pCNRsExf47DLNsUBjlqZpvgCF4xszZ7SAj9UGTQ/T5IWGi0uu0DyXaWN0GSnnOJ9ytcMqN8S2seqwxlTrC4sPyzIsXliVZ/Fyyvg8Yu3CXbIXffoJUKQVS5d15ePvtUVOMq+mC8T2mavvfbpDGR01xMZz5dfy+mwOVx/KOewakzr9Oy4bxMcPt4GPVrbFC630i8UCw+EQp6enSNM0X3hK3+nobdJjLNiVeV+GxwHFcZGncWlptHJi9fXQMmJ1Dq3csvkseqpjvGNksIZDnfa2D4dYW0XaUi67MRauaq6V5aNV2+nSmULmQllfUVU5p+nPMVCH3Ar1+4SmiZEnBJp/hY6uBi7t4/v37+eLYrIsQ6fTwWKxwGQyyU9hsOZ6VTkaQ6M+HTG0HF63j8+XbV+VvGXBuWzc12lVmVkZBboqXHWdddfnKms6nRaOQNF2t/7lX/4lPvzwQwDryf7o0SOzvCyrtvKKl3PTxjmEEZQRTmXhJvbhVUBVYV2lntBypIP4KvuU7rJpNBrY398HsBboDx48wGAwwPPnz7FcLjEcDpGmab6LpKwiRFCX88tV/jb7sYzDltKT0zfkrkceXAhRLnzGiKtfrDGpqy995VRZbWg50bU+8Y2ZJdfouwtPGldZHt/tzu/7CHFkxjxzOdpcwYFms2m2V9bBd/+22+38qgM65kZrm6Rhft+JCz9XMICe8/HyrebmK/XlnNL6K9SJodXNHSp8vvN+IV6QZetA7C9+8Qvcv38f9+7dy4/UXa1WhZNJQuiC6qrCp0Lmo4veXPRj5ZHP6fgl+kzTNNdhj46O8Mknn6Db7WJvby8/cp/6WDs6mMYh9jh0aoPEV5PdSZIUVuROp1M8fvwYJycnefv5TnIO2TzD9PEUGztXgY1naSdF581OHrjNy0twGWhNUNgJmx9RTPVZ5xBnwGK4wPCLYR7Q5Y556g+qM1tleSCW3q1WK3We877in5Lvcj2D0z7/J/lo3QMp8wKXc//w8DBfnEFXsRAvlE4K17Ht8s4uwkkbY8vZwftiW7qR1BO0+eriF7F6AO9/zYEm9Z8yekaIU0TrU04/Gn3wRTuUh97Rb9f9pBa8qnZhDM0STpL2XTRH75bLZa5LcRnFd+/I8fT1gSUHOD+6yRAj+zkfkjuhALuvbgrUMR/K5v+Lv/gL/PSnP8Wbb76JW7duYTQa5Quf6U4/WX6IrVJGb60CVp00X/i8jp0/Pn2cw3XOy5vg++Jg+Wkt+tqm3iHflbFNfHZHbJl1wHXMxVCI9YGElBEDkv40WnCd0sn1NR+OWj6ZJmZMXGlDdM/YPBbwtsuri6y6tfrv37+P27dvI0mSfMH3YDDA8fGxt69i/AlampC+LztfYuRmKEh5JOk3xmeptSumP53B2G0zGWms+6COAbhqxlmmvlAByo1L2lrvctwmSYLJZFK4T4s7VCRj0yZuGYZ/HcLqqmj3qiBW4d1mndbzkHpD2lGFH2j072KSoaCVaxkVVeuKBe58I5zSNMX+/j76/f6G0xJYH0FKd8mS80MLYPjANQaudlcVrNs0uPn4VuHfmmNWc1KFgBxfq17L6esruw7YBp3HOj99PMH328XbtHnGj1RarVbmfVCWISd/a4qhD3/rGQdLSXbJdO5Al7iUmbMx/FI68avU68LFWr2vzZ8q/CBJ1sGbzz77DKenpzg+PsazZ89MY87Hn0LSuPCJzed6bo2rby7x35zO6PtoNMLR0RG+/PJL9Pv9wk5inofjQTtZt8X7pJFG3weDAabTqV83yIDVYrVRZiEJd3ZOVnnAtdvtotvrrne3pw2cn51jNp+xguijGJBV+WMGLEYLrGYr5BtgPfTP39HijlBjNYT3afW6Ai4ajpx+KJBOdpHL2WvxF5/uGFKGltdyOFZxomlzUdMbXHha4+ADWb6PfrYFLjqTciUGXDpCXTKpDGyrLzk9yraH0IZGD1oaqyxtvla1E6zyYuydq4aq4+uiW5etFzrOVfiWxNHiq1r5sXqKr/467MnpdIr5fI7j42PM53N8/vnn+WLoxWJRuA4lptyQZ3VCrI/Gop+qEGILWXms36H9v+0+rgtifVEEIbaOVVcZvGLByiftUSuPTw8oi0MoH9oWhNpuZfWbOtrjmmNV6vGNeVWI6T+XDRDSthA+5iuL3k+n03whMAHZwfyULTohqOoRzBoeBHXZNCFgyQWLP4RAHboA4SDL9YH/QqXXsDNgMbLZbFYIsEpYLpdoNpsbRw9nWVZYsbdarTCdTnOnVggur2E34CoUdJ8icJU0se266iyfVuJTuXXj3mw2CztUsizDwcEBfv/3fz+/M4/uJSR8Dg4OcPfuXTx+/DjnHSTEQpWJbStH1wFSmSir1GbZ5s4zPvbyPg5XPVXuxvAd+XaTwHKklnXSaQqTFiiycEmSBO12G81mE71eD9PpFMfHx6UUMdk213hp99aG0IdmSNLOIU3ekwOJBzMkXXOnHe8714p5bRy1gAHHmS8U8RkoEnigTo57kiSF49o1vCROBNbuX14P4dtsNjEej/Hf//t/33B0amNngcsA4c9chpDlXNecXxb/0PDQ8sTMMX6UbKvVwvPnz/Hs2TP88pe/NPHnzpkkSXIZR/OjbqC6iV5o5/iXX36J+Xyey1u5U94qxznPZyvMn82xXCwxnU5x671b+PYb38bt27fR6/bw53/+5zh5enK5Q7PB6JruqE0al88zYLlid7tmgLZx1uWIp3d7e3vY39/H6elpvmPeBxTA5Udya7TIF4jlfaFcyyL7kdMjlU+7Yul4L3JGhPBGyYMkvbvGlZdTBXxOUYt38D7iZYXqny4+6ytHo+0Y3TLUKWaVpT3XrvFx5X0V9KU6QMopl75BoM1rnx7lkmUynW/cXXPQN5/kTtxXCUJkDvUvXU/BeelNt+0sqDLXuX5H+vjR0RFevHiBzz//HMCl7Gq1WkFO9psAVRztZdpel3/pVeh7YFO31toVcp835+Mu+aj1mWbDuNKEgo9H+8CV9qrHvk590LJLNYjt92378srID0tf1Hxr1wWa3h2qX4fooz5YrVZ4/PgxXrx4sfGu1WoV+PTh4SGm0ykmk4l61yqHGDqV7VgulxvX+tQBkl8B+iltFm4x9ZTFj+MWC1sPxpZlRrFOt1dBwIaAr52yX3z9xBmbi5jqYByvYbtgKcia8zsEQufYtuaeRqsaXtazOiBUsGrfNScA/6zqdOJ5+RwmxxMdPQwAk8kEWZbh5OQEg8EAZ2dn+TNZVmhfxrQhpj2hUMUgDAWLJ7ocP6G80serQ9PGzodtKkl157fmi688wG8gUpmWAq31uVQGs2y94vDevXsYj8cYj8f5sb6x+os2pjLI4KP1GENWc6rzvqE0dHQgf28F2Xh9vAxXX2pttvDVxkoGYfjqT196rQ6Zzkqr5bXScTyIR4fgoOHieiafl3FMhDhrQ8GiCateOQd4fVKG+niGLFv7XVV2JEmSB/x4wFD2k4/HmE6HxQrZKkMjaWA6nuLo+REWswW63S6yVYZ2q43xYrwuJxMOjAxYYQUs2fPV+rl5fLGnrQRpmubGvjXGknf1ej10u10cHx/n/NGan/LfogWtbynPfD5HkiT5qUF8ZxKVIwMN/Lm8QkC2qeyuYOuZBRZPCskX0nfa8epauipzxuL1Mo10Dmvzg9pi4a3V4+NpWjqNH7nGsgovCcHzKoC3wQpIhuAY2w4+7vSdHyUt9S76Hqof0hhzHsD7PE3TXH+wePWugoZvqL5i5edl83lmzbeQ+R0CuzIPYkDiSvNGyombRFMusGwADSzdOyStlS/Gxvk6gTYmMbKpjByzdHOuO3H8YkDjT2XsGe1dXfo/QWw5sfaQj761fi5jc/hs47LzV5YdY2dL2e/S/WU5PtnmwjWUx2l2T4hOWhftyYWrhIO8n1zaVBwfa374IETvqJM3+3RwX1qXveDD3aojBJcQnfJKdsaWUbBeC9fyEDPZ5/N51CqTV0Wh/LrB133cYp3IGvjy+/rYtxqprNONC2NyOCwWCzx+/Dgv58033wQAfP755/j888/x7NkzDIfDjR1sV73ibJfpsixuMYqzVh83aIDNMfEpr5Zze1twFfMq1BiLpV/u2JV5Xfel07PFYoE0TfGtb30L5+fnOD8/z++KonShBqkMPPB6rLQaaLs7ZFpK43J2EtBxNy665Q7/UKeK5cBzGVt8TDRnOb9zTu5c1QwR3gd1gtZXjUYDrVYLaZqi2+1iOp1iNBqZRqpVTki9Fv3EypgQI8LHz2Kc25I+Go0Gut0u0jTFcDhU74ktg3OdkGXr+4DpWFyua1jBA60MbawoaNlqtXB6eoqTkxPs7e2h0+nk98BPp9NCcJMHFvgueu4krto/aZqi3W7nPNcK3BBfXS6XuH37dn5X/XA4LNxjzfkH5eOf/Lgt3l/anaA07/kuaXrOnSxJkmw4Mqg81+5ugqp9WEYntWjLlV77zqGsY9KSazJIGuLE4Gm0Xc9avrKO3thTanzp+Hi4HI1WXk6Hu+T3KEtnIeNipZc8SqYLGTufA5b4I6cvurvdZ6NtG8rSQKhtyttsObm1uUn9Y13D8RrWkGVZLpubzSaybL0omsu3q9ZP6gSpq5aRHZZOGsoruXz+uoLV91VkeFWQY0J6WFV6l/Rxk+ePhBB7OTQIVDeUmduuuSx1eVd+WVbMSRVl4k11g+ab4GDpL2VwJr+Hq36tnljf0lXNubL2SCiE+EwJYnf4VqG5WoOxoU64KuW8Kky4CpSZKJoi7XP+Wcr5a7h68DlS6oZtKDx14FpXgCzGOewykC3lIbauqoKZB1XJAXp+fp6/f/ToEX7zm9/g8ePHOD09LfACUna4EIzlMZJXuAJBVZxOLkdPbKDBKtvllKijPHKOh/JaTbGzHClaXpfidVVQFy8JkVfab21uUoBif38f7XY7V2oHg0G+m0rmsYCcfL1eL98lZylyGi5yjF38Ro5pqFNZ4quVS+8ajUa+UEsLTJBDhPrQpdjL8uV7n2zjaTR69jl8NQekliZEf/WNkc9wJKf7ZDIpBJh88sVFgxpOPn7iAkkLIbqApGX5TvavxsP4O44/P9aWlxkbjNmGfUK4akdWh9YfOneprul0iuVyiTt37qDVamGxWGA2m2EwGCDLsvw4RAD5PXaUP5SOLYiVI8QnaPz4uBHfkEeEa84365hZSq/NE21eUVp51zeHRqNRCGhrbbIgRE/kaX06TKhcCAFtvlDfhji3rT6Wz+R8l+Pga0+ofmiVo/EZiR+NMXB5aoymU2m0KNvN8/Jj/fkzjk/s1REu/m5BiP4e2mecBq0yfHLKwtslA3jdElf5nuMt65PpZRpNZss+qEt/9YGvn6z0BBqPlL81viP7V17pEKIDhOAbC1fV71VA431JkuDevXtYrVb5aTnAzWgPYDusQ2z5EHszls5lPZpNrOW/bru3TqhCO7H9oNlcdUMZ20TmC5GDPj2L1xvbxz5cQtrjk6FSNskTeLRPq35f+yQOIXaxy+b09btWp/Ze6pM+0OzRbfBel25Wpl4trS8QbfXpdDrd6NOQDQbac+K/MTTuG1cL921CqD+DgNuLZeZ3DN+sfWeshXCIMlnVWREKMcbedQjzqnVahhi/V9bHZH1wXX1TBkKVyF2EqoycoE6BVJdDCCivwFhluxSDEF4jywnJpykcmhDkaTUng9UGiYevPir77Owsf//FF19gtVrh9PQ03zHCIWQFUKxQtRxYVvqrgFDnRagxGgJaufQZctSeRRP8+VWsFL6OMfP1DR8T2Tc+5Z2O2rx16xb29/eRZevAD92b7lPo5Xu6O3Y0Gpl3pvqMJZeuRH3BnYdZZq8S1/rGcn5qbVssFhuLNuifAiyuOc4VX82pJ/mqy5GiBXOsdlh8Uho1hEsZuuZ9odVl8RLauct1MUCXDxqE4kttk3Qo+8+lc3M64/hptGTNC9czn9FKdc5ms5zmtDa42lE3yHZS/2rBO5es0PQUa45yOiUjezqd4o033sDe3h4ajQbG4zHOzs5yPkR9xE++4f3mmmuET4gTy9U2ToMaj7LuXKU+tRZ08T7jQXqLxjTHEndKSDxoB/tisciPOi7TPz6a9/GfmPnlA0uuUPtj7pfTcLTyyDSyvb5+dckL173ksi7JAxuNRr6DbTabFY7hJ+A0YrWf46vp0JK++A5Y7aj6EAeWD0LtHA343KJyiD60/vbZWdpv65ksxydnXHmtPuBym5dvOdvKQJUx9MljDi4dxKeP+MaI9D46TaCKrlQGysgdgquaO9Z4UP/ev38fy+USjx8/LuhPLoc4panShm2AxUtdtO7qyxh5ZtkWWrm8/Ovuw1Ac6vArcPDZWj4cysoPiz+H8mxeTmha13sp812ypSpfK2tDhvyWuoJLV/PZvDKN1WeaXLfSa2lcdWj1uOoA4NTzQ+dO6FyMBcsWkPWGlO3qXwt/S/5Pp9ONtPKEJAsvTf+2fofwFh9Y81Hjja55Lp9r5UqdSdqIWl0hPJrTgSWzXH1xJccUX7dQlFDn5L0qqAMXH4OMgV3qGx/EOhFuIuyC8hkLLkM+hAlzkEIhxEC1ynb1I2eoLiEpV8NruGxrvKieVquVO/9PT08xn88xm802Aix8V09ZvuBTdn3PQ+vYBriEsZZGeyfBR0MWvfqUOqufX2XwKTgynZbPUi4BoN1uo9vt4uTkBLPZDJ1OB0mS5CsLtV0T5HilOQWsHa2j0SgPHoU4GaRSaAFXIqVjTDp1Q/pKvtPq0wy5ZrOJvb29/GhUUu7lbiCp5LrAp1zzfiprPNfFO1zlUJtdPMRVTl1zOdTQDQkG0GfIohELyhiYHD/teN3r5HtaH/K7R2X/lzFWXXKTOyYajQZ6vd7GXKOFJpPJZINv8LHV6gmZa9PpFOfn595jK3nek5MTLJdLTKfTwphq8z3LMufR6LFgzQXi7zR2y+USzWYTBwcHGI/HG4smqtZJECIbtN8x+aSscI219luC5XTSyrVomuPj07VkXfIIadf8iuEPUg5beoRrblAaLdDC88ljzC28Ld1Qw9HCpQyP5PXK3Xw+nVb+1vQRi/eH4Gr1WwyPcNEe8QLu7N5lu7oKbj6ZQ+/5Qh7eb7vaJ7sA/CSKTqeDb3/725hMJjg7O8N4PMZgMMiD3BrctL7ltsKu2KO70IehOFTFtY4+j+GrLv+E9b6uq/BC/XS+csqUd5Xgs4s4H5ZpeV9LfSTEz+X67UsfkiemrKsEH11bv115rXyWjqb59yxfjARtUanEjWyckM03Pj1elq3lj+UhWl0+KOML2sa8j7GlNKgtGOtT0rbF6HaJgdYNIUyAIJSRuNLeVCgz6UPopqzjd1fgqvGONa6tdLEOV81xURWHMnm2zYti8SSljYJEckdskqzvoosxpKoKVyu9y8G3DYFcJr9PgY3hKVre0HI4X7IcrT7YdZ7mc/iGguY8lkCBCzruk+7H0mhUGjWLxSI/0pjyxwYRLBw1+WM940Ean9PdB5rTjQcuKPgjFXoNtzKKMs/rOu7ch3tMvhjcrLHiAbm6QevTMu3Sggo+fF2OmirjG5JWOhtcc+KqQTOaCWQwwpXXAqvdMqDQbDbz3bCUJknWO2RpsYS8a9FljIfQx3w+x3g8zu+q5W2SeBCMRqN8cViIfOe06rKFyjjleLmcf1IAqtvtYj6fb7TBx1uq6FA+3EP0AimftHxV5kuZ9mtz2JJTrjKpHE77oY5brVyJX4xOrzl0XL85WAtbXG2RdOqya3n/xvQP5bfeu+imLh6s6TWu+kKcypIXuwIDrjqrgqRjiWdofgt8+ol8J+ebTMP5b1md5jr8T9vS/0LrIfm2Wq2QpikePnyYn5azWCxUm2/XwKIXH86hsjiELkLlQxkoYzNfN4TyjKo2oKW/uerWdAyfHeiSuy4IaYtFq65826CJuuwUqZNbOpQmv2Q6Xx+UxctVThkdXUJs/21jfms6tmXza30g55Zrfll6rk8nkrhxIF9ViN4EFBdjEVhXrIWUVweE8iBfmjrme4w888GV7IzdZdCM7ZsmpF1wFcredffZqzReryKUHZ9QAV3GyVIGhzLtCHXQ1AFa2WmaFgIa/LixUIH6qkJdR/tSP4asXuPpXc5mjp9U/uTKfe5ct5yUu2z4u2AbyhLvR+4codXqx8fHWCwWaLVaeXptHtOz6XSKjz/+OD+CkO6jC3UYckerVR8H+t1ut5GmaT6n6XhliadWJ31qNMudxeS8TJIEnU4HzWYzT0P94wKtHTFjyueHdKheFw+T92uHBAbqgpA6fDKL4+wbC353HOc1tHiBvye+5FrcE2LsWbjKNtXV31WdJBKXJLncYRXrZAjBhebgo0eP8OTJk3y+El3SndXE33jZmuyRuGj0IdPN5/N8/EPbd9P0dArOavyHoIyDU3OOaXy6jGNMc9rx9/J7lmXq/eguZ5prTspnLt3cJRd5OzR+oo2H1lYXryD5SYESX5DBcq6RPLp9+zZu376Np0+fFna/yeOOZVt5ebxcek+/fTqeD9+rhKusW+pRsn4596TuwOdACD+rE6rqL74jb8uC5BVVZeRN4/0cysyz+XyODz/8EAcHB/jggw/Q6XRw69at/OjIWB1hmyD1Ow04z4nVV2QZWjkyHeFTh5Nbg6umx236mWODENsEixe56rfsWwll9KFQHHx41UFzVcac8nJdiPwNHGjhpfauTggZT6t+jX9I3uMqP8R2teiwap/4fHahEEpbWjqr/WSruPyQITtiQ/CSONZFa1elK/jG7zrkciEYGzoZ5LtQpH0CeNtgOR9cv+sGnwKybdhGP4fgva32ae0pwxyqCMltlR1aZt3OSa2OqnljBEAZ5TK0P6oIDk2h1nBx1WPxzlhHkoabVg8JHW5sSYFdRskta4SVqdPqZ1//uMbHVX9s+8rMEx/O8rvWVssp6nIaXrfh74JYeuc07svjoh25QIF2t7bbbWf9BHQMODeQQo51DdFH5Dv+n6bpxnFnvEyX49eHk+b0JUOPO4f5blDLWc7bZRlfPpys7zG6qMuRFGN4+PhJCB1bssSVRj6PbT/hphl1oW2i7zGrY2U6jUZ9PFQbuzqdcjH96Kqbz08qR/6Owcv1fDweF+Q58QJ+/yXnaxpePpvPokHXHU6cX9Bdupb8qaKLaXjXoZvw5y4+Zel9vrK1dxpNldFfSPaE6Jn03Fr0FaujWbzVqj/UF2DxJ9lnZXQ6a/6HlkPfl8tlHnA5OjrKd8VpuLnmgG/eS9lcBkLoqi6b1TdHYkHKDj5PXU5Il/5LfFLKxauGOuxSyw4M4WFl9JUQua3lrwJ1lhVSV0xa3t9nZ2fIsixfEGU5wi2duAwfvqp+qaNOjZfyI+gtm7eu+q8SYuy82LLqhqr8T5P9Pj7j65+QOV9mvkjQbCIX79T4YKxd67OFYvhdqE4VgpdWXhn9zQU+W6oO8I1jqO3qy1eGT4fU7fOVaPa1C6+y+j3lteZvXXpTHTYhB9cYVp1XdULlnbHEtEJ2Gfk6ZdtK8C4L7avA7aqNDC5E6mqfPHLNd2dVCOwyXYTAVRonZaBu3KRCEFK+PO6yrl2RQLH/LYdAGWXNVY6vDO701nCqQjNlHFfb5D0hTuVQKIMnvzdQ1m8pQvSd3/8hIaQd0klH+GhjbjnQd41/SENI9o+cu+TwlzuGtfLkHVjL5RLj8Ti/X1kClSv5DJXfbDaRZRmePHkCAM77OCznAq/XRX/NZhOdTgdpmqLZbBaOROZ0RP0REkjQHB1ED7zNSZLku0doV6TsJ56P8sTOJ81w18rZhkyJMaK3qa+65iYfU81ol2VoDgN5ZK1v/ss6NfrW5DA9k6u5JX5aW6x28d/bDBiEpuXzSM6Z0HLkHAzFh3amcwcm/S8Wi437YpMkyXkDLRqx+JRG25K++IIT2Z7lcolWq4W7d+9iOBzi7OwMi8Uix7XZbBb4Xgz9+cDSOeQCGf6dB85Wq9XGcfNV9AstveSV/LlMEwu8fbJMK73PYePS46Sd53Key93zsk6JM6+X71KWeWJ4MelBk8kkP1nC6muS/bK9WXZ5QgDtEj84OMA777yDJ0+e4OjoKD8mXDvuWkIIfWu6nlZOqG0jaTBEFmwbLBkidypo+qGUy1LOEVg6ZQwd1WXPASjwReLRMeDiIVraEHyvwh9XFq6SPi35qPEdoiGyCejZ3/3d3+WyZzgcAoibp5Teh1doOZqsXq1WhasOJEia5POS4+PTGzTQ+LnMq8kGLX8oXDefu2q4qvaWqeMqbbmy/RDDDy1+rMkMS7egd1yGcV3E1T4AG34lyWtC7S0Nl1CItavqkDdl/VpSt/Dl03SKkDpIb3RBaF+4dFb5W7OFJN8NwUXq4bvEQ60+K4OjpoPF2hmxEB2MdQ0aB8uBUgZ2acDLQgyT2FZ7r1rB3oaQDSkzVvkLzberECI4ZNo6GVcI+OrloKWxnKBa+b62aQaJC4e6nb9VoQydckdtTLk+Z7mkLekYiQHXmPCyLQPZwq8uvhGS38fXNd4j2xY6TjEyxOeg2XWw+tY3tiH8ne4/JKeqzKfhwssnBZU7WFwOtRCcLGd4o9FAs9nMncByB47E0+XoCAWf0q7pehrfiFFmfYZOqB4aAzFzxsJpGzpEWZkZW0dI34UYcBbIndQuGc7xCsFlF/mb1k5rPhIf4wt7LL1Ezi1tjnHDP/TeZWvecpkU2pfUFromwdK9eN1avfK9Vo/Ekf/24WjpGfP5fCMYq/HkEL02ps0uXEPwlnWGyJcYB7pVjwZlfAAazqGyQOsTC68sy/IgmA+vWF12f38fd+/eLRz/7AMfvfL5F4rvVdv7dYOvvWUcoloZgO6s9skpnl+zsUPqBS6vkuFXZoRCqH7l4r+W3lO33HSNo4XLdYJP17V8elwurFYrDIfDXAbyO9a1MsviFZNX469Sdlp1+fwBLh+ArDvGfvVBjH+pTPnXBXXNxbraG9rPIbpH3eDTMWXaOuwqXz0huFgyzOfzcuEZy1N8OmCoPyQkfQxOofaKxMVHp7E6XSitWD4qXkYdNq2W3sLJZ0f6yrbK2AUeGjuHY+zXuuoPzRscjPU5Pa8KYifRLsJNx/+qgPeTXMkhDRdaCcSNqiqOw9ewuxASHKhi4PGdJryMsoKvKsQKaA5ZdhkoumrHDM3HUKHvKyt2HKsKyrL1uZzvoXRkPb/JzjUfuJzWq9UqlwEyuEC8P0mSjfvvXAol5T0/P8dwOMzTaDuLqXy+s4c7JmjHmeZs8bWP46c5UWkOU9C12Wyi1+thPB4X6uO7fCzeFWoI8LppDtPK+dlshsVikTsQ5/O5indZmbttGg+d2zGOYEq/DTzKgM+4rgN3C39t9xs/slYapRZP5Ed+a45Oy3FxFcDxoPkvwdJDqE1pmmK5XOZHnLbbbXQ6HWRZhuPjY1V2ljHW5Q5WTT5ZDlQtncZTJS7tdjvnF7LOWOeTDyeJjwxu0L+2E1d+NptNrFYrHB8f5+Ok4eqDEMcLlzca/WrzguPrSy9xcN3lLHGqAoSbHEtLvmj5eVs4H5D5QmUbvef9Nh6PTbxC+AnJRuJ3w+EQL168wO/8zu/g+9//Pn7yk5/g5cuXalst+Uw0qt1LzvtVtqUqP981oPZYwWxJX7xvfHeWW7xImz8az6wLSFe7c+cOWq0WXrx44d2Nb42zXOS0K/66VxFc8kg+Xy6XOD4+zn/TbnqrXNdvrY6yvFprgzxO2bV7ymdHhMg/DReXrLhqHW9XgeubvD924f5hCaHjz8Gl69UJoTbxNvvUZZNpurAFXA8BNv3lIdcmEYTqU1cBUuez/PuxoOnVIfreVUFdY8B5hebXJoitZxdoIxSkXijBOqVHK0c7Pa8syDqcwdhQZ1EZA85SNHxw0xTMbTrceB2x6W9CP8pjJy2cpfEv32nfqcwqyuxVQOj8i3leJ8TwCNdvIE4AaWNJnz7HYhXQjAyXkRLqgPLBdRsiltNUPiuLpzb2Wp0x4+kLDoU673wQ66R1GfNaH7p4mMt45XXugqFmtdsyOjSHm9Y38igfl+Kl4UIBXF8fhfQfx0XD1yrXZ3i5HIMyyOByQsbMH4uX0Q5ifrweTx/qIL8uo6+KTChruPscWVelj1m820qrGXA+fkJzQI6vNodd7fb1iezTMn1Yhr9rDtHYuvnRqLSIYjabbegXLvnlAikXQsc8pEytPAlEI3TcLwEtquFluvrPN9/ouGMZtAnRiV3tkelcfDX0WUgbNdlVZtwtXLS5p7W9zHjIdmgy0IWfpedYwSWJp8+JK20DVz7+3NVmWjDRaDQwGo3w/PlzHBwcoN1uF/JzXDUdN8RO0OxVH/+8LruhLtsrhH6tdsa0W5NVFi4a/7dwt8rh9dHiv1ar5dUhLN2h3W5juVxiPp872+XCy1ePlq4KuHinZeeE6E4x/MzCK8TepPkoeYqPb/hsXVeeOoHkZ7/fR7PZzPGYTCZYrVaFqwxidHWXPRND3z57MBRi9Bae7qp0clmvBRwffj0Nf3/dNj6Huuy7WL9NTJmav8Wq4zroAbD5hKajWu/oU9K11c7QeW6VoeHkA4vn++qXaWPpReuPKrpESD2+56F8LrR/NTovq+f70mxjntTF1yz92Wc7UF5NT/TNA6t8Cc5grG/S7hLj31W4Lgbugl3EiQMRuDQsOLTb7YIioq1YiBUGryEeyjpTy/IOS9BuQ3nSBLzmENHwoTwaDZa9r7Yu5bYKhPSpxNNyREkIeRc7pnwMXKvsZNmu+uQdsdIgdyl02so+iZtWr0xL9aRpaiqT1O7lclnL3dpVIUS55mkoQErOKqk48SOB6VlIYFICOR1oJxV3TFjOQOkYkE6LmHbzdNyxaPE0WR7dSUcgv/N+jXVM8PxJsg7OjcdjTKdTjEYj835iWQbHX2vTLuqSZXjVtttSpXxNnlk8T/JreTcxBcA0g47mD72no7QpPz+umIDfy0xtdN2nzXG+Kh2P81a5E1bKOG3+yvbO53N0u110u12MRiPMZjMAl07SGL5hOV+oLssIjQE+Hj7H6HK5xHQ6zZ26HA+pF7kcAlod9CxNU3S7XUwmk8Lx8hZeGo/UjGstDdGsVV4MyDosfcHXP66yLXrw2USazmbVY8kc/lvyEi5HQp052i4g+u3DU9P5ZN9QGfx0JalnWUA00Wq1cHx8jBcvXuD+/fu4detWAUdtnDXas2Q/PY+92zQEtsFD67K9fA4uufhN473W4iANV3mqg2u+cH7ouneY6tTmBC9rb28P8/kcZ2dnAIpXXVjlrlYrtNttHB4e5ldthEDVMb9pfpWY9kq+q9GgZfsBmzttpI3G02q+gLI+lVhoNpvodrv4xje+gbt37wJY7479/PPPMRqNcHp6CqBIhyGytQpYdm9d5W0737ZAytHZbIYkSdDtdq8NHwKXnar5WSzZVjd+Fl6EQ6w/4jrB4hMcP853uO+EQ9mTXkLwkeUR3/PVY/FbrptZ+NY9RpouoL27SihjB4SUVxW0k5vkjmyCbfhEYsvUaCWmjCS5PAFPO2Wpahuj74wNbdC2hPWrDnVNlJvc3+Qc1+Du3bvo9/t4+fJl7rwC7GOdXMaR6zeHXRHIdcJVtKkuHiDHsQzz0xxHvvzcIaoplRwXC+cQw86Fs0bDLofbtowijpMvj8tJ66szxPnuK1tzTst+5M6bELxCIUTBjynTRV9UXh2O9l0EfvywxUt4+zVFUJsj1nt5nKcLpMFASppWV1ka0wyt+Xye3xlrGSc+vDnd+/onBG9enotvWPPtOnSVGIMhpI9ieUQVI9Kl17joP8RZbB1NFyLLZfncOU7OAddCJNnPlsHvw6+sXsDBkrF83ki6l3PANb77+/u4ffs2BoMBBoMB3nnnHdy6dQu3b9/GarXCL37xi/wY8ph2aePEj213tVe2TZYTUp/MQwtFeJmybyl4L/HlaWUeKfc47co0WoBGAu8jrY1JkmwEoyXNuWSViyYIbxnQCZEnmnPR1VYN71Dg5bp0PatvZJ28T1y4y8Vv2vzXcKX71cmJMp/Pc5uR3oeCNiYab8iyDF999RWGwyHOz89zp42lw2tl+3TvuuXlTdAXQ3C05q4MqkvZQrRg0bJLblL5QHEhYIieT2m63S76/T56vR6m0ynOz8+d9GnhQ9dX0KkldcEu0UcMHWg+njrbkiTJhuzSZI2mE9UBITqYBkSzq9UK0+kUR0dHmEwmePPNN9HtdnHr1i2kaYrT09PC4gS+8IHTt483UrqQ9rj4q6udLvlyU8HSJ/j7+XyeX3kh08YG+suCZk/S3OA40UkpWjskbmVs6Rias+SxVn6oLhxST2w5PntZoxHX3KjD5uTlawFgLW/ouLnS1WF7W/Vo88ylh7t4TF0+gtB3VemxbHmaTWPZPxqUGeu6gexNrsfxdxbE9llInxaCsVoHaMbhVRsDLkZ5E6AKYZVp803pJ0txdBkSb7zxBh4+fIjBYIDRaARgLRD4sVAhR3JWVYpvgqLnM+pd6cr2jybQQoVtSLk+XuBT4F3pZX3NZrOwWt7nkOQCWrvnTqP3EN5Xhf+FOK7Kli3r8fUP/x47FqFp+TvN2Ve1bPmeK8O+OjRnJqeNGLCcl9b9B7vMr6QByRUjbVW27CvaeSfLC6En2XeWM8VycEtjiO/w42lCnOAu+qFg72QyQZqmaLVa6hHBIXRUdme+xMniLS65E2pY7zqU4UnWnHc57vh7KUPqMEItHCTNuox9q528rNVqVbjDMwa/mPkcC5YupLXdhYv1TssLALdu3cL3v/99fPTRR3j+/Dm+853v4Hvf+x5+53d+B4vFAo8ePcLz58+durDGV+R3upOWaI6vZnY5FCy7T9NHrHZnWVa4A5N/8vK4Q1ve+a31IwdrpyPHWePnHAcNd/npon+f0e7ijVxXdOm0nGe4ZFEoD5LPrfSEY4xux/mUxMnSf+SOe61MeRJGSDC12Wzm8hLAhjNYG0drbK32yD799NNPczyte25l/SGOH01/tMBFCy49Yxf0RG0uagFPF9/h4OLZMl1M+6XuX8ZOy7IMvV4Pt27dQrPZxGg0wldffYUsyzYc3Xzua7TfarXQbDYxHA5zWUvtku2U311yRMNZg12gHQ5lxyNkbgHr+d3pdArP+XUDWv1S3mj0askqCw8OvDyfPbFYLAon3Dx48AD9fh937txBmqY5HfLjigk4L9baJdug6RIhup2vH14Ve4JA061cizJocS7pUNc1B7l8pt+0aJj0GzpGXabT9Cv6DKHnutvhs93L8BWrLl6Oq32aDiD1QtkGTQfQZJ7VDo3uKC294xtW5LVFvjZJfHx6qFWeNl6uukN1LdfJKC7boAqUpfGy9Wr0Y6UJfV8HHw6Rw3WVSzvIXeMsy9gGBO2MfRWE3E2EMv1+k8aKO2sI0jTFw4cPcyWv1WoVjuIYjUb46KOP8kAsAWcI1sSqwwl908Fy4tTF+CxHlc9RZEGMgVwH7UshK42RsnVwQ3rXjNa6eIbmPAgVZrEGswUhfct33mv0pfElrX7uNNaUZQ23brdboKkybaCVsI1GI7+TT1NIqf9vCt/zORe0NHyspDNYlhNCGxot+NJLZ7LMqzkoXOVLY4vXk2VZfvzndDp10hHPZxmQMX0ym80Ki0y63a66GnYXedw2wGeUa3QoDdyYubnNfuV04jLifQ404jeawSPzaI4WTV/QdArX71Dw6UJ1G9Zcbshxf/PNN/HBBx/g+9//PsbjcX7Mb7vdLtzf5sOfv1sulzg4OECv18Px8TGm0+lGXulcCXGIyN9aHroH1+VICXEEaHVQOXTUc5Zl6qIdWVeII8rlVCB8Ned0FaBdR1xuS/xcMoSDS57II1hDyiPQgjay/fLIWL4wSfIU7kgk+SlpXOpUZeYl5aOFlZajVaMFizdZ4y7LDwmyy76QUJYXlemjmwC0KE0eeU7AnxE90dG9PK10rrvGVtIJ36kty3TZv1qZADAcDpEkCW7fvo1Go4FOp1MIWsi5x8tfLBZotVrY29srpKNFOBoPk3hbclYDn8y5KXTkgtB2kIxutVqFa7NIJvloCbikSUsPlPzJkm1Jcnn3fIhOyfki2SxHR0eYzWaYz+cYj8cbvJj4mZwvWZap1wRoINsawtd5X4UcHf8qQJqmaDabhfGkeZ0kCW7dulWgt8lkkveLdVTotkDjnZwm0jR1XjXgwlXTha4KNH3lVQRt/mm6uq8/uGzUyogFV5+H+DFifB2uuix916rnOkDDQS56cF37E+v38uFSx1ype8656NslU65q3kcfU1wWqjRoF4j9quDr1FZNcWw2m7hz506+kpmOTQHWffPrX/8ajx8/3iiL3/GiGf70Tj4LAZ8Rft2wLSZiMWiXkAutMyQdd9ZsCzSFgn9yBdjnPNTyyt8kYEIcqyFGis+hc1X8hCtidc2XMvlDlHtNSeHv+aeWX3OaWiDnBvG18Xgc5ICTCgR3CDWbTSwWi0IwkjtCZZtuCmiKkWs8yLnkckJoDjsLYgx+Ggs69ssaO9kGje9Y8kk6zmazWb763mdwcCcKoO8ssUD202KxyJ0+RMtypbPE3+eYuQngmqP03cW/rWd1zUuLBiQNafTHeZhP3vAxjZFX9FxzoGuGbki/aLI1VPb5HDvSWRoqz0LxlguVkiTBvXv38M477+Cb3/wmBoMBlsslZrMZDg8Pc8c6x03rY44nBXB7vR7u3r2LwWCQO+xC8A11PFhOGam7abqRa+xC8MuydaDF5aTlOpulp4Ya/T5nTQhotCVliFzk5ZJFlozRnGca7fDnLtDmqcVTZD5+R7SPXrRx0nZKy3ZauhKBdrd5qP4Wowvwfgrhaa4jxF32hsTdx7t9cBU2bhXnGp8noXoe5Vsul/n4a3Rs4SZ1GDlvQ+RuyG+yBQ4PDwEgD8KQviV5O5enpHN2u92cvqfTKabTab5Q00cTPnnoSyt5OU/rK0uWEwox9WwLSP7QQg++C9Aac043kh5d+orrOdG2FfDS8OYLc+j32dkZZrMZWq2WepwscBlY43UQrXKctmVzclkSUt9Ns30J0jRFu93O7StOP0mS4ODgIN+VOBwOMRqNCjK2zqCYCyw/CNGUPBnFVY7v3XXbi3XxnFBbMaa8OuzKED3Iqp/S8EWRLnwsPTDEvnDpQ9azEBnn4r910F7IuJexNbU5yHk8PfctDuRpQ+0/33MrrUu3tXCS9dSlP7iehdB9XXBlwdjXYIPPSNGY7XULpliwDHX+/Y033kC/38ft27dzpn7nzh289957ebqvvvpKDcZqddCEDzFIXsPNgm0o/UQvnU6n4Bxz7ZKU+GhgOVB9YDnQ6oY6eInl7LquXZmhbaKgJnAZ6LLGWyo92i43qSS1Wq3CfS7kXKQAP69b1sHL4WnpGR3p51LGb5Kc8Cm9sv+pX6kv6NPKG1puiCM1RFkOURZDHPwcP67IcnqydAKag0SHtHqe7yiznM1aeZSX3lt3SfG66zJmbiJU4d1lZJxr9au2WEYLgGh4ULoQfi53xBFIGpbl83c8zbYdfFcFfM4eHh7i3XffxXQ6xWKxwN7e3kb6NE3R7/cxnU4xHo83ygL0oCZ3lna7XRweHuaLgGi++u4UlPOWnL0aDfBx4QEB/ttKDyCXhZLPuUDe30pA/JDXLR0RVj2UjutdGt1bOLrolT/T5LW1W43n1eq0cHClCQHZFouPabiRPKLrAzQ5KMebj5tMq/GCkHZlWVZYLEQBBi43twUuB45sj0YTryKUaZ+cD1J2ceD01Gg0sL+/j2aziXa7jdFohMFg4LSn5BjIBR70GWIPWvhL/TLLMoxGo3yBHYD8iGFKY12RQ7yeAmm0mw4Aer1ejnvIyU6WLmn5bW6qjREDIXOS/EvT6XTDBpb5Sc6RLPKdRqHVpfF7Oqa23W5jMpkE0accvzRNcXJygmaziQcPHqDZbOLNN9/EZDLBy5cvkWXrnY6dTge9Xi/PSyca0Gk9/Ah5Pne4fJMyNgRXrd0+vZDPuZsKFOinncq/93u/h8PDQ3Q6HRweHuJ73/tefkrSj370I/zoRz+6Nly18aQFI/SOrtfR9E8aZ0tn3JVxvG48XMdW80+CbeFLPIHXE1qXtP9kuXXgptmeVJ+lJ5fx9ZTBKaSvLBks509ImTRWfNGOhVsd4Grrdc+fGPDZCHX2WaVg7E3q1OsEn+IaOilD0+8ScKeGC5Ikwd7eHg4ODtDpdPK7fg4ODnD79u1cEe31eoUABt8x4FPYqjhGQ6GK0mApl1etiJR16LiEXFkcqhjw8neokkK050sXMy99BoMLyub1vQ9xcvvmjHReUHl8BbvLKArtWxcOrnnvA2kUa44PlwPDSscNC6InSi+PSdaUaDnnNScON3Q0PKTDU4NdMHJkOy2HtVTuZBCQ+lWjh1DnkYtHhPAPDf+Q+jVeYo1rrJOBcOGLAigYGwNa/1uObauvqsrfuul1W/RfpcyqOGn0FmoMWXRq0SfX71zGb6j+xdP62uXC3QUxNFi3vkjzho6WPDg4wK1bt9BqtdS66PQDV3muZyR/NH3K4m3ad3KkEZ/lu3W1cXHthNBopYwzIJSe6JPvAuJts8rl/RMauNNkmQWcn2vtl7aT5WzT5kuo7HfhLp+5gOPI69X4gIaHT8fV2qjxOFkO0eh8Pt8IUoS0LZS+QvJZeolvDl+F3arBdemGrj61HHz0nn+22220223s7+8jyzIMh0O1TF6vNZesPNpvrT1aGnpOp9sQfbp2S1s4TyaTfEdtlmUFXS8ET62NvH4fnVelE6sclx5s5dVspzIgeaCFIy2u9dmOnJ+75rzLVtBwIQe79FtIHHy29nQ6xXw+x2KxQLvdzq8h4XKT7AgCviCWl0U2geTfZW0XrXyOv8t21uhDa/8uAu/vLMtw79493Lt3DwBw7949fPDBB7mv5auvvsL/+3//Lx9Dyn+V7eN9z/k1X4hAeJWxP6u2xcfbqR5X3XXJYm0uuOwonkaWY+mGVj1amS4dK0Q/006ecOWz5FOozJJlhcJ16TUuHmWltXa4a/aI5P/aaUEWvYfSdBmdOWbuVBmbunSQ0Losfb4svN4ZuwMQSoB1Kb5XCYSr5pyRQujg4AAHBwdoNBro9/v41re+hXa7Xcjz1ltv5YrGfD7Hp59+itlsVrhDtt1uo9PpmHXFrGyNhW0wBJchVActhBguPudOGTxCHBEhz6uscLeMb0638i7UGNyoDi19qKIRUgelrVthpHpDHA5SEUuSZOMOzTqM5FgguuW7adI0RavVKuAaYri4nMx85+pyucR8Psf+/j5u3bqFfr+fvx+PxxgMBs7jXYGiU8bXPuKJ2pHLPiV8F8BlFEknhjTQeXrL0Lb6gufRjnFx0T29cwXFJd4aThJ8xgin59Dx4w6b1WqF8XgcfL8Uh729Pbz//vs4ODjAvXv38PHHH+OTTz4xlX7XnCqjz9QtC+vK49odzNvpGns57mVwCznCUZsnLgcVOVGyTN95Hjt+IXXXKb92DWg30/n5OVqtFh48eIAsy3B+fh6960rrJ86LhsNhfhccveN8w3UkO3ek9Xo9vP3227nB//TpUzx+/Di/u5ycALPZDL1eDx988AHOz8/x29/+Nt+5Y+3wCnU4yecanya+SG0l2qVjnzmuki9Tfv7P32vzWAK1UePNllyhQIylG0kcOB6ak1qTORoesj2cP/CFNjKtJXepvzivID2IdvhoMpDrLy5eou0kk3xS48Pz+Ryz2Wxj3GJ3pvnAom/rRAL6HmPzXSVcFw583kndLESX5QHJg4MDvPfee3j+/DmWy2V+XLvcsV3WESyPFHeBLFvWSVdPuGwRDafFYoGTk5P85BPi0bQAwZLtMujL67V2yGq8kuevE8qWty269Y0H7cK3FvtwmuN9B2BDZll1aDY2B1roxXGKGZvlcoknT54Uyud3l8ojiYlWeFqCxWKhBmQt0Hihlj5mnt1UkCeycVlGp47wkx7SNMUf/dEf4Xd/93fxX//rf8X//b//FwDyO6gpb91gyS++uITao8lBS3/l5UuI8YnFgIs+66YpTYdx2ba8z7huadndPtlVZl4BME86oblO46wtCgmpy+evCcVT4ifzaCd21Wl3WnjHli9P+XHBW2+9hQcPHhSeLZdLjEajvN7T01M8f/48f88X6m4TfL5M3xzYNlg2sAbbwtEbjK1bIXqVnSxlwdfHPufVTQGXMxC4VEDov9/vb+xQbLfb6Pf7AJAb2JQXKB5NRnW5IKYvt6UEhNbJweVsiS2LygvNJ400yzDw1RuqVMf0dagBG1qH5hgIhTrmqaZIWE69UHoI5TdVHEVWn23DaHeBbItUajm+EmT7LVqxHIzA5d0vtKOfgmAuXF1AxrZ0mvBdoRp+r4KBKpU13q7Q+RmaJ5RnSCd5HfTumnOWLiCNCo4Tf877UHMIavXye8n29vZw584ddLtd1TDz/ZZtqIsur4q+XcZhFRy2gb8raKGl8eEROr+0cvhcsfAIMYzrNJivGrIsy51jWZbh7OwMw+EQ0+kUk8kEk8kEo9EI0+l0Q8eyjFVr3tPv+Xyey5wYR42mY9BRiJ1Op+DwBYoBJzrqkMtX64jjULBkLu8X3+ImbivIOSv7hut9Glhy1pIB8ruUY3VAKA/R5rykI01WyDK4DcLbLXdS8fs6NZ2K93loO2OcmUDRGczL4Z+yfS67JcQmrzquZedrlbQ+faBq+hAoU5Y2X0k3psUg5Hi0bALfnOdpfPi75KpF7zHylcqkuvjR4NQm1/HGMeNm+Rpkv8k8Fu4+HaMsLdVh+5atV9pgHB+qM8ShruHpsvcl8OsEYvkPlcdP4uD2JtVPdzDTb4vGNLrhfeLzuVhtrFN2WmVdt73MdSUu34bDIZrNJvr9/oa9f+/ePdy/fx9vvPEGbt26VShHswW3AS665QvOuE4bI7tCwGU/x5Tvkv8xdYfWH8v/Y8Diz2XKq6MtGi3G4hTKB1x8xnWsvA/fUAgpMyYf6dQyf6fTyWMjBFImTSYTtNvt/DSOsjJCQmg5ll7kK/e6+bEFdfoignfGxjLCsoRdRRl71eBV7Qt+xwYFWxuNBp49e4aTkxMAl4FWy4DWgJSUV7HPtgEx/SSVuZBxcR0HV2WMNIZeJ1Mk4Cs7l8ul9561MqA5ByRYfGAbba4K14GT1W/a0amhSpXrrju5W5rTxWq1yle48zq73S6azSZ++ctf4vz8PL+/wVJAOe/j9HFwcIA333wzT3d0dITBYICzszMsFosbyfs4fXMHrjQ2XWOiOam08mVaWVaoUs+VSAoESFyksSlx0HZVWLxSrpyX7bWcHMS7pJOOO0osmiHn5Xg8Rrvdxu/8zu/g9u3bePvtt/HFF1/gxz/+sXcnHy+b7xrwOc+vAnjbY4wJ+ucBhiS5vL/NJSdi+GMV41zb9RJSrqRdPi+1fNpOfJ4/BmSeXXWUlYXVaoVut4tvfOMbWC6X+Ku/+iucnp7i7OwMDx48wN7eHv72b/8Wk8kk3/XQbDYxm83UIwI14Dyz1WphOBzmK6PplBnNYUzA+Rof89VqhcFggL29PXS7XbRaLfR6vVxH4vOg1+vh7//9v4/PP/8cf/3Xf50vSJK7PULAMsa1ldbSsOcLMykYQ4Fv2qkpZY2sm88BzoN5PZLuicdqDpNQu1g+t/TvGAe/Bj5nt2afWzoq3RlIYw2s7648ODjA+fk5RqPRRl9zOcRp12VPuO4pp2cErp3fliwK0QEkzhw0vU3rL16Gq895fSHvfVDVXqKx5jLwKkHTYQiIR1LgIk1THB8fYzwebxyjWNb+lQvELdkk6VzSi8SHjoF3laeB1B/n83nhGgqNT4Xey+hrK5+vrv6M1Xvq8g/E+C19aa1yV6tVvvuefkugk5hoo4Emf8vOSa5X065ouos+BqxdUpzuZ7MZ5vM5+v1+YUEW6Qu065zfUe+zqziE0JKEkAVeddLBVYD0N9Hi11/84hfodrv4wQ9+sJHn7t27ePDgAf7pP/2n2NvbA7AOvvzJn/wJhsNhzq99OmQsuHgJ9SW1RS7iAzb5CC/DBzFzPZbfbxMkT3btgJQ6Evl5aL6S3emSD67fLtDw4XVptCRP3LLoTdudGgMkP63TmjTcXfaHphdZui6ll/l9aWQ5Vn0uvSpJkny3O0/Dr4YjkHRx69Yt7O/v4+nTp3j58uUGLVlt/TqCJQti5FkMRB1TXMaIjIVdEITbhNg+eVUmg3QAcSOEFEgSNLPZDOPxuKCMzGazXBHkjghpxGrG/bYmz65CzBwKcX5aebhCEWtAxoLPaR7SZsvxqKWzjh4tW3dIfl9ddfVlnfw6Buri7ZqDUL4LUaokuOiD8y6N3uV7AjqmT65cl3yKlyPnJHfcEb9cLBY5f+R3ytwEiDF4qzoeeRnS8RFjCGhluJTvMnLeVwf91sqWPJk/p8ADcLnAhN652s/fJ0mS3yO1v7+PVquFyWQShJuGp/bsquk3tl7NgaaVF/I8lB9VdVDwZ2UdTS7HYUwfavqCxcs53bmMorrgquyONE3R7/cxnU4xHA4xm80wnU5xdHSER48e4c6dO4X7LWWwMwQkL7HowXI+SIcoOVTH43HuCJB3Tkvdnu5r7HQ6BWeRjwZ9ePO6tPZqv1erFfr9Pt544w0Mh0MMBoPcWa3pvzw/D6iG6BQSDyqL7Bt+z66rbXJe+ZyOfL64dHppe1k4yLH12VBSVhBttVot7O/v5wuCaGGBqyxLD5N6U4we4NMZZb/4xlY+13Q4V/+G4C51Sk0vdMG25Cp33vlkYtV6JFhzUKNrWvR9fHyMyWSSH9Op+Q20crQ6fTQS2i5ZX4i9zfFx8QCJs0Y7IfXI/tSCXhqdh9A1z6fpvrG6iizLJzustoaCNn6SB7jw1MoqA2RT0jH8VEeZK0hC5DLVSXKM6pdpfEfNauXH2A5V7CuNR++i7SxxIl1kPp/j6OgI3W4XL168yI+GbrfbODg4wK1bt/Duu+9iOBzi7Oxso2/5iUahPq4qeAOXfc4XW3McYuZFWd6r8ZQy42/xkFBw0bFL9ylbR0i9Vp2aXJWypdFo4ODgIH8mFxKQf4ofky11myqg4WXpuHJxSBm9KhbK0qpcUK3RBsd9Mpng/Pw8P4WP0rTb7Y28/Dh5Xra1uFo+i5EVvnZq+Vxll+nPkLKtuXdV4AzGxiDjGrjX8PUFYnZcOSMGTtDv99HtdgGsGfnx8THa7TaGw2G+kurZs2d4+vQpsiwr3AfrolFyAGj4hCjOXzcIMUK1dBKq3OFKUHXFfxWglatyZalGK1XwrJv2Yg3YKvUQcEUo9I7TKhDjiHSBZjy7DHWexnJKaAoTKUh3795FkqyPeiXD2VUWx4FojPhZo9HAZDLB6ekpgGrB2KuiGR9wIw0or09suy2WMcd3rnFnhZY2xhHtAho7yYM4nbZaLbTb7Ryv8XiM+Xye3y/maienQ1Lq9/b28PDhQzx79gwA8kUBtFuO3x0DFHcJWc4PTt+hbb4O4HfiWM5ECVLXkHoQPZfPyoDPsLWcHho+li7A+Zw2F2S6Mk5OyuMzDOtypF0VPdEcunfvHgaDAQaDQd7Gjz76CMfHxxiNRvnOluVyieFwWFiAWKZOQN8FKOW4TCPlyvPnz9Hv9zGfzzEYDPL5qq3IprbeuXMn341K6UMWg1j839JJpeOC55nP57hz5w7++T//5zg+PsaLFy/w6aef4vnz54Udfrxezv+0hXmyHuLDhCP/B5A7RMhhzkHuuJXtD3X+Wf0px1vOS80JEbIAQOIlaWu5XKLb7eLNN9/MA/MvX77EeDw2cdHKljRMz6Utp7VbOpmso6x9/RbS99qYye9anb4+9jmJXLzRha+V1yqHp6Ud8qRP8KPV6+Knsiwud7Sd0ZJmF4sFTk9PcXx8nN+lCqBwQoBLTnEa5fhIurD0L60sPuaUjus/SXJ572aZ4Kcsn59OZd1jrY1bCF/W6NfFoy2w2mPpKxbtyrHZll9Hsx2t/pM05IMYnYbGlxb80u5v7fSB0Hb58CKghZhcV+P5tYVOZWybKjhbZYbwKB/PvQrQdhX3+32sViv87Gc/w5dffom9vb3cR3pycoLFYoGHDx/i7t27+Oijj/JyCNI0zX2twHqTSx0nvvnGgS8GlvcaJ0mi4iDbL09gqdPfUba8qqCdnhIKPrvTlU/i4Ernkut02s83v/nNvJzBYIDhcLiR7uTkRJVpUm5L3ck397hu55u3fNMXr3sb/mZLBsm6LJ3U1w+ynKOjI7x8+RLf+ta38uB4mqbodDobeUkHIiB+TbzBsqdew/YgamdsrOCLTXddTrbXsD2wHD/cEUyrpQE9gAoAZ2dnePToUeEZD07wZwQug9gytLfBeMo4JENBMwTL1iP7S3OwxdalOa1CIUah4M/L4Mnr0+7YsHAKNRp8ddZBd7EOmLLKrFYfD75wR2QdwjzEGRVreAKXzg8NNEeDz3nG8Ww2m2i1WoUVaAA2HLu+tvExo8AX7ZxKkiRf8e87fqXMu1Ao69DT0lj04uMhcmxCHZSW88aV1sKNlHp+lLBGl5pjjp6Tw0xbTWqBxoO4cSPpzaIxCfJo1OPjY3S7XWTZekHU3bt3cXZ2hsFg4MSN18MDN/wI+JA2uXDV6gtJT2lc/J6e0w5j3p/cseC6o03DM9ThVgYsvSu2zNj6XbLXmtdybsQ68eqQoXXKYQLZFqIdfi8swWAwQJZl+M1vfpPL0DRNMZlMSgUvfXqJJd9c9JIkSR6IlUFFPh8WiwU+++wznJycOB0lEm9rrPlzl8Pb1V66q3d/fx+r1Sq/EoXGQcpjVz+7dFopx4iH0hGVVIbLweUC2RdSzwrpE1+9vDzeL765zJ2kpOcsFou8j2mHtKWraOMv+0pLI9+5+DnP4/seq9dw3EiW+9pn1U1llJFnGp4uPURL7yuv1Wqh0+nk893SQbflzPPZeNT//Lm1wIDTjXwnFwD42iPniOVncOXnAVTZ1hD704Vj6PyQefhnLMTQQCy9uOjZopEqNk/IfKRntKib2kSnSWgBchl49tkiLvy0hUN1gyUX5JyT9O+iS/5p8SwtTwxY+kMdtKHVQeWXLYPySr9mkiSYTqf45JNP0Gg08k0sn3/+Ob7//e/jjTfeMNvC+VxdtGGNLS0EpjStViu3mWazWa73lumzKriHyLhtyC1ed4xMlulC7BUrjWxbqGzi+flR61Ku8oWHnG7lFT4hY+7TUy2d1NdX2wq++kDOO83epee+tml2AACcn5/nfqMkuby2gdcjTzWTOPL0IbvntXHS7BLZlpByXlWQbXUGY0OV9W0xrddwc8E1AeW9BePx2Lsr5uXLl/lKLyqDyueMle6aBTadDj5Hz1VDiPHtyy9Xu8Zeys3T8uCUxCVWWIc42eqAOpwVPC8ZRppxH1J/WRyq9FGdxqWrPJ8TghuffD5fh4D19SU5BTX+oBkqmlJh1UeOX7q3RdbrCtpoDiEqnx/hTriPRqONVYix/R2rjJeFUIUuxNDwlUH5t83bOc3wVekhoO38ox2rdPrDYrHwlmfRLV8Fyvsi1BDhOzWSJMGjR49y52u328Xbb7+NLMvUYCzNF77yVK7ap/eyHt4Gq41XDavVCr1eD51OB5PJJO/TRqOBfr+PxWKROxZ8sG26tJzGsU49V/o6x0GTtSHzeBuOs1AI4Zmak3y1WuH09HTjmN+TkxOcnJzgq6++QpIk2NvbQ7PZxGg0yudPSFtC9TZrEZ/vrqL5fI7JZLKhw1N/0B23f/M3f1PYHWOt/vbVLWWBdaeWBTwfHZnc6/Xw1VdfodPpFBaCyn6jfreCEZInUR9wHkZ8ot1uF/QjC08X0PhqcoMvAHKVG2ITyXKtdERrXG8h3Y/+Z7MZRqMRVqsVms1mfr+idkeVr7+t3a2anmaVoTm+rO+h5cjnnC589Czpmj8P0Zd8jq265QyNEZ2SAaz1hLOzsw0bntNEqD1VBh+rbOpTWgTAT7WQ+TXdm89VzoOtk5+0sZMOVUkP1r12mi6s5Q8dY95Orn/xOlxtcoHES9PfY2gxlK75mIUuhKtDZ9DmtyZzid83m82cF2qyXMqPqriV9dtoZfloo8xxxK7yQuvW8oTU7bPfr8u+sIDwoXugCWih3s9//vN8ZzTBf/gP/wFvvPGGWd5VnjrX7Xbz3XZpmuLOnTu53nh6eoqTkxNTRhC+muzV6KOqTNF4/7b9B7EQorvFlCPllEuv4cD9EtLn3Ol00Ol0cHp6WliAyK/WajQaG0flxoIlh0PmsGX/VOnTsjaqjyfx3yF659HRkSpjuO7jWkAPbPZPyKlloWXF2KlXCdc936N2xhLsGoN6DbsHFmHz+wpoQqZpWjBGF4sFzs7O8OMf/zh//uTJE2ddBGWczppCHZLe9ywUQuvnBpo0HrmB5RIsPjzrchTLNsUo1lZ/yHbVzYdcTp6YumINBMpjtTtWoPscbKEQaoiHOLy2ITMsh0do3pjjtF1OVDnnyCE5mUzQarWQJAlevnyZ3/UKhDkcXMDvouV5fPPNcs7G0BzPYxlKLnAZWD58JX7cScWPjw1VHkNpXKuXfifJ5e5ROq2BO4gsp41WDwU5KBhLAT7Kpx27T5/acdWxzjcNJ2rLaDTCyckJvvjii/weNtcRV3JMyQCjNlBwhB+hbOEY6tTWHMC+MbZkHuFL8+yNN97AW2+9lR/H/NOf/hTT6bRQjvx+FXqBTO+qv6yjtOw8iQU+V6wAE713BW54Oh8PKYNrmTxZlmEymeCrr74q7BrkK5fJQcGD/S7Z7ponNG95Ph9fd6WVBr2mr2XZekX8kydP8jtCeXCBdnG4nGnyCFLpRHU5wDlwB/1gMMDHH3+MZrOJZrOZ7zimOd5qtZBlGUajUV62LNO164e3QermWh/HgqRVi+8RL9XsAFlGiP5jzS85L6ndWXa5KC9NU4zHYzx+/Bj9fr9wvYxWBy+7qtySvEHqZ9rc12SHBRwnrY80XUx7b82BMmDZS1VAk2mr1QpnZ2eYTCa5c530acvBWqdNSeVpPEHDXY4/34Wo4UU6CXceWxDSLotuJZ1pNEn4uuahpEHXvNH6zTWvfKdjWc95Pdbck2OhtYm3QztKXjtJJlSHdEGobeYb/2azidu3b6PX6+HOnTt52168eIHT09P8OgIqV9NF5ZjJ9su0dcw1Kl+rk3/Ka0hCcdHsNwmSbkLGxDVP5PNQuyBE7vPn2wafXvvjH/8YX3zxBV6+fInBYIDxeJzrlkmSFHbFVQmy+HAhO5wCxaRv8Z2yMi/XWTWweAbl1fhOmXaE6gB12He8vNC0IeDSm3w6lcTFkgNZlmE6neLRo0fY29vLeRxweTqcVQ9fmB0ypyx+4uobK08obfj6vSyN+HBy5eNjR/oJz8tttCRJch8kh3a7jUajseFDtGzuMsdpu+g7lO608mLkbyyEjlUdIMstBGMtw4Lela1kmxDDEKsyz12poypc11hK5ZErO3zV6XK5xGAwwM9+9rNC3th+dTHuugxXn9D2GVsh5Vvf+W+5MjS0PWUcHZSvKp27xkJzXMQaGrFpLUNXw4PjXwZceS0j0uLNIWWXoW+fIUVpeLqQu8bK4uAyqPg7rX6tLb6VdVrZMo1WDjmc+Q6i09NTZFlWCMZa9Wr4asoxOR6s8d6m0qIB52+x9YUY3NvEoUq95AyiAEsZ3Uk6WKQR43IuuPhCKM9w4UN1zGaz/LqA0WhUuAfS4tmSf1LgKcvWRx232210u10sFos8GOty8FA5LtqmOvhx8xafcPUf4UvBhfv37+M73/kObt++jeVyiV/84hcYjUbR8l9+j4UYZ4Omc5RxVmhlEsToGhIfl37kkvdVeI1W11UAzSE6yYDmOi1GpB1nSZJgMBhgtVo573WmMiVoc6OKY4n3MT9WUVsYQm18/vz5/5+9P/ux7Ejuw/E4dfe6tXRVdTebTQ5JzVCakTzQSLJkSZZhfwXBgi1AejDsBwM2/OA/y370kwHDMAzJgrVgLBka2dZoRrOTHC5Dstfaq+6+nd9D/SI7blREZOQ5596q5vADNLruOXkyIzMjY8stPMcJUK3NPTa0V5dptslgMICPPvoItra2YHt7G8bj8dJOuU6nA/P5/Np45oE/jVZL5qO88thFll3Ag1aazcrporKvqA9l2bxcd6NOwLuPR6MR3Lt379o9VR4ZQOvg5RuaR2zCmcuklFiC9dsag5LsktJI9bPsAAsxO0KDJD/yPIfLy0vI8xy63S50Op2lhWfad6mQeI7rbPqMf0Of8b+1+1PxW1ycYU2E8u8oYuNYA42RaGNcsymk+lq+oCWTsP3o+LFOJeB0aHwgjWuentqIvO8kuUp3WVH7W2unMkjNp1arwfb2Nuzv78OXvvSlQPO7774Lk8kkLFZC+j16WqKlrE1H8/fWkfKOl24tb6lcj6wqqs9iz2K0pZZRJB+Epve0vL71rW/Bt771raVn6FOifWblnwLLPsc4CJaHk0IoRzSZYeXL30ltUwRcvxVFqq9f5HurbElWpup8KZ129HmeXx2//uzZM9jf34e9vb0lX4EuzpJkN4XH1rToTPFDi+bl5VFeXpHvPPlibEIbE7VaTVwg12g0QoyJLjjjNg+AfVqShZgfX8R3L+IHlkVVujWGpclYy+j0KpJVE8yR0ujrCLysM7hTFYoaCUUgTVxQoLL2OAwWitSnKO+mOPBcsElHjmn5cqFW5XEjHoMU6afPJBr5M3qfaJHyq3DsV4F1jptVoIgyjOUHYBuCZVAm3zJ19Rqz3DnF3YR0JWoKn+N4oQEGPA4VV5tqBi8NcqQaqVaAhctiyYmxAjz8G15+bExZwWAEvZfUC9pOlkzDuvE7fLCP6E401GVSn9By6DPcRTafz8NEjRaU43QjJHkrGcZee44a8OPxGL773e/CfD6H8XgMs9kM6vX6UhvQ/LEO6IhjGy0WC2i1WrC7uwu//uu/DqPRCP77f//vMJ1Ol1bMxmiTQB1+z30nVl703Xg8hn6/D1/4whfCBNNisYDLy8to/pQ2rTxNzpSVoRK/xdJqtFk8Q9NQ2SPVS7NtPAFGXs7LhCzLwp1K+BvghWNNA2WavZQSzJGC4lzWWcEtT33o3yi/tre3YbFYwHA4VGnmtqS0i5fTRu/Ppd/SdDjxi/nX63UYj8fw0UcfLe2MpYuZ8C7sfr9/LcAhyX+p7DK+qDU2eZCNPqdHsdbr9TCpTPWRNg7LIqW+o9EILi4uwu5JGpCl/Wrly+vukaW033gbaP4Ltb+0Ra6SDYQ0aXaUJsd4uVi2xx7S6l8FLBsKacL7gLndQ9PFgnIcUjt57D5t7EjjVZIjUt7UZon52/wbmr+mq+hzvvNT+057RutnyXlpMkSCZ3zH2kXSPzxv/nfMdqfpUdbRBf0Ir99WNbDcdrsNWZaF+8mfPXsGP/dzPwdf+9rXAABgf38fvv3tb8PR0ZErX82vwjIl/ywV3m9jNgh9TvvTI89i+Xm/KSIXPe0YO5GF5yflXwUwL9T7CKQdF5wh8NoI9FtSfeQYJF06nU6DLYKnRiHq9frSVU7D4XDJ/qUnxki6WyuXPk/lgZv0J2K6LAbNvuD2Cf7t1cV0PHA7jZ50OR6P4dNPPw3v6TsAgHv37sFkMoHj4+Nwag6NXyGP8LIpLLoxraSPYjpVy0t7VgWfePyGMvYT9td4PFblWZ4vL36X8qcbbLQ8+G+PzUr9F/q8irb10Fk0z1XJiELHFFsoEyC5KePps4BVGWAexzjlW22lpeZoWwLAEsqp7WHVx5OXl+c5bdrf/JlkjGjGiVV2WXgcRZ6OB7PwWYoQ9xi/XsVttUNMkVgBkhRh7VXE3vxSIOVbxNmxflNIgYGidSvbFjFDLvZdqqzkOyWlu9I02qgTgm2Ik2B0J0IsCOFBTG9L45fTSN9bZUhpJVkmBbZifJPCxym2ihRkpN9a9w7SPCQ6eVtSpxX7N+U4KSortX4rArwv9vDwMORDjxmWZCNOxvIAQJZd7Ubb2dmBN954A/r9/pIzpR2/zeuogdebfxdzrCivYh3QgWw0GtButwOd2l1gMdosnWbxWgyaExujQ7NFPHpC0vdaALZM3WgZ3oAYx036FZIMo3WhRxby7/g3PJ3G6xyWDWNB60du0+H9rHgMsybr6HfSb6n+NB/NluSBA9zdfn5+HtLghGCWZUE+5fmLo97pjn8J3raTaIz5J5pdrelOlD100QsNoPD2tOokvdNs+RTMZrOwKI3u9i6jg700eXSf5StI4zR2fygvW6KZ/u3RASm0e+wxL3gb0HFP74WmZWu+WFFdFrOdPHWg32jtI9ncHrvY0pG0vaRxbeWlfecBl5FaudJ3qek4X1jyi6bT6u8d0/T0EylPXNS4Tp2PtKPNOxgMoN/vw+npKTx8+BA6nQ7cuXMHsixbOi0g1lfcH7LScnqqhNffozR57HfLd6JlecejR3568oq9q7p9vTRg2bjrlfpPWfbi7nZMhwtdY/ZHlcDxiXoSF09g+bg7D+BqMpbqUz6ZJ/EQ5S3JHtXAv5F0/E1Cq0Oq7uS/YzqIf8dlOv+e+rx4vSCi3W6HidaNjQ3Y2tqCer0OJycn4QTM2BiVaInZSvy3Zv9K7VDErvfAa4Pz/MvKMAD7KHJ6RaSVl6WPtXrFeLdI3Tzt7bGpUlBWp3p5StwZextR1Am8LXhZ6F8nndrZ/xpui6IsAgyYSEIWg9TetqeOiPY+xUnVHNUYYvR6diVJgbSbRqpCvu3wOByWQVYWRQJoq4THmLOcTRqsAbB3fEu7EzVI73HlIDo0s9kMzs7O1HpIeaUagdJR8l5428X6HumIga+4xv9T+SrVwMPfPMDE5RjnEykfXjbqgn6/vzQpaa1e1Mri5XiMXwvo+OOxhNTI9wTSptMpDIdDaLfbsL29Db/7u78Lr7/+OpydncHz58/DsaydTgem06k6kSPVgQceqU7V6iLlifmirp5MJnD37l148OABtFotOD8/h9FoFCagMeim5SXlHRtTKbJIqxeCHsWK7/muoNTAmlSOZENoAViP/KXP8R13Kj3tfRvtRYv3yoCPQandedDJWsgjTQzneZ60MIR+p9UX/QDpXqKYrYtpKA9zfsagDwb+8D1dQEPvVQO4vogqFVhfDCji3d/0FAteR0p3ll2/71f6jgZX6VGE3N+I6UUr8K2NbQtcP47HYxiPx4Emq205j6bIPUvX0oBiTA57ApT0OeaHOsyiGfmR/sO86AIB5Eeua1cBrZ05fQik7/LyMtCJC5bwO7RXcdcinSRIsdMkm1LqPyk/agNY9g/3x+ld8PQ5pUH6Xhsr2jeaPrX0K32fWjcNVvk8RiB9K+l3vqNGku90Bzj6Omi7IZ9I9hWfhEXZcufOnZB+NBrB8fFxpXo2RR7h8Y/NZjNcK3N0dATf+c53wqQULuTrdDpLC4FwxzmtNy58xGd4OhItE8H5oao24PzGd8R7fH2vvbnq+EDMX6LvuaxeB31eTKfTa/oB5SwALNkcyIc3gdlsBh9++GHQBVyv8Ws5vOOM60/PN978P8cyLF3A/e3xeAzT6RRarRZkWQaDwQBms1mwURGWbePpq5h+svItA2pHWvTEyrJsBM3G8ehnaRFSLCZvnUrGn2tjzatvqD1V5Vikdpckr1cVEyhbB9fO2BSleVsretMoQv9N1Jn3JXVgtXSYtgi838UCmFa+ltNjoYgTY+XFHTbuAJbJ31N+kfdeReJJL/GMFZhNrbvmCJRBan2K5q8pkFSUoYkH4Ky+0X5LsByeFFh8YTmiqWVVPeakAA1NE2tnHuigdzxYciV1bElGJHdIteBPihwvA28QV3ruHRtcpmlBytQ6S/yg0UOPypT4RXIAPLLaosNTH+o0aEcT8jwxuMZ3c+/s7MDe3h4cHx9fO54qNfgs8b7XZpDaDp0SPE55b28PZrMZzOdzuLi4CHd9SUFIjbYi9ZHo5P2o8X1qeVIdyuQp8Sh/b+lszfak72KItX1RnZ2q92JjrWiAyBus4EErKY30rqh+L2Kvcx5MoUkL9mp9QOnL83xpB5VV55htxMvDPKW74qnNZ8FKE2sL7V2MN718aOXD/Rs6OUO/l9rB4p+YvyH1kVf3FvGTPN9YfCPlg+2Uetx+DB77SaNH8qnRTmk0GkuLx7C+dMcWPo/Vw2PnF9Gp9FurH1N9Mdq/mj7jcs1jY1r0WXnz+sbyj9nN1jfaO42XYnYSykt6RLjXXga4mnhCniu7oEaj0QvObxsbGzCdTqHX64X3/AQYfoS01Dc0P5oH1/FlbRQJEn9xXZoKiSekseTJu2h/W3Yo/p1iS3r4vSqg/eKhC397ZVtZuhDYDnhtBR3nFGX6vIxOKIKy7Vcl3Sn2Wkz3adD6RrK3sywL8ht5E0/8orwnyQ6NlrL+3irGocfWpmWvkwZpjGs+Pk3L08RsNu1dqv8nIcUe9/Cu1g+cJ2O0eeny2P2Iyo8pRkJWrYA+x+oRc2A98BrTsTxWjZvkWct5iT3T8tMctFSUaRceUKD0SWlj0OiI7UxMoT9mcFQNT3DCQlmDMGZMWLRJ7c5XLN8EYsHLVMNCU9T8mccw4yv18Z8WeKJp6apoL6QAKC/DAjeWKc34T7sHnAcSLVq8TpcUMKOraYvkWwYeXkcZVMQBjhm6mmOj5VFWl9NJVeneNfwb6zydTmEymYQdsXfu3IHBYACnp6fw6aefwsbGRtgFgHTi8Vqxe90sOuk/C1pgtF6vw2w2Cyt779+/H+5//vrXvw4XFxdweXnpvt8WIS26smSS1s+xOlHQlej4fZ7nS5NP3NYrclIH5s3r4wmsSfYP5sUDTfSO4nUElTi8bZISPKD8KjnQqwC3zaQ+t2w16R3d/ZZ68s1tgzf4yu96zPOryalarQatVgsAAC4vL0UdwPuc/o+7xJDPpfvHuW6md7RJ98JJsi7WBl7ZxuUI7pScz+dLu7ooLWXuE7RsMYk2/rcVmOJ2v3TPJspQiX4ur6X+ld5jn+KJBqhfcIFSGXumrJ8h3V+P9UAepcf57+3twSuvvAKTySTcFTccDsOu2lh/SzovRbfTfPBbb9AN6bPsKUv38DKxH6078TjPWXlrJ6Vwn8Jj38eea/0k0cnHdCwPCjxmvdVqQa1WW1qk5/HbcNdfll0d/yvFHtYF3tdIk+Sr5HkOl5eX4Q5NKoOwXnmehzsWW60WbGxsQLfbhfl8DoPBwOSd1HEi0eetc9FyvLZt1ZBoQT3L9ackgzz2J+Xdm7CHtKsv1gXJ5qHHFiNw/KP9IulFmmdZaDIpxea5CVRBWxXtJ8V+KPBdv99fem7Fa4oAF0XH4kCSj1lVO1C/WUsjlc9plJ5LaTw0ac+leDxe2yKlxzgIRyzW623bVY01bWxLpwhUkbflK3tQajI2FmApm5+FVMftpnETtK6jjbQAA8LLtBSWICnK8B6no8q2ijkOHucila6YsLfK1MrTghM8uCDlr/V9ivBelyOh5XGbDTPJmPDQKgUd6HOP4aDRkBooKQJPnaUx5gkA0W9TUTbY5aVDclytoI72TRU00ndVlyehrOEXy6+sAenpM75ARAsKS4EAq2ytvBT6rXSxAA91znCHwvb2Nkyn03AnLE7S4CTDeDyGw8NDODw8DPlaEzmSbuL08mCWBM0Ro/YMbUM8Ovri4gLOzs6g1+sFGq22jAVrrXogUo7e0sqlAVr6PibrtHSWbOWyt4jTy8vDcaPZmlXJ6yoChWWdaY/tlxrgk9KnyPMYPfQ9HeepSJVzKXlpdcrzFxP7nG76Dd6vRCfFYmOCH6sao5MiNm74dzgZgXWw+i9lvHhlBU1T1K/ylJGaP+8j7Z1GD/dxuR0p8YI2NmN6n5fL+1GS31pdYnZ4quyU8qd0cJ2Fd6tvbm4CwNWChMFgINKglUGfe2SDZYda4ymmg1O+09JhPlqf8npYSPVLLb7x6qQYTfR+QOlobYkG/oweWc9tFpqHpsvwBII8z8PErNfvWwcmk0m4ZgYAlk5MsMY7/k3fox9BdxEjitSV27y8fOk3pV1qZyt97Fnq2KoalA9Ty5H0wyrgae+Y7KuaHgqJJyxZ6uE3K58y47yKfrL0kvebIjJaqrfXr7PKsuxFra8sO0Tb+c+fpcqCmK3DIfGjNnasPKQ21/jdy8tFeNgaU7H3WA/N993Y2FhaiFfVKS2cRgmxPvfIFfrOQ3dMnnryLdI+K9kZuw7cBsPqtqOKNooJhlX0A19pLtGUgpsyxLmC8zqeUj6p9Ft3DKaUT50kmg+/+0rKK9aPXho89FUJ3nbrMKpXhSraPjb+MUiZZRmMRqNkGlcFbdxY/WndC6WVUQZVyCbpeysQTg00boRp8sJadUhXEuNvToPk6HvrYtWBjlGPvLFgBeO0ci3aYuOGBzBooA4nBzA/6Rgqi7c1VCXDuNOB/+Nxn1tbW/DKK6/Ab//2b8PJyQn84Ac/gKdPn8KjR48A4AU/jcdj+Iu/+As4PT0N+eB9udQBsOrB33snSSntVn+ORiM4PT2Fd999Fz799NNwJKPloNKxRceGFzQfuiPew1u8jvzeaq1deX9i2ix7sZrUcvo1npDqxesjpefOOT0K8zbqYq+Mo+DBEI+9rfFrakACQL53m5ZBaeK7ACVgGunORV4PWl4R2nl+MT1mLW65uLgI+dA86f9bW1tQr9fh/Px86d5PrW70vuaU3QCaftZsUSpjaD2K2hZe2cLzl9qb60u6KxLbKFauJFO43pTKL4KYjNVkm2QXSPfjWjYDfSddU3CTMs/iPQrk+W63C51OBzqdDrz22mtw7949ODk5gbOzs2s6MYVHuazg+oqmkb7jz7S68jKk/tbsEppWsoUxnfS3V85KdfLS5M07BsoPeO0E9utgMICLiwvz/mSuA5DncQcp/kPbQ2tLfJdlWZjs59+sIk5QBEdHR/D06dPwG+vSbDbDKTEAII57KjOpXmk2m+H+2TLAnfhYVspVIak7kDX7XNK/HOuSgzgW8XSL4XDoKlsah556FaXxNoP6uAA2vdpOZMuf4GVR3YvfePvsZUGV9g7Px/IJJWgymX6D/iZ/jr+rsP+RhlWNMy80nwDfSW0do9NjQ8ZiEfSZ1McW+F3lw+Gw0EJbDVrfx3RKVf3rsfc946LsuEyajOVGY2qnSrjtyqQMqmSWdbUTL0tyQixaygrUMmVr31VBlxeS42wN6FTaLEFsKYHY3wD+yZOYwkmB1Vda+/DyPWVaxrHldNPAgRWEKAJvu3oMSt5XZQxQqZ4SL1DnzUNbCqo2NHnwUJMlXsdBgqWMeUBRGrNlxk6R8ViGh3m7xmSzJUv4c6/zRWnhfF/1hI1l0Ep1iAWKY+M0xVBPeR5DrM0o3VI/YfAty67ui7t79y5kWQY7OzthwhWPo/rkk0/g+PgYBoMBzOdzaDQaALB8/I0UePXQGws0clmrjVn6DQ2G8bbg32He2jGW60KWXR2P12w2w465fr+/5LjGdCMPqJSth3dc8nJrtVo4ong+n8NkMjH7sIzeSZVB+K33aF6tDSwdwuV9zEnneXltZy63+C4lTf7F6hYrt8x7CbzeXptIkg08yIcBcclfom2Ek7Yx+UK/lSDZpVZ9itgwVdtc/Fh0rqfp+LZssZQ6aPabp63ob2+ZsTGmBZroO+vbKoNeHB6/AumgfI3P6DuefrFYwHA4hMPDQ7h7924I6En+Qpk+ttJg3pxmrSyv7cPLSMmHTkBb9iF9Fis3tQ95XxaRvfQZPd4edfR8PodOpxOunIjFE/D5YrGA8XgcvrPqKfk/2L5UD6/b5qJlSvqZjgG6qM86zYD7W7jzmMpR7+JFDXQxLe0va6IlxSZPRRk7grYL/k7VB/hNs9kMmw/o8bp88jvL5EWX6+TDm+B1Cx7/1NvPq7QRU+iwyvLqVC9NRb+TxmjRumL6WCxDKlt7xuWUV4dhXpJOl8oo44ulfGfZArG+kPIq0j9Svlp8jafD2ABfuG2VVQRaH6XqrJR+5flr/JlaX8/zFJlUeGdsFQr3timO24p1ttMqFJ4XnpUQKUbVTYHSxCesJKFZZR2q6h9NkWk7gsqUX9ZY8ARAvAaDVmeab1VtzJ2sWLt6gwHrADp/N00HwhtotmAFJ2IGUiywAnB9sUMKbRaos8cDLVZ6hDXuYnxJA4q0/KJ10H57gEEKz0SsN5jt/UYK/mnfaAFWzSDVaPGirINo8QvnD7qKstlswsOHD6HZbMLjx4/h6OgIAABarRY0m0345je/uXRMGwaT6AppbUxadUp17iXjWaoj1g1plMriuh+/xXuQpLpUAas9ut0u7OzswHQ6DUdGz+fzEGDSaM7zF7sj6vU6ZFkWAqtV0aw9o3YS/t1sNqHRaEC9XofxeAy9Xk/NpwywTO8OJQQevU1tvpjs5JDqT9Pz8VZ13dety6u0faWJBgmp8hAD31mWhZ3Z9P5zSWfi2MEFA/yueIs2TiM/1t7Ko4pgYFWQdrlI8sPi59Rgf5mALB972L+Sv+m1Vygv0jRa0J77GvTY1lXA217e4CnSO5vN4OTkBJ49ewYPHjyAN998M0zU4fepvGrxvId2lOlan0r5aunoyR3eCXPOC3Ss8/cSXZ7YR8wu8shHDzgvo86r1+tLO1svLy9hMpksnaRFy+c72BaLRdDrfFet1HaSbU115037ppx+3MnKMZ1OzT6h7YSTsDgZiN/hJHjKjlYK/Bbv26W7kqsE7xdNxlfRdzSfVJ2P47rb7UK73Q53uANcnZaj3Wds1e+m+XGdsOpK9VwVNktZ/ViFHqLvV22DxfKP2Zop9EljsUwssgr9w2koGiNZhZyhz4r4/EXaRmtT/oyffoDAO2EbjcaSXSLdL5sCy8eneUpjxmq/FLuVp1/lPfJl+No1GVvFwPEY0rfFifwc6wM1LqVjBqTfUqDqZYAWuI0Fg1OhOXf0HaeDp7X6wYKl3KQyNEM1xdjAYJWnfTm4kKaC2lrlGKON16UKhc+dd/yb1t3DN972iAUNaWBDom1dKFKmZjDTengCgVJfWN9U7ZjxIK92fLg1tqQgBz6XAkb8N+U9KeCUEgCKGf1a+hQD39NnEqx0VhvysRnjK0kHWHKTfyfBI1s9ciHG3+12G2q1WjimDo/0PDg4CHfHoezAoF1sctqqlza2PHTjc+kdThq0220Yj8fw6NEj6Pf7Yv5W3nx3GE3v1Xcx2a61D8oGtKtarVaYVI0FcjEQ2mw2Ic/zMJmsjc+isizWP9QhxAAZBno9ZVq2CO8LLAftCTxyu16vw2w2W1o4wPNaLBbQbDZhe3s70Dkej2E2my0d0xWD1+7hdYzJTY8NUlYf3QZ7PMbX9FkKNjY2wtHxlFck/qc8jd/EJmy4HJN0qZYef6/a9rICIkX73hMXSIHVz9o7zh8x28/jg2KaqoJwHvvG0oUeW9YLqV5S/ig7nz59Ct/5zndgsVjA3t4enJ2dBdlaVm9Q8GOPvfZDSjvkeS4G86h+t2jTQL+hCz1o/vR/6XmKfKf8adkwUj9zuxSfXV5eQqvVCnm2220YDAbiuEmx8zX/oaj8WYestMqWeEGyD3lb0b7C+8ERVCfht6vwcyS6vN9RWqTvvYjZ3EXB4xiYFx4d3Wg0IM/z0O44UU0XI0h5Sn/fVpQdG7Fvaf4x383KoyiqtFFTxlTV8JYd89dpfvR/Tc9o39NvMU3MH9dOYsTfsTHO86d6MzU+4oU1PmJyUbM1JB2u6Tat/BTZbl0PIZ0oIfVNit0ei0vF7GmrLO8YSLHvU20JTqNVH6stopOxKY2jweo8rYzP8dkHNy75O3rPkuQE0Hc3DY0erW7ad5YgL0ILfaY5Q9JOMskJ8ygBqQzJmeLOg0RrrE6cVs4fVtvRMmgQVnO0rfJigQmvkxwzhD0y1OPU8m88RhSnAfmBt9nL5HxwvtRo9/IRfhcLHlTZLni8COZrTcZyGcBB08aO26Rym/KvJAc1Ax+feeRezLC3+jJWhyoNd63OXqMxJgtiskfLN5a2rA2G37daLdjY2ICjo6MwGVur1WB/fx86nU6gI8uuJvpwNyHnGxqckmjk44z2pbfv8FtprM7nc6jVatBut2E0GsGjR4/U+7C1MSXl7w12aPWWyuNjHEGPsgO46ps8l4PJKMuRVtz5g5OxsV2olp+Q4pDQPqQ6BmUNTsamrG61aKZth7qs0WiEyVe8Myx2Bzces31wcADj8RjG4zFMJpOl+9284zBma3GHOZWfUhBzlOnzFJlk5ZdKnyevIvWn9cmy5d3tfLcqHTcUOIFvBWGk56iDvd/Q77xBCo4ydonXxl0VYjYNT2fZ6FpghefhsaMsee/1aby2g5aHVUYZPpHajOulRqMBT58+hePjY7hz5w7cuXMHLi4urh2JV5QGWibvWz5+NZlqxRI0f4nbmzHbUypD8h1oPtKulBQ5IiFWtpRWKovbM2gjTKfTsIuw1WotnZ4UGw8SLTR9yokysfzXDdru2m7TmM1HF6WhPYSQbKKY3WghxW+pClXoH8vOjtkKXEagjh+NRpDnOezu7kKe52EXs3TSVZW+5E2gKlqL6j0NMb9Yel5ULnrh0d9VQaqbJS942ljeHrkcs3ckH57rGM1Xtejygupfjy/i6fMy8Rb6O+Y70d8x+0GS617+lfwUzke8rpqdprVFEd738mBqWTz+AgDm4mitr2K2rlfXWrZm4WOKveAd/TIpptuCdbZbrKyytMSM8o2NDeh2u9eOExqNRmGFGqZ7WXnJ24ZlnIyYILBooG3rVSLSc00R83ccXqMKd/loeaQGB/kuQ8yD3olTJTzOr4VUA9JSHqmgzghX1rdpXFrOGT63+pbfdySNMSnQg84zf1cVL9F7NQGuxsL29jb83u/9HgyHQ/jDP/xDyPMcWq0WzOfzaxNeEmhgRTPQaPlYT23MS0GyqpwditvAb5Ks40em4btYe9HnyEftdhvm83n0ODMvresIskwmE3j8+HE4lg0nM3GScDqdRo/v5O+koIsEry6U+gexWCxgMpkE/pfuVbGAR5pivjFZRGnHfqdy1qOTkT50OPA4Ypwkx0Agl2lc3+GkZLfbBQAIRxtrAS5Oh/aO8x51liQ5S/OaTCaBftxZZbWhRpf0jDqouAMC69toNGA0GkX7vtvtwmuvvbY0GUtt1hRaNVg8VPWYluSEx+7L83zpCE8Pz6wKVZSFenw2m4XxlOd5kA10YtYTYPIgZr/H8sa++6z63N5AkCRr8G/Jbovl7wW3mTRZiP97gkBV0VYFJH1BQW3J6XQKk8kEJpNJ0EF0oXWZsmmbpU7uegJ5tDwtPb8HVsoD20M6cpzvske7ARdy8KN8LRms0WnRn+on83xpPrPZDC4uLqDRaATfA/s61Z7ndg/lmZSg6csGzXbxLAjT9FBKW3CdrZ08dltRlE7adpK/2+/3w27/TqcDBwcH4T36Bjhx+zl8vlnV5a1jzJeRl7cRUn3K+hZSX1C9rdFAxx7qSy0th9fn09JWjaIy0/KFPT6AZodIvpzVDqhz+GYtiV9WEddbFawd2fgsta2qwLXJ2Cobilf0syK8Yqi6nlXl5xFMHiFcBY9IwWsACIFnbsDjLgPEyzwZW2ZMSAFZDAhJ7yzlpylhSWkWbWtKU4y3pGCSBOrYxoLa0rcapIAi/h1TRkUQ+z61bl7Exq9X8aDTxvmEBw1W3U4ANs0aH1s8ht9ZY4AHa/gzPEqTluO9XyoGdL5xN1e73Ybd3V345V/+ZTg7O4M/+qM/gjzPQ+A4FsjhtMfKRnjSFjVIq/omhf8sGRobF9R4lvKx6OJBOwrcnYeTAfTOQg1lgjGx9Nq44d/MZjM4Pj4Ox+PixBQ18unkoEQ3gjso1tjUxiPPT/qbp8F7tKyjffhzjU9S+wCDYPR4VDqWLXCbiu+Y5zRJtjoeJc3bitJBkRpsxT7kAUSpj7PsajKMHvvsdQZTdD7Ai10mdLGRp+9arRbs7u6GiYdHjx6J9ea/rXb06r6qYTnc1njh3/D067LZqywHxwLKLW0sAbzgWdq3ZQMVnrpIPsVNBz1uAyQ9KMmzlLxS7COtHI9+kGxpLyzb1Cozlh/+7dHXmD/aLfS4T2lSMlZ+0XFgpfPa9978PD6n1vfUxsmybMm/SuknrsulMrU4gvStx9ag/s1wOLx2hKvkD8b6gOt6Ohlr2cBWH6xL/5QB7wPaDlp6TKfJCsvejfGsNtZvk35JoUWrL7dHado8z2E8HsPGxgZ0Oh2o1+vh2hWAq/jkdDpdsht5mbepvapGjOeqGncxm98jq6x0KbIvRS6nwKOnY/6tlk8KiuRp9bk3VsTz4N/FTnL09osnBrBqpNhmaBMgLB6WFscViT3id57xkuKDl5XX0ntvnlZbWzEWK/YixS5SUXpn7E05fqsShJ8l3KY2svjk4OAgHGGY51crzhGTyQR6vd61o10ajUYwzukq0s8hG34xoelxOCV4DHucEKJ3nPAdUdoKKOtooqomtjQgz2lKu8j40oLYKfmUGdNVyGm6IznP8xAkR0OK7sBaFTwBLw2egE3ZI7Ew306nA81mE05PT2E8HgcaG42GKx+Oer0e7mKazWbw67/+6/DFL34RXnnlFdja2oKdnR04Ozu7RgvuVPIaoNL4kgLMlizB71PvB/PIFM+7mwC2DV2lzsF3OvDvaRoMOG1vbwdnfzgcwnA4dN+bWRVijhYGXjHt+fk5/MVf/EXo+/F4DO12O+h4zotYVzrxIektHmBOdfqk+kjggVHLKZHy5iswPQFBlA00DR7nLO1M5d/SI3GxvOFwCOfn50HmNBoNVb5hHqPRaGknKu7I5rtTNHroc2tnBQ88036VZJU1rmi5yIfW6Rmcn7HPptNpkFnIqx59hn20u7sL7XYb3n///aU60mADHee8v7y4zQFmWqey9o6W3qPHqwSVyVimJK9jK6/pu5SAkNYGVL9rRxtX0d63AZYOQtsT/44Fg1PqWYXdnLrDjNJ3E3EWTi/9n/Mtykfqx/HrM2gdYoubOKgsseQBnqyV5zn0+31RD0u6ib6nclXqL2q/8TpoQTluz/FvaBmz2Qza7TY8fPgQxuMxDAaDcNIC2nzSEamcBl6nFN+I2/oeXxu/mc/nwX7gE4mYX2wXM/dZsM2azSZsbm7CYDCAfr+/VC4i1ue3GUXoTOlXj/zgvFLENrkNkORnCpBvhsPhUvuhf03bBBecttvtsCBB4vOqbbbbqqs9+jc1v5uop+SjvyxIpd3TxrE8PfFRlO24SBhPzgKAa76W5HdJ+rMMNPnGdXcRePtA8gVS42Y0r7KQfKsi/omVVstP0tc8LY01e8oq6mNzWAsByrZ70mRskcKKVN4rFD7HFcoyx00pm3q9DvV6Hba2tsJxeIvFAnq9XjCmccUZBT/+s4ywXDViwVOA1a3Q0ZwyjQ7+O5beUmA0kE1XC1rfaO81eNPGlAmVN5ozXbRftLHJ30sTDdo3Vj5WXVOMMy0/2q8AL4ILKRMVHljjJmYMpjin3nw95fI0aHTiJEiZxQM06ErvBzo4OIA333wTvvCFL0C73YazszO4uLhYoof3mUR3zPgpAx6ULxNwqNKZ9fR3UZsnRieXsTwIyOuLu7Hq9fpSALFov0ntmSLrtXrRna7z+RyOjo7CO3S8vBNqHrkX01UcRQMEtE+k/pHy9LYZfUf/p0ea0/JSbYrZbBaO2ZV0svQ9TizS3cz4XnK4pfbXaJV0i9SvKOOQXzxOodRetCwLOG5xJzTWyavb8jwP98zS012kdF6apG+kdk7Nr0oUkaMp+sXL+zRtahmevLhTb9lpkr7z2N5avrTMFHvQylfDbfeti8jwMrpcQ4qNWtTm8foPReDhS0ne829QV0l0UZ6l8pzXJbV9pHbBf7j4ly8K9YydInqDjk/620M7tf+ovqnVarCzsxOudqDXjNC0ReUd7R+trlp7SaDthv+qWBhC2xK/bTabSwv2Jdy0TuTw+gP0b9o3VZSRgirkipTPOvpD4hkKbzsh/yMfo01IF1LjEezUJ7fs66rhtWtvwzgo4/eXhcbPlj6oMgayKqTYILH09BvNtrV4SSrPSo+6utVqLekM6oNKu/3XId+0unB4fHFPeVpesfaTUFVbefwXyyeR6OH5e9vUsqm8faXlraWX9EaMx8vIjGuTsWU6PpbWi9ugOD5HOXj68I033oA333xzyZChq8oAAJ49ewYnJyfhm1ardW3nyMugNNcJrxHPneRUoDJF0OMc8zwPEwcSfQi+u0ty/Gl5PJ8Ux4UrDQyeFtlh9jLJKO7olTHO83x5h3OtVjOP7bsN0JQ75U3c+eXRZ5yHcLKA7qTudruwvb19rW3wWOHUPsCjatHJQzqbzSZ0Oh24f/8+TCYT+A//4T/A48ePYTKZLDmNWF8pSEIDvfR/qe4WOJ9hUMxzX+1thUemeJ4B2Medcn6UHBIMRA2HQy/5a8d4PIYsy6DVaoU7lBDIC1wO07rS/70GOG9T6tB5+U4K4NDAYiyvKvgbj28cDoehz3FiT6LXAuWXwWBQiGeyLAu7cVFHUhnCg8PS0ZNakN6Sqeigb25uQqvVgufPn8NgMFjS05rNgOXduXMHNjY24OTkBPI8X5KFvF85vYPBYGlX/3g8dgXWRqMRnJychHZAPYltY+2u5e3Cg+V43KNnQqEsUgMu0nuJzqr9Qk6ntguF/s37HnnKUy/8h/pMkuf4u8iK9rK+NOpcPFqd0g0Ape7pvG2gR4in7jj19HeVwHbnd4BSID0ob/k9opKfc9M+CB97klylafjEaAwefUvz0e6n5roCx65VHwncTpHucvXyFpddqKPwnvpGowGvvPJKyO/dd9+Fn/zkJ9fqRYOhPJgttYFHztH6oBxrNBpL/n2ViLUZvp9Op8GfqtVq5sI+TPey+h0Atp0CIPN2VRMVq5YtsdjOqsvjkMZHvV5fOn1vOBzCwcEB/M7v/E6wJ7/3ve/Bt771LRgOh8HXybIsnPRHTwDSbORV4yb0BMoNbXxKttxN46b16SrgqRM/8QUh6diUfsP8aLyexskAADY3N6Hb7YaTHzjtqHfoO9yQgEg9FTOV17QT4mheRXiniL3v0eOajeO1k1Pth6rHcor+0RZ8URqqutKSym9eR0tHe+89VqPoHoe/TKNbwTQt/W0TlpRBq6ItZXCntL/EQKtsTz6ApRUujUYj7Iilhic1zukRBjxfAHnb+E1BEtJSf1YhwKsS/mWg1Yn/0/qIB1Y99GkyyApSSLKGB6i0Y58846bqdtXkicZLUtCRgzruPA/rO+l5rJ0thb9uOa7pMdoOFk1FaMXFJdJY0ILpsTpQQwDv4AJ4sTIXj3yZz+chWIxpLV7iz3i7xL6jwSD8TkORcVIkoF+kzzx0S04JDVzR316j2QM8hh/1qIdmCxptZcclHf/I/9RpirWxxyb0yOJYcE8b75I+4+9XYWvQ/sjzHHZ3d2FjYyMc/44BnZRFU5RObnt5Fs/w4z653OI0p9JEf2vOX6PRCDtMqeyU7ETO061Wa2miDd9ru4F5fTAfOvZi42M+n8NgMAgnE9DJWAnWOEwdm5Z9VUTncpvCy/uSftP4pgpo7STZRNxG9eRB683/53nS72MBjBiK9Be1EejOnO3tbWg0GtDr9cLiQ6pLbptfnQLJ/q3aRkj1s3k5lv3A7QYtHykdr2tsjMb8mrLQyi8iz6zvNNnEbTHrCGJuo6Xyg9XWkk3oqaPU53h6GNpRXK547GOvn6bpVJ5PrF6abNVo0+qv2di4AAMXr1Edjem9fp015iSa1+2/euHlN/re6hvJh9H8SM0GW2U7aTytvU/Nm35Pg/m4OK/ZbMLOzg48ePAAfuZnfibQ0O/3wzUX9F5jvtB2FX4E0nAT/OmRBUW+R3j86CrqzeVfVe3p1cup8NixnA6rr1L5UmovDZLNgWNjY2MjbOyQdpV7bfRUmovAwxOx/LX3sbwlnvSMDQ9iMlXKm+po+kyzu2Jl8rI9YyM1/pA63qy6ee1IT3+V2tKkNfIqFMJtNIAQt402qf25IFw1zShgAa4CWnhfIgUXuHgk3vb2dviW7orlyPPbs+vKI5zLCIEi9GhOlxQwo3R6lDoNsuORhqhM0UnCd7Tviyj72LPU1bp5frU6C3cVDgaDpR1c1j1zq0YKn2C7p8JqU0//II3IA/yOBymowJX2qiAZAvy9tkMkNi6ok0+/oUGfer0OnU4HsiwLK9wxmEJPAOD0ecfFZDIJd2EBABwdHcFPfvIT+OpXvwrdbhd+7dd+De7duwff+MY3YDqdwmw2g2azCa1Wy5U/1pHSJckRjYes9uO7Pl52UJ6mC04sQ9syUml+9N18Pofz8/PwDI9C1WjSjMWi9SsCpHFzczPUB/mRAtvEw1s0vQXNIfBC6xMvYjqLB4TRVsJdxf/f//f/wd27d+H09BSOj4/hr//6r0Nb8jbU5Ad3knn7xRw+1OG4K9RaXcp3CpVFnl9NFNXrddjc3IRms7l0ygbqGF4/Om663S40Gg14+vQpAFzJZek+T4AXuyMl3YWLWzy72kejETx79gwODw8hyzK4uLhYOgWBB+SkXRJYhrbL06ufaX5ldW5KQI2fMrJOO8qyM3ggH228wWAA8/lctPk0O5PbPdquQKl8Kd+yQDsQd5SjHY73Nn7ta1+DBw8ewJ/+6Z/C6ekpbG5uQp7nt/qEhRi4f4PP6G+OdQeqcQzjYjk8jo/fjS7xjnWUr7W7qmygkZZj+YKxIJqVpggtmkzR9FmWXZ3OMZ1OYTweh2Avp5XbSrwOGqiNIdkumg9EF0Jwmqlem06ncHp6CltbW7CzsxPSoOyy4h6W/yXVm0KiS8vb007aDm8PUHdRnY2TsHmeL42D09NTGI/HSwvNNBuQ63LNZ5XovS2xPj5GPTEbS2ZISLU1PgtAuYxtMp/Pod1uQ5Zl0O/34fT0FP7wD/8QvvSlL8Hv/M7vwK//+q/D7//+7wPA1dj55je/CY8ePYK/+qu/CncaNxoN6HQ6MJ/PwwlcVchpjf7bAhyj2juKVLpXyXeWrllH+atEzO+L8WXMR0cdq7WVlner1Vo6rng6nQa5PxwO4fLyMqTlehx1akostOrxtyp+KDOeY7oc4IX+KOq7e+1QK39PTCcVtHw+P1A2TsFjK/R5Sh4c9VgC611KA76swktDLGifgpiR5BGOGm2p3/LvyyCWz2KxWDryFAMiGxsbMJ1O4fnz59cmY9GRob9vE4q0twTa95LikIRBLH8t2E+/j/EE9g8G2QGugg2j0UgN/HHh5W0HLa+y/ElXYlFgABcDdEWOspKgyYSYM+0JLqVAC1CmfssnE1YtR3i5/FlsDFjBaY3nY22lORNcPtH7DrniTmkfzBfp3dnZgd3dXQAAODs7g9PT07CTjpZBHcsy/aS1oWRo8/GFO3b53d8aXatyVD0oGpBD8N1GWmBTqyOmx3xwIh/7n95n6UHRMVjkO2lcacFS+k1szHqeW+mqlEMxntXGhkQX/sYAIx7FtLm5CTs7O1Cr1ZYmXmu1mnnUY5GApwQua3j+PPjM9QFFbCzH7Gj6jzr6SCNPg0D9jUcZ8jpI5cUgOV5U5uX5i2sP6E4mWh/aVlRW00lMWjcacOb/czuOl1UlUoNnMZ27CtroGJTKwneNRiMcgd1oNGA6ncJoNHIHJWIBqZgMoGk5bbG2sWxDOm6lsm+br1QUXLfS59rYqKK8VNp4QAjlEN4JStNKgUTOR1z+pOjCquyF1HFM6+ixPz02UuzddDoNbarZSp6xIcmTGM0SNL2o0YS8Qa+o0Gi1/BAtjdcPsNokVcdIespTFv97NptBv99f2nUYk8eaHcYXNXj8Sw+tXsTaMDVWwu2yKvw+65tUm8lCVW3qgdd20fp+MplAq9WCL37xi/DKK6/Aq6++CgAQrmXZ3t6Gv/mbv1HL9NgGnxXQTTmaX2HJWfyO/l8EVfC6Zstr3xXxVVNp9Xxb1ThN8dOt/Og3k8kEer3etSvt6EJHnheehOA9ftaS31qcoGrZw3nC6xd74hhWXpJulNLzMSnR4oFHZ6XaTkUh0aLZYVY5VchpKj+09ozujNU+XPXl5KsIKKwDMeNKwqqV8jouki8CDIIAXLXN7u5uWNl4fn4O3/jGN67tpKG7G15WY0YyLqydTvR/AN8Z9jwtBvZoOVQAW8IY6cNyms0mHBwchLzw+DMO6ZiWWDkSqGORGtiTxhy9h4++f+WVV2B3dxfeeeedpftpvGWl0IDPU4LDtB3LBldSDCueF/5PAx3rktVehxkgLouzLIPZbCbyrvUtD5DwXeK4wx/gaqzge3r8Sizoy43/PM/D8UcAV/dt/72/9/fg0aNH8PHHH8NHH30Eu7u7cHl5uRRYRj5Hmi3ZwX9juZKTL+3cwjR4tNrW1lbIbzgcwtnZmVouRxX8VNSGSDkKWJKhXEZ5wNPj8dLdbncpEDUcDkP7F3W81gGkTZuA176JOeke50Qrj0+UxwJX0nPLuMf0KUE0gKvx0m63YTQawWKxgG63C3fu3IH9/f0lvY07YiR4yos5HLSOeDQy52Vtx5YUYLHKTnXwcMIaEbOBsC03NzfD7lbpnltad6nvtSsWcIEEPYo4z68mY+nRkrRt+GQyti9OGuOEPJ24oau+tZ29lO9oG6zbf5L4nga8Vy3TeZCMB11wt3Wn0wm2Xr/fh9FoBD/+8Y9hOp0u6UutDISkOzlP8W+sOhS11Wg50rUEw+EQer3ekt90W/REKri9SceR9/tV1x1PQOET43jyAcpzyi98Mpbb+Zqd7Qlmeb/x2MuxMlMDmlmWLd3vifcd8/tYvcjzHAaDwZL85pMBnDZN9nO5Sr/V2tTDi5o9g383Go1wzx7SzMeuJVOoDULrbN0Zbd23Lf2WwOW85VvQbyS9LPHRxsYGTCYTePbsWTjth6aj1xlYoD5YEXutKhTx4bW4AH33ssr2m4AmH2NH+D948AD+6T/9p3Dv3j24d+9e+O7hw4fw4Ycfwn/7b//t2kaSddtjSNNNlAtwVd9Go7Fk904mk6VFMp740U2MT012pcQbU3V1WRTpZ0nWWrqRPpf+5nRYYwvgKnbc6/Wg2+1eO72Nxq8oMGbHeUuiL5WvqB5c9byJVL6mI1c9hq268ivXPO1Slte9NmYMZXbBWn6S1Hcaz8VOFkO4dsaWESpFO+WmAwurgtSW2oBchfDWDLuq2hedTSu/ra0tODg4gN3d3eCkzufz4IQAwLVjjdGBve1HXFqGQ8wJ5s6U9J3H+Y7lL72z6KJAQ4ru/sCjiel3Fk/HAuySUJOCXFZ5CDT6Njc3A707OzvwxS9+MeT59OlTODo6gvF4DM+fPw8BVnp0HQZ0Y+0TQ8xIoO+l8Wk5XF75zfP3GpiW4cCDATeBqLL7//cnl1Exg8j7njr2mAYnNTDYpvEvz5Mfacm/HQwGcHx8vDTxO5vN4NNPP4XDw0PxLmQe0LEMP21Cki/mkMYrDSoBXAWDF4tFOF7Ma2iV1X8pQTH+PFY2dda1sWjlockBfI78ibs8kIekYNUqUbUjnDq2yspYrjs1nqdleR04HswrYqfiN5hXnudweXkJFxcX8ODBg3DkOS7yoJOhKfwdC67ysSu1hdaWMd2ujQ/NscOVz6PRCPr9/rWJCutYQWxH1NV4LBwtk8OyHdC2ofd0S6BjdDweh/SUX3CSodPphHJx8gFpo8GFjY0N2N7ehslkAufn52IduAy26rMqeGwZntbLj1ZZlNekdqDPcYzhaTxZlkGz2QyT/BjIt46ArQqcZq1+1rcI3u98F3iWZXBycgLT6RSazSZ0u92loxJfdlg2jITUvtVkF50spJNltFwc76+//nrY+dHr9eD58+fhG5y4xcUilj1RBtzW97SbpAskn8HyU7TxLkGzbWI2ofReSufxG736QdN/tA6S3vHy33g8DpOOR0dHYfcQwPId8NzWkdouphukekj1t77lut/iV28b0HJ53RaLRThJRLNDYnXDMastuKJ08O9jfnysThQxe9Mqz9IlvDxPOfQ7bVzTNrX8g1Qdo+XjyUPj3di48+SNx/7v7OzAdDoNmw96vR4AXPm3+/v7YeHs5uYm/MEf/AF88MEH8Cd/8icAAMHGqNfr4aqRqn0rxG2KxcT0Z6xfPD40TV8WUp7SGLR4W9NXq+pvXlaRMRerSyrdlp3qpS/P82Cr4jHf0uasWB4xOj1+rQdWnbU0KeXEfKYUpNjHHrr4eIjpBel7L1L6I8ZrVl4e3aHpG6ufNZS6M1ZCqjMpwQoI3TRWIfS97yXm8Awqj5Cw8koB7uCwBtju7i787M/+bPg9GAxgPB5Do9GAZrMJAFcGDv0e87Xov0kUNdY155Mf2VCEXwDklSFl+h+Dh7j7A+DFZCwNOsYuYEfaPHzO6ZIUsOakYKCz2+0G3nr48CH8w3/4D8Oukx/96Efw/vvvw/vvvw+np6eBNnr3rXTfYRnEFKsWGIkFQVLKlN5ZSsQyfFIVahWwxo0UrMDV5jStlIdlTON3Uj9I+Y1Go7D7P89frAKnE6PopCFoPjzAgGX1er1wHyJOek6nU/joo4/g7OwM2u32Unlam3DwNDToyINKkqxDAyXP83BEKN472Ww21Z3ItI0xz1U7LzEarGe07prs8dAvjfM8z8PCAXRG+JGsUj6xOmhpNXjtAU33SfmUKdv7reVQaLzvcdowHf7NdzdJQVKtLjxvOhl7dnYGW1tb8NZbb0Gn0wk7QuiOH+/x41mWiRMFHJIz5ek3yuvSccBclkiyggNtDNwFTuVFnr+YcJJO26CLGGazWVhYFZts43yBY67RaMDOzg5cXl5G7yRC2pBeLg9xweHW1lZIj/oB09JFNI1GA+7cuQO9Xg+Oj4+v6Qm+oyhmQxRFqgyWdGYV0PxCTe5wOrDvcYdiq9WCzc1NaLfbgZcwTcr9UylIlakA+kSHVF+uW2u1Gjx//jzcFYv3KKM+pt++rJBsklSk6ml+N7JkG89mM2g2m/DFL34xLAZ9/PgxPHv2bOme33q9HhbV8b6OBbk0W0XSc5LtJ/322sRWm6WMe87bFi1SOfR//E5qI2kMWXnS/CR68X/UsfQ3L4f7ULH2GY1GcHFxEdKij418E5N1vN70f81etaDZ+zwPy2637An+Df+bl8n1LC7Ux7R896tmZ/D8OZ1aW2j1KgJtTFo0WWli/a6NjRiNWj09vkaRNuK8VKadLX8iJkPr9To0m01oNpswHo+h3++HBXIXFxeQZRl8+ctfDovsut0u/Nt/+2/h3Xffhb/8y7+EyWSypGsHg0GlsSSJdk8dVwnad9wXQHlG44QpPFRmx6LHPrDkf9F2jI0zr60uydcUX5b3Cf9esrG5b+eh0SpfOqFB819wwU2324XJZALD4TBaFrchLF3E0+V5vnRyiWVTem0Tbxqr3cr6cpLOkuxKzTe2fDqNlzS9K9HjpVsqx/O9Z4xIPBEbtymbA2N1rnwytgqsW3GsA1Kd1nV8sHfAVwUq2PjxcACwtNIf4GoyodVqLQnpLLuaPKE7QV6WgIFmrEt10IxELbBrlRdzgLQ00jv+HTqAVhnoIGnpOB/g3yl3IErlSqDtx9PVajXY3t6GwWAAp6en0Gw24eHDh/D48eMwGXsbUUYxaW3h4S+pf26bjKZBEM7HWoBJmvSMOZxUucccHUoHyrG9vb2wSnY8HsPx8XHYCUZ3m0vAPOr1OgyHwxDUy7IM/viP/xhqtRr0+331e4tWjW7uVHmcClwAgbIAv8ddwtqxHSjzAV7csVZUNsTq5wksaMEhCx5aadBIC8rRiT5+PGlVsORJTN9qbagZ85jvqmA5BBrP0jpSR4yCH6dF86EyhB4t66UNn8/nc5hMJuG42svLSzg8PIQPP/wQTk9Pw4QsrqanwUfLSfbYD5LzrTnrVhvTbyVZiTTTxShSHhTD4RAmk0k4urfdbrt5CJ12utuM1ovSzMcW2gevvfZa6N9PPvkE+v1+OH7Ys4MS39M7n3GHBU7CHB8fL52ewAMB4/F46ahvpJf3URUBIw2cJ25K998mm4PqKoDlO0EtOmP6U4Ilp2OBL4Bl2x3HJz/h4mUB93U0/Wl9H0tP0/BgHZbH73jWkGUZtNtt2NnZgf39/RBcRH6p1WrQbDaDDYiLkCWdw/WVRLdVR68PXVU+ND2VW1J5vM2r5smY76TRZdn2XH9J93vTMvjfsUAhX3zujYXwsiU7W7LxpffSlVCSfgdYXhwl1ZfTwNPyPLnM4t9b7aDJBa3NNf9vnbKxqrKK6hbeJ7yttH4oQncRPVg1vHoDFxMDQJDfZ2dn8O1vfxsePHgADx8+DPnt7e3B5uYmAFwtqPhH/+gfwaNHj+D99983ZfeqcJM2k1RPHjdJ0d9afvT/MuC+i+QP8nI1umg6KR5l5WdBk2mpbchlPLcJeVmp4zy1jpPJ5NqVRlKetVot6SQDT7touoD/XvW4XaX9k0oDR1H/0hMjKtK+1KbUEPNXvXWyZJSXZvT/LbiOKY4V7HE+f9rhYcp1lL+uMpH56DFxCDzqA+m6c+dOWFVGGZY7vLc5aOClzRoP1OHWFA4VDFowziozRXjQ7/guDJoXpp3P56pC1YSRx0CNOV3S97w85J9arQaNRgPa7Xa4S6vRaMDBwcHS6kWJRl7muqA5SSnfIiSDU4NX3t/0uLQc/hRDlQcTuNMgBY08yPMXgfatrS1ot9vQarXCjid8LwX5KS34N07kjkajMGF5dHR0rR5l24PSEAvQUeDkIQ8e8R1uEn14qgIN3lU93ooY6B79o8lmKV/NSaPv6a5kS64WgVdf8GdWEK9MmR7E+FczvqXd8rwfJP5GHaKtkqXBBKk/PbQBvDiWFyfi+v0+1Go1ePLkCfT7/bDDHCdj6ZUN3E6g9ZJ0Nm9LCVU6gzRQy+Uop43bKXS3GA/4WsjzF8dbxU4/0N51u134mZ/5GZhOp+HISBq0oPd/e9qA0r+5uRl2WvT7/aU24e3Edw9Q+1CSN/SZRl/MFykjb63gbpmAU5XAtqb3SWrpJLmHbUzvKIyd+GDlHUtnfUvHKg+eIeh9w1IwLrV/bhpcdlgL2Irkjf/H4hp0N7WVrtFoQKfTgbt378Lz58+Xdl+jzYNHZkuTsZz36ASZpmck2arZXLwMKT+aPuYPpfIRXZgj+XGWfa8h5V2MXksfSjacdsUH/R3zu5Cvqa5E/RADH+Nee46/l3x2ydbh36TyhybjuP/ubUs+dry2DP2Olhv7fhU+Sio8MtxTD+1vbptRpNiLMdtdel61PeIpm/LCdDoNvIg6vtfrwfvvvw/1eh1eeeWVwCd40gYAwL179+AXfuEXIMsy+P73vx8WRdE7oS0aPivQ5AHVofxdSl5emSr9tmzhmE8X86Ewr1g/c1qK2GMe/rFsAUtu8/8tORErW0srzRNw4MlAXpmM5cbolviQvtP0WlmZJ5WzTlj2IE/npc3S01bZqTGH1PaKjSltzEtlSf61hx9jNCTvjP0sK411I5UBV0VDlUAj2qpXr9eDjz/+OPx+/PjxUuAZ7+ha187hqpBi+NNvEB6n0Pqep0Ulw+niv2NODv6/sbEB+/v74biWxWIRJoS0uqUYSNo7DFogbZpQo/yCRwwjfcfHx3BwcAD/4l/8C9jf318K4LTb7aX7ijFvTIN3Xt4UqnT2JKViGYj8900YDRQ8wJAa4OXBO6yPZSx6+Ji2Dz9inB8rhncBIk/hAgEe3MN86c4WXu/Nzc2wa46OV29gOMWA1p5JmM/n4fSD6XS6NIZp2bQ+3EmjRnARnsPv1hUssQx3iSYrH8wDeRUDczeJWPnrsGc0HRgLqMTy4DvFqM7DZxLwuTTRUYTnFosFfPzxx7CxsQEffPABLBYLGAwGS3e148561G+z2WzpfnNKg0Q3ppWOO8Q248cuSvogxV7htgQ9RpDbIvQfrQNORmM+Fq+h085pxnc4wY0T4di2SMN0OoXT09Nr9cfyse0kJ97Sq/P5HC4vL2E2m8FgMIDhcAjj8Ri2trZgZ2cHfv7nfx7q9Tr8yZ/8CbRaLfi1X/s1ePLkCTx//hzq9Tp0Op2wipwH/bFNblpOICiP8MlAgOXFllwPV1UPzoOoF589ewaDwQD29vaWxgI/2UUK4FCeoPqeTtZzfSZNOEll8LI0xPSIxPurWtx0W6DJqlWD8yrKFbTd8Ijx119/HXZ2duBnf/Zn4fj4GI6OjsICVsnXor8BIJycgmMJedXapV/Ebud5oe1GZZ2nnbFdpAUxnH89fLmqfvX4E5IuS4H1vVV3HLex/tP8Oq39pXJizz2BTC2dRFMMnN8sOi1IdYjVi/LlZ1lmerGqNig7rtYBvEaC6tAnT57A//gf/wMeP34Ml5eXsFgsYDweB1m5tbUFo9EIarUaPHz4EH7/938f3n//ffjOd74DzWYTOp1O4K3hcLiyaxFuGvx6LyrH6KJGa+EgjwOU5cNYLIfLCPo7NSbC+Zv6Vxpd65I1XIfzuq/iVDKLFqksqZ3Q95XSrJvulxUaLxfR91XBYzdweOJiXh0ei9lxHrXGsgbLRyl8TPGqmP2zbvhIwS/+TgpO8W8kpUHz0QzjVGWSChSGnFYKaxV5lmXiDkWvAr0pVBE8sr5PrV9Keqn9pPpg3zQajWBk4X2YUp6aosffGq1acEoLCkvf4Cqq8XgMeZ6HyePXXnsNtre3lwQ0DchSmui7VaOIovAoRSvgR8vm6TSFcRscJi7bvEaF1l6Wo88nBGJl8bQ0+EDvLWw0GlCv14NDwnd38D7R2p3eI4j8izyr6Q6trlI67bcEnifu5rSOG+ZygQYhaf/yXYCSk6PVoSrdYAUgU+Ut/0aSa0UCqZ5ytd8x3k4txxv4sp57yuGOukeP8jFl9UXMztJ0naZXpXrQf71ebykAyxcJUVmi5WnxDD1aOUYXD5pKejzmREllWDpeygfgumOuyeQYL1B5orXRfD6HXq8XjhOWytZsEosH8bSY0WgE5+fnYbFOlmVhl0Wz2YRutwutVgsePHhw7U5ZnEyfTCbqIpey8OqJWB5UbqO+w2OneR9JAXrLQbag+UDYb/1+P9zZSR16KygoyTXuh9Fxz59LdMfq57HtYtD8ylSU/X5d5Ul9peVXpc9F86P/DwYD6Pf7MBqNIM9z2NragsvLSwB4cVwx1SEav+B4ksrTYgJe31jSY1rd6DfWb+077T0fN97vabqifFk1P0tjn7/nOsSyQWI0Sn0h7WrV8rbKlb619Ls2/mLgepN+W8Q+SylLylsbD+uQfTFUoZ8lWGNIe+ehwWMnxvi/CE9Z9HjBrwzLsgxGoxE8evQI9vb24O7du/D666/D9vY2AEBYHI0yvtvtQrfbhZOTk/Ce+uzr0qXr5FvN5qC2Fsr6FLlmvZPGdOpvSQZZOtbbpjyt5SN48i0z/r12lTbeqipboyXVNpOuB5BsoVi+qxofMbtJe1e1bOeItUuqzNDsNy+K+jop36X4jRoPlbEJrHS37s7Y22DolIGHgbmRZwlmDZ4BfRNtyetG70HU7lXDIA3NIwW3gWdSncgygjb2reS08/eW0LeMhLOzs6UJE+rwVbF7VDLeNEjB5Hq9vrRziAdze73eksK+c+cOfPOb34Tvfve7wXhut9tQq9VC0PC2gx9jCLBaRW4FF28r8jwXd4JpAf4yoEebYjs9ePAAtra2QnAfg+9bW1swnU6XjqHFI+swkI2LAaTde6PRKNwdSftFM0QleNPysVnGcORlTKdTaDabsLe3B7PZDC4uLsK7TqcD7XYber2eeFzvOuS/1K7U+MTnMXnBv9NAJ55XMca0YIcUGPTgJnUw7YMsy67tWrSODeT50P8tpw3/5Xm+tCudl2H1Ierp2Wy2JJuw/bvdLgDA0t3LtD4Y1FksFuHeUQAIx/DjjvRYfWm5WA7Sg5O+PB9+hCLWxWObIO0S+O5Cmt90Ol3qI28Am/ZVnl8tzMLjQAGu5G29Xg+yBe2c4XAY5PBwOAxt7R2PKfLx+Pg4HE999+5d+Mf/+B9Du92Gt99+O9x/i7y2v78Pm5ub8NFHH8FkMgn6xKp/VTIkZZzXajVotVowHo9hPB7Dr/zKr8Dbb78NX//61+HJkyewubkJWZbBYDAAAAh6DI/sjgVviwDzHY1GMBwOg57B+3wtWcFPmcEFT+jXaPTS8eRBSt1S+rZoIP22weIBHjzV3nnL0IC+j5Qn9jnyy9HREfR6PTg9PYXxeAynp6fQ7/fDyQaTySTkI9kPSAsu3Gi1WlCr1ZYWkGpB5ZTAplYPTltqfIHHBPi7qlAmCFj1OCgTxOS0aKcvaHZas9mEVqsVZA4uSMbTIvhONcveW0Vg1QvtegheDspgixb6PV2Mtg6+XAeq4mGP3FuXv7XKPiiaf61Wg06nE9rg448/hk8//RSOj4/hy1/+ckjXaDTC2JPKlv5eJW46RopjGGMjGNdDfsL2on3i6R8r5sr1qacNpPhQzFcvC86LqypL0++xb6rYtU37NrbAVwMu6kefDIGbt/A+Z0+Z64TXJ76NWJUMlk7stCDFG738HLMRtEXAkmwpOx9gxVhdk7FFOuRlZkALMaHpfSalWbVDsC4DM2Y4S8/50ZwvC7S+TTFaeYA/Jb+yQXMroCnxJL3DTDJcrL6XvvHQagU1ufGFvMQnw5D2i4uLYFzMZjOYTCZwcXEBx8fHIR1+X5QXvUZfGQOsKifSCiYVyW8V4MEKCTxwRL/F93TyAN+V0W0pxj0uSqHHYWfZ1WIDHqilExye/PnOCq0dNCdQ0z3SN7H2ou8lOcFpw8DidDqFra0tePPNN2E8HsPTp0/DhAi2E6XJ0wexNoy9j30rPYvRJbVhTKalwlNvz7caXbG8eR+tA5Z88AalpTzzPA/6AIPfPK/U8SqVQb+nsoynxTz4RAAGWvndO0V0kfU3Hb9SW2rvtIBDim6X0mjfSsCy7ty5Azs7OzAYDGA8Hocdpvx4eZyMzbIsTLZ5yomNE3qMKdor8/k8BO4ajQbs7OxAu92GdrsNnU4nTMwjnbhgh/ONVGduy2j9ptXDShN7Tndw7+7uwsOHD8OdapKDnWVZ2DVStd9Jy+L3mlsT2rGypON/vfLAKtPqVyldVaD08JMqViHTU+wppIHbe5pto70r0s/SM8uGRPrwqhR6mhBO5KMs59/RvCV9I9m7Wr2lOkvtorWNVT5/zunwPF8HLB8Xn3Hd5uVHKc8UHVzUBtV0KPWB0SaQFouUGc+xMevNNyb7pLQSb0t2h2Y/ac94nSy5YtG+Tmi0VpkvR5l6cx+Vl0fTpYyLFLusLKicwCsjnj59Cp1OBzqdztKJV61WC6bTKfR6PRgMBtfinNx2uA08tWpY+oLLJEuuevOPpaPQ5A61MyjdHhtZoydl7K6aP2I+f5WQ6qvpE4sfaBoA/aoh6TuPv8PTaTRLtr8Fy/5Iae+qeSI1P41vV8EznvYtI0e9/afxURW2gXtn7E+DkpDgMRYtYRozAFORYvzGHJB1gwZa8PdN0bJqUMGaOnY0Bz+lvawVHDF+9RpAeX591ZRHoWjlxwx0nofUTpzHKEajEXz3u9+FVqu1RCceH7MKWEbHbZKpqxiLVTmIHkOVHuWpOZDUAYodP80DYhJiuoEuTsAd2W+++Sa0222xvemKbVwB6KHFCqRRWnnwDr/FoA0dy54AGjcg+U513PFB88BjNjFA+fbbb8POzg4AALz22mvw7//9v4eTkxP4v//3/8Lf/u3fwv/+3//b7TSlplkFv3uCQTG5VhUtReonBbW85VVRvqccKRDHaYg59Qi+A4/KCdQlzWYTms0m9Pv9pZXunl2SsaCWVB9c6YtlSfThkZd4hO3Dhw8hz3N4/PgxACwvmpJoonTRHU9IJ99VjHTiXauTyeTaoiX+jeWoSSehcFnC7Sf+rWVba/ILAOCf/bN/Bv/m3/wb+D//5//Au+++C3/2Z38Gz549C3IId2rm+YtdREX1I8pzgBe7ifF4YgAIi3Nw96v0/e7uLvziL/4iPHr0CD7++GPY3d29toBHsyfo7mnJXovRXtYxp+129+5deOutt6DT6QAALC0oQD7sdrtw584dOD8/h16vF/Kg5cRo8Pg6eHIK3yXFda1UtsRblt6NBQksmj26fZXASWpsH76rrkq6YjqD8kq9Xg+7//kClNR8PeB9TdtB4huAF3ciX15eBv7G9/TEKEq79IyffIN2FT6Tdv946svbRbJXqH3I68fz8pQHIMt+D1ZhU0j2bCwdgB5Ip3e5I59KeUk7fKS8LRo4KH8BvFjoiLY25i3tTIr5OJINIulhyeaS3lu2ibUwP2ZfWz4Zl6WcD/mRsdI3twWrsq9XCcsmk9r5NrU3pQ9PoVksFtBut2FrawsePXoEz58/h1/+5V+Gg4MDAIBgn3/66afwv/7X/wIAgM3NTQAAGA6HYXHnbarnuiDxL9ehVrtIcYnYN0Xamcor7h9JOkGrV9V9XMX453LcSseRUrY3rWSPSPaQJj/o9Yaz2ezarvSYfuf15O2i6QHNFvBiFePf8r3XjbL8kwIt9pBad23MenxLD8QTYmMfpVYiRYB6UbZhiyDFucC/tfp5gkYWw8acJutbLTh12wyA20YPgG/iOyaAPeOB58edee0YxJgxo9VD4iWangZYOW24wjYmrDz9KY0B6rzicSZ4PBctw3IeaQAZ+2dnZwe63W5YoQ5wFezu9XowHA6XjkO27tLT6i05nJYjlyrUV6lcyxiPsSDjOiDxKaeJ0omTnTyNtywLnA+QB5Dv6FEq4/FYPV4Y4LphUcSgoHRI72mAk/4dg0Rzs9mELMtgOp1ea1+NF1qtFuzs7MCbb74Jr7zySjja8u7du2E3GB1HFh0p76x6SbB0LpeVEr1awEp7zvO26KT9QPuSpuUyP2ZvSPTdBmhykPM6f+bJU9Pr6BRq9/V5eEbjn9j40N612+1wtG6e57CzsyMGEyUgj8SO6aN8jMe4bm9vw2g0CkcfSnXiv2P6ROo7KT8Nnras1WrhLtb9/X3Y3d2FbrcbFsYAvDharkjwRJKH2hjkO2PRzsvzHIbDIVxeXsLp6Sl0u90QLGk0GsEuozs6rSMsNVqKwPJhtPdoL6IuwJNIcIKYO6SLxQKazSbs7++HNHg0vRYYoWVZ9nCs/poc9nwr8T3noSIyyKPXyvpzll5Cu4W+s/SKRDPXibGx7fGj6ZiQFiVobaL5RzFI+fETErjO0cqT/CqetqhNQNNr47WMz1D0+6LfVS3DYvRYNp43Hfc/kU+s63a0PvOMF812NMHwvwABAABJREFUoZOv+IyXU2QMpH4n5SPZqLwMCTE72CpTyt+Sz3Q8W/ZkER+jCtw2u3wV8MQWuI1ZVsbRvD3vkD/wqpBnz54t7YAFADg6OgpXbGB8C+l8Ga7BKgKPvNB0oDdfK+9Vw9KzFk0p9Fo+bJXjv6o29IzXFJo8/jPaqNK1JhY9Hr9bssX5MysO44HHL44hJq+8fngVSI0def0i6VlsnHnlieRbenw4b1tq8Q2OlR1TzImhTpKEdSulVCG6SsSElyeQQAfcTZ6PHsNNtbEXqzCuPYJfAgZcLy8vl4IOnv4tWibyD99Zg/nRXR5WsChWhvRNll3tcMT39XodWq0WDIfDpXvTLFlBj/vDtPV6HX7u534Out3uUtnHx8fwzjvvQKPRgFarFZ7jcWKr4AMrEEPTWaAOwLrH021xAvlEJQ3s8nbhK6CtHbE0XQq0dkEjEY+nOz4+Dg4Z3hcGAEvBGuxfXIGLu35TgspSgBLHAz/CW1rooOlr6Rnmt729Dc1mE05PT0O9tEApotPpwP379+Hf/bt/B51OB370ox/BbDaDN954A77//e+H/HGHjocez7sy4AaaFOiyQO/8lED70LOTrUhw3jIKtcC7VJ703bogGcq0HYoEEGl/cpuK7mThwXUAuPYOQW0yHpjX6kPzk3Dv3j3Y3d2F4XAI4/EYXn31VZjP5/Dee+8BwJU80fQkPaYf6dP6E2XPdDqFRqMBb7zxBpycnMD5+bmYHvMDgGuTw1K70LQ0Hc3L45Rr3wJAmLi5d+8efPnLX4aHDx9eoz3LMuh0OpDnedjJFvNZOA34Dd9tKQXK+THFmP758+cwHo/hhz/8Iezv78Nv/uZvXisP71XFb7WAgFRHLHcdPsJisYDRaBQWv52fn8PTp09hY2MDut0u9Pt9WCwWQffN53PY3t6GL33pS3B5eQm9Xg9++MMfwvHxcVjoE5NNlk0qfSPxGepJS99qPpukG4rAKreobZ8C7BPc4YfP+N1ulg7h41Zb5JkK5N9Op2Pe1y39TinD0n9UPmhyjcof/B9PFZDyoml5mfQZ8qY1wachRW/H+jilTNpOHjv2Jvwaz1iX9A/lBeRH1Gd08bKkx+jC0FQauMzCZ4vFYmlBJJZB03D/qOyY5LRxmul7TY5LkHjQa+NqdOG3sXtmafvygCrNx8vPN+k7V1F+VfR79HURIF9Zvk2V4H70YrGAb33rW8HeQdRqNWi322G3XrPZVE9v+6yC97N03QuPKZYZ51y+lOEHS2em2qEanTcJLvslXZXiq5bRJVwux2ycPM+XFjpI/qRFN4Wm2y1fqUiMQcOq7Hqub1fNc159qNm3iHXoyyyzF8pp/gW3S7S+o/ZOrD5LGiG1cYoMutQ8VtEhkoElGX0aXVqgQ4O3jTyD3nIGypS9DsT4C+DmJ3uKls95yXJk+TucdERgsE4TEprDXqSvKV9ZfGQFRCk8NEgKDBUpBm1wJwjdNaLlJQU7aXAjyzI4PDy8FkA+Pz8X+6pKHkztE48spEcP4nG7WvBQ40sraJsa3Fqn40MXJXgNIdouHlqrqI8UdFwsFnBxcbE0QYuTo/TuWFo/60hOWlaZoKNGrwTNMKf8hPdXYtCRBzUkPTedTqHdbsPOzg588skn8Nd//dfw4x//eIm22wh0qiW+5AFICZ72ttLztvfIjyJ9rCFVf6/K4QC46guchESnjvK1ZihTujhwFyIGN7U+jclJ5BNcYCGl0YBlzmYz2NzchG63u7RoaWNjA+7fvw+LxQK2t7dhMpmYC3WsY4SltFmWhftL6/V6WLxEj1PHIDDN19JF+H+Mv/m3Fui3ko3UaDTgzp07sLu7C1tbW7C/vw/37t1bOt7K0osxGul7TzAGbRXc3ZxlGXzyySdweHgYrk745JNP4Pj4GAaDQQjyjUYjuLi4uHYPoNTe3B6S0sZ8iFRIgZp6vQ6ffvopLBYLOD4+DnXhZWLAkvJVGTqos4086pVtWnvyMnh63p6xto0FINal+2jZuNvg/v37AADhOODRaHTtG48/zK9esIDtxWUtDyjhXc/S9zF6YuD+kKYnYvERiYf4KQsxe8Hy/auC1mYpcQWPr+D5ft0BOQtWP1jtv729DbVaDWaz2TUZT/Pgf8doifnCFFguXcwZs9dSxk6svzz9H9NLFi1a32hjKFXuW7GbIvLkJlE2rlX0G4+tJJVD+8vSibyvqNz2+lapMSv6Gxf/Yx4Yu0JQGwbtILTlP6u7YjliuhPfc/9K+kaCRx5qPGnJrlSfg34ryVmNJ4vwYYocKmMnpIxl6Zuy6T3xDG+6FN8yRVdrsqgoNPlVRod4fRFvPjFYutNK48nH46NL0MYfyh3t5DNebgo0m0vyg6KTsUWQapR7DcAq6JM6UqIhha5YWUXT00EutSkPLNykI2+hCud43fDSJ6XzGFm0TWq1WrivDOBF4IOnw/IsB8rqb/6OT/ZaQi52TJwXGo/i5CsKKrxXjH8TM7T5KmOk+yc/+YnLMbAUqxV08gRrYvCmrdfr0Ol0wkTBcDi8drcfp1dTClp/VKkEi4KWh5Py2rG+3MjQnPIqaPIoaakNF4sFnJychN3a1Enb2NgI/Yl9SRcoUL5H2S/RpkHSJZzGIu0kGXetVgs2NjbCxBOdUMYxSb9ZLBbQ7/eh1WrBvXv34Pvf/z78p//0n64d97YOXZZiBGdZFnZs0XuEpDYpyouWw1G2PayAR2pw5DYAJwkxSE8nZRGWY0XbE3mWBlL5HZc8H6t9cMKP7oqi41+igQZ4cNFNs9mEvb29pQnEWq0GX/jCFwAAYG9vD3q9Xth1KMF7xC0AhEVh3W4Xut1uuEN3c3Mz3HtlHRGltYfHKUR5EbN5LGBf5Xkejj/f39+Hvb09ePDgAQwGA2i32668vOVx+qwgzHw+DxNcWZbBO++8E3htNpvBO++8A/1+Hy4vL8OJH/1+H0ajUXRnD8ALR9PqH0qzNe5TwO3bWq0G7777LvzgBz9YuquV8+B0OoXLy8slnc/z47+tQFuWZdcmIzyLEaw+4+1l8bLFB7G25bJmHXIXeWUymYSd8LVaDS4vL+Hs7AwuLy/D4jFvfgAQrhpBO78IsB1wwQ1doEDLuk3g/buxsQHNZnPJTvD47ZI8lfgi5q+k0utJ65XR3I7l7zRbnn5bBWL5xOjQZBJNs7e3B+12GwaDAYzHYzg+PgYAuCbTYj6VVm+UCxr/AEBYQNZoNMKR75w/PDpYotWruzW7V2s7Lb2XlzW9JpUvyWPuG72MsasiqHJ8efKV4iyUv2JxHsvf99TF+tZKyzGbzZbuLO90OkuLv1BX4VULzWYTJpNJ+C3dPfpZRaxftPFWRbm8HE4T5wcu42Lyiqf1yIjb2O8xmxghxbY8eiEVnlMjNKTa29K3RXzPVDpXFZ+8aT1VJF5l2Qz4vggsPw0Xnlon1XnsJs0flxYWS99fOyvBagBP4FYzzAF8wR+p3Bh9UtqUPL2DVKtXzKC22s1qL/rOywApTLIK3EYFkwqJl1KEgBVsoJMKeFwbBouwjxuNRjDoFosFXF5eqrtOJGWTIowtJ1ByRItCalPqUEppNEfYumeTl4H/0+A1PqdHRNEV9qkKTQuUxOSl5PxJ+eD/eNwND4TRO+SyLIsegaO1s+WAat+uCnm+fEQrPTaaK2zNYOLOWdlAVeq3NB3uTuI04C4JrEetVjPHMOd53A2IeePYoEcxx4IiHl6Xgoo0z9lsFo4xpEcU0/5BuUh3Az99+jTsIODAyTV8L42nqvjRyls6Uokiy64mZXGVNK1rnudL31uyKs/1I3FoP2lyk/OWdPwc9gXPg76neXkCKdL32rdVgtbFmqzndNK7Nz0TAyiH+FF/iNh4jTm4WuBR4kka2Gm1WvDw4cOl+xO3trZgMpnAycnJUvtY7cHpx8lfjtlsBpeXlzAcDq/RZo0fSf7G5A7Xqdb4i4HKVbzvdjKZwPb2Njx48CDYBnSCpAzvxtrbeo78WKvVYDKZwHe+850wQTmZTAKtFn2pAb5YfbX3VoBqPp9Dq9UKu5C3t7fhyZMnYVJCQq1Wg16vBx988EFwXkejkSkTKY38eGjKN/Qdv4KiqP9ZRNZ5v/HotVS/xANubz58+BC2trZgsVjAxx9/DI8ePUoum6bDiXl6QoAEfsQ5z4/aOpJulfpJ42MqWyRbXntvQUpLA5aWbyPRxusl+SiSbZdCb+xdbEGcZL9I/chtC6w79Wv4XcBV2BKxPKT28o53lD9Id7PZhE6nEyZk8aQDPNGIl6XpQ8qDUvnSN/S0JOnqBN4nKTIktR+Qbk+cyrIhPL4bjgn6v5VeKld7ptGzLn84hjL2Ec1jFTa7x36Q5GERXvN8E7M3Pc+1dNPpNCw6on1CFw1R3ly1j3TbEBv3Zb6L8ROm0d7h35J/bOkFq2zJjy6j14r6P16fxCrHw7NVjFnpmYd+PK4YAEQfINVG1+xKD30Wnfy7qnVIql8SS7NKHbdO+WfVA20mCh6zoM8t30DyV+lcA4B8zWPSzljPANGcDUp4KjyGmAVLMFtlSfloTlQsDytwQWfNNSNfEiqSgX4blfttMViLwlLeUlrtPVfMtVoNtra2lnaO8dVy3ImRlLv0Hv8uamBb9Yh950lDHXtN0VoGgbc8zIPfOYnCkQbaaZ1TaLAUqlXHGB8hXbQOrVbrmvHIxz2l3VPubZQZGGyjyLIX90JIkwW0rWMGr9VnVcgrzj/aTlYMQHGZrvENT4er3uk7fmQuz0uTKbxsDh6AoDyKgR86zniAiU7G4u/j42Oo1WphdTEtu16vw+bmZuAFWo8qdQrnlVgghk+uIl9S2qgMp8EhTV9rdYvJeyktlw+UTrrjswpUaecVLZ/zmSX/OLzOCjfUuS6hz4rwp0Y/pxGdBpyAvXv3bli8lec5bG5uQq/Xg+l0CrVa7ZpskOinNMQcFtzpw3lNGjPcF5Dkc4y/Y5BsYuk3jkeciJ1Op7C5uQkHBwdhMVyVu+9jNo01bnCcTqfTcFQ7wNXiFJx0t/LB59aEllZ2DB5fLM9fLHTY2tqCe/fuwauvvgrD4RAuLi6WHFNaj1qtBsPhEPr9fpi0m8/nrl2Y6EdxuUv/8eNh8TtJ51kBjXXIN2ks8nGzKjqwb2q1Gty7dw/29/eh0+mEYJc21jXQ9HRXtGZbW/d90XI844B+F+NdqqeldJZPEIOnbG8bWjbaKngi5qdpz6x2kvKi43xdJ6FwSHazloaD1h19tWazee2oUgDZ/uLtzG03rXzJfsed6DG/NNWf9vrb3Efg9Fs+aMx3i+lOPlaK8mQsnWTbrNP2rQI3TS/lhbJylSO1bkXjIpR+PJGHLoincSZE0dMhPkd5xOJu1KfUbIFUv1KLQa0LRf3RlO+t+IO3/inxJw4tppGqswD08Yn8wSfXLFhtUFb+lvn+JuyrKhCju0iboOz25ivJBm7j0W+4DogeU5wCjbE8jgYKOsngXpVxoOWrGf3rYFRcPcXbRjtWj0I6asvrwKzSkf8c10EdBXpXRJ7nwVnD37Tvz8/PYTQahZX89ChfHmjmvz0GhwbtqM0qIDl/WZYtHc+KRyvN5/Nw5CQ9xtUbgJGAQXVPoF6ifVXBWloG7R8+pjc3N5f6P89zGA6HMJlMxAnnWHn0vTfg46lH1Xj11Vdhd3cXPv30UxgMBksBdGrsrIqeMhMsFPTIRJrO2hHBA9cUXMlrY9tjwPAdVVbQhAZ98Nl0OoXJZBLy4t/NZrOwk5dOjpydncF7770HFxcXUKvVwu4b/A4nT1Z1woMWYJbqj+NxZ2cHGo2GqHMxEMYnB2i9sT1ioDyd6lTwoBHd8ajZXakBiNsA1Ju1Wu3aEZBaehr4LBoE4sF7bfIEd4HjYgV6hLLH+aTHluORh8PhEBqNBoxGI2i1WvD2229f29HK7QmJfgTXOxR4jDjuvEVYx5VSfqILNdD+oeVxe4Y+s9rFA6RjPp/D6ekp/OhHP4IHDx7AF7/4RciybOkI6ouLi1BfrVxvUIKmw139KBNjgTiUq1mWQbfbDbICgwAecP7WAvux/FL1Hp9oG4/H0Gw24cGDB/Dee+/BaDSCer2u7r6muoPvjpPSUdsRxz8u4Dk7OwvHjNPTI6Q68rxXjVXYKdJYSqWJ1n0+n8OzZ88AAODtt98Ox3nH/Aee52KxCBNTw+EwHLeNefGyuVyV/Bxu81XRZym6z5JN1Han3+D4xZMNaD64c4ratR6atHgL/zbG45SWMm2r2UwaXfQ3XXSONpRFc1lo+praS5KfrX2Pei7Pc3j8+DEcHh7C1tYWZFkGr776KozHY7i8vAQACHYALQ/1YqvVCjIf7XvaNpK/o9mIUn/weBOvlwcxvvDwjcRfRX1s2o4pehLLq9fr0O12l8buYrGAyWSyZKfH/KMiNH+O6vzrKlG0b9BnTfWpPmu4Sf7WyvbKF+l0GW8//rT2dwqsNrI2I9Hvf9rb2RsPSn13m+GNha0Dkh9EZT+9O5yDn84E4JyMLSKUeGBFeh/LpwzDWE5KjIai5VrOjwTpnGrv0XkIbph77ke7DYwMkLYa/7bQzBGjS3OeEDSgyZ3P0WgEw+Ew5MO3tktBCo02LSDH25YHRTmqEuI04EIdUXw3m81gNpstHWdm1dFyKnlgWHqHiAl7rzFXJo3EMygr+IRrnueBf6g8KeJccxpWCctYxuc0ALG5uQm7u7vw5MmTQvdTlK1PVe1Bd4cirKAKvpPaS5L5Eq1FAnoe8PGIu/bouOY08Hd4tO/Tp09D0JwfZTmfz0NAJLVuZepH6eXPms0mtFotGI/HIXBD6ygtlqL8LO0M08rS6kSD7zHQfMtMalvBvqKBtDKQ9GmqbLAgBal52Vr98TeV39KEqZcO3CmIE0xZlsF4PIZWqwUnJyfQaDSWJjslSHWJ8Vye52Fscl6nddTKw50CeJQ3/k7pp7K8tVgsYDQaweHhIRwdHcHx8TG0Wq3QnnmehyPGLRqqgseRzrKrHfdUB3j9Jm7HeZzY1PQS6EQGAITj67vdbuBfzzUKfBxp6ZAnsb3wXjYuizU+teRrGXht51g9aVtYflAVMpjnvVgs4Pz8HDqdTnhPT/GJAY9tXSwW0G63YWtrC/I8DwtMNVud15M+08YA/UZr59S24XXkPpMl87R8aB0sv0vK32Ojp/j5mi9pPYvli98U2fmF/CXRVbU/YvVtLK32jvZpv9+HLMuWjmsHALi4uFBtN6x/o9EQZb7Ut14/U+JB+j4V3v6IlSPJP2tslbUXuHyh/EUXu1M7y4JHT1k0rgOa3IjJD29+ZVFENkt5UKwzNsDzyfP4LquqYdkGN4Uq6SnCG3ycW3zvkfuSb1cGMRm+Cr6kKBsjrEo3c7vHimuk6OJYGi9NHlRVdpF4llZ2FXoev6uCFyU+jMUeytLkTefpv9h3+C0unuNtj3EgrZzknbEWoZazmzIIblKplA3klRXQ3BlB0GexLfKrcmBuCi9jPbyCgu6UxeAbvtMc2iLBdEoP30knnV++aqDjSfk9yzJot9uQ5zn0ej31myLw7ELT6IzBEyDV8pScCF5mvV6H+/fvL620SV2wodUj1eCpWjHj3zgWms0mvPLKK0GZtVot6HQ68Pz5c/je974Ho9EIAK523OC9iZiXtJq+CFZRR8yXT8JpQUmaxsNbGJDm+UmTghqduBsrxVmhsgN3veB4wKNT6eTQbDYLR09i4HyxWMB//s//OSwqoHcjDgaDSvrUG7zKsuzagiasB/0e/2+1WjCdTuHo6OjaLmU68STtFJaOOy6L2DgvE7SwwO9rXAeo3MU+mkwm4aQAj560HFXqFGK9kK+53qLf8PFHeYreBe+ljY4jDtxh8+d//ucAcLWAix+TRusUK4vXg7bvbDaDx48fh/SxOiBt0+kU9vb24I033oAPPvgAnj17tjSu+EQE/R/tIGtXN6dfygd37Z+dncE3v/nNsOtlMpnA06dPzXpIZXkmL5De+/fvQ71eh8FgALPZbOmYZwt5noddhFZ6uoOL8ok0tpvNJmRZptJwW3yHWPmSzYWLdtrt9rVxi4t+tLZZRb2toJLnW88zHmSs4hh6nJgAAPj2t78Nu7u7MBqN4PT0FPb392E6nYa78TQZUK/XodPpwGg0gslkAl/96lfha1/7WuC9//Jf/gscHR0FOcqP9qITUJ4gaFUBQfybT9oUyV/StY1GA7a2tmA0GsFgMIBWqwWNRiPw7OnpKSwWizBOsR898obSjv+03ecxe5DKX3qtRKyuuJjcimNo4wFpXdURnrRsLgd4kIzre9qWHvsY04xGIxiNRnB+fr6UVroTF/saT4/pdrswGAzg/Px8qf0pX0q7d6V6a6B1qlrmU53E+5TyF7c3JFq8+pLbuZYcpeVOp1M4PT2FTqcD29vbS7YGnrpAeUALtN603vwc6bjpmHMVeNnpXweK2Hibm5tLm2X6/X7Ii8upVZ3cxVEFv6bapCmxKA8k+S+BnryUGmctCklnSeXGdK/mU38WxurLUo+bmNdotVqwWCyWTgBCPtne3g4nDHFEJ2OrYv51BeiqomGVnYiGtWYoaoEl7bdXIKwDkgBaNVY1eVIVJEVWr9fDrgfJIdKcOymvFCNDCjpr+XrKTmkzDx8j6MQQTcf5K9VJK9LH1IkvKsekoJIFTnOr1VqaqMdgAZ/80OiUgiDeCSqJttR0sfpSQ6Xb7QZDaHd3F/b29uDi4gKOj49DoAKPl4zxVBGsUmZJTnyZsmnAQ+KHouCTMViWRisGDvlCD0ojzZMe2ZnnORweHoY0uAMcwD6qsky9tPpodeSBTVwQRYNiGxsb0G63w8RPCk30f+ldDF45GMuTjsPUdqf1oGOzShtSowsn63CyP9Ux1vJFXkWZ49mFzuUSDWjzsWCB8invuyx7MZk5n8/h7OxsKY12VyzPP0Xe5HkeFsGg7YKQ+po+azQasL29HSZ5UK9r9MV41cvLmBYXSsxmMzg5OYGPPvoo3B+LdZK+pWUVaa8sy6DZbEKj0Vg65SMGyebi44vT5wFfeBfjQ6vOnvaYzWYwnU7DbkgvvVIdPTaTNGGC+WjHl5eVTzHaytgTVfqsKfyLehmPVcUrU/Bofr5jTJNP+Lvb7cK9e/eg2+2GxVaSrCjC26k60qOXvMEzXgdpPNHfOBmLJ2vg4rnd3V2o1+tBjnvGJaeV04H/vAu3eXl0sYz2DX9u+WSSrc51HNd1Vdp+FiRbN9XPkfgZ7Vd6z7u3b+miL40HNVlWROaU+TaWZ6wMiYc9NEnPvWVyWxdtR4AXbY8nk2nfaGWvO+6mwZIBHtlWxiepCql2F35DYfGbV75b+d12FGnDlwVYtzL1k+xF+g79A2lhdlmk0l12LKzyW69tLdlgMZ3rkfU8bYoNYdltUv4e2cBlTMyfLQJrbFcdg+H5SrR406bkuwqk6DdN12v11XQuXqUjQZyMTRXcmiCUnJMUI5d+Y5VdJo8yjnlRxul0OuKRsymrmWm70mMcbxN4/VY10G6jkcHrO51OQx9tbGzAvXv3lhwzfgwnjhNcGYSDO8UpKUqrB9pqaY9ypGXxncFW4EAL1Kyr/8sqtBRZhTsPJODxzf1+HwaDwdLR5lyOSIaBhapXpVt9JD1rNBrw4MGDMJnw8z//8/CLv/iLsLW1Bd/97ncB4Kr+H3744VJw9zbKPy+swDt9L4HeT0rBA0P02IwUA03Khz/XgnBYjrXCEOUB3oXcbDZhNpvBYDAI71cdLOe00HaSAjgAV7uA8e63er0ODx8+hK2tLXj11Vfh448/hh/96EdQq9Wureyk+eC7PH+xqr7I6trUfiwDrS3pDqeqnVWE1ofYzrhyGeWfxKsxp4jqNZx0uHPnDuzv78PR0VG4V1RCnr9YDIHtQXd7Z1kGo9HIxY+oAzAtBnJrtRrU6/Xw9+XlJeT51QkCAC+CvzygrTmaSKvliFKdgnR7+JQuDEEnBPsEF9VIE5SSnKI7lTx8xWUc6shutwvPnj2Dx48fh3d4woK1kKWI7PTSlvKNBOQtnODChWxSHniSBA0yewMLEjgvU5mGJwZ8/PHH0Gw24fT0NLwrG+RZJYrIU8ux52MpVpeUuvJxXlW+FnB3d0oAFH3UV199FRqNRpBXUlCc18UKlNLnVhtYdugq9BTPE08B2d/fh5/92Z+Fg4MDODg4gD//8z+Hd955B/7+3//7cPfuXXj+/DmcnZ2VKtvbLzgO6TcoPzY2NuDOnTsAAHB5eRk9jYvmiQtfsuxqJzAujrLGB8oLPCqW5ofpYuXG0tE+oXf25vmLe77osfAaqL9axtbh5WBMqN/vh9gA9wE1O9tbPh1j/LqEdchYyX8vm09Z0EVtiJ2dHeh2u+H3ZDIRTw6i/bGuNtQgjXvccd/v9916LWYjrxuroOO21G1d+CzXNzXOrNkWFKjvBoPB0jUbVCaMx+NwUtttQ6wdvDqD65tVnVpB5zIo+Ikpkm3I66ktPMH0MRq0fPgGOvTL6TOt7KptzM8itL5ZlX5N8W01v0GL0WNchf6O8YC6M9b60AomeARdDCmMmxKYod9IjZzS2R4H0frWChRa4IE2D32rRtUBhtuK1DpQIcJ5Dp1WLrzz/MUKTYlPJV6LBfdSgktcaPBgLuW9ImOF58shKUAP7WVoKasoq+RtTTbRyXq6K5YHycvQt+4xSnmIBjhqtRpsbW3BnTt34O7du7C1tQW7u7tw584dOD09XTpi8WWQKxqv0/rTMczr5AlO0nt0qzL8vHreSqPpSeRfDEDRycgid2rGYC1k4dBkBH1OV9Bj0GxjYwO2trag2+1Cp9MJMlw6BYMGj7mBX9T+4byUUuei7cx5OKaLUpHiMNLJNHp/NjeYrTamdWk0GtDpdEKfYpCc19Ma3wh6vF2q/aY5idye4PXT8ud9pDm3kgMhHZUo0cjBj4nl9Ei08LaNlaH1A8+TL16U5DD/luadonNw/OMkehVHmWG/4KJOlJk4sc3liQStXbX64ztuD9I0WlmDwQAODw9hPB4HeRnrS+u9ZquiDMD7lL02Km8LiT7vJEJsTPAx62mLWJ+sAlSOLhYLODs7g9FoBOPx2Fw0jHXCUwqQ34fDIZydncFisYBGowEHBwdwfn4O5+fnKj95kOqHx+SWJ0ATo4f3K81zOp1Cr9eD+/fvw/3792F/fx92d3eDjtnd3Q2LLbmNQP3IFHmUavdQfQrwYoGFx9eQ3sfGIS+3CH8XqWOWZbC1tQVZlgXdhAugeJ7eWJdGO5/8lfLE9HiNBx2D2Iba7v6icsCSdWVki2VfxfKP+TpF7ACtTK4r8XhBnHzBu+6tUy0022FdiLUL2rI0HT/+PKUOKfEWSsMq4NUVXhun6nJpes7LL0Ps4jbB02apbSrxP5XRuAADF4/SxdUIa+PETSHV7q2iHE3Pe+JHGlLtMymNV3fT55oPLfnDmk9sle+B5j9IbVJVvCVGSxGZ5fWXpOdFbMEq7Bfv9xZ/SnyFC1mlqyGT74zVCKqSCVcNrZGL3NG56jryDuXHQ2GaVa1Y8eCmjYrbbNigU5tlL3bJ4PE39OgLvCMoz3MYDocwGAzW3q/Wqh7+TrqTrgi89aPjrOiduZbDYQXONOG+irFP+QXbJsuuVrbi0dYSndzxp448v3MwNYBVBaQxKt27iHjllVfgn/yTfxKU1r179+DNN9+EDz/8EJ48eQJ5frVrHFfeS3LxNiAml6RFObH8aJ70GF98t7GxseQcUJ6SjBwtb/5MC4JbddRkM+7oRbmIxx96V3CnAgP0khFk/aZ1pc/p3bd4DGez2YTNzU3Y29uDV199FY6Pj+H8/BxardYSr/Od67SNLJkjBZjod3Q3Jj0yOjXALAWUtXJ5m/F7VFL7kubLdypq9aBHRtN2wCNxcTcq5uEZA7VaDXZ2duD111+HZrMJzWYTjo+Pl9LQky6s+mDaMsFzbFMsE/mY06I5xBpoX9Ggr9Q2ki7x1gEn5HBHJp1YkGjh/aTxUUqAJs+vjlluNpvQ6XRCntokMa8H18nWuMHyACAEdFN3qUi0ZFkWgj/379+HnZ0daDabMBwO4fvf/z7M5/NgI0jtQm0Lqx+loAMNRPH7sfEbekcrwNVJF6enp3B0dBTuxrTuSdcg8QrdBY5jAOUylQMUvN8sGafRURY88CfZlSlBJ0tmFsmXjrdGowHT6RS++93vhudaUJLSMp/PodfrBT548uQJNJtNePvtt6Hb7cKv/MqvwP7+Pnz9618PuxJ5PrFAjVdGSPWryl+k/MP7lZ8SMZ1O4fDwEJ4/fw4HBwfw8OFD+PKXvwz1eh22tragXq/Dl7/8ZXj+/Dl85zvfgTzPw5FmUr9qdaBjwuIFKT/6zeXlJdRqNeh0OsHGoX6sRIt1byYvU+oHHNP0/tiq7EGqL3Fy7Y033oB2uw2DwQAuLi7gJz/5SSgXj6qlC6MleyzGh1n2YscttcnoP5onXZBYq9WWdpFr49uyaSQbqkiQMxUpPgamp+NFkos0fRk6JOBJHWjLb21thfvdBoNB8DH5GEi1uaoGXZxNQeUQLjoAuNrliydqFZGF666r5R9Vkec6EPM5V43bHCP1YpX0a+2DsnhzczP4kzjWut0u5HkOx8fH0Ov1KqNF8/9uApYNQf2hMrDy4DFLLYbp5Y0y7SiVLbWBNz7moUWK+fA8UcZ/VlGVzF83aCwMbYRerwf9fj/Y+xRLv6yBRxELQmjptGfecmh5KUjJRzMMq6CD0sOdEimIY/2Nv4saVJ8l3ETdLT6W+pILz9lsthS4oIa0duRqqgMVc3wxn9iY5E66Nt494GMqVrZHXnjkjnes43MtmCEFXyz5UESBSDyDAVgaANXu1aXf0nfaUbaSYZNCt6cdJODRkdj+dBcGHg+D7zGAjrQ1m02o1+sib95WUDpp0ArrzxU3h2aYYd5aWTFarDxoOSkyhweotHxQh+F9nN6x5QHNq9PpAMD1wIUUXKO/PQFQDLLh/ZOLxWLpSFYpP6+88dYR4MUqTTziTlugkBLApvXV2ozyrSfPGLh+KRqM4d9wenk+NB0u8BiNRsEhl3bYemjy8hF3ODc3N2GxWFy7twzpk3SyJ3+NXi5/suz6TpwUntHuM+ew6JZkBq+rpce0cpC+lDu2eftJ+Uu2EZ7k0Ov1lnZeFQHNFxex7OzsBF3I6aHf5HkeFqXE+F/iDW2HOS2H2rG0naxJGg+sYCZ/Jx3TTO0ES1dabVAFrdIzj5+s0ch5MXbNRyqwTNzVbR03KwH1Ua/Xg0ePHsEHH3wA4/EY+v3+0gIS7yIPCxoNqXZQFeXSfuFyAXfZ4LhAuzfPc9jb2wtjFGC53WPl0zFt1Usa83QxEx3XaJd7eEfTtwAvdljH2ht5INXX9YLb1nRM0YU2njvXrTKk/On/0nNa1nw+D7YH1clUR3PEdG3qws+ykPSMRzZKkGi2xntqHXn/jEYjOD09DddLtdttqNVqoi1m0btKfxRPFtrZ2QlljkajcHQq6nt6jRHAcrxpFfSl2Obe7zSeLyq/V9kvtxE/bfUtAm7LUtAFm2ivcH+RvuP5eqH5OVXEQ4qCy3GuQyl9HB7bVsuDjnl+XDFPx+NOZdspZkNxe5teJyh9x2MOVdGn/b5pxGxuL6QYkLesqmhIgZe3JYjb21KYOVbIKoSHl/HKdkbMMZQGXGonawPT80wKEBbFbRvMtwFl+jPG93Q1eIqjUQSUHm0FTeo4TXWOvOXwoC/d5eABDxDGaLPojd1zVAVieeF7XJVOAyN8t6OUJw2wpBz/6q1jrF2t9zzIhKvQHz9+DK+88spS2na7Ddvb2yHojMdIYT6Il0GOcYOdB6CkoFaWLd8fFRvTPHhDn8eQ0u/W2PYEiHGBwWQyiZZZBBhM3NnZgTzPwwp3PFZYMuzp/xzSeMvzPKyov7i4gOl0Cs1mc+n+RM+kT6zsGPBYtU6nA+Px2BU4Khv0xDGMzmnq3Z4SJHmlBVE10LFEj3JFnRL7djabwXA4hNPTU2i1WtButwOP0iA1loHPueOa2g5ZloW7iO/evQuz2Uy8lwiDhJ6gH9UB/DnSyetPZRD9lu+2pnXEdNgu2Oax3VKcnlRoecTaZjabLR1pa+kOrQ15GmkM93o92NjYgNPTU8jzPKyw1+ribQc8UeXg4ADa7bbLRhqPx0tlaTYEBx3XAMvHc9H8cJEh5Q+ckMPfZSFNbEiBMU0vemzXInpTA6ePt48WvPGWren6KoD91263wwKVlDLwNJfj42N4+vQp7O3twYMHD6DX68FgMAj1bzabheyAMoH42JinaWlZMTkh9TfqHTw9A3e8InBH94MHD8KuzMViAa1WCyaTydKuPI0+iTaN36m8jvG6NNY1SAFC3t4aqB4pysce+Ulpwt30FBsbG1Cv14Nt6o3PaPRQuqgtItn5iNlsBpeXl0uyE9uFT5xb9HjoXIXPxK8d4e1gjR9OWwo4L8fKo2VSe+Hi4gJ6vR40Gg2o1+vBf3jy5Mm1K6RuCrPZDJrNJjx48CDQcnh4uGQvSj4A2mhlF0jdJMrySRHchj6/TXQUwW2lPWYT9vv94M83Gg3Y2toK7/gmCen0rVT+9OpMC6tqa5ovj0Fp7RiLAVv6wLI/PDZv0Ta0YkAIesJbzE5KXfxbhNYUPfc51oOYzY5YmoyNBTVSM+d5ewVDFcxi5SHRkSq0UgQKAlfEAoAaWJfyowGv1CCBty3XoSBvWhHHnOjYM09bpvRH1Y4SD2Dj91RQSwJZ4qdU/o4ZDzxIyQMGGmLH6VlyykqL6S1lrrWdRj+vo7d/PbRiWrobVkuHz7mzRVfgx/pX4pWiBmUsDU6wjkYjmE6ncHFxAZeXl9Dv92E8HsNgMIB+v7/0Hb2n47bd10HBg174zDMx7uVLnp6W5+GVWBkIKwjO62jRz8sp8s6TJ7ZzvV6H/f39cBTy6ekpPHr0aCk4JtHt0Qk4pgCuAh+ffvppmAgdj8fuY3tjclOjjcturBNfqUm/T+U3ThsN4OJzegdVkX6z+MjSWZqcRJoorRjExCMDAV5MMkljZDabQb/fD1cKjEYjcwKf0ovyVxrnHhuhVqvB66+/DpPJBA4PDwHgBa/h5DcHtxfpPXUxIL3S85i8oXWWngNcBTOePXsGo9EougtO09PS3Twx519qa5z00XY6a3XQfnPwAMV4PA7ta429WNBYwmKxgOfPn4drLWggSLIdU3bEUFrxuFLsN7x3F/vGyg/tFvpb0y00P4+9SfOU9BP+xnxxNzG+l4IjMX/Xqqc0DlLsdyvvWLlVgfcFvY9YS6sB747d2NiAZrMJn376KRwfH8N0OhXvn005ljbm13hojAWosG0leWDpnhjeeeedMGa3trbg+fPncHx8DPv7+0vjCoN93kUTlAZJ9he1yXD804CipjeRZ7AvpftSaVrNbizC0x7ZjPqT7k7e3t4W9YElS60yaB5S3ayJMG4D4fix7G8Nln+s8XUVsOxdiW6a3moXzzfUTvDYLtIzqucAIExw8jvPqzweMlWOZ1kWjj7vdDqwvb0NnU4H9vf3A62/8Au/ANvb20tlPHnyBL797W9XrjdSUJWO9eRdFQ1e2VumTVPHdNVYNU+sg9/K1kGSM5PJJNgw8/l8aZEDP4klxc+TyrX8Dc1esewe653ly1p2jiWjNZ3CfY/YOKWyldsaUhnaCSJWPTxppZh6LA2+l2SVFBPiNjfN37JNPYjZMbF8UnVSLD+uZyV+523g9fe98MZEvGm0/LQ8JpPJtUWArosfeeOkChn6vKwwruL7KhR5EdTr9XDHIQ5ezWjlTqk2iSKtSFllHcqgakW8LmPS67B4nPOYQ6CVbwWfrO9SeEFzrLV0qYgZv1IQiypayfn3KnaNnhRFh3LQa4jE6pvqqNL32pHDCH7HG00n3S0j1YX+TR1bi8+LBFLwWFW8x2Y6nYbJ2PPz83BXIy1LumesShSVLd7vNANP+w0g85fH4E5BSlBMGr9Zll3Tbdo3q+o/pIHy6/7+PnQ6nXB/66effhrGkXQUK4C+2pPKAToOR6MRPHr0KOwgopNmVv9ypwPL4PAYzfSuM80ATzGWLUeGyk+PE+RxvpCHuKyxFi9o5fAJYpyYx6MfuSzktuF8Pod+v7+0k8VzsgR1wiRHQepj7ozVajV47bXXYDgcwne/+92lnTSaHJbK4e0pwaKVt780JmJ0oGwfDAZh11Gex3coW/DaZBL4SnZPWdyx9jiA2Fa424/zl1QHyxGX6jmfz+Ho6AiGwyFkWbYkb6T0Re9irNVqsL29HfptOBxecyalusV4j6eX8vPYUZLNiH3M24QeQYo7PS3e18qU6C2rc7XyJKSWpdUvpuep/PP6CPQdyt1arQaPHz++xjd04RDVxxaNUl2yLDPHdZH2WpWN8t5778G3vvUt+I3f+A14++234eOPP4bJZBLuVMbyZ7OZqVtjbR+T+dI3EjY2NqDT6YSrGGh6rY28MlqyT1bV7lS/ot+xsbEB3W43LJqhiPl8NF/pN9e/1G60ZAiVSdw+LbpLuYhvht+WkWuaruQ8TP/3lse/5TYktQE1Wmjb0P/p+KO2dZZlS0esS/RIdK6Cp6fTKRwdHcGdO3fCZCzuum80GvBbv/Vb8Nprry3R8bd/+7fwrW99K0n/pyDF17DSafwqtaVHHqaOYc83ZdNX/T3HKmXpbUWR+mq+GGIymYSTaObzOQwGg/AOT9lCoLzg8beYz6DZoZSmImNLK4vnJ/2W4oyxsabZ0p64ipYfptcWDAPYMQhenvWc+vk8RqDRLZ3OhzxgxVOk/Hk+UplF4RkbKTK7Ctli2X+r0lEeeMpOtVMQ0glArsnYlEKrgCfQsSrwgVMlHbjSTjM86MoRKfjmwU0y77qxbkMJ4LrgKEtDVf1lKdciZWi8F3Oqi4LfCYB58UUI1r0NqeXTcqx2om3hCTwUoUX7tmg+MaMP4eVfD89XKXsODw/hL/7iL8LOWICrvr+8vLxWZpH6xFA0H+s7aWdy6njiQYNUeL7j/IfBKwkS/amGVJUOIx4Vg5P1X/ziF2FnZwcODg6g0WjAxsZGmJBFgznFSedyEY2qer1+zVHQZL3GrzwQzaHl12g0rslCXi8eZEoF54larQatViuUhZPPReAJYHFZzREbR2hf1et12N3dDcdC4qQSD3jS3bNaGdZYpMFXq448LwCAbrcLW1tboT13d3dhNBqFu0cBXuhFvvs1FtCU7BeNVyRbgi9ekMqQFk7xYIV0aoMWJOVBaGtHK6Wf/41pab5eucPrpO0wXUUwDfNFHsa2Oz09heFwCJubm+68uGyO0ZtlGTQaDdjd3YWvfOUr0O12YXd3F7773e/Ct7/9beh0OtBoNGA0GkX7RXuXKo8s+agFfaTxsWpoNqUVqCoKr+xN0bVZ9uLUEvRJUa9KctnKR5PZrVYLWq0W3LlzJyxiwtMI6LGAWZaFHaP07lEaPIvpTw/K9gPlLylwiAsN8zyHVqsFH3zwATx9+hQGgwHM53N49uzZ0rF3VOZjvlbQUuNzKZgrvZfy6/V64bc02e31fWI7ZD11rAq46PPJkydQr9eh2WzCYrGAg4ODsGsb+d+61kKiX4LW7il6RCpD2jEtyRceMJby1ni2TF/QslPiCDStZldTXqLtSduDnnzD9QOnEcuWTsrB4/e53ZXSDlWkoXRhoB9jiovFAra3t6Hb7cLJyQmMRiP4xje+AXt7e/Crv/qrsLm5ueTH8XahV43cJsTkQaq/+dOEsvHJn2ZIMls69hvlAV+ETn9rcserO9HnprKv6iNvy8goPl9hfRObNPWULdWf7zj15ONBbPGTVd8i/cP5IiU+lVJG0W95HqvIfx024G3D0mTsZ6nylpOoDR5pIHuYyttuaDBJz+k7eudWCj43RqpFkSCDFQiUvuffciGcMialQCsvx6KJB1A1WlcVgKRBWxwP1FmVHHZpfGpj36sgUuWGVE4VY7GqwBCAXfdYYDbVScTfRfliY2MDhsMhfPjhhzCdTkMAkAYDpXJvs/4qM47xmfa3NmbLIGX8SMYjdUBi8qJKuqkMAQDY39+Hvb092NzcDMFElBuegFdMXtLAvxT8520mveN/e8CDMvx4Ut7usfK9ZdHATavVCu/oaR+peUp0UXq1QLGWD/2bf1ur1aDdbge5UqvVrh2hSusZswct/oi1h8YjzWYTms1mmDButVowm83CsZaczzRZwe0JrS6pAWb6ndQPvO/4zm/NYUYZL/Ex/Ud3u/A6xPQbT2fJWSkfTc95ZYmWLsXhxvLw/ms8fp2no/lKvOYJctKxfvfuXdjf34eHDx/CkydPAOBq0QLea1lVEFcbe6nfYd20le0xXoyVRfOy0mk86ZX/qbzqkVlcN0jtBvBCr+GkVJX2VpZdTfQ3m81wJ229XofxeBwWHWDZKBvoRCzNJ8VXitXB0o9l64/HNuMJDScnJ/D8+fPw/vj4OCwYy7IXO/A8uyEpv0u84gmeYVr6N05M4uSPJWM99Fk0We1bZXwjz68msXBxZ5Zd3Vu8u7sLAFdXTuBubrqTu4j/bLWtlifPJyZbuW6T9NJN+Eexcan57TFfm+fL2zXPX0yYSjKYj3Gpneg3XL/y9FXyphf0Cifk50ajAdvb23B5eQmDwQA+/vhjODk5ga9+9avQ6XSCr9BoNALNdFKWX61RFlWOYctv0vjoc3wOCZqOj/ma/FQPmobLL+7LxGSWxbeSjaPpBsvmXxW8cQXPGNZkRkx/VbUYj9Mm2V6aLyilk77R6lJUR3v8EOt31XY95unV/dr7VFpiMYuqUeWYcu+M9aIscdr32oCoioaiTrW3kzGIZG1J155LTHkThvVnFVW2JVXKFk/x4xGrKrtqSIGPIvRgMIWD7nbZ2NiA/f39pXuV6ZFY/X5f3N4vGSn06DON7ljQSoLXMKgCKQEmCZTWmHMrvdPSSHnFHCArKIl9nOc5dDodePPNN8NRS+fn5/D06dOwq3GxWECz2YyOr9uCmDyQAmcAqzWcvShKAw9yr1NXcWdnMpmE++7Oz8/hW9/6FoxGo7Dz0QowW0EJlFvcLsFdFNJOCj5OOK1F2xsnpzqdDgAAnJyciBMQlv3iGbvz+Rza7Ta8+uqrsLW1Bfv7+/CTn/wEPvnkkxDkKeIMpdhQCL7qWMqD3+WD6fM8h36/DxcXF+LRyLSsLFs+1lR6LznDNJ3XGcb8p9MpDAYDeO+992A+n0Ov14PpdKruEJHokoK++I4u9ovJeE6zFKyzdItEo0QTL9OiKzZWtO/5OMc0/OjBPH+x83s2m8F0OlXLknivSDBQo1kLNgJcHYs+HA7DferSrjW6mM07zjjvLhYLGA6H8OjRI2i1WnBwcABf+MIX4Ctf+Qo8f/4cTk9PE2p6HdoOVik4nzIpxesC8GIyjL/X0nv9Qq+tdFNAm5i3Mf2n8Qge4zoajWA0GhUK7mGbt1qtMPFK9XOv14PNzc0wGUbzxkmxRqMR7vHm8OqdFJqLBIOksvjYxUkUnHzGiRFaHt2B5wHnea53UoJvSAs/DUVaBGNBqz8f1zTQHDsZZBUBPNTx8/kcnj9/vjRG8J7Aer0eFpxou0elcSFdQaHRTfPi9fDu+qH5pdjfZX3NGKhPn+fLp8BptJSdFJSOO5d2vfJj7D27aSWsW9ZjeY1GAyaTCTx+/BhGo1GIk3C6O50OfOUrX4FOpwO9Xi/wyN/8zd/ABx98EPgcrwuqCtKO+FR/x8vLRWwvK6/P8dmGpC8k/wX/9sQEMF8PNP9I82cBIPij0uRj0fgspdmyZYuMCcln0+xsK/917dhHG00C1V0UUqyBy6IUH0aiKRaj0Z7HYr0xe75MbOpz+OG+M9aDoswS+16aHPAEXKR8yjpYqZAcI/q/RiP9nubDn8egOVo30QbrhLfMsnRZTq70TFI+MZ7wlhcTql5D1TJOpHKkPK3AogTqWOCxZDy4OBqNokqbKx9N2VShXCzlRctP+ZYixUHWZKEmT1LB89D610rHHTLqIOPvjY2NMPE6mUxgOBzCYDCARqOxZIQib3j0irdesXRVBOYA5PFTtq+L0hTrR657Y/ItJWjhkZ0xxPLAHZDT6RRGoxEcHx+HAIxmWGt8ytNg4AZgeXLQkoe0zbk+9/CB1v60fHpkcCqveORrs9mEbrcLd+7cgWfPnl2jyfo2ZuPF8kgFbW8M6uf5VSB8MpmEI55pek5HLFAc07seUJ7L86sV2JeXl0v3D0tBAo0eTTdrgQYJRepDdU5KH3JZaOmRMu0s8TftY5o3PwLaEwhMoU8aD1z2WMDANk4W0yNlNT6O0c7ri79xQnY2m0Gz2YROpwNbW1tweHgI0+k0lF0Emj6UeJjyQszO0nQYv9/Jw6uabE7h81g9Mc0qAh+U/pT8aQCJLlzh7y2g7MS/qe7FBco4MWlNxmn3b3E+0cbhqgNKWnmaDM7zPLQr5UOqzz11kewIfC7ZG6ntUEa/UZ0Wy5//rclqb14pwHylu0C9C0AseeT1kTFtSp15+3L5YuVP/69S9nAdotkEZf1Ribes8ablpcUMOD9aesZKUxQWL1CZjouM+v1+uDIly7JgP47HY5hOp9But+HOnTvw1ltvhZMGfvjDHwZZVKvVkif+LaBPT3UAr18KuH2p6c6yNrnlw1A6ypRxWxCjvyg/Vz0WVlVeme84UmyjWExFiw+UadeYzayltZ4VSVMVvPZnWXhiMlK/SJuuvO3K02v6WaLNU2cp5lK0z638te9T6ZZkvhcpNNwUCu+MXYWgXYdyq5LmIgxP4RHC3u9SkBokK9tmN8HwVRgQVRvVAKBOIt2UQbeOcjXnCEA+3rJWq0G324XFYhF2ewHA0opN6jDhXVL43HPGv0WTR+BL31flvKBjJNGmlU9hXT7vBW1P7Z5rKYiS4gjzwB4ezfnOO++EZzhe0Nm8KeXpDdbyZ9SIvk2KH0A3hmhfNZvNpbuEcGd6ykkVqwRvd76j5PDwMOwsxHvoMAjhGeNavzWbzaXJGnpUmDZ2ve3jkSVchs7n87BjyBMc4gEnLNMyWpEHzs/Pwz289+7dg/Pzczg/P4fxeBx4JRY85HRmWRYWYWxsbETvoKUyLmZjTadTaLVacP/+fVU3SPf9YJ2994NZtHhsWx5o6/V64XQIpENrO54/7vy2nCsp2B2Dd9zQv1Fux2SGFGTENoktvtHy8ID2MV3oQ69JSIG3fbwOPqeV7/jBRUqYPlXPVG3vprY9fiPl4WkrLqO53uV8xydjLTq0Z2VBd9jxAFtMFqfCYytq6dDuGo1GMJvNluSuB7xO0+k0HL9Oaciyq53pFxcXMJvNwoLMPM+DXmk2m0v+AqflNtlX3vaRdupJkHQqr7ckm1P8Eq5TtCtiaBrtWwprl6Ekeyjv0zGi0Vym33Ec4gTW5uYmjMdjGAwGS+m8Y1J7HwuCF9UZfJGWVA5vI6wHbdtVjR1sWyxTOr2BgvJHyl19XH5TGcHrz+uKu5roojx6Yhftd63vrH4v07YxH43aV1mWQb/fh9FoBHt7e9But+Ho6AiyLINvf/vbcHx8DHfv3oWNjQ34yle+EhY60zvnsyyDbrcb/ImiOojWGyd58bl0ulmRvHn/r9P/vE265qYQ4+2XKc7M7W3vQsyYXLfKs2SS9Z12VHIMfIxobe61R2JIiQVqkGJqMdqK7DylQL8P86F6gftbeBIaLVuqJ33m9TE88TkPJB7WdP46ZWgqPusyd2kyVhqc3FGkz+l39H8JlgHOmfcmhXLZMjwCLgZNwJcZKLG+iQURre+qUKSrhofGmFOSEqhZhVDzKrNV94WkECWl6eEprpzwuEuqCHFnGw3IWgqXt1NMgUvBbA8fWGOzaECUB+Ws8r0KvEga61uL/8o6RZKxyQOGRej3jp2y+dN8tPK0Zx6DXysvlocHUiCEHzGlBdUsWjWUMco9+WZZFnaNnZ+fh+OKiwbUeEDOukukrDzwggZN6TGC9L3VXzSdx37L8+W7vOv1OrTbbbi8vITFYnHtaMNYfhot2niy7NCikII7UhpaHpfTVmBQghXgpjxkHYGsfcedrlR+t+QN5W2tPP4dTtBLwQAJNG2e52FiZjabXbuHyVsPHlixnHz8jZMItI6W7C4y5mN2Bpc1XL5w20WyZTxlx2jF47L7/T4Mh0NYLBZh8URZWUfrYvGHJ/DH20cat1r+ZZESUMP/q+ARnibW/5qMsPxWOg48fOWNBfBvpFMAUAbiJG6V/mZZG5rbBPS9h79itoaXLs3uiH0n5YPptdM1irR9Cl1S3a12qgqoqyRZa9kfRWInqWn5GI3FXbhOkMYu1xdFwGng7SS116rkrqXfLZT1Vy2aiuRXNHYA8GLhA179g/7P8+fPIcsy+OEPfxgmE9rtNrTb7aWJ59lsFuy1GI0e/pN+S7xp5RHzM2keVp5l+tlre3jhaUPP9+tAil8Uy6eIrCzbVkWQYpul2JRaWi5Di/KqlqdEm9Z33nReOig9HjvAU16KnxODVk4Rv06SS5xOL71V6BYPH8fa0fILvM+1fKTvuX74LMBTj6XJ2DJGZcqA+Kw0sARrYBfBOhiyaP6awX0bEaMRJwERdLelN49Y+V6lTdv1JtrWcux5Ovp3TKkDXK8TBj3x7263C61Wa+mbs7MzePbsWUiHu9KkPCUayhg36wbSz3djpdRDuwswplQtx5o+twJiRfiV7/Rpt9vXaNN251aNqsebxZcerEOvSt81m01oNBqhb3AxBO6OwWMpY/dH3hSQZyeTCYzHYzg5OQmyBumnaRHcmPYaonmeLx0pixOT2j2fGs3Wc0sf0QlSKjuyLFvaHWAZ3NLECpbLn+ORaBsbG7C7uwunp6fRnTRWXbFvkA7JgaEyQrrrVaMd79bBI9za7bY4yUm/wbytRT+pwRep/7Q+pXW1Jrgl3Ye8SOlPkTdSQBX/pquAUTbQ4B13knFHG+aLckSzDfipDvP5HO7duwedTgcePXoEs9kMOp1OyEvKg9aFv8O+pUfxYVvhb8wD7wik9ZICFfR5EUdZkzF0TPB3Wp21figSuKALcfr9Prz77rtQr9fhK1/5CozHY9jd3YVGo3GtjM86pP5ICVho6Xg+sfaM2d+WDE0J0kjlptihkl6h91Yj0L5A3sXycZzj/e6anF8HeP/gb+1uZi0Ap8mpFDki+VFUX8SuKuBlUflHZRo/as/Dl5ZMs+oo2cvcJlsFJDnLF7dJdee6RALVEVzH0Hyk7zi4XUJ1qaSbaPn0H7elivrIls1KT0nBf/TIWo3eMkB6+D2wsfxpHEKSwXwsePqvCFLy4f1J7y08PT1dau/vfOc7kGUZfP3rXw/f//Zv/zb883/+z8Pvy8tLqNVqsLu76/JTPPpDGjN4HD3A9bHhBeVf2serkA+rzLNo3jdtaxWRyWXrWmWdi9prkj/IT9qS/LGqQMeJda+p1lZc1ms2gIcORBGZ5c1TalMpNkr/jp2+kAorVgDw4u5eLB/lLqXJslnL7uS1oLU1tc0pPPGCVdraKf4Px7p8gFWh8DHFHFpDeBo01oge56YIYkEODx1WfrcBLzuDrhpUidK2kgSwV4HHxoKnT1IVnAeS0x9LJ5UTczw9NPLAJk7CojLlRzKm3Dfiea6NfS1oUmQcWcaFBSmgkxLY423LadBo5HnQ76T20YIqWpDFChbQZ0WPVvbQkmp0WuV4x34RvbBOuY11oTvBGo0GdLvdYGjSu1b5zgHMg+ZF86b/p9arSNvRsjC42263l4IWNOiL4LTFJuL4TtCNjQ1ot9vQbDbDbtHBYHAtKGUFIYvUW5MztO1pXa0+0Jw1fJdlVxPcuFiJBgel45m18aCNHcqH9DmWje3NF0t5xiIG8wHg2gQcp4/SyYOXWnlSPb1peFCqqJ1ryWTtXYxuy7mXvpH6l9ZNu/+Wlodl0vslO50O1Ot1cTEQHwNa+ZoOlNrd0+fSeJPy1+rqyZ+PXa1/eHtov720YvmUN8/Pz+Gdd96By8vLcDR5Gb+H04VlcsRsCovvPYERqSyvHZ8a2KN0S3dKxeCxwWg5fOx75QDmj0el06CjxYcWvRqk8anZi8jrtO/L+t5F7BJuS1o0eNq9jG3E5UQKtL7UyqoSnrFu6faydFllUV+EjqNU31ySUx4ZLNkhnn7WfC2eh2WnS5MLFvjYBAD1+EbJFtX0Tmr5vD7SM01+c1mp0aNhVWPEW5Zki3N5OhqNwu/Dw0N4//334eLiYqkN8GSqVHmkAccQPSGF94WEsmO8jJ637AntmxidVbVn1dDqFBujFFXJ49uEqhdepPpfMX7x8pMm91IR4w/Jp4vZ0Cnl0eeW/0h9TQ0eWiW+5zpZoyEGyYaPoYzdKOlTq428tsltkmkeHc1xm+RWZZOxFqzAAP7WoDl3RZTh5/gcHGh88qNR8Q4ZhMdo5H9rKBqwSElXBKtcoWMhy7Kw+wXvhMKjCS3H03s5ugcpynuV4PWV7jerqhwJVpCgzCSpVpZUJ+/9gFqeq+6r1GCM9ryMMVc18nx5p9nm5iYcHByEO5vPzs5gPB5Dq9VaCtjQHXjIu5ITs45+kTCdTqFer8Pdu3fDiuzLy0s4OjqCRqOxdIcshzTpDABLdcSdYdPpFJrNJnS7Xbh79y689tpr8P3vfx8++ugjaLVaUKvVwtFhq4DFZ9g/APYYlmwyWu9GowF5frVLjteF7pbG3wBwbZUqD2jScijf8JWmzWYz7GrN8xzOzs7UST2pv/L86ug2vK+KTqTT+2G0vHggUXL4UoLh9E5aXi69Y88KDHodWloXrVxeb0zPg8eSAy71gUY73kGJ9pXEB/gP7xpDubS3twfz+RwePXoUeILWi9Mv1Y3mT2mSZDGtsycwgjRXAS1gaY3RmA3k6U9OA8CLBRqNRgMODw/hf/7P/xnejcdj953KGmJ6kPOYZG9r44HqJgTnFfpOOx2A58npkGA5+lUGcyzw8RgLZPEy8vxqMta6K96iS5MTUlorSES/xQUaNxkI8vqD3rauAvwO4hikMSUF7aS7eWO+Uoo/JqX1BkirbFPkdWpXxHbFxMrnJz14QHW0JjtwDGiQ+gh/cxmHaendnmVs1VqtBrPZbOluULSBuU7R7jkuC2vBKCKFh1J5et1AnkA6W60W1Ov1cLUDwIuTBxAfffQRDIdDePr06ZKeGA6HlY6r+XwO8/k82HySXeWVWTeBm/JdbwoeXS29+yy1Ebcx+fiXbMdYPh5we83SGZbcjNme0t+03JtGjN+sMYkxHWuHrHdMS76hdFJVVf6PhCJ5W75FEXkm2YX4d9Vx4TJYhY5el/xXJ2O9gZ5Uoz+Wn/W9FCC0yirSITHDcJ2CKhYw04ztz2FDCuYgMHiDzgPAlUCmjgWmWQU90rsigjOWr+asWd96xp9FDwU6vdTxpQ7wYDAIaekkkWakSMaT9p6j6nFjtR1HLFhjBVaL0OWV61Y5nrb1BMWl77n8riqYVZWsTKHBG3zkuA1yHHU73gvId8TSCUz8jWk2NzcBAJZ202C6VRv72KYoX2gAqlarQb1eXzqiWPue0kn/x79xdx4a/NPp9Joc29ragrt378JgMIDJZFKIl63xjw6iZwIBy4yVK9Ubn1OZe3Z2Bj/84Q9hOBzCcDgMwTve1zFdJI0RyjOYB/IWDZhiADGWL/1bW8Dj5cmqg0d0koSXgX+nTtxI7U5tFmvCRMoL00hBCP4c+wT7qV6vw9bWVkjHg7QWDViPu3fvwtbWFozH4xAopO1i8Zam8zzt6Wln/J8ei5iSj5eHaF1TJwS0smLyWJID2K/0WdHJWE9bxXhSChLwhSdFgoUeu0uTk1I6adwUKVODVDd6bL0HUjvRZ15/1BOopOOW563ZSdYx+CnysQrwI/VjPOChrSzdVEZIeio2lqxn/J03ziL1lTTGPTGdVdmNNH+6EMpKi5DGNn9n6Smu73h+Ujvz/sVnkn6Xxgn/FhejZVkWbOPJZJLU3rSO0+kUtre34eDgIJR5eHgIw+EwTBhqAVxN/ku2GrcxY5DkU8wW0vpMk9/auKhKJsXGAtrOnU4Hms1muCJiOBxCnufhCqiNjQ2YTqdweHgIg8Eg8E+VspPTiD4SPV3BwqrleBF5YunIGFYtx8qiivZetx6uAh77nNeLj/UUXzLmC3vtBw8fef1u6V1V/m1q2phtjHqaL+a19J6EmP+jfcN1EKffgyLxg6L9YbUntoEl+z0+YgodVdi5nnKqwrrkmBqVtAwLno6iaGDASldGaaakTaGJwhu0qYpJbqsyf1lgCW28O7bdbi8diUiPd5GCGx5nUvqmqEK1HMaiAhLpKWNoas+5AzSbza7tgMSy5vM59Pv98HsymSy1ubSTKYVW6xuueKpSIBIkY05y6LVveBoepNTgvRcglg9NR+nztJVkRKUq2SIG5aplp9U/nm9ui2zHlYWNRgMajcbSSQF5fv1eDqR7Y2MDtra2oFarwcnJydLKbJpOghQsKQqcsEPEJmOlABg3vKX8cWJCmmzd3t6GxWIBn3zyCQwGg3DXdZVGNdYNHRReH/68DOjCmZOTEzg8PAxHotHAHpaZZVnYvSjVgbY1pRePIKaOAvYfBpu04z0tWST1pRWg1t5reZUBd/A1vcT5U8pHAwZC+RHPCG+AAWmgulK6WxXvd93a2gr5DAYDGAwGpp6gPLGxsQH37t2Du3fvwpMnT6L3ARX1R6wgu/Y37RO+GtuSZWX5hvMB5wfNNpKCDx4bgKbDsY3v+PHkEp3aO6tM6V6oWF60L+hzGrix+C5m90k0pPqOEiTe0MqJySv+DecVKQ2AfiQfvrfureZ0aDa/xXceHxnHlnQEpwUuu4pAk82W7qmqbA9N0jut3CJ0xOSXxpdZdv1+UIuHU/ydorDGGLcbY3Rg/Xg6abLeEyOQxqom5yUdEKsj0kbpwt/0dJMidiq2xWw2g+3tbfjKV74S3vX7fTg/P1+6LkRrA6l+kh+XSp+mk63xbNmrkuz3+MxVg5aPu1BrtRq0Wq1wms14PIY8v5qMRVt6OBzC+fn5Ul6rkFGYL19Uz1FEnlvPtPdF5KEUY0nFbfHtPdDGp9SOknyLtak35rMuSHJXsn0l+SDJpjJ0WL+1d9aY0PpMy5P7olq+NwVpAw8+53X1yIVUHqR3c6eC0rQK20aD5W9ptBSBp81XDcvfQVQdv6kCrp2xVRNddX5VMFIZmjwDetUdf9sY6zYCgzzdbjf0V7fbhd3d3ZDm5OQERqNRcEaGw+FSEACdFWqU8SOOvZAEl8VHq+xjKpSloJ0GyTnh7yTQI4uyLINer7d0NBIa74PBIDgXUnDQUx/6vycgZOUXS1cUq3TiaJvxoJrWzzRIxwMFWtvHgorat1XuMl+1gZPaT0UCGjcpy7vdLuzs7MDGxgZcXl7C1tZWOPKq2WyGezf53aIUePwvBgJwojLF2a5iLGRZBvv7+0unHOBz6kBKwZQsezHBwuU7pQ13+eGz2WwGjUYD9vb2oNfrLX2HAbDYhBLSEXtO2wkDaFKa2GSsFrS3+kBaSWmNvZicod/Tb3CC6/XXX4ft7W3o9XowHA7h4uIi8CGtg5U/pxHf4b3Inm9SYOma2DdeZyIlqIW7i2m78vwAluVxkYCnxH/WpJ1EP9ZhPp/DBx98AI8ePYLxeBwCelz+rEon4/9cZlC+y7IsHN+e51f3so1GoyBzytCWqhtjOprSYwVkKH9J4yEWsLHyl95LgS8OWh7f9WrVg04e8/Roh1oymbeBRWuK7qJtqAU0PbZWDLQMqUyAF+OJ56tNfMZkmzQuvbJEa28+QbRKm1miiYL3vYeOddCKZaRMpsXSFaGbynDan1x2emmQ0pVtzzzPw8K84XC4lC9d+BWTk/wZ/Z8Gbr33Q/P4gjaWaNn8+oGYDuDvUE7O5/OlhSspYxbbstFowOXlJfzd3/0dPHz4EO7duwf379+HRqMBR0dHMJ1Ow/Uekm2dYnPwtkJw/UBlhTeGIKVfpb1RBpQuajOgXtva2oLpdAonJyeQZVnwzbAfbgqr9HVv2pf+rKIK/4jalrdtLFl8Y/ld9HtMe9twm9s9BaivaB0kXX0bZcBtpEmzc16G9iyK28b/S5Ox3kB21QYxR1Hjv8g7jQ7L+aS/y5abgs/KILhJZFkG7XY7OBx7e3vw6quvLt1xh+08n8/DUZv4LQZvyhjllrLW8isSlJF4OsZDWgBOA3eGPAF6gOVgfpZlS/f54c7k2WwGw+EwrOTUAu4eGnndUvKpUt7xfLmD7TXkyijF1MAHD9JbAVqef0pAtijNMb2VqmOqMqZTA3a3wdBpNptw584d6PV6MBqNwp2AuKsUF0xYu6sxLT1aFiC9XT3pYv24tbUF7XZ7KU8pqM/LRVnPn/PJEdQXmN9sNoNarQbdblcMdKzSAJQCeIhYW3p3j9Gy6IQYD0LywD+ng+tQHkjDyTvcWY3H3tHyJF0VG2teHtRoS+2/Ivo2NpHhlYWSLqYyXLub1uuoS3wmtS+/V9oDOj6fPXsWAodasFlrK/5O40WrjhbwPR7njsf/SeOiCJ9a5cZkH9LA+4mPVak+WuDaIxs8kOwe6X5GTY7xwHisDzWbD/tMm4y1ZBj/W6qf5Td67GXN1rLKjtFkyQjpG8/4SB1Xsfw0WqzfnjzKwIqF8MUhN2HHcX5KaZ8yfWaB8jnffS21lUR/VTEiiz66yBAXXHshtR3VXxLfpvjMXEdrfkKKv8/bnMpIfhy4lzfoAuvhcAgnJyewtbUF9+/fh93dXajX63B8fAzz+Rza7bYpp2J0e/Qj/VtrO03faXLY6mup7KrhyZufYJRlWdiRTK9TAYAwgY79vi65laJDy6CsT+3lD28+LzMsn7JIO3M/7iZB9bhkm9I01LavKlYk0QLg1+EpdHjsZkumlekry+fgaTy+l8STXjvRC+/3Wj2k77U6VmnXSNBsLs2X5z5sWXlaFh5b0IoFaN/cBvmsX57mhGdwpcIrnGPM7qHDMmy9HXbTiuSmsS5lmloOPc4Qj89ER6vT6cArr7wSjlF88OAB3L17d2nV5ng8hvPz85AHDxZpRxoVxU3wUZXClefl2dWBTgA/5hCP1ZEc4yIGEHWOtXdVwaMMtO+qkjHaWLFWelt0YZ70f3znWYVfhUNUJL03uEcNbAvrcMJWYeBbwHJqtRrMZjM4OzsLk1+tVisEq9CRpwEbGoTkR3TeBHjQpd/vw3Q6DYs7zs7O1OOyOF83m82lu2H5xCsALC3OyfMczs/P4ezsDC4uLiDLMuh2u64jHjm0ILwUTKL8ojkoHhQNyNBAa6fTgXq9Dq1WC+bzedjBKpWF4Dsx6S4PPt7wmFssl9JA89XGstQ+lAYp4IbPuD7jvy1H0JKhNK0ku7T+5s+sfqPjk+cvlY1tz68SiIGW02g0YLFYwNnZGdTrdWg0GuHo81hQVAI9+lGi2aKJ1kt6V0au5/nV6SitViscA0iDNZyPtLyQx2i9+P/0nWdXp4aU3c9F5UkK6LjnR59LabV29Nh3vC3pzllJpkgBw1gbpASEuJwrIn+5fOFjhdp9PMBC88Hv6Q56+r2HztTAHe03uqONy1cteHhT9gaVdZosirXhKmgqEzTjvMHHVArtXP7xoN9tiJugTZfnORwcHMAv//Ivw5MnT+CHP/yha/EQb+uUutFvYmOG23nId/xED69/R+Ud0j+fz2E0Gon18eSH1wnRRYibm5twcHAA29vbMBqN4MMPPwwLrDXExohkp+Df3K6s1+tLtrs3T2xHy0bSaPf6kqvE5eUlDIfDcMVMp9MJC0UBysmiKutW1D9O4csqULbOlt9WJVbJd9w345AWXtNvtecpvsW6xpRUR8mHqhqp8TlOZ4r/ftMyalVItT+rLpvyepWn/q0Kkv2REjspamtWhc8KH5t3xmrQAoWxoFsKvA2sBbvos6qg1cUKGmjQlBV/d5NM7sU6FWQKqCOZZVfBdVwJ2Gw2YW9vL+TZbreh0+lAp9MJgWR6dx2ngTuWqXRpdUrNT8rLm0cVwcyUoJOWtyXkeXCyDCTaLPlRBbz5lg3GWQ59TJZ65bnkoFNnvoj8L8v/FmKBH27EFi1Dyl9qDw8ttN3XJVdpABZPA9je3g5HWWEwQwt00++lAGqs7FjwidPpyRPT4cRrvV6HyWSydBe1VBf+m95VKtFEJ4bm8zlMp1MYj8fQ6/WWJn05bR6kBPTwb87zHjuqKtmaZVeLnFDPSvWn6aXxodGC+hj/aXlYugKDbDQIieV625rrC+kdLU+iQZML2jc0DX1P+1dqBykPft+6p+xUOUQngjBIS+/65W2vBak4H0s0lbHDKKRyU4IaEl9ROmP5WXws9RumQZltjSVtTLwMfkbM9vPoXaueWl9z/pL0s0aPJiMkecPHXxX6gfY75yOehtOM7YcT/XiEu7Yoo6pAiOUHUJT184vYVpa8TuENj4xOoYWXx/uiin6pKg+LTg1lZJLV1tq4bLfb8Prrr8N4PF46iUmSH1IeMXo1WWP1qVY2z8vyM/n4pvnx57iTski/a/7BxsZGWKSUegWCR/ZrdlmWLZ9uo03IWj5ICsrKpiqBdjLaDujDSEe9p6Ks3KoCMd3nTe8ph441Tx976roqvqhKF2Ne3MeI8XaqDZOCVbRZLE+rPim6PoUOj42i6Z9V2fSWfkmB5sdKeVv119JKurUM36TUW/Jl6f9l+bcK2ebhDw8fSfrWY4ukIsUHL8JHRcpaFcTJ2FRlsg6nXhP8qd9Q5Ll832dRY/RzpIMPoirand+Hhmi322En7L179+BrX/tacA4+/PBDeOedd2A4HMJisYCPPvoIBoPBEn+gY0F/F8VND/wqEAveVqWEtHwR3MHTAk1aftJzqX9WscqpKM/HFF4sKOmBtOOVGhj0PiRsZ629U43NquFpi5QgkWb0VTGuq3RoUvlrNptBv9+H0WgET548CYsh8AhxCgyuoLw9ODiAbrcbjpfVwHmhiiClRFue5+Geyel0eu0oXl4mBm4wiEHvCgfQV5OjHVGr1WBnZwcuLi7gb//2b2E2m8F8PofJZBImtss66inBpFRgPjQIH3MAsO/v3LkDW1tb8HM/93PQbDbh+9//PoxGo5CeHlXL84g5VlmWweHhIfR6vXD/MAZLKQ002JcaNJWC6rQ9aF50gVCsfVL0UQp4/vwOUwm4oIL2HX7DrwJIrRcHBgGRHhwHOLZooIeDjzNcQKcdKZ4qPzSnWdrtT+nU6rtYLGA0GoUFA9PpdOnIRiwjFhCXflN6OT/i0ch4xKbVJlSX30bbkwfOLRqz7Op+QtomAMu7Arz+qbXTgz7HMYK8HOP/Km1e3FEe25VB6055BnnRs2sC69btdqHVakG73YbxeAyffvopALzQhdbRzhRan3C6YzLyZfDJqX6j9eHPqtbXMZr4N+uCZROXaYMqx9bm5ibk+dWCoWazCffv34fZbAaXl5fw+PFjeP78eTjtQ7KBNUjyWJL73Nbw5h3LPwbLV+P0pyDPr07RQdlweHgI77zzDuzu7gaZsVgslu7oRXrQZpCOCsU0Unmcx6i9VqvVgl4ZjUZLCwS5PcFPR+H6liLlpIB1gtM6mUxgMplca29Nb/60wTPmqvTHi6AqfZFa5sbGRthRTWUfjg3p1LqYjruJ2A+nx2pPfpQ+Bdqd9CS/KlDGtkn5TrKpipb3MsmLKsaPJyYjyQkp7nEbEOtHfhqK5k/dJpTt55vm7aXJ2FgABtOsujO0/FOClB4BZ9XX2zFF26aKsqvETSh8AD1oUiYfgOW2w6NaqGFer9fD3bH4/WQygVqtBo1GA6bT6ZIBgvcf0vw9/bNO4yNGjxSALJIPD0576KqKpy3Hi5cp0cG/k/LUyuVptSCwN2Ado5fTmfptLH1MzvJ+4+2Hx1BaTqtllK/KAOX0F+E57RurTzV+KMrzRRx93q6pxjrWb7FYwHQ6FY9qswLXWZaFiU8MIEv8tCrjmPMoGpV0Ekj6XuJfzeHCdpJkQa1Wg/l8DpeXl0tBHeuOXakOEj20TD6GpXy1d0XsKwuUJjxZAvWtNl68dGM7jEajIGvoJIBH5xUZA/y3Ra8luzUZVJXTYMk3jWZvm3HetvSaplNoWi3o5wnaIB9YOilGC/3G4osi8hoDNNJR5ohUXcTrq6VBmlP0TdW+RVF9TnnNY8MB2PZnEX+sirbgfLqqcjRY8oXSxHlQ0omor9BH4uWk9rP0Df72BjWr9CE+a9DkitSv3m+rgqZDtGcxaHycSo8kQ9Cn2d7ehgcPHsD5+TkAvFh0iPZkzC636mrRpL2rQp6ktHURO53SQhc14d2x8/k8XIOCaSwfPLVuWn/y/6lNaY2bMrRIv8v6OzFYtg4ABJs5tuBp1XSm6I9UnpWQojNidmhVcjK13TU/sCp4ZBPaAxJ/x2I8sbZbNc/xMrxy2eMnp/JESl1jPB1L6/UbpN80ndcuT4Gn3dfdN0XhlTE8rhD71ku/ZV/HvinaRh7ZvA5dwsuzfG/pG/4tTRsrr2ok3xm7DsFZFhaNfIWCd7WwVEbqAIjhJtv2ZehXCxb99+7dg83NzaW+XywW4Y4TAIButwsPHz4EAIDpdArvvvtuSFuv16Hb7YYycPeDBMswuW2IKWKKFF5PDTjSvNCRs+5ZjK0y4o5Unl+/S2wV/O41kqswplLBA9exySHaL5KMbDabsLu7e23VLU56eWgo4lSkpKc7nDTwozM1IzUGKxia8q0WBPEaTlXpINoOtC34c2y7er0Og8Eg7H7DyVytHbMsvvuySN0kZ5HvKpLu/pTsgvF4vORM0nTSHaOI2WwG4/E4pE8xqjUaKZ14BFnMzvHwPwUfAzFasd+zLINerweDwQCm0ylsbm7CvXv3oF6vw9HRUQhyakc9c7qlelxeXi7JcLpIAOlYLBahXSTjWtr5SN/ztuB/08ByLCjM3/MxLo0vfk+jB7EAkiXnKY0xG0AKuuB3MXql97QvpHdUJvNxJ7Ud/y0d6YvyKjbOeL1pHvy5V97GvpX4COuuBbx4fWIOPbezvGPdg6L5aN9hvfiY0PQjTYu/8X9Lx6zaLi8S8EgJfmm8RPmG7nrnd8fi/1wW4LtOpxOthyQTMN+UgCL9lv7N78dcl6+aYst7+pjf11gVUvU8IkZDmWAdgC/gV6QduCzVeMlDu3R07auvvgpvvPEGDAYD+PDDD6FWq0Gz2YTxeBzNTwsQIp18MkzTy3Ss3pS/WCQ/1N0bGxvQbrfh9PQUjo6Owu58a3extIMc4eFV+r+0e43rUcnm52VxWriM0mi5LfEeTiPfqbVuOovwVFFerBq3gQaA9U1yzOdzGAwG0Gg0YHNzExqNRrgPOs9zODw8DHFQ9ME0WGP7ZYMUY6Dwyir6fYo/EfNbuc8pybOyWEWeVWMVcjimk6R4z22RGxKs0w81WDE9z/dVQPN1b3NbxxCdjE0RDimdkNJoKUEDKy0XIKkBFZpWKifF8bQG7G0VbrcV3DimDg86APiu2WzC66+/DgcHBwAA4Y4/gBeBB74LFvORhE0sALZKoPCpSgjGeFATvhJdPJ23nbSxEisrJoMoDd6AEf1WCmBpuCll5EXRAAgvk64Yx13n1o7Kqui15GmZwExMnpcJOHsMHJ7uNhgWlKaYAYSBLX6Mo9YnPH8trZSO06DRpJXL0/KgGZcLNIBh5YtHE2PeOBGQOl45PyCNHluI68OUgGhRnsN+v7y8BICrI+GkCWPeN1Z5MT1rfYeTEBy8Tbx2F9cX2pG50jcAy4E/r+7Rxp1WjqeNPLqUQ5MBsTFGv+G8bNVB4nManNbaMlXOW3qF8x7PWzoWGhcDSHwbK1PqF6mteXlF/RitzBQ7R8qP5xPLo6yOy7L4YoBV2WO0/WJ9kKLXpXGijVtvAKKovcrHIv/bkhkpOpvLam08SHI7Bo98XJetVSUvSnreU6akfz2yPwUeeZza5kVp8ZYzm83g7OwMdnd3YXNzE5rNZph84AvyY+NJsiE5LfiOH2lP03psvTJ+SoqdbD0HkG0cPC2CXongqZdGUwo/oU1Kv9Vs6Kp1xG3x3QB8NvdN0xvrV0v/eeAZJx47ykpThodug26i5fEy6V3SOzs70Gg04OTk5Np3AL6+pJDSp9TZ0l1F4e3LWNlW3dYRJ5Rg+T0eHRuzeVNtzVXK4puQax47vajPpoH7F7H8Nd0Qk7Mp+a3S71rHNxxl/awYrk3Gpjo6VRBRFbTdJBx5nl/b2WjVuagToEHKS2L2KsqM9WdKfxfljSLw0i31b6PRWDpe6+zsLByPc+/ePfjVX/1V2NzchCzLoN/vw/Pnz2Frawt2d3cBAGA8Hps7M18WxNrQ25cp/EH/t+jwCPUUGrjjGzM4YtAcxlgAnaZLKS8VRWUDP2rbU47HiOh0OrC5uQmTyQRGo1Fhh3sVoIFByqO0LlIwEP9fl/FchmeqlM1U3/H7Ma3gKl0ly/Ph+dO/qwjaeccl5Uv+jbVzk/MI5Z0se3GH6XA4rESHaw6rd5HDqsafxWeLxQI++eQTaLVaMBwOw+5gzjtFeFU7Xo3LI1oObysrCGXxNf9OOmXB4mPkD0ofnUiTaI/xjVXv2DdWWksva3pd07XSc4nuLHtxByhO4NM7QTEdTnTW6/WlhUCYL07WavY1H7OcNnxGd8ho41CqIz0xpapAELVzeR2oD0N5kOu6WFkS794W3X0bIMkb+rtsW8Vkj8aD/H/LTvPygwQcj5LcsyZRkWethSuUZzmd6/Q3iyCVNtoO3iBYrGzadrEdsutsV2vMlEHRNvLQMRgM4Mc//jF84QtfgP39fWi1WrC9vQ3T6RRGo1GhWIl06g5Hq9UKR/hSHShd86DZMKltzMccpxvHtbRzWMuv0Wgs6VDpW6ktqO6O+QNa/aXneJc7vscdu17cZtmDiPFkqt+wSlqKpr2NuA30e/q+CI1ZlkGz2Qy/cRzhu7feegv29/fh008/Daei0THI5YoVA1h1TCUGy16O6dGi5a0aMf/upvl2lahyXHplq+b/0jTrREobSOk8cYSXiYe89Baxo6rEtcnYIp1joagykH57GssKuCG4k6sFj6w8eX5l3nvKKIpYvkWcm3WgKN00QAcgB08wSAxwZWh0Op1wxMZHH30Ex8fHwcjA/HAyF7+hdFj9Kzkjq0JKQC02zj08L6WPGTBFjTDr+5jjpo3zWB6pfSXJGXxepVyN8ZRmJOA7T71432Lwt1arwe7ubljwgAGg+XwOFxcXlQSjPfXQaOXQeEB6VsZBqLq+UrBuXeUXgSYHuZ6l/zY2NtQrADy0Sv1VRObRYwOzLBNpkhxL2k9eXtVgBdZ5GguWDSONfToZ47GzaJvn+dXEGB5VTNtCkn3S0c5l7EOUO81mE9rtNoxGI5jP50v3wNP8JVlAA3Xe9kX6NbuRtiktj773BFklGeyhTStHqh99hrKctxmXS9L30jc0PW0TjQ4M4PKytre3odlsQrPZhPl8DkdHR+5jdj1B3VjwQstX6mMrvSdf7RtNF0h0a8e/e/hbGptYV3rMakqeGnjbSTJDkk0a3TRfznu8TC/fWG0t6WjO9/zbFLtaq4P0m5dB5ZS1SEH7djweQ57nwaajfaDtRE4dQ7Q8Cyl+jRep+scjq2OywGOnxpBSd4tHNPuJl5MiQywdpvEx2oGWDPaWh99LR7Bq+aO/srGxAePxGH7yk5+EUz0ODw8BQD7ylpdp8QTXFfgM6cRrJ/jR/UX0En+fIjes71JAaePXC+A/nGimV5lI+Ug2q3b1B7dNebvjO6lPKKQyvahCNlVZ3jrpSSmrCJ+V4Ulapjct3bGOepTKAknXx/RKTA9L0GzHqvpe6guuH/jR+rVaDV5//XXY29uDfr8Pk8kEBoPBkgwuKtcpLWX4V9PZ0nUwqfwo+Tha2bH8udySaNbo8thFlqyL0WflX4WuSPnewwtVyrvUvKwxr6Fs21n5xuxmzX4qYltI33j4NwarrNiYkMpP9TWK0mtBy988priIo+LNz2tkehVPCiTB5BFU3vRF6JHyLMsYPw2gRkOW2fcWAFw5Vv1+f8nx2draCsr5Bz/4AXzwwQfX8tPuiC2KVfXtOnjGYxisC5ZxI2EVzgnNs6r29wQdrW89gRGpHE3W4fio1+tw//79EJjFo7yOj4/h/PxcpUkK8mplpQR8yrQ1NVJ5H1ooY4R6lfW6ZL/mcHmdyZR0dJIsdYdnKt9LzpDGO1h3BHfStIAO/k3LKnoXkydQTumMOVcUUlDL0z4x4E4DXEWNAQyeLwL7nB5bJ6XzIs+vJmNrtRpsbW3BfD6H0WgUgijSmKb9xRduSfTQoB4tN4VuSxbH6offW7yNaXigkdIfK8frpFhjkdKojReLBuxPju3tbdjZ2YGDgwOYTqdwfHwMs9lMPeXBy8u8jaT2pmOPlkHvyuZ1tJzBVGhOJJUF0piT5KY25rkOkIB1ldqj6sAZH5/4t4eP8zwP7YH199gdMVro37zuMZskZaxb/ZUCWnfPHdRUztVqNRgMBksnG/B0PMAnyRlLTvDvPTq+rO2eYlOlpL1JHz2Ft6TnkkzQfld5Zy+WTYP2kuyPwdp9TcviwDrgHaa1Wg1GoxH86Ec/gidPnsDjx4/D5IKHt6021uwLlG/D4TDUfWNjI1yXpLUHHTdSn3h9DEtup44Trkuo3MYrbOhpFrgQE6+IkvjOajv0R7W68QkzKQ8Oj44pizJt/TnWA+TPRqOxZFtNJpNrvkuVft5tArd10ddD/q3VavD222/DdDqFx48fw/n5OVxcXITv6C55ybZBVDEeNF2tyTf0D6XJWEuu8PKsci0ZbOlcjeYq40FW+RItlh0n0RbzEV+WMSBBqquVVoPkr1bdLlrcQqPLazdYZWj1WEX9XlZe0ug2Z648zq9VYIwgL1LSWgIfjTRP8CDmpBSFRp81QF5GhlsnaPtQ42k8HsN0OoX5fA6NRgO++tWvwv7+PjQaDbi8vIRPPvnkWhDt8vJyadKA/u9BrL88goumi+WlBYK8hk8KtIAZzb9oAEOjjQe9ysicFBRRWKnB1ypljNfhlAwJq66cx/L8ajUzGqzeHUo8QMyDAdJzHrArAm+fYDnSziyNjlgQ1kobc1RiBn1V4OV7jOrY2LACrPx4UcsQ5Xyh0R6D5GxwWcZX/vLvPKtoOQ9rvCv1LW8DmocEa9UxpU+zdawAo5f36IQU1vX8/Bzm8/nS3ZnozPMAnXUstARK32KxgGazCXfv3oVmswmtVgt6vd6SXtKCx1znx5wHzoOS3OQ8weUODWTwHaB8FblVDn+vjQFaR4tfaZ4035S+4fTSfipiu25ubsLu7i5cXFyEhXN5nsPOzg7keQ77+/swHA7D0Wke55imwfbmz+l7gBf8TccyryvXgxK47KD2pdVGqbY/HW8Sj1B5RAP9Wj9Lz3HsURqL+ihc51BbkgYAOWiZ9B5hbEs8xQaDbpY9r/VnjGZv3TS6q/LpvLKT9r0kFyUeWSwWcHl5CXn+YqLMCkRLcirm33jqIPGYJm+raNeY3NQQ08VaurJ2Hr2jPtXviNlgALYu9ZTD24DL3slkcm0Mp5SVZVmwJzxpJTmOfzcaDZhMJnB4eBh2rHps4lSg3dRsNuHLX/4ydDodePLkCQwGAzg5OVFtRCu/oijLj5pvVK/Xw+QVvZYBF/Dh/3y3Ic2T8o61w5/zpyXred0tubIqcD5cdXkvM6qWl1K+1M5A/wVP2cETwDR6kCYPXdqpJbcNeEcst8kAAC4vL5fu0sYT0+7fvw+DwQAuLy/DN1SuU9uHL/ym487yzbQ21uQC98WzLAt1Q/uQxoyx32NlajqE0y3VS6KRl2XpQU8+qe9S/HAJmn3GyyiDVLtgVUiNV3jSrUrGaeVp/VWEtzikvsfn2hjVvk0tKwarHuvkK6ksexthiQK0DimDWB5WUAHhMdjL0lOlor3tSvs2gRtE8/l8aeXr22+/DXt7ewBwdT/MRx99dC24MBwOr+00kIKjRRw0z2DXFK8krDWD3goKWPnG6NPy1wwpKw/puRUE0ZymlDbVDAJPfbR8ixoxvC2tAKFEWxHwesVkNJ1AoO+kAIWnbPzHJ2diMruogSDpI09/xYwHqQwpX4+BZZVR1kAuCo0/PLC+wXxj9zZpbVmET7R60GBxzMinYzVWP06TBMuh1PIsI2Pwb08eOAHisbWQLpxcBQDo9XohuIoBuTxf3vWCgTgpsB/rYwTuiD04OAgyhe6I84y1mBOk0SLt6rYcc4DlCUCaP7Yf3eFDv6F5FLEFNfkiBULo5JfloHt0L29n/p1Wl42NDdjc3ISDgwOYTCZLk7Gbm5uwsbEB29vbkGUvjlLldMXqTwNEsbaxxg2+12wTTcfTNq/avqeBLqnu0k5HHlji761TDLAc7642zW625DQvT6IBJ2No0F/aIU/ziPUtT5NiC2jveL28cl3yOVKhtYO1w2wwGADA9d3XNA3Ni9uxHv6WZIX0W7KR+fOi8Ppd1reWDMBnVY13mg8Gl6U6eMuL+Qb0Wdn25r7AeDwOOyc94ONWk6eaT8XlDgXe3TocDkPaGG3WGJBAbaNGowFf+tKX4ODgAGq1GhwfH8Ph4SEsFosw4aHVhT+3bGbLx43BUx9OG+1fALjm76FsbjQa4Yhmqx0pvXzhk1QHqb8s2VIERW3zIr7VquyFz3EduFgSF3U1m81Sspvb82X1QBmf0EJsTAG8OFkQ7YE8v1r8VqvV4M6dO5Bl2dJkLM03Zkut2i5GoL5EPxRPt6Hyyguvv0rTa++1unvjDjQfqZyUfKQ8ON9Z9VylnLqpuFiViLWhx+8o0waSDREbm1a7WzLJ8reK6OQYDUVx07q10slYC6kKKMZotGNjAqZoEEvLb52o0oH7rIKutAS4mizC3Xv02OIf/OAH0G63AeBq16ykeDFQB5CuFG8SRcdWKn9VyYs0mIl5F3XIvUgNDiGdGrR3KfWQVvVq39M0sWAyLaMIsI1xLEn54MpIHvzku1GsHS60vLLymvIzN2isfqV05/ny5JGHzz5rcprvXgSopo7I7zxfK28pYI/9SfvdGhO0bJpnCt34f9HgS9mFYOj4esc9fiPRzo/3o2MP03llJa4gp0fSUVnA86GnVWSZfyKH1xEDuXQyk9cF60rHttQ+XBZRXuI8ZrUFzxef0SNlOa96dAUdA7FV+hZNAHagkqbxjhFaF85vNI22+zfPc5hMJrC/vw9f/epXYTQaQa/XWypjsVjAs2fPYLFYwPPnz69NxKaA8j1/HtP1WGar1Qp8N5/Pw5GWmh4CgCX7tNlswubmZgj8jUajsMOA0mDxhtfGoPWbTqfQaDTgrbfegslkAo8fP14KjktyCtuLL8LCd2V0AuUdOonM5Qa9VoT303w+h/l8Dtvb29But8Nuq2fPnoVAIS2Pl63R5aW/SlAZU1Rf0LakdZ/P5y55gTIJJ0vwOf6v1bnIJINlW8SCN+v0xcr4SdgPm5ub4WhWTQaVpVEqW7KJy/J9EdqQF6fTKbTbbfiVX/mVcCT24eEhfPTRR+KipRiN2u9YHTX+smwEmkdRGxLjFaPRCIbDIWxuboarX549ewY//vGPYTKZmEcwe/rPEzTXxl3KOMO0OHlFv6N2Pl8so9WH20Ve34Dnw20OaTEc/wbp9NS7DIr4EZ+jWlBbAwBUG6ff71+LU+AxxpSntZM88BvP3e2cPvr9uoG+HR87h4eHcHx8DAAA9Xo9LCShwAUWuJBFih9J45zGXlP0o3TlDJ1Qt+qIV57UajVoNBqwsbERjqSO6RrMg9NyE/3lAaeriAzSjnf+HDpWLe/XoU889sTnKI7Ck7HezrcMX3we+1ZLn+qsFWEizoCftaD7ywSL32gQC40qgOXdJUdHR0tGQ8zhKNrX9Dtv8JbT4VWaKfStSlhb9dDSprZLCqo0YiV6Y+2YKuc8gS5v2R6ktA8a5HwXG3WwqcFODWLvJIaXVg/NnqCT1Zce49sLT/kUN6VXNBqL1N3DT9R55WVKf0vwylhOU2pAVeM/K+jFafPaSZIc4H/Tf7RsTgulRypLo136W1qcRIO8NMCGz6nzTlcfA7wIyuE7azLW0oPoSNdqtWv8JAX8UvqC0+DZzS3RS597xoaURwqdsbxjkPjW8y1PK/GTRC/y0Hw+h3a7DT/zMz8Dx8fHYbcUpsMJz9lsFv6nO4dS6koDYx5I/Y/BG8rXMVroeAG42nGBCxlGo5FLV5S1LXGs7ezswHA4FOnj+UpHVsf6l6b32tGaXJXSUFmD8qRer0On04Fut7s0ec939qYELqy0MVo9el7qX02mx+wJyTem7/gkQ6xPeKCa96lUH/59qtyRnltyQ9K1qTEFLz2xWIYFnIBDWxqD1auCJjd4+2CbeewcLe9UfYWy9969e9BsNqHf74fF0RpfVeX3pNiK2rsicQHOs7VaLSxkRbmFd6JzuUInMzwyP1V3VwEqX7QxS9Ol6ANLNqTAE1vxHsPugbe/UrDufv2sg8sbeu0Bvud6hS46BZAXTUn9Q32kWPqy8ZIUX8ArUxDD4TDUudFowO7ubnhHZQDattz3kXykmB0U0+mS35lie9C+3djYcB1XLLW1l+ayqEoOWL6Zlp7rwZR+8qTzoKrxctPwtPu66ub1K1N18rrof1l5AFF4MtbjoK4DWpDLG3hLLatKpK5s/xwyFosFDIfDpd9SmpOTEzUPNK6snVNV8lMZZVIkGFAVvMFACR66PWlSykV6yzg+VUOiBVflIa10wgKdd2++1so1/r+2O5zmx51VPKYmdhRUnr/YLSvdPULTSePBMwHiCZBw55/yBD1ilZdfhbzXAtxSuqrK9MJykPB4d6SNHuUjpfeW5zHeveMuFgyXyuffc1qswLJGr1YGvR8XQJ7UkL6X2iilvT3OrQYeyMMxQunHdwAQdsXj0cR08gOf37lzB958882Q95MnT+D09HRp0ZRWD/631Ba4wwQn8LjsxPagu+piTlCZQLAUFKVBeCk4Qf958teC5DyYGBsjWtCorLMv6RC6a7rf719ri/39ffit3/otODo6gg8++ACm0yk8f/4cer0ezGYz2NnZEcuS+MSSMZSXJL0YaxOOer0OOzs7S9di8AAPwIvxgwE/PKYSAAL/IuguUdqmUt9IfUzLQd7Psiy6U0CCVh7XvxxeO1VKw4/LlnbEYjq6GCTPc9jb24ONjQ34yU9+EhaK0Tw4bTFb3BtgqhraGLfGP8CLBXLY99QG8wbPOO9WFfzDPGI+BB2HXJ5Ksr0KmorYHZ500+kUNjY2oNPpwMbGBuzs7MDp6SmcnJxAvV4vvJOG276pdoI0lmi++HeZ9qXf8rttsV0o6vU6tFqtsDMJ80D7k491uqjLQwfnPSqbEeiLaXeZ0hMOimA2m8FoNDIXoS0WCxiNRtBut2FrawuGw+GSTS7RnYKYDPHykZaPRVee5yFeg23AdxlSGriOtiDRT32rdfpXqXEKgM8nWdcNyc7a3d0NE4wbGxvw1ltvQb1ehw8++CCMwel0Go7wB7B9ySKxaC/vrzMOiGVh7Afv1MbTVQCu6G42m9e+pfJKi2fl+fKJZLjIVrPHua9N88cy2u12oLMIuI7VbFXJhrzpsZwS3/AiZi9a362LV6soq0ge0jdavKFsWRxlvpd81XXB44t4sE7+WhVWfkxx2QYumjZFGErfxjo2tV5FlOlNC/ObQMxJ0L6J7a7J81w8RoenkZASnPHSm/pNWXo8+XkVbVGhJxmWMdq1cVyFcuMOuofvuJMXgxUIpvnwewN5Guvo7Fj5nE6Lbq2+9PlkMllaGarRoQVoPW1C89CMceu39k5yzDV+9LSFBzEeony4ToNVAwY88zy/FiwsQl/RgDynk/ZdFbRIzopWfqpOwrxpGdp4qBpF5BL9lo7HWFujvJrNZqGuNOjf7XZhZ2cH7t69C+PxGAaDQdhRiMefa/lbNhymx6OopOPFYjaXxkurCNpRHSPJLk8wvYic8NZDcyLp30XHMddjdIEClS21Wg263S5MJhM4ODgIV0pgkHY0GoUyqhpLsfaOyQR6T3Ge59fuQubfSe2q3clq6VT6TuMn/h1tt3q9rh7fq5Xpoa8IYr6aFgjjMpZemQDwImio2VxWG3rpTkHMR5XkEn9H20Eas8iDOHnF627xWYwHUtuoKH9IOpnr/pjtVgSpfoYXlHaUGdad1UXhtYGRJkob5yk+Nizf0JIP0nco7y4vL2GxWEC32w2LUmKy3SPbpO80ntIgyRpetiaXNNA60Enks7MzODo6CjLszp07UKvVwlH9nH9i5ZXR+do7bx4xeqjdRt/RPozZfCllW3LeY7/ztKvczW4hpU89acv4UFVCkjc3AW63ZVkGnU4HWq0WPHz4EJrNJpyenoZFc/REMNS5CMkei8kfzS9A2vgzTe7E+DvVx5XA/bzpdBre8VOQYvlYkOqi8Qm/k5rnLelbOnEb08XUd9P8R8m2j/FCUXh0vSS/PN97y9TqKJWn/b6J+IenD4r0kRbDSPmuCO2aPSS9KwvN5kmxPbU8vfDwd+z7m9Z7EgpNxq5DoBRJRw1c6QjEVXTAbexUxG1lOguroJcfswoA4c4HRNWOcQrKKEpP8Jamrap9i+aT6lDFHDRvmZYRW8QJLQMenMaVhJRH6apsvG9qsVgsrcbUAiwaqILW+N3KA52Cfr8f0vJAAU1Ly8P6WIsmvAEH71jlaTzBZ+nOWCnfKoxbz1hYp0ziQbk8z2F3dxdarRYcHh6Guw45ranyyuo/rV1Tx6UVXIzB2nXgoQN3W2N70rtRq+xPHGOeABHvL20SAODFHYwIPG6Kl40LMvCoYbwHNs+vdj7s7u7CP/gH/wD29vbg1VdfhW9+85vwd3/3d7C5uQntdlvUyxLd1OlDuuv1ejjtQpIXUoCW31OM9bCcfsmxkd5ptNOyAZbvjKWyEyeR8vzFaQJaW6A85f0m0e+FNJ6rsokoX1E+qtVqsLOzE/pxOp3C2dkZZFkGr776KnS7XQAA2NzchFarBR9//HGY9OeTTd660d+cFzSfQQvm1mo1uHPnDsxmMzg/P4+Wj3yMtI9Go7AwgfN4LOjmqTPlD8pTtVoN9vf3l0474PeDrxKW7AGwdwVL+WDdBoNB2E3WbDaDrqJHQPP/eV6rtv+sYChdqBALEPLxSuXIwcEBvP766zAej2EymcCzZ89gMBhAs9lc0heWrPDa3Vm2fM+blJ9Ujia7tHrfNl9Wooe2F22XVqsVTgNoNBrQbreX5HfRMZcSjJL6kn+DvFfkDveU/ul2u5BlGXzjG9+AN998E/71v/7XMJlM4P/9v/93bXck5ok7KVE/UlueTwBIR74jfZi3tQOETrRg/kgL+gYox2M+jZY/HqueZRn88R//MTSbTfjVX/1V2NnZgd/7vd+DTz/9FP70T/807KLVdnZxOenVG5Q/AZYnR4uOM/zWuusW6aUTOPRbTefyOvIFTDE7UpIplp6p1+vhH5VveESrpzytHS0d8DnWjyzLgq0wmUzg/Pwcer0e/NIv/RK88cYb8Gu/9mvQ7XYhz3M4PDyE9957L1ybgf3WarWg0WgEvka+shbmabwXi+lRG5GfXMHTSj5QqrzS8sXFklgf75hIjedjmTQfLh8mk4kax2s0GtBoNK5dDYBHwuOR8VTG4glP2hHUWnvje/zt9c+1vCRw3Wi1KdVhnJYqZM4q7LJV23q3yY5MBad9XXpDizFQXtR8Kk+eElbFB1Ib3gaeiE7Gak5HKlKYyJO/1fFa46YGjb3QgjtF86sKGh23gfFSkGLUat9z58vTBrEgXgoNqWVr33jKXlf/SkLZSicZnjGHUfrbG6SKvZeCE2V5zYM8z6HRaMDDhw/DDhUegH38+DH0ej1oNBpLwYcU3rOCNWXqwxWwR6bwb7T0Fp2xPi8SmLfSacFFjb4YuLMg6QvPmFqFDOdjtNPpQKPRgFartSQ7eVtTWqx+kPox1m8Sb/F2SWmHmMFIx7/kOEp1p9+hs4N/cwfIwytVGLA8PR1zWkBWkn24YwVXgmM6Hki2jgHHtO12G1qtFrRaLQCApZ2smmNryQx8hpNz6Dhb8pvzk+bEpox3yzHX+Jt/gxPbfLI+1d4oKtNXba9aPEt3Ms5mM+j1etBsNqHRaFyb5MEJf3oMdgqtXttA4jVeDtKCvIf95ykHgWMKg7uSncTL1ejV3kl5YPCKBp+8somXSWUcDQ7y8vBbbcxpdUkJ3qG8oX1TRk9qct4jMzQ7R9P5Gi976af9QfU22o+WrE3JX3pO28XSpxSW/RfzJ3geN+HTeuxXqnMXi0UI/pbtiyJ0UZqs51af4ftYHlq+FIvFAsbjMfR6PXj69CksFgt46623oNfrhcWe/AhymqfEJ5TPYzyh0aXZllJ6fvx8ar8ijaPRCKbTKTx79ixM9g0Gg6Wj5bWAPi8rRV6m+uNF4OG3mH7zPOf0W3nG7E6+IBcn+1N9jdgzza6rQmdZ+aToUy9NVdHvwSr5lNovVJdubm7Cq6++Cp1OB7Isg0ePHsHTp0+Xvrf8e0mWUFjvYzZ/Ub7U6JXS8rJoffliFYlG6W8JqbYsXUCEfiYuasOTmLR+4PWQypRsM0vGpNCfIt+q8sdifo2G1PJT7D3+jYef123v3VYUiWFY8PCv9E6zyWJlefJeNW4LL0UnY28LoRJSVpx4lFaKEIzlxY+WWKUDxmHV9Tb3pwSPIRND7NiMKgOPZXGbaNFQhIe8Ar1o/ho8q/XKItUgXiwWsL29DX/wB38Am5ubIQ8anP2v//W/wvvvvw/b29thwpauauRGlcf5w7xjtEn5S4sZtKOTNVBHN2WCqgrEArMpDkMVKMPrVctwqW0ePHgA9+7dg5OTk6Xd2LgogK9sz7IXx+/RCRatvBikXWraSlmKWBBGckDwb9xhxQNF0l2v9BSOLMvCnVc0OI2LKKydDRrdHkdJchitvDWe4+Mb37/xxhuwu7sLP/rRj0JwkOZFxzE6wBSTyQSePHkCzWYTWq0W3L17F9566y14+vQpnJ2dqTtAKR1W0A4DZkgLtrsWzKB9YPFPkfHPy8X24HzMj8ZaLBbQ6XSg0+nAeDxeOnKZ96+0c3GVjruWf5X5np+fB3pHoxE8evQI9vf34d69eyENHj8r8Snve2+5Eo/EgibU4cS7w5CnWq0W5Hke7n312gS4e5Ee841lSvIGn2NbYCAq1ud059N8PofDw8Owg4zylpQPtjkda5gOd4TgHcDSorHPClLGAuUVL19yOe3JnwInDXDRy+bmJmRZFoLGfBED/S7FhvPQhmnxH/IO3fmLaXlQONVPv60+LR1TtA1wx/9tAZWfmg4FSG9njafoQqyjoyP4oz/6I/jiF78I/+pf/Sv4y7/8S/jrv/5raLfbUK/Xw+Qkp4PqVlzMgju/ubzWeA2/5fEFKlux33CnFKUB7d0sy4LeTvUDcYcsAMD3vvc9yLIs8Eer1Qq6T4IWF/HES6x2KgNN3km6jD6X6I/5a5xvpeNcud7EZ5Zcpvdh4re7u7vXTlaqSsd9FnVlKqpsTw9o/y8Wi2DPURlC+anZbMIv/dIvhXH/V3/1V/Dtb397ic+kq1KkKygkecO/wXeeevA88bcmE6x8pLRabATlHS6wjeVb5YQitluz2Qzjstlswuuvvx5ORXn69Cm899574Tv0x3k/oQ7gchB5gPq5Wj1S4xFVoEiMRZLz3K/8XB693CgTe0v1p6vEunXAbUPld8bGFEBRBcGfWUamF2UcDs6smnHHHQAPo5dlyNvqnEqw+IH+XtVATckzJViyalqqghaclNJwlGkPOl40g9KTB8W6hLknGETpQCNwMpksOYJ0Vyym+eijj+DJkydwcXER8paO1OJjw1N3qb+8gcIyATBtHHsmFqR0Rcrn7SP9LQVrUoOUZcfCTQEdjv39fbh//z7s7+/D9vY25PnVkV1HR0fi8UaUN/BIL3R2UgMslBYpfy0vb9un9BEG4SSaPY6OxNveY5fwmVUOT6Plb9lQFBjcxKAm7oymAXzP8VaSvcNlPZYjTeBKdZX0g9S+ll3FearouI7xLw8OSn1LsVgsoNFowNbWVjjm7Pz8HObzufvuJQqPjOeTJR49mqozJLro8X64e5Hme3l5Cd/5zndga2sLtre34dmzZ9BsNmE+n8N4PFaD4vSf1taaDqX949U/NIiHu7im02lYhCJNbPIgDwbvpIlUr2/A6fbUA3ny5OQEZrOZOkFH8+MLp2j+sV1Dmu7W+EuThVZ6TlOv14ONjQ0YjUaFjuTzBKZSZIhEK5fhmJ91h7ZFJ/7O86sFAefn52GHOW0DKpe0+mgyl9IsyXg+lqgc5BNqXt9BCip7/UKvbWvRUYUvTttmPp/DcDi8tviiSL4SUm1lr+1Zxr6l31E7BYPoFxcX8OTJE/je974Hp6enS6dn1Go1aDQasLe3BwAAg8EAZrNZmKCkuxixTa2+jMkeTiuvM7dlUKZyPWS1FW9zTMd3eXltGf5c0/cWJHslRS9Z+Wp0UX1olVWEpz32Ck/Dd8TSo/vH4/G1ndcSyo4T6duiMsKTD+8bjf6y9t9tA6+DdKrOYDCAk5MT+P73vw97e3vw+uuvw9bWFty9exe+8pWvwL/8l/8SfvjDH8L3vvc9AEhroxTfTkvHZZEFiW9j/olHNwO8mJTVjvSN0eTR55R+Wg49op7aobjI9dVXXw2xtbOzMxgOh2GsS/Rpvzldlo6I1Zum8eiLKsB5hbc594W0PDB9kfKtb2mfAFyfIP4c1cBr72FaDkuHVIEU2yWm37Qx6yn3JlD5ZOw6oAkNblCsEh6nUHJaAeTA0E8zNKVctj+tgZ2a56oVQ0pw5zZhVQJO4gmPwVPUsCkTGJFAy8eVepPJRAwO5nke7oV977334C//8i+XaJKUDB0bUp29ddG+1cZiLC9qYKa0p5S+ivHA+SeWZ5H7PcogxThaJXBy4N69e/Abv/Eb4XmtVoNOpwMff/xxWD2MoAZ0ll0tLmg0GmHRAUcVPEHf0TSpAYxYEBeDMlmWLa2I177H8qiDi/9igTVt7KU4dB5o8oG24Ww2g263C9vb2+EeJQS9Y4d/j7CcKNzZ77lzKwW07fG314gv4gzz9LQPKC2xfLE9Wq0W3LlzByaTCUwmE7i4uID5fG7eHWtBsju1QCj+rQWIqwTyFy7Y4Lrw6OgI/uzP/iz8xh3DuHNU2h0KcL2tpf6lwZdYIJXTLPUvwFX/4c5euotG2smFdNJ8cRdtKqTAGuV5Hlih7zCg/PjxY8iyqx39Eq20DJ4XzbNer4fdJDwfbLcUp17zmbQ2kO79Oz4+hsViEcZPir+l0ayNl5RggQbtONIiPhAuEHj27BlsbW1Bp9O5diqDdqcjl4Wa/uL8YO3YxyO8qcz3tIvVtik7eW8SUh2m0ylcXFwE/rxJ3JTtiXyAd66en5/D+fk5vPfee9But6Hb7cJgMIDpdBp2eH/5y18GAIDHjx/DxcUFPH36NNib9I57D29ofgaXO5JOpGOBHpkv7YDzAstttVpRe5fTmBpL4vKby5gqguCa/vPQVaZsrR95GZrPW6/Xw6Iq5K3pdBoWUGTZi7tFUycmboOPVwa8vquQvzF9uirQsU7HEy6KfPz4MXS7Xfjd3/1d+MIXvhAWLP/mb/4m/Mf/+B/DZCyC2qdV39FJ4R37lo9Zhi7Mg9q+VfC5ZIPic1oXtD/RhsXJ2DzPYTqdQrfbDYt4AAB+8IMfwPn5OWxubi75A/y6Ds2WuSn+pDRQpNDCbbn/H3v/9iNZctyH43G67tXV15nZneHu7HJXK1K8mKQl0aApQ/rKgB/kBxuCYL/4n/Af4n/Aj4YBww+GHwwLgmXJpixLMCVZEmmullzu7IWzs3PtW1XX/fZ76F/kREVHREaec6q6Z3c+wGC6zsmTGZkZGbe8aXYdL2tT9ZUWZks26kvo8PKIx+6T5P06ddi6xtZVjtlUrH0ydtNGiCd4ZQUHPIY8DwZphhkXJpJz/aIwSh7QwC0NvGGgm6aT/qa/uRL2oKiREQsE0bR58s9DixUkkuiLlZnSRp5xpH1jpbXqyL9LyQefWe2d6kxpwVzJgEFDUQu6YCCx1WoFQ7LZbEKn0wlpptNpWHmIu6WovLEChzFFpAUaJNkmrRyl/YXfeFYcxoJs0k6cPEFPi185rVq/eiE5DpRuL/3r1gdS/hJ/jkajsBstdkdjrVaDarUaeJg7ovxowjy6j6bld7GmgvYN73tufEo8FOMV5GEaoEsNSFnf5TGmrfJonvQetJ2dHdjd3YUHDx7AcrmEs7OzaB0QOJbPzs7g6OgIHj58CL1eL7yjjnMeSOMN/7cCilJ/SjaH1sax9qR0SXyllQnwvF3q9boqAy2+oOXHAo8SOO1lQHPst7e3oVqtwuHhISyXS3j27BlMJhMYDoeX0kv9mWqDaRNBnAe5LcoXDnCZEAvkaOXwv8uwzzAfynvaGKMT/ZbdhLJM4y1cxCPV0WMvcrtD2hkqyWLpSEpaN20xRBF5qvkpsT6K2aNU7kqQ9EIMWlsjP8f8CC67NH9X4y+uA/G3ZGtwGafZfZbuLeqTSfkUzYtjnYF5LyydK9loFGXTjPyMO5uWy8uTiziR/9FHH0Gn04F33nkHHj16BI8ePQq7ZnFRk7Yz1uInCskP1fweTIML9rTFh3mBdeJj3jv2NFCdgHXj9j21NYr0uVZ/j+zkMs/S/7SNrPbQ8qJ8X6lUoNFoBL329ttvw8HBQZiY/clPfgKTyST44an3xGu0bQIevqDQeEJacIrp6GIITV9YtHDfbNOgY6LX6wUfuF6vw9/8zd/AkydPYHd3F27cuAFf+tKX4O7du/CP/tE/CnLr3XffhbOzM2g2myvjTLumRqprzG5KteW1fLCtrR2yluyT0uTRw5JfY/EHp5eOXRyrAAC7u7vwyiuvhPwePHgAT58+hclkEnRHlmWXFotp5a6LH2PjEv/nbZRCkza+rTGpydUUO9Sih4OW5TlV6osMzRdBaDYPf6/lSdPxceahx1Mm1y+abtbotfJPHa+etGX6AhIKTcbGDCkrbZ5BlvqNJxiQmkfMcbbK8XwrlXndBJJl/PJgg3SEmbQ7ULqTUiq3KDyDOw+veseCxyBNLcMLSYCnCDCuhD3CKbXtNGMvr/zwOgBFFb/0baVSgWazqb5HowMNd4CLXbR4Z9ByuYTz8/MwIQawuvPO69RKillrF834wv9jbUS/5w5BzABIGReePsX/efncCLXuy7MMBE6H93sJKbq0TFDnhmI8HofJsxifYQCDtrlV79h4j5VJJ2MtXWTlqcEzFmL0owNOHbxYm/D33Pnizz0GspQ+Vm96VFun04HDw0PY3d2F6XQKvV7PdFhpGbgDr9vtQrvdhidPnsD5+Xl4RxeV5IXXUfDkw2HJxhTaUuqIu8jwaF489pYGwiQaNdrx7xQapONEy5RB2Cbb29vQbrfhrbfegsViAdPpFM7Pz1cmYzXZytvEskWl77mNKuk6yQbn3wHApWCs9L0VrJL0MUcRp1KzE/hOLk3uaLYRvqOBRpQdefkFdZE0acXb07IJccLPu8vLI0PzfJvSb9wmoXl421OytyTejh2FzGUX5X3Nf40FcqT6SO8sWawdl11Uj1jwtL9XR6BdEJNb64AmdzgkO2SdNGXZ85NHpLZGO+L+/fvwyiuvwG/+5m8GvwkXL00mk2CzUNlF6efP8Z0mfyWdQd8ByHEMrUzepjG7BeuDaSwfRAMtQ5ID2I5WPdftf2iQ6ivxIrdvYz5HrB23trag0WjAaDSC6XQKd+/ehXfeeQe2t7eh3+/DT3/603BkMU6YUzq0fPNiXe1vtadUPpdZ+DetP/9e0wkxurx2SUq+sTJ5HnjCRL/fD5N3P/nJT+D4+Bhef/11mEwmcOfOHbh9+zZ897vfBYALefDxxx/D8fFxOBoXAFbuH46Vaz3X2tgbg9DK0eSD17bRdFmKbyal8T6jdt/e3l7YvX779m145513gp3653/+5wAA4QQSjE3TBcieutLnRevogTW2UnQDl5VS2hSbRPNLpfw99oTEU5oN+0WEpo8tHtD8Py1/DTGb0dIlMb/Wqzfz+MFl2tgeO7+IzbS2nbHrMCI8QmQT8DC3dr+e9OxFEzBWW1MjBMB37KenLzfVRuss56ocGw4u/Mqqc4qBHAsEWWmkPLzGkKeueRxf7VuOarUKX/va12B/fx+ePn0K8/kcDg4OQhloGI7HY5jNZiHQgKv4Usriq7ox8CEFGrQdrV7E+k3Kl9/9x6G1u7c/LCeFG3gpRrWnXEmmpfLeuuUF3cmKGI1GcHx8HO7k+vjjj+H09BRGo1EIgPF6YGAfeZbfg2i1fQzL5TLcrYyBTPzfug8wjxEWM/ql4BbekyvxENJqQeMLLaiIf2vGtpSHVQ4F9u94PIbxeAyDwQAmkwlsb2/DdDqFJ0+ehHScJikvAAjf/cVf/AVMJpPAIxJijgMfzzRARB03+k5rF40nY85Ayjj23qGEvPz06VPo9/tR21EKUFH6Y/ZpzHnmgbeysFw+PxJsZ2cHbt26Bf/gH/wDmM1m8OzZM1gsFnB6ehpWrQNAmJCW6NfGq6V/pLrjO+v0By0/Pha0smPjXKLHCmogvZQGL2j+1FbXAiYazy6Xy3CENK1jzOHX6iwFimiemk6l6fIckUnTefqI027l6dU/y+Xzuyfz3HNLgX0yGAygUqnAZDIJ40nrW6398Tm/F5PLCEkWUeDuR2uCnMpuBLU3PPfpXhcfC0Ftbm28luWDSeOK6wLLZ4qN3U1gMpkEmV+pVIK+WC4vjnW/f/8+tFot+L3f+z24d+8evP/+++FUlvF4fGk3Nn4LcPkI49iYjwURY8AxTe81BNAnZ+iiFgAIu349MRSuhySdGdNlnwdofarZEPQ9XqFAdSJeq/Hmm2/C1tYWfP/734eHDx/Ce++9B8vlMqmPvLRyujYl07SyuGxHvgbQbUnLxqbg48zymzfVFpYc7Ha78L/+1/+C119/HXq9Hjx8+BCOjo4AAMICSim/2D3QFKl3r2p1QHA9jf9Lf1vg+RQ50rwsnTcYDGA8HkOr1YLhcAjvvfcetFot2NvbC5saEHfu3IGvfOUrAHDhVzx8+HBF5tIYgxcaT143OwTBfSav/Vo0FhcDyll+giYvax1+6YuCFFuOPo/J4RgPxKD5h2WA1rMsmVEG1jHu135McUrHe/PTgt08XRlClYMzhlSO9MwKrr6I0OinjgcaIR4FEHMSX3RYPEsVHg8IrqvuknGWEriKOTeesjk4b9AAkdRWUp6x9oopp5hiSQ3McYO3UqnAq6++Cru7uzAYDKDVaoX3dNU8TsRaxon2THrPj0zlAT/tWBBPe/J0KTxLx4XGV97219LEgn88jYeXLMPAa7iWrRtTId1zhTvUsH4nJyfw9OnTkF4D5VlpHNO/Y7KGO3yoUzDoMZ1Ow99S0I3rEq+jyWn1gAf+eD01ftacZYmmssDp5O2FdIzHY5hOpzAajcKRbLgYhAbjPZjP53B+fg6np6fhW5zAthCTdVL7Ib/QNJIDE+tr673Ga9pY1uwd+hyd0H6/D6enp9BqtUIA36LJE9yy0lnPrGNg8wLtm+XyIojZbrfhtddeC7uw+/1+KLter4cj+q3yrbFP7Qft27x6i9aJf6sFNDldVj7cLovlaUEqz2PvaTYefY5BFC4XUmwV3k/L5epxpTE6efuk2gs8XUpfWnlptqqWll7TwGlI4U0MCo9GIwC4mNShkzVcB2nyQeMRzZex5GaWZSvBTq1N+EkSlJaY7a/9tuDhcc+3VltZKOrr0Tah7RXzIzUdoekrKa2WF3+eUi+06/AYdcoP8/kcjo6O4LXXXoNvfOMb0O124b333gtXwaDtqdVbexfj29R+4X2CvE/rqNUdQe/Q48fkW0j1S2I+TizNplAGDZY8Xi4v76xGn2Y6ncL+/j60Wi146623oFKpwPvvvx98E8n288p86fdVwqKJymFeR02exMaW9ZuXa+Ufq48nLaVV0o3L5RKGwyF8+OGHMBwOYXd3F7rdLpydnQV7ne4Upm1k2XFe+r1pvH5NEXuX65i8eRWhBeD5NV6NRgOm0yk8ffoU2u02VKtVGA6HMJ1Ogy7Z39+H27dvh3588OBBmIzF05ryyHuJfou3yx7nee0dyzeleXsWweWlR6KFjiOaH+pRj+/yRYDH5tTSpPqO3vSWrE4pj+ZH/887dlJ93atAocnYVMFVtMJXOQCzLBOD10VwHRigLOBuBh5opTwyn8+DwyQB25Z+n3fVYQxFhUae8iyFbDnBqXTFxiXyMuZNnRDrm5jT7aE31Zm0FG9epb8p4MQRTm7g3SMU5+fn8P7778OzZ8/g008/DfeN9Hq9lWMqJfrLkL1lyzRv2dTgajabKytttSN9LLkhOWf0mRS0kuhLaYs87cads6I0FAG2Mx7bA3DBjw8ePFgJcAEANBqNECDiTthsNgt362C/arIVg800UKUB0+IxyBj4ODk5WQnYad9aoEEF+kzrHw58R+uC453mz78pQ/5wvuELK2J0cxpo8J8GDT/66CN48uTJJb3tCdjSdHj0Lj/WzaqXlSfPn9LtNbppn3nkikaz1zGUxjc9BeHk5AQmk0koM2bzaPKC86X2ngNtAl6udDRoXrmHRwBubW3B/fv34fT0FP7ZP/tnsLOzA9/61rfg3r178OGHHwanG3lFOs1Byl/qK6SXB31ofjwIJ6XX6p3ipGp9K41JzfmM0cD7WhtnqbtpOegpCTzwqCEWsEX+wzaSdrh5bFsEjgF6DKpHz3rldNk6G/NrNpuwXC5hNBrlslXwdCJvv2j3uGpjStPtUjmLxSLYEACrk0w8AEfL5X/T/IsGZspECg2cD5fLJTSbTajVajAajQrviPaMfc1OzrIsLKzw6vcyQO1B5A0qJ5G2RqMB8/kcfvKTn8BsNoNvfvObIY/pdBoW6FE5XeTeOa4fvLKNjxeU9Zy2GKgc1Oij5abYgDyfq/A91g3ND+TgMgZtVLxi6KOPPoKTkxP49V//dTg4OIDvf//78Eu/9EsAAPDpp5/CT37yE6jVatBqtVZ4MA+daI9eR1BdItkOKYv3JJ0m2Vxafl6bO296pBG/w4WoJycnAABh0u/DDz8Md1V/9atfhdu3b4fy+v0+VCoV6HQ6UK1Wod1uh3zx9CiEdUWbFv+U+sAj5zRb02Nn5uFNru+1k0tSZRAfN3h0eKPRCM8fPHgAZ2dn8M4778Bbb70Fv/IrvwJf/vKX4ejoCI6OjuC9995bsU2Q3phfyOnwtN11BNYR6yzpSy2OURZwoTfm+/rrr0O9Xoef/vSnK1fWIC0om/kcwUv4cZ3sZ44XZeysA67JWMshjMFSrCkGo/ebshhMKkcLnkvPUoPEmxgYeYySWH4IDHrwyR1vcIj/Tf9flzKI9WfZsMrzBuPKpkMrX/qG05Ri1Fn5p9QxFmSwsO4+1oLi9Fiq5XIZggc4QdHv9+Hk5AQePXoUAiLcGCx77Eo0YznWc/6d5ehq0Ay8PDI1FjiNOeLr5AlP0FhLswmjBOtPHUO8G7Rer0O1Wg0LNVC2S3IL7zTW2pM62zHH2gqQ82CmV8dKvGzRKn3Hn0sy0FM/jcbUAAYNFnjHkpaXRv9gMAi8QSfYpcA5z5uXj/yRZxJI0zveSRNvuhQaKGIy0JJhGATHIxa1caLlh785r0o0eYMc65KLOIar1SqcnZ0BAITFC3t7e9DpdFbSa2POyt9Dg7dutA2tQLpnzMf0t8QjKfXN01+WrLXaibaHZKOUZYul+pll2PNl0u8th7ZblmWl3KfN/SgrnRYQ1fg4BcvlcmWCgk62Udsjj4z22n78G2/eKflq31v+PrZv0YURKeVqoDJf0x/4LrWvPDEbzq9c1+Ou6l6vB71eD87Pz2E6nQb9qdl8Un5WbCEGy7aUbDKuS3m7Su0s2ZYpvO4d+7E6rdM3SsU6Yj4IyhNUXlUqFRgMBgAAcHR0BLu7u9DpdODg4ABu374NvV4P5vN52ISAvnsM62zvmL9cRjmazW+VwfnXK1c020rzGz1jxKMTOa1ZloXF8ZPJBEajEfR6vZCm1+vB7u5u4B2+GJIveEL6i/S9Zb95/T9LFnr6NUaTZjdrPjT+9tryCLroZT6fw2g0gvF4DKenp3BwcAC3bt2Cra0taDab0G63YTwew+7uLiyXyzDGsVy++FOLH/BnUlqtTaRvU9rAw8uePDSfXOsb7ZlGi4df8B8u1m02m9BsNlfyoBs0LNu0LD2xzjzLRgqNmq3Pn/H8tXy8ZVjpaNpU2RyDN9888MpYL0o9pvg6M23MMCmLdskYkxTSVRi66+wffi+KtrKIBvTpqikODEpIdzCkwjPAJZQR/NO+SREqeZxGWhaCt7fkxHohBeFouR7B7g2e8fHjaQ++KGCT421rayvcJYOrZRHz+Rw+/vhjODg4gK9//ethVRii2+1Ct9uFLMtW3lnGYV4aMV9ahgSpbM0A0IIC2GeSfMRn9O65VOQd4/R9EefIci5eFGRZBoPBIBxviM/o8T3SHY78OFHa37EgmQe4oIHvqMkbSOPfag6jBJ6O74wFeC57ygqyWG3IgxNauR7ZgTuc6XeLxQK63e5K+1t1wvLpBD/dHVVUduUZp7R/uCMn6Qgt0IP/e44NTJEFw+EwjDl63JmnraQgFg0o8vbi9Fn5oqNOeTsPaHviCSq4CxLvbaIOON53yccr0sB3QZelF/m4ovlqK+b52NfqT9PSRSUxp1azYSy+84wN2r88HZ5uw4/9lGTMS/hgHTmKwSbsj+3t7bBILyXwhXnhe08f4ZHgfLdOCrAcrh/wH+qD5XIJrVYrTDbTkyToKRdaoNMqO5YuT31S/DML3C7Ab2j+uGATba0y4a2HtLtS0oNl2rcoD6nO42Xy9nj06BH80R/9EXS7XWg0GjAcDoN9IsUTcCKXnsqB6VAWSydApNSBjgGutyT5iqfOSGOO08DtO5qGxlLob06f9k6yha87ygqQ03ahdhTuvkKMx2P4d//u38Hh4SH83u/9HjSbTXjttdfg+PgYACCc/FJmrOq6+pDUjqNy3XNXu8f3k+xUSR+kjs/Uca3pzyzLoNlshtOCED/72c/g3r17sFgswulnkm0F8Nyf5bKe2wbWIh3+LmbrYZ4aqM9uwZPGQgrdtExP+uXy4jSR4XAIT548Cc9HoxE8evQIAC749u7du7C9vQ2/8zu/A48ePYI//MM/hNlsBqPRCFqtFjSbTRgOhy6bXvqbt3Oq78W/yWvjeHm96IkcKaDxJICL+kwmk7D7/P79+1Cr1eArX/lKGEeDwQAePnwY6t7r9WAwGIincK6D3usMjw9J09LnRf36q0JRGcRxFbpW6jdxMlYLViE8ys0T5Offx4QaTZ/HIJOEYiwPzXnC762gsJS3t102gTxt6KWZtwtdNUjbVHK86PM8wrAsAWopwZjC5e9ivJxCSywfq1+LtI0ngJv6DdIUcwitwCsPSHtkEk2nfVvG+JTqNRgMoFKpwLNnz8IChtPTUxiNRmHy1lqokDdIJDn01n0Q3OFP5SmJTnTi+KIMrRyPk0F/e2WaxAtWG8TyTNF30riPBUzWIdMQtC/4sUhoJFNaJPC6WO3GZbtUP0mv0omQlPbIM45Tv9F4V+IL6VnMVtBAA3XS90X4Blejpi7akewiLqPLgqaHraAkpQefp7SVtx4xu5C+p8eyajR7YNmjvMwUmV+k7zTdvVxeTEINh0N4+PAhHB0dhXeak2i1R1F+57Yo1Zcep9fjv/C8vXSl6EF8xvW95sPQcvCZNGlITz/AI+HwXi7t7mxPnZbL5coCNvovVn+eD32eqiOksWeVLcnuGH9KZXH66ZUNvByP/sX+k9og7zjmNOA1ARKQT6QFJZS2lHK1d962j+Wbx2aUvkvRc8vlEqrVKjQaDdjb2ws7erxHJPLy88pnj2yReKksXS75rzxvtEG2trZgOp3Cs2fPViYzedxA0l8eP9PzjoL2tzbW6FgoIpMkmyUv3VaZ2rOyfJBUFBnnecuhNux8Pofj42MYj8dw7969cIIHHqOJ3+CpH3kXuVv+UFGk5untc86P3vFVFmLtHJOPHruOfotjmB6pjvqOTipJMhyvD8CFT96FjpoMiNHphRWP4OnyyJyyfT6eL7Yh9R3oRPlwOAxjdWtrC/r9fnQRDC7gieniFNtQA5c5nrRS3pbvayHPmE3Ro55xh/2HC0B3d3fD0d7VahWePn0a8qnVamGjSt6Y0IsKafznGZNFYzGa/cxtlBidqeWUAc2eWJeckiD1z6XJWOrAWytzvKspigZwrPeaARyjxwqSSJBW86Q4TPS764TUoBBCE67UqKBpUDlKA5gOXM+q4DIEbh4hkaJUaZ6e8+21vNc1dvKA3xMpIYXeokEiLkwtQ0Z7l2qIa3lL/CTde4oTkWdnZ3B2dga/+MUvLtG4tbWlBrk8xrJFJ+ZP06Ecx0lhuoNDarfUgALVE7VaDdrtNtTr9ZW7c3u93qVjSJDmGLicQSdHa0P+jWY4WOBpy1pdlqqXioC2AQbBMYiAQUKpDVPGqTctl5tcl+BzPMq1qB71fm8Z+dozKZiD72LOFm0vr2zitNKyPflQYIBhPp/DfD6Hfr8PAM+DCFL5+D8/frLsFZcxh4MGRb3gx2diPhL9ZQQDJZ1H78mMpaf0WZNfmu1uBcsw6KjRTQMdGixew/wlek9PT+E//+f/HO7Z0qDdb87HlkdH8XbAAAzA6l1KNH3s/j7+WxqjHt6h+VkLlaSyOb18lz4Hva8R0+AkB12Ig5Ol0+kURqMR7O/vw6uvvgqffvopDAYDqNfrl8rx6u/FYgHVahV2d3fDs263C+fn52H1u5QvHT90skPaoYmwgkPSuOK2CJezNA3PT8rfAqdfusMZ87J8VdxxynV4ql1F60zjAnSXId2ljmmq1eqlRV34Hu/BbbfbIT/kAYtPLT5fVxCuSHDTI38WiwVsb2/DjRs34ObNm5BlGfzoRz8KweLUcq2FlUXbiNs2ZYHylTU2kW9wB+KDBw/Ce+pjWz6SVobk46TWwSobbVce70gdh/ib5pFySocETgcf6zyfMseaN791xHw8WC6fnwQ0Ho+h1+vBf/yP/xG2t7fhzTffDHeIIprNJjQaDTg/Pxf9fw9d6xhjUjll5cVjW0XojsU3pPRlyLU8wCNva7VaOFmC7q7HyT+kEU+82N3dhZOTk5UjjtGvpbB0Ird1eX08dgbmQ/PUyvK0BcBl34CW4/EfNDpjoL4L0qtdm7RYLOD+/fsh77OzM5GmRqMB9Xpdnbi1ximtL5WnWvqrhmXH0ud5aedxDVy8ifF+yaa8c+cOHBwcAMDFSRj37t0L+W1vb0O73Ybj4+NwolSWZZdOGbyOba0hJsu08aml5enX3RYxHrpOuK40XpqM1YwDgMvK0upgr0JITet5Tt9JznNZBkMqTan5boJpyjBm6H2C1LnmzjwPosScbwwKl0EzF3aSYyYF9bx5SzRKAR3N+fHkmRfU2aVlegJEGk1asMrzLUILNErOsrXSX8s/ZaxafOiRM/wbWjbd6cAdGeRz7qin1EOix+IrPja14E3MibdolL7HgG673YZWqwXdbjfsrOHjPA//4y4DlBspckIyoDnKkscp7bopoEzmzgNC2s2SMubzGIWoW6hctoKyvCwrDU+n5ZsqIyT5roHKPU2OWPRa38RosMY35QVebh4U+Z7LRE/bWrwQ4w2PzvDysNZ+0nOqoyX9x2mgaaX6cgeYv5fAjzaOpefwpMWjsJGuDz74AAAgHDXJ8/HyYB56PflReUgdXN62Hv7hsjWFlyS6pDyk8YKTstL3+Izy0s2bN6HZbIbdZ9I3eDQjPyZMmxzw9iMuCOETqin6Q7LpUZd47/TD7+bzObRaLajX6+GeSst3sWS2RBNNg33Fj4rHNFmWrQQdad/nvXcUZT1dFEJlCv2/Wq3C9vZ2qH+/34fJZLKiozm9ND+L3+nYouXyNtO+5YuBPPX26PwY3angehvlYb1eDzs+cHddkTIoPHaOlY9mf5VtD0s+My2LvudHveexLyV5bvlz0njVxrdWL85PnjaUbMoyeVLLyyPLipa7CXhtBwqUxQg8Sns6nYZrWXCM4gIl66hofK7RksK/Hr0TK8+LmA1bRvlSGXiVBV2Ugsf7arrXooXmX8Sv4TJwPp+H08yk0yJoHAInbKvVKjSbTTHuodWD8lZMnnt0m+YnemSppaOtOljfSt+l9o9kfwBcHFN8dHQkLhYYDoeX2oBP7EqIyd8Um7UMOc5tSi2NVLbmK9JvYvXR/Gw+1jT7AWN2dHEf8ny73Ya7d++GI6gxn263eyn/PHbAdUAeHUWRoqs9dq+VLkZHTMfFvvcgr017nZF8Z6w2mPI0YoxhNmWsWUCjrCyjhv5OyfO6tAfAqiKqVCrQarXCcwQ9llhy4qQdENzIwaAdzzsvzdIzrlTzrO4rInyke3ryIGY48Pt88+5csgQ5dzjz5K19FzOgpb7UvsvjLKWCBslwZxkPVLZarUu7xmO8lyozpGfe/i97zKGs2Nvbg/39fTg6OoKjo6OQFnfXpOgSmrbZbMLu7i50u92wq48jZkBzw7wsWHy7DsckBTzAJb33OCg0fUrQTqofHTcA5e0+tmjKE3yK8ZOHDm/fxvggjw2mvee8kOpQlhkstEAnECW+S7E3pb/xt5cXioxTrsO00yi0HaIaTTx/aSU76gR69BpvvzL6czwehyPEFosF/OAHPwAAWDlWzII2RqUgktX3qXXx2CaxclGG0iPukGfLCCJIARHU91gGrkbH++2w3bIsC/dWfuUrX4HXXnsN/viP/xgGg0FYcU7HFx5TzO/v9dImPVsul+EOU6/8oW2O+fEdgpgv5unZ6ZBlWdhh+sorr8DNmzfho48+guFwGOwUDNDTPrT0ntZGOB4x8Iy2i8TrGKDGeuKYrdVqsFzKJ7JIQFro5DfWWdul02g04NVXX4VWqwXtdhs++OADePToUdiBi7vIaN7oB0rj1KLLCvhJspqe6lDGGFpHsIfzSJZlMBwOA893Oh1oNpswmUxCgL9sHZpHzlB9ZKXJY+dptHB5jvcMUxlBd9NYdFO5pfmo0k4qKk802R5rT+zvvHYB58OYn2jRo9GhjavrEm+6ClC5DvD8uhaJ38bjMYzH47CQIuWKhZQ+0fK4Cki+ch6ZogF3neJd6gAQJsJRD6aUqbVnKp9TXxjg+WIaakdRuYHvAC54aDKZQLVahZ2dHeh2u2b8T5JHWptLvo63bWI2i+ZTxWinf+OYwDikZ7FRURmENl+324Vut6ve0U0xm82CL8JtZwne+A2mXSeK+p55ZU2efuL8iosapHz29vbgu9/9LhwdHYUTMZbLJTx9+nRlh7lURooe/KIhRV4XjTsV9b83gU3FrDSIO2O5UqHvJMGSJwiYx3lPyZ/Dcu5oGs2Bloz5mPCyyiwj+LJJaHVdLpeiEE0xBGiAUILkIKfSCwBigBHzxX8eQR0Lynnp8gYcPLSsI3jgpUkqm8sJK42VliL16EUtL6utyjKckI8kx4xfPC+V55EdPJ3HOcEJLtzNAADhriou9/M4hPRbpKdSqcD29jY0Go2VtI1GA7a3t0MZPECs5U1/Y1tWq1XxmBKvkyIFU7V65UVe+UV3NVHHJk++mHfKN2Uarp5+RSD/YECXBkgs54i+swKIHuOrTLmq5eXhOylQ5u1HK/9YHpK+ssYCDxCUjZj+tHQB3e1r9aXW5rE09B1t1xQe49ACITE6rDIlvUttMMnGzbvzTisbQY9GR1o8PKnpCMxDQ2wsxGC1M9czfLxzucR3lXpo5OktvrR0HQXqTy1QhRO4tI/G4zGcnJyEnbNUNkt1suqD45IeQ093mWj8QOsoyRzpHW8Tq58o79MrVNB20torRb/SdNgOsQlVK+/ZbAadTgcODg7g9PR05ahnPrknyUd+ByetC/Ir3nHabreh2Wxe2nXtOXadLkygfUT1u1cn0n6iwfsUxGwKms6CZMfT9qO8WKlUYDKZhKMTW61W+C1d25EXXF7mtXnKtH+8kPgV5UNKjIHnZaWlfhD6cFIeXNZoKNJ/XlnC9Sd9hs/XRePnFZodO51O4dGjR+GITL64Km9ZMb87L3h+efKX5LPGa9J3see87Xg5kr61bCBLd1g60Eu/lo7SqNnTSAM/AYSmlWwViV7JL6RpU+W35F9b+lb63iqr7EXVMVDbAk9wlGwE1Meoo2m8IcYjRfUaz4vb0VIazR5OpU/zFyQ/U3pH+1uKC1iyZzabhTFAfYzhcAg//vGPYXd3F+7cuRP4rN/vX1rYR+nA/GgcUFpc+EXQdV6bx2NnW88s/9Lyf8tEmfnm1eFl0LAyGYuDnAbqEZKxR5/nJU4KbpTdaRK9WhlcGfJ3MUHJyysLKW2yTsbnwNXjqfTx+9rKNkAlUONHUsaxo5MleOjm7zZtkHAaUozRlLy9Tn5qUID+LxmGkqL3ODfSt7xORaAFpOhdbBz8zlZKGzecvGVS4FFozWZz5eilfr8PWfZ8B3VqQEYykDB9pVKBvb29S2Or2WyGydjFYgEnJyewXD5fBW+VA3DRVo1GIxxPLClSKRBFDV5PoE2rG81Pg4ePON9K72lgSCvDO5a9vOMJ4ORx+DRIfUV35Hp3c0tOML6LfesJHnh402sXWd/w9rdknVZXj9NGeVjjwVhQQKLRY2ul2g0SjZ7xJ8kACVp7UXmhBVB4Odr98JTPpDs7NbokftDqS7/TeIZ/QydG8BlOlqKDm2LXWzoV6aK7/JAGb6BBsgckSGNOGuux+/di/KzlK7U/lkfrEPue/y0hryNZrVbDYijO72gT4AkeW1tbMBqN4Pj4GCaTyUoAi9Pi0TX4/Wg0Wll4g6eJcL0A8LztsFxrcps/42OC2gNSG/L7rfhkLKVDa1+p3vQdrWPKKRQUuFOw0+nAL/3SL8HPf/5zOD09hVqttnIyizQuuXzhC8DovZw4GYs7OfH4RfzWmqTGPOlkLA18SsE2bdxxO047yjEPitr/li6nMn8ymcBwOIRPPvkEGo1G2F3M7+T1QpPxlm2s0Rmrj/U7FVIfW7ZYyrUmlk7UQPmJy2VJHlm6Lg8/er/nsovKRSk/3r7eOpSFvGOzjDGdmr9mQ08mE3j48GH4jfoB8ymDhpgfkmK/avCMNalstAEALttMFv2pZdBxJk1cWnWI2dLrwHK5FK/awHeSX6Tt8MV31gIqS45p7eLxyaz3sTJivplkg1j10Ox+aaxI45WWh4vSpNMz6CQe2lEenWf1M/8mZsdrulsqm8Oj2z3jj143qNGHf3vKlL7FtLPZbGUzRbVahcFgAMPhEP7mb/4Gtre34Vd/9VehXq8DwPPTNiUfUbKZsuz5CUB5cBU6p8h3Kf1BEbOHYnmkxgQ0GxPT0P+9eaai7L4t0n4I1zHFkhLB32UbbHkaSGNMqWNTGGcT8DgGefLcBDRlZP2WwA2OIsfoWqBCXAru4NFQ6yiPBrjob4Tk3JXFFzxQ5M3Xa+xJeVpOXh5QIR4zVLjTLEGTXXlkRQqWy6V6D5vXgYjVid+3BnBhoGBQLssy2Nvbg1qtBo8ePQp3VsVgKVGLluVyCefn57CzswM3b968VNZgMAgBPS9over1Ouzs7EC/34dutxvudSsylsvi37LGMToINEgEsB4dTBEzMuiYLEpHjK9T+gTbKfUY+NT+ssYEzYvfJ8SdNEmm8QAgRYzG1PbS8qT6Uru3Ow99XpowHZeTkmPrMbCRfjoB4KFHChLF0vFnvO2svDQdx/PV8uBlegNhNAgEAOEKCrwywjs5YNkyEs3azltN32tt5q0vb8+y9b7FI1JAgepLb3CKB594n0s8U+R6ChwzW1tbMJ1OodfrXbqbnfuIKcArG+h9fNbuC3wvyU/6DGmhE/60LgDPFx3wNs2yLByFhnabdW2Ndvx0CrRAF68PpuNjtlqtQrvdhm984xvw1a9+FT744AM4Pj4Wy8E25ztBpPIHgwE8fPgwHBdpHRFHy7DGqnYEbCw/bXxYAVcsl+bFnyHw9Bi8y8yDmE8kvcOjFLWTcoranhotHn3K8+JpyvSPNHtH0plSvbx6lJaH7yWe4ItApIkRSmPsBJayocl6Lhs8+XhtJss+pDRZ+edti3W0YUr+9MqtLHt+pY4lQ/Igbz5F/UyrH/PknfcbxHg8htlsBs1mc6WN+ckZ0l3h6+aVvMAFbEgrXXjGeQnrGNN3qcc1e+BtP4/Ph0d34zs8gWUwGETL0nwgD6w2azQa4rv5fG4uivX6CEV1dxn8m5KHZFduAqg36YQptYPoaTQUyO937tyBvb09uH///sqVhph3GfStE2XyR5njf53IG/Mpml9Z360T7jtjLUVnCU1PpWMGcx5YCipF2RQxtrzK5DoyBsKqt+YUxb612nS59N975KGRGjroVEn0c6fbUsgpQQP8Bo0rjWbJsE81aK0AnrRrQaI5BVo/SgGYlHHE5Qf/JznQnsCH9czjSJYFaYJIKidF6WryDg0enIzFMdBut8OdLLhCDR0EDRqdEmjgc7m82PXS6XSg0+lcSjuZTMKumzw8iBOy/X5/5egoqU0kPrT4mCKFd72Gu5Uv1z+z2Uw8YrpM5Gl/LUBVFmiQmDsMmqz08KrHPoj1uaXTacDZSpMa5ErVCx7Zq9FAv83bnnmh6RGJFq3vtTHtCeCk8AFN77GBYmVZ8oPaWjEezjOe6S6EZrMJABeBpOVy6b7LM8XuTw1qSumxLbRV01IeMZ4uQw5o+XDZ7hnjFi9LeWNf0vyLLFCi/UXveJJOm8mjy5E2uuMU/4/xusdWorskuI3JZQH9ezQahaNjY7IX2yOml6ktq73nNEmLYaS/cafBzZs3odPpwJMnT+Dk5ORSvbCN+LF9WltOJhMYj8dQqVSgWq1eCoBJ39C6SO/zBlw1+YYBejp5gv+n8CO2Yeq9rZo9hH/z39ppTevwO7y+fN78itBM+drabee1yS3aLLlKaeB+Z0o+PG0qLHskVg7VbUVsMk3OpNj46+DjTUOyx1DOoKyXdmp76x4bl2XZ1ZaNFbO/YvpV4kErv1gZuDibT5zRvrCO+N0UUsrCWIt22od0ZD+1E6Rxz2Wj12b1tJVln2r58XRoK2B+9XodptMpDAaDFRkl2bCcllQdTscOzY/unETgGPaWoaUrwns0z9j4SdE1KX5/HrtdyjOWB60f90lo/9B74fkd8Ts7O9BqteDhw4eXbNGyYxEvKrw2X2qsI6VsjRck3WbZemXSZiGP7ioDK5Ox0vHEMbzoTF+W0VQk7YuK2LFuHFrQrWzjiRsPtVpNDNJtgteRFo9Bk7cMCykCzXJ0aWDPyiNWtte5sHYxS/SlBnauk5Oo8UZK4EF6R4+7wyN99/f3w11fdPcJHpE2Go3Can2kIcUhlOTpYrGA8XgMw+FwZTfFYrFIPt4J82+324FH5vM5DIfD4LwhBoNB2LnjHfspumAdPMQdhOVyqR6rQ/sJj7f7vIHLII+Rz4NnkqPK88a0ZUILzEp0xGRvSpkWvE64h24r/7KhyaEUuYGyAI9nx+coHwGe6x3PpJVl/3j1vcSX2lUKKaDjgE5MYF0tmZ5lGXznO9+BV199FU5PT6HX68GPf/xjmM1mUKvVVJmk5eV5RmlGB10ax2XB0mv4TtoNBbA6XmmgyWvnWRPGUhAdf6N/RneHAPh2K/PAJV8YSOluNBpBv+K3V6VbKA9TOcTtQ2mnMf5/lbYetisPfNAxznlG+o3faf1ATxY5Pz+H+/fvw2QyCVdQjMfjMGbpsdJUTuTpYxowo3f88jpwPUyP6kV5ol0T4/Wb6I5zKZCs6TEpAJqX32k7Yn7YL5pOWS6X0O12V/ikrDu6KQ3rtneKQJJ7nm/o/6nlefKl+hLB+/Uq2tFbZlG9iWOJ20wAq7uHv2jQZLQF62SZdaGMsqh85DYv7hAGWL2yzMt3XPYiUJ4PBoOgJ6iOQdBTKpBHr6KdY6C00LEEcNnXo/WIIaar6Pgsw4aTbCwLdAINdX21WoX9/X2YTCbheixvvqnyhtrl9Do9+j+/YxTLpzp4k1fLle3reJHi55cFq6zRaATvvfceAFyOZVKexg0YCC6j6HUnL3G18Pr1VzUGrhIrk7H0vHCpIVIDYbGAnycPD7x5pAaGPGVxx++LCkmQp7Stx7HyOuVSedyI0wI3Mfr4916aPIZ7Cv/kVZgpwWteHjWyU4LNND/pOxqk4eXRPFLqYI3LF32ceusj9WGj0Vi5p5X2K3+Wt50kXsedJXgUOP5OCRBRQxwdNDSYMS90ZPiYlpwSLSjnrZ8UZE2B1b5Z9vyuPusITxrkjOVXFLzdJCfK238pZXJnldJCwXmZf5MXvG3LNBSluknPqdyN0ZQiLz062qJLen5V8jXm0HtsDO4k5GlTz3spT67vyt71HhtH9O+DgwO4c+dOeM4nOWj7pIy3mL3M+VrjNw80O4PnlzeYT+UNBiqtoA3lJYtXLdkm7Z6wyqLfS+8wLzqxQI/E97S5Jddpf+axPTVbXJogkfrTyzMSD9P8UnwDTOflYz6ONBlvlUvzmE6n0O12wxGPdCJW+t6SbbyNkVfoDh/t+FbLV8b39C5bnlbKg9LhSashxhcx3Sq1Jd/lKi140MrFxXTI13knY4v6lpbc8OrXsn3TGO1eGeVJa9kxHhvbYxeUYY/Gyigrf8mm1uppjY0y/I/rBCmO4f0utS28/oaVLtZnXjq4XUzz8PIJL1ezM5bLZTiNgvq5Ft2UBzW71NOWXB+ntJNH1nhoibVlGT6IRYulCzSaeF6oB2n/4SJyze7x0pw6/iQ7TmvXWF3LkOEeXeItJ4+/WQby2tcIq/8XiwX0er1gbyIsO0vK5zrpniK60GObpYwJTU6l6oQ85abaENcVsTiK1JZa+146pphmrq38kxww/v0mB8BVCSIJViCFC46yVr++qOBGmHe3RSzPWB603efzeTgiFZFHyUvwrqZaJ29yGqSxjM9SdjpLq49SaIkZItrYQIOqKJ9YgajU/qDK5SoUP5bJV4xRTCYTOD8/h1u3boU7W7PsYofpYDCAk5MTMXiUd0Ug3fHAcXp6CsfHxyv3lHnurEWasyyDfr8PtVoNbty4cYlXxuNxmPTdhIz1OF1eYJttbW3BV7/6VdjZ2YHt7e1Qj4cPH8K7774LjUbj0p1meRyUvMAjryliu3Pzjg1rbOE7uks4T/5eGjisMc/lFJU5mjOIz607Ezk8afIESrkt5w1irAN5gsmeuvJdfx4ZrvEBDxbRdNhHlo6t1+vhXu/FYgGnp6crdw2n2CiWba4d7wYA4T5IbSI4xb6ynEcarKHvsK7WkWHUXsGxRNsXv4s5mZSveVCA/8P8JHsKZQ8eQ6fxYOpJMjx4hGXRKwAwnZQvpZfWgQdU5/N5mLDLsgw++eSTwHutVgvG4/ElBxptPl625TNK9aNpy7DrLND88X+0EfA47uFwCACwMimGi8hona0gUpZl4b4rOmnJy7Z4i/YV/Ya3K+eBWq0Gg8EAPv74Y7h//z5UKhWYTCbiriJvm3F6zs/P4fz8/NIpAnT3Am9zyneYFk9kQRsmNiYoDVTvAzwf9/Q0Efod51Me5+DyguZF60HLQ37AxQv1ej3w0XJ5ccdu7ModzB8X3pUNqe3zfM+xDltTGv98nPG+2traCidfjcfjJJ9bol/6nspbai/Q8UTHMOWZIoHO6wQcn5K9hBNmeL883gFo2ZypvvJV+dYW8L5tzc7JY3OvE94xy9Nx3Q/w3D6j8g35g8pouisNv+dXhXGbBcvk/ygtki3JkeoL8DbI+61FlyUPLHvZUw7XUfx9ik2WCsnfQftnOp2GeEW73V6Rm3RXKsr3oicDSTrESovyKhbHQfm+qfEs9eM67WNaDkB5cqtoPltbW1Cv18Xj4PE9AKycHAQAYSxcF/kLUI4u/DwgRTZ6407XxZ6Q4jQ0RqFhxQNICfBojZmqQIqk9Thv3rSxMlMEYcw4877LA4nJymC8FEPBM9D48zIGHA92xGjC55IDVrQ/rO81gUzfbULparTwdzx4obWvVa+ikIzzFB60+r+o4U3bKQbJseHl5+FjLWBC/6d8jve0Yt9qOyeKGGZcHywWCxgOhzAajWAymajpYsAxS508/izlCDFrzJUhOz1OEO0r7As8LvLw8DAocjzOjjtgNB8+Pso2OnigmD/3jM+UsqyglscRp+mL0iLlHxsjXI5KclWCxo/aogtPgMKiz/tce1eGrKdtmaoTpQCSlC+H1W5F6mQFv6R3aLDjXYUSfZSmWJAhLy3L5TLcCSqV760Pp0MLuuH/kryiwTdOI/72Lrjx6DJedkyWWX4BPqfBJ54ntwdS5GYeW0B7Ttum3+8HHgBYPbqtLF2i8UWe76U+sPhFek5PheJ08eM4tT7CMheLRVhUgd/jWKJlYlrt2Go+Hii/S3yDaefz+aWdBFznxPwTrT0x2IWLROjY88hn7kdoOtAjd7k+tfgg1b5E/ud2lmYjYxmehSjWbyl/TT/F6sR5JNXWiJVZxFf1jKcU2qyj9z32TRm2i0WfRQem8/ZnKorKbMo/Ul4YBNdkbBk0pfjWRdOkwMs3RfXnuvpdo8vSb7Sf2+02ZNnFAh1LnvM8U+vj8fMsfzeln/L2UV7+i9mjlo9n2YAePY/5SHR66cP0MfuenobG7S0uO1L6oKgcj+lq6d0mdEfZkMa6xCOWzUGRR/9L/gYvk/M18jIuRNXkCLcFpbpsCinlFpE3PA9tPJbNoyn5SXyntU9MFmmw/CdPeulbD3+XIW8QK5OxnmPRyjo7PVX4ap1UlOE9DmRMGMXy4wLE2plg0eGpq+R8lmWMe8rO804qLyWgxAW5BjpBQwMtqdCcfi3ti4osyy7dI427JPA9KkjpWDtLoHmNdgrceYKgq+o0o8L6fRVIGSMxx1ZKT9PiSm6+6n65XMKjR4+g3++7+T+vjKJ9NBgM4IMPPlgJWnlBd2EgLXgXLZaJO7qkcY6/6f+xenH9FHMI88pZvquT8nilUoFbt26Fdjw5OYnmR53msoITWpCLfov3SY7H45U09I66PLCcbA00kLrOAIjlXPM2k44gjJWh8arXQfaWI33Pdx1p7WnZSHlhlUXptOQ+t7soD1pjWRrvMZnBdR3lWctWkGjCccTziuUj0ULL50fcSvQjPefn53B2dgYA8TtJJUeQwnJuYgEjnj/Sz+Ub15VSWVg3esyVBloGrQOC73Tmi39wwirLsrArAO89GwwGIY3UT15di/+4POF3pyG9VH/SdsI02M9HR0fw7NkzqFarGz+9RxobUv/T0yDwfzwNo9lsineyar6ZFPyh4HnRcSLlN5vNoNVqhWOC5/M5HB0drez6QP7gV0VQWqQdm5VKZWXyg1774LWruNyUeIHzM613pVKBWq0WbK08trwEWga322LxAl4XXidrTElthr4G7xd+jQddVKjJVa+sod9If/NytIlfLvMsP8zSg1obS3ouFbE6anzI7/Gbz+crPoZVntYG+B5lKR3nnLdjR2ojfalXDHjaMW9bF8mPjyNaV3zX6XQAAODs7Cy0gdR2eZDCY1fRhh7w8cqfIyzaioy1soD2A/qntVoNvvWtb0GlUoEf/vCHKzui6R3giCK2hGW7SnQiHako0sbeb/mpklJ8xlueR6/xEyskOq3F60V4D2mYTqcwmUxgNBqFHbLaqRFa7ILru7L8eulEEu+3+EzSuUVRtJ5eWD50GUipR4yf6Ql6nkWi1FfYJK6DrH7RYNmcqbD4IdY2RdpOih15celsHCsTy2HVvs9jIK3L6CyipKU8tUCQBKtdJGFu5WE5aKmwmD+VF7w0aAHGvMrHCgR4HEcPX0vpr4vAK8rPvP7ckZICMvTbFL7n5dA8suzi2FycnOJ3BXDjjecRCzZL9JQRRCoCzfgr0qe836gxgsdQ4vF5CHr8VF55HDNiizjoUntgMBL/xmNMpOBiGWVZaaUgojcP/J7u7MUJAwzij8dj+Oyzz+D09BT29vbCzjVtTHqR0rc8X6R3Z2cHOp1OCFYOh0OYTqfhvg90orxGSoymWABRCshK36UYZTEZl8JnnB5pXPDfKTyJ30v1LUv+eXT+OmSol3+4TvOMD29/W9/F3ueVR8gPMbosXR0rP8ueHzN3fHwc8sHFFbjwKsVeorqIykgrj5RgFP/Oo4No2pT+kAIuaG/w+2J5n+NxmtK44TJL8g1QJ9Tr9UB37Fj4WD0kvozJUCuPFMR4gJdl8XWtVluZHKSLAwEuL8qg5UuymP7W7En+nI9P2mfSsYzIEzQ/Xr7Gz9y+4+CLuyRbm5flked5fHtMx79FOcPtNdq/Gs9J/odHdqf41dIY4GmkeuL/mv/Ef2vvpLx5O0k0abzq6SuJLk/6MsGPApbGHy+3Xq+HHXrT6RRGo9GKfI/JeY8NI413+rclC64j8tohdNIG67e/vw8AF6f28AB5iq1QFp3rxqZtXm++qX6IVY4mR9COwVhMtVqFRqMBr7/+OsxmM6hUKjAYDMJCPq9NJslaTpP2O4V+bz5FkGLPSjpCGj9Fx5EFyeaU6LZ0jtcf5PfH0oWD9AoOXoZEs5RO0oUpPBF7z3WJ1FcpdpEHtH097ZwHkr6KjV2NP7S2iPWTRkeMboumzxOK9H0ee2RdvIaQxlZRvzKGTdkT2niyaBEvKoll8iIhZoin5qWhrB3DmwQPCABcXtHp6XuPEailsYywoqAr+5fLpbjDgztZEp3X0SGwULQttRWMUgDJWnWUQgfeaXXjxo2w0nk6nUK/3w9pcCKR0sn7JnavQBk75sqAFiTwBB9i4KvH6er9wWAA/X7/0p1a1WrVNK7ythWOJ7pLlwauvTyC7ULTLxYLGAwGIh9e9X3cKcYPtu9sNgt9hYF3DL4fHx/DH/zBH8DOzg68+eab8OjRI3jy5AnU6/WVOyU3qYcw8PXGG2/AO++8E2g4PT2Ffr8P7777Lszn88L3oWkGd94A26YQM2bxucSr2Gac76U8PeOUOnPXzSi3wIOyvN6WruK/taApLUf6htMhvef0esED4BKdqXIEv0nRc/gt3nV57949eP/998N9fAAQ7qiOgfM1pSsWeJOCvTGaY+ODpqfBH7QPU+pEfyP/of7h45Aeb4v3klJdTPORyqH9hoHO7e1tmEwml06B8CJ2fD/lAT7xHoNkO+cdD9r3NJCHaLfbsLe3FyZhHz9+DJPJJOxMte7txL7iPEDbVbqj1xN0RN1HxzXyAtXZ/H5kztOpwPy5LMA60vsfKc1a3ahdgen4DlHaPhbf0PGQZVmw5/kEnAakhZcd07EU1p3LWEekk77j/oaUN+1bTEuPq9bkSKpPQmUrz98zbovey7cu4MIKetdyTGbt7u7C4eEhdLtdGI1GMBqNwlHhKQFvXgaV47RNtZNN+O70Fy1uYAHlB8o01KNbW1vw5ptvQpZl8ODBgxU5Gts1/3lETHatq8xYOxctG/m/0WhArVZbicu02234h//wH4by79+/Dz/60Y+CnSLZtByW/sHndGxpdpKW53UB1fH0fw4tDkTtTg2aPcl1WowGKU8pbex7yptUPqBNjPfKanlyG5fbRx7+l+iM2QHSM8mv3AR/XScetlBWbJXLA2/M54ukayg8db+O8pBC6+PrTrcGK44j9dWlO2PXXWEtSGKlTflGgpU25lzxNFp6b/DIKseDosEOmg+vy7r6Pk//piDG5Fg3WmcMlkiBOC2/onxo5RPLS3LiUx2dlKCsNx8toOMBVbS8zdHwxolZakhiEFWi1RLkZRkKZcDi0zzfawY2D0D3er1wVKJ0JxwidQeUl6dT880Dj8MgjadYfl75XhStVgsajQb0ej2oVqvw5ptvQr1ehxs3bsBisYCnT5+Goy45+ITAuiCNM9zFu7u7GybfKf9ZQXEKy7DU+k2SI9o3eZDidGl6TasXdS6bzWaY9KJHoHJn1XLWaWAbn+etiwU6LjbllNJAuRc8veVgWzoi5phLtErfaXnNZjPY2tqCyWRyKfhkgQclpPexgBVvA+0uSKl9PP3hlbc8f68THssH4PkCF3oEqQbKZ5Kt5akPtiHKPZx0ozsAeNvy/qbjCnV4lj2fMAV4PtkznU6h0WjAzZs3oV6vQ6PRgMePH8Px8fGKzVRG0MITXOV+k6fPOW3Sd5VKJSwew2NKG41GOJ745OQEJpPJCm9rY5Ee3yy95/aj5gvyepepe7msRz6h8kHSOfwZ5yWvzePVY9K32jt8zyfcvIjRro3PWP9pdMbsR+ShyWSyMjY5b0lto40NTfZxfqY+rKaLLdtDS5eq78oAPVKT6kCtfbD+8/k8HGHIx31enyqWThprAPEFLy866LhFtFot+Pa3vx3007Nnz+CTTz6BWq0G1Wr10vUxL1Ee8vjmHv1NQXesT6fT4OvhCSqvv/56iNXMZjPo9Xrw6NEjePr0qavMFN/aSpunrpuEZj9rutrrByNisimmky14+4C+l/gIAFauMuKLXfLSx8uR7CaLVol23p6SHXgV8MakvPloeaX4w9I3KbpX8/143ily5Kr7adPIowtiMpP7Ddb3ZbS3ZetxGjeBlLHmjYtIea1MxnqMJc2xTRUK/NtUpRMDDzJ5mMgTlLMURqxdqHMQy8dSmmUIYu7IS6uPipaB+cQCaes2lCQFKgW414GYIKOIKRjv3QZ5hRTNUwrScvAVwJROj2JHR1o7Rg7vpuJKAYNxKXWSJt03IcylsSz1nTUGaRr6vdXGNC06wwAX9/qcnZ2ZQSktOCbVI2Xs8ny9Rq0kM63gEqfLqwN4eo0OD/1FZFqn04F2ux2O/QK4CHbcuXMHnj17Bvfv318ph/6jtJYdEKZ50/8RuKsBV09jwBiPkPROxmrgPMn7gh5NmdL+Hj72yHBPwFMzKLH/ms0mNJtNGAwGQY7ikdRSHho/Sv0vBQA4zUV4Zh3y1MvXsT6k9czjLHphyWzu0PNvZrMZLJfPJ+Ty7O7HevIAtuVUS/Ti3ZRcXnsccOs9/5t/w/OhdqqVZyxvtBvo7lStPviNtaghxjeUbrzXk07GAqwen6u1H/cr8C42ukuPLraq1+tw584d2N/fhxs3bsBf/dVfwdOnT4M9RY+2LxsxOWI5qtaY5PlubW2FO8fG4zHU63VotVpw8+ZNaDab8NFHH618p01YYptk2fP7ZvPUlUJbJJgK7qvgMyqz6S7M2C5COp64P8HTxnaKxOrmGSf4HMeExP9aWTE9G7MNYz6O1+fneczncxiPx5euZtD8Nq/u4XqDLqrgfR7ztTGdJtc88nsdehOBE6vI35L/xstG+6hWq4VJIoD47l/kE94nHt+X5iHZFohN+JibhnTPdrvdhu9973tBnv74xz+Gjz/+GCqVCjQajbBb+YsIbbxskjc0/03zazht1WoVarUajMdjGI/H0Gq1oFqtwuPHj2E2m8Hh4SFsb28DwMWx4dVqFWaz2aXJWF6WZhNLdFj2p1RXLtfWJbM80OQn9//oM21BpJQfz9ujpzXfL5VXtXaVbFukbzQaraS1fB2JrhitfDJW83c5fVY59HuvP3UdgbRbCz/LKkPKW2szzfa3eJ+m89DxEj5INo3H3/bYTx77l9vMKb6+hpicykOnlReVxR561GOKY860luEmwJ0OrzKwaC07QOFhHg2SYirLkOXOB32GQAfPE3Div6+LM4K0eHb9WXlcNaTBLB3PWwQ0qMdB73iQvqHAiVVKn2Vk4xGBWZbBjRs3oNlsrhxRjDw/HA6h3+9fMuA88Brw6wI3CDXZ5Wlfb5DAMnq8AQbPN1a70mPyMGhId6JbMpk7i1ofLperuwJidGoOjFR2jGd4ntRQp/zvcQglOZVlGezv70O73YZHjx7BcDiEwWCwcowxDTytE5bBRWnBoNnPfvazsDsJ65LX0E9xeiQn33scn3VMosd+kGiIpZFsjmq1urJ7r9/vhyP3cEInlndsUYf0jcX3Hjtg0zKWB0+lYCoiNu6Xy+UlPqF2kiR/pIA2fya91/qG0o96jh5zq9VdqkuWPd+NLvFDmbCCP0VsLPott0HQTqEnO3h5HHdUou7gd1jFZJVkJ+NzLcjhhWQXUB6Yz+cwGo2CrMVj/3l6XLjRbDbDwhh87tHtLwMY+YG8RSfgAVYDhLgwqd1uQ7vdhvPz80vHV9P8+G/Ml/KGZRvGbHFajkfPanJRs7M8QThqM1FbSPPLJbsrtUyexgp+S99L3+A4k2S9hdhpFhRaO1MdpumI2HiP9f+6fWLcJcUX20r9iTzT7/dhNptBo9EI7yRfVsqP5hnzVaX+9MaiPq+YzWbw/vvvw2effQZPnjyB27dvw3e/+12YTCbQ7/fhwYMH8OTJky/sRCzA1fNEGfyJegyPlkUb47d+67fgzp07sLe3F051QXD9h9cGjMfjpHgrtc+8/hX95rohppsk2eSNS/B88/Y3lYVF2lLSRfSZZq9460DzoeVMp9NL949rdotX13rjYi8K+DHyKTwmQYubSPkWLesl8iNFjuZB2XK3DB6x8vDSmycOrn0nfeO+zI0LSE96DwHaN5by5Y6HB1aQ0SP4NyU0MJDGy9QEnfR9LH8pWMTbwJv/Opk4LySlqwXRYnnwZ3lRxIiSgro8+OAtwypbGn8Al1fCakHXxWIBs9ls5a4eaQxLhtjOzg602+2VfPC78XgM3W7XXRduRPJyU2AZYFo7WHJFCqTkHctWWZYB7VXGRcAnJLVghoaYTObtyINikgPA87ECYHkMFrojguYn0cLT8AAkwMWYaDQacHx8DIPBAIbD4coda96AU9lOA5dBNJi6WCzgF7/4BRwdHQEAhB2ynnsZJXA7IMWR9YLWR9N9sXz5WIsZf9p3OMGCdytjf2Og0doh4nV289Afa5N1yJSUgHIe2zTm5Gtyi3+v6QSv7qFjie6glHQE5VMLdGW4xdO0LtLfFmJ0WM44z4e+j9nq2okunnJwty+dlKXj37JbJHokueSVH572pn1Hj0HlR8DT9DjpirtZcDLWuiLA21dXCa9MLUvfaT6vVRa+wzsvcbEhbVd8jjt8R6OROhkrlS3xPP+bL4rEZ1qeWj04ND/R0tExG5TaDzxfCzydV35J8pvLYFpGLB+abrlc5rJ1Yv6mNj41HUztf15P/M5jH3rHXFmQ+NvixSzLwm49PKYc31EaNTuSx0Isna61kyUz1yGXNglrLGXZxQKhzz77DGq1GgwGA6hWq3B4eAjT6RT6/T70ej24f//+xhaOvkjw2LWx7z1yDv+OyVUrP7QfcNfreDyGra0t+OpXvwp3794NPh4uRKHl07s5NT89VodU/8Ljj63LP04B99WoTSqBy3P+juZFJ8JTYxmWj2rRpOXL02ixEaleWjma7QPw3E+msXTOj9b3nCbtbw2b4imLxz0xEt6366Q7j48k0XQdfZNNIq+9xr9N9VM9+Ut5af23jpiRVI43rUWntwyv3yTBNRmbd4Bqjpsnf+yo2MShhRQFVEYdrbLz5i/R53VWvflLtHqYpwzBvS6HjuaLPIQKGoOd6yh3HcpMmuCxaPAEQ6TvrGOQeVBQakP+m66mpEFUfMd3v2rHpnnHsbTzY1PgRqV15LsUSJHy0uBxqng+2P7S2JD6Bu8v1AKSHiyXy3A3CJaBwfBYP8XGEj2KjAc6JWTZ811RdCcVDVrx8i1QQ2KxWECr1YK3334bxuMxPH36FCaTCUwmk+ikKS23Wq1CpVKB4XAIs9kM7ty5A1mWwfvvvw+j0SgcgYcTnB46NeTRe1mWQb1ehyzLVvpwOp3CcDgM90Mhz3Q6neiEsVQGp1EzGq0gmJSOgx/3ifAGY60yLfA75LA9uUzNsiycFEBPDODwGJE8+BgLIHod7KtGjEYvn2vBWS5DpXbjuxOxP+n33mBDlmWX9Fhe54seZ+k9ph/bLGXihvMZlosLCsq0t1CP4P2v0+lUncjC9uRlT6dTOD8/DztMqf7j+lHrc65LpeASDwANBgNYLlfvzk4ZQ9iOdDcvHau1Wg2m0yl89tlngYfOz8/Dc5wARHh5LA9ieWuBNe07rgvo8byTyQROT0+h0+lAtVqF7e1tmE6nMBqNAj9ynuZ3xeIzTE9PIsDnqX6n1td0fPATLjx2Ea0Lrxs/4QH5l+vsGPiufKSxUqnAbDZbGdPcRtR0C6WHpvPocQqaXrLfpDHPdS3fFULTUduXPuf55PHDvXyU2iaU1zSZRdNKz5EfsX2sq0rW7Wft7+/D9vZ2WIB4dnYm7phFSH1JT+GhPEFpt+wDXseY7RRr96Lw8E7ZdpllI6AexsXXR0dH8Nlnn8HPfvazlTshAS4WE+Ik3lX56ADXx24tA0X8cituaeVbqVSgXq/D1tYWjMdj+E//6T/B7du34Xd/93dhb28Pbt26BY1GA3q9Hnz729+Gt99+G/7qr/4KPvvsM3FCnttJsbp5/UMpjzw+b1mguo76fwCXbRFqM3rjL7RdUY7TBWEWuM2ltWeR9qO6V3vPY2f8vVS2JUvQNsxLM+aBsk4q7yp5Kg80e2CT8F63VxR5ZP3nST9cJV60ceGFpauKjiPRstUCUHkQE57Wkat5g1ApaYrA60ymtKHmVEpGSBmQHBNengVe9xRe2aQS0OpJkUK7xtcpdbIM4li6WNAK/47xDX3Pj/vTDA8a3LVWu/JgDc+brtybzWYhwJZl2aW7sKS8aZ5a8MCiS0KKs+sNAvF8Y+Xnkbe8HB6A0Oog9Q39WzNCLblOy6VBO5xstOBpJ4k+LT0N1vGdsFYZErTgC04M7O7uwnA4hNPT0xCw9ARZaZAW4PmumslkAvP5HI6Pj1eOJ8aJOUvmxIzKvDqdLmzJsiwErUejETSbzTDhjcFmunNLCmB6ZGBRPWG1j7YzooxyKTwGG7YNbx+kky/KsZzooo5IjE4p73UGImOQ2k6TiVIAn0KThVqdJRsIAw/Su1jfaAEqXi/rHeUbr0yl7Ve0D6kOj90VLclVazET1o3faUvfW+XQHRz0OH2JFsyPtgvVnSl2L572IR0P5vVn6PecZpxI6ff70Gg04OjoCMbjsYu2PPLCGu/rCGpo+nc2m8FwOITRaASNRiPoSJz8thZY0LFG27FarV46xprD6j8eWIwtqJTkN/2bf8P53hq31njQbFkqC1COVCoVqNVqsFz6FhR49UkMkr1K+0yqgzWmuHyV6p1X/lr1zdMWks2kpUFelezcGE34t2fhwbr0Oy2z2WyGxXzj8RjOzs6i5fIxII0hzSbQaJF8POlvyxYrCx55WrbMtYAyDW3+wWAA5+fncHp6eolnUabioqCrwibb5zqD2sL4m7+XQH2RxWIB9+7dg/Pzc1gul9BsNuHGjRswnU7h4OAAdnZ2YDabwU9/+tPwLX7P4zrSOLR+W7Jd+jY1TZmQ6qH5wCk6gtorPH/qL/LJX40uq1zPtxakeJHWLlJZWp/F2lazQbz6TTulIVb/TfOYtyzNVs1Dp+Tb0t8erDNWUKROXwRIY1JC0T4qKjtSy8mbv4dOjw7S8o7RtTIZm+cYkViwKgbLIfR8WzQdX+1YFHkZAgP63EDSlFMqUEHHoAU8UgfkdRJqnjvF1oV1Kps8SDFIJKcJJ4oALhzmmzdvhndnZ2dwfn4eglg80KnRoWE0GkG324X5fB523FHa+Crp1D7OO654G9LgMUKa5LHyx3zo+Aco565oaaeftQhGe2/JATrRulxe3HvId0Qh7+DxifS5FTzy9Iu164O3Kf9uPp+bvMrTI9rtNjQaDXj99dchyzK4f/8+AAB0Oh2Yz+fBSeX10WhEYDv+9Kc/heVyeWk3pNUuecaA9xvk88ViAcPhEF555RV4++234fj4GN59991wTNxwOFy5P4gfc+6haZ1yUwtccz4si4aY0Ut3IeEuYz52uOO9XC4vBU4pX3BZIi0KkAxLLz/kdeDyAumj94Vm2erdqBJoG/CJkVj/0qCGdTw0TY/vMY02GUPzwKNkqW7FutIABe3f2BiJyfc88I4H7JtWqwWTyQRGo9GK/WmNMUvH0B0EWH8+ZvkECw+sjEajMJGkBal4mXjfuXRcNd8Vzemg44rfoS2lTwmQScA2efbsGRwfH6/wIbYZL99rE6aCT4B4QNuB8jkdw/P5HIbDYXiGtsZ0OoVarRb6GL/nRwVT+vAfjjXsY7y3GwDCCS687bjvy2UxXVAg6Rw8DQZPvOB1ldoSQRe1eduX7+bm5Vn+Zq1Wg2azCXt7e8Em5zu16U78FH2CeaBdOJlMzPs5rXhBrC0obbVabUXGovzV9Cl95mlzbbxZ32v5S3KNj1troaPHlkY66akzkqxeh+6np+bM53PY3d2F27dvw40bN2AymcB/+2//DYbDYZj44/p4uVyGhSd57DauX2k+fOxL10ghJHvrusUA8kLr98lkcqmeeMUG1bF4qg/ukH2JzSIlBqiNb5xU39vbg3a7DWdnZ1Cv1+GNN96AL3/5y/DLv/zLMJ/P4f/7//4/+OCDD+DevXvwp3/6pyvfdzodmM1m0O/3S6sbwvL1tfSbhhYzor5MihzT+gtlJabRFkVKZVk2gce30OLGWEfpKhapbPo/t7Eo8Dn6a5VKBarV6so94v1+XzxZygPqb75Eufi86MeXuAzNRqdj+br3/zrsXVFeawmsgImVoSYoPQ2eUuGYMxNLR8uTAjdFaMubnis5SaFpDrukuLRyvG3EaeHprTLo/9dpsHkGljcYnRdaIC5vnlJ/aoF26Z1VX+6kNhqNkL7RaIQFBABwyUnlgStaFg+60eNU8N1sNgvGkxYQ4QEJPlY0mbZOSP3pDch45YamxKw6a8pPkvU08MWVpwTsi0ajsRLYxImMwWAAAJePby4jwMN5lILzGf9GCn556KCBmZ2dnXDPMT92ENN6JtV532CQltNkGTHeNtSChBpd9Ds68Y3HFmIAHFc90zrT9J5gaSpoAFjTWVY5WoCT558HqboEZR62c4wWjw2WErCO6fSUYIHWxqmIfauNrxT7VHqfRx5ZfC7pJ3xOjzOX+pjnKwVPisgDno9UppWvNIZQDlJZw8eodv8lhaYbJLnCZRqfEKOTqny8S7qI6kGJN6QJLk3/cxnF/+d/S/aNFxgIl47AjenxsmHJCo2WmOymE6x0ghaPweT2wHK5FCdIYrJQC15L9gTlb37ML02H36PNwBcrxeRrik2r6UXNTtb4DdPgojt6nK3Ex1KdPXRqdhxHik6TZAQArARtcfKIvpfaIkXvSTJaokOqg8Q7qW1i0avxZqz/vXnlgVTfdrsN9Xo9TNLHZImHD2I0WDI4lmeefntREPP90Nc7Pj6G+XwerlahOtIaR2Xx0aZxXemW5Ixmg3q+xd+oB/j7ra0taLVaUKlUYH9/H549ewbtdntlAg4nczlidrmEIn5ZDJvoU80mlGyXGH2W3kRdLV1TJdHE85TA9URqHKEIvHShfsc29ZzC6Rkbse+uOzbB1xwenra+T3n/ecC65A/3xTcBSzZJNgBNe5XjSvOLAGxbW4uXxHyb6J2xWubWCitemLTzySvA8+BFEowasG3ojq3l8vIuqbyIOYwe2oqW/XlEHiFqDXov+M7AmKPtoQUAwgp4gIuV5F/96leh1WoBAIS7uqQy0Pix7ijDQAjuphuNRpfuLuW00b+t4w9T+TsvT0s7n3i5mqzDNNLufG9/aeVJeVA6KL9g0BEdJgT2j7ZjgAJ3M7zxxhtw48aN0P/b29twcnICf/mXf3mpP/mRVXkMBO+OWOQ3DNzyu1To7o4YMB0GI1utFmRZFiZleVqtbrHgRrvdBgAId9+VhSKGHuryWq0GvV4P3n333XCqAwLzxt1Jmzb+KA3etBKNVhAjlp8W7Ix9hxMKNNjhcSCl8pCnrV1UdLIq1maao1q2HacZujzwI9FiAVeKU75ESHIc5SHKMnzG+cK70IKWg3nhb3oEKMpS751RVMbQ+uCkSWr/WHIpJY96vX5phzdvX8v5omPSa7toeQE83xmLbUMDhNI32h1nvP8xb/qbgudhndTC9TPlS2wP9AnKuos3Rbal6I5YOunEDmqLWA4vvScY2wV3aEljRpKNNEBH7UWcmOP8xO0zjT4JNH8+Ti37JdYvnrHBj1pG3kfZJe365UCdhOOl0WiEyeQUGYWg1x0gXXj/c7VaDROkZZ5qhHRin+Mk38HBQZjM50Frrd+kfDW7G5/xYDj/RgOngafFhQl012jM5+D0Yz70W4s2TovmB3lBdS0AQLfbhXq9Drdu3YJKpQJ7e3vhyGIrD1ofj0zjsjxlTNNyaZlevf2ig9Y7yy4mzrvdLvzX//pfw3ucoAOAcAKRhuvcXrHxf9U0pKAMfU8nVSeTCXz00UdQrVbhjTfegFarFfqcotfrQbVahdu3bwf/GfOyyue0x+oSC3rju9j7dUOSsZp85vSgrKTfU9uR+0r06gVqO/FvJZ81Zodrfi79Nua/ab6lVI72nl9VxmUNxrMQHvuZng6h+fVXgetCx0usB2X3bZE4+DridpKMXld8sEg8Q9MleeLUAKDGkQDYZKyk1DxOAhIrBSk8AcgY1tFJRZidM1AR+tA5tO6u0toyT7llKD0vDZsIvnuMAwtlC71YEChP+ZZxmTdgk6feWZbB9vY2dDodALiYJKITRWj80MAhBnwkOrgByI0pT72k3yk8GQtCeZUFL5sbuJqRK5XDy9IC1DHE0lQqFXj11VfD0VH9fh8ePXoUjHfpnrNYkBTva2s2m1Cr1WB/fz+kpzsRtHvceN2s4EhM9mqOAH1nOXJan9C2wSASOjvj8RiGw+Elh0ein4OXHWuHWP68rzivFzHocVzjynd+pCovc12QdNV1cFKs8SzJFCortWDtOvUpH38S72jQgrWeZ7E86Vgoal+ifKIOuTTpQtN7+kKjwcP7WDcaQKG7ZHk6qTypnBQ9GoMkJyUbOGb7SLJHC3DwvqZtThcZWLax9Mya/OLAPLSFVprj6nH+MB2nxTOx7xmb6FdI7Uh/a3RpsPSxlAflac9VDvx7Te7xtN7ggiVHaZ/QhX5l+F1aeXlkIoA8PjCN1R70G+24ds2/9cYDvOk4/TgJi/Tjvc4af3FZktqWdOKxUqmsHBOp5cXHjGRfxtre20ca33P5Y9mqlr+gyRErvaX3PHXSQHUILs49OzuD2Wy2sihGOi5eg9d+Sf0mRX/wPNeNddvbFJqOlo6QRl1kHU96nbGJNuX8otm8nnwkv4+Cj3Fvf8xmM5hMJiuTVNjng8EAHj58CPv7+/Dqq69CvV4PxxnjYt1KpQLT6VTUr576FfVZryM8upLrOyst2rkUXDYXkd2SHeL1xzy0pMD6FmNRCLoYBBdmxui0yky1OcrEdeJlzQ/KC8seTc0n9dtN6s+rhBRLsOods4dTvvGkLWNcWboz1Wcoiy8snavujE1xqKhjZ0ELwHvgYZoUI70shZ5HINM8KpUKNJvNS2n4xFQZSM3vKpVNDNeVrhQUHdxWAMojPPA9PypQ+25rawsODw9hb28PAJ7feYU4OzsDgIv7tmhwg+9AtPqOB8et4J8VpIvBazR6vqcBHGlnqZZ3kf6PtYEnaNpoNOC3f/u3YX9/HwAA7t27B7//+79/aaejlAefrKV8sLW1Bbdu3YJOpwOvvfYatFqtkB4n8gGe74yVgsZeeHb2ace/o0MpTVzwfqM7Z/n9uIPBAKrVKtTrdRgOh/Dw4cMk/uK6Fu8yo8cU54Gkq6zfqfnSYxb5kZixMq7a4KVt79l9kydwIZWn5U3vJsVd21l2cVdflmUwm83EO7y1/PPQK/FjHqdZstVi39JyYoGEPMA6NRoNODg4CAGhbrcbdmNROYE7pChw3CPP82MtaT0te5UHnheLBUwmE6jVaiGAgEGrVFD6cRV82bYSnwSgq/SpzSiVS9PQbyz+pc+wXriTWJOP/Lk0yULpkPpLOoLV67xKdcEApBVYw7aM3f8oHW1LoS2OicEKQKWOQapnua2ZZc937NPrKag8jtk4dEcnXQCo0a/1My0Dn/EdeJu4A1IbA7wdUF/gu1jfcB6mY47umtXGgEQbh9Qu3L6ybNIsy6DT6cCNGzdgOBzCcDiE5dKeFNfykoJ59BnyzXA4DPdB427fLMtgMBiovCSdyMB5lf/GdDFbLjWoKZ2oE4MW9LJ8/ZgO12R4KpAXa7UaHB8fw9nZGfy9v/f3wr1/GEDPskz1q4qC14P7q9THk2JedFzh703iquxqHKuVSmXFx8MTr5rNJmRZZi5+e4lVFPXPON9qYzTFV8UF+I1G49ICq9PTU/izP/szeOutt2B7ext2d3fhl3/5l+HVV18NMYbFYgHdbnfltETUZ6mxnhcZmr600nv5gZ5mR/UrnZjEPFPyp/1FbRAOKR96AlAsvUfPx04CBLjw1/B0MYCLeBe1xSeTiehTW3GSq5LrL5GOPH30RejXIvGrz5scXgdifqvWhrksWk+A1XJ8LcOfIhbUkdKm0Ov51vM9T1t0oofTRAMPeYHKVsvDM5med6KrLAFXhkDYlLC12oCPEw9NPKACcDlAFHOmtd/0OXUm6YKA1157Dfb29qBer8NisQi7/7a2tqDf78Pp6Sn0+/2QT4qhxo08nq6s8RcTklJZPMjC/5YCLLVaDVqtFszn87C636KFO0rcobfgkV0YcKIG+iuvvAL7+/vhjleAC+MVAx+eIBjmS48bbrfbsLe3B/v7++G+GFxwgmlpvnnGo8brWqAJgYFuDPrU6/VLaWiwgNNJ+3y5XMLh4SG02+1LxyrScWT1PcDlOwdp/usM/KYgJi+kQHhROSsFyiUUMSxT8/DKV0/ZEo/xBQ1UltEdBTF6tcBLbHyk0pyajwUqf/G4XqoXJN7SbEzNXqTPa7Ua1Gq1FZ3F03C7y1t/LUhv0bhcLoOu0BbixQJpkv2dp29S+JzKOewnnNjGhQX4zjq+UZsU4HwBcBEQ7HQ68NWvfhWOjo7gww8/XFn85W0767lGH38mlUV1ulWGxFdYRxqslPjIgjZJoJXPn8V0Viz9VQY0UtqpKJ2ecU/LSrV3vDrQ8i04L9LnfEJXqgv9PZ1O4fz8PNxHzOurBSol/uUT8PicnpqC4yvmm2r6QKtbLB/8m+ohvviB5013iiEkn5v/zdvF2q0cs4O8PmBML0j10L7R5Hle0PaYz+dw//59aLVaYeFv3vJi8l+TY5rcRLtXsz9of0njL0bXuqH5u0WBCzRxcSG9fsFaTPgiwSuLi+SfR1/kLYv+r9mr1rfD4RB++MMfwsHBAbz66qtQrVbhzp07oQ5f+9rXYD6fw1//9V/D6enpJVknlZNSd4+evEqbxAvNHkNdLS0OTMmbH21MZVQsPyrvNP3g8f9jY0fTMdozy/+bTCbQ6/UunciG7+lVVRgnk2wJSUek+g0vAv+ViS9afa87Uvwi6ds8fOxJWzR2ZJXhKd/rY2nvNd9Xst9j5ZiTsWU4q5qQ5v97A10aUhW3V2l7gppl0Wflm3o/lNbueZm/6KDZFK7SuclTthS4swYywtqZKH3roY1OqiyXz1elb21twa/8yq/AnTt3AOBiwurk5CQYid1uFz744IOVMj1CkvOk5aTS394V5utymmLfNhoNeOWVV+Ds7AxOTk4uHUHOgf3vlRFW/XgeuMt1NBqt9OeXv/xluH37dph8BbiYXN3e3g6rXxHSscK4Q3Q2m4W0WZaFI4pu3boV8sZ8B4PBSr5o4OeBFviy0uDkwGKxgFqtFlb3UvR6vUvHbHF6ccfqzZs3w4pfatTzY56tsSkFyay7kK8brLtfLGwi0EDLArAnJGKLnbxBXZ7O8x0PSFPH0DMZqEEL7HryQ94s4nSm9u98PodqtQrNZjM4ynRSygtPm+N9gXjnOdaV73qhMlODVndJZ0kThvjbCpbwfDGNZheWba9ZDhm1GZbLJdTrdahWq2H3MabXJla0CQpa7tbWVjhBZjgcws7ODnzve9+D9957D37+859DvV6HZrMJw+EwBINpO/IxlgJrMoJOQHnsGKsMAAg6qdvtutqLQ6qrpGek71Lo5d99EaGdqOAZJ5hOuzdXgySTpb7jvEhtTDx1QYP0LcBFcPPk5GSlHtJ9y1zvUJqpjZNl2aXFB9TWRPmPp0N4wMceL9tqMwo6iUTvENbsFk1Wc9nG+8PSxan+vnTfK68vz1uqD+drLvvoO83GKAPz+Rz+7u/+buUUGuvOrTzgu/M5pDFr8dV1xiZs7uVyGU4aQTsgy7KVBbsvMjbR13l1sQepckbiGf671+vBf/kv/wVu3rwJ3/ve92A2m8He3h50Oh1ot9vw/e9/H371V38VPv300xV7G++41uiQbOEy28SjbzcJy75EW7BIe9AYhSW7JB1Ky5ROC8D/Yz6jZjN544UpvvV4PIbxeAz1eh3q9Trs7u6Ge3MBYOW0KeuaQM6HV4lNxk0+r3jZhumI+Y9aWu83RWkqK78y6dTy056rk7HexufHS9DAhRYMKAIpLylQogUFtbpowpY/lwyGFOak+dGjxHh+9J8WKI4xPVV8MRo3YWSuq4zrIFhjNFgBR08e3AGmAU4aJJD4mAdCOF2Sg8kxmUzC0W00wCqBrjizxiWnQXtP08VAx5MmA7xC1xo72O64+xOBwfbj4+OVo+6kPrD6I+YgafKVfofHXlLcvn0bDg4OwoRHu92GyWQCf/u3fwvHx8cr39NJRcof0nG0N27cgIODA5jP5/Ds2TO4c+cOTKdT+Mu//Et4+vSpeBS2xZdlgQY8UR7S3cDNZhOazSacnJysHLvNx6gUYDw/Pw+BRQzYDYdDkQYEP6ZHCnStsz3KREyvrlMuW8FCK20Rg0tyBqVyYsELKU8tWMr/1tJYKJOXKP/HbClJ9lv8vVwuwzF3mKbb7UK/3w+yLLZrXOsDDFYDyItLUE7gd3y3O77nciyF76kswrbQjmfjeXE9jbYjncAty8nUeNGyN+k7lIXn5+fixA/tP+moeCktvm82m/Drv/7rcPv2bbh16xbcv38/lK8teqL6NgVeXYzl8zJoHQHsI04pjalH0/O8KpXKig3GwW2kdcjpLMsu7TxAWwL5tNPpwNbWFkwmE5jNZkF30qBflmVh0ZdVD4DV9sbyMR2+5+ALpngfSUFQLsP4Djnal1bZlL+8fpqUhsoFPLo7ZZEG/T62KEmzV/BvWoY07mML1AAubKRGowH9fn+lDySaNboofXRMcD5aLBZwdnYGWZatHFvI5Qk9WQZpBIBcC+eQdikwTesVk+l4XPv29jYAQFj8MplMwnjj/GXBY89RPlkHkFb0MfjpCmXJKs3Ol+ihsOQlHxeptqY2brR8uAyKYZNxEnpFgmU/XDfE5HUMEr9cF3jsdUt20/T0ig4cq+PxGP7u7/4O5vM5HB4ewu3bt+GVV14JR1S3221ot9vhmGL8vlqtuuRJqgwrM+06YNmq0nN6MkDMptXs0VjZkgzj+Wrxppj+53TwOmngdaVtwP00re4AEDYkYIxud3cXJpMJDAYDWC6XKzv6uZ7T9IRki3GUyWdXzbNl4Srr8XlpQwlFYj3S+Kf/8+cx0HGYYmN58vTAyteKUeWx2TT6NJkhPXcdU2wRKAUYPEKdfxN7hvloQbQYbbF8NRpTnGTtW14OQpuMpfXRjqyjsNrQqxwkBikysD3w5F9UIGwa3jbzCAqajjpdfMzxFW+etpGCF9q3aKjg5KK0cprCCqxKZaU4bJ77Ha1xTGkp4txj0KrRaIQdoLgLdTAYwJMnT1RDmJYvPZfuTJSCjviOG6L07iWOmzdvwt27d0M+zWYTJpMJ/OxnP1vZtYqGLr2bCeWvlO/+/j688cYbsFwu4fT0NMitH/3oR9DtdlfqgcfG8LrEEHMmKCT+XCwu7jWt1+vhfb1eh06nc2nynH5HjX/Kf4PBAObz+crdrpPJxKyXFOylwdB1y9wUaDI35ghK3xYpO9Ym3jbjQc7Yt5KTZ+nTlPbQDFXNhsqLIoalJ22KYY7yQ5okwvpWKhVotVoh/WAwCGOOT8Z6y8X86e5UTjeddKEyFfsc/3l2UNP60PphObSMPOME24JfU7Bum4j3uea8YRuNx+NLdaRtadFM39Ex0Wg04Bvf+AbcunULDg8Pw0QED6JotOeps/ZtzMeR+lyihcp+j6yz+pnzVh45VyboZFW9Xl+ZmKbXGIzHY+j3+5d2WuJYpXXhsjPmW2r2IP3HbS6LTymf02eWvadBCwZ4bXj+bWynn5YHH6NSfWl6yQ637G6+CMWydXBXKp1MlOpKabJ8iCx7PqFPxxn+3ev1Qlq+eIDyH6dRklFe0PIlWHxAxzSOI4CLydjRaLQidz100XI0PpbalMs/LmvyyhSsFwCsLDbKqy+1MqS2obRbtl6K3bNOePzhqwCNW2ltti5fJ8+YvI5t6EUR/R1rK03+0HGJcYLpdAoffvgh1Go1eP3116FarUKn0wk6qdForJx6A/B8UUtMFvLyX2RoOh//ltJoz6Q0WntZOlR6z+MfCOu4Yi1vjVaPrtD0DKUn9i36I5PJBJrNZtCb1WoVRqNRWKiFC3UtveuJCbyEDy/b7/pAGs+aHRrzuTxprTLzgNMa83nXCYsGrX5VnggnFPgH4/FYXQWKypnmk9KgXsWD9HEUvU91E7Dagx+LySdj11m3626E8sF13enNg9h4of2vHRFSBg18BwDHYrGAo6MjmE6nwfE/Pj4OOxowsJb36FkNXqNNAw3AUOMspmiktqV36dK22tnZCcEbfiQT7y8pwERX4Em0eCAZrThZyOXzm2++CTs7O9BoNKBer8OdO3fCROKzZ8/CrgSJbnrvqzaxgscR7ezsBIer1+tBr9dbCRrSvL315cEjqf74DtsBHUCcTMbv+E5V7dg17HO64+Tk5GTlLhf6txS8k44u5vz4IkLT32UFRVINdqstqSyILSqxvs8zAeDJuwgPpOoCqe4xGqwgZax8LeCL44anpRNsmtyM6U0e9MbAfK/Xg263C6PRSHW+eUAbaaR3TyP9MTokHUMnKqgc0OQbzY/mIfVZWXZBbGzzZ1zm0nd0F6xUh1S6lsslbG9vwxtvvAGDwQD6/X5YcLMpfwBliGdyivMt/Yc8dXBwALVaLZzSwBct5dUTmlySxkde0LzweNlbt25BvV6HRqMBx8fH0Ov1Vk7syLKLRWN4TC0fB8vlckUGIKgNodlMlg6g9KLPi3RzWUF1BW+rWBkxHUhlm9SWtC28QFsD7XRNhnCZqy2Ukb6l9NN6cNolbG1twauvvgoAAGdnZyGugLvpsQ5cP1n1SLUfaR1w9z4+Q/kxmUyCT4N00xgE8gdvC8/VApyX8qBarYa7z/EY9+Xy4jQJq72wLrE2s2jT+LpMvaPFe8oE7iKWFsYjHYgU2Yj961lIj/lSvuI8qh1Xv1xeLFhpt9thVzSn+/ME9GkR64g3vGgoKz6WR3biM9zBDgDw4MED+O///b/D06dP4fz8HFqtFiwWC7h37x48ePDghbqGZ1OQ7BsAEG3Z1LGt2fDUZuc0cFqkTVf4txYD8vIitUXKjIFQGTyZTFYWiVYqFdjZ2bmUHiB+DZpUDv07pvtf4iVeFGw6Llm0rDwxx+sCcTKWBquxUmjkISxnMRZAkp57QJUCF3hWICRPx3gdlLyKkbedFISg6csaFLGg4TpQNF8e2OC8abUN59NNChYNXqNXQh6jhfOWRI8WWEJHFY2ufr8fDJt+vw/Pnj1bcfAlx0gLOliBCut9CrRxhs80egHktsZ24Dtx8H4cALgUJIy1P83bU+dY39M603sXaZB8b28PDg4OAOCi33Z2dsIOT7rzVXO8EDTgjnc+4pFFABe7YXAiE4+KSw0u8j7T2kFyaNAYpwY/7TsaAKHfSDRwuvn9tzQwx+nhu4FjgZ88KNuRiSFGryZrvOVu0qBKtUPo/5psS6kL5zsvb8RoiH2jyWbpOT6LTUBYZUtpOU3cRkq1M7U2oXpuMpmEwL8VzKNBc5Qh9H9eLqfPE4ylu+Ot/HidpGBKUUj2dOo4l4I7PD2vr6c8bCsM/C2XS6jVarC3tweTySRMPJVlP1h2EadLqoeWjvcZ5a9WqwWNRmMlQC/ZLbGyKD2e/vPU01MW5jefz6HRaMD29jZsb29Dp9OBfr8Pp6enl3Y9SmVLNgKtC+exWF4xupEeutAM4PIEpWRfWPRJ74qCymGNLyqVyspRkNQOksaHZvvzvLWxzumyaM+yLJx+gAsoACAsHKxWqyu2FK2rFVvICy6P6H3h0ljl9eE0pNi3sfpwmcH7jO40r9VqSQtRUmzQFJlTJsrsb2l8euwmre5Wm6ToDEwfswGlMpAH0GfDu41jeXjt+5g+4+NSksFaPqk+BpX1/HtuI5ZpB5SNmN0qvbO+pe8sn8tqB++41vKg9vD5+Tmcn5/D4eEh7O/vh0Ui5+fn4ejqlDKx3FSejbXppmVZDJJ858/XzcseO4WPLXqahBeSjE2xkSQ5rpXPF9HiUcXtdruQv6PZmmXaetcdRceRJN95n6a05XWV+WXgOsksy8/hWFefeHVhqt4rQq/kn2ppOFaix3jcDcVsNgtOHd1FhAF+vpK46Co1zMNjvNGytTQIrQF4MN6LFIdLKp8qMQSd2OBGZyp9XiHmbb9NI6XOsUHpSSfBa9gVAR/4HqMAadF2F0rppZ1H+D/dCY8BEczr8PAQdnd34fz8HIbDYZiIxW9rtdoK7R5+SjF8rLw832rBcG1XhdRWmA+VN3t7e+GYE76KH4/CpXlJd+fxcmPjHZ1uvJNPMwSx7MlkAltbW+EoRwCAbrcLv/jFL+BXfuVXLuXf6/Xg448/Fo/a5WUtFgsYjUbh/dnZGVQqFfjWt74Fr776KjQajTAhOx6P4fHjxzCdTkOQrchdW9JzLb2km6bTKbRaLdjb2wvP8Gi8mOKmfMMnZGid6I4KLeCDefBgKS/T2w6fR1jBhZTvNtFeV+0ApMpHTQ57AmlSeTFIZUjO2GQygXq9fmnXupQfDWLyhR5YBgbVG40GzOdzePr0KQyHQ9M2sALVrVZr5V7OwWAAAKv2sRRI0ejn5Wpp6d8Y1OI2o6dcq3xeniW78gQyEEgftYFRv+ECIpoW4EI/zWYzeP/992E4HMJbb72VRLcXy+XFcci7u7swnU7DIiWaZ+zuS80mov1Ed4Rjmnq9Ds1mE9rtdtCvWh8g3/P+uC4nBdXrdTg8PIS7d+/CL/3SL8FoNILHjx+H3UzdbnfF7kTbgNqX0qIH/Cdd2UH1qXYfMeV77YQKzJsuROTjBe0FazdpWf3AnXtJfqJNVqvVVib0Oa9pNoXk5/PxFJP5MXmH9vKjR4+gVqvBm2++CcPhEO7duwez2Qz6/X5IP51OVxZfa8HqGD30H8Bln59fFcGfS8A+53xDy5QCM5p/QdvIWzfc8fP06VNoNptweHioXnGi+X9YJj2m36JLQ2oAaxO+NS8L67lYLKDT6UCj0YBOpwPz+Rw+++wzWPbDLtEAAQAASURBVC6X4hUsNB/OhzG6qZ5I1ZNUfvFy8B3aNhS4WCnluM08kAKOnrhdnjLo762trXA90Gg0gslkAtVqVaRHsuGuo+901TSV0S7YL4gPPvgA7t+/D7du3YKdnR347ne/C7PZDP7oj/4IxuMxtNvtIMNiyBMLtGRZnncxlNGGKFv4gqTZbKbeAy/RgfaRVoaHDpofxq+k2FTMT7Og7bi1kBITsPT32dlZeB873Si13BQ+uApdWDQNomxaPeP3RcA6+vFFbg8NqTZRWbaLBymx5jKwMhmrGaJ0RxEliAcK8jSQ5GBpQl/6zuocrwPh/ZYHBaw8Y8BAAxXCZXd0nv7YhLGaUs9UJ4+WUZazwf/2fpMXVjBDKk8LGscgjTXuuKPzMxwOLwX9qIGWBzHZYRk6Vh219/ic96vWflbgq1KpBGMZ2wQnbGez2cqRtfxbLyRH1JJZUl2RVqQB75Pq9/vQ7/dhPp/D+fl5OOIKd4tx45C3CeeT6XQKg8Eg3Fk1Ho8v/S21h5d38ugZLq9pkA1Bjx72BvvokcM0mMt3oli7ajQ6PShDxvA8PEGLTQX4pTGjyeJ1OdZ589DSW3zlNUJj9tCLgph8xoUmqcfNWnoBxyMAhAVFHkdayo/eaUgnEDSbVNMx1ntNb6BsoXeypeSbUk/rW2kSQsvfypu2Ff/HbWIM3J2cnECn04FerxeO85UC5amgZW5tbUGr1QonPdAFUJLNo7Wlpw1pHvP5PNhVyF+8naS2p7Svw5fIgyy7WKyHC5/q9Xp4nmXZpRM7+HHlHv4pSh/NSxuDUrma3ZsSUNR4KG/d0CZL5QFNbnnGU0wvafILF3y2Wq2V9kee4FeBePOnz/iY9PpPPC/Lv9J4h5cf8znyAvUlyorlchlklqc8TZ5o38XGSB4/OTUPTxmavYX9iTp8d3c3XL8jLRDl8RlLV1v0xXSyxEe8b6x64r2dzWYz+F1SebyvPfo7BWXY3BpoXbC+kp3Av8lDW8w2uiqk+s34jaSv8vjUGqjPixgMBtDtdoMd/9Zbb0Gj0Qj3y9Kj0mP0l4l1+VEpvGXpC2xHfpJWKrTvUvS1J2/L/9bK1OSchTzlSGkQNF5TFDH9b8HShWXDk79Xv5YRF/GkK2oXW2VpKEMeptBRVvo89rKnPG/+ecos0x5OzVfSpykyJC9dElYmY+kOKkqAtXLJG3iwCKPEaceG8tU36Lx7VyWnKiUpjxi8jIo76Xigfl1G37qE2XXEOp2BdZQTc3a97/gqbjqutIAI/k13bfIA7/Hxcbj/U4K0oqxM504Drx+XQ9R5pmWnrOKTdjoh6K7QSqUCnU4HxuMxfPbZZ5dkEtLC28oal7yP8O4yesyP9A0AXDpqD+D5CQc44fruu+/C/fv34cmTJ2H3D72viy7M0XYKU+DuoT/5kz9Zqbd0ekEe0IAthRUYwXfSDgfc5T2dTsOqU1qOBNyx9corr8Du7m5Ih+335MkTyLKLncm1Wg3q9TqMx+NwdFiqjN+EHNskPDLTo6c9+swKWqxbD2r1lILd9J3E3558i0A7ip3ThWlSHOdY4Ijmg/c2Alzsssf78KbTaZBF0kQN5oM76+r1+soKcgxOx3SSRitfiIioVCpw9+5dmE6ncHJyAsvlMuzqxHvoUgLikl7C9qaTEiibUWatc1eexBPSMylIjXXCxS7aGKY7hzAfutCF5okneHzyySdwdnYWdlfi1QlFxwc9qrZarcKtW7cCLffu3YPz83NoNpsrx+3zXXapwSyaz9bWVtg56tEZGs8ul5ePvo7x30usD5ofyvvXCphredCrMjCv6XS6MpmJ8hG/1crLExTSAv0SkN9pfahNjM/oaVyxsj3BFr7THuG58gXtQ2kHNaWDwrPLBqHpXek3ppfyns1mcHp6CpVKBW7duhUWRlKauE/kpY/Ld7r7PEZvXqzLj0e6UX9++ctfDqdwdLtdePjw4QpvUj3Ed6al0Md9SSr7MU+qJzEN8hK9kxNpo3l3Oh1ot9uwu7sL9+/fhwcPHkC9XoetrS3TZywbm9AlvC1Q5gE8txG+CLEuCZuO9fH4CuVnSsN8Poef/OQnwU5vNpthgb+FmA+xLlD5s6mYIsDFWG42mwAAKzICkdK/km7S/FKe1tLpXHdLJ49YNGh0aHXjNo60wJ3Tzif6y9BXlq6Wnn2e7erUuml8540df15QRp3X1UaW3ozJwE3KyHXAq2fWafOuTMZSA4/vGEJoRyVIglSaeNC+057xSQkU7loQMY8xkqLwPQENytQxoW3Rmceh89BYtqHGeSSvwyKl9yg96ft1CwYPnUVp4N/TI2BiwQhr7ElBGArquGs7cDAdptUUjESjZrQU4UurrS2HwYKlYDCPWq0G1WoVZrMZTKfTS3f2xGi1DLgsy8JEQrVaDUdIW+l53WgfUp45OjqCwWAAx8fHwbgdj8dh16dGH33GJygWiwWMx2M1qOBtE6ksKY1l6HP5S7+l/Dyfz4Mj79UDt2/fhtdffx16vV4I1uH9ybTPqCNFdRb9zQNd0rj1yJbUsVNkrOX9tog89Pa9BW96LMuzMydWVopNQQOfHvrKguYoWWm8wfdYvtJ7Gji3jnSk/YS/MejJd1bRsSTd0UrzpHKUfo/f1et1aLVaYfIYZbOHJ61y8T3nHcm+4jwjlZMXXvtNs3O9QR0Lls0yn89hNBrBw4cPYTwew3A4XNlBWnR80PbFKwekxaDaGLfGPh3jUh9RPrJsO8mmkvLlPEzzKBu0XJzEwIlygItrcA4ODsLkmLYAivtxmk1P20mye1JAZQjlNTqxxvUxP8LYA6mu9B1Nw99JY03Lj9seVK5JiNnoGo30mQaaDulqt9vh2PjY6SEe21BLp/nhXh/EGod5fT6v72FBGgvoe1i8IuUh8Y/kV3j4x6s7YrBkVRHdhvmh3Y8LbPDKkm63G07z4dfP4BiyjqbXfDuvXkrRXzQtHlfcbreh1WpBq9VaoZsvJrD6dBOxDQ+stsDFe9VqFXZ3d6Hb7cJ0Og16WrrmQEJKPbxySHpXdCxYNl9K3mWMHYtfuA2A6afTaTiRhi9C4Plo9uwmeI7Twv/OC06/pquorgZ4fj2WFIsvC5Zc5/RJvzXfRPpNy5NsPA8dMXpjtjMvM6VcnrboePoiw6vXNftbyoM/v279s0kZllp+zMbTvuH5WnK9zPrH+IX+LoMPJH61/AZvPoiq+BQuVoT2er2LROTs+slkcmk1Pg2CFQXfTSAF8TEALsHjoGnIyyxW0EVCnvtDitKzTqSWV9bg+CKB7tQAuDgCxtqxSvtE2k2oGUxZdnG3Hk4uaqBB75SV4FKQSfrbyx9WULLoOODH6nLZlGUZHBwcQK1Wg16vd2midLl8ft9Pnvs7siyD7e3tIH/p7lVKg0Q3vpd2Ty0WC/jggw8u9UWlUoFGo2Eas1gvgItj7bW68UBGWdCCawC6cYe8iu/H4zFUq9WVxQ383jAE73MAgN/6rd+C3/7t34a//uu/hpOTEwAAePLkCdy7dw8AAJrNJkwmk3CXJOZPeYkHIIs6f1dt5JUB7qRxPYFyJnZXvBUwTHG6rLxS8khBmfLLA371BKcF4PlY9hjeHtB8pDGLgQc+ocD1FAdOnOHOCTwKk45hustJAg2CAKy2D+Z7eHgIBwcHYRFOq9UKAVyej1Z/rT1p+0jBXNo2vKxN2VSSc0z7hu+EjS3EiZWF/zBfPHHg3XffXSmj6HihdVgsFjAcDgNPUT6gC9T4wiUpcCrVSSvfCx6wk+pAf2snDq2Dd7CPJpMJfPzxx3Dz5k0AALh79y5sbW3Bj3/8Yzg+Pl6RK5q8Q/pRh+MkryQbsGzuX9G+0+Qc6mO6CwPvfecL2fDd9vZ2oAUnmD2Bf4snkH6Jh6jMsOwgq648jUYPB20X3ldIrzYm6Pc4Mf/OO+9Aq9WC0WgEw+FQLNNqLywX7U9Pv1qQAqx0LPM7orEN6Ji37PwYio4/lFeYl2Z/5wm887pK+v9FsT+RftTX//f//l/Y39+H73//+8FeePbsGdy/fx8ajUZYcLFYLFaODaX/rD6nk6A8Tsb7Qoo/cTsIQfl6Pp/D8fFxuGv88PAw3IlIxxZd/ELL8/LspvvaKqfRaMD+/j68/vrrcHBwAH/9138Nz549A4DnE1hlB3+vElQWWfYzT48oW79L4GU0Gg2o1+swm82g2+0G+5kuGimbtusKqc34qRAofygmk8nKGEa5bvlt66AVQctDe4df1yXZn1Le2viMxQTRJuO6GMBevBuDpPNi6alO5Pz8ounGl3gJgPXNz8TGQYo+0GSKlfd11zMrk7GWYgfQhZXHAY01nicYLTVmrANTDDItKOZJK31rfZ+SdwwepeEpl6fJo0Ri+fOAe5G8rO+umwK0eJen4YFFvGcDgw6j0SgENZDPpECIFjTX2pWOabyThX4jBYek/CSH3Qoe5e0vq03z9r81jrnxTCesreBgzLCjO5FxtzH+k/qEGqK8DazfNNDHJ2h58EbqL62/qUGK+Wx6/Gn8xt/TsZJlmbqrReIDrF+tVgs7oheLBfziF7+AZ8+ehYAN311cJvLITa9zlZrW+j5Fdlt612NnSMFqT5k0yGhB04cevonRoAXjNNm9LmjBV06L9m3qeNe+kRx5iQ4anKLPeF5FdjdraDQa0Gg04NmzZzAYDNTjC6kMTbEtY2n4HanSd2XWOY8jo7UH/5sGuAHkk3f4WMD6Y6Cc6p91AeU6rweli9OryS3pe/yNAa7YTutUn4aOac6XmgzKC1rWZDKBXq8HT548WRkr2rjWIMknqQ2loJiUhj/jx01r9ZHGAgYHaXrpW40m6bui8I7XmD3ukdMAMu1W3nTXFACs3P+o5SeB97dXb/J+9HynxSi4rY+gdmas/1NlrMbblEdj9hLmE5NTedpqnaD9rdXT8k0Bnvs7k8kkXDlTq9Xg5s2bK5Mf3I5H3tVsC609PDYAl9X8nTUmp9PpymQr6hB8jr4lvrf6LXUMWnnwOhRFlmVhEdzp6SncvXsXOp0OvPHGG7CzswMPHjwQj+eO0SmNibLtKA20b6XJJD72vDpEspHLQqxdsGx+yg3V/VpdNtHm1wGc91CmjMdjaDab0Ol0YGdnZ+X948ePo8eOW/YPfy7Zhxp9GqyTAvB7y4f26H1PXrw+RcHtIA0xm/MldHhkbFG7SMPLPltFzObHdzStB572TZFZ/Js85Vnw6n2rvTw2B4c6GRsjhk7UxArnaSSBqQVTUhysIigivL2O6LqhBaXKoqUs41Sjz+prq1z+3XUx5iTDBmHRiBNx+Pfe3l4Yb5PJJOzGy7IsrMqn+Urt6+EBfg8NXcXLV+dad9XxyWRt4jAvYsESS7BbDrBWFjrddMJysVjAZDKBfr+/cr8qL4f3h+Rk07v18K5E7VtcaUqP1tUcOWm8SsdOY76cdimdVE909LMsC7THdqDlgWV8U1gOLd3JQu925G3Nj+zHtqzVaivvxuMx/Nmf/VnYpV6tVqFarYb+sQJiMZnwIhiJqUFEKx8LeY65tto+z071shDTo9ox4akGsDe9d2JECsqmTKrEAtKeILj3G4BVWafZl95yaJrt7W1ot9vw0Ucfwfn5eThNQKPByt9qO97WPGhj0VxGQJWW6W0bydbQbLrlchnsGrQnMHhnlTefz2FrawuazWYI+BUJOnrGCi7C4RMANLhIoU3uSX1KxwXdHVFk7NPvpHs5tbFYlvxD23QymcCzZ8/ggw8+CPdYSgvBkKetcYTtpY1l/lzyNyVbTPpO42PqY+F7XJQ1nU4vvZPyjZWv2a9l61m+o5r+TydLKd0pfr4HSAM/spjvSI7pJQTfwSql9fgPtM7UH/PYaFKfx4JNMdo4JF6S5Im3LG3s0PrklUfrBB2TKcDTDs7Pz8Pd9O12G+7evRtOtJFkTZZdTAYul0v15Cit/aneps88ehYXePJd8zjZOB6PL9GDE82YL/p4MVlbJsqwQ2heWXZxctdwOISzszP4+te/Dnt7e/Dtb38bRqMR/MEf/MFKnT3jjiPF5ikKlLP09CsOeq98zIbktNPYS2yceMeRt12oPM9j26fSlYJ15JmaL/YJjbPN53M4Pz+HVqsFt27dglu3bsHh4SEAXCy4+MEPfgBHR0cr4x/z8pYp0WuNk1iduI8j2T/rjv3x8vPEUrhNT59pabV3Vx27WRd/F82ff3dd7IirQFlt+BJxXPV49ODSZOxsNoPhcAjT6XRFyNKAtHR/Es2DGqOSoYC/eR40rWR44DEX/MhHTgOHFnCQnHXtGw2aE50yWPIMLInmPAooT5ll5SMFPfLQfB0EU0oAhRsMVgAzy7KwEw/g8hGAWt60fM3A4t/R8U4DEJiHFFimdaCORZZlYQVfytgsCm4IeXhLMp7ob0kW4ft+vx/e03u2ad60DC7jAFZ3A9FAJd0dOxqNLh3NrgX8pLLxf+QjyeC0HD0tb+rkacFLjtTxquUv0ZKSP5fXliE/nU7hO9/5Dvzqr/4qfOUrX4F6vQ77+/twfn4eAiXb29vhfkHkB09AQHKiyxwXRYy+dX6T0k+SvLRknfRNGbR4wfMr6ryl0ucNctD/tTw0/rHsOy1fSx7zgJFHb2hyx6JH4x0AWJHl+AzlOtq+eFQ8HnUemxilkI5MRd1K6fbqTNpeZQUBPHawxN8xmjX9gLqQT55zGqzASJF6c7mCdwAfHx+HY1TpkfOevGh+fBegBUnHaumQV2K7fzzllSH/aB7Yj9VqFXq9HnzwwQfhepnJZLJiU/FjbiltGi/ydrJsl5ivpMkpfl8bf49Bf/RLJXvesvFpXpJM8iCWXrO/PHY5l5f0Wy8kOzrLMuh0OrC7uwvb29twdHQEDx8+FK8/snRKnvbSdJ5lI3G9pNGDv7nvxP0mjS81fpeeafa7l07+LNUW8yDmn2jl5rXjU4BjFo/5/fjjj6HVasH29val63+wrbEvcTJWWzSngfJCrO9pud4yzs7O4Kc//SnMZjOYzWZQq9Wg3W7DeDwWF+F66LWeS/LUa7NxpMgVbPtarQYfffQR9Pt9+NrXvgbb29vw2muvQbPZDNfwoC63Fo/HULZPZsl6yX7w+OfYftznxL+lBfEpPopEv/bOC2/asn2zdeWZN19qd2Kb4NHO+GxnZyfYyN6j9z12PH+X6qemjomYv+ix9S1Ii6aQXz31TK2fZt+ti7+8WHf5efNPiUt4vi3b390k1tmGRRDTdyk2m+Z/aN+nwDs2PZDo9sggSbbkxcpk7HK5DCtzuBHIjzrB5zEiuDMmPeeVWS5XVwvhO3SOrTKKIDUfzUhal9DgZcSCNTFD3jtQPN9JNGkKSnIoLWxaWFoDUYPX8KEBV/rMalPcbQcAK8cVpzi2nmfWmOQraWk96Digx7SORiP3rti8hrkWYLPy1RSGxo/SfdiYtt/vB3ml0aYpN+xH6ijSdqbHFaNDLcGjEJCGarUKlUpFDTBiWikv6ujxNkt19PME0WLyjubtDWLwYIi2i2g+n8PXv/51+Ff/6l+FOu/v78NgMICtrS2oVCqws7OzckSxJxgl0ZL6zpM3T1eGTC2q0ygdMZpS9Z03aBjrj5Q6xsrT5I5WjhUM02RdjAaexnIiJaNToq2IvUPHGM/PUx98zwPe0j3p/LfEI9IkEd4HiUeT9/t9mM/nUKvVYD6fw3A4FPNL1T1SOi0P/p20Qn4TdpOnnyVZrOlKaSdzWfLKSyfqx5OTExgMBnB+fu6ejOX5cZ8JwD+RHQsY8YCrV+fxvPDbstqYypRqtQrdbheOj4/De77TkNuIXj1P01vjRZJdHp2MEzYS8DhB+jtGg6dOFijdmu+p5RvTNTwvix/zBB+4n7C9vQ2Hh4fw+uuvQ6PRgP/zf/7Pyr2cAJd353IaU8DbQuJ3qX0tu1aTtdZkrFQHqju8Pp3Vhyky2Tvuef8Vtf0oHXzcxOReGaA7sOfzOXzyySfQbDbh4OAAzs7OxG9w8pbuvqabFDRdTumXeMwjL2ifa/mfnZ3B2dkZdDod2N7ehmq1Cq1WK5wcwSfqNHBZYdl3KfJHSxuT3zxPzKtarcLHH38MH330Edy5cwd2dnbgS1/6EtRqNfjggw8A4Lnvru0Etmjy2mR5x4NUtlauV+7xca3Js6LX6Hj9cWssb9pWva6Q+mQ+n0O324UsuzhuvF6vQ6vVWmk3lEea7qCIvZf6M0+faHqV/22lsdJJ6bnP6tUnVp70meQTW/KZtnVsjHyR+X7T8NhW1xkeu30d+aeWEdPlsXJSdC995rHnU6DFiCS6OG1ee4ZiZTIWd19ZTj0PVntXnFFjkEKrKN6dRBEL+McEvEVbHsQUT9H8i+AqBI3VHtIAi7WLNBA20ZZltp3E79oAxkkdTLO7uwuNRiMc2dXv92E6nUKj0YDpdLoyQcfv6rQcdg+sO1DxWZatBr1x0pgb+ngMXZHVqRZwohrpTKl3qgLC9N473aQ8arUaVCqVsOqRpsF273Q6UK/XYbmUj8OSFI02SS+Br5RO4XlLP8QCBmVCU5QeueLNX8q73+/DaDSCer0eJmCzLHPdFet13PMocy+uoxGqyRe6yMEblOB5aGm04ExR2ZmKokYjwltv63spD04fDz564Qm0aXR6jHGcNKXPPIFHWm/pTm1pbC+XF0cD4t3tXBdyHtKOmMNvU+WYxb/rAF04ZO30TC2fLq7kbUghlbUOe4LbEKPRCCaTyUpZsfFq6UDsa+p0ShN5lB95UBW/ozskpCAUTY8o6+qAMgJJVtBMa18rYBYLttD33BdNDdyVAV4m9hW141JtWisQSPPRyo4FbK124nYo/Q4ntpHfnz17BlmWwVtvvQW7u7vwxhtvwPn5OXS73Vw2PP7zTOxjWq89kQpp8jUWF+Dtb91HimnzjGXN95TSxWRxHhsp1W5YR/9kWRbiSwcHB+GYcQ6MhbVarXD1CN2Zhm3EdYOkH4ra/JINRtPSXXX8yGJJT3rla5ntT2mWxp63rSRf4bPPPoPpdArT6TTcAUx1JC6ckxYhXxWoXKRH3HthpaXyg9ob9Luifk7RdryOfuimERtvw+EQZrMZvP7667C3twe/8Ru/Aefn5/Dpp59Cv9+Hp0+f5rIN1gmpTmXGAFPqy39T3vfqaW/enL5Ympf8/xJfVGwydrEJePzUGFYmY6fTqXrGPw3CSU4zJyLmfODfksHPA6Je49/raEjQlKKnzFhaD5OtS0lq+cYcsTyw2j9PAPdFG5ye/o8Fzeh4aDab0Gq1AODCMcSdptVqdeVOTulbS9h5+0AyWPh7Cr4inNJl3eOp0amVyZ0MNPSkIDr/Riqf9w/vF+k73jaaXJSe4e5Uelcaz7vRaECr1TJ3xALApfbWII3HImPRK1fyjmErIBHry5icsQKJ0nsu18bjMQwGA2g2m9BsNt0BzTwBGU+752lji8YyDAvt2xQepTKNBhSsNvbSbjlPsfGfgpTgpyddapmp31E7j6JsvrBgBdKtculxwvi9lofmGGtHpvIds/QIU55vlmVq0IHbtvSbPMExTValHJ2cWoZkm1tpLWB/Yft6FxRhH63DRqQTIvREoJhtQG1cS2fT+sYmVLifRMcntpP3PkveZx77yDN+YtB41NKzAJd9Q8uHiOlFqd/yBMSk8suQg1bg0Lr/lNLEf/N8rXElfYvfaLLSo88oz9FdhL1eL9z5XKvV4ODgAJbLJfR6PfF7qwxejmTL0fe0HYrap5K+xPxjtmosb29bp+ZvpdfsYFqnWBmxto3Z53nGpQXuG+Cz5fJiorVWq8FwOAzyGMvHv2u1WrDz8Zh1lLsxOzqPrJH40xrjAKt3JaNdErN/YvSU5WtYeWs6IIU/lstlOFq6VquFe9dR5uAid8/iBUt2eL9LAaWT+jv0fUx/cn6R5AfmS08eWMe9wZL+0NJZ77+ooPYcwMW9z5PJBBaLBdTrdXjrrbfCItDj4+NLk7ExPozJXk6L9H0sjZQWeZtv8vDm74kbcJ7i5XN5rF27ptl3lr2q2aZF7YyXeA5LFuaRI17eLROemEYe+62oHVsUKeVvMm6kjT8rbpFHBnnKiGFlMnY4HMJ8Pg/GJgCsHDtKhRlfYYbHvXhXa6Iw5OnxvkkOyyHl6VNWjOZlZI8xW3aZAL7jRbiRtW6F4BEwHFI9Uib+rgu0gA99n+KE0Z0ieCcVwOXxFsvHAt/dHgscxhQFH8voDGIf8932RYG7b6VgldTenvEmvbfGmrULkhp2NN96vQ5Zlq3sHsa2w11d6FjhvWq87XESPs8xQ8vlMtzbZikuK2jH60hR1q4bTk9KGquvsT94EF9Kj7utAZ7XC1eiAlwslKB9sFgsYDgchuMLY8GQVJQdoLouZdEyAfRxWNaOY6mMlG9jsBwGfM//loIr/Nt1Bi9T9JP09zp5hQdGLeAOAwret7yt6XM+Xnl9Ma+HDx8CAIhXZmTZ6uIgDgwKelaIazIaF2TRXeMYgCx6/Bwtl5ft+Y4HoaU8y8K67VkeyKUT/RxWgAmfpU4eb21tQb1eDzRRvqFjXgq+Yh8sl8sVW0wqf51+DLZhs9kMNmKZerFMUP5F8KMA8RlNz4Ph/HsKSf5QG1zTRTyQiP8wuC7pkryBKk6bxFf0Pf/Okh/o3z979gyGwyH81V/91YoNjHavdE2Rh2ap3nT8eXxMSrO2OETKh/OJVgYth9vc1uQFtV+prOd8qAWjLUhjuWjcICYfpICYxvvaN2XQVK/X4c6dO3B+fg4ffPABLBYLaDabYXMCyuFarQaz2QyOj48vjXcruBcL+lrjlNod/H/6jRUfowt/PLxdBsrsMwn0RLBKpQL379+HBw8eQJZlKztgh8Mh1Go1qNfrpfuneYD9gX783bt3YXd3F3Z3d2E0GsGPf/xjmM/nK/IPvwGQJ+olv13zQcroi6vwD1908DbT2hD7Gq8LxJj6//t//w8ePHgA3/rWt4JNSONBAM8X+SPWdRJdHqDswR380iJWDSl6iNpmsbgBlaOYN8b1tHirhxbpXVFd+hIX+LzJnutQn3XGcsrQO2XG5zSsY3xatp1Un5XJWBTsfKcWzVwr1EOYBIlID+FavrGJJa3MVDq1ho4FXmP5euBxrDbNvJoDHPtm3XSuE96BmyfYDQArE3TogFvOqmecaEa69czjWPFgFQ0upTpBMcFIgzVSmxR16r0BhJS2wyA9Gog0qEKDUQh+5CZNR/NNHT+Ww5aCq/oW4DJ/pOgLXn5Mp9FJoPF4DGdnZ9BoNKBarcJwOITj4+NguGMQgB5datGv0RR774XlFMRwHeWyJ2Bp8XaqA0XLzSPr+d88kIbP6b912APe76xANv8bf3sCDNK3sbrSvGi/ewPdvCz6tzTWrCA6bws8Bg8nQyW6LBvHkj+YXrOf8B/qQJz4pbtBiiIPH3plcJ7+w3dau5Upq2I2fWo+CIsvuWygddUmpTQ5J/GiNXbyykTrvdSGGPi3xhnnu5iczysvrb5NsY0sX4fSKT2X3nP+T+U7q31jdHjhbRdN92FwdDKZQJZlcHJyEhY70Mn6FN2i0WXxB+XRGD9aQRUr3xg0Xvf4WJ6yPLaQpdO5TErJPwWa/vT0kaVbtfwp3Wi77+zswHw+D4u56EIn6rNp5Uo0cHuU97G33Wg/0Hys/Gj7UftSotFTJw9tHHwcF/U9eDl4x/TW1hYMBgP19C16ty/mEyu7KE9bwHosFgtot9uwu7sL+/v7MBqNoqdheXXeOuuR1y6gyGNfllWXsvLK6xfS39zHQSDPYkzh5OQEZrMZ9Ho9aLfbYZIW7Sp+76w0LmP2V9mQ+pieBmfpFOl5Ku9Tu9f7vWabeXg+VsYmZIuG6zh+NOSxobz2QSry+LEpkORAKl3czlgHUto5b52scvLaEnmg2ZQpbeyxMThWJmPpjtgYyliBL0HbbWDduZUCy4FeByOvI1AUK8/j1EvHocTgmVTTHDc60UQDTBRXoaTKRJ4x4REuo9Go0Cq3mADVhLlnjMznc6jVatBoNC7VnxuImKeULz1mKaU+aFxS+tGIRWO1VquJQYc88AR4OBqNBtRqtZV0i8UiHD/D89ja2oLhcAij0WilXVJp9vCjZlhd5VjkvFhUhlr5cAVP+RNXp2IfPX78GH70ox+Fvvwf/+N/wGeffQYnJyeXystDc9HAyIuI2E4VeocnvXdOSsv/jhlE3jZGGUPHk3dnI7ddsC40X/qP2yfrGoc80Ik7wTFAqd2pqP2W8tXe8/HG62/1rxW45fTydFtbW1CtVqFer4f7xXiZXLfg0Vp04QwN1NJ6WHQjfXQVO/2W7l60QHdoVqtV6HQ6kGUZTCaTS/fllgEvH3qDFfS4XxpEksr05K/lURZ44MjTtrGAF9ad7lblPDabzVQ72UMz5ztel7x55wEPhtOxmWXZpV1AVrAH2wzHJb9zGPOnv/FvaZExlz84OcMDCvRvfmKJtMOM0glg6wtJdvGyrfQpSP2WjtUUGY3feoBB5vF4vPIc+4vugosB+4/a2xx4Mg23JZBeqvv4btfYKT+SLpCCO9r49ECyExDUX4jtxOc2TWrQjI9TLYillW3Vm+pL2p64s8qiVbPnKT04KXB0dATT6RS++c1vQq1Wg6985StwfHwMn332GVSr1Ut+7XK5DJNljUZDpSEFXB8U1d/I37ydtBM7JP8/lRfot6nfWfKe04npqY+m7WKrVCrQbDbDAtkicrMsSOUvl0s4OzuDra0t+N73vgfHx8fw4x//GAD0Y4U1G9gzNmJ97O2PTaJMevLw6SZiJNh3yKv0eq9erweDwQD+8i//Eur1ejh968aNGzAcDuHs7Cya/3XoUzwZo16vw2w2u6TzAXS+pEd5W7qGjgP0q6Sr0lL0rSc+qY0rHmO6Clzl+HmJNMTihxZ/5SmL+kaSPbwpePwe+rdlYxehgZe/Dn0o5bcyGSsd92k1TJ7GkJwIj2HtzTeGGKNLQtMyWvLQ4E1rBaD4+5RgEc/fw2wxwy1WLgYfY0EJq9xNDZSyYRnQ+J4LGmxTaQLC62hrARNP4CclIErLkwIRGi08qCAFvmLwBD6ksuh72t487xRY/Ck52rEgRJl8rSlZScFpAZZNjTNefkwOFgU3lum/+XwOjUYDdnZ2oNFohN2wo9EIHj9+HI4s48f0pwY889TrKoyl1DK1uqXkQ4OyZfY5/T9Gk8WDKYGk1HdF0qaCO62ptloM1J6M1UNzXr06wuov75H/lFbpb7rbD/PW7DArCMZ5kOtMywanO8nyBkXzAsv09ENMv19VkIJDs5li0HSmlIbySCxv/IbybJZlYTehR/5I/Mlp3jQoj2t2sQbLN/XavfhM+i3JKMrrscCaFTTQaPLIDakcjdYYHVYbW3RJfSXpB95W+IznPRgMYLm8OE4UF8dI7SDRLfWH5INI+Wk2piRHU3wRLotj9GtpvHJV+50CukDGe/KO5k/xdxJ9tH29toXWHrS9JZ1p+RJZloUTiPCKLnraBeaF98SibYQTfKh/Oc9JdEp19vrG1vineXv0vyWPuK7W6JLK1NJZ5fGyrLERk1cIOnEuTdp4dbk1/orYLrSPcNE13kncbDbhlVdegXq9Dg8fPoTlchl2/Q4GA7V8j0yRZLqGVFmSxy+8DtBsgjJka5424QsoeJ/N53PodrthQUqWZSvXlWAaT53yoqidjnwPcLHQgC6a8l5zmEqDx87mecfsLp7WQkxevIhjZxPwyqt1IFam9d6rq6RvUuxDnq/XD/fCw9+W7ecdP15o487j13jHqgav/vTkr6Wpik///x9Yq0sp+AplC9TgjwGDDl5o9/PkHcyaMSrtYNACAOsEH4AYsIkdqWM5KNo3MTo0oIOzv78Pi8UC+v1+LqeL0209Kwt5jRgpIJDCx7VaDarVati9QzGfz8NdstpOGsuxsZzovJjP5ysr3GKTJtwhjn0jpeffcLmi3enKHbe8K8M1SIrCky8eO8mNQMkojOXp4Vnrvluef1FF5oV3vKUas95+lYJ6AABf+tKX4Dd+4zfCgpK//du/hXv37kGtVoN2ux2OCB0MBkkBPE2XXFess/8tI0q66y0lUElhtbcWJNRkTqwsmgb7WqoHDYTy93RRxrrHH+4EWS6XybsstQCGtDiB18cyslPbOobpdAqDwQAqlUoIaiDouJfkLuoUvruQHinG89Oc+tgKa+tbmn+v14PF4uKuXDy2r0xI/ajZYXRykKfhO2JR13knxjeBmF2aJy/NtqZ3fVHwgHi1Wr10n3y9Xg/2obTr9LqCy1UtEG8B0+IuL8zXkut8kTH93yNjaPuinbZcLmE6narf07qtM1iN+Uq73rSJNY8OLHu3OcoE2paTyQTu3bsX6Oan2CDd1n3HGjAobdnhUvAbkdpnks9XBDGfnI6bVBuS540nG6E8Qb6WvqPjR7JnKB9qbWiNwZi+89z5i//TEyzwW9pe+Pd0OoWf/exnoT54zchsNgtyF0/UqNVq8MYbb8B0OoXHjx+He2Ut2iV/RdqJYrUPIqaHMY1UJh3/tD2oDVoEqX5iTO7S/ozlifZFvV5fsVmwLz100fYoAxLd2O64Q/DTTz+Fra0tePvtt6HdbsM3v/lNmEwmcOvWrVD/H/3oR/Dee++t1BXp9QJ5lE5Qr1NWlYVN6M7Ys7LyjqVHf4TyLI9RnZ6ehn6v1+tw48aN8A53idOd8Xlo2RTq9Tp0Op3wu9frwXA4jH7niRPy9HSscHtC09uSftM2VXjjEVI56+TxdWPTtL+o7UThjV9KuoO+K0t+b8JnlMZAmXVI9R/zoAxet75XJ2M5EV5whilj8MQM9Ng3klGbWo4Fnq9m7HjqYQVePQ5ajDYtEEr/1uojIda2jUYjBDF5HT0OyVUiVcHS4EsewUnbRdtBLAWWeB60b/MezSFB4iXqyOE/z1EePF/aRtoYSD2qnNLloYPSoiE23mg6akhbO11p4MKTJ7YxpZW3HQ9w0OCNVAbP1+KTdY3Xqx7ztO1wlWa1WoXxeAwPHjwIbXh6ehpWyksLX1KNjJixHoP2zXVxxlLtB87TlgOTomO9tHBHS2tHSxZYfKDJt5S0XtD29PKldqyTtzwNXjvMm48HNC2dMLXGhof/pPz5hKOUl5Yft8OkvsK+xBXluFOfB1+LjvvUtrf61evApMq9vD4JQLq8lcYy9rE0UWT1r5cP8H/kVzx5gQZVtePayrT5JKQ6pR65o9nLkoyU7ESpfV8Evef1CzSZhX1Bj1OP5UPziNl6Gr3amKd2Jk8vyTXJ/7QQk83tdhu2traC/UYnFimfUJlJF9VI45PrUKncMlDUduF08nGhjaUUnpB8tRQZ6qmPlSf3o/K0Ge1XtPW73W7YoVitVmF7exsmk8nKggv8O3ZtUBm8IfWbZg94eFKTHanQxnssXUqeqflI9q3GFx568/hwFl1WWZim2+1Cu90OPMY3wvBd215oevVFwVXr8E0C5QxdaIbPEVRH4caM6XQqntJz1ZB09Ww2C7artIioCP2WXWrpK0mmSfa+FluLlR3Di8zjm6a9iO9xHcaGZVdxWLFd/K3JCa+tlYqYfvXYhUX7QfJ/YvTy74rGRjy6nSMWy4tOxnLDnBp/KSgirLwoIgzLDlxpTnGKw5lKRyxYvGnBmWUZdDqdsKOMQwseaOmvGyRjg48XNDpoIA2fS8IBDRa6M0kzFuh3+Dff6ZkyMaopBAzwSfxE7xqczWYrddR4TnsW40/clQAQ30nL+0QCfZcalLJABXa9XgcACHfASXc1a0fbciMc+xdpjQWmODh/UEjBvOti0F8FHTj+Go0GHB8fww9+8IPwDulBJ+hFgeZcXCWs/pXkKX+fWoeYMSWlp6d+1Gq1cESo51teDpfdFh0x480D/Bb1jWcXHd6tOplM3G3sDbZSGqRAIv6Pskhz2lP6nu944fRkWbYyycXpQLlpGeBUNuNuGn5XsJdm1HHSrlFsj+3tbWi32yFgzGlZN1Im6i0+5zqYf2ehTJ1tlUEnNvg9lnQCPk/eCD7WkQ8nkwlUKpVwTxjlR34fKZ+cTbUPYrR65FFe/tOCxh6bUAqe0W+pzeShb1N60aoj1keSkTwPatfRO025/NHKKkq/RLsWMOHl1+t1WC79R8drdGAZN2/ehGazCd1uF0ajUdhpgzvRaHr8Bm10PHGI5015i/MSbYeYryPxOP6TjsfldFB6rLbA9o/ZKeh78PLwuSS3NX/U6rs8MkmKO0nPPbu8ad/xMpfLi0nWJ0+eQLvdhjt37kCr1YJWqwXHx8dwenoa6jcej4MN4a2zJwAYswEtfqD1p/rJgub3liUb8uSn9bcmNyQdgXYcjUtIsOTpJkDLxZ28jx49gslkAqenp5doxztvd3d3oV6vw2AwMOOLXI5I7Up/X0e/8LphE+2CvFur1cSFo5xfZ7MZnJycrMTFrjvwPlzk+9lsVsp4tHicp/PEyfJ8R+XRdYidfZHxIskxL+9KKEt+l60TvXQU7SPvWMvrk8ZiPmXiksVCAw+WY0CDVSkCjk8IeBw6L7Nqjk8sLYXlJEhOv2Uox2DVXXqvtUPeYJaUxqJdoktLj0f6HB4ehlV+6MjgN8PhcMUB1lZMXQejmUJzuhuNBgCsBipxElZyHHh+WrtKBrT0mz7nx9dpdEvl8bSWHKCTr5KDQOvtPRI4RjMPhkjgwQ4pPz6WU9rH8472K67Up3RJ/UPbi9OqOfb4HQ8Ua7R4630VxoxHHq2LLqntsb0wYAcAK31ZhCZJblv8WgTa+PbojFjaPPKZGjNan3vyLRpIipWBR1FjGePxeGV1ryXz8pTH0+JYLZMPJNlJg3saD2j0lEkf5lOv1y/tBpTSSc84PbgQ5uDgADqdDty4cQO63S50u12YTCYrk+1Yf1o2t/uo7avpJw0e24nXicuDLMtCUIMv0ikKj7y19Kn0DOnDYCn2T4xnLFrWpQNifM11tFdW5e0b7F9qQ+KxxdJ9hZROyUeIPdPg4XOrT2m/xSYMNmXve3mI9zNtbysYgHWVxovXb+Q8KPEnpamITrZsRA+tnD5MZ+kbaRLWY4Pwb3ChY6/Xg/F4DLdv34bxeAynp6cAACsBbo1+viiS29XeMeCFJT+Kjk2urzFPLS0P6FtpLblsyZlUaPrck6dEp9Qm+LxarcJisYCTk5NQ1ng8vnRikEVnrB4afVr9JB88tSzNv8zbJym2Xpl2Iean5c3LkeRKyphK8cGsdtW+pTYk/65SqcD29na4SqPZbK7kh7IMd9FaV4FY9dLqUiby0nHdsM5YCPVvarUadDqd0K+j0ejSscXL5fLSIowiev8qwE94Qf+ALpjJG7/k/kVqmxSVkQBXEzv7osDql3X7h7wcTd6XMR65vtJsq5itHkOMVkvXevwZzf7J20Zae3hiFx66Y98iUr+N2QYrk7EoCPmdBJKTjcahFijTKsIn2rQVsdIqRk+jFzUyUxpYcjI1GqRz6i1arLxi32j0SuCDQqtTjD4+QJvNJrTbbbh582aYpByNRisrt+fzeVi5jA6Rtnq1bGj94OkXaTV+lmXQarXCLlh8PhwOL91bwgV2jBbPqje+Ct66wznm2NK6affPAMg7m3lAyHIQKK95FQE+8x5xzfnZEpKpd7FoPCo5hnSlo+cYQc5f2pEuNMCg5YXPab/xZxzSOJR+pwafPM+kctYNLsdoW21tba1MxvIJnNQy+DPad9Zx1pSuvMjTruvqC43/LB7j8oLLlzKCTPTver0Oe3t7Yaw9e/YMRqPRyt1UGu0pepXWxyOzUurFf0tGrHbfPKaTZA3P3yOLPciyi8UP7XY7LNhK3YmJ/6MurFarcOvWLbhz5w587Wtfgw8//BB+/vOfQ7fbvTQZSxeEcR1F244uruF9TcvPC/49bUtcFECDGmXf84jQ9Au38y3Hhy9eoIEXqbxYfpwWS5dJ9oPmtMfqw+vstQHygNs5qIswEEvTSeOa0iKN2zwOqdU33n4rOi7KgsUzNA3Aqv1FeRhlpqazYjzh8UOQTqvN6U5t7+642HOPbtbSeb6jfoq1UFMb7/RdpVKBSqUCJycnUK/X4dd+7ddgMpnA+++/DwAXQe7pdGrabdhuuDNNGldF7A0pfdG4hSSvPD48z0OKT3DaeKxAgmRbaO+0evCy+HOuk7W0vB70e54nTnAdHx+H58hTks9Gv+W+kkeucFpQjgDIdz3jP6uuUp70/6K8hvDWL4aUPGJyh+s2GrewbFDNXrdoK8v3QLub01GpVKDT6UCj0YB2ux0WgyLq9TosFouVe+QxDz5Jx8dfEf+9THja94sCyquNRgN2dnZCP56cnFyajNVs55gvBnA1/S2VSWOktVpN3IgTs2MkfUdlpGZz4LeW7eX11VPjV1c13j7vwH73yI6y9CDmlWLXe+0nKa3mxxbRx5Y+SGlLb3r6nWSrWPnzcjzt46FDQxH+iH0rleu+MzbFwExhDI9ikZ6XHfiI5SF1dFkClzNVHqOuKA1FwNsiyzI4ODiAvb09qNVqMJ/P4ezsLASQxuMxnJ+fw3g8Nuu6ruCiBm+7YxC22WxCrVZb6TekeTabwXA4hCx7vmMWQF98wBEbR95gDebFgx3euvJAkzXutDxjR/nFgoG0brF7sax8Ut9560dlI1dOdPFBHkh9xZ9R/vOWhel436TKwc8TpAAUPd4Od8pZ90UVLf86oWjQpYyguzcgXATS+Nra2oKdnR31uDMM1MV2TGAb8KCLZvesA8vlcmXyRgoiIY38qHkOjyMTM/Dz9B+2Mx2PUlkaz1YqFWi323D79m34zne+A1mWQbfbhcFgAJPJJAQENH6L2Vg0YOqBVgdqa1v54VUGZdvBXqQGUnkAQ7vz3Juf9VujNy/vbQISXVtbW9BqtVbkh4VUu8ir87Vvs+xiAWKtVoN+v69OdGGf46I06b7bmFOPz/A4V8zLoi+2sImW7QlS0/aSfB7uv1He1nay4HscE1rZGp1FcV3Gg6f9pbS87Tz14bv0kU/a7falhQ5lI9aH/OhxCo3fpHTcH9H0F07eoy/O/QLr2xQbQAJdQMD1gySrPWOZ1l1aLMXz4nXEY7P5NzT9dDotHNDF73HxtlYXSUbmtcs9geDPi38n8U7MbvDUnV/jkxrvtNDr9eAP//APodlsQqfTgU6nAwcHB/DkyRMAuFjYP51OodVqqT47f1bmxMNLlAvsm2q1GmJFHO12G2q1GpyenoZTBK2Y+YvUz3RBAfqdVAbhQpjUeIslNyVouuzzJA+/CIjFkctC6vwW/ztls4/Xf8mDPLGKWLo8OvWqx9h1GedJl3N6mEialJDAjW/6jP9Nn1mC00tbCqygWUo5qUxpBf+s9vIYh1KwoAhdXPFl2cVdsfv7+wBwsZOs3+8HpTqdTqHX613KgytRr7BIGUxanVODgRgYxh1zaDRgPvP5HEajETQajZXJWHT+PWWnTkTwYBDPC8eOtduVP+Ntm8fYS91xKtHBHfQYHSlKwfPOCrRxOikN2skB2tjl4AE62oaUBvrPG8gCWN0BS+VrEaPeKzO9wZVNggc8+ErNPDtii9CxrjxigXjK70VoSQkgFw0yxZ579dxisYBqtQrtdnvlFAQ6vvFYv5js0AL3kp6WHEj6LmW88LS4iAVPWeBOAr7n9xRZdfPaYZR2r52GY4/rLesbXi/+vtFowP7+Pnz5y1+Gx48fw8HBAfziF7+A2WwG9Xo9ev+cZzylBK61QDHPk6bH59LOjzICb5JuitU79l6z7Sj9qYESms/nDbRdcDEj1ztSu3P5UVRmxN5l2cUO9larFU644e/xfzqG8UhZahtp9pRGh/QtT+vhG0qjNyDn4dWYHUXvHk0dcynwBiWLlpeqazli9kisbK4fYjpM4sl6vQ6z2cycjC2zb1LiBJq/6m1nzSZH3Y/H3tPnKf4ntkuK/0DbUhoDNE8PvONXq1eWZWECQNJZSAvec4i2VGofUF6nbabVR5INXrmk1d9rh2n55skvD2J9X+Z45OVq7c/L1xbxWZDoHo1G8OMf/xgajQbcuHED9vf34datW9Dr9SDLsrCzv9lsrnxLdYlUD4nuTSGPz+/p86JYF9/kAV2MwuVOs9mEZrMJ5+fnl+wF6fSeGGI6cZNYLpcrC/Toc/T/ME0qUq+RsvQPfeaBZR/y95bP/xIXWJcMS7FvUmw1+t76LtVGShm7ZbSVp86SfI8tKpXyS4kned5p6TQb7CrA6V+ZjE1x3KVvyqhUrIE/T8KrDAMOn/O/vX2Jd6LxfCxYR0l86Utfglu3bsH+/n64KzbLMtje3g5p6bEbABCOJ44pPq3+6+QDj5DrdrvBgcf3W1tbIZgP8Pyo2kajAVmWwXA4FCfWeFleY4D2I5av5c0FX+y4QP6t9E67u44HSejzvIahdScqLdMb4MozSRwbZ3Rs8XpyI1pysGl70jbnAScvYoESqb3493mwTke9THCljO00Ho/DszJ36m9qV6SE69gfXK97ZENe20NLi8G16XQKtVoNXn/9ddjd3YVbt26Fb/78z/98ZSFRqrOGQTzkNzruPAECT5r5fA61Wg22t7dhZ2cH9vf34enTp3B2drZy5G+WZSs7f/HaANRV3GD11i9PcJIfUbW7uwuvvfYaHB8fQ6/Xg+Pj45WxSAPm/L47zBsDqxS4C2hnZwfeeust+PDDDwHg4qgsPKoQ0/AgAQJlg3Z0PEXqce+ajJZ4fhPI4xNoaeg99nTSnwe2eV2L6BDJ+YqlvS5YLBYrsgbrgOMzthhk3ZAWFfIxgZOus9kMXn31Vdjb24MHDx7AYDAIR73jRLPlh1C7iMPyi/g7r3wtarfE9BeeqlD0lA1pwsBLuyRjUvxHD6hdRfWdZG9J3wLod7lqmM/n8PTp03CvMsCFvuC8gzTQI/q97cbb3dte3viGJbd42fyIYYDL48Sij5/2otFojSV6xPNyubrLSxtPkr2t0aD5/VIeki0Qg+UT8XJofbw+gZcGz7jQvqV/e9pPKi8vrsLPo+MgxTb18jd/HisjVQbQ/OgiSX4az+3bt2F/fx+ePHkC5+fnMBwO1f6lMQV8npenPs+w4jabsqkk2T4ej+Gzzz6DVqsFOzs70Gq1oNlswmuvvQaTyQQePHiw4gfRvK5Tv3rb0ZPOk0/K+ORxN+vb2H3xGKfLW9ey7a2XkMHt47Ih8YAWc7XszBSb4jpCi3NIfI/xbYR1ypxWRmpfblK+WzRI9bw0GZsq1DVBVlYwPy/yGh9lBJ84A2qOREqeWlprUFvl5S3bCpgAXByrcXh4CLVabYU3qtXqyrFEPE/PKtMiPFRGQI8Dg4qTySQEh7e2tqDRaIj3zqGjqAV4NYVv/ab0We/4e09QSgK2o5SvZtiUqQjzjBOr/zx5FDEWY0fpWeXEyk5ZgRRL55Fp2vca/xV1DjbpXFBjSnPyrTFRBHnlbxntw8duKh3etF49lVKuZPwW0R9UfuERoXt7e3Dnzp2wY4aehECPwUsBl//evpSCOFIaHKvVahU6nQ7cvHkz3L2K9x1LbUGPjaKyxWo3zbbhASH+TsqD8jZOJuOd63zltLSQSXOGsC3a7TZUq1UYjUYwn89X7ini498ToPfqhizLXA5WmQGzok6+ZZ/GbEApH+wz5At+TDFNH+PvooG0FPqvApQ+605N3sceeydmA3htHa9diukXiwU0m03Y29uDR48erQSxeJ977BTJV43J0aL+g0aDRaeVnxUIzGurU/nP08Tky7rGAy+XBkF5uV7+lPwQmq7X663oZ+lYdCk4i89Tg0JlBXlivKXxfWrZNH9p3HjlvyZ7rN16mtySyrLot/LQkJqO82qevFIQa5sYNPsqj20fiycUoTOWr/ebWJwiFXz8e2xuXq6WrzS2sTzuE6AtPp1OoVqtwvb2NtTrdahWqzAej8OCS2ks0vIs+/xFRZl2spX3poF+Al5v1mw2odVqQbVahWq1Cs1mEx49ehTSp/JmDHl9Bs2OT/me65cU+8eTrmiMyrI1Uusae3eVPGihLBvnqmG1cxn1o/yr2UdaOXmumpHKuw6gNGl0aYvVLfvTC8u38tg4ZcYJPLaUeExx3sItw8iDVCPhKoTDdaIvRsu6B6h0H2alUlmZiMVdo/R+2Nhq8HWtDMnjkODfuMuXYjAYXLpj78aNG/BP/sk/gQcPHsD//t//O9R5e3s77JS9KkOYrzyJCTytvbhw9QT5tDKkvJFWCr7aOQZvXbygQXXehlxuxeQgDfzEEBsrUnDLoh/viKL0eBHr57zj60VG3npoAdOyQfvbi5RgTOr3sW84NB2m/c4TaJDSz+dz6Pf7sL+/D51OB37+85/DT37yE3j8+DEAXNzftLW1pd4pi7LCai/ckYKTo+sYEzs7O3D37t1w9PJ4PIbJZBJ2peHufdxFSuUbTlKiwcx3sHEUDZIgPePxONBZqVSg1WqJxytL3yO/U7nYarXg7t278C/+xb+A2WwG7733HvzFX/wF/PCHPwQAgP39fRiPxzAajUT9LAXAPXXBdkVe0MahV4YDrC7AWZctsQ4+1E6zwKssTk5OAADCeEJe5PRwRylP39Dv6Xc4FtY1FvNiuVyu0MZBbRP+nAfsynQwywCXPRxSkJm2A7WlYrpCm1C6KuC949PpNCwOAdB3/9K2kGwHyic0jRWY5yg7UM/tYysYxfvVC9r3KD8+/PDDENCmi4ykbwHy+ZxWW6Xadyl2VV5I40Kz8SS56u2TWq0GOzs7MBqN4Pz8XDzGVbIVJD7B/sTTtKgfGAtoSvaXpWvpyQ20DC0PbVG19IzrMMkHTIkXcT+Z0ol2gXaKkjQhQW2+TUKKJXBY7WJ9i7pFutKB559aXh4Zaclviul0Cs+ePYPj42P49NNPw3Nq12r9JNlHGr1XbeN8XiZ3ioLrLoALX+vo6AhqtRp0Op3wHNtrOp1eOhGobN3tRdE+5PatpA+s8qgMiZ2a5x2/mg5cF7yx+qscM5IefDl+L8DlMuc5jANIC/H5KSKWXSHZEpuC5n9q8RL6np7ipMVCUJZVq9VL5UynU/H6kLx6LRajvwqsRBK9k3t5YE2OlJFvzMkro6y88AhaKeCgtVkZ7SXl7VEE2u9arQbNZhOq1WqYQFoul2EQ4ZFc0+l05ZhiroBTyufwCClv2/G8aPtsb29Dp9OB0WgU7vHAfPf29kJdMcCCK9twQle7zyDmMHjqFOP/dcEbmIjRKuXrGTeefk2RA1ifWABDkjtWW6QEXaz21N6ntEdqsCWVtzzG9HUJCluyDZEyjng/WPVMDUCkIsWpSDX0vIEM2h6eulGarUBeniAm7ROr33F3ZKVSgdlsFhbf0LQx49iye3geZfQ3zQedg3q9DvV6HWq1WjD0MUDKF3vEApE0Tarz7x336JxPJhORviy7WByFAUer3bANcJdwv9+H0WgEvV4Pjo6OYHd3F5rN5srxzZxezR7T0vLn/O5bDzzyyPOd9L4spzrPN8jveEIIHmsZ+yZV9qbaeZsKuHjlnjc/Kx9PuqKQ7rPV6MDfaAvj+PWAtoumL/F/rY3XHay0dBZPh/9zGePJV5PJWhuk1jlVh3ny4O8kn6cMvY4TUXgHaqvVEsuTwCfjNH+M5hGbFOHPUv1czzepcpjbYjE/w5sn9ZlqtVqYMKBleeilfM77wqsX89pUWlzEwz+xdzFbykqXB5x3tHFclt9Xlv1KaYqNRf6t5pt79AOFN12ROmvtj4tHsuzinlhM57nKy0sTj1tsyg+3xq82PrRYDP3musQRioD3LV6XgjtlpZMFuaxct42zSWgxGI2/y6h3nrhPqk4owrNl6QYPvHZsGXlpaegzS3/mQaxvvP3ubQfNvqVjFuMFmt5OpSlPzEIqV6PfSiPVgY5fTVZhG1Bo1y5KdmVqv1B4+KmoLailSZqMzQuPM2c5Bd4yvEZIkXK8iqBocKuIUR5jklSFIwlDnsft27fhK1/5CoxGIzg9PQ1p8O41AIDRaAQPHjwIAVZcGU7zuypDggsaOvipQ5llGfz9v//34fvf/35oy6dPn4YJ5qdPn8Lv//7vw2g0AgCATqcDBwcHK0KI3+/K4e2fmPLypPXCw/feMSzRohna0s4zjZaUe5JSghw8nbTSWypznbzsVQT8LkaeJrbbDd9tygiU6lVmgCKlfG//eQKpKeXid2WgqF6N7daRfq+L771BlNRvkL+tXej1eh06nU5YUIMTm95xuI5gmwY8Jl+azKS04N/L5XIlHd0Rm2VZWGwkGblWoESDJ+1oNIKjo6NQLvLfbDaDarUKt27dgtlsBmdnZ5Blq3cwosyj7T+dTuHx48fhHlhvQJoHYjXHiLcBpsXV65hPkVMJpDLpM9pOHv3En62TNymfLRYLODw8hEajAQCgTubxtpfqLo13rq+88sizK6hIG8W+8+arTXDEghXrCNThMeIYPLbaB8fCjRs3oNlswpMnT2A2m0Gz2SyNnqL8G7N1UmwC6Te3HbW/tTw1/cbfFQlIlA0poIY8rOlcWh9qg8T8GJR/qKfH4zFUKhWo1+swm81UWbNYLILP5kWWPT8xCWVv3vGVGqzkfCr5U7E8U2ylmHxBvsbf9Xo9yHs85ULbIYvfSW03mUxEv06S1VTnSzogFvtA/ewdM1TXxvqd2gOx4Ke371J8/3WgqL1Q5FtsT2kccNtAshWksSPFMih/UmjHK+alm74DgLBYDWNkW1tb4QQFhDQ5d9VxibIhxR6/SDg6OoKTkxOo1+tBdqDdTO19inXYeRo2IQNoGq5DrMV83riVdIKA91tNpniwybhaHpTpF6b2c8p360Ae/1z6hspotC247SKd+oibua4TNPq1fqPyCRfm4ampNK4fO7kCn0s2n6eNUnVfWb5Taj7qMcXrHgRWo0jGUZnIE9S18shLpyXsuEKNtZfm/HvaMkVQak4nDZrie7z/AAcMnZjlQbN1Gg9efqaGHwpI3NVL6atUKtButwHgQpC0Wi2o1WrhyL3xeLxyhyydcMadtFhOkckSrU4p+RUJpEvlcOMkpX85H9P+0PhZC8pK9Fp0a2nzprPGpJWnVi+Pk6WVze9v8hjrvM21fpSeawHC62x4AuSfTEwJqPLyYmM4j1GI31l8nqLfNhngoXlbgTPruxRI8gzl9WAwgMFgEO5okoJ7ecpFHbiONqRGK+oaPKIYj8n35mPxpsUfEg96+BjbuN1uQ61Wg8ViEe5jx0nWvb09qNfr0G63gz2BwSotOAFwMbn7ySefwHw+h16vFyZxcRcCp523hRW49o6lmL706Atse9oHmq64TvKW81Oz2QyLG8bjcZh4x37kx5bxOuUZO1wX5dFNV9GmHv0Sk/XWGLXyjtU3trMV+7TRaMB4PIbT01NotVrQaDTg2bNnoQwcix5IssniC56WT7hY/GXpvjy8QG1+TzC1DH7j+aX6B9KzGF3ecZp3HHvLB4CwSAdg9QhXzvuSPk+VC5aesNJ5QeV/jD5pzEu8EMtPsnuseqFOxYVPMUhxEDpGeFppjKbydYwWjbaYXU3pkuDxn7S0Fn3abw/ytF2Mz6V0Zfo6kv6m/ByzsTX9l9f384wfK3+Lzy1b3Esf1TvXyS6kSPFJvyhAWxgnMyxekOR4ETvZ095F+iTPt5Lv6Y2RafLbssUsmmMxupSx/hL5EGu7dcapeBlWvJPaWRZNksznPoNGQ0pMIi889Ft2meWD43saB8I6oU2JC/swLbcXMV9aBi23qP1d5recd8XJ2BdNOGya3jxBCwoU+p570IoaKLHBk+eOkOl0einPyWQCZ2dnK2mm0ykcHR2tDB68Hypv2XmQ0jdo8ODK3sFgcElJS2eX1+t1+MY3vgHb29vm/abdbhfG43HYvbOO1S9c+GXZ6qoSS2nw77nwks68T6WLC0ttPHn7regdw1JZHoebppH6XFJEHkMXDUMpf23nk2WI0nsUqYKM9d2m7w/S8KLpIwuSoaD9zgNqGBZ14i1aYzRI46loENgap1r+KcEH/L7RaECWZfDw4UNoNBpwenp6adcMH4cpAVx+f5210z4VqLsmkwn0+/2wc217exuq1Srcu3dP/Ib+z51+rwFLHVr8PiZbqTwajUbQbrfh1VdfDd90u13odruQZRe7kN55550wEXt6ehp25MXuRj45OYE//uM/hslkAt1uF0ajEVSr1ZXFUQCwErSX6I4FmLWAGy5Si8n9PIFJdGCQ7rwoyoPWWMM+wn46PDyEGzduwI0bN6Df78Mnn3wCi8UCarVa2D27LrmP/SjtLLluKMN5XCdidyHPZjNoNBrQbrfh+PgYHj58CL/5m78Jh4eH8Mknn4R7oZfL5cpEmcc2wbQePUXtbWknRIx3PUjx1TiPa7v6uEzw2qm83JgtQOu/iaCOlL8UOKG05L0jG4PZ9XodGo1GuF6mWq2uyHmvXWzVJSa/y5oMyZtHig+Wh4bFYgHT6RT6/b67HeliUcwTJ3M5f6Cs8PpRmEayta04jidgus6ApybTrB2Z3GbjsYXrrks4UnQAvYKDBq5jJ/pQP0lqH8yHLqi36NImWpB3ub7U+pH+r72PAW0urndelP734vNWHwTvt/l8DvV6XfUxvgigNp81biXQU+J4TBQnemg5aJMiLLuI6y+Pr0z/LhKrWTeuK13XEXxuR4LXZtd2gko6aJN9FIuNU3CbnZ/AJtURF5688sorl07GfPToUVjEi3kAwKUF9Zv0YWLwli9OxubNLPaN1FkpQUwLnm89jpCnrtpA4AK2KCylWyazFW33arUKs9kMTk5OwnM8EooKjzyBRoTHOdJ+x76nAgGPhZHa/s0334Rf//Vfh69//evwyiuvhIBKvV6H0WgEP/jBD+DTTz+9FNzFyVuusD3g/ZzXofKWS/sJjRGtPXnalMCQ9VsqS/o7LyzHPIXP6LcpPJfK/xp/Ux7F/vU4iimKPNYu2gTYVSvAq4bHYeL9IY1Rrh9j/ImyC//HADSfAEyd7JGeeQJhWFYRBzI2vlKM01j7ZVkWgoDL5RKOj4/hpz/9KZyensLx8TFMp9PQth66rT4tog+9GI1GcHx8LOrjGPIElrV+tgLd+BzvDz0/Pw/P5vN5mKCLOa1cJ+FELQbqMBDGj7vUxkWKbNV0CganpTKK6gdaV89RdakoqqcQlI+azWZw0PA+NDxpBI+klILR2rO89Hr6VEq/DlhBV4nnOe8WpSvP95725+OdBriq1WrU7qPf0b+1yQkur+hvKtNj9bDqZEErP5beC8oPRXWH5rPGJgK84LqZBl5QrtOAk+cI4lhdpO/4hAQec48LcfBkhVh+nBYck9LCXI89Hcvf+00sL9R9qD+1CTr+W/K5NL9N8itSbU1NjnU6nZUrCHBht7dNqC0MAJcWY8S+5TTi87y2LG9L2o48VuKJa9A8AS7v+rdQhj7bhA3Ly+O60MtrvN80f56XJ/G1ZD9KvyW7xfKHJD2PPJu66FzSidaYve54kWgtCskPAYhfcea1Pa4TYuNASq+9pwt7+FiVfEc6Lqgd4BlvqWPpReqTzwvy2FtlgMteWhbls1i8b910WjRoOsrSoSljeblcXXgbszkBLja9bW9vrzybz+fQ7XYv+cr0t+arWm2bYtuU0UeuydirAnc6tQbdlPHpZTStYz4PwpjXF48gm0wm8PTpUwB4Psgortv55wg6eDFwi84br8M3vvEN+Nf/+l+H3+PxGGazGdy+fRuePHkC/+bf/Bt4/PjxyjfUgaS87HHoLGcsT9AiBm7EAIC6E4imk1Ywa/TGAnDW/aYarAvPNXgDgTHwlfVSGbzfY3RJDhwtTzNGPU4pHZu8DCnYlAdS0PMl0sH7xBN4r1arUKlUVu7hQzmVEkTCciyHhAeGvXni357v6C5NyUGN6eQUHka5TwOsT548gbOzs7CoZrlcPd2B1ydFZmvpykS/34fHjx8H+rBueOyvVb4kD2I8mGqT0TLq9TosFgs4Pj4OOqXRaECj0YDhcGjKFaq7MCCJk314WkUKX3BH3uJVWmdMh5MP9L7dmH7AZym8gHnjCtKy5O66+HF7extarRYsl8vQp5VKBTqdDgwGg/BMCkp66ZZsN3ynjVv828p3U5DoxIUKaEdvOgguwdt2AKt8SRc8Wum0Z1QO0IkmTpOUXqJVC3xqdfLqrnX1jRWwkey4lPGD35RBu+RP4HOU0XgCET9W1CNvJfCdg1n2fDIWF8Zsb2+HEy/4XaZUz1k04AQh+nb4zAq0XQVqtRpUq9Ww0IXLD4D4pJSkn7gujQWurdMHtG+zLIP9/X1oNBownU5hPB7DkydPIMuyFX0X4xW8xgDv3ZQm0Pk39H9eTup4ioHGG2KyyoJmZ3BY/X0deBahyVnaD/xvapvH5LS0y1jje0+7SnIO+5WOG2kBkQZrEZH0m9cZy6aLc1HeSnriRcWLTr8X1sk9XyRo/hRduIPpJPBv8T5LTM8Xr2vfI99R+8Vj10q+30tsFuuUGXRRlNT3nvGr0ef1m/JC8us03RZ7ZvG5pL8R2nhqtVqX8plOp9DtdlcWVkoxdK0tr8sYXMtkbF5HKpY+5jSsC5ZAT3VKitRfe8eNKu/Z99yx0piVvl8ulyuTX/TYB5omtrJoU8rIY4wDPJ/EoMfdaEDam81m+Lvf76/0VbVahWazGRQ8XZHLA0g83xRQYZLSltJ3vL+koAwNsMT4RXon/S39pmV5kcpLUt08+WsOM39uOXCWkuNpaEBNajeeBx+TdDcYp08rN8WgzIProgARZdOTyrtaHp53WrrZbAaj0SjsjMWgFHXEvX1dJrx84zH28LmUPtXYpQZ0lmVBduPdpKm6PW898wLH/WAwgEajAW+88calVYTVahVqtRoAXG43jRck49yClSYW1MJAK7U1KCaTycqdsVoZAM9XoOKds7PZDKbTKYxGIzPIp9WFB+p4PfjxcxrP8LEntS3VDzSYx+E9YpfWDY86Q5oxOL3OgCzVQRaNOIHOj9YHWK0rzUc7slbCdQyCWMFgHAPVajXUD4+ssxauecdp0b5el/91nZxkCXn8MnyW1073QNLr/P91li99D/D8mEW8DxzgQibwa2Dy0EZtY26j43OUJ/P5HHZ2duDg4CAc4Z8H0+kUms0mvPbaazCfz2E0GoXFJFagzat3eD1TweVjtVoNu6q8dqX1TvP/8R291oHHDCxwmYQ7IdrtNvT7fXj69GmwEagPreUt6U/eBtI4pfWybG2PHW7VFb9DXrWuLorZCRokO69sWDa4t11itiEHH/P0ea1WC+Nd8ts5v0p/x+xeLa1VJ86vsf6jfeaJ62n50AXYVlnXWedaeFHpTkWR8fV5AK0r2sBSm0ixg9lsBltbW5dOPqQLA1FfYD60TCtmosmTWD2s79ZlW6cgVSZf93I41lmmpjt4/I3Tgzwdi0fwcspsQy3WwXWlZZPQ9PwZ1WUSzdPpFB4+fAj1eh12dnbCc9xUQlGpVODw8DBcQcXrgQvxtLG2LhmaamuvTMZqHe0NUuVxGlNQBqN5goE8vZbOur9D+yZVaMcCgFraGPixUfg9Z1ItOETzoXngQOOTjRK/lOXoc3gGAL8XDydiccKC58MFZJZl0Gg0wgpdOjELcBH0brfb4TcGI/DblKAZ0hITxJ48aPkxQ0AK9vEV7LFv8oyNmPOUAo0HPem196kOudVvXmcM02gOKP+Gfodj0eq7TeKqy78qaPxnyTGLZzU+pMHHwWAQ3tPJ2BgN6zJOrN/SOzo+1u14cnlTq9VgNpvBcDhcoStFJ0tlrANI12KxgPF4DK1WC1555ZVLbVapVMK1Ahbtmhzjsi5Ff3lkcZZl6u6i5XIJk8kEptMp7O7urkwqSrSjLsLJxuFwGGwTquc9SNU/lrzNkxf9juqBFHsSv8O7EgEunJvJZFK6U0p5A/mSTk5LOp4GTJDX8J/FL5QvU5wfTmeROpaRTvsWYHUnBA/Wa7Ycl6Fa+nUHQVJsU/xbs3Os4Da3a1NlrTbOykSsPgiNBk8QQZINUt4aTWWB9gfKXVxIk2UZzGYzOD8/FxdRWLo+ZgdzmULbcLFYQLvdhhs3bsCDBw+S64N54nHHr7/+OozH47AyfzAYrIVv8oC2k6brYnRafSDlj8/pccLeXVxSu9VqNWg2m3Dz5k2o1+uhHLoAR6MX+YMuXEnpF80GLROxWIBUpmRPeGWsZS9RGvLKBCkvLU+PXWTRo+k3gOcTLFRXeuwjT96piNWbQ/OT8vo/MRsK01j2ZFG+KAIv7WXmeZ2g8YOnL4r0W9HYmxeanWeVze0+nh/Vd6gjcEMM3z1Pjzb2LOjM0y4eOea1DTeJdfqF6yznKuDVc1YcBOdluD8UK0PKqwhSdY2VNmZz0DT4fDabwdOnT6HVakGtVjPjHFtbW7C7uwvD4RDOzs5yxVti/oY3H4k+L6I7Y3kQDWEJyes8sLyGdWo9UtsJv4mlobTwYEOsDMsh12jhz7hQkAQLvSOV78DzOhgx5DVELfC7YjFIuVwuodvthjuFXn/9dfjn//yfw2uvvQaPHz+Gg4MD2NvbEx3cer0Ot27dgslkAmdnZyv5S5d6e9vCGm8pwa51jE1v4McSktSAkibzY+XGdt1IZVJgO1qK0vrOU56XPsrrPOhhlaGNNXpkS6xOKTLjJS5D6+M8ber5hk5w1Go1uHv3LhwcHMBXvvIV+MUvfgH/83/+zyB7+ESURasmwyV+Tzl2y6ojLY/yv0WbBcrvMZ3Ey6KBVcQ6J+/KAPIB3mH+wQcfhHd44kO/37907xC2DZ8EQ1g78Ggbp8o6Csm2oWUgDScnJ2FH02AwgHq9DgDg0hfakddYfpb5TjZJDa7F4LVtpN2i2jjRsFwuVxZo4DUTuHM4hcctSAFkDIYslxe7zafTKfzsZz8LO/ipHanRLv1PTxzhgUdpsSCXCXkDed7vUvyMPLykBetj8m4TMgoD4sPhEHZ2duDmzZtwfn4eFlVw/0GjkfshKMNwzOKEi7SjzQpmUJsTn/N2y9vPlEeQHmmHEucB6e+YzuP1yQte5zKCubHvqe2PbUHtE4+M02z3FJtXWiwrAYM/r776Knzzm9+EJ0+ewLvvvmuWsWloeo6+9+YDYE/K8nRUX+Mzr9/F9e/jx4/h/PwcDg8Po7Rq/qUWt+B0Ur7D63nWHYCT/DucLJAmBlJluiZXLJQVa8mjW4uUhad8ZFkmXiWC4D4259XY2Pf4Erw8AN99vlJ/a3ooZoNIdZFiUNb3UrkSiugJb95535f1zXXEOtr7RQK3qajdr8l96d5dlBn4HK9PwBgw/V6CFnuT0n1eeE+DJfc/z3WP6TvNPqFYLBYr/pAWa+MoS2dLdBWV7dSWQZsK45Hc/vOCnjSKiMUPJLq4fXSV8tScjI01ksV4VzHo8hgPnvw87yVHkP7WHG/+zHJ6UgW5lJ62kYfxPA61dglz3rzzCnJv4EL6hgYEACAECwEAOp0OfOc734F6vQ6DwQB2dnaCUYs7kfB4KtwRi88RjUZDFKRSELootABfTPB4HbeUvtb4mvOmRJvEq+tQ8jGFYLWTh2+lvHi7aEEw6X5XCZps4PWK8ZomL7R0KTxgYZOO++cFdJzgYpJOpwOHh4fw9ttvw2QyCavK6GQsLjrRFjBoY0F6vmnnwhqnkkzLo5cQaNxJddxkkCm1LDzq7vT0NDyr1+tQqVTCpGUszxSZgSjDaKf54DNaPh4ZvbW1Fe77Q2NfsieofuX9mJdOTx6ptlXMHvPKZascLIPemVetVqHRaIjjpGybhP5DWdTr9UJ/4lURVuCe/63ZBV4ez8MDZbYL7/fYGPIG5y17aVOyi9ow0+kUdnZ2oN1uw3A4hOFwGCa/vMe/0z5HnkFofJvCz5wfUvtCSmvZZbE8eSA+1aex3qf69ak8E6ufZP9rgSfPSR6e95g/Bry8tqtkqzcaDWi1WtDpdKDX6wX9SnVN3v6yvvME9OhzytP0Wy1YbdHoKVvzbzRo9hrm0e/3V2wAOsmWRwdK5XGepHoq5XjlWN1iPrVko+B33B/25sfTxWyXonExj2+Zwt/ecmj/0lgOLZPbglJePB9P2al0xsa71U5WjMaTd4o/QdNK7ebNg+Klj18cef2WzytSeYxfR0S/4zKYHotq6SpetmZ3SmPoRe5PSZ5chzGe14/16Civ7ZkaA0DQRYGp35aBIvlq/pPmF3nsQ7rwFiFdAYX2mhTXLBInsPIosw9WJmPpqil6rCpFTCFf5UDkhkNRpDoSZeSrOUixFc+0zp7V0dL9oDFaPMIhFvAsoohShJyVR7VajToyFnAnB8DFHXb/4T/8B/jwww9he3sbsiyDTz/9NATy8Y4C/E6jKQ+0IFZR3qc7iKxjoIpAG6Oz2SwEalON/5QACNKA/3uCebysVEjBZC0vj+EnfcMVYErwRhu7mzAWr4MB9yKBHzn89ttvw/b2NkwmExiPx7C7uwuvvfYafPvb34ZHjx7BgwcPwj3WnEdSx00epzwPvGWUtZuPI2UVOUdZNkjePLa2tqDZbEZpokFOAFjZRY/le+6qspAqR2LpptMpfPbZZ6K88+QtpcsT8C8bdBwul89XfHvuIIy9Xy6XYXc0Oit4XCjABa/X63XX3chFgPXCHc1Pnz6FdrsN//gf/2MYDofw85//HI6Pj+HJkycrO/q94PzA76ah74uM73XB4mfc+TmbzdyLKqz8NwWsy9nZGfT7/ZXjRvFuPykQRv/m9iD2LU7eU5ue75SgY0Qb/7F2iY0zzWbEscuP584TEI9BCtRbduZVBAFR13Q6HZjNZvDo0SNxYh2PNMYFROgT0DRe+nHXP8DF4pNHjx7ByckJLBYL2NnZCTu0caIPgzoxPHz4EP79v//38M4778Dv/M7vwJ/+6Z/Co0ePYHt7G5rNJpydncF0Ol2bfeLBaDSC8Xi8Mjm1tbUF9Xod5vP5ysKcFGi8JC2QoOM5D89lWRbujX3nnXfg9PQUHj58GPQD96skfYH3+lKa+JjlfMjlkOZP5Y1h8Pahx2lKNHLQcmk78NMztG89k3dWmXmhtVneALqnPKuftAXPMTvRowskpLZhik7iNiPdZa3RSm1Empe0Q/uln/4S60AeG0eSoRLooi46uYP8TXUgHytaHE4qt+ik5Is4tl5EmosgNR7NIcWAJdms+fzSsfsvQh9QPy5F/43HY3j8+PFKjAoAYHd3FxqNRrDdAS58yZs3b8JwOFy5OxYXVPB5H8vnK+In5/1WvTM2FrS3iPDAM+GRJ19v+rKCpZhXnrx5MDG1HOm5pqxS4fm2qGFufc/bxTOIvPTwvqHHM9IjcvE4qk6nszLo6dEVs9kM7t+/D5988knIezKZrGzL99wtzHkm1jZ5215rO8xTCogV6eeUb7H9tQlgb0DamoDkgblUGj2QHH4Pr2v5aN9Lsph/k3dMWOVaz2P5vUQ+SO1JnzUajXBH9fb2dph4PTw8hNPT0zC2+fEgALYxgu+5M+41aiTaPTxZNv/EDGPrm6sIWhcFleN8YkoL1Ev8kLevvHojlTfoMbdZdnGvr5fOvEgJrsXSetqq7LogH3Q6HajVaiEQT3ek8nvFN4Hl8vkRtTdu3IDRaATPnj2D4XC4Iq8A4rsnAWS+5nYVtXOs71LkT5m+hFUGQJqe3qQO5jaPRA8utOPBXToxQP/n9qgWwE8J5Hn7WLPFPUE4T9ne7zQaOB97g+VS4L5sPtH84Sx7fqQ0/pZ2HublZWuMUBrwiGy6KCClHMxvPB7D6ekp3L59O0zA4gQy96Ok/L32UhFIvlSeeEps3Hj9V6s9eF7UHhkMBmESuVqt5jpG2IqTcJr4eNLajdMaq1uMxhRI5Vq6TyrDww9FY1RSW64T2NcenvXA8r1oH/C/U8qI0UXll5UG/7d0Q5ntH7NLvOm9sa+XyIcX2ZelsPxKSxZLafGfdj1BkbayxgMfA6mxt5dIQ4qdVWab543r4nMvLVTWb8KmtGDpypQ6IZbLJUwmk5VYQJZlYbMoP66YzrfwfGI0peqwshG9M/bzCq8D7UVeR9vjiOLzdShUTSBZhqy2i0RaFcsHhhVUswayB14lTO8MwOOm8He324XRaASLxQL29vbgd3/3d2F/fx8+++yzkEej0YBbt26F/E5OTuDJkyfhNz/2L29AW6tbHqfN07ZaAKEM8GAdggtP792vNN/Usbcpwz/m6ErBBKRHGyeeuvJvrcUAfHy+NABtbCLw7gWVMf1+H7a3t+Gf/tN/Cnt7e1Cr1aDdbsNrr70GR0dHAHCxcqzRaKwcEemBJif42KULVjbZTmXz7HXp4zx00EAMXUnoMTpT2nFdekID1mU4HLp2flB4dLDXiS+CGL2xenltRV5mvV6Her0Ov/ZrvwavvPIKzOdzODs7gz/+4z+GxWIRJkJ7vZ6/MgWBx01jUB0Xvb311lswmUzg448/DvJqPB6HiTxaLy94m+bta61vyhwH3O7GvHGHHd3hllLuuscqtfeRNh4URtrH4zEsl5d3H/IdCZa84vXX+nS5XIa7kOmiS063lm+svkXb1RrvUsCA61c+WVTUttWC5Km6gafHE4K63S6cn58DwIVM397ehul0CsPh8FL5KavoPfKd1wVPN6LvveVNJpNgQ52ensLf/d3fwWw2gzfffBNOT0/h7OwMlsslVKtVcXIoL9DuwoCUF6hb8P/JZHKtbX3qi45GI/iTP/kTqNfrcHh4GHglBmlCKpYe9RH68HSc0ysRJHrzticf2xa4j47leq6Kij33+M1l8Yw1SVyGrqKnkEltxtMgDTyO5Tl9LK+MzDL95DEux2O2B4830c0AAOnHkku8pNFGn3E564lnvii4LjRfFzo0xHyYdcYXU07zRP8Dd86hjWIdTW/JQEkmSDTmxXXv9xcNZbVnSj5cXmv2Os5TSN9L/LwpW06a59nEAm7qx1UqFTg7OxP1J0D63bEW8rZznv64NBlLHQdPUKgMZr6OAsbqBI/jJ+VRNlICAh4FohnzHmEjGbF5g4frhGS80v/pzsytra2w4hmPOer1elCtVmEymcBsNoPhcAi9Xm9FcOYxzlMVgxVEymssxN55DXSLTl5GSvAoJhh5G8acT6/Tqjn1scCeVUZRPpeCRzFnmbcNr1MsAJpCGwVvo+sm71MUrpR20/Wh/YWBueFwCIPBAGq1GlQqFTg/P4fRaBTuh8X0fFdsEd0RS5PSNtL3Xoem7D4oGtCO5e3NM4+MppCC+Fo+kk1XxPBM7U+v/qDpLdrXjdTAW5G8LAfOU1/cjdZut+Hg4CDcL43f4nGPKXcKp4IGHzH4QW3ELMsCXXQRgTQWqTzTZLfEJ2XUQUJRGeHhDz5RqQVmrXrnsUstmmieEjg99NsUuyVWlvR93rqmji0tbcz30XxEbpd5ZLhVfoovtw4dystH/2o0Gl06YjZGn/Ue28pbN8kGkvpIS4eya2trC0ajETx48AAajQZ89atfhXfffRf6/b5aB05T3vEo0UdlJA3cSUc8Ux+iLJmg7XTWdL/WlzzdeDwO7/DUF4DV+/+keki2gScgatlLklxLsemw3prveJ38I0mHlKHvaN9740sxeNrQ8t8lWvLWl48vKy9N7nDeSvV96DjHfK2yNZ6UxkcZPCrV0UKZ9ouHJq38MvItYmPn0Y/eb/NAGjN5yk+FJfc9ZUl9wv9Z5cby4zSmgo/HTfq2V6mDNll+nj72pvV8I9kCKfDK4xTfwfpW4m9Lv+D33KcpQoPHJ4r1X0wXclo3wY+XjileLpfiPSLXyUAsA3mcPo8hVeR+mDxMimny9o+kkCzapPd0RRGliQaQYqsnNsFf/I4wDFLSe/IsOp88eQJ/+7d/C1l2MfF8fHwMg8EgrMTgAiPPXWcSihifqbzB08f4oSxIQY9UmjwCNoUe/pvmT+8Ci5XBlZl3TFv1pAFpbWxqhqH0jtNattG8jnyv2mi8CtC+z7Is3AH77NkzGI/HYWHIgwcPLskf3LmasqPCA+1+eYDNBX/XgaJy96rhPWWA08rv2JHSUKQEJlPahcs2zvuxsorCCiJLf5cJ6rxIwWN8hu3Bd4JQ+vDewHa7Dbdu3YL9/X3Y2dkJR5bXarVg9y8WC5hOp2uR05VKBabTKfT7/ZUdY9Z3OHlDjyOiO5SQJyi9Xr7l9F1XoMzGXVuWni/DvniJYtACfN4d/Zo8tSZweHlWvjRI7+WBlLSa70y/Pz09hSzLwpGzvCypjfhuL37MssdHsGjGbzzH32KMpF6vw9HRETx+/Bj+5b/8l/C7v/u78G//7b+Fx48fX/qm7DGn6cDl8mJStFarhUU3g8Hgko1WqVSgVqvBdDo1746NyVJNHpVZ12q1Gk5KqNVqUKvV4OzsDE5PT8PR0NYCcEl3Unol/UF5jdbL2iHrQepY0sa5FuCkv/n3RYK29PvUvi1zkiJvmV7QO8wRnI8sOU7lCNIRs3X495rdKY1FqW1jwWqLbum3Jlt53WIyODXojtjUvdvrsgOtWMw6y3kJ2ybiQH8jFmO0bK+rvCO+CFDuXDUPXXX564bEQ6n68Cp9Ny7rLXvZc4pIan/H2i3LshDTiMXxkX6elvtr9IhkXp6EPLa+emdsCoo4QV6UHTCJ5ZViNHgmOfJOJmllltnOKXlJRgUfjNTZj+UfazuaR4wHYm3MjTu8f2a5vNgCP5vNVsqYzWZw7949aLVaAHARQKB3xY7H45WjrsrsH20wewxc/FZzKLRvLUXsqU/q+NQCqLxcKSAdQx6eTuFTjW+9eQDEjwj2yBL8nbd/Uo+FzlPGunRCCr+tKyi/acORGvx09wPARYDwwYMH0Gw24dmzZzAajeD8/ByePn268n2eMjmw3K2traTjBPFbqxyvjL+u0GhEg857jIpVV41XrfGHfGMFTrBfKV9Zk/c8sI/fxfhBCx56cRXjTvo7Bq9u4MFVT754csfW1hacnZ2tXL8AAGGn6Wg0unRPI+1bXFCWevyzF5S3cOEeBR6bjAv6vPXndgFtv1hbSjzH01pB0TIh0RGz/zSH1pKhXvsC06boTB6kpu2Pjq3UZxo8dmjMN0B+kxaXpNSR08v7wOorKyiu9ZVWF1omf6aV4QWXUzHdkqfvKDRelAIinL8ojSl2r8ajGn1eOYh0DgYDOD4+hmazCTdv3oRut7tydYNWT6/fz3W0RjO3DS1fRZMnecD7yROwSgHqCTxdYTabXdIlVr70nllOp8eWwrT4T5q0syD540XaiNMt6cJYrEmza7T2iMUQLHln5Uu/idVZyz9FX9G+iF1/IMlcqa24PuI6z6LZG+vRELP7rbJidkFM7ms8zeVLWbBst3XFGr4IyNtHZfatxyaXys/b797vUvL3yNwUnZFafl5s2qdeJ7y2qoZUX0kqP49t6qF7HTLVC81GkOIXVrwpdaMatqcUN7L0lSdvT6yKnsASyw+/ieXN87t0TLFlOFwlrlpQWMYUZ0LPd3ngycdbVt4gE/+OBteyLEsOzGu0FEmngQ6oLMvCJGuWXdxLMxwOw3F9ABf3Av3whz8MwZxmswmdTifkMZ/PLwXWyzY6AeKBD43vuKMW6xdtJSf/tgzjhwZdcedLLKCVtyyKFMePf4NtKq1805SoVifJMdfS0zIkxaMJfo/RV+Y9fFq6FwXr1DFSX6QY5RSLxWJFTiGm0ym89957UKvVYDAYwMnJCXzyySfJ+acGl6z0msFEkYdvrxM89GbZxWo9gLS78Kz8UkCDiDEHN8uylWNsR6P/H3v/8mNpmtyF4/Ge+yXvldXdVTXT0zPjnitmPLZBFkhImK+EhZAwEjs2iBUSfwEbdogtC1ZskNgClhEYYQmwZTP2GA2juXf3zPSturpuWXk9ee7n5Ptb5C+eihMZEU887/uezKzxhFSqPOc8l3ieJ56IT8Rzm6h6TNMfVh2xYJDVhpumsgEyq0xqWzy2utFowP7+PjSbTRgOh1cchlarBd1u1zy5vlgs4Pj4ONS9jrmHOgBPa7VarRWe5vM5PHnyBHq9HnS73ejOcuRPe9vJo5OQUpyldZIXj3hxnMcZjNXjJWmRE8ewXq+HhX7uK1nBf76AyjeySAFgCfPihgR8UoTKubetmrzg4o70G/7Nr5fWdmFb+pL3meVvplJR3JYiWzE/BseJP6Gg6SJvYCRG/HYZ6vcUKf/o6Chs3n3rrbfgZz/7mal7ixLKMD0ZjHyjXdB0KB0L+iRPKllBuXXZ6dlsBo8fPw6fcW4DxIN7VKYwLfdxpXnF8/HPmj+okdcH0PSBlt+bXqunaOCX1m2NuyQvWsDba58l/ix9xtN4fBIao7A+0/9xvmMalFFKPKZQxaZoLCs1TqiNgye/NPeLlCfx8aqT147cBn+3yvhEFbwA2Ist65AVakNjZOkoCdt5YmW/pPXQuuTFopjd9Mamb7NO5HNTiglL7edxI4twYyHHXikYIUYe/MLjXLEYA03r5W8FJdBdnN6KKJXplNtgkChJA6SBZk3gYgNRhUDF+swC2R4h1OqiTggPONC/ve0vMvZF5I8GSabT6Uof0N3ErVYrnPpaLBYwn89hOp3CeDwO6fAdm1SyghL8b2/wPFaPZ15r8k1lucoAH5UhWm6e5+GUMuefy5QHqKXOM8tQSvV5yrX6jbfH4l/TS56yafAQ+5Eu6PFAmNU+TwBByrdOKms/1smrt7+8adDhx+srl8vllcVZXPygQU7PFTx0zHlauonC0u+WztKCXVXSdeKJWKAK+4zrtHWSB+xrhAAYF2Sn06m58MDrsOTjNjoXMdtWlGdvPkyH76Viv9GFJ6usWq0GW1tbMJ1OV94qzPN8ZeH/2bNn0O/3YWdnB7rdLrz22mtwenoarqiMBXy9pKXHK5BRD6Eums1m8PDhQ+h0OtDr9eDo6AgALnUbps+yzH0KisqdJLMcS6RionWTZcvpCWf8zsIM6+Q/5hvV63XodDpho6NVBh0vHGv69Ml4PBYdeAvX5nkOzWYTXn/9dZhOp3B8fLxyA47WZxLGpIuoPDAg5ZH4omNSpR6UcBuvm//GyRs0Xi6X4un2WLm0P2hdHI9IgQ4rwBPDy5R3/lkauxScRvVHo9GAhw8fwnw+h9PTUxiPx7BcLqHZbIbNCFZZKSTJHyesE+cT2hYa4+H2wSJp/CRZWzeGxg1ttG1WvZYejI0rb3PRhetUsniV5JTKobZByaqHziG6UO3F8PQ77CeuSz32iM9tms/j91McJ7WRt4Pmof8kGaf9yuvAfGir+DXW1jyxfAcvpfhg6/CzAORrhKV2e2JVPA9PY+n3FJu3bvKO4U1gTA8PN8UXnyMxfMD1RKzsVL/Mw6/m51bVh7dJrl9F8sZIpXw0Tep4ptpiD5a16knRr968sXzevDSN9qyEVo50iyTFY9JzEhKfFt98o6yEGaz8+Jvkn3toZTE2ZQenBspjRIMHmsOl5blOioEDr/NKAZ9VvjbwMX60MahKWUtjhYTCG7vGUCrTS1K7YgDW0/aLiwuYzWYrn+kJ32azCbVaDWazGSwWi5XriKVTaV7yKkWvovMEIzzK1hPAsNIWdSrQgaTODg3aSk6PRVJfWHLBHcUUwxxLJ30fk1+PfHt4kX6nziYawmazGdJKO+Vj/VGVbvYY5SL1aOXehE0pQnzu0vHDecI3w9A8zWZz5XSGFVDy9Ie0eF/U1mgBRUu2q3Bwr8uRQd2Gi5raCVMpn4c8MlwkgIF8ow3U6ophkix7eUqABr14+pskrvtTnPUqCYN5uBjLA3kWX1mWwcbGRjgRT+0ovX74xYsX0G634etf/zq02224c+cOAAC8ePHC5C11jKz08/k8LDKjPMznc3j06BG0223o9XpwfHwMAKv+SMrpIypnWpBQcq60ORLD5rEyUsia0zToS+XBOzc5FbGFWlru5+T55UavXq8HeZ6v4GdP+fV6HVqtVsAnuLglLcBYgblGowGvv/56uIp7PB7DaDRyLaxwx1rz/ySMJaXDz1XqF0mOJT0Ww2qWnFN8yK9CT5F7tCs0H53jtJ9TfQwvVtD6y0qHny390Gg04PHjx/Dw4cPQzp2dnSun4or66TQd35AhEW4gBrjsh62tLajVaitvw6LvbvW1xx+6LsJ+pvbRm8/6TZID+jfqHPpmeRGy4kcpvh0n7I8ifHHdptmVFJ9X0g8pZdFyvPKn2QD8zdJZ/OSNVhfHs7w8ai+ovKwbT3pjRZpt4v3M7Z6nft5mzleMNwtjWdgmZn80GXpV/P+/bOTREXzMOfaMlesZd0kGNYxh6TbLp/T67p60v6Q4pdofmvY6+7+IL+ct0zOvUsiaT9b3GEfka0dWf1N8Ix3WktpYdl5qcSuvXKTI3NX7M9ZMkmPrzSPRbTGqns62nD9KMScy9lsRxR8rWyqziuuXqgz0eUk63cXfKsMTZxoPngBdUVqHTKcYFWvntXU9T4qMokLmJ1fwFBa9AkpTaB6QzqmIvNF/VjqNF/oddVw84C6FT61eiS/+IDn+zXdWx/oxBRCvk1L77DbYjCLE+caTArPZDObzOXzwwQchaBALWHmuRKVjin/Td/jKkCQv0jx6VceKn07hiyicrsMWWg5eDJ/wa/kooPXoR6r/bivdlP7iJM072s94wg8XqQ4ODmA2m13R3agH8vxyMfbi4gLee+89yLLLE8/z+Txc39poNNZ6+kcb94uLCzg/P4fRaAQnJyewWCyCXrOI7mT1YmuLF8xrBfwl/4XXX9U81njkeMSD7aw0t8lu0jYtl0vodDrhVJ/mb3DHGrHNdDoNN0Z0Oh3Y2dkBAIDRaFQoMLNOkuRGGjOP/K2bcFGW82ERjo92xXBZvql+RIwiLcrwtLEyMV9sbl1cXECz2YRutxs2yHnqK4OZaXm46Wu5XMJ0OoXPfvazcP/+/bC55yc/+Qmcn59Ds9mEPM9XFmVjvFjxBE/soSrK83zlWSDen1wn8vlTlDcpGAegL8p6YwOaXHG7b9VR5npbS79YaTjx2AnljbchNu+kOevxTyQ+6byjPHJ58ARaeVqpDRwfx3wkjl1iPGj1SpQq85YMePJJtpmWQ/WhNW8snU1J+4y630O33Rf5JV2lGI5N0bexjemeOD2Pe3F9RHnmeX9Jt4M8uvIXWVd45Dy1LJ5H0smeTVDcD8f5hriWHjLRbJhW/m3x/ZBKLcbehsZ4BYUHDul3Wtp1UEqfpQCqmBEqWq5Vn/ZeHA/4Wg6FBv6L8uQhyWnDCU7L4s44/ex92w3Tp/AnUUxhafXE6uSyLgV2pPIoEJEc4Bjx/kaiO16kgKPHmbPqjKWh6VJIcwL5dxIf0uei88IbYOIOtOaApgaLPOnLzgPNabsN9ui6qV6vQ5ZdLs4sl8twxSf+1mq1ACBdpqsGaDQQosm/J/+rRBi0RsDYbrfV9xyrbp9mj61Ak/Q3/cxPX1iBIms+vkrj6dWBKTYpZoek+qhNybKXNxssFgvIsgzOz89hsVhAq9VawSs0SDYcDqFer8OTJ0/ClZV4giq2UcDTNg1XW3YNf8eF5MViEd4CjMmPFfT1koQDPbJJ+7gKu2PVyfuV6lIJF1lY6abmXur4YL/iaXGOV6T0tC6cI6izGo0GdLtdOD8/d9fvlQVOKW21xiOVB6/flUrSHI+dxLP0ZswGeeeflJfjw6L6zMsb1QGIt1CPSWVX4QtyQn8UN9Msl0vY3d2Fz3/+8+G95HfeeQfm8zl0Oh3I8/zKCVmtfVXwVhVJOjpmQ8vGd7R6qvA9Yn4ejzt4+NS+l/CEll/DH5JvyNtAeZbex7bq5n6ClFZro4UVpLKl2EaMJD0jpcHftPZTvmkwWtM5NH2MP00/xcrwzAerHKkNEh6JlZPKk8anxAfn9Zd0uykFP8SIzklahpY2hUf6f0zfWXM8xYf8JRWnMv1cRPY85Vt2L1XOy/CnlRmL2dHvJbnW7ILHzkt9weMgUhlV+kAx3mL97eFlZTF2nY76TQfguLDzv6W0HuIdXGSRLoX4aQCrnipOL1mUYkyui2L9znnEYI8EYtF41+v1sKMYQL7O1UvrVBDcWaB1WrJgBRarHmMMWNAr6LCe5XIZTvpI5AE1scBWCvE6JEeZGxN+TY/UrymGVqpXSmO1gf6OQU1+vS3+hteqUWc7tnvJcxVkVSTp8VeRytpD7F88pdrtdgFgdYcyzilOUr2eABfWSa/f8uxsi9UrBXpuyvmoCqdIZcxmM6jX69Dv98M1+Z52lgHYlm7ndaCd63a70G63YTAYwGw2c8kQB8nWEwa3ce7epLNLxwivYpXS4E7SxWIBb7zxBmxvbwPA5dW/vP+lQC/ApQz+n//zf2C5XIbrWnHDRtV9gLtXccGYyiD+z6/x9JKleyjekU5zW3RxcQGTySTgFAnrZdnLjWR8IXidsq2NKSUt4LkuW4wLpXQTHY45YrxWqwXtdjuc5ubtuem5lxp843n42KcuINC5LZVHCe09vvWpBW9SePHYvPl8Dq1WC3Z2dsKCH2JI6wQ5raMK0uayFgy9DlujyRC+k1yk7dKCguWboe/UarXg7t278ODBA/j85z8PR0dHcHp6qtZBcX4Kb5QvKbhm8V0V8XJRt+CzEJIdpRs0MA23TTG9xMfFmmt8jPjcTu2fGIaTrv2OlUdlAP9ZbwlTPc91GCcuW1XGAWlZMV+d8k39Wvp2PU/LfWAvISawxpa+jQ5w9dpFSlZMQ2p7KlXpV0hjgv9LTyBJ88Hi0RMDSsFiki7T5nGRfqIxIGkelC23SlpHmWXL18ZDK4dvgPDGrXieMv0g4RPLdgP8csOARuuWyRS6Dh/vtpInxmfZYLSJ1N/Hp7DogYUYSTFrWuc6bvZCO83LpzFYSpqcxLDeSiQkJmSpoEoDS7eNUpQ9/80DoKwB8AZXeB6vspZAzDoUfcwRScmn/V5WhqT8VuASf6fG1WvoKWmGN1XB8fze+mLlcgfEAg5S3SljiAt+9N1dS0ekzk3p99h4eeanB6BraaT+lHi0HEiLP0//cxnXgmipDqEWVCiqD6ogqR/XbX9SQWNRfiRZzvN8ZUMJ/lbmCjNeB/8Oy5bkO5XKjE3VYN0qS6uL689GowGdTgfm8zksl8sAQM/Pz0Xw5uXJ088af9a85gE1GvCnJ2hiOiD2XcrvN0Epcpwa6LHS8MCWNqcwDS6g9vt9GA6H4pWhmiOwWCzg8PAwBK5xAZ7zWwXu4gtMMTmx9I2FDXgf0vRFcDIN1sf8gFiasiSNaSw4q5WzDvvL8THvR887ixJvND99GiPVp8jzPCwa8gUGLRiaGnTR/NyYPNO/U/CeNLfLUEzG6ZzodrthTEajEUyn09J1F5XLFOxbRX1S/VgH/k//SQEmLptlbKrmV+Dmmul0Cu12G7a2tqDVaoWAUqp/56UYdsI0ZTEb1zP0e/znLZ+WYwXPPHLjxQSpbafYoGg5KfrFIo9fx/sq1neSbFj4pyhxvMB9qZhd1eaJZr8solgbYNUf97Q9pX9jfMR+Sy1bsoepejr2vUdOJbsak1XruyKkYbaycYl1YM7UMquMeUh2OrUOj32M2Trpd4/uKsJPSpkeeaw6FnIb6LrbU3TMylKqz1GUJJkuqudTCP0HTY69/c751myD1x+zqKwspM7HwtcUeyq5CcWwboXEy055n6BofWUCuFXxkVrXdSkxL9GgUSydRhcXF1fe2ll3OzUnscq6i7z9y5WcR3kCXM6XTqdzpU38ymLc3SyVoznjZUgDg1Z6gKt31WvpJOKL/NKpWl6Wxxgh8WvE8WpKbdczntajAfqi5H17NpWuU6/x8j2O67rK1wjfhORvK1s7rWmd/G9vsHvdwAQpluc6+90KnOJ7bePxGB48eABf/epXQx995jOfgUajAf/pP/0nOD4+XslD399bJ/EAA+oeSY9KJ55Q19D0mg6htlYLAJehKjFeLNAmUdX4kutxnLv4nfR+OvJ8cHAA5+fnK/LE7QqeXhyNRuoiwTqI4y3LucH24cYF7w5XXgbKLX+PXtqYwu09f4fGW39MHq3fqRO+TqdYwxJFb89BWWw0Guqp4/l8Dqenp7BcLsP72Z6gQ57n4Qrt4XAYrqzGDSK8TXwOI0bP8xym0yl8/PHHYfMf3rzC9RmtG2UB66D6Kzb3McCOeehcjgVk1+W3limX8t1sNmFraws2NjZgc3MT3nvvPXjy5EkpH9gTVORzhI6RdYLPalMKr95YB5789gR9veV6+JPoL/7iL+Bb3/oW/It/8S/gN37jN+CHP/whzOdzOD8/XwmMpZwkkOYA5kd9ixtwLB1ate3mf0uEdgHtDF0Es/iUbAivl74RyjefaKeveD20bzEdvneN2JLfeoN5eB38b8v2pI6FtFAlEfaFNz3lp4h/Tzfs0PIA4ErfSTehcUr5XdNXPD0dW7x5A58uGQwG4ckIXgf/v0pfumyZKfn4nPPKHpULL3l1Nt5+wuN6tD4ai0Kb/kvyL4iXKYvjplRfko4j9Q2qsEEU+69zzcHb3ptYb0klLa75KvAO8Gr08W0knIdcz6YS91sp3kJ/lKctWx+1v9L409uhylB0MXYdwucBL0XrTslTxokruihgBaSscmN1FM1H81q8e0Gb5iClGqyUsUnpDy9Ik8q3eKpShqX8HIxKPFnOlxXguA5CRdlsNsX3vzD45g1OVuGQWOOa4gDQcrhTzckKAmo80LwxZ14iGtTHawOREKDOZrOVOmPv3Wj84f+p10VYcqgFMauSC0+edc8Tj2PD09PxwUCRFDDi+aT+S3V2PcTLk+aUpYfW7eRo9ZYtp16vQ6fTgX6/D91uF5rNJsxmM2i329Bqta5cMQlQnUMSwxMeOaNyJOmpKnBCGapaJrzzXwqwx/oi1ZGm81eSD/w3nU7h/PwcptNpeGeV6wT8m+oIAAiLW5r+Ljt2aD9SA57WfC86P6QxkIKc9Xodtre3oV6vB3s4HA4BAMJ3kj7T2iLV5yEPxky1FZwPrn+LzicuOzTgDPBycxe/CtLiEQDExUye3+IZ02E5o9EoLMbO5/MrDjbNZ/mmtG0axvbwl5KGl0/nlscvKVqXRrhhAk9aplCs/yh5cadHx0rj4sHVnGIxC802xuZYqtxYlOeXi3jD4RBGoxEcHx/DYDCAL3zhC9BqteDTTz+F8XgMx8fHYYNEjLhdifXDTWE21D/4/A0uwHG+vfxpmJST11ek+lfD81Zeej15jD8Nq1i/8zTafE2dc9pvnjiFRSl4RfPLU/LyemPzwCqPYx0MIuPmWlqX1ifevrLK4GloWyR8ZmELq1899VvpvHPLk4+2j/6j7ZDmCqajdo9j7F/SS6rSDmjYlf4ekz8PT14ZjWHsmB6WyJJV7fsYrli3LU4lr00tQmXba/mKReoqIwMpsQOrHF5vVaTJn4YxJCrjM3vtSwpG8MhmGXmI8VD4ZGwZum0KglMRhVFVIMsir9FP6d9UkH3bx04jdGboZ/q35qjx04o3STFAcpup2WzC3t7eyo5h2p6DgwOYTqeioxKjlHeaOcUAkJcPz2kaviPP47BK99Gn9E+WXS6CLxYLmM1m8ODBA9jd3Q1ljcdjGI/H8OzZs5Udq41GQ3xXlpdN+ZR2gVuAuQp6VeR/nZTnebguMAZwpN+1N3953irpF3nccPHgi1/8Inzxi1+E3/u934Of/exnsLGxAc1mEx49egR5nkOn01krD0jUtkngGX/DHeLcViLhiTJaJifUcdIOyFS9/otAXp2HMkPzcVuBJ5parRYcHBzAs2fP1DGlQVuq12u1GvR6PciyDMbjceFAkpQH69E2XHnICsSV1RnaPGi1WtDtduE3f/M3YXt7G3Z3d+HDDz+EP/iDP4BOpwMbGxswHo/DhqUqeOHkLY8HCgGuLpZQWvd8o5s28GQx8rlcLuH8/HzltGiM8MTQfD6H+XwOk8kklAewGkCl3+NvNB0GuE9PT6+cjNMWGZDognAMD16HTuPzH3dhU/4k3VyWt7JPHXA+tGClZZto+tT6pP4pSp4gbOy7ddNisYDz8/Ow6eB//a//BR999BH803/6T2Fvbw/+5E/+BN5//334r//1v8JgMCh9UkEiOseqkh9aNl84QarValCv12FnZwcAAM7OzoId1E6oesbIwz+tB/mKlY19w31hiTCNtz8lW8fbrPm+lHeaNmUxgevOlPiY1HcpOMpaEKHEN65qPjflwcMX/S6mw2azGWRZBr1eL9govElCaxf/nvKt2StP3IHzTN++xe9TbjvBz9jP3tsmqtAXUj/Q+cNjgRJ2aTabUK/Xw4YwxLXtdjvknc/nK7jwl7ReKoIRJL1UduFGKr+Mva8Ko1D6y+hr/5JujqR5VQVetnCKVLcWv/LG3rU8VD/QWA3G/vltnpQ8uE1djPV2VkoQ4TrJA4YxHZLHiU2Z8EWDSFU6v5QHCZx4y0mhGNjTAilWXq08CRxz0hx9DVhKjrz0t6QQeHlSsEEyvFLeIpQaFLD62wrc0++84J47nRT00zpT2i4FJSUePJSiM2L6QZPn1O+9JI0Vfkd326LjgdcjtVotaDab8Pz58xDApFc9eIjKBXeyqpJrK6/X8f1FIkvv8O94ALuqeiVKcfqvk7xzu8r68Iq5PL+8nmU0GsF8Pg9XgGNwQtvIoY2r126ntBnlAwMRWvCLB3/497Fr21+leVlWJ9NyrDJi41Skfkkn4hjxhZx1zEeOkTwywXWWpT+sxRv63qtnDNF5w4XXe/fuwcnJyUo7aL3UGVtX/1kk1YeBRvyb/2b5It5AEB1HPtdj41Wmjzw2x2pDTM5T57nVVpQlTMNP4lKepL8BfJuj8BpQ7cQwD6SX1WVY32g0gk6nE8rHK1R5G8vGDzQZlyimX4uS5l9advm67Bvng/pSiD1arRYcHx/D48ePw3u/7XYb6vU6TCYTWC6X0Ol0YLFYqBgk5qtTfZhll6dSKRbw6hZvm7Xv6EJLp9MJiyuTyQQGg4G6OciaF5JMaz6GRwa5LfESxXL0BgxaLueH/6aVq+XT0mqk6VfNH/CU5ylfy6vVK/mjVswA9bnVx5p9tfhdLpcwn8/DBgIsJwWvc1wiUSxW4YmfxPxui7R+k2TYG3vh5aQQjz/R51rwxofRaASj0WgFT2XZ5TX0nG/pPfsYzvglpZNmf3gaLeZkzXFOXptvlafJKcfQUjkSjrpuH+MvK6Xoupgu8uTRyLKVZeIBFlUhayl5pf6T2lqkz3g+z7zS8IvEk4YDLFurPSeBVMmbsbdRURQ1fClgyEPr6puUieMR6DJ8WrKgOQjrcs6kNNJbaxIQ1YgG3/Czx7inAEdvQKEqeUoFjJrSsviJOSPYp/ydnZhuwe9Sr0nzUEw2Yw4lDQRTufE4Wt7AcUo6egUxpa2trbDD8/T0FN5//32o1+vQ6/VMHi2+AeBKAEYDx0heeY69S3YbbdB1kBdkWYCiKn0s1RsLxqV+X4aXdZFXbx8cHMBisYDt7e0gz/x6dm99qQG0lKAYfftOIvouKf7PN3y8KnRb9EYqH0WuKgW4HLvxeAwActAhlRcpLQbmi7znGMMW9Dv6bgwNrlF9R9/x0wgxYqfTge3tbfiVX/kVOD09DfVRO471X9e7uxp5AttaoLVIEFSqB/vmVZrv6yLsA7wOGWVzMpmEd8qQJHzEbyUBeHnaTvI18Lpg6TYZmocHARATprYNTwgdHx9Dq9WCzc3NsKnv/PwcFotF2BmuBSqqImwfbaNnPhSpg5ZH/1+X3SgyH5EX+kZns9mETqcDz58/h9FoFE6YA1za96OjI2g0GrC3twej0QjOz89L8Y0bfLrdbtDHeOpW8wOqItT5uFiyubkJ7XYb+v0+nJ6ewvHxcdgYx6loHIvLOR03LXjK57InbsL/xzbwN7glovpZ403zJ7lP7iGUP7q4yNuXOjdT8Y2nLIpfAeQTpfQtZGmsKVFf26uH8OaHdrt9xU5rcmW1C20CluEJRMeI6xWvzyHVp9mEFAzBb7coQtRfyfN85c37fr8Pe3t78PTpUxiNRuGt4VarBVn28iYZSvV6PWxAsfD4LzFScfLoDtrvMb8mpkss/MJ58cRCfzn2xehV9C0snm9LrOE6SYspaL695mNKZdJy+LyUbjStSpYkexazjx77uYJOUwOjkmKqQuDWPQE9SpmDKq+Dya/j8vaHVJaUVzM0Vl4NPKby5AWFHkpVtKkyYaWni7OaUbXmAgVdnuAG729NQRWRe8nJ1ZxBT1mefEX4ROecK9LZbBauw8V+SnEWtL705AXQAyuxvuB8UkeI8kSDtgjqJSeaGhEuW1RWeUDIcuKpw7K3twd3796F7e1t6Ha74UTDo0ePYDAYBAeVz4NYoM/SWx59EAuGpMhDrPxfJKJOrwU2Uh1vbzpvuVZgSitHcuiroHWCYZyn3W4XhsMh/PSnP4UvfvGLkGUZ7O/vw/379+HJkychYIhXAtMFK0+faG3xBtkk0pzVIv1lBRxvG3n0vpbW4yCk2iauY63r99fRrxqfFs7X7CdPJ5WvyZ1Xdqltarfb0Gw2Q8COYgopUEb1y3Q6De/CpvTLuknqgyK4Xer3sg6qFESlC9/4G9+cpvFKy8NnFfB3L8bWiJ+U1vzVGH+0XRKe579j+7XAsYaTKL+4mY5+Ttnk4NElVvtpG/P88qThixcvYDqdwmQygVarBffu3QMAWHmH1CtfvL80Pris5fnVa901zGDxwPsd4OpNPRoPUjkp86mIXrHmtjbPLi4u4NmzZ9Dr9aDX60G/37/yewxv0THS6kz1366bpL6h7Y7Jn2QHuT9G83vGN2bn0IekesRrD1Lly7I31D/VdCL+zU8Lan6g1vYy88Lqx5ivieWgHUO++eItz2/hPV4nr5e/a4x58GQ3/s7nmDRfJV/dIk12OD7wzGnpsIKWT+LPoz+tWEOMNOw5Ho+h0WisXD3MP+NNQfv7+7BcLuH4+DiUhzcQIM1mM3WTxDp82r9spGHXmD9GZdGDSaRy+HcpesqyCV5Mf1N+yE3RbZorMZ9K+64K4nqjSptflqy5mDp+HNPTspCkeW3VF4s/xDCBhl2s/Kk+CFL0ZCyCE86sxKTFuMXYTUy6FKeU86e9PYqfMT/fTS+lT+HLoxBihiIGkGKkpcMgmCetpFiKKJHUgATWp52ojJUnjaMH8BbZxVeElzIkARVpPsfAvgYa8jxfeZ8ITw9MJpPw3iXA1auMLX49YL4IgE9xaCjfPC8Gziy+JeJGhgbTsAwpPa+HvoOyv78PX/3qV8Pvy+USxuMxfPjhhzAcDkMbtDeSU+en5ITzee91Fr2OdBG6jQDX0use3V2mTdfRH975dxvHRiIMmqATf35+Ds+ePYPf+q3fgizL4O7duzCZTOCHP/xhOJV4cXGxcloFwG+7U3CWFEQs6lh4dRf/7Anm3ESgIoZPispfSn7sG+kKG+2dTU8/ebEh/S6Ge6k98oyX5+SOxW8sPZXrTqcD/X4fZrNZeB8dg9i8PXTxIcsymEwmN6ZvimDxlMClNPdj4+wh7H96gkoKeHnmPi0TcYt0S4rWHq0d/KQWxSSa7Hl8Fi2d9NwGvYZSaq+0yEzz4DXHABA2DPD3BDUqg984ZVkW6h6Px/D8+XPY2dmBzc1NuH//PjSbTZhMJivXO6aWLxEdbzpn0eZymUvxCenfOFa0PvrvNtz6EJvv2ly7uLiAx48fQ7vdhl6vBxsbG1f0Pj+9LZWP/gR/g9wiDbuX6UcJY2CZ1vyVsBPnR4tpSTgKf5fkzvJ7pHo0wrgKPcEnlWvVH+MrZstxIZg/QaHpF5yXGi8p+MXS/9p4WBSTDz6PKNaR7Asv09JBEsbCG2joGGTZy+vfrRs4JD55OzVsz+1nil3l9RSxpxJ55rGVL1afVP5oNIJms3llMbbT6YQ8g8Eg+HGLxQJOTk5CWXThNs/zsBlJqpvaME9bPG2qiiS+bsIn4xSL/Uhy7pHlFJxQtg9SfWaJ71clFvIqk9XHEv6P2diUPBYvmu+RoitS5Kds/CO1bhpXkOyS1m/SPEnhg/sNMRznKZ/bLt6XVnnmYqxmFDXju06FUbVh8IBKqf0eoICOogS+POTN4+GjKrppowxQXgYkOZUmIXe+eXppUq9L9lOAbdG+qWpspTmF1//RgBg6GdjPsSCD15mrwtGX6pfKpJ9rtRpsb2+HN0eQTk5O4PDwMLzDStsrKX0avKYBIkvnSDKNV1nhFXkAl0E9vIosy7LwdpREGADgJxw0GUfeaB4eiNfa4dWRMVD+i0LSeHInzqMHb0JfW+BIwwhc/94GO5NC1tx89uwZvPfee/D48WM4OjoKgRcaYKcUm19eKnqFl0ZU7vBqSn5lmHWayDNXX7VxL0rSAivqS05F8aNGfK6VkROPTSoaiPM4b9zm0KAl9pt1vV6er15pvFwu4dNPP4VmswlZlsHe3h584xvfgMPDQ3j27Fm4FlbadFglaaefpKAn/mZ9LkperE372cMXdVil9uBJUAxqYlpMb50O0wKK0oY4/M0KqHA5tuSayhw91Rt7F7wMWQEKam/xZBf2I19U8xIuEmsB5+l0Gp7EiAXwaZmSDEl+l4UrOEkBJU2ePfKAv+MGD9QTqDu8C+RVUCxYhjcD4Fuws9kM/uiP/gh+9KMfwd27d+H58+fQ6XRguVzCYDAQnzHRSJqvnLB/1qUnrfZfXFzA8fExtNtt6HQ6KzaP/qPlaGXHYkESeX3V6yRsi8dWaHNA2xhm1Vk1SXG6WJv4ginvB6kPMDZBT8jijTbam71l41Kj0Ug8kRvLx9tAv6NyL9kFqe9S4k00nTcGRudRqoxk2csr/Gl9KTYAP+NvWN5gMAi2utfrhcXwxWIBo9EI5vM5PH78GJrNJjx48ADa7TZsbGyE2M7BwUF42gLg6tXXlm98G8jShTdJsZhPioxan2N2/zr7QqvvNozHL+n6qYhOflWI63Dq4wGst70p+sSK13EdFYs7aBRdjOUFaGCtDPjyBG9SB8Xihwe3rXQcuFl5aJ1eR6SMsKWAGs2oeerXwF6RsopSDHhRivHBwSktk19VxcFjEQczJt9WQEjjm1MZkIv5U4K/ltPJHYJms7kSRKMnxmMORSofPOCs8ZjiPFh50Gnr9/shAIB84Mk3fK/Iur5NC/J6gwCU0KmjJ5EXi0U4gZxl2cqiMScpgGk5PFKwQwpkSG1JAcExnX4TpAWAAdIdAE3HaQEEb70pVLYf+RhLARRel9YPrwJZMn12dgZPnjyBo6MjODs7C/M79S3NIs6gFCDRAgPWGPH0tVoN2u120CfXHaRcp2Ocap+Lli3ZEal/tICfJ6/2m3cOxtJQmdDq8NpYqZ34vxRE5Hn5fOL2iPKrte3i4gKOjo5ga2sL8jyHbrcLb775JsxmM3j48CF0Oh1oNBpr1U0ahqOBYfobn+OW/BbRHym/S/Ze0yXalblZ9vL0pYaFeH2xOavhe4lvWo8HP0rl4MIndcjr9Xp0MdY7VzjPllxr86roJgzeFmxfo9FYWeCVNvnFMBE/re4hC+vz8iVe+O8WxqVp8jwPmyuR+ObrIjaqCrtGeUDdOJ/P4Z133oFPPvkE3nrrLRiPx2GxlG7YLFKXRtINRyn+rIc02zMcDmGxWFxZEI7d1GCVi9/zujQeUv02jx1OsT0xjEFtLMcW14W/NRuv8RwrB8AeO+t0O28/91dxgda65aAMpsWr6Ol3mv6O1Us332hzT6NYG2I60sKC0pzwyD1N6/WhJVst1YGLppPJBGazGeR5Dq1WC1qtVtjQ0mg0YDabwcnJCfT7fXjw4EF4XxbLHgwGcHJyIraNUxV++m2idfpkRcnCalo6ba5I/ggly8cuQ6k+WRX13bZxXCelxmAoVR3ziPFi+f+0bA+G9dQn5fHmk9JaON2y+zxW5eVFm4daTKXo2Ei+RCz+oZWnLsbyYH7IwJwQSvxKJjwJchvJM5m4QudXyWkr4N4J8SqQBM65My9dT7yOcS/ar5hPCxLQQAl1IovyI6WreuyrLM+j6CylFQt04jWA+F2qo0rLo04V57UsQOHATOKRn3x47bXXVk7+AgCcn5/DkydPwuIn6ooyhDJKdyhrit5yqLvdLjSbTTg9PYXhcAh5nodrAbMsuxII9Y63Vq80n4o4/L9oDoxGqYHFlN+roFhQtepybzNRXYY7qc/Ozq6c0vvwww/h008/hYuLC2i1WkknUYr0B/YlX/RICcTz4BaW0Wg0YHNzcyVIgYEk7IN10m2UjxRHQXqXWyMa4OfBNWlhTuONB8Sk61u9mE1yPrS83uC3VAfHG1mWXbn+kPKBiw4AEE6veKndbkOWZfDhhx/CeDyGH/zgBzAYDGA8HocyU4OaqaThK/78AQ+gczxkBQA9jucv6ZKuIzDFsTDHiHzhE/nim/qkYKEkpxhspjYLqYhcb25uwhtvvAF/9+/+Xbhz5w5sb2/D06dP4f333w92AUnDrSn+Fie66MAp1RegizB8Zz7tVzwRiyfZut1uyBPTd1LgN4X43NfSUL6R3/F4LPpOAGljQOWN1wUA4fYdgKvX1a6L+CLbYDCA4XAI5+fncHFxAc1m08yf4o9wuaJyU8b/jOkb7kPSejU+6TM1Whup30ZlPSVYK5V9XTbGwi5WDEOai/g9fa91c3MzXEO7XC7h5OREfEOWUirGxrIpJovxKZVF53csIAyw+v5vWaLlSDoC4wyU6OlRKUbAy62SePm1Wg2GwyF88MEHsLe3B7u7u+H3119/HWazGTx9+hQ6nQ588YtfhNlsBi9evAhvcI/H4xXfD6/2xg180tvAUhu9c89q1y8qvrPkhFLV7bf8Zk3nv4rjQNtyk7zfdP23lW7DutJ14Tlu+2JUFlt7y/eOgYW3NFpZjOWGQlpk486K9E7ObacyAW9aBlcannIlMF+Ul9hglx0LizeNfws8cn4k4KHlifGS4kxy/mnZFKBadUvtTnH8tXK07zTyyF9VisoKeuDfknPEF7vpCZOi8sr70JNX63dJkWrAhOrFLLs8YYqLsfjv4uICBoNBSCMpZg2Ia3zz/uLOFg8IUEJ9jZtjMJiEi7FaQNAab+k3bUxTxyYWlJD+lnhcB3F58PDK9YgVQNHkJYXKBIW8RPuhDHDCsqS/pbRVUSygmdoeTE83oM1mMxgOh3B6egonJyfQ7XahVquFNHShJeakpwQnpLGx7IwmL/x7POGP+huDK3gayhOQvm3kce6t9GXrtIIJkt6nYxmzgZoelnS4V6d5yYNvrd+5XbLsA/YJfyPWSyjHOFePj49hMplc2UyqzcGq5N2yC/z3GBaTeON6YR1UJChVtv+kuYHkweUpWEzLy7/jGJKnlYLX/MYY/J7rC1peim9FdbN0cjHWRtpPiOObzSbcu3cPHjx4AG+++SZkWQYfffRRsj/GcazVjhifvHxLJiz9i3/Tz7gwMx6PryycWDxJGEkaR6msoj4ijlOtVgubVaSrpDFdmQ2jWNZ8Pl+RZ0vGUrEMzyvJJQCEK2Xxf+0kfhniOF2aiyn2wqMjPb6PVa5nHsTsA9dhRdviSSeVW4VfpNlJrotwIR9vu0J8YfWB17eR0lGfwLJpXtLsGtWzqT4qJcnm4P+4kYhvTJX4ob9LPMVwjcZXyhxBfXF+fg69Xg+Wy2Wwl+12O9jLer0Om5ubMBwOYblcQqPRgI2NDej3+9Dv90O94/FY7aMYRpL6wEovtf06SZLlqnzrWD1FqWo/DimGt1OxjDQ/UsopQjchQ7epfoB4HKrIWFQxfpINqVIXFiELY9DvU/pQswVavfRzDCcV1ak8jVWPhAtiY3DlZCy+v8Qz4kLDzs5OuOIST4JwJ4oaMsyLZa9TKKoi7jjR9y1pGinwI/WdB9ha6dZBReriQQOpLM1x9DpeqXlSyLp6FduGIDw2ebxjqpGltK6LrMClFDywSALY0pVwXDd4gwp0bGh59O9UGbPSUCNATxBIvLVaLbh3717Yhc7nx2KxCNdmxYLFXK9gWTyfNOcajcaVdJ1OB7a3tyHPc3j69Cn0+31oNpvwySefwHA4FG8/wPpS+uq65DZWj2Y4q6J1lImBzW63C51OB05OTsIV11X1a9lyPIE6LzgsG1SpgqxxTB3jPM9DELLX68F8PofZbAY//OEP4ac//SkMh8OVsmnAhevKlH72Eu9zKyhEv6M81et1eP311yHLLjdyTKdTOD8/D+/D0ZOJv6gkyXfqWMTGmcqHdcqYv0lVhqit5ydwi7Q55njR74rwTwMc2A/L5RImk8nKm24SJsGApxff1Ov18PbgbZRvjz1cl66lgV2sg25UowFm6R0gXACiefDNWH7Ch25cofXQNFRmsywLJ+L4FbIalcEMvP2W446Ev7daLajX6+HKWLydBGUbT2pJbdAC2+sgxN/tdhv6/T6cn5/Dw4cPIc9z2Nragm9+85uwtbUF//t//28YjUbB7y8TfKVBGSpPGBivkiRdh3EPfOf9rbfegnq9Dj/84Q+TFy8leeCxE/q7d+56ZWA6ncJ3v/tdqNVq4dp11Je0j4u2h+en2KDojRkxnMb1DNbLeeH8Yd6UYKU2h+lYaoE+yZ6mzAuce55r1ouUb6VF28dllmMFraybwvraQoZG9EQO7W+88aVer8Pdu3dhNpvB4eHhinzz0zx0vL0xsTzPwy1i9G1UyebROujtCSn+MZfJGH8eqtfr0G63odfrwWg0gvF4vPIOLuVbC6ZT/lDHW3Oal5EypyU6PT2FyWQS7DLAy5g20tbWFnzlK1+Br371q/CNb3wDHj9+HK4pHgwG8O/+3b+Dw8PDwFOz2bwSW4z5ydrv1xknLkJV+tbXSVaf0zgcxx4o35KNs/yQIvz9ktZPNx2bKkKWf7FO8sQCKDbTypDmXpETsrw8L66roq+4beI+K/1bqk9cZcjzy91AW1tbIdN0OoXlcgnNZnPl2hfJIZdAL2eGkgRgilIZJSc5RjEAwdN4gYbGexHh4/VUqUxSgnBSniL1FC0r1bmR2hZzrFKpCpnm+cvKR2paL8D31qMpyar63KqX/g9QbOEF4PK6MhrMwBNjAJeLoq1WCxaLxZWdobxuryMb41OTX3QmAS53rQ+HwxD404LLqfNI+jslnyddKsD3gISqiNuPGM/893q9HuwqLqjTd+essmK/0frwb29/pY6nJ/gcA0pV6oDrAtV0PPGphnq9Hq5qpG3CvyUnLcuylbfzLJL0hBTw0/JoMiHJG6bFJyrwxKBng4kH99x28swvyaHQHHH8OzbOHvtrzVs6llJg0sKoGl9SHirTFnnntkdmpL7EYFcKUcyPAb+DgwOYTqcwGAzCFdwevb5u8swfj24vG6zUSMMCUhDVsmseG8WDs1zHAry8rhpP6Uyn01LX4nIepb/pd5a8S2MSwxHWBg6pfv79a6+9BlmWwfHxsTtQodWHNzxQDNPr9aDT6YQFdt7X2jzy6DcNK3vnRJG8FK8gtdttaLfbsL+/D9PpFObzuTtoFJN7+r3WbknOpfJ4TAL/TafTsMHE4iNGFpaQ/rZIa0fMN5J+k+wcJZRJuiHOa78oT9TeU7muAqdbvHhxdhGK+SuWfUXsamGcMn63J59Wj2feceJl4L9erydujObz36PbLHmRfovJqGaHKD9SGV5ZSyVcrMbNRVz3W3Y+xTZ5fKWU8uiNKOiPo9zP53M4PDwMG6c7nQ7s7OwAAMD29jbM53M4Pj6GRqOxYgfxxjRN30jYskjfe2zaXzaS+taDOawYhpTeKr/oXPrleK6PON62yPL9NOzlrVv67CGP7dd0jBU3SCGLB6+d4flieWM2s2xfxrC55M9a/Gjl83rUI1+f+9zn4P/7//6/YDR+8IMfwKNHj0RGcVc6EgaVU6msYqkquGCd/NTSWMSFv4wjfJ3E+ZTAtpVeSqPVk5qnCrLaVrQcK811Gk5PfeuWQWmOpDgf/HdeznXNIYm3/f192NnZCUFBepqjVqvB/v4+DAYDODs7U8uU2mQpfGm+0aAX1o//49WhNP3BwQGMx+PoW1sp5NFnOF6pp6JpHUX4uo45h23jOyM9TiJeg9Xv90N6vP4PF/KKXL1J+ULyvC0okTeI4rlRQONtHVQElKWSJGN4dTluxsBd1RZmoDvwY+XHnMoUfMEDVVI+eltKvV6Hfr8fTvtjoEEqV+L3JsgK+tA02nexspG4Hk4lfmoW7QHX6ylzDDcM1Wo1mM/n4ZYXGpDW+LWcDCyf8uPhyxqLsjg5z/OwOAKw+mYyPz1CHTfsk16vB9PpFP7Lf/kvVwJp10XcNnqcvpuiFOeXnzryygF/DxLztVotuLi4WDmxhenm8znUajVot9tBFw+HQxgOh+LtIUXbjX/zIDNtI+WLzxuUsdiblkX4A3j5bt1sNoNmswn/6B/9I+j3+/D7v//7cHR0BMfHx5Bl6SdM0RYU6Uc+9tTvovqI4lqMJeD1uin+Fl+0l2RVusZW0kdIGxsb8Pf//t+HZ8+ewR/8wR+EhejZbKa+k4o6KNbfnsCe1n7aNuxD+m5orVaDjY2N0vLvJZyfEl2HLuOn8fFEMM63PM/DUy2Ypixfml6j77NLcgawehOGxosWCFwHxpLkCecl7Vv+HrQHU66L5yIk+dycZ9xgub+/D6PRCJ4+fXolj0ao47TTnRSLxfikvEqnpC3f2tJpVcgR5p3NZjCfz6Hb7cLOzg6Mx+NwRboXG3M+tD6U5EtqizWfsFyafrFYhJtWut1u+P7k5AT+8A//EO7evQtf/vKX4bOf/SwMh0Po9/uwvb0Nz549C/nxX7vdho2NjWAfkCx5+CVVSx676imD4wc+p+j8k94JlhZibhuuT6Ffymu1VGXMyvLfr2vMeAxD+s3KW4aoP1H1HPPEt1Jt6sqK6ec///mgRO7duwedTgfOz89hMBgEBxfBPV5xSU9/oVHj14B5O8MT0I/9XlWna52dWr4WYEoJVsbAbGq7qzBMnCxQqgWTrXqrUkqxgKL2ndSnHNx5+fMGrLR6Y6QB71Q+vXxo4FeqL9anPB//2ypfCnDFKGXeSToM68Xr9AAg7IJcLpcwHA7FxU5Nh0j9E5MB3ge8fVwvTKfTUB4PyEv5YvVSvlPmPc/nJWseWkT7swqKyY5llC0ecAfxbDYLu4jL8CGlrRKMeOdqSr0p89eS/5Q6yxKfq/wksycYQH+n//N6pDKtslLmiFanZjuKBm5uymmT9FaKTcb0KbJMbYV3zDg1m81gV1L5xTKzLAsbAqjtonViOo+u1IKuUjuKzkMtOMXHgH+WsLVVNi2HvmXP/RVJ/qu0KbFxpe2Kzb2UMbwOsnix9ApvB5U7+j290pvrUHo9Ko6xVO+6KVZfp9MJi3noZ9N8Md0TKx8XEp4/fw4bGxuwt7cHAADHx8fh99SABcYJ5vN5uI6y2+2GTWWIaXA+xcriFJMbqrM0PavpqpR28hNduNnjzp074X9+QlZqRxH/vChG1mxcij2yeCsyf7wxB2/ZqX499ePwylnsC8mP5HbE8v3XFaOgfMXqiOl93k6pDv6dVXeKzyfZbU+6qihV3rEvcQPbeDyGLMvCbTd0g4GEVSzskNJGy9ZL8ykVF0r8aXbX8k848Sfq6NWuGv6Mzec8z8MNUthWfvOY1kbarhS5RT4xzoOEi6zL5RJevHgB7733Hnz2s5+FO3fuwObmJuR5Dn/rb/0t+Pjjj+E73/lOKL9er6/Eini9sfHz2IUiWOGm/LLrpJgOS+kDy8cvQkXsPdJNj2csdvCLRBqGsXzg1DKl8lMoRb9506TykWLftDo9/eLJ69WpUvn8dzpPOTaTMCT+JmFLSU+vLMb+vb/3964w9vjxY3jnnXdCxna7DRcXF/DJJ5/AdDpdSYvGkn7Osgwmk8m1O8BVUuxEKCUrHXd46Qk2jWKGtYrgl1SuR8lboNNbT1nyKJkYn7EJ6a1HIhoE0uq3+CkKGIqk9+SRHDRvPTHjleqwlwksaI4A/Zu/C4GBslqtBsPhMID0VqsFDx48gMViAY8ePRIDgBbg4n1pyYi2I5nmp3wvl0s4OTlRT+bxtms7dK1AV4xP1Cc3YQOuCxTyeY7EA4HSb7VaDVqtFoxGI/UkNaZPIS0YWQXdFNjWQM9NkXTamM/B2Jy2gi1aEMuyY/RWklQwSgNxkszgm4bL5XLlzTAa7HuVsZ5ERTBW2T6o1WrQ7XZhuVyGzT24OJuC+/I8DwHEdrt95RQLXYT08F2kXSn4QAqC0/Zqb6fn+dVF1BhP+A83meKb77VaDZbL5crJdq1OL/6MOY6ag6b1Cf4Wa+Nt0pWUNEeW/0a/k/rBOtWIb7Dim78YyNXopvrozp07sL+/D2dnZ+GtVRqwpSdoLMzL+wfnRLvdhkajAX/0R38EGxsb8Fu/9Vuws7MD77//fsAeuLE6hSaTCUwmE3jx4gUcHh7CvXv3YDAYhPnU7/dhOp2u3JoFcFWfUnmOtZGWQe2NFHznfZLqr+Z5Hq6sRHt3fn4OW1tbcP/+fdjc3ISvfe1r8Omnn8JPf/rT8NRE7BaMKklrE30/FSC+Id7yta7D79TKiek6bh848bGnp/bw1ggA+d1Nis8p0flY1B5ymfeQFNRLIe2deeqjYtmW/FKdTfsdy6enGDmvsROgMawco6J5eT6Ui/Pzczg/Pw/4q9lshtsYJJmLbeQC0E9ESvyUja1IlGVZwHz8GSX83/JJJH7p9/QmHSoDaH8xHiyd7JXiDCiLzWYT+v1++A03vkv8WXjLIyNZlgU9ThffcWMTysd7770HP/vZz+B3fud34Jvf/CY8ePAA3n77bfjmN78JP/nJT+Af/+N/HOwfPmWF7+hyXqWF5TIxvLI+SNUxg5smbb6VaaO2WOPh4RepbylZ7bqtMuXBGVVTrC9i/fiqkObbVlm2RWXqluwq4iTvLY/SMyZS+pXFWH4tEABceSNWWgCgTPIgpNY4+nuRAFcVk4PX73XQNIDlWcjiRlhbiNJ4lH6z8sX4KZO/KHnrlZxyy6mkE6cqpaqNjwaerTI0sKml5fXG8krllKUUJaYtIKTy6QmaxJxv7buUfNImDNzdiI4E7vw8Pj6Gi4sLmEwmIYiL781RGaKf0WGR+LBkxqs3aVCIv1tShXxoepPPmZTxLBLgsMZX461K0nSz1c/0qi90+FDe8Fpbrz3i9eL3/F8skKvROoBUmfJoEPY2EA088WvLrXHE9Lhbmr5VJKXlnyWQy+cegkYtAC6VzeUG5RTfm+Nl0TZac35dmKKoPpN0ryegoxFfNPE65ZxarRY0Gg3odrtXrnnUQD0/IYi84E0IUv301JcUlEtpf9EAkGUrtLTS9xxbS0TbFQs2AlzFmpod1uopQ0UdcWybpB9RF/DyYxhU40GaLzHd7NFvKfOZyo83yOr5LkYU+8QWLng9VP4QM56fn4fFUN63dLMEzVsEJ8VwgIe4D/vRRx9Bo9GAxWIBR0dHsLm5CVmWwXg8Nq/qs/ikRE9WcXuj5U3xlTC91DfYZ2j3Tk5OoNVqwWAwCAsBRfuyyhgG8qr9hu2iN5xJ/keVPFYd35HalzIHqPxPp9OwMEsxTowv6TPnmbcjtQ+LzPUi8SOrbq0sinM1rMT9wlT/lY6rhk15Wfz/WFuKEOUJY6K4ccuz+cKDLyW/P6bTqN3lZWhtQNIwaxFMrelmvsltPB5fKV+b29g2bnPyPIdGowGdTidcf+zlOQVbaGXOZjM4PDwMv/385z+HRqMB29vb4Sr4brcLb731Frx48WJlkzXaE9qmMrJaBTbg5VF5WJffVpaqxN9aDIf/RvUP9g+9CRRlVZt7Vl9WMXZVU9Xjb43ZTcmZ1e9V8KS1zSMLWnlFeKBlp+DxqniR8FqZ2FCKj6mtWxYZ81SfU6uL13PlYdcsu3yPB6ndbkOn01ELpISBRSltEeUUI+9geJR2CsBOcQSp8uZKmgc2NX41gYmBtaJEDQsH1pysfks1ljwPB/zYl2UdixRH3QI4KbxoZXkVBOc7Ni6Y3tsHEkntswyLpOQ99Vtykqosaf9Kc1Y6sakRfwMTT89Q/dhsNsMVcBcXFzAajWCxWKzcGoCOCP6NQSXrJILkXPK28N+5A0fLx12ZeA2u1m66q9mq1/pO+z3m6FUBQtcF6mIBFktOJT1N7eRyuQwOZZZl4mksL1/0e64vJQc4Npe845viBMd0Fm/Dq0CNRiPwvlgswiJarF8ajQa0222YTCbhpL11Op2OWWx8OACljiLXg1K/87dLx+NxeOOYpuWBqOt2KqsA8pZuk2wV12sUq9RqNdc7rFIQBeDy2tJWqwUbGxswnU6v1C/xQE/4oI2Zz+dXrlijdWMwXjoVxNsbI0mGOPGyNP2YUh+1VR7d79VXKNex9J52U6pqbnC+PDjB0heefkG9YJVDNwVgniqDZhalOseppOkI2nf8M90Mp+mR4XAIABA243C9gPrEGmtebpn2WWXQ96uRv3feeQeOjo4gyy5PI+/u7sLFxQU8efKk0JvLvJ9x4xoGsPnVwbzfMY/Hf6XtlfQstZdZlsHBwQEsFgs4PDx0YzReduyazpRYBC9by4dpcIMovWWh7JwpInMpPrhGKViflo9PzFD5wXchPf3BTzp44wf42Uqv4XmtnVoaK/4i2SvPXJFO0NJyKP6hVOTZlRT/sKy/5/GDKOF75NguiqG4ryXhaq6bpLq08bDG1PPuLL3OH/UqHx9PfEEi7UaAVqsF7XYb6vU6LBYLOD4+ds13rZ/wc6vVgmazufK0j0cnpGAw2qdU308mk/BucJZl8MMf/hBOTk7gV3/1V+H1118HAIButwtf+cpX4IMPPoDHjx+H+rrdLrTb7bABO2Z3vfxKdsEaS+lvWhfK6rpiKtdFVv9STIsk+SmYTnoOA+e59tniq0y/rhvvYh3XQddVTww7eflI4bfqtkm+XKrvTPlK9SU5L7G0tJ6i/RbDTJKOLBpf0PRF0fmq9TPnZ2UxttVqBeNzcnICn3zyCZycnAAAwMbGBrRaLfjggw/g7OxsZcc+ghPqdOV5Hg38SwxzigUPrDRe8jo3GniKORaoyL2BIInWOaE9YO86KOZ80KuXqtjVu25Dpp2Wthw+j4zFHEYOqIqQlJc7Glb9kpNHedM+I1V9zVdRuea802trsiyDdrsNeZ6H9z7xRJwkyzxgTxc18FrEojJLx4YGADkPVhlesgxzrJ4Uub9J4oul1NmT5rV1YwQSzUMXyjVZ98oC/Z8uTGi63dIP0vil2AePnHmB1W0lyj+ekkfdgAvpFxcX4jVtGkkAG7/38GF9p+WV9LR1GhDfxkNdR+eIxsdtH0uNiugjenLL024toDsajcJ7hIvFAs7Pz2E6ncJwOBR1D9ofgJc6fzabhWvdOp0ONJtNODo6gslkEoJwngCkNo6SDkntM6l+7rhpfcSJBlVigRD+G9e/1ltkvE7pf14HD8LSuWbxuA6bGHPiUW9hWso/x3/0n7RIR/PGfKRU4sFvrsuQl8ViAePxGObzeak+tXSt1TYtwIFparVa4A/fsqR+eBnCvsdrFcfjMTQaDdjZ2VkZQwySe8ujbavVavDkyRMYj8fw67/+61fyYBrpRHasfEzP5zb/LVae5sdwfvhik1Rfv98PJ59qtRrs7+/DYDAI+dEGpBCdVx5s5MUUFxcXK/iE1kNPYdOyb4LWGVSm+mmxWECv14NOpwNf/OIXodvtwne+852wGYLjH9rXKUFaqg/LxL6qzEd5Su1vqqus25XofIvZ4FQqE8uIlYv/W3G/PL+8ZeTg4AAuLi7CJjl+wtEq09MfFpbitlTTlUjWaSCNL5STmO8W8/OyLAvX8aIOwhuAcJ7RU/qSTHI+F4sFDAYDaDQa0Gw2g75GfIvPEljjWEYm+cLsdDoNm9zxuz/90z+Fd999F772ta/BaDSC/f19qNfrsL29DQ8fPoSf/vSnoQy8Vc26EUkiS/9rtg771xtT4Dj8F4Es3JvSTp6W6yb8m/qDRcmaZ+uymb+o9IvWX1Xjpts216vmx7ILXl4oT+jbeHF7jK4sxmKh5+fn8NFHH4XPnU4Her0enJ+fw9HR0Uoh6EDyhlknfKTgjmRkYh1l/V4W5HqBtMfAadcTp/BDy/PyFys3BkKrqCeVJ+1vBL/UadICIl7Q4SELGGuEE1VTmBqAlb7nQf1YvZb8pshdqoLR0mt1llGOFmlBnTJEg6gYyEDHJcuysEBBg1pcfuk4Zll2ZTEDA4bSWyrS31q7qPNspbO+18hyNLUAYlV6SiuviBxp84nqGRoI5MFKHrCh8hGrG2B1l22RxVitP2KBvaLjbQUVigZe1jX/r4Nw3qNDjW1J2YBGydLb1hy3gi2afuayTz9rb+ACQNiEgqdr6BthGp+3mWJ2mesF/E4bK/zO+2SFhncx0Le5uQkAADs7O3B2dhauOpNOmqHt6HQ6sFwuw7t429vbsLW1Bd1uFwaDAQyHwyCzqUTlIQUj8/z8sybvXr3i0XUaTgS4qn+535KKJbkt4N9rJ6c5j0Wd7Vg+rd81266VIeEUHvzjJJWtpdX6MM9zc7Gcto/fOkHbWYakeW/xwvnCz7VaDabTabhJBd8mtMbQyz+tp16vh2tZe73eyhW7KRszOO4BADg8PAxtSBlLi/gcsDBS0fGk85TLM8V0lNrtdjgVV6/XYXNzM2yqtPrSaxvL6FOpHN4u/J6e8PH6p0XJGqOYrkuN72h+CZ7aww1KX/rSl2Bvbw9+8pOfwGg0EvGUhXljPHltTxWYqSz21nSslCd1w5lEZWMv68jD8/G2IabHwykAL3FYapwsBXd68ms2lf6vlcvTST4CTSvpf6nsLLu8En0+n4dnN/DNWKqDAF72Y0ye8IpjevCnXq8HfYw2VMPVVj9oZLUXMTfOieVyCT/4wQ+g2+3CxsZGuLa41+vBgwcP4OLiYmUxFvUyLsZ6cZvEX+x7T/lSXdItDla9t4GK2jXaRx7/iM576cpp7h+n8k//1sbvVfO5qySPn5JCltzc1n6m+FWi1HmPebBsWo+VlvMk/VZGd8TyavZLSsPTx3SoNQdj/S+VpfF45WjDdDqF58+fw2g0CtctAAA8fPgQDg8PV+6+z7Is7OKlzjG//owT7xTNyJRR+Cngmaf11OsNFGFaz8KIRJZwpRJ3yqzrSbwkCWeRPDRfq9USx8Qb3CnCt/R7VQpYAjJWAFHqm6qcthg4L0qSnK4DsKX2gwUiPUZK63s8/XZychLdHYNzbXd3NwRulsslDIfDcKUxBoA97fPqBBrI4lcuW3m0+vB3a8GG56k68Fkmr8dg4o5bmrZWq0Gr1bpyDROOubQ4Qk9LYjpeP5YLcHkajl9bJLXBap/UXqy3rA4pYrO837+qlOeX7xbR5wboIi1NZ5XB05TV9ShvnkVBeqKN1h0DsxLfVTtHN0lFF5itQCaWS/WBdh38xcVFOAmLi6f01KIHH7/99tvw27/927CzswPdbhf+43/8j/Czn/0MhsNhKIuOmWd+Stf8VzHmMceNBkhSeI451tTBGo1GAPDSfym7yUCThRhWoDYlFvDkn3Exj16VHqvzOkji3etnSek8m1txDOmTEa8K5fnlpgwcTyoTlh+E/UXny3g8hslkAv1+H5rNJvzxH/9xWIy9uLgIb7uWmcfj8Rh+7/d+DwAAnj17BsvlMryriGTZFotw84923TGVEc2eFg0E8U15k8kEDg4O4Pd///fDlf3Hx8fhhBzejGPRuuYh9Qtw7NHeYDusG1xuUj9ItrDImKUEDev1Orz11lvQ7/fh008/Dfif2mjJvvHgHC9f09k8mEc3a6+j73ndnrRWW9Hnxed6kG9uJ1P8lRhPKf75Om0c1oHvd3s2A10nSX6gxQcdb4pNPXVI80K6jUuiWq0Gm5ubsFwuYTKZhLw4/zkPKbLl8XG5nHtjKdr8Xi6XMJvN4OOPP4anT5+GG2p+8pOfwL179+B3f/d3YT6fw8OHD0Oe6XQaTunzp+qsYL1GRW1bjGh51Pd41UjS1/iZE6bh8iz5I/R/CZ+sG3P/ovjaRalKv5PPwVeJLF8qFXNruudVie0U4dFzuhXJkpei+ZEaPOFyuYTBYAB5nkO/3w/fD4dDePbs2UpmVEDcGcLr+nha63/emDJKLLZAoKXX0sQmbCyQJPGiCY2Vrqo+oY5GFWQ5QJ7JQUEUgjIaeANYfW/XUhQpkzE2hlWCfEl2eP2avFht0oJQsfQeYGLROhQzb781JrH8PJ9VLk/jIVyYQ/BN9aDWx+12G7rdLuR5Hq7PA1g9TRcL1Hq+09KkOsKpfVJGpsoYNEsvpBDKlxTcswKh2ve0LKkvKYDHawpTdlHG5rkUnMPPUnqrDJ7GAoASb1XMudtI9MpXOtaSPEvzg853q78peQNrWIann6XgDP9eyuMZ5yqprFOQGrjg4yfVr423Vh5iZOsmAbQR/OS1xEuWZWEDG+Vld3cXvvzlL4cNk5ubm9DtdsNJIE3uLJLSan3C+8MbZIrhrqLjH5tP9OrOKrGxd45YGDCWl+bBhSHJjln5POl42hg2jQUKYjIh9Yenn2h+XGi8bnuj4RT+G28LzndczNTSxuwvthnlut/vQ5Zl8Omnn4aF+jx/ecLH0xbpM9bx4YcfhrHBaylpGk4emaNjLelLTb7K2gksG+37fD4POnk+n8PZ2Rk0m03Y29sLi+YAoC7SpNibmDx75hX+j/0nBYqrIslPK1MH578sb9hn9KQS3ua2v78PFxcX8OjRoxWbzJ9BkvQU118x//W6KEXWUvU9ypJ2u4O3nBRMqn1fhT6XZFWTP5x3VT+hZJGG5WOxgDKxHS8/Fu6T0uLnRqOxMh+576FhPlof4hvpOnBPe6vQK8gHAIRDSpPJBJbLJTx+/BiOj4/hd3/3dwHg5QIs5uFvkWtzw4uVPe2KyVLKeHrq0HhcB6XoMW96b50U80h96iFvH3n8rKJUBWa6yfJj5Okraz6l6GKpvHXiAa8cpPDD9XKsPE+ZUp51kdVWDbNqaaV2VolTAdhibGowOIVQWVm/V9GglIHWHEQpYFqUpAl83SDdc31oLKgi5SlCqfkxmMKvwkbnWOMzlYeUcYmlk3a7IXneupXquy4Fhs6qRqnzK+ZQpZapUVX6QyvXEwChwQ/8jhIuxuIJnM3NTRiNRnB2dlapjvHsYEwNvnoMtydAVCUV0V9SfgxgZ1kWrjSkRHUPfsYApDXeFnGdiraX2uAiAXLpexpUpOms63QtoIFlVukIvEpk9TXV/R77hAFeS8do+j/W7/RtL+r8Y15LN2sg+7qcC42suVyVjtECXVKwFXUDfsZ3w7kelvij40PTS+834il61BXIT7fbhW63C1/96lfh4uIC3nvvPRiPxzCdTqHb7cLdu3fhP//n/wx/8id/EnVIsF1UBvn/GmZOJd5meopzneSRE48PpAVbsE3aPMY0KYRlSptcabmo43ExFvNIskvL5e3QAj78PVhKXK9UNRdvwl+qmiwbS08q4omze/fuwc7ODnzta1+Dp0+fwp//+Z+HAK6kx7EsxO44BnTRpGwfcjxA60WZ63Q6kOeXJ3p5EKsKeaDPg2j8caJ1SzaPfqanSbFd+Cbg2dkZLBaLUBaekDs6Orp2+eRjQT97sVlRXVQ1afyhDvW83e2hTqcD7XYbxuMxHBwcwN27d+FrX/sa7O3twaeffgrvvPNOuMJ7NpuFjbISv1rf0Tko4UA6TlL+65CjmL/Cf+MBWSpveJ36eDxOwoexwG5KP2gYu2hfamPD0+BGGaoTbiNxPUwJ7QnaCX5TCubBOUhtMepIXFjlddC6cLM56m8sj26OwHqQDwuD4cZlPlY8BiHF4KqIR9G01F/nsbMnT57Av/pX/yrogsFgsPLmMhI+LYInhYtQFboj1l/cflLf5abnQBGc6OHZg12wXslWYUygCgy2blq3b31TMlIV/3Rue24dA1iP/5Kiq9ZBVfp3lMqU6b2ZoQh5+UoZa6nMlcXY0WgUgtHYuPl8Ht6a4YVxxwzJC8K4I8nJI3Qp36c4cTepODgPVU5mLYjknWBFeLLySL9JTg6Xt1j9lmHx5vG0UXIGODipYhzpuBWd9BJQ1T57ypQCtWWco1i7ioxp0TpjOk0bY/45zy+vvmo2m9BoNFYcHvqZlmn1g9a/Gq0TAMZ0Bm+HZ35ZAYIiYFsLPNCgMf6jb0vxciwwTeckD4zFiDqjZQE7d4o5L9TRla6ajpVLg8Be0uYR769Xkag9kgIDnvxWWsnx9WCtMvaGj4lXP1rfXccYpwBmJMn2edtFiV8Jien5lZDe/sHPo9EI6vV62FWP31M9gQsGu7u7IdjV6XRgZ2cH7t69C71eD05PT+Gjjz6CO3fuQLvddmEnLfCCgYUqdBWWByAvQNO+kIjrEo+s0XnqGWsLx8VsMdVxXnvOf9NkwyqH2jRLZ1j+kIVttDycDw9OL0uS/rXmmYensjxL80b6nQd06Pyu1+vw2muvhXdYqwjq0LZr//P0sfmHmIBuAqha38f8djovPfNF0vsWPuQnXii2024AS8XpFn/S75avJaWPYdcqyeI/1W/n/V50DqCdvLi4CBu5a7Ua7O3twWw2gzfeeAPOz8+vPDMhPeXkxfWSLuWfi7SJ6/qifVI2H7Ux9CaGFJ/U4z9q81qLYcQoNndSMYdWDq+ryrnmwfge7Cn9L9Vl6RBqnzS8QecRLqR6fUmpPL4Y6xkzzrP2WyrR/sP3YwEudcfjx4+h0WhAp9OBxWKxchqY94vEn5fK6pHUMrlMl627inmRwocHR2vfWXhXwhEafquizevG1wA3txZSFXl9KAB9rCUdlCJrXtxT9XjG7KuHivBk2XirvNi89MTMyvZlmX7R2irJD0+7shj7zjvvAMCqg/Hw4UP46KOPVhZjsyyDdrsNAL4d7ejMSO9NcaEuA1hS8knvz8QmWMogSwo4NThRtC94PlqnN4hWNWjEv/kkpb/jbn4qKxywTSYTmM1mKwGNIjxZwJLSdQSTNJJOsqWWWwTUabJzHUTHhgJ8CwBZRANGUh0AEHaGIuFJNYvwbVEpLTr+eKXZ/fv3YX9/X33zCnngb2zFKAaULXmJ6RbptyInpjVwir9dJ/jA+qkertfrK9fpSYS7VnFRHXf60jKx7izLouXRfKjLNFvoJT5HJAe6Xq9DvV6H8Xi8cspEui5Ks1tcJ1GwUda2VRmsWEeZku3Cd34RD3kJ3wKsGoRnWSbqkZhD4glY4Oeyb2nedtLGggflPXM2pY/wxCueuvrxj3/ssuNZlsH29jZMp1MYDAbwta99Df75P//ncO/ePbh37154bmQ0GkXfNOR6BHXDYrGARqMB/X4/1IP6RGq3h7Isg42NDQB4eUqjzEkoOhZURi3Z50GloiSVSYPVPHjssd08XxmybC1/AoTbEfwsvdlL00lUFIcWIe5fcirzBIAU/LdIWsTBcni5+PtisYDFYgE///nPYTQawd/5O39n5UaOooRzGG0VLkrR65tj8wR5xLGv1+uwXC5hsVjA5uZmKPMmyDt3KSaSbBrGMnDuLZdLE8tl2eX18HgbAurD6/AZrWAXT4u61fLFbyOhnAG81FFFNgHRPsC++/jjj6Hb7cKXvvQl+MIXvgD/7J/9M3j33XfhP/yH/wCtVgu2trZgNBqtnJD12mK64bHoglNK22I8cf48dXFfwLrqXcJBZUjSs9xvrDpGGPuetg/7A3/X9I/WV1UGwbXxpLzG+ML5kULWe8cp+IrOcYvnFPLEr6gsAaRhA6vefr+/YjPoTXiNRgPq9Xo43DSZTFbes/eetquCPHIBsPqeIs477V1f/r7qTVDV/nSRujlJNmsdMYkqy31VaR0xJK0eaVMJ3ZiN/3N8zfmjN2QV4aNquq4+LOtve9t+nT6ohw8A+RT9iqch7U5fLpfBSSmibDVBtAxvTMFUpXC1YCPlQzNa0gKMp45USgHOWF9VQW6Ld08w1ypTIvo+mhXc8RggPqYpixxWuz2AUQtscV4lpzql3bw+TjEnXSPafknWiwZeed4UuawaZPHABC3b6mccI0lOaXukE5YIzDEQNp1OV8A48oKBIKlcT3uk31JkxBvY4n+n5vNQGVnDv625g2OxtbUFrVYL+v0+LJfLEGgcDAaBDxqELMszd/LpP0ufae30kqSPtLll6Vm+w9dDXr1bJa0LgPG5nxok5Lom1pcp7aCB11jQVgsmXRcgv06ielDDA0UCvbHfis5Tfi0nHSv8d+fOHdje3g7BHVxs2d7ehn6/H941fPDgAQwGg3CFstYXVltqtVpY2EW9SHmysLKGbbgepPpa6j8aDPIE3SxK8UU8zl8V80WyV9j3Ek9S3fx3i3evvpFkJtbeWH8VxXIWlqzCJkq4XMqT2qceyvN85RrGZrMJ29vbcHp6GhaGUtpI20LnTZ5ffUe0CK9U1jgmuC57HvNzOG7Rxs7CP1z+ef1V+ycp5PFTJXxxW+078qmdsvbgY64PcbEdN8E9efIEGo0G7O/vw+bmJuzt7cH29nZIa8UPrHql74uWkUJl5pslE1RmaB00D+oRj18Ui4lw8thdWr5WhpQmJlseXEgxi7f/rwtbx+RN0lsappDiHKnzkH7njU15MBctL+bvW+VUQRj3wQVZqss4aRiXp+E8emxXEXtE5VLSA7GyPbELTzsppYxLFTbYU5/VT+uisr5OFfQqYIeq+eJtLuPTSPqUzxmPDKfIuaWPtXK8c8BLXptgkebfenThdVPR+qNHeOr1unjqwzo9xo1jmXucY0CtqjJxUvATct56vGluWlA8AKqKOixjTr+j329sbJQOEMSoCEjz5uHvOHnk3lJUWlD9uijFybitxpkTtkeSM/5mp5SGngbilGWXpyJxoRVpOp3CcDgM9S8WC5hOp/D06dMrDiwGi6SAgEaa08S/q0qG1nEvv4e8gJTrH8tW4amGL3/5y3D//n0AuJSD4XAIp6en8KMf/WhFHlqtVlislQgdr9jiHPKnveln6WnPXOPXEEu7bjU5lpxhuvmAXklY9rrS6wpMVE14NSN95xMD6DRAQ4kHs+jmN6+8YF6L+EaOGPGgTCygnuo8VElVyIsVpEqZYxJ580lvdXKiuDvP85VxRV30zW9+E+7evQsPHz6Ew8PDK+/aNJtN+PrXvw7n5+fwP//n/4RPP/0UNjY2oFarwWQySXLE2u02vPHGG3B4eAgvXrxYyeOVXYny/OUNAXiyTNJfUr6UcZKCCVzurXxlAyIWvzgH6ftjHEfG8mIe3PSFi2NVvbtoEdcDsWv9r4uqDGLx8buO4NTGxga8/fbb8MEHH8DBwQE0m80wR7SgNZUHeoJrPp9DlmXhyvNOp7NyIrQMZdnlwvF8Pg92LfWml3UQt1WIXbA/6Mklqwx+xS2eekSZ8N6Gkkr8pAUlCWdQXEnLuC5fsqx9Rt7ou5IUv3LfyEt46rzT6UCv14PvfOc78L3vfQ86nQ68+eab8Ku/+quwtbUV6p5Op1G9qW0K8mIuirOui7zBZJQ7qQ9QlvA69VarBRcXFytvx2rE7biEka+TOPblxMdIi23x72IYOQVnrts/0nihp/y5XZfazHEbL1OKvcTGW4vF0Hz0fWYA/ckLzs86aDKZQK1WCxgbqVarhQ3eFONVwdO647dUBhBXUv0l8aPNKfxt3bYoNdbuiVdrefgcuY4YnEZl7G9K3qpk91Ui6QCCJjfczsXWsaz5ZOVLlaeq421S/dcpEyl9kBLr4PlS0mo6MUYrHsSjR4/C3xhoPD8/VwN1lDj44MEOJCnYoFFMgLEc+r+URgJG2neS0rQCNp7ApFZWGfLmj7WHfqZ/p06oFAOkgVLav2j0kSiQ4RPQGhMrnUZaebwPvYqIt0uaQ1p/l3FWJH6rGFepbFqHhx9Mr8kNl03efzF+pWAV1ifNd4CXi3bWnNbq9wSc0VmZTCawWCyg1+uZckH/t+YXr0eaHx7wFGuD1C8e0vjE38roQj6WXH/RvkPdoZ0yqtfrsLW1BY1GA2azGbRarZC21WqtBNys9ls2SUpbFaCSZBftOO0fydnS5gotqwqHhX//qhLnX7u62srD08f0szRGsXQaD9qbwdJ8jDne66AUnVeUpECRxyZz4pi2DI88L58/dBF3Pp+HK89wkQEAYDabwfHxcQguUx1A+ZTqpnM/zy8Xc2q1GmxtbUG/318pp4wNaDQaYeNSLLiOdlPrG8q7h6QxKoKLeDnSZ/p/bGwtfmO8INGrnqmu92BaXqflO8T48uANizx+lVX+Ou2LpCeqsHN0Xs7nc3j+/PnKkyxIGNj18EnxjjZeqTyirmk0GlCr1aDdbkOz2YTNzU2Yz+dwdnbmuvaxKtsh4RWNLH9D8rVwoVpatOX43DtPq2q3JIfrwlleu5bqz2l1xerw6ExJJugG+zzP4b333oPT01PY2tqC09NT2N/fF6/yj8UcNB5wgx4uGEkyVNYHWjch/2hbqJ9Kn9ug7bD0vyQDWr9oeWPl8bJSyOO/Xee8KoMpvTEXybfwxg143ELjPWXuY1r+vBQtk5cXkw2OadaFES4uLmA6nV5ZkInZxBT/T/oskebTxMYg5l8W8QGk/J60GsXiESn2VoqdeO1Qqt/otdFFfFEPVeVb8znvxWAWDzdBMTmR5Czmk8TmiKeuWJqUeIxVbkoc6bpxCm9rig9Ytq5Y+VXL8Mpi7Lvvvhv+xh1vvDLJKdEmobQLDgMrMSrqxMby0wCFlzRnjZZ3nbTOCREzcOsiHnDjhnE+n8N4PDYDTLy8dZPkZFKiC8ecH2sH4TooRXF4QExZB7LIvNHmoDcvAIQFNR6ooulip7Ot0ysWj3ii8vz8HAAAdnd3Qx9MJhMYDocrJ3NpXTHDLhlbTfaqCJCWJQ/oSC1H+w53tOF8pIuqPHj9xhtvhHcMu90uZNnliQ/8LtYG7zyzHFhanpckPcTbivJOT3QCXL2+kKaXnGKvDad0HU7wukmbg3meXzldJAUfubzweWqR9OabxIvGdwykx2xZlq1eD5vqwKSShkPKlLsuexZbhPdSrG30lNB0OoX5fA7D4RCGwyE0m82A1/HWhb29PbEcnL8x3ZNlL0/R3blzB3q9nsljSh/iAg49SafxgmXG7LInOBejon6E9kYo1ZVFbn3BE3jSeEm6lF7HGXs6hfJplSsFXST99arq9bIUkxEAvZ85lsR00+kUPvrooytjTzdWxfocZaDRaECWZeLCbhHCMrvdLrTb7fD5tddeg/l8DgcHB9G3qaukKuQO7RvqVxyLyWQCs9lMzFMEB2FdZcZB029SYLgqSu3jdesCHCMkb8B9Pp/DfD4PtvLb3/42bG9vw8bGBsznc/jMZz4DJycn4eYHCRd59DDSYrEIC5YAst9Px+269KjHx0fCDRe48Ytv5Nvc3Cx8W5Ikr1XIr9WP1vdYd2xec3/Iw7M2Nz1jXpVcWHEX2g7qL3tkJdZftE4JD2m4i89zqQ3It4SvOO9V+BExyvM8xCrR9lpEeczzvPBcwrK0+eSJlVD5l+JjGt9a+RpZfmPK/K9SX2JZHFtZPgFPuy65kuooqier9K25LfD6ON4Y2avgU1j4wMu/NJaeuVBGFtbVv+vAn+sgTe69OjSGL1Lj7tG7daS3D63CLaOnBYBSBYKDn9jgawFmjQcPKKbBGM+EiA0M7zeNL40Xz3cp/Fj1xUgDQFrZ+LA9BWAAV69b5GNngcoYxQBe0fKo3FtXq0iktS11HCynMTYXUpS7JsPe8jz56W9e5cYDhfg/gmNO/PoYqWw+z/l4S7xjMAyvg8R/GGAFeLmLcrlcht3HmnOHPKBOtmRW4pu3LcVB8ebxjBE3dl5ZpzzwuYL9QhdW+fVF+H273Q5vLGL6vb09uH//vnglf57nYZHcsodeR15qjzetls8KaODV2nzDAJ0bVD6lOpFijmKsTR4786oA8DzPV67AtoIyVr949XsV4FmrS5vXmp2MzdmyDqNWXpVktSHFiSq6GMv7nC62AsCKnsd6JGd3sVjAJ598Aqenp+G6wE8//RQ2Nzdhf38fjo+PkxdHcIyRF7yCsF6vw2w2cy308e9o38xms2BzpSs0cRHKQ1RmOYa07Iwkx5IjZtlP+o9jDe00HR13Pp+KyrknX4ojSW1CrEwJG9BxkPCSl+dY3fR/bg9T5rDVHzGfEf/nV8PGdKBkvxGjzmYzeOedd0L/HR8fR9vhqY+PRcoJVky/XC5hPp9Dp9OBLMvCExy9Xs/ER7E6UnVnyvii7sqyDDY2NqDT6cDp6SlMp9Ngw3HBjGJJxH5U76bKbdH0uMhd1c0LKXg/hdaJ16SbsHjd3rgLTYsbgKS8y+VyZeO35E9avOT5y6s8O50O5Hke3mpHOaLj6PGFqsZ9lt/K2wTwchyazebKhuE8z8P155jeklHut2objSQePKT5MFI8QPrf8r15PdLf0ndlbTrHNxI+0cbTU7cm23SsONbBMbOu44z5QmX9ZG6XKX5GPnEDfFV+iJeQLzwZz0/40iugtTEqyrM2BikyyTEcfpfKU0w/c968+ojzKKWx+tdTz7rGB/MW0QuethUtMzUd1Q2oD7xxySr5KktaX0r+DNUvnjL531hGrG3WvNEwTYyfoji0at0p9XdMntfFC5bJ/Vjer6lzxLLDWlnRxVjJYdMUIlfWGgDkZVmTQEqv/cbLkIChF0xrYBn/pjvPPe2M8Rprh8Uz/d8DylLBpsWjpKClfFYb8co6JPrWFc3P+7sM8PSQ1PcpSlKrLwVwePJ4x84qN+YYxnjwEJ+HsTal9hOduzQNnSN0gQ4BBAaXaPrY+HnmB+6Ins1mwRnn8xUdf+kqSU+7PTKf6khqabXfLd3iAf2p9VrgmJ6yQuDEHTZ895WO+c7ODrz22mthjGiAgDp1nnfEPfNEc3y1dJYdiNVXr9dX3m/j9k1zjjlIkfjWqGrdcV3ktbfYnut4nyilHI+Txuc/x2/afObyIpVxXbSuOouUqb3HV9QBou8QYzmabUOd9/jxYxgMBmFzz7Nnz2B7extee+01OD09TVqMleb7dDqFPM/DQpF3sUlrPz9tRrG3xwZrPPO8/DpXCVdQPyFFT0l2gvJi+UMWVizieKYEZ7RggGST+G9cNnhZHK9rfcHLLdpWXrdWj1YGbxP/jrZRG2dp4wDPQ+v16Nf5fA7vv/9+WJBLfffXmpO0j6jce7Eg8oJ5x+MxLBYL6Pf7SbwVwa6x72NlZVkGvV4Ptre3w2Y8PP2PPijvH/w/pc6YX+wto+pAuKSDrtt2S8RxLu13zqeGQzhZ/juPLdB/+GZss9mERqMh4iKrTtR99Xoder0eLJdLGI1GYS5bOCvV/1sXcX7oYix+RsLFWO5r8bLwb24bYu1J8SFT8FcR+fESx9Vl+JDkXsMwKeVK+SjPOOZ0AwESHUeNX02GJX8z1aeQ2so3XyM247cWafZe0rHeMdTy8BOmFN9aupl+rnK+p+oxpHq9ri5qp85frYyyuC0VT0j1WTx42q6NmTUnUuat1v5UbFCUJN+BbsDDgya3AVNUSXTeaP6AlAfT889VjBf3xbjNsfJ5cKCGn2LlcyprRyXeLIrxaPnevBzLhsX0tzY/tTJXFmNbrVYAowDxQKMEmPE3adKmXL9QRli5kGLdWZatOLXUSFoOOX0nQ+MP+4orolQDY5EGnKqmdSh2y+GnRl5S9DhmFiAoy1vq95ZilcAmEt8FyueJB7h4KJaPt8FD6zAiRfNJ/WTxxq9cj819/D42lyVDi4uwfDckOgz7+/vQbDah2WzCZDKB0WgUFgdRZriupBsUeJnrkJGyxlbS/x5KbQ8GQvnJZoDV65CyLAsn8CX+z8/P4eTkBO7duwfz+Rz++3//7/D8+XNYLBbiaWqpHuTfoliwwttnHAhq8jKfz4Pc0M0HUlnSKSaNX8/CjnS18XU5DUWprE29SSfECiRoJG0o08ZdmtM3NZ5lwb23/NS5qTlpmu3CvsbgLb4HqdkznL84bu+88w40Gg2YTCZX0n7ve9+DP/7jP4bT01MYDocwGo2g0+mouJ4HjDjNZrOgEyVZKBIc4OnoSYJY0KoIfpFIeruZppeuJCzilNIysHxNzvjtMNzGWL5IVddm0/ok/q06uCxIc6FqXRnDgFYe6YQPHR9tvBHrLZdL8TrbIjxJRP1KDH7RcimWRTzUarWg3W5Dp9MJV5vT0/VV6W769AcAhFM/FMtK/WDZmSoJxxEXXvEkLG7KG41GYl/QU3ucf3oKq0pcw+WtaNnU38iybOUGj9tMnrHnciP5YN66Wq0WzOdz+NM//dPwhMxsNgsyrcUbUL41+UW8PZlMIMsy2N7ehsVisbLxlpd9k9iR9yHvS7xuuV6vh6dcBoMBTKdTODk5WTk9XmXMK5U0XUPrTelnT/oYFqqKPH1WJB5g5aH+IvYFv8FLi6XEeLH6yCtDVE5xwzt+9lyx66WyMSt6klyLjWhpy1JK3J2OGY9FFYltp9RrxYhjvq3WT0VjK6n9rmEbTS9I7YzVmWrfqiatXrzGHgkxlnQz3atE6+JdO/RQZGMLT2utS2A9qTGQslRlP5bxuy2yMEMsZlsVrUSZ0YmSgkkSU9rAWoF4qzPLgDirw2hwRwpEaTxh+7TgBv2bO55lFkk4X7HvJN410sbLyl+0Hd58PNCEATksA4OPMVBRxlgVBWce+bcCZzytZazL8KwFgzW+rHKk9hTpv1hQzyozFdRI8kMdCG2uxYIiHEDTAC62kQaWa7Ua9Pv9lY0v6JjzU53ecfICZE0OYzrFKt/SnV6AbDmCPJ1WrnY9Cg98SzLQaDRgsVjAZDIJp1B+/vOfw9HRkcpPik7k/VgFIOek2Wa6mYVeLxazzxr/NDDJ+4ODQcsR8dZ90+SZJ5rM3TRZzm3R8pBieug2URW8pszLLMtEh0srB/US2gntqk8+vwAADg4OIM9z6Pf7K7h9uVzCp59+Cj/60Y9C/m63GxZu0S5heg+2uri4gPPz8xU8rRGVPf63lp5fWYzOfAwTpQZPNAyjpaX/F5lLEn+8XZyoHxErW/s+ldeYjNK/vf5bGV0f63NPIM6qR7JfUnkxOcfgdKyOVOJ9TjFlLD22p9FoQKvVWslbRJatMUDe6BzX+tIz16R8vL4ihFgIsXy9Xg8nFa3bvzjf2D7a7hil9DUfxzI23NrUcl2UGvzTxrisP6zp2YuLC/j444/D77joCKC/BU4/S/MJ7dh8PodGowGbm5swnU7DpimUOY6X14WrvPOQY0bKE36/sbEBd+/ehXq9DqPRCE5PT8WYl+WveXktMt+9su7VhUViHDyPx4/gv0vj4MFcnrhJjG/tOwu/aT6oVk5snDzxB0r8mQCvbo6VW5Qsvr1xGumzhcVi8QSvfsF0/H3fIr5ubJy57KzTTmk4r2idXvnlsm/5MVo+qQ0SD2V8FY0sf4W+iY6+Jz0hW0R/3gQVsTVFsZ81Z605qvmSKXrOa189WL2MjEl2RZMVS6+l+JgpepinsfziKubaymIs3z1pBWi0YFHZCVelAqGCxk8DWbs2Yu2QFmY8b8p4QZiHqtoBuC4F6RlH6igCQHjsPmWsUkgDgGXKvkkntyhVwa/llErk7eMyjo/1u/XQPL8i2Jr/vC4tCMfr47p0uVzC8fFxOHm5WCxW5F66cge/p+Vy8sgj7Q/ppCimof97y035nfa3pMukunme2WwGrVYLXnvtNWg2m2GHXp7n8OLFCxiPxyE9no6mff3lL38Z3n77bdja2lqpG99Zxfqm02lye6X0VetbT3m4UxFJu14fy+MnQjTi80rjBzfXrMNJ8FCV/X7bdL1l/3F86BvVMZKAPn7HF/JTToRbtI55QUmz+amBMq2v+dtaUj5sI30PVuLJs8hJiV4bmOeXi6rD4RDeeecdODk5UcvhbaL6ldaBJ4Ssa45jTg/VIzRI5g3k4P/Yz9apfCnQopGHB3rNHLVT2E9oP6ntpr/z/k0hrJfzGbOT+L90whr5ssYA0/CgCj359KoEWK6LOMaTbGNqWbhQyDenSoRjgr9j3tlsBs1mc+WNulTi8oPtHI1GK28/P3ny5Ep6b51eP2pd8pZlWbjNBk8R43Xs9BQj1s/fJ5Sukb4pvAPwcuNdlmXRm10A1m+DqyaqV7nNkvCJVU6WZbC5uQmLxQJGo5Grfu5DcruAdhmvO/7c5z4HWXZ5eu/Zs2fw6NGjK3zHbPF1Efc76VXpuJjcbrfh7t27oT30yRd6chJAf/8ddaQn6FuUpLL51bGYTrKTmn/jjX9c57wq2o9am2K4Liaf0hzxUmpQntpJ1Mno8+K723QspRvI1hV7jhHXARSbWWOSElNLwcWc+Bwocg2tFMPR+JHGPGZLNX4kDG75ausgrd2ar1hV7DM2f8sQvYmu1+vBvXv3YDwew/HxcbjefzabrdiFZrO5Mo63LZayDpLGXpvT9KYMbY6lxCcsWxUrK1bmdVOV/ua6cHnZcldQuhSU0hqvBfcspeilIgLAB0tqC1fGFgjRgihWcEWqJ5ZG+11rn5XGU05qGamCpRmYGB+WA58iO2X6RjOERSZZaj9YfMXyrNuoWXXE+ox/luaPNZc0Sg3cUGeZfyc59Cn1xHjGOvCaXHQc8FpivjhWdu5qfY/OZaxN3jGS8sS+q4ooaKnX6ytX8uH7rtwBoFc/IpDsdDqws7MTAnH8XdgU4G4BLol3C5B6dI7HVvDvvDxac6GInrrJYF8Rp7WK+tYZXPaUTeXL0zYv33w+rEtvalS1LGF7UoJpGi6Ufot9b5FUv/QZxxp12OnpKUwmkys4XeMzxhs/tcp5S5EdGpylMlqr1cKGGWwTvVY1poer1i9WEIjyLI0R1ZWp84n/JtXP6+H80u8sfKOV5w2SSX9L9UvfX4c9KOtLUPm2xohvMtD0bgp2sxYxpLK4TkY+KMbUdJ2Ezy0ZyLJs5ZRpnudhwxo90W7pVqnsdfsyABCwN19gpePoGYdUfKhRatDNkxbHHf/HdKlxhyKkxWAkv6Ko7deemPGWR3nE8vCZAOkUuVUGlkOJbroCuLyVol6vQ7fbhePj46jPeV1YWatHwnhUlritBljdlMZxAYAdZ+P8cFlJ7Q9v/ECzYXT8rfiE1qaqdRkv09IZ1hxP+c3Lv2WHNOLy7/GXPWVK/1vYzFtulfJnlZfiO2r5Y5jHihtoeJJif2nuaLxYvBW1ex5M5/W9Pf4ElxePrEp5PfoP88R48/5WlR2RdAPHinjTCKXFYrHy/JpmD9bB87pI6guPvUkZ0+vEACn2yoMfi8Y5pLKkdEV05Lr9irJ6G4AtxnpOTyBwbbfbV9LPZjPx3RxN6WqKqAxV2elUicSIXzHq2Y1K08d+48JuXYtV9SSuAlhK+VPeT6U727wT3xv4KAr4OXhJOUkuvVGVQl4nsSylBI/KUBH5il25SgkDL/Qk0WKxgNlsFpVND2jUdljmeR5OYu7u7kKv1wuLhVK9eCKTt7Eo1ev10GaAy53a0i5+zrNXj8TGTXNkYwaXE71mOs8v30LF93f56d7Dw8Nw6hjgchc3plksFjAYDEIdx8fH8PHHH8MXv/hF2NzchNPTUzg7OxP7yNtmD3F7UWS3aVGeYqeiLYoFJ/BvbBMFet6NAFXqlLJBzSrSeqls27ld5DJcxGmlWIMHUFKuAfOQt/1evZQ6nlowSiurKgfSCo54iKar1+uwXC7h5OQkXI+IaSg+1+qkpyH5zSWIa72BDpoP5Qi/Q3yMiyLz+Rw2Njbgc5/7HMzn87DLml6LnKI/+Ml+Hsjk16pyLOdpH/YXJ4pL+Ilayicthwbv1/G2Nh9vrX+onqb9jjzjuNLxxP7Gcmk+etsSLnZU0RYsk57c9VCKjqH/aL00QAkAK4s40+kUptPpFTwYwzwSn3SxsAp7w08mAKzekhHTZ7xN/CatInjiJujk5ARGo1EYT9QF6O+3Wq2QFvsBMbT09qoWHOZykiqjVAakejxlTqdTyLIsXFVd1p8oQrw/iug2mrfZbMLGxkbQQdPpVH0H3UN5noc5u7W1tfL+cyqvVD/GqNlsQrPZvHLrhMc/uo5ALeUjFgtDfIFXVmbZ5Ukoy65yjGrp8aqD9bwMbgtpOj6eFD9I9l/TqUWJz38pJkgpFhvSeOIbCGLk9eFj8RPsS23jkZTWkqnFYrFiuzXM4R0fSyaLymLV8uwhKbbK2x/Dnmgn8e8sy1Y2X2lEN8J7+dRwuTR3+W/eeccx3TrimbwOqX4pfxW8FI1tx8pC3T6bzWA8HsP7778PW1tb8ODBg5Ae2/bhhx/CcDiMlk033qbwdF3zB+vjdJ31W1QGX/FYx21pk0RV2tR1UNFxWFkx9AwAdTylAIJmZDiDMYemSuI8eTqLK0nqvFLjLjlnqRTr95QgKk/LA7Qp/HgBQxUKkdfJQVSRQBn/WzN62u9SX9K2WmNglauVn5rWcnJjZfN+iQFmi7cYpfZXSr9oeazyKD8xmShKtE1cd9DFWAxYUpAq6UpJjr1zjjqU3NBKfFati1P4leagBA6wLb1eLwC4fr8P29vbcHx8DPP5PPQ3vhWGp5L5dUXz+RwODw9hMplAlmUwHA5LBXdS2peaLlXP0nfgU8aXBycsgBYDb97gFKatisqUFcMG9P+Y86rZI63cIpSCIbj+swKIlkNclX7ytqGqssry5Q3gWHi4CB9S/VoZNKhC5z9/W5vjLc9CoDb2UtBQkjtNn9frdej1eiHYg5tm1mWXeFs0KopvYzLI9YiGybxBQ1q25F/FMLzVz6kygYuk3W43fMcXF73+BU+DZUgBL54ulbQ5aul87DtpAbYMlQmkYX/gTR9chuhYxfwszQ/S6pX+1tJr/VS0/6R8XMdhf/AnPzR9LeEfKuMSWViJ8pTSrpS0+GRHo9GAWq0WFvxSsFhRStUV+J30u5QX4OXTF3iiFWNQ/BS4hy+Kg2I220NSvZRfyp9kC1OwXFEqIoeYdjqdwmAwgCy7fPKl3W7DcrmE8Xi80pdSnamyV1Rey+QD0DGtlh7/5thKwtoxWtf89Pg0lu3XfAipHC+VkfUYnkml1DmR0lZJnqq2BR7cl2LLeR6qvyieS6FYfRJ/ErbjlNKfqdgiRZdYY0Cxr4fvKjDkugnbhZtqAV7eVoe/9Xq9sEnn4uJi5ekwgFX94sGfnIrkiZW1jn6PyShvv6ZbpTJSyrX4o3xSLFTFGBTBGkV9gCqoDPaTxi7Gl3p8UwOJrVbryu6F5XIpvrVhKU7puypBiFY3fQcQHSp+Gg1/4x14cXEB3W43nDYAADg9PRXfE6yS56poXY6YN5Ci1a29Ces9IejttzLKQSqj6pNBSKmAykspxi42d1OCZx6ifWnVTfm3TllgGbE00rsxKWCREwY88IQSl9s8z2EymQQgO5/P4ezszAwUVEn4LjM3tAikytZn9XdqkIMHLzg1Gg24e/duOGV17949+PznPw/n5+fw6aefhmAU2iZcCJf4+va3vw1HR0dBF+Hu2rJt4MQXO6S2xerwOh31ej28oQvw8p2P+Xyugj7J7mFZqY7zuoN+10Vl7PJ1O1OIaVLzUKc3hhM0/HYdgd6yxE9f8KCwRTywZqWTwLi3f3ha7sRpzjwn3ISCm30020/1rGfnukbcfmK53jnQaDRge3sbFosFdDodODs7C+VKb7d5356lgVAtUIpl0jyUpCsYi8o63cxKT6HS+vmiOSVLjngbuHxXrY/49bwU12xtbcFnP/vZsOHs4OAAzs7Ogg+p3UpShpeU+UyJ9jX/n1/xS/PgyTwMQF0HaXLKZRPnvoZllsvllYWhqvxw7mNrsuwlb2DSSkNx+Xw+D1g4lg9/p320WCyuXGeLc9mDlWJ1FQnEIo5fLBawu7sL+/v7sLu7C81mE7773e/CYDAIV8texwlZTb9iP0q+EU1D5zL+jYvpp6en0Ov1oNfrBZx/fn4Oi8UijCvVs/T5EY1wrsTIOkHI5QTTnZ+fQ7/fD0+iSHkkuk0BeeTz4OAAzs/Pw3d3796F5XIJH3zwgRi74DqK+z9en7sqW6bZb35bBk2r+Tb0VKAUn+DfSbZe4kX7rgyl+K4WxuffSTbIevfUSxqPMZ0t6Q3U/UhlcG4R4rxavoSF74rqAwtH0t8sbIsn+THecnp6uqIvaV9rOo2ekJXaLZGkbzX59Miali6GHbR6U9LyfsG/122P1+WX07YsFgs4OzuDbrcLvV4v1PmZz3wmpB0Oh/Dzn/8cAGDFDkpPiAG8OretrIPW5bN56CZuUEEq226vXlk3STrf6lf1zVjMzAtsNBpXwKRWgfZ9zKBbaVNIcgYkAKYBr1ardcUA4BUsCNy5UdEWDywF7QF/SNLJhdsifJyK8sWvJJWuM5YmrAZ4pN9ifci/iwFDmoeD7xTyBpOKggNP0IH+XRRQS8HPWH9K33n7QfqOB3EpTxSIehzBWH9zICrxTwPj2rVUlsKOtVUqr91uw87ODozHYxiNRlE9K80rHlzy3oLA+aLkkScMcDabzXCamN7CgO3s9Xqwt7cHu7u70O12YW9vD9544w0YjUbhOmPJlmVZBuPxGA4PD0Nafu2h1paYk261iQeaUsiaI5Zzmud5qJsvxkrp+XhaziPnL+bUrMsxiFFKwGdd9ayLUuq09LA0Ph47ymXkuik2B8oG7rAO+pliFE851vykOjVWHm8r/4zBMLQlWpn0/XLUm4hrcZMhBralxVAJQ0nfSTbUClQg//gGkXdBV7PnHp2j9SX3Hfj3XsdR4yHGG/aVtqDllWvJjkmYmvYh/o7BN3oFsTWG3B/iWLAsFdEzHkxSlKR5i3Jrzb8q67f0uNeP8fKo+WL4m/YES5kgS1HZScE5KN94ygN/429lc7+I/67VX0b+U/QMbi5HHcrxe9l5WKZNVH8UCfjhmNFTNjgO2GaP/fTybdkSzecDWL3C/OLiIvgYeKoUYHVBCNMVjZkUpZR5j2O3XC5hOp2u2Gdue+lnaf5gGvoZSZIviUcpxsD51fJWOReljWxS23gfeX3HIvhFyyfhMSmfxY9F0hhYTz5p/FjlU3zL65T6WKqbYxzO802SNGZIHvmx5IX3FSfap9jP9DeKg3FTnUePp/g1nBeNt3VgKg1LUf60ucbLkX7T/OWb9J1TScL3eX65QW04HAYMgrS5uRk2X9KFdYqxkCT/Kqbnr5NiPiylIrZcSkPlnf5v2b2yOKIK3Mrni1VOTF+VtUm8T7R+tn7nv3lkwLL/nPwPm/7/qd1ur7ypgpVwynP5GgME0vg3T5PiLKY62BwY1mq1EGigZSGop4vOVPizLIPJZALD4fBKvSlvxUrtoN9xpxYVXhlKBd+8/qqJKhf8TPsdT3KllplS97rJoxhTHMTrIKpw+MLhdREHjkXGiju49LqomBNnkTY3tJ1ceZ6HE/TS+9IUfJTdlUR10ObmJnz2s5+FJ0+ehCCARHT+8f5oNpuhXXn+8m0tuijKy0klaQxqtRq0Wi1ot9swnU4hz/Mr7ysBAGxtbcGv/dqvhbrffPNNyPMcvv/978NgMIB+v39lXBAwnpycwMnJyRW9ar0z4yHej/g3nkwAWNVtHuMvlW3xQ+V7uVxCo9EI/SCNHc2njSm/Tpv+Q6riXcB10W10vsuQF0BqDl/qSfZYX71KfVkkAEWdA+pYxvLxxVGpzKI2jhNiKHR4tRM8rVYLFosFTCYT2NzchC9/+ctBV/zgBz+A4XAY3hqUrtGX2uDBNrydmsw0Gg1ot9sruorm094YWwfRMZICedxBplTUkcT0VjBTqo/6OKkYnuIPGnRD/MLfwH0VgkfXRbQ/Wq0WNJvNgJXoczZV9pknGGDNzaJ1cVnXYgCch+smT938uSUcK75oKM3v2A0qFj6uuk+Q56reZvbWmSpXiEFTr7nEsWg2m9DpdGAymYQTmgAA29vb4SYcDy5OqRfzcb2nlYVpGo0GLJdL+Pjjj6HRaEC32w1+4Hw+h/l8Hp5a4TcF3EYslWVZ2FCMV9DT3yQ775ERzGv1LQ+C5vnLU+hFY1pF0/D0dGMb/026scGjk70xTwtzFMUeZYLfmE9aMEAdxdOmlMtvoZAOa0j14m/0/5S3mm8DxeSGxlMtm8yxG+I6vvjKPwO87DM8/Xh+fi7eckDzSIeWrPbxOvn4SjqlrD2tCichSXYf+51vMJX036tA9Mrq2WwGs9lsZayzLIM7d+5Ap9O5cooanxKj8UrsB9Sj0iZUbZyKYJF1k6W/U8vRsHzMTsR4KkpVz791koc3qle8OKGoXZVIXDmUjFmn0wlBeapg8X09uoCGDihnlO/QtILB3gZYaWLAloMnDFZLg4GGyeNMFQFzPB8fA8lxkeqPBU1TnZSyoMwibKNHBih5FE+R9nuATkp5WhlaOamgVOPPIyeUrIVJiay0UrC0iiBQipNKg4laPu2kD1WwUrDVIm3u4QYWdL75m6W0Dq19MXnmY9FqtWBvby8sRPZ6Pdjd3Q1p8V1Vfs2SVRcGq3AB0TqxRMvKMv20rzSX0bmlV+Lw3/FqssPDQ9jY2AAAgLOzMzg8PITz8/NwgwENpmEbKNGrzDxy5pVlzfbx+Y9XBcZOG3nr5DJLbS5eUyzJvkSWrdOCLNjfVJ5ii1XrBtDaHOG/3zZnPOZQYxquZzWQHNNrmqMulRn7vmhQkctUajk0vfQkhUSaPeMOdKwPpMBODI9RvlHv0cW01CAj51ni25JzvPYRrzfXxoKeCvbqLK4TOM1mMzg6OoLxeAxnZ2fiZsfU+SmdlKJ2nvaX5PfQenm/eeSGEt66gJuvtFOTnDeJijqLfD5ZMt1ut6Fer0O32w1vAgK8nFfSdax0YavRaEC/3w/4Zzwew8nJiZv/mOxbMubRndJvPD8dH82O4IIcnoRFPnAzGWImvkgu4Y0UnJk6N2h9WfZywwbd7CrhtZgOs/yOMva0quAa14l0gwl/W1vK4+FTCuJI/aFdS66Vq8lxjDA4ur+/D3t7e/D06VN48eIFHB8fmyd5PSThBe98pjLIT45bdj/P87BBPs8vn3q5f/8+vPnmm/Duu+/CkydPVtpOy8OFMqlcD7+SbeX9wbEuX8TAxSNciEW9kOcvYzteWbspjMrrxcD7wcFB4Et6N1t7gsjT/zyt1kca5o3VEysvZe7xtnM51Oq25ji3CR68jZ9jaTXZ9tohrW4sD/9Z18ym6jdMj36zZEdjfHow3HWRB0NKfRTDhpbektqqnV6ni2G4UQngUtY3NjYCxptOp3B8fLxSpjUu0lhoabzfW2liOpx+5rx5dY7nN/ye376WilWL0LpsB7VvAJd24fT0FLrd7oof2e12oVarwRe+8IWwkWo6ncJ0Og16gtp6XofUnliaouSRzxg/0u9VxsSlcmLlWrE4z9zQ6uM+E/3d05eW/ZY+W8TxvlWPVD7nV+oXLz8puCe6GIvU6XTCTjisYLlcwtnZGdRqNfFtOl4mnbBesKQ1IlVRSW1Co47UaDTEk62oKKRdQt66Oc90kDyOGV2MtSZTapDD0/dWXxcRfPp76gm0WB1esEqpyElECnhiYJDLsGVYPH0m5bPI6jNqBDGt1p5UcK4popiCjrXJ42RYbZYMhlR3Sh9YuqnT6UCv14Pj42OYzWZX8vG3alINNTfyeX4ZcHrjjTfCBpper7cS+MDFWG3+SQ4ZXhXMd7RZQJKeqKVlW4Rlt9tt1RHpdDpQq9Xg8PAQdnZ2IM9zODs7gw8//DDocel9EtT3FBRTnT+dTs1Fm1T9in3I3yXHcUgNjFkyDnDV4cW5nWUZTKfTK/InkWYr8beYvqM6xJpP63AMLJ48VES/esorWk6RgIilizyfY3NV0lNcrxchKtupsiHVTReLpE0IUj1F8IM2JxAzxtpC5xbFmXRTkUXcaZDyeDAIAEC/34ft7e2V22+ktPS7Im8UUxnCsubzORwdHcHZ2Rm8ePHiyubPIkQDSbRezgttk2b3LdvPT89xDETrwXcr+W0MFE9qfNC0lGfpd0+/SfKP/3ADbq/XW7GLPFhC+aRvrtfr9fBO4u7uLjx69OjKuFehX6U2eJx5LgcWptfsgoS9cB6jzV8ulzAYDMJivOeKRam+mC1JwdS4sDWfz2EymYTvm81m9FQl7x9rLIvo8nUSYuN2uw3D4TC6GOstk9tErS/wtgKOO62yi9BisYDZbAZ3796Fz33uc/DJJ59AvV6H4+NjWC6XQb/HsJxFXO9Z/NM6aIAfy7DsMOat1WrhZOlgMIAHDx7A3/7bfxtOT0/h6dOnIS3aesTb3mvuuQzTcbWeJJB8Z14fbrKazWZB/vBJAIpNYrGB2zKX8vzyZNNsNoPBYABZlq3c+sP1PD8tRf9P0WcxG83zWvxrFMM7Gmnvp0vlxOIMKfVq5MEPvA4JS8bKkojKqnSbBpcTqy7OH/WbNext9Ztkt8rikLJkYUuOC2N5LZvLxx0/cwxPn6bAtFRP1et12NjYCGsC5+fncHJy4pZrjcfYvJbawP8uOpa0L6RNnBq2l3iUdBHnlduU2LzgabX6tH5Yp+1AW5tlGcxmMxiNRlCv11cWYzudDnQ6Hdje3obz83N4+vQpnJychLQanzFcxdNeB1HskkIput6rw/D/KnSYZYu981XLp80n/ltsfnnaGesPDZ+nluMlj/+24g1IYA8nEO5IxMKm0yksFosVAIYOAL/SzAuGMb03nXdQUsqV+KCKYjqdwnA4vBLUjgWNPAEWrJf32XUC8KKTrgqi1yshmOU7tMvwIU3uosrdO568LAlYpCgGjVLTW0RBsxbg0YBJESXo+Y2ni42fxQeXg5ii5/Mw1q/oLCCfk8kE5vP5leArrTt1rkvpsM6Li4twqoUHTY+Pj8OONJ5XawO2A9NQna/xJO2GjRHlFU+V4GniPM9XnDosezwew2AwgOPjY5hOp9BsNuHx48dwcHAAJycnkGUZ9Pt9aDabwYZhvtPT0+B00A1EVV3xhn13cXEBm5ub0Ol0wtWgBwcHojxgPloGJ36NJM2L/OMuRLyWG2XBssc8SMZlp0odc92UElygDj/PX0V7+VjV63VxA1uM6NyUAlxFbWVKGzEtvVXk4uIiXCsupS/Cl+RsIsXK43qMnmCTyIsJPO3AOUUDw1y2NB5QP+A1sdpVwVbwhfa35eTy+a4R1R/c/mv1aN/TMvG06GAwgPl8HhYL8Hp1GujkVwFa5JlTyJel/1Mxg1YPLoJtb2/Dzs4OPH/+HA4ODsL8KbIRSJPHmw4wTqdTeP78OeR5HjZPdbvdYNO5DKWSdw5Y+blsUj1Bvy9yWr0q8tRn4W/ez3hScDwew+7uLnzta1+D8/NzGA6HcHx8DOPxOPn6T8qDdE12VUGNMoT144bCFHvL/SFKRTBBSoAxhZDH+XwO4/EYRqMRTCYTePDgAbRaLfj5z39e+qkjrV4k1HOpPnKsH7Xf3377beh2u/DTn/4UBoMBdDodALg8oYOn1rUr7VOxBOdFwiXUvtN4Rpa9fIKJ3x5nxQVuE8bm7cU2WTGjVCyq6WItjXSV5XURjVNp14PTccR/nqctLN1ZVOdwnjxUhX6SfBStfClOx8sCgLChDbFhTJ9rWJji89tgpzTyjDmdc570rVYrYG/EBFqcFL+XZLxer8PW1lYYg8lkApPJpPS8jPmQMVnRyLK9VKdoZVvXMkt+VpV0G+WT8oTYcTwew3Q6hfF4DK1WK8TA7t69G9LSK/oRl+R5HuIHfMGa+qlFDlFVTbdJX3jwZCwNtielXZK/xGOY122btTUCy45K8Qz8XTqpXfW4ryzGSgAa37ngDcJFV7pQiU4OZZgHfz0NKAqQNcKO1AKVkuOoKeLFYgGj0egKv7yNUpneN65osIumqQJAWWVowf0i9VgkgUwERLTN9BSbFWwowlcR54B+LuJgWA6L5zut7Vw+UpQyL8cTXKVlaMBI4l37HOPVQ0WCJNQ54uOpKW0tiCK1Eb/D4KNWP6/D64Tz9HQxFp0UXv5wOBSvCpTai2XxUz+NRkPkWzJs3uuJafn4d71eX1nElvQGXrM3Go3CBpmTkxN49OgRAFwCQ9yJjkEa5IuOOT2xoPV7Ef2L/+M7VxiMxneXaNu9ei3mmONNFahD+RXJ9B8vV7OBVQQDpLZUXRaSJZ9ee8r5i9nGIjYFF2NR/qzyeV56JZ6VpwhA9uI1TCctxlp5OP5KxYWp9iOGe6zvyjrYll2mtgdlAW0FBgRSFiF5X2oyzNuFPMRwDdfRUp0aWWOOC0STyQTy/PKtPfrOJt+kV4a47HNbRTf98P6JtdX6ndrPfr8Pr732GgyHQ3j27JnJb0wX87qLOL9UJ3rmvkd3LxaL8Gb7bDaDLLsM3I/HY1gsFuHmi1hdKW3wtlubz5ZtSOXR4yN45w6WJ+FozZ/ln6nNwWts2+02vPnmm3B0dARHR0cwGAxWMEORcdFkowo7XwVRWwsQHwNtHC17ZBHOZ1xAqLJfkE9cqBiPxzAej2FrawvyPA8bHHn6Kupd5/hqeK5Wq8H9+/eh1+vBhx9+CLPZLJzWms1mK1drSmUW4VvDk5aOxnoQ63kWxOn8rqpvq8TxEi7i2CM2r7y2TaufllM1xWwCxeH42bsYSxcPpfiNpDuLzlU+dzxxyFR9xsuQ5gjHmzStx1bS/qnVamEDq+X/SN9L8uL1J27ChsXq1Hi12ol58Dko/A5vQInNawC4Ehuit2PiBvqYjdSwuFa35XPEcDf/LpbP8ts0snRRqs+aklbC7VXEKbzEY0e4wIpPWeKG842NDdjb2ws8YGzu/Pw83NBiLXTz/zU7q/FokSaf0m+07pjP561f48GiVNuHc0HaDBTDMTGdoOEiqxzvHFuXjY+VK/nFHor1AU2DJN6TkwKovO/PaeUX6eAigI0Tdcba7XY4SUTT02sukXh76YkjShIo45OWL7ridzTvfD6/ckI0pZ1IXiFf93ho9WCQTZuUHrCWytd17KzhCgpJa0/M6Y+lp+XGQAiXv5TTQlUY+pTAmfWm5joodU4gbxKP2MdeMEf/9tSN40ivRcLTn1mWiU4LXkfnDZjVarWwo+3w8HDluhrtVgDunHraj9ff0E0+lPCU2Gg0gs3NTfid3/kd2NraglqtBk+fPoXvfOc7MBwOAQBge3sbOp3OynVwk8kEDg4OriyOI68avx79iQsKeZ6HxdatrS3o9XrB4cFdqFgfnjKWAJJ3kQ3TIg845ngKS9NBFmE7pIBBTG9d1xytktYZTNR0eqPRCG8x0pP0+HuM+CYzJOt0HU9jzVuPfazX69BoNKDX60Gj0YCTkxPXVdgAL/sF5TzFHqN+0ILqln0qu5jHy8P/PWNH20h39C+XS/jCF74Ar7/+Ovzf//t/YTQaheAGBjaQrLalvqOF5Q2HQ3j48CHMZjOYz+dhMR1PMHptF+XBwnJ8rOm1khaflPgpY8lmF9FFFIfyduA/btM571IAoSq8qY0/BvpxzKyTzp4gAS5moJ6SniV4FXX9dRDdDMevvdMCF3xMtJspNJ29DvLMfeSd4p918VMVZVkGGxsbkGUZnJ+fhyc48Df6P6ci8Qu0981mM1y1iyeHigQJPWnzPIdvfetb8N3vfhd++7d/G/b29uB3fud34OnTp/Ctb33LpXOxHE23ct3o4VWKGXnyZdnlZg4cp62tLXjzzTfh137t16DRaMDyb0i+AAEAAElEQVT3vve9cF2xlp/rROtdTym9Zdd4OpoG//dgD7rZVbrO/qYIF1+wDzS/j9/cY8m4xw5Jek8bA/osTlHbJMkDH0evX0bz4HzjODwW8+FB/5hPnap7Y23y4j+aXoorSOUU4RXjtbiAg6ffrWeTND5uq52qIr6G6S28gHi/0+mEZyUwD/qmtM/Qf7q4uIBPPvkEGo0GbG9vq/XTDaUx4ro1Jeatxdy8sstlltszCc+nxPMwPea3NmHx/n5VSFtEpTSbzeCTTz4JmwG3t7dhb28PDg8P4ezsDEajEeR5Dt1uF5bL5coNW7hZWaMiuLMMVrXyeWWuLFm2kaexYhSaHUmNGdK8dAO1tQHIW8e6/Iqic8zThym0shjLO5MrMwoquEMeA+NlGJWUrmbUPROEKzkElhq/NDDNlahnV5YFRDnfkkGKAXivg1AleetLmUCpxqesMrTyVlW25kBoyk8D/UX40QAK/Sy9WxAjnpbO/7JgWyLL0JQtD8Dn0FiA1huc9JTJSZNF6uhywit50QDiwiC/FivWr7iQh8HpTqezogs9sskdHw/A5tdeUWBKgxQAAJubm9BqteD8/BxOT0/h8PAw5EOnDeDl27BZloWreLj+TbFdHFxL+fM8D2/f4sILv37eGzCnfEhjz/mQ3tSRZMlyKqQ5LQG7ddqc2Bzx1u1pN8U8qXWmBOY4D5p99wRJPGTpLus3T3noIOE7zYhXpH6MOcf8txhu4vIsfeak6T+LOFbUeIqlkfjEv/Garzt37oQNGri4QW8G0LAeb7uly6S2440vZ2dn4XQu1SMa/945Q/NSnWLJg1anZRORKH/avONpeTmxOjT9oY0L/o4LADhn0N6l9gmvQ5oX2vzgMiRhN5zLeKWmZ0Mc73fMP51OVxa7yjwFwOfwdfk8WKcH42LbaTst3eTFUNrvFkm6AT8jLmo2m9BqtVY2+HBZ8vgIXj0Q4xfL4vqqqrHO81zdSJ1ShqY7AGTMgTe1pC6weXjk/FxcXMCLFy8gyy4XnPv9Puzt7YXbB1Kxk2ZjiuhvT/kaL5im2WxCv9+H119/Hfr9fvBPNN8Ey/du7I3ZNe+8lOaNhT+1W9ZieLAIeTATT0//9thiADu2kUqW3HE7avFkkQfjp/gBmgx4yDs/LPtu8Sbll3jwzBcvSbqR8sH54mnxJh6+8c+jjzn+1Hyg68AVHhygybsXQ1jzhG+2pnFw3k88H771iQu5tBxJz3rshQfLxNJqsqXNhZiekPRJrC1SGZpv4Jk3Hv/Aq1e1ueaxv16S+MONovSJEpSfTqcT/AzERovFYuWGLc3eaHaU/yb1P/6v9WnqnNJ+08ryjr1VbopN0fRhWR48eT38xcjCkVb9Vejy1PmVgqUAjMXYVqsF29vbwTnDE5q4W5oG1fF7zUlOGWwPSUA6z/Mrji/yQPmw3mrgVwXSgZ/P53B2dha9kkTjV1qE4EJKT3DRvDdBKc6aRRpQp99zh7jsCQKvc2hRilKLpeMGN6XsKg1krM4U54KDOCttrF6LrqPtXvLwwnVCioEvQ1hmq9WCt99+O7zRhuN0cnICh4eHMJ/Pw9upfBEIy0BA9Pbbb8P9+/fh+fPnMB6PodFohFNveNUi5qEnCyTyzGkMXtKTSQAQ2pHnL6/RwesO/9t/+28hLb8atd/vh12bjUYDXn/9dTg6OoKHDx8GEMjHIrZgLY2d9IYF7cvlcgn9fn8l2EnTSWPBSbOlUjARy8O08/l8xT5zHq2yeP0WLx7+Oa1zLli/U36w3bhoDrD6zmiMUkEhziEqryhbHnvJf0t96zjLXr5dxtvgdQ6xXizLcoypI59lLxejUk5+F5ET3DFvBehiPMdkQAo6aA4jTVOv18PO383NTdjc3IS9vT3Y2dmB+/fvQ7PZhKOjo7AI5iUPXtDeNgMA+Oijj+DHP/4xLBaLKzKChPah3W5Du90Oc2U8HpsbC7gcINHP8/l85W1rzBvrB8np5gEkWp4UZOIb06qkWq0GnU4HLi4u4Pj4GHZ3d+HevXsAANDpdOCTTz6Bk5OTcHVvlae3Y0SDHFTucQPX2dlZSBuTLdRFeM3006dPYTAYwMHBAYzHYwCAcOKb2qibIsmWcdnE3+gNJBphH2Lgib6DRevkMqgFEKsgWhfdlAZw+WbX/fv3YW9vD8bjcbiuuNVqQb1eDwt3VRMPCGq+h9UPqbflUFuAV/hSe4S3lqT4n5at4EGZ5XIZTnKt41Ym2ld8A+Zf/MVfwObmJty9exfOzs5C3+IGKi8/WCa+420FnqygcUqAjLZrMpmYN2/k+eW743jrDBKP20gHCgBWbxvh89PTRymxLmnOS5i83W6H+Nu6/GHcKIpzwYOXqCwArPYhn0carqWbRjlJOsLCyDRfVQFYjaT+oTdQAcj9wNtB08R0j6dNWZat4DvtVr1UOUrty9iTP5wHTSdY9fb7fej1etDtdiHLMnj27BnM53PxhCy36d6TmjEeqibeDxou4LilqF7w+HuIBfnCt4aDLi4uoNPpQKvVgvF4fOVmHy/R20SQD6sdMeLyxXV+TIdwPKLpIW1MrisWWJTK8iLFVajMDAaD8DdupELa3d0NN9nhwv7Z2Rl8+9vfDrfYIW7jmzA8eJwTzxOLjXnoumL1Ur2WbcRx0fSh9LkqnuiNfQC+OPBN6N0YWTgFSZvv3r69svrHASh1HBG004UY7ljSylMH2KO8YnljHcDLpG/jaI4DbbsnaKkpaUmRS5OC92tZRRHrxyJKRJvYkrHT2ujhzzKGnDQ+6G9FZCrGU2oZWh5PP0hgLJbP6jPP1RKc1qUsixqzonxYQFfjxXKI+JymZcTksQxQ47oCT6PQnWaxIAblB4HSxsYG9Ho92NnZgU6nE64gRSPLg9ue8Yul4faGBge4zsnzPASKOXDH7/BNlGazGRYP8D1ViWdrbmp88wU8euUsb89sNoPpdCrWKTmiVN5ic53n5Xms/B5ZK6L3PA6UpWdTAU3RQAwNjiDRt1yrcFSQcFG+1WqFjWwAtr3kv9O+44HFGC6h+alsxIJiFj6KgX2NH65zLb55Hs6HRKk8afVrc1NKE6uHtxkXSPDKd9RXqDNi+MlDXHbwCnP8HheGx+MxjEajEGzXysL2o2Ms6TDeJx5Zo2XzNFyXpVBqsIbXL82BVHmib/8i7mq1WtDv98MpaBwb7/vAEh8ee0bTxfBjqs3BslF3TqdTGA6HYUFhY2MDGo1GWKwcDoeFsZ/Fg0Sxvinqu/IyuP2nZXrGxEpfFndTnnB8+ElNae5ZvHrrLZo3pWyLuB6S+OL4netbOr7eOrE8XKTvdDqwtbUFs9kMFotFeF9NaldRn4jKHb4FvLm5Kb7nZ9kuzf7RMjSbJPUdrS+VKNaZzWahXa1WC770pS/BaDSC09NTmE6ncHp6Ko4hbau2kVLy4TgVxZj4t4VZ8Df0YXjcDctIIdoWXje3d/x32u+IU6yDDRYPtM6Y3PE83vmg2Wuvvyf9FosP4PymaSVe+ZNBGhay2sXbovkGKOPS5nmrzjI2hvubqdiLlyPZRHpohmJVCa9Y5Ujp6O9lbW0RsuZpFcRlU8KPuBkLMRy9nYfziJsQ6Lij3pI27FQtd975zPkvkobXldI2iargVypT061V4WyNJB2LeohviFosFitP4uBcbjabYbPy7u4ujEYjGAwGK22gdUlkzXkPHqd9GLNTRcc+lrfo2PP8Uvkcu0n5JbL63ENaXZ65pqWV2rYO8sydMnpbfDMW4KWTFmMO7/T27DTCgIP0ZoiHNPAn1e3pjEajEXZVUWeUvuuQ53kIIiD/Fs/aneY0vfbWBiVcTInRTTm1RUnilzuh3ICXUXYSXTfAonzztwE5P1pgQKKUAISn37W8nnqkOmL5YkrVU6enHoC0E6tegETTppxKq5roCYz5fA4/+9nPREMsgW5KuHB7//59+NKXvhT01Be+8AUAAPgf/+N/wNHREeR5vvJmIwXjMZn1tp8GabGePM9XTnXQ4ABec8IXnGu1Guzv70Or1QpXBr/22mswGAzg6OgoXBXJSXqvjQMzfjIQwaW06I1tOT09Dbv7tPki6YM8l0/PSnk44UIPBl2xLdxW0X7FBUgNqFqfU4Il6yasx3ojVcpTr9eh2+2GN3XKXGdIqdFowN7eHmxubsKDBw/g8PAwvNWJt454+KMnnLSnDOh40t36SFSuKXkCNjTIM5vNVja1ee0WOuvWyRw+16X3ZRFTavUWxQ9YntY/Ke+T8UXVWJ48z0OAvtPphDLoXObXoMYI62s0GtBqtWBnZwfG4zGcnp7CcDgMJ8WojtXKwf7HK6oBAM7Pz6+cYC3iKGlBZ47/pc2RKdhOsvdYDrefKNe4oOrVI1q62WwGJycnAHD5tjme4qK7yWO6V1owR92Ff6eeilkXPhmNRmFz2Je+9CW4c+cOzGYzOD8/hx/+8IewXC7Vk9hFiNtqjaTgosfhvg4fgp78lOrUdB1vB9U1qK/RXhwfH8OPfvSjoIuHw6HIy3W1OYWK8sPxnEW0LynWknwAr25bLBbw+c9/Hv7KX/kr8PTpUzg5OYHHjx/DaDRSb6spSohNB4MBzGYzePDgQTSP1C/Yfmp/cc7GdG+sDUVvJDg4OIAf//jH8NZbb8GdO3fgX//rfw2DwQD+8A//EN5991349//+38N8Pg8n8en77Ij7cY7h0yWIizEYzG0DlR1ue2ga3n6OHzXdzrE/bh7FMhAjFpELKw+2GQCu4DF6dSTA5Wn6fr8fTnlbJ70lHSSR9HtqkJhvpEQ/xoNnixCdJ1wHUH7oSWz8H/tb88mt224k/S7xhvVw/U/zrpOwvfymEyvuZOlS9HkuLi5W7BSewkTCG3GkK3djt6vwhXKA22H7Yrq1qI/DT7sCXOLKu3fvhr4aDAZwfHwM0+l0JSaN/YKbXrDv6NWzNG1MF3j8KKk8/n3qWEm+I+9PLV4Y02k8vZRGs7dSfRovWt2ecqsmTx2LxSIssFJ9cHFxAf1+PxwG+Rt/42/A06dP4c///M9FW8yJ+qaYTord0PxWWTydh7is0/814jJQZJz4/OG+LF9/s3Ce1h7Km/emECmv5dsWlVGvX+6hlLkWI2989Mo1xRiMoTu1EdTQwDutxOvEegBZlcSBrUTSxKFgN8/zcOUPpqd5rb85aOf10r+ltztTDJP0Ny3PS2Uc3NhvmjGiVGYSWIovdaJKAL5o38Tya7+nKH/vvMJ+SGmTxgcNUmrpYuObEhgsC4qlwBvlpez4St9r7Syr63g/UidD2uXNAwacaGB7Z2cH3n77bRgMBjAajaDVal25thXthKXjUtuIoAkdfB74oPVge7UTXFmWhZNeSCcnJzAcDl2BEYswPb8uBfU4PSmGJx/xHUh+nTOXPa+Twvnnv1PQJc0jTWYlm6nZ0bK23KPfJP1i9RW2zTOneTrEPRiMQqxj9ZdFlF++KxQXsbrdLmxtbcHp6SlMJhNTh2oOWow32n8osxhc0wB1kfHTxop+H7OB2m9SH3CdEMNZNB/+VsT2xnR5zIHH3/B06nK5hNFoFP7h9562SHzExq7VaoVr3lHmqP7yYoOYTdH49ugQa7ylz9o4l3XOPO3j8qQ5tDQtz1eWaLmxRTwpDyfJPtK+0GSb6jkqT3Suou7DDa63lSy/MEZU51vlS3ab/ibhA45jJVxrzQcug9L7pR7+rXZdBxXxZShJG2MBdNtVpA5KdIGPLgpi0JrewJFSj6XneBwDnyqRNhLFdJ2Gb+kCBs4RyX+OtcGThm7KPD09hZ/+9Kewv78PJycn8I1vfAO2trag2+2GBdgsy4KNpXKOY4A+jDQXtQ280pwti2Xp71TflPUTY+TFj/QkLPcpES/z04k8PsDLpP97sAbXfRIW8PonnI8i/ay1z+vTSQuVWKYVMOf1S+VS26thEguXe+TZi3M9mN/C8Vr/YRndbje8HT2bzcImAer703yaP0E/U7+vChypURHd6MFzKXic4jaMTSwWi5UNK6gD0I5ocw/LwY3pALCy2Z2esLXa5dFJ2rzzjpWFjTWqShY8vqokp9rnqniQ0qT0Z0rdeZ6HDZl4WII+ZYInZCU7TOcnv5mJy5EkF1z3WD6bxLs2Vla5KXNSKrvI77Hxs9pi8UnbFuu3GAbANBJvmM6Sd4/NT50vMb/Akg1P2bQ8pCtHgmq12spd3kiTyUQ8Kat1svR9le8gpQi217HkBgXg0ijj6V+LtNO5HoecGisJVKbQOoFDWYoZEmmHbBFjKRFXxFUbIi95QEbVxOXJsxiVaoAtPRCTZw1UWfWkyIW3zyVnrigQWacTjQAEnWN6ZTAABBBMHTKLEGBjnjfffBP+9t/+2/Duu+/CJ598AgBX32PFt4w87015+wJPZE0mkxVnlC4Eow3B9z2tYC5eYfbmm2/CYrGADz/88ErfUP4kPqUTeJiu3W6v1I/OCgZ4AF6eWt7e3l5ZYOEBC6ufJFASIzou9PQafpb0oTVOVcpzKjjEPF4HnwaJYnXS/u90OtBsNmE4HMLFxQWMRiMA0G+7iBHWiSfCkCjv+GbfbDaDw8PDIFNaII7vdOcOSUw+sHz+vqd2zZcGfmP4i+vpVEfZkx71QUw2taAPwOpJW6lOqS80nZrqjOJV1dPpFAaDATx//jwslPb7ffd1tZRimweyLIPNzU0AAHj06FE4XUsXyDRZ9bYR89DFK/p/zFZajo7kdHud0Zie9VAM01D9g2liT6GUJa4r6GlzihUoaU601Vf0d0+AwIs/XgWitl+6SUNK7/FFAGTdy/NSvBAjK3jhlT/+duRtJWwr3+Dm6SeKeak8080MRfjRvqebFyeTCZyenkKWZdDr9cKmvU6nc6U9VRHemoPYneLpWMALqdlsQrfbDfP66OgoXLsMcFUXefSFt5/xVHetVgvvbD98+BC+853vwO7uLvybf/Nv4Otf//pKnlqtBt1u98pV3HzTiEToV9G3d1N5ltJLviyf9zg2RTdEVEU4l9rtdrhOm/+O1153Op3gS3J5SsHktGxPOkzLD0ysS3dxfSHxgvZCw4lon5vNZjjxieS5lZCWRfng5aLvwm/ZS8XjZYjikHXQ/v4+7O/vw2c/+1mYzWbw7NkzOD4+hg8//DD0LY6JB7PQ08v4/W23g0hFfDOAlzecTafTsEDW6XRgY2MjpMHF2fPzc/VNYJyHk8kk2AXcGMP9tdR+9cY/eDoN69L/MV2qTuJtKBMH9OKWKsjL1zr4oX04mUxgMpnAzs4ObGxswMnJCZyfn0O/3w91cyyEBxrwuSd6owPqXVoXncu0XZI98uhF/pskS7E810GSH468cCwjtYn72nxeSdhb4wHTp/B902TNR89cTcUhK14lXodCgQAWJO2elYSQBiMwPx1MD2Mxg2l9lsqSFDEF2lJ5OKm9YJgOjvQ+A5YdC0ahovFc5Wx9V0XgycpfRLlIwun5O1a3R+itgF/Kbx7+aDkpgCO1T6X0sbo4T6lgSPpOC0pK5WvBPen31PI0Hj1lcz1l1c31XYzHFF48xHUa51daPOJ80gVcfg0Vjgu+FwsAMB6Pwy61Xq93ZWGR/i3p/xTCnZd0EVYrQ9LP+OYiBtXOzs6gXq+Hq2Cn06lo4yhpINurD3j7MRhkBXWwTiugR/+PEdov/IegNDbnPPqhqF2IOVSeuqWx8AIjmk8CpZTHGOBKketarQavv/46dLtd2NzchLt378Jf/at/FZ4/fw4///nP3eVgWfTKPUtnSYTzn88r+tk7vhcXF+EaZ77ozMuVrsSK9SHHjXzXf6zNKQ5uzJ56bDnvP+vKWU7Pnz+H2WwG4/E4BD1xnOncL4MTKAZttVrhFoKUsuj8wMArP+FB67X0De8vaU5qYy31a2wMpXGI6REvRrEoz/MwP/A62A8//DD8PplMVq6Rug6H1IMfpbbTceWYSes/PBVI27a5ubkyjilzlWOxGLaL/RbjH+Dlla88oCjxJsmrZF+09FWR1H66SWs6ncLjx4+DTZlMJuEqSAvTVM2jVa6E+S2M7rXZkhxrdWo8e38v4qt5yeKFbs7JspdPasR8CF4+tb+LxQI+85nPwJ07d+AHP/gBHB0dufgqgtsoUR54GxeLBTx//hzu3LkD3W4XNjY2Qpul0zUSr1l2dVMWn+8S3x4dyNuRoufQBjYaDfNK4BSS9DptN930x9PiaW68yvSTTz4JpxHRx/Doc+l3qZ+9+ElLV5Xe4uUUKVfCvmjz6Tzlp71issXL1fCS9lQcJ49d5HVb/UDlQdPVlk3F3+kiIM7LR48ewdnZGXzmM58JefE5ovF4DKPRKPQp3aSm6ScNV14HJouRF+dofenR+xcXF3B2dgbz+TzoHNpfdPzomNK4E6ZBnYAb7akuxvGU2mXxaMkb93WkNmvtxrSSTGKe1LiHV264n2tRqix6216WJJnT+pL/Nh6Pgx9ar9dhc3MTer0ebG9vQ7/fh1/5lV+B0WgEZ2dnIQ+1yzGZ5roDv+P6yNtGrR5ME5NNS94xLeezjP7hmEark6fl6WJ8U34tKtqesrbcGrPUvB79E7OJlFYWY7vdLiyXyyuPJWuVSkpSCvLxK/o4Q14nzEtceCShQ+NAJzRfxJCuKfTwqrWJLoDQvqPAaLlcXtnFpgEiD+j3UBkB9abzOKNWOR4DIo1TEeMWA9seA8PnR1VAzpqL1lwCWJU/TGuBbm+fS3x5ghke5Wb9TnmXHBfOY0q5klLVAK7V9+sC8ZYzRa8gk/jJsixcAQKg78Tt9/uwv78PeZ7DaDQKQHpra0u9wgv/LvoOVJ5fvQbHIho8wXFrt9vhhMHFxQWcnJxAlmXhCqPT01OzTG0OUx75Z2vs8zwP7zF6bkqwrgr16hWsFzf3zOdzaLVaV2TDcs4sJ0ZzVjV9kuoAeGyBR8don61+854mT6m7Xq/Dm2++GU4lfvazn4W//tf/Ovz4xz8WF2O18nHXe6PRCAEwfjLewx89WY/lxkhz3HFRGPGU1BZ+EsXSi1yG+Byn5Wg8ltG5UhkxOeb8UT45JtZ4e/z4MTx79mylDgyecR688qn1EZ4ums1m5mKsNE6YH8cdN3hI+J5jMo47OL/U9nIdxduC/cplVzvlzfniaTw6yoNRpPKoXavVajAYDOC9994Lb8fhtXDXfRKKjg8/TSu1Af/HNHS+azgUd6/z4ML29vaV4Byv0yJp7CkvtC7Pb5afhbgCF9LptZwaacENzU+pwt/l9Uu/4RjjtXA0wIUn8/m4VkFcluhnbo9ivoE2dtZ8tvS5hXs0bKf9Xqa/uGyUKYvKFs4/tCd4mjGVLzydev/+ffjKV74CH330kboYK5VRBSGu5bb1yZMnsLGxAf1+H3Z2dgLPnpsJJBvFv5fyxGy6xLtWl5YedU2tVhM3kVbRr9inWB59c5WXj6ejP//5z4e3Y4+Pj+Ho6AjyPL9yLTTtp5gvrVHMj/bMGw/+18oukxb5kWSJ+mmokym+4qeaNByEJJ3GpT4lypN02COlT8rga47bLLuLddF+Anh55ftisYCPPvoIWq0W7O/vQ7fbBYDLW47u378PBwcHcHZ2FjZna1fTSzxySu2jMqT51xZZskcJZUS6IQvgMh50enoKs9ksnIjXntGj/hy/ahsxL+bH23ewDP5kU6wvUv1+5E9KL+mfWPmSb8LLsPjR2mKNtRZHwzQazxZPVr4qicoEbyeVmzzPYTgcrsztdrsNm5ubsLm5CRsbG/D1r38dDg4Owk19eX55yILf1CD5xpKuQeK6M2aLvRQbLw++5eTBs5qsS79r/ovmt/D8qfrIsvkx/jEN70cPHx5K9SWkejnO4TzH+F1ZjB2NRqUb5nFcpA69SaLG3lKSGhVthySsVTp266KqwD8vs4iBs0CKZACqpKoU9zrJ22ZtPsYcG2ueVAHuy4KGlPZrnz1OvFSG9t26KbVObB9eT/z5z38+bES5uLiAb3/722H3KQCEIDwuBlEqM8ewrJgOzLLsyvta1JnFxeXd3V3odDrh2lfMKy1wIHGAgo6jFJRA0q71pICazxePfos5IVQusUzkX7pdATce8Xf8LB48QRCJx1gbvQ4xdfDwn+bAeW03lhMD39ICZ4pDLp0E7fV68Gu/9mvQarXg3XffhZOTE3jjjTfg4OAAAC5PHTSbTZhOp+pCAz3JnjLfKM6JUeo85mV6dt5rc0H6jn+WTqdpPGtOBZ8zGo8SUKflFl1AQyexVquFYJE3D/ISC2BJefGWA/o9LZeXoxEG5lGnWFghxSbRdtF2SKeMeR+UxXiWXvLgvdQrTmlgNLWfUMdrY0XtDpZddJPUbSUp0HAbfaYYebEj6itvUFkimgevrF0sFmu5GjfGA7bBgzUkoniDl10FcflKsTH89/l8HnDk0dERLJfLgE8xYM1v1bqOOAnFt1owE4n/9sYbb0Ce5/Ds2TNYLBbmRtB1UJ5fbnREP+XDDz+ELMvg4OBgZRFByoebFDnW9vQ3l1kL19O+SLmqFeWBvuvO5aMq2eAnMylRnNLpdGA4HMJsNoM333wzPGmGp5kWi0V4ZsYzb1JIsnOviq7X4glow/GaYipHks9YBO8DrPqxHv4A4ng6VncMl+F32kKJlBbLxrndarXCxpLBYBDdyI0LkPwqYq0Nt4li2DIlVqZhJhorWSwW8OLFC2i329DtdlWMgDpQu5Yb4KWcU3lEvwcXZS27g589viEnbdOmVEeMJP8vFqeReJRwS0xPeuYJr/M2ybDlp+OmTIw7Hh0dwfn5OZyfn6/c4Eep2+2GZ6Vi7fSMDcXWHkrp21QbmGrjaBs0Oa/aVqJ8vSo2uAjFYkuUPPjPopXF2Ng7BVUIEzUmkrL1BKlTefCAiligMmYAPWksMMWDbFqaWPuvS/mmGH5Mp+XRBNjqL/6bBCar4FuilDbfJHFFwo2zFgDSQLT0t2a4tDkupdH4pp81vj3AJzb/NaBGf+OyJsmf10nxkrd/LErRF/v7+/Dbv/3bYdcptundd9+Fd999FwAg7GxcLpcwHo+jc9mjH5G0xTEtQMDHD08Z4SJBs9mEXq93JT29AipWF3Xc8jwXgymcFxqg4acspXkRk1dLB2p1SwF+bl+0sfOCijJBVI+dzzL56iOLPPpGsyu8H3l/pIJOBPe0nFarBV/96ldhNBrBd77znfCeML6rg7uHcZFLkh3pBFHM5pUBzTEHVHMsNaLtoP1qyZE2/1NkQitDwqH8syUzsbGwbBTdRBKbQ1gXzmPp9KJVJ+afzWYh+Ed5TnX26aYA6UQs/+zRERyz8P6VnE3e7yn4LBYMoTqVfucp26Pj+PXxKYEAlB2+sE7LlzDgdZI07nTeeTBojKrG+7wP6fyvwjnn/EkyZqXXMJVVl4brUX5wg911ELet/DtOsX605n0Zu8fLj30XKwM3XuDp6uFwCJubm9DpdMIVeqkBY6tt3nZTH4frE/xdG7Pd3V1YLpfw/Pnz8I4b6iZPvTFerfHD/NPpFObzObz33nvw5MkTqNfrK+8aWuNHFwFi8YYYNrEwCf1e04n0N4qr8Z1cgOIbvyyifGuLU2ij6vU6TCYTGA6HYcMg5uv3+zCdTmE4HKrt9JLUh7w8TRdK9Xr0h5Y+1gaNV5pXww8U01FZ9dgN7XvuEwKsLsZ6sDn/XESHSnZTsq2xOjTcjvKIbRqNRuKpX14W2jsNf/C6LN6qJkvHeOQ6hne0+UJ/pzem4S2Zm5ubK8/iSPxqfZVlqxuoUZfhgizFspS0Nmj+FvfXaX0xvOklKstavEoao5R6NT0m9a9nnK+baP/H/BGqnwBeLtojPjo+Pg758cYLJLzdL3aI0JIrCd979IJFVfkjMewq4fmYbo/N/1QqahcwbxEcrc17Xr5EMSzpSevhj/s1HqzbEL91kGYEylCVCiSmpLizUIXTplGWXX3jjE/4PE+7nrMqvtaZ3ksxgFFkbKRTHlXSdY5TCnkUHJe9lP7hafk1D7weTxk0rfTmnETe/ve0jQN47kBIdd8k2ClLeX75hgdel6jpnY2NDWg2m9BqtSDLMtja2gr51hW48/Y5/Yw7LLnhe/r0KRwcHIR0uMBVlA/+HT3pAABX+pECO6te5B+Jy6NnHqF9wXde3njjDWi1WtDr9eDo6CicvOREAzEcKFsUC1xJQLEoNRqNlRMXMYfbOz+RT5Tp8XgcdvVXEfSigOzi4gIeP34cAgHI36NHj+BHP/pROMmN15TxcZFkwHr/SOIDF88Qa0inS6XgES8/pW/om0AeJwffRpMWByy7wdMUcVgpf6knWFAu6Xfe4JLGg0Xrwm441tIJHK0MXJDl7xdrQRuJH0+/I0/SojGVW83hLIrZqOzy+UFtEPabNneQN9Q3eCIu5c1ejTdaPtcf9ESxdK0w/SxdRxc7OY54ggfdaLvx9EqtVoMXL17AdDqFyWQSNgZc9/XMtA0Autxhn+V5Dm+88QZsbGzAYDCA6XQKp6enZkAO+5cG2XnwkQcKufzy+VjUlsbyoUwC2Bss1+VLWVcUa3V75nYMx3n0bWqbtWCsdKNB2f60cDElrjvp9+12G1qtVgiESu+SNhoN6Ha7MJlMwpvmi8UC7t+/D1tbW/DTn/4UJpOJeQKP48zUE3ESRkGdYtkm9HGwDAnjcD7pLTIAsOLzcH1u8R3DqbQdyBu/7hPLkfSzVGYZmdI2Oknpvv/978PGxga8/fbb0Ol0YDwew+HhIRwcHAQcJ93Qw8uJ4VcP8T7kbSjSL0XyFEkv4SWAVUwhxVZiOJLKK4+r8LxSv3H9mqpnU4nrB4kXSnRzS5Zl8PDhw8Bjr9eDe/fuhbTo79CrealdTcH7N0lUHwG8bIP2XASAvoiHuobaQEkWR6MRPH36dOU3XASXiMfS0PbF7B6XaelmqpittmSIf+e5kcY6OS3VI/WphWs0/q18KVh5HXjNSxKeBbB5sjDoZDKBFy9eXIkHlYlFVmV/NJLwSxVknZJPvZ2palqnn3CT8sxJ4yVlvlNyLcZqk8lrNIuSFSyLpY2VqznQVVEsyCHV7a0/JbBGy+e/ac6tVY8GHL18eMtIVWKWg20BXh4w9DiGkqGwHLQifZZC1rgVdfotgGLliQGFIjqDAxQ+tvxzal1SmVYZKXQTBjHGM+5IxGtBKJhB54YucKLuwrcqr8PQW3NI0l3SlYx4fRn/zXK8YnqR/oYBGwSGkhPiDfZRJ5FenaY5yRbArdfr0Ov1oN/vw97eHsxms5VF6Rh5xpbrFcpv1eDWYz+RUoNUWDbOhVigzqqL9gV3iAEAzs/PYTAYrAQARqMRfPLJJ+GtM6/MYP0pABX1M/4vyZVUr9e51fjzEE1Hr7wtg9Ok/FROY3zw7zUcQec6fk6lKvQpt1s04MLr0k4GaJjRwlCxUwZaUMKaP1Y59LPV1xzb8d+sPrcCWBIPEj7h80byCSQ9HsPFfG7E0kv2TOs3aWw0udbkgxPVU1mWhZ3suACEfcE3IMXmqpdSfRWuV3G+4OYmvIWD6nKrPG4XJDwR80Nin2kZRfwNlEVpg45VZ1XE6/T2izXHLbJ8Y/47/84Tg/DwQjfxFNX/MVzMSeovvO4TfQHtKkp8PgHT5PnlogfFZ576y8gRHwPaHrx2GBeUca5JmzClfqD/S4uSMSyeiinwN1qvhqvxd2rLvXJLv9f6gWMY/I7rL/r/4eEhnJ+fw9e//nXY3NyEZrMJ4/H4Sv4yJNkAbRzwf83epc6xVH/Ju6DH22LZdMmfitlGCYtIY6vxpsl4rP+kftfyxsaTt0NKS/s9yzI4Pz9f+Q11AeVFeteUz+112rlU0vqN37iEv3F7YM13mo6Wz9PgLWh4lSyvi+bTypf0jIZhiupTDUNQHmla3m/aRhQLa3GyMIDU11ZZPE8RHSbxJtnOdci+pKckufT6EYg7lstlOLzA9ZqXL0qSnFTRz9JnSd/QNDHeYnzGMGgK/rIwQ4wvD3l1vpa3iJ9TtW9j+SOWjZP6MPlk7LodsqrKt8rh9WggtKyCyjL92pdXmSxDlKJMihB9R5DWUWZnfRnFy+mmgFwM7FZRNoJZDXRrvFh8eurV+Jd2UWkAylOvtcOalo+BwypO51VJnjq73S60Wi3xSrTZbAZHR0ewsbEBGxsbV/JOJpOVK2zWTVJ7LCcUf8ff+ImjlN2vWA8u0NFyaeCyqlOUWCe9ugedSat8bNN8PodarQavv/56OMl89+5d+Jt/82/Cn/3Zn8H777+/sqOQk+RIWSQt8FjkCQRIddA5iYFA7SS39p0V7JIodpWXh2/pqr/BYAAnJydwcHAA7XYb7t27B48ePVpJNx6PV06RSbtsce6lXGmKGyno1bIobyllYb5UICw5WdguC5RLwRf+faxeng/7wdpURRfMKZ+pjgY90VLWycPyUnUO5QHlkI6fB6Pi+NF2oJyn9o1WPvKjBdvodzHSZAqxYoxfHqhLbUssYITpsA9T6qhCjlJI2j3O5y2/Zo7OGdRjePpyOBzC+fk5HB4ehrwAevBVoiKOOOWN/83biFec0k1Ai8UC5vN5uIpVCqrweqgNWy6XMBqNrti1VKJ+pXSqWpNtLahY5mR2UaJ9R3EHvUKyCtIwJP0/9dSxNwgWw1N5nofr+MqQNt5FdTIGPLnepYsbZfmtmvI8h48++mhFpprNZuCb2hJK8/kcAK6ePMXvcONFzFYAFPez+VXKnBcqb0X638OXFnCl2ID2R6fTgdlsBvP5HH784x/D1tYWvPXWW2LdqSd1UDd4+U6x0ZJtKWNLKFmnLD02m+pi3i4JO0vYlv4O8NIuo061/HbuW6f0h9X/XGa1Jy08Y0llkuM4Ot9HoxG8//77oT/xSmPeLiprVHdYvuJ1Yi8kHEeM3VDieosTH88UO4cb8pEHfBec3uaF/cZPmkr9hptksJxWq3WlXgn/W3x7YwsU/1PynNwvcnLamp88Hbe1kj2QytTIwidWuipJq9Pyuy1cXCUupGVRP4XG4GJxoLJ+mKRntTmBNnQ6na6kj23OkqgqX/0mKTbPAa5fT6foVylNqZOxKeQNnHnTesgyop5gjPS3Vb7FR6y8dQtOioDEePEamdRyNeLAiJfHjVfZvqzacK3b4MUMrxWQkMqjZVqBphSQWlXwDMtKkb8YcUBeRbk3YbC8c5wDy0ajAXt7e9Dv9+H4+DjskMcrySaTCQC8BFGaY12102LJKCdNxq0xpc5XbM5zR5cDZ0u+PXaIBn65rrPknbdhY2MDOp0OdDod2N3dXXmPVOKF8mM5+GXGMiUv70v6Tg0Gg1LL86Th/wCq0ys0cI7/ms1mePMEecC28kBokfZIgRnaVppOCsQh/1J+y5ZIgW1vP9KFvpjdKWpHuE6Q5N0TNOOkBW60dLSclPkm9Y3HuaJjqi0+eMaJliNhslg+jTR5jZVRRA7oGHv4lvB7bHFdsj1WOo0/ziPl+zoCKTEcyPmjJAXVcBMYXoWaZVm44rgIb2WwYGr/UTvrXWDg2DL1alapfq7HJP1cJuByHdi1iH2QcBSdh9x2WNipCttexfxDPCNtMvZQkXnJf8/zPATHG41GON1I+49jo9lsBsPhEJrN5srJU8+cKEsaZkGdgrfhaIF+j63heaS0XK68/o+Er6R5XGYOa+TB8zGdz3XPaDQKNybV63Xodrsrt2VUJRNeWef1eX0Yrb+5r6fVa/EW8xG18rV0Wh1WuR6cy2VyXWT1o9XfWh6AlwsW0sIFtwUSjpXKXHc/cLJkRBsvyc7FyqPt0vCnNo+0zzHifZ+iG1J0ttev8trwMrorBdt4x16SY6kcrYyYrijCv1WXp1wuj5oelmSoLHFcHUvLefHodW3uaP3C+4DrtiqvIpb4KzJPqiCP/Fm4xJu2KkrxPa15C8AWY72g5ToopcOLkvd9jKpIGog89915XiVv6wT4ZcrW8lpl8itW+SnJqtt6G+aGRJrCTAm8WqfdpOCiBGxTlJNEnvwW+MQyUmSRnkDj9XCerMWg6wbuRYgacJSNu3fvwj/5J/8EhsMh/MVf/AW0223o9Xrw4x//GD7++GMYjUYr+aWTiZps3ARh3Y1GI5yCi/HDwbDm6OE/fv1xKlG9VavVoNvthkVwfnU0nj6L2Yl6vQ6f+cxn4LXXXoOvfe1rYjAK09G2zmYztUzLsaFpvOA+RrTs+XweNgIAwMou3RhpjinfHZ1l2cpJVImPVEL5aLfb0Gw2od1uw8XFBZycnKh5cAzoNeH4WRuDmANO8/B34PiboLH20DGOOXw4f7LMt2Mb4FImNzY2YLFYwHA4rNTZkvjDOlPKx931eEKIB3GsK9w1h0yyoRrfsXZZ+Xm9Md6k9KiDcFw9dVXhMBZ9L7Oo7sH+4P2C8zrLMuh2uwBweVtElQGCFMeX94e0iQN5pp+5/0HnaVHeY5jsF43QbvJ36DxE/RTtlBBNi/VR+dJuqMH/bzsOpfJSVkdwbFaGqC/AdbxHB1Pbx9NLAbTrujlLw7S1Wg1msxmMRiN46623YHd3F0ajEcxmM+h0OgDw8vQopUePHsFkMoH9/f0VDDWbza5F9vi4LJfLcGoMx240GoVTnPRGFQ0zaXxb+pPzEvuej4Nkc3j6sqThthSfiPOq9cPm5iZ89atfhYODA/j444/Db3grgudkL5Zdxr/y4CFuB/F/Tx7eL5JNXTd52kjfikb/pwo9qdUj4Q9O2vyR5iCP52m3dND87XY7tBHnPU0b07887lMUf1ZBVkweT6dS304bV6+v0el0gg7F64mR6Olii7zyjxv+Y5TS79QG0/xavJPjY/obzZP6tnCZWFgqjvbYoxT/8LrJ6zfR+E3sNhc+z7kM8CcicMO/ZBOssotsoONEx/vi4gKm0yk0Go1w8pymQ0wGcNkHk8lEtZNFbj27SfrL4DviOEljIp6MLbIoplFVQVqNJJ5SwUAKUaUWU4KSIS0bqCmSRlNKHl4sWYg5FlL9sXq9QUEvaXk8BsBTX1XGrSiA52NLwUgRB0EaT/63VDcvo4icpwaJJYrNNUtf8L701mOVU4TKOHOxvPRUCj1xOBwOYTKZhN+n0ymMx+OwMCKBeYD1bewomzbmeMQWPSRQL6WN8WvNBXSmGo1GSCsFxfm8pv8oHwhWW60WbG5uwnw+h8PDQ8jzHO7evRuCbPw0JtbJnRNP8JH2VWrfWOVSoMzL9Do6MXucqiOLOkh4nfX29jZsbGzAwcEBtFotGI/HcHZ2FtLxoJ9WXkwv099i+tDjAKF88OtEPeTtYy7XWrAvxrtH7qw2a3rdAtFlSbPZVRIv27JVyI+kg3g6T7lVY3CtLCl4LOl/j8zHeO50OpBlGYzH41I+jsfOcN6ssr0BBfpbzBbyNJq+j9VF68MFTG7LvFQUa/H02glnLke1Wg2m0ykMh0Oo1WorV596eG00GtBqtWBjYyNcoyjxRGWhiP6TypHy3jaK+YwAVxeD8G96RbZ3TGh9mmxLGzQ1foqQJ38ZHCXVpdVBT6nv7u5Cu92G8Xi8gg8xANpoNGA6ncLZ2VnIh79JiyUe8uiiGIbnC0J4nWZsM2aKb2uRZi8luU6Jq0j8pPRTKnFfT+sflIvZbAbj8RiOj48hzy9PJNZqNdjZ2YHxeAzT6VTV8x4fowyek9KUHVuJrxjW5r6alLbMuFll8Lq4LdbKqQKjaXED/jv3Z6X0KTqC/h9bMNHiP1X6tKmUglfxqYsiN0fR8jke45uReFr6Oeana3V6fvfoTJ42NpZSXvqdJI+0Do8+9s4hTf6kuqX6iswTL5XVTTE9Y+XhFOPB0n2aL8P1kyTzXkrRmV57TtNLeJWXVaZ+S95TyDvWqXZbKltKW9bvScH1XpvA56uUJ/nN2KLMeMt6VSgmJFJQ3VIy62z7ugCExzhWWVfqO4Uxovmr2OFShooqDU1xlu0bdGSRUt+pu+7gT1WOA/1fS4P9rhn4qvhYR975fB4WW3FxZTgcwne/+13odrsrb8ViANHz3gzAzetvboustyk40SASOiI0PXdYMA8NSqRSs9mE3d3dUBY6VXgSQXNeMR2tl55urdVq0Ov14OnTp/CDH/wAAAB+4zd+A370ox/Bo0ePwtuxWA9+bjabMJ/PV66d0yi2cEjnUmrAhb5rKtWJi9eWPtIcKomXWNC1LA2HQ7i4uIBvfOMbsLm5Cd/97nfDDsinT5+upKXvIGkOnkQaDtP6X5Jr/hvygP3N5z+v04tvLL2J8p3iGEk6mdep4Qc+l5HorlI8YY9XTMcCDZQnj26wgmPIAy0zVpbEi1a2hyRHEOvxnnThvFQRgMRyJNm39Dz+XqRurGt3dxeyLIPDw8MgI/g7TcupigBJjD+U0dRTMFqgDckaa/o2G5Ikd3mehxPkdJOHl0/sfzo/PYst2u94mg5tHqaj/hueIDw+PobT09PwNp1nfuPVr71eD7a2tuDLX/4ynJ6ewscffwxnZ2dwdnYW6qU2SpLnsvP4tpLUfvqblB4JNxbSK/899dE+5HKI33kW8jhJc0e6RcE7husca253UJ6/8pWvwGKxgG9/+9swm82g1+vBxcUFjMfjcA3teDyG8XgMDx8+XLkpZz6fr7wnKNVJ/8e/vYFWayxQ7+GcxutyEed6rvYrqodpG7g8e+qwgqH8u5h/WgVRXCTpOexnAIDBYADn5+cwHo9DH29vb8OXvvQlePjwITx9+jS0j9okrR+4HiwyJkVwUiyfNS4SDo7hdw27eOrjZdDyrXpTNlRKabx2lvvSlk7n9XjmqORT4Ge6uRlPZKM/YREdD+6H3DRx3YJ/A1zqtXa7DfP5PNzaQ3m2MApvM5clensQf6MXqUz/WHMFf0O9juNKibcN5ZvGc7g8WSedtecCqD6k/Fm+ulQHl2ttbDx6j9sM+k8rl+NbqX+ukzx96CWpzbgRHuvS/ETedxbWjunAWBr+u7fdmq2wbGlR8rajTD2c75teg+Hk6QOv3ecktbXQm7He37zkNdQpACIFxFkBxSoFWgJSWtoi5VtptHq9eYrUnVqvlVZyViwnXgIXqVS1gquSvM5raj4A+aoZdLhj19lZc0mqP1XZx+ZUVaTVqbWvrKx5yqhCF9G21Go12N/fh1arBU+ePIFGo7Hyvujp6WkldV8XpQLLKgMzKXVKZIFRGiTkhI4X5j0+PoaNjY0VB+r09BSOj4/h/PwcAF46HDiX6cIuLvQiiPUGJzwBNWyn9h06vvV6Hfr9fnj7Fn87OjqC6XQq1u8lT4DDS1YQJcuyFccQv1ssFnBwcBD69/z83P0+rBWw499betY7TsiX5ISnBrMkHcrTatfYWWWm2miOGayTcdTG8OuivZiYjkeqvcBgEC8vRRdbgTpJ/1HnWMovlW3h9xjhAgp1mCnGsMaFk2TjtHS0LdrGG618/ncK0b6l7+p5y5R4wz7E0xG4MKrJSmrws4hel+rgNy5ImzusOmk/YZtrtVq41j9lnuBvdGNTnr88ZSnl5eOl8WnViXYX5RgDjd78SFpgSbLJHBfdNixH+ZOeDvL6CHRTlaTXsKzYPLf8dK4fOQ9aGfx3q/7rJMrDdDqF0WgEW1tbK88rUNvH2yhtYuLPPaRi8rLySXHrOmQ+Ja4k2UYNb3jqq6odKTxwzES/o39PJpOwqbPVasHOzg6cnp7CcDhcedpBqjuGW71xLC1dar958lD9WrQMmk6bY2XHnGNZqgdjssxxexGdFdO31m9andYCIJczqz+92IfbFc2HWSdRfUs3lkg4QPKltDgWLR83N9FF2JjdkuQJeS3iq2g6QsJf0njEdIvXTkt6T6PY9dmcH+s7S59IpPlq1ryTNohhWmt8i5KnD8viIS4//G+JrNiC9pn/nYrrPLgT/Th+6KLRaKz4LnhLj/SUREp/Wrg2hSxcoflOGmYvekjCwllFSJurmg0qKnOlT8bGSOsQS2lq5cS+8xpIDfgUIW+dUlu9Tqan/FeZirSRGmZpknvKqsLI3FYq0ibsC+lELDpTzWazsnvysf/LXA3BywTwgf4YIKNlIjCVdslXFVDx6Kyy5fMyGo0GfO5zn4Plcgk/+MEPrpxGTDltcN1k6X4cK4tSA0Ravfi71+nm6fFErJXfOpHMA9FPnz4Nb+YgvXjxAt57773wGQPQuNMUTzHg3Kfv7FqglLfLSuMhdAY7nQ689tprsLu7C/v7++G3733ve+JirAaUOU8a6FsH5XkeTqFT/TabzeCDDz6A+XwegDVe2RmTWQ34ewJYKXiHykGWZTCdTkMAgJal5fWQ5CziYlIKxUCv5LyjnkMeLJmhizS8nKJz3kvUzqboK56H9q/Em5RHC4hI6csQvTKd1iuVTZ3QonOZjzktJza+ZW0wdxJxQ4blH3mcOnTY6entVCqCwbz+F/YtP1WAdk068aAR9hXNo9l7bQwpn/gOWqPRWHlfTjpFz4OB9HRBEVoul8EOFMHUnqCDNseRbsL34fXzAG4RwnGVsDq1A7S9KXVxXcp1lZdHzHsbCZ9NeP3116HZbEKv14M8z6/Yf42yLFu5IeCm/Gq+MYMH9crGf2L6mpcv+Yzeeq3AZlH+tbIskhZ2+Aa18Xgc3rprt9tw584dGA6HMJ1O4cWLFzAajVZOTHt9cIu8uizF1/PIupc0LO6ViZRYZuy3Mlg0NT1vd2xsvO3gf0v5rNPcnC9v30lpr1O/Yd309D/nieMSKmfcR9baPZ/PIcsu36ZMiaNJsobj6r0dKPY71+sAVxdBNV8Yf5PsvzWOXO9ZN15qc5yXX1S3xPwiz1zj+b0+7Lpl3ZqHXpIWxGP+PbfZnvrKYnXtN0r0kAX1M1qt1koZnU4nbHYqQ5pMpMQAUuIhXFYlm4jjUubkvYf/ImUiecv29M2KF7zOiWl1On4fy2t95xlcLb+nQ71leduZ0gdl+rtqSuk3T8BMGjf+uzQptf5NMUSe9Led+HhosugtZ7lcriz+8CAEJy1gHDP4Ep9WelpHLG2ZecSdeCqffJG6SEAmpf51EI4RLrR88skn4f1YyoNn4eWmCIM+VL5xPHiAANN7KNVZ9eoayUkBgHBVLQ0G07GgABEDBPg3P2W0sbEBtVoNBoMBnJychDfpdnZ2wunSVqu1cm0TXs24WCygVqsFB0/SKd4+9DoEKXkGgwGMRiOYTCaBX62MFEp1SoqWjbL66NGjK/xTWaCfPTqRyxd3frWFHpSlmJzzU1wx3UvHkdpqT+AD4OXGgpht579LQRYNhLdaLej3+8HZmc1mK1cPW31SFHNI+WNXh5WVR2uRj9ahjQmVJQ+OSJlLVH8XmYNSHs6jpLNSbJkk21l2GaTCkz8AlxtZ6EK91+agLMSuWvfwiVfUo0zxxU1pfkhti23Akea0h3ePn3BTOGM2m5nBGoB03xTgpe5stVrQ6XTg9ddfh52dHbh79y60222YTqcwm83g8PBwxcfR5j7Hy9aubKTYHL8pKqPbUHfgBtG9vT3Y29uDyWQCs9kMTk9PYT6fhw1OHtmSxpkHU61yYnJiYel1YhAP0TaORiNYLBbw8OFDaDab6lMRNA8+cUHl11NfFTxrny37HUvjqVezK5Kc0Pksze/U/qiiDZbvXYRwQxXihdlsBmdnZ/Dpp5/CYDAQ88T64LbFZcryqPU76vHYtaL8My9L8zVjc8GDU1JjShoWT1nE4Po3FZNz0rCmpPM1+3qTtpTzSzfy4UY8jWi7eHk8DcDqJjO0tTS+gr9Zek2rJ4WK+FU0X8xOaPZYWvTleVJkQfLTpbkgzWFpnDT7wzepevxIza/39NV16OhYG/hY4/jR363nCTTfiH+X0v5U38cqEzfzU17xqQhMq12tzfNppNkP7lt72iTJjcd+WDzGYjoeXoq0IZZHa4u0KYDm0eRG1eBVKtdY0KcsWQ20yONkp/LnMQRl2+wJhEhKyluuxCsNGHjLi6XzjpukTD3OcQqfrwrFDJOmWHl+TVFp7zVSQt0gjZ9l9KS/JQVn8RhzRpE3K/DB81kBNY1vagg9ZIG7VN1VJA/NiwY9z3N49uyZOAb0xNJ1UKqhpadJqGPikT+LLPlJKVNzjulnDCjid4vFQt3hJulfCrY6nQ7U63V49uxZ2I2e5zlsbGyEq6fpNdR5/vJKIjydQ9/a4e1IkbeiaaV5mWWXQcLj4+PQV5KTnjonPLYjlTTwhgtPz549U3fjpoBDSca5o6fNA9pPXH9z3YqOjJZXIuv32LzyvP/IeeXOVAxTNBoN2NjYCKfS5vM5LJdLUfZTeECSxkjqY+uaKPo/r6+ovPP6OV+cZyTtGucyhPYly66erpH48pRnfRdzwr11ZFkG7XYbWq1WeDcUT/poV3lqZNmqGB+cqA2p1+vhZgQuY15/x9IREg+ewI31m7awWIXMxXhBeyu9cVmkfuw7vH2i2WxCp9OBO3fuwO7uLuzu7kKz2YTJZAIvXrwI+Ty+UJHfU/w/yv9tpSzLwgnwi4sL2NragjfffBNevHgBZ2dncHJyEjaXldEjFF/hZ04UK0p6mf/Pde91+6bW2GZZBpPJBCaTSehj7bQ5DTahHkd/AjeGYJnrphTdUxVpOlXzHTy4KWY7uAx5N0lJfFStV5EXxIqLxQLOz8/h+fPnaiyhaBwpJlNazIDLvtdGc6pKpqVx8PiT/HNKf0i/pcpjqvzE4jU0HdejGp/Ig4axLR4kXqiNlDCZVLfG2zpI8g1QNy+XS2g2m1duCqGk9ZHVd9gujANJT0p4ZVhKE8OQmMar36Vx0GQpRlQWrfH28peq4zj/1neavpP4pek038PrL1RJMVtg9TlvP38vmT5BUqT+2ByRyqFyw3WUFRPg3/H2ZNnlM1eNRiMcsMDvpVuvtLe6Y3ZQwrUeipXP+8VLVF8UlcmivlyMNB2Q5/kVjBbrS3Uxdh0Gxpps11F/1eSZoB6qqv1V9pnlUJShsgFED2CKlVGUD17ebZZRLwjG373Kjp6io+VKO+e0uqTTtFp6zzWu9GoybIsV1PeOHX/PDgDCVXaobIuQxzm3SDLa/DNvOw3M0p2PuDhHjTk/KXtdVHQ+4QlTDICmGvsqeJCI88BBIZcfCrxi/GMb8drws7Mz6Ha78A//4T+Eu3fvQrPZhOfPn8P3v/99ePz4MQDAygIUB63L5TJcI4YLDo1GA2azWalrQrxEFxRQv2xvb8P9+/dhMBjA8fFxSMtPYqBsx+b1TTgalOjVTxJYBtCD8pg+RedYQDB1TCnf3Kng/RrrW7QBKU5qaiBNKgM3bUiEmzu0t1esdmm2k8qlRZrDjzxlWQbz+RzG43FInxL0wKtYrbenOeFuW7QLaPOqIGwflQFpFy+15anla7eo0L7T3myV2qnpZexXyV5ybKMFV/jc8lKZ67Jo/fiPn+CTcCFP59l9TdvHv8uyy6u38jx3XbWF+RqNRpjTPAhSVLdhGQBX353U9J1WHs4dDAbhiWpcRKTPfeDJFmoDb4quy6eRZIJ+1vio1WrQ7/dhPB4HfRgjbcy0wBC9WSI2x7Q5K+l0a8f8dVBqvdg39KYW+j+df54rjMvIdopu9Fw/WYS8PnLRtmrBTBrY825Ws+rwYOQidViL9xsbG+FKRYrDtLnjpdscg+Gk2V6rr73j4OkHT31a/WXjdqllWBtKvXVbMQx+IhnnGNbJ7T/l/zbIHI91UewQ81c8ZU+n0+A70BO4WZat3F4k+dRldb3kU9LfKHnqoXJPeeYyZsUspd+pDyPZ9xgmjsUjsFwvzk8Zc8qjdgr8puMllBf6v0X8im5rs68Hx8fScYzHY9vShj7rFgSPn7FcLuHs7AwajUa4oandboebxbT6sVwqe1obaZxHknve9ipIilF5/S2tjLLkkQGPDac4Thv/tb0ZGwN9mjMGEJ8s3slRJk2MrIBYTFhjSi418BgLzHnbW1XfeZwVTFekPA3kxRz8Kuk2ADIA/3hYMomyTK8w5WODSp4CGi2oaVGKcuXgUmoTBz9e8sw7yXnBhUpPAELjqSrZkeRdK5sDOwpIceyR8LTYOskC8t78CDTo4nHsjVtLRq2+w99TABptoyWjXFengGoM+OJC6ltvvQW7u7swn8/h/Pwcnj17Bufn56FsXITFgDCtd7FYhP5DuahCVj1lUIcPZbTZbMLGxsaVjR/S5gwKeLDOMoGEFIrJAvKGi8gAoC4McsdRKi/FiZBkUOKd9x/Pp/3G+9hj+y1wH3O8Y22X+EDeqYzleb4yHlTutH5PIQ++pbxJfNMFndT3DWn52Dbr2mrer5hHCljwoAb9PpW4rHN5lGwwbyPNp/2ukZZO0h1UN0vXtWllaHNQ6zNrLkl84cKktmnNGpuYk2lhIksf8LK5fqHlSfIdGz9qpxCPpWAHy2ewZC3FliBPuNhK28mfwND4T8W0qfrxumykRJL8SMR1Al3kxtPH7XYbut3uypWpFgZI0Q9F+8Yzj28LSXqO3lRBZVXzz6S4RUxPF+EvhjW0+cr1zzp40+ry2kdJ3qge8cpNTPak/rT418qybB/6ZRcXFyG2MBqNVuxnzF+TyvXwqqX1UKoNTUljURldLPnS0m/XwVeKnGjpMY/Vn9JctvwnrY/4XLjNC7GSH5bneXQRhubHNDQ9J3q7BO9byY9IkXsrrYQ5tXHkekwr14rTeeespS95X/I2xMr3/C7JnXcMtPl43XohRrFyvDJGfV1JD2Bd1tz2+Jsp/Z3yeyxfnucwnU7h4uJi5WYS6fS6VAaPOVj1WRg6xmcZudDmeKqNTeFFikF402h5YrqO0toWY9dltGIgskx5AL6JUoUS08qosn1lJz3lI8W4aGWkknWvvoeu2+Et47gXrS/2naY0AFYDQv1+H7761a8Gh280Gq0s4nzyyScwHA5D3mazGfLO53P1HUdq6Gh96KhpAT2PoaPBdFontkFaUIzN9yy7PC1KeaUOo2T0LLpumYgRgnT65ir97bpOZ5R1OIfDoRhIBbh6ApVT0eCqx7B7A4yYBueO1O/cCaKE1wqjjsSrKf/kT/4Ems0mTKdTmEwmK3lwkf1zn/scbG9vw/7+fliEf/78OXz3u99dSYsnaGmbJR7pHC8j6+12Gz7zmc/AdDqFDz74APr9PnzhC1+AXq8H+/v7cHh4eOU0rzbO2uL8dZzyxT5A/nCxoN1uq/2jLaRg+4qewk9xNulYYkACFxEAwLy+3lsHzk266xHbjldr04AKLR8DAQByf2hBNPpGcqvVgv39/RDQ//nPf66esNKCD1VjUIuyLINms1lolyi2cT6fw2QygVardWVBiNrh1LZ4ggRF+ofqUIoFJH3PZYWOWYyobFiYg/Y7vjF8eHgY+q8KKuLwzmYzqNfr8JWvfAU2Nzdhd3cXDg4O4P/9v/8H9Xo9nDjVeMQbCKy2W5TqF9AgJ537/K0rWj7Vf6hLm80mdLtd2NnZgfv378MHH3wAH3zwwUrZqQER7VTXdWA37IdYmtQxwnG9TfgTiQePvbRYLODk5ASazSa89tpr8KUvfQl+8zd/E7a3t6Fer8O//bf/Ft5//33Y2NgAAIDz8/NSeJb2oSTr1F6+qoRtQDvM7aHH7szn8xAULKpPipBm8yXS/IUydeO8jJVJ+zCWnm/0QR15G+exRFmWwXA4hOFw6D7Jmxro5fli+jFW/jr61grqWvV6ZOkmaB1zWrP3VCel1k3nWkz+LMwn+R+3jRAT4S0ORf1Ei1Cve5/ikPpK62dqN+mNFPRzigxYvkfMN7DGuMwCUxm5ofaFj23Z+ajFFqRyPbrsNlHMN/GMp9ZmK492ErUKor6ctIkJryvHuF273YaLi4uVpyOwHN43XBas8aY2V0sTI2lOa3XxeEtsDhehVH/RG9/laVBXS2sXrsXYMobI09kSpYBsrWxvGipU3uCCxZ8HTMWMhrdOjYoIpTZW3JGQyk8Fu0UCC1a9mrLV2qGVb/Eco3WCNU3eYvMrRlQJb2xshNNy6FSj0sRFG9yNLgXMOa+0v/FvyyH1zE/+vfSbJ6iqpeN8Svx55mdMZ64L3FgOROw3fnXtbSEOROlJWDwVFLve1wMqYuml31OC0dJ8oQsBHv0RA5XHx8eQZVnYSMGDFRcXF9DpdGBjYwN2d3fDqVoK7uiCmZc8ATvKM09LT+Lh27boAOLpF6++o7pfm7OSPfPgC8mOWXqB81tkvnvArwX6pXwefGVdVx6T/9R5gfXFAifcafA6VXSONZvN8O4nfRs7JWiojXURzBCrO3ZKPeY803GU5gHy7Z0Dkh0ugp88GKAMvtHaY82fGM8oo/i2Yuq1kd65IOXT8Mvm5ibs7e3BgwcPAODlJrUydsXDr1V2yjyI4S3pu1qtBu12G7a2tsxNLhal2BL62dufVDbwiYDJZBI2OuICFq2HziVL10g4WvOxyvjvUnmcXy2N9LtGUnBIkwm8wQPxwWw2gzt37sDe3h7s7e3B06dPwwYWT70xuyjx4pV7rx+QShq2T/FBOB/4j25y8/hM/HuPT5ZqL1L7URuHov4NtZFa3XwOx2TLKpP+zuvS7LC3DVWShh3ocz6U6CZg75zyktWXvHxtXCS/IEYpslkEJ0lpvTYoli6mv6XvUSfE9KbGS4rcxsa0bH5Lt5epdx1kYVSv/2Lp5JhP6MUj+H/qfI5hLQsraVgxhuuL4LvUfub8W2nodykL62Vl9bbKfFGiuCVVT1XNh1Qux1eWLGj2A30MWheNFWA+6VasMv5SGczKKVXuJGxVVHZT4gOx/JY/xHUQ6uor2MhTaYqhlSg1qOulFIVf1En8y0brUsbSO6EWSUKdqkxSJ/irQKkgR2oXLnrgVQcAcGX3DNLm5iZ0u1348MMPIcsy6Pf7Idi3XC7D6TstoMYJ00mnSiS5iF0xQhUdBmekt8fodQ5I6DBiWbRdNHjdaDRguVyGk1seukn9wg22JN+8jdapt9tA2A56hXKr1YL79+/DZDKBp0+fhjbR03waxYJp+L+0003jT0rHd7TzxS0cG3r1tfaeEq1jNpuFk1F8jsznczg4OIAsu1x4yvMcut0uzGazK/UPBgP40z/9UxiPx5Dnl1e3ttvtMIf4VUWUbwxueec+7xvapl6vB3mew0cffQSf/exn4R/8g38Q3sPgFLPl2I+YtkrdXq/Xw8aUPL9clMlz+V0XDoxT3gTm7fAQd0w9ASIr+DIYDMK8433qIcuJkAiDd9optVg9KTLYaDSg0+mE0+WLxWKlnFTHo0gQQnME6FuFRewIfYMS5dPiG+ewVCd1HFIwGC1PGk/+7EFRR09zYrUgTRH8JOnho6MjALiKa5FiQaRUonnQvqHN6PV6cOfOHfjmN78J29vb8P3vfx8GgwGcnZ2F3dJaUAr1POeXzkPu3FvX1P0i+lUpzj495T+ZTGBrawsuLi7g+PgYBoMBPH36FI6OjuCDDz6Ai4sL6PV6AVtiXdYck+YmpevwY67LV6K2h9NisYCzszP41re+BX/2Z38G//Jf/kv49V//dfhrf+2vwcbGBnzwwQcrN/lwojKN2Bc3oErvIHuuJZf4p//z78vMFa+v5SVLZ2rpaR0aXq6KqtIr/z/23qzXkuS4D486+7l793TPxhlxZiguokGRhkABpiHBhO0/bMCAPoHf/WbA38bwowE/+dG2LFiSLVuwKFEmRYriPpyN0z293+XsW/0fLqI6TtyIyMisrHNvj+YHNPqeqqzMyMzI2HJL9fVjdXqoHEmmeOwrzXcOIdU+8fICz5OeykF9DtRZ6GvH3g3KaeJl4/uQnSLp59zIZYen0JdbRmObSvJP+i2V77mHPdRXVkCfl4P/YnfrU9+d6gNpB+Gu7R0rJhBaGEjbxdsWtM44ZjGOEJJBnvaxTqZBn4xeoQUg+2eh+khyNkWG8skv7ufQNFh/Ktet9tDqINVxlzbYiwLOE5S3UmIENE8JqbaEllcMHavVClarVeU3AFyebsljZkVxeSIb9TEwP6lMT7yTynGepk57aPEQ6VpAGlPLWV4TkNqaxt8RVyZjUxRM7krlNrw9Cjwmz+uCx7gLDQbJmA2l5+m0AJj1vZaXlZ6XyQ1sLb8YgaC15U0NKml0WX3CjV0UcChUj4+P4datW7C/v18FknB3GgaV6OQMD0CG2ooaxprhFRqjUt9rwlv6ngtzeh8SPQZKClqigdWEEx9jaKXypMYb12nkxQL75uDgoJpoxR2TNKCMQQCcmNfu5aT/a4hx4DA9p1d7rz3jv0PjnfJmWV4eL46LDHAXO+ffXq8Hw+EQjo6OAACq8d3r9aDVasFisYCyLF33OfGxLdHpDRyWZbl15Pl8PofJZAKnp6dwdna28wUDvD+p7ON3qWngssoT8Kw7BiX5FfMt56069zADbNscmqxJ1dnaWJbkOMDzo9j5IoJU3g3pICu9Vn+ui/BoXC9Qvw+HQ7h9+3b1fDwew3K53DrZQqIv1C68LK7bPcE5Kpe1dtZkoSQzeX08/C+lCclfrAsd/x45L9HreafZRZJt0+v1qqOovYECLM/SdVLQif7P7Uv6LlQ/gKv3Z/MgFqUDZdF0OoXlclmlwUVYMbzL5RK3kUPf4ndSYBCfrVYrWCwW1YkVZVnC2dkZTKfTSj9r7dIEPLxZ530OGiRIfivK8sViAU+ePKkWoOFiMuQPPraxf5BfaLBXksmpNqBUhxcBliyWxpcly2L7OqaNPHEQaUxL8kGyI1Jp57wq/bbyl+RP6rjz6oGc31NZxq+M0ewOKQ/pmxy2sYeW2Ho35TfnkBnSWNDS8L+t/HhetI8sfzAE6VvtmUWjZLvhO82uCv3tLT9ETx19H/JZrN/0e+tbasdRn4DaZSnyXaIjVI+Q/V7H3q4zviife3RgikyJsUljacZ88bmEXOVeJ2L6PtZv8toLMWNOSk/5AMcg+vkIXLxAY/uesuvYPByp/OJpH+m3FyFbNYedRMtJwZXJ2NwOg5XfdTgnXmNQ+i4mrbdTduWES+WGntFBH7sCgSvuOkCFJq1Kor81Bf6iOMFNgQccaHC33+/DN77xDbhz5w689dZbMJlM4P79+7C/vw97e3vwwx/+EN5///0rq2EwX+QPS8jh0ccA27tRAeID8lgXL1/R408Rm81m6z5N666Nsrw8Fi3mntibiJBBwg3r6xozlJd4AKjVasEXv/hFODk5AYDLXT0PHz6svu31erC3t1f9pju/KTx1S518l+qh5YdtzuVkyIiiQL5crVaw2WxgMplU7zBPDAjjs5deeglef/11+NKXvgRPnz6t7he8desWTCYTePLkCQyHQxgOhzCfz03eD+nTFD6aTCbwwQcfwGw2g/F4DPfv34enT59e6UvpbmBveZJDoqXBwC3ey4tBYLy/EOD5/bAh5wzTeuEx8qQTBni9QmOb1pXeQYQLG2g6TCtNSIf4gcv7GIdey1t7Jj1fLpdwfn4OvV6vuldQAuq7VJlI20mjl9cdf+NuRlxQgjuUvcBVsG+//TZ885vfrOTAH//xH8PHH38Mt27dquyBxWJx5W5pCtpHkvxKdeQsW47nF2tD0vwku4WnpeXtSgfGBMk83zYF1E14YsJms6nuOKc7qnFii97PHALKEFyxTY/TonZbUTzfvTgYDGCz2cD9+/dhb29v6zQUlFWxMoXytxZotOQaHQeU/qIoYDKZwGQygY8++mjLBtjlHZCSPZWC3Hzn0Ulef/2HP/whbDabyk44PT2F6XRa2YMYqMIFepvNppKzuJuA2k5/n4GLOehOHx6Qt3hB0hc30QfXAp5e8GA5gH59Aj99IhaxMu06IMkX7b5buqCHtgutpyavYgOf1xVjo+UjNFnc1KSHVA6nSaIzlB+i6XgxjwGEJuYoJBuT8xbNn/Mp/o02RR3UlTWhfGl9Qv4XtUEsuYK2WafT2Yrh4WlbfDLIMxml2b3atxh/02IkIUjt0cSkC5ZDy8K2STk9DPOkNmkuGaH5bVrcaZf+RhPILVtz6BNN/nI+4b8xLjAYDGC5XG6d/jKbzbZ8eTw1j+8sx7Iob1l0huoa4p9cuIlX6HnhaRPzmOIUppOElTQY6nScJ7gSG+jT6AyVbQWR8G8rYJWipHMbRB7HKgaaMEHHjqehNEjtpZ13rrWDJ9B1E51DCVrglhvxVlCRfsOft1otuHXrFhwfH29dKo336mGwiwMnfygtXkiGTCroOJf4BOtA76rBADQ1wCXj3GtApfBSXePAy/uSc8HTpYzxXYH3AQaGO50OdDodODk5EY/NCDlt1riK6c86QXVaXsiBiqGD5kkdzLt378Lx8XE1wdNqtWBvbw/efPNNuLi4qHbV4pixaKb/czq0ukjvqJPMeXI6ncKTJ09gPp9fCdjkAgYdAeRjqBDr9braMcydWamO3vEVYxvQ5yHHl+oFmp7yvZb/wcEBDAaD6jgqPJ7dsyJaq4/F33ynXSjfkLPI3+NEOY4F5H88xlcKFmrygZYp6Q0LUh088kMLSkrf4fG19IgvvmAKA6R0AYFUZsj+l9osdWxaPkIO55fmx/Pm73ibaH1kved5xtAWakMMgqGcvn//fmWn9ft9eO211wAA4PT0tOIJz9Hf3vFqyaUUaP1L2zhGpjaBOnUD2N79S/UdtVklvSrpE03/SuOH82iusaQB5WsOm8b6Dtuy3W7DcDiE09NT+PWvfw2vv/463L17F/7yL/8SZrNZdUSbdH8lpdlLjyaLQ7LgpoPypOZr0ueSHW3Bq8OaApcdCMuWTS3HoxskWkJpJB9Hk9m75kfJvuS0cH0eYzvVsSvo/970MfZcCm2SPotBaDzVscUsaHpa+h1rE/PnUvtY/BUqm38TE4fS6uj9Pie8sT18zr+JtQHQ3kS9TuOEmh2t6Q/NnvP4Q9JpRjTWobW/p189Pq3lM0jl8/gAp99TtkQLbUdKS4h+Dw9INqXWN9ely0OQxrnGbxJo2hi/LOS3h+RPiDbOb7iJAoFjlPczXSAq6VyPvE71ZWm+KTrJU27M2MkNy3fj6ULlm5OxIWcqlHmI+VMax/uNJuBydYjV6E2UlwMptNQ1MLhTbuUnBQz4UaOSoxMSrLGG+E2FxluSoejdfdVut+GVV16pdhsiBoMBHB0dQb/fv/IN3c0QMo45/SEHxCt8uVJBgxGBAefBYAC9Xg8Gg0GV93Q6hfPzc2i1WtUqPylYSVcUhQy+XSLF6ORIMQR3BTqupfFbFEV1pC4erW3lg99oaXg6y7Hx8AAvS5tkigkUeMcK5VlcGYfp3nnnHfjN3/xN+OCDD+CTTz6Boijg6OgIvv71r8OHH34If/mXf3lld3GovJg0mg1QFJcBXC6zRqMR3Lt3D7rdLnS73S1D06NHvLTSnTKag7VcLrfu3BgMBtBut4PHx3ocfomnvHrL+x134jRaAC4n7V999VV4+vQpjMdjePjwISwWi+ApGZKut8YgvsM2rBOw1copy7I6xrzb7VaTkI8ePYLJZFId583z4RPPFm2hwI+EGCfPC5SLnFc5cAfhYrGojqHmNNDJjlCZWvvU1VNcR4XaPsbW4+XQwI6HPtouOfWnFfxAWnG84AK6n/70p3B+fg7L5RIODw/hq1/9KpRlCR988EF1lL81GeUNUnyGvJDuDy+Kq/co8v9DQUD6jr7H/1N3avC8LdDxRJ/R/1OBbbPZbGA4HML+/j48evQI5vM5/PN//s/h5OQE/vN//s8wHo9hOBzCcrmE6XTqypu2mSbXy9J3hcNNRSh2g3d0cfsU7SS0KaneRNsth/zQeNoTc4pF7jy578JtWq+Nw8eN5APF+Pk54NWNMXEZbl9p+cXGD+vKt11A88Hr0k3tGU/A32Oroo+WEyH/V+IPGhOIGbuanySdKsTLou+47tXyvy7QPuc7SbUTlELgEzz9fl/Ufx6ZZtkumn3Ar8eg32k8FPK76dizvrV4k9fL8kVoHNvrQ1rtqemEJviwqXxzw9IT9B3tG+mO1JAPxtOmIkafSvVqt9uwv79f/Z7NZpVPT/NFG4GPo9T4u0VnKI+bKDMRTfN5SF+Zk7EWtEa1go05jSNNgGrGnaREY4PqHhpyM7gX3rpITr6Vp+RUa/lLdzzRbyUFGRJ2OKFAv7GgTdzG9uVNh9TeCCoUcWdMq9WqLv1er9fQarXga1/7Gty9excAoNohBABwdHQEjx8/hp/85Cfw4MEDALgMZKfcb0XHI+7Eoc95nej/HPwuPV4OdUx7vd4Vo3Gz2cBoNIL5fL61I1bjKX6PWSxieEobk3z8WPJVy8fiEyl902PBIyORv/FYxN/+7d+Gz3/+83Dnzh3o9Xrw5MkTGI1G8P7778Pp6WnFk5TPY5xHyltYfijQL8l//j3PIyTvMJ8QeNl0EhZ3D2OwBtvh4uICHj9+DF/4whfg+PgYhsOheJwktiG/y48jh+HCnaJutwvz+Rzee+89uLi4UNPXhSTDUD7xOzVp8BeB99Fhu8e2k2W4avKNvufpJVhyg4976W5hnlen04Gy3D6CVHJwNLoxnUf2YlrNZrBsEjrZUJbl1oIEKS9aD41uC5KswDxi+ZUGTXBHsucb6X+UA8fHxzAYDMSFVRy8T0JHlNdBKGDIy7H0hhSgsaAdX1xXz1+Xs4llob4M6T6NNmtsUVlXls+Pj8PvcEELlS3UBwjJIS5L6D+cTKZ0zedzePr06ZWJtpBckeov9ZvXd+D5cL+H+jE8QMptN639c/MS9R+8cpDWhx4pTd/HBGRy1Gm9XsN0Ot0KSg2HQ/j2t78NH330Efzt3/7tFX1F2329XsNkMgnGDOrQe9N8S66fPDKYjj1cwEN5iPp2vBwpL40m+tubX4huq1wpf4+NrpWj6QKNl2L96BAdoTw4PPoqdbxy2R5rU4Xee9vDop/3g+aH54LHJgzxkpRWSq/V1/JxJT6jdrRHt3J6PONdqo/13rL/pTIk3Rprn4f8fYnOWKT4DLw83u4SjVb6EF38aHHqI0h5eeoU8rdp3nxSlvMClTd08ZBWv9QYh6SzrHfWYmar3WLkQR1bw6PDdunTxCLkz1k2Ps9H0gu8/tKiRs84DJUvXWnA5e58Pt868VGS2fidtiPbQ4tULwoPv6XIxtA3KXwoyWvNxmySz7U2c0/GSgK1SYKl8izGp8805R9q6BQj3POtlEZTUCnKOKYfLGOqzqCU7gbR+ooHH2ha+g3ND9Pxy6k1UKeb09ME36YaUZ58OTRDVBIsvV6vSrtcLqtdQu12G772ta/B5z73Obi4uIDZbFZNXB4cHMAvfvEL+O53v1vlhbvTAOT79Gj9+d/4z7pfwmtca0eJciOn0+ls7YYFuOSds7OzykDDukj5FUX8StCQgSSNvdBvqZ218mIcSUqLREMTvByiB+Cq8YfB5S996UvwrW99CwAu+Rh59uc//3kVbEMewiNlY+SYxFsh49cyxjUlryHG6JXyQqMMA+S4k5QG5nEy9lvf+ha8+eabAABXJmMx7/V6XcmKEGKcbfoNdaZoPebzOXz44Yfm97HOvGVMUievLMtqAQt/R4F6qN/vQ1EU1RHGsaBBDl6vGKPVksVWm1BZbjnARXE5GavdpWrZV1Jay0HWbD+A546/tjOJyjT8Rkprjc9QUIKnx9+xY55/x/kwZScClyOdTgeOj4/h5ORkazLWO04se7oOpH7yfmfJ3RQatN+xoGPlOnQowGUd+GQsDVhRe4zSHMoTdQqC7ihHPY0+AOcZLDt0VDKlicsJnhfA88lYfudxqB89/BzS/ZodxoMeXAbRRS/0GzqxiWk9NocELx9rx5ZpwLJpP0tpvHxPZR/vewpLriKvo14oyxL6/T78/u//PvziF7+Av/zLv4T5fL516gXyFfYD8g+VjzF6ONXWazJ+grDkkLefLNvJe/dxTJ130S5WuRat3r6OHadWeiq3NTqssrVvOY976pZL10rvpXiNx07x2GJa2hBCsiiUZw5etnwd3odeWix9J+3g84wJLY3UH7H+Lf/W6/+F/KPYsiR+4NeAUN82FinjKzRGpLqGZIlWH/wfT0/Ak4ZCtPDy+XM+/iUbictBD5+FYI1nqxytHpq8oDawtDMRFzpqfVGWeU7jkOiTZAhvg1z8nFO3p/iOnKaQbW+ls9JL33j0Pfa1Vd5ms4HFYlFd1Ubz4zxIYzx0MxWAvkknBpotQZ95ZAL3ST3jMpVeSd5oaSzE+Dk8fwnuydi6gYW6RtB1BDY0aELX6rxYh+06kRLM0L5BAcB3efD0m81m615PKX9UZHRlrgYa0AnRmANN9KdkTEn1ApB3cYZomk6nMJlMtia3MZin7YiRjOpQ30urpnNAqnO/34e9vb1q4mB/f7/a1StN0DXt+HuVvfRdyFnW8q+DmyCXLKMTefOll16qjk7tdDowHA4rmeAxaCTgdykGfawTgvRZ95SG8qCgk2Q4CYsTqjhOnjx5AtPpFD7++GNotVrw8OFDmEwmMJvNknfApY4fzJPvYlwul1AU24H/WEdA63t0IhEvv/wy3Llzp7pT7te//nUVmMU2fPnll6tjP9EIXi6X8NOf/nRr5y533EI0I33Y/7GB8VhwQ5bfVdjpdGC5XEJZlnD79m1455134ODgAM7Pz+HJkydXJua5TsKgrHb6AToD0pFT3rvHi+LyWO2iKKrdTB5QGmazGTx69KiyIzwGdyhYEfpOSuuxsejYoA5ELHBh0jvvvAObzQbu3bsHy+Wy2unsCbRhnSQ0oTMkOf4i2dBNgsvOsrzcrf7++++7eLppmjQ+1Z5RvYXggTjkBdwh2+12YTabwQcffADj8bjSF55jO6ns0mSuZUPzb3Ic+5sKa+ziBLk2biQfzDu55oW3XVNlG+L09BTm8zn8+Z//Ofzyl7+E09NT+OSTT6pTgHq9XjVpS4OblP9CoH2cGhjaNY/kKi+kB7Sd0lJgNxc9dXSiBznoprzFg8DaggZaZg5+C10v4YHV/6ntI/lNKcF1KbDaNE9404ZkS13ekvKTyrT0WYi36Le8Tt5YUyq4/PC0lyUTeF287W/ZvjSv67C9NDShx9EGQ3+uSUjXpwD47DYK7kdpedFn9F1sbEcqH7G/vw/9fh/Oz8+3rpLhVwNIqMtbFr97eaUJXZ6KHPwtyYqQ7Ag989JW16/tdDpwcHBQ/R4MBrDZbODs7OxKvIbHvmL6OyUemmIjWLzVtK2n0ZODz710Jx1TfJ3OvoY6AjOHQ5WzTTSmTBm0uxSekjFMV8pTGqS/0XGQgM6EN4DapCO4a3BnQxJ0Fm9wwwUnsPBuOZp2vV7DbDbbEubeYC0H0kzvK6srlLU6IXBiDvmk2+1Cv9+HsizN46415eEx3qxvvAJdosdyQryGpbc8nk9OxCpRenwex3q9hvV6DXt7e9Xdpq1Wq9rVYAUerT6mgVWeT4xDLfWJZvDzPrQMO06/pBvomMB2ogbYZDKB+XwO5+fncHZ2Vk0+4sSjVrZlWGlt43HSKb10xxA9/lfLKzQGpXpg/linvb09uHPnTuVgPnjwAGazWZV2tVrBYDCAt956q8pnPB7DdDqtjlHWaIqRc/S3pN/qjEfNVrGCpnt7e3D79u3qKGbqFEs08wC+FKih98ylBgaLoqhOO5hOp0FHXar3crmsjuS3dqB58vTINYsWz7c4Njx08vJQDhTF5WT7Sy+9BOfn5/Dhhx9uHe3ptTctGngenrEaqodHR+W073L5Cbuytak8W61W8PDhw60j5nMDeTakCy3elp5rOlriAbrKe7VawbNnz7bGiFeuWL4BH0NSWsn+1OpRR357fB0rHaXT0uNSOqldYmzbkM2SkoeWZjqdwmKxgF/+8pfw9OlTWK1WcHp6usUvkt5DPWAtZuV1iOlPjx10k+Cx1yT+0Oxcnqf1PqaNUr6R6KF0STqsab3SRBma/EktS/Nr6btUaL6EJausvFLbWhrzli/pBR8XIf8kB0Jl8XShNGX5PHZCfVEqT3PaYTRPznPoH4X6htLolRGavgv5v/RvrdwmbUKr7ZvQO6gr6WSs1B8hf0LSGVrbxuQrwdOXKYht3263C/v7+zCZTKrFz1Z+obaJ6Xtt3HrbJWWM30T7R5JZHn9lF7wi6Qqt3VutVnXiC00zHo+vxO8l29dDi7f+qX6/V394fE8LKbblLmU4QMJk7C4CDViOZnCnGEMp5Wr5UTS9El0LSqUIN74LKQSp7fi3RVFUOw/5lnkpPcDVOuGOGfodX/UxGo3EOwQ1mmMH3674OoQYAYZ/WwZ+u92G5XJZ7YAFAPjGN74Bb775JpRlCY8ePYKTk5NqJ+m9e/fgr//6r2E0GgHA5d2reOQpHmmqlckd2phdCto7yQHkgRN+nxgvd7PZwOPHj6ujHYqiUI9gjVVYFlIVkzfPOtACKk1AkiEIyRjt9XqwXC63JlxWqxXM5/PKiOU8ELrf16tDJB7j33O9lEN+hILIsX2Dsr7X612ZlKWYzWbwi1/8AqbTKfR6vepZaKdsbnmJ9A4Gg+qZJdskcLlI+wd3wSyXS7h16xZ8/vOfryb2Dg8Pod1uV4Yt7qKhx1/iEe8//vGP4de//jWcn59DURQwHA4BAMRjiiX7RTM6sa4p7Up1uleGYPv0ej0oy8tgNufB4+Nj6Ha7lV7HiVRrRwfmz8tB0AVV+D+/jsAbTMKdTth3mHeqbUThuaceacX2D7VLCNypisVms4HlclmN3cePH8OPfvQjOD4+hldeeUWtg3VPsMdhlfKU0ofswhA839wUO65plGVZLRwZDAawXC7hD//wDwHgUlcul0sYDAZQlpe7Zum4sNqR23D4Py7Y0fTjZ7gE3RmMvlGr1arGJV30pI0nyzbhcpIfp2/5zXXAg5lIIz9iP0ZOIFB20rJ4wFD6nwLb4Yc//GFFEy5KoAu7MC3m0+l04Itf/CIAANy/f786+ULzIZGu2F1BNJi068Ckp0xaX2tsU1sD9S/tl1A5fAct9ddjbJgmoLVTjK6iMjOkz7kfRE8NCcloBOVlqy6S7Aj1VdO8inY5He+0HTCNFpzmtGpptL+b4rPY2JOHFildav9ofgr9LfknIXuuCdQ5dYLSrC3wlmwd/i5UBp6+QBd44vco7/h1QLvSA7nKkXgCY2ihWAqF1Z8hv0+qC+oqbROP5HNofJxbHlDeQ9k2Go1gNpvB3t4eHB8fV3XA+AIu8OaLH5C+3Dzj1QUc3njaiwIP/ZaNyuGJ+UhpQ7qO5jGdTuHBgwewv78PR0dH1fPhcLh17HVZXi5CH4/HwTpq9EnxGYkmLY21wcaLXDxm8XusPs6J6MnYlCBKCkJGsScYiH97G1gaCHUaPeXbGCEXYzh489Ho0ZwJNEJoUIAHX0N9JhkxGGBFp88LyWEPGfE5+bmOwox1+KxvuINLJ1cODw/hpZdegsePH1fHR+O/6XQKDx8+rOqBfYt3JGplWsaVRp/1rZZWypMHg+j9Zfh+sVhUu4BjaQ3BIy9i8/e2nUYHf245XLsODvGyuRxDWYJ3cuIRxIvFAlarFaxWKxiPxzAej6/IFj6eY+vo1W+WY0qfeZx/z3i2ytfGhBToArjc3XlxcQGTyQQmkwmcn59XuyBRVniM9LpyU+JTukM2p1ymZfV6PTg5OdlylinfcF1G78oej8fw5MmTSmdpRynxciV+4ROHIbnqkZlWf3FdjnoWJ+s7nQ70+/2qvjip47WbpLGj1U+zXbTxhwu+kDb8H/lWsj14OZwuLa1lM2pBMYA8Docl2z0yjI4bvFPz7OwMzs/Pq53xmFeKnIsBLcdrj+WgJzSOvPZLKI1HPubSrVJeOBGCCyoePHhQ1a3T6VTP+fFUGl3Wc8wn5EvlsqetAFSM3+MBtolHP1t58PRU9uM/7Uj2UNAtJNdi/PJQXpZs9qSpEyPw6Ajtd1EUcHZ2Jh7HxvsX07fbbbh79y60Wi2YTCYwHo+v3EGcC1we8rGUm6+byktrU3wv8RPnixx6Jfab2LzryjGPnpX4wZLRWh6hdyG/mZYr1SFUviVDPHTmhtWPofrSdJYsvu46evoFQJ7ADY1Dyz6g+YZo8NjP9LelY3LYFan5hOiW0qN/2RSfeOSU1b+x7cDtJEtfWfxlycWQDZZCs1Y+fW/xcsjGp+kkmYrpyvL5ArHDw8Nq4TldfOO9x9PTDhYt3vx2Kc9i4PXzLVixCppGep5qb4dsPEtWc+Aplrh5AMHvhqV/Sz5GTB/H+A43CVJshyL0LNbmTInjJB1TvEvUuWQ4tyDJceGxhZSAUM68Q6CKuNVqwd7e3hUngpc3n8+37pGTdlx1u91qV1ZRPD+KEOByl9azZ8+2jsbwGqFNIDQod+1waDTs7e2p/Hp6egoPHjyoVvRRtNvtakcFliEF5K0VaXWcWUtYeoza5XIJo9EITk5OYH9/H8ry6s4QXlbOACLmGVK0sbCEO77nbXRTDSkAvxP4jW98A7797W9Xd53eunULAAD+63/9r/Dw4cNqtzPA5eQR7lCMkRGWoa/xTE55mjN4LQGP6p7P57BareBP//RPt+4I5fRYi1+aNra045JDCNFFJ6nweJfhcAiDwQC+//3vw8cffwzT6RQAYOvYwv39fXjrrbeqdvnJT34CAAC3bt2qjj+n+s0TnAjt4qaINQBj+4fe0/75z38efud3fgcODg5guVzCd77zHfjggw9gMpls0Ys7h6jRz3e7UCBf8XHDf3P7AhdgrNdrePvtt+HWrVtVcAOP3P3Vr35ltkdRPD/ajO4WD4EeDYwnL9BFIlpZWI8ckOwpL9rtNsznc3jy5An8n//zf+AHP/gBvPfee3B2dgZlWVYnZuwClqzHd1qb3mTktkNTA0J1QBe/aHYX8jzKAU1nabailCeml2jh8kIKKtDfnvHGy/QEESRbiso6uuAPQD6+b7VaiScSUbkk1TM3NHuUtp9kE6G/hTqRyozY+2XpeEc/UJKbXJfwnXIx5eH1FXyCFWXg3t4e/O7v/i4cHR3Bw4cP4b333oP/9t/+WzDvmxp08iJkI3PeR37lwWXPDmEp6Km1H13QpI3VpvVCbOANQJ/0l97zWEZqWU2gaTmklRkTXI/lB49fZ9GWA6F2zW07WuD8zQPz1CbwQLJTc/m1mJelL0LfSr4HT1MXmD9e+zMcDq+0S9N9uwsek+wWCXzSh6fj8UO6e9RCyF4JfUu/85ap+SmcFuRRfhIHt++08rrdLty+fRtms1l1MiEvXxq7tE4e8Lgn7Yub7nNdBzR9Y7WVtAM8JS7M/TLJj6G7XtHmLYpi67QzLs/pAvyQHYj/pFN4JJq0evA6aNiVLrTGTmw/eWHVfUtqxBjoqfAoi9C3Xuc7xkiLrZtFi9W5Wpl0gOfsdF6GRq9WptVGtI2l/1EA0JU/NA+6u4jeKdfpdLYccAzQe4SgVf8c2IUjSMvi5XnrZfH/er2uBDiOeewD6R5Ea/LAMux3Aak8GkgCgK1gPH2fWp40bvnfEj110JRyCJXRBHifUeOYB3dw0ozfYzwajbYMEH6ftMYTXsUb8z6UFmWfJGdjdFoqUBYgbdhuKHNxl6HkmITa0ypzF8FlrQxLV+CKQjx5YTabwXg8hk6nc2WxDwYC+v1+dWQ7AFSBeJzg1qD1e2x9PAi1BU3DeQLgcsfwwcFBFVQYjUYwGo0q/YCnI0gy3+MU8qBPDHBBAcBz/YWLiSTbQqo/rTMN0mgI0RoKSGj5pb73AGnCXc77+/uwWq3g7OwMJpPJ1lH9dccn5yXO61p9YmRJKOCSarffRKT2P/Iyncy0Fo56x6AWQLP6N6V9aX6a/tG+i9WfOfley5+nTQ0e7hqaDgrJuJiAoNTXHh9a6zeaB+d7LuulOpVlCc+ePQMAgJOTEzg8PKzedzqdSudhemvxqYQYnyDGZrXK8nyXImu08W7xdeg9zx//5fDVvJB4Q/JRvLYc5snlbExdQuNDKysFTcWbUr7PRdMufFmvvMtlH2IaL//xfHksL8Zms/JNQaweDrVjU3LC8oklUPmF6bgO8eblBe3fFPuG931MjITzkZVGKk+LBcXKWKn8mLy0dvPyOLdDqC1C2xXTLZdLmM/n1dVING1o05dUV94WEv1NxBZ29T1AnD1Txw/xlBnjA0lpLVvbG4NDrNdrWCwWVQwfT4bkvke329064bIOOE2xspx+q30fy7upNkgoTmH5pzntjK3J2OtQdiFwIZObjtgBmIMWzankzOdJ1xS4QgjV1VIiGr14BCn9jTsz8Rs8WtY7GDVD4iYGP5oE3a0lCd/NZgM/+9nP4NmzZ9XEAt8RS7/jx4ZaPJhybx/nfVo234GAwJVofMWOBDxyE9OEjpSMkYWc9/nYTVlhar2LlT2WwbALWeIpsygud8Tzvry4uICPP/74Sn3xyFJsd9z9zPOk5cbQ6el/j1OGkIwjgOe80UQ/hOjs9XpQFMWWrNDy4bt+YowjLc8m62zJhPF4DB999BHcvXt36y7Ew8PDyjlC2YI7st9880147bXXqqOFcEJwNBptrdqWaJHe0eeSkZ5ab29aTaYCXI658XgM8/kcAJ7zyWg0ctkBNJiKz2KNba0dcLfsL3/5S1itVtVRrHzBlgR6DDdNG7IPrHGEfLxLOWphtVpBp9OBvb09eOONN+CLX/wifPLJJ/D06dPqBBJtJ7fkfEjQxi62o+e4Zi7/PNCOfPPKEkn+piBWdoWCJ3WB8mtvbw8Antt+3I6iwIUodX2qXfkjVvmfFoTaEfmfX/0iybGYCYBcfmyIl+h7uoiG50VPIPDoUDpxh74jthP6j9T+ovlMp1P4T//pP8Hdu3fh3/ybfwPHx8dQFJcTsfv7+zCdTreuN8HFWKgbLbpSgKdt4Ckd3tO4kL5cQVOvTsN25gteY3UipseAIgYNpZO0vMghm7h+xDxD7WztNtK+57aEpy+lOlpxEPod/f+m2C8WeLuF6mjZl5LdlmPsUB5JydfDW6l+LQfXIbw9uc+am1di+ZzalinyLtVnxXiWJIt521D5zW0v3HjS9FgLtQt974k/WH5AKA0itLjGGo91J480eSid7mfZzDStdToSXZyNOg1tBzwp5fT0FFqtFrz66qvQ6/VgMBhUi8SlMqUTWDg8PqxE84tsQ+/S/wjpfm6LW+8tWDu2pWfz+RwWiwXs7+/DYDCobFPKh51OB27dugXT6RQuLi6CNHDwmA4+k+yjVNxkWySXzrXgOqY4hYAcRFvBTc83dWiQDNw6eTZpYIUUqRYItQQ0QgqSosNklcdXYEh3ANLBjPniro31eg3T6bRySjUnRVK0HqFwkxRQaNJESgsg9xM9+ggnGjabTXXMWFmWcHZ2BkVxeYwBHlfAFb6XX2n6kBC1lFioHO+kFTWIJpNJZVyhU+/heQseWmP6M6Z8j4zQ8rEc2abHgiZ/+DukcblcVrtgR6MR3L9/v3KG6L2xoTJy0InPPbrI6kMpGGD9zmmQoDzGICOtz3XJwbr1o3R7nRBab7rLk6fB3YPvvPMOvPrqq2IQF4/P5XLJMqC9Du8u+4TWfz6fw9nZGSyXyyu7zIvi8vgbPKpSq6/mhOC7mGAazwP1GABUAWD6PsZexDpJzhP/O2QP5RirmjxMAY73i4sLuHfvHjx79gwuLi7cR4B75FhIj3qD1jmRUl5MG1syJzaYldK3oaAYDXhZzjzneQ8tWt09No80fjif0LRacFijy2MT8vag5YTyxbR4Yg9OdtPFgFp7o46gE1Yh3avJG1qGJEtTA1Mh/wkDiUVRwGKxcNn5qYEVa/JRG3OxPgLPZz6fw3w+h9lsBgcHB/CP//E/hkePHsHHH39cazKwDrxjQJMtUh+k2JghXvX6rBbfU3lF09JxJd0DvEt4dYtnbFs2YmyZkt2i2UE5bAueZ4wfEZIJoZhUTPtb5dPf3Ab0xI0s+kM0SGXwNuRpUmWpRp9HNkjfcVjyJMaelfQPL8eyF1Lpp+95vpqM0sA3D7zyyiuw2Wzg0aNH6n2OVtvEjCfpmdUumo1elvKJKjxPr97wjCX+jUQbzcvLV145kGo3eccEPqPlSDtmAS75Bo+YBbi8WmE+n1/Rn7F+Tkimch7g7z3Yha+XSw42VaZnfMT4zzG0lGV55dohzwlYnsVzsTR5+SDkC9G8PXKe6/OQ/6t9x6HpHolW7dsQ7QDGZGyqY5cL12Vwe597laWnMywFmAOWorecLMlIxB2Uof7hxzdKTi03hLvdbnXe/mKxgPv37yevtH3RUNdRwvbBXUwAUN3zhUcW4iTXRx99BB999NGV8vmdQJyuUPmhZ5bAld7hBDE1XC3jEv9utVrVRD5ORmvlphoRnHc1pI7jXLz+oowZbE+cRMB2e/ToEfzgBz/Ykg3r9XrrHkuAekaBlU/dAADmwfOVVpml6BTre2xTDATjUa8YFLYmZ0J18t63EqK7Djxl8wlXbUcoBvzKsoTz83O4e/cufPvb31bvF8U7Xai8tWjUHN3rxmq1qnTzaDSCDz/8EA4ODqodwIh2uw2Hh4ewWq3g9PS0eh4yjq3nMTyBC2pwZ5JWDs0P+1NazSzJb+oU4/tQYI3LGytAZeXD6+H9lgLrWpYlzOdz+Oijj+C9996r3vd6vdo8mGKPhZydOmgqABArr67bX5KccS0d/o+2UkzQzNIxWrCABnz43zRPbsfF6GANlL7lclldhSAF+aS64bFfZVlCv9+vdhSv1+tKB9DjoTnoHboem9ryNdFGR+TUJ5Yca7VaMBwOYT6fV3aXxeupp31gX/HyJZuOynXpmxCoTEK78/T0FF5//XX4d//u38Ef/uEfwr//9/++2s1002DpnhzjRiqPlsXLteS7pe/xHV9YRRd8p+6QTZXHnE5PPlgPXAwdu5vLYydqYyKGPpqe9+OL4isiOL1W/I62L2+LmPGdg6c8vt519FGML6fB2yf8fahNuN+cyz7g+Vt5WSe+4aYGtBN++7d/G9brNfzZn/3Z1g5MymtoG9TxESioLObP6f9cb3I7yPpWshktOy5UD64/0N7i39DvuL1Jn1s6SLOtUObGjK1Y3pPK4WXiiUYAAC+99BJ88sknMJ1Oq+9wco3atJ5yKb2e+lA+uck6Ydc6KxTnidXDCM9JUp58p9NpZZ+3Wi24detWtXgU03A6MTao3R3L7Qxp3Esyv25dUhEbl6TlecZIrK8Rw6PqZGyMQJUIiEFIgUv51R2EWoOG8s1piEhpYh11DVw5SfXlg0Yy8L2BQsyf/tPQ6XSqyZWieD4Ji0JJumPBo2hDPJvTOW0aFi9ZfcF3LdGjXBE8wKDdCavxRswzzanQvufPNV7S+Fniea29Qo6A1eYSpCBFCCEBT9vKGluhvuIG83WD1gvHPt4DWZZlZZjiPZH4zWQyueLEaHwgtZfEeyHZptEtfZPazt70Xp6U5D59Jp1UYOVTV99eh1Ev1Q/vPp1MJvDo0SMYj8cwm82uGKPL5RKePHkCt27dgldffbW6T3swGMCdO3eqHaQA9RcA1PkOUceOwDE4m83g3r170O/3odPpwHQ6rYKioZMw+N+xTqr2Dv8/Pz+H9XoNg8Fga/xbfBwbsMFgAKbHvKkzI+kOzcaSghxe27nuuEPdj+0lnQxh2XscUl1ogIGnpe/r1EOiIzbQLdUzRFNueeVxylJkwHXrc97HNJAD8Ny2DN3pjsAxKMnUkI3D86Hfd7td2Nvbg/V6DavVKmgXUJ8CZQHWC3UI5sGPDcZ8YoM3qfwRkvVan1j2r+U38vchSDJVai+en9SGXMfw96vVamsCXaOzLC9PwKBppXI7nQ70er2KZ+jOFbyqQJKBXtC8iqKA4XAInU4HDg8PYT6fw/n5eTUmQm3N28PSSyF6qO3Mg/dSPpzvY/1tOsYwn5TAmoYUekLjM9bGkfhZql+KL0C/C8VKYvOl33rbICXeYsl5Lo+9elyiW2rvXH6OBo+st9oWafTYEZiXp/3r2qshGqxvQz40pyvUb6lygvMYp80ao9RnAHg+Kfv+++9Dt9uFL3zhC9U7PPnv8ePHcHZ2diWvGFolWjTaLB+JTwRpd9vycjx8Ecs7VGdL1+QhbVJ9Y/Svlgf+r9U9Rvbx95K9U5aX8azZbAZlebkAaW9vr7I5KDR7Jta/5WlDNmooDc8/pz+i2aTab+ndrvyjOnpD0nuYZ6gNpHcor6bTqSjT9/b2qhMG6Tfa2Od6x+Nv5OYFqY6hNB69wZ9r+fD3sbakB66dsU0ZKDRvy1jlaT0ICZKQY2vVPcYI1+Dp6JiAQ4gGypTSAOX5eh0R+lxarSR9j/fxIPr9fqV8yrKsduvQoIzUlppBbrW75fg0yeceWryweJLfV4A7ieg33W53a4cR3VFhGecefrRo4wJaChLwPCxnXBOyVhm0LOm3JXClttDqG+NQWwazx1GXlEgduZUbIT2CCwbG43E1adDtduH4+BgAtukej8dbR5dL49fiIa5vJCNZgubQh/hGU/ypxopEp8bfaGBx8MA4z4+XE3JCME1I7sbKV69M99KCYw13NeHOprIsxcnYhw8fQr/fh1u3bgEAwNnZGQwGA3j55ZdhOp1uyU38lgYQQzR7ZKoFq01jxn+r1YJerwfT6RTOz8+r551Op5qMtcrh48gjr+k3/D5iCaenpzAej7fuNQd4fuKGJM9xxxpNE3K6+YIwfhctHxe0D7nDzGHJliZkc6/Xg/39/S2Hn9MXa+NLcpU6cTS/2N3/Hlsvpp08zruWrybvLUjfSO3rlYU3yR7V6kHHblE8v2sb5SDVQ1wuavKPypTQ2PC2Ubfbre5MQjtDOqaeynFKB06W4VFy9Hspn1h4fT7pGw28z6TxwGUX98O1enn81bIsqwC0dKy8RKvmf0u2vQR+2oeUL/6Nd2tZeXa7XRgOhzAej2G1WkG/36/0ymKxqO6TtRAa7ygri+Ly3ufhcAjD4RDOzs7g6dOnW4tnQ/XH/uJB9hj+ojzh/RbrKC2k8PI0He90XN0USOPHM+5pGnpXsmds0XJC6TiNu7Y3aJmx9n7IZpTkgZZGy9PS9VK6nJDaI7Zcrwz05mfRaPmUMWWH6ui1sbjNQNvC4+tY5XCdx/ML3SHKNzYsl0v4xS9+AScnJ/B7v/d7V2Jw6/V6azKW1y8ETqckJ1EHcF3O8+HvUX/iKWQckm6R0kh0SnYWBbaztIGE2pqS3Uj9Ni1/Cs7L3C4Npbfy5XxJ8+X3D2MMYr1eV3bScDjcmoylOrzO/blS+4fGnObDeOz2phDiI06T9F1qmR5ZY9Eg8VFIj2v5a7oW25+fHoi+y3A4rHwa/o0Ug+GyVzqlRKJRGsOhukh5Sm0fGo/SAlCeN5cjXjvCQoxO52mTdsbGEBPzzU0yvGONyZsGDxNIdfQwIg1Co7ONwJVhdEW81q94/BAeH4bf466jVF4KCcybxmcUllEYyoPmhQEDbFucgOXGI0eqIEoxsrni1pSBlw4skwZkuPGiGZIeR4inleoY015UWfEghhbYTzEGbjLK8jKohX8jVqvV1sQQAmWPxVOeoBHNw2o/zxgMOSXWatM6sAwSbkBZDhR/Z+XLj2ryGPU03XXAkqdeR+fjjz+GDz74AH75y1/C48ePoSzLysmmd5lK5TaFHPlbdaYGerfbhcPDQ1gsFjAej8XJfMmYTdEf3DHGiR6NRk9wRvsW4LINer0etNvt6hhvXPAR+hbg6tE43gARhcfZ99QN09BjHq0yc0MKanCbpq6+8gSu6h79VJeHpTxi7bpUePiEBrZeVPvhJvtnXN9bi59CetcKZnr0bkz/anILr/ugRzKH+JvKItzxeXp6CvP5PHonqSTbJTkTi6Ioqp2v3/nOd+Dtt9+Gl156CbrdLnzlK1+BZ8+ewdnZWWVDXVxcVEcGeuvg9S1ibETqK+Fu4F6vt7WAyPo2JojJf3uCVruScTH6PnYsIJ/TncHc1pCg7ejNEVPjba/JBE43TYvvpYDkTYFkW4bGmxbj4fWjC4W0fGJ5K4TUfHLrZ6/ekBDjJ0v6IMaX9th4Gg115VCMfETdSI8nx/LX63V1+gI/nng+n1d+FeaTej8551XqL9Ex7pnI8xzZTWMAKXZyCPR6GVoOX5AkxZapjODvLJ5K4TcOHhfh7c1jDUVRXImd0w0JrVYLjo+Pq12MnkXLOWCNZStd08jRRzcBdWzyUEyY2ijSeF+tVjCdTqvFpfitdZUfL0NL10R8M/ReG+M56NF8MfQFJBsvBpw+dTI2JbMcCt478DWjwuvMptInwauQYpyGXO815uRHAnnpKoqrKyM6nc6WAWJNhtHycDKWfrNarWAymVwpI2ZgoSLnzkeTsHgshv80A9YTqKV54G5L2o4p9x+hURETJAjtaObppTTad56AtmZ0UuXjkRvS81TjU5NpXJEirF1WknIO9ZE1Bq7buJGCR/xeWFzgEbr30OvwWXwQK2us8mN423ISYkGdMHrMrOWQeYOGOYMUofIsw5W/02iSAk6efsHdPMvlEh4/fgw/+9nP4PHjx9UiATyuUoNFz3UgxF9aG6HTiHfFdzodWK1WatA3FKTlwfwQXXwy1jNmvTxKA5cYHNlsNjCbzVzf5oA38Bdjp0lHB1u2iTdf/jcPnvH09F8KYmWNFSS6Tmfe48w2XRZtS3rk2y7sYwu8X3L3D82f2sZexPCvFiyR7ATa7iFd4UmrfetJx+nh32OAlB7RjOB2AQ1U4O9+vw+DwQAuLi5cNFntSNvTo/8l/UOBO1J++ctfAgDA06dPoSgK+NznPledKjAYDKDdbsNsNoOiKODw8LC2bKO0afl48sc8ut2uqZcxLZfdXj2J/9M+0OxobxnS9yl+shcx/ptUT8xDozfF5gvRYdnAVn6ct3jded+EfJkYePz/mBiBJAvoO0uHSfXy1O26/WJv+8TmZ8VBPHlY30hjRaLBGu8hXRfyHaTnlr8XKsMqh/oPkk2M8U2Mu6FuXK/X0O12tyYYuV6l5YbsYNoe6O/zXaIp/oVH1nl5KWa8bzabKz4MjWFQm0UrI8V2stJJ+Un0Wfnyv6lvu9lsqtM68PlwOKzSzufzygaTaMsRV7LGjaZPPLZYiv6y3od4KUbPN4065Wt+rCX3kBe0U/Fw84tnMaFVlmRXh9o91XeJ4dcY3SaNd8suojLPI1c8tiGi1mTsLhDjKHi+9aT1NGwsYoNKTcOrlCzgYKY7ZbUgBxoIuGNjsVhAr9erzsgHgK37IDWavH0T69xdFzx858mDHu1RliXM53N1tYvluMSmS6WXH5VK+QMArhyhoOVjGU3SszrHfOQcv7hbmdJFFydobW/JNO04UZoXVyBNy6QYpxcdCbr7Aidh0XGJ5cldyVyPocQRG2Sx8uF0SODHKXqNMfr/rnVY7kCVZETxo3jxGJef/OQn8Ktf/Qq+973vwWQygYuLi0oucTmCKw09NN8k8LsQB4NB9U6aaMY0s9kMZrNZJbc9TiwHl0OW4bpcLmG1WlUOKabRgizUYaS6LMTz6ASjrMFyPCshJd7KNcY9QLpxMnk+n8NkMqn6iO5uq1NGv9+Hg4ODahHdZDKBxWLhyjd3W2i8RY/NRT3yGZ4jxr7zBAH5EbTSGMXxgGMQ+YWe3oJAXvXIBou2srzcudLr9eC1116D2WwGk8kEHjx4AGdnZ9UOR6RZWtR2eHgIvV4PZrMZjEYj6Ha7UJaXJyNoR3ahDOLtS8fILuUCwFWdhQFPKuso7fgtLoyTfCwtKBmys60TaqTgnoVQcIqn4fevou09m83gpz/9KfyH//Af4PDwEE5OTsxy2+027O/vw2q1gsViUdueLsvLU2I6nQ4Mh0NYLpfQ7/evBNZCOgjrJ+3MiZH9deyZVN8Rx99yudyZPZWqoy3/WgLvk5T6WTzG86GTMTch9pQiwymk6xB4vk2U+2kAr7dkz9aVXXXykPQAQL14jbdcTS56yuaTH+hL8pjoYrGA1157Dd566y1YLpfQbrfh3r171dUrlBbM1yovpm4x8PZjk2MK6cY7LXnfoI6j8tPa9CPlLU0m8jQA/hgJ9xUBYMuuounoM6rnaDoJdBe1BIk3rP73xhc9eb5IMY8XGTFjLeb0mRi7kNuXFk2aXG8SGl9L4zyWHq8dngLXZGzMAM9hQPNGkvKMCSJ4hY5GSywkBuTlhepkCdYQg3vbRsvHI8ClYCe+5/Wgyo9OthXF82MacAfSarUylY3126I31Ca5hEQocBUyYjxBBfxN86NBFT7Ryb/VjBeOGN6nY9YjH/j//I6u0Pf4t3eM03R1HYcUSIJfW03JBX7K+JbS87GZooxSINEvyXjKE2W5HUBH2RE6go3LIyxPokODJ7hH6+H93hM0oPIyBSHDyMs7McGO3PDUP0bWhEAdKACoVhWfnp4CAMCDBw+qNPT4V02+estsEp425PTzdkA9widccaJLci4Rmn2RYovRMujkMbcttHpLupPmzeUQ1lcK/Fl1SK2fN40GHgigshMnovhdxtY9wCHQ45zX67U6QR4T0AnBq9/p77p90iR2pXtDNKTao/RdyObnuh3/5wFh6Y4h/l0MkA4M4g+Hw+oZnTDkPML7ptvtwmAwqO4Jp5MClGYpH/q/V5bwNvDAGnOS/ON2sNa+mAYDo167wOKNOn1qIcTLEn2UxuVyCYvFAs7OzuD111+Hg4ODK/em0m/QJpV8rRQURbG1kwr/4YJET51QNi8Wi6QFYnzMpcrOuvEfKc6QG5rNUFcvNWkva3TG1oEe1euRQ6mw8k5t5+vWm7lB/T6AuPrF+EGSHx7blqE4T4zPpeVRFzH8nOqr8/JoXtS2WSwWWzb37du34eWXX4Znz57Bs2fPYDqdqvEZTZdb9HK7i9sgPH0dGz3VhvX2vUQ75eWisI9e1uqOzyT/IVZW0T7z+ChUJ9PvpWf0qj+Aq/fiSvR5bLRQn1K6tXbxjA+P/e6NHYTo9OTbFJqUZVI5u04fI+dD+iGWBi+f8Tz4eLDGbyoPSb6eJ71WnjgZm6qkc6JucCqlU63vJeQyClMYLidyBIZQeXA6pdUZ9F4buoJsNptlXQnHjZubgFyCezgcwvHxMUyn0+roLIDLNsTdIEVRVLsvtaACfWYpcQ+PoOCjdz5Y9NNL6uv0vbYSHGmisBxYCdr7OvJFAj9axkOHVmePod1UgMMDpFu7C5K2Ae74xmCZBZ4XTiZJ7zg9obzqgveJ9jtUdgpdmmyOzYP+H7PqLla/7IovqaG2Wq2q4/Ynk4l41zQeZ4iB6ZuMOk42vsdxeHh4CMPh8Mqx99a39D47i0aqm6x7PpF/O53OlnHN70Xz0EbTY35audJzLP86ZWgd0OAQ/vZ+s1qttvhif38f5vM5jMfjSod5ZG4svVrg/EXFp6EOu0LqRMmLPD4B7EUkCG+ggX8rBf9yAPVGURSVvpxOp9UR97gLCP0UXBRi3fUmoSi2J0K5/YT14yfsePnh/PwcfvWrX1X3xXK9T6/QCPk6HqCfdnFx4bbV0M/COwv39vbg+PgY7ty5A++99x589NFH5n3rCO4bxizUqasHeXCd26o3afzG8A8Pwnsn07Ec+lsb49JzSx5gG7fbbeh0Olv+N55usStIdOdGqt7YJfgkmgTP5MR146aM09TYNV9sVKc+RVFUixV/9KMfVcfPdrtd+MY3vgG/9Vu/BW+//Tbs7+/DBx98AO+++241Kct1IQJta+26IbS7N5tNNbbn8/mVa+M4tHtIvfy2C75Ee0Ly9bDeKXR4rurj7WzJZDqxqtlb/Dv8TWX+crmEs7OzahEWvu/3+5X81mJ/qGewrTR+qetHcZ89No4Vwosg864LWt9xm4Omz1Emz5e+o7ajdTKOND60OQktLuONbWljMMSjofbiOiIXn4qTsVqn8mfe4FUqYgPo9LumjQMPQ9VFrEL0BPEtxzvUplJ6HDRavlyo0nRUoYQmDGKD+buaiE2ZZPDU0RJEnU4Hut0udDqdaqcWVbr8eCKr73nf0L/rOsQhB4MeO0vpl4IrngkzKcDkEdwhxcbT8zR0DPB0Eo2SwY307sJJpXTsAlY/8J0l/B3SaS0m8PSVhdSAZi6EjBHP9yGd7UGMAZwamMqZb6g8T15YZ8lJog6q5CBb8uc6UbcNuY6mR2/h6RUhR1ZzVmn6UPCJGu5WWl4G/57LVeo48DpL+sdbrlbvXQJ3Mu/v70On04FOpwOLxQJWq5V6l7uXZtqmaIPQo/YlxDg7Fk0pTr7FZ3VtG6mcFFwHr3h1qMbjFNT2BLAnvzyyGP/32nxelGW5tUjQSxemR3ubLiSlabTfTfvIEmL1kjYWqF2Ovz3tz/PjY9fKk+viOv6g9S3alLR8ulMbj1/HCWNeruSj5ACeEDWdTrcmx6Q+4j4D3nk+HA6rE6dofWkeoYWvMfxpydIcNmJOWW2VnWNMSrYkLYOmk55rtFnvY+mmNhX9F+Jn75jz2GqSzOQyWfOLvHakVX6Ttnqq/c15J0Svp72kfD3fhPLTvuF0aTad12fX6LbGbOo4TpEzmm2JOmM6nVbXqzx58gR+/etfw/7+PvT7fdjf34fDw0PY29uDsixhNptVeXKfR/OBJFuDnmiEz6k+1Rbw17GtJBmi9SXnE6u/PH5YyF7wyMg6cQ+PrxJ6xvPCEzJCp+RpNNK0IbnggWT38P6U/OZY/Zbil2pI4Wntm5sS2wGwZadXJ2jfx5Rn6WirX5ui05tOk6PePq5rJ2p6pvadsU05lanMv4tBo3VmrraoqxTrlOWpA9/14i0T707odDpbd9PFIKfjxPPcJWIEEFXIg8EA7t69e4VmdMBHo5FqmHh4FA0BSqcHNLjhTQ8AVaAY7+7iu9IsRWCt+qJ/N8EzGjy09/v9K5M7q9WqMsatbzkkx+emGA7UKJRowhXaCFxRhatUO50OrNfrrfu4NMcMJ/br3g0o7dCo46hoCPFkqDy66xfA3s1AnR+Pc4N0eWRFU+2S4xvLeZV4Et8NBgNotVrVSlSASzlFx+dNhqcNOS9wucXzWK/X8PTpU1gsFjAej7faUVsJie9oAACfYfkemYzjGxEKEuHqYH7Mk5SejnEaEIkBXSXsrVOOsUNlK70r9tatW/DlL38Zbt26BXfv3oW/+qu/gp/+9KdwcHAAnU5H3Pmt5c/HS1leTs4fHBxs7azx5EX/156l6moecKQ7Ca5rp1UT8jEVWnvyCXopWCZ9j23a7/eh3+9Dr9eDsizh6dOn1U4G/KctAsAy8Bku+uh0OtV1JXg0PE6kpmK1WsFoNKp8D5Qn0okkSCvWcTAYwK1bt2Cz2cBkMqnqSK9Y4TKT02othPAGpptAWW7vCgrJMMnGt8astPPVA6of6JimdKMNJLW/5YsgTy2XyyqforjczUTzvri4qCbicwRgvLJgsVjA+++/v7WbUhqXHn+LjkPav1KauqenpCDULlLfhvLR/t4F0AehMk1KQ+0hT/1oH+FvDy0AzxdoIXDCf71eQ6/X27qru66eTAnue/OyJi94+/A03gB2DtTJL4Ye7dQ5LUBOYZUR4y/GIAdv0b6U4lvWtzHPU4HtL/nj3/ve9+BHP/oR/KN/9I/gq1/9KgAA3Lp1C770pS/BxcUF/PSnP92yKwCu+uFUF1I5QoGn5eFd9/T75XK5daoDpfu6YucauBxHu5Ke9oD2G9qL1k5WKf9coGNF2m3s9XMpnZIP7okvUhp4/hzIq3WBfBqKI9D00jsuc+rIoJyxJMRN8ukkcPqa5Hsef6c2Ob3OC9PweBO1Rzmdudo4Nb4ak2dqzIJDnYxNZeS6BEmMJCkj67tQWk/5XsUuBZTq5p8TvDzNoJXeeYMEsQLKc9xhrsHinXyIQcw3VoDGyof3FwYLBoNBFRxAodftdmG1WlX3WQFs71iwgtcpxpGXL6Sx3G63Kwew2+1WF9iHeNAS1qE+1ng/pLTwGymdZxxrzgf/zVfo83Q8KG7lxfPhQepdGBKSfNDkDm9bHlCzJg0430jjnuevBYP5u1j5nCITOM1SP9XtL4/8kQJ9njFF2+6mgbcr/Z/+rY07aijSo1k/TdCCXdTRBYAtR5eOSc9xhppNyINoMeNNSi/1d4ohHrJtNDnh0SVeGiSaNMdVS4tHlfX7/WqhE8ob5G1ehxh66C5Diw+8MpXLE4snNJnmrQftszo+Qkq665KXKWPMm64oiuoY2tPTU9fiBy5/i6Ko7Fl05Kl+x/9TJiNwsvX8/By63S70er2tHY9SntheVO7hJB7yvzTRQsv2+KSegJRVN+sdrQMdU5Id77ExY8Yat7kXi0UVNLUCiiF5K5VBf2snrWBa5DF8b8lt2lZ14eVX/Id3DWoBWFp3rPNkMoH9/X0AuDx+fzgciosYUm3VHLDyo3aH5BNZPozWj7n9+5Ct7GmnmAUmdfUTlWE8OLrZbCobYbFYVJO0lvzWyvHSY+VnfePpe8nPD/lRHn5sUmd7ZL1kc1r18tq9Ht5KsZGkvtLGsqccq+80PyDUXxqNFn0xwDFHv1+tVtUuWfQnW60WDIfDakEUfifpZxzD3C6S2o3bLaH0WpvwtkgZy6H8vTQhD1kLdDSeiI1veOrhyc87xrTn3J5J9VmQlpw+ieWDW88A7PHE2zS3DVIHVvvdJDopLLkb8602bjWelPRnSF57/Zq6kHg+ld9y2Qe1dsbmYD7J4ZZAHRVevoVcA0NyYCldqXnuEp628wj7uoFpnDhE8KPONLq8uGnCMBXUmOt0OnDnzp3KeVqtVrBYLKDX60Gv14MHDx7AaDQCgMu2oscHajwaY8gjeABKctysvhwMBnD79u3qNz/WLkQf5h/iB/7esxPIk49FV2w+AHBlcgNhGTohg9ha5diUUxmCJbtRrlL5GlqwwXnMuxLQ4/SFxkAKL8XoKo8jSdOGeFRqe248flpkZip/a9+tVisYj8db6a5rDO0SVIdMJpPKCUbQHUOx44EHBurIU423AXynFFiwAiD4fheoy284MYsnk6AOT90JtV6vYTqdVouq8LoEgO1J1VjnyTMRk9oW0o4wL+/VCYBIeVloMvCbE3QstFotODk5gU6nAw8fPlSPKuaTAtim9KQdnCzFBQQI7RQUC5i20+nAfD6HDz/8EAaDAQwGA1gsFtDtdtX8UN7hmJnNZlCWV3cR3BS96QmyoQzDE42oLY8LjuhEeN26Uflyfn5e7TRFhNoyhgZtgoIuQsH+pHyHE8RNgPO+Na7p8fhFUWxNxoYmrfD47EePHlV3Fe7v78OdO3fg6dOnMJ1OXXbLTZA7mv7OGYhLBQ880uC4ZkNLk1C9Xg8Gg0HwnlY+EREDWibKYxoTQLl2eHgIh4eH1Ukwp6enrrtjc/UDrVuoj6Wg8i70adM8l9K/dSeTYr7PoQu0CYGYtrX83Jw+bAx9Gh+iTqF3d0q+UlEUsL+/vyVb0EanO9apLUPtJ7RTeKykKIpqYQU94YnT4NH1VC9dt46gE7GSH8bbuQl72opjUX6wJo219qbf8HuCEdjXUgxI0p0ckt6SbFvrW9q+lA5qb10H3+Ts7xj/8CYh5DN7+dHbb5wntDIxTYot4/1G0zNNI0dZ6mRsTPDfE5yyDCyLWWjnhRQGzydnZ3A6PQxS19CIgWfAad+kBLw4f0j8IgW/tDaz+E0KgnoMiJyI7Z/U/uTGJT3yggY9KbR2jaGBKk2p/6Rxao1Lnkco0ILHJsUYBlrZtD4e8HFt5Su1j0c+UR6mx/hZ4wjztGhJGbvXYTxwg5mv1gSAK7smJGh95e1vqa8s48Sj3DUnkabngTkrPwuUH3CcWPX2OKnUgE+hrQmHR4Jm9IVoteiT5Bq2w2w2+1TuiI3FfD6v5BadnJR4i0+0xBwRy8cLfybZAZ58JJmhfYeBSJRFfCI2hF06AADPgyk4kfX222/D5z73OfjmN78JFxcX8OjRoyoYn4KQ7W+923VbcBpy2/91aEmxRXJAs82QJhyvqY4yzbOpoIvHv/R+n8oX3m/opD/v97p60uOT04V4kh/lsRclGxT/D9lAkgyX0qYGWGi+vJ7cNqfPJf+Gg7evZ9Gnl+5YX8x6p/kIMfTGtD+mD9Hm+d6CR1fz8RTyUVNolOrIYw6UhzW/TcsLQXfae2DZNdJzKx5m6QVqX1u7/1NglUvThHxe3hdNy/Um4LVjtZgMynraRyH71gOJt2L0hMfP5eM8h78ZEw9IKdNaPBTS9bjbvygKuH//PgAAjMdj2Gw28Nprr4n04XUN2mkgtA6aj1WWlyc74eRur9eD/f19WC6XW4suvDIj5mSSphATh/F+a+UX0sd0fGp85ZG99G9t/IW+5c+kCTKL9z3lxMpMyW711IOn9fRvTr6UYn8pNGh2uxQTbAqW7xCyYTT9Q/OS5B9fjCC1oVa2lL9UF6k+9HmoXZvgdy94vuJkbKhxLMMnVtiFGtLa8SQZcTmdJ83QTxUKmjKtK0A8hpMnjZW/t89D+cYytlYXafDHIsZx9QqwnKC7JsuyrHahSEKvLh3ccOSCkwaltYCABk+Ahk58hIwbT35e2lIDJjFlINCYp0fU1B0vtD80+YTteV33gvCxggsLeB/jbgANoUADN4yl73PC0l2e8jWjwvpecnAtg0hKJxn+sTLkOpwxvCtG00WSPUDfSeklYxHbYj6fb6WzcJ3OaZPAdqBtaR1/jzKN7vTh762ypN9SIIRCswdS+BnrKt1PJOkiWiYNVOwqyIf0zWYzGA6H8A/+wT+AL33pS/D//X//H3znO9+BH/zgB9WJGbGg9YitE5dVnjEk5REDzgdIw676wqLrJoD3J//n+Z7iutv1JoLbyKnOfsjHkfxGyuupPMePNaTlSvlrfrEVP4j1PSmkNrBsQp4PleccKPPpYsHruEeVQ9IxFNSuDi1i5W0m2Ygp+iuW32JtNenUIM2+rQut/p6xpdVL+gbveee7ny25wOnR+kuLLWGbaYtekd+p/ZMTWttyu16qD5cv2jcxffAiA/156kvjM2tsecZ3bJtpvBaDOnLW0j1SPESK34XaReM/Xi7nS/wOZdivfvUrePfddwHgcrf6rVu3rshtXKih7XrFvOmR7hrwmpnBYACdTgf6/T6MRqNqMpa2B5ezoZgFb5cQco3BEH/SHZp14bVrpDTcDtR2D6be26rFNSRIY9TzXQy0Ng+V/WmGpot5HK4pO1Maw1LZEg2Sve+hE/nAG+NuSi54xi6m89LRVF+Jk7FahSzhFiP4LAESE/S0yktpLMlo0crXgo2cRv4sZCjEwttunIbYwJqUl8ULHnj5QEsnOWV1ypbeWenqDkgrKEDvzLlz5w4MBoPKOMPjRzabDYzHY5hOp5VhxQ1zL0J8zIMemuPD+Rz/73Q6cHh4CO12G+bz+ZbTF9M2XkdVokEDN55DeWqODqVPo5f+ppPPljNtKQkrIKGVvWt4xzQGCbQ21PRRjB7w9LHE0zH8WEf3SBNdUn15Gfyoa42uorg8fpbubozd/dk0H1F+5Tu36PvQ9x7E2Bt10rxoKMuyClzzYxw1uWLZBHQxjzSOJcQEd3ha7oxrMpLnMRgMqvR4FYC2g0WzvZpyqrxAOXp4eAhvv/02nJ2dwSeffALD4bA6stWj7ySZhkdiXlxcwGazgfl8Xu2c5t/E5AuwLWc1+yIEavugzLDy8vJeHdykQITVntj++D507FSr1YLlcgllWcJkMoFer1ftwMBrSCz/RBqT6/W6OiUF00gThCFodZzP55X9rNmHVNegvXp6egrL5fLKEb8azyLowjutLA2hdzGBEQqUjYvFAvb39+Gll16CxWIBy+USzs/PYT6fby18ksDvoPRCOqaRPg/J0lh5INkMeD/fTRmTFJwu6bc1Ls/OzuDnP/85zGazanFjt9u9cnS45I9of3uQIuNieJ/HXTQakI5ccRUNmt9lyVa0Kfb39+Ho6Kjy88/Ozqo7W7WyaB4WTfRvS/bis8ViAaPRqJqw2d/fh16vB5PJROSRugjZcNTf5e3B2zuUl6brX3SbXhqnCJTbNIYEoE9O5bRNaLwi5pvYtJb9LskxXscYvqkbO+InVWD/YPxuvV7D+++/Xy2kwatfULdSHwz7k48L/G69Xm/Jefqbt12v14PDw8NqzE0mE1iv11t2Vu7xr+WTyn8x/qCWxiNPrZia57lWjqRnJXuS/82PAuY00LpJfnCIVz00cLstJ67bf7YQo0MoNP9H4i1eVhMI2Sk8LecN6XvpuWbHhXQz59PYcRoqj5fhtRmpPsndP8E7Yy3Fh7AGuOd7SwBYeUkGp9dYtWjzwBPM8hoAdZEjSOH5rg4DaoPXcjw9+XFFUxcSDTHGSGpwBd+j4EMjqt1uw61bt6og8Xq93jpeZDabwfn5efU7FETJCc3wkN7jZOxqtap2wXrv9EPjVQr+hOqp8V0ojUdZeca/JQNCzjenV6I7JhjHaWna4fTIfgrarlTpo1GpGTRS3l7+9+gdi/4c/Of5hr6z+DVk9JVlWe1Mxt/aHX8WDZYRmQtFsX1UIAaMNBq9feEdBx55/WmCpPe89wfy8aql4ZMSoW8kukI8KsnLkJxAGdPr9SoaZ7NZ8IjfXTpQHlAnfX9/H1577TX42c9+tnVU2Ww2UydFLGAwabPZwGQyqe6dWywWYtDLQyv9Xyov1YamO0Sacp68eJHkBA2yhPylVqtV2XF4ikC73YZ2ux28d5D2Bx2LdLGhlh7TprQr5s13EUryCOXVYrGA9XpdBURxHHDaJP7ii6Q4NJ7kQYJQX8TYIdhvq9UKOp0O3L59u1pUMZlMYDqdqvRy+zd2vGvBw5T+pHxj2ZSa3c2vy5C+9Zavfe+hkb+nbRx7R/FoNIKLi4uKv9HW0yYxcWeVRiPnvRQ5GtuvUt09dsIufBpKX8x79GFR9gyHw+rddDp1XdESQxvXx1qgcrlcwmQyqdq63+9Dt9uF6XSaNV5G8+B6X4oBWWPKuwjkputdTRZK6aQ4p/QN3dFPge2Ku7B31TYhu1vyI2PkizbWuF3v/Ta3jUhtCer/0HcPHjyodBHKanrXLOpr/IYuXMI8pTtp6TdcfuIpe/h+NptV/rUEvgNXkzOpbaQhJlaixW1jy9TSSmPQQwc+s/wc3p68fElG8v6V6o/5aZPyvByMD/G68PpJdiClw2PXau/qQLNhUvJvWk5640u79ls1HqQ0Se9i3of4w5vGKjPGVo2RQVzmpdjDEm8FJ2NzwhIYHHRnoJVfHYQMGkzjwU03/OoiNShW5xutTdHYDA2gmDJvav+hoaQFLtGAo+lj8racNTRk+XjQDGCrDdfrtejg4U4FekQY57XU4E9deJ0l+t5q/9B9G7yuqfC00a7bUTNQrXbDMczvHuBp6P8x0PQOpceSQSlBGSmNxPda2TydRh+9f1lLg7uaQkf6xIyD3CjLciuA7gnKUXjoxTaiK493bQDfFND2wpXVyJ+hY865IR3SCdTGkwJIKXR7xmRRFFs7+LCem80G+v1+VLl1jPKUMjiwzTqdDiwWC/jrv/5r2Gw28M/+2T8z80vd2RYDjwPnaTPJ8Q9924ScymF/7NqGkRArQz9Ds8B+wPHoWShhBUt4ej7WOp1OlrFv2bH43mu7h3SFhxZNLoRsNf5drt0eHjtNeh9qK22ClvIRlfGWDYu6ndo9sb5zXUi+ZchuwLq1Wi0YDofQ6/VgPp9Xiwx2AY1Wy6/odrswHo/hgw8+gJdeegkODg5gb28PWq0WPHv2DNbrNfR6PQCArUWSIRo8NjzuCMfxXxSXO+7Oz8+rNkTaMSCv7ejPqce0duR8zn29WNuBlyf9vm7dnAJPTNVaFGTpDm/5yE/oJ3DeleSKFeSuK3+a6MfQSSEA8kISDmyrbrcLAM/HGq0zLnSkvhH6wjzmp4G242q1gtPTU2i329Dr9aDb7UK3273i66K/x+uTamtf93jKqcukeKlk32hth+2ag57UCaCYvK14G/07lE5qh6aQM29vXp8Wv7AJaNeMeo4R9x41rrVdbJtqMWgJEn/HQMp3S6JrgyXGmAkR4DEcOC08yEe/9cCij+dH/3nzCgnhXUJyRK+LFgke5pae5xLkluMUMrAQUtA5B7Q+Wq1WW/e4cuS8b0BKExI8UhtK41Rykler1dbz0MSvx1j38nyMQPU6CSHZ6aEhpo1DAZ/rGPexipH3c8x4ih17ocCJ18HPDa+hjoYMwNUxRtsxtLMI05Tl1ZXDPIgqlUX/bwK8LrizzyuzrN9WeZLM2UV9byJ4cNQav5ocswJomD9Nk+JkWr8lOpHn2+321nFu+B7/efVqioyNsRtCdQJ4vnL9wYMH8PTp062dNlaANlZn8H72OEseW1qSwzE2OP2GBvVC38QgZFdY72NkyC7ljNTOmvyzvpECsLE0cN9L8/skmrR0scgZvJPy20VASoIly1HWcf1KadfaxeMbpPiknrysvuJ0aTweksO5+CHWT4zx2zUavfI5lI9GW27EtDXVe91uF/r9fiV/pB1euWmObSdK73K5hOl0CoeHhwBwuTii1+tBWT5feCr5m15+53RKsQOUAbgQrdfrVRPcWLa0MzlUngYP/3v6TJNPEjx25U2Ji4VQV29Q/qPPYmIpVrwB+QXzp1cweU7Z0Hheq4eH3qbHfEhvUPCFrEVRbJ3OgWOflkXrQH3hsiy3rknQeIPbHfP5vFqIod0FjeXmXKgZo8skemLGfB3E5B0b4/J+p8nYkO2lpeFpJR7mzzTf6UWPfzTpM8RA4hOPLNmlrrJsyhBNMf5jiLdSbELpWxoXiIVEI9czMflqckJcXuMJ/uDfTTBIU4PGAiogjxJq4pz0WOxaMFLDNvaeTwqpfesEqDTjy6O86mDXRvxms4Hz8/OtAGudABiALlC9x+dq+eHfOKb29/e3jHJ6ZEas8dMk38cKVIB69NAdn5aTHSpDWv3OjXt8dl0GFe5spKuvEXhfEg/Ehla4hwyGOqB3lebkPcmBldJo8ssywHGMUUiLGzAfPP6I7rzndW1Kx2vACTJ65+Cu9S0NDLyI8Aa+vPXLyQPSxIQESy6mBLVD5aH86fV6MBwO4fj4GE5PT+H09DRY/xRnKSdvId24mn48HsO7774L5+fnW3fRoU6IobPb7VY2H22H9XoN4/EYRqORqx8RXF5JbVeH1/BbOhHxogRcm4DHyZeCgPQ97z8pePPo0aPgSmbsb54f7sbAO2cleyaXDuDHE1O68D21nfBvqjP5CSfUd+RjLHTXrScw0ST/4i6b4XAI3W4Xnj59Cufn51t3DyJCASSJd2JgraKXgvUe21gLDGE+deiN0aGxOqvb7Vb1Xi6XMJvNrlwZ4Kk72lEaP96EWEYIdEzhWNN2hmFaOkZjFlWl8kHKGEX/3ZocQWA9+H2BWrn0OU72npycwHK5hHv37kFRXO6QRXlI78NGpEzIaG34otjSWnA1hv5d+w64W1LiIR4fk+wtOlmvTQbFAK/74HeY5moXS/55y6gblOfxFU1nc1lLTyvgNi8uIpH0GrVLUK5Tm8WzU5YCx3u/39+SA9qpHKE2195JqGvfxE5+aPJIszdCtGEa7Ef0jTw0YN+mtLOWJx27oe80m0ma1/HI/06nI8YaJTp3jeuO4bzoulBCrjaNiUN4YjjSuMlBqxSX4H6xFquKlWtBCS4R4ylEawSp0SShYtGhlRNqjBhB5zFycwbncwSgYt950nocXkwn/U3zlYI72jex8AZdY43q0N+efL19rAXCcGcY3e1CHU4PDRZCxk1dIUONT1pHzeFJkQOeNKnjPtR/oWAb/1vjVWqISwEnqb28/eYdx6ngjopFBz7jPOEdwxQenolBKNgnKfsUoyJkEHtkpBaY8wYrNceA560hJiho9a3WFt1utzqyDWD7WNu6/azRxml6EQ3nOnoAEdJ3kvOmjY1YemKcGK8DKkG6MxCDWniUF58IoHnGyuMmQHUG0odXAtCJWBznsYu3eN5YJpZDg0seOUDz5eXEwup7r66uax/XRao9yu2C1IAYbUPLNpNood/hpE+323XZ37QcSjuOP+k+11B9vLpBO2XG4iVuu/LvNIfcst+8oGM8lA/XW5rsxjzxjl7cMUPlodYesWOO14PzjpUnr1NIDmsymX6XS043aRvQOwRjZDblQ1p3KR3/zeXLdegy/luSE5Q+1Gmr1erKKReYzovrsPUk/R2Cp2+oXU95Ce1qOiYsHyAW12kvS32uyRuP35zDjs4Nzd8LxS00e5rnZ/nuHto8/Bzyfb1lWXrIsvO0tkqJ/XjosdLSRV8ajZI+lmScxOe8bvgd6hRcHI931S4WC5FeqXwvPOPJI8+s31ZeEi96/AMtDY+vaH6uNeZi4itaXhI9FkI2ljT2tfbgMrZO2U3Ba2N65FEOXRjjc9wE1BmvWlqv78D5y1u+JPeaauOU+AMF/9a9nKaOktZWWEjPtQvmvYLJA0679wz+m4DUoJX3Wy3gAxC3moEjZpVlKCgSSufNz4NdOqToVOJ9duhEjUYjAGjmLiPv+5ATo/EJOsxa/yOP5V6xXaffcsoaCaG7Y2PKjXHidwEua/iuG358Ef2GQ+ILmldRPN8Rhvef5oA3OEKPGIoZHzn7ixvR9Jgoaox6xhPdDUyf8UB07PhIre+rr74KX/ziFwHgko/+9m//Fp4+fQqDwQCKosh2N5gW8HuRETJCYwIHofc0CMP5JIUGHjyXQGWox75BWYL5t9vt6n5Y3BnC69put2Fvb68K9HKZcBPkrodnO50ODAYDWC6XVT3r2kR4dQIGeAG2JwLo7ybRpLPVJHLQje27qzsSY0D1Px17VtqyLKHX68Hx8XG1GxCf0/+tfOrKb+7jYJ7S0ac3ATRQGwoM4P/IL+12G6bTKbz//vtwdHQER0dHsFgsgrt5Y+nDHTfUDqH3v1P6U9uY9psUvAbYngy+yUAa2+027O/vw2azgclkEvyG74yjutlj/2F7aXfSNgVKJ90NTH0FKT6DJ6jgLjHO503fiR4L2g+x9zaj78THpjb5gv/j8/V6DU+ePIFutwtvvfUWXFxcwL1796419pUyuSPFgPiY5rpVaiP6m8tOiZamYwJ1QXkLZW6r1VL1VsxkkNQ2vE1Rz2Osh8oi6pNi39QJYtO0uX3pEB9wvvK2oXRqCLfb0JbGu525PyXli2noSVIa3Ug72lUAl5OxvV4PDg8PYb1ew+npaUUXyhxJn2p9aI0xC9oYbRLIl/wIaYsu3u7ayQY01qXlS2NgWnn0mQSPrxyCp+25XexdgEvz/wxh8L68if7tddvPlO+uI2ZHbVVOlzRuvfRdscIkB0b62/omBE3paUonpBQleOiOgZVHTKM3NbBCwlsy0EN18gZSPUGSupCMcKn8WH6Joc0y+K18tfbhz+kkEP1HnVWp7+q2r0SHJx0HF0btdrsyUtBZoP/T+lgCNrZ+HiM6pl70m1hZYhlzGg0eR1LK4yZCcl64DAo5D7ye0thApBgvOeSX5ARZ4yhW7khtYTlqUjp+R00of824SEGojalj1O124fDwEI6Pj6HX68F4PIbpdFo5iVxWhGjzOoQWPI7nTUJKXa128gZmQjaih/dTx0YI2hil/IQLorRAnSWPr4sf0PFHB2E6ncK7774Ls9kMRqMRjMfjKl0qjVhvujtdS0N/pwRhPN945B7P1yq/KeSwO3PQoNlUls3FA0/Se66nNX3s5Ts+Hr3fNAGvDS/Z5aFvJd0aCqxJPq01DjV/gfcrTnxJC6E1urRyNdvDK3s02i0e5PC0If+ujo0Q4wt786HPPJPj0ni2IMkCSTc2rdM8sQj0GWlbhOzgoii27kBO8QssSPZnTFsVxeUimsViUelvfC4t1rX8P0t3Il10B/ytW7dcC+ub6ntJR6fYAallSuXF8IcmK5Avcy+at2xNmkabVNJ4M8Szmi7Q0kq0h9rUakst7xBSbE7+ntstHvq8/j9Na/lT2jeeunj7CWWQVL6kf+u2rfaNVxZ52jT0nMcPNNkQqktIVll6VSo7ti/pOw8tFv+E8tee83w9duKLgF3RHbJfvbGHFxEx+o1/o33H85D8LM+3Xmh2oKcc/m5rMtbDgCmKkTMX3YGD+Wnn79c5PiU3017nIIgRDh6jQHLOaXopaJ+Dtth8Yts8ReHElpXTYeB5dbtdNW2d+2FpGbxcT9qUcT8cDqvJWH4ECh677EEdRzpGpsU4UTn7vakycueTUi4tm68kqrPTHsfJfD5PJ5Aghcd3GayQnAZ6lx2+s3iYHvub467pnHzV7XZhs9nAeDyGk5MT+If/8B8CwGU9P/zwQ/joo4+q+tIFHinIHZiz8m6yrF1BM5bLstwKFFv94Q1WcpmRithgTrvd3tqBFBtQkyYKdoXNZgPz+RyKooDBYAAPHjyA//gf/2NFT+wuHArkXzzGDFfg4x1W+F4LTGIeIbssJZht2bDeIMWLDI/Osups6RlpB5bkIGNa5K+cJ1RcFzzBJGwr1MP4Pz1mGdssFKiOmRiwAnU5dY1mc6DMp+MfIbUbvRczhTZsV/ob86ftmyp/vUHm6wSVv3VplWQy9fevAx55gTyEx2oChGXbYDDY0o03rY/H4zEsFouqTviPnzoh3VFNYQXa6TicTCawt7cH77zzDnS7Xfj5z39+Ja001mjZu0RItkjjnqcNTYTwOtfhk263C51OB2az2c7vYi5LeZee5TOG8tP0PdVTXGdROcLL8dh4sXag9H1OxPoRGrTJBSkNynprxybmVbe+4/EYxuOxeI8tp02yF5EOShN/XxeetotByoSM9Y2WD7/nV6Jfq5Pm33j4J6YMC9zWorJSkw/47qbp2s9wMxDSKU2Wuyue5LJCqp9UX3UytglHn0MLmHiDN6H8Q6BCBjvLUkZa2Vb+IeRQ8DG0aAEsK+Aq5RMqx5vGE4Dw5mfloQWeLCXnUbyhoImVr8bjPNCjpaXpY9vdk9ZrtGjOETUmPc6Jx7ny5KHRZ6UJOX4WLbz9pYBHiKbY91o6zluewEUdeGRQiMbQd9RxRtB737z5WTR5+pnTEJKfXki8F+KhkDzQ3gFs3zcdcvh4nho/pThh6LwXxeWxdHRyvtVqwXA4hOFwCL/61a9gs9lAp9PZ2u0Qi1hZH8pHgoePrhOarqDPY3QxTct5j9tX2njVxlqKbAnRSidLVqsVLJfLKviJvLhareD8/Bxms9kVGqksatqBSEVZPj/qTDoeDWHZSvgPg2t4X70VeJFkg9eOl+zvptrX4xyljNsm+UEaV01Dcio12urUnfIYPUobj7eV+I7KFG08SvarZddimfQd3ZGnXb8xGAyg3+/D3t4ezGYzmM1m1f2VWKbWhk30Y8xY32w2sFqtYDweV8e+oszwBP68PNLpdKqFYGVZVjsCY3wMzUf3+OwW7fjsJulq5Ht6rHNonNGJFo0H+AQfwit3JVve24cecNtgMBhc2eHKcXBwAIPBAF5++WXodrvw9OlTmM/nMBqNai9gDvFFSt3xG6QNbY9erwftdrsaG9wfjuVRze9qtVpwfHwMX/nKV+Dp06fw9OnTaiIRTwW5qbYNRUhn03Fu+ejUbknxYxAoS7E/sR0pD6b69V7wsS35lrG+juX7STYbpQEXOUryxbI/Pf6t1P88VsB5gKfX6hyCN3ZhvbNiMxYvajZEqpyQytDojtHXPJ3V/nV9cg0aj2i/JVixGPwebUFLBkn00HdSeSFIfW/lY8nEkK+ojTspvcaDMe1g5Z+CUF/E8GDK+IqJGcS0z01DiH+leJHWNpau0OJOlszh+kFL57EDqJ7jslzSmSG7Sr0sogmDLEZZpDBjqIGl9NI9eTF5NIWmBp7F8BSeID1HXZo9jk8dI0gqL+bbnLzgCSCEJjAtY25XoDTgMWcIzSmQvpW+4e9ywmrnJmST5NRoyDGOaD675A/LwUJ4Vw1bedHgVN1x6WknzRiwjFeAsMyIcfyswIFEp5Y3TnzyPL10hZyoGKOz0+lAURQwGo2u8MXx8TG8/vrr8JOf/AQAAPr9fnW/VZ0+lwy0FyH4lANWX1NeiG0Pie/4OMV3vL1T5BNdjBHKA9+hwzwcDgEAYLFYwHw+h9VqBYPBYGtS6OHDh+I9hNSYv+k8g3fP06C+t61xwhrbGQPE1j0p2Da4MyMmEM6DA1bAzYuQDLvp/UfBHVcrcJKzTIDtID7CE5CheVhlYJrFYgHtdht6vV61y4cfnRvSe6ntIY1zHP84GUT1fVleBtnb7TYcHh7C7du34Y033oBPPvkEHj58CBcXF7BcLquxUJe+mHp4bDCafrFYwHQ6hbIsodvtXpl4lr7x2rKIwWAAe3t7VRs+fvy4krvYlpgflyeSfRZro0vt30Sf5JIrq9UK2u121S44qaHZztgn2F6cV/EZ6gM84UDLS6ub51nMe5qG2wZFUcDR0RH0+/1q8dTZ2dkV+m7fvg0vv/wy/O7v/i4cHR3BD37wA3j48CH84Ac/qLUr20t/an54NDjqzL29vapv6JjIVR7F3bt34ZVXXoG/+Zu/gYcPH0K/34dut1uVqwUxm0RTsjFkJ0oyJoUWPOkLbUlckKP1oyYr6rSzl29i6hfaTctlDYJei4N8TmW7ZUt65ShP7/Xhb4LMD7VpSOZLyF0v7md5yq8zlnLqZJqH5Fsg/8XWUcqP65miyHdceQjIR1pMx6qbZFt7bT+pLImuz/D3G5bdmCLzpXxidUUsvVp+krzT8gmNLXUyNoZQaeBLzpC2csQb+NXKp8/RibbAjX/8u67gyCV4QspMai/NqJPqan3HvwnRGHrGywo5elzQc7qsARvjoHuDSdo7r6LxCpdYQzGG10LjUwtyaGNZy1vqG+rc0fwsIcbzblqhe4J7miDH39qx3qGgssTjHucRv7VkXZPtFisbEKnHf6JjxwOjsfA4a1qfa7or1F/Su5C88chKnl7iTap3ceW2FPSi/1tyUpIVVp1DfUR3PQyHQ/jiF78IR0dHsLe3V028IhaLBaxWq2p3R4oTVQe7LCsEq1/4cyvgI+2QwXf0uDOpPI8ul+S+ty4eoxnp4AGjkOGNd8Ni/aWjAfEfzYsHnnLyRA4bFOvT7/dN21mSIfQdPVorVg7xa0hibaBQuZxe+m2Mc2aV4XXcbhpCciEkz73t59VzKWlS7ftY5Az8pZQjySrNH7P8Ivo/TYO6P1dQEOWidDqFpX/owoG7d+9Cr9eDs7Mz8ZoSy5aiMpfni+nr9mkOXtDsPMvnovXyyL/QuA59y9tOopO2Z90xHfrG0+5lWVYLHIbDIZTl5UKCt956C77yla/A0dGRmD9OMl43NL5AO0SyyTnQzompD027XC7h0aNHcPv2bXj99dfhnXfegaIo4OOPP4Znz55Bp9OBbrd75R7JXSMUX/LYBlIeMXYzt/VC32C62WxW2ZJF8Xw3unYnd4hGC9K4pzZYCiybSJNbPB1OCNMYBZU7MeV6bXqaj+W7p/J0yBaOzbeOjYn8GWtja9BshBj7UYOWh9VH3ryl/Kx0UptLvFGHRxCod/AfLszQTqXQ6q/pZi0N/vb2leV3chsAxy8/WU2SN5YsiuH5ujLSi5tgI1i46fRxhMYz5S2A8OYtLX/Kv/xvCdrYsMYA/z6Ub4reuTIZG9MIMSjLUgzuac5KKjwGLU8f05G5UcfoDKWxhG8MPdbzFLpCShjTeJRJbH/lcrZTjN06ZddxdFPpqNtW+D1dqRlybGINMg8vh+oR006aEKdlWYERKzCnjQP+rq7BWAcpZVrGnpUvNWRxzNH7D2NoqcNXFv0h/pMCW7T/LKcgFESV+EySS/iMr7LF7617P6X6pcgiDXRyfTgcwm/91m9Vxxl2u92tsnA3B223FCfYg5x1zIVcQQSvA03vEbKONbTKknhY4rGYoK9Vntf2oztQAKAKlOECAHSauT2ptQelJxWp33KHptVqbe1ySYE36CsFg6jOsuSu5WRrARutbGvXplZGLOrYIrlBdWNMevqbguseqndD+ebyDbztW1c2U77O5XNivpYd580jlIY/CwXmPMihR7UxSu21W7duweHhIfziF7+A6XQaRQe3XSQZTHdiSQjZcjn0vmXzUVj2fmxf8PEbqgedjKWyQYuf5Bp7FkJtVZZltWO41+tVE4ZvvvkmfO1rX4Pz83MYj8db4xB9BmuHYm76Y9KijsbFYZ586tgey+USnjx5Ant7e3B4eAi/8Ru/AcfHx3B+fg7379+Hw8PDyia/Dv9SgzSWvLafxU/ePtPGhOSzYT/u7e1VC4jr8p8nFkbTSbHMWPvFwwNWjITvAkKZw9tBoy9HLJbK05jxyWnyxGRTxj+lUaJbA/fzNf7wjAWrPil9IPlLVplSjMvTlpY9G/MtlhereyWfmsZUcDEGwPNTEGLs9tjxF+orSW7Sbzztb9kNvL+b1B+e8Wh9Q3+n0JlqK15HmTcFvM70fnNuz8eO/xifKzRmPLFinrc2nrx6G0DZGSsJi5xOiidN00z3IjN1LGKYMgVSYDw2UMQDijz/WEXN87d+W8hhEFr0eIylOoh1qrwCnxtq0g4i7z2xUkAX80lFarvGGtTaEVi8j1OMKm/6TyOQH/CoTBrQ22w2sFgsRP7SnBANNFhIy9UWEFBe9TplmrMVolNaRRwTqJGcKe4cW+BtkxvYhrxOw+EQXnrpJej1etDr9eD27dvw2muvVXeB0e/rlv9ptAPq1gnHG8p0bZxpEw8e2iR5l5qXBMrvdByt12uYz+fqJDHylzWJvAvZW9fZQ8ef33OpOd8a6PGhqcEZCk6DtLAmpZ3rjOVPuy71gLc51XPaMYWWrc/TWsdk077DY8OpjqVXptSdJNDykejibcCDhhhIODs7gzt37sDnPve5KsAwn89hMplUi8donWLs45zQxi+1ryS5TnnCWrgVY3PhLka8l9sbCOTg/oMlB7z2WhOIDfIWRQHL5RIuLi6u3B+r2Y7c/5bst+l0Wh2Ju1qtRHuK9i/neY3WnMAjXgEuj3w9PDyEz33uczCdTrfopWi32/B7v/d7cHBwAF//+tfho48+gm63Cw8fPoQPP/xwa1Ls0yzvJT6jxw7PZjN49913YTQaQVmW8NJLL8GdO3fgtddeg9FoBGdnZzCbzW60XcxlhTfWxHWbJONC/EzLQllIj5um6Siv8lNX6sIz7nLwObfNvfFZWk8eI4mxIamujA1uU1pSJ2JwcSP/Nlc8SQvaa7TF9kNdNBGPlGIolp0ZC6vdKHDM1hlHlLdWqxUURbG16YwDT3ijC4FDqGvzeqGNLT5+Wq0WDAaD6tlms9mSdZLtn6NfNZqbinHfNLyINMcAr7SiqKMvY/2AVL7QZLHlb0jvtiZjpSCIZPiEiLLehwimFYtpmJBjLT2/qcxtGQq5DCxrIiP0TMsT4TWOJXAe5IEC+s5LS+w3oXdeA9CiR8rPw8MpkBwWKzDraSs6PrmDi0EAbnBpCAXzJLnTRGAl9C2lQwpacbpi+1MyLG6qjIoFDepobaR9Q1dP4T967ymH5kDSZ/S3J9DEaU41EGLlYmz/S3X1yEBp/En9FVN+CHyMY2Cj3W7D8fFxtZq83+/DwcEBnJ+fq8G4GMTKOk+66wY3CDW+tXQZzaPdblcTCNK3NNAbw6M5bLPYvuBtoN2Xp43rphxJCzkCElLg2WOD8zwkemibaLwWgxi9kFpGrjw0p82jR0J57BqajsPfdPxrNGs2LbcP6TOuk/D9er2ujiKliyhi+DYVks2pBT9pkBgnL46OjmA8HsNkMqkCC1bwkdZL0rPSmPMGnySZJY1XTMcXpGn01NGHVLYOBoOtu2o9i75CYyjWvuF5pugVzicazd68aZ4Y5JT8N5rWKouPQ9R93W4XAODKcbQ0jxA/as9iYMnSorg84nUwGMCdO3dgMplAv9/fWpyBaLVa8NZbb8Err7wCBwcHcPv2bfj+978PRVHAhx9+WKXhY7Ap+r1I+TaGp7jcWa1W8PTpUyiKAg4ODmBvbw/29vbg4OAAjo6O4PT0FBaLBfR6PZfOiq2/Z6x4UFcX5LIv6diiOovKdLxaRbuLW5PTfBzTfpTkTmzsgY95KY86tq/md4booemonK7jh9LvrfGjtWGKXy3pGEzvbRNPfhp9Fm1Svlba2PaX8gvpqlSk5oH9EHOnuNUOND+pjwGe6yC64Ih+nwN1bBr+vYZut1vF5dbrNSwWi+AY0eSaBa9+8coUKW0qL3ry1pAynj6NoDJZarvYO7MpYvReiMaYtBYNFq+Jk7EWUo1Hq2FiBqeFXa80lpBqnIe+SREYIeVaF5pRUFfIaEZQjvw0aAGRFKPpJsA6w3/XsHZFNI1QfaXjXjxGJF0kAADV0UShMUfzkuQVf2atsrtpwKAedRw1GcF3UuP/kuPiletSP2nvJZqk3zHfcCOY0k2PCg45gSF4v/eO9+sYn4PBoDpKdbPZwNHREfR6Pfjggw9gs9nAb/zGb8D7778PP/7xj6sAkRSEy4FdysQcAcCUMnngwKKh3W5XRyzhLnSen6dMjtz1rtNv0kkOWp5FUVSTKzfZgUp1Wmk70N0eZVlG6R+pDW9ye6Uilo9zT2JwOWiN6euQN58hDTzYiv1K7+WS7nKmfYy7/6SdlDQfHOM5QXdCIXASYrFYwGw2g8lkAsPhEPb29mC9XsOTJ0/E3UcSQhM51O6k9hb9Pies4LgEaZxK49g7ZqVTBWJOMul0OnBwcADT6RSm0+mW7V5nEiYGmr3f7/eh0+mo+ofS1+/3YX9/HwCe7wJ96aWX4F//638NP/3pT6HVasG9e/fg/fffh263C51OJxvvv0iyFW26VqsFk8kEfvKTn8DJyQl8+ctf3koXIyNy6EILmt2qxWswrdcWovxu+ZkSn3KcnJzA/v4+lGUJvV4PvvKVr8BsNoP//b//d3DiLhVcF+TOGyA8+ReCtkPWWz5F6uRs6HSP0LcAz2UrvTezzkQgwhtHlSa0YnySXcYy65QVO1lSB5Y9QWnh76Td0tzWmM/n0G63odvtVryPC8xRt/EdsnXmQjQ/o67fSscaloH2wnA4hHa7DQcHB9WkLIKPD+nES0/Zdd7vEin99Wn0j73Aq6DoQiWOoiiqayZyze+lXHPHaZK+98g8q0zxmGJtNldDqFKSw+FNH0LKhKP1vO7gyCFAU5VrDB25hFjKJHFMnb3GV8jI8n7rMdZi+TmUJmZMpPBnriByjCErOR/cSQoZPE0jpgxJJlL6JUEcEs5eQ0lrn+tQ5BoPSI6OlpbXWXIypO+9dbYcda0fpQmrUD280IJ2XmM0JButibaYYDxPW4e/QjyLx8bhIgYMFI1GIxiNRjCbzeDs7AwePHgAi8Viy2nJyfe7HkMpcq0ujSnf47jIKYe5E0uPz+PQ5ICm12Mcu9igd1O6qI5Ot+DRy3XrVGcCMKXPciDULimBmVD+sb5MarDam6aJOqZACn7ftOAEpYcGvSV9joEoeppADLR80S6R/CBJz3OZHdLDUr2kdN46SGVhoGW5XG4t8qATbbwszTaW2kKjnf5v6ZncOk4LrqYi1d6U7EJ8h5MTeD9oDC1aW+esKx7rijvlMSi3t7dX2YMoP8bjMTx9+hQuLi5gOBxCq9WCvb09ePvtt2E+n8Obb74J4/F4a1KlyeOKdzXpIY3bUJwDx+N6vYbpdArj8Rim0+mVa1l2iVAcQBpPMbJKy5/LES4XY+lEn6bdbsNwOIS7d+/CdDqtTgFAWRWyf7RYgtYOktzUaA9Bkh0e20ii2ypDaudcMcum4m1a/CqUr+azaM9C9eS8mgu7an+aVw7ZyPvK03ccMW2p8YAUR6L1RJtXi09Z8i+lnaSxqfGsp+9pvajvjrq5LOVrZ64TMe0mtVds/Cy27LqxxdzIbQ97ypPsfIQ2VjSE0lLZoOkuTz/WjQlIeYqTsbkgOYYhgykFORg4R3CqCSbe5cCoA6tvveD3HdbdFajRJAUtOPixXXXhGeAhw9cDvmLLu5okNRAorZyts4Il1C91EMrb48Sg08XvzuJBMquskBGGZaDx5qGd0nEdQJq1MecJUFnjjN69lhJI8bZLKJhalvL9yLF0xBhqdCWuRZc3v1D6JvUY/o9BNpyExWd4hNrf/u3fwsOHD2GxWMDp6elWMK0umnJmbwp2qdc8tCDvdrtdGAwGcHBwAP1+Hz755BOYzWbufAB8gQ0OTxp+LyX99ibwiUe2xwR0QrAC+rnaQws6arQ0iZQycuvbJuop2Sb4XNJhnsC3RDf+s3ZSWYEHlEsYzKb6Tgu2pYC3Bw0eUXsW7ZlOp1PZHPhcarfz83P4xS9+AfP5HObz+VY+PC1tD36PJZYLcHVXZ8rY88gMvOsM20PjB+176VmsTYR9zu9epGXwnb38vda+NF8pQNtEUFvy5VL5lgesvH0D8Hx3Ck669no9ALicwMRdOzE7AneJzWYDH3/8Mezv78Pv/M7vwMnJCXzrW9+C999/H/7iL/6iGmP/5b/8F/izP/szGI1G8PWvfx2++c1vwv7+fuWn/ct/+S+hKAr4/ve/X9WZTz6+KHEWjlh/luPjjz+Gv/iLv4DRaLRlG87nc2i1WhW/hHbIeiY7crYxPx0CZZbHR9BkMaWV/m8FYwGe66yzszM4PT2FV199FYbDIQBc7tr+whe+AE+fPoVf//rX1Tjmi1GaQuyJAzT4bV1lhv83ff8tvgvJPK/dwvvWAo/j4DeoS6S25fEDyW6WbGtNT2j+Du0nKX+ah2ZHNQVJp/L60fshQzEjjTe88QyanssIqWwtpuO1g3kcW8ub96GVL9JK6Y6Rpzn8folWjN/kPmXlpujkJn2ym5YXgK++uctcrVawXq+rHeQIjHuu1+vKlsPdtLtGiu8p6QFLHwcnY2MFXh3EBJtSvq+TdwgeQS2V5zH4eNqUQHqqIg4xYa6gvpZP0waEh0atHySkBoy4UWD1Y1NtsWsFmDPwKhmzMcFpb1puqFn9ZjkDTeA6jBfunFnQjElP3+A/elyFt77WWKI0eBw9iX5ehuQUxQblOJ/VCepJMilmjGiOVUr703J5vhg4XC6XMJ/Pq92wUmA+Fry/vOMwZbzmlGupCPWvl9dpPtpY4WXge8kRxQDfcDiEXq9X7ZbyHlVZV/+FxlGqzRLbv5yO3LatFdyQHHMp6BQKZlk0xQS96Dep9lOTCNmmTZcda0fETtpIfGwF0ySEaJSCkZKcoL81GeKph/ZNyLbzlsnLwp2x0m7/OjatFdjVaKVjWTvaX/JHQ76jBS1ozMf0eDyGTqcDk8lk60g7yY6W6h4rT0J9WUfexI7NlLKp7WvlFaKTf6flK31bhy88tEm6EG2+1WoFs9kMHj58CMfHx3B4eAjHx8dw586d6hQV3Nn59OlTePbsWWVLdDqd6ghjnFSUaM8RgNR0OJd1N0G/IQ3tdhum0yk8fPiwsgkGg0F1D3bMWEvRD570Hhq4vojV19K4lHxV/F/TX8izuCBnMBgAAECv14N+v1/t6l4sFlf8Owtc7nvT8vpp8lTKV4pzSM8lve6xTbwI+SOSTozN04LXV+f5arIe/w7pghhflfJhrH6UaM0BSX/X9bdiywyl0/jVGkP8b54vz68stxeY0WsmAEBceBfK06LByoNCq3NM/hirwYVedIEJtS9C8qAOX+zaN7PqYo15mibWn+PpYm2X3GiiTC7HeR1j7VZPOdJvzzf87xSZK6HRnbGhwgHqd2xqp2jfxjipu4R3xd8uwMtJoS0k1HLXxeMs0DR1V/qE+EYyjC3atG95OsvIyIFUIaRBM/JzQTJuNRpCkFay0pWQMfc1aeA7NW46iqK4snNTa2uuSEOBHn4nb1EU5tGmVtlSOs/KZMnZ9hr8WIdYRS/9pnnS7zRodyFL+VKes/ouRJ8ELR0G2trtdsU/GtrtNvR6vVpHyzVpnMcGRq/bgNbakI9PepxfbBDIkoXD4RCOjo7g/PwcAABOT09hs9lsOXJWPYrCtwOCg9LEjfsY1NWv121P0sAAfRZ7L67GyzG2DSJ2bMcGnl5UxNjNHNfpu2h8JAWiENIRbp7AQ+oYpt9x3cp3aFJdfh0rsykdVn1pUAyPxqTfUXutqaAOtQNxoU1RXB5l9+6770JZltDv96s02KbURuF8EAJ+S+89pXZmE6jTZryuUp6e8Sv5ezwPj3/Jj4wGuKofmoBm567X68rWn0wm8Ed/9Efw6quvwh/8wR/A5z//ebh79y788Ic/hP/3//5fNdH1+PFj+PDDD+H8/Bx6vR4cHByY5Wr3lHnp9H5Hy8q9gygWZXm5Ex7v+zs7O4PHjx/D66+/DicnJ/Dqq6/CcrmE999//8p9hruiL+QL5Yod8fFiyRvPWOx0LsOpT548gcViAa+99hq0Wi34m7/5Gzg4OIAvfOEL8OjRI7h37151pHETdo8kV7R0Vt0kv8wKlAPYscCQfynRTeU6BddnAFBdecPLSxm7Hj6U4JUp3hiCR3bTtqOxGB7fuG57WeIdyefgY4L+bcWL6P+W7pd4QuLzUJm4W09Kh3Var9cwmUyupMUdpRjXmM/n2eLATYLHws7Pz6Hb7cLx8fFWnAbrtFwuk6/u+AzPUUeWvQiQbGDkGW6bFkUh8lTT/q4UQ42NBVn2+NZkbI4JCy2vmAC6p6w6gzvW+KmL2MCRR6GEvvW8zyEgraCA9sxjTHvT0jRcgVuKWHKCtTItGmLecePfayh4ypP6lbeBZWBYZUrvJCciJX9pbMT0vYQYwajlG8PX/HmszIhxHm+iMrbGGr6nQTcJWrvT56HAkiXbLCdQSi99E6qn9XcogGrRTx1PiXaaRpoEk9rOks9aGTGI5VMM2m42G7i4uICPP/4YRqMRTCaTLSd7l0FBjlQHnQaWU+mPka0eGcXzRt7Bf1RXIU9Rx98LLBPzRCM6Vz9y/WGNIQ6Pfgzp6ro2VMz3Me0WCrRxUB618uNpNJtGS0P/9tIVQlOOfsgviXXEmkYqP8bUUxtfvI9z+mfXyQMW6BGwi8UCHj58WE0i4Y4BDFppdi4N0vEJSZqOg+sTT/BQQ4ys4wvuLPtdogt1PN+x6+m/XPKCp885jiWfyLq+g9PC8wjJY/w71r6l41XaPe2x55vQXbwN6ETLbDaDR48eQbfbhaIoto4Cp3KH1q3T6cDBwQEcHh7C4eEhFIUcyMsJWs/Yo7V3DaRtOp1WtOBCFHqU6C7h4T0JoXFs2S38f2vMamOF3r+MdA4GA3jnnXeqO47LsoR79+6JNHvkg8emlfKW3vPvLD9Cy4OfshKS6Vq757BbaJ955aOUn5cWKgepHon1GTzt5qWHliPZHbuUN1ZZtM5W3T1xEF5eyE6VdH6K7UxtNcle4+VSuqjO5e/od3SBIi9boofSYOmYUH1j9FNZlrBYLKDdbm9dO4X6g1/zweuj0eHlH4t+b35a2lgbJ1Re6ti+bjuhKXBbiYNfm0JtKa29Y3yiHP0s5S/RFiqj8Z2xn6EerHsbYhASXjFMGTLuLKPOAg66ujsMQ4attSOuKefDG2ywgjChiSwtbc46YV45dwc0qWhieY/+DtUxVxt4DR6aNmRINSEjLLos0DEdWhkuGehYToyTxPPT0mnjRDIW6wRQtNWeWn3xG3znKZOvvuSOaQr9ocBGjrGLxvx6vYbZbAYXFxfwySefVPl3Op0s94fXpTX1e8n5y4VcsrMsLycV8Gg1CmmXdUz5NBC5WCyS5Kan/7R2thYo8LSYjwdYHj96qil4A0pSQCplzNP/6d855EfoxAAPYnY2vcjw8j7+7w1EWEEaGmTSgkYU0p3LTdnS1w1sI7Rler0ejEYjePr0aZWm2+1Cp9PZGjtSALDVakG3262ODOUnf2AaaSw2KW+47YFjDZ/T8UvpofyCaevKRqm+ockDD3igJ3XXIqfFChTlQqxs5/TgogFc6OaRL3yyIyW46QXSi2NosVjAdDqFX/ziF7C/vw/Hx8cwnU6D+QwGA3j55ZfhlVdegVdeeQVOT09hNBpF67BY+jEQPZ/PKxv2JqLT6UCn04Hz83N48uQJAFz2Vb/fr+4Tvg453uQEEpeh3LegeixUf25ndjodmM1m1bPDw0P4/d///WqBznq9hh/+8IdbZRVF3J2Lqe2BOkvzJyV5GoqDSDpA+q094+VoddMmpSikHbISH3ntaO37OtAm3eh7T6yDT+bx/LE9Y0832IUfA7C9SAXAnqyo0wfcdpXysMq2gOMJd7kj+ElxEjzx2VC9Q3yktZU0JmNB89hsNjCZTKDX61V6DnUeykNqT+a4K3sXPPoZbOSOM6NNyn1Ovvu83W67746VdEYOe0aKL9XN13VnrLeQ1EEeW4lUwWl1ShODOyYoYTG2RmddZ4jT5w3iaGkt+rRVa6FyLFh0h2iSytMmL6yyvc+lNFJa70XrddqrCV7PodS1dzF5e74J5adNXuHv0GIB+h3n91CQxjOuYvg9BnWcPC1QxscebcuYIFIuGSq1o9bfFriSt77htEvOk8d4pgYtdy40ntQMdYCrAdU6ejVFh282G1gul+I4ofSlOksUoT7V+j5FJ+awfUL8pOnzGD7kwKOjOU9oAQSLX6Wy+v0+DIdDWK1WVVB0Mpm4J9SoYY72BA1ixfZxqG+1/ozR8Rr/5uDpVKTIO09+Wv6hMri+5O+sAN+nBd7gCU+fqy1CchzldazPIfUnz0fSZ1TnSXW19JqHLsyLyg9ut0gBPK6naHo++RpDkwcxckda7MDrLPl/WhvnmJShdoo0eS+l58cYSvRp9aT8J/UZ5ls3OKjpYm9/URo0vo4Z7xrfSrR67HD8ttfrbe1yiUHI79F0MpaFgV0JnU4Her0ePHv2DO7fvw8PHjyojuG1FjAXhe/I8Rz6EY/8xftsc1xpkwouWwEu5UWv10s6mtjry+WAZZ+lBF2pPuLySLNFQrwMADCfz+F//a//BXfu3IG33noL9vb24OTkpHqPi24GgwG02233Hb0e/xb/1nhb019a/lqc0PJ/JZ4I8UjID5ag2ZixsSOPrSrRxp/RiTguXzztEVP/UN0t2X9dNrTGe9z24mmt76V30nsJVh68LK9vjWnpySiok9H24jrAe3oGp9tKb8UJcrQtTUPvd8d6dDodaLVaMBgMqklZOjao3aXRk5NPU/iDI0aufJr9VYA8ceZQn5RluRWTQr8GT6Hgk7Jav9B+8+hwK+bjsTOseJlGY/CY4hgDIdaIyx1IsN7T/5umx6LBU34OOj2CJxTciIGl6HlwJQQpACfl6+lXLDvGwOE0xg5Eqe2lQIeWzksnp8kSIBqsQEjouxSeoQpKcwC8is6ikeYvGVgSHTSNZFx5Ajv8mZQf/9aDVBkbAw+NmlyxDD/adtJ9ZVp5McYp/SZmvEtleZxP/B2qh2dMSrKB54X0ae2v8TFC2t3Ix4h313Jd0DKXy6Wapii2dxSkypwY1DWyU+nL4UhKAb6iKK6s3NNoxMlxGjC3aJRosegeDAZwcnICs9kMJpMJnJ+fw3w+r77zyDiaju4iC9k3nnpwGmg6PoFh5S/RoAViQvxSxyGto1+90GS0FXSR0lEbqQ59Xt3Cy+ffNdlmFm0h+lMCNl5o+VLdQ/WG1p6hccd5I+TMhvRjim1F73/lZUj+SsjOw+Aa3Y1SJxij1cnqe/RdMFDB/yGk3VFan4RsWC+wPOlOV54Oy0ux43g+WBbvRywjBRqPc58ixpagtPJ3/FlIvmkTAJ6xKT0vy8vAarfbFW02r+3CZb30jeZnWZOx3W63moztdrtw//596HQ68Oqrr6ptkXOhXwi8zehVEBJfxuad+i21nzBwLu048cQCcsBr/1FI4yUWfJeedeKGZNdImM1m8Kd/+qdw69Yt+Pa3vw2vvPLKlcnY9XoN+/v70O12t3bTpkCyXaiM1U634fohZBtb/Kr5DbkQ0lExPkAIGp9Z7YP/x9hpvN1T5JGlD4piN7uuvZD6itdXWmhL06G9ZcVlpO8sOih/W7qQ5y/1H68Hjge8M7wsy0qXSnWWxmIOW1LKNzTuQ/YmxWq12qIfZepgMIDNZlOdfoYLkrj+1frJqrPXj/bWzeun57AjbyLq2BOp5SGkNsXxg+/wlDz8p50QIJVj+TzWsxDNKf6nBNfZKTeJ2XJVPCdCDMwVc4jeXA7wdYIyfkz/hNoxNi+uOGMc/JBy8ASF6HPLcaAro738ARCeEPA6yjHI4QCllEVRx3kNvfMEvDQaaGBPy89zNEsM3TcNtF7YRvz4vdR8ER4DO4QYYzcn7aH8kIdCgbeQfK0TzNTgkU2pZeJuBjrGXmTQ4DN9FhNs8kAKSmi2Q4ivLMQspKJBIHRCtaAAvwMO64D/WwZvHafIcqo938XYdFIeMWU1CRxv0upsKosoPalOcO7gt6RnU/g7ZHfuCiF7jqbh/9OV+PhcCszSPOl7SV+k2NzS7+tsw10HGCzw/uCnXeA4ROAznHDCoy61oCEPYmo78IqiqIIZ3mCt5j95xrTGwzEykC8qwnIlGYCr6XMciafRo0HzC6leTrHNKB9Leo8GqDUgv9EdxzF2c7vdhn6/X/3GawekvsmN+XwOH374IbTbbej1elCWJbz22mswm83gyZMn8Morr1z5pizL6tjSTqcDx8fHsLe3B8+ePYP5fF5N8KYeUU1B7b2UMZFaZk50Op2tBSrXgZAOrGuD4LdW/EbTnZYuwckIPLaU8lSv14Nbt27Bt771LXjjjTfgpz/9Kfz617+Gi4sLWCwW0fRrddLqMhgMrkwyL5fLrSN9Y8vAcnLxYEw+VlxoOBxWv1erlbrgl3/H7SNODz2in6ax/FWLhzyxhhxty+3667SFaHugnNFO8bBiJjF14XLCOvJak9sWn1u0aHzqPWaVl8/pCMlAjTZJVki8GhsPo+n5qTOh45vr+PKfIQ+uUzbw2BT+TX0Y7bo3hCTHNXkrpeV55myPkE1Y6yKLFGOoTuViykkZzKmdEBuA0BxT+j62TXdZXy09VxKxZ2l7hHFMXnwAagpYU74aYtKHjH5OF+/7FIddgycAUDcoGTMWLGPLW56Hhpi0HqNGEtpSeosnYg2PJgKKueUpGlz0t9dZCZUXw5eetrIUOi8zl2FIgzRe3rFos+7ypOk8dMWMPStPT3la3xZFUa0YxePwPGPNixie4t+kyEVJ/9AxIeXDdUEMQnnz/62xF+NY8vSSUY2BKnxH2xUD5hgY8hwDLwWlOY11dJ2UVnJaeT4pOjI3vMFgDikIG2uLUhpC70L5amNPC0jE0nHT4OFdzb5CfcAXinHHlpdDf1vfSGVK416jPdVHkejkf0t5W/zh4TutbnUhBQY5jVK70wkoaYxiepwYozv5vfqJv5O+s3ZYWXlwmc/9ndAYD5XB2w93aODR0Va+uaD5Bpper0OHJUM9Poz0vadt8F5MxGKxCMoT/Ftqm5ixuVwuYTweV2leeukluHv3LkwmExiPx5XNiHfhLpfLasKpKC4naXq9HqzXazg9PYXVaiUuBKsDyS4H2B43N1kn0Z3rORDjk0h8keLbWbB0F/qv9DnVqZLtTNPyexHxN90N99Zbb8EXvvAFaLVasFqtYLFYVPcK16mPVj+kudvtirKbXhMj5Rcqj+fnhWXD1eE99CFpfnQyVpKBFHxxlESXZEtp+krz9y1fTUoXSoPlSaC2wU2SPbRdtEVTWhtKfWDpRN7WVruG/HOtLjFyU4qHYV0t31biS68Olez8UNtZvBUqh0+cSTvnU33opmDZytr7mzSmPg3Q5CWAflc2gM1D3rSxvGfFKKTn2jOAmpOxn3Z4DT8rXezqFw1eOuoitc4hx5kbOXXKxrSxeVgKBY8X24Ui4Iagpfw1R/664DF8LFgBoCYhBYM8Qt2TbwjXVefrQNP8WddRiy3LExDUvk0tF0GPUsR8NENdKldDu93eWsHf6XTMnYtWeVL53NBJaffrlnNIB/3bUw+6610y0GLrFmv8UxlHV6J6yi1L+X4OrfzYPhqNRlfsIdyhI0HaqUmPlIsNHNFjRKX+4Y6/Zi94eYHrdRqozXFSgFUuPWnD6ntKk3YsdVP6S2ofXjb+nUN2p+C65BDyN8pmz+6OOkA5wQM19Nhb615LnpcU9KaLM+k4orpIy48Hu2J9BS6zcLKOjw8pyIqQfBoqZ2k6Xh/eDlw2Nw3afnS8428tcMb7yhv4C4HzhEQrP2LWun9PQrvdhqOjo6qM8XgMFxcX1ZGsiFwTcV7wewUlncMDryG7j4LyrjYJyHmXTjhx3xT5YzweV8fDee48lfJK5Rccr/v7+9XddLysx48fw3q9hv/5P/8nHB0dwR//8R/D4eEhvPbaa/Dmm2/Cv/23/xb+5E/+BL73ve8l0eClE2UmYjgcVhNwm80Gnjx5Ag8ePKiO3LsJp8Dw3faSjSfJ3Fx6Ngap7RXymax64BiUfDEt/f7+Pmw2G/i///f/wve+9z34kz/5E/jWt74F/+Jf/Iuq3NFoBOfn59Ux4Fg/j0yyyqcyfrPZwGg0gk6nA3t7e1v1LsvnC1e89xjTPudHPGNbxt6BqSE2FrPZbGA+n0O73a4mZelYRLvbigUi3dpmEsl/CNGpnTqj2bxN4Drvqbag2UGeY6+1seuJv/CxTP9J9ITiGnTnNNXX9MSa0O5QL3LGSKherqOjeb1Wq1V1SgDA9qkLlu8n/ebl/H2Jp/59B+onBOUngKt6mT7zjBFu51j+Xw5YfKtOxlrExAwEr7KRHOYUpHyr1cdbz5CR51EMPJ23HK/w9BicnvdSuhijJLaPvXRr5XvbO0a5edKltLNV19DYiaUvhp46sILAMYjhG0nRh+7B8Rh1+DtEuyYzNRnHg951Za6HplQ5EArQ0zpqfVZHBnqhBQ9jytLkrfXeC24Aa2msdFbghIOmxWAw/e0ZpyGekNLEBm9yOO9NO7UhmyZn0For1yODYu00aq+k8HboGwyi4uQOLzeUVw4HzJNHDl1ojWk6weGlyYIkky3+k+RxSF+GyqbfNoE646fOWMwtT2LGFu1LyjdWH1vyKLYenCe4jIjJRwtsptgGsXJKG898HHJ6tPHJ24HTQYN6Gp1SHpw+HlDAiTAMUFAbxxPk1Z5LeVg2Rc4xoeXFafH6uLwfut1uNXk4n8+DfV5XfnlsJOu9pRc9cswaI9L39J5MTS/h/3hyBQbDYuSYt/70b8qDWA+60xl3iw+Hw2pX7Gw2g48//hiePHkCnU4H7t69C/v7+/DSSy/Byy+/DPv7++pCqBjZbKXleXc6HTg5OakmY3FRmjZ+Y1HHjgjZslpa7Zl3nMamyW1nhNpckt1e/qC8ipPvyMO/8Ru/AdPptBpLuDuW3vNNTzZIrRvSgaDHEeP70P3dofxpfTWbMtRmGk9ZPoGk6+g7bDucjPXaHhxef5rT4qFbK6Mp39XLt960OVGW8tVfHh+XptPaTrN78Fup3t4YhdWnki4P+b3S9yEaPLDagJZVl/+kaze4X1p3UUDsGEuBZfvzNJ827FIOaP3GbT9Km6UbKDSfiuefI94TA61dzZ2xuQmKVcrXheuiJaa9+XGgljPeJKQgBBe2OYKN3gFI6dB+Y551gcZsjOHsXVEMYNdP+0b7nWvsxdC0a0hGN98FwEEDEB5nsw6sABy+4+VpOwfq0pED/I46/o47ZDnGXGpgjr+T/vZ8izRowUsPcHXXZrOpnGTeVilOcgg82MaPc8oZZE1BWZaN7wCz4NERNJABYO+q4XIlNMEl6Skrb+tZKB9POfR+OfxGC7xoQQm6+0rTfRLd2hhEWmLv3OH0pn5Xd0zyMRhKG0srTe/dES3d1dsUND1ngfPHrmVWzjJCegXHCE4cYVC33+9XR29SO7ssy62jQvlxtjQdQN6Jp8+QB6vVSrRB8e/VagW9Xg9u375dnWDx8ccfw3w+h36/v7Wz1TrGy4IncC59Q/8P2c8huysGEj/jb/psvV5Dp9OBwWAA4/G4VpkhekL2phb0tfQ+70spHd9BxANZqH8lurB9cOJos9nAcrk079UDuJQznU4HptOpSK9GKy0b/08Nzt69exe+9rWvVVcgjMdjmM1m8NFHH0Gn04F33nmnSvvee+/Bd7/7Xfi7v/s7ePLkSXUPc2i3dYpfKOkovGd3Pp8n1dVCE3L8RQ80e+gP2ZoA23Y+9XUtnqVlt9ttODw8hOVyCZPJBD788EP40z/9U3j48GEl9wEAZrMZtFqt6r7TXJMLuHiB+pm4axSPHJ9Op7BYLLb4NqZcj5+dCk1mWvnjc/Sz8XQRLUaq6RKNBitmYPESb1+v3vS8q6O/bwIk2rl/Z+22DtU9VFcphp6KOrteQ7FfmiYlb+rLhGSeJ15h0USPaeffNRGPzwnPOLrOeFnMWI+VCzfZL0QblQJ9ZACbj3g8i+dBQeNMTYHT2rFeelGn827qIPQYGKnB/rqQaPSWE0s/TxNyGiWDjreHRWtsAIHTwAWPJIik/ok1PqWytfy0Nox1GELPQ/l5HWUvbTwvzUik6WJ4tk4gmhscWt1TguuaMeihy8ozJVDtyTcWnokc72RPDrlUtz28zhumDY25unS0Wq0qEERXLKfC42hYkAwcil0bZ3V1ptfJjqHHIzs940Kj0TueYt5T2Se1QSi4kIMuKZCBxzVZ9Eg0S7ouVLeieL7LM1QnKUCD6SXZHNJ3Ur4xiP2Gt4lUd2/eHkezrr+g2VGpgVRNh8Tqa6u8JsDpRpsE/0l3ffE2pLLOao+YMVCnDiGExpM2piXZoNFs8QMvN8Xv0OxeTXZosO4kpL/p7ineflKbcFpC9eHlWfC0mdWfll/WxFiTdLNUXioNXl1gpdfS1JFVIT6g9fXYLyiP6P9SuVIZmMbiBY+tCnAZLFutVjAej+Hg4AAODg6qhQrj8RharRaMRiN4+vQpfPTRR3B2dgaPHj2q7oq16KU05eBFzAcnvXu9XlXGro8p/7QgxHeczyxZrY3dmBiJlHa9XleTgQAAvV4PNpsNnJ+fVwuoBoMB7O3twWw2S4pFeMD5GP/GSVlpgYDHh7J0ap24gyWrPDKG50kn8ShfxOrGkOySnnntWy32k2KbaP6KRM91Qmojqx+t9/jOanfLp4xtZ4sGie6YbyVbPcZXD6WVZIFUttf31/x1Th/9LiRPUuHl91h9qPXNdSGG9ib0/k2yJ7j/60kvIUZWeuse42Nc2Rmbi8ma6qwmmSBnvjEz6paC53e+WAzTpDObCmwH71n5dfmPMz13qqS29qxkyuWYpSJkhHoMGm+eHoQCUlJZTbYfz1u7U9DaUS6lAfCtdNOMC3QGisJ/9GMIuQzHWGCZ6FxSaEFV6XgkmpdVjpdnJMcb252WK7W/N/gT+50GdICPj49huVzCYrEIToZ6Vypa4E4H5oVHu9VxImJwk3RTCDEBZ16vnGOd5x8r35sKblNoDhneR4UrDTmv464uDs2x9rQrPQa5LMvqCMOyLKvdAClBHes9TScFfnYBGlDHYHUOe6pukC2Up/S+TjCP//0iYRf8EgpIa4EsKz3fMUTTSAFGmpY+5zYZtZ+kvKz6Wf6QdW2FFmTn7SKdGMDtcc1fo2NVuq8d27TJ+ySRXn7vH6UTIY1ZLeAbU772DO1llNkcdWQS7yN+ykWuY/Skoxdj85DGmsafVh5UJ+E7zrPa9xSbzQYWiwWs1+vgcaq5ZBnlzeVyCa1WCw4ODuDXv/41vPfee/Ctb30LvvCFLwDAZR8+fvwYFosFzOdzWC6XcHFxAd1uF/r9vns85fCNOY6OjuD111+H8XgMP//5z2G1WsFqtap2KTYp+19UfVgHKXUuy+07VLU8pB3VfJzOZjPodrtwcnICe3t7cHx8DIeHh1vfvfXWW7BYLODHP/5xNSnKx3dokiNUT5Sh1I/Eo5EHg0E1TlAW1JV/1oQXImaiR4rjWeXRNK1WC3q9HqxWq0rXajTlhGdiivONx8e47kmY64aH11OQyg8ar4fy8pys5SnzJsb8ObgM85wu0DRucnu9CNh1+6Hs1+xVaVML6jz+jWQDcv+HPtf8lNxtEDymODXA0ZTQjA2ixeblNRI0GnIFqzxlarseYmE5Yyl97lVIXjpSvqcGjjWIc/CNNdHsMR5pWi89MZOvXofdKoPyQszEjcbLlrHqaTONBsmw1QIYHqM3lT+o8+ANHDUh4HmZlMc8dZTamU40eAOXsUjlWXzvDd56x5zUlxTWmKD92uv1oNPpwGKxqAwIlB30Dp860PpEMzi8eisXb3rbcFcTWTxAXlePS9/SvL0Ipff2R0rZFCk6ictA/iwVPJBuQTqml4+1WGjj2qI1FVIgPtX+lQL6WsBf+kYrj46XOrazB5J+aUqHe8D5O6Uc3m7Im7dv34ZOpwPdbhcWiwWMRiMA2F4IhfbmcDisZHtZllccUw9v7Er2ptoc0t+Y1sNXnN8tmm5KwJMHEKRJAmschGwS7TuOGPveoiGkgyyfJnaMYXq89gCvhaDXZ1wnYuqh8a4WxOeymZcr+WRF8fyoN3pVhDb2qMzX7mSMAZWlEo3U5wB4vohrsVhUtvT+/n71HZ46s1gsYDKZbB3nzRc55OAFSY4DPOe7p0+fwnK5rMbwb/7mb8LDhw/h/Pzcned1wmPrNO27htJ4xkgoXykv7jNbY4rbA5SvW60WTCYTuHfvHkwmk2ryFRcL0rwsXRVqE6tuuJjB8gli7H3L57f6g3/jsUGoLR/iNX7qFJ8AwkkwyQamclSLX0mw9C2Hlq+Hd7V8YnS5Rw/XHc8emZDiQ6XY2ylyJGeeCK8vbI2LWFqa8lFj+T1ki8Tk59U3uW09TV7eFD39IkPqq1yxIo+ckcZ/rHxNoQ9hTsb+fWKwXHVNWclsOUjWN02unI5tD+qUpeSTI3BJy8OgFqUpdD8Mhze4iCvkF4uFmMZjPGiONYW00jpVCedC7jJS85OM2LIsr9wVwsvi40wLSscGgXjQTKNV+lajIwdSDAc6trAtqPKSUOf4LS3oY7VljNMkjR8tvcchskANgna7DQcHB1AUBTx+/HjLAaeB1tzBIeyzdrstymjsq5DOuS7Ejr1U8ACFtGOI0uQNgFs8VIdmzDt0xDQf8x69Jo3BUAALYPtEAingE2qDUF/H2Dt4lxwP8q9Wq2qiC9+HeJ++T9nxRHkKvw3VNUamecBtCyloeNPRpHMUixztRW3IoihgOp1Ct9uFL3/5y3B0dAS3b9+Gjz76CP78z/8c+v0+DIdDWC6X1a6qoijg5Zdfhn6/D71eD0ajEXz00UfVUfh07IZsxSbaM3aMUH0ZylcLXMcGsl4ErNdrmM1mMBgMtnb2c7lCIdlOXB/soo28QdmUPLlNikA7ajQaQafTgeVyCcvlsjoqtMkdxyG6Oe34HACidQzX6ymyvCiK6q7pdrsN0+m0ki0htNvtKhZB66jRKIHXXbPzy7LcmkhCLBYLmE6n8Oabb8Jms4Ferwez2UzMAydv0RYOyUUvuF7CiSC0MX72s59Vab7xjW/AH/zBH8D/+B//A374wx+68rxuxPDhTULI9vSAx41CNre16+3evXvwd3/3dyLPUT8DJ/G1ybkUnt1sNtUR3mgbSHUJtVlMm3r9Dm6jW3XAvCT/gqabTCbV73a7XZ1KBXB5R68UD9QmjDQ5a9UF5ZWGuotYuF6n/OLRAU3rfs9409Jo7ZvT5vb473XK1PQgzc97Cl8oTmWVlwqrnVLy4rZN3fxuCm4SLS8qvG0oxWmsWFwM72K8j8t6SUfG2tee51nujI1B07PLHmhBriYHVSjQF/M8VxvGBgOlZ96gibRLRSsjBG4MWkaRx2DS6Ea0Wq2tI8kQ3AGltHBn2wP+vUZfyNCygrhW/4UM4lyTRKH8YgwOAP1IYi1PyWDl73l/xtBD+44a7qFgKKfDchCkenmMHV5OqA+oIorlZw0xfORJK/G7h07eL95vpLIlmaTl12q1YG9vr1q1bx1VQ3nQ4wRrdZHSr9frnd1ZlYpYXskRNLL0sSY/6+pKTT7R9962kHZOeejR9A/Pg/7znM4RExTIYYvheDo4OIB2uw39fh+WyyU8fvwYAKAKxFpBKOm3RX8oDw9/5EBsID41T6/+sOwvrU087c7HCB2b0viJkfE3BbE2ZFEUFb/T7wG2F0d5ZSBtx5BM0uyonAEdica6abz0SfJQs9VDtjO32Txts1gsqrsGu92uetd8Cn9b8ouni9FDqZBkAw2KWzJHkyshO53+rgukgQdaJR8xNl8KOr41Prb0Tqyupb5MjN0o1VfqRymdJN/X63V1VDKnj7YDLnDc29vb0vepp2KkgC7ow7pMJhN48uQJAAAcHh7CfD6vjn3eFV5EfVgXsXKL+4aU/+nY0XQe/sYjgLvdLvR6PTg4OIDZbLa1A50ulPX4pV5Zx+10ngbpKooClsululCFxzQ4nZL95UWMTuHle/1gKg+k8qVvNFp5GSF6pW95nlZ8SOtjXn/ejlLZls93k+DhpRTaPflqdh0+q2PThvzxWNs8pT5S2RJ9Unk54LU7Ps06qkm/6EWGd9zTNNI3dWxsPimbElPxpOd1NHfGxmT8oiIm2EERozhzIqS069Yl1WCw3gGEz8aXFJMHISVkTUx5HFd8jgYr/Y7eRcfz0PpCci5D9EmGOTWAeeAsBdr3mvHhcQI85cXQpkFyrrW+1QS2FkCz6qHxPP2OL0LwBLu0OnjbQQuUUH6x8qOBJO54hhAKRGqQHDz+TvpG67uQ0xQKKHmeh/hGqwPeeTWZTODs7Ewsx1MHiz7tKENKGwYJQmWHyvIgxvj3lBcjXzQnRAs6YPvQicZQAM+SmxpN1vtUp6gont/PGtLJnBbNgOV0890plm6XdnqH6pkKpAeDXEdHR3BwcAC3bt2C0WgET548qXQ5Bp0sGYL0pdp0u3S0NPmZSvsugjSeAIL23DPepLyarNNN8JPa7Tbs7e3Ber0WjyuWZGGoTfC9tijLa8vyNFy/1bUp60IbM5o8lCZaOK9JtgC3O6WxRvNrtVrVvX6DwQC63e5WIJ9+U6eNtHEi+TQa3bx+dWnxnLbE6x07xmN8spg86T3ptL1iyqDfWf5qyK+g/9O0MROTkr6n97NbdZDy4vWS2kayZ9frdTVxZJW5Wq2q02hWq1V1LCz2i0ZbXUi6mPLWaDSCe/fuAQDAyckJPHr0qFpksWsdskv52hRy+Sp8PPFxQvPhNjDva5oPyupOpwO9Xg96vR48e/ZsS4bjvcH4jXbSgRZf0vSHp22QpslksnVkMi9Tyk+KoVi6gae1nmnvLTnIgWnpyVP8u1AdLZqs5zF2OPe/OC/x77GPqA/D4zYU0u/rHu9S20h9wu2SEO97yqwDq+0smzoka6V61aGXt6/WpjE05gDlaU/9PPadRavXz9klQjLsJtF6U8BtaM7X+Jvb2wB+n47mR9NiXt5d3Sny1TUZ+xnCCA0er+DRlK9UXpOOhFSeBn4HRV3hmYJcBjnmZaWlqweLorhyFKKlVENKnNMqBXd4GZqRaqFO8KIucpanBfD4+LCMD08wJpdC1wJ3nCZerkYT/yfl45EpdcZPXT4MtQMGJD0ODU8n8QJ97qXR84wDlXdZlnDnzh0YDofV/X7SMWoA9tFFMTIzZHwAQCW3rssxq+NEWTTHjlFclS4FCHmeXh3uHRMhuRKSSSF5ovG/h37+DQZeQwHykNNHjWaaRpNjdYD3b/b7fTg+Pq6OKeT10PgLrzqw7oV/0cD71mtz8jzwf+/Ofk+elqyVnK0moV1x0RQo/w+HQzg5OYGvfvWr0G634a//+q+h0+lAp9OpAovYBvv7+3D79m348pe/DI8ePYK/+Iu/aJzWGFiBKUtXe2Vt7mCcx3+5buDxsFKbxY4LyksIrc9i8rYCHKH0dcY2rwcuSqB+W84jalMhtTmvt+faCsnPCfmbFOv1GubzeSVf8ChPj9+K0MahRJtkm2p9b5Xb7Xah2+3C06dPYbPZwGw2q2yUfr8vlkP1+C77ni7KffjwIUyn052V/Rl88PgUmpyVZCe9JgvHWLvdrsbYcDh02zJ15DvSQnUF3re82Wyg2+1uLVDwQou90P+tb3ka+gzpDE0uhmIDXMZLsTlerpY2Fp44oqcMSy9yvvDYQzfNnrF0TKg+WOfc9rnFT7E2J80vFAfgaVLKshAjP5rmk1i7/TpiVJ/hZkGSFZL9yO17yj91TiCxdJ70PIZng5OxHkURQ2AMQgIsVSDWgRXwzAXPXQIxThLPy0urh5l44LnJQIonP5537IDwGJhozFLjBwOSkrEnGZ2hMiUBI91xoU0eWOXETBaE3mnlNSUXQs6SxIsxhrqnfM3w845FKxCkOQVSXvxfqFwvfbx86bdGW0z/hspLke+S7AwdR+ql0XqmvUNne39/H46OjqpndfL1OLp0HGj9z++Yod+nGr+5DeYmHQKsZ6vVgk6nU5WnlSndG6EFVKlcDsl/Ds/Y5/+H5HeKDJfKk3SHJuc9vNC0w9dqteDw8BBarRbs7+9DWZYwnU6vHAunAWVKq9Uy7x8P5SOl8ejsXLBsjtgyY/kvBIlX6DiqY2PWRaiOuYIEtI5Fcbl7++DgAN5880149uxZdZ8jDzwWxeXEw9HREXz5y1+G4XAIf/VXfxU8iQZpl/720Ir/W3ZWyFaTnnsCiZo+C9mbmhyODQqlvMuRnoIG+i07MqfPa9l6njT4PqW9vbxEdTLVv4vFokqPYyi23ZoMCGp2mJdHNZkoyU0Oel1FURTQ6XSgLC939Hl8U16Oh2Yq37Vnkm1F0el0YDAYwGg0gslkAq1WC3q9XnUnpgRNnjfRt7ztN5sNrNdrOD09hdPTU7h16xbs7+9nLbMOrLHk/b6OPyghVodI36T4kVJ5Hr+Llkd5GSc/e71eteih3+9v7USt01ahMYe0oA2L4x2Px46djNV8Hw4uD7w+AZVnsXEkPq5D45zqC/p9qjzQ+sIqW6I99K30TYxvKcng60bqGJDaMNa/ipVzli1j+dGeb0JjRZI1OfyhFJvYgxz2aJP213Wjrp38aYOHD7U0ODb5grsYm0FL7/GBYvKjqL0z9kUdHLsKejWBXQbxQggZqdIK1Lq0eg06XAkdOkpJM4aKooBerycGfbTVFViuFxJdvV4Put0uDAaDykjGO+92uTOnTj/l5EdNMWEfaJMkAFcVOP+b93fMinlPGr76UWoXrAcPbmrQDGh+B2iuPrB2heUwnq28sE9C49fj+ITg+aZum85ms61d9QBQBY80Pg0ZER4jnhou/OjsF02H13GScUcRgK6bkN+sybeY+50wHZUB3jpoE/ecZjQ+aXnS36F8PI5iu92G9Xqttg9tX0nu1eU3L996ZCm+j5XBvHzvNzFIkWGUp3PbCjnrxwMmqGP4MXl1y8gt2yx7YpcoigIGgwEURQHvv/8+LBYL6Pf78Oqrr8I3v/lNuH//Prz33nvVOKXBIy6LQmNesqVeNJ3RFLg+5e0jLQTTFodJjj6ddC2KAhaLxZUjWpvoC0m2aeNyF0EjjxwP8SatB44H1PPWd4gYnQ0A1QIK1M2TySQqH6l8K/jjnaCQbMuYnaKtVgv29vag1+vBdDqF1WoFq9Wq4ldeHi0L09C+wvtcQwtIuI5dr9cwnU6h3+9Dr9e7kh7zpDqG276I65Bn0+m0og8XA1rw6LPcOs/K66bowqZhTZDxCS1pjC4Wi8q2mc/nMJvNqvS4wAp378f4/7HxB21MLhYLWK1W1U5ZL7wyx+Mb8fyo7UHlSiy4b8RjJFJa7tPR99rvGP3E4Z2Mp20jxaliY4+ImzLxw9vIn4xxswABAABJREFUw1tc53Oes7BrecV9zV3g0yaTbwKfflrQhH/cZL4WLNufy0nv/BH9H78LxVbp97Ft0MgxxV6nACBeWEgVT0VM2THlSU61N601WWQFTUJGc5PwGBoAce3NjTH63BoQdKIDJ2M99w7RtuZGj8VzktEWy+PcWMa7RQaDAXQ6HfM4k9S+rcMTmvCh76xytLQpskDiD0nwSsGa0NiT8rSMPcmRCNVNMyattLxMyvsS78XIo5iyJRrqwkO/Nw9vPWOCcFremkyivIPBIe4w0YCrVn6uuiAdFv3YnzHOqBeWfmsKoXEvpa8r06VveeBGS6c9t2SIJItzOKScL/hxzhqtvM4epKYLySbafjzgI8loKz8vz3oDKxZS2yM1KGPBy8MaQkEWbNecx0fGOF2hPud/N+1w4qQbwGXAtt/vX7F1cKHexcUFXFxcVOmOj4/h9PQU2u22OYEW4mXJ7sHnli1aR2dr5ae2dQ4do9VLk3U0HV94hek8p2NIcovuYIzVQVreUhrNxvcerdgEco85Xneaf92y8HvcdebZqS59T2mVbJIQjd40+D9fzMnbBf/HxcKLxWLrugsN6I9Lz7VxJdEo5Ud3+eFiHuRTyrOekzAs5OI/pAuPrkW7SiuTfufJe1fwjJWmbPzc/mZKfMXTN9jPm82mWrBQlpeT79ImgZx2YYhOfI4Ltui4SUHdvrbiJx556KGN+wM8jVSulZanl36H4OUxLFfzXyx66fcpNO4akt3JbVbLVrHy9frgoXxT42havjFlS+k89vxNhEZzSozF48fddN7PDY0vmuKHXfCZVR/6P55olqMMyc7xyAhKj8V7L9ydsTkM4iaYJUeenhUzniBfCi25vmkiEBhCp9OB4+NjmM/n8OzZs+o5Hj/JAyPelUlSW9O6LZfL4NGFmuKnz9rtNgwGg+r3cDiEfr9freR9+PAhzOfzKm2KAS+Vm0sp5QhOpyBVyCL4UW8hh9JbHg1gWOPKs0jAA2tlJQ1CSGm5AtPyz9l/UvtogV8eDJLy4mlDZWtBIet3CBqNuOJ9sVjAZDJRA00e2iVQY8DjZNLgcMhhuy40oUP4bgwaqKN3gpbl85XsEmLazSsXY+samrynecc6Z6kOi8SHFl1SGR6+i7VvyrKE+XwOm80Gbt26BWVZVjYC5YNQHlKQ2oMm9G0seAAgV9AspvzQOysQx9PnCvCmBPOaAgZDcfHdd7/7XXj69Cn803/6T+G1116Df/JP/gn87Gc/gx/96EcwGAyg3+9v3YGJePToEfzRH/1RtomDELQApjTxoQXTLNBdoQDb9wVr8oP/j3abFpS2nGUaxJVkP5dlTbd7zIQSpZ0/R2j047+QbemlxUNr7GSIlg9+x/uT2sK0XfC0DNxB7vEJcgLLpDTltoE8Y240GsF4PK58zF6vVx2vGlOOpG88cpvShuPcmqSkMmG1WsH9+/ehLEs4Pz+H9XoNnU5na/EY/z5GDsWk04C0cHvzRQkS72o8XAd4P3AZSXkl1AYeW2G1Wm3FEzw+tqa/UviGb5KQ4gCevo6xizAdH9NavULlcZ8j5BNZNgP9zfWmtx14XaznFKh/tJONKPipDnxHfaze0NrupsoijwzKLU8lvonVHR5odmZMfTT79NMqtz/D309w20mLZUljB/WudDQ/93s4+Glvodi0pF+0caxOxuYWMjGwAuMpQetYAyMWOYx5KyAQk1+IltjgrFeYhwIk2jNL0WgBAGo4oEHS6XRguVxGB3h5+bS+PPAhKeRQe3qDDHSyoNPpbN15s1wuYbVaXTmu1QpYWr+1b2P6OkRD6F0s6gZDebtJBg8GIfC4Hul43FwOfOxzDV4esMAVGld0XjpSZWvdvuX51KGDQpM/Ev/TbzHQgn/jb35EEgb/aD6SY+qRaZKDynncCqjGIFbG8m+bcBhCOl5qC62NQoERS6d5eMjz3tvG3u8txDh7mi6k763gSgxdoQkATjcNdgJcBrxwwRQAVLsRpPzob0n+1eH5OsGBGHkmjSPN/vDaBBK8Np30PiRTvTZkzPscqNP/MWVg/UejEYxGIyiKy/tjj46OoNfrVbtruG1ZliXMZjMYjUbVHbP8PkJMj/xtBaDpNzHBUk8dvbAcbYte/D/VpwqlzWmLcuTS0U3SaIHLIIunLHvNq4ty2Xq5xzPWjfoROLlJJ2HomERQHcvrKKW1bAOJD7Q8kS60Wbl8obID07Xb7UqnarxrtS0Pbnl1B9fN1LamOxBDejyEOjwm0c/lNqcpp89cF16d59XPHlu4Cb1ax/7C7zWfT9OfHj5O7XfKR1oeMfI/xcaMLUMqz6trPc+0cug3mvyIyc+SRdp48eh0zQ8J0SH5Vyn9kjvek+rTe8aEVUduU4T8Y68dkMrrlm0T0tu5yklBjMzUfHxrjHjql8JDls7KaQ/vQk/X1Vs0j9z8sSt4xrFko0p5WPnwdrL6O+S7aPTRsiQ61MnYVMNoFx2cGjTaRdAmBpZBYDFN3cBgjsASOpp18wmVwfMfDAbVRGVRFNUOUt6W+JvSyFd/0YHHA/CYL4I70B5YypbuqOXp+v1+FUhbr9fQ7XarO0UQuBqYOsO7xq6Fed0AE4A8SYU4OjqCfr8P9+7dg9VqBf1+P1uwJ0RP6HnI8PU4ujSdpaTpN/RbS6nlCFjQu2ljg7Z8Bw1AvjsT+U5EPNaJAtuo0+nAcDiE5XIJy+US9vf3YW9vr6rbs2fPrhxXJcl+bshq7es5Bp72303RgVL/em2OWNuE8gfAc9npoSlEBx1PfOIdn0tBmBhnBPPRwPncy/exQRikJ3QaBM075n6cGHqkMYMnYeBq8SdPnsBkMoEvfelLqn2Fu2dwNzSXQdc9XqzgANotHJz/PLD6k/I4XYnPd2YiTTFOZKxzLukdTebX6TspoIC/6+r22HwkFMXzxWNFUcB8Podf/vKXcP/+/SvlIF/jNwCX9xVKziv9LflP1z0eXhRo9lFIRwNs736NaW+qf3Z9OlEsaHukjIWQbkzxE3LpKswH74Y8ODiAbrcLr732GkwmE3j8+HFFN98laYG3FT8CG8cnzYcf0Uu/kWzM0BjfbDawXC6h1WpV/tFisYDpdLp1JZCUB12kSG38xWJRXc1j8S6nDf9GW1vy16guTznhJzbY5uFl1Jvou1N/4EVCrC4M4bp1i3QEOx8nlr3C3/HxRW0nehJGbL2lbzUd7kHo2hoKzYeJqQOVSUhrDh/Vw4+euIcmZ1LK83yDbYq2Gdr10klsVH5yuc/p5/djW/otxg73pMthe4fSUN7hG3S8/kwMUuKPqXa+dL1FCq5bpn7asOuYwE20CW5CXISD++tcHtBYicfO5zJVivfyNuD50ms0PDplazKWKnZPY8cEXTRQwegxfL2gjokUVIilj/72KqIUA1QLUmvfaMaFVba3nbmTEULIoAsZQFJedNICA6d05S4OgPl8Dsvl0mVsaeXSelvOETdyrHx5/tyYxXrRv/H3dDqtjlik31O+rhPEkH7zd00JXUswxfByKA/r23a7XTlIRVHAer2G2WymTjZ45U8MD2pppOd15K0WyOZppO8sOrW86sJqQ94OdFwgrGC6lJdFA/+ej0HMk47dXq9XLRrBI8bLstw6nkqjLcR7sQEQ6VspwBDK2+PgADw/mjl0rHedMYaow3eS/NTK94xpq/+agFaO1rex+Xralqe1ZNQu26UsS+h2u9DpdOD8/BwALschTsLzQAZ3tGNtH/wm1Vn3tjWlNxWpY4yW3Wq1qvv56Ls64PZX6vfa75T8LL7Q0nvSau/ohMV6vYbz8/PqeHupPpjPZrOB6XQaPFI0xbay6MV3oXwkmeLxQ2IDiPgN8qglI732Ged/iy/qtpMHsfawV29L9cpBi/UtbV/aJ5rvLiHG1+O+XarMssaRZrNK1wtQexKvpcHnki7V7Dc+rrzjUaKzLMtqslD7juuCUFk0vXUcJ5dzHrlB5WVRFNWxn1YZUj4piIlxcBqwnSUaY/Oj+Tb1TZ2xrvlSu0Qd+Wt9G+Mz8XystvfKY83m1uSQJfNjeId/w8eut120Onr7SxqDli3o1dXWbylf613I7uI0UX1g9WuKzZxqE0m8I9FUBxZtMTxq+aF1YLUBpy02TqO989bXM/6bgBQD4HJFG+/c/muKtpj0HrnQlD7L3RZNjFGP35ab9zxxJS4XNf1ngfsg9JlHp0jvvOWLO2ObFqy7zLMppvAiZTCkGCA5EWNc8u9y9zk6LJ1OB/b29qrn3W63cgKXyyU8ffp0a7WYlpfk+Gtlaliv17BcLtX3lnNKjatWqwVHR0dV8Ghvbw9OTk6qtA8ePIDz8/MqPd3N1Wq1to4yroO6xkBqgC+2HKksb3qJpn6/v9X+n3zyCVxcXFwpx+NkNDUec+Rb987XkCOa2ichwyMmX77aliKXTMLVqpIB2W63YW9vr3q+v78Ph4eHcP/+fXj06BEAXNan2+2K9GnOqAUrkJXSL7mApwpMJhNVju46ECOVjTspAeTdpNLqOp4HR8qubu7ceQxOycmRvqnTzjFBOhpw1dJwNOWE4THzr776KnS7XXj33XcrGqfTqUuf0UCI1A5NOjaWI0GD36F2o7LQ28ZaenpsZbfbhX6/D9PpFFar1Va/p7YL16/XJbvqoA7N2Ocoj+bzOcznc/jVr35V7aSy+nCz2cBkMoHZbJbdkbd4iAdgeH14oLYsyy1e0vKl+RfF1ZNrQvTiEaplWQYX12nBXHyOk7p01x+XC0inZCtqdd0Vj3tlOP7Pg2lN0RySqVwOpOz2DemwOgFMrc+xTGvyFYF8jbvc0a9EOri/6KWP87C3D3G88DyoT+ylg7ZNWT4/BcaySyTf22NfAEDVdoPBAAAg6q7b60BosSLAc1lG2zGUPhYvoq7NjZD9Qsd6CDH6l/K7x8a06IzZYU/p1PSgF6l+hqQnsT34DnvN9qD2sHZKDP/GS5MGapPgN5od7/XHeR5F8fwUE0tOxPS3Z7dlKIa6a3h5S/PRvGMiBl45EIO6MdibCqmtbnJ9bipddbHLet2ENvT4rta3vA7aiUMWL2snsWpQjym2CLQybSrAFoLXOdhF2aGghZUHd+qkv6W8QgGN0HuNfq0MKY03WBLKmwZBW60W9Hq9rSNe0HlFY4U6rJ4AAi+XpueBIkzD73rUIAWnuFNsBR7pb3p3LB6tKbVhnYBCHWhBLE/a2PcpoG2ORub+/n7Vx/SIa412/FbaAXRd7a7BKxc0OnM7mhosvpHGg0aDFdCxYO2Y0egNOTDtdht6vR602+1KZvEyPePFS1dMX1nOdmx/Sv3k0T1cPqcgJhDp+U6SybytJF6kjjgaXJ7dIdLfnA78bekvKy/6PJaXtPbg5dMjfK0gSYw8pGVTnvHYmpRmPnGFea1Wq2pnLI7Vfr+/VRfpugPe1jnHkFQP6bdUR/xNj3qjNNYJrHnpiU3j+QbrwvtWo4nWNYZvYsdGakAoBZjHeDyGv/mbv4GyvFxE8OTJE+h0OrDZbGCxWGzVd7FYwIcffgjj8biylXHnMqUL9RKdtN2Fr7ZrfzAFlj7LbdtJY5T7It588FuA7aCBpfdTaaa00v9zw5IN9G+tzyQd6fVB+ORXnfZD3YMnCaDvyhcXeP1pS99q9dGeae3ikZ94NDHVR1paTjOmx8WLZVlCr9eD4XAI4/F46yQATgu3E2ImKq8bIb9R62/JPrspqCNjrG+armMdGSvllRIDs+x6yQ7SximXid66pfCTRJcnj5DNxWmX/DBPGR5aaNo60Pw0D594aUIZZ50moPUJjWtZfozFkxqNnPdy2xq0PKs9LRrp36E8Ynwcj93hyS+2Xh5o/ZpKS6rO8Y4Fr1/F8961LvT0aw6a6tZHsw8l+m+iPVEHIb8tJEtSx46UXopfhOS/ezI2t5BtOt9PCzQDvel28zgAMUo8ply6A7Tb7cLBwcGVMtvt9tZEpRQ4pbRJQqgoiiv3nuFkCgUGv0KwyqF0UQNGSoMrqgeDQTXxi0fohoSthF0El64THqWyWq2g0+nA0dFRNYkvrVynwL7SJt930YbesY5GO//2uuEx7rlxy3d+aYFLDsmZs4JXXqeNB/614NJwOIRutyvuWOe8FgrM8HepvBYrF3LC4wjuCla5mkyWwO854hN4Upvyeyzptxyagy/RZAXqvH1rORm8TZDe0GKksiyvHHEo8btWNtbL69jSoCw9OpdivV7DxcVFdaLEcDiE/f19GI1G1cQWn9iUyuHYpYwtimLrmHMAqO7Jix1jHrlj8V4s3XVg9UcuGmPK1ZCbhrOzM/jjP/5jAIBqp2e324XNZlMdfY90zmYz+PGPfwwAlzZzWZZVGsofg8GgOrUA756juAk2w6cdkj1jBTbpbhWuT7mthBN9NG0TQRdOh1Sn3JDazKIptQxNl0rleeqMOzYXiwWs12vodDpX5HhKUJLT64XlD3rtB/RFU05nwsWL1BcbDodweHgIjx49gsViIS48Rjq5X4C0W3fZ04DYiybjcKegxweycF22dwq8/lkKcstBgHjd7wnqx9pwseWn6gbJ5/HYaKEyNN+AtkeoLP4tz1ezGSV7OESvFA/Q6optzesi0Y/p0UfkV4Lw9xptHJKPkENf5hxPnkkLCaFxKNGZOnZz0ZQ7ZvuiyHYE7+cmZb5V7qcdTfH5i9SOKfrO226hdvDqc/dkrEaE9ixmUMUYHd7Ob4pJchpd9L3XSQgFfmPSxzpgkgMeKtPKywuatt/vQ6fTqYIOZ2dnsFwuodvtVscHexWZlI47dFq/SPlZ9cZ8ceDu7e1t3S95eHhY7azD4+bQicfAWVEUWxOJofI9yt4yCL3jMpaHtfxD9HMnQFuRTenBgCMPYGFQvtfrwbNnz+Ds7KwKXuKEPM/f2+e7UFKhMevpi9gJD162FAiS+EniD80Is3hCUqRcHll1jtUzRSEfe4y/rYCRVb4mk0Pf0aObpGMbNb7jQStetpdXQ/yER8dr/eAJhkk0efU/dTClOpfl9o4hybnV6JFOTKD8iMe14nGDdfgwlD7FxvKAtluKXPEESTRj2AruxPJpp9OBsizh/PwciqKodC/frc7Lp/zp2bl0U8HlFtbNClZr4Pdv4s5itMHwKFhNrku0eevQtGOuBX6sgFnTwAka3AGLCxNTgjNeUN7Hib9Y2w+/kWwmavda/CFNOvLJRiqPtXLo9zFON88PQe1Bacepp60kWzW3HEnJj44Bye/hbdqE7LN0gZUuBpa/pPGUBxLP8SM2PceMa/AEeXJA0sv8WEva/zHyAX1W/KbX60FRFHBxcQGdTmdrsTX68HiFBD0ymdIk0Y3/+DHLnN5Yub4Lfy5UNi7GQV7istKDJusQa6N50JT+1dotdvzXrXOqLSTRH0NDrF2m+VPS91xPS2Owjj6RxjvmI91xbdHF00m6LtQuGo28blJfafaP9B3KAOvaH6p/JD9O8yM99eN10uqWQw7wb70nmXE7RrNNU2zCUEwjBI+sltpbo0fKN1YfeBCrJzld9O+c7VRHJ9fhTY/MzdEPMbovtY9oWbH50O92idh24Rsh+N916mzJvRTd7JqM9QpxrvBi8sTvtMqm5Od5VydfDoveWAczJHyt9LEOk1UefRdKE6JN4iOv8KWOXL/fB4BLx+38/BzW6zUMh0MACN8TE1Jy1GnWgjkeo5SXx53Evb29ynjsdrtwcnJSpZ1Op3B6elrRMJvNqp2d3CiONYS4MRsDi1djjZIUoEFKyw0pF7r7g7YdHgE9HA7h4cOH8OzZs+p7bGceCLD+zlVHC7yuVn94jT6v0tAcBI+8Tg1Chejx1lHKM0ST5nzy+nrvMQs5MZ7vPfIz5ACG6NMg0cplfqfTqY7I9PSNZgPwd7E6WPuWOqz42xvU4rKHl4VHEdLAY6wO90CTtXUdsBjnhvOVFHyQ0oeCA1L+KU4X9tPFxcVWoGY4HG7pYUqDxCcWPPKD55sD3vyovMDgTEhWSXyF+WAgGCd0kdfp3boAeYMxdXhaCxxpZWnPY5y/HEDexEUdOBkr0RnSkVpwSsvHy9NSGbytY8Y8TWP5gBJvSqD1tuxDni9vJ/wfFx3g4kgtH60NqZ1g2RMaPOXE5kP7SZLfms+XoidCPBqTVyotnA7pb8k+lIIsIf6U0sTERiQaY+AZ75wWiS5tMjZVH2NeuHN/NBpBr9eD/f396t1ms4HlcgmDwSB4nLNGNy5cprTztFzm8LQUdXV4yK60vqH1oO2Ycn/yi4gctkBsfly+avorNH7wuUcHp0KSgZp+02D5lVZ6HgeQZJwWK5DK8tpaXLfj/2gzcRpj66fRb73naXidPD4N+qLoQ8b47/i95h/y9o+VqZqdoEGyv1PHsMVfUrnatxb9krz1+qEevk3xYzldqXnwvDA/ipg+8qQN2U1anvR3U22aCxp9OWhqwufUdNAu/dsciOFVr9716gNNhubA1mRsDuauQ+B1DqzrhubUpUJzBmO/x29zMF4oD7pzA4OnaJj0er3qiDV0RDabDfR6PfHYRFTCUqBIShuiDXeAWKBHNtEADM8Hj4mjwR4KviOCBvlvGq5jzErGrYVWqwV3796Ffr8PvV4Put0u7O3tXZlcwd0+Hn7PpXC9hm1MwCCnkqLpedDKS7sHUiDMSms5G16DUnKUJKfFkoFFUcDR0RF0u91qd2Sv14OLiwt49uwZzGYzsfyYna08DecHS355jeHQtxIdGCDidVkul1u7Qbz6zMPjUl01+gCu7n6VZHKMbsPdvxcXF7BcLitau92u6eRpkAw9DEo2hdigByImqEjHVh3nPSTvKI38Ht9QeRj8wB04dW2cGFmXWtatW7fg+PgYptMpzOfz6phlXEBEd8Ret7OaA1oduLynOqkpWzU2IFUXrVYL9vb2qklwSS6UZVktTrQmblEWU57Hb2gAMAZUrqfsKvy0oA6/WbqL21mhACceX03HAR4Jm2tcUHAfURsT/F2uOIOlm3KOT6nd+fsQVqsVnJ+fb41BKqtj9X2dYKqWB8KTx3K5rE5JQEgyhNaXl4f1x8nXN998szqKfTQabR3FLtFHJx9S+/smBSLrTlr8fUQOWULHYGhMeCZypLy15yl9LZXHdUZd/4HaOvg7Vs9zvWD51vic3gFt5Yv50d+IXJMNdWIkGvDIcQn4LcYzpfw87c93zlvlYRmeU+AkXxXzzxUj9sCirUnbPOSPavXnYyl32Z40N12nSGOtCZv1M3w64gKxsPx57/eazZ0LW5OxfCDkQCif1HKaFLhWWalGlKbILAEek57Ca4zETHpI9FgMmmpkUqFMjxVst9vQ6/W27njFQINUHzT8pOPMaFoPH2mBPl4eX7kqtQG9AwK/4/dB0DrSSQ8Kj7Ea8y7WyciJ2ACH11in+e/v78NgMACA5/cN83JxB0To+NldyUZEqL48YOfNk38r0SXxe0z9Y8cZ/UaTgda3dWE5jFr6wWBQHSuJaefzOZyfn6s0pshxhHbkYU6nNKa/ONbrtXjcO35j5U3HmDfAKjnn0niQ+CoEyRnGY3DpzhFciIN0h/gmttxc8Mow6qgjYutC24L3p+VoSWVj+R4blQZopWAtPqdBcW0yVqI7VF/rPdKXiuFwCLdu3aoWDo1GI1iv19UiL2qr1C3Lg9x86tEXOXSBN5AnvduFI4uBT6pXOC3I2yiP8FQYKfiG45BPBKU45p8FSLbhacNQEC8kN6wAPP2NwV6cbNfyqRsYpLTEBkI1Ga75VlLZoW9SA5deHRWLzWYDs9ms8v8Atu/79fj7+DffaeqFJltDOl7iT5wwoKcHedpTKhf119HREYxGIxiPxzCfz8XJWJqfNbFR13eN0Quf4fpQp180/yjVfgqlbSqeQu1rKVaVawzwZ7FtZPl2VB7XlbsenyVHH6T6kSE9adHsaRuPPrZ0DLdzNT6QYiVSGqlMLd8YaPSh7SyVE8OzGp/yvLTf/Dtv/1nQbK9QX4XySaEhR9rQWPDYJjzddSOlf6V28PJqCk+l+H0vOqS4oBSbQoT8m5C9G8qPo9adsTcNLwqDeZ13q2Ol1ab8d+rqOG/Qm6ePaXuvIluv19XOD5xMAwAYjUbVDqyyvJz8sFY2xsI6Dpc61Jz2siy37ofF9zRYimi323B4eAjdbhcePXoEy+USFotFdRzaYrG4cszuTUWTATps75gAy2q1qvqBr9jGACYCd12XZbk1ESuV5+2DXLJI2gkTQ4dEV0zQKiZfDSEFpk2WhMrRAkA8b35nFQ1M1wGVAa1WC/b392Gz2cB4PIblcikeK07pijVq+X112r15XngcNSlvGsyn6XG80V1YvA4xgQ4eYAghZszRcSDJFlpXbdcrTcuPKW5SHoaA7ZXC37TeloGKaaVAEIDP9kgJeHlsDcwPJ8gpjaGyQvK/SeAONrrYDJ/jaRmeo4ZRX9IdlfweQwCfo4xtR+9tWq/Xlb0l7YyPQb/fh6IoYLFYuPrn04Zd+ixlWcJ4PK4WH3B7WdIpFFZwivMsv+sVn6UGuumdxSF9wPWPhz8p3VymcZuD1xG/0RZJ4eI/3LmKdefBuVx2GZ3El04NsuCxsWnaJuxhj7+TGvCSAs84Dvi7OvDYr9o7HkyW0nnbMkYfc/BrWqzgk/QO+Q99X/o8RM9isYDpdFrdL8tPWZHK5OOQjmEP6gbJm5TjUlwhJY+bHkNomj6rDEuepegsWib/m4+pFBtYGnuSLskNbxtaelfSrzTf2B24AJfyCm1fyTfBcnPA47t60mnfpn4nfct9AAn4DvuMxzctHt4VtDa1xq3U95JdF1vmriDZhzdZhnvA+4HiunXAdeE66KnbDjexHVMQinOlpqXfeNpJ3RnrJYQ/j3US6qbxpPcKMY/AldLUNdC056H6SIZdXSPAKkdLmzogNUOMB3joKn50tlar1dZRvtL9njxfrS5a3bTvJMOGBsA1h0kyojHQv1gsYLFYwHw+36qndnyIJ/8Q33sVfQ5DpK7QtgJXvAxsP25AlmVZ7X7Fvloul5XxSYPddY33HEoqFLjx8LU2pq00UlpLocQ6gLwfQ7vXrXw85Ws8rfF8jD6jYx7T0nsVeR/VkZuh+knOrZRO+h1r6Et5oczi5daRHzEBXwu0frGBD1o+TrjiqQ0p9d6VEavVNcYRjWkrT71y6BevnUMDDNR+wO+oruY6g4/THEEub5tr7Y76azgcVvYOnRDSZItmj0hpQ3QhQhNcHnlSFNsLZULt00RA5LqdSat8yY6x0kn58TFJF/fF2MIhhPyZFHvK0lf8t1T/WNmF/9MArscWoLJFojEUCI2l1fNdrN7U5HKKDpAm4unvGJ4KjY+649eS63Xp96JuQCw1D0uHemxH6zs6JkLtiCep4EIovCrGOylv6T2P/+NByPbOFauyyueyiLej11/KiZy2bEh3NVFG7DchPedJj/WqK5+l8vm4rNOG3jJ5elo/ixbP+xCkGE+oHh4fJUX2a74Dp9MDy6YIfWPp7JB8jEWKPPV8Y7W3ZYdJeWh8F7JtQn2X0n6SnNDkuNeW1fg7Vj/kSivJhZh24rIsVg5INIae5UBufRXTf6lyxiMvQ2XmRKy8w29i8o9FDjngKfdTtTP20wzrTP9YYRdTprWCVSpXEswhYwidsE6ns7UDYzabwXA4hLt371YO/mw2q3aP8tX4EnIJSI8Bh0FS3OXB33PnVHI2y7LcmmjOcRdXTBt40+46iKkFi0Jot9vQ6XSqI8JeeeWValfs6ekpfPTRR1t3dFAD7qbe08sRo2BSg6vad1IwyxPAvA4gXXzlrJVWalsMaOPO1+l0GtyxY+XH4TUymghW1DV+Aa5O1KQ4ot4yLWMyREOM3sTg4HA4hMPDQzg+PgaAy3um5/M5vP/++65di7l0UVHo9/x4jHZvkJ3S7AlESadThJxnzWHyOu3edLh7udVqVXfe0YBwyI7A/739mKqztPLX6zXcvXsXvv71r8N8PofZbAZnZ2cwnU6rHaZ4qkYsXXVoa0rGa864Nr5vkq7JAeRZq18wDYBuK6YEfz20fYbm4LUXNB8Cd8Pgjlwul732XQy9uFMer5PBY7O938eWZ9kDtL6pgSqer6XHvHljX9BTNGge3nxoWlpPaRIkFlIQsCzl3bqSv4/8Z4Hy5tnZGezv78OjR49gvV5Xp0V5QY9e99TrRUBoQgXrGrvzPTea1Lmpeee0BSTbI2QHe4Oz1sRkDPjkBac3Bp6YnvZMsuepDEGdJJ1UFtN2/BuEZsNrbavVIaUf+AI3XsdQzCFk49XhZ832k/qLHj8fkqnSCSGUZvpPW6AVQmrdJb0kIcYPrqs/Uuui+ftNIkd9PWVw5LZLd4kXidabik9zG4bs+6TJWBQqOQx+gJvXATkC0k0jFKDSnHlvoNQqN2R0aflrBgHPD3kLHVfq3NHjZ/GfdMyUVU/LkNTqLP3mR3VKdyXy8vDvbrcL7XYbFotF1Qa4M9MTFA69k2gItQFPWyeIkRqsltJwYz1mEqHb7VaTr9QopEdCIw/F0pYCSbZozyzUNc5z5JNq4NaZnIttJ05Tjn6lQS8uqwCeyyhedp3yAMIBSP63hRTnL+TUxgQTpfws49zbb7nGEaeN0oELPIqigIODA5hOp1U66/5RzKfO+KgTwLHaUOrzOsGwVOTUOTFjhdoTND8qNyS9rPGnV9fScqTgN/IbPbIYd2UDPA+AaAGX1LFJv0f5Rnk3doellK4sS1gul1XbhmyW2Px34VfkDPxq+efMw1osIY09q36c9z200vy8sp3abdpdYFo5mgzgdqVlH1D+p6ABRlonPvbLsoRutwtlWVa2AdcRlizn9rgHkmwLyX+kg38v0UbzjO1PCaH687SYPrZMy7bh6ay8NX1J5a1mt3r9F6nesXabRYeWR0z+Gm8AXI4POqlK2waBdjM9Upsfaeyhm9NkwWOD5YTFW1Ka0Hijz24a6siAXMgVe+BpLRmZoy/q8mSsLSLJqzr2jKfvKe+H6qr5hhKdlg7mabRype9DaT358u/q8orH3rJsNqt/NPp4mSG/J9XXSKXZeubxvzz0WPaxNw8PQrxrxSz4b88Y24WfH+snW32aUq6W53Uhpt1j6hsb//KUd5PaDWB3dk+MLePxhUN0J03G5u6cpgMasbguWqTOkiaJQkFT7x1esfXE411TvrVA7+/kWC6XMBqNqt98ogNXX1v3NsXAUqxF8fw+tqIooN/vV7TjCl9tpSo1QlutFpycnEBZlvD06dPqWQ5ch4OWu0zaTnSFIZ3w8gQNut0uHB4eQr/f33q/XC7h2bNnMJlMoCiKrZ3IANt8nhueQBCAXr/UFYaeMjVw3pSCCbuGd2U4pTN0H570jVY2503EcrmEs7OzLeXMA7+0PMtYpLI21OYxDkdT45UeGy+VHyvjYunMYYhK+Uj6FO8B/NznPgfj8Rh++MMfQlk+P2KPT8aH6PIGkKw7aes4wvhdjCzi70IOaRO2g4VcfE6d4NiAgWdc4uQ+X3i2v78fLe9pepofPXHEC6wvDZR3Oh0oyxJGo1ElA2PzRVmG+SDdeNdlyI7jPOeRj03hJvktGiiNuNM2dLx1bMCDXykSSk//5zpSGkv4vtfrbfG2VUZsEEObyJJ23KD9DwDVbnQu84vicqd6u92Gg4ODanJqOp3C2dkZAGwvpqBtkhPYFtJEvJRWgjZBtNlsKns5ZiesB6EArDRJYukg/Efv1KbBVCnAr9GhPaPtJO3Y5LZBqG5afT18wseZRncI1sSD1A+I4XAIJycnMJ1OYTabVbIH03viFLhYeTgcVt+EaEUbibbzTQ3KhoDtRXdUX6e++/uCmEBsTsRM1uXSGVROSHIwt26iekiSURqNnCYquymd2vc8BudBqP+pzKfyTNMlWn1ywVOm1Z/cnpfGAX+P/SnxjEafNVmh+VEvktxuApp947FTUsZuij+L34V4KKbMTyP+vtTzRcV16H/XZGyMg5aCJirscdB4WglNOcmeNg0FbZsMsGvlhQKuoTy0d1x4o1OFxgE1eKhDpjmGnrIlWixjBR1rmo63j7RyX3IE6d2wtM5SuR66re9i2wAR4/CnlBXKizuc0m9eLhei9CjKsiyrI2UnkwnM5/Mr/XhTlaTE1zFjLqZeltxJCXLyvK1nOYMM0jiVArkaz1NHS+JzHliaz+dbx0qGZHmMg1a3/zzvYsvR8o0NYlrjmP9tfSOV5XHyQ7Qiz6zXa+j1enBwcAD9fh9arRbcu3cPLi4uGj9CiMuooihcR9Sl6F78H68NQB08n8+vfC/pbV6u1FeazmoywEjHKn/uGRchnqRlhGiQxjovA38vFgvo9Xrw+c9/Hu7cuQP9fh/u3bsHn3zyCUyn02pigU/E0nrSYFTIhgvxDOURHoDytAEvk9pVHjolmjmNFmLkgie/FwlWsNAjK1JRV6+gP4C8TmWRJl84P+aULZofJvkFnK5YW44GUbktoulTmo6P2dS+CLUjToLRBbJUPsTIRi89vD6SfpFkKg0g17FnvbTz9xoNlh0s6Vfer3X6FyepMU9tstR6hhPzm80Ger0eHB8fw3q9htlsppbbbrdhNpvB/fv3q3ZZLBYV/2jg8ovSAPB8MrZJGyNG56XyWYpevW7kprkJGa6Vo40hTaanxkCko9SvG1yOpLa7ZF/w99a3AOHYgaePtHI0f95KF5KvIXlVF1w3ePkulrc8ukzTTWVZbi0w8/IN/T6URnpO6Zbe8b9j2oS3h6R7vflqfh/PR6OB5sPfS/6jRbe3LK1MizZv32sxg1B5KXrgRdSjdZFDb9axKXOjaf1vlelpS4nHJD9Mwo25M/YmdfiuYClTr7KVBFhqoFBK7zUWcwwSmker1YLBYHClbFo/VPxa2XyVfkjZhYJRVpqiKKrdLQCwtZtEyuf8/HzrmVQ//t1Nwy4Eo7SKMqbs+Xxe7VzodDpwdnZW7YxFaLscc4HKthQ5F+LN2LwoXbkgBQpD5Wu0xBqLWpti8JZis9m471UMOaP02Wq1qo68xu/ROcP7V3K1fWo+3nYNyUErLwymATwPisXw73UYWwiLRrwLfG9vD+7evQsHBwewXC7hv//3/17tcsJTEjz1jZEDRXH1niUe6A7l7xl39FlZltWOzf39fQAAePLkSTDYkBLESXWuYoFtRk9B4AFcDdTZTdXPvF08dV6v1zAej+Hk5AR+53d+B1577TXY39+Hd999F773ve9V9aLHnpZlKco4WqZmN8boGTrW64LuiLUCCvQZPr9OJ3sXfosW+Pr7ALrjtt1uQ7/fh9VqVU3uWHYV12e7kDE5bTWAqz6RZyFZWZZXJqKa5peiKKq7YieTyZb/RhdENlEu/xv1JZeD6A/iQhW8aiCVL+oGd/mOIo8faI39FP+IpudXutDrFzwoisvTiNbrNSyXS9jb24OXX34ZZrPZlr9LgeP64uKiOiUKALYWYofKpJMT1Fby2Pkx2LXc3aXcQvx90i0aND2Cf+eIz6TKjl1A44EYWYlppW/q6KQU/pRkKW9/D01an9G/vSfQ1O1zz7VaoZiDpz81GUS/xf/pzn2q46y25/nRfHOdFqiVWRe8DVJjHCm8wL+hsW6rffnfoXylOEKsDLDyk3BTdFDTdNyUer5I2FWsCMHHjMf2luwHrl+kOgQnY62K52gUTwDYgxQDyUN/Sv21QJcFrtClFcWhtgoZHTxQGoKULsaQ8qQJtQtOniDd0k4M/NviAU8Q1TLC6dG1nU6nchYBLleCU7r4/Wq03zgd3gBtrnFYR5HSd3URykNrl5Aw5sEN/Le3t1cFXwDgSvBaGrO5YPFYqDzNoK4b9EsJ1mjBIQmeOofeaWk5D6QGXbENtfFIYU1i8DIlOZACTkuoTUMywhMA8LShFDTkY7TueKrjsMfWQSobg3pUhnC0Wi04PDyEsny+a5QexedxQiVaJPqlow6t8ag55x56pO/KsgzuOAl9X5b1jsrMCYlXpX7w8hJPF2vXSv2Gx6NKtGp9j20sPef5c3tE4nMeVKF8Z/GY1B70ePdXX30V+v0+3L9/H+bzOcxmsyqNVAcLdFewB03p9l0htkxJ7lvtFZJTkk6T+F2Sf9a3+DfnxxzBK0qPxJtIFz82WKoL1oP6BDg+yvL5zhA6HheLRbW4hX6nyXjMU6MBITn6mLZp+xDbC/XBG2+8AZvNBn71q1+p6euWmQPcr5B8CyqLOH2SHWr51pQvaL4ef0+S0XhiBdoafNFvHb9N4stYu5rjzTffhDfeeAN+8pOfwNOnT6HX6221AT0Cn5/oQK9l4LZ2bHyhrqwO2YzecrxjS0or+Rs5cR367CZAk/f8udc+SfFFpW93IRNDMRVKE4B//MX4qJZNYKW35LcES65p9mzIj+O6NlTvVPvNajuPr+L1ZTQ7yUsrXWRk2YMh+rR+CfErb+tYP9nLo3XkeGw+MflrtrjHftfy96Sl76UxSWmhaSUZi+kk+2tXaFoXxsYGYr+Tvkltwxibq2l45Jzk30o6u65+liDFWzy+2ZXJWC9xuxwYUuW9glALRMUipb4xHU07TVJkVqAMy+LH0tVFqkMf803I0MEdSUVRbK2U9QrqlHaQ2pkOblyhj/kvl8utADX+zftVcsBDRlTsu1QejzE0Ut7FBAJC6UPGpHQP2v7+/taqb88Rn00iNLYkIZ6rvJgx4TWmJYMhxsDzlB+ipw59+D50550VbKN/W8E5CzwYSPvMu+rWMt4433kcr5DjwnWPtsswRQ9bzpLH4fbmKcGzW/Lo6AgAAM7Pz2G9Xm/tuvTAUz9uD/B70/l3HliBHk3XIP9pE8ESUO95bbHrcLiobtfkTUjnWLo4VCfJHsAxpU3IaPoa+0YLVkllhmRVUTxfBIf0hJx0qc54J2y324W3334bjo6OYLlcwunpKYzHYyiKy51VUr01ULm7S0cxprymaIulAaHxq2VjAsDWBIpFR4gmjd/p/7nbi+tkzVnG99LdywgMNtLFOnxxHy93sVhAt9utJqK0IBSWyxdycfnprbMGS+9IPor0PdKL/tnrr78O6/UaPvjgAzPwIckuL//wdLH6ImQ/cj7gfS/xDeUtqQz6PfYv5xfpbnCNVpzQx3y81xWk6LaYdBreeOMNuHv3Lty7dw8eP368tZAZd9EWxeUk82q12tIxtB84YuWqx9blqFt3/NYrE0PlWfZ5E8itu3atp73wxlCo/qB9VrcPLHksPc/FwyGbTWoXzfbU0qXGpzw+KX+mfSP1kWUXe8ehJvdD8PjCVO7F2GmhcrQxqPWj1gZamXSHrFW21y/y2oMpY9DTD9w2pQiNhVDZkt0Ta7fx/PjCbZ5v6hhMlTkxuo/74pptk0Mvv6jQxqkHXl1glVcHu9D/lI94HMRqO289Lb2m+RQePZF0TPF1DwBv+ddNp4cGSXhKR1HlYOAUYyEFOQbcer2G6XSqGiExxokVxKAOn4ay3J680/LSVtVL5eVEXWfgJjpHKZDatiwvJ8sfPXpUOfy7moi1xoFXCXgMVm//xSgbKyhaxwClkFbAeduCj2kpkCgpRq9jR50JbWJAu5PRQ38IMQZvbN5aeR6jmcoarc5NG1xe457+HTI0y7IUJ+JxMRDKjPPzc3j48CHcunWrujc2F7x97hmTUt7SmA6V2Wq1YH9/H4qigIuLC1N2xjqWPK33fjgK3tdWO6zX62ohFbbDdDqF5XK5dWoCp58H3mi5MbI3JSiF9uF0OoX333+/qsNgMIA33ngDHjx4APP5HLrdrlgm/63xTqxDx9sntl4S8GhT3PFFeZbuwKN6I0cglJZPy0wNitRJa0EL3ljpcvpA2qk0sZDsh1DQEyfoqb1OecTDg5RvcXch5hsb+AshZAukgtcdf0uLNnbl71GcnJzAv/pX/wo++eQT+O53vwvtdhv29va2Fqxy5PRtsR44UY72/nw+V2V4CiRblB87HJsf/c678A5A9v9i6oi0Y7lHR0dQFAU8ePBgSxZ7gEdS7+3twXw+hw8//LDy5b/85S/DW2+9Bd///vdhNBpt6WGsA14tgjSF7CukC09coFfO4LHZ/LjiXQQEKV5k/7qJWMVNBx/bsXe7Un4O2RFUvwH4jmbdVRtS2jzj0BProPlq8MTjPHR4ZZ9EI6fHW34oD6q3Pem1BXCYhtvCGurY6NwvxhN7vHXg5fP3/B23w3k5Mf5rTjtMouOmx12pHALw+4S7AqeH21CSr+eRH03Y3p+hPnbBa1SXcpsa4KrO9UDSE1694B1jW5OxWmZa4KUppCriEHIHwzliGY0aePg333VC33GB6p1YiKUxxYjxGqn025BRRXcZSQrY4lftqAMpP48DLTnf/Dl3LPm30jsNTQTTPOUhpADXLmlKMRIofTTAX5YljEYjAICtoHXTiiHXWLO+5QarxHdeWihCYyKVF7i8wECiV5HRcUffaflwQ1TKT+I1zfkMGbZ1oMkNniYWUv003ZHi6MTqnJDu0GSnBzE2iiTDJecAg3lFUcByuYTpdAqdTgcGg4GpZ2Lb0gvLOZXSxvCpVAcaNLXKibHbNB7QZJaUv9XeWvlFcbn7End10SC9lBc9ftSSp5yHNH2qBRhCwazFYgFPnz6Fw8NDODk5gV6vBycnJ/D48WPTDvLaGpY8jwmkWGVQ4C5Zukuq1WpV+hl3f4faJSQvvfRYfNg0vLItxN+SPM1ZH87DMfnSvrL8AKmOZfl8gar2PkQ3zbsoiorvcFcePtdseF6XUPlIM/0do5u8/hSlvY49UieARWVlv9+Hr371qzAcDuE73/kOtNvtare7dxFkrM6XgPI9NY8U/8ObL4DO5xRo01rpQjRKNojlKxRFAcPhsBofGHgPgfJAu92GXq8Hq9UKnj17VtlJX/jCF2Bvbw/+7u/+bitPSg/2m+f0DapL+T8AqCbi6YRyXb9FoqFpeOTNTUXucXQd+tmy2zhd9O8YmeqZ3AqVqyHFPpTiXaEFIthGkr7lPjinn36TWifL37LsWo9/HGNLS99yWa61lZQfp4nzWqy/y78JyTZ6YgcAmHpc6ntPfCDGl/Pk6+FrTzmSzkht/xA8+Xhs0lAaT983YftosNpY8tOkKxw5PGPrRUFI56Xo2Jj0N7X9rHbh+pT6dCljNiQ7Ldtay4O3a/TO2JzC59ME3rCeOyUkZ5EbI17DROqT67pHKzf4zuHUAFxddLtdGAwGsF6vYTKZbPVNq9WC5XK5ZeBRo6VOYIAjl3MWS09TAYpYGjxpsO2Xy6UayLPqE1tXb3qqDKSx7zVcUdmEzsav019SsNSiS/qey7LQ0a8emkJGFgaSaDsBXF3oQvPEb7hRi4EcXr7lDHoDqZifBh5AstJJf8fSEou6Rg3+ThkHqeB5Y5BBkg30OODj42O4ffs2fPWrX4U33ngDDg8PYb1ew97eHkwmE3j48CFsNhvodrtRQXeLTk6Phw+8gVpun2C7WI5cv9+Hsry8H1eTPXz1oZRnHSeJBn3/f/be7cey4zoP//a5n9P3mZ4rSQ1JUyRFXUhHtmRLSuzYiR9sCIgDw0De8pLkT8hb8pTXvCVAgBgBHCSAX/zgBE4ix7EdSbCt2KJESiIl3obDufZMT9/P/fJ76N+qWWf1qqpVe+/T3aT0AY3u3rt21aqqVetWN6vTGRpr7XYb9Xodg8HABZI53doxYbIcDZb+4nTRjld6PpvN5uyJEIhXebCsrDEkHWVLsEyrO9lOR0dHGAwGePXVV/HpT38aS0tLuH37Nh4+fJiLPqLHZxMtyl4J6fFQ+kXBmje1VWjHBfBELnLQTlLNqbSUL4/dP6+gRQHT6dQtCJ1Op273PC3goKO1adJK+ikA3DdHR0duR/toNFLvwqzX627ykvI/TV9H2i8xPUaysdFooFqt4s6dO6hWq3jppZfmJrmL0sSPbvbRSvSm5s3HJfG2dmRwCnienD5+/K5Vrmu6k2ySkA70QbvPj3i4LPk0mUzQ7/dRq9VQq9Vw9+5d3Lt3D5/+9Kdx/fp1fOUrX8H9+/fx+uuvYzweo9VqqTtYgXAfSHr5jq0sO94VrbXfWfuwPpxXusrGee6DFFhljzWYLv29kJxItT+KQtr7tMDi6OjoxKlxVrs3pWyrnOO2jSUGmyI/y27vlLxCMT8+0cDtMc3HA+YnKizlc72o8XxMX/KyfP4UvdPsTuuJE3n0dWp85bzLLckDEh8H+9sa94rhvPfVz7BYSJ0l5SGPRccWflvL439r14aG8o9OxmoKK6QYJCxEWIVhquIsglQDgP+2OhBcYFoEvi+oKb89TUGboqgsdEn6pWEaCxhreWhpfLRpfcLfUeBlMpmccGrlMW6+/grV3fetL6222s7yne//2FjLE/AI/R/7TgajYuX7glc+48TXZiE+SUnvQ1mGQswh5E5bHhpS+CDU1zL4k8JHckIgBu6c8G987aPRR/Dd2eiTUfKZlWb+HS8j1laWMSHzLxMpgcUUeooaRaEgnJVmLs9pt8fy8jLW1tYwHo8xGAzmdnJI5NXDMdkjZdyiHCy+axF4Mpmi8b5mg1jldZ6+5nn7xh0HN45Jj9MuzCzL1B2yqWNLo1HSFaqrxqM8DzpukyY0+Y5tWZ5Ggw8p7S/ps/gHwJNjJGkyYW1tDZcvX8bFixdxcHDgAmjSprLQmeKPaGny8F9efa+1lcVHIljaOoWmmCyUfKvpeCuPkaz0TSLF+kSTKSG9Iu+e5Ho1thOJ+FHyJZeBtACCt40mH7PsyZ2ydCemNr4pfbVaDdJXFu9qNpIcexb5TcfD9vt9DIdDLC8vY2VlBUtLS66t89Ia+06OH+l/xRbBpvgE/L383tcnef2YEHib5v2e0yd9WHnnX6xuPF9Kyxcn0FUAwPHip4sXL2I4HLp6kF6w0i35U445WthUhq0b4wXeRkV8W8s7K02p+Z02Un3rRcDar5b3PnucpyvbDrbYkzEU8U/IN9D0OR+TedpR+07TqzG7JWab+nSeBouNlqc9pfwK2bI+XWLhAfmtJa7j43FL32jl87qGygnVKY8889kIHBovxPzsRcmqPHW02IQ+W8dKUx7+Dsn6kO1OaSzj0mofFsVp6icNFj8/D31nXa+iiLWL1Mc+/WKBbGeffvHFRnx0AjnvjM2DIg1A31vyPG0UDYZw5HGwtHaJ7Yj1BQL4+9iOOx8tvvaw3Ikh3/n63BI8SgGvV8h5H41GJ1arh2jVwI2NFOXoa9uQIZcXeYI9ZSo9bkinjAkZ9Mmy7MRdekWCGDxvH1KdPJ/BK/mQ6I7terWOGW0chhwB+U2sb6QC1HbEyiPQQu2Wer6/lj5F4abc2ZUyXiyGdl6DKpTPaQRjNJmWEsziv/OCB8v5j5VeH/b29nB0dIRr165haWkJt27dwuHhIQaDgZqvdOSskPTIu0y1extDAQeJEC18sgSAC6hPJpPgLk3eh7y9LQEo/rc1IOtLG6s3/+7ixYu4evUqbt26hcePH0fLtYB4XZOtdCRvo9FwJ2tYg1X1eh3j8RiPHj3C9vY23nzzTVcG32Xn+57/JjqLQI6bFFkZQqVSQbPZdIH0Xq+H4XDoyrPueEgF0Z5nR1xRm+s8+DAhZFmGRqMBACdOiUhFvV5HvV5Hv98/ISdi+pAmM/v9/txkpkzHbQ1aIMOfj8djjEYjx1d0dyyng35owQaVeZ7A28wajNVkgSWoTeWl4PLly/iN3/gNvPPOO3jzzTfRbrextLSEfr9vuju2CJ/RLku6SgDAHE+k6H0fuA8n9V1K3qFgJX8fag8uv/jdyr6dTL48+v0+BoMBlpaW3G7ner1+YtGPFXn6MHQSRagczVcqC1Y9fVo4z/qiCIr61tY0lrJ8eZP80E6W4HIgzwSBps9oYc5pTCiEAszT6RTD4dDZsQT+Nz9JQitP2uCh+IU2KSbbLaa7Yvaiz1YvArkAzIdQEJ//DsUJiR8J5L/RO4s967PBtHahvqRJeLIH+ZjgdZF3DftkNOkpvrCZn1Ikvw35oZZx4vPPU2WLjOOeRozlrKHZ6mXoI8mz2r2f9JuP65/p3eL4pNaLTrbj11IRpF6Qsoc/p/T0m+SHxSYk3WmBdzI2j0MRC0BqFbAorFgQ0Jqfjwb+rVWgSoeW52+hN4+xRvlbgtsxBZFHaVlpCCElOK85uqFv+P/SaEuhIaSoQzvl5I9WZmyM+MD79bSFp2VclGWISMPdml7SYglCL6IdY3yVd6KE+kDyT5E6SGOyLMi218pIKTOV96idQmWmyBMrHSn5aXlphn3RPg7RlFpGTG8W6ecURwpIn4gk2mK6wfcdBXhHoxEmkwn29vawu7uLSqXiAvuawRayBYqO3RjdoXQhg5Le0er38XjsfuSRUVabpkhdikLLv1arodFouB/eX1rdCFI/aTylpacAho8nLDKOgl2TycQFy1OcAks5vrL5OODtEwtk+PiDAoztdhvtdvuErpATCVbeKoOXUttqUTLaCk32anJR05O+/GTevvKsMlv+5KGDxoBF5of6ULPZtTScByngKI+apcmvkC7l72R6ykv6PXxhDJUdahsrNP/Q14++Ppb/8/t3h8Ohm7xbXl5Go9FQA2u87BAsclHzE6V8tvKqhlSbg9crj00j3/nsW83OjfnWdNUABfG5/CbepFMi6JhfmhCSdbOA097r9XBwcDB3dYxW75hOsZYZ8sHPQl5b/Y8ycVrl+FBmOxfxUVLhG4uhd5pMtthFPj5dBGL0hOpG+ovkKT85R5sYKUO+S5otdk0RWGS79lz7NkWOkb1h0Xc+3R/yN1PytKTz6VSLXUHpQjaT73mof3xlavo4RFuoLaTdtkjk1Rcp8imWh8WOCcnKVPjaV/vbMvbPWv8tAkV8+U8ytHaROsuijzlC/q9FPsXy5ljIzthFKseiCAXa8pQp8wmtwiLII3S01U2++w1jzlbsGTFnCqSythhYloBJyvvY6sAU4a+lDd1nRYYnQdaP9xU5uvQNT1tkJY8WbIspyLIdodMQ/lSOb/V8al6EMvIrijwyx2JAybEZWhEaUkgyT18QTctT+5vDtzM29E0K5HHdWqCKQyppQpl3O58mLONzEfWy5snpi/FSmXKG+MJyV7HkF/qfdjPygOTdu3dx//59t/NeO8JXwjr2JE30bSyN1fnndBDNoXu1aQfw0dHRiRXLFsRkUojGReuc1dVVVKtV7O/vo9/vO9uMAtAxvUFt5qOVjudtNpsAgMPDQ28bpDjAhNOSVdqER+r3vJ3oSNMbN2649i5DRxcN5OfBWeuLFBlM0E6k8N0Ha93toZV31m1TBuhIerormxYP9Pt9ACd9Pt/doNPpFL1ez/1PNkqz2XQ7EEm+ZlmGVquF4XCI4XB4YmX3abQr93v4PaVSFrTbbdRqNTx8+BDtdhuPHj2aq2co/7KQNxDNv/flV3Zb55WfBNqRRHxCk6axNqjVarh69Somkwm2t7fd5Lm8juDx48eo1Wq4fPky2u02AGA4HKLX650Y01ZdNZvN8OGHH2I0GmEwGKDX681N8Fh1HS8v5v9SO/HTPs5CP/hgtYl/2lF2LKMMyFMXeIC2SJ9y+Vqm/kxpQ82WpW/pZImNjQ0nG8bjsTvphesF365TbWJMK5f8BoK0WXztHDqFT7uPVMujKDTaOK/44joxn0fKytACT56njyZ6HktD7+j4eeqbmF8q6aWTnur1uncnNa8rADX2GhobVr8xj3/5cZHXmhxK8St9oHYv84RBORY43SEZQnwheeiTivOoB604S9ppIwFfwA7oJ3ppslHTZdb6pIw102SsRmDewkOC9DQme2KwKCWZlqe35K0FfDksbajREKOXvg0xYFED0Ee7lmeMBywGhvbMykfWepIR4qNX9ocMdpcJax1DBnWMrlR+tOSh0Z3Cu3nb0UJ7Cp+lKJW8CkgLOPj4zFeW1rY+erT687QhnovxuXbMiLY7xAdtoinWpqkBY82pIBpD34V4uQjy6sEyaOBBBd87WV4qny9Cv9CkF3cWLIE+jc99+WdZhsePH6NaraLb7TrHVC7kKdP5kbRyviwqlzUZwfueJgHkTpaY/SLz9/EMf5Zi86Tqd+KH6XSKZrOJy5cvY2VlxR25lqefQvqV27j0wydw+J3zofy0MmmHbSgYFdOjXKZa7TL53Np/sbFH9aF8uHyXkww+2U/lxxyr04JFHsb6Tuo97e8QD6TQ6LMJUn2L0Hvej/K5dpwerxf/li989PGd5s+Q7KzX62i322i1WqjX69jd3XVyjrdHrVbDZDLBcDjE5uYmbty44cbt9vY2hsPhibYiOVMUVt7Jm6+Fx0L2oyyfTougBUuz2Qz1eh2XL1/GrVu3AMzr5xRaUyD5gp8kwPmI33dI9KfENCyyWsLq/+T1V6Qs4H2dZdncqRa1Wg2dTgeDwWBukp3TNJ1O0e/353haymcLnZQ/X9zkkwOp+ld+J3VbaLFnqq6IxTWK+nqWss9KnxVBGf7yeal3HvvC4iNKvpXpU+SNTzaktqFMz/tmNpu5xRS1Ws3pVFo4FMrHamuH/KnQ9z4ZGMs7FTE9GbKfZFtKWNuoUqmgVqu5tPwUDZ9tqLWh9izUNrHvYpC6SX5Hz2ihc8wWToEsT46t0Bj3xUR4XYr4+jG/TaMhZv/KtLE+tdITg0VWxtqLeFqOY8k3Rdv944JUf+w84TRp9Y1Z4qdQ2izLTtyDzn2fReLU7ozlCAUBOMoYYKEgjkZTrFxffhYn3HcPpLx3QdshUJQZfMEQjca8SAlGxAyE1HItkIZdijHNV9/IlcSSFr76IkRDEZStgE5D2IRg4bs8NPomEfIiJY9QWp9RxY+n42nkqlDiPz6uYytRrfRwWiwGYiiNvPMSeLJSKfatRlsRWmR6akdt1RMdtRfLw+pUUr6WdKFnobys4yNGc8jgt/CDBUWdYIlareZWagNwwUd5z2HIGAuBAsnvvPMO3n777VyBw6Kgo5JTwfV+LCDO9eLh4aHb4RSa1C6qh6wB6Lw6lR+ltrq6ildeecWlj+3yzRMQo/R8BfmFCxdQrVbdPah0FCS1Nw/iyLLp7yzL3P0nw+EQ4/HYbMdIB1YGOFLkpwyA0+/UgLpGIwXtK5UKWq0WWq0Wjo6O3N24mmwq224pO6hioZHzAf9Og6/vzgNkXTVn2Be4406vNg7oCFUAcxP4PJ1ms5BfMhwOsbq6iitXruDatWtYWVnBt7/9bXS7XbTbbbdSulKpoNFo4PDwELu7u/ilX/olfPnLX0a328Xh4SH++I//GI8ePSqjuU4VGp9osmA2m5lPkgCAg4MDAPOnz6yuruJzn/sc7t69CwDuvuzQjlkexM4zBvn44XcMU59SfnREfb1eR5Zl2N/fL3WnR9F8fOPC8q3cPU3jgfdNrVbDxsaGW1BGkyh0fzLVZWdnx+kcef+fhRYar3QXuPX7PG0pJ0BoYYBPP1qCxRKhEwIWJYM/7kHmFF14nvRYCDEbrYgdpPnyclyfxZ3IEjs7O6hWq3jqqafcfeDdbhd7e3sATt61Fysf0MdVKLYR8ku5XUo2pe+kMElDyLeWOspHi5RHWpn0t+U0RQ2VSgXLy8tOZh8dHeHw8ND971tEE7Ib6R1faKylIRvBRz/vN34ygawf7xtOZ7VaxfLyMoDj4+21uHhZE4h5fLuzQBFdIL8N3XlN8NWzTJ2kjXcO6nNul3xcT6/7Gc4ONMa5HOIxdEpDczvD4fDE2OB6aBH8NzcZGyvAGhywQCoGSzkWhIJLPuWjKVWLwcjr4HOiNNr4e2sQTL6XkzMxei0GoqSFT/TEJhJS2ovAGTwk+H3lx/rWl97X7lqgTwYeubMXMmZC/J0CrU/ot+S5soPiZdXBkkfMIQgF8Hz5+8oss14aUpybGM9JSKNaSxsKlmtl+miJvfM5QNIxsQYurP2h1deSv4R0nKXTZw2AWcvm7+QRGT5H1DImYmVLmWGlVysj9b2EJTCmpdfkHD/6ltfRKgusOoMcTr6jmybxtaMjY3InRpfvfVnyigKsAFyw2nf8MG9fLdCUOtZiafjfId3sg2VMZNnxDtV+v4+HDx9iZ2fHrei32Ek+pBroWoAklI4mI2mnsg957HHL+ODyI0XHAcf2Eqd7d3cX29vbWFpacryolW3RVaE05y1wkhr4obyK2izc1g6NXy7baEKDB8FibVq0vTX9JPtayom8OihFdvEfWkzG79/k9paVHn4lDf1UKhW3yCKFRiusfBSSIVRH/huAm2z9xje+gfX1dVy7dg1bW1tz5eaB3LUp7dsiMlvmx5+lINbvKbLI5yfzYCTp5Vicg++GzbIMu7u76HQ6uHr1KpaXl7G2toatrS08ePBALbsszGbHVzvs7u66hRFEF6cxNGmSZU8mpfKcDhLrI83H5s9brRYAnNj9l1I+z1dDGTZeHpm4KGjyuoz8Fl3HVH9B2qop8ShfLIfn4+NNCyQfh2iP0cpPZZE2er1ex4ULFzAYDNyxxZZ7UDUaOM007mezmZMR2sScNnFo6TOfzxCydUO+u6Uftby1dDHI9l9aWnILNS1xVS3uoNWDyuLPQjLYx6dygYyU6TxP6lO6JojraWlzaTSHxrDs+5QxwPOPxVPK9ME0mac9i/keKTagrGMeO1eW5WszTQ6G6KK/+cTyedF7P8P5gGYLc/tBk+O+8ZTHJ0vx2807Y0MC11pYSn6LgNaovPGtgzmmxGPlE6xH5GnM4WMin/AM1YPnwb9JEW4hBeBL47unLkSDZjxo/4fugggZIBLajkS+6pYbpxYDXgYSLJB9kzf4lFomlScRcjZCijaGmBER+84qj/I4BykIfWsxNLTgE8+b85vG5yl3vFn7xeqcWnkzb/tajcmY88SfS74J8XZRHcX7RK4I1VC0PKtM0sZtTKbnkWMp6TS+88kjei6PwObjJUXuc1pIn/BdqbRDMbZK3SoPY/2fMgZjyLLMTSQcHh7OtZXvbufQuLMGNVLHj9WOCcH3Xa/Xw/b2Nu7du4fHjx+bv/PRl4dWzlsh/iQ7g46MlrujT8MBzeuEEygAT7z0+PFjbG1t4YUXXkCz2TyRb0gOS5qILv67TKTKubJRVO9ogQpfnWazJ8e4kiyVO7DlhIjMk9P9ScNsNnPBzqWlJUynUxwdHQHwB/p8qNVqqNVqbrc8ADfGQycYLJLHJeSEH8krTbbXajUcHR3hD//wD3HlyhV86Utfcjtj85RPfC9PkJJ8XFT+aUeSlQWel9wtFtP5Pl1Av/lpTXx8cv+A5CgdZ7m9vY3JZIKXXnoJzWYTzWYTk8nETcYuCrPZ8Z2x/OjgVqvlbCg6cpNONNHqTUddU50sd4zzttROHLLSTic10GKJPLsTTzNQHPJ/UvPI62ctAlbZd9o62yrzQ2Oaf8/lXpHT6lKhxQC5XOGnzEi66vU6Ll26hN3dXbdDk77TbIOQzUyyi189Q+XLa1MIml2i2Ygh3qCxzmW1r0+1fEL+qk+3yO95Oov/SDTW63U0Gg3s7e25xS4abTJeGYtXhcq02Oj8O1pwRnzEaaQFabwsmoyl6wboHY+dxPrT1wbym6I2tkZDUfkYs6klv/jyCMW8LGX7/Ks8babFZmTevjgPpdN2ffMNUqepayWN58nv8cU9fxrBdcps5r960vct561UO8SCwscU5w2unSW0xkxx6ooYtr53pGBiefucAM148n2jBf1Cipt+x454jNEu25gcpCIK0dePWjv4gp3WIBIN4KKBYd9gXoQgL5Kfr56LpDE0ie77LmXcFqX9tJStvIeSEOJNa9tpxluK0uYGYFnGbAiLCpDJADPJuDICfJR/XtrKgDUvK52pxkhofJZhxGugoGOv18sdNJNlzmZP7kaSE5NF8y4ToeA9Oa+NRsPtkuHtyZ+RLKFJmFgwjoIkFCAu6xg1Pg5l4IevoI71BS2eAoBut4vbt2+j1+u5+1uBJwvjKEgQum/Oqndms+NdrLSTLssyNBoNzGbHx2f68tfy4XLJuttA5qGBbDCrzAvtWirKz5PJxN1FRmOOJqt42XmD6iHw+pedt7V8IH1Cr0yQDizLvpG0092ilgCTpMvne2h2DMkEbcU8Pb9+/Tqefvpp3L9/H+12G1tbWxgOh+44Ve045WvXruHSpUtu8QAFCc8D8urTRfPXpz/9abz88st47733cPv27blFrMD80cb8SMOUQIkEz18LShPa7Taq1Sr29vZME3uUN4cct0Vtg1hQlfInXUW6gdfZNyZioCC5tHFSeZzXn/TCZDJxO+7p6ojhcIhqtep2u8krJbS65EEoFpAn3tDpdNzxzqcxhlJwXmJseVCmb100vhLSv9JOlvKlzAke7tPL42dlWq38opB1kf8fHR25qwMajQZWV1fnbGgKfseOGQ6BB86ljeLLg7edpZyQLOB2RKhvZR9YZa51QS+3/YnvuJ6ktmm326jX6+j1ephMJs4n5nlxXcEXV0mbKaZbLDRL8L7h4Pohy44X6zQaDQDAYDBwPpPMi5enQfZdyE+W+YbSnCfE+E22geZDlh1nKwJJC/9bytzzQjNg9+dPi49C8eLzyssWFKHftwGG85G83oP40XcaTRmITsZaB2hqgPY0YZlcsATWykConWIrzWN0agaZ/IYrVg6piCxKTpZjgaTFpwDztncscKyltxpRWvuHvvUZIhb6YgGqlLbKOy5TlXNMwGnlxYIbVnpTnZFYQNBabl74nDz+N28jrX5SXshjGBYBHqAsowyL0Zu3rBRZQHIxdgRoLB8q19cHMSclL1/moZPKtMqHRfG+rw1DtPjypV1d3W63lEA50VGtVt1kbOzumlgfLxIaX3Pnmq9K5mn4ineikRx9iyzmR5um6JuYHKQ0Ft3ia1t+/NVgMMCjR49cgIffSUM/9E7SYmkHSQPxIAVF6vW6GnTW8pJ1k7oxZgvG2qtsHZHC29QncjU83/VL90xqO8rKsFdCtPE8F4FQvpLnitjCKXKb33FsyTuVFn4UryantHxT2p/bJvStzJfqt7GxgaeffhpXr17FYDDA1tbWHG2aLt7Y2HA7+ADMBTlTaJR9wnf8WXbkWKHxTlF+tga2geNxdOXKFbzwwgvY39/HBx984OrPdzHxvqnVahiNRlG7JGQ30g/xHOUrQQuT5D1QoTGX6pekwKrPeFlZ9mSHLNfzVl9MyhrS4Ry+uETIvuX/853NFOCivpnNZnOTsal2ZoxHfHIlNLEVK4+OzeQLzyz+uGZLlGkPLkqfl9Ufi/yWwyc7FqHLrfZrjDZf3nIsh2Jm8tmibBdeTr/fn9NZ5H/R/7QII9XHk+m4buSwxOtkm2s2Af8/Fv+UciPEA6G+9+kbXyyL0km7htKT/9JqtVzfhO6jpYlgbaGbtKVS5VTMbpU2NreBSP/QTl9KL+ufyueaPvD5y2UjJc9QLDMWF4mVQ20QsgtjcYsy5UqsTzT+43yw6HjKIrBoufxxoaEIUn0DyVOkq3z8o12BxvNeRPsV2hlrFYjnqeNTnXtremuADHiyAsin6FNW/vNyfY5MKLiiKXXN4EtpC54v/15zNkO7bUMKQP5vWQUXc5g0mkOwOL5lBFVknhacpzEXgs9ADSFP3Rbh/EqkjhEOKQ94QCuV5tgqRss40ORCCh31en0uD6qHZWd5isyV+kcG4ywguvgOOit4n1t2mNG9U7TbyyezZZvz+pUJS9CC11HjCwtixnyqruW8FHNQFoE8d5ZxpIyBvA5xqNxareYmH+g518dau+Xd8erT/xKW1fPaznWfDWrhKZoglTu1Uu3E1G/kt3khx5WUe1KW89/c4Vg0nTRWKfjz4x//GLu7u7h16xYODg5OHL0cA9nJMhiVV19+XOwlDTHfK8ueTEbRbi4OajPyS5rNJqrV6onJBsnnH8dASNnQ2oVg9Y9/8Rd/EdevX8ft27ext7eHmzdvujtpp1P9Lu/TRCjwxWUKjeFms4lut4vvfve7AIAXXnjBmzdvFzrKnHiQjiaUci0WLExBlh3fny7vq0u1IS2w7IDylRfy61P5YzweY2dnB6urq+h0OoVknzX4CzypP+0sJ7mTIvtTZY/00fkJGFmWqfJQlkX5HBwcoFqtYmVlxUzvJx1FfN5FlVMmPb4xeVoTAZrdzHfEA3a7vMy+ItkzGo2QZZmbNCP6Op3OXLm+PKR+DG1IiR1Ly2MOk8lkTq7wbyy+aGjHs9SHoXa1+CRUTko/Uh273S5qtRoajQY2NjZw6dIlAMdt1e12MRwOMRqN5haRaTSG7BTytX0xqhAs40TmSXxx//59NJtNXL58GY1GA5ubm27SdmtrC4PBwBvb5vrbF8OK2c1aWhkL8cWrzwqW9k6VAxpvxPjFmm+Mn0K2njzG/Wd+yc+QArkgROM/uUCE0mooql/npPMijapQ3mUOnpTJHIuSkGlSAm8+IUYKR6MhNLEXg085hPLT2iLVuPCliSkqre5FAuuhMihvS71kgMXS/lpw+DwgNu6KjPmy5IXkR80BKRLoTvk2NaAvjbMYLbGyLeMrNuZ8E2YWg5/n4zNiLZAyjgfi8+RnKS8EXyDZ11Y831AbpIwvCgKFvvf1kcyrrPaT7WAdK2X2X968fBOHsf9T4NP/KUHTUH7ac58MSGkni20jd4HJwKU1L0oj80j5ntPF8/OVk5oX/54WXci7COW30g5IKVNCLvaI1TNWRsxOsth+lrxC3/rSaG3A78Wt1WrY39936ehoYvk96QyNp3jdyrBjQsFAer9oZ79IvlJ+87wogJVlTyYfQvYuHR3K5YMsR6N7EfZgatqQv0ZBPn5cMi3G0PKlb/mRpFl2HHjmE3j0XMpOK1+urq7iypUr6Pf7yLLMlVev19U8LPJV2nH8mfwm1N68biHwMUp3fz569Ag7Ozs4PDx0gfGQbU+ymYLL1qODJR2xehENFGDmu3I0my1WntbWMdpCfqiVjli5UpYSptMpBoNBrp2oRUA00JUIpA/z9LMvf22scP4nOcDvovS1kwQtTpH5pU6i0Lf8dyitD0X92jJQ1La2+MynwaMhWmJjVUvr8ze1d1b6eBkpdpvMp2hbSvuMyyz6nxYS0fj2bbqQOknWS9aR61uZhsccgPnj1aV9GRvzPvlrkeGhb7S8eXqLrcXT0GKl2ex4MR0dvT+bzdBoNObuZpX118rUyvb5dSGktJNW9mw2Q6/Xc/xTq9XQbDZRq9XciTm1Wm2OLjmuuHyWPOUbp7x8X/9rPoFWb0vbyHr70qbKegt/p+bLv9XGrZY/p0l7H+KTkG7U+shXdl6UISs/jvi41ds65qw8qulaS0y2aJvl3hlb1r1gZ43QEQ0xpCgmi5NmOfaqzICHRQn7jhVLpS80EPLUKXakMzcQrceuldG2Md4p4kClwmos+lCWUlsUrLtgivRJ0Tb0fRNz4kN1404PNwh949QSMAoFMULQxo1mAFuQ1znl36fwtLXfQ23GHWMeVNICCbHAA8/rtMdeyEG0BKpC+RalgdMiUavVsLS0hNnsyR1k9GOR+1YaZCDutBFaxReiiU86xtpDBjMs+dM3dP9q3nsnreM2ZDDH8m40GhgMBvjoo49cHjHbxmLEa5O50vbY3t6eW2VZhm5P1X2cD6xtpuWj8V9obGRZ5o51vHr1KtbX1+cmwCqVCtrtNkajEbrdLhqNBjqdDvr9Pg4ODjAYDDCdTk/c603tWK1WTxy3ZmlfLcCySIQCejJYKGlbFD1c5xRFrA1lGVzWaIu0eF58YZfWjrz9pB6eTCZoNBpYX1/HYDDAe++9h8997nO4ceMGnn76abTbbbz99ttOf0ynU+zv72M8HqNSqeCjjz5ClmW4fv06rl27hi984QtYW1vDD3/4QwyHw+R2kvjLv/xLfOc738Hzzz+vTgxLlCVbQ7xVJFjH8cYbb+C9997DcDh0d2fTWKbdOtRH0+kUo9EIm5ubuHz5Mj766CPs7++foEk7gYR4WPPnSWZkWeauGuj1etja2jLd2ReDtK/Lku2pMkkbD1KOxOIQcvFLUblQlmzRQDwk77gF9GCvjz6yYTj/xHQj8dJoNHK7uT9OAcwULEo3LsK3zouyy9J0uEXO+HTbbDZziyd8x/6eBfjd3LPZDA8fPkSz2cT169exu7uL/f39uasouI9hsT99k2VyrM9mT45MbrVa7je9J/3jy5/XR9MtPD3lU1S2hXSs5B3fEc3cXqHfTz/9NNbX13Ht2jWsr68DOL6e5c6dOwCg2hhaDIfTCDzxJfl1Lj76LaDv5b20ZBPQu8ePH6PVamFtbc2Vd+nSJWxsbODOnTs4PDx0efgW1vL2k7pBq7uvX2U+3F63xPVOCxZ/2pcmNd6zSFnEjzzX7BerXM2D8yJjTxuf1Ho3Gg1kmX4aii9+G4rtWOK6KTBPxi7SqC4DIYUm4TPUY+l9+WsdG6PTVzYXOFqbWw1YK00y+BP7xlI3La2si0X5WwO0KQgZECn9WISe1AmHUBkx55q3axlBgiLvfektAcdQADP2nJ6FZMSinM0iY9laBv3WHJTQNyF6yqRVGlKp4yokV2K0pfCVJT+ZzsI/POBDToxFn8acnVj/Fg3oh4LeFljT5nXqZCAtNQ9NJsRkiPY7D+0+WB27VD3P24rSaXmn2Hmc/2kFMz0L6ZuQIauNbWt7h/qO08mPL6OV1j46Lc/ke41euoua+jTWf3l1aR66fbYZPZc2qfwuj3yh4NjR0ZE7Ro3ahgdi+FG5BHmvb2q9ZBpCzJYqw4by0bEoUFkUwOX6R6aJ9aPkgby6IORzSJp8z2PyWZPrtVoN/X4f/X7f8VWz2US73T4RZKPJwSzLMBgMcHR05O6/63Q6aLfbLsgsg+Op8vPw8BDj8RgvvfQSlpeXT9zd65MJsXLy+uwxeyrFbun1ejg8PHS7ieX3mh6gnS/NZhPNZtN7h6zGxzE/l/9Pkxv8XjptUYnPdi9iO4baQBsrvvprCMk9etfv99Hr9dDtdl07kE1gtdPz2uFyN52WVmvfvLpGQ8h2l3zi0xuWdDH9E2vDRekKCy2LpiGGmL7No4cWhVA/xuRwTK/GeD6vnM+DkHydTCYYDAYndmNyn0COB6sMtfhpXH5xH8qXpwUWm0/aM5a+8On0FJ+Jp6XTDgA4fdlqteZ8yGazOWfXaLagRuOi4bPbiD9osQv5ULTol05Y4PnIfrfYrD5+8/k9oTrI/zXd7uN7S1/k4eMUvixLpsboTNWVMdsulu9Z6bDTouGnoY5Fofmd9L/P7rXK8pidYskneWesLzjoc4BPE6FG8TkyqU60L4hgamwW+POlJ2VDR4WRYvXREtvtwoW/FFpcUdCl791ud65t8t5XFBOQ8p217ywOAxllEpYdQnmVUIiuouMghSYpaLS/yxKaZQpfzeEIGSZlOeRWaMGc1Lr70ssdIlrdfCv+ZRo+nohGy53R2nNrG4cCEZQPX5UaysdCX8xgLIs/QjSl0kVH7LRarblj4igQxvsoFExbNIiWs9gFmsJvwPyq7GazieXl5aS2sqa1pLOksdSPdvSS3h0MBnPfxXSXj45Go+GOrcqy49WBtMo5RhfnR2s9+UrlvPysObIW8MkRChKFaE0JKmvgu2m4QR+z20LHZ6VCyv288Mk27Q6tFNBxsHt7e9jb23MT4nfu3HG7myygHQ8UVNLsWv67DBAP0f2d1H8W2zWUZxEard/TGFxeXnY7ueieN5mO9DQP1tHOC87XZR0r+kkA7eqWd9T5wHmGeJl2fn/2s5/F5uYm/t//+38YDodYWlrCaDRyQdZQXilISc/lvjUwwe+oK8Ivly9fxvr6Om7evIl+vz93J6DPl021WyqVCtbW1pBlmZNLw+FQDdpY9CSHJpd88soK7suTTa0dJ+4DxRTef/99LC8vY2dnBwcHB2i32xiPx042LFI2yXFiiRuRTKK+4TvYQvWW+oC+pWPYyb6iPGq12olJeWoPOnElVO+fJmj9HPMFLfloQdOidBVFLM+YfUT8o8WmYrSSDPXd2amdDLJI+HwBusOU5AiN83q9jlqt5nwOjpjdKtu0yKSU5TvuW/K+isVRivCc5VsezyHQ32RHjMdj7O/v4+joCMvLy2i1WqjX6zg8PESz2cSNGzdwcHCAO3fuOD+T6hTTmyH9EtJ7VnCfkdcXgFs8R7ES4DieQvYsp0Pa5aG7fzXa+fMsy5zt4osdUxnSR/f5Bhova2WH3mv5LgKh/EPjMCV2GMpfswt8uiWE04yfpdJQVj+eZh19NJ+Hdg6BbMdms+nGcaVSQaPRcIsTJUI6lWRUnvi61obeO2O5821BSKiFiCjTgLUI2dB3MjAWQ0rb8B/+reZUho680eoYa0/tGVfEWZZ5HZCUvgoZ4r66yPS+4LAMdObBIoRFLM8iiikmqH1BZAtNlrJ9z1ICnhb6UwLIVoMw9M7i/KfmYf1O1lmOL+v4teRPv62y2VpmLJjEjeCikwOp9PvGmy94VwRaoMdHLy2u4Tu9pCwPBZesBn0ZjpFWdhEZVuR9CNSP1GZ0XJ107CxlWR1iC/LUSdoIWpun6mNJEw/o+PiQ/o/xFTB/tOjq6irq9fpcMKZMWOWItLH4d1R3CopR+iKI9Qe95878aQdtqU1CjgWXYaFggK++IRnBxxbZmTSRQBM3PD/avSx3xWp2tK8OVsR0mXzuCxKkIqZ7y7DhZPoUGylPGbHytb9D4zqmd0LfanYQ56fDw0M8evQIw+FwbsGrPKa1Wq2i3+9jZ2cHDx48QLPZdEHlVBki6yPbpFarod1u4/nnn8fu7q5bsJWKvHZdCNaAl2x3krUkf6TO1oLAXH/zhTU+W7OoH8L97Zgu9MnEMsaKRRaFYIljUD/QsfG020ijJW+dUmWJ1b7UxpvkNyvNVGeafKVxFvO1SI7wPEL08W8pTUxXyvR5kMcPyKNTrHkU8c9TcZpxHt9zOX5k/6eUq8lHWbZPNoZojJXL89DgkzMkXyxxghDd8jtt3MfsVeBJrDNFT2v0xHyQmJ4IoQy9TPQdHBygVqthdXXV3bVK6cjW4To2FqeJyds8usIS5+K8L3168iPotA3yN/l1JqH888qIFD0VK8enByw+/qLtjVj7hdKGdFyKXvPJUAtN5w2+MVKWripir6UiVY7G7NFUFO1zrjOITyuVytzx7VrsoUxe0+od3BlbliFofbcIFDFqUwWvVjY5lJbdmFmWzU2SannlEZqas1Wv1x3zzWYzHB0dnVgFJssLGTsy8OlDqP9D53Nb8/M5ljTgtHcWxPhoUXxtcQ4teeQ1hq3IW/88O/BSjKqi72NKLo8S9O0UsBr9BF+5KUECHw2h9Jb8TmtnpTTWuHNh+aZo2SEnncsMvjMs1P+WCZPY+7w6z+KQWe7UyoOiAdXxeIxer4fRaDR3P1GqfD9tUJvXarXkO+O1/tIcmCw7nnzlR2rSbiyZN3fMeV9repZPuH7mM5/BtWvX8KMf/cjxeCjgmBqAI3nis4183/Djk2k3DO3YssgoLdhj5VX+LQVwT/u+L2nLybs5LcEsLU9KT31ZxM4GMLfLi3anUV5nseOjSCAzlL+1rUJ6pUhQicaDRdbEEKKRQ9Zbo4m+0+SCJuNSgqLE9/1+38ms27dvo1KpYH19fW4hKt9xTQuotre38eDBA/zt3/4tHjx4gN3d3TnZl8LzMZ3U6XTw9a9/HVtbW/if//N/ot/ve+uY0vdnpd/I7qHFFbTbejabv3uPy/XxeOxWsReFHMdlj2sfX+f1afLacFKuhE4NsNKS8s2iUXa/0Q7gZrMJAC7+EbMJZrPj08OIZ7VFfzEsQreUhdMM6p5mWR9n+Gx+frXDWcFyYhcwTzefBMxz17KM50l9wkH2fr1ed4suYvaIrAu3mX32G7eFy4SUxdJG1SY67ty5g/v37+Nzn/scNjY2sLGx4dqK2oiuWKBdyz749CavqxZfLRKDkDpQ/s2xsrKC6XTqbDJa3ElXD3D6Qvn4aJDPeeyGn2Al+cTnq2r1OcsJxRSeTeXtlPiLDxb6Pg46ZNE0fhza4KwQkiPT6RTD4RC1Wg0rKyvu+cHBAYbDYTS/GFLG15wU1gQ7/ztloi1GQFkCKDZhEEojg4+p0NrFp+SlcvK1KacnFhi30s2VAk32yqP8+DEn1onYPMI59p2vbtb2CNGoBWli9FrGQRmC0MLHKd9Z0mjjNc84yFN/attUQ4CMHl8fWPi0zCBWaKxb8tYMFqsRoxl82nc+A9eXPlSeBumgpPCsNr7yyBWLvLLkI2HtB60emnNCfUtBX1rJaaXHV75FtsZAeqFerztnLaaLYtB43OfM+hzdEDh9VjslFacZNCK+4MeoZFk2F2gIyYeYPKIVf/xuJd93PnBbgZz9yWSCra2tuRXKwJNACXdirQ5xCmSQgPRELDAk7b8yHEhJk6/8MgI4ReQ5z0PSIseSJXil0SPpyrKTixNjRwFJ0OI/CobLFawpNFrGUZZl6HQ6c0f20u5Ia1Av9NyqL0P6kfpOpmk2m+4KEm0Bhibf6chdbUInj45O8QtD35cR2OF/+xZu+r6NHQVp8Xmlz8l17N7eHnZ2drC6uopWq4XDw0MMBgM0Gg2nF7SyLP6UBaGx65MLWh4xmZZqH1N5MX2VZU+Or7VOUMxmMzfhLdtY0ptlWe4jl6WtHuJlqcusNqhVl/MJ8V6v5ybJ+ZGVZUDyewiWmAnPl9OYkrecWKHJWF96zfaVY4DrhRRZVbZducg4BEdZdJ+WTX1W0HRlaCxYYxpFr4yw2BFWaDRy+8G3uIHKsV6Vwr/RbHbeHnScLd/cQfeQE32a7R2zC0Pf5PVXUmCRc1zHPHr0CP1+H9euXZu7osYXcwqVkRIbKcNe0/warnvJBm+1WifiLNIO1uIMMTtWji/iUb5IVKYLxUl848oXC/G1QxGE+qWoXS+fh9rflzYPYry2qLb8GeKwynSg3L6hXa60AUHmT7FNbkPyq3myLEOj0ZjbZEhpZBxO1kO+479j7XFiSUyIqS0OxGmiSFBPNlJZdZNptW8tzo4MmFocfR89XFnV6/UTuzO0gEzIIZH0pDhbKW0phbhGn6QjpGg1Gq2BNIuSle2gDdaiyieGIsGu04bWh75giMZvIePG+n9RFMmPnAXfvRZ5+STEhyEHLGa4+MaPNcgUgmYwx9LxtPzI9TKQ0v5agDtkqAKYOxrR166+fHzpi/APOa90YgLlxR1XH40xaPwRctApb186CW1Cuwi9Mm1Rnkopl3YQAcfttry8jNnMdueyhU7tvrYY30iHk09KXLlyBS+99BJ+8pOf4O7du+4bkmk0sW/ZceJ7FrPPJCiwHAqo8LryOvuMaolY4MZir1nL8iEkI1IhZX/M5rPSR3nTD927V6vVkGUZer1eLjkFPJno12xkjY+LtNXy8jKWl5fd7nsKNsYCEjHdWwY4D8vy2u02VldXcXBwgH6/bxqHlkAq5f8zHINsEOtEVpZlzrmndn706BGWlpZw5coVtNttd8LAyspK8O7Y00AooCaRR1b48rEsVKPyeLkpk7FHR0cAMLdryldWCu0Ebt9z2ZpHHmk2eko+RAPx6sHBwYkF2qn6NlRW2ZB6OoVOqpc8OSXkR8pytH6l60d4vqHd/pKm0/DZrX7EIsr+aQXnmTLjPj6bpwwUsfEI0+nU6SottsiD21mWuZNrrOVJv0De0Um7I/lkLJ08RN/6JmQ5fHRrtqa8tqCs2I0PlIZf8SH15d27d1Gv192d6L77rvl3pAO1974rBQgpiwR8/j3/XvoP3HclW7ZarboFNUQnl+taORaZS9+STmw0GnM7q1MXRPh0DKdlkXFhrdzTKkPzs4vSI/3v06jTz5CGWDw5L2J9Tde99Pt9dfEk+VxcnlAMkU4KaDabaDabcye80b3VC6M7lkHIMM/TwGUNGE2AhZQqQSokrmBCwTGZd0q7cAdAg9yJSgaKjwZrUNN3F06WZVhaWkK9Xnerp0ig+Y5UDrVF6EjCEH2cNql4LZAC2Rok0pztUEBVU96pQSqfk3saTlJZAYYywY0lS59L3g/RH6vraRs/VJY0/rV607PYQgyfg+drH5+RS0hZDa/JFFlH7b0vryK7TWT5cvdK3j720eTTO1Q2L3cymaDVaqHRaJxw2Og76/3gPF/exj55ktKfs9lsbuWwvC/BRws9L0NehZw8H3jbyQk/X8AihV6LPeF7J8e4T1+Qzp3Njneukd5vNpvuyFZyBmX+0uFJrYcG6w7Wp556Cp/5zGfw6quv4rOf/Sy++c1v4t1338Vbb72FXq/n6C8C3pch/ov1k7SvYvKB58cXeaQcvS75L9ZPqfqYBwQsaXhwIY989NmRIfvFWidfEEvTl2XoCqutwcvMI+N8NnPoWg9rIC5W15DcyQur7NQCTHzs8R14If/N6uf47CP6TTYBydJWq4VHjx7h6OjI7Rqm3ZHc7iIdTj7RO++8gzt37uDo6AjD4dB7pcyikKprNd6y2tt5YZHTGl38GPrDw0NMJhNcvHgRrVZLzS82BmRbabLSF5yOgZcd8iXyxkc0uyW1v2I+j8UHOmsfkVCUDh+vzGYzJxP4ffJ8B4TFxykSs8iLUEzivPTbz3AMOabljhtCzE6MyTu+APE0YxtUfllpffXQZC5/T34U6RK6soaP8dBpGNbx47PtZX6xPDjy+qg+2un/8XiMDz/8EK1WC8vLywCAl19+Gdvb29ja2koqU/KtL73mt/n8X63NpY+rfU/92ev1MBgM3OJ2Te9JPvGVJWmXtl2lUkGr1cJkMsFgMMBsdrxImiZsif/4DmS6FkRrH2uMJWbr5oE1tpHir/rGZaw83zjiaTSbSOYd08VWmsqGxV/7OJWTB9KvJ/js0hgs8oo2lVBampyl8Vmr1ZxvSNecDQYDVCoVdxIWl3mVSgXtdtvlzzdOWHzXGJ97jyn2NYD1fV5jwMpQPuFuoZEHBnyBFotCtiKkDLgjwPPVlErImdX+9wkvAGi322i1Wnjw4IE7G5sYVCIkAK2BqlDfUBtQOt/A1ZxgLZ0FPJ+YY2pxXEOwjqs8QRLLWMk7nrR8FmEY+Mq3yJOU8X7ajoo2LrmRpxmj5EzwldUSvnEdaiMLn/u+pW+0MSPptvJ6HlpixpSVBks5efLQ5Fa9XncBRc0RpICghb99cjEES7CQ+rZWq2EymXhXx+ZBjE+tjqemH3neoWPiTjswIRGqLzlxw+FwLmhQr9dRqVTQ7/eRZcc73LhjZzVeU/pNs1N8QYJLly7hy1/+Mr74xS/i1Vdfxe7uLsbjMd5++20MBgOsrKyYjx/z1Yec2dS6cDkfcuJCZfP/U3lf0s3pkG3is4ti/ZvHTqD+K2qnazKc8i0iz2O2L5VjdbaLQLPJpB5NQaw/Q89TZDHvh6K60MKnnJ6YzPXZQ76y84w77X9qD7ort16vY2dn50QwkgdruX9DTvnt27fnnG95RF5R8D5L8YNTZTxHyLfTeDbGT5o9S/+H6ORX5HS7XRwdHWF5efnEMbKhoI5sC83ul/0VokmzfTWdktJfIYRiBCnfx/RWXll0XhDiQR//+fqHdtHxOIw89UB+Jyf2NTnG5bbVVtMQst+L2uhFYyjy2/Mir84SIZlpGZc+fe+rI/+fH9FeZAxLX18rV0LWV+pen26WZfCFk9ze076XY5t+SIfSccVA+LScUP197yUNZcnMkBzR3sdonU6nePDgAWq1GtbX13HhwgU8//zzmM1mzv5JGTdWfkgdi6n2JfUlbSQi8AVWeXwSSRMvP8uOF0WPx+O502PIh5e+O/DkSFRJgzYRq7VBaLxz2hYFn01SJB/fu5iMs4y7PP1dVh19iMn7RZdznlG2/OSgE7ionF6vh8lkMmfvAXBxNb5ogh/rTmnoLmr+jPxBy7iM8WV0Z+xpY1EM5duBZAkG+AxAOYgttMfSEGOkMGkoqEHodDrY2NhwdO7t7eH+/ftuRTjPq6w+sApGvsKcjEkOeQSIZujKozC1culoPGncWFcoES2+tJoiPQ8OghUWWhc1Pi2BAW6ca0gJ/qfQouXp40MJi4yw7ujL68z7jokto60ojzImQReNvG0ood2pHcNwOHRGvDz1gMugPAEV/mP9hsqVfVapVFCr1RydRfqU5Do3iKTRo9XF4uidJa+lGlrS0QqlfeWVV7C5uYk333wTh4eHzvhLOR7FqsNTeI1WBY/HY3dfZgi0k7fb7SbvKJX8HLrHj77hz4jPUsB5j5dtaSNNvob4mIx6vrLSuktLkxUxW9WKGH/mDfbywBrRzu/uS8Fs9uTuU8vuf62N8uDChQt46qmn0Ov10O/3cXBwgNFoNHcPWajss8B0OnW08vtis+zk0YC8r3gfycUQcmf1xzEAUCZ40JeOK7WeSkFHmxJvvvHGG7h58ya63S6GwyE2NjbQ7XZxcHCg6nepUxbVF3nGKJ1UQceSy/cWWnd2dpz+0BYJc9q0k6SstMp7zmU+RdtW6rM8+aX0gdXWkJMdMf8qtezzAF/sxmLD+2IOMaTYX+fdZ4pB81VDOE+8cdrgk6QWf8GSH4BSFwRR+UXB+cJ3F7WUiVwWEeQuWcvxsPz6Cl/dKI3PT7DY8ZyWssaxbIMiMR9qO/Ll9/f33ULrvb09p1O1a354XkSXpMVCY6xdrG3nk+O+/uNjTd4jr21+0r6XmyIollGtVtHpdDAajZwvPJvN5iZvCGQfEvhEEOfR86Y3Y4jNTyxKt2m+vqRB88dTTorzoWx/LjZuPk78UBRl1nc0GuHo6AiNRsP55xx8kY6vLw8PD9Htdufoq9Vq6HQ67hlN2PIT7YrAOxlbdGKmjMEYUqaxbzTFITsgJX9LoCpGm0VpacG2VCEgjSDgmHGWl5ddv2xtbWF/f99Mn0xjUbJanqF+0RBzDmNKgZdDilDbtULQFLWPXzTapXFpQZ5xkldwnScBLycq+f+acA61aRnB6CLQ6E9ByFGh/33lhsrTvgsFXbQ2jyEP/1rpLdOgK6sNfTJLBvD4D903IC+Ozxv8In7jgb5QPXx8IOvD9YbFIdXylvlK45gbLpr85uWFxrO2e0ELROaVCRaHg6fjz2WbxfiaHLnLly/j2rVr+OEPf4jxeOyOReG7lS26Lo/t5EtP9aGJGGpjHtDkd85RWrJlijpCKXTzuqeMK8lH/LeWj+yLFLnF2yxGo+Z8hhyXGL08ja+dQnwraapUKid2a0t65DspG7X8tfYkuvlYSLGJY2X4MJvN0Gq1sLq66u7UJpnGV8D7ygrlm0pLKsbjsZuI1ewTzc6gcavJtTJoDQX2UqHxV0peXIZZ5KpsA2ory+SOfCfb+OHDh9jf38f169fd4hcK+PFV3lp+0vYIlW2VOSnQ/J7ZbHbCluBlxGRYv993xw+GJhyK2oih47K1MZAKjdc1O2XR8OkoHnMouwz5/LTqGoNml9Iz+glNzstnMh96H5K5KbI0ZoNLGrTvLWXE8smTbwwp9JZh1y4Kckxrss/iR4VkjmbfSj7S+C7Gq4sA16uafLX2sVbnmM+p5SPpkr5oqB6+vELPU9rWpx9jekIrQ9ozZC8Ph0NkWYbd3V1nU3A7XPoFKbaMVg+r/8zThr4J+QQaDXJMaGl9/iL9TfwxHo/dZh7ydfmCUjneZf9rY9UyTlPstkXrWJ9cylNuUbuK97FsU5lvjE98zzTfyPdd2TgLeV02fL5/CBbZE8qf/h+NRicWgXIZIL+hE5MIdPS5zJd/S3YinSybtx6OhtDLmOL7uIKUsFW4yW+lkZ4SfOFpSbjTO+14yFRkWYaNjY25vAGcuHuH051lmbqqJwZpyKR+T8d/0Xd8lbg1T+mk876Rq7K1QSgNMl9/puzCsOCTNqbKhGYcaf/z+/wWSUcKygpqaPeRxRw5n3FhdeQtBrYlYGl5Xha/55FbRSEN9ZBDRneL0OpU3xHAlvbQDMUU/SNBjsXy8rJzMKRelEauhb+J5+jOBvmO3vN6l7W6exGBxRQjWNsFpIHopDuNXnjhBTz33HNYX1/3pregbD2SZZmbEN7b23M83263cfXqVWxubmJtbQ3Xr1/Hzs7OiWMlrWVkWfjuaHmySR5nLmX1onSs5U5C6/fy2FHa6Zy6kjIUWIqB71KjcUnBGS1wEAIPYjWbTbTbbTdpwncF5pVJXDbINiwi63xlabRS2bVaDcPh0LVTWYgFWFJl2Hlz0EPBKC3g5wvqyABWKFAVgnTC+W70p556Cu12290Ddu/ePQDHi1cpPfFfu91GlmWOz8tYDX1aoHr4bI2UoF8K6CgvbcJT+mM07uRCh1RI/5HXnZej+YOxfOmOYb7TvAxovg4FeFNs+E+qH2kJhOaVg9PpFIPBAM1mE2tra66c/f19HB0dnSgjJSirpU3Nw4rYuP4ZFg+uu7n/w/WFdSxbQbJNxkPyBIQXCS7LgPmdpQRt96IEb2Ofj0YxTdI7tCg0Fi8I6Ue5eENbrBGLZWo6LbQ712fzhPiH6CJflPtktKCrXq+7XV10apeWL9c9PjvNVz5Pa0GuCYxabW6ShPOPz68hX47ah9sIBNnXg8EAWZZhfX3dvdvb20Ov15vrc/Lna7UaNjY2HI+PRqO5E33K3s1+FjiryUGNT8hWOg1YTuFcBM6LHF8UytZX0rdcWVnBeDzGwcHBCdv9tddew9e+9jUAxwsv/uiP/gi3bt2aSzMej7G7u+vybLfbueJdPkSPKdYa5jxNfiyqLIviKRIMl99qK9FjThgPVnBGrtVqc9uz6Rx7CiSQc8zp9h215yvT917Sq+XF21YK1DwC3meQyeOPpeD0CdJYGklzkckQWd5pw+pQpkzIFaFBGwOSDh8vUXrJcylOc5nQAo6SRgDOachztKbluQxuWvNN5UvrWMgzkeJDGf0W4rnY/yH5wScu+KSMhtQ298lQ/t7K97VaTV3Y4OtPqyzgzicPascQk8lW2mJprUgJ+lvAd9PRncJra2u4cOECOp1O1LGwBCRTxm6sfWgF9Xg8RrVaxcWLF7GxsYFGo4F6vY5arYZmszl3hyLtLEkZ60QH32FLd/PkqZu0J+hvPjZi+t0XDEkFp4X/xGy7suxvnwPL20G7TzHGa3xBnWXc+p758peyVtIfy7eIbSaDhBTMkwsdQ/IwJfCa148IgQcifZNHkjc0+4G/Sxl/Mf0Q+tuiLy3lc7uRB92yLEOz2XRHzsnytGAPyUIAc/fHWnxBH39KP48CfLSAK6+PGaKhbJ8jNPZSr7DIG1QL+QY+XgvJF5l3Edp4Plof+GRdKI0VFt7R8i5qN5UFK/38t9XOlLKGxjnFUPgxlFb9WIavHNL/5xll8Uyq/XqewMcuyR6+09rXtyF9FyqL8pIyI6+8yAs59nxyLi9C7eaLAVIbcFq097IeeWIUvnI120DSa/XV6RsLeNkcsaOZZV20/08DMb6x2JZW/yqm+7gdTfqhXq+7yZjZbOZ8VUpLfhHtuKNYkDZRH6qDtR4pfBEqKxVFfDzLN6G+tOjJsuoWkxuh9D/NsI5FnraM/GkckgykuJJ2nczKygqeeuopAMd+3eXLl9Hr9VCv1zEej/Ho0aMTMXo+lrl9KO14a728k7FWQVHWQExBilIKrbCS+cVQ1kpYHvyO0RASnMQEPNAiDbpqtYqlpSXUajXUajU8evQI9+/fVxXybHYccKWggw+kSPjKP3n8prznVXNiY4E2Otvb6gDL3YShNpUDi4KKGv0+UFvL4NzHacU8cHaTlSk0kLDzHXvG0y0yiMCDe0Ud5ul0ikajgbW1NXS73RPHhluhOXExeWJpbwktTx7cTM2vLJCRG4K1j8qgk2QCv+xdIsbHZdIjYdGfPDiVZeFdi7GyaIcZ7RL2lReD5uRrQTIqV+Z7WsZxKKiSZZm7e3U0GuH69et47bXX0Gq10Gg08PTTT6PdbrvdqD69WaQ/ZF4hmmUg4VOf+hT+2T/7Z1haWgqW0Ww2T9gAIdAYbjQa6HQ6qNfraDQa2NnZwcHBQdQG4DI/Rf9KPk+Z+NDSWhzoarWKer1+YoFGWWNdOoqkN8le046t9dW5SECPJpLkEa6h8ZGiu0M2WtnjfjAY4PDwEBcvXsTS0tLcMdw+SBm0CPkTChZUq1WMRiN33BIP2PJ7rlLoP83g7scJpOdisoe3pZQVdDLF66+/PhdIaDabpdibeZDHltYCz0WCcym2QR5wPxp4EjOgscHfaad9+PLkO5S4z6CdHkBtJuXJafZ5meN7UT4Y97+KgMYp9Wer1cJ0OsW9e/ewvLyMCxcuYG1tDevr67h//z6Ojo7cYjNLbEDuTvPVBTh/k4kW+Pr3pyEArdWd25H0/2AwcMfNVyoVNJtNZ/eX3U6SJosduihIu4jKl3Eyyf/aPZq+/LX21+63l6AAOu0QpZ2V/F5PjTb+t6Xv+D2lRK/0M3haYP4EmFD9Zb19NEn9Axzfp9jr9U7UVeqfULzW5ydxf9xn4y8yNgdgbrerLI/Xkfslmg0v60qnJ9y6dQsrKyu4du0aVldXsbKy4tLfuXNn7p5JoqfT6aDRaKDVauHBgwd4/Pixl/5Qf1rH9GmOfd+ViqnI469JXgrxrnZHdCzGKeUQ8U1Ip/+0oeh4LpM/Zd/1+30MBgMsLS25WGy1WsXa2prb5aqVX61W8fWvfx3Acbzr/v37+Df/5t/g8PBwLl2v10O/33d8QXq+3+/nqldwZ6xFKZzGwE/pbE3Zy3qEAqU8jfzfR4/MLyZItcCUte1k3twxoF0qlIb+55O/dGyUPJaSC9VYe0tlHKt/KMibt97yGafHJ1C5UI0J/xBdkjes31nTlh1IXEReIYSUXJ7+1gS+hcdiZZXVHhqPhcqkI8OHw6G7f04ajNr48NGbKndD49XqYPvGQEw5l2GM+2RUzLiKwdKOki9D9ZGOpUVPpJSvlZcHXP7H8vC1cdGAaSiYEMpDkwvnKbilyT3Ov41GA6urq+7Ik52dHWxtbWEwGJzI56yDKsBx8GJtbQ0rKytYXl5GtVrFwcEBarWa+5/oTXGqgCdHZ5GjHFtIF+IFSyDnNNpT0p96RyWQFpTi32rtw4NCmuNv4TPiC3JuarUaptOp20WkHeMUq6u1L6RDLelPySsFvM6xI7PLKi+Ut8X2tvaltD2s36fwHi8v9K1MZwXna/rbNwbonuPZbOYWRjQaDXWHN6fXoiPz2ja87fmx2Pyu2FTbWdocVn/N+s6Xp88H98kcmR9PY6HVaoP67Avf95IPSN4RD9EiaOuYsdI5m80vMDstvy0VMb6J9XVMf4X6KMZ3VpC+ookyfv8XxUh8fpi20zEllmOBbMNUO7AMf0vDeeTJRdVVwloG6RM6UUZeS1ZGGRKLskWkTonJYW0syKPii8QJUuwIX2xILojmNFnyL8JrqXZdEWh14f2o6UVpF/J8Qm2jfa/pPd93WhqLLom9k9B8IH5fOG0ukvKWrpqio4j5xFy73cZsNnMTNIPBwO2gJdqazSaWlpYwHA6TrvkL8UUZMi9Fj2q6ODZefePKNzZTYgcaf2i2A/d/Q/mlIGZH+tIuGudBF+aRYWW3GcULSAfzeS+OnZ0dvPvuu7h06RLW1tbQ6XRQrVbRarWwurqKz33ucycWsdy5cwePHj2ao5XkCC/f2g7RY4qpECvKNgZiOyp9kI1CSN01kVJmiBbtb8pXuwDYl4/8ngdL19fX3Y6aLMuwurrqXcXRarVQr9dxeHjoVotlWeYcf06fhHbXrVY3es+f01FvsbtcgfCRULJNQ2n5PYgymJcnuOajt4x74IoqpzxIdfDKQEp51p3RRXeuW2jypbHupK5UKrh+/Tqq1Sp2dnZOfKMdg2hFTDGGFEOK8SPzLIvGFEj5UUaZMRlAsmI2ix+5Ox6P5+4IOi2kBIrlylCrPLKUTbrK4rDllT0+uWB13spGbIxpqNfrWFtbw6VLl7CxsYH//J//M15//fW5O0o53+UN9uVpB34nsvz+0qVL+MIXvoDt7W2899576HQ6eP7550/cTR8D2Q+VSgVra2vnMshHSAnU+IIJ0vaxlufLzwKSV1qeMdvJl99kMpnb9VGv19Hr9TCZTHKvHJbBHl8aspfL4hUt8LQIcHkX678y76M8LVgnpbT0ZZRL5fEgmgz+ytNVms0mVlZWcOHCBRweHuKdd97x3p9GO4w/rpATh2cBX7ClLP/D5ytpk5vEEyljjeQd3ZFNE+cp7Sp1ufSPJZ0+nFbA7SzAF5DPZrPo2MvbDmRnra2tuT6N7WYl2SLjCMRLoYA56WKNH09LXn5SoU0EnSUtnU4H0+kUBwcHbmMEh6SziAzUbMSyIPOK5e0bC3LDhzbO5Lc+21TrY2nbphyPz/3VohMCmp8m78ct2lcpelOe+NBoNNx1dZxmnq+8h5iD2jZ0/65vt6/Mh95ZfCmut612RMgOHY1GzncBjn0zOpVqd3cX/X7f+93BwQHa7TY6nY4r+9KlSxiPx7h58yYGgwEePnyIdruNS5cuuRNq6NSFO3fu5D4JT6u39X1KjDMPXy7SjvP15VnJe+5jyDY77Xi6xFnrvyIguVDkShBef7oXe3l52ZvnG2+8gR/84Af47d/+bXzpS18CcGwb3rlzB81mE//yX/7LE9/+3u/9Hv7oj/7oRLk8BiYX+IVgmozlBQHlM1psgiBPuVwZhozjGB15lCb/ht/FpxnyskzrZAk/FpjubpOrOLmSGw6H6PV6GI/HaDQaQUUaUmxZls1NFskJB26IcEXr6wPNcNGcVEubAE9WuoaOAZVBI1lfXx+kPk+hu0j6FGWUQmuqEZ63XJ9hJfsplNZSr0UpqFBwlfP+8vIyms2mc8qy7HjVLCkLehaik+cXa1NtTGr5ad+ed6QaYHmM0lDZKbIglraIM2alIQTelqRXZIAy5NTI5xRIkxMPvj4r0o/a+6LOdN6ygbD+pnaRO+Hpd6VSQafTwcrKCg4ODjCZTNxRZ1o5qWM3lt4XGOJ/j8dj7OzsoNvtzjnc3//+9/Hhhx9iNBphdXU1yC8+Gmaz451qjUYDk8kER0dH7qqClLYvouN8efjK586Y5HfgSSCk1Wq5/qfgsrwPUtN3McTkoFXG8Pf8fjP+juzWarWK1dVV1090HJBcjBYa74vWMbzeReQsodvtYnd3F51Ox9m/dNc7laeNn7L0Th57mNve0h4PBcdiu/JkAMJHQ1G5a/GFiupxagvLdTaW/Kx2qMYXRE+j0XBjzXqdQZkoy8+38muqLSWDsnn8RK1snm+Ij3k633HlMR61+rghxGypPPnLce2TY6G+s/irMcgJBCtdFvp86ekbOuWBdjXRD/UzjUntOE6SJT79yelflD+qwWLPSDpTbH5fXnm+LYrTbFetTE2mkC1P12MRn+QtS+ujPHZOGbaRD9q4pTKljC0S15HpLXEjGsuxfvOVw78payzLttLqlDLutDpTGs5/cqJY5iPpo3xCE7YyH4uut/p41j6WdMv0Gp2EZrOJLMvc3ZKj0cjlMZlM3HHEdKoCHXct24J2yFL+dALL0tISKpWK2wzlq6uVD33P+HOLXPflZ4k1LlKWSJpCfCR5hH/DN1MUkTGUFz2TuyH5BjD+3JfnTwu0sZhqY6S0Ge+z8Xg8pytbrRYmk4k70Ws6neL9999HlmV47rnn3BHk0+kUR0dHaDabWF5ednk+/fTT+PznPw/gWCbcu3fPnXbJ+YKur9EW73EkTcamIq8zoP1N+aWUnXIMQMxYlUrH53iHhD4FYiVTxCA7jpQDgQK4ofz6/T62trZc+jygbd58MpYUFvW1xnQhuiRCAQ2Lk0dlhwwEcqC1PLUdJD5I4XxWsIyx0xD6FqFqNbjO0lFN/TbEr1mWOUF/4cIFN05pVSKdXW+lycJzqUaA1egK0fPTAnnPI0eqfgo5PGXD2k8UNEgFp5kcDoI2uVsEZxGgLoose3KnBKCfopBlGS5evIhnnnkG7777LrrdLrrdrluxK9OWAYsDxdt5MBjgzp07uHLlytz7//bf/hv+z//5P3j66adx6dKlE3fIW0B3xq6srGB3dxc7OzsAwveucfpksEFzQmV9ZFoZRI21ixYk5mObnLKNjQ23Ans8HqPb7bq7q7Rj6nlelrpr9qqsqwV88aDWbsPhEKurq7h69SpGoxEGgwH29/dP3JXE6eML5IrKTQ2humqBpjzY29vDZDJBvV5Hu912x9tqd41xfiwStM6TTqan3xRUooVgoROHfBNLvD6nbaP5cJY0SLupjJNZsixzx93RHeuL1nOpfWn1N/LKIMs3PKCcJ7Dmyy9EjxYjqNfrTtdJ/cPp0Wzy1ODlom3zlDYs2t6xvCiOQHd9ke5IPX0qD8bjMXq9HjqdjtspNRqNMBwOMR6PXbCNjufnOkAGZ319cJq2axFZvSh/5JMGPuY1HuUTOABO7JItWrY2SXUasJTpkxWh+K60x1PsJKmXtfIpX99uZW6Tkw1flo0doz10h6kPmu+jLY7k6fg1dVrdLPHWkM6TNqhWF983oTrKby3Q/BlAt4PJBmu32zg6OsJoNHIxDJL3tFgagFtArPUbjXsqk3bNXbhwAdPpFDdv3vTGyxc5llPleix9qi1TFCF65EIu+R2Xl7G85LcA5hZJEmhuBJj3BX6mO+PwtT/XaWXw1XA4nFtIt7q6OrcRCgD+9m//Ft/73vfwu7/7u3juuecAPIl5ra2tYXl52aV9+eWXsbS0BOB4fu0P/uAPsLe3Nzc/VqlU0Gg0MBgM5ubstJiW1yJIMSJ9DqMW8I+lC5VtgYX5U9NoCj7mJMtv+NFZMqghvwuVTUGVkGKi1ftUrlYOHcnDy9DanX9HR+wRjUQLpfMFYDU+4OlC7cG/kUEhGQQlA0MKSr4aRuaZouCLrGSM4TQCLlb4jKhY+pTAUaz9tWCGZvDF+C1UD86L8ggdq1Eo68yFLK2C5XdCkqFPyiDLMmxvb7uz7ENHr2rlaXTFxrHM0/c+BWcRFJVywGJUWfRPnrESexYrT3NQYnlZg6I+8PtRgJOTplp7as4Xf0fOpHRoU1CkPxYJacRr72OYzWbuhAoAODw8xK1bt9DpdHD58uUT45/ulM7TBlY+4rRpfBj6djQauR2s9D05q7SaOHU8yHcar6UGaYB8Ky1jgQUfuI1WqVTQ7/fdLl+6w2Q2myWPEe5MpoKv1tVkf0rduO1HkHducoeEPw/ZXCH7mK/kl9+mtofc1ST5lAf+tbtEJd38Ox898lj4UD4pSA3c5G2zPPC1m0/Gp/idWj0ssoZPlPB7IbltVgRWX9cyjlNluDUvjb4i+Vva3SdzUmWrr2xtDGtlSVpCwSBKRwt4Dw8PXfCV0tApB5Iea518Pg6g+65a3cuAVQ/E3mt+eYjXpf3O0w2Hw7kxm0p7yMehduU2MAXLNVrlLmhNlsfoKwN55Lelb2Wa82J3fxzAZQW1W7VaxcrKCn7xF38R29vb+N73vjfXxnwyjJAn5kL/y3EXSisXy+ZFzI70yWbgyRHhoaOIQ+CTLho9Mp1GX+go45Cvq8WnUn0di88fagNpK8tFyjG/UfroPj3s4yvfs1DMTqtnqH80hGxsCR8v8ryIByj+MRqN0G633eLZLMvczle+8Ibam3a80w7Zy5cvo9/vY3d3F7PZ8aI6un6s1+thOp1ieXnZLeicTCYnjuGXulD2Tars99miMf7S7KQYf4bkWUxu+fLh32p0hL73+WJ8/KT41Jxvib+Jh8iXqNfrzk9OaeNPEny8aok9xNpM+yYGfvT9bDZz9zbTCV++hX7T6RT9fh/Ly8vodDruzujNzU3U63U8ePAA4/EYP//zP49er4dGo4G9vT388Ic/dLxA83F8YYfE3GRsauVigt6CULpUwZPHqLFA7oi1GC+agRE6FoMjpJh9d6dwBUyKhHe6VHi00pNfWh5rbz4ZS0f58PItq1alAtbqIOutvdcMANq1y99zR1BOAMdolPSkCIxQPULlWL5bBEJOrC9tilGk5eGrt8Vh1MrNG0TgxgopVAukkUMOFn9Phtfm5qZ7TmlWVlbmHBJaUaMpaD5uFu0khwJaobSLRsjR4mnytk9KHfMaxzH+TkFRPiA+5HfkaffcWo1lekZ8X/TuyBSZJA3qsvmyaICSMJ1O0e12Hd8eHR3h9u3beOaZZ05cHZBlmdsZ4nOoYjQVCaz5eFUGS2kyluo3mUzmVg5byvC1n/Ze9nNszIfeW3WNzybzgd+VlGUZhsMhRqORo6WMo+pSIXWH5hhb89Hs0NBKZIIMIPn6VZPrWrAoNSghvw+lpUApPypTy88C3teLuA920TZBEcjxZ5Hjvneh71MCOwR+hzPZb75FC3lRxC8t2q+xYJjl2zLHmO++VIuusergFB6QssQnE4k+Op5/c3NzLgiXsmBKSycXg2p0ntYYl3aD5mtbZWgR8OA3LWTl+fr4JSV2QPYK6WM6uk4LjtNOWHlnecqYjqUN0V/EltPy89GzKNnw0wJqk1qthvX1dfy9v/f38O677+KNN96YW+BFiwCK6AfeD1qfaKcIaXanLzam6Y9Yn2vyUKsX7TCTtPhiDlIm8XSW2I7Mn+S37ztKo9ltZYwRX/24/I3Fe6Rck30f6688ekvmSeVaJ9VDPMV9plAePpp9p2bx/LiuJTuf9MBoNEKv13NH1FM6iqdLnp7NZu6alnq9jkajgc3NTfT7fRwdHWE4HLqjS2u1GrrdLnq9npu4pclYfrqkVkcZ3/C1pQZL22nt7fPRQvnIb8q2o306N9Xup7HhW0QXiyfItNyf146m9dkfZcepJKy22iIR6itr/CX0PuQPyvQkp8iOoxgbTczKtIR+v4/JZIJWq+ViORcuXMDGxgYODg7Q7Xbx6quvuvQ3b97Ed7/7XbfggvxMmpPT6rbQY4rLhFUYlwnNYMnrcOUZEFL4SsOh1WpheXkZs9kMR0dHjua1tTUXYBiNRtjd3XXbsflxC6FAIC+X7piVq6joHhVffWUgNRZkicEyOFOOGbQgVfifZyxKMPt4IAWynTV+WlSbxwJCHJY2lDuHGo3G3NHgdE/snTt30Ov1ooqfl50SyLUqs48TZKDImtaKMng4NY8yjLPUMn2GZxl14CCjRzuhQQskWOj2GfwxpzVv25ahR4DjiUsy8lqtFq5evep2YhDIKfQhZoNQ+4ScOs1x1vJstVqoVquu/8iZ/O53v4tms4nPf/7z2Nvb89KR0ma0+jDLMvT7fUynU7dikdeHLxYIOYk+p15COrlF+loL/KR8m1fHhejNU58ybQSus7ieDQXI6Ecb59bAgjUIoPEQfU883+l0cOnSJayuruLx48fo9XpuhTun2UdDiNZFQQtuyUllolELMNHfvrqFkGVP7tLktHzSoAVkYidLaP6E9PFosmdR7VZGvtagHKX12TihcarxZlHQuJ7Nniy6JF4lm533kfw/BVpAUuomS555bbJFIq+eojYNBVZDZVrKtfBUqEx+2sfjx49dwI7f8e7j+ZBes9B+1oHTnyE/pM4FgP39ffzpn/4pOp0Ofvd3fxePHz/GgwcP8OjRI+zu7qpHXaeUZ4lF8LT8mhTS03xB0mw2M59o4wO3N4gGn53GaSPZIN9rNhqnj3QvTSymyFatntJforbRTlMhmnx6XualXZuh+SvWtvfRpLUDpbPo1FD5Vt+K0xPKtyz/GtA3PMm8LdccEf+2221MJhPnm9IOWZq45by9urp6Ih++QWgwGKBWq7n/syzD+vo6hsMhHj9+7MYkyQNffIOfPHYaCMmCvD7raSBEd8oxwpodJ/ORz4Hjvuc7ZDldReRrCj7O9kRR2n12oHaignz/l3/5l/jxj3+Mr33ta+5qwd3dXfzt3/4tNjc38dRTT7kyXnnlFXS7XfzoRz86cV3TeDx2c3O8bA3Rydg8RqRmlKYomZgiSP3Wpxit31H6FKHjG2whJ5W/5wrDF9SgQFG323WXhNPsO303Go1weHiI8XjsVmr4jvjz1Y9m92UavqpKC9j4jCLtm5hwsra/dJ5ln8cUcOh/SX8IeQwVC4oIqLIEs9UR5WVaeE1Lk4dmzYixyh1LoFH7m39PxhqVz1fZ0bvJZILHjx+fcMIkv1rHqEZPUZRtZMUCeNY8ZB8U0TUWhGjVHJPUAAwhprt8sjbGEzEatPazfBMLEnIdFOLrkJyNjbdQ+VpaX/qQs2FZbWsBlwn1et0tmiKdTccd+mSpVQf66uqzy3y8RY4jrRqk++7v3LmD+/fvY3d3d+5OHV5GHgebjn+hVcJyJSGn1Xc0mWbjxejg9Q+dEBKyVyxjiOsHHx15ZIbPvvX1ga+NYkGakP2sQdbHYtf7dnIAfkcmlr+UIVo/ajqDFiw2Gg20220sLy/j7t272NnZOTGhIL9N1d2WesTy0nhStr/kF+1v+b8WjLD4YRRYOg3wfrTSRn/Lk4HouUXv8//lLqdQ+fw7mScPxOWBpf4+vzPmB1vz095LngrZNL48LTrfYpfQbzqmmgdV+biRv3keoXpbbF1LUFjmWaZNbrEtfUgZb6GyfbYzvQsd459ars/+4XnROKaTwwBgfX0dzWYzaJdZwOVh2b5aXqTYwj9DHNKe6Pf7+MlPfoIXXngBv/Irv4I7d+6gWq2i3+/j4ODgxC49zW7wIWWs8m9msyfHc5MM5LKI7wovIm+sMRfeZpqtoeUn7TT6xmpvyvJlemnrSL0Vy1OrQ6x/U+wrH70ptraWj++Zpu9i9m1KP1gWB1sRG0PWuEGWZW5Xm4yv83g65UPPqJ24XUlp+bUD0+kUrVYLtVoNBwcHrg1CR9tKHZSqt32Q+VjHjvzeSpfP79Dy0mjV7EUfHan5++jWxqfsC9k//NQdS9nWdB9nWGzjsm2QkM8lMZvN8OGHH+Lhw4d47bXX0Gw2UalUcHh4iMPDQ9TrdTz33HMuz6tXr2I4HOLmzZvOZqRd8rSLVtKhxWbUY4pjTkwIKUEaWe5pgYShLJ9+pxwnZnFUqUzrN5I+YF5AZ9mTI3P4cYCbm5vodDpoNBoYj8e4d++eY4YQ08cGhxQw3HGdTCYYDAZqn8aMDhkk0tKE6AL8F7Dz59YgyVmgDLpSDPjThoU22V/8Oc8nb/mzmX70MO1C8/G8pFsLDND3NKlCx2n1+/0TtNOkBV+J6gNfUGFFzABN4ZPzOl4WjbICXjxQZXVgyh7HmnPLQXqDgr9Fy+Z3HtMOnzL5KKQviuYXgtaPRdHtdvHuu+/ixo0beO2113D37l2899572NnZKa0MDh4IsNosNDlMgZuVlZUTcuuHP/wh/uZv/ga3bt3CbDbDwcGBc1itdFkcEH4yB989nBK4kv1odXw0xytWNp0mQrbX6uqqs9kGgwF6vV7wjnAgvOo2D+SRSXllz2g0wsHBwRyddMR+WbTyHQSxALoVVpuU0tBRU3QMES1GWDTy6IHzav8RZAAjNeCcMuHhS08Bskaj4YJrV69exac+9Sm0Wi08evTI+VmdTmduQuaTgNPmEc23pH4h2UfP+Gp17odrvnAeOsoC0dfv9+cmMfgpUan+ps9vLiPAmpoHjRHyyWYz/yIDmb9vsoGeW3byUJn1eh31eh1PPfUUqtUqPvjgA3UshoKtFjuH9Bad8EG+3IULF3B0dDTnx9F70gGNRsNsF/JAbZn8eJ59/48LymzDLMuwsrIyd0fc/v4+9vf359Jcv34dFy9exNtvv43d3V20221kWTZ3KkLZ/UpjmSaVJpMJhsMhWq2WOjZT7F2tHJIjfNctT6P9T/JPxj80GalNjvjyt0LLq4w4cOgbywRSLB++oIjnq7WBvCpAo0nbwUvvJd2+iSuffrD68T7aeB/JxbMptgJvB2pDokku9m23267MwWDg/AG+iIF2vNORxNeuXUO/38fW1tbcpCzF5mu1Gq5fv37Cp5bXwPiO8rZedVNWHDWU72khr00j/5Y2lsZrFr9TPqOjb3mfSp7U7F5LP54GTtue8MmORYPbccCT6z35ccX9fh9//Md/jKWlJXeNGHB8ZcZrr702l1+9XsfXvvY1R/vt27dRrVbx4x//GH/91389V660EQjqzthYA/kaK9VhtpRVNnx5a0pHU1Y+4yClTE1Jad/4HFnuKNE9ZCQAaFs8nX3P7wP01TsUwPA5VhykFHj6Mh3KECyKxmKYpRiai0QRo+60YZEJ8r02zorAwp8Wuqzl+OilCVZuHNJ45EEl7nBY6lAmv1mCE3ne+QIiviBJKsrIJ/RNGW2cEjS2pPHpH0s+IV7V5CUPluXlEc7XnK68x2qHHLWYzC9LHvoM0zJk1nQ6xdHREabTKZaWlrC9vY27d+/OHWmT14kiuvM49fxv6SyQ3UH33Ozu7mJra8sdtw7AHfVo1Qe8LHqufU/lEw2W+2jzwmKP+dJzPUcBr+l06hx0fj8Q76dYOVqAJSZzQk5j6BtLvvz+W0vbcH7U5ISPbk5TTPbwevryt8hpKcvomLLpdOpWycYQqp9GT4yGvLDqZgs0XpXvY9+nlmf5NlUHcF5qNptot9toNptucgXAibtjU2Bt31D7aTx9GkGKEMoM1MhxKmVhij9m9S1CsQZNVtJzyYekvzlkYFcelxiDlI++8lOQp3z+v/X7kA6LtaUvv2q1ilqt5oJWIXvYZydZ2o5kuQx+12o1F3zjVzuRfRLipRh87ZBnfKfyRqrMzitzUsdxWcgzXsqmkXbbA08WpdLkJF1ZVKvVnC1Bix25vi+jXyw2OC1s5BOmPn6M0eX7LtVu5rInVAfNNpL2pi+dlrc1ZmHxS0PvY347pyVFNoTsM4v9lGonhsa4j45U+Rwr16enfP2o2QSyrbVFSHxybTweq7GSwWAA4HiRDt0JKxepkj9Ii7mGw6HzC0mvcBuCaI/xb6gtNd8x1i4WWH1IbfxZ5EisnFRY84n53yFoV9f4xqF2B3XML02hWfumbB/tPMBi/2tpZL/IMT2dTvHgwQN3KhZNnj5+/BiPHz92MR0a6xcuXHALOgDgpZdewng8xu3bt9HtdtHv992VX9oCi+AxxSEDOC9SjIxYuXmMWM2J0gZ/kUCKzKtIGnpHx5xSufx/chwODg5weHgI4OTdc6RcUpws2modEvLExDLQRu8tsDpNlsvmqZ5yB0MqTdru6JhgO+tgyVkhZlzGFL7FyU6hheelCT2elsrxBQl844WMJ+Jd2gnFceXKFdy4cQPT6RTdbtcdecJBDhrBN5FxGrxVJEgbe1aWc24xWs4SFEgC7JOLWh4SqfWVKzt9DumioRmlMQcv1lbnnQc0UOADOL6LlU6UkHj8+LG7Y0LuvLA48ZTON5a1Poi1N92p9+jRI6ytreG5557Do0eP8B//4388sXMkBVp96I57GQANgWwQ38pwiwMi9X3IsKf2ih2bmxdlOp+W8SS/oXbntFAetVqtlBW8qYGfEL0c3E6czWZu4julDSzw+R68beTRp9bgWF5aNPByiWe5nT6bPdmxJmnU7svMo0fOSvcUBY0FC+9Q2/H+5m1mmZyjcshvo6B+s9l0R7jzcsoaQ1acZqCG60spb0LBxRTwkwL4OCB+TZ1Q5bRrdPL8Q8fhx5B6vHHZ0OSYVmeeRpN/KTppOBxiOByqvGDh+xivSJ1xdHSEyWSCer2Ofr+PwWAwt1svJnP5GPbVVT4/bzLyvNFjQRkyqqgcpV1zy8vL7lmtVsPa2hpWVlbw7LPP4kc/+hFu3rw5912WZWg2m3P3hpcJilPIsUBjC3iyQwiA6p8ULR+w+YH8blvp//j8HX5aDvfDU+Rs6EQWrT7WGLUsX9oHljwsZfHYQ6idY/f5Spq1ukqfSdNLkgZZF6t9JfP1QcbX5Dex/wmHh4c4OjpyentjY8PtPm40Gtjc3ES328XBwYGbdOW8OhqNcO/evRP14z7jdDrF7du3nc1HcX2SHYPBwOkdfvoQ+ePUdzQ5HDttr6i95MtTYlGxP63svHla2iGFJ0NjVMbAfGXLk7BO0972oUyfwppXaJ6gTPA+oTHGxyAAVQ+//vrr7uqBZ555Bq+99houX76Mo6MjVKtVLC0tYXNzE7/1W7+Ff/gP/yH+xb/4F/jTP/1TfPOb38QPf/hDbG1tYW9v70Q9o3fGcvgaI0UhyWdaoDGUn6YUfJ0XKoPeyyCbRoM1CGpBjCaZL08fCojwYKQWyAwFgkL1CwkZ3/2zZQwmn+MW6qOQoJOCwNoGMWj9E8NpOTl5lGDMydSe5alP0fYuCmmEhoLvwLxTTcbTbDZzu2G580BCvVqtotFouOM+adx2u11n6IXGWOpziTxBUMv4yaugiyjiRZQl4ZP5Wl6pYytv4LQsnRvLp0xdxgNWFkfPWlZIZ35cQOOdnKfBYICtrS3s7u66u9+1nbFaPj55nEqPZktwWUf58l2ek8kEh4eHGI1G7vh1S5DYYkvJ43R5GrJztO8WAYv9FALpBupvOs4y1dnyBXLyfA+EdUPIJvc5lZax7tOxFp7lafiiPF+5lgCXFpjx+Sr8CLNYOXn0rgZruxQZA3nlvrV+efhikfRQmaelQyx6KxSUlXJYfkP5WuWJz39aNHibU5sQLaRvQj6c1VbSZErIbtXkmAVykW6IZmu8gufH05YdzJT55ZWhlFdKfWJpSFfSYvJ2u41Wq4XV1VVUq1V0u91k+iRC/ULPZP/KiViLzPHZZ5L/fWk+qfC1f14bq2z4/L2U+A6PwQHHE7Q3b97ExsYGLl68iI2NDXS7XbcQezweu9O1Qv5mURDvaZOcAOaC0vKY+Ly+rkRInmky3Oc7azapfF8mH8XksMW38dnxKbawBVabSGunFDvC1wepNlne70MyI29bcn1Of5OPS23Fx6m0begZnbYg25b/L49KjfGYzCu1jUJpLLZGqm+v2alWmuQ3Fjq0/FP5IDQuLfRb+kXGVmSeZcsDAq+HtS5aHkXihZY0sow87eCz92U5Wptw3wQAer0eGo0GGo0G+v0++v0+lpeXUa1W3VUawPFikKOjIzSbTayvr7t8Lly4gHa7jdXVVe9CK/XO2LJgNZYtzkbIobJATr7IVSRW4ZMaRIvRZAUvU+56pSAfYTAYBHeHaogJWe6EZNnxSu9er5dbWFgEwWw2i674Ce1cTQF3Bk/DETiNQMii6xELaqXw1GmCHwUK+BcS8L+r1SparZb7fzKZuGABHV9A98sR304mE7cjlpyu0WiEd955B91u101ghIJQnJbUoE6ZSDXWgXKd65Tvi5aVEmShvg7Rwnm9DBotBjvnKx9Sjnr17Z6SdPkW6JSBVAcvL3xORZHyqU8I1WoVnU4H9+/fx0cffeTalU65yGvjxGiwgO5ro7qG7snc3d3Fo0ePMJlMnIzL44Rb9ECWHa/sp2OeAP/JJvSuTFhtVU5vu912u9uazSY2Nzexv7+PBw8e5KbBAp9dpDlhqTp4Npup+rMMuctpkqv3OZ38XeqdkjwP6Rdo/kWWHe9YqVar7hju84BQsP/jgrJoteZDtt956cMyYK27PArzNBa1aLYt/58mIBqNBobDIXq9XjItIbm8qHrxo+bpSN0itonPDyA5x0+fSgkMakjhF2D+FCAJote608oH4kc6Nnxvbw+DwQA3btzApUuXMJvNsLW1he9973u5dyxrkLv/Y7YX10v8zr6Yrc1B6fiklyzjZzhfyNMndJIBALz77rv4t//23+LXf/3X8Tu/8zv47Gc/i89//vP4/ve/jzt37qDb7aJarc7tpl0UptOpd9frbDZztCwtLbkYRpG4mDbZEEpr8Uv5eKPxw21SykcbX1bIgD2VF8o3JeYhZacvTV5YfRTtJK8UOrRThbidoelnSyzEch+spQ1TIW3o6XSK3d1dZFnmfONOp+PeUyyQX0nGaeJ1IHuH72qV4BupeFoJefpZDNTXoba05nVaOCtaLPE6adPydLyNpaygNBQ3JltS5m3tD5n/on2bMvvEF1PTyig6OZsHNK92584dLC8v46mnnnLvbt26hTt37mA8HuPy5ctzNF67dg2/9mu/dmLu6oUXXsDP/dzPqWV5J2O5EC3SCNJhSFHMGl2+wFtKHta8YpMjvmcpNKW0g2w7mqgkATsej51ikAMypAS1SR6+WlmjW+Yl32mg/Hz9KcuSyjgmoGICM1SerJPGp5b8iyDWdkWREqgrW9j5+tGXLvYspUzLOy0t5z/ugGvjC3hSt3q9jqWlJbTbbcxmMwwGA1ff0WjkgoHyCGXJayHetdSRv7fIsrL63GdYaEH/szb8ynJ2NLkh9WeM58vg81g/++R5iMZQn+V14KwoEmjMWz7n1bL4U44B3t4yiKB9mwqtz0L8R84j7fTnz0le0QTtgwcP3L30tKhE0moJSvie87FjkYG8XWVgVLNpQyBbKiW4SmVMp1O3MI6O8+V9ze0qoifkOKUEdniaFN0aKjPlXYwmyfMhPskz5qRNDDxxSok/Uuwf/p2PphT7PdXWT4XVDgD8fg7xps++SUVeH0/7n+cZSxtrC05Xr9dDt9vF8vIy2u026vW6s9FCQeHYOOH8pvkW8u8sy9yVMLTIVV4zs2hY5YOUZ8QrRXjGp2ulfNBkSB771SJ/QpNkMhCn2X2cPqlPUvwwLjv470UHxfizWBvH2j5Ud+1bsjU+/PBDHBwcYH19HfV6Hd1uF3t7e7h//76T9bG4QOi5j1apm0N2h0yTZceLd7Isw3A4VP06yT+yfUNjIYXf89gCpyFrYrD05yLo5OWW4UsAcCfJDAYDbG9v44MPPsAzzzyDixcv4gtf+AJarRbeeOMNDAaD4ORLKnw8lWXH103QpM/q6io6nc5cfWnCVh7lzvPxwcfbvrS+2IC1DEKKzZCnLvK5z46S5WqyT7aRRCzWY/lGK8MSE0uRGXl0b0zPa2li/BHrixgtofbk+pwm4mmhBdc/kkbNL5Z1CJ3yk2WZ6sto+cTepcKnrzW5a7GFTwtl6oRQe6bEy3g6yScpOjzUD9Iuj9kKIflzFv1VxH8tmr/PJuPfzWbHV2Xs7+/P2YaVSgW9Xu+ErzgajZw+B46vLPziF7+IDz74ADs7Oyod3mOKqUDpTFrv8PLlaUEZzJAqzCXOyvlNcWpqtdrcCp1er+fuVfE5CRbweyx9hhI54jGjQiIkMKTzw1cVyN2M2gpWool/E1MUBO3y5k8aFiFkLU6RFKR5HMQUemJ5Sd71KVtauQQ8CcyMRiP0ej33XAZiAGBpaQnPPvusS3NwcOCO16Id61k2f+9z3mDNaSKvYUVGLAVPitQtr+5ZBHxyUQbjUvLjSJGnIZo4XSmBwRSdWfbK1NDuB6JdLmSw2h1Wp46P/zJAdbLkK/WqRY/lsW+4vKQdnDIdLSZZXV3FZDLBj370IwDH7U/35fhoTwX1fWoeWhAt5jRq7UU7nPjOAYujQHTTkYrcYA/RrK2yL9v2TBnHWtlSv6XCNwEtA3x5ZTeXacST5KvwhVC8DkX1RJ5g8KICyLEyOXz9O5sd78qnaxX4zr88WFQ9y9Tvs9kMu7u7WF5exrPPPovxeIxOp+OOi085OULLm49rPmEp5RMtyut0OqhWqxgOh64P6Ki7Wq02Zy+eJahudIoDLdbh7VV2PwGYC0xK+yUPv8mdPPQ3MH90cl5fUJ4QkldPk1zLG3C2ItaOvB6yTilBxdDdgoROp4PZbIZvfetb6HQ6+Kf/9J9ieXkZzz33HH784x/j7t27aDQaaLfbc1c7FKkfQfKy1F/8bkqZP435CxcuoFar4eHDh258yHaTbXfauuHjjkXqU2mT5dUFdAcrLVy8e/cuvvWtb+FXf/VXcenSJfz2b/829vb28K/+1b/C3bt33cTtImMB1WoV7XYbw+EQg8EATz31lDtqkcrqdrv40Y9+5PQP8X2K/26pA/f1YndecvC+1/xBwB/DC01i8Oc+fyGPzJN5yDS+OGsq8k5alIm8caIYQqdzaf5yLEZtoZH6hHiJy3IAaDab6sK92ezkrley83i5kme5jeDbeV32/IjFrghNBPJvyrb7zjoOGqLBatctIrYr7QiyEYlftTifhCYfz7q9rShT92vxImobrpMGgwHu3r0755dVKhV88YtfPJHneDzG4eGh+/5zn/scvvjFL+L3f//37ZOxkmm0TvdVJvQs1HhWZk/5NjVNTMFaJnnyKGdfORbaJpPJ3MRQ7PgeqfCtdeblhb7hzqtvokJL71OuXMH5diLScwrA0XMZ6NPKl3ktWhB9HJyuEG0WPvEZn9pY1oIg8u8UxPo7pBQl3WRwhSYQeZ2Gw6Hj19FoNHdBN62O7vV6biKWhLRFdqa+XxSKBMs1ULtajyUKlR8yhEL/W9+F3pfRH9opAFbIscP5PyavU/KnPtDGuG9882ex8ix9E0sTcxok3Ra6rPmlYDY7vlMmyzJ0Oh23G40fR2ihh+fneyef+epQr9exvLzsnMadnR30+/0TdgXnA9LBvv7RZLCPJo3vaacu/eaBFy2oEqtjjBd9fZx3jFPb0N13RGej0YjuvtPo5v9zWmM2NDB/TCkA9U6jslEkb+5UEng/89MqrLA41/R7Op3OLTbIM/ZTZWBR8ACUHE/n2e48K/js0fMGshn5kWYpfi2HvHfbUrYvL196zZbhgSI+Sa0FKVMhF7MsgtdDOiX16NyQXarp9dMeuzyYzI82LGIjhwKS9P9kMsFwOJyTwXniKnl4yacbJP/6Auih8rkuy7Is9wT/z3AMbgeUMTa08UiyKcsyd0WRdeEJjR95zRaV8+GHH2I4HOLll19Gq9XCz/3cz6HVauHo6Aiz2QydTgej0cjtwCtqR3Ga6Fh1n69Efw8Gg7md3UX9pFg/ycUrllirL+bD+cPid6b4jb7vUhEqJ1a+1T/Mm3/oG2usRYtDWNtL6xNJg7QttDEcsgV4Gb64hlYvjT7gpK6SpzRxmcLz1/LWfB5fWkmvBbGYjlZGqh2olVf2N3ntkaLgulwrM9UvT7VZLeNJ62NrfERbMHcW8MUVi8pe61iXel6z/d566y1sbW0BANrtNj7/+c+j2+3inXfewfr6Oq5cueJs6RdffBGdTgcPHjw4cVWAd4uG5lAtomNCQUPf80UxSMiR8Cl77dtFOPRaUGU0Gs1dBiyPPeXpfbRqdPsCSPyuJZ8zSXySEkzW7u0CcGKFIK8L/SaDlzvz8h4xS5A29s76TUxppvJJSprTDEDEaInRrQm2sseNZkSE6qMdS0VBsBCd5LjQ98Ph0N0xATyZUKAdF41Gw3tPh9YuZaAsp5UQGuNWfiRHNW/AxVeulrZI3WOGS16+5TzGAwsWXavV1TemfLLH985KtwxS5TUoF5U+hpRgTsjpywPatddqteYCL3IHhY9uTr9voVJIn2t1oOPVm80marUatre33WIvn50WOsrPZzP52k/bcULH/tLCDeIx33HEob6RPKrtNgohhV94nbLs+O5YOrYegNuBnLrjIu+YpW9p5+hs9iTY7ms7S/4xfV9ENsrdadrJKWWMRTmegPkJFj5xXoaeitFh/V4bb/wH0G1oDWftdJ93nHX78PFQNB/OHxw+eyZv3TV7Q1sQUnQylufLj9WM0ZQXWh40yZFiu4fiDb73RW1OK108cNxsNgvdzc1/h3RMpVJxx7mGrknS6PU9swYr+XcajbPZzPlscuLft/icl8NjFpr9kof+MpA3qGkdR2UFTRfdDlq5RHuWHU/Gkg9PVxXxtBp9cuE1T//+++/jww8/xPXr13H9+nV8+tOfRqfTwQ9+8ANMp1N0Oh30+323YK4s8JNYtAUsRO90Oo2WH+qb2FiX38n2juUvv9FoCsmdUF20WGSKTE6JMebxJ0O6W7ZHTP5p19nJeoRotsT5tDys0L7X+ts3Bq1HzWsxDF+Zsmz+P39Gfpa0SXxXCGr5pNgx0r+2yEzNR/flbcmXt2dZNrOWTxk6ReZlodk3tnw2hCbLuK1Lv60ny0h+l3ZSaPzzMrUjtDnyTBAXQcz3kG2dyl957EGy7Qja/NpsNsMPfvAD9//Fixfx0ksv4ejoCG+//TZu3LiBK1euuNOOXn75Zbzwwgv4/ve/j/39/bm8TOfwpayk9QmtIp26aMcjVmZsYJwFtDaVDkHI+NGQZdncpdJamVY6FgEqqyg/acKyqNEg8w/1w8cFMUMnD2LB27OA7J96vX7iwvXxeDx3dB1NEJAS5YEYvuuVzpSnFab1ev1E3Ysch3dWsPbfZDLBysoKXn75ZTx+/BjvvfeeO3KvrEnn88JL2r0esbFfNAjpQ1n6NsXZKlPOhfIKBb58ecSMPQsNZdgxZAhXKhUsLy8jyzK3q17uMI0ZjrE28OUh60AyzCeHWq2Wm/jKsmxuUjHUJmRP8ECu1YjmTgoFtSqVilv0ouXBTzOwgOfRbDadDKf7cC22oUbDeDxGs9lEo9HAwcGBa9fxeIytrS10u130er05eREL6FrrQ3nIla0pfKsFaeh5UYQCHClBBF/e9EOT3d1uNymgcV5Rhg3Gxx7nt9nseGK+3W67cUCn7qTu+DttpLYLTU5Xq1VUq1W8//77ePz4sbtW4umnn8b29jY++ugjF5jOI/elnetb+JFlT+7ordfrqNfraDQaqNfraLVaGAwG2NvbSyp7UaB24HXjAYqiAThaKEL6Qgb1tKOeU3kzFNSVvqUMnMVA+scXzPUFfUO0+safxedOHRta4DAEGRdKCWRq8NE7mUywtbWF6XSKzc1NrK6uLsRmJuS5soh4hY6w297eRq1Ww/LyMqbTKQ4PD6N6qMwYRNkoMwbwcQD1J10rJMdyvV4/EUDXMJsdL9TOsgxLS0sYDoe4ffs2NjY2sLq6Opd2Op1ib2/P7Zg5rd3T9+7dw/7+Pp5//nlcvHgRX/7yl7G3t4fXX3/dTcaSPqLj8wkxH4XzjS/AH9MbMVlnec99rxA0nzGUdxlI0WW+NLwNZV199eAbAmL+dqhdqDy+sF7TffzbRbSjtE00/53TFMuLp5MTXnyRo4+n5OLiVB8spC9icxJF5ixS6OW85rN7Pu6w8KyvzeRYIN7h4490jUyXV+da7EoZa5CLi7Trk87baR5lzbHwdpb5cJ1FsR1Kr5V5eHiIP/mTP3FXyjz11FP4yU9+gi984Qv4zGc+E6RjbjI2RSCH0sm8rEotpGh8eUpFlodGnzJPCUpzpCicmGGREkjKE8yT6fkEU6wPfcLXsuNR4ydNYUsjg+gK0aO1Q8yYCNUzhbdiwc+ylFPZSi7GZ1bFEEtTNOCcBxblxHmnVqudmIydzWZzu9BpxxZNDnC+58GpSqXi7ovhO2J9ZS+qbU7LseB5k5HWbrdx48YNZFmGd955Z84QKVoGR16FXFbwI0/A9rT6PDVQGqJJGnNFnblYOSm00XvfaQvy21BgVBppRfmEt1mWZe6+meFwGN0dLvVgyq7OkLFJ9aIJAY1eklv0vl6vu+94oEprY3lnoqxLCJSOO/j8dA6tnqlODNFRr9fdQjRyRPh7K6gt6f7do6MjR/N4PHZHP8sdBz4doDm2vkADD37lpd8y3srIU3uXamuEaKK+jNmCljylnA5973PUisr4su1GXjcaY2T7kHzp9XpefkrVJ4tCHj6ZTCbuvtOHDx9if38fh4eHaLfbuHDhAobD4dxxjlKPWPSP/K35nLztgWNZSXIoyzKsrKygVqvh8PDQe+JRnjYoC3xcWGiI+bbEf/z4dNLlMr3WD9JflGlDeooHXLh+oWPKrfo/pMc1OaLJd01fa+0b6/88fMHbW2tf+bdPDsRoSpEd0+kU+/v76HQ6WF5eRrvdNpVVBJyXQm2vpZ9MJjg6OkKtVsPGxgZmsxmOjo5OtG2IHxeN1DIX1caclhBS6M1jP2i0UX/RD5fBMfuby5zxeIxarebs/Z2dHbRaLSwvL2M8Hjsbmk7LoZiCPOK4bBD9u7u72N/fxzPPPINms4mXX34Zu7u77sSe2WyGRqPhdshz21WTWRw+f4uXnyoTYrG/EHy2dawMS/4xvvPJDEs6X9kh2zZko1HZtKAm5Cv79KdGHy1g4N9xWjQ/J6UfYs8lXbHvNbvMl4bnp006+8qw+uoWPZriI+XRK74+9+UreVPStyidljLe88RJ+DOfz+Oru0YnB48Xc5uQp7WeFugrIwY5/rTy+Yk1IX6w0FeUD0JjwyeXeBqZj2bLhnx2Pu7pnVbeYDDAj370I/f//fv3sbe3h/X1dbzwwgsAoE50A56dsZwIbWIu9g2vQJkOO+UnBWaRHVYWxRdSeKmwGgOW8qQznMfRkXRZj0XhQQTtXWjwceEjBR3932q1cP369bkdh7PZDHfv3sXu7q7Lq9FonFi9YTVINLot98F80vHTWGcC8WCWZd7dm1mWuQC75LVGo4HpdIqjo6M5g03yKf+Gfsccm48LqtUqXnzxRSwvL6PVaqHX6+Gb3/wmut3uXDq5Yw74+PCeL6BWVr5F4TNMNH2nGZg+WqxOUKqe8/V/0bal/rHYCCFjOq8RCsR3P8eOUpLgTm+K0R7ThbPZcSCx2WxiZWUFS0tL6PV6bjU8TXBZVpdb7UFpA6RAOn6pDrome3q9XnBiWqaPYTQaodfr4ebNm8iyzC3o4TsrLE5rnjElQd80Gg0AUHcZp/bBIvQU2ZbynmAtjc9RtsIX6OL2Le2inM1mODg4cFdjnLWO5vIFeHIsIi0mI5o/jidvnFecdp9fvnwZr776Kj766CO89957ADAXQE2hh/vPi7CzaMxo955zmbuINuQTF9yX9NGRCi0vKksi7+QCz3+RgcwYZODdEv+x6HDZLjGbyMqntIDBsqgtVF6WZd4TKqx2Cp2YRPfeLi8vuwn9o6MjbG1teSf489pB5wXnxW8tm4bZbIb9/X1kWXZCl1rHKU3Q1+t1NJtN3LlzB3fv3kW9Xsfm5iZ2dnYwmUzw5S9/Gdvb2/jBD37gFvSFFiBKOq200KkXtVpNtQ+uXbuGf/2v/zW2t7fx7rvv4sMPP8Tbb7+NZrOJer2OXq/n7A0q2+dn+Xy6s+AV6q+8esjSxnlt0VRokzjA/KknfDKF9zM/RUjbIZvSNimn+vjsbQ0+WkI+Of9G0hSKV9NvX5sWgdysEYLmi+X19bR4oi8G5ItnWdvCcqytNZ502nokxXaJQbal7wqp2WyG0Wjk4swA5naWE79Iu1P2E49hFJFLciORL42vTmeNssarb8xp/E1p+TzBbDabuwt2Z2cHP/zhDwEAH3zwAYDjBZ6/8iu/gueee26ujOgxxaEBFhtcRYI8Wp4hWlI6wyfMpdOmBaa1b311k4NcDlQL3bH38g6eWLA1JnB8DkIKUoUaPeOCgALC/OhA2nFCIEOC777h9PsES+okg6WP8vC3jxdigtVnnKQgZRz5AhBlC8A836QaDjLQEKKDB1xl3/iUEr0bjUZzx8/RREaoLhynYZCU0X8yDzpmb2NjA2tra1heXsbDhw+xtbV1wunjhkfZzktRGRZCbPyl1KeMPl5EHnnz9AWytL+18hbJB2XVMQ98Y1yjz6KfrO2VIkdIplWrVTQaDbd7jIIuFpslNp4tNoj2jXRKtDSh55otp6WNBb58NoWvfLJbDg8PkWVPTgSQk4zc9grRSumsMkZL51twJssNBTsoTZFxq9mbWjk8vUwj2yImX7Q8tInVkB0Zo62oDMvTpjR2OV/JgJRFVpTpX51H+HQR3Y1NdwOXBWuAUgZXCO12G9evX8fe3l5pR5mX4S9wmSzz5WMyRCt/X8aY0QKwspzQ9yQLaKJM7oaLoSx7+qz8ASoHSNczHEX7VJPlg8EA/X7fLSCi49Spz3i5edtJ6sE8NjzpeOJDOnq83W7PTRbn5VOt3LLkbUx3pqbLS0NqPmW0gy8PPtGv2eA+v15rM4pfTadTdLtdd2Rxt9t1pyJcuHDB2dsUkLdeE5di5/MjVMn+GY1G6Pf7ODo6Qrvdxhe+8AU8fPgQ4/EYvV4Pt27dwmAwwHA4VO/Po7w1W0hrXz4ONL0c0x2UJmQ/WvUvfWORAWXqrRT4fFmtDbhdG/OZfDZiSlyDt4mvPzXaU+DjkRQ5nce+le0UShvjC19f+cpNiVlo/iT/xuejSB6R/G3l9RRfI+Qv+eqcd6zJ7335xdrb174+umOQNnSI5lAelu+0sanxgNaHPrlD7yy2tRUptoWFH6x6wDKmZTp6Tj4DgDkfnHTq7u4ubt265TY0tNttfOUrXzlx6sWcJSEL1e4NTUEeQ15COsZS6Fs7OmUHgC8II9NwRyCGMh0pafDnzcPCoFZmjuUXc5QqlQqefvpptFotAHBHhFH6hw8f4t69e27nbrPZNO04srSPJlBS+PY0nOSzKOunAdzJ4UfEzWbzxxJzB0ka78QrdL/MZDIx7TC3rDg/7+D35mRZhpdeegmXL1/GxYsX1ftx6Rt5D88ioBk6ZcvhWPkx8OC5tiMvFSltWkb7h+i15F9Eh/nyK4qUXW+0qhGI20xycQcdA3pWIHqtwQ+Sh1bDlf7nu/RknrE8aAzTKtIQv/l4yWKr8WNJ5Ti08APVk46aa7VaueV7XufT51zl3S1UFLy9pSyWd9qWBRp/tHtVTk5Kesou/+Omz8n2pbs6+/2+cxLpHunUCSltrJThC6aA6kSBZ1k2H+Oj0Qh//ud/jnq9jvF4jG63O7cIVAsgp9BBdY8dYXt0dOQmbBZ5PGUqfOOEFq4U1bnT6dRNhgNPdv765HlZ9gL1JW/rtbU1fPrTn8bh4SEeP36Mo6Mj9Ho9NwZ898CFZDa9o0CNlf4se3I3pRa7OAtZI30gC2QwO8XXrtfrmEwm+Mu//EtsbGy4HXm//Mu/jFu3buGDDz5Ap9OZs8PyQN4NJid4Y+BH2ab0r6Yjz7OPv2ieK2Oipgjo+qHhcIjBYIDPfOYzuHjxIr73ve9hf39/Li0PwgL+oyV57Gs0GmE4HKoLk4fDIXZ3d0/cL0yLIkejUem7krLs+Dj8RqOBd955Bzdv3kSlUsGNGzfwm7/5my7dc889h6tXr+Lb3/423nzzTayurqLRaMydFOKzqVJlRUpclfL3TdT5oNmfKePPOtkUmsCRssJij/r0TUgn0LPQPcfcP5N0cBq1ST7+N+lTfrw3h2x3bSLQR7+kLRZTluC2mA+c/7i/6bNDKL8Yz6fQSHTQ7xR9aZ3jCEHqpNCOYt+Rqxw+XtXoPG0fYdHl0bjyje3ZbIZ+vz+Xnk5X5HIw5sOHxk2ovUmnNBoNL7/QUfra6Y7nxVax7MxOQV4bO8sytFotVKtVtNtt9Ho9HBwc4N69e3j06BGef/551Go1/OEf/iHq9Tp+/dd/3X17YjKWC4EYoRryKGJtMPoGiqYANBpiAkyjM6SIfYrKqrytnRsSECntHvvO0j6+PLW20xRjrK9I0NPRJ61Wy03G0jcUUJtMJnNCiysAX9+cN4Ta3EJ3GYLP2qd5aDhNwZzadhy+sSgNQ35XlW+ca/Igr0F/nh1xbSxLemezGZrNJpaWltBqtZyjyoNdmkGcalxa26iIU6ihrL6RQanYJJOv7JCeixliKWPGp+8seVidVu3/FBp9PGkpk575HERL2Rbdw2kk3ZcnyCp5JxaI0Bx2/jcFlZrNptO/tJikWq2Wskgg1qYaH/iccC0N1SnWhiH7yhLECYG+045YlPT5bKYyYBkDMo0WcMmrw2R+Ennkt9ZvKfaplibk60g7QAuc+fI+bRAt/L7X1DbmMixVxltRpK3y2EZWf2k2Oz5+mo4PDd0ZXaQOvm+p7fmx5QDcbqzl5WWsrq66yajBYJCso4Dy7UvJK1JuaG0odSzXhSky0WcnaLouBlkmHd+5vLzsFlhajgqNyRECBY4qlcqJCW1NJkvbJFT2acgji27h6ULtovlL3B6mutMCifv376PVajkfg+6vL2M3u2ZPWOMgPh1Di8jk8yLXs5x2jOO8xlQ0WVIUXAaRPJ5MJlhaWkKlUsHy8jJGoxG2trZU3pW8r/U9LXDKsuPrjvr9vgt0c1ubJrPyyPoUkP1Psu727dvu7u5qtYq1tTU0m00XpyP6afEigFI37ljqKtvc59PlgcZHZdkBmowJ0eHz8zhNPjveF9+SeaX6CkWhjZE8Y9dXh5id5fOZQ99o6VLbUeaRh99T9YQlnhKqgyU+YbV7tG8s9MXKtyJUtxBdVoRiDr403Nah9/x0MkLqwv0YT1Mabn/TO/4j6eLfLVovcVjGWYocKYOHuFzgepr74LS4C4A7YYIWMAV3xhLOaiU9lR2DxSGhH2sgURPS/B1nRt+3VljpSYVFGMQCU5ay5cDQDE++gsLnjNAuwqeffhobGxvq6pp6vY6lpSU0m80gTUWNQUnfaaHMYM+iwfv6vNDNebcoDeTQ89Wus9n8DtmQc06QR/j4Vo357sM7z8iybG7H63A4PDH2sizD6uqqm9jpdrtOMXED4zSxCP4sotD5rv+8+Uh9VwZtlJ9WVooTaaUhhU5LgDakp2N55b17noJusTT0O2VXuKZrydAL3WOh5eOTXc1mE1evXsXGxgYuX76Mo6Mj7O7uIsuOV/lZ75EP0a5B0prizEpH3hJAofS0WtU6wVxUv3D65L27FrvFF2iKBYt9tNBOQeKhsnZbhHiMwAOdMchV/Hy3EullPibK1KXEJ3ynsyazT9Mh1WgE4I4/XF9fB/BktfMn4eQNwnm2i8tElmXunsC7d+/i6tWrePXVV3Hx4kVcunQJ3/nOd/CTn/wES0tLqNVq6Pf7SbpkEbtu+VjwXZsjA0A0lso6EprykRMkKfxfrVZxdHSEN954A1evXsVzzz3nJiAePXqE4XDobN+8OoFsv1qthnq9joODgxO7ba15pgaCzzOkTUkTUcSrdE/ld77zHTcmVlZW8NRTT2F7exuHh4eF7/G22iucZ0PyfzqdYnd3F41GA81m0+VPk/vNZtNNgn1S5PQiUPZkUApot+hrr72Ga9eu4Zd/+Zdx//59/Lt/9+/c0dl0opa1D8mubjab2NnZwcHBAZ5++ukTMa7xeOzumS2y8zvUfpx/V1dXMZ1O8eabb2J3dxcHBwe4cOECvvrVr+LmzZvu7jv+LS1Y2dnZSao/0cWf0Wl/8l1RhHgnNMGUdwLMUibpYlr4o73nEx6SBm4/87bj32qxMdI/vh2yPE9en9jElS+GLPMhuvP62j7EZERe+eFrf/leg+++UGu5RRCbC+B1or7T+oR4i+CbG7LIaO77+dotZUKtDGhxszLbXotx+I5354t/Ll++jCtXrgA4bq9bt26h2+1G6ffRo9noHDzGQ3eVS/A0JEdOCxa5Wjbf+OJH8h3NY/HdxfyO+M3NTffNgwcPcOfOHbzyyitYWVmZy3uuNTUhbiEyrwItwvS+gcyRGqiSoIFpycc3AKXQsShp+SxUBqfRl2eoXE2B+vJIzdtXbxkoolV2JCj43+PxGFtbWzg6OnL5pATdfW1mqV9ZyJO/1dnPYyhaEePbou1WxEACTho7PkXqey4Vo1Zfy/iI0anBErAu2zDQ8o8hNBHAsbS0hKWlJXfEBgXabt++jQcPHjgZSu+0Xe0W2kM0psqvPGWUlS4FPp6W//t41mLg+oxS33dlyNCUb1LGdYinUvK2IDWQZrUnKPgyGAycoyQDFj7E2oXTwlfoj8djjEYjDAYDdLtd8xGUku94vjJInpoX/605Nlq9fDT5vgee9GOKzSj7UuZHR47KccRpkX/H6mOli/LR6m0duxYdFeJnX5/FbDieJgXcLqAdSUXs/yJ2W5E8LOB9zO3oWOA1BFogyXmW/y4TUl+VmT+1CS10CPEA2SG0QGY0GrkrKWJ0Lwqcj2ezmZu4o91TmrxJoauoX1wmNB87Zgvyce3zjzX45AHtfOeLL2j3F19Ymdf+9/n1Vt1KR2Zz+1lC2mtFfSueb0gvpvgSMt/QM7IhpC07mUzQ6/Vw//59DAaDhR13H4LFLib7h7dbrVbDysqKu3cz1d7ISyunq6y0qeVb08ZsnxB/x+ycFNC4I1uCFhIvLS1hc3MTr776KnZ3d/Hw4UN39LC1jbMsc7qWsLu7644jPjg4mKuDhUdCcjDUB2T786tEyBfgPnun08G1a9ewtLQEAG6BerPZnJNzciE7cHLiMJXGIiiD/zRoccVUujQfRyvH4odJOSnHCT3jtjW3M6QPEqJH1iNUR18+vjx931j6hfzkWBkW2ix6lNtcqfETSUfsfRH5bbUJpK2j5SP1ssa71jpptIbqYc3fijz6wsoPWr4+f0er73A4xOHhIdrtNmq1GpaWllCtVt3EH98glGIDyzT8GGRCtVrF8vKyy5f0QbfbdROyZ+U/5I2NFLWL+bc+30NbqECLTkkWkI7d39/HYDCYT8v/oczKvpegCFIajwvi2MqfUDn8b+3ceytdJLhSy5eKNWSMhhwzy523KXT53sfqKB1PHijhqNfrqFar7kgYALhz5w6+//3vO1rJMQXmj5G11iOmJE9LyKSUs+jgj6X8vDSUHdAjfiOHJk/fE6wrqYsEdYsYlxrPngde0HD9+nXcuHHDOXez2QxHR0f4xje+gYODA1ff4XCIWq1W+srIRYLzf6jfUoOheQ11Hy+lOD0WWOgsmx9jBrI14Ch1dt7AdQiz2czddRe6cyMVWZah0+kgyzJ3PA0FaiyrEVPooBX9BwcHqFQqaDQa7t4qC7SgI3DcHrPZzB2pmTreZX7W8SJlZshO4qDJuzx9qC0w6ff7bpWr1SmnHz7BH5IBoTylzqC/U237kPOTp63kqRHkkEi9XGSXOukeTVZY7d6fRpCjDzyRs4vS05I3y8oTOB7Ls9mTndO+u+vJOQaAfr/v7u2TQWWtDAtOk9dS6JJHwFrz53ZGWX1GMokmwCVNmo1fJLAiT5OYzZ4ccdtut91kfJlyMg+t1MbVatXp/X6/r076pARC80DGUWQZPECbx8bUQOOSxjKV02g0sL+/j7/927/FxsYGLly4kFReDKHAJv3PJ8blt9QGZK9xtNttPP3009je3sbW1lZpu8LLxKLl1aJ92KL5U7/SuKPFkBxXr17FP//n/xzvvfce/uzP/gy3b9/G7du352JTPtBYoTtpl5eXAQAffPDB3MLF08RgMMBgMEC73T6xAGI8HmNvbw+rq6v40pe+hG9+85sA4PyFzc1NV2cK4hModjoYDNTTs846lqEhdNpQSr/4+FCzSUOTrURLqL24Dgv5x7TAiNtDFCfnkwYy7zz1tELz72MoEo+zgtqdZHgeHtDsGS2NLNeSry8tlZkSGyfwO0GJp+TJopJH5IJHa/8B+s7hs44LFuFln4+hgY8b7VSn3d1d7O3t4ZlnnsHGxgauXLmC6XSKg4MD9Pt9PHr0KNcYkPKE/Byu55rNJq5fv37i7uCbN29iZ2cnWN/TQMjezTNO80Ab19oiXulHLi8vYzab4aOPPjpx4tyJydg8yFNxHtDhyk9TJlqD+4xm/o2cnI3VIdV58ilbSaOsY6x+Gm38tyxLPg8dERzKX4Msg6flk1laf1Awh+fBAz6rq6tYWVlxqz54QDLkFOU1jmL19T3PO8BDxlOe/PIij8FUJOBaZj7amCSHydp+su8lf8m/LUF0TkuobvK9JSjve3aenBd+lxbwRN6urKyg1WrN3YXTaDRc0N3K+yGFK/tQG9tlja08ba4FpUK6hdLH+JSe56HHhxjvWuCT/anlyXzy5EHvaez6nNg8MjEUBI2liznbhEajEd39qsm/1AC1TM95kPKnoHQKH9D3XC74ypPfas95vr6xQLLHar+FeMtHgxV8FxMPnPOFjvyYaQ6rrZZ3PFvylvZrasBY6kzu/EkaY4EYnpeWZ6hcLX/rO8lv4/HY7XLmNm3MTl00ePnVahWXLl1yzt/jx49x7949N5HDd37Tt5zmIkGhIvQvCim6Q/bhWdhZWZY5HuNyYTKZoNvtotFo4Nq1a+h0OgDgjq6kSWTKI0+5eUHyTI5t37iQfrAvzxS6pHwNBWdS6lqv17G6uopqtYqVlRUcHh6i2+26hYR8kjAETdZRf9HYpNXysTz4/YzaiQupsLbJoseEtEHkGNDomc2OFzzt7e1hNBoVWrxDNEh9I+M3Prrl3zzvfr+P0WiEfr/v0vT7fZUWS8xjEfC1QVl5x9opb3xFQ9F2ms1mzvfPssydUHP//n0cHR1hPB7j8uXL+Dt/5++cOJJd2qG+HaH8GxrLmp2dZU9OwpHvY35UyF7Wnsm0e3t7+B//439gfX0dly5dwo0bN/CZz3wGv/ALvwAA+Na3voV79+7N1ZX4nY5hJ8iFFbLNiA7+zsqHMd5J0Sd5dYUlT185hFS950MoFiLzlpMtvP3z6OwQZJ5F8gohVobkN0t+FvmU4s+GaEqBlAeSf7W2CNn/dAIATcxrOlXebyrpSZE9sToVQUxfa7DaQr60IRlkiUHx65M0Xy3LMncSAU3qUb9ZTmYI+cjcBh2Px3j48CE6nQ5WVlZc+Wtra6jX62i1WphOp3j48OHc/ec8P6uussI3RoqMGZ5vSp4W+cX1O23YAJ7E99rt9omrB04cU1wUMSUqDVzeecRcvjO16Vt+pAYwv0OS5yG33FvqJxWUpD1mBNFvbdcdH2hUViyYE6M5JnRCeaYKSGlcWujnbTaZTOa2Zl+4cAHPPPNMtNw8A4aXb0mf972F36396nNaQsLcSm/K2JbGcqoBYy1Dg3QMNcNdC4SkKn9tLNPYJ8WmTYrI73wGr0ZfHgOhCMp26LnMnk6nalDhwoULWF1dxc7ODnq9HjqdzoljNTT68vCYj8djC29iMkumDY1xy7iUfKyll7owBh8fSrqkcybHkg9WeRgaCyn5S4PO52jEaJDfWPtPpsmrD/I8l0fENJvN4F2e8ph/Xx9rxrxPXmk0DYdDd/9kDDwoAzzZacp3zmrl8G81Pcf7L8TLsfG1CB3GaSTQ7mJqOyqLAnz8XnJNx/kg7eQQHby9LDJf9g9vc2temu0iaY7d6yrLkPKc25GcTl89ioB4dzabObuVVrLK1fKc1tME33lVr9fx9NNPu7vo3nnnHXz44YfumCuqR8xO+aQixL/WccLTc1gCLT7wsUbHl8r7JQ8ODtBut/Hss89idXUVwHF/N5tN9QSD0+pbTU/zOlGaPD6Epf14PiQT+KJejU5rPzebTayvr7udl7du3cL29rbbPWK561vSSP9zWukI6tjkbpZl7m5KukIgpT6+PK3Q+tnyLpaP5FVua8QmWLvdLnq93twCKAstIT8splslL4XqO51O0e12T9h4vgVOmp0TQhnjPFX2nUf46pCnfWh8Ek/RiTc3b97EZDLB9773Pbzwwgv4whe+cOJbfsWWrx/pnTweX0tLRyP7TucLIdQesr7a88ePH+P3f//3sbm5iddeew1f/epX8ZnPfAa/+qu/ir/7d/8u7t696yZjs+zJZHG320Wr1XKTsVxuDYdDtwtTo4MvVORtFauj1s/82zw2cKi8onGckB/G8w75gNb8tQUB9Df/n1+JwOmoVqsnruKx+Mo+P44jJHtCbR3zIbTyQ2WG+j7m+3AfyZeftIVCOiYWTwnlofnEVsxmx4uH6USALJu/K5bS8B8N2i7vFDms2dZl2bMab1h9uKKyRf7P+5Z8zUqlcmInsqS71WqhXq/PpTk4ODgRX/Xxua+evK/H4zHu3LmDixcvuntNsyzDxYsXsbm5ifX1dYzHYzx69MhNxmp1k/RrbVEGQno25dtU2qSe0mzy8Xg856PRAk867p+j9Bt4JZPF0vG/Y8YzZ1opEGgnBzeINGhnZMfoi3VS7D1f+RYT+jEQ/bG2TXGKNGgBtZT8UpUBML8rqNvt4ubNm+7+jFDf5x3gUkn6kCKkU74tAitNqQgZUdzoluWlGqMafI66/KYob/tokbtHQmlleTzAEqIpNSiUF4vgO22Byfr6Oq5evYparYatrS2sra1hNpvhvffew/7+/lzQisawVVGGEHJieHn8twYLLTIAU8b48umfPHlrOtdnEMV2HVhpsbRtnnx95RTJI9Uok/2tpaV2pKO5t7e33W5xST8/vsznxNJOp2az6SbqALh7qzQafLIqZGPI98TPo9EI+/v7GI1G0d2QJJutfa/pyCyL77qkMrjOzzv2rI6/rz1ns5kq/zj4jifqN9rtRkF8i50RosfKy5Je3l+p975o8iUlsKKBVvhyfivqeBMNWrCL/o6Nl0Xr5Y8jPg5tQvJkNpthbW3NTaaNRiPcvn3bax9Q8IhkND9y3CpvJO9z3uM7GBflC6QgDx2L6H+6kqbVarndv9r9rNQX9KysNtQCylogLAT5vS+YmmIzyu8ppgHA7aL17aw8LaTKev4dgdpE6hNup2qB3VS7ryjvWvqO20OW4yHljsqfoTjK6GsOvtOey6nBYIBms4lnn30WGxsbqFQq+L//9//io48+crtcfcfih0A8Ua/X5/wL4IkMXMT1cTymQzKYdj7xHT39ft8dUTmZTOaOWKxWq07XHh0dATiO5dEpeNpx3rFYijZGfLawZSxxPQLox9/T8xh8MimPP8Sfad+X6V8TX8ndbFQO5wWiJ0ZrqCxp9/h86Vh8hn7H6CrS/r6yLb5Bqo8mY6oWaLaPz88pAmnTSNuL7GJaROKbT/H1z3mxga2xf9/3HEW/D+Hx48fodrvY2NhwOyllW5MvfXR0NLfZTYs3WGOitVoNg8EA9+7dw+rq6tzx88CxfH/xxRedLDk4OMC9e/ei9SlbT4fKWQQ0HpbyLVQ/OilFQ+mTsUBacENzWHwNSYYRpeECigQEBcI0WgD7ZKwsN/QuJqRJCYbSyDxDbVA0YGWFVZn6vtUC0Pw9vaM60Qo64Jhpb926NReo03YtxxRzasBRy8NXP+07n6FmUdCp9FneaeliRp9PgPtQVLj62j4UPC8qbLkDTfmFVqDG6sgD8T4UpdmnyBah4LT8tOMolpeX8cwzz+Dhw4fY2dnB4eEharUa7t69i729vbn8SH6HHKwQNP6VxqOsQ97xGEKR8UDvfBNsMm1Ijml19wWGfXn48rSklY6S9TsLNMMmxudlBOp8AV/5jO6VunLlCrIsw8HBwZwhTLST3vIF9+n/Wq3mJmL5qR9y4lz2Z2p7++o2Ho9dMIV21/kg5WbePg8Ztrwc+jtUhxCk3ODfa+1bxK7iATwKbIzHY7RarejRi0SjpFOj3yrvNb1u3dVlyTOlvXi6er1+Qp8UsW1l+0nfwGKnlalDT8PhlAjZd9bvfO1QxOfQystDY8geBJ5M4CwtLWFlZQXPPPMMut2um4zVxgIPMgHzd/xofqyv/iF9EqtX7D0PHBdpf6Ix5jv5INuMP0sBycd6ve5OETg6OvLW0WfDpZbJ/9b0jmUHWkiHh77JAyqLLxgguamhrDG1CFmotZnkRc5f1A/a6Vtl2Zg+WrW/rfEBS8wk5tv6ypOQ8qks2Xxa0PjMOtbz2kDW+hH/kT6gHarD4RCNRgNXrlzBxYsX0Ww28f777zt7bzweu6PMreB+MZ2K4NuNuIj+ofLozrv19XXMZrO5o7WHwyH29vbc7i1+lHOlUsHS0hL6/T4ODg5cfTi9JMNCvE+00G+NN0L1D73nC30o/1Q5LstK/UYixcfOC6mzaTIWmD/hhdqOL5DlfaDZQvR3aIyG4g/auJTlcf8vy55MFstyfXLbirL0nbVP5TgItVPMf0nlwVhd5djjixS5HJpOp+7UndD3RektYu9Z9Eco/1Q9nEpfLI+DgwMcHh66+7yBk7HDRqNx4soS4MldtLKs0LwMoVqtYjQa4fHjx6jVaid2clarVTz11FMu7/v37+PevXsqHy/aljxt+GiwxC+0EyIJ6mRsXmeZE1UmSJHKfOWqen4BtaQpZhyVdXE0DwwQ5OCJDQYSdpL+WLta2z3GzJZyUvp4Njs+govaYX19HdevXwdwvPJjc3MTnU5HncgiYw/wH7mRF2UM6hSHwBIUPGtwQ4H3cxmrMn2Of0zeaHeT5jW46NihkHMTkgX8zmOO0G78spRHzIE/LdAK4Eqlgm63izt37pxQMr1ez62Snc1m6tFEMeQ14KwOX15a5LOU/ELjKGZoWCZwU9/n+SZV/odgOemBl8v/tjjmFqM89F6mpcVeN27cQLPZxNbW1omjfCkYwVcZz2ZPVpP68qYxVa1W3S5Vrc/zHFtGdFFZFoNcymb67fuWpw3JaN4mvjIsDiOvhyw/9i2VIY+WSRkveYJjFMjS7v0L0S6DKkXGoGZfhspMhW9sFqFbBrgl79A70s2pwdAYtF3vZ+0U8l1Y4/EYOzs7TjZtb29jZWUF0+kUg8HA2U3a2CNoQa5FwGcHWvg/9bvTQhk0kJ/LfaXd3V28/vrr2NzcxOXLl9HtdgHApVlE/VPy5PpTCzKG5OpsNnOrxDc2NjAYDNDr9U4sXrLK9KJykaPb7eLBgwdYX19392ZRsJqXkzJWuB87GAzcuM2yJzviyEaIjQXtyPfUekv72qp7OVLsp9C3KT4dTUrL3bN5ZVfK5ALwpB+1hVx80kB+k8deSKW/jLxOS68Vpfs0ZD/FGJeWlrwLrb/yla/gxo0b+O///b/jzTffxMrKCur1OnZ3d6Onv1hAvoHF10vVoVrc9vDwENVqFWtra25H1K1bt3BwcIBXXnkFzzzzDF544QUXTxkOh3jrrbdOLEal0yZWV1fRaDTw4YcfotvtOpnH21PaJ2X1K+VDO3T5MfZlnbiQR+5Ke96XrszYEZUlT4CLxUqsfoKWzvfOEivLo4dSvrH4fBY/NBU0njkPamny+kkcFj+fg64fo+uSCHRalzw5S/O3Qn2dytOLlPFF7Seeh4VPYvETesdPVtBiRmQvUqyI7oyVoAUzFHuVtpIP8l2328X29vbcu1arNXef7HQ6ndvxSTSHNiedV4Tizlp/lyWj1Qh5kcGj5aHBJ7h9ZUkGJqXCV1DGdsT6HIcUYz5WL4uS1cqKpZUK3FduTMml1C9kJKQEPbkBADy5j+fg4MBN2NAWfHJI5fGmZxH4SilTtoe1b7VvUxDKO7XN5LjXxpzMvyjtWt6yv/lqPgDBY4B8wpPy5UeGyrsXeTrfWCNDSiI0GSvzlvktIphW5H2IRqo/KXZ5Jv54PHb3JcoxrOVnpUlL65NVKYoyxcH1yaEUvREL9KS0S0gPxL615BWDVqdUWe3TJXnlvcWZs7Rx6FsKVLTbbTx69Aj9ft/JMh5Y5G1B70InZBCv0Z108jiTMh1zCz9qbcnrpem4mB1CgUrrsUY++ORmijO/SJuCt0foNBcrTSHdmypLYzTEYNFZnL+kTLDqu5AjJMcW/ZZpQnTJZzK91Hl8bGv0LTowLMuQ448m6DqdDtrtNhqNBvr9vrunzeKIa3mnwhqg4Mjbdlqf8fvP6E5OX1BD2rwES/3Ltt2It8ivpT59+PAhqtUqOp2O0wn8riZLUDEFMVtNIua7aun4mKLA33Q6xdHRkdOBXCf68oyVH6KX+zcyKDoej3F0dDQXcAJOLgj2yWWuIyWfkT9MATQpz3je8llMruVF2T6orz6+9CljqVKpoFarndjFZYVFd/l4j6eR4y7mK/j4RaMtT39Y4kOWdipTnixaJy7Cf+bgC174OCX/djKZ4OrVq7h27Rr+6q/+CsCT+7xpQWbKJgLNLpFywIei7UAykO6vppN6JpMJHj9+jO3tbVy8eBEbGxvY2NjA008/jdFo5O4sHA6HJ+y+SqXi7JFWq+ViexbbSbMjYrwZiwv57Oa88iMl5uOrsyYXYzGHIuB+iEUm+fLgdMq/U/JLKc8CjbY8/kfe9PybmD+XV37l5YmQj0OguJ2cvKP7g+UuWSB8gpdGQ2p/+sZDTA6klMXLyWNThvpRa3efnuY71kl/8JgrpSE7iC/ipz7iddDqlFK/0WiEbrfr5DmdmLC6uur6vVqtolaruUXmIeTxDznK9nfKyj9vXIOQ+5jiVGWYB1mWOWOAVgRz+HaNDIdD54hLyMmX0M6cPHWRNPEBxOEbGKcRIPQhZBCF0sj3XDBTMIjn0+/38ejRI7X/BoMBfvCDH8wNfouB6nNSF22sp6CIQVBWPVIURihdKj0UfImVxScgpFCk43/ICWo2m3MTq6m7xfhOBFqpTs8lfbQzxjeG+MSjXBgSwiJ4s2wDnmik+msT2OScvvXWW6hWq26RRVGE6hEKOqTmJ3mtLAPZJ/tD5WjBuzIgg5ykH6Xx9tOAMsfddDpFt9udW71uPa7cOlZp3GljLwQtaBjDYDDAcDj08jMdVUb32aXoDYJlnMlxogWofd/F8lsUJpPJ3OT82toaKpUKDg8P3Y4ASZPPNiwii3wyh+thGTjzLSgK5VUEVKa0DXg55GguwvbxBUR4+9C4k3btz1AcZdvmpM/29vYwm83w/PPPYzY7Pm7x4cOH7jhJmpjmfUoL/MiODO1oknLovPgXVmgyNZY+pY7S5+Xfkv3B7yekY9D4ziVKK2lOheYjUkDx+vXraLfbODw8xGg08t7llAriK98uV85nfHGopJPLnkajgaWlJbRaLRwcHBS+N3aRfrHW77xcK3xBdbKBaBcJ2UWp0IKveWwznk6751YrNxRXOU8xixh89stZ0X8aZe/v7+Ov/uqvUK/XMRqNsLq6irW1tbk0lUoFFy5cwHA4xKNHjxy/An6+ms1m6PV6qFaraDQaXruoLPCYBgXXa7UaHj9+7NJ0u13cvHkTvV4Ph4eHeOutt7C0tITf+Z3fwT/4B/8A3/72t3FwcADg2Odpt9vO/282m2g0Gq49bty4gX6/j/fffx/D4dDZw5pdJWOivE99E0rat/I5tymB+dNFUvKywicDiR+4T+6TYdZYAOXn20XN5bIv3hGaIJL3yVJ6S0zYx+8+GkNptVMhUhCz24rKD+vEJNfvfMEu0eDTRZJ+3p/a/INGUwyTyQS9Xg+1Wg2NRmNuZzldqTSZTHBwcHDCR5J2paSB3ltlm+Q57T1Hkf4ryleWskNXMMj8uE/T7XZx4cKFE/NadL0j9cmdO3fU+TKpf3z08n4EnpxM2Wq1UK/XsbOzg+FwiM997nNot9sAgNXVVbTbbXz00Uf48MMPXV7cvg3JOF7n82Q7+OQiT+vzV7QNB6G6eSdjQ8I5xLBlNyRVShu4pOhpJRel04J48rmP5pSJjJhwkMJUS2PJP9SmcmDlCRBYGDAl4Mq/54ZBlmVzxx2QAJnNZm6V8GAwwOHhoTtaTdJBsLRfSAlKmlMQMgwttGj9GlM2KTSGhGzMsJO0LSp47aNRGuEA3MIKyeepPC7rT881uRDjOVIy5MyUGZjLo5Dk+JewyDVrEEHWlQcw6e4vi9ItQkvou1jfpbSvHA9lBZiK0JJapvze97tIn6TQEwre+HT0omHRdZzfW60WlpeX0el05pwS7V4iX8BKy9dCn6QpT3uFxoNPnvl4X5OpPhvC4oBbna4YtLFmsV199oFlnEojnJxXeqfp4Bh/pCLUfkVkVehdjH6uZ3kATNPJqeVLe0CzIcpELP+yfKBUvUCLKPgEDi2q4G1t4QM5VstsR984KNJuvG40OdNut5FlGTqdjgtu87TyWx8vxvReWXqRf0O6hHaL7u3todVqYTAYuGCkJZhladO8/k9sfIbylUclkj2t9YH0p61+NecJmWY2m6Fer6PVarm7tmhBJi026na7ODg4mNt9oI0dn/6K8be0p+kbrV1pgSff4Z4CWX5RGRXzV8sog6Dxm2/Ss0jcI2YbpI7l1G9S7AxLPhwp8ZIibSifnaZ/Q3kU1SU8HwLp1Nls5iYUV1ZWsLq6CuD4tLd2u41Op4Nmszm3uMeXP3DSluB+fFFfKNQGGu/TxAvpTYqv9vt9dLtdHB4e4vDwEJVKBTs7O7h8+TJ6vZ5bfEj5kg6mydZ+v49KpYJGo+F2DFtiDZxWad/l7V+uQ0J+hxwLi/JJpUwO2ZMhH1CDz96R73keVpmVKis0ezJEUxntXlafhfR9TGZZ2pOP89Q8NB7OEyuQ7U1jWNsMJe8alot7+Xj1tZ3PX7PC0qacxpRvi6AM3cNB9JO9TFdXcTuV4uO0YMJ3fQLlR8802nmZ/DnFd6lPR6MRBoMB6vU6lpaWsLS0hM3NTezv76PT6bjFNjLPmM9SZtvlRaoM8tlA8vtY3XLvjC0bssLEWL1ez+ucPP3006jX63j//fcdc0jQ5caHh4fm1ZMxI8Zy/4cUUHmhGS4aU3N6yljBrzFi0bo0m01cunTJCfONjQ1cuHABOzs72N/fBwAXTNLoIeFjoSmk7BcZQPMhppRDDozFcC3L0c6ybG7lDT8KnMo6bVy8eBHXrl3DrVu3sLOz4wx6grzLTUOr1VJXoRNSlej6+jo6nQ62trac3MmyzB23nQpNYabgtJVYpVJxd0ocHBy4QBqN3xQ+KYunLG1gCdZROp8TE8rTB8udP3nyDZVHhrNciCSPrKRgY9Hgbl6jmueZuhK8aP9YAh58RWi/38doNMJnPvMZPPPMM+h0Orh//z52d3fdJK00xLgtQDpM0kXHu7TbbWdY06kgPvpozNF7yWOarOPBEl8anpZ+E59EDcr///QCqp/F5ioaVJVHyVmgyYFQMITnLe8NTHUqSU/II314P54VqF6pMpxDc855202nU4zH41z3iGuTF/J3mQ4xnZ4hx1bZEw55kWUZms0msizDhx9+iOl0ihdffBG1Wg3PPPOMu+tN7tT3+VSyryitVc6mtkdo3J6XNi4C7Ug3H4i3qd3b7TZ6vR6++93vOj4E4I57HI1GSTKvCHg/0cQgn/gv2y6Q3xedmIiBTrfIsgztdht7e3t4/fXXsbKygk6ng6OjI3dMND8iOgTa9S+v6+Df0qRF6OoVHzhPxcZeUR7RxmKZfcLtpBC4rs27IzYVVKa86sp36lkIfCFFKFD9SYJVjpelt7Xge5F8Z7OZu4pnOp3i/v37+L3f+z187nOfwz/+x/8YGxsbeO655/DZz34We3t7zl54+PChiVZpz1Dck/OWRX9YQX4h/eb3QNZqNbz00kvuTkK6O5tjOp3iv/7X/+oWs5A9N51OcXh4iEajgVarhaOjI7czuFar4fnnn3d3YxNoHBepq+Sv0Pe+Y+ZDJ7SEypPj33f9isUGkDRofGvhY9IvsfvHufwm+oiGFLlqiafy+lv6NhTjLUvvhGLEeWQx1U/uBNVsBcknVn88Jktj7RyyszVMJhM36ab5a5pP5KMp9f5arayQ78d1M39+XiDpJB7gk9v8vcR0OsX29jZms5lbZJtlGS5evIgrV66o31BaOkVEe689o1PP+A+d/ra2toZ+v49vf/vbuHjxIr72ta+h0+ngmWeeQaPRwOrqKt555x08ePDAlU0+KuehPKdZLhqpvCPtYf6Mj2VL/HdudFmMpVTCYml9lee7XAm0sorS03GlMgBJwUy+2jZGb+hZDLKuKcaBLw+NJilsUmiLCeaUNuL5aYqS+k0LYHFFT0dDkUPa7/dPHI8Y4imLIxQylKx5+PLj8PVJyKhILcOabx5lJw3LGM+mBOhkOTwwqAWj6X4syr9araLb7Z5YaePLPxRo5N/Sap/ZbH5Hm+S56XSKer2OlZUVFwSr1+vqQokUg4O3YSyYVVYwRUNqIC3khKQayr78Q/Iqb/6p40LjNdkX1oBK3rLzGq6xtirCT6dp5IaMozzyR76LjQvqb9JbV65ccceS0TFcZOSSwcvlio8OyeOcFkufS90d0o0WW8xnj1lsBOnQy/rIdFr+1kBdWQEpCYv9Y+EV+psmHdvtNtrtNur1OobDIR4/fqwu1PP1vWxTa3tpNFt40NLGMrAU4ouY8+9zBvmRpZZxYaHHB41PrTqxDN1cBNx24fexkeObSttp6AWLTNHehfhpNps5n498iuFwiHq97u7PpTy1Y+4oD58+L4pUm4XGGL9bFIC7x4+nK1KW9k2KT6XlY6GJ0kwmE7eQmiYtqR9SFxVb/CDJe75gCl13RDuRaeLNZzNoMs3iW1Janr8Gy+KYkCwqKqfy8Jkmj0N15Hzva09LuUUQaycfj2m+QSjf06iLFXn1phVlxj1C8NUjb7tLW5b34Wg0ws7ODn7yk59gc3MTtVoNzz77LA4PD3Hr1i3s7e2h3+87+QE8mYiP+WQyzSL7hQLtvDyKvZJfQycGkA4FgF6vN3eVGB0XTpOy5APJOw9JT5Ntwq9e0cY+h9a/vnYK+ezat5bnsu18z612qqWcMuIgso2070NtK30OK92+71J8l5R+yytTU/3KPLpUtquvzFDdtHJj8ZFYH8fKJl+MFkwAmDslhI97LQ+t3vx5qE4yj1Q/zZfGYicWQSiG4ksfspH43yQr+QK/wWDgroWbzWbutNFerxc8mSFmH0vZyXXfdDp1Jx7cu3cPy8vLboPSxYsXsb297a79yLLjUxbolJ+Y/y/p8GHR/RiDlKshXrPEJ9Sl6XkqmddgoLz5ZMlsNpu7w5Fw4cIFtwJgOp3igw8+ONG59Xr9xP0NGiyOnu8uA43B5bMyDCgtD9/gijkCPqTU0RKooG+Hw6G6+odWGFLZNGBnsxkePnzo+l0KJ3mPk+QXCzT6YwZgqK4fF/iCDgTr/aYyTyt4edVq1S2oAPSd0K1WCz/3cz/n6Lp//z7eeeedE3SH7o7gBi/vZw66mJyv/tHyGY1GuHjxIl555RXs7u5iZ2fnRL2A4zahyRjLbt3TclLLBjlg9He1WnVHJGqLX1KcHs14K8tJJ8TuqLHml1fuLBpcpvkWoJSJPPU7bzytgfPeaDRCv9/Hb/3Wb+HLX/7ynO4iVCoVtNtt9Pv94J1uJLfynmDBx58VsQABv7fI6kTw4LQc96GV1Sm0cwewyLhLCcjJgAX/ofe+OnB+GQ6H2NzcxLVr19DpdNDtdvEnf/InGI1GczrQB9mmIR3uA6fbJ2/zyqeUQIk1Lx64a7VabndgWfc5Eo2aQ2ixb88LeB1+Wu6yDfk3s9nM3WlEtsjBwQGWlpZw+fJl53dQ4JgmbClPkld8l70s97T1+KJhCY6m1j3WRzJdv993O01pp2+ekw5SaKPfNHlfpAxNfvJdZpa8ZXCN2gCAmwj2nRiVQudZIWXcUJ/LXainRX8suM3TEFLuvrPaVmeF80rXeUG1WkW9Xsf6+joePnyI//Sf/hNarRa+9rWv4dd+7dfw1a9+Ff/+3/977OzsuHjW0tKSa1daMBWCJVBeBmiskQwkufPo0SM0Gg1cvXrVTTq3221cuHABwDEf7+7uukVClUoFq6urGI1G2N/fdzETTV6Rj8SPQKY7Z1PrKnXKIhGiJ1U+cb+J01+GHeeb3Ir5m3KBqI//pF+0aPAJIW1iY9EoYvtZdIlMmzK5GoI2qcbzsNq3FBPgsaQsy9zphLRBZXd316UNxVI5H2q+faxOMl3ou9O0G1LKl89oIV7o1Ea5i5aDrnWkvK9evYpGo4H3339fPS2W0xFrP96f9Xod9Xod3W7XyfZut4tvfetbePbZZ/FLv/RLWF9fx9raGqrVKq5evTqX39HREd5+++1TOc2kbPjGiGbT+cZwLH5zYjJWG8QpAsCSVgoH/ps6/+LFiycEf6fTmdt5JgMSfJcK0UK7Z+XxFLKu9L/2jAtKrT18k3xWyDuAOH2xfLiy0uqkQabNE1RLqWOWZXP3ftbrdXevxmx2vIJjMBioq399bRFy+imtbwCltK/2Hc+zjIkIX9CY/1+G8RMan7LN+NGmRcrNsid3j0wmE6dM+OrJyWSClZUVVKtVTCYTp+jl/YsUPCHnIbZa3DcuqY7abllZ90ajgc3NTayvr88d49dqtdxxbQDcbvzzhjKMSS1PUtS8H8uAHAtyjNL41sZMTNnJOvjy89EUao/Qs/MUxJV6l/ROnuNCtAmNFPicRu39WU2UyHL4saXT6RQbGxtuhaDlex/IdplMJi5AzfV6ipzzvY/JQ06vfMedOOnYcfAd8iFY28XqpGn/+74N6Vv5jAdOYtCOwecBL3pH9xMC87slQmVodYoFq6XtaoEvCGN5nmIr8LtvisJi+5YpL7R6l12GD5p+nE6naDabeO6559But/HOO+/g8PAQjx8/xmAwmDv+Tusji54968CGDz6dEdIlvnw4Unwb+b3mQ6f6g2TfApjbkcTvhsqTf6o96Bv7pAf5UdbWYLKkQYsHpNKY932lUsHm5iZ6vR52dnbm2pOub6CJUN91Lb424rEJLuNTZJ5mI2VZ5myQsnCa45vbEhodPJ32Lq8vk7d+PKYA+O+rtZQV8zeK+GsWxHyds4TWbin27yL4N+Rnkg/85ptv4g/+4A/w7LPPuo0gdO8qyQ/aDarBN8bpx1o/yachaEdsczm3vr6Ol156Cffv38dbb72F8XiMbreLRqOBWq02d6y61m9cH8j45NLSklvcSrTwb0J97rNV+HufLJYxHk0OhexsLZ2Wf9ExbJEPGg2SlhgdKXLIZ+dY6rgIeaOVXWY5efVFqE98aX22qsbjFvvI13f0LCZTrPEw/nej0Zi7NsBaNy2WkNKGZSDPeE3RoyH5EfLnffYRyUn6ezqdYjQazR0nzBfKkN/HJ1ZT6dc2wtHc2tHREXZ3d+eO5a/X67h48SIODg7c4iP6hi9Gslz56aPJZyvwNHnh8ylT4JPVPhvQe0xxngayQlaUO3F0fwrdB0vpY6vJKpUKVlZWTjDxYDDAYDCYe+4b7L4jjanhZJukBDZ8yLIn5/Tz/GK0kKHH87bu9rUomZiiTnH+q9WqM06z7HhVzfr6ukuzt7c3t2PWl0+sfrGACEELmMb66JMO6if6W06w5XWAq9UqlpaWMJsdr5Yk3qXjyWhcr62tod1uA9DvSQYwt9gCsB3dJcEnTGkyVeZBdALA8vIyXn755RPjZnl5Ge12G7dv30aWZe6uyI8jrIYnT0cyeRE6gstAgqbMOLhszxO0iQXUYt/GvvHlb3GuLPDpCs3YkX8X2XVWtP/P65jx1YsmYWky6fr163MTtBwWnUVotVpYXl7G3t7eidWMFt5MdQwIsWscJP0xJy22KMMSUKJ03O6KIWbb8fylfCk6Bsk54kehhkB3gtVqNTSbTXXXbygPS7/HvrfKrFg5/H3K5ADZ5GXrD+KbsiZ6tfyBxQUGLKCyyU4aj8dot9v48pe/jIcPH+LP/uzP5myj2J3g0mfhY0TqUzlWzrIdzpqGkNwkaLaI1oZcfpFNOhqNUK1W0Wq1XHp+dDfpoUX3i2Z7yfuFebqyyuZ8GPPP8ta5Wq3i+vXr6PV6eO+991yAKcsytzhKs4/kbgZN/0tdxndf0/MUcL3FYwaEsu3HVFj9iFCQiuej9Wle3tL0XUqdScfHvueBNp9NHqOR67BFYBHjtAz+OU1fIMW2ieEv/uIv8Bd/8Rf4R//oH+HVV191i8vJ9+r3++qdiyGfME9bWL/hAX3+TbfbdXpndXUVX/3qV/GTn/wE/+t//S8Mh0MMh0Osrq6iVquh1WrNyTNtITrXZVQn2kVLR8BrdmNoUbsWx5U2s4+/ZfyCyxtfTFDa2la7PPYuJNvKGJ+8zaVPZvExtLZNiWtY802Bhe4yUUb8SOZTxFbh3wPh06esyKOzOWjstlot0+kdIR6S7eKL8521z0Gw0JIy1iynq/ITUyjeQr5drVZDpVJxu5QBuIWbFK/lpyBoddDolXF2vrlqMpng4OAAjx49ws2bN913zz77LK5evYoPPvjAxfhpYRL9X6vV3CR+ap+ehgwIxZnz8KBsa5n3iclYrhzzBKIlQgpHEyyXL19Gq9Wa20FHjbK5uYnNzU386Ec/wr179+bu0pH08PtIfYE67txY7paVTGsxpHg6WlVGgVyCZEaiWd4/ydP4HDpJK/9Gc6BDdfEh1Oe8Lll2vCtSCoButzsXcOZHOuZx7jXHhX+r1Zm/DwWpOPIOQImUfCzBiFCZUuhqhoHPOU6FDOLROOZCiFaI0tiUgah6ve52o+7u7uKDDz6Ym6iP8QTRwAOR/M4nrY58XGhGAYGOTtzY2MDu7i7u3buHXq93grbTdCol8vCsld6YQZGiqCSv8Oe+fH358DxiAYwUJyMGTbFqhk2MllgaTmMsKGl5R0acxZgsSzbwsrUyfJMnVuPbyueyPlJ3SJlIMokC3xyDwQDf+c53sLW15QLnRIsMUIT6L8syDIdDHB4enlh05qu/zE+zs0KOkW/Bi8UG4jpeBih9efj0r6TZAktevjytY0R+GzKiOSh4v7a2huXlZdRqNQwGA1y6dAm1Wg0XLlzA/v6+ejRbKl15g6CavNXKSMlbCzLEZHeINnIuaZHTeDzG/v6+u6+oqJ3Cd4ak2P3nAbL/KpUKer0e/uZv/ga9Xs/kp1A+/EeTJSG+D+V7miDa6X5VkunvvPMO1tbWsLm5ubBygZNjRdq09Ey+13wT7o+QjCbdwvWJtgtB0hOSfVa9ugjwehMdNBGQJzCTUi7g94M1kB8ux5HcwSXHjjVv+h2Lk2ggGkI2b0iO59UfPqTqC+1ZHn83D0Iy31qPkA/K62KVm1wnaXI71I+h9yk0aN+U4cek4jR1r+wrCmDzmAF/T3ffjcdj786eer3urjV69913TWXzZxwx30HCZx9q+U6nUzQaDVQqFXciD8dTTz2Ff/JP/gmOjo5wcHCAe/fuYXt7ey4/OumFfB5Nrs1mx9eQkS9FVzlp/o6vrhqkX0LyWqbh99VqsModq8zUfEutPEvecnzLOvMy5QJ2Los0W87S3txe5gtYU3V1yF6KQYvXxPohD22xb3n9tXFb1IfVbAktDadFpvXZ7D65YJEr8voOit/yk0hpcTHxPo/v8jK0eAuny9e/eXVCLD/5f8oiKGufSxosckaLWctxwOtAMSo+31KpVNyJpIB+tZ/P/qS85cmt4/EYWTZ/Jd/R0RFu3ryJ9fV1bGxsYGdnB71ez91bm2WZO73p4OAA9+/fn9vRW6vV5uRJih3tQ1k+jtZ3Mm+NXp8N76NrbjI2ryEcYzDfYOfChJTKxYsXsbS0BODJLhTCxYsX8cILL+AHP/jB3JZojYbxeDx3jralDr5G4qtefY4uz0MTrMDxZCxdrsxXlUkm5D8Eq7MWEsqhfrKu1g0ZC/Q31Y12i8hJ5cFgMDeJRRNmPP+iBn7MmQ3xuKVs3/cxhykEzXCWyjm1XUL9zoMSWpq8So/QbDbdalAu2OmIGy2YVK/X3f0kh4eHuH//frAMjQaehh8P5FtkQg6Y7x3Pu9lsotFo4M6dO462RTijIVj4oEigJSTfKG/tXYph4nNGZFkheigfiyEt+1GrS8hxDeUdQ1GDQLZtLD/fWObGZui+ZV9+Rfg8pL+4oXca0IxwTh+3S/gdgxLD4RB/8zd/g0ePHgHAid0qWp19/DYcDoM7lEP9r40DXpa2O9fnyPnGAC9bBgB8NITq4vtepvPRlgpOm4+fY06sBZPJBIPBAMvLy3jmmWcAHDuu7XYbrVYLa2trmE6nboGRtU5yTKc4gLF6ae2Ql64Q/6T032w2c/fLV6tVdx+ZbxdGSr4a/ZZvrPQX0b0xaG2aZRkGgwHeeOMN12Y8TczWtfoPFtry2IxltBXZk+T4T6dT3Lx5ExsbG9jY2JhrqzJo05xxbSz4bCbpR8qgCtmkFOwAcGIylq90j8EX1NFoi9Vd5hvy+7l/4Rt7s9nMLciV/oilTlp+IfgmY0PPpM7ji8V5fS3Q2tanu31yn2iQtpPMO9SOVtlXxI/gNKem9Roj6boAAOnXSURBVI3ZmH2fF2XKh1i7hfyZvPrNV6aUTWfhrwJ6APm8gGijwDA/9UnqwdnsePEIMH8MJB+39XodL7zwAh4/foz3339/7vsYHUVh0Uv8PS2A5/e8kly5fPkyvv71r+Px48e4f/8+vv3tb2N7e3vO3ufym8d7JB10DDzprXa7HT3x0Fc/TV5qdy9abVufjArFHmT+VrmrIcXW4nzp86slrOM/JkN4+4ZOn0nVO0VjJIvMT/artNVSIXmH2lSLHfh0n7ST+FxJzLbwIWa/8zFPC1FqtZqjg1/FI+UhL1vGJjR/PDTmFo1QOxSVzzHbxfdes4/4WOQyULaptinAQoOMmVC7EJ81Gg3nn/R6Pdy5cwdZlmFjYwN7e3vY29tztFSrVTQaDTzzzDN4+PAhHjx44HiWfPxFnGaVYoPmzZsjZOvwNtTomZuMTV0RkBfU8Hxn6+XLl7G8vDwXSFhZWcFzzz3nGG5lZUXNj3Zf8vwsW/iJmTmzawb5eDxW73PlDaqt1qeVIgQ6nk62szyPm9/HANidD62TNWFuYUyfwxjLzydEaTcwVxq0I1kGhlMuspflp3zro7dspDijRdOkgBtXXGjxPiraPlmWubuBK5UKhsMhtre33cTDhQsXsLS0hM3NTXQ6Haytrc1N4HMQD8nJfQvq9br7jt/L6EOr1cLP//zPY2VlBevr6xgMBupuJn6/LTkamjIrE6fFKzHnWcqDPLzC5agvGKI5xZoxl4KifB0yakIKN4XW1OCQNb/TCobkMYQsDm0e+lODbGQ8jsdj7O3tnZAVfGdStVp1uyBj+cbey7Fg1dWELDt5LBV/x523VF6QxrLF4U7pe00OpPJAKFCRkg/RYLGJQ7Lo+vXrWF1dRavVmluAxssoEsTR6OY0lY0y5Afn0ZQgVAyW8WVJl4qUsXpWkHyhBXP4+6LlFE2fYjvJOlC99vb2MBqN8NZbb2E0GuHGjRs4ODjA/v6+d1ehXHRLf5NO4LpdLiaktBzyfiZL+5INeZq6muCri3zOA9+LOhKc86pv8Vje9qHJgX6/j5WVFdRqNbzyyis4OjrCw4cPMRqNMBgMTvinVpp54JJf/8KfW0H88OjRI+zu7mIymbgJIwnOs2X5AGWgqI9+HmRrKg2WPpB6I+Q7xGCxlWL0aJMAZeq2UPmL8pfzgHx6ioVIm5pPntAC7e9///t4//338Qu/8Au4fPmy20HKv0mdvDkN22IwGGA0Grl67O/v49GjR/gP/+E/4MUXX8TXv/51l7bX62F3d9fJfzqOmXQpTdJIee2rAx3DL3ci++xYjUf4ohTpQ8nvNb8nNm4sNPggJ0tCkLRLfuG6w1K+r8xYPnIShp4R+Mkd2jU2cqyUNaZPUzZY21fanLE8NfnK/7feoRniwVjMTpafR7bQWOMnXNL1CVrZvrgY33GrjcmQzVdEJlpiF4RYOSlxmlB8Mw+0+CnnS0DfDWu1pUNzO2R/8jkuGQPzyXSeFy0CorvIZfllHMedB2XIG6qrxeZVd8b64BMgPoHvy4MYhjfy0tISNjY25gJa7XYb165dc84M7XaVq1RpZyXfYWoxekjh+epF9fAdxxBT6BTQJfR6vTkHijpK5s1XMvhW3uYd1KmGfqiOoYEqn9OEduhYDSstvnI1hRiqax7nKhV527pM4zvEu7LNNKM2NX+eJwUjKL9+vz8XlKYJ2KWlJbTbbaysrKBarbpdDtwg1QJloTpy8KCKXAjC86B86vU6nnnmGbdLHwAODw/nzugHjpUPKSCpBM/SsSzCPzE5UxY0uRsyMLX/Q/JjUbSH+F1zQGPGmiWIIstPaSueX2og7CwQCgQV6VOrsU+go1MoKEuLpPiiIuoLOk7V6rj7nDItkOCzryxtIWW7DA7EgmPy/1S5Yg3+yW+s/exrW9l2MedLG9Nl6ODl5WWsr6+7QJU87cUaKA0FtorKOc4HRXjNAp9DxmWl7ztr+1j63AqZbyofnSZS5QEhL82naRvE0nJ+Ip+Ojk58+PAhms0m1tbWXOC5Xq87uxQIL97lspIf2SVtkJAsS+ENnjf5t5yOEJ3asyL9JG0NosEahMzDWz5/3CcjYm3rkwe9Xs8tzGy327h06RKazSZ2d3edrE7pN5k2pFNS2oX4gWIH7Xb7xPUvMVr4cws02mN5FelraffIfrbEPhYhj2I+uUUPa2l4va3tWKZes8BiIy+ivKIoo524zNbkN28b2nRx//593L59G5///OfdfdN0pCPPM49taxmPWjr+zPcNLSxtNpsuTkLXHkwmE/zmb/6m00Pk//AFQ/KaJ81mCvlG5GdZoMX7KG8et5I6I6U9+LvQWAz5bjIfjf5Y/eh7H/2xfKxlheSp1Ln8G42ftRivRYemyBotbepYL0KTpsM1OykG2f70vW9xm0/++PL2pSnDXyTw+YxarTZ3R7QGS4xE0l2GDZn3O6tNHbLtpBxPscFiNp7vO423uM0eqpfGN1p6so/5BGyWzR9fzk+c5HnwY4kpJsJPSOU0n9VkrIRs0xS+tKQNb+UoCF8H8t1jHJVKBS+88AKWlpbQaDTmdrMBwPe//328/vrr2NnZCZbJj8nl5XKQYcEhFctoNDIJbKmMarUalpaWXPmj0QjD4dDlReeq7+/vz9Gq0WSBVfFamNqnoLkDTpBChh+vRfn47vXVVtCkGKqawxYzUGOO1Vmg7EAGQVuxRpB3+FrKjSkR/s3a2trcfbGho2hWVlZw8eLFOYF+eHiIt99+G91uFxsbG+j3+3P3ChOkUOT8ScE2Opee8z5XSvy+aLpcXFvI0Wg0cOHCBbz77rt49913T9BjNb5Oy5FeNIrWIyXIFULI6ORlAbaj2C3OA733rQKUq9KItrz1lYGqMhEz+PIENmJprXJYOtRljR3SP/J+8xCef/55vPLKK+h0Orh16xZWV1dPpBmPx+h2u8Fdp74go2+FqAbipdCucFpxTu8Hg8FcAEUDyUMCLTwJHZvH9XAR22XR+thXb/mMn57A2yMvfbu7u+j3+7h79y729/dx+/ZtDAaDXIY8b2eaFCo6Los4vFr+eeWF7ySMbreLTqeDRqOBlZUVDAaDuSNNy6RdBhM5b2pBwPNiQwLHNNHCz/OyICyET5IttEiQrppOp+j3+3M8n7qwiutTyqNMhAKIvncp1yUA+kRtXr+ObP333nsPS0tLePbZZ71ppR4oupPcYoNSOVbdGttVkzre8shyC/jJWJbyU3AacrlocNs6/s6bjvmkgvcH2bw0sSARC2iPx2N84xvfQKPRcPEEkuHAE7tcxiQIvliVNhFTJijPSqWC9fV1jEYj7O3tOdv10qVL+NKXvoR6vY4XX3wR//t//2989NFHrk4bGxvuuEop87mPwE+K6PV6qNVqcxtWtDpb6huybXlMssgpDhZ9K+nW7q+1xoq0kzckJI/G/DtKkweWmCtdTWfZpeyj0TchptVN842syOuv0rd8Rzjnb0qnxRGtelzOKWiQ8Sx51KvVxpb9mbJ7n7cHyc56ve52OdIVM7zv5bwMbyt5xO6irq8qIlt831rpTfF9pK2UZwxLOVLUZuW26Ww2c/e+VqtV7Ozs4PDw0J1i+fzzz2N5eXnOjl1dXcXnP/95bG1t4c6dOy5/WijL41Z5cd78S8kzmi6JTsbmNeB9z6WQarVaaLVabmfc8vIylpeX0Wq1HMGDwQDdbhdbW1u4e/fuHG2cwfiPxdkJBecon1RhQJM7cmKV6i+FtU9IWRBydMtiRJ53aBDLdg8NfF/7h4wImY/POA0ZrVZjQCJP4HRRRkGKQNXS8mCuhAxEptDI612v193RBdzBod8AnLKmo3H4EReTycQtVKD7GmPjWaOXH6Gm7W7nBhXw5N6FTqeDpaUl9x2NaTq2lB9XHGozjc6PIyQfxcZVrJ4pQQZLoC3VuLA4LFa6Ynx5mpD9E2uXIk5ZXoScLXrPf8vnRWlIyYeP7U6ng0uXLqFSqWA0GuHw8NBNqpHMopXwWjmx8i3BBy3IId+TTKtWq957sK0IBXY15OV3TT/lydfC76FAQsqzECgoTovwsux44R0FtyhA55ODoQCGZmNZsAhZpMnRspwobj9TMI0fzWlxtooE80N6PY+NdxqIHeXqaw/Ji6n6PARfP1l0VNH2pe/p6MThcOgWWRTNNxT4yztGQ+C+qDXvEC+chjyw8hGnif8dko3atzH7VOoZsu+Pjo4wnU7R7XbdbuqQH6nRQvmF6IiBj4mQjZy6Y1fSexZyyyKDtPd57I88bROCxS4rQ+/xMix+T1Gk2g+LosNaPkfMbioCi90r42I8Tvjo0SP3d5ZlbvNF2eOvLFuL/z+bzdykDgC3CGg2m6HRaODq1auYTqf4zne+M3edGh0vyY929tEr79nV6IrJCR98sYrQd1q/lMHrPt/OmrdVrvjsq6J1sI4B6VNxG9pCU4zWkG0q6fHFPPMgZL9IXZNi61h0oNUWkOk53dwm8dGlydUivCN5XV7TIcvNsvwTrprNxfOW/8f6yOL7Sz608FZZcj9kQ1n6LNVO0fjRly+VPRwOMRwO3WRsr9ebu6aDYlMrKys4OjqaW5hE9rhmR6fyo5UHQgj5E6H4je/bWDsuZGesj0Bth9yrr76KV1991W1RlmdGA8B7772Hb3zjG3PnkwNwx2rQgO73+yfysBhWmmNtZQCef6VSccescvBVdrPZDAcHB45ZLfnGyl8kLIqG3yEQgu/+nRBj+5jXsqK66AD+uCEWBPIJA+pj33Hclu99x2kDx/zf7/fx8OFDl+6pp57Cpz71KWfQr6+vu0nZUJ9bFiyQPKB7aSWtMi1HvV7HV77yFWxsbDgl0W63vWXRJHOs7Xj5Hxc+k3JxUbJGrvri5Uuk7GZMeZ9HWUuQE8vvSSgCaYxI/WmRl/xuN9mXi1p1qNFn6QtNDxflOXnsSYgWGWDhi0cIKysraDab+PM//3PcuXPHHWF8eHjorW9MpvoCElpwMWSIj8dj1Go1rK2tAXhyHHtoJyaVIxel+FbtyzayOqEWEA18FXsKUgIAPvDxYqWBtz/dH3x0dISPPvoIS0tLc3eqAMdyot1uYzabqSeH8Prkac8y+6Rsma85s5zvxuMxWq0WVlZWsLS05BZlpgSwQs+4rVmWjP646HMfaFHcYDBw/FhWvU6zbWRZdHXNgwcPXL9XKhU0m00n42L0cZlCtker1Zr7PxZI5Dy+aH8tBbHAYEhnhE67yUMHP4pZ7jixnGhihRa4pJN3vvvd77pgUZ76SX3Nj+/Uyo7lRW3AA5qkM0hPnhXovkDNRgqBt1HRUycWBdnewHzfafaJZrtqsAQ2Y7GoT4LO0XDW9QrtLKc+167ZGo1GbvdXvV5XT/6bTqduoYd1tzvRwmVSkbESa19+8oIc01tbW3j8+DE+9alP4ctf/jL+6q/+Cnt7e96xH6OTX/vCTwcM6VPuG/AfkiPye20c8e9TYd3Rz5FyxCaX+T7wq7boG5kHxcno5AfNH4hNJlhAfEzx9lg8Qk6yhNL56mahKYYUGZPS53xXPfAkHh6zX8r0RWJ+vqUcyRt5eYTb3IDeN5qcBDB3kkDID8/DI1rZRfxs/m2ormVC8ycs41njNf7MGlsFTo4J2rhEMmE2m+HmzZsnaNzY2MCLL76IS5cuYWNjAzdv3sSDBw9cGrlLmo78Py/HFQP5x2woNjw3GZviKBBBnLgULC0tYX19HZubm1hZWXlC0P8/KcuPgByPx9jf358rnyteGqxc2ISEvqYg5LM8AogYh0+8ksPP24wHO6XA8tGttbUlGF8ElnYIDV7JsEUDi6EgozX4LRFzjM4ClnJ9wpj/1r4pu76cR+j+VDIo5VjUJtJowpP+39/fx8HBgRsn4/F4zgmR9fYZmin1orKIX+v1Our1ulv8MZsdX1S/v7+Po6OjE+XkkReLcDwXkWeRIKKvHxYtt3yyyJrWB4v8CY2xlLK0tFbnyTImfGlDNMi0eXlCGn8+g7qIE2AxtLnTweULObP8Wb/fx/b2trtvcGdnB/v7+3MryGW+VloJWuAvBTI4wU8FIHuKDFyfYcvbw9cPRZ14mac2dnjbL0JuhBb98LxT6kltT/qPAnSz2ZO70ssKhFghbYKYHVm2/tAQqjfxHY1BHrAfj8cn7OYiMiIlrRwTMp/T6s8YNNmnjSXtO58+8+E81DcEGodc1tGJLDJd6H8Oa/CD+5UWOcNt5uXl5bnj0mmCPKbD84zdGE9o9QlBoyUUIJd0SB4swmPWb4m+0WiEarWKZrN5Qk6m+pcp9hvlb9VvlE4G/MoYj1a7yfc8T0xIKzOPTiprEaSEZpdpYyFkt0oZnGofWtqjiBzQytSel8VjvvHhe3YWuialPTl9NBlD/Mhjk5ostNaxzPbn5fLnUrb0+33cunULa2truHDhArIsQ6vVmotzUpyGxzpDfK6VG5L7IXr590X53jfGpA2VN++Qraj5wxadGbLZuF2h1ctHSxFofF5G/nnlQOrY9ZUVkr/kr/Dd3lq/xOgPxVesdpd8ltq/kg8t9Mr2ms1mbhEZcPKqLtk20sfPM97KGJdafjF7JlVHxMa2j899NpKPd610hPK38G1MlmubDnu9Hvb29lw6GYviixcWYc+dJkKxM1m3UnbGakwRw3PPPYe///f//tzqzizLsLKycsJZlncKNBoNVKtVDAaDuVVV2t0DHFk2f9kwPZPw3ecQQ5ZlaLfbrozRaIRer3cinWwruXPCgkUbp74+DQkAKVRjSHVwrSjbwFgEQg5VEdrlaml5f6W2U8wKTfDyFeSrq6tYXV3FeDzGaDQ6cSE3x+HhIR4+fOjo2tzcxGw2wxtvvIFer+dWku7v77v2iK1OI6Mo5qxK0NEKlMfh4eEJOXH//n389V//tZMLdC9CKjRFd9YIOSEp3+ZBTOGSYUd/U3kpbW89di4FvB9DfFmWHOLlpNxFIndn5Ck3D0L1TuWxFOS5R4/LF75im95Xq1Xcv39/7nhyuhdDy4+3d0yeU5m+3aha3imgfBuNhrOPaExZgj/SmY8hJdAoy9F2H2j5c4RWHfuC23yiz3qigZUeDdPpFPfu3cPu7u7cYqUiwXSfU2fpU05XLE0KQnaXdLpTQPxKR4NzO38Rth7lyXdJ812QPgf6LBGyeTR5VPTOy5+hPNAuQzrS68UXX0S73UalUsGjR4/w1ltvubv1aIV4mTwXGkMWea75cTyopk1AlAVLIDUPUnR4HhTNk/teRGco6J4HtVptTlYsCtrklFWu836iwB8tPCs7mEd9pgWZYz7Mz/AE50FfcoQC7nxRTAjEr1mWYWlpCbVaDYPBwN2jKk/sS5lk8MnPPDI19A1/R/b43bt38V/+y3/BL/7iL+I3fuM3TnxD8SY6GYhfLyFtXBnHiflFPhlJ9NFORDkeZV+FbLZUGZMXWvmxCY5QmRY/l+wKfmcnbXTiNOTxHXzvq9Wqu1oMOBl74eXmLacoQj5TLC7LYzDcl+Tp+Lu8NPHneXhV2vd8TBJtqTH6EA28HNpA02w23fUy0g7kdatWq3N+OD89IE+MddGQsinVB88DyX/8GS9bQ+p4KuLj8viNT37v7e3hzTffnPuGYzgcuhOMFtmmZ4GQrRjldO1jyYS+hiKjWJsdJ+NkNBrh/2vvT34kS5L7cNxexh6RkUtV1tLV23T3TPeoySGH0FASFx34BXTQRbrpqP9Bf5UOEnQQIUCASBEEKIrCcJkeDme6p5fptfaqXGJf3++QP/OysDRzN/f3XmRWd36AQkVG+HO3525um7ubT6dTl/6PnogdDAbw6aefwv3792F/f9+1g7uw6HFm3wXHPsOcfh8b2KHM1uv1vGlW8/x85y2mjqDt83K+9rQyMRPO976hv33Q6CtLuVoDrhYhVYXC1/grZHSl1h0qK40DN+a5sV80QCAFy/Eupjw/T+PT6XSg2WxCnufQ7/c3NjDgXYfSxe/U0KG0Ss48fxfJybKcjgIAZ1xIqctC89VSPze4qgiGx9aDtFAaKWJkkI//JeeSP0vHWRqzWIVdlnPG67AscIXqpTRKOsxHq2X8q1pYsxqDvjqLOr2WZ32BAHweg91oWKJzQ++rLDrWEixOOP5O5wTXd81m0zkyfMGYpn7EsYhxGqkDv40gZEg3cRp8c8Nnm2F/oOMYmkshpxQdkkePHrm7YiV5yuV+EUfIB8tc5nLN4niXNcY0AIhXjuD1HmVtdrG82zZRVv/56i3KOz5bPoV+3xzG+UnvndPaD/Eg/Y7fWUTngtWnoN/Tk06+PqB8HQO0f7WgWdExjRk3zZ+2wGIbh2w+axsxfaL5RVwXWuQlp9fSt/icJV1p6ljH6K5Q+/zdtPTRKbJMs2F530p+gnV8rM/R+c0zo/jkUKwvYfG5y5LfGiTe5e1JNkqRtooghQbNxrLAmkpYAj6HMQ2agl2LWXCa+W/aWEi85+Mr/oxP/+HmyMViAU+ePIEPP/wQdnd3odfrwb1792A8HsPnn3/uFmKpTOCn4ULQ/DH6ntpY+O7Qlvoz1tcP0a3RyO192r5lbFJpC8kOn48kfe8rk+fnm4J4PG1nZwfq9fqGz8zlXsy7SbI4xoYJvVNsnVhWy8YQku8heulzXB/SMrS9GLpD9Uh+qVZe+41uigjJL9yoQmO+VJ5QWzrW5wuVl2REGbZMEYT8CixTlX0QshGt74p2FP6PPCHFIWnWNi5XkIaifVyGHUG/T61PepfgYmxI0PiAi5Pz+VwNAo/HYxgMBnB4eLiRrhjg/J6C//Jf/gt0u1145ZVX3Pf379+H8Xjs6KMnWTidCC0Qp91XaAW+18HBgbtLSMNkMhFPyiJCxgRtL9VIREj9QScL/u2blDGBjLKEhmTwcKNHcuAuE3zibZMu7txyWE5kWUEXLBDL5RKePn3q2uh0OnD37l33+507d+Do6AgAznfEtNttR6t0RyYf2xRDn+9S1YCyAS8kl+Bb3PKNMzfOLc9cBqrcFe9zXvh3OO542pqfCvDB4lzE0GyRnbGQ6OBpvaX0itRIDcGqt/kzRXnSEgwpalhanw85xBh8oI5ADA1Fob2Hr26+Ma3X6znjd7FYbFzxgBvZuJ6PuX8u1ijWAi2W53wLMlqdkvGM81Z7HlPhSymqre9Ky+HmnV/96lewXC432veBy5YizkdsYCeWf0NBn1B79N3o/VPr9RrOzs4cTZ1OJ8rWtLRddK5eJfvyMpHiIGvlMYDXaDSczcXLSgEuyY6iug43p2TZi7TFfD5y3egLOvF0jFQPc/qovVBmsKYopMBWKLjrK5MCastTeuhGIWlsNfpiaJPGp6w7WH2BK2yHnhrzlY/N9EHbKYPfpPm3Wq2cP0TTlWK70nNSvSHfCQNzvjp8Y56iR7XgurU/uc0RsiF9Ps+3Ub9cpt6MaRfnJz/5xuHjCdxMBrCZbh6fQ3vTZ9uEaK6iP7Hter3u+uHLL7+Ep0+fQr1eh263C7/9278N77zzDvzn//yfYTgcuucwgE5PtGnZZyxzSjtkQ9+Zbg7Jss37x6VnQyjSn9p4lDWnLfUgb6XqM6utTa/owZNsCNxQBrAZxyvzrvmywPkjZnFOGg/8LjZtvq+sRY9Y/WQsz2m26lJejwZ6rQzWocU6W60W1Ot1GAwGG++qPR+ri7XfJHvdCmnMLfZqTP2a/4P1Y6yCZ8CktkeKLqH6qQhwUyn69bhuJ6HRaMDOzo7buL5YLDZOyOI7XSU/KhXSO5R6BpwKYAAQg5q9Xg/eeOMNODo6grOzM3cvI8ALZpnNZvDJJ5/Ao0eP4PDw0AWhx+OxO2UHsJmC0SdQJVAjCP/HIKVP8HFmkBZV1us1zOdzMV0G76+QQeILEsQKT/4s7TOeTkQL3Gu0SIqA94vP6bSAC3PJ2AotOKQI26KC39pukQC3bw5IvxVVFnQeNBoNd48IDabg4qz0XpgaeD6fw3K5hOfPn8NkMoHVauXuiJ7NZhv3L1v6OCYIgff64Tw9ODiAbrcL8/kchsMh9Pv9C23SIF6Rhcqr7Ghb+1rrZ6nPUhQoD8hJdfvowzr4d1xn0PYsdfJnND6w9g9/hssxmi2Cfi+9g4+OokZMyvOx41VmvSHnRjN0KfD6gyzLXDBFGnPOo1qaLR9PWDeGYR1YHgMgBwcHG6lduA7Gf5h2FQA20opp7Wh6NkRfCD6nIWYuxui3o6Mj+P73vw8PHjyA+/fvb9iBqfODpwL3BWS0uWjlf835t75DyEbw0WhBjKyPeecsyzZODNLfUtpJkTeSTVsUqbqxrHbRPkPfhy40XiZS278sukPtUn0g9S/lq1qtBu12G27cuHEhJXHIB6qKflouJbBeBZ9rdGi/WWEN+Pja5+UkX1iybS19W8Y7asiyFwugvgA0jXXk+YtNkpIPHsObRXTwwcEBZFkGp6enF06vW9qlek86GWnRO1z3a/o2BEkfbwN83MqQp7H+igU+eVKWTOT1hQLjCIxpxNSN2KY9oPE5/T3LMreonOc5fPzxxzCbzeBHP/oR9Pt9uHv3LqzXa7fhXgre8wUDukgVMz9o2fV6Dc1mE+r1Okwmk2B/aza5NqdDMlbrL/q/9G5lzueQD0E3EqxWKzHW7ouBcBmPv/viIJj5ka4FcL+xrPe3zhWrrA6V0XxMqw9C2/LFDnmMR6pfG3v6veYXWuu0QIsJSH3F34v+jxs26PVveZ7DdDpV27SgyNj7oPnfPvp8fa4946tL4z9fnbG+A7Zj4bcQ7VmWbVwxxA8FYByLb+6TbLmiMsQn9zRosRf6XRG6LizG+ozoUMfXajW3OybPc/FetX6/D++//z7UarWNExu0/tlsBr/4xS9gPB7DzZs33ffj8RiePn3qymu71iyBLr4rGgDcQpAEqoz4IisfCLzvUqMHIaVgkyaWxUDGCaMJX8kxoWVS7i/zCbQsK/cuRVqfpNCrdFAttMUqZg00YBMqy+vU+kcaC02AW8DnQLPZ3DjVTjc0aPNpNpu5O+AWiwU8fvzY7bBcLpfw7NkzAPDfDSrxgE9xcCyXy415enh4CIeHh7BYLGA0GkGv1xMNXL7zMgQ+L8tyEnkbEiQZ7uNVC32ajElBiO6QHNHq8NWrnWz1KVtfuzEOmw+0PnpqQlqMTal7m7Ixhr4Uw0iDFPiRDCZpvKV2MTBO75Wm40Ofp//HBFVwPLVnNPooL2dZBjdu3HALx5r+52k6+WIs532fg8X1VKyBjnytBWl8cjz2Ph589tatW/Cv/tW/gr/927+FBw8eJGdG4bTEOogSn1qe459DMigFmkNvhTR2ZdCJ9w/Rdni72EaoHYsjysta7qO3OuJV2ABWIM+hv0PtoCx7kWmoKp5KeTZljpRRXxmgspd/T/9HoM555ZVX3E5yTV+V9R5SXRbbR6Kfg/umITp836fQGCubearNGPj8UirrNV6w1KmV98nDGMTcPYubBfBUg2Uhm/OCL7hlAc6tw8NDd7qGZqPwxShom5xGWi6Wd/nc1mwpjS5fn1QpB6T6rP4QR9k6hNJSlS+j1U/9rlDb9ARslm0GoDk0nqH8Yn3XWJ+DPyuVoXMbAOCjjz6CTz75BO7evQv7+/vwyiuvQJ7n8Itf/GJjMVbyhfg/utE+5j3xtG6z2YRer+euf5Pg413tnXlZnw+E30k+kfQ+fPE7xQ7V/DsOXBDFdMHIl7ysFjfUbHiNVhr3azab4sncWP706bkYW883r2m9mi7w8UqIrjzPL6xV+HwUKmus7yr57ZKtJM0H3pblnfC3kKzS7DXsE/wb9TVeVQnwYgOB1nbMWEk0UPqssQvpPa26N1WPcoT0EJWvUsxGosdHV6xvoAF1IdbFDyzi4my73d448IR6BfkNY0Yan1tQlo1T5BkO78lYqxDCS7t9zkun04Ef/vCH0O/3N8odHh7C/v4+tNttNzD8NN1kMoGTkxOYz+cbAj6UQgRAV1TU4UDlHjrpJqXbODg4gE6nAwAvmIuXmc1mMJ1OL+TW9zERZTbtvQD8k4sKWV+QKJaRYhzBqsAnD+/3ywh2UUFBESMwJKOuKqSMvQQpBQ8HpgbO8xxOTk7g6OgI3nnnHTg8PHRl1us1nJ6eXpjnHNQIiIXvJBjW3e/3XYp1vBdlMBio6dBD0IR+GYjlE05LrHNdBqxGgCS3+H1VPj6x8LfFQbPQWgaoo5plGXS7XciyTE2RjaiKZmu9ZQeC6P8pz2q/aYYm/57P8+l0qtoG3P7gu4F9sAT5YvQGpndBYzY0NhhoqdfrbhNdlmUwGAy81ylIwYAYoA1kySyAbYXsGP4M/X+xWECr1YJXX30Vbty44crlee4CORgkoWmKU+c5ncPNZtPpvaJz0BdI0OiQ6kltP9ROmfqhVqvBbDZzdh3e5VsU0jiEAmxVQWtjG21fBXDZyYO5eBonJoAnzRcaAOV+FXX6aRCj1Wq54AB+j34bBo6k9q8SQgEb6buYQGcZoO3wse50Ou7kU5ErIHx6sIr3LCoPqQ9Zlo+WQkO73Xa2wXQ6hePj440U0iFYYhMWOiR5LenCk5MTqNfrcHR0BKvVCk5OTsxjoQWp6bz3IcaPsOifGFxGrCOEq0iTFaGAfKgMr4um25cWMGhZbrtqbXIZEfMOGp2+9vL8PIsGvgtd/Ox0OvCTn/wEnj9/Dh999JHT3WhHa9nRQva/1BcU4/HY2fYYP16tVs538R3UscxPTcfj+GF6Xl98xzIOsfpCkp2S/MKsb41GAxqNBhwdHTn+m81moo9n8RmoP8af4aDXSlE7HvV5WQtUZcFnM1nHxxe3Qn6xZNej9mtsnMoSo+ffa75ILLjc0NZocA7Rk9SUZ/HKJVyQw5PXUiYqK72azI2JY8VsVqsCobG1xAV8vMDHT+ufGLmFPhON1+KmU64LuTxFP1DyAaqMa2wbG4uxFsdN6jTptBjv4EajAa+//jq0Wq0NR3h3dxdu3rzp8ovTeyex3Hw+h9PT0wtpkLUUc3wwaRn8TE9hWO7NRMFBgQHzfr8Ps9nM7TLn/bhYLGA6nbpAH30HX4DYYhT66qFlNeajJ7BilKEmELbB5Hw8tbHx/W1BrHFAjccYI6wsGnxlpfmReieipNAWi8WGPJCexXTjk8kEut0uvPbaaxuKdr1ew2g0cgpXMw5iHF3+rEYb5aNmswnNZhPW6zVMJhO4f/8+rFYrpxSuEsqcb5JCr2I+SwpfK8cdMmrAWQyvmGBkioFbNmi/Y8pZXCwK0UR1L/8tFlZZHtMGH/eUAGnMu0k8RnfZcb2B70wzVtD70SS6uS4KOaiabRILqf7lchl99ytupMMNZXmeexdi8bki44h2kBakkdqj/yxAWY9jXKvV4ODgAHq9nvu9VqvBdDp144vPxNpCGjD4gHMYabG+M6/L97f0fKwDn4qydAWV1zs7O7BYLGCxWEC73d5oJ0QH/TslOFYUKeMb+r4ItH6g/I78ovGZ5ENRmlN8BzqfUafzoLX2PiFw2U99Bf4e9N3xd5Sjkt61bASLpZfXT/si9uQ9hfSc1U/woeic52MhyapGowHNZlNMVcdpKXve0Dpj6o+ZP5qMpt+F/Fr+fZnyDRdid3d3Xd18flbR9xwWfy/PcxiPx1Cv191pPXr/XEwsBctbfAduf8fySUzfSbxEkcKvsTRY+Yzbw1WgKt0e0mex70RjbHTeSODyAb/ztY+LgiHw+mLeA/1t3LxIr5ja2dmB119/HRqNBvzqV7+6MPbaQReNDqkPJKB9ePPmTbd5arFYbNxL6JPHqTqM2gpcT2gIxTxi56yvPLaFcTVcEMXN3QDgYls+un1tWOMq6OthBgW8L73I5qoUpNinIV3u+43XQXlFimvRMtJzUntS7Mf3PtKzIdki8ayF3328Tr+nd3NTnsXFWJzXdCNIqs3h86GL6KkUesrUiz4+8I2ZNi6afrL63yGfg/o1luu8NN+U/l4mqrZnNRS6MzbLso07yhAY4JIE7mw2g+fPn8Pdu3fhrbfeglar5QJVy+US/v7v/x6Oj4/d4uZwOITpdLpxoi3FyPMpfv63pe5erwe9Xs/t4OcnbfGULP5LvUwdIeXf5+Df8fu1sEzoTlwAUCcJhRSUKQt0HOhuom3tSrEob75DJyXVM5YLKUUNNOgstWdJ4x0LNKrwPkXp7mYAcPPCd6L0ww8/hEePHm3MF1+7FsfcZ0DSUw04Xjdv3oTDw0M4Pj6Gp0+fwhdffCE6EmUGOspGbEC0yLtYlXIZdTUajY3U9xhgkWSbhjIMt9jfU4BOE97RwzckUNnMnXqNHusJRKyjCplq6auyykjPWJ9DB0DqAy57QgZwkfukfaBBAL54QTEej+Hx48cAALC7uwt5nsN8Pvc6eZPJBM7Ozi5shitib1lQlOdS+OLWrVvw/vvvw69//Wt48uQJtFqtpBOx1FGg76Et+PNnU+CzOfB3a8pIBOWrGGwj6JoCaV5INlYKX1+1d5Ug+QlUZ8znc+h0OvC9730P7ty5A++88w588skn8Pnnn8Px8bHbPBqjY6lseRn6qCi0uUf7gp641eYKylvs7y+++ALOzs7g4OAAlsslvPrqqzAYDOD09NTZCJcFLiP4WMfaoSFk2Yu02RiMkzZqhmz/ENA3oHVJ46Xxdui9sd/onMqyLEpGc2ipjsvs/9VqBcPhELIsg9dffx3Ozs7g+PgYDg4OYHd3F7rdLgAAfPHFFzCbzZyt7rN/JN1VRIcUHfsQNFvb52fSu7djdDCvly5gXAX/M/Z9th3kLhuhQHEqyrCncXO47+Rcqs+E/1O5RU/z/emf/in87//9v51s2Nvbg/F47GyL09NTaLfb0Gq1Lmwu0iDxljQnUIbyOjEedXBwAIvFwl17hb9ReckPoUib0kIxOXpii5dN0dG++3sl8NiA9Gye5zAajVz8GDfYcJ2GfUk3oWn+AB8Tyb7BeJ6Wrli6N7gq+OS1RZbj/5axCcksyVekv0k+fcxcpjT6fB/eLi+P4BspNJ/A5zvzsdbmMsZ+d3Z23AZcilqtBp1OZyMd9mWAvmvVtkcKOL/4+J4/IyFUNsYeoBkVQplt0Ya6TH9nm4hejJUMRQQyJ797tV6vQ71ed5MId+TgnYzr9Rqm0ylMJhN4/PgxHB8fA8CLnOG4+0qiI8XY8D2rMRovW6/XncCgqaxoH9BTNSkKltPFlV8Ilkko/R4jWEKTmNMdA24kYXs8GBBDEy/j62+L8UjvWyjaJi9nQVEHNmZMeGAPF440pU93PXHeXSwWLv3406dPg4trZRhCtH06h9BAnc/nGwY8wAsD/2VFmQ6tRclbaaL/a8AsAlLWBR8/SPX7DH+p3DYgGTl4UpHem0HLS8aJRR6m6gutzjJQliHrG7/Qb3R+8KwV1DnneozPBT7PNB5PfWepPm1cUL6ORiNotVrQ6XRgsVh4FwUxfRS9QzsWMUZ5WQa+BVg3bhBEZ29vb8/Jdhx7HuCx0IFjz3kAbVtt0cb3d4hvte98tpIEn8NuHROLjRcTxOX1oKMesvVibBreV1XJOCu25dTT963VatDv9+HWrVvw5ptvwsnJCTx69AhOT0+DgcEYvvm2gs45nyym/1sCguPxGJrNprsvq9PpwGQyKX1BxlqXNahHZaAv6OhrA2UmBQ3aFH1/H02xNlLKnKXP+GihC85cH1nGIBWS/4bZgrrdrovdNBoNlxUM34EucND6Yv3ZlHGgPIeLJI1Gw2UrC71rKm2+OjS5uA1dY5XJMfxSlLdiEatHfPPaEhcIfV+2XpP4IdY/LeKTW2WhJHPu37/vPtdqNZfZEDcB8mxOKXyjvRP/m8eZms2m6mNI8zcki0P8Y7V5LWMj+Zo++mkZ7nvgb3jYCbPX0QyNeZ57F15jwHVHnufezWOWvtmWvJF8eq2MRbb66oixQVJ0Bo91xegozksSX/Bxi21HklnUtqWZ7+i1jtQGtC7GWnSWNK6x8YhYO6cqpM6jVPpj9Y4UW6E8ZvU1itBwVVHoZCzA5iDO53N3bxmiVqvB9773Peh0OvDkyRO1jr/+67+Gzz//HMbjsZtoy+USJpOJOvljaNS+1wx1Cks6vfF4rAaMEDG002CRJBgs6YtS0tD6diEUSZeFSFGuPpr42FzmhCzLWYkRjBYhS1Hl+PHT8FI6N9yg8PHHH8Pnn38Oi8XCLbZJRrcvvU0MaN14ch3TYBwfH8Px8fFGOtIse7EjvyyD8DIUdhnt0bStMYaQDyE5ialTQ4a8ZgjT32Pk1jaDDbHQsitQHVFG+p+qeTTFQS0LIccewa9eCAXhqKyTgqgcPueEluHBW5QhGi+sVis4OztzJ9vW63VwgbXVasHdu3ehVqu5k7G4K1FDKDDgw3w+d6fbY20KqwzN8xenUzA18YcffgjNZhN2d3eDG2yK8hxuSOSB6ph6aWovK2i6Jw2Uj6qQd2UGdfI8h7OzMwDYvm13GbbkVXHqr3G1gXOY2kexQTca8Ao9X4ROze9F+UM3PGbZi1SYqe3R/7eBMuYsj5l0u11YrVbuvnq+sMHHHpFlmdv4ntoHaPfgqTfcqIV61Po+dCxS+0cKLGt2B8YCDg4OXHrlk5MT+PTTTy9stAu1yQPEFPy+P8u7WRfeQjTxOq5hw1XSq0U2K1TRFrUHNVqoPdtqtcTNnY1GA27cuAHT6dTJDokWSRdpix+hvlmv13BycgK1Wg1u3LjhZJeG1Ow3Enz10NhtbHshGjT5RzfQcZpXqxUMBgPY3993m1CbzSYMBoONtM7UZ7FC6lP8G1NZN5tNyLLzE7Oc7pjFQ44yF3GlZ1Jo4rxL/Szqm21LHnEfUtNrPNZgWWTmGwAs/SQt/vPPw+EQ6vU63LhxA7LsfIPFYrGA2Wzm4ga+67skun2y1nIqXaOX1r+NU5yxOsPHj6ntlwHp1LXUVqov4MNVsgcQquYKCSHLImGr1YJms+n+X61WUK/XYX9/H3Z2dtwJ2PV6DcfHx3B6erpRDx+s2IXYkDAJLQhI5ehpQLp4Q4/O48SUBJd1xwVXULSsdTKkGDm+iZqyEE7bjC3ja0/rY3xO+uz720JjkWelcmU7VVqAP2TIpdbPHWQpaACwmaYCy85msw3FqsGyIBDiSS0QhMDFB/qblAq2KHy8nDKvQnNV+y6W10OBECv4woRUPxqOdKEGeUsKMNFFBZ9Mk95dexdpHlWtuCnPYSYJmv4+ZCRa6bPqn6KICTrFBJFTadHeW9KHNNgW2t0dmhOh33xzkjtxWl1Sqh9ui0g04bzgqbF9+lN63gdNJ+FirFRO+jsEaYzx3XDnPl6fIS0A4w7cohtNqDzi71GUz2Pl/TYQE4iW+sUnj5B3kadpFo6ybakUG6IoqnoXC3DTCG4i7XQ60Ov1YHd31wU0qf4N+Q0xkOQezlUA+Y45zZ6V6o6hg9Yf8iWkd+D8ym1GtH2tthPye0gObYNHaFtFxp0/L/E91yX4DD3BU9R3SfVfrfVL/j7+RmkIAd+b0sxlp9RXvI6U/uI6Gu0KaofiPF2tVtDtdqHRaLgsZ1q7MfLDKos1uVmv1931JriQjP8ojVq/+eiI8aFS5k1KXIa256sjFdZ6i8qJGGhxsZj2U+VJyGYJ6SrNh7XUmzKP6DM+X8AHKt9obITGQ9F3xSxnKEOq9uFoZsIsy9zC3+7urrvblkLrx5i4SIp/ItUj0WORQRYZS8eLjgVm32q1Wi7zJKYVxue0mIkGzRaishe/z/N8YwE3VW74bDNLOfpbyPaT/DnLsxp/SbYilpfaikFIVvDftHYkGkPv75NhPno5qM1B/QJ+sCcV2vxPnd8UVp6S6Imp3wdNXvrkHZdBRfjPSqf0HKW16BzQEPIhrbSXafOYT8ZyBSHdFcvLv/rqq7C3t7ex2HJ4eAi///u/D19++SX8xV/8BQCcvxA9NZvnuTthG1JMVlAHgrYjgaZWWK/X7q4aAIBOpwOHh4fufjVKG52E8/kcsizuVIMPqLQsd7Gk1h9bp0/w4m+WFH1a3Y1GQ62/SN74ogIXjVCtHsupZUQZQj8WRY1jOv/z/EVKbt4G/qM7W6xtWw2q2D5AOnFziHRqDN9tW/f0FBXmZdPIc/kjfZYMAbGgcwmNLQzsUIxGowtZEng9VsQYiNvY6YapmBuNhtsN2Gw24YsvvnBp4ST6fO+BeidUrkpYjDIfbUUdNKov+feSIYrf4cmSwWCglsP6ipxAKQpsF4MPk8nE3auiAWUaTQEe2k3O2+Ofrc8A2BfmU2QvtxfxPnMLsB+orZfadio/IK9SnrUGpnm5lBMAUr38u9j6tCCjJBuK2q+pTuB3Ccinu7u7sFqt4Ne//jXcu3cP3nzzTZhOp5BlmcsUgunyMV1u2XTQOYNB1NVqBePxeMO+5mlqabBAO3FuCSbyQCEPUvGgMn2O0kK/w3bxOd+ubomuPM9hMplAp9O5NL0SC0tAIjbAsVqtXHaURqPhrhDJ83xjXK4icPyRTrpYECPbaX2YQp/yO+W9MoNCPuDC62q1gslkAm+//Tbcvn0bZrMZPH36FO7fv3/B/0X6pKumYu0I+s74vOW9abrler1u8mWkU+dWPqd2DK/L0t5VgC/ILuGy9W5s+1XIEIs9Q3VOiK8kHeVrMxaxcgNlM8ZI2+22esUUPz3LD9ZIQLnoi+357qCt1+tw8+ZNZ/8+fvwYvvjiiwvl+L3jRWxHKsuRbp7VxnqoKGS3WGwafkcnbkihh4eazSY0Gg0nz589ewbT6dS8wOXjQ+mUIS6I8/gb+luY4vqyZQhC8qcA4rIhSHWG4h0+Pc/H3sez/Dd+appvcNPmAqeJ63KJr60yVeJlH38jv+LvNINXqE1NrsT47EX9+20iRl9bY6pVvzePV9A7uWkZn67U4iExiHm2THl1IQrnq5wGzulA4okMLshpahgsN51O4eHDh3BycgKLxcKlJELjWFpk8wkbH7Tgoc9xp+0hLdxZx3SskoNAHaNUunl5a0COf05pT6s3VEYKWltgEaLW+kO8G3qe97XFYLIgReDHIFSvxEMpfEGdX18faH2LdXCH2uJghMbfJ4RDTmXofaqC1REqSzlY5owlSK4pvZCRaA2Y4veSrgnRxr8P9UcVDnkMcAG6VqtBq9WCdru9sRmIB4KxXygsTr9vDCVYeS62DyXjP0aOWGnmhp21fl4XD6r56sCxinFGyuI9dJrQ3uIBAu4oYVASy9RqNWg2m9DpdFwa97I2klF6siyDO3fuQK/Xg4cPH8J0Ot2wEWNhGWd6bxzaoDs7OxunAMtAbGBLkn2SnvM5S9I8suhTXoek/zSZUYRnpfexBCm0Z7U2XnbEBsLpc5oelmww9GPo5oxUh9Zn58YGMqwBghi6pL/L0oMxz1n6Yj6fw6NHj2A6ncJkMnH3vdHnqK9ZBqr2UxBc3vnGmtvm1sBdLHx+ZhmBLV4nPsPfH4OMuEm0Xq9vZLy4DPCYDH1XlBmYVQPTmUo2h4Qi84vqI9qXuGlzvV5Do9GAmzdvwmQy2UjHKdWFCAX8Qu+ilYnhLc1XSuV1zQ+wPFeGzL3GC0g+UMyzlOcBwn1t5UvJrw7ZXJQvce7z6zm0mIyml7mdKdmd3JahWTzm8znU63VoNptOLkmHJ1LsFS3uRP+W6Axtjoy1ca2ygPfzfD6H4+NjaLfb0Ol0XN/hAYTRaOQWuGJjYhJNKIc5r4Z4qoicpWW0cqH3kuZXzJzz8Qm33/B3rW46x8qwrTW/0Ve3jz76XiEfUmrTV99sNnMHFbh8woVZ3CyqyRkfUv0sjUdTeI2WKepbW/k6xZbwPRNrX3BaJb0W6stvm42xEYmyBHH4hdyogKfTqbchdDKePn0Kz549cx09Ho9hNBq5cpiasexdMtJuTYAXu66lXYk8TSQ9MYPgCitmJ6QVIWeVl40JLmgM7xNSlvrLuFfSihCf8LGwBHq4UHjZhUBZAUqLgRYykuhdjFoZfsdB6ASaxvecD6V5ydPibuu0W5lBtKJBTloX/SyNt4/uGIOQnojloPeI4d/4v7XfQmVDBnvVQAe20WhAs9mEvb096Pf7ALCZZpae1sNFM4Q2H7clf1P6MDXgaQU6gFZjOQS62zmUVh0X/awBEqyfjyOnk5/M4jt0syyDdru9UQfuLOT1Z9n5yTiUsZhqrNvtws2bN2G5XMJwOBRPIFFjXnsvyRGlffbjH/8Y3nvvPfhv/+2/wZdffulOsEqnyEKyJrTbfr1ew3g8duXm8zmcnp5CrVaDO3fuQLvdVusvCzEOoQQpmIH9aZH9PhkeGs8U+BzVUECB0ovjK+kJa1DkuwbsM1xAwcWSsmXsNarFeDyGDz74wNkIeHIEQF5wv2qw2AX4bkWxzROFMQHHEKR7YLE/5vM5tFot2N/f30ghGaIthR5NNqAMppuZfMCNTlhWi6vE0GENUlIb7fnz5y7teq/Xg/feew/u378Pn3/++YXnLDEvC62hgLlvUUprs4pY0ncVL7vu88XkpDmSIgNSFzQAwG3gPDs7c/4E6q2Qz2SlT3pnjBXRLAS42IgnZHmGvSI00PkqLbBq8VU8XYgLnVJ5LIuyQuszarNb/Hxqd49GI/jss8/gzp078Nprr7kye3t7LisJj3nHgvoTWBeOD/0ebXtJZqYsFpUNaYEoZl7he2mb5+kJWN7PtF0al+SIiTNYyml9znW5xndFTg5zevI8h9PTU2i1WnB4eHihTK/Xg/V6DU+fPr2QwliC5pOW6f9SObptnWNtr4gvGBvv09ZRNDtPqt9qA77sCEpaSbnwQDEXEhgA4IIdg4W0U1erlUthwDu/KmYOBRJpKj8E3V1FlZs26TRlkqJkNIXv6yfrRLF+b3VALQudPmB/0sAD/u8L5mlthCa0pS7az5qx5Qsyam2WKVysArZIm2j40r7kKTWk/pBS3mqf+TtYT5qlyAp8H75zsiiKBj5jlGroGa7cKD9Kz9B+KMpPPueRziX8jIsy1PCbz+cuwEONLd9c9JWRsG1l71ssRNmHKaBQP1Jeleqj/8fQ4futjPnA+S+kc2LHK/TOdBGftkXnAfYrDYZaeUmS7z6+5PWEFq2scxADoVheC95i+5PJBFqtFty7dw+azSacnZ1tPK/BYgcgr67Xa1gul9Dr9eD27dvuTspbt25FBWdSAks8mLG7uwvvvvsu3L17V9xsU9bpI9+Yad9zWyeUGcZie0n2k1TW17dlyEPujCFCfZEKra9CgcayfY2QTKDf44mysmRuGcA5jGmKOVJ5g/pP+K7L5RKazaZLnYz3vM3nc5GPffyk8btka/p8KpQF3Eah8t63yZP7KlTuW/uO29Nl2iloY+T5+WJbUftX8rOsvi4GzDFV/Hq9htlsBovFAmaz2YZ9zvtAm98pfjavz/c7/8zL0H94F7mvf/E3Gpyu1WrQ7XbdBvjJZOLGyicny+AP3g8YqEc7HDOaDQYD2Nvbg9deew16vR4MBgMYDodwcnJirpvTzudizPvkeQ4nJycu40a9XodWq3WhTKqtbJkjNAVqbExAemepT7S6QyhD3xWloQhSdORV0akA/pgbfzc6VqG5EvObjzYar5V0KI/vYAYduuBJ/ahQbMXHS5IfpcUm8jx3GW8Azm3oTqcD9Xod7ty5A8PhcOPQj68d6Tdf3FCKsXDw+Sy1G/IludzSZItEH9pzOMaY9h/j9+gD7+3twWw2g+FwuOFDWdrW3pnafL53k55NgUVv8DGw8GEo3uRDyPfx+Xw8xTD1E0P2pcRr2kKq73leR6iPY/WMr3/QHkSgrcjLYj+FfHCLbecDbyPEBxa/9zL0KCJGT9B31vSD1i+pepjWa5U7V0nnWxG97YXu0NXuXMSTPsPhEIbDofvu9u3bF5wImpIHYHMxINSpsUzOHWsKPqlx1w49gcADupJQ0+5P4IxkZVRu1FPaixil1PjzTTDf7ixaJ9ZD88rH0ol10FRpPKhBF/9iBH2o/0N04f98QV5aiOTvoxnSWjv0s5VPfEECqyFpAV+M5fnceQCJP8PpoEEIzi/a3SBaP0v1h9rkQZ4ycFUVQciopPxN+yXG8LY4I5wfsL1Op7ORZhUAYDqdwsnJiQvUhYLWkkzTYAkqVKXYfQs/2D/dbhfyPHd3pUk7fFMCSyHEGJo+hOqw8pZWr2VXMA8ESO1hmj28g0STzdIdYpQe/Bw7Z/h3XK9Y+A8XY0P8jnWNx2PIsgzu3r0Ly+USHj58aKLZOheQh9frNXS7XXjrrbfg7t278Oqrr17QG1aExlEKiuB3+/v78Md//MfqCVy8JqOMuWStA8vRk59UjuI7pJwuokF9bqvFvqMU2CkqFzQbvAxZK/UX1X3bdnwlSPZzEf6r4p3wzljJdvaNk9VnQyyXS2i1Wu50BqbSWywWboMWtys1HsLfaXm+qVaaD5Sv8/x8kzHNlsJ9Qfxf8p34HA71ybaB74N3ZC+XS2dfFbWDUvgQ0yRimnwMBs9mM2cHxcr+MmAJAGkyjPKL9UQzldsYIN/d3XUL0vP53J0Aqfq0JKcPF16RbwaDgcsycXBwAG+99RbcuXMHnj9/Dk+ePIHT01P3TrH2n8RrXD7y+YpYr9fw/PlzaLVa0Ov1oNVquQV+rLsIf/ie9dHNUcS+xjpj69DmcEw91nlWld9UlP4QOH/5ymj0WOr3tZtSn2SX8THQ5gwtH5J5tD5c1EOZQOtB+VXkGhCpT6hO5/Yy+jQAL2yKbrcL9+7dg/v378NoNBJjR7ReDVKfcPvcJ9uxbyndvo3v3Daxwidr6N2fKLvx91arBbVaDQ4ODmA+n7uFaxorK5IxTltspPVr9EvP0c8pYxfbRqhcSBbS8lJZ2j9oO9BYep7nG3qfH4LB53ibtG0ff0rvJNHOyxX1W7j9LPnweD89ls+yTDwFy+ngMpHzHC8fM9e0fuLfpczdq+QrcMTweej7FFjquMr954NZU/qcX+p80HvL8Ld+vw9ZlsHjx483Uq9kWaamN6ZGgeZw03JaHVKdFDxYK9UlKQpJqfP+kQRgjOAqYvSF6rPUKfV/lmViWkWpHTQ4Qm0gpEW7PN9c9I5VqpzOshz1suvSUHbwsGhd3PGVfkcjgqcm4eW4QUqBxgjeP6IZMtQYln7nZbV32sZYVoEynV7el1g/vzvbRwv9n9bLy1kDe1mWXUiN74Omp3ggjAfINHleNdDYHI1GsLe3B/V6HUajEcznczU1nIXHywhQWJ6lYxkrq8qac1Ze4uWRXlwYbDQaoj0Q4xjH8EwKf8U8w09ohOgfj8dwenrq7larQibmeQ6//OUv4auvvnLXVWCwOZS+XqoLEeqX8XgMv/zlL10bZ2dncHZ2Bo8ePUp8k+qhbWJClCWjqrCPYuu02Ilcvkgy7rIdsW3bEqjL8jx3i2q7u7tOl4/HY5hOp26DI9LXbDZdX81mM3j+/Dm022148803odfrbY3+a1wEjstisQCATTtI4q+rxP9XAWXYPvR5X5+WaX/HQIpF0MUBzhNly6R2uw2NRgM++ugjePDgAfz+7/8+NJtNuHXr1kaa4kaj4Ta5SdBsdUne+0DlIF8c8oHbd9brPbY95mUENC+D5pdZHlno36au575d0brKop1uBMWND9rVQ1hegi++qpWVFlso5vM5DAYDWC6X0Gg0Nq78obDYq1wmafWEFqgs4xhaBAstfGjf4We8Z7PdbkOr1boQH8H/F4uFi+v74vCXAdqPIbmN8cRYlCF3tbUM+ncM74faCdHAv7fWzWM9FEXlCd1wSbOIoMygfIjXNmCsBjPqDAaDDRro5snQaeCi0GyYGB3oi3FfRWzD/37ZbYgYqBarFJDUdq/gb3jRMi2DJ57W6zXcv3/fnL4C6/ApyZDiCUEL3EvlAODCTiwK7V248tboC9GtKWULfEYDL6MpXO604GJbUWXsC3yH3kGqg39vXaiLQYrRWKT92AUAy7xIXTTgPCy1hfNEW0TjdfhOsoTuz5CekxSvj7euElIXllLq0cryv3Ex1vesZuzF0kTrwbH3ndiQ6pdklcS3mtNk1QtlAPkV7yev1WownU7VlEqIkMPoK1MWfE6pVrYqaLqX06Dpt/V67U7IcqSeQonh2ZhFHAtfch723aGL30+nUzg+Pr7wewgxZbIsg6+++gp+/vOfu+8w9SK3Hemz3Am0ZsegwYevv/7abRZ89OjRlVyIpe/jsym53QSg23lW29Iiw6uCz4aR3tVShw9lBFm0Oi8Lq9UK6vU6tNtt54th4ALlGtJIdepisYDBYOAWU3haz6uKlDGMGaMYeVzW2NN3oQtY9LQEpy81GEKzn/A5RvVCKAAcQqxNG1unzxZKDebE6mItqFq0r6z+peSTpdjm1vduNBrQaDTgm2++gQcPHsD3v/99ODg4gP39fRgMBs5nq9VqwSwYRWIb/Lkse3Gdh2T3a89oKCMwGtO3vviQte2iAUxtnlc1l6rys6x2MoC/32Pq0xAr3+gYSPavT+aFIMnOovYQbhxCO0PK7MP/lxDD//w9uIzL89xtBKGZDnl2LYnP+bhz/SjpYS5vtfeR4hTaO/Py0ve8D3i7Eg14DzimcUcfmJbP8xcblfnBCuwjX7w2ZZytkHghJKulMjF8XySuovWVNl6+WAV/1tq+1p6vfKgeitT+1eQR5TfKhzinUc/j+tJoNNq4XkSyabV2i0AbJy6T+Gf6vj4UkfVVYhtxRqve+zZAXIzlTCwFI1Gh+XYgYlod3I1EF1awDUxlsVgsok5fxUJjXDrYy+XyQhpcrnglGkJK1QrLpCtTgFgcWvq7VkYzTCRjKaSgNWFucaw4yhRWPH02pSVGyKc6JkUcrCICTOM9nM8oB6ghZzkRy0H7d71eb9w3bUUKj7zsKOp4a4gNMNJdrz4HxAdMDdhsNje+R/7SxtbXB7HvsQ1gwCgETNVIrwbQ6iuTB8rmJ0v/x7RpTWlE27cs3mFaRC09Oq+T1mdxnjjdPlpSFoAlJ06TiRisfPLkiZO3NKASupcuBsvlEobDIdRqNbh58ya8/vrrMBgM4MGDB+7uWut1CBZgXXj9Bc/WQkHvnynjzthUZNn5Dt9arQanp6cbGSFSA2Voa1PbO0UeUvkSus82FdhGlmUueJZlm1dWVIGq9CeFlG1CoqOqYMFVguZ3YOCP2o8+xIybJBc1nYkLnnhaH2mhm4dpwIcuOF2m/LAAZeBsNoN+vw/vvvuue9fHjx/D48ePodlsujtBEVXOEdzQiyerUF7hKab1eg3tdlvVrSG6Yngk5R0l/4gGsWl8Ad/Vyid44izlRE+ZwDmBaUB5kNRqJ2jyzZdpy2fz03p4nGaxWMCDBw82TudKfLRarYL2ONJQVWrokNzfho6SwBcQXjZ9VEbMZNvvrMW/fGVj+cX3O9WVKe+Oc7nRaFwIoBfx0S20UDkyn89dtg+a6QMPCNCU7xIsi17UdvEdKNDqlRBrn/MFn1A93K/Dz+hv4IZY6TqHVLpj9LQ1VpAyP7V4/jYQ4iEL+PoJvQMY68Lf+cJ6bFsWWiionRMbo7MA+RFjhHTeop/f6XRgtVq5dRzc5I3/qooPS+/Ms5MA2PrgqsUqLaDvX5Wt9DLaH7HYWEmVHAvNcabphinoJMUJQR07FBYI6uRalF4R+IwBrJ/Sb1VCvK+0RcWyJppFcaUE3SQFF6ojZmxijEReL+0/67j46LWAjisPSFqNx1gjU3suxLtF4WtPaoMujvG0NHyOS/XzuukzKDd87acYukXmn7TIUUbfF62nTAUVEwwJQXovSafQv3H3qtQ2n/+0/jIdbsl4rcIIoMYhNbBp+/P5HObzuZdGhFVml+H0hp6vwqDUbBMteMF/s9CEQVJrsDTksGsyNURXjMFO54LPGZbawCA4ylu+yJAKrBvbxQ15WZa54Mje3h48efLEOZVFUitq8oTugKd9T+8+QseuyH1IGqw2EdKMp4343ZQUKXovBj49LfGzVV5oDjrWw+ssEhC0BNLKRMgOj/m+LLvCl1oO2+Hzk+sgn+4v2sc+Pg5lTKLlfeX4b7y873dJRmhZdmJS4Fl0hibPioLbWQcHBy7AdXp6emETMtdTVcwl2t90QRuDpuhfcFlQVkygDGg+Gw9MxfYf3ezK25LaqwKUF6hdxHlksVi4qzUsG9mK6A2JRl4OF7LRvsCsJ1ymxehoSnvKfKjKNk5BjG9TtT7ltKTKmpS4kCVmYI3llIHUvtb8IK2elPe28go/uMChzYMy+pfaNNPpFHZ2dqDdbju6fDFGS73a96H4lqUuqRztK58/YOFrXpbaAwi0ZWh8QoMvbhKyvXg9ZYw9lx/SHLDqEwm++qz1x/B9iP6Q7au1VaVP5OsHyf6OHXfOm2hrZNmLjbv84AbnU41GyTcI0Rfy0SW5XBa/x8jlMqH5UVwG0MMHRf05X8zvZYT0ruY7Y6lTwDsDUxQvl0t3ByydKLxsq9XacMIwf32soEgxvhBSoIIHIS0K1hI40JSahanKCIry+riw0ARGCL4AhNSuj04fYicf3/2F73jVJ7GlH4oK3tT5RU8FaHOb0hn6HgNcmjGJbUoONP0d69XKxDj9MYG9ssZq24pUA09jCACmwIoPkuEova90V+disYDRaHSh/VgH1cc3EqoeD4mefr8PR0dH0Gw2YTQaXdiIQO/3kwzIbS44xPJ0mU4WD4jH0EGB8gv7rgyekkCdf3QStDp99Go0cPnnAw2epjiMFmDgM89zmEwm5gUK1APafU4SpAC9ZSwHgwE8efIEAM7vvQMA9W7mqpHnuTux0+v1ou6543IxdhOhFchjMaf+NH4uokcsjjMF9oclA8G2QIMG9Lsy6wc416fdbhf29vZgMBjAycnJRvt5nm+k9Hr27Bn87Gc/g8PDQ9jb23N3Ri+XywsBj2vIQN+R2yo+u4f3qfQsrUM6jVC2TzObzWA+n7tU17gZzIIqeCTPczg9PXX9G1t/DE2pdqYGLpOl8QrZBhLoM5LvTu9TKxMa/cvlEv7u7/4Out0uHB0dwenpabAuLdBM51EMb0vzT4K0cRjAZgPQAwjc1qhCjl8FeXsZtGwjDnKVEOIja3ys7D7h2YSkfpdsPFqOygz0WTCt6GQyMdMSK8exrdFoBMPhEPb29mB/fx9Go9GGTsMTodROxL/pok6obas/yWPMWhnaZ74FH8vikm9BaDweb1yJhDG3o6Mjd7rYirLtkdB7aWWrlg2XLXv4opcEyodowxeBxU6x9AuNh0jg2cP4/MQYNN201263L/h5mBFDs7ukd0tZg6J1aN9L88/3zFWH711Dn1Pq/TZCelf1ZKzEQBpT0cUQGrTB3zudDgCcn/TBgCq2RRd5NUWvCR8ucEJltOd8EzCkCDQa6N+872KZMyaoRRVtqF7fIpYluGspZ4U2jpS+UL9pAsCa/tpq9PLPRcuGxjekwKxtSrxq4RNaJ/8nlbXMJckopfVKxrxWdxk8WEXgwgeN32KNgRS6NZnG5b9kxGmGcJEx4AFHNLYwGMznPzWcfLTFBnT4s1UZB5QudBrx3ha6IEWdu9Q+tsrpGNkqyZkifWV5NhT8sjpsmjzxycWUuYzt+OR2Wc5ryB6Q/sb0vPQqCW2BMwTp3VFuoKM0mUzcyRlMRU5PDPE57XNgQoEKrR9msxnMZjOYTqfuTs0Y+6IqoLNJeVGzhSmK8I7lnS12Z5mOqwbf3JZkQpkBoW2gLBlAxxQ3yEoZFwA2FyWWyyWMRiNot9vQbrc3gpBXqS998jLG3q4KXIbF6NTYdgAuvnNsfdS263Q6cHBwAKPRyGWy8tkdEg1F5CfGDvBaBgqe8jdmfKuyS2h/+/xnn80iyXnu/6A9eNlzMWR74cbJfr/v+EeimevxkJ6jcyrWFuG2c6htX53Wvo+NI1hjNSH6eL1FbJqY97XMSeu8TRnj2HrKtPW4nxajm0LxnDJtUaut56O/bHmPNq+1vtQ4B2b9oXfHStfOhXgvhm+KzGefbuc0cJq1MhqN6KfR/uDxeJqtLuTL0vas/jinPaZ/Nf8kNFYSr6fIhVS7iJexyEfJ/w3B1+epctAq50II9Z2m92lsAcvyv3lMhz4rzREfQj6w1B63e8rWp1cRlviE1JeXFXO5ivBuxbfspsDAOb9jxjVQr8MPf/hD2NnZgc8++6zQvToWh8Q3WQA2T8Tmee7S5/mcDQmaYtKEfOg7Tmvqidiiga6ykfIe0h20VUPrN7rjRhL8ljp42ZBBY/3e0lZZ5aQUntgfuAsphUY+jzD4gIFyn7ywBCm2KfC/DcollX5tHPj8wT6S2sHFVwzISeMbctgsMjn0fdXI89y9K8ALeTefz12WCADYWLCKCcbFGH9FENtGWXTxdHk+w16jAx1Nn34KOaAAcX3A02RZwB0U6aRiLH/v7OzAnTt3AADg/v37G+l8+X3NRdDpdODtt9+G4XAIH3/8Mdy6dQveeecd6PV68Prrr8Pnn3+u0i3ZUdY5wAOvOzs7sFgs4Msvv3wpnBzcnc6ze0j3HlttVVq2SB+EZHHqHOcp6qX2tDZTsC0Z6QOOaZFd6y+7vWGFZbx4ejI8gXzZd25uCzH8TFNTAwB8//vfhx/96Efw//7f/4Mvv/yyKhI3QHUr2j6np6el3ldeFZDP6D1uReQJXzCs1WqwXC5dKn/UYRTaHbTS4mOZCNlEiPV67U6hYfpLq/1DN1BrgVkN+BxucMR/eN8cZnGLsad5ENjXbp7nF074SGVpELdMXVTVuHNsM3AcYzdvUyfyOIbVPsVnOKxzK2VRJdSHKeMpte+z0/P8PGtOrVaDbre7kU0x5UR8CDs7O9BsNmE4HMLZ2ZlLZYq/SXOa28laH0tZFHnZWN9UogXliZUvQv4glkGbu16vbyzCUr3TbDZdfJ/f1RnivRjepHyvHQCgsjw21iO1tQ27kNJZFl/zfuVpewEuZgSS4nCxbfIYBMCLseI0+XzUGL7QNpPSujCTDwA4uYL2LQLbwn6QMmHgWMWOlyRXJb9V6wde7ruC79K7WnBhMbZowCbLMuh2u9BqtQDghVPBBSgKDl9wR1OKtCz9TmNuyagPPZsS5JIQ049ckBUR4r4dIKExLtpuClL4LmTMlu0kWGiMaZvSL42RpNBCyi7GGYgtJykYGjjxGUf0WWpYauMlBRR8/YXPX6aAT1lkqbodCzT+sfC5z+iyLmJxg67ovKWyL4ammDJFoBmX8/kcJpNJ1OJfTHBKoyUFRewDSY/HLjBZYdVxoTZDDqevjKUey3OxwShJfmM9uOhPU/6UkdoQ22w2m1Cr1WA8HkO9Xoc333wT9vf3XfCaborD7/g7xOpQbSxxwUva2LONQKLUpmT/0vSHPhvQp5e1sQ/ZJTTQgeUpv2DaNnpKrQzZodURotcyH7Xnyw5+a3TE9s82bRfkvVqtBvP5HJ48eeIWwyaTCdTr9eh7UGPkE+U3DCZhUBbpS+mPouO6Xq+hXq9Dr9fbyM6xWq0uzMuyeYjbLanvH3oO5/KzZ8+g0+m4FOk03VtKwK4oUE7H+quXDUtf4bhwOR6y9XiZbcmIkB7Bz/g3zhUKnDfawrqmuzW/nvcH+p6+zFfWOJEG+nxM38eWl+xiySbCustAkfqtZcvyya11SHGTVL+cy53QXJXGrGqZxedjrK/nk7WhfuP9Is0xX39g/AhtDW6D+uiOBdrb6/Xa+R5ajI1/luiXeCzWX5H+9rVrnXMWWnwxEoAX9heOS9mLwfzvFNkWsu19cYZtzsvLgNY3/DefvpXq4WPF5wGWD21GovVZfDyLrQTwIrOe5LtIdMfaVz7+4fyWwmOpz1TlK6RAqzck1630bGsOW1BmH4onY32MbMG9e/fg3r17AHC+A+HTTz+9cD+AZLxT0MnFISkGn9BASLvQqZAu635E33chaEEun3DV/vYZ96F3TWF4jW5LwK0MIYRBQ/p7kd1PkjOciljhHBpbCVZjMNTfll3paEhr9Glt1Gq1jVO0tB4pkKo5ORpNIVSlgKy47PZ94PPFYkjR/+kzOGa+98Wyy+XSu6BfVn9dhdMWvncZj8fw9OlTd4euBaHg1VWBb1x9fRIKzGnlNceeIuaezSoCLZqdJele66lBTQdjWdwZ/vjx40L2jgQafO33+7BareDzzz+HH/7wh/Dv/t2/U98B74XxBXck8L6i74l6Jc/zjdPmtN3LOjGX5/mFXbuYujn2XmQOa1oxjS7JZsyyDBqNhlu453aWFVU4UUiftrGTnybehu7lPEi/T7V1y0Se5zCfz939baenp/C3f/u3rm9arRa02+0LKfOLtkmBYwYALgvKs2fP3HiuVit3srVof0mnFjXbZbVaQb/fh3fffReOj4/h4cOHLsU68j3KKh6wlKAFe7VyVevtLMvc2P7iF7+Au3fvwg9/+MML5fgGucsCjgniqtrOmrylfCLN/Rh/gOoGOj6XYevhu1Idy+mgix/8TkbNZwi1R0/XNhoNaDabMJ1OL5wa9j1LdYK134roUmuAN/RdLJCGon7PVZ1zHNJcKlNvabEI2s90c7ovvXpZMSWt3iLyIDUWZ1nk4ajVatDpdFxmBGmDYio4PRJ4f/loDr2Tbx7HyPkYmaQ9w/0pqU56opLKSFonnojFjEmaDuP0aO9UlizhdPArbyy+ndYvZcfoyn73quu1gvs3q9Vq4ypKWo7SKK3BWHjeN4dxzNfrNYxGI7fJQ+sbuumQZ+Gg9Vrap79RO57yIeWpIrK5zBhUVXyTWu/LYmdQlEmzN02x1jAy8M7ODuzu7rrfm80mtNtt2N3d3RCOKDipU6UFQrXUbFJZWi4ErQx+HwqS8EkamhSxk4RPYksdPmFsERxS+7RMjPBJQazSs5YtwznVAr2UXyT4+ECjP6UPY/gtJRBJ+1AL0vL6Y/uclsfdTNiWFlwN9T9/B8t320SKY74NcN6WxlyC5PzGBjikgKgvmBEKdPDfU53VKo2Ver3u+Hw2m8Hz58/dhiXJsbXSfBmwOKg4zlpQnIM6iBKf0HL0f61O2n5It2H5VqvldlpadJVkkIfKWiHJYis92m9lB4ekdvHzzs4OnJ2dwfPnz2EwGMB4PPYGUEOwBkdxrknfS5+3CTyNFkoNjU6vJbiE5fGdpIWiVDli6SeNxlSbzBcwiaWrauezLPlsdbh5wK3RaECWZe40OqYIbTabGz4bh8W23cYcseqGorDKDauMqRIhfRVj29CUurTusumtEpcdgERIdmVR/zQmmB0KTFp1RWz9WpsA55sqnz9/DtPp9IL9ZqnTapv5nqf0aHTi5zJ4NdW3oM9b+SaGBzRZKn1v+U6joWxo9Vt0YhGaYvon9AyCLnZpNpjm01h4VesDzSfapv/o8+vQFuHltPcpg3Y8wCMdIPCNTYze1cDHI8Z3keS4Rb7F8DGWp3RRX9naBv6ekm66DN60yN/Y+IOljph2uM1Oy8bQb+E5PqaaPPC9qyZ36TP0f/S16VoP9zmk+IivX3ygtix/J8neleqnf+Nmck5jrD0llavSB30Zcd0fmzAtxkodtlqtoFarwcHBgWP2/f19ODw8FOvI89x7EhbB09fRZywnYun3oUmdGhzyBYVT6vUFb60GN33WsoCt0YBtWgJ4VgHuQ5kGYpkT27cpoMygUcj40Z6x8ltZQSWkjc9B63ykv0upyBaLxcYuIuvd0qGghJWu7zo4fxfpL6tzQmU9/Y3riVj5RXfPX0Vln2Xnd7HgvRaTyeRC5giE5FgXbfsy5gJ10mJPJHInmsPyPrgT0noaFO8emc/nMBqNTDxt4bXU8cR+iwmGWdsI9W9ZePToEfzyl78EAHCbEKyQgnNWudBsNi+U1dIWl4nQXGu1Wqq9TMGDevxuTK1tmgnGx3dF5b1WL7ZdJm+lOsLfRtAARJZl7o7EwWDgTr1m2flJyNlsVjm/X6NcIA9bT3mEUMV8/C7D5wdZYY1NoO8VoqUIHUVt5eVyCQ8ePNhYaKF2Vwwt+HwROR5jKyFi2kxNpY5Ioc+Kovyg4bsUQKW6NbS44styo12PIcVT6O+0He15To+GlHFL5c+Qbc5T/vsQSndqna/WTC6xi5ixiO1T6zxOWdyVaKPxQi0OZ6UldjF223LFsj7wMsg6zacDkMcKx5fGE2LelfqU9NAdZgVYLBYbMTzcJErbtyBUTttYge+1XC7NmaaoHNdkE4/Ra3LbR7f0e+w8oW2/DPxZFS4rllkVNhZjNYOZ7xzIsgz29vZcOsVmswm7u7vQarUgyzJ4++234fbt2/CXf/mX8M0338BkMlEXYrX7I5fL5QV6LAusnF4NZQxikTR/mnCiDGah37roRPtEEyg+w0+qj7ZtUfIp4HRLtPJgMk9HlIIqJ7kUWI5BTJCdP2dZuAUAMeArjXXM2FLFiIobZUrsfA5tDrheiL2IkGywQFrUiHUMOejiaagea2pXTVFLc6Bqg4bLaq09Ksc4r0vBOQTfzRczT1LeI6Yu/k5lLfpIDgXtW032+Rwv7ENfmmh61yKWj9E1Gl9S3rDYAL739OlxPI2KTrYvlU8RzOdzJ9cHgwH8+te/hmfPnkGe53B2dgbj8RjW6/UFRw3fCcfDt7FCsw189xtRZ60IQg4VD9aFsF6vYTgcbiwSp9hNXH9T2lKcPjxNiRtntF3G9DnNNvX1CZ1DZaSP5rJQShdcFfD9LIHUKukom8d9ddIx1eaGNkckXuB9xK8xoL/xuS/RjP80udloNGC9XsN8Podmswl37tyBw8NDuHPnDnzyySfw9ddfO/6nz+KGYcud1FXboVa/AuVys9mE+XwO33zzDYxGI9jb24PFYuE2ilUxD32gp5ckWRHbfyH+leRUjG9lLVvGuNNA4GUH4LSYg8UWtPiTvnfEOjAOhSm3F4vFRn1UBsf0F22b3peo0cufDdXJ34P+bqWziB+XMp+K+HapsPJU0fpD0HR5SL/js1qd0mcfraE5wdvW6pH8ZF99IcS+CwLTidbrdWi1WrC7uwuHh4fODnz27JnL7EHr9vnBPlje11KXVI+FV2P0hS8OYmmD2+AhGjV7HMB/7Qk/Act5NGV++HxqXx9q9l1Z8QZOR6iMVk/ZvFI2tPHTfCbsc8wihlcOUfAYDbehfXNKAvVNpZhPzDtwG7BWqzn7AqFt5JDGVJq7Ph6itso14vFt6ruNxViLkYkTYHd319392Gg0YH9/3zHYq6++Cu+++y782Z/9GTx8+NBbd5ZlF+4GyvPzXQ0pnRwbBLPWxyEpC197FkfFWhd9hgoAn6DXgheaI+rrP9quRr/2HG8n9Ju1Tyk9ZQQSYgynIs/zsrF8GxqjGLp8fRh7Mo3zIio6Wl+tVtu4bD1lvoYMwG+LoI5FWe/tc0JRloQ28YS+981XKw9zGXgVgYEdrV/oBgUpaKjVqZWrsi/4nNPGRNJPGnxyhH7mDqG2m5G3HWofZZR0kpLSgPeg0fr5yfLYgAY6KTHl6d8AF+/H5HQDwIZdhbaXbw5bIPHdfD53dY5GI/j888/dhrzhcAgnJyfQarXEFMJIW8hx0p7z/V70XaX6yqgjz3MYj8cuAFU0mBBjm/rK8FRP/J4pXz0+Wafp6ZjTmxoNqcFEiZ6YuqTnuNONn7kjfxVhDY7g776+ssp+nw/KfRVeVpr3kt8jBW/q9boLGjUaDbh586azV589e+YWY3nAhfqqEo3aO0l8UTa0ulE2YCrrR48euTv7lsul+57qOUtbMTRI4Ite9Pmy+knzdav2G1LlSdl1WNvQENKtsXEO7Tvf87jxIcvON85xHpX0k09ucNql99DiJKl8Itk3RXV+Cnw6VLK/NBottJc5x8qK71nbouCyg//G9YCvrhBiY0Gh+n02Nf5v7VvNz/DVQX2V6XQKrVYLWq0WdDod2N/fd3UMBoMNW7hq/96nv0Lfx8g8bhNIcgZB7xqnv/G5psmlkA+lPUtBF2OlrHhZtnnyW5IRvC0OPl/ws9VP43NO4r+QXJLGM5YnLHTS+iU6sJxGkw8hX4aWC70bHw/NL8PyjUYDlsuleOiOzlvpsIHPZqe/a3Y15xvfu2qHOejzNCaNNGuyTvrbN6dDZbW6tfpifLSriDJs2suwm6qAN00xCkScYFmWwf7+PjSbzY2FlTt37sC/+Tf/xk20n//85/Bnf/Zn8MUXX2zUJ01UHoDEdKW8Y61HzUNIGTAtkJIKq2ANTcgqnTKERSj5UIbz6auzipRb2xBwKUI4pV5r/5fFS5agG03vhKcKaDCWCujQKacyab9slP0e1v4pK7gQG1RBWWqZ577fkKcsuEoKe2dn58JiVIwT7HP6L/M9y5L51Oj2LTTSsinyTuqr9XrtUkc3m01YrVYwm80u9Ld2qt8aPLY6xZxm33f8d0wdFMpAUBQ+fqSo1+tuwdu3YBFqBz9bnkUeuqx5wZ3cWq3meKxerwfTqOE4cv1I/7dCc+aKoihdIZThdMXyGW+bBnsAimXHKQJJBi0WC6dTJpOJW2TD0/BSWi/MqoApjQFeLDBeY7ugPEbloqSrXiab9yrZXEVB536M3cnrQFB/CGV8bIwBeUTaKFN13/PAOdKB91Snwmo/AQB0u11otVqwWq1gtVrB2dkZrNdrdaOX1h6ATcdI121YfSyuU6y2i6UNK6ztatBOJH2b5rkFfEz5xjU8rIJlitrfvgUUbtOVNRb0fQBs9g4+o5XFDaAAL2wSzJ64u7sLzWZzw0cA2I4ci5mL9LlYcBkt1SUtOGkyUZMtGs0SpDiqxFN0UU6jJcYno/Xw+RMDbDP0bIxeqRLWOE9Rvtf4NcRrAJtp+KVT0Ag85V6r1aDdbrvMKpPJxK3noL5AHgqNM48D+eI+/PoNSiu/SoBuLqB1+GKgSC/66D4bjc7tbfNZmXL/GtvHBWtVmpB0MrXbbWi32243Yr1eh4ODA3j77bcdk/7lX/4l/N3f/R3UajWo1+tu57DFcZFOScU4o75AUwyjUsb2KR1rXZbvtDJSO9wpDCE16FmkTa0+qQ5en3WBRgpghGgILfJw+sowwKTnrH3JnesiQj7UZsq4UllhAVWUXC6E7ju28oXUZll9mIpt0KAZCJa2YuUjfYYbH766pDnG528V8zr03TbHA4FpUQA20zVbIRl9KYE8S7mY3/jiBS0XS68UbMDvJR1SdBwxuIiLG81mE5bLJaxWq41TGDGOp9SGhtDcsdSBv2s6m6aDiqFNg9b31AHDHafo2IT6rkyZRduqUvZbg7LoFCKPoaOnBVTwGWsAOEUear/5xqkI/6SORxG+jW2T9iOdT0UC0Sm2OAWnndpR1OfiG90k2YHP0CskMIAitWWBVVekykBr+1IwUWtD0iWW4F5Z8AXJNB6LsSVDZfC0YZlZAyh4/2t8UIZs5n2Yokc0W9YaZAv5jD5+9Mm3IvMiFE+wgstEDnr6hcqRWNotdiFeddBoNNxddZK+8vmNXB7jGMfaJviMb5763kWLM/meCdGk1S+9n2anS/PWqkexnar97RjfGn+XysXqc98cposDdFGgDH9WareqPua+uJUHfHqLy1dMNY6LOdwmDi0Ca/I01SYM6d7YNkJt8/Z97cT64lb45g/6xBZo42D1/1P6VLMtfO1QpI5hEfvfEgcJ1R+yDflvfJ5oeo7TKOkGKgfwmgD0P/A739UdnC9CSBlXTrPVP+ffoS+gzRGfHkiBr+7Qc0X9yiIyJBVFbJnYdqq2RVIhLsbytAMAAPv7+9DtdqHRaEC9Xocf/OAHcPPmTfid3/kd6Pf7ovB+7733oNfrwc9+9jMYjUabDf//7wrAXVDYFr0nAKCak49WlD1oVsM1pR6rgUfrCNHD+15zQPjOOb4bxYpYI1UymCxGW9k0VQHN4Y1VJjTopoHfp0Yd6DKDI3ihupQGNDRukhPgg0+4X5YwDtFQlqIog2etdGj3P8RA2q0mGaqXNRdTIdGrpdRF+Pq9Cr611ikFrUJ10PtAkbfLOEmGC3mz2WyDLzT9BPAi/SnXaRIt7XbbLcYuFgsYjUYXnL3ZbObKAshZP7T6LeD8rukDqWwIOzs78Morr0CWZe4aiUajUer8ms/nkGXnm/dmsxl89NFHjk4L71O5EpO6FuCFHJFSIlUNbg/FnIbg/RNzskeqB+nx0crtfa2++Xx+IdCI7RTtX+qU893xsQ57qB3fPNoWrMHMEKo+6V42+HuH5icP/GBABH/jc43amXmeu40zWJbej815DReuAQBmsxk8evQIbty4Abdu3drwT69if1v4R7M3cZPMkydP4MmTJxfm+GUAZb/VVrDqFOm3kE7yoQz/COvgPhcuRKBslhYwrPVfBUiBvlj5h+XwOo/xeAzT6RQODg6g2+2q5fFkS1GE7Ey8did2bLi+tgRFQ5uWJbqRz1PkhS9IbV0wqBKaby3N7SriepbYXr1ed/KWy7iyaUTZbbWdNRmY5+dZMnDO4cYtet0Jf5betew7IYv0jcdjx0v9fv9C+zwm5eMzHuOU3qdMxI6Tj36uA6h+4mXK0s20HfodR0xMVZMVWt28HN2wCwAX1iN8cgzvLKVXHnB6LO96VfQmhTXu4kPsJktfX/h89CzL4NatWy47wHK5hIcPH5oz7vhO4mr6RrItOCwbCjhv+VIba+1rNJTNVz65fdk8zG2DsugpUo/l2Rhay3wvMdojMRHN6d9qteDWrVtw+/ZtePXVV92Ew3tnsiyDXq8H/X4fdnd33cRC4O4JTM+WkppHgtYpZSrgqmgs8ryPJosS9QV9eRnL+29LCPgcvCLYVsAl1kjAMj6DThIOsUohxmnT6ve1Jzmh0vzXyhWl57IU1VVQkBZYAwK0LDWSQ0ajZlhZZVtM8EZzGGPrKhshw03qQ9xxSAN0vmcuG9RY56lqAOxzmQd9JLlQBd0YfKDpxjDAP51OzamTQ6Dv5ZOHfH5Z52ie587WwiAJfuYbIIr2p8S3mOIZwa+5oGWlvy26ylKuTFjtKqk/+BjjBjZf0JTOAx+k+WWxK0LgfOJziCV+LopYW0SSjZIuSOmPmHfife+TfbG08PnL66LBXkv9MXI5FSl1h+wmy1jyACevn/LHer2G+XzuguZa4NNCl9U389WVOh7W8QYAd4qh0WiId7da2rLIJt4u/VvyO61tp6IMf7yK8cF6JZ0oteeTw1q7ReeiNdCm+X78NyuobMOMJaEgq08vlIEY28NHA+1Ln48f0z5/NiRnfH6YVaaVHYSN4ZdYuzuWBkud3FZL9T236beGxorapTG6LdQmbmBAewb9FbzH3WLDlDGPY8fX8p30rKUtX2wzRobF9ovvHWJjOyntSv6tVG9INnJeDulNSUfxMfD5cikI8bSl/qL9HfotpK85jbQcxk5wk1Kz2QSAi4vrse+vPWPtKyq/rPxsmfeab8H5WOJrn86XaOJ18I2tZdrEZdi3RXWt5fkYu9ZiH1tQph7eWIz1OUGvv/46vPXWWwBwfhrkD/7gD2B3d3dj9/4XX3wBv/jFL6DRaMC/+Bf/wl3qTNFsNmF/f/+CwBuNRhd231sQG6QpA9sOMNHympIvyzCy0IaMTAOqvsBQFaDpIikNGixOAf29ynRdVQLrp2NjVWpVpaaTgGn0aACMInSHHqLq/rQ6KN8GxMhSzQDgdWjzyNpvksFUpM8va6xCPBQKwjQaDTg6OoLJZALHx8eV0ekD1dkWWVHW3ECHnJ60leiSvgvd6Rq6B73f78PNmzc30njmeQ6ffvrphWwfKeB2UOwcpOWlRQMMVt67dw8ODw/dad8HDx7AfD6H9Xpd2i5rtAGy7PxEbJ7nMJlMooJjNNDKs6RI7eH/3PC39iOOK9VFljZpWxLwBIQE1Mfr9Rpms5lL8eSzOfCkttYufefLlI0+Z53SWMTWwOe00x/SggF+XwQ0WIg78NvtNmRZFn16u0xIfNNsNqHb7cLp6SkMh8MLdzTz57dpu8fiqtlX0sYJBNcp1P9NfY+iAZZt2agxwcmYwElRWN4fy1h94BhYA0mxfjraABLt+HuqLxf7nJRxRNOVRcc8yzJoNBpO5mKGFEt2D95XFlpQNtKYQ5ZlG4tFZSCmnpi+5GVjroqQ6rHEm/D3y8xsVyUs8gRtBB8wzqGdHk0JYhfRF5JPUa/XYbFYwHw+d5kMcWMwt5slvow5pbtarWC5XMLBwQHs7e3BcDiE+XzuYsPSpt6rCMtCW1XtpfCR1S631EPlSpExwjmh1cHtfM3PR0gZ2Ky4CrzG55aPx7SYnO89pLmb5xfveKV9jX2J8mAymUCj0YBms+kyV+zt7UG9XodXX30VZrMZPH782MV/ffGX2DUNqT9CelKz9yS+8fV3zFoEvrN1UTrUlvb7VeDZbaLMPoytrwxsLMZKBgGecO33+9BqtQDg3NFvtVrQarWgVqvBdDqF58+fw/HxMUwmE8iyDFqtFpydncFoNLqwIMuPt+PORkugS5poUlk+ySwCnddThtMgtUd/1wQgfT5FWFlok9q0lCnK8KF2Y+uz1GMRYCEhFjMxq5rEMcF6+j7aWFqCECEDz2L80fa4kcVp4HOw6Hj45ngIVsWXUpck7H0KwCcfy+BZ+ow2RzWZHDKENVidet6e729fvSE9USZ8dMbKKzyhYzX6tmlI+N7LwhdFZbe1vM+ewOAaprKksgh3d+7s7MB0OnWLmEUR0u8h+rV+o84DLkbv7Oy4E74og/EOXFq+SCBHohX5MDYoV9S2ia3LF6CtYh7R/vHx0lUMOmmyRZOlMXraB85TIVicUloXBvpwBzedD/z01WWOCbaNm1Mw+DWfz92p99AmkzLtGiu931bwwFeqrckhzX2LzrDYR2XBN8e4D1JVO9ZnQ7DWzYPAVT3rG2vJhortmxg7KaaeWDpifB7aHs41Hvjnc1CrU9P3tJ0YncTb9tkRWDd9hxBSYiWx9GM/ajxH+77qOW3VUSE6th1URdCFQ2kuV01XkfHh2QyxPvQbirYhxZ0AzrMrjsdjF1tGvxc3XywWC2fbXBXbOGbuSrIpJnYSq8tCctAiJ332jCbj6LNcNvto0/jCAi1uVWSOWekIxZVCPohUl+RPpeiqWL9Joo3LfS1WgDEH3EidZRns7+87X4Uu7FY5jyUbOKTvLbFGX1sS7xbxwTS6YuKdFsT4gldF3oZieViuCLZtM2wsxtKd94i33noLfud3fkcMptVqNej1evDkyRP4y7/8ywtK+le/+hU8evTIG2yaTqduATfm5cvqqNBkiQ0cp7SDiLlPL/XuAN7PVkOClqOnodFA4wHXmH4qOmlQAaRim5NuW45B6G5KXlZDkXv3pLZx84WksDSHRavb2o+X4YhZUDZdZStKPu9j6I1ZrNKckW0p/stw1vkdplL79HS4lAkA9ZM01y+L532Gos8p0PQs6pXQSfmQPAjpySzLYG9vb2PBktKMePTokbtbrwwnwrdo4gvsScBTrlQ/Yyo/re1utwt5nou2X1nY2dlxd+sCXFzYqgrWu162gSLtSvM+9nk+58qwuaQAS2r9oXvqeQA+tR1OI61rtVpBvV6Hvb29jV30q9UKzs7OYDqdqqfztwUMaKzXa7h58yZ0Oh24ceMGrNfrDV/LmllkG7gqQdNvA3z8Hzs3qrZ7YgJZLwv4AgvydsxdoSHfjI5LjH8v3bedar9rKFpHql7Ati39wReSYmwobvfhnZdWZNmLu2MtZWPpk2gNgfehRkee5+7ubMykINXFeV+7v7bKWFksqpR12oICLjygPU5T3kunrVPbRmiLCbEL/UivxMOYWYeWpW1Q3gB44ZOE6Ma5fXx8DCcnJ/Dqq686n6FWq8H+/j5MJhOYTqfuuyI+WJn84KtLsotD9rzme9K/tfhvbNxEit36aNDqkGihdGMZTff5Fpws8oTXFxP/tCBVplEZX4YNXKQeyT70LUD62uGpw6m/MZ1OnYyo1WrwxhtvwO7uLpydnW20Qa9/kvSIlRYrKB9S/U77gX72XU/C6ePtWMaJ118kJlK2nXeV8W19P/HOWACA3d1duHPnDhwdHUGtVoPFYgF5nsObb74JBwcH0Ov1NgITNO//8fGxOxVLmb/VarkJKKUgCHVyyIGhddDJkKqsfX8XBRUyfKdJiBZah2YI+N7dJ+AkYR0qt63Jge8q9Z2vPH6m0BY2pLKhuouiyoXrIkHY0PtZ5m6o/2OViNWQ/TahLEPEWpfViKBBD998KgNVGBvbXPDV2pTmJ/19Z2dnQ2/iYlsoPVpVwYfUAC/Sy2mW6tPawMAFBsgswUwAm4yg383n8wsLmPV6HVqtluN5eqK0CvD5o+knn+7DwBrA+dUSe3t7btfq119/XckCLNfN9A5CH73W33lb+C82NRa1P4vILmkux75jWXOV1hPSk7FAPkqVl5bgDrftYoMpIdtQCgBq9WCZxWIBs9nMyYOYsYoJaKWCBtLw/Xd2dtw8L2uOF9Xnmq8ijZn0Oz5L5zmvq9PpQKPRgMFgsJE+kT6L9S0Wiw0dgvIgyzKYz+cbadyHw6GT+3QeWHhZW5Qp6pOG2o5tg+pWHkyS3rUK3qZzlgbLyr7XHOvBNiU6Ytuh5YsGbrV6L8O30Wgq8ryvLH9HGizV4hC44QwXhhA8palVduM8D8WSuD6hz1B5ked5pbaiRJfPLuTzyxc/KoOelGdDfFe2fxmip6znsux8cTZm80ZRhGItnA6+kIW2j0S3xUbD8r5rzbgdjRkVa7Waiz9b4lhW2Rurt0K2Y9n+tmbH+8pLMtJCF5UJqbqL1kNpkuqyyEOfrRM797lelp6nZax9QPvWQo+lrKVfNPp9/U3b5zRZaJf0G12Qla6Zw3jP8+fPYTabQafTgU6nAzdv3oTZbAaDwUCkl9ImvbMmV6V35r9bZRV+lniHl9f60DIePt/HQqOPJitibHlLLK0KbMOXvmyoi7G3bt2CP/zDP3R/T6dTWC6X8N5778Hrr7/urfTLL7+E3/zmNxvf1Wo16Pf7G7s2MViYwgRWxDD5tlBkR0RIOEhlrfVyw8rad+h4oGMUixjlyp2HUIq/WFjp1+ou2ygrE1qwS0JsINRSp1bmqs3Pbysk48DHr9q48FM3IePIynNVQQs2bJPvkAbfjnmeGQGdFnpSCxdnZ7OZ23ldNGBmhaXPfLykndDk5TTU63VzUEsLvmnOIjobq9UKxuPxBT3QarVgf3/fpTDF1MVlweJg8HL4WeqT1WoFk8nE/d3v9+H27duws7MDs9kMPvzwwzLIVulF3ux0Oq5/Qydi0RbkgRof8LQB3lmDgdmQ8Y5jjeVw0Tg2EwR1EJHffHzhC5L66I0BLqqUJeNw7Gj9ReqSZBbn4dQ2cJMELrbRXfs8MB+iE+cQBg00YH/z3eK0LiuK2o84F6bTKZycnCTXkwof/dj3dPwxOE3lA93Ayxea6b2QvK39/X3o9/uwXq9hPB67uyTxeQzsYqCI8jTKgnq9DuPxGH71q1/BwcEBPH78GJ4/f+4WgS2n+pFuny5Mne9VBCWwX62ytyofh2/Yws1P3D+sYiEmJoBpAbe1i9rAlkBkjM66qj4qB857KTUqzmnMttRqtS7EBjR9bJH/tH3Oc3meX1hcwmsf6DO+zRg+2yTW/6b0hsaX2ru1Wm0jk4pWbywdMfD5pVeVTyX5YJFLqH9ww2eZfmhIDlj7Em13TA08m82g0WhAq9W6sMGL6zmpbWpjY9n1eu1SmdJyOOYnJydQq9Xgtddeg52dnQ3f8SrGdMsEXzT08RXnw9R+4b5kSqZBrqNDi4YUfLGNPifJb8tc87XFY9VSXKAq+BbvLH4D92NibBUtZhCyK/Afznf0lfGQHp2ftVoNms0mzOdzWK1W8NVXX0Gr1YLf/d3fhX6/DwcHB3B8fBz0q1IR6jcAUMdeqwffPaY9qX3aNs2KEBObt6BK+fgy2Y8vE1QrbLlcwmg0cn9/73vfg6OjI9jf33cDMZ/P4cmTJzAajeCVV15xZT/55JONurrdrnOAkUmWy+WF3ckaLAuPHLEKW1NmZTA1N9jKqj9WAXMF6XPwJIROuOD48pRzsYs9Vviet9TNHTdLuZg6i9RTBFogwGcocx7l4+YL7nJFLdGAnyV+KGJIWg0RqwIpatRK7YbaKqNuTZFLhpvFQLb0F6/LZ2RyGmP62SqTfXJ2W3NPekfNIcD/LUHb9Xq9cUJLqmvb0NqV7iyk76KlrfLJJwo8seTjf41e32lu/g67u7vQbDa9tkSZd8f6rinQaJD4nPb90dER3L17F27evGleyC5qZ1UtZ4vwOw34xwSviyK1DkmGSEGPMtqxBDg0ecX1DAAEbXuNByQ5HmurpiLLzhcH6T2sAOcLQ81mc2PxH09NAvjTzWvtxHxPgX1cr9eh2+3CD3/4Q/f9dDqF6XS6sXmHyuPY4E0stqmLttGWZT5YyvnKSvyPZfm44T/rJuZvCzQbsmp5oPks/NQlf4bSqNXryxISG+Cj9jqlOWSPV8VDqTpJCgBbMZ1O3TtbYkaWoK0PyAO4QYTzSoh2y++x8SJ8xje2mk7Nsov3pVvsct88jOExX7+F7IhU39Jap1ZGmnO07Tx/sVCRZS82BGn1xdKtxW+4PJDa4XRLNhbe1wpw7nft7e1Bt9uFp0+fwmQygeVy6WyMPN/ctMfjQbjIa03NvF6v4eTkxD2Li8DYp3TzJO+PsqDFRayxNA0hn4n2mzUWg31L7W9L277fLLpMi/Xhbz77hctpiTYtG4nmh9A6tHY0SLSl2hwarb7xlO6ZpllbYnwm6d3o7753sdiqoZiIxg8A51ls7t2753zxs7MzGI/HXp3v04Wh+aT9bv2e1ynpew3a3EZ5SRe46fvH2k1V28K0Lf657La1ORJrT6TSVaVtrCG4GIsEvfnmm/Bbv/VbAPCi4zGd02q1gldeecV93+12XT1Zdn46AlNN0Pp9KbQoo1fdKdtiKKuh7hOEIUHrq1MSJryOkIPCT45wgUiDnHmeq7uaLDT7oNEfQqj/Qn1cJi+WxW9c0aX0C4U05/C7UHqdFP5M6YdYJzXkzJXRXgxfhwxbaz1SOU1mxoxBLH2xfehz3ml5Sx9o8zI2CFAEVgOSfm91DADODdzJZLI1gysEH+08XRxCcvxjkee5W4zV6vfRrN2nxlGr1dyJZF+5Ku4+jXH2pPeld5bdvHkT3n///WiHwQqrDNAclxQ5HkMr1438RGwqrDKe85llzkvlQnKXvp+VPitN1rI4NjQFdMhh9QW1aKDNEjgoA1l2HlzHU/jj8RgAztN893o9V6bf78NyuYSTkxPI8xxarZZYXyhAZwngUblG+7Ver0On04F3330XdnZ24MmTJ3B6erqR0o+ffLoq+gNR1AdAVOkjlm27hiAFO+iJUUl34fzYdgChLMTafdbgalng8w8/azKK/maxdfl3vmCURJelH6RgbBFYaCli5/ENUyEZOZvNvLRYwGNOoblPs3KgzWXhXWvANcVm9skBqqOxLOULzBCCfYl1hfSUjz6LjuN1aXXw95B+u0o6Ls8vZgQqK6OOFF+U+toa+5Ds1Z2dHWg2m7BYLGA+n0O/34e7d+/CcDiEyWTiMkXgO0npSpFWunDL6dXe7/T0FLLsfIMcvSpiW7rOJzOLyDZet2+OxMRy+LwIxQYtdXL7k9ZHZZM0D2ncmMpImrXA9868Xsu4F4kv8DakfivKdz5fQOIDyu+W8YuxBUI0+Wj0laHZqaRnMWUxrgMtFguYTqfiiWyJ9yw0aM8DgGibxcYitHLWvuR3LdM54quzKtkXq6cpLPKFtlOE/pj+jqHLWmdVuLAY2+124e2333aBB47VagXL5RIePXoEk8lkQ/n++te/hg8++AC++eabC8/E4mV1KhFWgRg74a1BfE6LJNx9ZSzgR/15mrayx1AKSJUNq+FqwbaDI2UYDNq4SUYRfUZKy4Z1lXlv1lVBqpDfJsrmPTScre8cazSlwOq8SGUuY376TidaHGjcIUx3S14mfO1To1JKC6MFlDWs12vnzPvkCg+oAYALmElyDP/G1GHT6dSdiG02m7C3t+d2h3c6Hdjb24PFYmFKu5wK6gyGdF2MDfHRRx/Bs2fP3MJ+im0WAx5AscBaljvz1AaJ1YV4YqGoPEJHFHVizAlcWofvTttYlBFAKut5BJ/r0m50KQgUC+k5HmjRAj8S2u02ZFkGT548cZtCUoIf/Lcy7U6tjcuwVaR342PK5TKVefx5GsCgp2UAwKVQrNfr0Gw2YTqdwnq9drKfB4hCung0GrlUa1TOhDbobBtlBDZQtxbdXBQbCMW+XC6X0Ol0oN/vu1Pojx8/htFoZD5JVYTeogFcKrsk2Z1av5aR6CrYfinwLTz43okG/TU/U5Nx25yruGmCLzhZAp1FeMX3DL1GylovTVGL9Vv9KgB5wUn6XQO1TfkJy9DiTVFwHrPaT9pvtN/X67Xz3+gzRQLg+JkufKbYnbQutF8pjfT3e/fuwdHRkXufhw8fOl3LNw5RaBssLLTWajVot9uu/qso/1JoSuEBiSe1uVYGDVSfafOPbjKgWRKpP+6ThVimzGxT/B3ob8jf9HocrS6LHy61p9Hh03OUJm77liHnpPnsq9OiW3x+Ftp3n332GfR6PXjjjTcubEg5PDyEbrcL9+/fh8lkIqbO5/KuiIyjhxxCY0GfkWJLqXF3LMuvYEi1YSR7qiio3VCWvI2xI75L2OD4Wq0GnU4H7t696yYDTXMFAO5OruPjY2eo4XcPHz6En//85xsNlCVcQ4gRUkWDJ7E0afX6JrGvnO9d+XOS4NAEp1RvaILzgAp9TrsHTHs3H7hxmFIHR+i5soKgqUKSByN9Y1S2sy7xjI9uyUjztX8VglllBEBT37GIE2aFZd7H1pdilFIaKF1l8UBqH6Y4LTHg8zfUFp9DKPNof6NhWzZ9oXKUJg4pAMONZU1vxNKb53kwGI5laOpQXGjji4N0XHCX93K5dM5CvV6HXq/nHMt6vQ7tdtsFVKypf32gxm6sXLAEtSidjx49gocPH7o2qg6+V3VymDvU+L3moEmBCko78ou0ycEagMP6VquVejrcUg/9LoYWSgP9OxVlykWfrNFkBP89VD/A5kYMnxMp8YFPr+FvzWYT6vW624yaYmdpgbQy7E1NP5eh/1Npwvbp3xSS76DxMJ2veFckAv+mp9VoPZgmkV6j4qN5Pp/DZDKBRqPhNuNY5qNVXlhRxbhJvkWRBQJeV4xfh3IbrwbY3d2FTqcDz58/39DFse/lo5OXL9LHIb+naP0cV8F3kpBCV6zM43I+pk1tnCx6R+IbKQbBbUo+L7T2QjwT8r2lZ/hvobro92hj0/vtpGe5vyLVR989xvejthi302gd1jqtOrZo3EaiDb/TUq4WBeW1Ij46rUuLK63Xa9jb2wOAFxmbHjx44Pwj/D6mLcvCSpZlbrGX+8A+vvTVh8+WIaOL2vuh333xCm5DVxXb0OiWYheUB6gvrs2rsmgNxeQk/8DHAxbZqckgaZ6H7E7J7wu1b0Vonmj8Y9FZPpt9vV7Ds2fPYDabwb1791wZfM9utwvtdhseP3688f5l+bISuH6y6nufvqX1WuxQzY5IRYx+1SDZL9a+L9vWtSBF9l9FbCzG/uQnP3H3JSHeffddeP/99+Hw8NBd1szxxRdfwJ//+Z/DycnJxvedTsel+8rz8/SCVsVXpEOLMqJFWPrgC/5Yng8Fpyh8F1Fjm6H7ULPs4sIpF0zcOKegARGpLgk+h2Dbk6ksI75s+BydIo6CBul0a2x7VIDzdAtlLFx8m1FGMJYidMdzbN2+MZeMUAlS4NXStlSnZNhb6tumsZC6gzfLMjg4OHDpmdDRRVlrlbOhNsoE1Tc06JCaFpa+Iy5whcBTv0inapAmbAMXWKRF3jw/X8B9/vw5PH36FKbTafR7SO+FwDuZcCGB61fr7s8sy6Ddbl/gifF4DI8ePYLbt29Dv993th2moysDIXvHilgeWa/XMBqNNhZfQsDUrr1eD3q9HpycnMB4PDYH/EOOewh8c0VR5wXrKiP1XRE7h/M0n2O8nSKgC92YdhrrrdVq0Gg0oN/vQ57n8OTJk1I2BOApyd/7vd+DV199Fd577z04Pj6G//N//g/MZjOYzWbQbDah0+mUemreOib1eh3u3LkDi8UCHjx4AFl2nkpZkimpdFwVXGVnG30k1F1UXnBwnxD7mD5PfS5fIDMWVffhZQRlsN0q66GLBwCbY1UFaDpH6VQZ7eeq70+MhaV9Pjf4wp21Dh5kD7XPF2Ji6QR4oXt8GTWkuzRDtBWFz49H8CAr1ROoQzm47xbi+bLmIvZdWel9ywLnO/q9D1JZHgCPnTsoG3CxGmWSdC+1ld/n87mzrfGZhw8fwvHxMbzxxhvQ7/c3nlmv1zCfzy+cYOX1UpnGY4rYp/gO2C5mm6mCB66yPUFhHTssQw9Q0d+Qv1JlkBZn9i0g4m/SmHNIdG8bml73nQQtCkn3baMPLOsNWozPZ9dK9U0mE/inf/onaLVasLu7C/1+Hw4ODlzWmtdffx1msxl8+eWX7rAfTW1OIW3EjoVEq2X9hy9UlrWR0QrezmWtUVyjPGxENw8PD2G9XsN0OoV2uw39fh9u3rzpdjLgjqT5fO7+AQAMBgP44osvLjATGgYovPiiXYgJQ45nrOGtoazFAevzUlnLYgZvl5Yp4pRbDXepDcsCCS+bOlbWBZ/YekNliwq5yw5KWIV9arCHOsExTolvPEMK0VfXZSmlsgJj1np8MqKqPuAyJ2a+poAagZqTWlRml4UyeJC+a71eh3q9DrPZTExb46ujyjnAAwf4mf8uyftY491Xv0ST9Dx1QKX2qZ2CC8f4GYNU8/kcBoNBaY6YJjO5oyz1ndY+BjBo0Ha5XMJsNnMLVdRRL4NHpDmZUq/FNsDfaT/QO4ik+iRdjqebe70ejMfjjbvmfLAGifl48vLWYFsouBzTzzGOdojPpAUBnw6TApax9OLf9GQM/Y2ON95zlioHMYhI20G50Ov14MaNG9BsNjcyBmHbtVpt4/S9tX2fvcN5Gd8R0/RiO+12G2q1mkuz3mq1LlwdUhTb0KPfFvj6PWQ3+XinDHlQFiTepN+n1BfjH8a2U4RvLX5wmWMQqtNqS5VBG9e7RevT6qb1W57j4PrSanta2vUtNljqj6071RfX6veVxb6iixA7OzsbOsTXflmySGojtOhbtU8n2echWmJiZhIsNqI0fvQEYtH4JLersiyD2WzmUvejnQUA0Gq1IM9zl8mAn14OyaMQvTxFq9VGLSseIsmRGD9Aq0NrJzauUqYsjiknvWOKnR8b70sta7GdNF+0iO0RE9ukPB9Tv/RuPj7z8a+Fx6z6lbazWq1gMBi4TRutVsvFWPI8h06nA41GY+MZi270wSKTtWe09orqHI2mMuzn2N8tNoMvfqbVd1k+oiarNZpS4wRFILV54ajJYDCAf/zHf4Sf/OQn8B//43+EVqu1UcE333wDp6en8Nlnn7kg1qNHj8QG8Q62WJRpyKUihQarc5QCulMMjeYQHSFDAY1uCqlenyGOAagQpHqtfVzmCT+Olz2oZFGIHOhohU6sIa/RMjy4R0+r+doO0RX7DtewAR2kKurdZiAM4TMgUZ6F5GPZ4MZzGY4f3teEC4IxfXdZ84e3y2WF5fQIX9wAOD/FmXJvXJ7nsFgsIMvOT7/ShRxpTgyHQ3cKOcsyeP78OeR5Djdv3nRlptPpRoaPVNBAF25qo3Tz3cwh5HnuFl3xLksfMJjybcpWgDIJnTvUTVbniwaz8CQSpja1zj+8exZgUz9Op1PIc9sJVgxm0RMJRQPpVQfQywIP2lEbhAdMcK7G6hXNsUbdMRgM3GZUtG9986ler8Pu7q56LUeIFpSNkr0l0YkZh549ewbj8dil0t02LsOJvcYmeED7ZQPyNGY2wI3gVx3cJ+UbzVNAFxIptOCwD5INzAO2ZQe6Y2HRSfS+U/5s1fweo/dRfiMf4Ek+LZuLb9HR4ltp93n6oMV28HQvbiTK8xwODw9dBhGM9wHE9QkF5ztfjIqeqKzX63Dz5k3I8/xC5r1UWlLo9oHPz9BiC44v7wteRxnvV9Ypw0aj4TYGL5dLaLVasLe3B7/927/taHz69KnjE2x7Z2fnwl3ti8Viw76ldjradBx4opLeEX8ZkBaFyliYscq3kNxLictUAT72lgxhsT5Kat/zZ1JOu6Ys7BXRVz67wNcmf5bLoKJ0+RYR8TstOwTA+XrTeDyGTqcDrVZrY72JwkIj9a2LxACttsVVmGcUfCxS1p587/4y+heIbbxXjE0qlduwFE9OTtzkyPMc+v2+E1TD4RAmkwkcHx/DYDCA2WwGk8kEzs7O4Pj42BFCBZsk4HwLltLLhVBkQhSdTNbBtQpNrSwaZqHFrlhlYpm0oXcpIrQs9FYpAK6aMPWBT/QUQcuN/tBCbOg3X6BYUspF+EBDGWNoXQiOmdchbEuxWd7NN6ctRmBKYCTUlz7+sQQgfWWs422Fxgcpi4f4Pw3M80Um3/MxbVocO993If2hBRw0WJ21kD7lhjgNnPLFGyxLT8HiYhjtbyyDgSLrO/mAz+OCH+3PUN/j31ym09R5eFIO06jOZjO3uCTVVxZSA6UhenidtVrN3ecLABuBnFD73W4Xbt++7RbWB4PBxmlIKmuKBB99Mteqa6R0b1VAsjFi313SJRbbVXoWv7PYDTzAi59pqj76vc8Pof0dorvRaIhyycrLPjp8eqVWq22cjI1BWfN+mzYMDyJJ/bdardwGYC5TaV3S3Oa6F3/nG1b4nJDmiOb3av5V6niU2f8ptgOloWhgj849DPTv7u7CZDJxm9FSfJ4QrHX5bMYY/z4FKTGUWF1aBl1WaHNGo0uTlUV5ln5npTVkg6LM8J0mtcY9eFtlxX98sghRq9VcBpHFYgH9fh9ms5n5mg5pbHx+Av4uxRbwnlBuH1tiZ1VAeo+QbR4TeymLvtRFJsmvkMplWeZ8jTt37kCWZfDgwQPnh/jsPo2ned9a7GTL+1lkhUW/SHqvLD/Qihhda9EdVrpi+sVCi6X9mNhKDA3WfvDFO3x0aXJfeidfDCtFToRkkUZXFfDF4RaLhfO18Joo3JSHG9XxwB+/ugPp1uouKl9j7NuQf6rxRFl9HqNrtedjy6TE87aln7U2q26/6HhuLMb+9Kc/vRDIRPzyl7+Ezz77zCn39XoNg8EA/uqv/sqd7Gg0Gs54q+I0FiJmQlw2itLF707wIaQk6O/aiZiyHfwyhGIViiKGLqpEy6bFWqdPYVue5Sn36Bznu3d9bdHdR1q5UGq8bQpIbGNbgcMYFDWStN8sd2vG9Im2u9bnaJUZhNICNDxoqukuTHsC8CLVfhk0Yp1l3g+o0bRardwmqbJkd5HAqZYqNMYxtjobdEHURxOWwYXVLMs2dlquVit3QhHpAAC3SImLcfRuVcRisYDRaFS6LFkulzAej6HZbG6c3rUusiA/cJr6/T68/fbbMBqN4NGjR9BsNmG5XMLOzo4Lclcpe7chc7vdLrz++uswHA7h2bNnG3dWhU78fv/734d//a//NXzwwQfw5ZdfwgcffODujsUgkwbK5z5dGQpEWRb81uu1m/caqpz3KQEBlIdaH1A5XdbJ7Hq97k6H4qnvLDs/EY/jieNWVoruWq0Gh4eHMBgM4OzsDGq1GjSbTS/vXOMFkD+kLADS/d0AL06cId/QE8Gj0Qgmk4nT73QhFeUR6gbKA1wf4P94TYD0mxRkovRKJyX5XKLz4yr4r5y2y6LplVdegffffx8AAPb29uDTTz+FyWTi5nIVCL0rlR1WUBlX1lhL9VSZ3eKq+k4URfozZaFTWwjM89yd9sOrRWj9Vvs4lU+orONp9rU2LAsMe3t78P7778M333wDv/nNb0T7vwiwX/B0LuoELkMxUA/wws5Pze5S1iKatuiCv4fkaNlzi8doUjZrUZryfDOzFtXVq9UKfvWrX0Gv14N//s//OTx9+hSOj4/h+PgYHj9+DK1WKzljB9KMftxVuy94G6hi8Yb63jEyKVQnpS80JxCh+WGhsQydyuunNNF7tMuE1B9SnFnrH+5bhRYEeVv8d80u1dq1XgtEn6NxydVqBcfHx9DtdqHf78NkMnGxmUajAffu3YPpdApffPGF22RJM0WFwGXGNjYz035LyZJXlS9wGbZ8lWsm31ZsRO1XqxXs7e3Bb/3Wb8Gbb74Jjx8/dr9hCj8s9+jRIzg7O9twemnqU18gqooFrbKRMjFi3iukXOjfFqFrpTe0OCY5HrGw0mB1TCTHx4oYQRRa8CyycFY2QkqWIqTYtTroO2ntaZ9DdBVxEGKfDwXFi9RRpF6f0WNFqI99hrElEEHLWdr3tWeBZBxqxij+HwqkIKSUlr66U1CGDKjX6+7kU56/uLvUOl5lIGV+FpWzWvuUj/FzqC0ebKcnFUJzgvb1eDyGJ0+ewHA4LK3/sa/m8/lG2i2JPi5fLboVFzJmsxns7OzA/v4+NBoN8XTBywCuf+l4ot3ps2voZoxms+lSImHqNX5SWJJB0t8WSDKnCl3CYbWxNGc8pm3t/Sx2U6heKWCjLdRlWebG1BegDQV/lsslzOdzGI/HsFgsXJotAHCyuNfrufvRKH1lzinN7qcbitbrNTx+/NhlLRqNRq485b2iwaoY284Cy/M+u00LZlE5L/kyVQS/se7YZ6S/NZkTM5fKDq6WXX8IGLijizNVIMX/9MmOKuZ+qk1VFj0W3yBlfKzzP5YXeSCb9mMRm1YbD5Q5+HvRoD1tR+O9GNlptRlpebqoi5vbqE7d2dm58J4WfrWMJd3AQNPb4rUeq9VqY3FQGlcfLUX0AQ8uF7GZJBqKxDjoM3Szkc8/tsoIOm4ok0ejERwfH0O/34d2uw31eh36/T6888478ODBAxiPx85O0RZCpLHTZK01BsFtA8ucCcVENdpDKNtfj3mXVNs9VD+F5S5nqa6Qripqp1meD+lxa/uxejZGJsXGVCS+5+1Y38vns0r1pMiqLMvcBnn8u9frQaPR8Pr1dIw0/0ai16fLNRmgPcPjMhKNFhSxJ2Psc5/uCj1vkY+aT+Prp6r8iNC4XlVcOEL16quvwn/6T/8JTk5O4Be/+IV7sdPTU1dmPp/Dz372MxiPx9Dtdt0l7svlMpjTv4zOsTLVywhuPPH+suy4oAIjJDSqYtwygj9l0bONCZnSRhXBIYR1t2jIMULHS0qVmBJsvSrzNdVILxOh+mMNQwQaEWWd0Ikx7MsYX6sRQgMH0u/0c56Xd3euz7kto85utwuNRgNGo9HGia5vC5CvYxxaCgtf00U2ALhwb5Gvvfl87sZjNpvBs2fPgs/FADetjcfjC7/xrAW+QL2ELDtfkFqtVvD06VO4desWvP766+rzVeqgMsHnOd5d5QPqr3a77Z7vdDpwcHCQdC9hSqANUzEBvLDHiizcFIFmU5UpszWZXEa9+D9uLMC+pTzc6/Xc2MbqPzx5M5lMXErGPM9dKmK8x3s2m8H3vvc96Ha7ld+5LM1/TMOLffDLX/4S2u22W5AFeLFgG3vfeIiGa5QLKbCE39NUj5Kt7QtkXwWEZF0qX5Xl+8fKYgTXzyjziqST532RkmKU17eNGMk2fCT6LpZrOvhc0QK2ZdAGsHlaPyXrQijWkWozaLpJ833pYhvKn+FwCM1mE/r9vitXq9WcjVnmiSOeshJpzfPzU7O7u7swn89hMBiY3kdC0XiXFnROBb4fvq+Fz33AzWLNZtONY1m8lefn6UPr9To8ffoUTk5O4L333nO/Hx4ewp/8yZ/Ahx9+CMPh0J2URZ7iddFNDKE5GrpzVHqPl8W3AdgurVY/MvQMl3USz3L+sy4+hRZyJb/AV38MrHM81jeXUGb83TdmMe2EFjYBLm52R1/Lyseoa5bLpZPnWZbB/v7+hXJlyC9uD/n4EFGEl2J1kfUZK6RxSLV3r2FHETm+sRj7k5/8BG7fvg3ffPONS2M3n8/dCY71eg1fffWVOxGLJw6sk69MaIKGtqUJ6BgH0aKUioIvHmgBsxhBF/ouVJflPbUTCiG6LIstZSvZMgWftvNEK1PF4o2vLSlwg+Vo2ZDj6DtxJDl6PiWXYgCmIFYJhow+bVx98od+F/tOUr2cRv5Z23zhqzv0fZEgc8xctS680r+tMhADJNhHdFHE127M3NXGJmXc8Rl6l8ZVMZ5CAZ7QcwAX+yrUzzh+OHaW4OT+/j50Oh23I3s6nQbTG2Pb1lMNqXPbx7vozKCTIi3IFrFzzs7OYDgcwng8dm1VvZAU208WZ0EKAPb7fdjd3YVvvvkGptOpC4rScrVaDTqdzoW0af1+H46Ojtz3KC/oQl7KHOS8TlO9h+wH5PdQun+t3VSakT8tMjlkQ0u8SuevxssWJ9ny22g0gvl8fiGjQIyzVLXs5XoJAFwqLj7/Q/pKko1XRXcApC0oSPrBVwdNTZ9lmVtMp6etJJuK21D4Oy5o0xTYeZ47nYInpuk/q32CiPFLqgzWboNXNF8iy15ssBgOhzAajWA0GkGr1YLDw0N4++23YTwewzfffOPuKJTqLfMdkK4YeYGLSGi/SbbPZc3JVJulDKS+t0Yr1oUnNumGJ4AXCzd8foeC1TG+k4+2lBSFUhu0jpDNEIpbAcCGLe3za9brNZyenjq5t7e3B/1+f+PKD6wPy2s6VpvzvnemQJnQbrfh6OgIAAAODg7g+Pj4wiZJ2q6V34oETwH0xSEA8NrZoTZT5kwolkNthFSZiToRMzd9/fXXMJlM4Ec/+pGTfzj3aBur1eqCbcNjmr7xC9mF3FawxGQsuraoLWytM4UHLfX46AvZlKG66D2e9HftvmCqAzX7S4OPlir0vwRLXEj73UKbZiNo/ePTQZb2+RhZNjpJ7VtoC+lP5Imzs7ONq6QODg7cBhyUIyEbm9qHkq6xjk3ZtpKFz308ZolZxvBljI7UaIopUwYtsYjxr8pAkfo3FmP/6I/+CAAAPv/8c/cSdCfaer2Gzz77DJ48eQK9Xs8ZZ6HATJngDB2jpMtGWe9mceCtBn6RQEDMZKcGFxXiZfS3b5KWYfikwtI/2wYPbkp3YfEAE35HnQTJmQottkvKoshOWU1wliW0Y3jH56ymGLf0eQv4uEo0cWc4dJeolX+LGFkWpChr/DtkDNDfeYo72k9FjQpajs+TIo5VlmWwWCxchonLkisUdB7i6TG6eFh2O1SWodOvnYLk4354eAh37tyBk5MTd3+glq2Dy0B6p4nm3BcZD99iL+5ox5RflhNtfD74yh8fH8OjR49c4DJ1IxVvqyz+tPKRdAfW/v4+3Lp1C8bjMTx69MjxDeUZPFnBZeT+/j7kee7uI+R3RCJiHBdcqKFAmYM0aboOnVLLZgyLDMNyFrtRsgc0xC7kU36xOkipej/PcxgMBm7RrKhs5nVbYdW7dKwbjcaFzRjfFmh8GBMMsdi2rVYLarUazGazjeCgZs9ogQy8l7DRaLiNx3meuxSMNL055etYH6zqAME2kWoPNhoNmM/nMBqNYDAYbCzAHB0dwXA4hPv374uLsVWBB0dD49RoNKDZbEKeb2bXoPXFAOcLD15LdaXwXtVI4QVL8BSBJzT5iWTsL8onvO8kPaTNRUu8CeG7CiLGD6Oy0hdIt+pIKVbjo+H4+Bh2dnag1+u5e/1oNhH6jvyEo9aHGq2cz/lzZ2dnsF6vHQ3dbheyLIOnT59emJ9SPETrG6SJ93OKfSKVQR+JX4OhLWpQ4GZCSc9ptPDYHP0NbQq6mJEyP/EUONb/5ZdfwmAwgNlsBq1Wy2VJpECew/Sj1MaV6MbfpPGw8rwmNzVw/o2x98uIiZQFjc8ppLiaVpcvzou8RBfgcbNsaAOCRaZq8xNhuYqkCK9rdSJidK30DlJ9nJ98vK5lz+Djq5Wx0m/Ri6HvfXOE0nl6eurobbVa8L3vfQ8mk8nGYqzvnnD6G/KjJEPp+3NZo+lWiy9u1d8SLPEeX3lJF4Z0V+y8sMyBlHmSSk9sXUXmcNW4kKYY4JzgxWIBk8kEvvzyS/j888/d97PZbCPtG37vuxuA112kA0LCTCsbwrYHBQWpj5nLDCKFECMwQvf4FBUqqfV+V5HaL1K6LV4vN4x95coen5cxUGXpA987SQ6lBGqISQ4s7buiQRGJRmvZqkDfW5Ohs9ksuFHEZ7Bq7UkbHorAZ9RetszD9/TJfOv8l3S3by7g2FntCh/oqanVahW8TgHrjAl2WcYKbaterwc/+MEP3J0pz58/h5OTE++zvsAwbxvrffjwIZycnMB4PDbbaFcdu7u78Md//MfQ7/dhf38fFosFzGYz7zPz+Rzu378Pb731FvzBH/wB3Lp1K+k+Qi3Qap2nRdNPaigi42OCulbw4KoUgEzR7RhQzPN8oy8x8DkcDk0prK3A+lHm/+Y3v4HhcOjSNt6+fRuyLIPj4+MLNOHz28BisYCvvvoKZrOZWzgs65qCa8RDsyt8AR4tYPey2cBlAVNtzufzje/LkqEhe49C0rdljkuKPUntLhp0Liv4bKWhrH5IjXfggkAZNFWVLSRWv/J3iAmc88+hBQnalrTwguj1enD37l0X8D4+PobZbGZKzUz1qOUd8jzfuI5AKkPjEtoGDSk4LfnLtExZwI2rdAHTugAWSw+3s6Sxx+tREGUF5IfDIfzP//k/4dVXX4U//MM/hIODA/jxj38M0+kUZrMZfPDBB/Dw4UNXnp7QLgtcFhbFNmXotmHtIyuv4iYN6oNJC+3S8/hb2f5H1eC8VoRfNL3H9Zq0Qdsai9PitrQOrkN98Ro+drjZg/o9MfNQonu5XMLDhw9d6vrQNRAoU/gmAZrBBmnWroLyIWbOxG52LwNSn4fGocw45jWKYWMxlgYw5vM5DIdDePToEXz22Wfue7xgGeDFAOIEsKAKw12q38pcmsEbqj8GXJBpOy/4M1xIp0yckBK00G2p0/eMFIjz1Z8iyC07NC4DV2ERnSpIzfHI81x0aHzBJAsdmuMTA8szRTYHhJ4vUm8qQgs/PNgtPRta2L1qitgql2hZ33stFosNvYRpkvA5rR1ts4FGg/R9kXm/7YCaBJ9TwBEbGI2RFTELChrNaKTv7Ow426WKk8ehMaP2UrPZhDfeeMPZWdPp1C3GWoznkD2wXq9hPp+7RdhGo7Fx8jfmnYrCMq9jxqHT6cCPf/xj2N3dhTw/P8Vx//59tXyWnZ9IPT09hR/84Afw/vvvm9rkzjZ/h1j5WeW8DumBIvVQpNIvBRF8p1Z89hy/gxd/wztdedpKCz2+cjSI/PjxY7dTu9PpwP7+vrvShdKu9ZP0Xj5fQLLTJBrn8zk8e/YM8vx8RzkNXHxXF/MuA5aAO5cb3F6InWPbthNiF8okhPQknjzmGQ5Qbmj302l1W+SaVM5ny0m/ldE3VnC/jl7JUZQnygrYV9U+l5GhE5BYTvJlpfgMLePzf7lsttpuVr/dZ+eF5hD+bjlJrtkKtB5MG47fHR8fO9vS8k4xfjjGI3Z2drzZRGgKes1m8PU7votPbqf6cxiQx1PyVvs71jfln2kZeugjVmZaMZ1O4YMPPoDBYAC///u/D71eD9566y0AOLfVvvjiC7cYK8UurP2r2c9YV2g+aH3ns+nLirnG1uFDil1vgYX/JX5rNBqQ5+eb36XxtehlzWb2/W7thxh7ICRDtN/K8Is4f1vvH/eNDf6u+RdaGSkrk09Oog7m1/tY5o/222q1gtPT0424jebXUVlCs6dY/XWrzR6imZbFsZTarSr2ynmI0yDRWYQGS19WJa9CiLVJLttP3rAO/vt//+/uM94NMBqNxAdpuriYwEaZwb2ikCZq1bAoDt/7lbmrLLYfuXLQJmIMg8c4JRp8gbsqUBYfl4mQM+HjK58joz1jvX8zFZfVv1d9XH0GWhkyIeb9Y5xry+8WxcmNc/67dBKWn2RdLpculWkMsE0etKnCoCpDLlYB1Ps0+BeCxRiT3jnm3Q4ODuDOnTvQbrchyzJ44403oFarwf/9v/8X5vM5dDodyPMcJpNJKSdtU4Ku8/kcWq0W/N7v/R40m00YDAYXaMFUhwCwkb40dO9tkb5LQVVyX0Oz2YSdnZ2NU1LT6RQePXp04eRUs9mEZrPpHMNWq+VOJyCGwyGcnZ1deBZhnX/Sd3yx0CdntE0OeZ67DQMxfZ1KtxVc5pXlaEn3THE5W8ZJT+vJJ9QTVQDHc71eu/mOm1wfP34M0+nUpfTDd8dFKUwDl2WZC4J//PHHLghR1smuq2jjXuPlB/IUlZG4cQjnw6effgoPHz6E3/3d34W7d++W0m5VASFqt9TrdZdCdT6fw2QyiZZZWJclRX3ohLDkh0s2sy9QZ6W5jH7V9BzXqQCb/VOv16FWq124woDeTYn9xekN9TEtZ9Wtsfo1pe+o/vUFyAFe9AMubvoWtPB3TLc9GAxgb28PAM5t7E6nA48fP97I4qItYGl0U17kCzdIL7cDVqsVPH/+HPb29qDb7cLdu3eh3+/D559/Dk+ePBE3bmwTsfawb/GJ9k/M1RHWdnk7KUB7Gu+JpbZHrVaDTqcDi8Viw77GeZo6RmjjILj/qc3p74It43tHa5witOgoPY8LZvV6HXq9nrvHG68aoM9TWrT5EhMPkiD5J7Fj79OJmn5KnZucXuoH8Wu18IQnnpClJ0Cl+orwPa03dBpV+pzSHsAL/wzfEXX/YrFwPg+W9y3MhjbpYF+WdTqf87ekC7cVL/kuyLsQXsY+2FiM/eqrr7yFqeFkcRb4RL0qC7GcDp8hy4NO9DdfmVDbZbyHZdEzpR3Loh1vO8QLUv0hZcy/s/adj54UY3Tbge4Y2vBduVLmCAXzJRr4Z0mxVCn0isyVVEMu9C6aMWapO5YO7mj76NPmWApSgzMxCwGSExUDKXCPOonLF0xHSoMzqYsb1v5PqRu/i5n7VYPLXulurlRYgmLWIEen04Hbt287Huj3+85wx0CBZYHF4sjH9jtdTMqyDG7cuAE7Oztwenrq7oqlzgMGzWKDO9r3V9kotQYIsF/ou2Aq5vl87u4HxXK0D+kdnOjEYmrj6XTqTjZKJ4u0oJmPfv48hyTPpXp898/5aPHZVam61BL0sj4fqiNFN9B3D9l+IViDy3l+vmDOF/rxGXxvXz/hvYfdbhdarRY8fvwYVquVu8OY638KtPfOzs5Kd/Svgsyw2vH873q9DvV6HVqtFuzs7MBkMrlQX6zu4kFya1n6XeidiuJlCkDwPqB30A8GAzg9PYW33noL9vf3YT6fb5yO475nlX0aAqcFeS/PX1yTkXJC3WJ3+nxZS2wghiaLLIyFphd8Phb3Qal9gDzET+dwxOqvmPK+MtZ4B7eLNbkj+eAWXkBfiMcE6HN4+ny5XDo7CRfZkL+tSPFNJTt8Npu5Kwjw7thHjx5tvJdV75aB0JzA79EPwWdi5qMWY/TpIpwXVtvaAl6WyjS0r9frNUwmE3cCWIs5SWNjtRH559jYIC0TGoei/LNNnVTWu/hkiVYPLrjX63W3uXA2m234a3xjTMj+l/jDR3NZsMzPorG1WLuTPptlL64fKRrD8sVfqJ7gdjOvx9K2VebRdunzmCnFKuPz/OKd1BotZel3XsZn2/jGhMPnS2jPcD6OHbcisIy5hiJxCqmeGFhs7iphzltHU4ZIuctD8BmLRfGyOKCxQCeDvh/faVukP6UJK9WFd4TwxVju9Gxzwl81FOXrmGAPB1U4Ur2huSrtRJWe42N+1ZDihJUhtLXvfM+HjJPQYkwZp/toeyF6ypjPVSg7zrcAcCEAtre3B1mWwcnJyYV+owEdS5CVPu/b/IBjGNq05HufVBRxsjlwcavX60Ge5+4ECz3tJznEVufJ0jeWOf3qq6/Cn/zJn8Djx4/h+fPn0Gg0gvfC0rGn9IdoscLCUycnJ/DVV1+Z7rBFnqII9Qs6xxY9YIXPASqbf7Vg02q1gl6vB9///vfhgw8+gL/4i7+AWq3mFro1TCYTePToEbRaLTg6OoL/8T/+B/zTP/0TAADs7e1dSLUktV0GrKfKfZAc9TLok+ooeuJSSi2MbeW57S65EFA+bQuz2Qw++eQTODs7c/JwPp+7zQBIEwLfe7VaQaPRgE6nsxU7OWVeVuGnxYDOfylohLKQ6iHMevDmm2/C4eEhrNdrODk5gb/9278FgHNZSDe/4OYNX9AC+ZMHg7T5JgUwATb9NurXlTVny4TVL6wKOH/+8R//ET766CPY39+HPM/dyUd+B2OZfajxQgq63S6sViu3WQIXKcrWw1Xdc0rh8y+L1CnJxxCvZdn5ovdyuYTFYgG7u7suG8Z6vRYzjvD6ebA31J5k26YEcX0LDRLvxcw7Hui1+DMIX9knT57An//5n8P+/j7cvHkTZrOZGAOUTmrzeummwxSMx2P4/PPP4datW3D37t0LWUfoPa0atHFL4WXJVqX932634dVXX4XhcAhffvnlBZ0l9XvROBLKysVi4TYkIZ14D28ojqPpMfo7//7Jkyfwp3/6p+67H/7wh/DOO++438fjMezs7ECv19uwsyX9wtOOS/OnCp+G0lHW3eRVIkY3F9XhWbZ5N6g0j3B9oNPpQK/Xc78/ffrU2eaSfPDxmxQ3KjPeFosy7I2YGEhInvv8NT7PY+c0ta/4groE372zGq1SXXTDD24Kkp7j8kBq2xqzKwPavEBa+d26KfVzWPUZn2s+3XWN7UNcjJVSY3CDlP6P4IEWyaHzCcWQ0PQxStnOYkhYcoFsNeqt4M4mtpHSjm+SWoLRnA5f3bQe3wRPNXx98PWv5vgVac/Xdiw/+voeaQkpMs3IqUrA+vhMazPGkInl9VQjKSVQWVa9kgMnPa8Fnnx8kyovOS3S3I/tZ6vByelLkXetVmvjzggM0tDy2wqEam3EtlukP1LKUuMR00tpeiOmzRgZHpKJCExv2O/3YTgcun+j0cg5I9o9cxb6y3C86JxqtVoumHhycgKTyQR2dnY27jROaQPr532YsinA2h5vW0JZupC3v7Oz4xaaz87OXFCWpncGgAufF4sFNJtNqNfrMB6P4fnz53BwcOACVb6TTKn6yyfnt4Gyx16zKyyBD8mXwO8twPHhPK3pEMkPiQF9BgMDp6enAHC+AIh3wuHv6D/5eAXnJW5y1YIEFhuabtzSeDYWRfqobFj8Eto/rVYLut0uAMDG4rzP/9TGSrK3rO8pBT8QqXxI69Xa056NpdtSbwq0IBqdr3l+fqXAdDp1p8S18vhZW4BDWUXrKFNXYf2r1crxGz0VxGVlqA1f8Nn67DZs27LbiZ0TNEAsbaqIiYMgpPeJjRX44h8p+i7UHq2vDFuV0oW249nZmUtFyhdiue0Zoi1WBqNuxLvgcUMN+ifafYISP2jxktDfkl9C5VFIR9XrdXdVio9OH2Jsbm0MrDwSOw8BznXt06dPnT0zHA5hOp1Cq9WCfr8P4/F4w7ami51SHNI3D8uQOZpO4N9J+lt6f4lOjpQ56rMBY3R6aruWOvP8xfVPeMcnvW4H/6d97LNVfX2eMvbSGFvqCumkkM9RhE8t/MljC0Xa8v0t1W+dn7H2DoKnX/bJYPxOeg+NrqrsI0l2WJ7R5oTPh+TP+96J0iLpLksdRRDLp2XI+yLzMMUOLIILi7G1Ws05sgDnO12sOf5DRkkIVb9sLCwDaDVsYt4NDRVJ+IUYBJ/1PRMDrI/WqRnjVlQ52UOG0FWBJARToQlwyfAH0HcHbWOHNUCxhUINKX0oKffLQkhp0IUabVGJn1zXglMho8pX1oqY51IWitCwl+5jfO211+DevXsAcC6r7t+/7+4+z7LM3ceH/RV7Ek4yDLcR+NomsH+63a67m5DuZKbBEA3YJ5Yd8xQh3sH7QwHA3WvP0yf/wz/8A3z55ZewWCycc8hT7qS0nVJ+sVi4vms0GvDaa69Bt9t1NP/qV7+CTqfj7pujiL0jHuUgjh+OVRWogueL6kKAFwtk2AdWGzbP842AEUWs/VbGe3Da+N8+B47S4qsnhQ5pLvMAQdmgjuJ0Or3w+zb0d5ZlLk3iX/3VX0GWZYVP4na7Xdjd3YUsu7iYRAOWVN/xfsYTtvQuKY4y7U0Jl20/XXXQ+74sKNumuCrjg7KC90fV9JURsKSgchcD0aenpzAajeDmzZvQ7Xaj7owt4+4yfupQyq6T2g9VyIwYUN8npPPwdBbaraiv8LoK6Vl+BQIdD+smOWsfIf2WYKOk531ywXqaL8vOFwh5umJq2+MpxuVyCePxWK0L7/PDxReNrtirN5DORqMBeX5+uq7dbsONGzfc7/1+H46OjuD4+NjZBShfylyc8PGdJMfw/9lsBp9//jn0+3344Q9/CKenp/D06VNnR0h0xvhKVvh0P75XigyitC6XSzg+PoZ2uw39fh+Oj4/hiy++gFdeeQVu3rwJf/d3fweDwQAAzvmh3W7DcrksNZuJtkjjoz9UhtrzZdjPl4Uq4hTURj09PYVWqwW7u7sXyq1WK+eD4ZyOaQMgvu8sz1n6RJLBtO4UnRriUypveBs8JqDJptSxDr2PpF+k2LFVx1FIcSWqW0J9HBpPOpYA5d8dG2ozVZZbFwZD9V+2HWfFy0BjEUjjsLEYi5exS0IHK/Ch7A4suohYBb28b6w0SsJXEsQSTVpKHT42vpRbMX2J70V5warYKGLblJCy0Jsq9LZpKFH6LMbiNtrkAqKqoKqGmKBy7O++shZ+0QLNsTImpER9i3+h+eWbpz754oPVEE6Z675FWEl2+XgWnVpceKvX6+4+ST52Pqc6JpjiW8RGB91iiMU6kNsC5TvcjY5Gsi/FFD5bNi2UJgB5o1iz2YRerwfr9Rrm87k7ARk6Gau1F7PAJDkoNDD66quvwtHRETSbTZeKkaYz1YIwUtsxur0sOV40KJFik2Ef8rt1tWfp87R/Q8/giQvurMUEQsvg+aLOUmrAoggsgSwOi3NZlQws2scoW1KCywDg0pXO53OXLnsymcBsNoP9/X1oNpswnU435K0PVE5rOsRqbyKqdtp9utNi6/ns1Pl8DvP5HPb29qDdbm/IrVRaaWpcpMFKu9WGii37MkPrR/59lmUwnU6TdQ6vl+uv2HmhlaN30qOeQnu0KDitIR5B371Iexa/Zdv+srU91OE8oI2/0f8t7fFsB9Y4B7fRfLy2jXlP3z3E63xhv1arwXK5hOFw6OzpVqsFeX5xc5SvfuzXlAUMpGsymbhrPXCOYbAeF/boXNHem+uFUL9IssPir6Ofi/0GABubqvg1URLwPaWFEF5O+47SX7avKflnmHWm0+lsbIzQTrMjtD6VfrfYO7HgPIH1WX2fquZwmeNUVWwP/Si8zgjHHTcMTiYT7/Nl0eub52VD0i9a2xpvxbYHYDs8I/GrtS80OwD9Zak8p9H6vdY+f0Z7VrPvtHpiY91X0R6n72C1SfhzUtmYukL0herzjZtGU2rsKfVZqd3Q/An1qfT8xmIsPREbiyod96vSpmSI+wwy6TPCyhQ85R6vkxuHtK0iuz3Q+KPBYs3QuwxBVXWwqIq2YuuxBq6tgU2LAKlqLLc5XjEoOh4+/re8c5n94jOeeLkibfhgbSvLMndikDqpsXRioKTdbrvv0DF/9uwZDIfDjfqyTD/NGUO7T+7v7OzAYrFw6Suz7MVO0Kto1Fkwm81gvV5Ds9mE1WrldaoQNBjBEQpOSXXRzUHr9RrG4/GF/tzb24NWq+WC8Pv7++ouXOu8C+l3rUy9Xod6vQ6z2QxqtRr8f//f/we3b98W26UpDiXdbqWramxb3+NdcKenp+Yd9Gi3dDqd4GIWll0sFrBcLqPlsRSEirW7pEDxZepKyfGx6hYrtIBgTMD9KtoTFPwd8zx392/PZjM4PT2F9957D95//3348ssv4fj4GN555x2YTqfwj//4j24zSdU0+gK4Vbfta0+Sschz0sZT/DccDqHdbsMbb7wBeZ67IDZ/JuTP4e+4EQQXZAE2g+lF5sHLjtR5SPsMxw3HFfsVx+vk5OTCPXWxbeEpwNBJ3JSgD83AsFqt3H2NePVATF0+bIvPrjIv0z5AftGAaTPxZCtdCAII2/fIc/g/3fCZ5y9OQ1pPo1r5N8VfswT2+b3VWlyKvjui2WzCZDKBs7MzODo6gr29PTg8PITVagUPHjxwi6PcXsB+4ePEbZ6QXYk+1HK5hCdPnmycjgU4PyG7Xq/h6dOn7nQV9dOs2U5CY8R/l8aen3aV4jPoG+CmK+0QDNV5+J10Xy8HzfwkgfZH0VPE2B761mhzHx8fw8nJCbz55pvQ7/dd2fl8DrVaDVqtlrdOS2De93tZfkqKTvg2gttr3LZFW4nGBg4ODqDdbsPR0REsFgv46quv3PzU2qhC//jq5Pyi0SDJWOwHqT/oBp4UekM0U9/WJ+OoHLboCQq+4Efvcqbv67sLnPYRrdfXpoUPeJsaf/rq0vot9FwKisTXrTz6smLb/mYZdRWhWXp+YzGW/oiOiyWwxA2IIgTGIiVwJrVnUeDS875ArSZ8YgKsVgOfG2xcQcQEUbmywfo4L5TlYG7zOQ0x4+6DRelbaLC0GTIaaF1lzVGpDgtvxwT8rnLAwTqPQ2V8skQzmLhBReuSjK7Yd5RojZEZnG5NNmIgQ3qPULu+d+p0OtDr9eDevXvwyiuvwGQygfV6Dc+fP4fZbHahT2LSI/uMOQpNb0rjEfr7MoHyHu+MxXHDe5sQoXnNeVoqY3GutTIHBwfw3nvvwZtvvukW93n5PM9hNpttOIEhp8Sn1/nfMUFbHoSQFootczwEGkRMQRk6LxTUisXOzg68/vrrcPPmTRgOh25hK5QqezqduoXW8XgMX375JfR6Pej1ei59uY9+yfaJ1fPSPLDIO58MjYGPn2N0ha9tbY7H8G2oTl73tsDlBfINngBIBZ/Xz549g/F4bL4aRqIxtv1tILadlGAR/S6lzTLh49sYP4B+V3aQuQyk2pgpY0M3BtM6suzFSQ1q+5Y1/r4AWNE2MJBo1dUhHuDvLcndGJqrDvpp9iP2C19AlLBcLmE6nUK73XapdReLRXDDIPeJY3gHadR8Mq0tGpeR9CJv17oJQQp2x+h06bNG12Qy2ZgToWteQjaDFpvwjcdoNILHjx/DdDqFWq0W1MHUN9biW2WBnorP89zp8t3dXWf/n5ycuJS9PnqL0omHOeg1KVm2maI6ZJuGwMePL8hRW4b6/nzcQrYenWeajV1UVoX49WVHGXFOKr/4s+v1+sLdsZ1OBwDO9TfdtETlfNWwzB+fLOZxv5CO1dqS2vDRxOP3XG9IdITicL6YTcj2RGjXJ2nzR/M1tXfnMtRHvyXGJP2W0k9Su6k2YSgmFqLPJwtD/O6zZVPisj6EZHZMHT46QyhbrltihFJZzb68cGcsYr1eu91uPmiGVJWwtikxtIaQs8snCneeLBMyhhFCBj43YqVdcJZJFOuYcaWUAkmRXGMTRfuW/p3az0UdeV+dlzX2lnZjhHZKUFyTDaG6qPFDZRXdVcsNpG3LZV97+Lt2h6NmZNHffDK61+vBK6+8Au+88w68+eabcHx8DPP5HL7++usLdx5JhqQFof6ketPXH1dd9qHTXK/XodVqwXA4dOk5U2VTrCyhY6715a1bt+Df/tt/C7VaDWazmTq38C7Qqpy/UFANgcFC/J2e6KbgdfGd8ymy4mVHvV6Hf/bP/hkcHBzA6ekpZFkGr732mvf+ofV67XgXAODs7Aw++ugj6PV60O124fT0NNgulxWch0IyD+koE5INHDMvfbI2Fj7dRXk2tQ9CwQvaF1Z7P5UOHPvT09ONgAE9AYf8kmIbfPPNN3B2dgYAYEpRTJ+t8t6ja8RDGn9+soDruG878L1jeBtRr9edXSLZBHTOcT0Z27c4r7UrgnjZmHrpZ2q388CrpS6fr0d9rSL+5DaB/Y6Be4tcm8/nsFwuodlsQqPRgH6/D4vFQrxbnIOeXsLFKd+JQk6nhT6uo1P8X+szlI8sz6SM72g0urCJTbO7Q/OQf8/nM4CsBweDAXz99ddOJ/uCzgDg5rKUulp7JhX0xFae5+5Kg/39fTg4OIBXXnkFfv3rX4uLsXSxJUSLZezwnafTqVscw7mFG2uRZ8qynfhGCO7r85T/COsilw9lxJauY5NhaLZ2np9vPqCpzDHjJr17my7YhuqX2iiDbu136X9pwc+ypiDVzWmx8rnPtqHZGjT+tbRjiflyfyvF76T/a5nTuCzUkBqrLeJDl7moh/DdSx6io0x55eOTIrZk0bZfhvqLYGMxlqYaCeUER5TlRKascseWCwlhTbBITp9EQ5F+kNql3/G7+nx18Lq4gY60+hYK0CGhhlqZTFyWgH2ZUVV/aoZSCn9qTlYRVBUotbQb6g/JQZDmU1FY65QCA9J8DL0Lf3ct1REGIyz3T2t9KcmhkNFNF8qkU2ja+7VaLWg0GtBut+H27dvw/vvvw2QygZ/97GcbCy1ZlkGz2dyQa5xG6V0ppAWxkDGEZfC0LE0JZXG4QzQVhRQUBji/sqDT6ZSSJhMDIRrP00UODVmWuUBClmUX9CAPbCKWy+WFAEyqreHTq5QvcHGGvlOe53B6egrdbhf29vbg+fPn8Dd/8zdw//59b5uWlGQ+h1FCCi9JPL8N0LtckYZmswmvvPLKxqI2wPlYYzrtLMvcaVh85tatW26XtgYpcBoTEOO2c4p9TPta0usW2U/p8dUfg5ixT9HxXBb5HMIy271M4Dvv7e05GZdlGbTbbRc0la4qoYEKSV9+F+znq4iUvvf5Yd9W8FSFaP+V5VvwYB5+pvZXygJEKCCaZZnTQb1eL0gnAp+lJyG5jA/RGLLXU3BZCxM0NTCepgoB7xLF+wnp6T8A2W/R7H/N1qM6WNPNFFXIYnoi17LhTvN3LONK66cxKKpz6CILzoNQLE3rR14WwctNJhN49uwZ9Ho9l2mG+pK44Cel4I0NevMxtMgM/tvp6Sn8/Oc/h1u3bsG9e/dgd3cXbt26tZHimfYNBb5TTCwHfU7qg+B9uyGafeNi6TPsd5zDX3/9NTx9+tR0tY02r7S/Q3RYYZkXdNy/jfZVrC60lDs5OYHpdAo3btyAnZ0dODg4cPy+Wq1cxjJOhyRHqR4v0v/W5zU/RJqHtE7ptLfWpvZ9yBYK8avkI3LfKsXu5LJB2pAkzWGN9hhwHZbqx6Y84+OZWJ3qq9Ma69HalWxG6yZdHsuy+N8x/eibRzH1leEjVCW/rfRL5TYWYzHoVZYhXxQ+gRE7ASwBNa1OKUAXY8yl9iGdSNpChaUtaxCNG9RS8C9UT6pgkp4PleP1V9WexSEtyoMp2JaTHDMmvt9SAx5lw8c3ZSqDMuQDXzzE8hYlzmUYd8x8cl66h0H6WzOIJDlA/+dGrI8W7qRS/sDF2EajAYeHh/C9730Pfvazn8Enn3xyoY5Go1E44Bejj+i44eJhGffzFIHPoKR0dTod2Nvb23gmNG/4OEvf0We5oRjqF1yMlYD8TRfvADYXM2MMUx9CQTd6Uo4+MxqNYDgcQp7ncHJyAn/91399IYUX1hVyNGh7vKwWvEjlu9jnyuRvDCpRXqrX63Dnzh1oNBobwVa8dxffFxdj8zyHRqMBR0dH6p03Eu3cybTQGutcWerktmYV8ktqM1SPz5nXAnmaHcnlfxFH+6rCJ3u73S7UarWNxVjtHnWr02yl6TL1EaUDQF7ksj5L/7b6PCHEBlck+N6lalu3aqTwD5UBfMOSVp91EYDWIz1H7QdtY3PsnKJ6P8/PT8ItFgu3oUJ7htvnmn1CbfdQQLAsPUHb3jYoH6AdhQuAvjk2m81guVy6xTkpBbQWGJb0vqSDYuM/sbEDOjd88yA20JqqJ+jCJY4Ht4u4T4N0afYV7TvND+Xl6G8A56eh5/M5NBoNaLVaF/wMXIj0zT9aXoPmv3B6QnWNRiP49NNPIcsyuHfvHnS7XTg4OICnT5/CeDwO+lixekKys1A2IWj/SPwh8aCVn7FevONX66sYOy9GtmnzXAK+k2R3avQVtbteRqToxcFgAKPRCPr9PrTbbej3+07vTiYTl80qJPeK9j8fTwvfSTEdrc6QLR5jJ4XKSXRJ7fJyNNam9UOMTOP1Sm3H2G0S3dLf/Dlu68fKSO0ZyUaj7xWyxXjdWizG2nc+HpSekdq1tFOVLam1L9FQBSS+l2jZBh1Se2qa4hCsxmgRpDpl0jNWZR9ikNB7lxVEwkUYn7HEDdZY4RD6TkNZgY4i2KaTmBJs2NbcuEyhgu2lKNxvG2LnT+xzljnHF7YkR5SesuHGTKh+C2/5yuzu7sLt27edM//gwQM4Oztzu98laP2DJyl8Aa+bN29CrVaDjz/+eCNlmS+g4zOAkG7N0V0ul3BwcABvv/02nJ6ewvPnz2E0GpnSpV0GfAbzarXayJTBUwppi8ohXVuv1zcWKvkdtBJ4MHIwGGycekR6Wq0W/M3f/A188MEH8M0333jr3AZms5lLoedLpZtlmTvB22w2RX6WUuOWcZIoBlclDepkMoGf/vSnMJlM4NGjR+6EhAXD4RAeP37sNnAMBgPIskxNfUmBv1F5xQOTVpShD8vSqVzGaUG4VFgCW2ViG/aX1Cb9rJ1mBTiXgZYrYPL8/I7uKud4jC7cBqzt4iIBlZX4+auvvoLnz5/D3t4eLBYLuHnzJsxmM5hOpxuLLL5FAfyd/k/TUgNcvM8ypPsuq0+rRJXvg7IIxxV94lar5ewTbB/tE0smCQ7N5qPByxTax+PxRpYZLciF9lWoPo3esuXDZfKprz98sgppTrVRLGnlqY0gbZLVgO9jHSfKJ3jqlKaTxd8o+KYGXo/UhnUjpFS2Xq8nzTUp9XCeb94760sTvbOzs5Gth9ZDT96dnp6KQXp6YrNshOwcjiw7X5i9ceMGfPPNN7BYLDbeB3mNj30MPWg/SM/iplGkF30Q+g6xkE4F8tNzzWbzUvwXDZbFCPr3VYh/XnXQq6hwkzSm6l4sFjAYDKDZbMLh4aHbpOyLAwFsVy9xHoiJ6/sWv0KxdxqL03xRviDIr9CR7CCLXkxd1AzVR68CoP9b+tKXxYDqOa2/aNyK6xleD4dvrEJrLTF9J9Up1Z+6bsM3oH9XZddV9702FmNDzEBRdDE2ZdEyZRE09hnrO1kN8SII7YZFOigtvKzUHz7n0/es9P1VmNh0HK/ChKvaWfYZiZbyVlgNj6rBjeBY2RGzWByaR1UEPjgdmuERajsk+7AOKeVRSG5Y2gzJqVarBfv7+669Z8+eud8sc1hqC08TNRoNt2sbnW5c+OPGLv8cMqDo99rJBWyz3W7DzZs3Ic/zCwuxlvpDcziV/6zjS4NaaLjid9SottDM6cc6MOAQM3/p+8/nc1itVm7M6anjJ0+ewIcffggAempsWm+VwIBxvV6HZrPp5h7dDEHfiztQPl5IMfpTEJKLZYPPf97earWC6XQKx8fHcHZ2Br/5zW9gvV5fSElIgfXhs6enpxunl7ns0exBHojF72JlSuyYSW0Vtb8l+HSMJJdj7K2yaOX6v4z+TQH2v0RLyOn13ZVFwWWCJcBjGT/LuF0FO5pDek86Z3E8zs7OYDabuY0WnU4H1uu1uzde8nesPiANLqWA0snlRmyfXwXfqypQXqV2B8ptPsdCYxYqo/lUsfRSYKpU/N3CYxY7z/KbxNtFZLXEn9bApFRnyMaP6Svp2aJ9JI0b1ksXkfB36ptq/Z2is5Hnfe/kGxeLPxWKV0i8iz5CiHatTf5daLxoXXyxltrUuNBHx4U+Z6FHeo8ifhfnITzlnee5S7P84MGDoL0v/R7iJ2oTZ1nmssmgbLJuArHIE+l7Oo/oZiaepStUTyy0+Ux/056L9W2rRpm+Xox+Kdr/ND38arWC1Wp1IUZTq9U2NslJ40VpSrGTtgFOl9bPtJzP7wzVw+ukZS39o8lh6bsU26iIbWvxM7U4ia8PUQZZ39NKn9RuiGZel288NL/NR4dme/iuC/PRq9Fp4U8LtHq3hasg88XFWB8xVQWBQrAGXSSGKmpIxdCU0hZ10LW6pZNAoTqlu6Q4+Hf8Tp2rchrGghBfXlVFboWF9iKOw7ZQZBz4HKniXTWeL9MoDgHnIbal7TilTo2lP0IOugUxcg8XSujdPvw5ekoIjXSNPmnB5c6dO/BHf/RH0Gg0YDQawe7uLrz22mvws5/9DB49egSDwUBszxrM8yHLzheZu90uvPXWW7BYLODTTz+9cMdVq9VS7yu7CkCHCYF9jAufnP9idlCjE9Zut93zi8ViQ6fRAIoFvV4PfvKTn0C/34cvvvgCbt++DW+88Yb7vdPpuMCDdP1CWfDdrQxw/l4/+tGP4OjoCKbTKTx8+BCOjo5gNBpBr9eD6XTq0q3hPbM0uOdLzfeyImRfUiDvoRPxySefQK/Xg4ODg436JJmN33U6HcjzXJyXGpBn6R2zeMqZ1q+9Cw3c+uy6WNu3Kp1X1E6W6ooJDljq5XVdxrxAnmq3247vtiHLpfpjbPOq++1lt60vC1TWA1wMCpTVp9/W8UH9gKdqtEATQBrfY708VT6FZcFMAq0Pbfl2uw3r9RpGo5G5HktAryiq4h0taIl0o92M48xPtnB9SPuOpinmC1rS+6CfslwuL5wo1MbWGtjU3t06L+n94TE2gzWGk8IndFMl2jpWSCdh0c7jsTCt/jzP4ezsDE5PTze+p/Xw8gC6r0G/k+JxKXFRnNN4hcbp6Sn85je/cfxM7Uv+DpTmMrC/vw//8l/+S3jy5An8/d//PSyXS1itVmo2nqLg8QntVFrsHb4hlBWn+bbpzG2+D8ZxcC5+/vnn0Gg0YH9//8JJSQTOCV8WKYC4OVHUX6J95vP1sC20BQBk+9wnK2No1caR6zhffZwWTjddlwjR5bN/qJ6T5rl1cdPXNqWb1kvvns+yF2n2sU7tqgoNmh8V6mdevmpodi/lT4Crk+3suwbR/qR/WI28MgL5dEIUwWWuoGvwGXlSmdAE50KOB7lilZP2nWQES59932ltxNIXE7BNwVV3UmPak/htm4jtyxB92wq4WpWp5fnYOmL4XJKVobmnBThiAzZF5wnufqQLkWh07+zsQKPR2EjFGDLUsFy9XodareZS1R0eHsJisYDxeOwWSMfjMZycnFxIFVdW8BzrxPfY29uD4XAIk8nEBY7ond9SKjGOFJmu1WldNOeBKlputVq5RVMe1MLPXH/wIBPtJ/yNB15i53mtVoP9/X3odrviglds2kKLo8r1uEY3n6/tdht6vZ67xwqDIJQnuJEsBQKL8Ebqc2Xo4RSbCZ/j/TCZTFy6KyudyAeTycRELwXKrVDQ2AKf3WYJ9uEzRfSOVKcErR1OR0h3xOj6qw46fjxrTcwY0JPxi8UCJpOJC9b6grC+YNBl92PqHI8F3QSkyUP8Hm2BxWIhbsjRbI7L6k/erpWGsufZVeCnEK9we0LzkaU6Y37z+cshGn1BUclu4jaABTE2gWSzlYEiQWRfUBl/52Ptew5gM52wFkyW5EeWnS8gYJCWbzgsK2bAwcdDs/V88RmKmPGw0of18nZ4OV+sS/NNpTGS3l/qF3rKlJfT6PP1D/1N4o+UmBelZblcbmRL0k6FavXHzDPuW9XrdTg4OIDpdAqtVmujLt/dvbHgcxfBF+G4bU9p5+/CyxRByH6O0adVyQQrYmS5Zluk+DCx7z2bzdw96o1Gw8lZXhf3dVPaioHlfWLb98mQUJ1cxoTmoU82xdgpsbEP6fcQPfy3GBkT0kFa/AB/o+/IN2lJz/B2+W+Svg7pPem5KuGzI+jvVtuRP1slNF4us36tztBcKwqt/uQ7YylSjfsqgki07ioYhjoG0mm1GKDTQO/Q4wYMP5WkIUVhUGDQ0fdOVfXptnDZAYZYxAa4Xpb3szqUFEVlha9vrHxdliLiypk7L1mWubQuPno1uUAXPlFeLRYLmM/nXpq0YFDs+yJ9Ozs70O/3L9Q5mUxgOBxCu92GO3fuwOPHj2E2m11IKUxpo9jZ2YGjoyPI8xwePXoEu7u7MBwOYTwew/Hx8YU50ev1XJ/E7IQLOdi+HcXj8RgGg8GFvrtKO9FQb/sCgMg39GQIdaQANvkWYNOxr9Vq0Ol0LvQlLla3Wi21fZrSWEO/34d3333XlcO01ev12gXhLbDITjpXkVelQDC2jWP9/PlzqNVq8O6770Kv19vQ9/QZpDVEi+SwfpdBZWFsn3AHDeuLAT0tKwUBY2lBGmLGuExHgTvLZUEL0vnKXjX4sjaEgDw2m80gz3Not9vw7Nkz+NnPfuZkwmQygTzP3SYjPg5XtV9CKMNmyvPc2TB8gxcth3cK/sM//AMAvLizDP2t2J3hWnBfo5P7UUUQExguUkdMfUUh2eRS4MxHB27Gm8/nXruWt4v2C/rw3D4oY35RO4i+R2wAktLkC6rFoCq7wRrUKwIcL2zHmu4dQd+70Wg4v8jng1oDl8hX2snVmKAn/lutVhfuS+aQTiRdhl2I9FL5GsMTPppp8Bz9SgTqAb6hl99JG2ojlk5L3IL66Zo+oJk1UL/h5l6EltbXp2OazSbU63WYTCYb93cCnGcVolmEHj9+DGdnZ967elNBZTmeAkb9SDNi0bIWpMqbovLvsuyv2IUDDWXI/6J9kOe52+CNm72rwmX5ydSPSnmOn07VYFks5OV8dVgWXH2g+khboLTYxpqcpf3he1/JzsdsV/R5GovxyWmLDR7rN/P+KSu+TBGyC1L59GXHVYydmRdjQ4HpqsGFkjT5eHkNFqaX2tLaxHpCDC0ZzbxuSfj46uNlNFosAt1Xn4+W72JgeFtB0lSHu2hdRRc/tXpiAku+eRqzeKrNX+u85bTEyBoLJDmgQXMsQ3LFV19s/2rBIS0I0Ww2od/vQ7fbhW63C9Pp1BnhdNGKnl7V2kXHFO/ifO211+DWrVsA8MKYOj09heFw6HYgUwM3xhDk30k6aGdnB3q9Huzu7kK9XodGowHtdtvdg6K9RyysPGqt2ycj0KDGsUEDWhtf3rY05+v1utuNjXVzZ1yiDceOBwpWqxWcnZ1Bs9mEJ0+euN9Go1G0XvbRwIMrIXDjlgZjMMBy//59ePz48cYCt9QOpcEqF64yrE4fAucslVGLxcLd+zqbzWC5XJrnNAbhcTMBlTuULk4bPoMnF1EOpQQby7STQm1fJZuM9utVoisWnIdjnG/+HJ7Yns/nhWTVtwFc/mkyj/aTFPShsh8X6RqNRrIN6aMz5BNTmjTZR+WCZnfw52Lnz8s033y+JI43ZpXA++L5KXUfQj68RoNk/1nfx/J9ihzR8DKNtwRNr6IdqKWG5wFRX2yF2pUALzZUoW0gbbin4LLfYgtItiGlj9eP/2Ma7nq97mxJ38a9GD7yxdF89n6M7WGdN1QGWvxPWjaUwrksHyCmLsmOXK/XMJ1OoV6vb6TM5KDvJvFziAbkGyonEc1mE27cuAGz2Qym0+mFRQSaftryfj55zX9PiUFpsjiljtS4XVGZyudAjC4pU56XUZe1/zX5zH/f2dmBZrPpfDnO72UgJFc0uefzwSUdHsOrGm+WYWeUZafE0KPZqpZ+kurhtn1M+5q9xu/QtlwzZW031Z+gdIb8FEmWarYQfd7nW8TQLflZUntlQ+sDX/my7WCLHZBqKwCUtBj7bQffZaflgg+BG4tSbvzQnSBIi+8+WMtdsbys7266lyno97Ij1Vi8qrDyVKrBHtuuj4YqEDLG0FnyOf60PCoZaUc4n8PavRS0vjIWDLVAI2J3dxd+/OMfO9k1n8/h+fPncHJyAqPRyL0T7lKTUsuiEYVpaZ8+fQpHR0fwH/7Df4Ber7fxXr/+9a/hV7/61UZ/5HkO0+k0KaCJCznSYm69Xod33nnHLcjWajW4desWLBYLePbsmbmNbcI3trhoulwu4ezsTDSkObAvfYvd3W4XXnnlFfc3pue00IT3qWIbAOenyz7++GP46quv4OOPP3Y0PHr0SKyjyFzHOeybnzgntftwEMPhEP7X//pfMBqNHH82Go0L5WNOcF+l09YhxASdMfBO+2IwGMBgMIAHDx4AwIt+D51Y3NnZgU6nA61WC/r9vrtrjJ+8lvq91WpBr9dzpwyazaYog0NjX5WdVIYeq9qGqyLAsm3keR7cxR8TPLjGy41Qqmpua1HZR2UF7ta3ptR/WVAkAC3VhTp4uVxCq9VyJ6ABXtznXUbQXDpBzQN3seMU8oOWy6ULSsfQinVrQTrLs1cRkhzNsszZpvw0NB0vHD96TxzyDQf+hvW1Wi03H2naeA6LLpDAF3lDcwJt6k6n4666WK1WMB6PN9IxSxnNUoLYMbBmI5EWMrRy0sYKy7PSCVlLe7wta3uxcoBu6Hv8+DEcHh5Cv99X6+Yp2PGUtHWskJ8xKxFm4wA498e///3vw8OHD+Gbb75xz6A/0m633TNlAHkc+UXLdlS2LEqVcTyeEZs6XoK0SPddAM59lMcS2u02tNttGAwGMJ1OnVxFP0uq8yraSThXtTtYsQz9v0w+4PZlrE3gq7PIqfkyx0tb8AV48c4oa+hVUPg91em1Wg3a7fZGfbF6JwacP3g71jUkqz7lbXOUwR9XFS+jfA0uxpa1SMIHO3XQqXCXwJ1erUyITtoW/Z7Sb32HUBDXUs5yaoz+r7UjGZ5SX2qT17IwW9Tp9tVdFNsSNqm7ZELvGBq/bbwfH98Y54XWwRWftqskNfAh1VemDEstg+Bzmn7miluTN1RmaAaTxciI5aHQ2GCaJHpf6Gw2g9PTUxiNRsG2OI24M5y/IwZThsOhOy3LgxM+SPKKf5YWXfB0LqaUqtfrMBwOYT6fb/CyZaGIoor56+tjSldssNHCa7VaDbrdLrRaLciyDEajEYxGI3dqmZYPtUnTDlODG0+XTSYTt8BbpRwMzRV+X/BgMAAAgA8//NDdGSUZ1dKmhipSh20bKTYTgs4/ypvSqVapTV5XSMeiLGi32xsyxwp6ggWDaD69Y7WLY/rNYkP4dIBVJlv1aUoAwNfuNhDSlyk2kAUYVJZSEWrzh9vlKYEefJ+iNtJ3CbS/Ung8JaiCz74MCAWgL+M98LSYBXxsfTKc+hxUlmsBL1/8gtdDv5d+01A0wJYiC0K0WfqSPk/ve7bob9oO34zJ66bzFzfGD4dDd9UFbpJFu157FwtiZHLIvkR6d3Z2NrIqpNIW8s1D9Urv5ntfOhY00E/HVnve1waXqbG+TBm2V2ickcbJZALr9dr5Rf1+H1qtFpydnW3QRPtJsosku1FrezabwWeffQZHR0fwve99D2q1Guzt7bmF39FotLEZ0SpntPGXYptZpm86Cs0NiTfK0CEhPrlq+laiN8Xm89UXqjMmFkbrm81mzndHOYu/aXG7okiNH2r9wctZ2rCUtXwvyUNJBlhjKj46pXpCvjOvxzJXfXLcaoNI/UKvoqBxSJRBmCqdx8Akeevr9xAtljJSH2iIkcm0vZC+LEvOVW3nF5F1ZaKILSf1ycZirKZML1s4IiyGeErAT2vLd19dTDvoGPjaCtWHJ4O01I4AcSdksC1poSBES0gIVTlJQo6szyD8NoLfJ6Lt1k3tB6kPU4O9qe3HoCrauOzBOcLr4ounmkLPsuzCaT/6HAbzfYqS1y+dsKNlfO9t6TcrsizbuBsT6z47O4OPP/7YXA9tGxd3JVpmsxk8fPgQ2u22ux82BtwYo8C6aBlMMXV2dgbr9drdHfv48eMLMrjRaIgZEFKh8W+KzuN3leM9bBb4ZD3N7tBqtWB/fx9arRYAABwfH8NXX321QbeV9ul06oxnrrfG4zE8fvxYrDfk+MfIBLo4St+TPr9arTZ2lT99+hSePXsGn3zyCeR57hb4pJOUdO4D6LvIvwvAcZHu2LU+T+uxPlOr1aDf77tnYhZj6/W6uxsL4HwhHjdtpMKXtSQFRQI2HFUFqq6KwwUQlh+0XBF6McjebDY37HxqA1iCvZbArEZ3mfbTd8H+pigrOLxNXKbPlBowDMEXACkrPkDboYFDjhT/CYOGlGbrs0XAaQ0FXmPfKwVoR+GiFe2bEKgtrgUd8btWqwWr1QqePn0K/X4fjo6OoNVqQaPRgOl0CpPJ5EK7WgDVl7XIGsDDBQsNzWYTVquVu2PcumkvRnYDhG0f2pfWcZH86FAbtO9874DB9BjwuVuVDKRtDAYDODk5cfr+jTfegDzPXaYoBE2/zHnIwicUw+EQfvrTn8L7778PP/nJT+CNN95wJ2dXqxV8/fXXMB6PS3nPUBD6ZdKT0sLGVcZVtbvyPIfxeOwWwTqdDhweHroFMwpJD2n+nHVxKqZPeJ0+Hcx/S11A5L9ZZZLUF2XbDfQ0qcUukOyhFPtYq8fyHGZKWC6X0Gg03EZpGmOhm6xQFuN9xvR9YmkLrZH4fkOZHlqDQb2v0eJ79irKh287QmOkRrmsRjnAdgaX7p6rAiFBRxVGUYcOBZoU1EXwRbbQnX34OVY4UFicVd5GjNIp0mcWQ3wbzqFWbxnvZkGtVttIZUX5ogzlW4bhqckO5B1tESNES0qboXo1AWkdY/oeVoUoOc7UsQo57qF5SvmBntLzBSP45xSEeKfZbMLBwYEre3p6CgAgnnjVMJvN3Pssl0t49uwZNJtN6Ha77lQsAu+IxD7Vxi8UzMDv0ZjDk5iSEzwej+Hp06fuNCRtJwV8bvucFCvoc8izvr7R2uIBLrrrsFarweHhIbTbbW+6P6nPaRnUu8jLACCONX0f6/tLf0tOWJ7nLn0znsSV+ozSSO+D0mQJ7X/LWNL6ywwqa21J/eKjswp9y+vE1HztdnsjQMXp5NjZ2YF2u+0WdjE90WQygcViIW5kwfnOF8RxwxOmR8dTDnQBDe9EDqWbljIb0FMEl+U0aTqiKM9pevJlCs5pCI0Vvjc6+5jRYTabOZ9AOoGV2l4V9RQpq8lDn52DwN3tR0dHAHCehnG1WomL1vhZSvkqBbl8tPLAOOomjU7p7yIow7e2BvKkvy8DVDdSUN1TRh+jfUhldBmLBVLwmP8WW5cEn31B+TzGH6LPxPCN1raFVl/9WlBUigfxtLlWX9ZKE88cI9n/IVkW4ivJNvfZCFIbWE9McLYMlBF/8NHN7RA85c7lvubTULkSmjMWSPan9JmetpLsWby2B2Bz86VFL/p+Rz7BKzpWq5XLSETx1ltvQbfbhbOzM7cYm2Uv0nvHXoMSO8eLIGXMrHbaVUHIbgr58byuKu2J0HMUi8XCnQTH+EGv13OZo0JprRHW8YrxWa3+uCZLaB9x+kJ2cUxch/OAT/ZZoNGCkOSd7304PbG6WXqG1++rD/0q9LuwrNQfNK5H41nS2PH+ln7T+lzqD/7+VGdI7yfBxzchP4ePY4yOkb6X6LLW/W2Gz65OOnKgDbZm4PBnKEFWJgsFpiThU4bjQydDrFGivRs6gQD6PXt4lyTWs1gsLjgbFqMiRrBbnVxLu6koMxgQw2MW+PijaD2+7ykwqIyYz+diAE+6ryAFZRhvUp0UoeCWhG0Ejfj88Rk5aDBaHEm6u4wqNbobnv/NEbrjGZ/BxVirgyvVZYFFJzSbTdjf33dl8cQoptyiNGntzudzF4BdrVZwfHwMu7u7sLe3d4EOTPnoWxDRjBEJWN9sNlPv05lOpxv38PB2aJ+EDH3pM0JzzEKQDCNt7DjPS21yY5QGrG/evHnhVDAvo9FIHTC6AJplGXQ6neTTkhI0Gcd5qdPpwGQyUecTDbhY7oGm/Rarny3zuShS9WaVxjfKvVarBXmeu3mo8ShiZ2cHut2u62s89TKbzdzOWckhkhZ00KnDVMYAm3IJ4DzQIAW+KELz2iKT+DOh9rahNyVQm1Xj95fBSfP1oRSckd6J3m05Go02spnwzSs+xNr3GmL4IrVsSJ/x5wA2fUfchHHjxg0AOM+yQdPSA7zQz4hGo+F8J6mvtAAO/50vhvg2y1n52ho4KWO+hvxmzq+XJSMoDfR/gIt2ahmygtrs0ma9IjEEqz63BCFD9Wl8bIEvYBh6jgeWUmSRZCuE3pvakDzYC3DxLmdaryWWpMGyGOuDj28l+4X7nvhdltlOQ/rsypT3t/qKId9EmmeSzPfVLfknvudDSOkPLqd8cR1tzDD+d3x8bLrSJtRPUv0A53bFcrkU/dbXX38dXnnlFfjpT38KDx8+dN/jxmMrn2vyWgKlP1Q2NDcs/pNkm8WA+2qXqSN5f0jz0joX6XO+uSf1fVEsl0sYDoeuzn6/D+1228W6Q1fRUFh1ZRnQ+pbzP+e5GF61tm2hxQqJr32yGuDchiqrvy08a7WrAF5cEYbp/C0bo33ZNKx9HEOvxhN0bsfaDbHtSb65VbdZZBFHWXM19t2vCjR6vRHNKl8y1cnxQTLOUuqWAkYxBgmtjy6g8hOxFPV6HbrdLiyXywt5zCkwEECDDinvzemwvN/LECyj4ALtZQU6ga1Wyxkmq9UKlsvlhV3dWs77VBSRAWUFk2Lb5JAUnc9x8oH3rXaiMuQsZdmLBRscR7rhgpf1jaV096y1H6pAnudwdnYG3W4Xfvd3fxf6/f6GvHry5Ak8efJkY1ckgCyD8HRalr24a6bRaMBv/dZvwf7+/sai3FdffQUfffQRPHny5EI6WY1ODXinCS7GcLm+s7MD77//PhweHrpUKO12G5rNpgsWYWoUCouTKgUjLc9oTqJV/mE5DHxT8D7EYJTvlCtdnMK+9O1yleqRDODhcLjh7JycnHjT94egtWfpM76xQgu45Pl5qm2aRk0LOCEdNIBjleeXHSioCtgfmFZtsVgE+wP7AU++HhwcwGKxcAGAEHAuYJrC5XIJzWaz8Aany0KM7CmjrRRZdtXtNF8fXoatU8aYxdBdVdnvEui44b2BuBlkvV7D2dkZ5Hle6oYjHy3a31dZl+T5iw3K1N610IsLDFJ2Dakd+r+vHdTtsdcFod+2Xq9dOtx2u+1OavDyPn+Dy4SQH2KhL9ReleCbiqXAPA8iWvp/uVy6De9Zlrn5hwtQZ2dnsLe3t7GZEDfRlD0vLUHF8XgM8/kcdnd33eZVyxUWlBdirkoIBfuxvpQYGdZL5xZmPqD+BM/opPm0Pjtaa5silYclXwHnMv1Oqh8XCWhKTA30NHTMogDACz6n/vPp6Sn8/Oc/h3v37sFrr73mrpDBujBTR7fbBQD/1WgSLDJ1W/KDt3eV6rpKiBmzMiCdup5MJu4O7JBs29Y4cBknyZpYm8lis9N6rAtjEt2xawIhWjhNXC9LPh+1zzSaNHvFFwvyAeNvuJEfM1zRuEGn04E33ngDBoMB3L9//0IdrVZr4yq5lBiThWZpYVR6H03Xxc4DyzNoj15jexCtSj4BUgx5qxNgCX76FtW4oCxD+NBAaMrCLhVGyPhoaHKDGNuq1WruXhQagOXvJU1ciU7LYpDv5F3M+4Zw1QNsGspS9inCkj6H/EFPEGIwQnumrFPcPvh4DPlaMihSjfGQErE6KViPZERpdSDdXMaE5pEv2FWr1dyCFhoNVnAZTWkocj9hLHgfYh9Mp1NoNBpw69Yt6Ha7G4GS4XDo7vfkRhqX5xgw4WlrXnnlFdjb23P9tlwu4fj4GD799FMAuLiLPQZ0LtHTE5S+LMvg9u3bcOvWLXj+/LkL7qHxRjMbaPXHwDJPynQ4eX0xcwm/xwAL1XGUN6Vn6Zhpiw3osEm7GH2BQyu0wBP9h3M1NNdokBDTcUtpsyW9Ljk2/LOEbTiqlrlVpt7HscXgKD11GnpXHCtcyEXaQrQjjy0WCxiNRgDw4jRVKK055+nU8SgrqL4tSPquSppTeV2SL9vqWx/fWMv6yl11HrHC9x6absDnXpaAKdo4aNvT+wEvG0X6UBuDsngT7QtNb2o0UP/DyicxvrWPL0Nt4Ljz7EdS2xZowdzYejRbLBQcTuEf2gaXab60wDF0AbyImaBNiid8cA5Op1Po9XoAsLnZ1SdvLDGX0Hfas3jtQbvddgvHsTZBTHn6vtJz0lzj78F/840H961CdVGE0lNr7fF3iZmzlFY6v7R3lmSIJiuk+A/nP58/RunCf/QE23g8hm+++QZarRbcuHHDxZboffU4F3h7lJZUm7Sobpb6LMYfCcmrWP5JQUhGbJOWIkjhASq7qExfLpewXC5Nm6SwTSmGFwNtnmoxCUtd2nex9cS8j6bbU3nD+pz2fpIMo8+k8LfmR2t2GM1ig/KPbn5pNBpwdHQEtVoNHj165L6ncUa6GIvPWvSZ9Lv1XSUf2ldHiizWbGPans83tvCl5f1T+ogjhbariAvR4qv2IlJKT46URVMOzvC0viKOsS8VI6bN4+1T0BzmACAqKm6cVDGG21b4VoG3bVQd6OHjqPEPvy9LWujH7zUnsipIShOdaUpH7KKhr9+tQt23s1oCBn18dfK6tMABprXEtqSdVvwuJGnsfLTS32hq16rHH4MaeKcrxXw+h+PjYxgMBvDs2TO3sIEnR6UxoYaRtkg9Ho/hn/7pnyDPz9OOnpyciOX47kZaP+9vNN663e4FumazGUynU3dydDAYuMAI38mp8YBGW8jJ9iHFGaY8wVNES46IlYd4YKrRaDiHn5fDIEGoPp6yiPdryuYDqxzHjBX7+/twcHAA0+kUZrMZPHjwAKbT6YVT2xJddFFe44kUB6oMp+u7iuFwCMPh8IIMxvEcjUbuxBoC+fDg4ABarZaT5ZgyeblcQrfbhX6/75w3X4p4DVwmlG1vFAlaVIVU+7VI31CHPba/y7IDMQCKQH3HN3jRE4DSfYmXgSptYT4WOEZoM6DeOD4+3niO2l+Y/rlqObkN+8qHouNQxTj6At60r7bVb5J/gCfvyrjKBW1C6SRNiqxFG5lCW7yRng/FTIospEi2dCgmUQZoMLWMDach+lAWHx4eQr/fh8FgEK3T+UIhhWWM0MbQ+DSlj61jHwqkcxp8fpxVHmjg9gH3l4rIL98YFamP6nDtHTE7Fvc/JVr4aVrpNJpGA8VgMIAPP/wQhsMhnJ6ewu/93u/BG2+8Af/+3/97ePLkCfzX//pf4fT01JW3BNHLQNWxtbLwbQn+S6hSH/Px5dfAoD6OyUBA6yxzHDRe9LVBsziEFhBTFlktv1fBi2Xr8jIW4EJYLpdidjvpSr+DgwP4nd/5HVgsFjCfz+Hhw4fu/my8xxg3yC2XS/e9FLuqWoZVEc/H+q6CT/myInbcpfIb0k4KwlqQ+pylXs4g2s4Aa32h7630Wxz8UF38jiMJNKgv9YfWlmZwW97PtzC9rcma4rzE1KcZmNyR1fo1tr2UsiHhaF0ctJa11mUpJ5XlAc8yeCklCBD7TFmLI/S0pG8DicWJs7TP+1qTnTH87pN1Gq/l+XnqI7zfmJ4qDN2168NqtYLT01OXhkS7x5W+h8+xpL/RRWIaEKcBXkwpL903GQPqiMfC129FdUAZMgMdriLBM2ospura1PI4ZxuNhkvnReeTjy66eALgH19ax7fZIK7SWYmpd7VaifIC68B7ZClwvCkv4IYCajug7CjDBqgCRdsq06bQ6uafq4BWv2UelkUb14F0AxW2QwPPNAB72dBsPJ89kQo6Jthf2hUAfAGb01pVYGmbC7JSEDK1vy+Ll3y6fBuL5mUuCnM7wCJD+HjRcUQb+SrM81hUOSeK2EipeqvZbEK9XofJZLIxNkXakcpo/pclZaB17nNZEfKHYnyF2HkbyycpbcSA1l92/EmDFAeJiTtJfRiiD+/qPDs7g9PTU1gsFlCr1eDu3bvu5HXsO5SBkD1RVp0xzxUZ6zLr2BZS52Rs3fQ7aU5v05ayIjaGhH/z2JgUZ76qqErmISyLzamyGBdjaRxPqguzAsxmM5jNZk7+0fuy0e9A/ywlDhU7t/g7Wp4vMl5VxmYkv9A3j+hzLwNi7HytfJa/LG97jWtc4xrXuMY1rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjWtc4xovEbZ3ueA1rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjWtc4xrXuMY1rnGNa3yHcL0Ye41rXOMa17jGNa5xjWtc4xrXuMY1rnGNa1zjGte4xjWucY1rXOMaFeD/B1pzCcVDFr3SAAAAAElFTkSuQmCC" - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "fn cast_ray(\n", - " orig: Vec3f,\n", - " dir: Vec3f,\n", - " spheres: List[Sphere],\n", - " lights: List[Light],\n", - " bg: Image,\n", - ") -> Material:\n", - " var point = Vec3f.zero()\n", - " var material = Material(Vec3f.zero())\n", - " var N = Vec3f.zero()\n", - " if not scene_intersect(orig, dir, spheres, material, point, N):\n", - " # Background\n", - " # Given a direction vector `dir` we need to find a pixel in the image\n", - " var x = dir[0]\n", - " var y = dir[1]\n", - "\n", - " # Now map x from [-1,1] to [0,w-1] and do the same for y.\n", - " var w = bg.width\n", - " var h = bg.height\n", - " var col = int((1.0 + x) * 0.5 * (w - 1))\n", - " var row = int((1.0 + y) * 0.5 * (h - 1))\n", - " return Material(bg.pixels[bg._pos_to_index(row, col)])\n", - "\n", - " var diffuse_light_intensity: Float32 = 0\n", - " var specular_light_intensity: Float32 = 0\n", - " for i in range(lights.size):\n", - " var light_dir = (lights[i].position - point).normalize()\n", - " diffuse_light_intensity += lights[i].intensity * max(light_dir @ N, 0)\n", - " specular_light_intensity += (\n", - " pow(\n", - " max(-reflect(-light_dir, N) @ dir, 0.0),\n", - " material.specular_component,\n", - " )\n", - " * lights[i].intensity\n", - " )\n", - "\n", - " var result = material.color * diffuse_light_intensity * material.albedo.data[\n", - " 0\n", - " ] + Vec3f(\n", - " 1.0, 1.0, 1.0\n", - " ) * specular_light_intensity * material.albedo.data[\n", - " 1\n", - " ]\n", - " var result_max = max(result[0], max(result[1], result[2]))\n", - " # Cap the resulting vector\n", - " if result_max > 1:\n", - " return result * (1.0 / result_max)\n", - " return result\n", - "\n", - "\n", - "fn create_image_with_spheres_and_specular_lights(\n", - " spheres: List[Sphere],\n", - " lights: List[Light],\n", - " height: Int,\n", - " width: Int,\n", - " bg: Image,\n", - ") -> Image:\n", - " var image = Image(height, width)\n", - "\n", - " @parameter\n", - " fn _process_row(row: Int):\n", - " var y = -((Float32(2.0) * row + 1) / height - 1)\n", - " for col in range(width):\n", - " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", - " var dir = Vec3f(x, y, -1).normalize()\n", - " image.set(\n", - " row, col, cast_ray(Vec3f.zero(), dir, spheres, lights, bg).color\n", - " )\n", - "\n", - " parallelize[_process_row](height)\n", - "\n", - " return image\n", - "\n", - "\n", - "var bg = load_image(\"images/background.png\")\n", - "render(\n", - " create_image_with_spheres_and_specular_lights(spheres, lights, H, W, bg)\n", - ")\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB2MAAAWMCAYAAAATKi3mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAATsAAAE7AGKbv1yAAEAAElEQVR4nOy9WY8kSXIfbpF3Zt3d1d0zPVfPzs7uzJ7iuQLFFURJoAC+6UEQ9CABAkR9DgnQVxAEiIJe+SIKIp8ESCQIEiKXIrW73Ht2do6e6bO6us68r/g/1N+iLa3M3c09PDKjqvMHFKoqwsPd3N3c3A4/kjRNU1hjjTXWWGONNdZYY4011lhjjTXWWGONNdZYY4011lhjjTXWWCMqKqsmYI011lhjjTXWWGONNdZYY4011lhjjTXWWGONNdZYY4011ljjOmIdjF1jjTXWWGONNdZYY4011lhjjTXWWGONNdZYY4011lhjjTXWKAA1+k+j0YheQJqmwE9CTpJk4YemnUwmkKYp1Ot1SNMUptOpMe9GowGVSsWYhuZtgzadKw/MR6qzdBo0rz9Px/NJkgTq9fqlb6bTKczn80t5m1DkydQ+bW7iDYDLNEpp+Xeask1peN6VSuVSf2Ia3kcuWkx84cN3SZJAs9kU2ydNUxgOh5fGQbVahc3NTZhOpzAcDo30hYDmMZ/PIU1TSJIEqtUqfOMb34A7d+4AAMB4PIaHDx/C2dkZfP755xndtVoNarVaRv9sNluoU7VaFdvNxbsh9dL0lZQ+lB+l72KNSdN44n/75KHJB3nAVo5pHjCVaSrP1Dch5dL3tv7mdGroNo11Sr9tLuSoVCqXvufluepg4u88fENlOZ2HpO+QBu34StMUNjY2oNVqZc8GgwHMZjMYj8fWbyU6aBsiOC00DeVrfIdzg6m/qDyMoVtcFbjmttlsBvP5HF555RXY2dmBs7MzGI1GcHp6CrPZLJsPpHyxTem8XKlUoFarwXw+h9lsZi0b5yY610h9biqfj3upDJP8o8+p/jafz2E+n8N0OoXZbAbVahUqlYq1LBuv2mSibXxrnmshlWPT8UL1oTLBNXdT3sL+brfbsLu7C/V6HarVKjx79gx6vd6C3sPbwyQ3Jd3fxqcx6uQLzoem/HF887mEtmEobXTcSc9jwzVOuQ7Av6G02WQQH0Ma3cRGK8eqxmWtVoNKpQKDwQAajQZ885vfzPSAp0+fws9+9jOo1+tQr9cXbGBOb61Wg1arlfFVv9+HyWQC/+Af/AN488034Utf+hKcnJzAf/yP/xEGgwHU63UAyD8G0J/S6/Wg2WzC66+/Do1GA5rNJjx9+hQePXoEjUYDqtVq5veguC76A5VbJv42zafSGLHNhzxf6f8y3szl28+1Wg2SJFnQZVxzqcnfZJKH2nmbl8f1Z5McpzSY6AuRZWWEL/9JdgqF6Tm1PSQflqYc/AZ1aqlfaJ/yfPf29uDu3btwcHAAz58/z/RaTEt9PdweNPGojbdt72ztbstHy2+m/Gnbc9j8PxKNLt2nUqlkemOapjAajSBJEvhX/+pfwRe+8AUAAOj3+/DRRx9l/fbBBx/A3/7t30Kj0ViY70zzkA3L1qu0MPlKbWlNaThfSj4b/FaKR9jawpQXpcWlN7ve2cq1fUttbS7XTWm5PU7faWwlagNLsNk7tvlMSnvdEXsMvgxttkxQH6bs/VoicAKWnrs6njtL8zgefJ1WseDL3PP53Cq8eb6rnhB9YesLzbcAukC0beKLDa1C7dNXqNTaykDFYD6fZxNczDqaypxMJjAajTIlD+Bikm232zCZTDKFD3kZwK44+TqVfHm+qLEi0bLsyazsciBWe8SonxQ4MKEoZ7WpLJdRLX2jyVtTpk++Pm2oTTubzWAymUC1WnWmtY05G70mWqTnITJmjeJAHTq+33F+1uicNB034l3jmOpvtFyX8yYvv/G65ZkXNM5vW9lrvOhz7kij4H3E++9lkEGmNvGZ3/LYFFcRWhmmTb8KxAxEUj8B/bvb7cLR0RF89tlncHZ2dsmBGFoWwAX9ksNSC0mHuQ7jXZo7Q+21or+5Sgi1W2yBobz0xPA3XLV+8wn4mRDDN6UZU3n1MjqOMeBaq9WgWq3CYDBYCErxedtWdtE+Kv5+WXI1JNhL00p2Dv5dqVSyhQ+0TvP5HIbDIQwGg+zvbrcLvV5vIY/YvsGyQcMHPuD6SYivUltObH8KRQgfut7HaAObPeRbdl5f2MuO6ywXyoSgYKzvBMYNYSr4TU4o245YxGQyWSgDd9OGKusxB6rG+NcICf58Op1mSg9NU3bjmsNE46qcej58k4eOWE4hvttVwnw+h16vB7VaDZrNJkynU9W40sDkjJ7NZnBycgJpmsLt27ez961WC9544w04PT2FJ0+ewGw2g9lsBvV6fWHVFdLnMx7L6GizObvLHiC9bjAFT1xpQ9770ATwgs9t+VLDSpOvjxyjsAVZtE4ErRPSh87hcAij0Qg6nY4qIIv5A9jpRnoxT747H0EXspjkkm0xCX3/MqOoNkiSRNwh60MT/Z3HgeOatyT9DedA3CEbc8EDzQO/K1KHWkOHSqUCzWYz29lnk2t8AUBZ2zmmDcVtRddOoWXSdpVB27WsiySq1ap6ntdgNptlp2nQ+eEXv/gF3L9/H87OzmA6ncJkMrGekOCDNL1YCBsib2MGolcNvuiIjsM8dSwj364CIWM4dJGARmbQPuWnyryM8J13Yskflwyx2TAhZW1ubkKr1YK9vT04OzuD+/fvX+p7vnEGecnFj0XyEJdPRZcXE9R3gKcroE8Q+Wg2m8Hnn38Ow+EQhsMhPHnyBL773e9eanM8tYjyjasdrsocVUSAVKq7yX/ggk1GaOR7yIIPLXDRqEaPWUZQ32Yb51n8tkZxWNteOgQFY/MEYjm4YwpX99CB1Wq1YHd3d+G7NE3h6OgoC8jSST1mx7tWuklpY03qJiGLQS8UlD4Cs2isYuCFlGcKPOBzVEwk45EaJabJUgr+5OEL3uf0iEbK93fu3IFqtZoFPLEu6Bigx+DFnLxoO/R6PUjTFDqdTja2kT+1RoBrhZMNoTzok79vnhq5EQOaFachAUnNt5p8Q8DLDnFAaOim5UhBNRf9Ep2a8nDu8pUPvm0gKbIxeI+ON9N8aQs0a2igcxv+9pnz0ICSgho+vBGKq7oAI0b9+Rw4nU5hNBrBZDLJ5iVahmmO4EYwHTemMcedPwAv+KYo443PPzH6XGqbEGcJ12Figo/lPPmXNVAkwadPbN/aYAvExmz3PIhdLpf5ee3OsvCT1F8ue4LCZXf48lQe+NjHvqA7fTjQDsJ0mjZD0CtS8LoDn0U8Wh3HRhPdEY95mOaNVfCtRp5o6HPxo6QL29JpUHYdS9JJED6BEFe/mMrNA+14N41Z/O26zuRlh2s8mNIDuH0NmvbW2ka1Wg3q9Tq0221oNpsLi6aozh6iD9t4yPXMBlf7aPy4Jjq0tqzrvcsnhmmkhUtvvPEG3Lp1C7a3tzN7i25ywLmOnsiirWNonVYBH/vIlpbbl5KNGWPekoB5a/KP6f/X+GSl/yUafOc0Uzk2HtX6gLRprzry8F3s9lnP7zos9ZhiaTDU6/XsHhiAF4Ejqqzt7e3BV77ylYW8ZrMZfO9734PT09PsmbTrYFkDz6S85HHUmPJP04t7AWq1GjQajUyI8SMqrjqWKTx5WXwVH73flH4jBSKKcrzjym28Z6jdbsNoNMrOHa9Wq/D1r38dms0m/Mmf/An0+/2sLqPRaOF+CMwvdpAhTS8WSZycnCyMbZOiajIqQ9qQ0hA6DpY5URdVVqgj+yrJjqIXn/A21PBj6LhHA4nfGUnfhxqcfCzY8vINSsaSczbZwMsEeCGbaVDNZqxITgFJVl8V3r8KkHgDF46Nx2PodrswHA4XVhPjYiPuXKCOdx6gmc1mmWNbS0+1Wr204M+FPLoI56sYux/y8Osy+DyGE+KqAPlz2TuBqCyP4aRco3hIQTfpXahD6zoBF+tIQDmepvIdbTa0Wi1ot9sAUPwCTxOq1So0m81MfwGItysuNlZlF5gCTC7H+csAepqLBquWG7ZrGK4rOM8WHdySvsmTj4beTqcDzWYTdnd3L8kvrpe78tOUF3se5LaxNO/6lBXTjnQtdEiSBJrN5qX3v/Zrvwa//Mu/DI1GI5tD+RxZrVah0WgsnCYUSndZdyT69puUnvI0tUN5ObF0f9oHLr8Gp8G3vlrY8uX+IJPe6oJrfsjbtmv/zhplhzMYm3fFDP+G54fHrTYajSzQhEe2Ydrz83P45JNPYG9vD/b29gDgYvDevXsXdnd3YTgcwng8hpOTk4XyqGFrUuxddTWl0eTB62yb2F35mhx6/KhmjbJStGFvcyTwNnDVV3L+m8ozBRxs9dX2OTqKbXSaVvVI5bvSmoDH2yG4kpUkCTQaDfjSl74Eo9EIptMpnJ2dwdOnTy/RGxt8nNF+mc1m2REqm5ub2c4odMbTVeIcLoXY1G5aA8jGj6HKBU/r6vu8cMkaTVto6yblVUSdXDCNKwqXzAiFTV5r+U7bZnQOsznfaXpKowTMy+Qc5gt7bI5CrbIeQqckx2u1WuaEDQ2OSW0qlYf58yA5/VYa59q5uOzIQ7s2QIT9qT3eOoQuOocjL0u6iEnf1TqotOMSx9d8Ps9WtyN9fKGAplxON+VXk7y2fW+DrQ98bYNVzBuxwQMquKhmMpkYeRoXyOEinNDrI7TOmlXDt49Rfkpyl6bR5LMq/qJl+wZPytJ/eWzlUNCTflAuTqdTePjwYbYoFheaamg1pcNj4SmPJUmycEqJb94ScPHP0dERVKtVqNVqMBqNnPRJ80CZ4LKnXXO1aQ4KrW9ZxowJmvnSVXecW2LItTz6qUlv5rowf67V9a8LfPwPsXx3JvkRMgfz/9Hucdm4mjqhnDflFZMfTGMvtAzJHpDGstYeNPWRZvzM53MYj8fQbDZhZ2cHNjc3oVarLdAzHA7hwYMHcHp6mj3nG05CbADt87LDVy7R/sqjg7v43tUnlC/43GviGer/sJUtfa/xx/N8tAiRW7b2p/leVb5cBsqqX75sCL4zliKPA2YymcBkMskcUrjrbzAYZGm63S50u134whe+kB1XXKlU4LXXXoPZbAbHx8fQ7XazXbImxTAW/SagUmFTVLTKt8tQQQOPOnFqtVopV9dKigttKwpJAZQCSz5wKbCa/KiDgLYxr5s0OdoMe9+60GBskiSXjPo0TaHRaMB7772X3ZX04MGDLBhbFEyTIj6bz+dZMHZrawsAIAvGokMkj+PHNOak5zbHel5HgPb7opyElA5TGZrAgqk+JmfoqgJPvNwyKF0+7evDB6GGk5SPKehI+cYmw/i3LuOc18GWJzdgeToajHXlZQI6ebXGDq0np5HSje3g0j3KwKexEeLATpIE6vX6JV1GWw7VD1x9ifOMpCPF6A+TI1J6lqaLq6mRLh68CxlXdC7l47pMcMnHq2QkYvviyTy1Wi27hwvgsn6Ii9NwEZppsZ+rvOsCm1Mqr24RIpfylgGwKOvpHW5FIYYDLDRNTKRpunBKAs4NDx48WKAp9F5Z6nuYTqeX8jLN4678TMAdvEdHR9kzvCs6b95lwCp0f8nHs2waQso16X/a733vU7b5l3znWJdz3CTDpVNNfMu0lXEVYLOj6TOTn0tbbxqo9/GZafNHvdX2XltXno+Jf2KPccn+jZGvqSxahu25a6wCyLtQcUPTzs4OvPrqq7CxsXFJRgyHQ/j5z3+e2UCmvHi5El080Fe2MekbJAzpd8kXwMvRlOXL3yFjwRYPcflaJH+2q0yTDMJvKT0uP5ipbaU0Ei9qdbjrAh85vka5sNRjiilsimCSJLCxsQHT6RQGg0H2/NmzZzAYDOC11167dIdso9GA1157DQAuhAEGcJeJmM4lKchHjVTqVESnHnf+hBqry4DUHq72S5LEqEDYvuX3yiFcwQ3pOSqRWkdziNFjA+50bTQa2XFbtVoNut0uTKdT+PGPfww7Ozvw/vvvZ8cE3759G775zW9mPPP48WM4PT3NnASxHETc0fzs2TNoNpuwv7+vzgMDLVKgxKY0m4JLmH5ZDoOXZeJfphKuHWt5oeUNSUHlz23fuJ7b8vEN5tnS8byobDXdq8nplGjk90NLjgHbeDUBnafSUc4STMaQTd7TdLY8XUFZ+kxr/L4MSNM0u6MPg1b0dA8K2k+hQexVBvVMTh8XqPOS5qXNh+ooRcnotTG3fKAcpQF8/n6NNdaQgTax6Y7Y2OMnhuwtgz0Rk4bQvCTdqQxto0Vs3sJTYZYt803lUb1ac2SnKZj+MsAneEO/8VkYogns0Wc2SH3VarUy/R31kNFoBM+fP1/YIMB1FvrMVE4ZoAkU8fQAfosyTPXlfSSlazQaAHDR5s1mE27evJkdvY/5P3z4EE5OTuDDDz/MTo00LUbFctY6pB2cn6XxFmJ3cf+BzVcgpQ1ZuEGR15/HZYTkNzfZ8LYgsQ+tvnJtjTXKBGcwNnYQw7aihjoZWq0WTCYTGA6H2fPz83M4Pz+H/f39SxfF12q17AhjgAtl9fz8XEVTiCDSfOMK9iFMTmApf3SyYf3p3YlcycFgrCnPIgJUNvq5MNYEG2wrdUwwpeE7RjRBOq1DONTx6st3uMM0SRJotVrZCuvhcAiTyQQePXoEZ2dn8N5772XK8s7OTqa8pWkKJycncHp6mvFO3mCsqR+73S6Mx2PY29tTG46cplAnvJbGEPiMG58FB0UgT3mu+i0zIGvDKmhAuUDbiAcJQ4LIPjzF5w2Nkktpt+VBF5G4HDBS+dLpATaY5khKJ8oEzekPlH5OI6cV/7f1hWmuMMknU8DE9V3ZEUNnwOMh6/U6VKtVMRhL+yOvfmILvtucQhrD0AeaPud8a6PBJH9xzFLHi20Mr5EfVIbkDYKbZIkki4vQ4dcIg20xTx5HpyQPeHk+dBSBVc5jLsc2Bx57XK/Xvehe9hiz9eNVg087S2Nl1XYUR2ydwBd04X0MGmK0J85PmgXzLv3uqvJ7aDuG6ruucWIrR0sX/Y2o1+vZKYb0yrTT01ORJu0uTKmsonlBki0hbWTKjz+X7EdTfqagU61Wy6666HQ6cOPGjQV9fzabweHhIRwcHMDTp0+h1+st5GebL7UBsasEyTeirQP34/P20cxNvu3lypP7selzV1DSx6612R4mnw9Pa7NbTOVp6XJB6udV6w5FQBuLWqO8UO+MzWNMajAYDGA8HsPGxkY2qOv1Omxvb8N4PF7YIfv222/D17/+dQC4WBn0gx/84NJO2Pl8vuDkwzP0TUpB7MCCNj9bGknI4qXr9Eg/U7/Q+ttWRJUFNuc+ggc8TEE7X1618beNbzQoImiFAUvpeN9GowFf/epXs93jT58+hZ/+9KfZ+/F4nB0ZDBC2kkuLyWQCn3/+OQBcOOGbzSZsbGxAu92GRqORBWzH43F2xF8Mx/GydqNRRSNJEucY4wEvfFY2LCNQvQzEnrdsY1nDazZ+4QttKPC5NjiqKV8qB9/jimfTqktJ2c6zGw+/8xmvPneMcmiMixC4+uhlBzVocVGR6bhoKifp/VIcefrNFODQ9J/WwDcFUPg8UK/XoVarwXg8dpbPDeqyyd2XDWl6ce99q9WCRqOR3Qtp2vW9xvUDn8sRSXJxFHuavjhanwZX6ZzJnaFUH8DnZThhgS46WAY9SZJAs9mENE2zMaUJPISWFRPY5+iDQB1hMplEWbxRJvD5KAQuWzz02+sA20k1FL7t4KtDafoB5V69Xs90PM2u2TUuQ+snDPk+BOir2djYuHQ/KZVntL9NOr5G/hXBM5TnpTlMo4Nr6OaBM1MA3eY7wu+wregmJcS9e/fgnXfegZOTE/jBD34AP/3pT+H4+BhOT0/VV8Bwmih4P13Vcay1lXx8Kb7zOF98YQvQa/L11SFcAVxTWgSOF01MQWvL+uJlCLKu8fJADMaaJhmXsynPYMBJm+aFd8jyibJarUK9XodOpwPT6RS2t7czo3A6ncJ4PM6+RyWQT4p56dXkQw1uVx6295KxLn2HDvTJZCIK+GULK1eZUtuYnIumFTghRgctX3oemocLpjqFTEbz+Xwh+IFGPj2mul6vw+bmJgwGA2i1Wtm3zWZzwemLO6h5XWLwzHw+h36/n/2PNCZJsqDEY3DZdLS2z5jlhgGvh0nRtAUETMqS9PcqHOO87GXRwJXRmGX68B9Pa+q30ECh651PEMYGPlfZyvJtb99+oY5greOVO5k57aZy6Le2fF3PYyn2vmlcwUT8vQoDNubc70s/HwP0f3oiQ4hTMbROMQO60pj0aSPO+yGGsVTuqgxTSYfgz6+qE8cFtDnwh9dZmptRF7LpES8rYo/9VbUr8gUP0PrY2WXkBSqv8o5patfyuuL/eK2Ky7Eco61C85DGMnW2o05FFyCZ2jBvmxZt8xeRt0ZXWuZYiKVfUmjmd1caW9v4BARC6qMNDuA8aLryJBSr8GXlxTJ9Ai77MeRbpJvLLDzdZjabLejzPvXl/BSzjWx2meY7rX/WVTaO2Tz2aZqmCztf0YeGfrR2uw17e3vw9OlTODg4gOPjYzg7O4PJZKJeKF4Erup4Ndky/G/pm5C2NPmqXLRo8/UZ/1I9qI5GwdP68rk2rUZGSLS8jLiO9S5KjpRFPonBWBthGCyJdc8kRZqmcH5+DtVqNQuw0mMwEP/7f/9v+Ku/+iv45//8n8Nrr70Gf+fv/J0sOPXgwQP4v//3/8Lu7i5sbW3BkydPLq0Mok7momFywvjmoWn3L37xi7CzswM/+tGPsmMpKMroENMEM2z8qD0OE4N9PMBgMoh5XtJx0LF4KMQowiNh2u02tFqtbLfp6ekpnJ6ewn/6T/8J3nnnHfjX//pfw+3bt+Hv//2/D9VqFWq1GmxtbcFHH30Ef/u3fwunp6fZDttWq7Xg7IgloGjbjcfj7P4KADA6VmhQNs9qWh9FP2R8mnbg+gZuriKKdm5qgnScHlcQM8bESxVWU1/Ssmh5kmPCZ/y7AjY+9UMa0MkpldXpdBZ4vNfrico4VdTpndoob7mCnsfZGTMdwpcvNAEUXD2OTtjRaJTpKcvEKhRNKUjpSh9KZwxHX8w53Xc+x7uQ6/X6gm4SUifehnTuzNPGsWGi6brMjRT0xAMapO33+xnv2ngP+YnroC8D6Ek4VyFI/TL1TQyY+pLqD41GIyjoa5rT0aeA73D85ZWP/PQpXBSN5WFA3ne3fKjeVOZxclWQtw1d/E2RR25IV1KZUKupD8RbgI/uXavVoNlsXjrFLQauG19TuRPr5D6f9Cb5QvOw2S2TyQQePnyYyTVNuejb1dBUBEKD1QB2XyX/7drtakvD/R9oE+B3rVYL3nzzzexEnYODAxiPx/CLX/wCDg4Osv7w3b0Y23e16vHK/e95oIl70L4yweQf4vpjHv7RwhRc5eD858rLVJdY/LBqvlpjuSjaz7xqqLQy08TFB6WPAmBywNCV4vReVDzqZD6fw/n5OQyHQ3j06BHUajW4detWpmBub2/D7u5ulme/34fRaATj8XjhqDuTMlzWyDt1RKDRx4Vdo9GATqcDW1tbCyuocGeiRMcqHQc+xjWl3WacSg4baYLg3yEtnCabo9DHOaSh2QfcKYdOviRJYDqdwuHhYXZXa6PRyBS2Wq0Gd+7cgdFoBD/72c8W8qRKiw9NkuPd1A+mI7alPDg9tna29QUPxtH0AJfvEubfmfJ10RKaNo+sCDHCYvGjlFdMaPiSj2GpX235ayHxuhZ5DEGa1hYI1qTj6U3/m5yUGnmhmWt9A9H8mcZZaZL5UjottAFGTLeso9NXDVsf+H6rNRTzyLK88jbGN64gmzQH8jpr+NmkA3LHjwumMZ9XnyyLYVQkqO6ONo0rEGTTT69i8M+ly5nqFaKTufIqe/uFOhND67WsMcjrZZrHpatYfPL3fecLiW6fAOqy+c82R+aZz0LsY9O3God2bD7V6hqub7X+Mvwur23JZSK3ofnCT1Nepv6SdAMbz1O9lzrw8/D5y6AXaFB0MMyVP/U9TqdTGA6HMJ/PYTweZ4EqzbxatrnXNoY09QAwyzKf8l0yk46jJEmyU+5woU+/34der5dtxlmlL2rZsNHvoyvGyF/iBY2NyuWqdixp+jkPf0rfhYxhbftq7CENjdqyrzLy2oBlk8XXHaZ2XgjGapyFmBHfkegKdOZBs9nM7pfESWYymcD/+B//A/b29uDf/Jt/Azdu3AAAgP39ffiN3/iNjM7NzU349NNP4bPPPlu4xJyuDlz2bpUQ5sf7ZRqNRnZM82QygdFotJCuWq3C+++/n+WN9wegwoQT97IGYIwgjeSElPjQVA6vI+9rk5NfQ1eappdWpfoEBHh5yxCIX/3qV+ELX/gC/L//9//g4ODgEh248CHP7ndb+/HjlZPkxSpJDNTW6/WFvGgb52mjIpzzNE+++3rZWKXCsYyyTeOEPnfdZxE7cKwZu64yqUKV14AKTYdHiNPVj7hrr9lsXqI3b5mm4JJvGimt1N4mY0pqd1/ecMk7AMjuDTTdkVoGxNbfaOCJGq5a45F+S+VqrJNZ8sy7IXIk5Bup3ULpDdFN1igHaEAW4EWQCp8XcVrRGqsBdwhjX/PrSRCrmk8k3X1ZoPPCVQMdt/RqGfp7GYjFN3n8J5IuT69c8j0ZKa9zctnwoZX62Vy6MO7Ixh3a/P0yx+t0Ol3PT/8/yuT89qWh0+lAu92GwWAAw+EQTk5OjLwoPQ8JopjSh8pJE70a25w+k07lM9VDWz9XnajtiLKg0WjA1tZW9u1wOITz8/Psm9Cd8NcV2rmK84mpD/mJGCH3D2toktLk8VVy2HZo8xiJaQOLCS49jbf1VdTp1lgjDxaktG31Hk/H/88zeKSVIqiE40SCQaJms5m9G41G2coseg9lp9PJgkk3b96EyWQCBwcHC0f34tGsNCAUCu5gk9pL6xzWgDpjarVaNkGfnZ1BpVKB3d3dLJjVbDZhe3s7E6ToXJeO6o0BW35SG3MHkwmmNC6lCr/TBAZMdLr6Ny/y5It3JOO9EXik13g8hm63C9///vfh1q1b8MYbbwDAC8Wh1WrB+++/D81mEz744AMYj8cZX4SuRHfVkTsbaBn0mRRQKbIPNH3vk0/etsuTD/92GYafdozlhW9dymDsupDXqAx5T+8uA5ADW/R9klyswE3TFLrdrujYMZXNx3ieoJdEo68Cz4OCpvxNdfTpq/l8fknPKDtPxpD7trna5XDWLFrISxsN8JahP5Ae6mjloHqS6Uj8GG2j1cdilOeTfxn6SQvsS2kRAsKnnZeJVbaz1N9cvmt5XbvYIxa4HWmaU106TJkc9QD2xa306N2i6OULUKRdfrHGUKxAAf3O5cxdRT/70LFs+YR6p8YGtcnX2MjbTyHBJgCdPUrnG/wGv7Mde+tCHvsT4MVCPMlf+LLAFmSIxbdan1uMdseTzdC/aron1qVb5x1PIXXRzq2S34m/d+kqJhpdNqvpG5p/pVKBzc1N2NjYgCRJYDgcwmAwyNLj9Rfcr23SpXjd8P1VH6ea8aX1GWjL8vEl+ORn+iaUNq19nXcOwDxcvnuJtlh27VXnYxdCZOlVta2vM9RLZkzBEBoYxOcxFNdutwu1Wi27Oxbg4oz8VqsFJycnMBwOs/R41Fe1WoVqtQobGxswHA5hOBzCvXv34PXXX4ePPvoInj9/nuU/mUygUqlkwauijUqpjnmB9R2NRjCZTODTTz+Fer0Ov/zLv7wQjH3zzTez8vByd7yfDAXlKo5OjCEQtAoQ5VtpctQ6H7GtyiLAxuMxjMdj2NzchEajAZubmzCbzeDo6AgeP34Mv/d7vwe/8iu/Av/iX/wLaLVaAADZkcX/7J/9M3j+/Dn8h//wH+Dg4ABGo1F21wtA/EA9vavJtBsdF1/YJmKXgerr5ESeyLOb1aZYlIVXigRv8zI4FbmzpmhwY1RjBPjQaDMSXWOCftNoNLIjy/HYf87/tVoNGo0GAFzM7Ts7OzCfz+H4+PiS44eWQeeS2O1eVF9qx6ivcYAyrl6vW+9Huo4IMaRiGV+uMnDR0SqdhJTfcDyhTmozlF18GqJTSbJoWXLzuhjKtA1xcSTXb3jfSmnKhGUa7JwPpNNrpHQcrnmxKH6jQaRKpQKj0Whh5xkNTFx1fRDlRK1Wg1arBcPhMOouOx7YxnFS1M66ongC6aYnjlHn6lXnA4o8bUi/xZO7NMD2xbEXI8ATq0+WKTv52ED9fjqdLnV+4XYv9gnfUfUywLSAhO+io35TTZ7SfCZ9y2VoXmB/TiYTmM1m4m5rijLrNSZQ/VfiUyqz+d8cmvGvGQuST6VWq8G9e/cy+/zo6Ag++eSTS9/SExApHVpf51WGpC/6yOFVxgGo7IytJyxL/6S8ZhpL+JvS4zM/lMHHeBVx1cf2dcWlYCwXBADmQAOm505oKV0I5vM5DIdDqFar2cTDMRwO4a//+q/hzp078M1vflM8MrZSqcD7778Pe3t78JOf/CQL5FLHXJFH95omQV/BiI4erJM0qGazGTx+/BjOz8/hzp07UK1WodPpZDsoO50O7O/vQ7/fh/F4nLVXzLqb8rK1g6ZsLW22VTY22AK29D3+Rp6hd2X4OIuWIRRp0HM2m8FoNMoWNYzH40t8hLtm0YgYj8cwmUxUZdn4WepzKmds96ZJckWzekrqexuNeXif847mHjj6Xd7y82AZQRBX2QgbDdim2rwkFOmM1dKA6fm86ms40TxswRMTj6FzsNlswnw+XzCwccw3Go2FHbLaumlo9nnHadfyAXeA879t33PdRsrfdrSPiSZTWWu8gGsccR01JH/J0ZHXWMV5Lc/VF9wID9WXbPlzXWaVBi2OM+q4LANdPgih16XvuALiNrssNq5af0hYBs+XQY4vq4/y1jU0OG0LQPiUjb9j2GTUiW8au5IOIpVZhjEmjREe8NTq2yE2DuqmuIB3PB4v0OWTF0VoX4fqBUX0JfKWFHDQlF8kf1UqlWyxdwjKwPtFQfLZSXpo3qCRNgjr8tWYZGPIGFr2vBjC9y4/N9VNNf6mkKCnqT+pPTGfz+Hk5CQbY9JpVT5yUsMHZYLkOzGl83nuys+WDx8rPHYSOu/EaHuXj801f/DNRy7/vvS8aF4qG4+WFWUd02sY7owFWFxtxztQI/ykScaXAfBC8mazCfV6XVRUhsMh/Mmf/Am88cYb8N5772W7/2i6arUKv/IrvwLdbhfu379/KRiLO0zpSr5QxdvkwKVpEL7pAGDhKFkJ8/kcPvvsM2i323Dz5k1otVqwtbUFg8EAxuMxbG9vw9bWFnz++efQ7/cXdseaaAlFbGPH1HYmYS/lSR1/PL1LGUNg2+Pu4sFgkO3M1sDkZLP1gat/kG9t7YhHVO/t7UG73RZXmlerVWi321k+5+fn6mAspVOTjjpgsR95G7ockjZjX2oHabWuT3kmGniZdMW26xsTrXkQUg9EXseDr3EpOalsjiwXTGXyO15sbaQ1ZjRy0zTWqYGngXT/Ji3bVR8+NpBH2+02TCYTGI/HWRrccY9H4ftAWtXpGsOcTtOcaKujS5bbAhza+U9j9Gr1pZcBPuPW9A2OFT4Hp+mLXYguB5SPfiM5y30MdN/dDvx/if8p34bKZ5pPnvnBtzyEVgbgd2UIbC0LJr3UJF+onJTayaZDmvJfY/Uoeq7QzJ3LxLLHOZZlOxI+T954XQwALJzepUWZdAVJr+Q6q49t5gM87azZbEKSJDAajTL7MM/cZ6Izb7uH2HMhDnppDvDVrfKe7GXSTZD/2+229Vsfe/0qwjT32naISf/7BI24DcX1CRd9nFZNOm1am49mFZDGjI/97vLpuPotpF/pkdCz2QyePXu2YAPZ8g6xQ7TfrQJaumLQr2070z2xtna16WIxdpb7jE3T+DTdFWvzQ2uemejQpjO1rZR+jRco65h+mWDiSaOXFZUHF9PjMTx4LC7AC0W6KLTbbajX69Dv941HF+Fu2lqtlgXMms0mfPvb34aDgwP467/+6yzIhArkZDKByWQS5ChHaJ3Frjx8gHXEu3Tx2a1bt6DT6QDAxVEWZ2dn2TcYkDs+Pl4ItuUxoLSgDkEsE8Bvtwt3WtkULJfBaHNc0fyRp6bT6cKxXI1GI9dOmBjAY9HQeN3Y2IDpdAqDwQA+++wz+IM/+AP4yle+Al/5ylfg9PQUhsMhbG5uwq1bt+Bf/st/CZ9++in80R/9UeF0mvpE+l9yTGqV+jxBABtsym4e5aCIMXfVHNqaoBnCJ8jLv6O/eTo67kPaTuMot9Fng0ZOub7Hu9ZRlvHFD7b8arUa3L59G4bDIRwdHRnrumyFT+tMyxOItaXhQTJbPpVKBZrNZnbUF/1+DTeorKVtHTJeQ/l02XzuOhEAwH+ecxnUMXjyZTP86EkiSZIEHau6DN7iDnDuyDXpTi6+WeNiERMGO3B+xGOLqcyyBSHK3MZ0dxC9P3AZtg9d5CItmCmiPFe9tPYqQtI7y9DXvD3p377HafLvNcD0ePR1pVKB6XSa+TR8dH0fXliVzhpD90/Ti80E+K7T6cDe3h50u13o9/uZ7HHt6AsNALrSoVzIc2/tVYMky30W6RdJiwm2wC0Fl7+2Msq26EdbPh8jMe13Xo4rD7qTGvmIXy1Hfb58k84yfU3XCRofI+WTmLy+6r7hwf1lBOm1Qdg11rjOWNCyqaFIhb8NODBxdymdMGKBO9yazSa02+1LtKHyRwNnrVYLOp0OVKtVqNfr8PWvfx2++tWvLihImBbptu081dJLjfG8cBnxtVot26WJqFQqsLW1BTs7O7C7u5td9g5wIdi2trbgxo0bUKlUslVXRawW9oVtYnM5MaQ0NF+uZJkmU+QBaUUcD2AkSZK1v7avqSJmo1mqG13JRMubTqeZw6dSqUC73c7ufn327Bn8n//zf+Czzz6DNE2h1+vByclJdhfkP/7H/xi+/e1vL+yA0wQ6QyEZLJJBwJWi0DEVc4GBtr9MdPC86DvTMUah5dnKlhAS3DSl43Uz1UtTTl6jQioL29tVtisv07jUBOaQDl/+lNrX9E76Do+sp053Kguluw0BLuTf7u4ubG1tOZ06Lpqld6Z+iq1LaPmLp9HoNTbHBp2vQ49xe5mRpmnm3HMtfjLNFz78xMeFb16m9/x5qMyR8tXmeRUQU4eODal90Tk2mUxgNBoVdselCbHaSuJ7/HsZoPbeMvg4dN6SgFeB4AIKtIdxAWfIHEixyvHAdQ48PSvvvC19b7PhqENaU04IH/nkHYIQvS8vfGnV2lymvqDtru0DtLHxqFsMyPrSXSaE6psa3qMLP1qtFty8eROazWZ25QjXV2x5cXvAxz8h5Uf9SpwWKb2EMs79vkB/osu3ZYJG38sLm33DZYBWL1uVjNPyqkufD7ETtOX45ok8RH2NaMvTxRbUD2+yPa4ytL4OCpt+IvWdpj8RIT6kVcM2V3Mb2yb/bXO7Vj9zpZHGp8YWXhWKpqVMdb2qKGsbLngE6X2kEkwTNd7tik5GNEDRUMt7D9R0OoVutwuNRiMLMCXJRUBxNpvB+fk5PHv2DH7/938f3nnnHfgH/+AfZN/ihfPtdjvbJdrr9RbqOBqN4Pj4GJrNJmxsbGQ0drvdQlf8hjIFOn34XbcUvV4P/viP/xju3LkD3/rWt2Bvbw+++tWvwvn5OZyfn0O324XBYHCJntlsluW7TGdImqa5AuCaMvIaQZPJBLrdLtRqNeh0Ohm9yOe1Wi1TkHiepnbkd4vmcai66ocBWx64pxiNRnB4eAjtdhs2Njag3W5Do9GAbreb1SuGQmfb7ePTV/QbE6T88t456KLJxxFVFgVZY1wtE1LbaO/iBZDnG017a9PwcnjZ1GkYi8+oAmwq2wQ6L+P8iQubRqMRAFzs7MG/aZknJydQr9dhZ2fnUr5YR1TeuWyxtafWUeU7rjS6Bm1DdJi7+ilkDNCdHXkXer1MoHyj4fcYYwzL9JkfkCZqwKJjRLOrh/K2Scf2rUPId8sEr7NmF1qZoJEDyEN8DqCLPlEWA1zm97LoBbFgk8lYX9s7LaissAUkcM6KAbqLbw09uFynu68oT8QcD7a8UG77QFrMjXmVaQznpSXmfMIDf678eduG6L8Uvn1DZbhPO2hOtQhFs9mEt99+G5Ikyex6G3ibFWGXzGazLECEizXQPxKKMo0hF3yDbpLNlKe+kr1pk3UmfZP3F/XjamiwlbeKOdLFfzZ5wvso75jR+hdoO0ll4qYLHGca/42tb7RB9jKjaNp5/iZ91cYjsWjM4yumedBNWNK4R97ndC+7rTldZcQq22QNHcrahgvBWO605s9MgogG8bjSygd4iLGdpilMJpPMuYWo1+tZMHI4HMKHH34I9Xoder0e1Ov1hRVErVYrM7JarRZsbGxkQWRUGPFuWgDI7gDldShCkdW2AwVV8iU6ptMpPHjwIKO92WxmR9ji6u3xeLywAhXzWragC3U2upw7NE1IORK/T6fTbHUazZMGZnkw1gQ6fkL5SaKR8gZ1Ko/HYzg/P4etrS2oVqvZan1cSbe9vQ1pmsJgMMjGDvJHv9+/VE6RQk1yYuJzCp+ArCtNCI0mWnzbhrania/zOiA0NGD+Urv7OoqLCqBoyncFYpch42IE3Wxt6DMGaZ+i4Vav1xcWODWbzWxOpGXg0cauwJLkBKDjLm97SH3nMi5NefBnpqCf1P4mPchEC76nx0mtEtcx0GPCKnSZNE2zqyOke9xt8wZ/ZhpPMeHKt0h+cTl/ymh0a/qPvjM5SDG4gDqarRyb/qKVR6FzbQxw+SnNyy470bc+kk5F/46tC5p2Qhehe8aCTxtqYdJVpHda/4IPfPVkk5NRW26SvLgrNkROFiXXi0KeOko2jUtvwu/zjGFJZpvycMlzbbncvg+RO6a0qE/v7Oxk13BhUIbf6UvbXsNreXmRLkqz2Qyx5HAZ9VmbDOTPaN/kLVNbbgidmvKlb6Q5OBQx+9pUT6kepnKL9oGZnlP9UesD0/hMXGmWPdZcsthXltn8BaZvfGhyfZ+37Xza30cP4gvGpblaI6+XMR5CZNEyYJIdy6SljHOhD0L8zNcFC8FYrLg2mES/4X8DQBbMBLgcuNU4VDlGo1F2HxOuCuL4+OOP4fd+7/fgm9/8Jvzqr/4qtFotaDQaC2lu3boF//bf/lv44IMP4L//9/8urtRKkgQ2NzdhOp3C+fn5UhjDN39UvNHx12w2odFowHA4NK4+297eho2NDajX63B+fg47OzswGAzghz/84aUdUTg5F7GSTXKUFLVizmdSwkkIHea429V0hHOlUoHbt29nPDYYDOD+/fuX6uIqm+avPeZb4snBYJA5B9BYG4/H0Ov14Lvf/S58+OGH8Nu//dvw/vvvw2effQaNRgPu3bsHb7zxBvz7f//v4W/+5m/gv/yX/5KNMVM5MQSm5lvJeKdKA6eJ0kXTSoqETdnliGVISHnxsRDbMRPaR6Y+Dm2LPHXTOGu1Zfo662IgZnCFfkcNs5C85vM59Pv9TI49f/4czs7OsgUaw+Ewu1+alq8tz9cQ5+PA5sAw0WJy2mmdpVR2u3ayagKslF5+/M8qlM2rpOCaxm6R5dH53wfUiE2SFztj6ZHKmrZ3OYm1TlVX/kWlB9A7uq4SiqAfF7uNRiPR7uJzHpV73Okem95lzZNXmSe00OyQR0gyjy/q8HEe+pYXEyY55SMPfVD0/EBtVSrr0V6qVCrQ6/VgPB6rjimP2Y9lA9XlUF5p64iLmnEe9ZmPQ22d0PYv6pQlXga1x/Fucorz83N48uRJNo80Gg1oNBrQ6/XEHboxbJEQxJ5Hr8L8gX5Paq/M53Ojr8fWV1I6TaBEA0pfLH7Q2l3avGLAFdjhc60rKMjzdaULQZqmmf+70WgY83PVjdbLt4/LMNZcdMfw33H+N/k/NYjNs1rZoMmL+6lrtRrcvHkTJpMJPH/+fOU6ScwgeVGw+ZaWTVMZxmcIpDa8qnUJxaVgrI+Qk4QCN7IkJuXBN5+ADCo0XLnBZ8PhEJ48eQL37t1bOCoFj5DCXY2vvvoqHB4eLpSD6VD5p8FkSguWpRGKLgEitalLseKTKVcaqHEwmUzg6OgIOp0ObG5uZkdJo6KOd6Bubm5mKyxpPWk5sRHLWZQHtrbmgoEqOXwneKVSgXq9DvP5HFqtlnhHlLZfabvwNnIpiDimkHepIdvr9aDX60G/37+0263ZbMJbb70Fn3/+eWY487FAd1BLbRQCrbyh7WFTNovkVU6LBiFGEpUvMRzuLoMthtNVqwDzui1TqbUpS6axR+Hbh9p0mnw148SWl1QXNOxw4YZ0fDnKEx5Qajab6lMAbIZMkY5kkww1PXflrx3LkiODzx8Sv61RHKS+s+mzMZxaPE/MN9RZ7IKN53zy4fnZnD6x5fcyncK+0NbVRx5T+8UHMdtI08/07xj6gqttpPdl5AukCY+qpcF1uuhY69yW2jbPGA75zqTr8j7BOtl0P02dJbpssoXPnSE+CxvNtmP7bKDfYyC2bEGImNAGKHyAbW67Z1Sjk2n4TzOuXPXQvnfRqQUdc5J8pPa/JogdatdK4Da6z9iJMaesEhLdtdqFexXv76Wwydi8KMKm0OrGlN9MPEp/l62/bT4L1zch/G4qV/J38e9sfSLlT+tRtnY3wZde07weo7559V2EiU8kHojh6+RtyPPE00XRX4zvYswNmhiJ6xtX2lXbBVdlLJUZL2Mb8jrXbIkkJrftBMHjfmkAJ0mSLDCEBkq1WlWtGnWB7wIcj8eX0gyHQxiNRlnA7ObNm5mSxNHv92EwGMDu7m52dCMFNwK1ziX6bRHggrPZbEKaXhw3e3h4CH/4h38I7733HvzWb/3WJbow/Te/+U04PT2F73//+zCbzWA8Hmf3/2Jd8+xclRREpHtZxzbmUVIxwI1Byul0Cu12G+r1OhweHkKtVoNXXnkF2u02vPPOO9DtduHg4CBbwWpS8nAy4QoXHR+hd1WkaZrtJreB8jL+xqDtjRs3YGNjA3Z2dmA2m8HR0VEWZF61AOWySEPPMlYxA+icSS7HEI6NZdCLdMRyvNvAA7KxYMrPJV9MSip9VyR82sGVTpIn+B0d5/P5HJ4+fQqNRgNeeeWVS3MizuUYoEUZlqYptNttePPNN+H09BQODg6MNIYEX+idwK7+zKtDmOjD/E0nZgCYF15RR6KrHITPPchrXGDVBhhFqIPD5EAJ4QO6UCI02Mt1kLyOaBt43ZH+er2eyZ6rAtNchov1MChHF5KijNGegrJK0KBiTDnlmvdo2/juLLcF27Q08DqbZP5sNoP9/X1466234O7du3Dnzh34y7/8S/jss89gPB6LR5XbyisCRfAYnswU40Qj7qykOoxtruXfSvlqHYC1Wi27pgG/wauQfHZ1ItB2LhqxdPNY+rhPmwMs6lnT6TQ7clfzPdXttTuRtYElE73abyh9scb2ZDK5VE8sZ3NzE1577bUFn1dsmJzrSZJAq9XKfA78G9tYLZMuFwuVSgX29vZgPp/Ds2fPnH4u6d2y7H4XqG/INV+3Wq0sPd+9TU8TWDZcY97nuN9Y0Pg/Ne2Vpml2ioCUl+Y+4rLroBRlGRcctgVEFHntRJ5HyLxN0+/s7ECr1QKAi/nl8PBwYTEZxnMqlUop7bKy8G4ZfOJXHWVqw2XTcikqqTFO+d/0W3yHR3Dw9HRiNym3mgbgzk7+zcnJCXz88cewv7+f3YWJiuJsNoNGowGbm5vw/vvvw+HhITx9+jRLg0Fdem+mtAvI1E6xnFTaVSXY3pITG43L4+Nj+PTTT2Fvby8Tvnh3LH6L96BSuFa6aWFrE8r0JqXdxpcuBzlPE8JfEp34g042TEvvMqY7rF0GSczAPecH6lB48uQJ/OIXv4C7d+/C9vY2nJ+fw3Q6hY2NDdjb24Nf+ZVfgcePH8ODBw8W8ll2kIrC1ia+bUeDgZr8TbS42oCWYaKPykptm2rKl9L4BPyk8ecL21jjAVnTHKAdr6ZgglaG+tCeByHyzZWfDx9S8N2uSXKx43V7exuGw2E2DyJteKQxvQ/TVS+pfB95LcHkVLell3QXac6RFj/Y6DeNFZe8AljewpDrCFN/2+TIskD7N0bwysQjtjmFvufpbXq3z5iMoQ/QMUR/bOWWEXQuc83Lkr6OsPG1yzaI1U5cZ7DJztC8XTyVd9y49A5NWt/yarUaNJtN6HQ62R2iCI1DNQS28Yp0xSyP5+urN/vSY5qH8bk2Tzo+OUxyx0YXL0daGJqHh330wZjy0TanmGxpXx3bpDPR+7NteUi2Usz5XZJNIXMS/z4WjUmSwNbWFnQ6nUuBFrqAHhdLmPTUWMC8QxYsXBekaZrxL+5KpieJYRtxHrddNZBXttr0PKk8TGuSrZJM4KfDUVuRz+VF2jo++Upj2TU2bP4vU9lSf2rnFtM7bGM6riU7nJevkUWrsJV8EUqbdmxR3jd9r9HXbXqtFrY+ov9T+euiCwAyGYXAOQPgxSJ86hfyXTCq8d34+OE0ZZWBZ6+CnVp2lKkNi6LFlK+4JEdDBE4CkgKGx/RMp9NLgzsr2HAsogZ8ApLwwQcfwH/7b/8NPvnkk4XvTk5O4PT0FNI0hbfeegt+93d/F37jN35j4dtutwsnJyfZUbR4z6pEQxmEwHw+XzgSV1J6PvvsM/jDP/xD+OCDDwAA4ObNm/D666/D5uam8f4BqjzSn9hYdlv6Gti2NPRHQq1Wg1arlSngJmiNO62Bj8ckA1ys0MZdvAAAf/EXfwG///u/DwcHBzCdTuH+/fvw+eefw2w2g6985Svw7/7dv4Pf/u3fdpaxbHDHrek9NXz4O0QZhD7yGJWRNmfRsmiSFNEiytcqUi7ZoFGOJWicRq5yfedKbdk+iOW0S5IE9vb24N1334Xd3d1L76fTKTx58gSePHkCR0dH0Ov1VIEHHxptwPxwHrK1Pw/uUEeBydFI02naysa/1IDh+WF51Ahaoxi45mfXd6HlVSqVrH9j7H506UgmhxfXGcow71HQXbBlo60o0OtT6Lwv6XdSn3OZFhMvSx9cF2jkWxn6lOsBfP7kvoSYdqZLB8Gre0KAMnc6ncJkMsl2goXQX1ZZHcs2t+mDtVotW8RAwdsjSS4WFjebzSytbXe2LUDlqzf7tEORJx5Uq1V455134N1334VGo2HktdFoBL1eL7uiy+Ukz2PnzedzGI/HzmtLyuAviw2UX+jr2dvbgxs3boj9Uq/XodPpwMbGRnZtmAkm+0Eq39eHJuVHZbBrFys+r9frC8fzA1zodMPhMOMF7ospE3x4XmvrutJoTpMw9We9Xod6vQ7T6RRGo5H15DubjkjzL8s8ExPUd+3rE6J94+Pzju0n4zxlqo+pf01oNpuwu7ub/UibsGjeeeeyZfov11ijzLCNA28LRFpVQxVslyEhORa0u2z4xMGP98MdiDjJzGYzuH//Pszn82w36K1btzLhg8LtjTfegN/8zd+Ejz/+GB49eiTSgAEtNLpssAUzfJRR2+ocF5LkxbFLeMwYdTpTutDA6XQ6cO/ePTg/P4eDg4MsyEt3eWqClD402niJp3W1IXd4S89ttEh5S/ngM2xXbOfz83NoNBqwsbEBjUYDdnZ2YDQawWAwyJzuLocq9g9NYxoPLuAYQND7H6fTKRwdHWXHU+zu7sIXv/jFS0H30WgE5+fnWUAZxwDeLbwsSO1B24W3kUbJlL6zlevKy5ZecppxfqX3EEtprip4G0vjniKEz+l3vjKWz1mu8Sl9GwL+va1dNIaeDVS24HxLv8E7pKvVanYihKkMyfDUtL2pvhrZ6wKd20z9KZVna3NpzjH1N71nTkt/aMBvjXD46gUm5JU1IXm45JKvTNXKFE07+fKxaw64aggJoJSp/lS20+OVK5UK3LlzJ7MB+v0+HB8fA8D10E1iY3NzE27fvg3tdhuSJMkcr77OaEmnKWq+8JVDPD2l1cQTfLybbDWtTkXzi+VQnk6n2TzearVga2sLBoPBwjVHlF5eB409QdObEDK3xEZIe+ahF6//wbL5zjpt2Sb7ryhZpbVptPn4pE+SJAu0AgBsb2/D7u4uPH36FA4ODmA4HF6SPTZ9VmMHmXRqTd0k/V7jyykrTL4qfNbv9xf6h9r20g40nlfRgTLJv4q/TXWS8qA/0iLUMvSlxKcunVh6X0RdNHIO30l2Jn1PbWDJfnXZ52WDpCe45BJvRx9dQdPnpvnfltZEq40GTX9odcL5fA7VahVarVa2+YryB556hvdb41imOk/R/grt2DLpjmusUWa4fATWYKzNmWlznEoCyUQADnhqCGlABQMeCYXHCdN8fvzjH8NPfvITePfdd+HWrVuws7MDnU5nIa93330X3n33XfiDP/iDLBjLUa1WYXNzM1vxFSoElumEqtfrWTBWk3ZnZwe+8Y1vwMOHD+Hg4CBTGJvNZhbARgFeZB1Md/VhQFNrAHDnvEbxNxkM/F7SNE0z4xGPAH7+/Dm0Wi3Y2NiAVqsFzWYTjo6OYDgcZquv0UDiZUuGPf6N6X13UaVpurBSlS94ePToUXa/y+3bt8V27/V60Ov1YH9/P3NQ4Kq8WEH5ENDxb7pz0UZfURO6jdd4AIz2J1V2qPFs6vMYRoGPsRfaRj4OFYRWGY0VWPEpm8ueog1mDaR2sDlAUJbS49Vnsxn0+/2FHQfLqJdJlzAdj24ClQc2uk0nFEj9yB3oNoOL8wTCRgt+t2r+0eIq0SphlYZb7LJ95joXltEu3OlrsiOuEiSnz1UG9gXaZOPxGKrVKrz99ttZcPHJkyfw/Plz4x13V70N8mJvbw/u3bsHm5ub2VyDQW0bTGOB6v/4P/3tC9+Aq+05n3Nj9/0yZQMuRkNsbW3BW2+9BZ9//jl0u91sByINnsTsg1XLQlPf5aVJyxPoa5D4KE9guwjYnP3ab31pltoAeRbzunXrFvzSL/0S/OhHP4LhcAhnZ2eQpqnz7uKQcesThAUw1/cqz/8AZvrn8zmcnJxkwQ2+q20ymWTXwACsdgEG9T1oAi7Se356HtqYtnlPM65jzilFyFjfsW8LclPbXQq2Jkki7jyndjLlNVM5IbDVc5l6ny24Sf82yUvpG1t+WKbGjo8BXzmtHa+z2Qzq9Tpsbm5mzymfzOdzOD09zWQSnlyK5Wp2c1Mai/avrnF1sLYLdXy7EIylR5nwlSZSQBbfc/BASehRfJLzU3J0cmPVdO8IHsn65MkTaLfbsLe3B++8845RyPV6vez4HNcl65xO6T2m4e3J04SWwwPRUrt/+umnMB6P4a233oIbN25Ap9OBVqsF5+fnRmGLgXLcMYU7kGNf5u3TJj7CXtM/+I466yWFyAeUP32MXZMyRn+HTHBJ8uIO20qlAp999hkcHR3BW2+9Bd1uF77zne9kweSnT5+KeWgn5WUiVj9JeUqKmZSGTzhSnnRneaVSyXYl407l8Xh8KRAVWicNYhs6CF9jzqTo+wQ+bfMQbUvT+JHmOJ7OZixp6DGBz7VozLqO/DKV63JmUfpxRSRdbEIXK+ECApxL0jTNVntXKhVoNpsLR6LbxotUX06PBNN7ehKGBO2cqpGpeRRKlwF5VXAVaY4Bn3qjrOHf4OkZrh0/lM9cDgAf2nzTm2gqCi5H4CqdlRy+wQJpAQjWFXVrPs+gbFtWfX0dlahH8nvHTbDNpzwdnbOpDh3Kh9KY5PwWol/TuxmbzSbs7e1lOl0IXH2Qlxdc9pVkl/pC+i7ECS7pk7FlEOpZk8kEarUavPrqqwt38j148ADOz8/V+eFJSfjbZlcAlGcxh8v+cenWAJcXrtHx5KqXL39Q+Sid8mKqE9JNf2tkFk3H7QnNt6Y6aGAKKjx79gza7Ta0223Y2tqCN998U7xaxFWepi4Al3UAaW4y8bZL5tPnV1HHxPtha7XaQjAS643PKdDOk1D0nK/Nn17ZYvKJUX+Sqe98xqdvGp5WM+5M8synbFt5pjGrpVXSSUzzKv1Gyo/bxpqxaKNJQlFj1tROpjrY9MmQMunfEn+E2lKmOYSWw+soyVOXrQRgH3vNZjPTV20LBlGf0daP0msaazF9KVcRy7Cpy4Ki6nkV2lCST2hfcFzaGYsVtCnjJkWL/k8LdK0KdglMl+Is3UcrCaHZbAYPHz7M8nn99dfh7bffvnSMC36Hx8u22+0gZcIHLsFPYWoP7piWgrGPHj2CR48eQaPRgHa7Dbu7u1CpVKDX611SGLAcXLWKSic6YWIEYyWh7ZqE87Q9z1vK08TfNkWGp+N5xHJuhCoWAC/GIRoHT548gXq9Dq+++ir0ej34/ve/D51OB/b39+H58+eXxr7LYVoktAqsC66+sMk2bd4mxRnbE4Ot9K7m4XCYrUoz0Rji1KL8bXPC8ed5xpp2/Lqcg/iOO35M8OlbWp6rTemcGOo0kAxaSfEHeLFi0UcJlug1lUHznM/nMBwOFxR0Cn7EFvLvZDLJlPk0TS8Fjk2GItctOD28Hrb68WAA5rlsRV8zLvnccV2MijUug/MfOt6SJFHdj5rXyFimgaKlVUpn0i2uy9ig9eBHnKIcTdPFRY3YRnRX5TLgK5NQ/ubtK5tOQu0yLV9oeVFjZ/E5lM9d1L6q1+uwvb19af4sM1y2vdbBzWFznuL/vBzJtip6nkSZjNcz7O/vQ71eh0qlAs+ePYP79+975ed7/7WmfkXIco0eTX/T59xPwW1L+h0P0Njyc/Eif27T81xzq8mOd/mgTL4A/N/kw4ndh2mawvHxMQwGA3j11Veh3W5nVwz56qG+5Wp9f/SZzZY0+V2uEvAOYxqIpXXBk/sQ+L6Ie7G1bSjZYxya0xz4tVYStAu2ikCo/0IrIzVlmXQXja/ClQb97FL+Wr+Ji4Yy6OMmGkL7ygVXnjZZ5uOL1DzndfSxkWz2Q6PRyBbeT6dT427qkM03NvpCfGeuPK8ali0HfeXPVUCZ6TfpNTaaxWOKfQS4xmCeTqcLCrQ06Pl9rz6QBiuu2EI8efIEjo6O4LXXXoNGowEAAOfn5/CTn/wk+/7dd9+Ft99+G/74j/8YPvvss+xbKoxqtRpsb28vBE/KCjxO2bRTOE1T6Ha7C46F6XQKN27cgF//9V+Hhw8fwoMHD7L0NKC0DPAAhmnHICokvuDGlckZ48J4PF6g48mTJ9DpdGB3dxe2trag0WjA8fFxttO6Uqk47x2WYDqONxQ4Dn7yk5/A1tYWvPvuu9m7e/fuwdbWFvzkJz+Bzz//HM7OzjLer1QqsL29DZPJBPr9/komScko1BqaeZ3dJjp80s/nc+h2u1Cr1bLVzTdu3MjS4fHW2gUtsRGzjUz5mZQsE59r+YzKKdcYXzZMThz6HE844PdMm2Sc1qGEaXkwFhcdNZtNGI1GcHx8nMk0W36TyQS63a7aqKAyXLNAS6of0gygP7ad5+XrBHU5LCSHk+S4ozwZU46vocOynPwALxxQyOeoi4XMF5SnQnUwOkcW4Rxe8/Jl+DpIJVD5gv1uk02hfL1KR8d1crLEBJ/Xbfp/EePPFmCSsCwZwE8X4DIyJl3VahWq1Wp2TDEeC8v7wfeaJROtq4akO4fQyfVVHwdyKGy8qnXY+8xlywgwUT7D08lMZR4cHMBHH30EJycnCws589DnCoKUkYeXCeQX285QgBeLd9rtNmxsbMDp6al48pEPT4UE+Ux52MaL9L7ZbF46hhiPzaYnwS1j3PuC34O5avgG0F15Udl7VfVyW2Ab37vS+OSbF6GyUCOjffxeCCr/q9UqbG1tZdfM4aYqnEsePXoE5+fn2TUNeOJLSCzGdLXTGmu8rNAupDDeGRvTwUKdCdIKylgGAAUvq9vtQrVahdu3b2dKxGg0goODgyztF77wBbhz5w5897vfhUePHmXKEl1dUqlUoFarZceK8npi2ba2oGk09fTpC5ovDeRwA3Y2m8F4PM4chtTpg8ff+BzRFArNxKkxlEyToU97awOyUkCD5nF+fg5JksDOzg40Gg1oNBrQ7XYB4MVqYcl4l1ZQmII3PvxjAvb54eEhjEYjuHfvXnaXyebmJuzs7GTB+PF4DNPpFDY3NzPnRAgv5wV3TLuCWzaFzWVQSkGuWE6f+Xy+ID/q9TpsbW1leZydnRnLyYuQIGeMPqbjS5OfrX+1kMoJmddcfMWfawKkJppQDuOx8Br+tJXjKps6BabTKQwGg+wkBNvuXORhaWW0q855+Qh/S3LAx2jVpDOlz+vkcvWfb/6mPK+qQR4TpnFZVNtw/SsPigie8ry1emgMenwdF1eVf2l7hco7E79K/ZZHprrmGcnhnMeJaAso0+/yOip9bDHtO1M5MfgU20KrJ5n6I4QXTPqWNj8fWm3pMXCB8zvf3aGZJ0N0zUajkTkoUWajvS/du8kDDlfF8Wgbj1r7kratyynu2y42G1+DUFnC/Qwu2cHn0aLmNJo3v3uU0tnv9+HBgwcwm82CFgdowNvR5B+x/U/zug6gvkasq+TbwQAIBjI5KE9pxqBpHLt4yzbfSe+lcqrVaiYrEXhiEsDlk0CWBZ+6h+hlLtmppcHX1pPylvJw+cdseXNaVjU+feWF9rmvjqb1FWt8NK62dPm5fPUvKksqlQp0Oh1oNpuZjoMbcebzOZyfn8PJyclCPlgnH/6hMjCmPnRd5oll4rq2Wdn9WSbdh8oIU98Yg7GmQlwGjUuAoHFFBzD9ht5Hmtdhi+egoyKUJAk8fPgQ2u023L17NwvGbmxswNbWFjx8+BAODg7g9ddfh+3tbfje974H3W4Xzs7OssuvMV8MngwGg6C7/WzI47yx5Unvtvjggw/gk08+gV/91V+Fvb09ALhoM7y3EuDyEQej0QjG4zG0Wq0soI2KfywakQ76TOMA4oqIifdoHqYBkmew4+rAfr8Pp6en0Gq1xHuktP1L6xXLuMLjtHBMNJtNmEwm8Dd/8zeZ8+HLX/4yfP3rX79EM90Rvqwj9GxwjZWihXdeBzV+PxqNYDKZwMbGBrRaLSPPFyEbVgGpXySjhvK+VjHUOGBdyrPrPtJVAI/ljdX/VHnmASNU3rvdbrZoh38bqnBju0rlhhqCkt7hcrIXNZZCHW1FlFtmxfU6YzKZwHQ6NTreENx5IsE21rg848GcsqGsdBUBPn8s+3QLXyDv4KlCKJ+3trZgY2MDqtUqnJ6eAsCLk4eKsn34T16+4c5JOpYkRxhNz+cTST8BeNG/6JRGW8q331c5Rvh8xB1t+KxIvWh/fx9u3boF5+fnMBwO4fDwMLsWAUC3e8y3Dbe3t+Gf/JN/AtVqFQ4PD+FHP/oRfPLJJ9nC0/F4bL0LVoKkh5RFf5/NZqL+ZQPVFzc3N6HVasHe3h5UKhX4+OOPYTQaQa124VIK0d9ctFQqFWg2m9lpLvQOdg0vSGNZE3Tmc28I74fqtTjWeBAW80T/AvpkZrMZHB8fw+npqfXkNo2vzkQPrQ/P0xfXSR9oNptQr9cXbCYMWrZaLdje3l7QBelctEo7M488wv6bTCYLJzeUvV9jBoukvF1+Cy5/JPjakaHfcpTFfuCbXPLANwgb0p4+c7vLZ4k0xOgH3BmLc3MR4DrzGmsUgTLIJQ1cY1eaFxZGpzSQqGByDTJJuZMMWZ6nyzGuhWuFSpIk2VZ8DH4MBgNIkgTa7TYMBgMYjUbQbrez44kAXhguNLgr3Q3B664JCvjUwQc8H6QFlfp+vw+9Xi8LNOPZ8dT4qNVq0Ol0YDQaZUdnUiVi2YLX5bjU8in9PqQOrjGRpilMJhMYDodQqVSyu0HpDmXpe1e98O+QcUHL4GMT6UJHG8CFQ+Ts7OySQYd3CyRJkvHDKiZfzguSA4m3k82pZsufp9Hwl41m/owfRwtwcRx6o9HIjrfk3+ThWRNcPB17IpTk0zLqqs1vmRO/RDNfbY1/F2WYoFMAF1nY5rhYtEh0+Ro0vvMtb0+fMrXwybcoGl5GmNrSJhNijXM+B1FHqtb5Y3MCmL7X6hC28pch61xlXBf+l/QRfCbJHgqeRtPnRYDSgAs4qU20jLIl+R6ih9gCsZrvbHRKTlUc98t0sOcdvy6+pM9D9DHTc6kstEfRwc/TamjVgNrxeGcsnpiFC2ipnUvtX1ovzp+cXs24p/nEgE0n0swXCD7m0H/QbDah0+nAxsZG1obLkt9p+mKxvsmmk+og2Rba8jTPaDl5dA3THMDrkaYvFs7QPkDfg7a8UEh9Lo1R2/cAV3/eR9mAf+NCHASOmVqtBmmaLuxaxv7k9kmMftO0q9ZXYfMJ0PlumTZzHvj6cEL9CcvQuW02g/b7qz4GbQgZTyb57kpjy8c0J1M5aOI7l+5q6sN6vQ71en3hdA8qg9Cvb6qjq055oZm313DDt52uipy+KjDp96bxK/WX91IJHwVKEkScWFSsi4J0v9xwOISf//zn2f+3b9+G6XQKu7u7sLm5KeYznU7h9PQUms0mbGxsZM+5oC9KeGgczhy2vmo2m5CmKXz3u9+FdrsN3/72t6HT6cDW1haMx2Po9/tw9+5duHXrFnzwwQfw+PHjOBWJDKldfIV4nl1eJozHY3j27BlsbW3BdDqFarUKOzs72X0ueMwvLg6wwfeORB8akyTJjqyg+MUvfgGfffbZAn1pmsJgMMiOvcBAc8zd0SHAMah1fplkkW95mnJoWWgw1+v1zGir1WoLxxPj6rX9/X3Y29uDhw8fLuxWXxViTN7LDm7m+Y46FXzy0ji3NPQlycWO9Uqlku0CoPOka96h9eBppfEyn89FB45tTCVJol5tSZ2aNkOHO855XShQ5izDuUnzRCcYRQhv05XksR2xL7uyTeuPfFLkymBT2bhDNs9uGvp/6HxFf8fWdWIA6Vl2EGvVoM57Kgckecn73teJssb1hKvvJQfAsvjFtZgAA6L0lKUQ2RTyTbvdhlqtluk9PjDJqDI6EKW50Oe7Wq0Gs9kMJpMJbG1twc7ODuzt7WVX1uDRpJryTUF1DVBH9ZkjJLmq+QZpXUVf2mjEHdoA7tOCarWaeC0Yh7aOkh2hpfu6gdpi0+k0OzUuSRIYDoeXbJPZbAaDwQCGwyF0u10j/7runi0Kpn418QbdoILBHZ42pi63LJsmbxmm79HHGFKGad42+bxMbaVpQ58FKrH7Q5tf7HR58tD0qY+eHjLf0DxpcLVWq8Ebb7yR+ZHQXzscDuH8/ByOj4/h/Pw8m7+lqxg0dEp+IMofeebQMupTa6xBIflWOfA0UhsWRpAtYKqBtKqDO1X5ADVNGi6aTDDRzf+mKyv7/X4WJBsMBrC9vQ2VSiU7gufk5CRb/YWNSlfU0vx8aKXpXG1nqqNvvqggIf2TyQSSJIHDw8NsNTBdyVetVmF7ezsT4JSp6L06MQ2XUAFsa3/+TqsY2RQbUzm0LLqj2BRMXaahKK3UoLt18flkMlkwsqmQMRnTq5g4eRAnBKbVaMsAHmuNO2GRno2NDUiSBJ48eSLSyBGTZkmGSg592/e2/vDpK6mcUKMmFJo5i8MVcOTPpO/pIgw0vGxl+8wZtnaVnLc2aMa9iW84L1De0bZhyNiX8s8jv0KN31UatS8L0jSFarUKrVYrk7ODwQD6/b71G1s7SgE0Cvot3QXholP63vaMvvPhXY080JTLvzfl65oTJDquCh+bdEtf+NS3aD2LOpBQF+SL7tZOkheYzWYwHo+z04bwmMoiedglD/Lm4UoXGlQLhUbn5M9sMDlOpLJMvgQXDTbkGT8hATTbNy45Tfsad8hXq1Xo9/swHA7Fe33pNyY7IiQwoam7ba7xfR6aNrZNRtux0+lAp9O5pGeMRqOFRX4uYHva2sQ2v5n4RNtHVxnYxtgmWB+cO3HXMrWn0H8Wu+4x/LWafGidXXnFxKp1wTz+SNvc6bLXNTJbO+8V5SMqEpKdH2Lr54HNdxEDvv4WDo0eiIslcNEbLq7CHfymcW3yWcWou6/uedXni9hYt0d5YOJlre8HwBCMlTKmCoYPgehEpmWECtU84I7ter2e3e2Dd2wAXNTvW9/6FrzyyivwS7/0S3B+fg5//ud/nu0QnE6n0O/3s8uw8Xe/34fpdBqlTtwgCnV0S0BB3Gg0Mgdlmqbwne98J/v+lVdeWbgv9N69e/D666/D9773PTg6OoLhcAjVanVhd+R0Oo26OzLGBGpqD2582PjR5GS3vaOGqWllIAZpbfcf8SBFbOBYpkfqmNqtXq9nweRVK8YSXEaiBBrwAnixCCEmTdRQozIUaR0Oh/Dw4UPY3d2F/f39LDB+584d6HQ68Omnn8JgMIhGU9GQHDDab/i48nEqFIWQhSbcsYV/2yC973a72WIYzGc6nS4sJOIOAeRfDb2uPpLaPu8OP14m1iPvuJNkuMvQpXynda5p2xX1Hq1Taq1YF4t6vQ537tyB7e1tuHPnDnzyySfw0UcfGdPb+CFWEF9adKAJAksyhTtrpXKKgLbutgUWVx0mp+WqHdIhfZ4kSaabos6CwcUkSaDX6wEAiEecvcwYjUbw/PlzqFar0O124fnz5zAajbIrSvLK+DKNHapzJEmytN1ckl7F6aLpQsug8zbV26/TPE31LayvZhclRZqmcP/+/Wwhu6R7+fBFyDcc3N9kS5enDOR7emKNNugSWja9IuuLX/xidkQ0YjgcwvPnzzP/DpZr84P48vN14f+8oBsWJCTJi5ONAHSLOfA7LUyBEx9ogn00bzzy1AWt7bMK5KVLY2Picx97XMrfBC7jtAFZjjL2Ea+bSZ5L8ivUX8TtKlMeeXU4E/juWXpHuOt0MjoH0DLm8zn0+/3Mv4uLQzg0O2J9+MnVB8teyLHGIsrov7+KcPlpqA2twaU7YyWnjvR3DOXSBM1KFK3zlH9n+hsbbD6fw8HBQSbA8IhI+g2uEJcCeiZ6TeAGiMmRL9EtKWNaxxtnEvxmOp1Ct9uFhw8fZs92d3eh1Wpdqi8tCwW9rxLma0D7Bi3z0mLjOZNDgOYzHo+h2+1m7/HooNFotDCRYnvSyczEU76Kgo+RyCd3HjTGyZwKGzTkV+2scAVkNbzmUmptTiBTXqZvaJtJDvlarQZ3796Fzc1NODo6gul0CpPJJKiNNcpRTCMF//fN09bemvxCjRJfaOSsb5BFes9lfZIkmZzlO29swUXbnGErk+fl61zQOE1N7WKjzVSWqT1M+dMgkZZXqZy2facdV2tjpHjQuQ0XONy9exdOTk4u7ZB1jVPXO59gAeUj+r+rLFu+pu9DZaFJNsWaN3zKX1aZoeD9yd9JfcL7nvOHS07y/ELptr2TdBkT3Sa57SvPedkUkq7H0/IFPra2N72X6EdZwoN2qBOHOKKL7FsJWtlgGnshfWkDBrYALmykZrO5cM+ZiRZOl60uFDwN3oMagqJkkq+/w5VPmqZZIAV533eXXrVahUajAa1WC9rtNiRJsnBSmC9NCK3PgsscPkZD4KtT2pzNEn/GBuZdrVZha2sLms0mnJ+fw2AwiGKD+3zvksE2OyTEPiwLKA/gby77Ud/EO9cpYvSTa841weaXsJVFf9uOIA7Jv2hobLwYc7DLzrfJDpqHBia9SFsPm666CoTKHRNC7Tjpe18b3sZrfO7i8hLlhqsfeR5U9jSbTajX66LuNp1Os+PuXfOZpq4hsOlMRc6dVxl52n3dpsXAxMe2OdDUFwsaAl81YXIo+KBsAp/fkyfhww8/NH6PwgwNGfq8SGjbUHK2S4oIN8JarVYWZD49PYUf/vCH2buvfe1rcPfuXWu5uJIHjzMrAnTiMK1G1U6gLqVJC8nwoEdXDwYDGAwG2QR769YtqNfrcHh4CPP5HGq1Gszn80u7il2Oj6IcALhbGjEcDmE8Hmf0YVAelfHpdAq1Wg3q9brxbrxYbe0CdZJp0wMUO3ZteSOfmHaUV6tV+PrXvw79fh++973vQbfbzXbwXxVo5ZaPkbSMucTGsyEGMP0uT154EsFkMlk4XrxIUOMBHdx0IUYsOUoNB5+5zpXWZRxrggkSvXROlYLUpvqURRd6mXH79m24ffs2/PCHP4R+v5/LqcUdiyF52XjExwGkCarERoh+b2ojkxOjaDlXdPvw4B19zumgv20np5QJIe1n4nHJ4UsXAdL5KNRx6bIT6HiSFq1SHbjM0I4l0zNTHhJC2gKvzKGn0jQaDdjc3ITBYJBdoxMTlHfoaTVbW1vRbNeyjVdcuEcdtPzYcQ1qtRp0Oh3Y3t6Gra2tLMhUq9WCA0KuU1E4H/KALE3n8llxmWvjWZMuZ6KXO8djBNxMdGF/3r59G2q1GhwcHKzcNgzRf8rgG4w1908mE5hOpws70CqVSrZoAcuicicv+LwZsy1t+XE/X71eB4By2jbSXG/qb1udtTxi+951+gCXGaZgmWQr8HTUVrehDHOV5KM2QUoXUofYwd8Y3/gEYmm8hs/l29vbC4vLaNrhcAgnJyeXnmvAbRju97Dp1cvyU5U9zzLjZatvKKQ20thLtrF9aWcszZhPCqZCNNFfjbPJlE9eJ7Ypfyr4MMCnCZ7QQJStcbWBQS3dGkebadLmeVGFntYdj2+mitbBwcHCHWu4Wnk8Hmcr//IOYJdjnedvMog0bWH630WLywnkcrinaQq9Xg8qlUoW0HcFfDg9kvJtolMLemxuml7s5sU7gbBvsc+leuFx3zGU2Dx8RAMrtvxM77mjD59p6Na8s6XDI6ba7fbC3c2URjwafDqdZsem87x5G9D3edrWpFhp2scnrU/ZprJMhoq2DIlekyx3yRgbnS56uCxrNBrWi+ClOdtEuw9f28YQ/Z+W7/rGVb6GZyR5pOVzbsCG8qZrrnCli40yKNNloIFjMpnA8+fPYTqdQqPRgHa7veAkWyZ8y3TNIXn1Hf6tSXfROAhCkKc9NGl9bIRVQFu2JKu082+e+TsmtDzkO4/66vIampbNE9xhbwLytIu3l9m3Jr1C60OIUbZUnkSTb95ct6aw6Tm+vJ7X1jDlr3lO/SCucm314s5ak//BRXMeHYLWQ9LBeNq8domt3WzfmWjiQBpN/qlerweffvopPH/+3LkrX+NDkujUPHchz3dFymLfvqM8irYYPeqb5jebzaDb7WbPxuOxUYfL40eM5X9zPed34PH6FiXffevn8oPaytLS5Asqk0xzls2vyG1s/I2nFdATG10+EtPzZeuDCK7zmHwJNtpj0I/5hMxX0jteJ1Pe+FwzniTetqVDGYTg19L51kXy/fiA5qX1nWrz1cBHnpTNj6HFMmzxMvp5NIhBN7XB8H/+XtIPbbJZvDPWBB9h5xIiLoMztFwfUAGIgQ+ToztJFo+HxLRaRdwl3G0GnwlcMbQZhvg33dGUpmm2MoYeEcUd/gcHB3BwcJD9j6thR6NRFrCLNTB9haTJ+MdJTZrkeXrehiG8pnF8pmm6oJgDmFcmaYxYW9/7OCG5UBmPx9kdsbjrFe++6vf7lww+eneYVGYRDlEf41FTnkn5c9Hgk55+x78ZDocwHA5hb28va+tKpbIwDqvVKmxsbMBgMIDhcOjtRAylt4i8+Pc2Po81edJy+DtJ/nLapMk3z7zk4j/+DHc18DmK0iDd7c7bL5bBot1VIH0fmsZkyGjqZOr7GJD4y9eQizE+y6Acl4EGjul0mh313mg04ObNm9But73z0RrpPI2kJ+L4trWXbzmURhc90jcu43iVfZvHAabJe1V104x7qtem6YsjyXz05VBZtwwHnakMF90u2mz6vu1ZHvjYthQuHYj/79L/fGnwbUv+3FZvkyM6FJIsK4pPtTuLJJokG9SUxgcax6iNLv4N6ot5dCSb/8QXefhEWiDv4ktNWlM6187eEEh+DAzGcpq73S78+Mc/zk6myiMvNTQt+9ui52UfHUyy2dD/QXf3I/DeRhdCechGt88Y0MhQ6iPl/KkpJxR5fUex6cmrh2p8hfgNl/PSXISnFeBJEpQPtbaBjY5lwKbzaHaKasePqe3pXMyvjvPJUzPXSs9oLIL2tav/0BaQ0uC3s9kMTk5OFtpT8jvbfC6hvlHbO5c+6Ytl+ZmXjWWOS1+b8ioiFt0ae4mPaRsuBWO5UAo1LK8S6Ko2KtRRYA2HQ0jTNFt1RO9/WDVDFuFISJKLXVgI6fhZGhxABQB3U2LAoCi+4XyKz1zACc90NDDNx2QoY9kap7vG6cOdajwAg2mwTPoOeRYDI7HaG/Mbj8fZvU34vNlswmw2uxSUxTpIdSxijLiMEN+28KUxxEmOwP5EWcPlbJqm8ODBAzg6OoI33ngj233OF0nECN6ssQg+vlzGi69y6qvozOdzOD8/h3q9Dp1OJ3e+NK2PA5x+g7J/NpvBZDJR58vbK49T3DTGXcaQlFZLRyxHsgtlMACuE3C+pzoMylRccIQnO+RxrIbyhw/PFo2iAxum8laN2Dp0EWmXBdQx0M75+OOPMz1zNBpler/rdBcKrjO7IO0w0jgxbfMC1d1xnFMbgOr8dBzgiUj4w0+JqdVqcH5+Dj/72c/g008/hUajAc+fP8/ar4x9nAe2OdyVXoNerweHh4fZfd5oZ6DenDewg/epAUDGw/P5PHNmn52dwXA4zFUG/o6lM9B8QvNLkmThnlest+9RhQAAg8EgOxHJRpOp7012tQb4Lc7ddDGw7Rtalgu2NKayipjLsF2wjrSdBoMB/MVf/AX0+/2MXzU0aG2GImziZesXGsTuNxz3Jh/YVdPvyxrAiwEtP8buL60MooE6Sgs91Wc+n0O32720EIbOP2XlOVM72Oww7oMNqZdJl/TlZ5/vNHTSert0B5y/qZzZ2NiAZrMJo9EIhsPhpfd0rpf8Hrbgr7ZtTHq5bz6+WLafuazIQ/NVrG8Z4ROERdT4A1egK6ZxIZVpS29zvvoYhaZ8+IoRuuOTGi50taIvNA5r0ze2NPydb5CAl0frSB2ZNF96Nyr+nyQvdhDn4RNpUjAF+VxOeZoW6UNnkslJxMeBLTghQdtn+LxSqah2mlFatMqI7xjBMvAYbnqMMR5bbOvfVSp+IeNSCrzZ2iyG/KOKD/Y9/j+fz+H4+Bi63S68+uqrUK1Ws+AXjjUXD2iUKtN4CqljkQGFEAPeVn/t95oxHCJvfWhJ0xRGoxHM5/MsGMtllinPkEAtpnfJK5T99BuexvS9zTHvCthqYGsPE51SX0t5aJ1da6W2PEB9ht/9iPpeHn0O4DJPu8YO5+9Q2alxIIU4vGPp+C8LeJtKd4xqdFRb//jq83nkD+omGLA6PDxckPt4lYn2PtsQWlBPR9hOg6DfaPidOjip7kd1KUn3N7VttVqF0WgEvV4ve1ar1S45FGPOCS691KS7hMoX07ys0c0kGWdLPx6PodvtwnA4zHQfVxlaJMnFYtxGowHj8TgLxqbpxYlA4/EYhsPhwiIzF6R2suk4ITSHpJF0YDx1ZzKZOAOpJmBbURmgtYMlfrHpZaZvcf422c2+9roNmrk9RMf2AfWzoP09Go3gk08+yfoRg9M2OvO2O8/rOuu5IX4EyitScKwoXS+PL1KTxpb2uuuKoWNbGi/S3668+LyLchz1i/F4DIPBwOrzsNUhj2wsAiae475P21V10vf8vQl5fF95ofUbY1vwRcZ4Bc/x8XGm39BvOD/RXcCmHbahtEvPy8Jj1xXXeT6+SnD5OCUsBGPR+HUpEUWgDIodLx/bge5I4sKvTOCTkNSmyCRYB7rrkn5LgTtI8JvJZAJJ8mJnLPINPYt+2UKX1hl/+NFL+BzpxwvOsQ7VahWGw6G4Y9YGTV01xrmvco5H4xQ5biaTCUyn0+x+4I2NjcLKKgIxnJPaMqRytLIT+7Hf78N4PIbt7e3MGdpsNuH999+H09NT+OijjzIHVUyHD8fL5pD3MUhczlnN99QJjHn4tDfK5PF4LK7AzsMfEh15+c1Xtmnagy5mkIwJX+B8YcuHz59Ih2buxfcS37xMY21VKFJeSpCcL9qdtzRQlIevtQEq6TtMbwLle5+819CBywnJKbeWG1cLMccIzYcHxm3BGK57FAk8gQBlBaWTOhP5qS9FgAZJxuMx9Pt9mEwmavmqCcrFhCYQogW1i7X5YR/hqREAF203HA6hXq8vnBBm+n4VsAUlfKDVF6g9UKQ9hgthqtUqHBwcLARoXbQVBdOiGJ/0VxnUd8TB9aPYvLGK8UWvabuqCLW78tRZsvO5PLblj3NUu90WF3rR/ADg0hVXVwUmnZa2n6nu9HdIuaajnfPAFQTHBUWcJ31PlsR8BoMBjEYjbx+2D90ca7tv9Vi3/9WCNLbFnbE+GcQghk9GeRzIPo4mF10oZHA3IACojsTJC9fk7GMgmL7lSoGUL9ZfUiB4njanYSxBITm8pf9pemmCxXrRSRAVanzm4smilFFXW0l1dK3AkNpHChryb6gBj8EYm4JnUyyXNVnY+sU2rnwcm1pHtW8Z2L6z2Qym0+mC42Nrawtms1nGo2j8ads5RGEKdfaaxozUbhq5HXMMSnlpHJimv0P5WuMU5e1P7/tGGZWnfOlvKT8TrShDpTnBlp8vfRoa8bm2fzQOtBBHikkGuoyy2LrVWjm/DNovKGdj6XK8r03jS/rfhhj9aOMv21gCuH7O06uGVY5jSf9f4zJsOgVHEYFYTovGhogVkJX4gstCKksoL0nBZBNi2RXUVsXrd7a3t2FzcxPOzs5gNBplCyJpeSabl8InKCe9L3Ks23Q0fM/rhPSg7ac5FYl/K5VjS+trU0n1kto/j5Oefy/xr9R+Uvl5A8PU6U77waS3u/JcIz9s/ieeRuJ1k50s5eMDzXeusqU8XTK/CJhkqsbHYEpL8/ZNG+Kv4GVp5hROT61WW1gEw4Pj3CdA/QWmPEP9KLHlh0Znovoop8Fn7tD65zQyPQRIN/U30/nWZ4EY/kb/Id8NG+KnDEGeuciW5mWfp1zjlOvYa6wWofy6EIwdDAYLSndeYq4aY3ABKK12q1Qq0Gg0YDKZwGw2M67SWbUTBcB/dUuapgtH0pp2XeKOPbpbCvmmqLtieZ3yGjccGPxqNBrQarUA4KJ+/X7fWR/NjioTfHjFZAQuawVcmqbQ7XaXUpYPYo23GHIrlgHc6/VgNBrBX/3VX8HW1hZ861vfyt51Oh1oNptwenoK5+fn2XPXSvVlo0g5qGnnvMFaUzCN8kksh6aUB93xifc00/SmbwDCZJEGKPMBLubHVquVHXknOYeWMRfyO5i1/Y79x4/Zl/JHuE4ikPjHlJ7Pn7HmzatqvCyDVyaTCXS73eykj16vlx1VCXCx2I7ykgtUBkiOId6n0g7zIlZk54FEW6g8MfE1dTzQckxYtU7tQwPWGetEj5dcNvKUiWMB9X0E77Oy8O0ygWMY5+ZKpZLtWqtUKpl9SKEN0mkdhQDFzfMc1D40vXMF/CiQbs19pfxKhJjodDrwu7/7u1Cr1eA//+f/DOfn5zAej7OjX3EXbQzEGv8x8+G6LAXt63a7Dbdu3brUX/RoXPoNdRKbHOGh97PjWJtMJjAcDhd0KClAyssNBT9NTMO7eW1K1E/598PhMHtOafF14ofSVFTaZc2RoWWZbEIpyOajQ0p5mlB0G5kWM1AZYbKVioImEMsRyqdS4JynsbURgL3vMdhmS0NtQryiqF6vL3wznU7h7OwsS1Or1bLTCnlesRHD5+HKzxUQ99E3pDJpOTHtbxdQXsfyWXL9HAAu+TQ4f5tkl42nTeUvAyZ5XYY5owgaXHnGLO8q2dZlh3b+ltIteO+pkNNmHANaZWTZQV4shztNuRFjc9zTvLhD37XixqYM+NbBJ+BnMtAkAV7UILL1tU+dbG1MFSfqbJCOjZBos5XnUi6kdD4KQQwjz0SbDaHOnyJlig9vu/LwNYxC4cobnXyDwQAqlUp2pBoa3cinrvwlI9GnXi6ejCWLpSCeLY1rfOali8p1PkZN9Nlgc0rZ6KXl2e64dsE03vO0k+QAWwV856A8ddZ8a+Jd33Zath62aiyjnujcxBXEuIDApPP49IFJ75P+9xk3fPe5Sy+UxrppvLvqZ5Nb/G+tcyzE+VGGMeA7b5ogzXUmfdFXn4wFThv+L+l/IXOJzbGRpml2FB9dHGpygFI6OF+Z5m/+t0SHLY3ksE2SxKqXlYGHAdxyyuSMxnS+DjsJNv1uMplcOm7PpRf62AB08RYGEieTCRweHi7c+8vL1JYRwx7JmzcHLhTA8YE/PvMaBhHQDsEFB64xosnbBj6esQ+lOvC/NXONbTy45lb+TqMD+LSLVD5f3CONV5c9Qf/38TkU6XtbpnxcVlkuvYv+H+rvi9EnrjyW5XPVlG2yxzV2tKYsX3vfV+9xySLpfZIkC6f3YV6mXbG0nDy8FQN5fGqm9LH8nvyd1P55fCWSDmHym9B52QWbv4zOeTZdzkRrDMSWXXl0jFiIQYOWl1z2oG+5vmUtG2WgIS/yyjbxmGJUthuNxoLCmySJVzCmqAkghiNZA6wrHg/aaDQupeHC02fAFq3c2kB3PJhooIo/flOpVC7xAL8/r0hwx6lkXOA7/LHdHYt339AjC0OcXBolK4bzrExCq0y0uJDXqb5KTCYTuH//PlSrVeh0OjAej2EwGETJW+OQySOnfBxlZUNe2kPbTeLVNE1hPB5n90ah3I6xM4bLxavSXzRIpaFbktG0j0x95TqKGfMx5eHK30QrzXeNYsH125Bxy3fK+BjXSIMUSGo2m0E7tCQnTShiGIGaYJr0/LpA0k3pc5ONYGqXEJusDLA5ktDmQF0HxxQey0l34bnkNQV1TvGgKU9Ld67wOeaq8mVZ5hE+V0vteXR0BMfHxwvjwka/T93Q7ptMJtBqtaBer8Of/umfwmw2g9FotJCnZuejprxVAsvf3t5eONEKFyK5kCQXJ15NJhN4/PjxJbnlO7fkmYtQ38W5EMexCaarXDSg+WKdbe1FfQ3025iyGW0AAIBGowFJkizc57vGy4Ui+90ko01BpFVDMz9o6AxdTKHJ23X8LNVHJHmTJMmCHO/3+/D8+XNnOWWZ+wHM7VREkMmFVQTy+I5Y/Bv9OaGnHPINRDbfE+etGPbhGsvBup/Kh1h9YjzXEgUDH6i+DmbTRKhxXpqcE6bvXN/mARoBFHjUHadFM3mHQKNUuFYS8dVTrrTSc1f5pvaI1Q40P+0qIk3AiTtnkiTJAh+aC9FNjv0iAvE2ngtpZ4mWZS16KAK+7evi0TztE7KiiSpM1DmIzlc0yuv1+sIxVpwml1KmRd6ALKVNk5b/rf0+Lw1SQEQqH+Uod9Byx3nsMUT5AvM3OZ9pua5FQrYgpUTDdDp17s7W5hcbedvcRaupbTXzDAf9Zplt9DIC23c0GkG3282COzs7O9lxxSaY+pb2mXQEsQ1SntL/Jqd3CK+4dOoYOhoNetFnsaGZd68SfOdH07My19vVZ7ZAT14e0gb3VgluP1A9g6eTnHouLLve1G7WBrRpwFbTV3nlwHQ6Ncp+yf8BoL/jVkIMf4HmG8o3WA8pIKDxGdAAAX3Oj5BeFR9SnvFxTOO3Jto4z+aRQT51lmjC/gsd+7ZyJP/Qyw6X79Ikmym0/GKTdXnsGFc+Wv8ZpTEvXVqE+G8oYumyvrTQb112t01up2kKrVYr+6HXIGA6TIsyj8+vV9We9PHDub616Rx5bCofe10zriVZ7Jun9L1L37DlofGDmL71fafN/2WFpj2uss/+KkPT7q7+MwZj0eGP59BTUIcwQlpJ6HI00fT8by3jLYvp0jRd2JlQr9eh2WzCaDRaCNLmDYqVGRpDGmC5AoEb7qY0LvDVrKjcdDodmE6n1rtSJYPXRKekSHGeKZsgjWkgvKywyUJJZmDAC+DyTo/pdJodp9bpdGA4HGZH2NrKjuHMLEO/xwoaSDCNYdu8xMe2LzQBU6ocTyaTLBBK7yWU5Igpb00b8nKpI3IwGEC9Xs/u1+bpXfnlgY+OEJJ3aL6hhh1fpVqGMSahyHG3DCRJAtPpFM7Pz7O7tt966y24c+cOfPrpp8770E31R/mMCxSku7upDDbpxy7a+ZGtPG9K5yrA5zSq60g2wxr5IAW3rvL4vM7QjHfbrnweWDOlo+UtAzb+Q5mIJ21pd5r6Bq2K4nmXXRmap3QCU2hepnxMeup4PLYGLmieuLhIAl+IV6RO5gLnwVqttlQ6NDpbXnpsvoW8KKu+WUZQnqcBNVOgU9vvvrbjKvqsTPp/EXSYZH3e0yD5M7pYxOaznM/nsLu7C3fu3MmeS/dH4x3a+J0t+FY2m5miyHk8RhsUsRAh70ILaYGEVi90tcN6XlgjBso0b5QZC16jN998MwvCDodDODs7AwB55TxXQPg7/h1CGzDTCo1VrQSgq31dsBk/NvpNBk7INyZabG1ro9uE2M5kn7raBr2Ulu78rtVqC84CvLOqCISuWDIZ3aZ8ihSAvFztOFyl0Y7lh5S9LDmD9NFyZrMZHB0dZUeE03u0uAw2OZB4OoRmPNNvYrRDqIygNLj60UWnxIdcjricVrEdJLxcrnDzPqTOMluf2mRiyFjAsnDXC62/tEuXfuPq+1BjQQpwSbyrkblaGSaVEQNlVVzLSpcGpn46PT2F0WgEw+EwyOki6VO+7eQjD0PSxuBNbvDb6DDNGfw5fa9tM+148w1QL4u3bW1G+8o0h/u2UwxIspW+C8lPm4fktHTxnjSPSnOndH0J/pZ+aJ9wHgZ4cfyrpBMsw1m5bB015DvXO3RUS33mgi9Nk8kE5vM5PHv2DKrVKty+fRsmkwn0+/2F3bK0XbW8KvFHKKT29pkH0vQiCIuBcayHdJKDqw35rlPpO00/+PghkuTFQqTZbAbb29tw9+5dGI1GMBgM4OTkBAaDQXYEJB+noX2Au1BbrRbUajWo1Wown8/h9PTUmzdddXR9x7/V6iqUNsmfEVtWXGUdUQuXz8z1nvOkT5vlbV9f2b1sv6oLfHxrYRuvvrLI9q0pjbbPUS5Lxwyj/MMFpcPhcKE/pXlnGf0Xa8yH+gZdfeLSO0Lp1+gCrmeYj8/1OFo/ME+v4VVOF01XFv3zqsKmI/n2zVXCdamHDdx2R9jGPMdCMPaLX/wiTCYTOD8/h6OjoywYSzPGQe/aOWS6j8c2wKW0JqY1OXyWBdf5/y7EdJC5nN+2d0UK0Jh94uITrpSYwAMJ1Cilzpl6vb5wry51lrl4ktMtOSNNQQP+zmeAm+pa1NgwjfGywMTbsdsl7xjid1JyHpjNZvDs2bOMZxuNBrTb7Uv5hNZrWTJUo/hKY8Q0L/C5xGRUaZyAJjps6TXyJgY90nc2Bzn9zkWbj1NA6ge8e4zqBrZ53GeMSLTZ9Al6z58pP4lvbOXZ6NLysolen+/WiAds3/l8DkdHRwuBFpOzGaEZnyHy18SHPo4FiR76N5+vtY4In+AILc90bLNtnLmc5zF0jRBHqI/jhfelJLtM+hzlIR8noYnevLIkSZIF/Zfmn4c+SqOtbFvb2r6TdGzeznSHosTbmAb/x7lF0tfRUVrW3d8hc5WEonRF3sb4LFRfAHDTOJlMYDwew2AwgHa7DV/+8pdhMpnA06dPYTAYiEcX2/QujT8jVH7lbffhcAhJklzaWcV1JZctW6lUoFqtwmw2WzgRjM+bsW1CDISmaQq7u7vwS7/0S3B0dATPnj3L+pDvvqbj2HfexN/z+Rza7TZ0Oh1ot9swm83g/Px8YTG+acxr51fbNyYd3nV/rQlcdvnS5sr3uiGmvWKyj6R8TP2eRx7y/G10S9/H7GObHm2Cj2Nbk07zHW8bky0ufePy41HQfPl1eNzGHY/HcHBwIC4WMn23Srj6zcZnvn3k850pra9fRwubv11avGezAVw2lctWc7Wxj35vGxMhfp/rNpdobZZYKMu4v66gtor03NfvijAeU7yxsQGvv/56ZhydnZ3BcDjM3uNdIdLE4WPYUeGChv8ay0fegFLZwCctDBwAwCWDbTqdwmAwgPF4nBmceNxgs9mEer0Ou7u7MBqNoNfrXZpoeDCNwqSEUX63KW88L8nRxOu5xtWCD98AQMavyEPohDAdQeYq20dZyMtfvg6KUEMLISm0ochjnIa0Hw9mxKxLTKD8czmIJEeQRnFxQfs9l50hbak1qkPzX2M5iNU3WgeSzYjWKO44vmLIYRwHfBFaaF62d0Ua1ra28AlehBhORUOjE8Y67nSNqwHb/K8Zh8viY1rW7u4u7O3tQa/Xg8FgAIPBYOEaGICrMU+inFyGf8IW7PXJI+Q7+j3uNI11YoT0PCYwUFyv12E+n2c7xzTgOrbPYnvuwzJBM9ebnOzU17BKXIWxGguhgaCQtFIgzRZw8R3ftsCsqdwy9bUrCOVqD9ShbXYbrbc2cG6DKQjG52KXzOAbR+h3KKPL1FdXHTY+0S6mALAHoUN4y+Tz5eW68pXyofRIc3cRPruXFb4+UN+811gO+DUeefv0UjAWB16z2YRmswkAFx2MR7nxgvOuytE4uG2KSRkUh6KdIT6OpTz5UiUkDy1F94mN5yj9/G4GVGR4MBaVHLyLEQ26NE2h0WhApVKBTqcDACAGY/Fv+pxPbnzlsDR+NO1WpkAsVyhtdbgqDkMX3RqHmK0fuHM1pF1wdSQuGmg2m1Cr1bIjyCgNWkPNN6Clga0t8/KsL80hkGjUKNp5ypTyc821mvJC2tsnrVZ24W9NO9oCEabvuRzitPkGS7Xt5iMnJBQ1x69hxrKcGJKzVuN8o++0hjYv1yaDpXHI9RhNGT7PTXTZaAzJx3duzTMfFaHrmPpAI0OLNPYpDbHBnT55naEmuNpHM16XCa4D2Jxm/Dv6XGvbmfKzpeXf4O9OpwN37tyBZ8+ewXQ6zY6D1wSVltXm2M/VanUhUMztm5AxFTqvm3QYFzi/hupXAC8CfzabTvtMKt9Gn+l77Af+g/Ti/Ym+wVhejnahi6+sCJHNtK1M14CYvtE819qIa1xA4+v0sS0wvUl+2/6W0i/LhnDNAUXmq2kPU94SfVLbh/arKa3vHIKyFIOxfOMTwItNUT72aR79MJZu6aI3hh4eKut8ynCls+nvmsU+Wnq1dNl8SRIf8XlNmudCx6IGRdsyRUCrM/jm8zLMwWXsb63NRG0aSX939d9CMHZ3dxcmkwkAQHZvLH23sbEBjx8/zp5LCrE0oG3Hmb7sTsgiHDkvM6QjM5H/Go0GpOnFTljXABsMBjCZTKDRaFw6/oimsxlgkjEvjQ2cmDVKaFn542WYKGJDE8DB//nxbVSRm0wm2a5vXL0vKf4xgw9lcFIiipShtnpqjv0sYn7zCRD6Bh99gKt1q9Wq94p9pMvGqyZolSNuREg0+BgxPn1YhnGxhhnYlzivxwj8aHiEygMuN0IMEVOZoUFKk06j2f3uA9fY9MnHFKCS8l7mvGXT52zzfAxezEMfT8PnsJgOOal/8BjU0WgEo9EI0vTyCUx5wHXtJLk4vrVSqcDm5iZ0Oh24ceMGnJ+fw/Pnz2EymWTO0NlsBrVaLaNfmm9CcBXni6Js92WejlWpVOC1116DO3fuwO/8zu/A6ekpfOc734HHjx/D6ekp1Ov1bGGuj8Mb4AV/UFs0BmLkZes73G1lg03u8nSmsjXAsTYcDqFarcLNmzfh7t278KUvfQk++eQTODs7U+uevrJ/Y2MjW4Q9Ho+zo5JpXjHB5atWz9XkS/PztQNdffwyQKvX0b99FxpokHe+yfNNTP9BDEi6iQ9ij2ENj2jL3Nragv39/WxDFH7/7NkzGI1GAADZ4iFTWaF02lAG/6NGR87Dp3kC1RLodXeutD4LY0xpJZvQpj+b2tLXp+PiuZA+KQO/rbE8XOX+1sh3HpOiWAjGNptNqFQq0Gg0AACynVZpmmbHtSbJ4rE1tVrtEhE2RxBiFY1exqg7h41GySmiyY9+o0Esh1XRKztMdErGDDp5TMcP8WOzMLjFjzbmR1W5grC2Z5Q236CJj6NvFSjTOIvhJAsZP/R77XcuPpH4bzabiTyUxwCX6KdGmSmNb56h72z1iSXnNUao5JSSJtoiguBSf2gchj4BSFeeMY469RljpiCG9L3kIOHfu+roq7MUpWOsWncqG2K0syQvY+UngfO5LSin1fVomVJaWxm+cDnWtXorfR5LR6TBbCmPEGeq5rtQuOaUInS4EPlqehczIEtB51PUvWlQK7QMF5/hjsh6vQ6tVgv29vZgNpvByclJFoRFOqQ7dGMitjOwCPjoEGhbxRxLeediKoM3NjZgb28P3njjDeh0OrC1tQVHR0cL9NsWy5rocekqNtmu0WVcZYaOGamv8srlUNAFj9VqFfb29mBvbw92d3eh0+mIJ065eE3r38BriiaTSeY3CL2r1Qd0LgvNn9t+mnzy9FWeoNhVQUjgVBMw0eomNjkRU/Yj3Sa+cZUVQqdP20p0mNpa0y6cNikfV1to6DeNaym/er0Om5ub2fv5fJ6dLDEajawLZq6zrZhXhw0pI+8Y4/4hn/JNfYm6qG8eFBJNmjkglj3JcdV5NabPUfPeZLOukQ9FtKXkj+d9femY4lqtBnt7e5nRORwOYTgcQrfbXdgpi5hOpwv3dGBggFaKr8oImTSX4SwrC5at2BblQC4LNPW7ceMG7O7uwpMnT6Db7War809OTqDRaMDOzk42Nvr9PgwGA9G5iuUBLK7gms1mMJ/PoVariYYS3XmCgV90AEj8YAoq4N9r4Vw+2E4IwOeuvkuSJNuJiE5C7pBY9b1CJoTIGVN7+BpB9BtfYJsjuEOG3p9eZCBOypv3PXca0jbnxmAsGYFHvCOk/JctjzQy0/V9SF9q+TKUrjUuUFZ9JYYcoLtvMChl4hFMa5P5pnch8wTKOml3Yd4+sTkYbDZDaLmhzrtY0DjTTO9pW+EcsMwdhcsGLqTk85mEl02e+gRtXPpUbDQaDdje3oazs7MFBzIPRhShK5j4A8fLdDqNOmb4uNRCE/zUBJYlWvBdyM5yKQDtU0cf57HpewzC3rx5E1599VX4nd/5nYUghfRNq9XK7O00lRdHusrFXbCj0QiazWZmcxUhY30CDD5zHbafbxB3jWKQR669bHMawjR2bQFfns4UXDbB5ltz0cC/045ttBt4nujjefbsGfR6vQX/4HWApo24nrCMBTE+MPELPjfRG7K4A8But/H2lHgK8+Jzg0uv9p17ON1r+IPy0npuLic0i6lonMcE8c5YPBoG4GIwTyYTqNVqUKvVoNPpQJqm0O/3F1ZWSILCtJo0D1O5BMVVG/g2upcZlJWc9LbAUKhxQL8tEpw+WqZ0zAWugm02mzCdTjM+Ho/H2YSGY0MaUJq6SW3GJy1bPjEnw1g8VeZJIiZtoWMxpHxNMB2VLq58mfhHM+Y0fOIzhm1BuRCngtQuMfrYVy6h45sbedoFET7OU3yfV86aFozYaCtDAJVD21cx5k6p/fBvbdtoDXvpm7LK1esC07iytT/nCVdgw+Rs4DqIbYxr9DFeLi1fC0nWh8gAnwUJvuPIJRtM8wRPJ/2tBc3f1G/auvkYcvy5KQ9Jj+ffmPIP7fNlQNNvq6Sdtp22z0x6moYvTbaD9J7T5wOfsSc9x0CWjU9j8p2P053qRfV6PTvpy8dJyfPU0GeSGZwuV54mPvNpSxMPSvnk5aFQ1Go1aLVacPPmTQAAODs7g7OzM+j1etkOeoTtXlXt/Mn7olKpwHQ6hclksmB3hdofMewWjX6ax35bYxGhdpjruUu++up8PmnKZGOEyCwb/SG2F4fWbvaBadzSOs3ncxiPxzCdTmE2m8F4PIbJZCLOoyaaywaTXqqxe2yIoWfb0tH5kKeV3knjW+PT4OXFgIvXTLRIddWOAd+0GqzKz6zxk2n1QpvOl4em6zCXlzmOoIGPvWaSJwvBWOlsc0Sn04FOpwM7OzswHA7h+9//PgwGgyz9cDjM7ldB4MpTl3PKxkxl3eW1TCyTUWMP7FUKUSwX+RlXZjebzUzB4bh9+3bWBpPJBB48eLA0mm0ODdcEl9cR6wseiCojTM4N07Oi4XKOciPaRSPeIxujHnkCQMtw4God7Zo8tHA5wnH1favVgjSNe6+dqUwOKtt8UaRjRpsn9ok0NsooW7SKt0+bLttBVta2XQXyBEM07YgymjqMK5XKgg4S0u9clsXoU8nANDlQfEC/5TpDbJnJ581Y7SI5kFwBWRoUWMbY9q2niX7OW5L+eR0cADGRh8fKyBuufEzBSvocZV8RZcZGtVqFW7duZQ5wfjcovZ9PK1NMbRVTTnP4jE1p3AO8kMlchko6JqdlGbvznz17Bt/97nfh/v378PHHH2f0uvhNE9SyBQaePXuW3R1L75oPqXOs8Rg6Lxdp5y1bv1xGedz29Amu2PL0/caVj887bd5cf1s1fAPQsXVBXkao3mXSGRuNBoxGI3jw4AHMZrNCTnAw+TU0gc8YbaidP0PGEs9DS5MNPu0f8+omBOc7H/s0b7DaVVbMuczkpy2D3MkDH/rzzgVXsa0kGV32umhkpQmSPFkIxj569Ajq9TrcuHFjwQhpNBqZ4xkdDDdu3IBerwenp6eiUY9/06NdcGKn6aTJzVRpzSqU6whT8DrUSDUZbJLQy2sIS/0T27g25WdyGEh0jUYj6Ha70Gq1sgUFaZrCxsYGJEmSHcONx4Q0Go0FJclWFzohUiNfCrj5KPyu9itSmF2lcWfjwTz55eVf19hwKWBFGNRSuZwuE71Fg44XHoigtHB6JIeTbfGCJEeo3LA52ULGnGYOlOgIaXOtzLDNsRo5mwcxeYnXx6deUhpXWTaEyKHQfval42VH7HZ26QP0xxXUy0NnniCqC3nlnY+zwIZYeo6rz0JoMM1ZPM88gYJY8HXc2OZJm32hsfMwyCGltbUjTyPJeJtdUKlUoFarQaPRyK4UQTu20Whk10OkaSoezW+qjwnL0Ju05UiOryLpk/qxyPJoX1L522w2odVqLQTztLqAj+yhbSvppNo8TPRpv6djo6j2NtVJ41yl7/DIf7preTqdQr/fh+FwmF2TJS1KDaknpsUrhdrtNrTb7YWrg2j+Pu1n4h+feQHraTp+Ult+Hkdi3rxjYxX6rK+uHzrO8vRDiJ7oeu7rg43VNz7t7WuP+th9eeSvS+/h98DitX+xF7i46hbybZ5vJPkXg29i0aodG5r8imo/m56r8XlJz339TT6yR+sLWaZsX5YuDuAeg1J7h/DbVcMq9Yg8/a+x0V39uRCM/dM//VO4desW/NZv/VamfLZaLWg0GtDr9WA0GgHAxeXi77//PpydncF3v/vdS8fEIPjdl5iOrxzhBopLycX3612z4cDAIgUaPatE7ACiNr/j42M4OTmBN954I2uDWq0Gr776apZmPB7DYDCAVqsFrVYLTk9PYTQaXVL+pGOQqZE3n88XAr7Iy6iE8CNQecCXC2zNxFdEgOMqoSw0l4GGUCzLKcwhOZCKdtwhuEIK8GLHk+Yu9GXAZbxw3nf1Y6ihGTMgEpKXyyjRls0R6mj3hYmniyjrZUGeYGGeb0IdKBL/cwd2Hn7W1s2ka/AdY775uuihOr2vs7uskMa1qz+XNb+tAq66oc4rnaqkgSmA63L2YGCu3W7D9vY2dLtdqFQqmR17584daLVacHh4CKPRKNvVXnY7VCMDXbxWVB0lOaOhJwSVSmXBvsUxuLOzAzs7O8F11Oqjy9QPJZ2QtjGXs668MB1N6zsP+fZpmqYwHo9hPp9Dp9OBdrud+ZEwEAsA0Gw2odFoGMu18RTX71H2TKdT6HQ6cOfOHWi325AkCTx48ACGw2H2bawgCb0T3uWDqdfrUK1WYTgcFjo/rsrWk1AW231Z8BlX2nYJtac0z1YNH1kWEzaZ72Nba48evq5jgMsxU3to5C1fTBWiR2vlah75G3PsSrpTjHt1eb6+yDsWr7vcD10o4oPr3oYhKCLGBGD2E3LfCf2GYiEYm6YXd8F++OGHsLe3B6+88kqmuDcaDUiSJFOOuUIPcCEsJ5NJtlIR86RObE6kVCmahleWGwMmY85U4bLCZTDQNKH5SkFDLrRNfbAsh3ARggNpxroiH9ZqtYWgdJqmUK/XodlsZv/To4yn0yl0u93sf80RezyQ5JvWZOj79oc0djQ0mfK6aigbzTHGk6TEhuRPecFlRMRqRy6LNHOBpi6hyjd+q82D05wkF8e44aQb2q+u9qfywCdImMewNvWVT558HqJKSshYiMEvlBZOo5QWf2vGiUSjDZo2KJsMuwoI6YMQ+PIx6l50HEh0SOPdxNu+RgaXXyGQaOU0uegyGf1cXzG1U1GOY60ThCMWPZo24+VK/JSmKVSrVahWq9DpdCBJEuj1etkReJzuZcBUN5O9EgM+wTITT8Z0ikpBKlfetjqsyt7lY5Py/2QygV6vB8PhECaTiWp+K6oemD/uNrp9+zZsbGxAs9kU+5n/beubUAcnlY+heqtEs6lc+r+kI1L+5v0h8aumbNM3WpoleSr5gfD4YNxR5kML5w36nI/5ZS6+oL4zn2tpTGNJep5Hnml9eHmwKr3XxZu28YDQpHF968Iy2idvGXnGv5SHS+/0zU8D/J7LB1sZLkj+PvzN/TIvs/3n8meE9kMIT7hka0i5tHzuI9HkLfll8siPkHbxabtQuopAqN8phD4Xn/r0Xez2fllgsp19oZl3JHluQo0/6Ha78N3vfhfu3bsHr7zyCgBcEI+7AU9OToyrLvDScTzOCb+lv2MyEFfIuZIcYuBcV2CQAIGKPWWSNE2zY4EAZMcDbdOrNNCxbogkuViByu9jaDab0Ol0AODF4gKs73g8hpOTkyxtrVZbuBeMIxb/Fe2kWCMMRcoXm4MeIQn4vDQVwWtFtZOUr0S/b5DClA8vkytm6Aiiu8eKqLepPknyYoEU300f0gax6OJptAHQUGC7m5x3CMnpJqWVnM2x7mo20b7G1YON/3m/UueqS1GXArI+ZZtQhCNVcpLn1RdtMixG/r7QOCqKkreSk06a63jZePTunTt3IEkSePz4MYxGo+y4y2XMD2u8ALa5zbHL05cFJn7H3/Tv0WgEp6en0O/3M35bNSaTCUynU3jrrbfg9u3bxnanpxXFvP+Zj8+iZRjXU4twmsam28cJjeMId43OZrPMbtfShYuj6NHjJuCiy2UA2xaPaV41fPXT6zyvaNvClkbD5zGCPz75mtLZ7O3YMNluJv1Gk1+obeUTmKLlhASgaRmmU2jwWZl0Ai1i0C19H4MPXf3mm1do2Vy/j1VGnnw0vsjrjmXPYy9Dm151xAqaAwjBWA4+KVKFcHNzE9599104PT2FR48eZc/x2JV6vZ4ZNCZjw3QUlclYwXdJkoi7OrkgczlkywbbZMXbUGpTmwJAHX+YDneB4nG73DFDd2/QvGIgdt/4OvbRqV6r1TKn1JMnT+D8/Bzu3r0L9Xo9O6IIeXk2m8H5+Tn0er2Md22OeZMih0FvOj5439jysdXZpDCvg7r5wY1Ll3JpUmJ8HSJS/+N45ndya/OVgk6m3Vo8HafHxVu+SrjWOOVBMhP9Ps4uzZiimE6nkCSJ6CzRKPihQQ/aD1Se2L7R1j8PH9nKp3+j7KT5SUfnayDxozT2TI5kTosLJsespu0oL0p8KcmJq2p8X3cU5UQP7W9Jpmt0Ey3P5qXPlW8s563WgeYqTxMMMJUh5S21Y9n0Ml86+BzsC5ND2tR2XK5LzloKqhNwZyn/djQaQb/fh6OjIzg9PYVerwc3b96EnZ0d+NKXvgQbGxvwl3/5lzCdTqHVamVHmkqQ5rtQZ3JMmOYcibY8/crz0KbhfVTU+KjX67C1tQVf//rXoV6vw//6X/8LDg8PYTgcBgWNTXoz0u/SL3ydoiHA732P2LXZpDa6XfqNlGeSJNkO1fl8DpVKBcbjMZyensLPf/5zODg4gMPDQ+j3+2J53W43u0vWNNZt2N/fh7feegs2Nzdhc3MzW5wd8wonStPm5mZmO8xmM+j3+0a/wng8hul0mvnYTLLExIP0f5PuYvq2KF2nrHC1YYy8bXNBqF5ShB7B54TYc5jL56lpLxNi+IE1eqBmnjLlw/04rm/KoitqYOIXSS7b/M74jCPUrxbKv5Rmk87qm7ekH2pkA59Xpes9pO9swLnBpCP4+vGuEq+aYBuDIXzkkhVa3+MaYYjdpjHmQmswViK4VqtlBVerVXjjjTeg2WzCkydPssGLAoGmlfKVHNWm9JKxpqGXomxOj1igBqtNeKOwpoK/Xq9DkiTZ/UfcmVGkQmrLN08faSZnyoO1Wg3S9GLn7NHREZydncH+/j40Gg1otVpQrVah1Wplq2dns1kWjAVYvOPAZrRi2+JEh8ETyVC05WPK2xRoMH2ref+ywdVOeRGzvemYN8lRF1/y5+j8MDmWbHI4hsPOJgc0Mp8qsxqjyDZmeJkmGjEQKgVjtW0SSi81VlGe2KCdI230xJDV0rwiKaD8uc+40TiZQpVeV9to+JnPtRJN2ndr6JBXB1yGDmkbg6HlUt3D9ztT2bbxY5LVGhqkceED05gLkSMaPQzr5ENziB4QKmdj6BomWaWB5juNvmKjyxVAcNGFf4/HYxgMBtmCy+FwCBsbG3D37l149913YWtrC/72b/8Wzs/PodFowGw2cwbuJKdjGcD7VOoDrltqdCuanzT2bPTQ8ml5/HkoaB61Wg06nQ584xvfgOFwCH/0R38E5+fnAACXAuw+vgUNf+PfUp01MkfbniF+Elt+SIvNUWyDxk8BAJeOGh6Px9DtduHzzz+H58+fw8nJCYxGo0v0penFVVuz2Sy7R9b32pC9vT147733Mlo2NjYgTVOrfh8ix5GudrsNrVYLAC52bXe7XUhTeXHgeDxe2L1r8rFx3sozH+fBy+BX8B1jq5oHNH3h8l/RZxr7KgY0epvNZsrr03HVg8rDUJ8DQLw7qMsKyZbR8hT3c9BvfCHZV1p9htJt4q0Y+orNj8B1Bc5/pjrhd9K84lt/nzqsYg7gfWV65/q+CJpseWv8UWWzI64C8rSZi1+0c4yLp4zB2IODA/izP/szuHnzJty8eRN2d3eh3W5Do9HIjiNOkgSazSbcunULfu3Xfg0eP34Mn332mbEwPN4FdxKhwpmm6UIgN0mSbBUipqWCxrRCJk9DXFeggx7rjwYOtvdwOIRKpQLtdjv7Bo/5QYQYHGWGtOpKAn/farVgf38/M9g5fCZ2LS0aBfe69Mt1Bw8wxXDeSk4cXyXIpbj4Kl+hDv/YfKw5AtQXRTpVNW3tSsNlUNHOlpAybOmlo/NjgjtNk+Tyblyelv4fy4BHaOXAWgG/XsAFHM1mMzs20+Q0psY/faZF0XqwRu7zgI5mFzp1MiRJkumu0hyVt16SM8OEZdgVJgcvd76Y6KHyE+0sk+N+jeuPWEF5LarVaibbDg4OoNvtwng8BoDl3rnJ4WqDwWAAT548gdlsBp1OJ/NZ4E5N06IEH92A5oH+DGyTPLowLhbmsjYEMflFmr9c5eLvvb09aDQaUK1Wrd9QnxQALMhyW5AD56J6vQ6z2SzjUQCARqORHQ/M/SF57YD5fA43btyAzc3NjMaTkxOYTCYZP+Ai8fl8DsPhEABeLBJwXZPhamsTjxRp31wHrGr+DO2TvLZFkiSqe5iLoInK1BjtnpevfRd1mMB1tOsehJUCrDY5I8mj2IGpvPwUU4cJnU/Qd2ybGzXw1V+0eb4sCPHlaubnNcoNbZ9T/d4GYzC23+9nKwxrtRq02+3sSFuq6FYqFdjY2ICNjQ3odrsLeXCFz+T4lIQBvaNFcjq4Vn9IDG/Lr2zQOt40A5syAnV24xFblUoFms3mwj2/eAyOTzkxEep4tOWDebmCYmh841FH+E21Ws3GAT3a2JdGWwBN4nFOm1QvG8rM52WDJujJ04aUERKQ5fANDklpJV40GekU3FiS8rTJ5hC4+sbkJPdxkkn5h4C2TaxApQam/nAZM7a+Mc2jmjSmgKZrUYmWXv7OZsBLuoGNj10w8bfGSWabW5cRQDdh2fP8qrCKNqZ9P5vNoFqtejm68vCqD23S/ERlGedVH/g65dFZjraDb/matuLBXNs8yPO06QU2/VLTBi6ZzN+b0mN59MQLE+0auOwRmrdJ/mvyziOLTG2g+Q7Hp3SnuIb3fOgODeLFTKuhQ5IFtrzQSYinCI3HY+OVN6uc6/CeUFwQg3fc4hU1CNMOaF4fmjdNIz03pQ+BbUxz2W77XgOt/ZJXzwe4WACNp1IlSQKTyWTB7sb0OGYRvnwl3QOLAdHpdJqdHBaDX5HedrsNOzs70Ov1YDQawXA4zIK+1CemlUf0Hf3tS9uqEMvnEwOhdrXEH1pbUCMb8ujmGruew8Rj+K1rPoxpy+bxH9hkn61sV1v52no+74tGkfoEwqQ7h/RF3rJNefrm7+q3kLZy6asmfozlqzLRYaNRkx//dhm+BZe+Y6tHDB4PyVPDj6ueE68aYunUmjSuPtOM1YVgLD2uFXF4eAinp6cwGAxgf38/yzhNL4JTOzs7xkJGoxFMJhNotVoLCmK9Xr/kgOLMOBqNoFKpZEfNAFysCuRKqanyWudwGeFrRNuQpi92IlerVdGxlaYXR/tgsBGPb+J9FGtlnC+KMtjpDutarQbVajXjsQ8//BDa7Ta8/fbb0Gg0IE0vjilqNBrw+uuvw61bt+CDDz6Aw8PDS3dG+ihZmIYbWq58+OBGY9K2u0ZyjK2xWsRQqOjqfZ43gH8/0+Ozms0mDAYD471oa7xY7IJyAOc3nzajfBBD3vnIIHpkemzErpcNoYo0v9ee78B7meTky1TXVWE+n8NoNIJqtZoddYo6dWye8x1zIQasDw1cLqHek7e+1HmtoSMWtAGsVQadEEmSwPb2NlQqFTg6OoI0TWEwGGTvbbqIq32l+YYHjPF/nGd4cF1ySPg4QDUOVFMdcXdBv9+H4XAIZ2dn2S45DMzhHZJ4chA9BhVgcaGrFLhxBUliOHVC0pq+o39L9okGNJAVQouvE12LNE2h1+vBs2fP4Dvf+Q50u1346U9/CoPBILN98dSoJEmyYHKoEzlN/e6kLwrS+AwNbmh8D3Tc03J9UK1W4ZVXXoHRaAQ/+MEPYDwew2g0ynxQ2vx8gx+DwQD6/T784Ac/gCdPnsBwOIRmsxlVlqNMnk6n8OzZM5hOp1kZNuDJGniCnIse+l6zE2+tB16Gi+eLarPYugOdm6SAJ15dJp1AaAvOLgua9ohFJ/rUXGVdRSxDn6CwtSX2V5FtaYoJlAEu3RBg0Taj4xTgxbH+eMoDPckBYHFDFm9n3g55doDbArHLAMY58KrMq4Qy8eMadpj4XJpPtXr/QjBWKgBXjQ6HQ/GODtxZCXAR0Nrc3MyCsBgg4Hdr8snU5PzhxjXdLUvfSYNOMoKvKnxWVpgcG/QoAz7xYT9h8Bv7leZjUuCW1ba2ySM0H9u7wWCQTXB0ogO4WK3bbDYXDCFb+/P8JQcRf6/tc5uRK9FQBofAGovwCchy5yXvf0k+mqAJ9lcqFahUKgs7xCVHqVSOr/MjFmI78Gg9pMkWf0uOJ/59SJn0WV4l2dRnkgwrIoBgo2NZfMLLk4IGpqCCK08XTHWUZIArsLRGGEzj1Ad52x+PruEyldKYlxYqk3zHVuh39HtOm/aZRAfOQ6GOAtoWtnJ8Efqd5vsi5CHuxsb2dJWpqZtGfpucbXkcgkXwNO6ARPsVADL9B394kEmyjTTtKNGySrmuCa4h+LG6EtAhlscp5nJO5mkv7OfT01PodrvQ7/dhMplkd4Si89gUuNCC8odLH6fyUNLJaFqf8m3wtRtCytTqxHxunk6n2c9kMoHz83Nxh6iLDpudjOloG2Df4/HBh4eH0G63g64+kcpGn0yj0bgkGyW53Gw2oVqtZjuD0T/jqzvbbD0T3TF0kdA0ZXZQ22gztbMNtrkpr31hS8dtHekIbNP8nRdaP5m23Bi2N4etTzR+SZO8iYm8c2HR8NUN844DU9l5dXUXYszLPryOP3RRK9VLXXRK+qppTGp5VtInioDNj6NJH6v8EGhoKPPcVyYU5aPUPHeNG1eeFOIxxbjDz5XZdDqFo6Oj7P/d3V34zd/8Tfjxj38Mn3/+efZ8OBxCtVqFzc1NAJB3WEoDBVen1mo1qNfrmTFM06XpxS5aU0C2zBPUMsEZBe9DGQ6HWds1Gg148803od/vw+PHjy/lgY4IdFRch8CehkfSNIXxeGytb5IkC6t0896x4aNU+yoA6zFxteHqQ5sDJ2TCaLVaAPDiZAJclBPLcZMHUhAtTV8sLtEopjGBwYJY98tQUMXb5OzS9kmSJNBqtSBNL05FoI5HgBcOoRhtx2miBn8ZFU6sO+4+0CCG40oTkF3L7vxYRhvGMPxi7BqlY07j7AjJm4/v0Lwl3k/TNNNVUc8P3WnnKg+faQJNsWFyGHFHQ+w+XOPlAQ/0FQkMoFH5w+nIC1+5iKeV5Cm/qLlDktOh/US/k46G1oDLdHqilia4LgUsNTSgHoq29PHxMRwdHcHDhw8X6JLA50sf+4Tq1LPZLNsVLdn8dKEGp93lDKa03bhxA9544w04PDwUr/jC8VOpVOALX/gCvPHGG/D555/DyckJHBwciCfv+PQzrVvsYPwai5DGQqwA+DKAGzVwc0IIf4TyVNl4sWz0AJSTJgTKdA6qa9uQt244F63aXy3N56Zxbgpm8raoVqtZbITvhjWV47uIJBRFyzBcoOSyB8s2Nsom29fIjxh9einqamLc0WgE5+fnmcLZ6XQWdqoiQUmSQLvdhq2trex4S66YoxDG7eSaCtlWPNGVXCbBT7FMo3TZsAl3bpjxNp3NZtDv92E6ncLGxkYWUBwOh8YjN2OtOtIA+ctUjoYW14pF5E00zrrdLjSbTeh0OtlKatxZsLW1BaPRCM7OzmA6nS4c92kLApkU7tBAaZ6AbFmV/1VD40jQOJhsfc3fawKs+A0NPobCRAMvi5aHiw4kZwuljdMcSlMo3RJdpucuOl3KK/7EMBo0C0NsY9b1ngLT2fqTppPmeql8TZmaYPEyQOdFKWhsosnWVkXKUs7rZTM01tDDZ9GGSx7GGk95A78anUYrK22BSNd3ofoQlueaU7gNkafdtPLCdw6jzzAQhcdj48IqV17UvqrVauLx+y69/LrCFHDykf+r0r+1fYW2dK1Wy/oYA3Ku+dA0R7n+LxI2PQffY8ABTy/gyBNgttmoGt1Pk07j9KV1cM1BJv1PQ4spLxut+DxJkoWT1dD2CKm/6ZkUEMB5mS5IpM9NfWijC9/N53PodDrQarVgY2MjG1cU1H/VarVgc3MTms1m5mx3tYGJL13+EW2gwBehPo2yIXY9bD5N7TwSMwhBxxzKBV/dS1MGgK5/tTxOIfkGTGl8IfnNQr4tI28XAUmnpv/TtrT5jEJ1KlN+vgix6fPoOC7/GfqfcR6gOg31R3Geo21uGhcue8eGovkb88VFUpJs4nXw4YXYeihvjxAeWOMyytQ2MWkRd8ZKODg4gIODA5jNZlCr1eC9996DZrO5kGY4HMJwOISdnR3Y3NyEX/ziF3B2draQBhVqXNExHo8XVnRIAxq/MRkNlA50OJggOVzL0rl5nDqmSYy+n06n4u5ixGAwgJ/+9Kewv78P7777bvb8888/X9gBjbDdc0rLja3Ixc6D0ohtg8ciffzxx7C1tQXvvvtudmR3p9OBdrsNX/jCF+DNN9+Ev/mbv4GTk5PsnmO8IxmdV3nv2vUJ0tBdXVKal9VxdhUQGuBCmJQhHycOvXtYSp8kycJR5iYFLkSm+iotUntJzpGYSiJVfjE/lIOoHBc1tvhiGsnA861rpVKBTqeT9Sce06hBDNnuojfm/GEC3S2TJC/u4aLgin8RO58BFg2xVbbJGnFg42/c5Vl0Ob75oCMuT9lc13AZzXlpxjzpPaRanSkE3GFic9Ktwr7g9hPeefns2TOoVCrQ6/UuraRH2rkOWalUoFarQavVgslksnCFCZbjc3fjdQAN2mn0Ftv4dDm88/Jpnn6ZzWbZqVboBOv1etDr9TKn4HUByr3hcJg9C70rl4PLOxro0+RrCqbSd77HQfM8THSgzsv1Qu7wDUXo3IVtZ9rBaiqHgt675/oWg1Shznmc799++234xje+YZwrJpNJZovduXMH3n//fXjy5Al88sknqiBzTLgCuC8DNGO0bIG2kL7CI7Pxii4AyI7S5liWDRLTHxojn9B6l2nsrEKf4H6ZovVk3FBDN8iEIGa/aXwdLl0ySRLY2NhY0NFpvMO0yBK/pdcV8o1woddJLNPmSdMU6vW6KJPwfYwTpYpAWeaGNeKC96spvkYh8aY6GEsd0PP5HI6OjrLjjJvNJmxvby8UxO8dQEW0Wq0urAZEQ58KEF6J+XwOk8nkUp4uZzzPy/SuLApnUWXT+tH7ewFeOFGw/bkTLU3T7Hhp7Pvj4+NsJ6itrGUH/WIFa7lTcTqdQq/XW7gbudPpWCd5KShkM6gl2AazKS+k3zYOtGWs8QIhMqIoQxn71+UINgUmTTTxIB8ubKEOC5tC6RM0jpVW6heTo5zni2mkMW/6jj83tYPJ6Wr6Rlu2iQ78X+M0QCMFd/mj8kADjTyIIgV+8W9fuautW1HzsmmO4kF26RutzDbxbdHOszVWAx/+lHRYSf6E5G2CafxKtLn40zZ+bPmannM9SgrqasZMyLiS5FeIU4Lmo5k3TOmK1pdpe0oyzUaThjZ+WhKWSf82HYFP522T/mrjNczPNve6gPyIu4fptQO4QBMD0rVaLVdZ2rR5eMLlKLPlzdvShw+KQOjcyf0Q2L/Pnz+H8XicLSKniwxCxqZvoMylU/C2L0oGavIrIrghyUNeHvp8bHY2lQnSMcoafsUjgbe3t6FSqcDJyUmW12AwcNIegsFgAJPJBMbjMcxmM1H+Yd3RD0GP/6aOdQpXX9lsH20ea1xGaJtJ869JB9H2rU/Z+EN9gKbyfK5w8OWrPGPKVJZJjuedR2x2r0YfXiVi6xPSe0kPM+kPmnZy9RnP27RY2se/4gOTr42XLbWLD+9K5dmemeDjf9Omd+nmvpBkD114hX1sunqC+0jR95WHJp9vQ+3RNewoyofmyw8+fmLNe3UwFoGKIb0Tdm9vbyEYKyFNL+6mq9frWXAP4CKwVavVYDgcGld04G6dZrO5sCLCtgLE5TB+GZjeJOTpivd6vQ5pmsJwODQKtBs3bsCNGzeyY3oHgwEMh8OFXR0hTvllQTuxmdJMp1M4OTnJ3vMd4ab8QhBL0EiGbujKpzXc0CrqsWBypNr6mQbVNDw2Ho9hPB7D1tbWQkA2r2K2LNicuxxaemkb8nLw71XUmRrVnCaaBgAyJxMujmq321kabjBI98fTvDCtj7ObHgPvcv4X0ZbotEPFHk/dwHnRtCvcpnxpjm1EFFWvNcqJ2EZZKP/E5Dl6r18oqMyiBjaFTzBWUx7Plz/Hd9LzvGWbHK0mJ/9VlBFoH9K5l8/DPNhA+5g7T2geaZpmpxZw24/myx0upvnENPdUq1VoNpuQJEkWkMXrWqrVKgyHQxiNRtBqtaK0WVlA22oViOXE499TvXg2m2UBvs8++ywocOdbvu84Njmxfb6PUQ9TMH4ZcokHY/E0HtupZ3TxBMKlEwNAthu63W7D7du3IUkSePToEfR6PRgMBtDr9SLW7MXmgpOTk+yuWNM1UPSb2WyWnWhAndKrnieu+pwVA771DnXghuTpAp5wMBwOnT4i5Lu8d29roVkAsSyek/TEsvo8Vw1Tv+Xxw9vkOF/MGXIaoY/er/EnmewNWpYPXdJ3aDtpaPf11ZQBtL7VanVB58a4EL0zNkkS8eh/upFv7QdfIwa4jmqDZsx5BWNNwnAwGMCDBw8upd/c3IROpwPPnj3LlM3ZbAaDwSDbkWOqiKTgoQJQr9cXlFEURmho1ev1S3cbaZRy+u6qCiyftLSOtM16vR7cv38fdnZ2YG9vb8HRUalUYH9/HwaDATx+/HhhF5V0jCbFqto0ZHJFnkIj6Pz8HOr1OrRarezu5EajAZVKBe7evQt7e3vw+eefZ5MD7vhG/nbtIkZQpz415F19bDKc6be2Z2UInl0VuNrOJs94+/rIG5vz2Od7F0y04hHG9Lgu37w10BhgsRASRJcCstpybN/R/jW1p+TIttHI8wV4cRoCBiQxGIvH2APAwl1dtrr4vMPndJ7AORxX+5vq6gONw50GfxqNBtRqtWyRzenpqRgw4cEBW7m0LJcs5gEMF66SbvKyQGsM25673i+j33lZLme8SxaE0GyTj6ZxR50SseYik3w1yRRb+8QCDUxq5mCqm0+nUzg+PgYAgNFotHLHTEigKjQ/Wz192iCEXskJVjY7U0MHXsFCF+FSXYgeD0d1FNovoTJhmQ73mH2itYHzBGfytK0kL4vQQ2xpuT3hOx65boaQTlKTyqayNEmSzIanO6VjwDR3HR0dZbtk8dnW1hZ8+ctfhnv37sHXvvY1GI/H8OTJk0v5uK7LsOkWLr+bBjGckLbvVuWPCNHj6DvbPETrRu99BHDv6AuhV8orTdOFeyc5ms0mvP766zAajeDp06dZWrTffPslj3zT5O3SnU3PivBh+NBynaAJdmnaQOIJaZ7i6fLq36b5RzOHu/jbp+9NPNlsNqFWqy1cpYdtjX5qU9vTuZC3pa/N5GufxQaeTIObCrBMPt/TIDW3m9YoN2zjRut/CCnPRQMvm/7Q95JOzscfp9l7Z6yE4XAIjx49ulSRd999FzY2NuDk5CRTbHEVIjo/JQPCJIxxJQS/wBmPi8J3jUYDxuPxQj787+s+MWpA2wDvN51OpwvB9d3d3YVvqtUq3Lx5E3q9XmYc0Lx8ldiyCEY+yKjiiStS2+02tFot6Ha70Ov1YGNjA1qtFrz66qswm83gyZMn2VFmuOObOghdk3psJZE6Snzqv4YfYradhgekseajZJicL5IyKk0+fNEFLd80cXG4FN5VKE2miV1q71CnhYZXXHWX2tpUJu8PDFpUKpXMqYp3XKNTDB1URawgpG2JBj7AC6eYrS5SPq6yJEWJOt3S9GJxV7vdhr29PQAA6Ha7wceE8bJN9bDNl/zdWjZfHWj5EkA/x1Neksa9aWzQQIg2KEDfa5yCJqM+xLFO87E5ZFxyggaGbOm0jiHXeIwdwHHB1AaS7kDbgwZj6ZFfEh/anMk+dIa888k/Jn+5vnHB5RRGB7jpW205qwDaROgQxGf428R7vijL3BdjPLvkhMtmNr236eemsl30+bZ3qMyT+pfe6+crX1y2igvol0JZmKYXxx72+30xfShf2uTC8fExnJ+fLzzb2tqCr33ta/DOO+/A1772Nfjwww8XaOBzoU0/LsJRaXoeex5ctRxA5LGvbaDOXPRhFg0alKBHXdP6NRoNePvtt+H4+BgePnyYXS+HPlie3gbJBtPSScuR+iDWOMRybHqyqXzJ2R5C21WH1mag6TXPTX5jLS/Y/DYh/mqTP0GTh8Zng3lxG6bZbGYb0fhmMzy1kueF4MFYTpPLPqR9q5lzTPlo4OKhyWQinpDBZRnqFChX84xHH9kfq84vK2zjlY8J6UQtEy/76LZSeps+H+KL5QgKxiZJsmCQ0SP+aGGPHz+GWq22sJKWA1c20AupTWXSvHFXD/0Gj7ACeBFcHA6HMJlMLgUQfA2X6wZcRWM7as4kpNM0hWazCW+//TZ0u92FoCwqeMtQKpcBKuCn0ymcnZ1Bs9nMjktI0xROT09hMpksVZFGmBQBOmFqnWLLdCiuURyke9vyYDAYwHg8hna7vXDfG90py1eh5UUeXpSMIpsjNBZoeXxcSgFs/l0IQpzjJicKOlsrlQqcnZ1lx7+EGtMmGkVF5P9fUOU6ri0UPooYHluM3xURlLb1m+TcLotTao1iYDN+pffLRlHlU6OZ3/dHF1y64Aps8DTUAarVlUJA85fu+ON9LM2hq+57AMgWuboMUpcOYFrIhXnZ8qF9hvlw54eNX1zOVgq6y+D8/BwODg7ggw8+gEajAYPBANI0zeZHHpy86uDtVKlUoNPpGK8sCIXLLonVnuifQN5A3sH64NVHuFs8FLTdbP4FH3mGf2vloBa+jinXM5qvK29NGp6eO5o139A+15SHuwApv6DNkPdIfgmnp6fw9OlTqFarsLm5Cf1+H9rtNvzyL/8y7O7uLtgr/X4fjo6OoNFoQLPZVB0pa8J1kVNXGT66TdF47bXXYG9vL9O/ZrMZTKdT+OlPf5rNdWgbLitgTOGj27nSab73+aYM/bdq5OFjm69K4+fEd3xxCj7n6UIQGkw2BV9MOq0N/L5UqUxN/WL6EWz8n3dcYN50kxjerW7yEfHT1Yr290lYy4MwaHmX96lmIUEeXreN/ZBykF6pvkHHFNO/8bc0QdPVfibwIwsxOGtbZUGNcfyfGleYlhrMtjpgHhTLcIbEmsxDnEg0QGFbCUCNElpOrVaDmzdvQrVahYODg4XjAnwMII2iFRMaw5g7IhAY3McgFPIhHjEkOfh4m0g0SLRIaVyOLh8n1BovENo+Gt7No/xonBq8HFu5oTwwnU5hNptduiMN5TV1itLfLmhlrKsNTf3A6ZCcWj59r6GXO/f5O5OCyAO5Lt4KnZ+kOYfuTMDd/FLgIG/ZNkhGWcw5wSVb6XMMxvoGYkPGulZma/j0qjoHrirdRcIUsPKRrzZIATBf+kLKc31LecGmM5kCeL67q0w0+r439YmkC5q+d5WTJ4ASCuyDJEmya2V4ObyPXPTTPtbWlZfF85HSmuqj6Wdqz4zHY+h2u/Ds2TOo1WowmUwWnNKSg8AXy9LPXQ406R0G4kOcW3kdIT68bOIN7Cuq16CsqFarWTAWF23nAfdJxO7XkLHtI+Mlmvn32qCIDZKssOm6pgCQrTzq+NK022w2y+5wRXmH3+V17HLeRL/B+fk5NJtNaDabMBgMoNlswjvvvJMtfEUaJpMJDAaD7EoNXk9TWfh/CB+udbJF5BnLUp9QWbQM0PFLx9/29ja88sorWbrJZAJnZ2fwwQcfZH4t25HGpnJcz3y+x+cuf50tXUxIdv4y57qy5G2TrbZ2oXqlT1kIk/7Pn5v8Ylq4+tSVn8lu0eRD/Wk2e9AFKeZh8o1p62H7Lqb9Re9Fx135XHbShfOYB49X+GI99y0PmtgIgvsJJX1dY0tLaX2+kXy7+Fvy39L3Jj9F7qWuWDgaNACLZ5lTUAdvmqYwGAygXq8v7GjFQJdthwxdtcyFrm31CA5cn0mgyEFZtgFfqVSg2WzCfD6HyWQCh4eHcH5+Dq+99hrcuHEDABaVSACAnZ0deO+99+D58+fZMb2z2WzhbHsA847nVcDHqOQTWZIkMBwOYTwew+npKVSrVbhz5w40Gg14/fXXs7t0+d3I2G557tugEw1VPjRBHi7wNApz2fhzjcvgTqfQPtN8x2U6X4ABYF7puAyD0zSufZxJmjJMwQKbI8+nTB/FWKNM2JTSyWQCT548gXa7Dfv7+5fyw9WGtVotWLk1KeyrWLnIMZ/PoV6vQ7PZhF6vBwAAt2/fhvF4DM+ePcvodDkoOWyGI4XWWMPvbYrmVZXXV5XuVQJ1CtS1Q8dSXkcN10MoJIMlpKzRaJTJHpPugvnHgotOrhfShaRFgdedOxy4o4UagPREC58AxRrXC0X0ObVLXGUXzXPI33mPpdMgjz6Jfgrpnjct3ShvJF0kNGibJIm3HJOc4L405OELfrerT3CEyswiTkBBYH/XajXodrvw0UcfwdnZ2aV0jUYD3nzzTbh16xa8+uqr0Gq1rLvSlxXI83FwruEGjrVltyXaOxsbGzAej2E4HGa+OUlmYtoidoavEnkCRihz+YJlk26qKes6+Jk18hN1BOrDdMEW+PCxlzX5+wRLOU2aece3L5IkgU6nA41GI4uN9Hq9S3qDie/Qb0P1Ikxv2/gWgph8hnRLuHv3Lty5cwcALub+Dz/8EAaDAQBc8BUe5Yz6VR5dcBkLO9aQ4fKBavs09jzLecKmd0vHKpvsJFUwVivQqKHvyocLAyloxMGjz9wJZXIIoaOE5sEbxEeBXxVsE4XWOWwLlKCCgf+Px2MYj8cwGAxgNBplQo7mV6/XYWtrK3NkU2WFrmrhDiKaB6chBrRCVKLH1YZ4bAK2+3g8zlYOUqOJ34XDhYJJyZDK9QmwmOD7Tew+KStswtWVVnoWO2CSR5GICcoPGoXYNJ4kPjTxWlHKkC3PEGeOBMlJbsqft0nseptkyHw+h9FodMnZg44jyVkYAlN9aGCgqLnXVjb+RplOj2S09ReHjxMyb9/axo+NrjXKhdD5FccLn2dW2dcheqfre6rn07x8yte+p/AdvzwISiEZXqZ+95GBLnljs8FM6ak8lOilthrmQXV86VtOj8ZpRe0F+q3UXpq+4jT4IEmS7D6u0WgE0+n0En2muqx6TMYCt9FDoHWMYnn4TYj+LNmatrLy1s/XEWvyddh0YpPdwfOm/7vGJE/vkilafvbheZ+0pjZwjXGp3aX39LeLLp6nq20wT/RFdbvdbIc9/a5SqUC73YatrS3Y39+H4XAIh4eHmbNZ4+vRzIU+/qKYMsw3v6voj6OI0XZaOWYqj36Pvih61x6+p8FFevQ+bpYxBTWW5TvV+mjy5h2Sf9758apDOxfR9zZ91+e5q919x6DWzqdpbfxjmu9d5VEdG8cmHtPL4xk2ermOTvPO4580zaMhPmaeD6W5UqnA5uZmdoT65uYmbG9vw2QygfF4fIkOunAkht5aFHz9zNcNGnluGlc2eWObozTQzrcm+aXlN54u185YE8PgrkgcCLhyEQNYOFjwnjh6lHCj0VA3HB6hgbtycdUHVSo6nQ60Wi04Pz9f2G27LAWi7KA7n0x4+PAhPH36FL74xS/C9vb2pSAjDdKagLtCsQ+KFjQuwwhA56gxpaF5PHr0yCn88T4OjWNRUw8aLHHtOr7uQj02bEqii09W3da2ScL1HYDsmIixm3uZCG2DvMA5jx5xa3NySUYKtjdAcTxF70xL08X7uFCu7+7uwvb29oIjyISQvsYTFOr1+oLyHRvYlqhzSHdTHh8fw9nZGdy6dQs6nQ7cvHkThsMhPHr0CNLUfESexjFG0/GVrKuWFWtcPyCvSUa2j5EgySV8F4tvUUYCwKVFfr4n2NA8TXoaTYPvYo5B3va1Wg1qtRpsb28DAMDh4WF2zBb9piyygM5dAC/aDoOReCLMfD6HWq0G9Xo9W7GP9hWvm9TGtJ1MASjOF3wXsHTME31H8whpB6xLo9GAs7MzOD09hc8//xyS5CI4S+8Vx2+k+tA5h7ZHqF5VNKjuRB0faGsDQGH3uhcF9DlwoB5AFxLHAG27vDKG5iU5VWPANh4leqQ6Fc3Hofnb5kPbN6gb+5TjQr1eh83NzYVxNB6Pod1uG3ce/tmf/Rn81//6X7NdtLizAvvKx4+grQ/KLJt8xr+1OjDN+7rCJyjE2wEX+RSFNL2497XT6cB0OoXT09NLOt6dO3eyq4gODw8X5jjclBFybUsM+ASxTMirZ5Vtri4DXHMG9ydp7HxTfjbfKV9QECKLtHXRQpKdIfPmcDjMfDTUZvJF0eMxBuhVKGmawmg0gldffRX+3t/7e9Dr9eDo6ChbHPLJJ5/A8+fPYTweL9BVhhPXNAjxM78McNV9VXLYNn8DvNjNTfmRppd8jwvfxyIOwDzZSQY6/44a4Vy5c03EtFzqBKc7EmkekrPpKoPW31UXSQBIxiNVxtFxzo+Hpu3abDZha2srmzi4M0WizeYwjN0nLsNBuxpCemZyqnDHois/nzrz/jIZnSaaTDS8rHD1hcnRpkVIwMrnW8oPsfqU5oVBqTRNg44iNrWVz3g3tYPN4W5CjHJN+YQGLqgMN81vvEwNT3D68J1JaUXnZcj9iz4BH016l7Iayuu0TXkAgh4tz8sw8Y3UZwitcWDrz9DxXZZAz8uCvHxp0xPQoUaPYqIL3Ez5aHnG14GhGR/acvPoX5pnvtDqU9J3XDeTjrNzGXaadzZw+arNx6ST0x/6jjs/XPImpD4amzJ24ISmRfsHgfeq+5RlqsOy9G+fslxjyjUn+zgLY89PSBvKR1ywShecmb4pEpJTularLbQV17dtsNmb/H0MPrOVp9VBtd+6fDOmeUfrj6L5SPKuKH0JfSkI2/GJ8/kchsMhnJ6ewpMnT7K7jblOHjp+XG0HcNmO0fgWrro/QeOnyZv/svRxie5qtZr58XZ3d2F/fx9effVVuHHjBrRaLahWq/D8+XM4Pj6+tNhIK9fz6iyx8w2Bxk921Xm9COSVpya91eSv1djjNh8NzV87p8aUEaY5m+fNF4S7aOW6OdaP6/Muunx8er5+CVN+dAH9/v4+3LhxA7a2tgAAYDAYZAuSptMpjEaj7Ht+BKzWrpRoCIHPXPwyyY48Np9p3GvGTShMeqH0N/WF2+SCpg0WgrF5VhSbBF6SLK4yRAFhGijcaPLtyPl8DuPx2Gkwm3aEJkmxd4eUFdge9Xo9c/hNJpMF4wFXcgIsHneSJAncvHkT9vb24JNPPoHHjx8v7FrWHtVWpONYY9S5jED6jvIJ/x+fobE9mUwyfjQJGVe96cSKwYPpdJoZaQjN+fh5HcZrlAsagR+jr/v9fnavNPI8Opul+yfKyl+hu644TO0uTdB8zPmWbXOImOQmGtCmoCpdMEPppAp7kVglf2DZuJvZ12CMkd6HF2jaso6rNYoD5ddWqwXb29vQarXg8ePH0O/3VXmYZFER0PI2153oDln+resEkLyQ5CHHKmUiH/vUwULbS9qxuUwn8BrlwLL72+Yg4TubKWLYfcjfaHfevn0b2u027O3twenpKXz88celGgN4FyM/LQrbiNuSruB/pVKBRqORHWNIvwXwX2gjyZm8cAVtTQvxbToPbSuJfp8Aj+0+r7zA4Gq3283ostE2GAzgwYMHcHx8DAAAGxsbsLGxEVX/8z2la41FhPQFLsJAaAIjeWDL9+/+3b8L//Sf/tNssdiDBw/g4OAA/uf//J/w/PlzmE6n0Gg0lmILmuC7mMKWLsYcs7a9/BDS7q65Rxoz0skXoWWuMg8Kbof4xCVwQTm2C92th8f90nJsKNIvj8CYw3g8zmjb29uDf/gP/yG02+2F8vG0U9whC3AxNmk69LsvE+t5NB9WZXObaHD5MOgubv4N/V+SV1Kel3bG2lYA+TgNOTSVdK32MJUn7UzkwhmPQ8R7OhB0F62N/jLAZliFOvltZXEn/fn5OcxmM9ja2oIkSbLAH7a1tGqTgwfiOd3LEPy8vJBvuYMrTdOFutF20xp4Lv6XDHUpwKtpP1qHMvP8VYSPfCsbpPFH+cu0UinUYKOBP4kX+Rij30h5cbpM723peHpbkFmSI9z4cxmDLrpN71yTuw+m0yl0u91MgUc5ww2AouQFDTbZjvLg6SW4ZDvKZC5L8fQHPIZyf38fer0eHB8fG/lbmrdsjkPpe4lXTNC0fUy+WCMeYvQFDbzZ8uNzkG/Zksziuk0ofBzkWpgClS7dK0ZgWtJlsexarZYd/VepVLJjil1BBhONMRyKlFYXsExc5MoDRzSAQedwU7tLxqlp7jQZtrweNp1Eei7VzzZX4CkJea4YkfQaqT6xoe1vEx3Yj+jMS9P00lHbZdJrqV2Gd60t49g6m96M7xHS4jfTd1I5seGjb9h02Dz6P5bl42PSzkd8DJi+Kdpe43IPj7GfTqcL9wCiTOV+LfRf0RPKKJ0+MsTXftLywVVFSN9rbBD+LERuasaWqz/41XH4rNVqwWAwgNFolF1DgAGRRqOxEPAwlVW0/A/RXfnfmna36RQ2WnzSXheYbEzfeYDrQdr0/Bmny2UD2/S+MtnP0tylAc4hfH51laOhBRFj3FP/OM5r1Wo1263fbDazXbBJkkCz2YTz83N49uxZdn0WP9rYl7ZV9/F1Q4z29LHhXHlQunzsX1oPbkNwHwzaRVzH4+XasBCM9RGKJkjGspSGEkgN3ZDycQUENXK4M7fT6UCapnB6epo5FLAB6XHGZUYMZwyFS0GhF4cDADx9+hRqtRq8++67UK1WYTKZXGo7V/+hs73oXQ4+MDl+6HvTd/zvNE0vrUzW3GPgY4hKhhiCHyHrmoBdzqg1ZJj6SnKC+xpSZesLHN/SUSn0flR0woY4mfG3r0MhVB7mlaX0e5MjTpIpJsdbjHnXxpOu/MfjMRwcHECz2czmSpwfOb10vta+09APcLFoajabZcfPuMYZLVuTP6bF4wsprZPJBMbjMUwmE2g2m/ClL30Jnj17Bt1ud8FZJsHF81If2ByCefhB65yLrU8sA1eR5mUi5txhOvIptA+o48XXMNLmj/nhfCQZTUWAX0WRJBenzDSbTdjZ2YEkSeDRo0cru28T24I6PuhzSrf0LQYMsP3QNkAnr6l9qSzicwr/hjtOpX6ji2e54UttP0l/N8lFl8GPp9rw44ol2IJsyJchx/+bEFse8rqj7XJ+fg4AL9oWn5fx3lstuPO9KNsagX3vuwNTcvDEogvz9eVLkx7r+kaqA7VDfb6V5pKrhHa7De12G46OjrLFDqibmnZ69fv9haMZi4KP/6Ns438ZOqKNjzVY5ul7SZJAq9UyBr6Oj4/h+fPn0O12od/vZ7IAN12sAqHlxgoE2GyosvJ9LPiOH5cf2adcX7h2j2rqYRuLLr+Kz3ehbaopj39rW4RWpkAlnuyIC0EALnxAv/7rvw57e3sAAJk/KEkS2NnZgU8++QQ++OCDLA8M2Nr84muUF3l4PXb5pnmd6mOmMUGv56RptfXzujNW6+TjMBkA9B115PJgUohAmE6nMBwOM2GNDoNWq5WdNW5zHND/ywLurAilz6Zg0CM8sd2osQYAmXO60+lcEvi7u7tQqVTg+fPnMBwOYTqdZo4bbT9qDIFY0CgSEl/Y6OIDV9tPUr7SOKF9gs6hTqcDtVoNhsPhgqPNlj+vj2+A42WCLXDoGo8mHtAEbm1jYRnySeJ5XKUmTVCSg1RqH43zFsGPFc5rbMfKx4ZqtbqwqpgG82zzIb73kRt5YTqtgNLCT5AIAW9vlyOQKzIx2oMGJahjHfOezWZwdHQErVYLbty4cen4bZtMdfUZb2deNy6bbfLYFMCwyRmez1WU72WlOS9dNtku9R+e8LKxsQGNRiM7tUSCRp/y0blszm+pHj5tY9LBY8lCHFc8eGqjISYkGRdax1qtBkmSLOh7NpnBr9WQvrFdIUPpRQcJ3f1bq9Wg3+/n7iuNLspptNGbBxo6NN/jb7pYrYjgmo0G/o3W6Szlo9F5+bdaGyNvn1UqFdjf34ednR145ZVXoF6vwy9+8YvM8Ye7CyVbyAaTo0bz3mZbur6z6RVJkizIAZPvhOYR6j+gfgEbQvRqTXrfPnIFlzk/x5xjJOBR0lQW4N+NRgO+9a1vwd27d6HRaMDx8TH8/Oc/h08//RQALhx9/X4/1yJ2k/7oM59L34fSUpR9E0KTT6DDltaHR7n8tcnpUFCbLU1TGI1G0Gw24d69e7C/vw+NRiPzlUpXXOFxn9pFZDF0J5eMMelLWnlu42ntvOyTpqw2iwkaG8H1XrIxTXqH1OYme8TWRz7jJI8vzZZW0kk1cyalidbPZ5Ma+uTovIcLzqmvxcfWk9Lkldv8mPbRaJTpY2+//Tbs7+/Da6+9BpubmwBwsQBpOBw6xy3+7VoguMrxuCyf3iqh0fF5Opc/2Kc8DVDuuHiBn2IjvUN7Qmsrmsq8FIyVEoZU1lYwn0ypsDI5YUwNYnKO0uMGqYBqtVowm80WzlCn30k0lBU+QkVTpyR54XTH4Gm1Wr10tNrZ2RmMx2Not9vZt9h+N27cgN3d3UyA0qMHfCYnPlBchnBe2BxUvvnwVa0+/GQaN9ge9PJyPM5zPp9Do9GAdrudrc7A9FzZoc+lcqUyX0ZI/cCPNuXt49NWtL2lXTU8jUSTZMDFMJJdoAsseJk8eFXkXR6hBr1JrnAHmA94u9dqtYW7nHHFMS8T/5dko01pthkjmjlcw2/0Pb/T0USXL7hxxfNzzQH0nWZOQZ2AykZazmw2g8PDQ+h0OrC1tbVw9Ahf9UYdpbw9aZvx55qgGaZ38UXIeHd9U6Sj7LrCpafSND55SjyRJAmMRiMYj8ews7MDlUplwVFrcnRIY8tXjnA6bDKK33uorS89bUUad3lhaxN8r6U5pGyaNx/TpjldGv+4g2o0Gl062p3mT+dlfG7aWWqST3xuxJ2ymA/e1zQajQrZ/YvzDtcvaN0kepdly5lsG9rGaBtQnl6mfr1sXd4mD+h7LkPy9lW1WoU7d+7A/v4+vPnmm9kcjsGwmCczFcVfOK5s+aM9WK/XIU3TS1cwmWj1gaTX8NOXJHD7U1tWLF5AOrXIU44rTypzqSOatmOz2YR/9I/+Ebz66qsAcHF/55//+Z/D0dERAEB2RLyJDzQ2BKeL0mFKK5VjyscHZdQvbfYP/z8Wn+bxNblAxyvAi3uLt7e34Ytf/CLcvn07u2e63++LeeA3mF+RsOnOHK75PgSuvliWLlE2aOvL5Y/NZ2FbmO4qg8sgDX2hfjoXLUVCUzdeFzytBkHnDG5LUdng2w9SGk27or6CaUejUXbSQ6VSgS996Utw7949eP3116HZbAIAwMnJCRwcHBjtQO6T1eyODvHxvWzQ2ME+trLPeDHpGS7fuESLJItMdhpPY9pESOdWtIWlNC7aKLx2xsaCNPC5kyD0qEPuHKVOCH5EF/0u9Pio6zpB0/pgu6BRi86fo6OjLNC9sbFhPNYEDcUkebGKF48rDh2gy1IMfdK7lHnJQR9Kk0lAbGxsZGVMp1Po9XrOPG2OwDVewGQIa1G0rIjhRNYqKWm6eEY+n9yo/HXR5NqNs2yYxpbGUMC0uHOIHznmUmBDlURX37vyxflxNpvBYDCAer0O1WoVms0m1Ot1GA6HovzNKzNwsQ7OC9RBhfOypEz51tEWkMKf0WiUzVMuR542YGX6zoWyjIU1ygV0uON9XjhOUQ+TArK+8JVBPLAnOfDp/xSx5kTpqhHuoI4ByRGLZfH/Z7NZtusEIOxoQsmmwd+4Ihf7H3mDz6WSc56fgKOZg2kedH7Hk4Y4nUWjDM4UEw20fXCnZpIkMBwOs11uMY8rNpUfax6RVn7zcmKPNR/Qo6SXAU370qOcEfQe25BjgbksrVQq0Gw2YTabZdc12fpB41hzgcoYXodYATqtY1dTriTXlulLwLnAhul0Cj/+8Y/h888/h5OTEzg9PXXOFxq6JfsC616k/LGhbI5wLc+G0sznX+r3MpXNFzyE2Fl0DhoMBtBqteDLX/4y3Lt3D37zN38T9vf3s7RpmsJPf/pTODw8zOZy6djFMiM2T3GZK7U/ynEcV1epvfLCpPtKoAuiJMQYg77jw7XrNC8/rVrG+QZyV40kSWB/fz87zWQ8HsOjR49gMBhAmqZwcHAA9+/fh+fPnwPAC52Px3q0Za0RD6FzuslH5tLn6G9X/iF0SUFY6he05Wta3OaiQxWMzevc53nRitjuntPmx99TxQX/p8akVCY3Jl2ReansMkOzuoCmpW2BP7j6HpW0Xq+3oLBsbm4aBxLezUtp8Alw+Lyz1S/UgDGV7RrskjNSI0R8BzKmbzQaC846XPHoMzFr2/wq8X9M5Jl0NP2w6kCMdmI17RDmeQHIDmF8XhaYxpxtbJj6ip7MYEsrGTR5nZom2aQJyOKuEXonYJqmC/dUSfmGAnnIdAcdnqqQFy4HJTof8D3uoNHwqm2+COlD27xse++ia41ywqef8N5KuniBH00VMh5t+rgJnM+19zVJRk5eYFtITk9fQzHUsOTjE53w9BQem23hoofPEbiQBU+owUCUFBgzyWvabi4jmOdD6ViFXRSiRwMUo2OZ6o99t729DQCQ2VCcL4vQ+WLlLfGFNIaxPiG6gUY3sQF3HfKytQ4bG122b2x2Nbdx8X8eiNXaqdQZhOA7TShfaXc8hgDLof1mG1cunTaURtdYpnTy58vUj0y8iM9msxk8fPgQDg4O4PHjx8bFDwiTPcXzNcl/7ofT1sFVTkgeq4CvbHTVz2UD8PFJ09hkjM98zJ/T78fjMbRaLXj11Vfh3r178N5772XvcUHVgwcP4PHjx9n3qF8gjUWPlzx+ldiQxo0pHW4swQVuZeHxosFtBmkM0DQmHcJXR+cLFbhs1fpKXfLV9J0P8srXkPw08sXF35J8jMnXnDbUY7a3t2F3dxcALvzXz549y+ya09NT+Pjjj7M86Ol8AMu9hzsEZZcLPvSZdIHQcaPlM83YpTylPR1FsmekbzV+FpNt4PJ7LH1nLO8wU8Xy7JZyCeYkSS6tJpXSmxxUpjxNNFxF0JXzpgFA+7Lb7cJ4PM6+qVarsL29Dd1uN1hISgYFpyW2cRcCiRZKZ5q+WBEmHQ+nLYP2Ca7cwKDP6ekp9Ho9uHHjRnZXZbVazS5BT9MU+v1+tsqI00TLiXWE1xr5UaSzzpcOPGJPkuGUp1dNqwu23ZYuueKSQXyc1mo1aDab2e4oqbwilFykSZpHNQr9eDy2zo38eUjfmwxXVMxxZ1lMR0CapjCdTheO9JPuw51MJnBwcACDwcDpGKN5aw2qUKe1Bst0Mq5RHCRnvq/OUNT8IemCvo5ZCupg4XNL7JMTTAYaPZUnlg6UpimcnJxAtVqFV155BUajETx79szqrNXIBS5zyzzmab9K86d07Cl3FlEbwjSXudrBN/iAeaKOXXa9xgXelprxmsfBJTlYbE7AWHycpikMh0Po9XpwdHQE5+fn2XMeDMlTnokf6DUIoaBjxYfv+Mr9kOOwTc4khMkRJ80JpvQu5JlLEGVxziZJkl1ZQhc64qJ2vmgT4OL4xqOjo+woeICwOdaXx7X5U1p8joO+6vDl5Zh2iw9wgR7exyjh8PAQnjx5At/73vfgF7/4BZyengIAQL1eF3eda3lpWbpI7HJQ3mrriMfB+p7wd5VB28Z2bCz3f9rmDN+5kusVtrb3yZvLsavUp7hwHuuK19hRvZXKdl+ZHcP+ajQa2dw3nU5hMBhkPPTtb38bvva1r8Frr72Wnbp5fn4Oh4eHWTCWn/J4HXTysiNGcNWUj/SNK+8i+lvKE08cQ0iyDn2kNJZiSqvBQjBWq3zHMphc0DifbM4KmoZ3tOneE2153ElmwqqDKZoVLrZ2tj1HxxXAhfN6Op1mgh7v56lUKkZHiqts+o0m6Kpp6xBjRvve5mCndeBKn5Y3uFMLV+QBvGh/qhhiH2A54/HYSpMJJjpjGMxlh08dfRZk0DY18YKm3bV9E+LIl+pkG4cuGvLKwJC+cJUpOYd5eb6Qxikqodxwk8osw3gy3XcKEGfcc37kedJ5Q+ItTf+aDEc6b5nqgHcl0QVGJsRy0NjGj403XWPUZyz4frOGHto25fMB7xeqe9Gddqa8fPqQy0OJJ+g7H4c7dby4bApJDprmV42Oy6HReU2LdrRzKfYRHle/u7t7yckZQ9ajEwad+zabSGvLmdLGkAeavE18x1GEfHIFnkLzDHGCFQUNH+S10U3vlhGgwIVceNem6xtfH4etzhoHsFYu+9i0nIa88NX1uTyLMXa0MjLE9uJpi9K76bingTHckYhth/Y5LhYcDAYqGy8PtHlIc71Nfy8rYtHnyievbeSrW0l50EVsjUYj8wXh6Xanp6fw+PFjODg4gOfPn2eLb+nRuyHlhsI11qX2CClPIxtc+dI24sHuso+BUPjWC3lPY++EHO3J85bSmvrTtxwTTLJ5WXKGpuMBIXoCC02n1U/o39r5lNqFXIdHHxi+p3rZrVu34Atf+AIAXASSu90unJ+fZ9d60OtebHRpbEaTbV0WmNqwiHI04L5qWxpbWT5jeZWgvApwed7B32hjaK/qcLXRSu6Mpc4kvoqUV1h67sOg+B0eQYjf40pFCu6gReGGO8K4c9gm1Mo4yG2Q6MX6IrNhO+DxJXgEbpIkUK/XFwJ/CH5M53g8XjhSCpXDsgxEDpORoVEEpPSSM4bzUR7BxO8joeXRneBJklw6cx+f1+v1S+XzsVHW/roKkNqQj7U8MPFsLGeqqxwpHR5laHNG2njLVifTN0UhZE7a3t6G2WwGJycnxsvei+obH+cTdQRI9PAABVdsUZ5rgd/jN3TngPZ7W7vxO+h5vq6+azabsL+/D71eb+GUB84DtD1chotJx6Hw2dFy1XSNVaOsRhhCQ9t4PIbZbAbHx8fZDoi89yXaHK4+QSSqP5scMnnkHdIiLfJD5zbdIVYEpPGPcgblIDoRms1mITQAXMizN998EyqVCjx8+DBzXlAa+d8Aizo9hdQntO/xuzLr7KsE13HwfzymmI7TMssgDmme5+9M+kSRfIJ5810gZQCOEZRTuJMKF01g0C0UVFejx2T68JXke9F+R3mB+kRCEMonZepvDpST9OoPPPFlNBot0D6ZTOBHP/oRJEmSyQfkF2n+1LQ19ylIuqup76X8qdznznrffn9Z/Qgu3w7Or7yP8rRTs9mEb37zm7CxsQGNRgO63S788Ic/hJ/97Gfwgx/84FKQA8vmi/eXAY3TvqhyNUD/GA9QrJqPi7RpTP4DiQYTYt4tjt+78tC2h822CaFzlXod+uZj6UK+vG3SBdHWMLU1LgwBuLDhPvzww+xUsvPzc/joo49gPp+L10f5wGYTlQU2fXrZNPhi1XIQ4LINZoJEa7PZzOIiUno+rmy7Z12+bt7GxmCszVHoWo3gA5tCKEFblhQoo43l2k3AaTOl44qSNNh5PstkWE1Zof1J2xN3MtEgO4D5LkBTebY+oYZfXmgDSabvpOfcQDGlyzte6G/eJrg7mSqMmK5Wq0Gj0VjYQYt9xemS+sTHcLtuMI3xZZWZJ4+i6ZXGki/tRRnnGnlBHUt8fFHafGnFyXs6nUK1Wl24FD5U/kg0mYLXsR1jedrERQuXnbH5IE1TqFar0Gq1AACy1eGmANZ8Ps92xVL6QucfH/6W5CvNIxTaPrjusnzV9YtRPs7duDJT4quQcrT8LY1/ST7Y8tPwoy0fyUmkddLQAIJEM89XQ69EPw2UjEYjMfhik9UuOZ4kycLxX9wAtAVntE42KS2mp3XEdBoHsosvQuTtqsc1tVHwf4AXzgH6u2zw5XHTfMafu8ZjrHleygcXq3S73SxNkYsIJDvJ1j4YlHXlx3UjPqZNbewKuvnosbbvTWlXgbI4AwHMOi2Vl5g+SZKFoBguWC9C9nHeWWZ/rZo/KB0ceXxLsexXl16lzYP7cjqdDnQ6nUxXGAwGcH5+DkdHR5ldyv1AqxpLRcvnvN/QxYBF2KohKHJMhfp1OA+6dAb+twm0zW267TJ97iZ/SJ48fMF1cZ86m/w9MdoNd5Fj/XBjRqfTyTZxNRoNmEwmMBqNYDwew2AwgMFgkF03MRwOF3bWcsRo/6JQBvmAyKNPuHRMn7y039rKtpXn4gdJBqF9RnfE2n54HbjdKpVrogdgRTtjEehEog5Rk7GqZQ4N0vRihybNV8oLV5rayqJpXPTSd2UaoC5odjpNp9MsEAgAsLGxAbVaDTY2NmA2m0G3280UPuqwKTukXRgIzht4XAkd2JJj3RbooDs6TO1OdxlikGc8Hmdn7ddqNbh16xbUarUs2Fqr1WB7exs6nQ48f/4cer1e1l9coEi70lwOMu44pXVa4zJMTpGYbUaNf5tT1hdF9K/EP/x9KDTyVutE1gLz6PV60O/3YXd3N1vpTt/zcU+frUo+hhr/Me6Xw/and8W65Iq2nVqtFrz11ltZ+oODA3j27NmldDiX4crw+XyeGRQu+jWQnKSufH154SrMrcvAVdEzYiK0vshrpuPU6TisVqvZKuzQAJNrHON8aDrCLBQoU7ispzvYcHU56ll5MJlMsmMnXfqf9KzMPIw8wG04gMU5FUH/Np0SQ6Gpu6TbmHilSEfvddB3JR0ojzzh85d0XKsJeXn+7OwMfvKTn8BoNMrKxIBXTH2YQ3LaIDDIhjLBhLxHX6K+ggtvabtLMs3knMJvYvLFVUeoPMarL1CnxH7AoCveP0aR11eikUt5ApAuunAhEqbH8spwXHvsgKwNWtsI2yj43rlaLeMnrsM1Gg14/fXXM//OcDiE4+Nj2N7ehlarBRsbG5lvVJLPqx7vRcoebX6o+3Kd52WC1p9iu0cxljzjtod0otR10c0k0HaeTqeZPm5Kq233WG2WJAm0Wq1M5uBO1+3tbXjnnXfg7t278Oabb2Yy68GDB3B+fp6dHvHTn/4UZrMZ1Ov1LD+pjJcFRduCph2hV8FuMsUuNKjX6+IJVtLpEOgbkMr3GV8czmCsT9RaQ4hWMeQTr+SQtUXqtWXGVr7oYDEFXGzlFqUMhqxCMAXdTOloerrqV1qNLPGMrb2kuuSFxsnjosHlRJPS2BxHpuC+KQ9sc340mgR6PLQpX0635EiLGbS6ijAZBbb2MMlIzkc+Bgd3kGv6w7ffON227yUZx/NxtYOG9zXzjY0WV334M015pjywj/gqWlMZITDJE84fvuWEBABjyGs+Bmzt71MvXBTUbDah3W7Dzs4ONBoNOD4+Xrifix5tjP0mBW9c9Ev8z2VoKLRtTdMVrci75rlVoAw05IFtbKPjzMWXeeRkCK2YFz2meBmgY5eD6+U0OGRbaBcDvM/y5IGgfU6vm+AGoU2fiEGXBKmdNe0Zk/di5h0LeBoDBsQQq9aj+byg0UFNNFNeCpkPtG0h6YRoO6VpCmdnZ5lDz3QthC8dobozpzFkd66pf9AxRJ3Q3MZz0YXPXGPV1ucSnUWNOa2fQIsQPdcGVztxvR9/JEdiqM4W4xtJZ+XpfdsC09NgNI6LULqLgtY/xJ/ZfGY+yGNLSUeVjsdjuH//fvb/4eHhJXmNfMht1TL1C4C/jNJ+78rDpl9dV4S0qc3P5ePf1JbnQ6erHFc+qxgLtP1s/sdQ/cn1XKJFm4bbV9vb27C5uQm1Wi0Lgh0eHmZHFeP1h6PR6JIMswWaXwaE1tOnXzXjqkhbjSOGrsxPIrGVxX+kd7Yyabk+OlOhO2Ndgtf0TlpFY1JUeToTHa40PsEMF6gT3vadzaF6lSZ5yXmOuwA4pB1g/P+rJlhNwsXHyUcHb8hOE3qkkekoB1wtbVqVit/QVR/SHSaYlgecTPldJV4uAr71j2GAuwyKPAYifm/rX1NQKOReq7w0m2hzBSli8i03jrEN8iqXrjEWyksu4Li3yaoiAhrSc205w+EQ7t+/Dzdu3IA33ngD3nrrLbh58yZ85zvfgfv37y8cUcJXv8VySGjp1chOH3qKlsEvu4xfNujRt+hAizneuJPU5xsq4yQdL69Mss03ePqAdGcSnbv4POTS1VwyTmNjxARt42azmZ2QgvKYtzFtd9ov/F7LNYrDfD6HbrcL4/H40lFYiKtg+5h0P5fjw1enMZUtpcWAJPL2/fv3C+HrPP2DMltzRZImL0w/Go2y/6vVanavmmb3MQXKBp860iBaXt5dht9jWeNL4wtA4Ckw7XZ74SSuPPcJSwgNXkhziU+ZND3WD2Vgo9Gw7uYqEr68sEodV0sryrzxeHxpEcrx8TH89V//tXFHJ+7Mxp1s5+fnAADBu42WBRd/xggcmP7netXLCKy7dNoCDfAD6E7E0JRF/we4LF9d/in6rYSrYs+G0CnpnEUuMBiNRln+7XYb3n777Usy5Yc//CH88Ic/XCgf71indGmDamvoYNoJuyo9iSJW/IDr2zZZjfq5JKfSNC30NISowVhNADI0X0npl1beuwxb6pChMBkCNkHuwyTcSWWjUeNgN31jKx/T+SjhvrQBLO428FGMYilUoUadT3CG96VWgGno0uQlORQpLYPBIHPOVSoVmEwmUK/XoV6vw8bGBlQqFeh2u9nRFkny4s4QG70a3lumMC87NO3n+pY7UEMRa3JzOeNc5UnyT0NT7AC1ab5yBf648aWVVUlycWQLHoEbw5EljTVJVrnyd9XFFtgwzamucmPICEn2SWlQtnFlniqj9Eg/nMPokZsUJgcAHataXYTTz+si8Yem7VxlahBLZqyRD9j+MWU3hw9fcP42wZQnlxkm/cpFs5Qfjus0TbOgLD3qmPN0TN7WOHhM49L0Tiu7Tc98nef4jUm+4f+mfqHzo9TGXOZJDhbTfILvbH1osuOKcJrS8pHParXawmKANE2h1+tZTwhaBsoow0NsXU0eJueLbZzlpZWXbdIDTDSY9AEp7zzwscHztBeHzf9h87No0vlAO5fEgEk2U9mAO5npUdI+POZK49uHkqxGXpB41Jb33t4ebG1tZfr006dPYTQaQb1eN+rWnIaYCOVn05yiyctlB+DzmDzO72l8/Phx5uvh+W9sbMDOzg6cnp7C6P9j709+JEuS+3DcXuyRW2UtXd3V0z09G4dDUiSH5BCQIEg6CDp8oSMB3fQX6KD/QAed9BfoIugoQLoKAgHpIAgiQRASKYkghzPD6ebMdE93V3UtWbnGHvE71M9eWViauZu5+4uIrMoPUKiM9/y5m7ub2+bbZALj8XgjR/Ba/eZQe3Aet6QNlaWhqqr6BBLM601fwGbhR60dcVIj194K2Y2cjhRdmVNHbxovQjIHANZ4UfLHUm2cmC625MHRarXgzp07MBgMoNVqwWQygdPT0/qo9KdPn14rl14VA2Ab2030Qyp20d6m0MaTl5dy+SX3W5Qxmk8Ykvtod1XV9dMLuYy36pYYtLTFd8Z6DFlpAEnBEoDrx7fSDsBZbK9yzx0sFkcyFHDg32pMZYHH0PAYPdJADdEQqoNmvGMabTdGyIEN0RGjWwruSMD3oRXN3naSvqGgq7xpWin4I5V9dXUFVVVBt9ut3+/v70O324XDw0M4ODioj/BChYe7SnhQI8U5jQUWQkr/JoC3SUp9Qt9octCTN/821I8x+vm3lr6U2ojLh9g3VvCFOVI+PDiWG+ixBJL4u+FwCIvF4tqd5all4DtN5mpBSS0fXm6ofCobNJ0aoq0ENH7hz7vdbr1iXMNsNoOqqmBvbw8A4kebhHgsRh/lxZiclN6F8o0h1ieSHZXbfx79GMsnxN+7DouN5fk2Bq3fNFluoW21WtU2d6lAi/a3Jw8K5FkMKmoyKjWgFtNTIX7X3kl6ydpPKTSG4HG+Y7Z+6JvQO433AK7fS6vpH+p/bSJgg6v50Y9B+s7OzsQghwUhmeHt45w2iOmJphALpljsMGkxRinEeNnqC9J8+M7plLEv9TVvq5gPKtEW0sEcHv1j9a0pNBssZJPGUEqnxcrAtHiyAU5goM4K2e5Wna3pt5gdyfPixwhbfLiqquDdd9+Fb3zjG9BqtWCxWMCLFy/g6uoK9vb21CsFtglJnlhpzKkLPdGiBHBREOb76aefrt3fS3F4eAgPHz6sF6OenZ2t2U1WbDKmE9JFkmzLpYvH0qh8LX3/8SbsFCtiMlnr88ViUd/1KW3ySC1bsw25zMfvQ3qHlxFLG3teAlo7SbTReLm1fVP9Ha8c4Gi32/Dw4UPo9XoAAHB1dQWffvppNC9+pUcshrUr2CW9po0jyymlJRDy43gai8yW8pN25UvzSJyX6NWN0kIlbSe/Fg/VaLTEvxo5pthi4FkbWhKuFuUnOSA8P62cELzBP6kttOALD8yGLkCP0de0wIq1KZ0cofWlk+pWp86qJEvBGnhODcbRZxZBxfNNcX4BoL5DCd9rR/PhKlZKX+kgxi4pKy+sTpr3fZPOTC6tmMbLA576WAME1nK0QE0JXg7lge9ofUajEUyn07XjxK35pUA7NUIqwzLGJWNHw6aNZa43NX3D0el0YDAYwK/92q/Bo0eP4Ic//CFcXFwEy6HHyFltmFh7pMoBD89YdVpuOU3mgfk0XUZTCNk3XmeX21+p9bYG1T2ggREuC1Mg2Yx0bFN7JXZfogXUhg75EdviN95nL168gKqqYDQa1QtKYuME8abv7rjpsPhEKX5EE3TFxkKJnTK8PD4+MXhCd3aVbofUSSRtAQFAmgzH9BhE4v62BRIdsfI0eyXFT7f6UpY8+LNd8TGrSr+OhIIe1+uhPTVQ7pH9Fh3e6XTqBY/37t2D999/H46Pj8W86G4UALh2T+muYJP0lKg/391D0Wq11hYD3717F+7fvw937txZS4dy1SurPT5hbj15bIo+pzYn51tPXJhudMD/kb+buuM4Vyc0RUsojbQwU9tRFvNDrb4yto3WhzHZtmtyBsC3kAfAb7trNltObEDLi2O5XMLV1VW9GH48Hovp0H/jO/N32a/n2EXessBLd+4YjqWx6kPJNtHmNqg851c7oSyLLW7I1dPat43dGasZ5t6Z75ihTQM/GkoJG4kOS/7ccODpNKXLV/NaAyzSb0vA3eLQc2MmxJiSoKdtltofKULA2kdS/ULf5YKWm8rDUvBQcrDpjjyt33ggVTJ6tTbS6PLWKcWp3xakNvEg10nh5Vv5hD4LTSpyOmP11RyfEmk0PkkNYkllSeli/C3pK96uOO4Gg4GpzBhtIeAYlgwSS//xd5Y+kmgogRITK6vVSlydi6vivv71r8P7778PP/vZz9TJWGwX6wp26+Q11+0lZR0NSIRoKFUOh2Qflahf0/XJQdM0IQ8i+OrWmC5tGlQPWe3jGOgYxt/8GDR8pulDb3m8nVPpznnPIQUWV6tVfbcb3hMXCkDy8qUxGfo2xdZrwnH1IsffyAUfl5rdnVuG1a5rGpofaZEDFpp53Xi9URY0AUm+pcQiSvIjX71vDRZ5x/k2x1AMu+QjxvxxfMe/yb07NVXPhtpOiotoeaB+Xi6XsLe3Bx9++KGqh/lvuqAK31M+3nT/5vK5R8bHxp5n3EltRvuw1+vBbDaD6XQKh4eH8MEHH6zFemiZ0qlrKWiq70I6VdN/Gi9LbUx5muZb8i7nXZSnHj3t1bV0IZPU3h4ZZrVFvTEVa/yjFFLldS7vUB8nFA/OAR2H4/G4Hk/aCWXtdrs+JSLUj5vuozcdVl7KseEt/BXzk6TvreOBpuX+PX4r3RebMs5CsWENjU3GloJ0rwTftScBhUvpIyRo/pyuHGcF60MDTDHjLVUZlYYUeMYyMQguMXisftwgx+9omhIICQktAOalxZpGCizEFA9Nw/mH/sZjaPC+lqOjI5jP5/URahq2Gdi5KSg90VAKsWCAJSCLv0uPOY2vc8rm49VLd8ngbylYAuslENpNq+kjyYjfhqzQArTUyEKncTabwfn5OXzxxRdweXkJjx49guFwKObJ84uB7+KTvueOhsZzmq7xOJPW9LsYFLhFHFLATQt2pECzcaxB2hTkBBvwCoZHjx5BVVXwt3/7tzAej9WV2B5nyQJpchzbiQartUDzrttZnG5OL79eg34npcfnUnvQ51o5PC+AV8d+VlUF0+m0SMDK+h7pxas/6C63ly9f1oHcbU4y5KAJPaHpWOzzUPB2FyHJrpQ+DslAabKl1WrV97GF8kuhBSdlcMKM0mDtG66n6POY/aMF7bUAcqh8K1L8BovfIuUpHUsc+ybUbkiLRI+WX1PY29uDwWAAVVXBbDa7NrmFdElXgmx7vJcsP9bmTcg4jLtVVQX9fl+UDavVq5M1zs/PG7krNhTj84zdWHyK/p8DKQ8+KY066Sbp7pKg7RGbiEVbiN632wQ8uuCmQYoLS2m0d6F8+e+UNuT0YawFx8jx8TH0ej1otVown8/h5OQEAF5dm8fnBnAy7CbaxzcBPJZXctw0PScDcF0WW74LxSnotRChcmNtFHpvbZcik7EWx8PT4ZrxjcJCEhqaYx5SmqWMvlL50LpZ6kjLtBosNF3K4PE4DPSdRjtvO2uALzSBFKpjrK80B4o/t/Kf9E7LIwSpPpqzBXD9DpKqqmolie/wPgeLYyv1lVS/nHHuSbdNJa21Q8r4D/GJty1jY9vav5Y0WuBUKs/SV5ZxmZqHNHaltJYyYnWSAutSGaUnAaS8Lca1R9Z6HNBtOKsW/QfwaifJeDyu77G6d+9evWM5N2/puXVc0zbT2ntbgSqtPz28VpKWEt/eVEfPI4Ms8rTEWC2lx2JloH2IK6g5er0e7O3twf3796HdbsMXX3wB8/ncZQ+G7LWYnYv/SzJfO940N/CAAddcx9o7hrUgEdIRkhchrFbXF9HSvqdlSfm1Wq1rTntqkCklLZ9sX61W9WKAFJvXwh9eey8VOXLCKmck/0LziT35Yl6h5zk+iZZfTt9YZCk+63Ti4ZzUMS7ZJZS/PfnR/zWZZdFtXuySvqd8EbrXNTXmYNUzqTIy1pZVVdX3Zw8Gg3oRCi2L6ixv/KcJeMvNpTPW9rnyW4oH0efY7uPxuD5dQ1somlJXzT6g7z1IiW1wnyqWt0SfxJMpfo+3P7c1DjxxLUqjtBCR20FanhZ5ItEU0tsleHZXELNPUmLU1jQaLRpWq/XFNd1uF3q9Xj3xNR6PodPpwN7e3tpx36uVfDrELvaHhG3HPyT/KJQuxV+M+ckh39mbvzXvGELtwnnVSovlPS0f/w+131Z3xqYG8NDZtjATpuVn/IeEt4UhQgMilocFlF40bOlz+o5Du3SY0tW0gOP1xx2ynPEtTm3McUtBiPc21UaUFlo2NwIl3pXahdLN7xum7Y5H2e3v76/lMZ1OodVq1UFOKaiYakDzer5pKMEzkmHEeSPE/zEaLEZUipOh0WEpOyVAl9LGWgDJanyWkjuTyQRarVZtnJY68qhpmYXyw7K6ddPyM0SDhPF4DE+fPq1PBjg/P6/1Ez2JgzoQmKd0DGiMDi6rqS7kcjsEa3tK+Vn0bI4hTA18qbwU3RHDppyfXYBkI/BgG76zOBGpslDLj/6v3f+WMhFAsVwuod1uw/HxMezv78OjR4/g+fPn8LOf/SyJbqSZB6dDNjwfz6Xs/RSgbfj48eM12/qm2Flv0/hNhSWoYk3fNDxjItemojIHxwHV36Vs2VC5Od8jXfzvFD2JEy148hHfmRKz2STdYpnACH0fQyyd9N4TKLf0j1QGr38OMLgMcJ32UH974xyptpU0QRdKK9FFy6ZXgfR6PTg+PoZutwur1Qr+/M//HD777LP6FC5cIDWdTqGqXt/f5gnwlgbfhd+EzbpNrFYrmEwmsFwu6/t9r66uah/06uqq9nVydzFq/ajxthbrCNlgXnqkb3h8C+D6Yi6+c69p7CLPSf0wm83q9uj1evDgwYP63fn5OZyfn9c7YrFOseNnLc/p9yWOdb9JkMZJaj4lbUVpHFEsl0t49uwZLJfLtbgz0kL/zo2DlJDbN1X2U7q5rSmdMtsEJN7yxsz4tzG+sNp79H+L7MgZI/REGUToPtrik7FWQZuaN2c0rZNjRp0luB+iPRTMkoJlWp45Tp1m3EtppfKl56lCOneyhOcT6r+cAWJpJ4tjHOtHi8JMnVSKPaeGbMjRwx0VtL5056xWjsVI8mCbAc1tIFTf0PjLMaAsigzzD8mClMB9btDDSoMlwGOhrSloRoAkK2JjLPSNJItjcsMT5Eptr10Y3xi4xYnwxWJRH6WEoG0Sc+AxnfQ8FHTQjDI+/rR8NIT4Q3rObQiv/WbJQ8rHWrcU/qTpU2Sm1Z4sCUs9LXXxOjyaDZtLg1UOx+pLv8F/nU4H+v0+HB4ewuXl5bVvMLiLdoxkz0n6x9PH1vppzjHPi7dJyKnmmEwmAHD9CCfuxIb6jY8X6sOk2mcxXySUZ6qeQedXmpTjZXr7m9rO9DnNl/6TvqdpU33BVFm6KVC+KUmTxDtSv1j0kbUsq40aozWEkAySeEn7FtPSxbcWeW59Z2lLjzwtpcuskGwDDq+9w/UnzyvEs1qeIZotdMXsF628WP/S93x8cF3barXWjiY9Pz+Hk5OTOg3lUylIHIpheBGSxZwXPH0Twq75SCgPsL17vR602+16JxoeD7pYLNTjjCVo9SxpL1vsCE/5lj7lY4mW1+/3a79RGncl+pDmmWKvNAU6PuhJDP1+H3q9HqxWq7VjP1E2AMR1GS8Hv2kS22zTVHuPv+PtmhPr0exbLQ6ixRno38gPePwwPdGI0m71ga1pNHjG/03Epu0qRKqt7MlXs6ms8IwT63MJ3Pfm7yQ0vjNWCoCk5BELnmgNhYYGrrxD4Co4aReplcZNDljNIEkxqqX8mhpItDzvoElxljwIKXzu3MeMA1q/nFWFkqPAaQq1C6aZzWZrThKlCdNiIBOPEyq1S09DLKgovWvCId+2ovXULzVwaIFkxDXVNh75lZJ3rvFude5K8ONq9epoqFJ153/HgpHUOcpFSNd4dtNakWpPIA0YgAidHoG7l3FVvxVWR6Hb7cJisTDL29JBbQrKM6lGfFNyI7fOTdsz29YjEniQNGciAsEdCylIT7/F+zylIIzm7JdqT5yo3d/fh06nUwcdPXyeAm4/S/YubQOtHbTfTYPufAoFAEN1wnw0YBq+EIVfqUHBdRmm4/Yt/XswGEC73Yarq6uar3Jtco0+/gwDTnRnItaRvqfI1cclZZHVzmliHJUITjaNEI187HBZnFIWXzCb46d7ffBQPogUu8ESEIvlZ7XXc8HHlhaU1soO0Ul3c1sCyFIMzALLN9iP9P8QLRT9fl+8MkBCt9tVZTGWi4skkS6r7LbKQZ5Ou8fWk18JNGXjA8Cav7m/vw/vv/9+3a6TyQQuLy9rXsyFN1YRGi8l21aLP1nGNMAr3T0YDODrX/86nJ+fwy9+8Qv1uoxUxOytbQJPzUO/9Rvf+EZ9vc9isaj56MWLF2uLgah9E/K7N4ld9N04cGzgohZ63QpAc7Eunlbz0SRe5f27Wr26k7rVasFwOFzjBTzJA23iTen0TfR9k/EByebiz6z2RAnEdIa3LSSfLwatLqlx25y26XQ64tiI5bk2GevpTA9CRqTXqeNBAu136DtLB3nSpL63pgkF2KgBLeVp7VMPM3sHfSq0gFCobzRjhiuUUB5S/Wgb029j/BYCFVKcPs0o1caQVC51KEL1pA4YF6wWWlLGEVfyUt1igQ/pmxhKyrWcoAjtdwxe83caH9J8LPmH0ob611oXTlcsL2uwwkNLjvHjqW8O//C+CLWdJzBpNWJpuTFnNIRtOogxuml7SPINf+O4m81mMBqNoN/vw9HREQAAnJycXMvDSxsF199WAzPWbxZ4xk/ouWR78PeUbotups9SjeVNB8xSyrbQEtOFqfDKf8nJo+8kPcTfYyCGj6FStnRVvdr5OhgMoNvtit/SALfX7tXkNL6T+p23k9XZtcoCiV5L/fg3TcBrL1h8Dcne1vKT+qKEr5mKEL97gyZa/hZ5WwqpMrpEmZ70ITs2JKtD7Zdi34aeS2XT8tEXCB1nJtEjyRzq/1nywG+s44nnE/LxUpBjF5eCh35rWkkG5vpBVnveY3da/XFMN5/PodVqwYMHD2Bvbw9ms1l9rQffqY07NI+Pj+uAPMYfcLGkVzem8polniOhCZuyJKT+w77AO8wB4Np9viXLj9mWnrhGrCztmaYbJJtbKhtPWen3+9DtdmE8HtenkXh5JlQOp2+XQMcttkOv14NOpwOLxQLa7TYMh0OYTCZrE3KhsSXJLC2N1Zb21EVDrt4qBZSHJcaIlN7rn3h1B92NT+2T1er1qQj8Hc9H+r0LfUNhjXV4UMLmDrVZCf6h+YboDaUJyQTpuTce5/kuxZbX9I6lXP7tVu+M9YI6F15mR8FAj1bg+eyKAvQ619xhxHpJ98uGGC4WbLPSHqONPrcgNmBLCWfJYIit9JcUt3RElNUhpsE+qrhC30jfa3RKgUZ8TseGRMstygD7g99RE+IRyocxB4DmHwOXFbmBQppfLBhG6yEZfSkGw64Zal6Egu0hgyglIJ6yCtpqPG0bmgykR1jOZjM4OzuDx48fw9XVFXz3u98FAIA/+qM/gtFotPY9txU8d9XgWODyledPafUGf0OwTGrkIpWfUsqR/tbuNHvT4HUwrHlifha+09JwfYZBmVS+4DoP0el0YDgcwsOHD+Hi4gLa7fba0Zy5wHpothTAbsk9ekevZuftEr23sCNm6++q/wqwPqnehNzSyuUI2djWcREKIGlprcHLVqu1dlQowLrss9JId11zeSCVK9EM8HpCmP+zolQAcZdhHXdUJyK0Y6S5jqV9aaWlKcRoWC6XcHl5Cffu3YMf/OAH0G634fT0tLYDcPIK85rNZnB4eAjf+9734PLyEp48eVLvvJvP5zCbza6dZtcUaKyldL6ImL++CVTVq0Vso9EIfv7zn9fPcsrn8kU74ljyGzVZzOVnil/PYyY039h3/PdwOIRerwf379+HyWQCn3zyydpRvE0gRivafE3fYYuLJnBn5mKxgEePHsGdO3fqOM/V1RX0+3147733YLVawRdffHEtH76rc5exKzqo9K5rCutY8LQFyhcKGlfE02zwt5Ufdnkitmlw+VxqwrAUpHKt/VrSrqHtlFNfj4ySTjQJxbhjKDIZa3GychrKOkFgMX6kyTaPo8XzopOckhERozXEzCUGkTcPavhI7a4Fp7QypfJzlXJoUiIlfz6QJcdUKiPWtjxPnrc22SKlCznZGn2cDqneNE/NaS9hRMXyiQUMUibmLGVsGzxIpY0dj2yRvk/NK7W8TUCSk1oQfRuQ2jlFv9C8UspFSO1i5YEcHtGCSk3yi9TmVFfTsvE4y8PDw9rAwgkeTnuKgcjLx+CrhFif88A2fc7rHsqbf+fRZRptMYR0Js+3hI2QEmin9Fjsn6bg5TdJtnhkNm33VHsnRFvoXYqzrU0STKdTuLq6ghcvXkC73YbxeAzT6bQRnRDjCSprvHKD5rsJ3tMCpjxNKqgsPDw8rHdULBYLGI1G1/S2xv945cydO3fqYOR8Pq93YGGA0EKvZ4xR3RHLW+I1zZ6nz3YJks9B3/E0sTwskPqD+1+YzjumpLK43Ck1vjyBoZCupn/zxUYeuSnxWsi3Cvns/PjtGGJpU9rd40duQl+n9nEqJFkSa2P+raWdtHgEB93dhPYtymGaR7vdhk6nU8vvfr8Pl5eX9RG6kr/SpN6WQOMr9FnsuxB2wRflcYaYzUJ/S99Y+C2mK0PyK1RWql7xpFsul9DtduuFf/1+v57cpdfvhK5YsNJjtT942qZsBtp/9Do/pPvw8BDu378PAK/tscViAY8fP4aXL1/WeXiuX4jFDkLpNPs45mtuC7H2oHyF6blcksaW5i+kyh9vO2F6aiPwyVmJfot8SKHnJoDWvdRidqmdcuKIlnJCvBbqY61Mq20e00kpsj/0zMqTlm85dmJnbK7BFXMuKPh9Vlrgw1u2xUGwdlBKEA3/1gJp0nutPGpYe8HbkQroXQGlUXP0qfOJkI6MqKrKfA9CjlKkQSZqDMYEr6SgOY/Q+1lCNOQ6FSkKgTqbu+DUNAHLrq6Y3LoJiMmUknV5U/glNVClObCSU8fhCSbyNFajpklYbQHExcUFXF5eQqfTqe9nwRX6JYMyKMf5RK8UUKO/S/EAz9fyfJuQ2sdiS+U6oTS/myBDJN2RQzdtayovmmoL3rc5wIUVn3/+OVRVBefn5zCZTLLtfCt4X2xit3guVqvVtQlMyafijm+sLel73FmxXC7h3r17cHh4COPxGMbjMVxdXcFyuaxPDuB2K81/Pp9Dr9eDhw8f1juuLi4u1naqLBaLtQkCutOP0mWF12aRjpi1BAq1MbYtOcQnVOjzTUDjA34Xfam2ybWpm2gXiXdjASgJIZ+XQnuP44jbLSUg2T8Sdl0Xe8dpqC9CwUfJvtX0m8UWzgnQrlarWvZyW5n+xonYXq8Hg8EAPvroI5jNZvD5558Hg/Gbln2r1fq9h1afVYq77RI8O+xK0m+Ji2rfpQS0rflY0u/t7cFwOISjoyPo9Xpr6VqtlnrSUWk5RsfyJu1JHH+LxaIe41VVwf379+FrX/saALyytfr9Pjx79gx++MMf1roZxzvA7svtXQPnLemUOY4Ssp3COhmmlblYLKDb7dZyR6M/1Z7ZJYTax2JTWtrW2v6WycJS4zF3sUVM/ufGBLx2qqUeIZpCzy15F52M9QZBU77Fd4vFIrhNWHNepEAdddg1umL1kYJWloERyotDM7y1NEgLT8cHUYoTYekji1HCB51m1IaMKkuwQEujOTFa29KgldUw0tpDChRp9Qj1NdISCzhKDrmmJD3BIgtC5XFnXKqHxVnXII35UsHfVHDDmvJVTBHht9YdIAiLYyQZSiltFQoghWiTZKblW84fUjB5W2iibEuQgI93j1wMyctQf267za0GFQIDjFbZJtXdG1ADeOWs7u3twXw+r3fuWeE1MmmflQygcnpo/nSBiUSv17nL1QE5yHFMS5bflByhC3xCi+asba8dVefJJ3RU5uXlJbx8+RKePHkCp6enwXw8QQoe/LXya0xmhr7x0Izf8fGG/3IWPJYYW03y6dsKzYfk8pzzbig//Ea6242XkUs30om7PaRJf4t9aIFnjObwOpcR3kATvsf2WK1WsLe3B51OZ20Mz2YzuLi4MNEkyR4qHzw+ArcVcxdSS36n9C4Xm7Q9qd0Y84+4HcRppc88/jgvwwNqU3m+ieHi4gJ+8pOf1Olx3F9eXl5L22q1YDAY1H9fXl7CxcUFTKdTMW96ag0CF/iEIMkz2m9Un1riWh6kyIYchMqjtjmmjcWKrL5ejAZuq0ixHq0sT3txfajRw5+n9kloDGl8R59p7R5DKZ0ZQqxNrq6uoscPW2VfqGxr7OimIoUHmux/KXYm9aFGN8pp6aoFC93bjMumwmLvAVxvy5A8LEmPlac8+cfkak7M1wKev9X+t9IXo8vjw1tsrbXJ2JKDwKqoJSdQSqflIeVHjSzNMKCTr54AbkjxWugP5ZMS1NXy8xqVUtmSw0mdvFyB4R0MlsGd42BY+IEP5twxE3NGSwV/Y8GDEC20XbwBSprW4lBqQaHcdgjJndJIaSOvw1EyiMXLT3U6Q/XZhMEcMvhTZGtpWkromVK0WNNToIG9Wq3E3fSSA7xNRylUNtaD3tMm0RwzolNowCDVcDiEyWRSB59KyyRNf5eGFlisKvnUiBz5EuLNJnnNMy5T7AKLfkp1UiyQAnSxfEP9Tr/x0sPHIQ8ijkYj6HQ68PTpUzg/P1fzCNm00m9ub2h9HuIFTzCN1skCicdXq9VacDrHNrXSnuOn3MIPSedwfWTZ+YTf431z2ok+JeRo6UCFB1rQMLWMFB8tZnPh6Ru462gwGNQTU/jtaDSKTsaGaMux9Xgaj6wL2f4Wn98Ty9gWcPxgPwKEaecThqV3uFnlvSUOoH2j5YOoqgpGoxF88skn9TO6Q47T12q1oN/v1zLp4uJC1ef4fbvdhm63Wz/ju7V5+hBiO3usOiukDz2yLidGYY1dIaj/0wRivhdPx/UZQLj+Fv5NmeCI2Y0W2eShLQYPb5WE5t/Stry6uoLZbBbMRxub1rItNuUu6ocQUvRyTP/mxu9isTtpbGrlSJvkUnT6TfUZYnMy3B6S/Dfpe0u5ljbLtbelcqS6euwLjf8kO0PiR0sZGq0heNrUWr6GrR9TnBI0QEiGBAaMEfRO2JhgTwmIIVN4jevQhFdpSLtUJBo0SIPFYrTQdokFsKQ25CtPLce5WoH5aAYb5ZuQcOUGLtLN0W631+pHj1WTjGLNgdfqTo+xpZN1Gt20DAzObOIo6Rw+9yiRUDlWAds0FovFNXkVg6S0tLqGdl0jmjJkOU2SvNNkQYoTGipr09iGcxAbV5oMTy2Lfa/1LwABAABJREFUyvVddoY4L2gnYKxWK3j+/Hl9hHCr1YJut7s2WZtLAwbwJpMJtFqta0df5cITkKJBQq8MstCwyTGIAdFQX4X4NDUAHJOr25ZDOUDbpt1uQ1W9Pq40pU7UHokF6r35U/sQAGA8HsNsNquPJh6Px43IJ8k25DYlp5Gm2yRQnnkCgDQttQtjgTKpfly29Pt9GA6HO687ENT3CN33nZIvhdRum24fyxiMTSbkyj0p6Md5sIS+akpXaXLAisViAS9fvoTlclnbCPz+euRFb1Bf8qEtPIZ94AmSS3ncZJ0I8NqGk8YqbVtN3nMb3OoXpdLatPzAO7sBAHq9HiyXS3GC5vDwEPr9PnQ6HRgMBvDOO+/AbDYTT7bAWAltQ95OuIihhCxOjYullrXJMcBjQVg2nyTjfOflw1CA3hOUt/KslAZ1Qmo8BcvGo7Q7nU5dzmKxgC+//BLG47HpJKXY5IIX/Hj4Jo8rrqoKut3u2vibz+fwzW9+Ez788EO4f/8+rFYruLi4gPF4DACvTqtBnURjnSV5nfNyLK2GTY11L6qqqv0tgNf8KC04SR0jlm80ux5plH7j36F4o2Z38Djmm4wUfZXL75tCKb+o5PhMtadi5TbR3qbJ2CYnCjHfUOVCk2GhPPn3Wj6WQDZPK73zto+msC0Tc/Q5N/5jwPQew5B+E6JN6iMejKNCWOtTia5YWbHvJYTSa8ftxfhI+o3OGn2n8Y7UN5b6hOoS6hce8CghaCz9aA3qpDgGofybhlRuqE80YyTGX/SZNhasRmksz9zAlYeXrcpYylNr+9K8YOkbnnYTBpOlrhKfaU67Bml1s/Rb6pem2yG1rKurq3qSlDoV9L4cPiY8bUadK8t9Ojk8a9HxTY2J0Fj38qYFGJzQdBxNR2nk9lNOe2xK5zRpg1veS/aPFmzijnnMdg7xqfQt3g1K9ed8Pof5fF4HiTC4wW05yR5NQUyHpuQVCt556c11RKWAaopNQdHpdKDb7cJ8Pl8LPnmAk6KhIHBpWPwfrfyYPR/ioyZkpqU/PXZLEzod8+SByFgg2tJmHt839Rua3hLcoXJ1NBoBwKsJLrQZpLFIy7LC2z68XIut7W1bSU+XHseleFSSAdyXpmlDY80iB6w8FKK19PisqtfH4lsW9PX7fdjf36+PJj44OIDxeLzWXvg/j5XQdwh6j6UGa1yM9lHIXwnlkdO+JexO+luzI2g9pPrl2EJcftH/c+Fpf8kesALbpd1uQ7/fr/PDRZ6np6drR2hrcs4ah7PaUUgDzbeJyVjahnS3Hj6/e/cufPjhh7XtPZlM6slptLelby184LGH8P224ntNgsdV6ERsLK6Y2zbWcctltjW2F6vDJuJjqYi1fSxt6HkorfUbT0w1hy7tW6lvU/0GrqskGeKlOUUGafRbfT4vtr4zVkNIAeOqOe0IPNxx5lXMmjERYjLONBb6Ka08v5jxnuLo0Ly8wZUYvaEyYmmwf6hRD3BdIXkGdeqg4EIlRzHgTlNKy3w+h6qqoNPp1P8jr3K6PX1j5XFLGu24BK1MNBZSUCIA5CmH84d25/QmgUY1GrA4FqQ2pQEZyVn1jLsQ+D22kqPqAR/j/B1A+eAplpUa6I2hRDvvAnjQSzu2SwqEhvpzF2B1iDENlf/T6bTeGYsyut1uX9slSL+3gO6EX61WxVb2czpSDNVdkIdWcJmuGdExXW7R81Kb8HbedJuVLDcnwMvzKSHzpDwkW+r09BT++q//ukggU7MRuD3fpEzXAvhScJXvbkO5sgk6mwann+om/Lvb7cI777wD8/kcLi8vYblc1pNXALD295sYvKuqCnq93trpDXicreQP4G+83w3ToL1fql2oPKUBY2pHWoKsqWXTfLBufIFpTpCS04rvaF1Tg0SHh4dweHhY8/KTJ0/WAlH0nxbboO1vOXZeg3avbwg3wW4ogVarBXfv3oXFYgHn5+fQarVqn14D7S9vPIp+4w3mWgOwuX2HxwbjaRS4mLHdbsNsNoPpdFr7rd/85jdhf3//WvxDmlziCxBwIgwncUv5vN7Atweb1MdSn1oWroTysX4TS8/tk5LyQquj5UQjLlspDg8PodvtwuPHj2E0GsFyuVw7ktwLya8O5UPtOvwWfVCMJ1quJ/AA7QosH+sN8Gqx8osXL+Di4qK+Xmc2m8EXX3wBs9mspo3SzWHxXTT724ISfFWaP1PKx9MXNiE76HyKpTwtDY8Hx/Tdm2gzeHzzUgsqvPM3oe+4bSu9499JR5Hzvk/hY8m+TbWvbwLUO2O1gIv2rgQ4I8eYRzN0LN9p6UKBaE6jxCy8PK1OHkUTooFD68PcgcHLl9pQG6wxXgq1u2a8lXQmaH5SIEijOwQpHecdVF4lHApepsRfMd6O9Zs0jmK0WXiVt31MgYeM2lg59Hur0VVi7Fjqxo/Ak+jlecX4sSnDMsbfPE2IT2I8FONfqTxaroSmlXRMppWAll9oHGtt5oWlbzcZiPCC0x3TpfjbGgQKlYv/a7Jf0hMhuuizkE0Ts59SZEWpPvbKYfq7ql5PcONxxQCyHIjZETG7omkbWILWLzk0cJ2WK5O8NkBMX0n9RNseV+bTXQyImDyKBQl4efT7UHrtmbdtU51Ojx9Bx4O3LI/cSOGrWDvT0wu63a54tJvFnihFk5TW2qbWfuNjB48D7HQ613bNhPLBf1VV1aczSOly6I7JWk2uSvWsqupaADy2gEkb31ZfxeprecZNLC3uFqfHvHIfLhR74LTlIjSGvHX3+Fy7ZjNymYnjhvJ4SFdJ0NqjVExD67tU20WzPbgOwWe4WJguCEAZ1el0oNPpwHQ6vbbLUPqb1oeOe5R/mqyxLHKUyizRNvRdKi+n2Az8W49NbaUzJHs030MbI9rvHF9Ayx9APqKdpkferarXi+JXqxWMx2MYjUZBfisFKYYB8GrBA8aHUuxDS5kA64tPcUdwu92uJ2lnsxmMRiMYj8cwn89hOp1em6hGuiX5IL2XftNnFr8hFZJN0lTfWsBlnTROrOMPEZJDtH1jbWtpF6lfc/PcJmL0W+JHIV0ca/tc3rfYuxr4uNVkvyT3Y/0aai+N1tL1t5adwqMptK55Y5u4O1JjLo2pQ8wqbemnadFpDdGg0WhlYm+AJgZqDMQcotgzz7clEAqwhcrWDGm+2tgSQLIYfiFo/CYZBjwtvwOUv6eOinQUtTUIQGnCfzE+1wxQ7kR5od1HLCGkuEKGWgypwbVdMARWq1c75JAvYkYhb2ucfAi1fejuWD42aduXvLMMy+fKvUlsymGSsEsBJQR38KRVtRj8lHhqtVrfNYp9Op/P11Yhlw4u5UA6bUED8j4epybRjOMUj0iNgQdRsRwLf6BcR3vAgpgekZyAXeFV7sDT/0M00gk5DJ7MZrMk+WXRw6V52etwSTSW7sOmAiDIbygvMLAd0wmhAAQeV0hPJKETOPRbTNMU+F139H/LwrsSkOzOUDpv8IS2KT/ZRSt7l+SMFzxgRXdbagFFT5tK95hTe4li022IdKAslXiYn5ZRyrbGsu7duwe9Xg/29/dhMpnA559/DgBQ765LbRPNJ8qFJbCb4pNKJxdxGyvW7lpgsKSdH4PXv9s2kMc6nY5qF+LEBZX1ALb4kDUY7gHlBXqikrUcS4wM06D+xQkjaZHHfD6HyWQCn376KXQ6nfp4U7zPnIKebAQA9c5aiYZOp7M2WQQA9a7lUBCclrNLKD0upBirpfzUOLDF90BoE06h761+E0+HiwDQb5OOuO71enB4eAjT6RQuLi7g9PS0Hjuld6B68cEHH8DR0RF8/PHHcHl52Xh59NSmhw8fwne+8521cb1cLuGXv/xlvRs+1j7WfrOkual2pAUSX5aoszR2NF1WQh/ROYwmsU1bwipbS/GsFKMvNa5S5kykndSSTxQrS3vm1V0lsE27VNwZazHEAOzOjDaBZQ0cehS89kyiMZQ/n5jQaJCEQaxdYsEnK0OkTGrEmJ6mCfVP7oSKVqaWL7azFqAoMYi0vqaOLw1OaBMWEv30PV/hSYV1LPiijR9p4kNq01DdYn2iITdwq/FZSl5SQEyr1zagyR76HNsjNPYkJzY3qCLRkDOxFtIFnCdLBiRiBqa3DIvMzJWHtCyrTmkKUmA4JCd2DR67gbY37UPJ6OX9ktJHPNhBdUrsO0lWSPnib0kOWnVlSA9Lz3Og2Z2hMrjOwRXcJY7+sdiPKe3AnQuL7Wexk3Oh1SHHtrMEoXOdfZ4ff8fTSHat1I8x+lNlc0nbiNchZPNZyuD5aGlidGmgfDydTmE8HsN4PK53R3nHEd4NLB31rvlalAarDEzxrVL6IJU3cDdlqF6YN+4mxklM3IHpLZPm6bEFPeNmtVrV8hx3AHe73ToA5O0XSc+XgNYO3j5HW4BeUyKN71QaLfYFpYW/C9kclvJvMij97XYbDg4OYDabwcuXL6GqqrVFQJa6praHV0am8kzud7QtuM2D8no6ndY763ACF49elcrvdDpw7969+h3uVkRb3bJIUsrb0xdcdmh2ayzfmAzahu+X43+H6NX0hccG9NAmyWHkES67JF8JeRYnbNGvCPlBMfuMfyPRSZ/jaReo99rtNgyHw1p/Yzpp4Z8HGt+iP4UL7ebz+drVDxcXF/WCV2yfJhDybzXk6spdgCQ3OTz63MobmnyzlOGFJ47i8cV2CZZ+y5XtmvzJjQNbxpnUT1yWSvRKf+cgVQZqNrtFRzWho8Vziugq2BCsjk3IcdMM/Vh+q9X1lX6lLzXntHEBSWkI5UFppH/jO2nnWqxtLW0Wut9vW7AaVN6BGuMxT/khLJdL6Ha70O12YTabiSuZpPKx3NlsBlX1+s4n3IVGj6biQqAp/ubgq3ktAdXcIB1CmpTehKK1lMON9lLOkVQ23k2Jhq72HQal6E4fpE+7c9aD1KCbJ3/KZ6XatHSwbVPwyP6UvEMGG9dDIfpyddKmEBoLHOhMhu4YwgAS7o4IpeM0SKDB8NQdPtYga1VVazvYYnZLjlGL+Vt5wJNO46/ZbAaz2QyGw+G1I2tjtMZA24vebY+yNwVeHUfT7Zps0wImTejv3Px4oCEkE9H/2VZ7S7Ry/uenkuyC3A0BZRHeO4YBeXwn1UGSofP5HM7OzmA+n8PV1dXacZcAcjAn1a7ctfFGUVUVHB8fw3K5hGfPnq3Zg1SXYxu/8847MBwO4e7du3B5eQk/+clPoKqq+m700nW1BBUl4ITk0dERDAaDpP6itiUGrmlMo2RdS7TdYrGA6XQKi8VibZI8VQZxmnL8aer3WHylTcuhTZbX7XbhV3/1V+Hi4gI+//xzqKoK+v3+mj2noWQcQoI03jYdyMZ2oJM5GqbTKXz55Zf1ZOxqtaoXl3AcHx/DP/7H/7i+n/ZHP/oR/MVf/MW1ss/Pz6+VW8qfigWaKR0WP0nKf5dgaTfPiUNN6JgQcGJTO44f4DX9SJ9l16nFz+VprPXudDpw586d+vfx8TEcHh7WCw0wTzoxW7JdMa40mUzqPJ89ewbPnz+/lhbjlxIstGnyadfGwabR9DhBewjBYxbaN1bs0nzDLsLL37H5EOr/hWwM6Zh2nq/Ud3whi+WOWPp8l+KCGjTapPawzI+k4JqWsiiPnMCQpKSkWWZrkIo7DbnQJiE0htIGggWcfsr0nokfi9Ht6attBiCk9sXnlmAa/8bDq1Ia6Xs8kghgPZDOj2zT6NR4KZQ2Rh++9/S1xUjytBt12EN1DhlhUn2ltCkCvpTwDE2weJE7LnlbevKzjiFLvp7+CPW9xAPePqaB11TZnIoc2ckNl5DRZNHPVppS2wbbFR0ya+DQS18OYnWTxg492hjvJ+TBJc2o1WQYTbMN/ZpatjSurbaZhR4PrMEPT/AYv7UEmfH/mE72YJccFG9drG3Gv8Edb1R2SEcexSAdsxWzFTz6xEqPJKt58NFrm6VC0n1IE4B8fGZJuyXk19Fv6T8tj1xaSkM7VtOKEnRim3W7Xej3+65jt9HH1I6ns5avPeOyN2QPWGhut9v1wlcAgPPz8/qeaCyP56VdbSPxnNUOsYxbid+5Dy/5RLFnmj8U8rVyERvbmi2xDV0WoykVOPmxWq3g+PgYBoMBtFotGAwGawvyUv0dK3Jtc5pHalxACj5axzWO39VqVR9NDAD1nbF0gRt+T3VVVVVweHgIh4eH0O12YTKZwFdffQUvX76saZKOX9bsAq9/HHrHx3VOX4XKlMa4x+4JfWORSTS9Rh8tz9LWHj9Rk5+Wb2l5qJPopKZUFv4dG+Ml+luyG/nYbbVacH5+DqPR6NqCj1B/WWmgZSOoXYHtxpFjRyBCsUCergl9s2v+V8y3bDKWVcKWaDoGukuQ5FLomhpLXgBxfWAd8yXibDF/mqYLybVYnloZOdDGT4g2+l3MN02lUau/vmQIbINTUsQxQ81jwIby5YKr6Z2DXFECvA5AW4K+nF6JKdBZBnilEGNBKmvZmHaXEaNTMlykI8pKCSEtsICBeQyGYBnj8bhOS52EUuCBBE2Q0EAgX/nnUbihwAVNIyFXsYcCJiX4uASPlAStV0odaXt72j7kkHFju+k2KhFg0oJXbzuaNOBxNzfu7NglhOSWJj9ns9naEVEHBwcwHo/h6upqLZ1mlOJ7+jskq0tC0gtUD3B7wmsbWOnNrVuq3PE6q5LhvSl5EQtCbEsnSXauly4cHzSf1WpVywp69BsN9lgCeJgn3fHAy6Lp6f8l+5a3D6UPg1l0vDUx3imsga1UUHuY58vbvmlfbBtYLBYwn8/r3ZqWU3FiCMkdfMd3MSyXSxgMBnBwcLCRdsaxzGmlJy+tVqv6/mf8hp72EwvUSOO+0+lAv9+Hg4MDWCwW8Nlnn8F8Pl+7H5zmAfA6GIZ2CF0oRn04Lpck2ihSxhC2x3w+vzY2vTa+5PtRPy8VXlubywD6DOm86cAdXzje33//fXj33Xfrd7g4oDS8fRGS95puos9iecfS8zTSyTr7+/tweHgIFxcXcH5+XvsIUj2Rl9E2mE6n0G634b333quPKH7+/Dn8yZ/8yZpslBaDbsPnu0m8H4urSP3vCapb5IHH5tYC41b/DidhcQFAt9uNlol2KvKrh16t/qFxFMrz8ePH9e5UXq8S4BuBer1e/Q6PE982btL48sKix1NsvZCc1d5zeHz+tw18wWHKna4atFiOxCsW2RzbAS3laamPN+ayLfC5EAmxcdhkPdcmYzVlE3NQeAA9dyImhRbpnUfBSw4GTaPlJQWuNEhlUKHIV63TABMdSNqASEWOI2UxJKz5S85FyNiK5WNpJ0saFEp0VZ1EL+6SxXch/prP57UjgYFFzF8KeKUKiFRjjZfndc4sfS3lZQmQ8HGj0WXhkVC5TUAqB+tDnVkpgMV5SFMcsTGzWq2urfqM1dsqS0sFs0IBBI03advFxos36EHzT81Hy4/2dQofWnQUT6uVEaJDanctICSVHSp3E+B1ismHxWKxtjiKvpN+a3UN8U1IRwDANZkQo1uji+owy1hP6SMaHJZ0WCo0enL5yNOe1BaLfRPTQbSd8HdKMEorM/ad1Vblv722t2YDoY1DnT2r3ub0pfKppEt5vl7+ldJpMkdztPF/j09hTVNK7sZkfih9q9Wq7xvDSSoqXyWeoc9brRbM53P46quv6qPjp9NpY050VVXq3bSx/FPa3duuuDBU4lXcgY4+y8OHD+Hu3bvw6NEjePbsGfzkJz+pJ5dw4slKT2p7emyVXHC7KuQ3pNhbmmylOydDfhyOi1arBScnJ3B5eVn3g3X8a5DkjuTv4N90/NDxWLI/pPws/rglr1z/JfZtVb2aoMDd2nQRNtpUXrssl05N5kj6Tet7D30W/57ye7vdru+bxCPpuQxF+5rqPKk9B4MBfPvb3167xxP7w2p3WxCS414bxZp/7F3I9m1Ct3OaND6SvtHGd468tUCiC/kN7xFGnkCeifnF3vgKhzU2RZ93Oh04OjqCvb09uHPnDgwGA+j1evDZZ58BAKydKpMLSgPdQIJ54725ACBeZWCRIx7fiubZNL/sElJ0nvUbyW/zxEFy4lKh/G4KeL3b7TYMBgOYTqdrR3lbYgMW/SG1N/eBpP4MtWvM5rbGw6Q0pfzUVD8+9K2FLqs8K8m3Gr1rk7H87tIUw9BqJEgBB0khcuUQyzOFVktamp7SHhtgvD1QOGr5onGPabV7X6Ugl0a3t445Boi1HFoe/y05DqkCLsVolYRXyEjAd3SnBr37h/c9vscjz9BABAhPnkplh3YvpghuKySF7jW8pGeaoSAZ+blyQKIllq9HYHvowH/UueQKmf6Pz0P3/GrjAf95ecHqLOYox5z0/LuYHMsxLEvls22EgnAYGNHuQV2tVnVgRNKHnFe3DUlncvnF60bTYtAolLfHOKVjUTrehtLF7+bx6jFc+GPdzRWSg1p6WiZvy9yAmUaP1+bTypdsT+xLyhshHvCA859kF5ZAE86vpuckW4PrGm7b8oUO3PHk70oFBTh9vF5e/tfyt9qn/LckSzmN/J2GEF81wXOxcvAEGYBXtNOdZjwQz/mBTsbSfC12WWqfWu4/RFqkckPw0CTlR2mj8gp9ik6nU+9qeffdd+HRo0fw0UcfwXA4rMcfBlo9dUjhG65/8Rnn+Vx+lMpJkRspOgf5Gds9Vh4ukHr58mVtz2MeObJO86O0dJiG+yD0W0vf5NrFGo+kIteHoOj1enXf0slYzxH7pexgzbehMqBUvtJ7zS/Hd6jfF4tFfa83j23QuAelH++cpc9xMvb09BQWiwV0u10YDAZq3IHzUS4vWfg+Jhdy8tfgqY9ma8byCNEmxW7oO8mujuVtaYvQYnKsn6S3caEMfsfjq7xdpN1kEj/xcSfJMQRPQ+nBydh33nkHPvzwwzrdYDBYo5+X4QX/Vrq+Yrlcwmw2g06nA71e71osQAJ+773rHG07Tp8nluSxv1LGWylbOcfe4+8sefF8rHEZSd9Lcq6p2M42+0hDp9OBg4MDuLi4gNFoVD/XFkh4YmCafcVjVNq3Ut157II/52VoZUvfUHpjfjtPo5VhgYX3Nd879E2O/k4BL0/dGetBjiHhEZg8oEPzyYVFkJfqEE05A7xWYji4paAE/sa/6SS6tT0tg29b2FSAyAJKC11FjqvyF4sF3L17FzqdDlxcXKwFRrrdrsmAofA6UvxI5BCf0OcxeAxnjUdDeccM/G0ix5nNARr/dLUwdwaw7aSApbcsGnixBp20smJ9H3JO3nZIwS4u33PgMdwthhI6adQBxaDiTYFUL5ShWDdMxydCAa4737GyPDotd8LP0t9ID68HX5CnfSc9R9oxH699J+VnAaadzWb1ZI1HPlL96TlmW5NptP2tjgMi507KXHCHysqvWkAM/6e8hvbQwcEB9Pt9GA6HsFgs4NmzZ+4jzj3yrKTO8dqnJYKeKeA82Wq16tNb+Ek71rJTbMk3EWjfY9CXIoU/tKC21sa448d7ZOrFxQX84R/+IZydncFgMFjzY7RyKI3cV6U0428uP1L5ej6fw2w2g9FodO24b/y/aR60BNNQttH7bWezWT0BFQqyeejHPLCvUE/k6AtuB1BaY7KTtkup3Vq7AtoO/X4f9vf3od/vw2w2gz//8z+Hi4uL+rhy+g2Cy8ld8HctcoWnjfWplXZ+RGCsTVqtFvzu7/4u3Lt3Dw4ODuCdd94RFyTOZrO1ezSbbstdjptZYbVLS5ZXCrFxFIuBYuyu2+2KctMzeSLRw31CaYKR/o32Q7fbha997WvXZMrf/u3fws9//vN68dmmgHq/1+vVun0TY8uiQ7alZ6S4/aZo2UadS5Z5E9sJT8CgC+MWiwWcnJxcu7t5W+AxQ+m9dLIb99Wl+S8eD+BllBirpWSKhRaPrbINOyI6GZvipHu+tzhtXMlajUrNmbBMHknMGaIxVI5UJmdqnlYy5qX6SIZDKEicOtGktQen0QutzXh+Wp2twiFncGE5fBUdGna9Xg96vR5cXV2tTXIBQH2sDofGwzQwE2tz+r3U/qnOYYiuEB1WhIL5MVqkMcudCz7GLJMSGo0hmWhxaHkaSz3phCwNeEl8ERr32li3Btu5EvbKFd5OUrC+CaVnkefbRIj/Ke9aZEGorl6+Dj3n4AuApIlYa16l5EqsDEnnSjTSumiBTtpP1qCqxP+xfEN5SM+lYGoItDzLBKq1bPouZK+l9LnWLngahbS7Lmbbor7GoL9WDzouY3wbs7VC+nzTsMok+tyTJ/12uVzW90Hu7++Lu7U94ykWgOO0bAKSw8v/1uS61ZYPQbIF6U7k2Wzmtgm5naWVRdNLNGl8JNkJuwBsO85ndMGchXbPGIuB34Eq5YvvsN9brRZMp1P4y7/8S5jNZnB0dATz+Rwmk4lKVwiS/OM05Yw7PCaRy/QUez4XIbsX/2HgDulF/5BeXxPLL5SGy1BaNk8f031aXbw0pabxYNOym5fX7Xah3+9Dp9OByWQCv/jFL2A6ncL+/r4qy6ztrvnsqW2o2aVSORb/tRRo/MTiW7daLfjoo4/g/fffh1arBYeHhyI9lvssvTGBGHZNP6VCkxf8HaKUrZ7ybSwWyH/jSUD8vXSvsOYDesevNR7EbQWU5cfHx9cWVz19+hT+5m/+RqyjVRZb7DpeF6RJWryn1U2jyTPmLG0YioFtEqXHQ0iXSP5oKlLt7BydZOGBTev5GDqdDnQ6HRgMBrXuGo1GcHV1dS2t5hvlwDoWePlaGoB0ubZahRfcpfiDFnh4IuRfefKQZAzPy1tHi73V4Q88gVFu5DTFkNSQo88tStWSv4cOb76S4uD5aLvgOGLMpg0aqUytLkhLaluWEqiWfDYpvDVjENFqteDOnTvQbrdhb2+vfn5ycgIvXry4dl8K5oH3A9G7IKqqujYJR/9PoZ0ebaI5+QiJd/kzvPeN0pzKNyXgkVvSt7tiCIQcaAqpb2Lf8LQUsdVT0rcx+iRaY3Q0AW13QmqgG3HTgk7ccMP6SydNpNBCV5RZgqabRGrbLhYLGI1Ga/I4hKbq5Rl7EqQjYUuj6bp7+ZIunpLGvxf9fr/eTbZYLODi4kJdhGBxDKz0aAHWUqD6htofqdCO3A6Vj/ZRbFUq1j9X33Oe0PST5pjlwEoz2vL4dxO0NA1uN6KtizyGtiRPr+VDYRnT1kCQ9B1OBr7zzjtw9+5d+MY3vgGDwQD+5//8n3B+fl4fHbhtYNCUT9BOJhOYTqfw27/92/D+++/D9773PRiPx9DpdEy7yXLGmIZUWe7NH0HHSwkdIB2rvlq92qF3eHgId+/erY9llY5m1YC00atuEFa+jfF5apvzMbxNP28XgAu3xuNx/azJ9rAG4il/U/laIpDvPd0LQRdaxXgPj0PFRQwArybCv/Od78BwOKztLoDXOryp+J30Pf1/k/Do/BQbMzZBYokp8HjjJk9JQvqp3Xl8fAzf/va361OcEJ988gm8fPmy/o3ppWN6U2iw2C/0FB6pnfC0isvLS3WhQcqkSgw0rqfdxdwUOP+E8KbrnhJ2SgyhNpTiBJa4MX0W0lEeWjaJTqezthjCEi+R5qa8iH0vtU9qmdJ8lOT78msCpPiwlHcOvH5aynxcaj5SG1kmZD00Xrf84brxrSEU3C49KSuVSxtEMgiseXlolBpaqmvMAJYcXYvR7G1X7vxKNEq0WBRiEwrDMjG4KVjriHdT4H0yw+GwVqjj8bi+b4EeYYz/awpO46ncwImVf7SyYm1SatxpvOjhyxL8wvPyGMDSmNPylfK2GDTS+JZkSiiAYulPC3+VGqMxZRYKoIcUpHVsSHRoeZSWSSUCBhKNWr4xw99SP5q/pX2sAfdNOoMSkJ+53C6Rr/S3hpSguGanaJMTUv9JcqZ0n3hloyTfrDxK85byigHvYFytVvXKe8zHapxbIdnWTYJPWITaVdM/0nvtO6l8axCG92XID5FosDqSIVs0FyEbUEprkZmWQIc1Lw0entDA5ZAWuNV006Z8AeTJfr8PR0dH8O6778Le3l498dk0DRqfVlVV+xP4j4/ZqqrqXf537tyB9957r14syneo0fIwD49/GRvXqXIRJ5f5vbgWmigkPsrxEbj+QV7AnbF4lU1MLknyhC+alWReu91e68ddQYp/Yfl+28Dd2avVau0KCx6wDPEUjgOrbvToGK89qSFHL2jf8fiN1kZVVdU2FdWN7XYbjo6OoN1uw8nJCZyfn1+jy6MPUupSwn6zlJHad6l1stp4qbDaWSXLrKoKer0e7O3twf379+vTcmazGczn89pmT40vcZT6loKeqqfFIDxxME/53A+gz0JlxvRaLrYdC+DQ4m2h9Lnl5SKkn3J9M09+uembiDNivtId5lTfS/ee59iSNB8pj1LtLvmJnticpY4pOkzqy1w96JFbljJz/WVrzEGcjKUF7YIQXK1erZzH3R08YLSpVVjcuEwVIJa2xTqFLoYGeKW4rYEBS8AMkbJDdpu8kmPMWkB3UnQ6HWi32/VxVF999RV0u1147733oKoqODs7qw3C4+NjODw8hE8//RSePXsm3j+I/G2BtsMVf2v8QtuHjh3O0xwxwe0dezHadgkaXfx5jP4U44E771IZmuKO0UIDSKF0CHqPdSwtD+alOKU54HxuzXNT/LctPi8d6KJti8HSTqezk+OYg8tBLsP4bjQOLdgr6UtLe9BJCVq2VJYlnxAGgwGsVqt6ty+l3+rkxwKLqdBkXEyW0H7E3UgYHA+Vhd/iXfBVVZnugkEb4PDwEObzOZydnQXps2KXgtGcH0rraMpzOflqQWxq23B9kItYQEzb8VCiXDr2Qg6eFmjo9XqwWq1gMplkOcGlHOhU7JKeSQlWIWg9tPvlKNAHvrq6gvF4DGdnZ7UdjnTgsaq4QzOFlhRo7ZAqOy4vL2E8Hq/VTbvnr2mklEHHaavVgn6/X9tLeBIA5ot+G5W3+DdfyPvBBx/A/v4+XFxcwGQygZOTE1itVuKu2hCs8QAuQ60TAlYatLw27RdWVbV2Pxziq6++qu2K6XRqvi+uVBtRaPmFbB2rjkVbSLKJU8DjE1p7dLtd8f7dwWAAe3t7sFgs4PPPP4d/+2//Lbx8+XIn7KRdiFlY/PcSEwUhbDvmR//Go8O///3vX+OnX/7yl/D555/X+hDf8esapLwRPOYTAvfjLFgsFrC/vw8PHz68Np5R76P+iCFlUoT+nTsh8qajKb7ftkyhsNq1u0SzF1TP8bru7+/XMa3pdArPnz83x+lL0WSFpQ8sE4I8zSYW/DXJP5Y6e7/HPGIxOm+9gta7FgTzTN5YjAGLU6DlJwVapMkSiU4PjTG6ed4SjdI3Ocor1la5+d6UidhtlE8NFhTQPEjW6XTq1Z7D4RD29/fXgsU0uGAJOPPfMWO8CT6IyQKrwWoNBGh0eOCVQfhNaHxx4zWUF6dB+jalbryPYw6iVBbvh1hdtCCshR9TkKNMc8eA5fvc/qPfhiaeSjnVniBCij6Mtdk2nbXQBEau0RbKR8uL9gXVCVpfe2SUVFZsYipkQ4WA9bZ8E+NjXn8toKfJX35/o0U2Yx5Uf0v1wCA6OmjSnVRSPWgZofQxNBHclcqQyvI6MKl6QdKTJWSe9H8oLaXHQkdMhsTsOymvHJtW67+UPC18R+sX4h06pq39GhuXPC9N1vJyY7YSvkcbHo8xs/K2B1a5yfVFKHCDaXF30Hg8hvF4rI4HK2/SbyxI5Tl+jHUsMCTpjRCvefjPAiyX30so+UgxPpZsdNx1i34l73+LHg7pRIvv2YT+8dhMqfnH8pLsDqQL71XGcYS0Wa+uCEHzC2O0UrRaLej1emv3QuMkE+9bqz+zabTb7XpRJ9JIF5ZPp1P46quvYDQarV0/YdHlpewIiibaySOHLbCMZ85/2/TPOGL+iOY7DYdD6Pf7axOaeN0M2u2SrmiCT0J1QgwGg3ryuKqq+t7xs7Oz+ih0j69ngWarxsrhdpZkp6e0Z0kdELPrLLR4fN9YXtuC1Ff8OU9r0fWx2FQoziDxhGSP5MYRQpD4lG9iwmd0Jz1fQOf1Yzy0WdJpfg5AGb6M+Tkl9IU1PuNFjHetMi6WJoVerezoUspNCpOQwx16FruoHX9L36fO/PNAISK2QhG/pf9Tpz+Ut1VJUMOkiYBOihP/JoK3Ta/Xg16vBwAAw+EQDg8PYTwew2g0gkePHsHDhw/hpz/9KZydncFisYBWq1Ufe2gJWEpOmGRMNgGuqKghjLRp9ynlyJCmhDXPk+ZrkQmpwdKYoYh0SI6+VS7SXfUx4J3FuKpeMsboHSf0Ob6jMo86yttASNlagrlcZqaMyxBijgrdHWmBlwZvYM1iPNP8qDzYhHOr0WEJRHjztMBzokRq8C0lj/l8DvP5HPr9fqN6oum+pkEji8NRip5WqwWj0QhGoxHcv38f+v1+VMZJujl3TOxawAxAXjQg2QMhULnL7XJpYqIUrRaaLG1uyZfXqUTQyJq2aWh8TvsV+SJlZwe/j1wqW/sW9ZL17mgelOz3+3B4eAjHx8ewv79f2zt4KtG2QPUtBe6kxHcXFxfw/PlzWCwWcHV1VR9/OJ/P1b5oSs7EfAKUG+jTp9JAeU0KEnrzkuxKnhdO1uF9sVYboNVqmSbVHzx4APfv34erqys4OzuDZ8+e1YuDOL1UT1oQ00sldemmYelzbCscE9ruV5zMwbEXC4qWpFFDr9eDhw8f1jviv/zyS3jy5En9PhSTQmgnajUFaUxNJhO4urqC1Wq1dncfRafTgcFgUE+u3UKGty9z/CJrjKZkGTgO0S7neqzT6cDe3l79ezgcAsCrsYLysrSfxmmW8pEmfD766CPY29tbsw+//PJL+L//9//CYrEofn+rRhs9eRLT0XaVYgC8PiGZuGvwzDV48ipR/9K2vTdGlTOGc2nO9YssoPYWbpaivB+KH1li9hZ4556s8Y6UOS1uf1psBkxDbexdgWT7enhnG/XxnWuTAUsQODbJhwawFDCXlDUPsJdoYI/TQgd2LAgvCXLrpKcnwKcp4tg7DaWUTizfXRns0qQdBnrOz89hMBjA/v4+LJfLehU6TtDyiRbar3wSTgreSnxgcQS9yo2PFesEomUcNgFOb2isecaI1M4x2cW/s3wbo5W/kwKKsXpJfZoypkL1T5lokOpmzSPET7F+svKixFsl+dgTKNK+TZX7mIeUv5c3aAAwlcZSaNoRTNGTXj2nTTyk0EZ1Cg+ChXSFFDCT0jfZtxpvanolxG+WsYuBD76oAPmb6+FQ2SEbLwZJHob6rRSwHPznvRtT4mfJjp3P5zCdTmE8Hot3Y8X6kZelBYpKBlw4DaF+kN7H+q2EPOf8Sp+j/5TCOyk8l9rGtP9Ky/IU/U3Hg6bfYt/H2k7yBaT3Kc+x773HZ3vtfit/xNpQ+x3jB0u7WceYte4WGhA4eU91iwfD4RDu3LlTL6zC8Uxpsvg6Hv4KIdWGTs1/EzYkb0MAqCf9cJGDt+9LyDBJv1F7pKquT6bQ8WJtu5Dt4skjNla1d6vVCu7duwdHR0ewWq3g4uICvvzyS3j69Ok12bVJn2LbCNlVXp0U0zVSegsPN9UfnvHTarVgf38fhsOhyoPcjqfPYzSE/DIrnbz86XRaLzbDe21PTk7WduFbYYlvSHYp9/N4ftZyU77NRa6dWZqGEr5F7O+mYxwhWMaChqbtAM+4pGOFXn+JizxwTI7HY5hOp+7YlkX3etJo30h5cP0Q66sYP6XQYMk7J0ZiydOjG71levosVjbABidjKVKNc3Qo+d100m4UroilY32aAD82KPWOG68BgmVb62dV2jRtCm1vMtrtNrTbbZhOp/W9Jnt7e/Ctb30LptMpvHjxAg4PD+Ho6AgAXvWPtuKk1WrVxyBivhp433FhS/ur6TPfkQbO9xR0V4MXtK74TzKkcyG1IV+RKCk7z1goGUSn8izFAME8eFpt98hNdnw1wyHlW/w7RwamBoNjuye21UfWwGYJ+mjbx/ohZXx66KB/x3YWWMdoqmwL2T+4CIjKTi5LtXJ5G1r5TJKnsQCdB1Lf5uSN+eGO16urq2ienU5HDKw3NRZRNuNOqpRjEqV2w2dcN3h2eWv0Yv40n1arVR/7iEc/pTj0lqBiKdkj6Xsuj7c1ecDLkk4oQVotu1L5t7ws+vwm2wWbhEUmxMbatgJzkpzF+iBfNelXc37mcq8kD4bGsDfgStupql4dP5kzGXvnzh149OgRzGYzWCwW1/w/79hORWiSY1vItclDeP78ef032gjbBupmvPZIAgaVPZB08abjPd/97nfhG9/4Rh1T+fnPfw4vXrwQ+ftW/4R5f9Pto51AuCl0Oh14+PAhdDodODs7u/beYwfF6KYLYTx1xOO4ES9evKiP6QYA+MUvfnFtZ74lf4t9wXVGyG/1Trbl2ADbjF/sErQ22HbbaDySOga2jZCO6/f7axuoTk5OYD6fJ90D7Zn8TB0/mt9g7Rtr3/F4uHZ/7iZ9k9JIGWel5vPWJmM1gagFsUPB7RLGQWjASAFZLTgiKSF8jv9osFIqn35vrQvNPxY4tARrtfYOKbJQH9F20CZgYk5XU4NNojsnAJTybcpE9Wq1qu9roefN4/+PHj2C/f19+PLLL+sVzlX1ejUO3fqPyJlQDfFfqYlNyjux4EVqWbHvS/BhycAtz5P+loxcST5J3yN4YF6DVidprHM5yfPnxoi0eywVmwruemRnCLStmgxSh/LT+tQzFrx0xvIuwQPWNLH0HnuFp7PIm1jg3BqAp7LYg9B3KcHJUJ1j7cH1iKYT6HtrfWlammeojiH9zPNdLpe1syXpbJq2ql7v6uTHQ2rlcttKq3vMRgNYtwVSdJ7VVvfkTdsGIO4v4N9SX6TwiucbzjNSufz0EonWHFgCLiV1qiddat1K8KLGA3QxH7V1Qu0Ys7MswO/wzsjxeLxmD8UWEZS0BWi7WPQXBkparVZ91+JgMIDZbFYvzsGFEFa6c+VEiN5YfqnlSItErbJXg/b9ZDKBs7MzmEwm4m5/LS8eJwiNR4tPWsKvk/SXxg9N2exWfrem0fKX8sJdzDQNBiNjtkcqPRbatLxx8ZTluGHOH9Z+DPFADtD+wpgH8hvuQsYyO53OtXtlbyK8fluK/rLY/5Y2tJSn2SpeG9KahvN6Vb06OvRXf/VX4cGDB/Wdq6enp3B+fg6np6drCyoo3Vr5oT6RdGZMVnGZjleUSQsmPHKPfxMCzS/GU7ljzON/psQtvGgybwkl5FOu/Z8Cqz1r0RXat9ZvPLRZwH25qqquHVu+XC7rhcIA6za+ZldZ7ICYT5yrV+n31utYYrTS5/SflEarh5ZfDlL9uVDaFN7yjs8Yra6dsSGGSnH8SzgLnoAfF/o4+LRgX6hcKX8pjeX+xliZHiGVOohDAULeZyUVhKW9c5y+FKVAy+bfxL5fLpcwnU4B4PWZ6jSfr3/96zCZTOD58+cwm81gNpvVO2HRuOR3OWmC1VMHmheviwRrABRpw5V9WlDBIyO89fDAEmiKjcMcPtQcF95msbZfrVa1QxKCxrO8P6gcxIAjX6ASkgO5/WtBbv7SOArJ7xzj0NKXoTZLlbGSY5Oal1evSOmlcZbibJYEb3fNYKYGphSQjOl/qZzcMUPTSwvIpHp6ytAWd1h5KNS3ofbQbA/+nVcGh9LTsvEIT+0kEyq38T5AyyIp2v4p+oO3T8puWE85MYclFGzCd3RFrhU5ulVCTH+GxgWtR2l7V6Ij9D4Vqe2Zo8e1oJomV7WxQducBlzRX7PWg+ZHy7PodRqEwcnYy8vLNRosd0anIkdH0l3z7XYbPv/887Ux2ev1oNVqre2+4fbKJnSz1xdL8W1pvflEVYmgENLebrdhPB7DaDRae2blNUlmWvmVp60q+RQVzS6xQhrX1nxi/mQIJcaRN720KLrT6dSLGADy+MdjT8dsPhznVFbS7/nfEi2SHSbR2IRcWC6X9SIRSgM9Vr2qqvoe2dA917sIawzL6m/F+tKSLhXamG/STuLltVot6PV6a+V1u134wQ9+AA8ePAAAgKurK3j+/Dl88cUX8MknnySVo0Hrp5h9DABrenkwGEC321XHKV2EZuUbjRZuX2k0Uj+jqf5sCt54xbYhxQKl8btL/ZBKk1VmefOx2pCUrxHtdnvtXmm0xcbjsfgN9008tEt2Hc0Tn4f0sFZX6Tcf/xb9z/1i+r/llKwS/ir/rclGax94286jPzVbS6Mp5tNdm4zdpBOfaqDjpA89yhUVHHfYOWNqTGUNjKQ4hBaHLBfSgEZoSjlEg4XBN4VNBQcskIQc8h0eu/fs2TPY29uD4+NjOD09hdFoBHt7e9Dv92uHwlumFZqg19qwdBAUgeOQB7Jz8ktRfCmIBWrphIVUJ0mga23PFUwskClBO4I91u5chvIyaf/RyVmelge8KE27ZEhawNubBoK1+vDxlns0uHYvupV+OuZKweJoxtJtG1xHagZgSCbyd7GAqeYUa/mngDvtoUkC7mRr8saLUBCYOxlN2UN87HrywTFHdzTF7EG6gtbD89S52TXQExfo7iB+CoIFko2JOgQDrXz3iwWxIHGTQYxY3UuNp1xIbU8XCnLE7LPUIMjbhJBPaQ0WSc8l/cFtjqZ0riYLt2XbcbssdBqWN98Y/6fadkgTTjihzrDsYqRot9vQ7XazfClN9+fkafn2pskJqqsQTU1QSPYjxhM0LBYLaLVa8O6770K/3zfx0a71AcbsOO0/+9nP4Pnz5/XYxqugpJ38uXGFTSBFNmsyXZK7b2M8brV6dQIdnmjT6XTg9PQUlssljEYjGI/Ha+1Er92guz4tPi2Cjv92uw39fr+mIURnLAYzHo+vHSnK40L0f0qflC5UBw1S3HDbfJaDXeDRGCxxk12QbVI8mb/bVFuHYhehbyTa0R/S5kfoPBPKm9z+4Lpekg2a39wULHXC9tDiwAgeLy1JX0rfh/LbNVw7ppijKcJDTlPI8ceORmNUSkfz4c4qMgu9c4WWaQ0UepnBm38oLU/Dg8whaGm0wLPUFzy4uml4HG6t3XODSdzQQ55cLBZwfn4Oq9UK9vf3YT6fr90/R49B1IwuqSwL//CJgZhDFwocetrFYkjwNKlKVWo3jty+5W1I87QoG6k9Qoattd0lHub0hAKC2niWaKAGAB/r2rE6lvI4tPchZ2PTRjYN/KXwVErAICS3LG0ak3dS/paApDQ2JJot+mRb/RlykC20cJ2rjWVeHs/f6uxq+p6CjtXQzkRuE6XwpsVu8jrDJXnAK/9pemnXi9aneHffJmjcJLDvMFAaszliepCnQfsb2xCfSem0MrVy8HeMJi9/SuVqfbjtvg3ZH3zxgIdGqb0swQRLOZtoK6+/x/mJytYYuI7x6AspL0qPpINT+FkrJyWthZ9SdA3/PmQPWfoy9M7bL5a0NE+cTNKu/YiBHqMfglfvev35Tdtr20JVVdfsqlI2K9VZUnCTH6/N5QfGv46Pj9eOWeS6zypfttWnEj8/efIEnjx5AgCv6tvr9YL+103lxxjdml8t2UhNtUHIjioNr02CJ1YMBgPodDpweXlZ3/HITzVB2SktttTiKpwWOibp7tzY3Ykxn5reAU5lDqVPWmhvgWaz0b8lvRqLy4TSWXlxU/bKJuVDjt3A/Zht379My9NshJh/aAEfj1p8JsWvwHwknxDHLpbLTxpEGYLjfDKZRMsK0cbtiRSUkrtSm+Nv6RnA67uu8YQQrb5WveaROx45w/02r9+RYgOXGJfRY4pzHShL/gBxhUXTIuh9m1o+dIcWzUfauSUpqVBgxwrMw7q6wWMch5g05KjHBoF1YDXNHzcJuIIG4Hq7XVxcwHg8hrt370Kn04HvfOc7cHFxAT/72c9gsVjAZDKpVz7jkUM8AJQy4D1HKYZ2e2rgwc1N80Jq4HOTtHrHP4BPoeH/KRMDdJU+QPjoPazD3t5e3X54lxqCH6NpOab9TUbJwHxpnpV0Ij5PpU/6fteCJZrejxl3HmgOvZYvl8Gh9MgHdBejBdQ4DZ0iwmkL5RcKjofg4WVL0ERCaHe+tX4SDbgaPnTKBadNc3DeFPDAl1eGxL4pKfuoP3DT7Ndd4xs+Ni1+HH/G5YiUFx/H1pM3KH3evq6qqt5xg/eBdrtduLq6qu2tXeYdKuvp3XTWCZomQH2F0LNccP6QdC2Ft74hf9m74xXpDQXCYqBxEGrLWyYEOLSYyC02B7TN6LHEWh9Op1N4+fIlALzio8vLS9fdsdru8qaxWr2aiKIyCncbWhe97CKonC0hR3kcrwl5eZNAd0gPBgP4lV/5Fbh37x4Mh8M6zdXVFXz++ecwHo+h0+nUEy85GA6HqnznEzmWWAw9DjXme0q2i/QN5ZEQMA3XNyk2TQqf07baZRuqaWzK50nJS+IhC2/lQrLNcmNKPEZCxzCOaby7HEEXI0ttF4u7xNrK6r802eYxf43KsVhsKsXutdCUOgYk3xKRSmeTvB+cjPUq/RQDwSMkuJOAja2tFqW0cMc+5phq39JnXgc/5uTwvHiwyNK2WlBECjzFAijWtLG2ktJ58qf0x8rwwkI7b/8Qz0gTUQCvjJzpdAoHBwfQbrfh6OhoTXih40X5igfKPePQUz+aNjVQE5vQsOQnBdt5eSGlzAMPnoC71Mc8bymA5EWIh7SgZCgfDbQ+IeUWSyeVgyujANadjphiz5FfOciVHbljAv/OqVMO/bm8yiHpKAs04zMkXzcRcPDaLZ4JgFB6iw0QSuehZROwyF1NxoVklBQ4COVB34d43xv4proaYH3xlUZ3DFY7slQ/biqIR+0XTadJ9qjG+yVsjlJOHv0+pS09ejBUthdNfeOxs7RvYmPQGpApoYcpX1VVBZPJpF6AgbtrKH+nBC83CfQz0GaL3XnJbWL+XHpmkZ08rSbPQ5BsBerbhuxn3q+8TinyQZNZId7kNndMjlG9M5/P6+PiuL7DPqble/WKxQ/YtH0WQq5dv236Q2MqFncCeM0To9GolkfSqXFWGrztkduGPO7RbrdNx8juMkr6sJpMyom3lKCnVLkx30azE5DH2+027O/vw8HBQX1N2Gw2g/F4DKenp7BavYr1enlKkum4oIlPOiCdlsVOVL4iTVxfxMZUiv0Ys4swjbb7P+bT5cJi/1lo4e93UX6E/FGvT+qBx/aVym66La185KVDkpXaqao05t7pdFRZrtl4ofK5DxOyPVPKoWVp8MTf6Cku0jecVyh/Wfy1UFzWwqeajIvllcvHqfo9JuPVydhNCzHurGkVtSgqvuuDKkqcPJCYjO7iojTwVTwxZcsHH3UW0TjQ6kSZmpZVYldtSKGFBsUuKrRdBG3D8XgMT548WTtaqqoquHv3LgwGA9VZl9obv48Nfs6bMUHOdy1ien7EC69fiG56n+pNR8i4RhlR4h4hrsSshvhqtaoDhKG+8RgN9J5ALkOlerbbbRgMBuqRnaWNy9TvU+VYCt3Sna90bG0TVM9IwWSLwc6/KZl2m/DYHFowRAvOSro3xfkI8XEsQEPHc27/WQMaUjq+o1ejRRpHVnpTxlms33haPLbIK+OobRfirSbGjbUt8W7DHP1G64Y6ymujcFjGIc2T8ntOe4aCW9xeR97epNxDGnL0o/T3LXyQAmoA6ws4SqB0H6XYOZvmk9ApK8j7OSexSEdB8lOKUoD6CI9k9+aDdyI+ffoUlsslPHnypD6SE8f9crl08RbKKGrve22/XbBnc2DV002A5t3v9+u+Wy6XcHl5CQBQ3w/M7T/s9+VyCc+ePVvz1agPFrpOhgPL8I6bkrEhnEjrdrvQ6/VqWqbT6c7zWRMxsl3Ww6FYYilYfYy/+qu/WksbsltjeUrvkRf5ZE6v16t3cVtic9RO5MeQa2XT8W6J5Wn5hGhKec9j1jFoaZuSsbses+Z1Dp3umYpYHDHk0+QgxQ/xTJiVnJNAWUHHMD2GF2P5Xv2TE2sEgGvypmlQG1CihwIXo0ong/F5Kw2arIvBIwe1MlPatXRfSPlFjyn2IifoToWR1TGgZabkpzFfqB6x8qzBU/pdTgCcf5/bbilIycvTx9r31rItfBnLj+ahBWDppNpsNlsLylVVBePxuHbw5/M5DIdDmE6nMJlMasOLH6GA+XG+iikw+k2ojXg6rV9KBjM1OmhaywSGxSnwKnpMI5XpMUJjsiPEZ6HgKqXL2kY8WK3VC/9RPqZpVqvXE8D0SG06CU/zonlYxmAJmRSS6VqfhPoq1nYeeqxlh8qx8nNM90iTI1aZodHr/Y4iVNeSxpC1fnwceIw5TrfWxykBAw+sBraWvnT5Vjq0vELPJX6WUMrR0+Qs16E57ZlrI3nKAXhdJwzshpwffGc9Hj+lTagusX7rGd+0nNi3sXcpNnhJlHAyS4//XEh2CH0Xkgl0sQfX4TF7GNPRZ7Ej/PhYidmP/FsvPDwWk4uS7Eyx0yx2ulZ2Lqy6zdL3SBdFSA7Gxg36dqljq9VqwWw2g9FoBNPpdO04PW5vc7piCNUrJT+OWN/H0oS+3aScLW2DUjkjHS1tGUs4wc8XUEvxgxAN0jdSeU2A0yDtPtwGPLowZGNbZaol/23YFTnlWtvQ2y5U3o1Go2s2aFVV9V3KuWXxDRX0hAl+eh393wPv2KPpc/krpg9D8RStzJD9rMWvPLR59NomxkxOGTTulpKXFt/TaAz5dKFYoTXuRMuypLV8n1MOb1fJV6MLHugYx3c5salUvzDFj/VAoos+w0WAXM7RdNQ398o/zT8KpQ2Nkxxb1/JN0/Kk+GRsSViDiDhTT4/okZiklHHnOe+e0pRzxxDdoVaiHpoClxgO23bXVyfuOlarFXz22WfQarWg3+/DYDCAX//1X4fT01P48Y9/DMvlEqbTKXQ6HdWQpHlZjLDYfbOobGg+2vix1K+JoEqTTpnFoc9dGY/QnGzNmLUEg+gzvBsFHXQP6LE/WvAbA/QnJyewv78Pd+/ehaurq/pelk6nA9PpNOnu2lKIGWPWdtXy9o4Jy0pzj9PvGYuxPGm/on5CWW81AEPBHKtxViJYwfPbdiAH6Qg9T+GnVN61wBtgt3xL80gxnjlCToEFpewnWqbmqK1WvnvCed50fG4a0+kUqqqCwWBQy3VqK1RVtXYPpXSaBj2hhrYH2pKSE0Z1rRZYlqCNeUqf5tBhOSj/MA3Ssk19FkITTmFTclOyJzTQemltH5KZUtCJ864UkNFow+/Oz89htVq571/NRa4+w+93yX/jctgaSKHjUroDUNOPXt2DtrDGZ1IwXKtTaiCS+2be7/Fvr/+m0bvJ4PYtXvcH9olmS6xWq1pfA9hsHK7ntm0vz+dzaLVaMBwOaxthMpnsnC9pSY+2UqlTEDaJ0r5TE3zV6XSg1+vVv6fTqZiuVByp1+vV8TgcL+PxGJ4/f16XQXerS+Bj03vnPX/W7/frd3h0fWjcx+wvbnOXQsxmT8GboH+kmLuWruRknMQjPE6zSV3giQ1Z87P4F1Jd2+12NO4O4Ds9QjqpJYV/m+L50K7+vb09ePDgAZycnMDp6amYpqoq6PV6MJ/P65PCQpB4LzX2BWCLjZSM+TSJKOdZhIGEWGBPeqYJg5AjJQVVuENE04SUoERHqB4SXSGlZwkqpcBDo/a9RYCl8gLNA+miNErvtACn9xsLDV54A8/S3a/tdhtms1l9H5XUth7+i01o8D4OBbJ4sEoLinp4gZfv4SULL3iC/bSOsTIsbRmiO2ZoeREbO1qeUr9KaXg+IVlbVa9Wnw4Gg/q4DzoRHGt/a31zZI6FV7U6Sn97ykHaLXwfGp+p40aCli8G/qSJ2FQHPYXWEgE/azBRG9uhPHKh6UAPf8ZkisXRj+nOlHaIyZUSsMovr44OpQs9D40nK6TxpY253PEfA68XBnlC/GQNLEiQ2s8rA3JsU805DOnZXcOu04fQ+MTLM6UCfB7bDvXjanU9yK7peMmepzR6bKBS2AaPeOwn7XueJlSPVDkSsuEs30p2M627R8/zZ6vVq2PxLy4uzEdjhmjVytDSxPK4RTo03arJD/y7qtavyaE+nnes0L+3pUeof4r+5E2Btug9ZZxY+0tKmzsuY/mXLMsL1MEIenqLNNnBZS9HyP/jaej/+DffTWfxOSzPOC1cf9Bv6L2z9JvVKr4QlPtLJXhJagMLT3n4LvbttuVYDFZ6U8eXZl9afGfr85JpPXYHponZUR79J41tlDVcB1lkBqfR2u45YyCGWF79fn/tukL6jNOFG3Zw0VQIIZmn8UDo+9SYYgm9lhuTjH2/0ztjQ5AcPMsxQNbV7qlB2dB3njs8MA8LA4TKtDJhyGGm9x3ROtwkY5kjdYKBfg8QDtaigUN5jd4NMJvN4Je//KV4nLEGbvhRIypWJ01JhYwXqyLjtJSGZHBK9JQqH5VxqmAOGUT871BgxcIT2O7WlbiWdkJ+pLThTgG6I2EwGMBgMIDRaASTyaQ+Qk2ju+lxVyL/2PfW4FxTNJW4w4zTCHCdD73BwxQnQMOuO1QUtC+aClB4AtqdTgeWy6W4cwjzkv6muiWXZ5sCDULG0nlspxx6+N8peUp9ss32x7Jx10GqHUzrIgV9StUV+ZXyrtY3UpDLUw7NU6rftrDt8t92SE4/gB4Y3VUZG4PV/rHYap7n9I5UKW1uW0q76Hk5njJQR/E7/7xjFCcdnj9/Di9evFgLgqEutNIl+WseWxKDcCn1uMVrcB6mvAIQ5zP09WazmdkXvQlA//KmxJaq6tWJQjzGQ+U9nliVs4DibQRvK5SDyBuTyQQmkwn0ej3o9Xp1+pwTCLFcaSKFx1dwoiJlQsILfnUZyn26G43LcYtNit80xZvaREjO+A7VyaKbStoMudDobcqWl/L1xHiahiXOa4UlXkLHNE/PT2ZIsf3omPXs4mwyls7RarXg/v37a7vtQxgMBtFYs+YLSUiNl7xpunTjk7FSA6YKRC0vzclNDSjxb6UgjseZsaQPCePYRIck2L35auko/TlBdms6Szt5v0HE+CRlsPP2kcrE44hbrRZ0u12oqlfHjuBxI6vVqj42ludLf/N7OktB4nsa5LRMNFposqSXyqI0pPKhBVo70Gch5Wnh9ZBSsRiNUmCKHw+pIcbnmtGG+V9cXECv11tT4r1eD6qqgslkUu+0DJWxTWh8I41db+AQ258aJfz/EL9TGlNhDfZicA8n8ehuOEtenkClxTnctoOkwds3ofcov2kaq+GvjUvadjk2Cs/bo7NTx3lovPF71HkaavOFxpa1LUL8nOPIl7R9m4RFL1B7gH4DkL5IT9PlVh6M6TqavxRs63a70O124fj4GBaLBVxdXcFsNquvQfH0VRP2GNclkn7fRX4qDU/bhmz8EH9L772LaZvGtvgxhJj/I6WT3qXSK41r+i43NqCNN+l5ab9E0m/UjtDuL7ToM8mv2aWg9ZsEbFc8CpvLFe1IQylQTfPi32j+Of2/tFyw+JtaHZqIZTQNSQdTPzlVBsZwk9pIQsy25s/RnwZ45SfRo6Alfk6RV7w/ut3u2tVP2Nfz+Vw9GtlajmWc8Gf0H453jMUAvOZFnjbVnpa+Cflpkr6wxK08tEj5WmI1m4gRlvo+Ry5Yy4iV7cnXIuNy6bK+l3SelF5a3IDjHMso6a9rOkJKtwlbCxewYIyy0+lcG1vT6bTeZMNBeVQ6xSIkKySbU8o79MwrP2+CvjRNxjYlyDzlhALn+L4J8MHBmQz/jq3GKjXIYvXV2kii2dOnIQPBGnyLCe1tDJhNB/+pQYkTIO12G4bDIUwmExiNRmuKILTqDo2y3FVtmqLgq68lx57/zg3+h+jC/HmwTBsTFlkSMxZWK/24F8k5juWZi1iwqaqqtclYjV4NllX23W4XVqsVvHjxAg4PD6Hf79c0DQYD6Pf7tbOEyNnNmSIbLMFWT/5ePUN5p/SdTJ52pE5UKGjQ7XZhb2+vlkFaXgBhYydXjsfG3E2Bpb/p/czSruQQaHvz+zCx7Sx3/4byTtGNlkCDJ9+Y4e6ls6R+ssJr0/LveJtty1bC8nHBBg1aURmXw3Oa/ilRX6nvqSwdDAawv78P3/zmN+Hq6gp++ctf1kdV7cK9egDXF4DtKkrY1SV0iea3cNuNl8VlMdpV+M4il24aNsFTlH8RpYOn2D8xOyUlX06jNAHq1W00vxBQt3M/DO1xekWIVxbTMUH9vjeJv3cNONlDIfUxgsssyuce/yo0kcGxyfiIdCzkrgLHvnT6DNowuNDektfbPM4sPEgXquKmhU6nA91utzEahsMh9Pt9GI1GMJvNoN1uw2KxgMvLy6x8vd/RvzGegL4jThYDQL2jnB8fyvnLypMeSLrMowdTabIskKP28q6Ms237Elo77TokWWmxmzj/oy2PvNFqtWA2m9WLLErxSUo+npNOUrG3tweHh4fBNOPxGJ49exZMgxvLAOILMCR4+NArI3aFn610mHfGNmkwUMciNNgs5Uu7kUJC3CqgQ8pGcsJiyk/7VvuuZDDKWqY0ucV3bIbySqHP0xdaYNfbbiUc9JRvl8vl2sRH6Ohs7oDTf5SXLYatFEiKBUAlxxCf8bPmOS3W4H6Ih3ImCLS8uIzQZAGXKVJeND/tt4bUsaN9x3klpvBoGi8N6JDi6qicvgnR6dU/3gBfquzxQpsop3mHyo3RZHmHjpwkb/AOYNwRhnlYnKvY2Nb4TOLjJp2m2DjWYNV1Vv1D2wT7BB1qq5yjEwnSMY4WPi0x4eEdP5Q+jYZUWYJ8fXR0BK1WC87Pz8Xxxmn2Biw4PIFvmp4GVTUdKumWTQQWePnaosNQP/KJTEp7KIhcSs+XyIvnsyuO3q6idHtTlPKFUvORvuXyOuRX7jLvhNolRb6XQMg+1XzAFPDFS1w+W6H5aqm2I/e3eV2t10tovk2OD5uKEvGCTei/JoF2CtX/FltN4imJRyWZJMV06P8cVp6wyoZce3SXZOdgMIDhcLg2+bVavVqkTBdG8IXsHJpMo7+1tCHcBP0TooXSH7IT8bnX/pae06Pq8USUUDvGYj6SvRiyd0PfV1Ul7qRfrVbR+IulnS3+O/+G/x0qQ6p3Cr1aWhpX4ceoUj237RNONBms/S6ZN03n9eM0eHw3i10c4xFrHIrbYFo6GsOMxSBzkGJDhuJuFj1JxwQfszzfTqcDd+/eXRsfT58+rf/udrt1nErK00qnRQ5IfByT8ZYY5abhGU+uY4pLGNAhxIKdFkcR08QcNKp0pbKkvOlvLtAlRRWjgdZTY2paH4kuTyBUKpeXF4K1Xl46aN4pabjQsjo0VvpS+N3y7Wq1gvF4LH4nfU/bXzpmQSszVdl70vGgCOVLXgca9AgJcylobaHD+33sG8yX7ozg31vHIB9z+K1lRTCXcbFAZczgkr7jZWj54G80ZKz3IUh1scIjp0LKPZX/Q2PTCk9/0zJSHXKaHv+nk7F8zKKzZ7l3xyND6e+cIAGlNybHPXoq5hR67QP81lrfdrsN7XZb3B3A85DK47LWq9OtaVL6PFRWDi9o32CeBwcH0G634fLyUg1UeG0niibsYMkGzhn7Uv4hx1R7hu2EAeSY40NtMppW0rUoi+i3IbokOr3fSHnEvtfSlApqhGDR95yuW8hI6RPJttTksAZv35TUb5ayUlCS32J2G/XVNZlSomzNbwi1t6SDvbvpNdsG7TJtkZZmS8biKSn2AoXmo25DBqWUK33TJP28/bE/rb6fpjtpXvQZ/U7ygT38baXLk76Eb0O/b8IeC6HX68Hdu3eh0+nUO5yXyyWcn59fm4xNhbVuMd3kRej7JsZHyL+hvC61pfdkOD4meCwGY7vUB5b0EtVBmv0pyZcUn4fSxmPPdOI4ZpdzhOjhZWvf87RaGVpZUnvF+E+TY3TjBJWN9A5PqU9SEPvOE4eyxukssG40s/gTHqTSy20eT4whh14aw6TyWipLs3U4LaV4q2Qe1thsu92Gu3fv1nFufgIAnkRg5SstLialty6Q2LSOT0UKf278zthceA0NiXHo4KL3btJvrPnyIwE15U3fh5wpSyAIy8e2sAgvWjY1Pix1jTFWCeOPlxUqr2QZu4aYs0LTlYKlPfjqbK6UQrtHpbJoHa1BrBKKV3tuKR/v0txWsIHSgs9oAAh/SwtFYm1H5ROXFbx/pL7udDrQarXqiVl8b+ULWrdNKFwuC0OGg2ZgefWQlJc3bYm2QccNjziaTqdwdHQE3/3ud+Hk5ASePHkCvV4POp0OjMfjmu8tdDfd1yFHN5R2U+B9RxeeUD1P7w3H+zpwrC2Xy2srezHvXH0v0WlxqJtATiAYv4u1R7vdhvv378N8PofRaATz+bx2vKzl8na36gz6T3OIuB600hWSTyGU6NvBYADHx8dw9+5duHv3Lnz22WdwcnLiPmqbpkNZxPUPRS6/0DyovsNJEyxzOBzCarWCwWCwdgSTNFY27RyuVq93QdD22GWbdpcR0uW0z0vwnhe7qN9yIQWwpP9Lg/vfvF9j0MY9lQlW3RzKX/N/vflymWD187mdT8v2xAo2jZRypW82QT+1CzzI4S+eD8D14xBLtWEqPTFsc0cb7S+6k4ri+fPncH5+Xi+wxyN0paOMNWxjMuQmgNteKM9TruiS2glPrJIWIc/n82tlU2j2Qc7EDB3r2pU9rVYLer0eVNWrE5XQjs3xByQaudzRdLUWryg9TqmPEJpo2tvbg7t378Lz58/h5cuXNY3U3m9ShvD2oL85n+XY8LkyHCAc228KofbJgVQXvEqHtvtqtbo2tqVYibUMzZ6w8Jg0lqz2Gy+X7p7nR+kPh0M4OjqCBw8ewPHx8bVv8CSxjz/+GC4uLgAA6sVG/OQY6yYcCaWuIXuTfN+NTcbyYFaq4VciAM7L9zotNB3NSwsO8vxDDKQpOE0Z5t7vEvou1EcSnXRyKPSNxAcWo8AqIDkNXoGYwpvbCNaE+i3VyIgFmLWyvWOaGkMxvvHSmYLYGJAMNy1IEWonzvuhdovJCN5mNLgcCu7wd16nQSoT4JVCR+MGFbsWWG8aljKtdKXwJ/8eQDY+Q3lynZkDqc9wwm+5XEKn04F79+7BbDaDZ8+e1Su9Z7PZ2m64EpDGQEk0wW8WucjbmDrHUh3pJLeHXqr3Y+ks9HN4dHgqQraZBVx2Su2IjsJwOIT5fA7T6dR9BLQVmmPt5Rst7xQbtSl0Oh3Y29uD+/fvw6NHj+Dk5AROT0+DNpumj0L2bRPQ7HNqR6PzSZ1ajW6OmM1cQi7hnb1Y3k12Rq1+YRMy3RNU3CZK1X0bdpgFlgAwRU7Q0mPveewz+syavsn+SA3khVBSD21bh20CuTws8Z8Wd9Hy18aWhUYLUvoxp+9zY4i55SLQtkRbAReunp2dAcDruz0RIVs818eztsMuyP5Ue5/nQeNHXkhjCOmSJndDp0RJY0lqZ83WiNEpna5A8+ATsHRXZKi81Fg6/x2KJXn6x+ufapPwOOmGE9XD4XDtXl2pDtsAb5tYLDCGHL2867rYOlcSAp48Rtt9tbq+mAPHEpfJfJxbYElnsc0oDZruoH/zUzPx/3a7DcPhEA4PD+Hg4AAODg7qbzHeN5/P4erqCh4/flzruFarVS8sorRI15yFZF9OWvqNFmvZdT6OYWOTsRLT5OblGRSaMZWbv1fhSHXvdDprRylIzBYyIOgzS2CPB3OtinkXjDkNoQmPnDybrrO2Awr/533VarXqI6vw/l7KC7hSDuAVj08mkygNoQA7pYG2R+gODw5LWir4NaRMXPBvcwU2bw+tnND3PFifSxPmh20Yu3vYQiemjU3oTCYTePHiBXS7Xeh0OvVqqb29PVgul3BxcbE1JRkbv962SAEae9qRdZpsxzI1Ayw3oKHplfv378PBwQH0ej1ot9vwZ3/2Z/DkyRPXSjZPu0q0SXnl5LENxPraG0AJ3TXMoTkOu9AuTQAn03CMYVvhooKHDx+q30oOMX0ecgRpGi09PufXYsTqs2vIlTn4LdY/dGxYKn3cMePjoIQeopP5VIYul8s6+IM7VyeTiXhsGsWmg8q7BqtfuCtt5A3KxHS5BSXqXpLPttUX3P4vPXam0+mafU9366fSS+1ySV9YoPkZXKbGaAnlJQXRpQDvTQ94NYVYoFRKn1oO/o96B+2fEHZFflqQ4+c3jdlsVvfB3bt34Xd+53dqu/P09BSeP38Oe3t79U4i784hb50lu0LSUbvYll6gbQ9QTg7hJAPHarWqT9AJlaXpB0neWmKzWj9Jd8Uul0u4uroq0hYpefC6eSdUvYjFrA8ODuAf/IN/APP5HD777DM4OzuDjz/+uO5HXGDJaedoyia36F4PYvplV3X1JmRRp9OBfr9f/5b0I04oYjvh9V0hxCYWS7S5RgN/3m631+QXt9vQ/wQAuHPnDvzqr/7q2uIhgPVFQ6PRCP7yL/8Srq6ugnqL7yYOQYttpqBUrGBXkTQZW3Jiwzs7His7FhST3lnK1fKX8g0xoGawx5jMGsi1Onq87b3BYU+amOLzlG9BKSUkOf9SWZLTSvOICXApLQ1WShN4fDIFf0t3SnD6edDZOhll4cFQXamy8I5fXhcPtP7jbRei3wOPHMnNOxbgTaEl1F68vMVisXZ8M598pP0eojlWp1RY5EtIppekgSJ3coPmK41vDdq7xWIBl5eX0Ov14PDwsD6mGI220KRSk0bSTTK+eOBdcoi08ardaRoqJ4QcR7kpxHi+pCNTVVXtjKADTnfue9qD9iPNPxSgturLWD22DS3IjCuN6SIBi0zjbVZygign+E2D27PZrF5U5OFJGizE35ZvPDSvVqv67h66+Ap1bpPQxk1pvbkpeZWjg3O+28bYLlFmTtDQ017etHw3EM+H+2eS3xvS2R5oPnVIV2jtw/01i28Z82U8Mlr7fYvr8AZxtT4NfUOfx3j1pvYZj7mE4gChMdUUXShv9vf34ejoCI6Ojup3GBjndpGWV+y5JQ7KkSu/tolt0B2KwaXQkyIHQnnRmJl0PDJdeO/Rszwek/Idp7XkN1paTisufAB4NRl7eHgI0+kUBoMBnJ+fw2g0WsvDUtcm7TNL/2v2SQzclrGmDb23wBM/9voK3vFEv6PHUdO01Nez6s9NxAQBdD7nCB1JLtWv2+3C0dHRmq2MPjvqqPl8DmdnZ+IGLt52IT+myfEVs5W3jRxf+MbdGUvhMV62CbrrL2SI8R2yUhqExVDzOF27Evyj8EwKWd41gSbKsgTScdJ1NpvBdDqFbrcr7rKNwTIxRifZ8BnyMl31rTn/HHxXDM/HQtc24JkE8Uz+4d/c+NYUrfZ7E21H+VEqD3lwNputybFd6tfSwWML+Pigd9RsE9gWL168gD/5kz+Br3/96/C9733vWrrFYlEfc7JcLtecHAnU2JN4meseegcQpesmgwdjpIlsnPyh3+DdJji5kzKRR2Uq5ttUm+bknfMt/Q71E7Yfvmu32/XO2OVyCefn53B+fl6/s9LIdR+AfAKB5qikOqPbhtQ3vV6vDkTeuXMHVqsVXF1dwf7+PnS73XqHmRfWIFhKW2pOOcB6P15eXsLnn38O0+kULi4uYDqdrunlbQUM2+02LBYLmM1m8I1vfAPeeecdODs7g/F4DF988QXM5/Piu0YkOjaJJmUW5x3NJsvFTRnnTUGzYT2Lj0qDLySzQLNhStm1/Dh0iw8o5ZGjXzY5ufW2Afsl5YQZ+j1/hhMR/Du0g/g3NxHarqZN1qvX6wHAq93z9+7dg3/yT/4JDAYDMS3Kt/F43CiNKRNgu4hNx+wk5PrhPLbraX/+Hbdv+aQRldOeidQYDbH4naYf+HHcUl6l4z9oE//+7/8+fO1rXwOAV2Pz008/Xdu9zlFKbqTmgbIB/frUOzclWrY9hkJIoS11sk9KQ+83Xa1WMB6P12JNkh6N0VaqvWkcwjIJXFXV2gmYPB29jkkDvX4MMRqN1r7BUzgxTw9K6h9LO5eSg9vEGgemTM7lNELuDDmFh3bLpJE1IOT5JgRtYNFyQo6WlRZP23gFjkWhe5CTnzZh5BHkmw7G0HIlHsD7EPCYYnpEESr5+Xy+VldMy+mIrTAJ9T3nkdCEYMzQDtGhBXJCATPJYOTpQ/Rr+ZYC7+MQbZyWEC9ZlbhGi6csCXwRybYC1zFsajJEK6eU4xnTEaHveH/jxPB4PK4nXXFX7IMHD2CxWMCzZ8/WJld5PWPlWfSplN9NcDQQoTFoCZxYZG8JfWz9ltJkSVsadBJMKkPT8TwNBgtCi+EoLHIW+yikS6T2lyYFpbSxOmn0akHb0kA7pMQiihTnWnsXs1li8mi1WsF8Pq+PGqa8R7/F72nAu9PpwP7+fv09TkqX3rHabrfrkwtSFmuURmldatVl2wT316z2rjXNTUGOnPH4ZnTMWnwOD704nkO7DehzTTan6ttYu9HxIOmOlPKQB+k/brOHYhxN8u+mbPRdgJdnNJsCwO9r7KoMkuR/yVibB5JMaLfbcHh4CN1uN7ggj9pF/D2Avf2bqmuI9zSeaoJntsWHpcq16p+cfkRekuLEm2g/j96JxRq1uB59J+lWiV8HgwHs7+8DANSbU8bjMYzH43qHH9VxJZAS06Xw2Ie5ZYXK9cQTpe9TYRkfMdkfoh1PJqA2TWpsJoRQe3r7QkvD86HXMWkxCFo+6qr9/f3apwVYX+CxXC7h8vKynozN8b9SZFwuj++CnVhibGTtjN01Yy6HnlxFaaElhT7rnSASPOVtk6FjbfW2OGfUIKGTqCggj4+P65Uq4/EYrq6u6kmTyWQC0+l0bQULBgcXi8Xa0QNc2Fp2pWqGuzUAIgUztPxjfMt35aZCC6jxNPSO3hxYJ6TwbymQ651MaFpGU4eTto+00mzX9MW2EDMmpfQA9qCdp/yqqmA4HMJ8PofxeAytVqu++3AwGMDf/bt/F8bjMfyX//Jf4OTk5Fp5FjltuQ9amtzgkyE52FYAnJarBWZ4G5akMyS3m3S4QvQgvEFISxq+GwQn11LHhvSOTu4CgHhUWEo7lm57Wo/UiYISkORCacc+xsu0X0vIArTL6XGE+/v78NFHH9WnlYzHYxiNRtDpdIrYK7sIPl7eRB2vBQYl+5nzuHeC5CZP1DZNu2Y/5Mpb1A/D4RC63S4MBgMYjUZwcXGR5XtrQWerHJZsKypHqM3kqT/l39g9fBqsbb5NvbPLCAVQQ4j50VoZNwFcrm5bn1RVVS96Alj3Y4bDIVRVVV8R4PXpmsZN1SFNg/NXyvcUJSZeLWmR96TFd9S+b2KiP5TG6u/gos0U8Ikn9Le0MkejEfzsZz9ba7OUUwNLgct6vEs6V15gu/OdydY+3SV5heBxIC/a7Tbs7e3VC4Vns9nayWNS+tLxFgDbZKxFlvC4ON0Ri/4nx3g8rv8eDofw27/929BqtdaeU75ZLpfwySefwOXlZb0RIweeuNIu8uC2oLb6NgJ1OdAcn1L5peZFB9JyuYw6TlRY8zxCwSyNvpyJzE0NqpAy9zoqJeiJ5d+0AOGrU6Rg12q1una8JQcegblardaEtsRbCM0B4nXnR5CisRXryxifar+t+WkBMGveUgCXGgio5BH8ON5QPpwm3rf0f+vEd1O8GON13s/86Gk+QbEr4LK06QAi7WO6sjW3zBJBLrrQB+nBhRudTgdarVa92COkX7nMkPiTOm0S3aF+KGGLbJMHLQ6yVb95JzC9ejOWR2k7y1KuJCe1ckNyy9MWsYkVi81C08aCNlb+tOq8EEpMilJdT++pL8XrofTU5kgJalB7hee/WCzg7OysPmUE62i1R6RJjhLAo8sBoJ4w6vV6wUDDTUbuBBuAfvyXZnPxvz1l5o7JnPJD8MoXC1L1SsoElNfn4mOay3NLe2jj3SI3Pe1MA8z8+1g+lgA5H0MhH0vTUbn8cxtsu45SbbILflWJmAjl+Rj/83HcNFarVb0QGydeqZ4HAHj27Bk8e/YMTk9PAQDWJmi1PL1yIlTfmO5JjdmVbOOSvJrLayFfNdRvMbve65ulpl2tXp/eoslnSx2kGFSMbzRfLKUenu/4tw8fPoR79+7B4eEhAACcnJzUO/twzK5W2zuqXfItqurV6YadTufaMbGaL2sZo9Z2LW0LpvCw1C6xPKUxGipHOzKcjm8uw2PtGIt/SXW05BWLV+Bz9LGlWBzyCZcJmAePT1dVVe+EBYDa19XqytssFzljkfbTLtuWFnnM0+zcnbElg+MlAtap0AYXHgOpGZ303abufAuhpACPBdxjZWyzPzeNmNDBY/BCWC6XcHV1VQfvEHwCUTPCKA0oiNGAoDtD6DeW+mjw9i/SVGLHSUjR0PsbB4MB9Pv9+t3p6Wly+byPrYEYKZ/S0BwW/M0NGSrbAOTdYruKTcjWEhMgHLntijtC8D4kgFey4fz8vA5AoLOD5dG7zbTgpsUYlXgqhCaCypsAdQT45IDmoMScjRTk8EpT4zfmCNFn2jG4qUH6EE2oUyTHzTuOMX3OCScSjTRvz3eaLNcgvUdZD/B6gRK3aa0THxqdtCz+jv/zgvcnbZf5fA5PnjypHd8U+kuD13UwGMDR0RFcXV3BbDZzBwNuAiSes/YDBmO63W4dpOCQ+OpNx7Z8yBR9n4NQYKtUG6TsRuHfS4tJJNvaCrrY21NXGrwG2K4cedPHoXRXcigwva0xuwlwveWZVNgUb6LdeXV1pfr5P//5z+F//+//Xf+mOrkU3lQe2DYoL2l8pU3EaEdUl6SL3ttI39H7iFF+W2U9t9O9PtUmeVGz8X/lV34FfvM3fxMAXtnsX3zxBVxeXq6lwbbjE1KpfoNXFnNfsaoqGAwGMBgM4PLycm0hZc6iypsyQSWB0xvarGaV+1JMGnmAL6hBaH9LNMbiFiFovCfFgmi53W4X2u02dLvdtbSUr6fT6doJmJhmPB5Dt9tdK//58+fw5ZdfrpWP7cbrhbZhyu7yUFum+u43ASm84bozVmPKkoKgSSMmh74QXZb6c4crlCffGYvfSELEG8RObQMetEJ4+suSNkZnKDAstSvPL6fttgWs8+XlJXQ6HRgOh9Dr9eDOnTtrdyN0Oh34+3//78Pdu3cBAOD58+fwJ3/yJ2u73WjgFHd+YBlauWgUSpD4mueB77SyJOUmGY00fQ6fhJS9pIQAXit4DOzh/b3aePQEQihNnO5cmRrjYYtc0/LENFReWcbZNgIMlrGuBQVy+yCmSzVejfFwDl0aX5yensLf/u3fwqNHj+D+/ft1QJvqo1arBf1+HxaLRe1EcGeHlsGfW++XvKkOhoZUQzQ0XixtlGP0NqEDY/yBiMlvSa7w4PZyuYSXL19eOyYrdnS2R16GJlit41RyqKV8aX4WHcjzl74J8SVP3263YTKZwOPHj2ud+PDhQzg4OICf/exncHFxUcsMvDNVums6VIZUVyu4nao52Z58Q+1M7RpcYYz/qC3wpoHyAwa8MEAZsgFS5UjIpk+FxSeTfDFMH7MjLXy4SVhtPUu7Wsdmqn9okQWpNhDarPj/4eEh9Ho9ODg4gOl0Cs+fP4flcgmdTueaPpF0VMwf5b4PtYOkOtF6ldC/1I9DUN8lVAetXp54iNXu2bafvSlIdgtAvrxsqv1ybMxQTMCTjzXvJtHv9+E3f/M34c6dO/D48WOYz+dwcXEBL1++BAD7JE8sTY6cy/ULY3k3hU30ZcwP93zL4wXWtrHa7NiPXEdg/MkiQzR44qcWmr3lS5DKpM/a7Tb0er1aV9HjWrH8+XwOz58/r69bkmjO5eFUPu12u9Dv968t8NRsAF6WZA9wf85K2zb8EUqfhY8orDKVti+eCkkXVYfy5P4xp9vC31r9pG+0WIeWPz+hDmUD9be4fffw4UPY29urjyg+OTmp05yfn4u0UF+Wvo/JOI3/SsdOd82XtsaJLDwcPabYwnw3BR6DMSf/WH60bUMKMOaUeZRjzIGy0C/lYQloeBAyUqxBSJ4fV1q5BmsJg1dqSy1fTHd5eQm9Xq8+oq7X68FyuVybjP1H/+gfwbe+9S0AAPibv/kb+F//63/V98lWVVUfs9tqteqAoWS4UCedB1NpG1onVqT6a/WkPE+NU5ou1AeWMULz1XagS8c541EQ9GjGkPEUkzkhpSy1w6bB+53+j6BHVPMd07xNdiXg4pEhOU6cBGmchcpukg942WdnZ3B2dgbdbre+N5bTiIbvbDarZQg1xtBo5CuHeT7WoJ5E5y7Coz89jhPXfRbZmYNUWZ4TiAoFbLXAg5YPdXBXqxW8fPkSOp1OvToUn+OJB9J9Rp424LukLHRa4A3a8WcxR0Eai9qYxLQ4GfvkyRMAeKUjf+VXfgXu3r0LX375Jbx8+RKGwyGsVqv6igT8NrYrOMWu0hzoGDyyNMQbvA03NRmbq39K6JHValWPq+Vyee1oZ4Bmg8MW+qzvpHETklXe4Cv+va3gQqqdE3ruLbeEnpDeW/xtmp7a7q1WC+7fvw/D4RDu3LkDJycn8Itf/AI6nQ70+/16LGOZvFwLj/HAFuob6fi4UL1KyBPqD1uCbJtCSRp2yc+IwRPA1ALIpVDaz9HyTPmuKV2qtaE0Lvr9PvzgBz+AVqsFP/7xj+Hq6grOz8/r44lxbMdAYyuWtCHapXw9sMZEd308xfyfUN942ozqMKpD6DtNz6XYDNpkUujbkP+p0bKL/jWlsd1u1/c0A0C94BPgNe2z2Qy++uorWCwW9aQcr/M2+BhP2RkOh/UzahtoNPJ+53/TXaSWmAOHR15wOzYEyv+WukjfhsqS8qT3eAOsnxzp4W2et0a3Ja6ryQNru3D+51cN0qPz8RlN/95779U8Nx6P4csvv6z9NGoHcvqlPih57Y5nDO6iXEKUliU7d0zx2wDp7kAuwFDQ8jPALQyAA6pJhas5iiUc9yYVJlcq2xrsmzAKHjx4AH/wB39QT4r86Ec/gh/96Ef1kQcIfoQibyN61Afvo1AQF3k5pY1D7UOD6PRYLu3uVs3hxXdc0WB6XBmP/2azGXS7Xeh2u7C/vw+DwQBWqxVMJpP6vgrJOAoZTJSOWL015EzEaOVq/WmRK7QvtGPY3lZIhmoOcmUYTiBgYF3ih06nA9///vfh7OwMfvKTn8Byuax5n9MC8Hp80vFPZUtot1GoXm8631j6MbWvU+WLh7+8Y1sKbDfVx8jnVVXB3t5eHWQvNdFgtctCtl8OSuZlxWg0gmfPnkG/34eTkxOYTCZri7y4jWAB5zeJ/0oEITld9H8+ac/T8W+aBre9Li8v4cWLF3B+fg5XV1c1LSmBlTcJ2Dc4eYZ6SLvz/BbbQWk/j9oaIfCTbObzedKd0xwpegDTctuYBhdpWi1IRoHf0CPkOX0aPZvwvT3I6ZNdqUPT2EQ9d6EtLUH8VISC/QBQB7z7/T50u1349NNPodVqwdnZWdLRol77mNoa2jHJ3L7a5QB2CXhtXW3Sgech5Sf117bbt9VqwdHRESyXSzg7O1t719RY2YZ/QX0lXq9PPvkEPv/8c5hOpzCfz+Hly5drG0443dsA2p57e3s1TUivdMR1UzTcRCDdfKF0aBKU+vO8fb2LGjDPUNk5sVorer3eWrx+sVisTajiM8pTnU4HWq0WfPHFF/WihMlkIt4ny/10Xt+Sk7C3CON2MhZ8q2zpN1payyQoX3XBJ8DwX+g+Sk1ReVZyhOiMfaPV39ouIeROMMXK8vT5LjiqmpHFJzyn0ylMp1Po9XpweHgI3//+9+t3L1++hB/96EdrecSUDZ3oDPV3zKnx1jH0PfI4HreM40Qbk6F8pDsKaH/Te50Wi0WtGHu9HvT7/fou3vF4LAaf8W+kLTYhy+WAhm06BJYgOz+2mH+7beQ6FyXqUaoPtf6wyjh+ZCvyKa6+63Q68OjRI9jf34cf/vCHMJ/Pod/vi/qL6jU6Pjm92njgEx88/13hHytCskV6LkEaZ6mTW9aJsdTxEcufykMpf63/Y3TGaEL5XVWv70j23PWt2Vra8xAtmB/VXbmyIESfxX5JsQ+n0ylcXFzAyckJTKfTun21oz2pjuOOIKfFOsHBdXQMsfHIeZPaSbTPJNmKMpM7yyVA85tOp3B5eQmTyaTefUzp2ASwbfBeLt4mm5wo4GMKn+EdmtJ3KXKNllkq3ZsMTT7m5glw3R6QeE+yPSk/YGCrZF+E+l+y0ygvSvRK+pHnx99bfA5KR8hf35ZseRvh8V1LomQZHrtWSy/5wtviQ7QRe70etNvt+kjiq6urazTFxrwH3M7YVL1Ll9Mk/+bGnGI8JfmuoXxieWnpJXsypsOGwyEsFgs4Pz9XY0oxxOJlHl7QdFEsTSwf3kf4/7Nnz+pNEHTiDe/ULMl3KWMCy2+329Dv9+vneGWcNe8YP3l5z5K3FZbvU3kTQPYbQ9+j/4lpeNt46Y3p4xA92rehuIcEeqIXxjBQL+E3eCIRAmPaZ2dna+NGK8Myx6ThbbXVmsDOTsZag3pNl1MS/FgBi+PO76r0BNZiSj8HMeOCv7tpQfRtIRYoms1mcHJyAv1+H/b39+sdmqenpzCdTuE//If/AF/72tfgX/yLfwGHh4cA8GpVzOXlJfzu7/4ufPOb34T/8T/+B/z0pz+tBTpdUY3GHlc62kqu0CQJneTRlGQqSvCTlge2RyhQc3Z2BpeXl3B4eAj9fh8uLy/XVsqGxoQEzQnV0u4KUuTnLsmClMBsCVC52ET5njaW7nT86quv4Pz8vL5nejgcrh3Zp5UpyQoe9AvVF2UQ7san+e4S3+8amrRjNh0Qksq01I2upAZ4vaoW+fjg4MBVds6kjQda4JzqY09elA7ujJXikVarBdPpFGazWX1HfYwuKmNCVyRYgI4pto929CengR6pXwJYXrvdhtPTU/jRj35U5z+bzd7YXZnY1o8ePYJ3330XWq0WzGYz+H//7//BeDyuV2SX3gEg8TD2P05Mv//++3BwcADvvPMOXF1dwV/8xV8AANR3jiFdEm3YdzjBX1VVPbnOjyOXjpnF55qvdavHdITkU2jMetoU86HyEHcW4K4Vnj4GLr81Wj3+t3bKT64soTzMg3gW3PLuLUohNHEb8hc2wYMheTOZTODTTz+F1erVglPU87nlIUI2X+4EWSitxT8riRx7lNvoqRNDlm+ssVYpf+0KE/pNyL7HNP1+H9rtNuzt7dU+ObVftHhsCFJ/a5NNnoWrJdFut2F/f7+2x+bzeX0XqAQrT20q7i9NCgJcjy1yPgnZOtLkfQpdTSKVPqx7yG/i7TMYDNZOSMQTT+j4CNEgtad0Z2qMbiusV/uhbUrjyvwKJvQ1cIG5lC/fbMHzoaBprOPjbbQJm5AdUQtik5OVFBZGbaIczyoSa1rNKaeDUgrOUyEQcjj5Nxq93onRWJ01mjQ6Le1iKbuJunrRZIA61Nc0yAfw+ix5NFY+++wzmM1mtYDGnZvT6RTeeecdeOedd+DP/uzP1hQVnSzV2ivGf5Y6If1WxPhPe2/hD14Or3/sG3p3LK5ewgCx9H1TzoIVTcpxbaztspLWHJBt0qGhxGR3jK85f0wmkzpQ12q1YH9/fy2AaQ2Ohhx8iSaaf6g+u4wUWZcbpE9po5j+pPYH70epvBQZI9U7pINikOqCzgxOwPDj9i26LbdvLDaKx5bS8pWexWiX5LYlAIUOL57GQU9D8LZXbMzToBX+3ev16rsdR6MRjMdjtV4xW5rKHU2+hdoFJwNx1XtVVfWO0VRo39KJo00dd8aB7TkcDuHo6Ki+Sxhpth4vllKuRgv22XA4hMPDQ7h///7a3WLaWA/JvxAvh/iBy89dhxSEDcE6xr1ygLdpzG6wti+3SSQewEl3LQ1Pb3nuiRvw71LsOAsoX/O4g7VetyiDm+QzpdpfKUjxn3PyR4R0/3K5hMlkAuPxuL4eADdLxMYltT1oGZZ4S0rdPTGZbemo1HKtdHtiuSF44pYxejQdpMkBak/hiWw4EcttP4sPaZE3JWSS1/cNfUd3BqLPIfmhUuxPy7dJexTLootE8XnIBpFkiNc/3oT+sPCY1KchP1jy1bTYg1Qe9Q21k4m09qV/h/pFotsDWk9PG9L6WxbpSXwW8+e1NrHEF2K4KT6QFSXqI/WJaTlXSpBtl2GtT269pcFEg0poyFHmpquqLUG6UIBJQmml1ES5mkJNRSw/j4O7K2OBC1wJ3W4X7t27BwDrx8bijlmAVwbD4eFhzYuz2Qyurq7WFBwA1PdJ4o6W0Op/Cv6eBjxDtPO6SnnxnUPeXS9UUfExV1Wvjz6md8dKaLfb8P7778N4PIYvvvgiaDRgvlJ9KF0pPJYTqJHa2DIOeZqmjN5bbBYY6Mf7JwBe9WW324Xlcrl2RzI35FCWSDuHJNAARWg3eolA5DbhlZXbqqcmfyzB6RL2RMo3KFc12ufzOZycnDQS1LPUnY4TKv+le9o9yHXAQwF/K7788kt48uSJ6Pjl0MfbFo/7whMpfud3fgfeeecd+PDDD+GP//iP4U//9E/rAAh+Hytfekfl1q5MUGBd2u02fPXVV/D06dM1+jZ9tw9e10Dv53rb4bE9b2EHty9CY5raCNw/8ci11er1kXDcF+f+T6ngjJdGBH7j3b3Eg5j4/63N/nZjUzwQK4eO8W3JVRzfs9kM5vM5/PCHPxRPSvDkRRGLFQC8Pk49lG8qbupY3yR/Sn6sNvkRyounl67I4mnwzkiabrFYwPPnz+tYXNPY1CQfgrYnTr5Kp5Lgc4xJaHltCjR2iLuYke7ZbAbj8Vg9kYXnE5uQfRNA64X/48YiLa3Uz7PZrG5TviMWIZ3ApNlufCGpRgvf0BQDfqOVS5/h7neeznKtRmzXtdSG3tO3bn2dPEj9vzYZq82O83ehDG8CrHSnOnLaBJSURptotaxW8Bh3peAx1GPB8xhPNeEUcJpSJgU3gZCRBvBK4M5mszr42G63odvt1sd4fPzxx3B1dQUffvjhNUH7wQcfwHe/+1347LPPYDwe144FV4TShD+nJcSnEt25bch5IqUfU0ADHvP5/Npdad1ud+3OAu37punz5J8ycaqVI43Vm6ofQtjUZLNH/6bwlPQtDTzSoCM/KoV+R9Pi36ExkCpnb+JEbKrNoNXfUnepnVJ41Boo03QCp0VKH+rT0rJEch5CukqjzUKHt+1DfW/RdZbvm7Lfq6qqd9CjPpQmZGNla3YwBd8Zu7e3BwcHB3B8fFzfYY16ma6ep/lR+qT31jprz6lNHps4SgUG4TD/UFAvF5qvQe1OPB1Esn82FSykx5R1u13o9XowHA7r3brSanl6FHETdG7KVigBr+/P4ZVzVlros9T2i303nU5rXp5Op0H5GqNJ+ra0H+u1oTh/cx1t7d+bZHvdVGxDRsT8/E2UjWhivOSA+v34vzSRliIjpbqjLpPSx+ANkEv2iTWes21IcUKP/WZtq1iakF+RohOlvOjpd3h9jzRBH6OV2+ReXrH4ECX8DJoHjXMCwNqdmTRvOoFWOlYQ0v98rHAbGW1PeipTKH8eS4nRgO/eFN3MF9MCxOsOsL7ZSEsT+50TOy0FaTzR2HmoXCnGLsVitLJKxQNuErzyKtZmOXyxs3fGvmmwdDBXQgCvBTpVRtZ8LELGIvBi36Tcw5VS7i1eYzKZwGw2g/39/fqouOVyCc+fP4cXL17Av/k3/wZ+4zd+A/7Vv/pX9VHFiH/2z/4Z/NN/+k/hX//rfw1//dd/DWdnZ9DpdOD4+LhOwwPoljtMQkYLzzd1goCXowV6U4Qi0kbvjKXAowin0yns7++vGcj4XjuWRKIvNAa24ZBqZVppeVMMwrcJsX5Ffh+NRrVjqIE7EXQcUUfF6wS+reCG9C47XVSmURmqpY31K6bRdrtabBr+GwMZlh1EKTzqocmDmK6I0dXUGELbFO/o8YCeCiPZEN4AG2I4HEK/34fT09N6Zz/mB7B+mgYNrCKsATqpTVH/4z/LKuabgqp6vTMZ2wyPih4OhzAYDKDb7a6dUrKpe8ZwMhhtr+PjY3j33Xfho48+guFwCFX16u4lPFoSAOojrpF3JV6jsof+04B8JQVF8DcNtKeO6zcdTQVVsT95/i9evFhbUOA9Xpz6NFzvefximlbbHeKliU/sSPeHxXDLm7fYNLalN+m4oXyPC8729vZqfRI6LSuUPz95A+C1vYtHsqbS/qbAM9FdagI5Vqb0XqMt56QSyh94NPHBwQH0ej2oqqq+hswDi7+1C+DtuVgs4OXLl2LsgccBvYsjNoHFYgGj0UjdEetZ1BHrI+6XxPIq3UZSH3gnu2g8FRcdaOB2mpTWEmvwgMvvFL7j/SQtLJnP57XOkcqRaOFlN31a0i7Ho5pA0zIyazL21pG0QwsmxhxOLbAYKocOdim91m+lnd8Up1r7RhJelvw9NKSscijdZh5owb7VagXj8RjG43G9UxYA6iNPMGDEj8lG5TYcDutjefC91A9aIJXTor2zgrex1Ke8HUooCr7IgNYBd8iORiNYLpcwHA6h0+nA4eEhTKdTuLy8XAvShOhLDeanGAH0u1Abaf1Kn79NinjTyBk3oW81XrPIUB6Y1tJL3/KytO9o3rvoXDUFbYKHvyvtWNA8U2QIhUXm8nrE5I8U4C6FUJuHvqFI6Q/eTp4xZB0Hmm1ngVZHze7CgAJPR+uJjqPVOeb6kX9DJwL39/frICZOEkr1D8k8TdZg2R47vGl/iLbvNnwvWuaLFy8A4NVpK1qaTQNlBl1lXyLPUtimz1AKVn9VQ057akE+SZ7j2KX/OA1815uUrxU5fdtUcEuiKUX3WQP6tz7C2wNP/3psp23yjSRDcFEXfeYZ69SOsNrIpWCZqGyqvUvYy6XKTJHNWvxHQyhO6SkXj9/tdDprPvd0OoXpdGrqUwtNWjqOWD+m6jvpe01na3a6p51z7Y5YvpRGXOgXO2bcAw/9Hr6g8PalZx5BK1OKK/G+T6HLK6fpt5IdI/mGpeNU1niAh99D8sIj10rIc6/saQI5PB6iNUcu3u6MjSDFaSldviSQtEASvpMGX2mD66Y5WjkTHLsKzh8Uy+USxuNx/RuDl6PR6Fo+VVXVK++GwyFcXFzA2dnZWl6ScrPc1WAJjGqQhBv+k+5cLgm8J5cf0VpVVX1cyosXL6DX68GjR4+g2+3C+++/D2dnZ/WdmkifRZhr7dLkOJOMDsv4uGlj/21BCRkXCqbhzjIcGyEjWZpMkQxXycCN0XWLzcIqs0sZ5/ic777kO8tyQXk0Nz9LHlL7hI5Y2nVUVVXfaUWDDnxCFv/hRJmVT2g+dNdhu92Gw8NDOD4+hocPH8L+/j4ArK+sjuVLT5tB3qqq63e680Aq1iMUGGoK256IpVitVvDJJ5/AT3/6Uzg6OoKjo6Ot0nOL7cA7lmNpQnJQWxQh2dq0PE8wNOTf5AT2Oc08X49PVFLeeCccPPne4hY3BdQ+4Xq+3++v+f0pSA3ae/zxpiabNgUP/Z5YSapfEouNSHEdS1kxGxh3w3J6zs7OYDKZXLNRNZpCsPT3Jk93wXKwbXjcjacDyJv8KBXb57Y4+hXYT3SHY+g7/g5ppL9DNNxUoA9J/TYqZy0nEEiThKljQ7PtON+VWugZ4kPteewO8VCcwZL/LTbfNupkrEe5v4mTXIhSdSq1GoA6YppSkiZqrasttJUkFiMn5lA2NSmcAknZWemKGWU036YxnU4B4JXx1m63YTgcQrfbhdFoBM+ePYP//J//M3zrW9+C3/u934PpdArn5+fQ6XRgf38f/r//7/+D7373u/Df/tt/g8lkcq0enL9yeLhEe6SWZeE7iQ+07zBgu1qtYD6fQ1VVMB6P69WzaERqjp1GS6nx4Z1YkCZkKWK/tWeYN69XKVm4C8jRfRqfetGUXK2q6tqCh9CxMbG20IxOy5i7qSipF7iO3kQbhRyTUhOYWlmh4IZFJnFaLbRsmu88MpHXQ+ob62RGaIxantHn9JhXqwzDUzhwlb9EV25/cJ0m8ZWUP530jUHKgy4aiNEVyzv0vEmdSWlEHYC25mq1gk6nUy/IWS6XcHFxUdtFAJsN4nGakSZa/p07d+Cjjz6CxWIB8/kcnj17VtvCtG4A4XbV+MhL4y7D6iumQpNbofSeCVotP6o36Tf0+OLcupXUh9p7i5zFdN4dOU3akrfYTTQhv1L5Z1PyMWaXa7KdLpxL9WNDfp9kS4Tsu9QYojQZuIk4rlV2cZroO+m9JT6J6bR6WuIU1jK0OK2UXqINgcfb4iJDvJ5M44GSfSjR4/FnPTSE0lJe9fgnOWWG8rf2J04o8r7KaZfQ+PHobs2mym3LEN+HvqN/x77TZDJ9L7VzTBZItqE2zqxxzRjtFtByQnHaWBkxeV9a9+6ir5Mir0rEdi243Rm7ZdBO0+5elYR/TCFozmjIOVutXt8xk2N0e4ytWL5UUMSMJ4vC9iosa1rtW4mGHHCaZrMZzGYzaLfb0G63YW9vDxaLBYzHY3j69Cn8p//0n+Af/sN/CL/3e78H4/EYJpMJ3L17Fw4ODuAP/uAP4MmTJ/Cnf/qn8PTp0zpfjXap/S2GQU778X6T7mSi71NA80B6Y0YTpkPDeDQaXQtaVtWrySy6ysvCmyUM6dRAttaekhFgHR+7qJR3EbmGdinnh4I7QqHJWEwj6ZCQntDGBG0Pr+G5K/DyvtZmtC0wmMLvwMN3qTRKbR0LgsdkZAq4TVQiTwS2nSWYtg29bwkQaTZRbIxo73N0aCr/4X3r0+l0zSbFiV1vfjG6LKDji67G1iZnQ+2ZeizZJgKiViB/4V3L/EQV2i7n5+dr92Lxu56btgFo/th3lAfu3bsHP/jBD2AymcB4PIb/83/+Dzx//hz6/T50Op16UYAW+KPP6K4UHviRZGJInu5CP28C3iCk9H0pOjiwP3EHi7SQItavFl/IS6PFp9e+R9r4ZE5qYNuiZ0roy1tf4WahlI2Ez7fV/5IMl3iTjifL+NHicHwSQAK1QThtlgmA0FhOtas98T7NPrXIMU0He+imbev1I2PtEauDlS4KyWacz+cwmUzqCVm8FsuTb4gujc+1/GNpaFpqH+bELWI6i+eVEpPOgeb/pCxIDPmmkszwxlX49zRvb7txPw1/SztZPTH/ED2YF40xWXia58+f8TbVdpFqYyDV3/PyJa8vylht8a+mZ6gesfBojn4IYVf8H49/khsj0nA7GbtFcCGeYljhO+t9XB6G40ZjSoArF7GA767kuWlw+tFg6/f719JOp1N48eJF/c3+/n59rB9iPp/XwanDw0Po9/twfHwMV1dXazsiUgILOTyzyX7idKKCxR0g0kTUavVqd+z5+Tl0u13Y39+vxwk1RGMBa+o0NDnGSjjCngDrLgWXb+EH8i46RNLR4CV4VnIO3jaesTiumwTvg5CjCJC+CAsne6hDI00+huiMtRnKby2gk2qIp/Jp6iSVpjtSnEFq0zWld7guTC1H0qnz+RxmsxlMp9O1ScDQEW5WoKyjQSVePi8jd8LpFre46ZDGd1NjImRHU+TKNa6LqK2eE4SLBf80OiQdxPP05JWjx25xCw9uCo/x8RFbhBqC5Q57er95k36AFJRv0t9IsW9524Qme615WsHlqTX/0m04n8/rxW94byylKWccaZNSpScZpPiXNCGklWe5bmQbCPU3lRXSrnbp7xBK89Wu+Sgo91D2aRPYobajk/6x+vGJzFgaqbzY9/zb1D7UbFle19T+3JU407YRiolvEmuTsbmFe1dWaHnskrBoGjQQlqtgQ8o0xUlNVc6lJ2B4sNAqbC15UmPgpk4yVdWrO/UWi0V9fxvFdDqF09PT+qiT2Wy2Nnnf7Xah1WrB5eUlrFYrODw8hF6vB91utw52IkJ8uok28QZ6JGPI27/tdhuWy+U1h4wGMkajESwWCxgOh2r5vO2sE6Mp7WmRxU0ErkL0WMbtLoynEFInUVLKsRiOIeS2qRSk47vEqO6yjiuND0O6sOlFCruCUoHjUnxK86O7cWkZHFLZUh/jc/zHA9LWQJE1gOKxDbyQFhPE0nr0UC5i44eOOU9dvLDauRK9/DfuxER7BtOkTpDw8gGur8rX2lFqs9K6bNu6kS5i4LwSanct+JcKK39KgR0evCjZpqXruSuwyLKYTNsE727CnqX1lfQb9QmseaXSgNAWn0gTGwDptuS25c8ttoOmxtAuQrOfcydjaV4I7lfF4m2l+8Grs5voN81u18r3xCxTaLH4ESXkdkyeLpdLmE6n9XUQUj7eSeYQPaH2t8SBQz59KAYWog0X6fJ0PHYbg9Vmp2VIbePxHyUbQOq3mE8Wg0abtZ9K+3ZetFqterMLgL6rNhZrCPGflUaLnWt574lRe+MW/O/Y3dOhvLaNbdgBMT6ivz1zC6FnVuzcztjQRM8uG3EhhAacVTDnBFetyg/fhRhWU7JN4yb3/yZAJwUBXq2mw8vjP/74Y/h3/+7fwe///u/D7//+78MXX3wBz58/h4cPH0K324V/+S//JXz88cfw7//9vy9GS44xI+WRmy4H3ECQylwsFvWkd6fTgbt378J4PIbLy8skektPPmmBmdQyd0mpv6m4afLOokMs34fev4l8J7VbyKDHCSiE1yC3ImUy3yqz0ZHAb0ITKp68JXpwh2On06nbrsmxxfuwqckfDz1U/iMNuCCL32u+CdDV0E2CHnscmziyBnksE9va5HZoXIcmxDeNqqrqhX3T6RQODg7g937v96CqKlgsFvD555/DL3/5yzpY+POf/xyq6tWCChxnVh8hdKpPTAZhGbQ8vAu21+vB6ekpLJdL6Pf78ODBA5hMJjAajeoTZNrtdr0YkfO/dDw1pZOOK6n9KP0psnQXsA19W6qN6DjkOrKEfyLlFQPnGXqFSUxPeAPQ0t90B4oVt773Ld525CxooBO6mj4pIWdjE4gxHRpDqnxEcBnMbXtsh6ZoyZ1gjtkoXnq0MnAScj6f10fnow9TYqFhCNS2SeVJS0zbq8dKxZutehv7WlogLNEXQ2jsWcH5z6OXQ8d7l2jX2F3aIaxWr49/1xZQNgWJv2Llx+pXgl5pEUOszNvYbRlsy9ZtfDK2lBN6k52BUnWPDaKQopHyCKXhgzvFCCkdgJDoSsmD0mRRaCnOepP5cNA6zOfzOviAODs7g7OzM/jwww/h6uoK5vM5jMdjuHPnDuzv78Nv/MZvQKfTqYNPeD8F5oM7Qz3KX0prMdJieYTS5qThvKWNl1AeuJoRA5l0RzFHk7wglWOFdTIlBW+SEZAi0zyOiUV2ljRavU4BfqPRqRmSfELobUUoABsLGvDFId4JHD7pK00eWoJPqbo4NOkktUtuAILqMcqz2l2glA6JRnwm8XjMwbfSK9GRgpAOxvy9x+OVGrua3LPIPHTcMWBFd66kyFmtLI/tLbVtaKIu9rwpG8EKDADiiSsffPABAACMx2N48eJF/bzdbsPFxQUsFgvo9XquoCpCa7/Qe4DX45AGcabTKUwmE7i4uKgXw7VaLej3+3WADY/Ao5NjXCZ5+097Z5WlXmhyvEloMj+FR0PjwCKLQvqH845ld5omd0N1lvSYxPu8HFq/GJ9Z6qhBkimxNpXyTuEvjy/hsXND+afkg++2aZNuu/zS2EZdctowNr61NADymJJ0Wci+DuXvTaPRqOmmHF1t9V94Wp4Pfx76Tnqn2QolbSepDa35e/qb2zT4z7J4MUUnaO8tdU2Vt6G01hiBRXfQdBYb3osUfkjVpZT/LHWyxGZC5Xnfxeye0HNuw+fSpsWfYvnljGfMy0JDqA2lZ9rYs47lpmGxKVPy3LQdYWlTD2/FvqfYuZ2xtwjD4qDFhFVKsCRECy27aZQcoJjXtoJdpWBtjx//+Mdwfn4Of+/v/T341re+JaYZj8fw5MkTODg4gKOjIzg4OIC9vT14+fJlcHJRgqevcoxnq1FmKR/zo3lKRrDmROCRiYvFAubzeZ0PHvEZq0eTyqdU/tqYeRPG0i3C4PcnWu8qR3CnS0KMj3Ac7eqdMjF4xgjuIOx2u7VM4cC7UPlxVhq0AHSIXm4zWL6zBKl4OZZnWln8b5ygC/FJKGgW+obaUZTOTchwLAMnllarVV3HlInrEragtzxpl0gMlPen0yk8fvwY5vM5LJdLePHiBQAAzGaz4ASHl06Ub7gAgi5So+nouOA29k0MsldVBYPBAKqqgqurK9jb24Nf//Vfh/Pzc/jpT3+6bfJuDLTJ0tI26y7wmDdYmwMaMKbykNolOTTwvtKCoHy8x+TvcrlMPtWCt2/oygBOC5ajpd8F/tkmtl3/bZffNDZRvybKaEp/e4LxOflxhGzhmPxGOwjTeiZFaFppkrH0pGnJPLSJ3lLgbYQ2bOoiVIvP5fHZN42YbZRLtzZhhu+keB/dqBID7zfpBKgS/G6JpWA66ehf+ndq3DXXfl2tVrUP16QPmuLjhnYT09+lFiRYgLwbo02iq+ld9aWxq/KpKWxsMraE8/m2IzRhpU2MSkaRR4hYy7ypE5vckQfwTQym8HXpSewQ3bReFxcX8PjxY/jqq6/g6OgIut0uDIdDaLfb8OLFi1phzWaz2uhAJz5V4WgK2xuA8EwalIRnMgGBARc+5rgxFssrZ4IaIbWfJ19r2pss129qwJwjFJjLkU8peVgQyvMm6pJcaJOX9B91WnBX2nQ6Ve+NK0WLxfGT+jPWjyX4Kiaj2u02dDodGA6H9TGlkkNu1fexSRCtTtTWoM9CiNXNY6Nok4NeG8ajN6juo6D8almoxL9BO2U6ncJoNKpPBOETo5yeGL9RPS3ZzBaUSF9C96eAtg+dKGq1WjAcDmGxWMD+/j70er2aTj5B3dTkvjUAPJ1O4erqCs7OzuDy8rKmBxezWBcCxPogNl6swbKbBolfPXayh9d5WZsOLHNZHaLdwvc8DdcJXn8nRHen06nz4cFOb3tZ0jdhs3n045s0xjYFKYZjQYz3LM9jMmRXkKIrJFsvlT95bMoiY2KwyCprnEqy+Wn60v1e0r6wxFKt72iamM9jycvLLyEfwRqDk9rW20YWPikprz3jYbUK7zDmupj7AjxtDNQPitGtjaPQN1bw9k6Ja2r55iLEL9I7K+9o8QtL+bG235auovxp8RFL+ZGhmMZNxib5PvbN7c7YGwqLMkxhtNzB+zYG0XcJvO3x7tjFYgFnZ2dwfn4Of/zHfwx/9Vd/VR/deHx8DJeXl2srtvEIQMwzp089hte2gpAhSIHi0BjDtsP71DD4pxnEUnBmW/BMvlqMmF3qRw2baG+P47uLbVZ6VV0oaIGI6RLcEbqJuyebAspWSx2oTAYAeO+99+DOnTvws5/97Nrd1NuCd6d002i1WrC/vw8HBwfwwQcfwNOnT+Hk5CSJZzyTth76PPo15NxrWCwWa8F4rPumdpZLOg6P88e7O8fj8dqEhlQ/5H3Uq6k8Ru+RBbh+j6K0+t1i12r0pNg/20Ks/Dt37sDf+Tt/B7766isAgPpuVpzkxLbz1CO3zrhrGfn5l7/8ZZ0vnYQ9Pz+H6XQK4/G4tnXxWy6z6CJEOn64rN52f20TKXVv2raJ+cXUbrdMpuPJFNJkJrWV0RbxtgnyX7/fh1arlSx7aH6r1Qr29/dhOBzWR3M/fvwYZrNZffS4BM329+jKbfn/b/M4LIUm2vBN6ZcUnuYLNULprBO+JcYW351vmTwPTUiFgvT0Hd1VGypXysvalh7EFqfk9HloEo/nL8ldz4kJJYD9SE9z2xVY+MWy0IjHHDTwxQ/YLjxNDFYbw5qfZZJ707sfrbySO5lN8ykxLkJ5SPaORYaXKDv0TSjWRdvlVo/7sQv12/hkbM5E4S1eocSEh8ewK7GqpCRCPCQF/iTaQoaQhl1I64UkxGezGYzHYwB4pXgwmHZ8fAzj8RguLi5gPp/DaDSqd191u936Wy+dMeNIShPqRx4IiZUdW9lGy5by5WV7AiOWFelaXWMGI6ct9Jw7NNY8Q/lTuiVjwMMnb7I+SDHiePuWpkEab1K6GEITqZifVedb9dq2An7bALYv8gMursEjUzudDgwGg7Vj0WOTBaltp8lQz0Riib7T+ERzRjCgjvei02+skOSp9g6fWfndYyPwvzU6MQ2dRJJoa9L2oNB0nFZujJ75fA4vXryA2WwGs9kMzs7OokeJNVlHHrik/4d4PiY7dw14ZDqdyNfshlDdaDrtm9R2kHa+rlarWm56A1YWOlKC7TfV5impP1LzkMabtT0l2afZ+CXsMFpOr9erTyPqdDrw8uVLGI1G0e+09yE9g3qP2+xNYRflFWKXads2moo7SH83VV4uYjZlKG0MHt3vLSeFFq+96UWufgjF6Lz2oiX2hL9Dk2cWHrZOFoa+i9kYIRot9pdGq5WGUDuUGCta3piXpKtT8tL6z2N/xnhCa9Om5F8s31L6PzemrcVvY7xlKZf7XiVi1bH4Mf9tGT88bWqMMPZtajuUQEyWbssOsMp4jqbb8nZn7BsKqyHnUTQ3NXgQg9eZt+a5K+2FO2Dpb47BYADf/e534cWLF/A3f/M3MJlMYDwew/HxMezt7cHe3h4sl0s4PT0VV4lpStVjaPL0TSMUMKyqKhq0i9G6XC7rHUCx1eXeSY1UlOZLbUKWvqdlvy2gE08WGUvbLtSeu4SQYyghNsat9S01qbctcGckZOij3F6tXt0Lure3B5PJBCaTSZ3u+PgYBoMBPHnyBBaLRSM7hb2TDZoskHYZ5UKbhLXwZwodubqq5LgOOTZ4IsY2EQpQAIC64jy2w/ry8hJ+/OMf19/g5Aa9V5mPsZw2jwXqaBl8Bwil5U0At++wzjftTqJUcF2tBQ35M+n3ruswXpdN02stzxogpAFtKmtCQf4UvqY6CXXebDaDu3fvwve+9z3Y39+H/f19+PM//3P4+c9/bs5X4yur3ZS6GGnbeFv9iJuGN0nPAZTntU23Dy1PWxxO7dlc+jztJekViQbrBLIFXr1rbZOciQcqw0OLgqyIpaWnfpSenCsdQ43l65mgC4HHSCl4vCFWx1C7WiffuL7L8VOl/EvllQIan7BMIJd477EfuH0v2X9ajFsrI9TmnvEjxQn5d9u01990NNmeW5uMfVMDFduAZ6Brg1nLlw/smxwEB9BX22iTcvybWL6bdhq9Y6eqKhiPx2vBs8lkAv1+H+7fv38tP7qLVgtqSgZGiTEdan+PsouB1sljPIfoLDlOQnXTyrG0ndaPse+tuCkBxyaRUnfJCcuVTx76QnzhSUPThgxH61jmbfEm8FVMTtCjmNFhxPoPh0M4Ojqqd8laZWCs76wTVzSwTfPhdoLFkZYmOELfeYMfuKOv04mbvB5d4uVBjb4mbeDBYAD9fh8GgwG0Wi148eJFfccqLb/p8WQNYsSCD/gOd8Ii/zcNi963BFti73bVzrYGozx5xdLwQJglz3a7vSYj5vM5XF1dwaefflrbsxcXFwDwWr4CyHoX+SsnGBrSV7vg+8baV/JptLGgoSkfgZch0RULnFnylb7Vyouhqirodruwt7e3po8on1SVfzEo9iM9NaPX60VtA6n/eazAUn6qvErxYW9RBpvqs1LllkLqREXOpJC3zSS73AJpPJdo75D947FXQmmt+VC5rslJT3uH/OtYfl5fhNqvoW88k3Ca3anpQ23Cz2qjWOxcK82etJ5xq6W1+reYVtL/Hr3I6ZFsIP6/VH6IxtBvWlYqr3pgiStqsPSZxxcI0Wflde+4D5Ur+Rc52GQcIVSuhYaQPI21gyetBU23UwqNtztj3yJYlJAngLqr4IHgEkq5BC0l02J6K2hdr66u4PLyEqbTaV3ewcEB3L17dy3vqqpgOp3Wu2tixhp/nyJ8tQCHFri3QmtbmlcuL9AABg2MbBObCrJbHahdDUhuE6Fg2DbAxxenJdXJ5XlUVbUmW6S8pTbgdzzedITqQydjq+rVDkBMf3BwAPfv3weAVxMQ7Xb72k7DVFj5MWYnhHiFOyTe+1MlWjVnqt1uw2AwqI/bl+ANEnkCcLw9UurJYf1+f38f7ty5Aw8ePIBOpwOXl5db3zGrIaaLaTt2u936Pk9vGbxfQm2ZIvusgZtt2qa7hhyHm6bHBSvtdru+Z/vs7Ax+9KMfwWw2g+l0CqenpwDwarEh8o/GE3Qy9m3rE0SOPYLfWgIupWQi9hPqylI2DILLHO9ikF6vBwcHB7U+igXHLSfr0G/x+pl+v79mM3iwTV63TAbfYjdx22dl+ZfHPnLhDYJLk61cnnjpkiZEYhNcVLbzq1hicakYHSFYYlIp8VI6KarFpnj+JSZGpTykqx1i2ER8wuNjeb632nPSQrwYL3jo4H4C7WfrIkCLfWWZiC0By/xCSC5aJ9ut8QXaninjw0qnNxbvRakY9bYQozsWe7GmtZS/q224E5Ox1k64RT48QUBuDFgVzqb6zSoQLROyVEmkKPdS6ZtEqO8nkwn8/Oc/rydo0eBdrVYwn8/rIzx4W2EaqRz6jhqeCNovMRnADQ4puE1/a3l5ZI1mzEu/JWFP0/FjF5swgErKUckBLBEsywmK3URgn/PgnWRg0L+bDkSlOA+p9HCep/zKJyL5GA+1w5vOO3wMWnQ3ymvcGZOi76161Nr+VK9SnUFp04IM3j5erV4vgMEg9HQ6hel0CgAAd+/ehd/6rd+Cp0+fwldffVXvOLbIOC2IJTnQlMc97RRCyDbh3+LRmACvAv/7+/viMVzaBJT0jj/3QtL3qZPCtJ9xQiPGmyV0l5Qft3H4s1xYgopNgO44Xi6XMB6PYbFYwGKxgNlsVtPkmQynbSa157ZkOpeTIZ6XxiG2g/aOB5A9cnkT0GS71weU8k2hQ+KT1DGl2Vop+ovSoaXledPTLDqdDhwcHECv17NXgNBtCbxSoN7jd4fHAreIUFm54zXkc2nPd2nM3OI6Qnp3kz5HE5D8l00hNAYpTdx31GwiKst5bEbyO6RyJT0XkwmajvHE3eh3tEzJDqMI1V9LFyvbY5NrzzyTbpb8pPdNjKNYe5fIO1Qm/V9DLB4oxSXxXUweUV0co5eCx0wlv9Lrt1t8R608b3yA5xvif15PLX2s/ahc0fzwkM0uXR3D0+FVN5gOFyhIvKDZ+bwMni7FhuZlWOzPkr6Uh16PTZeaDtOmyExLLNFqr1jTWLETk7EaSgWBdhkW48UbtCgxELmi9RjSVoVZ2pi1OJhWwzKWX4yGXeTVkOKazWbw+PHj+jcGqfE4Y3rUFeWH0B2ANEiH3297TMcUOXVmtMCHVA+LA6Sl1/LVxtEmxw2nx9JfsT4O1fFNgeYkW76h0PrcwmOlESrTqo+0oK9URgzSQpA3FdTpkxw27nhYg8deePWkJueqqjJPxFmD4Nw5xiMaZ7MZzGYzWK1WcHBwAAcHBzCbzeDLL79Udwx5nabQOOf8niJTpbx4Hpq+6Ha7MBgM6p2CTYCX7dEpCEs70PyRz7FeIbszR+dovLBN2dO0/McxhO26XC5hOp3W9xCHTkuxBlU5tmUDxAIcmvzieWh5A8Ca/Sy9z9GDTcKj5yV4AxramC1dZiyIWMofBFjfRdbpdGBvby94QkOpQNpqtar1nhRg2oYNGUOsjXODmbdoFpI8C9lDuwLrpI40qWHxZ7yyhn8fw2q1WjsFQPpWy4vrJk+Zoec5E2WW9Fxva/FG2jZSftw/5Wmpn8LlqEVXxGKosTspNUgynb/XaJN4xGLDazEKr+1uhcUu0/KNlYd0p96jHvLDY2WWGPPWtB7bMjamLdB4XbKBaVoLv2n+utfOlIAL2DGt93oSqQxrHMYqCzX7jeYRk01WeOsem+9pGinlenRl03bLTk/Gvg1IMVhKGzlNoZRT+TbB42zmtG9VVWurs1erVb2KmoIqUF7earWq756jR2F1Oh2oqgpGo9HaiiRqdFoNOE6zNkGaA8yPOzMxWiyBg6rS736y9rXmTEj5YfqmYHUeb8d9uC3epnaytAP+jfwVm9x609vNMoZnsxlMJhPodrtwcHAA3/72t+Hi4gI+++yzImWXbGMq/yU5bu3TGC/R57PZrJab5+fn8Fd/9Vewt7cHx8fHMB6PodvtivzlCSwAwLUdbxIWiwV0u1348MMPoaoquLy8hKurKzg5OakXPlkQc+hC74+Pj6Hdbtf1bgKlxqYnj+VyWdsf8/ncPOFsoZU70zxwkDs5xfPnR+Z6eXEXA91WYGAMj1uXFmtY2h3TzOdzWK1W0G63YTKZwJdfflkHWBaLRW2n3mJ3YOFfelc08gwuGt10QIgufLLQPp/P4fLyEubzOUwmE5hMJgDwWrZYg7r0G17nqqpgPp/DaDSqFyQ1hablze34vNnYVX3k4asmedCix0oE8S3fozxBGyQkN6RYkKUsydbR8swFzV+bgKS0cfD2SKEtNmHc9Pig9ZYm3eliO0+e2xzXJXheykNqA83etLTXpmM8kg3SlO5PkZ/eCUdaF+RdLR4klReauMR0aD92Op3gwmyLfRfbHJAzbkpMNt8ijG23342ajA0p1KZW5rztsLaVZTWVtCrGW05TiBlrm4RnQjYnX2qcYVBBMhw1oHLBY7j4ZCxXTlYjWHpXcnWRBZZ24O3F+Rzfh/qTvivd55xuy+ofCyxtI42n0ATbmwxPgE37timaELljJ5afFDTE5ymTrVKb3oQJbs+EY+h5VVUwm81gPB5Du92GXq8Hd+7cUXdgeWhL5U/te/obJ85CeWlylae18AgGG2azGTx79gyOjo6g3+/DYrEosrM6FkyjbVJVFRwdHdW/cdcS5sPbsqS8Xq1e7RTudrsqj5SSy1rfWPP36npM5wk8SHrZSl8pmUyDATl5xvR8KvgYpDtj8W5qPolkzU8CDYzg5Jr0naRrtDbAfl4sFnB5eVmnT71Hk+efKmtpu+2ivgrR1aSejY1BzYfk/R2jL1S/2Pcxmz5Uxmr1egHrarW6tusqpPtDPM7pXywWMJ1Ood1uJ9Mp/S3J3Vg7Svmk4m3yG24yYvZbDE348qF4Qsg/t+Rdmj4vXamxNMkXk+RJKE9Oq2b7WemM2X85bW7VLVVV1TZILN4R8u+1b638HSrPCy0v72k5Vhs+1X+J9VGuXtHysI45y1jQvg0hx4YO8VYO3SF4yrHwcWjcxGxRDZZ64QJQTc5xmSWlQxq9Pq4HKX206ZhYSPZzmpooK5ZWk9VajGmTuFGTsbuOXXWsLbDQnhOsvSntctPozQEGAnBV0GAwAIB15Yfn5iN439N7xSiqqoK9vT1YLpdwdXUVFHbeti4pzJsWuBbj0UIHXYFvDViljNcQSo6Nt2FClju2Wruhw6cd5Z2C0n2vQXLgtSA3TsTxY0W1tCEj/G0CBm3Rce50OnB0dASff/45fPHFF/Brv/ZrcHh4WKfF/62TJJtGE3YS5kd3S6F+wyMhZ7NZ8h2lHjro5Bo6eTh5ZQHKAX7/LEDaeJ7NZjAajeDs7Ay63e61CYBNjDGqk0oHBQBe2SmaTJHGQSldptlG9OgzOulGZdpqtYJutwu9Xg+m0+naJM0uYDQa1bSfnp7CH/3RH9Xj6vPPPwcAqCdoYwE9qZ3omMUd24PBAPb39+Hs7AwuLy+LtQW/D8oaOKF8y+/dpHqO9y2HtItz1yCN0U36tKEJBj5upPSW/Gke3LeRyrMGSLVgaCr/Uv1Bdy9Z6zyZTOpduABQ3yNP2846oczr4Qk4YtqcQPMtbrFpbGISNpZnzsQOT091rfQc31E/lILbMyGE5GEurDFK+ttafrvdhn6/X/8ejUa1TRaCpCP5blptkoe+L81ToQms2MSjNf9SfWuxM7ST63LbLWSLeWwNKa5H/y5hF0jY5RgJ2rxa3TnfS+1N247bHpZJXgmhhZjULtTu993lNt80bmJb7KKt+cZMxlpXY9DnuR3SpNGxaZSaYAHwT9Z6HN9ceGiU0nI6NSNiW5O6MaNGMv54oJD2R2gM8cA/wLqSQyWMAYXQcS9S/9M21Port515PWJpPOCBj1AZ1vwshqjXSLbQFuN5j7EqBfssk5Y3HTFepe2aEwRN+a50+1vkUMwp1Iz0TQaIS8MirzRZSI8Pa7Va9XGHeBwhTujwsmJI0YmhMrzyxFKO9I01WEV5bT6fw3g8htlsdi2fpmwg7kxKDqqmc1MCb7T8qqrqydjpdCrKl1igvfRYi+nz1PKs/RiTNTnAYKYlb+SD0G721AmTEqD3wi4WC3j58mVNz3g8XnuHtMYQohHbg+9alfjUwyfUpqX5aXIqxbaJ5evto1I+qhepdY8htR6lbBGeF++PUDkhu5varzFaq+rVjtXRaASz2Qza7Xath6SgpBaAlPKVaOYLgEJ0WvtHk51evgn5gNQf9eZxi3VovLuLbbcJmjTbMJY+xV6VnpeS56l0SbEenk9s7OXIDy0fT/zWm4aXwctCG4zaYly+W/O2wMor1ncpZQFc12Hat5Ku1GS0Nw5koZ+XJcWLcscV17+UTv7b4z+E5I2F5hLyIscP99Cg2dG5vCv9r5XlHYearONxSSk+po0PKS/+7S4jV5bzZ5v2YSRIYzmmfzaNN2Yydhu4CQNrk+BK1hp4pn/vwqDwYNd4ICV4S1eGYTAMwVfx4zvaT4vFAhaLBQwGg3oXEs1/b28PFosFXF1dJdHoNYi9x/6lGN8WxJSw5W4WitSx0sS48rRTrB2aDv7fBGCdrYFtb4BYcjYociakuLznd7eFjDK+SKPb7dZHYWp04rucI3l3HXTM0joul8v6PkVcyf7FF1/A8+fPYblc1jvVSgWxd9XITpUZZ2dncHJyUo+HEjzEgxQaWq0WDIdDqKoKxuNxvVNPKx/1At/NIE2k4v94LCWm6Xa7cHp6CmdnZ/DgwQPo9/trO0hD/ZuDXXR2YpDsV7RtUI7xe4/5t7ngu9fw/xC/0+Ouuf12i1u8DZDGSGqAn0+KarLS62O0Wi04Pz+HH/3oRzCfz2E2m8F8Pq/vSMZ0VP7wE3EA1newcbosk5gx5ATjboKcf5vQlH5/k8B1u/YeIO5HlYR1N2pIRnG6qZ3AUUJ2SDaRdXFFDKF6SmmtqKoKBoOBuoguFuugbRuqJ5fjKN8t9OUgJJtTebmUjxDLT5ow89BM08buQOZ9gTpby2/bCNkjTcl4T76WWF/sm9A9rpb8OPgiz16vF60T978lcBndlH+4S7jJdsQu0n7jJmNzmNqiyEtOxmwi320gJGS0IDJNa5mc3Ybw0iaTOTYxaWyhoUT+vAxutKNBIt3fFQsSdrvd+jfdiaTVIdSudPyEAi+hNBJ4cFsrOxeWiTD+u6S8CI1Z7kQ0zduxlWQ83U2Vmx4eBPC3e25/5QQXtUCnJSDKv+Hf8YncN9GQlXib96fWP/x+78ViUctXPDaeOpLoaDYpV6RAieaMpdpCFl6Q5DmWie3W7/frYHhJu0ziYVruavXquNdutwv9fh+GwyEcHBys3cGpTbbyOobA2wlpOD8/r/PudDprxzFJfWYZdzG9touyW7NbrPooBqy3ZTzgwhOLw2+hqwlZiYsGLi8v63rNZjN3YCbG101C6pOQrYlprEHfpvpg1ye5cm0X6+8QQnot5BdYbHKvTSTpc1w8hgtlxuMxzOdz8eh6jc5QsJr+r40xiS7+twVWP0EbO5vWCbs6bm6xeb+uicmKmE29K/zHJwvo89h3AHG7UJJDofykyQsPbSEarHE8AKivzaHl4wI8y0SpV0+E5LjWHtYJLK/9qsXuYs83NW6bin8B6AuuPPmljG0Pv8T0K/0/h5ZQ/hb/05JWs489Mjlku/N8LDIKbRT8Ta8h0fpJs69CstUrxzi9UjnchtuWnpH6bNM+i1aOV6dsGzduMrZpNKVodjEoVRpvUh03bXjsClar9eOt8K4tfjcYBhY0VFUF+/v7dSAP76zLCcbT73ZlksZiNFvr7AkINzWZESqzBCz070K/lkIJY5kHtkoHe5Evcu7TDAU7Q32NzvB0OhXp2vVg9CaBbcDvLqTAibZWq7V2SsF0OjX3b0xOeIId2vexO4NjZdPytXRV9Xoh0WKxgMlkAnfu3IEPPvgAnj17Bk+fPnWXbwXd1bparerJz7/8y7+Eu3fvwve//33o9/swGAzgyZMn8NVXX0G32613RkqT5x7ZT79BWn7xi19Aq9WCXq8Hw+Gw6J2cXmgOtTSZ3kTZORMSGqie1xx+jtlstjaxuSt2DaKqXu0aWS6X8Nlnn9XPUb54Alm8zfE3PRoQbUwpEJrbT9I1GdrVGVR+IF00Hc+D6lELDVKZu4RQXZri0RzfIJQngGxDSbrEUy9pXNPvka8nkwm0Wi0YDAawWCzqI75pekwbCiBZA7kSj4boDD3Tvo+VH7IHPXnEAp63uIUHIfmy6z6pJB/oGNFkB9VfEnImHfG3dGJaTnk8f4pSPiGeVMN3300mExiNRmb6YhNWMRtQ+iYHWj6hSaZtg/OwtS1KxLM0W5P7Iil2LgBcsyFzYTlJL2ZHNdH/lj7z8l+OPSjZYiHgqWP4bSieK/0NYLOzUrFrY/YWZfFGT8ZqRgoPmNwyeTp2OaAQwqb6Pje4sOn2lQLAPPhPDSY0NHAyZzKZQLfbXZvA7fV6ajk0PytiK59CClL7jtdPyytEd+oEKaeDlxUK0MToTAnySsH/0uOEBt6ld5yWmw7aphp/eusaMxY9Mg7Hsvc7LS/Lt1R28OAbd15pWu4gpbbfTUev16sXu+DuWFzVjZNwoSAvh9SmHLEJwSacaKuMs3yHbXFwcACtVgvOzs5gPB7Xq+NTJpZpvjGgwzcej2E6ndZ9RvOyjldOA3/P661NPDXpQPJ8Y0GOkF5oEnwCIZRO6qdcenEBBT1yOAZMd3h4WPfvYrGo7wb2BEdCdoJVH5SSv5xvc9q2hJ2/rcDVpuDxUVIDlE2h9ORtrKyUb5A+3G3Fx5p3XIXGREgvlOizmO7gcidko+baELe4GdDsMC0dT9tE+Ry59qjHZ02xobUJPY9P77FXQnGPEK0p+npT/ptmJ3O+k2z63NhOLI1kA+P7WF9INEp84u3z2PPctKHv0X/VYNVzPF2sT0KxNo1OL30xhGKbUlpKS6h+qfG/GA3S9034SN78+Hjg9cKYNcI6WW4dj1Y/3qKXvLorRV6l2re0vKZ996Zk0S7EnN/oydhb3CIXm3T2dxHSLiwqgDudTh1gnk6nMJ1O4ejoCKqqgqurq3pnrQSpbUsFz7x9xieCmiqHliflVwLeelgQCwClOGC7FNRrEh7D3OrAWdrL26bU+cntD26Q02CC1B50J6HmVHIZRPMtQfNNw97eHgwGg3pS7/z8/No91J1OR5W/NwHWwJYlLcW9e/fga1/7GvzkJz+By8vLejIsdXe4RxfM53M4PT2F+XwOo9Fo7Qh/S9AEIY2NTdsrqc7XJiZcrW2BafhpH3x3M09fygkGeHWlQ6/XMx2Ph2XM53NotVpw79496Ha7MJ/P4erqCr766itotVrQ6XSiwSKpXtuYDN91vMntcVP9m9RgYWpZnvwlfwLlPL+3LMV2ti62iNGG8E5GaT6G5Y69FB21yb6+RTMI9dmm+tPjL0jB+xw6pQlRj32ivUvJQxq/KTGTTY/Dpsuj+Uu76ayT0hKwvy2TniXteI9PsQuwTmJZ01rzTp08zynTUl5sgrVk33oWiMSQW28pPxr3iX1viR2gTZZq2yF43CUX3sn8TfpsWt/skk12E33YmxulcyA2OUEFbBMTGW8brAaMJY9tDCjOA03xRCiYV2LSJgeaYajRzO+gA4B6ZxYGut955x0YjUZwfn6+ljfNP1cpauloPWJGLz12LmfSVFshxukKfSeV62mj3EC51u+eSXTpXYoxe1NlssTfVp2UA6ksHnxvok1DvLBavVqNaDGmeR5avlr9bio0/dlut6HVatX3zT148AAePHgAn3/+OVxdXdXHIE4mE6iqqj4CutPpwHw+b9Rgtk5W0eexiVRJxnj7GPmNOku9Xg8GgwHs7e3Be++9B4PBAJ49ewbT6XTtnt0chJy1+XwOT548gU6ns3aUNAe9+xd3PVI54m0LnFScTCZ1u2A5iBT+0L6J2dNehzOHLj7RqNkAVfV6B3EqTTFbRsoXd7ZrgV9uV1VVJd45WQrSJEu/34fVanVtwUypslB2LZdLmE6na4ttSvNHaDIK+aPb7cLBwQFcXl7WR8tKdiH+xtMbpPx3GdIYtcpoK1JtVo+dGSqXj3tpooU/twTNEbTvrXTFbGWL78HpbWJcxp5JQHpCR0Ba80mloQnkTMa8iUiJ0zQ16WHJM7efmp7YskwgxPwrTQ6UmlCJ2TWUBi5/tXz4316f38pTmG+v16vtKNxMgHRrdpVkN2q6Kka/1U5IjZl4ULKNPflo/CuNU2xrjCmG6PK2k8aHoXT0Wai8WNzMCotdUqoM6blHnnhtJ2s6r82Hf1vGmhQblvJEm8bSr7wd6OKO0vZ1ie9LlN20n5b73S77ZRuZjG0yCFgClsmCXaZ/11HCiS81iDgvpubv+c5jWIYMlFi6UsY25iVN3PAjFfEdBiPoziJ83m636wD4ycnJ2mRsiI6UQK41gBFTzKvVqj66MqTQLbJN+zbUpx7Dnr6zyDAtbYynQ8YazSNlrFrGkxQwu2lyuSmjJVamxEOh/pQM6hD/aPlwxBY6IDz0Uj5oInBfCpocj/Ewvsd7GtEZuHfvHnzwwQfw8uVLmM1mMBwOYTab1ffvouxFOWaFJlu1OqU4FCnBu5DOC5WLgRaA123Y7/dhOBzCw4cP4fDwEF6+fAlXV1fQ7/fX9FwKJHlPy5/P5/D06VPY39+H+/fvq/lgv9GgUayuFpqQP/j9lTmreiXZINXf49RbdLmHNg0SbVJAsURZGiS7KhRUpWNaopHbLSng47rX69XBylDQ1wvMA49Yx8UC9F3JoAUiFKRZrV5Nxu7v78N0Ol2755OXry1m4PYQrVMpPdWkDbRJPeopK0V30G+5rOJy1ev7W2yPUD+FZKI1mEjLsdCslafVPSWIKtkGXFZxei22R2odS6EJWXRTUCKWE0KTMpHyXozPQ76Gt1wNkq7wIBQz8fgV/G8tbykdTW/5JjamJV2a4mdKcT6aT7fbre+5xcVf9K56qT1Csi1UJwsvhWSKty9KfbtpcPtIg9V2ssZILW1hib3FyrbCyy8xhNJ66s7Ho6a7S9uNpeOJVv2t2V7S2JcmWqVyY7LQ0oalx663fSXZuovw1ssSX2wSG5mM3YXO2gUabrF93EQ+2AWaqbG8Wq3WJlXwPa5am8/nsFwua2OXAoO+VsPCEhTNdWJKTQyEvpHS0za0BDdLKwVOl6ZkQwY99rnFObEEVj1Byl0YF1ZojpnUp57AFEdojGwyuOqF54hklCvcWN51fiht7H388cfw+PFj+NrXvgYfffQRfOtb34KzszP4wz/8QxiPx7BYLEQZvOuQnBavMyyl6XQ6cHl5CR9//DE8fPgQ3n33Xej3+3BwcFC3U+rOWM1RDWEymcDz589hsVhAp9MxyQYLUr4LBa5KoeQEnrdcgHR9YWmLUECmyfq22+16d/d4PIaTkxN4+vRprZsB5LuQkCZ+NDMH1esYrMSJ412Xt02B7pym9ux8Pl+zU6ldJ/FCiXHW9ETsNie+NLuotM633k2XitJtmJoftlcOz3l1M/8WwO5D7bK9eovdhZUfPZOVVl7V/DlvED4U88CFWJb75bls47YA1e2xSTBOq0a3lL/0ToJVnsQmWWKYzWbiAjgpv9jEiNdnsMRK3jaE2gN5E/l+G+23jf6KxYE4TU3YaNax6JG5TUxUe9N44F2Ewb9Bmry2/62c2A1syvd5K44p5kgNcKV+e4ubCc15LBWsLL2SKDRpViovzE9aQUh38NBjGfluuHa7vXYXLW9PqV208ScFsCV6LZD6NWTweAJWGs+k9L1l1VSorFgaT3vRyeTYuLA6t7F83gRZHJtIlH7T4yGlNtImBCxBh5SJkpTJYk6blJeUn5b2pk3IlsTz58/h5cuX8O1vfxvee+89+K3f+i14/vw5/Pf//t9hPp+v7TBrAimLLzx5S85oqCxLYGo6ncJoNILBYABHR0fQ7/eh2+26ygrR7KETFy3Ro7e4A2aV0bStaRmePijVXzQ/riNzxmiObg+VHQpCWumV5FcpPRUKClZVBQcHB7C/vw/dbhdGo5FKU4hmiV8oL8UmFj31iNHAv9F0Q0r5dPGYVqb2rcTP9L106kMsoLLL+qqEbZrKIzF5rNkDqfou1xej44RCaw8u4zXbjf4t8VJsIoHTFvIRrf6JxRez+G6hPHc1CBlqp10ey01j1/uNIxRjiIH3tdUOpr9D/pbFjrXqGMsYtdab6zYrQjLKIhNyoPElvbpEeh/jZypTrYvRpfxi/eZtg5skgyyxKim9lsYylnPtE/rdJmSd5hdK9KT4evy3JybD4ZUnobJj6UvYprx8nrdUn1C5ofy9p05Z5Qnmn4KUNkyNMXrhoe2m2BwxvDWTsRaHAAWatJLcU04TjNmkkk3NnwdrbvH2gDsEGhaLBTx9+hTa7Tb0+31ot9v10Zqnp6fRSSjruxBS+RPv6LMcQWEpJzZWpCC6twwvNIfOGshdrV4dTY1BTn68p9VJfNtB+13jgdVqVR/5jZhOp9EjVflxpPR5Vb1eHIH9SHme3o9Rkvc8eUmG6dvIP3icVqfTgX6/D6PRKGqr4PjEfrTIIPzOA/5dU/3Dd/vxY81i8gb/n06ncHl5WR9b3PT9m7R8rjctNikeOU3vjvU4pVIZnU7n2uSap983EYDlwUOr3LCk6/V60Ol0YDgcQlVVcHp6unYv7yadPLwHGhELtNJneLwv/W7X4Al04wIFLUiSgzt37sD9+/fh9PQUrq6u6hMEQsH1mzJRVAIl6hbSAZqe8ASfculC2YA60Rso4zYale3eOliDxpZ8QnZjilyQFtzGJk+QBmsMRRpruyrDer0eVFVV21P0+oNdpblp7HJ/lQAf5yE7MRYP8d5FT+2dqnp1sgvXi1ZatKPYtf7z+GZSvjF6eFr+PmVCKfZcypP7t6HveRmdTqfOw0ID78832Y5IgcYDUnvl6M1tyWwrX3nSbxueMdu0b8ntuNTxhWVrd8OGTnGz8p8n1oppbgI/5OJNtydCeGsmY0PgCjJHUTbBSE0zZ8zBihk9mxg8lj6JrRyK5W/JJwfbMgJCgr9UgEkKsmBgbTKZQKfTqe8v7PV6puMzpT4PGfRW2nIQy4uPlyYmKSwKKzamMU0o0GsxDLX60nys5cbof9OclxAv8TGLBhzVVTQP/CaFv6ju8xqJnB6eb6jPNEfeM8EkpX1Tg+bYP51Opw7M0CBLt9uFbrdbv6M8g2loXpIusMiEEjrEY2OF+ljLNzYWVqtXk9QYXIsFpzwIBaTwf+vYonnR/g6VY4XUbzE7qGT7aGVZgmkWnpN0E+UPvMeeLm7xQOJhT7CNpvHIXalMzxjR8gzR7NENpR1qHoRL1XGr1et7YMfjMUwmk2t5Ut5cLpcwm83UYKsUxKX/pLRUBuyafrLITP73LuhaC0+kBM1C8JYnPdd8G208W5Ez/jz9SWXGJvznEA2bKAMDsbs2bjcFzcaPpbFiE+1qjSHFJoBKy2+LrUD1Sogumt6KWIyP06rxgrf/Y7agVmZO/IPn67G9aPuiPR6z91PwJsoYzc/P8QM935XWEx4ZYClbi+lQxHjV20bbst9S4kU87mWJLfG/Q2k1+Rqiu5TdYyl3F2xtDqu/EPvG01/edBY0bUNacDsZ+/8HVfZacDo3312Bh6YStO9iG9zCB0+AFIE7DujE63Q6rY/QDOWHYxDvNLOutPYoaY1uSxmxwGXJgHWTYyc0+WIJznH6cNVYbLfm2wpucIccEhrswjGAweFerwfdbvfa/UGYj7TbQzIk+TM8Yhx3OmMabfw1zZuUTk4DbcO3Xb+022342te+BgcHB/Dee+8BAMDp6SkAvOKFXq8HvV4PRqNRvQOaw2Lwp7R1E4FaafKElhEbCxr4Pd5W8DKlSZnY9wg6kR4K9sTAy7foUBpwpv/4DgJrm0p9z+UapQ3L9oxtPoHG645ltVot6HQ69WkCjx49gvfeew8eP34Ml5eXrrrwZ9IuMqQtFAxqalJOCuzQdxKdPD3+Te9Ws9Dq9S1o22Ef8WssOK2p8r7X68Hh4SFcXFxAt9uteRt1HZUZo9FIPH2A8/RsNoNutwsHBwf195PJBObz+bW7qPn3NxGWiUYP0M6n15tofVzCJ6fl0v/5315otKXoP2miVgrMeiYPvDQgqA+WQ0Nq+Z68m0CI56iPuktB0l1Aadldgh5EbDygjkR7ZLFYiGOS55VLmyUvukBImkyk+l3bEVuKXg7Lkb0hXzdko1r6zyKLeNtY6cTv6O7kFF/oVk68RmzyrYmyLGO/KWg8FUob45dNxvI5Sst4SU6hHJbKlkBPusmpc4mdttqmoxBdnvu7b/Hm4I2ejNUEn2b48CCQloYjNGh2cUBtmqZdbIMQrMG/0uWl5htyFFPTptCiGTt4tOJsNlsLwnY6nWt3d2jQxqU2hnMCQxKobOAOj+ZchPKLlUXTYH1C/cnfW+RUTD42iZTg0E2TIxJ4P3l4lTuRGAQCgOgqXS0vy7McfrD0mVWnarRwXnoT+MQCbAvc4YlH2eLpA3t7e3UgSXNoNFCZE3OYPfyhOVsSrH3pdVyq6tVxc3i/Jk4E8DyaCGBZd9ZwmZ86CWb5nuozazta9E2MNunbkA1OeS2kc63ldzodGAwGcOfOHeh0OvD8+fN6HMXqEpqQSpU/3MbAZ/R//Jv+G4/H0Gq1YDabwXQ6vfYd5luKv5uUr03nTYPssfrj5CBtO6lfKJ9KvKHZqm9CYDYUWI/50hwxW1dKH6LLkwellfooMdsiNxBK28Y7gWGFZ0x5gsWlyy6BXP8vlO9gMIBOpwOz2QxmsxlMJpO3wtbMDazHnnn43jverHyQYsNK9k9I1ln4MiRjaJ0ku8Brw/HvrJDK1N7zZ5aYSSlI/aPZQbxsqy2Z6vs0Ic9T6doUcmgK+YtNyHoObs9446gWGiXd5YnnNBFHs/rp0t/ecmMyW3ofs5889IR0TciusPKClq/0P09X2s5o0uez6LgclBzvu2S/7eRkbJMBVatjeIubgbcp+L5NpI6b1WpVO6/j8bh+tre3B3fu3IHz83N1l6yUFwa0Y4hN3HgEOg3I4fcYzEvdAWoxbCzp8ZvccUDbK9WwCzmS23YOdkVOSDxsbW+cfMWdjb1eb+2eXlzwgOXQ/OkzyQitqgp6vR6sVvIu9F04no0GJTw82rQ9sY2AIzXeLy4u4OzsDMbjcT0Zs7+/D9/61rfg2bNn8OWXX9aBRI8c19pYWrkpBTOszpf2PMSvPL31BAXc8X11dQWXl5f1AoZ2uw2dTidJv3nh5V/+bQ4o72Bb4N+8Pz3ji+ugEnTSv6n+LXk/aqvVgu9973uwXC7h008/hdFoBN1ut15AhihVLw28/ejdyLwf6K7RxWIBX375JfR6PVgul3B1dVWnsy50u8Xbgyb1VYqtl0oPt8elYD+VG7Q8DzxBeUvedKKX5k/bYVt2Fi/Xej+l9C1+bznKc9eDa9g377//Puzt7cHl5SWcn5/D+fn51m3iW1yHJBc0eCZJYryV6ofHaKiq14uHaN5Ut1snqEoH+L1Beo0ua9ulynLJf6Xt6T1umPoaWszDi12IT2wS1kUA3A6Xdht6bQ6JllCa0n0Ti/9ZJvJ2CaV1eEhOUX+TP5PSW8vEMR3jS6kcjV+4jLbGXfjvbduGt7Ahx7/aycnYHIETYtaUiY5YnvT9rgrKNwWSQJKEdmj1Sqk+yhGOu8gvuROX1ok8VJp4VLG0IymGkHKiz60Tg7kBIQ5uJEg0hPJMVbi5ilpqHz7WtIm8GP9Y21ga2yUMEU//Wh1b6Rup7UJBQXyuTXbGysagPTooeFwxl4uhftLSa3XcJlLHaVPYRpvgJAzto+l0Cj/5yU+gqir4zd/8TXjx4gX84he/qPnCOna8E6HWsUGD0JYAtzQZ5ymXf8PlCjpeGIThx5SWBg++e4KF9JhYAFjrUy5jed4p+lXrJypH6N9WeAJtSAf+T8sM0c1/82Pz6ARDu92GbrcLe3t7pnbyOtIpdg2lnT4PjTvsZz7J4w1Ex8b8JgIBKWPdA9wRj0dVA8h2iiUohry0XC5hOBzCu+++W+fx5MmT+iQYLvssvNwUvONV4xFJvuboQu0+7JJBKKvssOoo/q32jbZ41GPvhXwXiS6LbxJ6XlUVDAYDAIB6EW0Kz2rHllr6NccGLTG+sA1RTtCrO7BPtzGGN4Vt2vsp7VqCXuxzj4yWxr8UD5HGQSg+wGnRbBTN5pD8uhjdtFzpXWy8ctsxRK+3j0P964nhpugqr+0nlZuav5XWN0UWhezgkvaAVnZMR1r0ktc/TaHHWp5FBljy8ZQdkmtSOsmf5HxgkaMe+yBEr7ddUuwNCx/F5L2FtlxYaLjFK+S0y05OxpZCTLBisCb0Paa9xS3edngETczYmEwm9TFPJQO6NF3IAN/lsZ0aSODBvk1BckK1dCV56CaA9on0DPUPOtuhtpTaAgNENIgstRu+k/QdOvmeY2x3Cbs8lpsA7tqj9R2Px/Bf/+t/hffffx/++T//5/DJJ5/Af/yP/xF6vZ45Xy0Aldu+m3CiKWITWSHk7iTEemr15WPN4rTP53MAgLVAMO56jE0ic2c3pw+1/D150gms0M6OkjRSR59Oxvb7fdjf34fDw0NYLpfq/T6pZXM9nDLB0xQsuhXbLWV1t5aXRIf0zDNR5cF4PIaTkxO4urqqTxHQJgLxnQQ8mWI+n8NsNoPj42P49V//9Vo24+65drtdHyFNA9W7oms1OSUFxxAlAnicH0I7wXlZ0pgqZSd66hKbhEVYZYD2TehZ6HvatxY9Q79tt9twfHwMi8UCLi4uoKoq6HQ619LGyufy4ibZ89JuxFtcx5vgpyH9eNWHF7E4o+U73ob05BJpkjMUuLfqGUmGpfYltxVovpo8S5WH3sku6+SQ5b3H5pXalX9L++ht8WE1aDwd8plKtJlVhpXsH40npbGdaw+XlM9N8GjMjrOOOYs9aF004fVtY2Wm9sFN1623sOGNnoxNUZiIlOBhacfwFjJifWMJTvK8UsqPlZWSb2pgA0A3UqzKh6eNpQkZCFIboaHOA8QWaJNZUjop/9BEbCjwEWtTnAjTAssWwzHET7SuPNDf1BGEsbpzmmN8JuVjHUOS87lrDgu/f06rM8Crewrb7TYMh0NYLpf1vZUAebLEMpkaCoohD4ec8021u0dexb67KfAGtFarVR3of/LkCZydnUG324V2uw2np6drfIXpubzQeABgfUdLLFATGrv0GFxMZ73b2NoeqTqdTmTmOkpeO1FrW4tuxbTaMZJWO5TqFpzYDZWp5WF9ToPznuDfavX6aHaeXmqvXJtMc5w9ARtPOm/gD7/D/j87O6vHF955S9sqZqdtU65LaJIeb4AlhtRJs12zYayQZBQf1yGejo2N2FgIpaN0Ub4OtbUkP/h33O729p00oSLJ6BSdGPMnrEAdsFqt4Ojo6NoVGNYyqGwCeK3rNdvT26ZN2nicLl5Wt9uFfr8Pk8nk2oTdJuXoLsATa9C+QVh4IEXvWmIcIf0Y0xVUTuT2fYrPE/rGYrOHZIe1Ppb2Cfmd/HmofA9tnrRWvvP6Z6E8c3yONwWxPtL4pwRvWmmJ9VFuH0r8JcU6c/Omv1N8pVz95ukzy9i1yHbre26PWcZmzIbR/PoY/bwMqz5rYkxoZTWRrxUlyonpoKbqEsv3jZuMTTUmuCO3K5Do2QUad4GGFAHHUaIeb5IjZgmSeutqMbpSDd0cHogFQjENnUSgZdIglPROWyUqlaFBC9qkGLLWIH3IAKCBrpRxo30XGkNSgK/pgC2njT+ntNDADE4caHl2Oh3o9/tw7949mE6n9aSZFBzX2kSjxxPklPK1LijYBlJ4roR+2GUg3z1+/BgAXt0T2+l04OTkBC4vL9fSrlbX7ziSbJ/VaqXe9Zaq5yhvWndAecvSAtwWmvD7UrRYyufHylrtVpoe6dICcNJkguQwUpnOJw68COk4vtMo1F+0bphOmtiXvssFz1+jD0Hbb5PA9nj58uUaXXj3MW83Dt6+FnuoBEr5DpZ237aPomEX/CcveLCQH/FO34XglesWmrTnMZ0g2bfScy2IZwH3EbwBX5rG8q3Hr6G2Nf4+ODiA4XBYn8gQy0N63m63Yblc1nmE+CPWth69HqPXmo7LzKqqoNfrwWAwgNFoBO12e+ds5Kaw7bql+pk54Cd3hMrJKYsH9WP+vPYtlVtaWiq36Xf0nddn0uxJ/o7GSug7HkuJ1TNGBy8HQPZrNfmiyZqQTJXaLGaTWPOywOo77Co0+kMxLMv3nvJDfJmaJ0LiNVquxGsAso9coq9DY6AEcmxbiQ4rnVpbhmw/baxKsVtrnTwyU8Mm450hGjTcVFmD2LTvZWmvN24y1gvL5MI2lZ3Vedk0doGGXUKpYFzpoN62+kkzrHLya6Iu1vYOlc+dj5SJBIku7Z0lv1JtpRkEmgOiGbG5MnSXgpe8jovFQp1sCNW72+3CgwcP4PLyst7dJE2CSfyFd94Nh0Podrtr+WIQjNIk4aYZVCX7Pye4um1YdpbipIw2EYPH5VqDtqlYrdYngXOcNClYUqrPmsiPBuDp81R9w2WCxznk8lmiV/odmvTkgbyUwCTnT/o9353tyVuqJ8pF7JOXL1/CF198UY+n2WwGAFAfAa3lswmEgqtS8GiTdJWeFOE2RohHabvE9Jo01vB44sViUR/1rumCkI5YrVZrxxt3u104ODiAxWIB8/m8PtL1piHET1QGl5qEsPgJ/JnniOem7EZpooZPrOCEHbYVv1pAQulxnZLP3t4e7O/vw2QyWWs/yTbVykS9z30CS/2kyZxYWopS/Y164MMPP4Q7d+4AAMDp6Sl89dVXa4vdmjqh6G0AHzMp/Jpjo1I5ZpFt3NaRFmHTvPkzKS8rjdK44OVJk0maLWSFdYxp+tk6seUZ99r3q9Xq2uJo3l4xvR6jky6q2ZWYxJuCJmKfuf5rUwjJGLRxtJMprNDGXspY88RMLGPDM9looTMlvlCiXFo+l6uh+Fson1uUQUpblp6DseJmeoyFEQp84QDXjCFMo32bUnYu3jYjQaqvVxF7BmBu+zYdAC+Vr7WemrEuTSjR91bj3JPG0y/eoCYNRmn143JDo1Oqg7U9qIGVYwx56PHyAneyrXnEJiBouk0rTKlOnC76Ltb/7XYb9vf36wmCUNtwvsK76nr/P/be7Eey5DoPPzf3rLWr94UzHM6MyCEpLhC1eBPgnwTI0IthwDCgJ7/6zfA/4TcDfjXgFz8YBmQIhgHLhmVqgWwatASatDgiKc1ohjPT3dNLVXfXkvt2fw+Fc/vkqXMiTsSNm5XVXR/Q6MrMuBHnxnKWL7ZW68xkLIB9sk2TXQv4q0RVtlArQ2of+vs621FKCHCSfDqdFgsEfH2Kj6OQ9/XpLeoz4Z2cPn3rGuMxxOt5+WAaWYX/W+wBfUYi2kL8FYt8ElzlU1tokccih/buvCyaVvP9uKwAsDQZOxwO4ejoqLhXGSdL+CSCpX9IhK6rD1iQ0ncN9TF8aVKNF6nvSDYp1G/VyhqPxzAYDJaOcnbJxf/mafA3eoespHc5KbyOsNqBsu+i+YaSrab/az61xaaUjQ8luXyg92Pj+6XqA6FxDx1Dkl9P9SQex4u+BH5v8Sfxd9euHtd7+L63/G7N0/cuuHhnb28Pbt++DYeHhzAYDOD4+BhGo9GZfNfVV4xFKBEdCtczVp1viZn4Z5fOAbBPVHI77/KDfe9K5ZP8HE0m+ozkn8WmlZ7j8mrvQtNrNlbTv1J7xPi5rne1PM/l9JXD065SF6y7X6FBGheudwn1A13jkaeJqcOQMW0tA20sXehHEaoTqc22jDVfftpv3FfDv61+iY8rs8oZwlH6fouNm/E5bSLW0o+lNC497BtHZcdNmXGSEiH9xNofqkRIfV1OxgrQjDddqZ8KVXSWVXfAKsjMEJz3gEOsi8KyIIXxCwW/8w2JCgkupzykvS1tgkrbeiwRwPJuSIDTiTUpaHIZXu4UusaRNLmG5a8j0ZdaHhfBfd6gDjTto7xt8jwvvjs6Oip203Dwe4jpZ1oPtVoNZrMZjEaj4vvt7W2YzWbQ6/WK/Hj/cDkpoYRVSlRlC63jQ+pj69rnEFmWFSvBB4MBfPbZZ/Dv/t2/g/l8DsfHx/DixQsAOJ2Ems/nxW5ZbcWtFoBoRO46IM9fHg0eqhNDyJpQmco8m+f5mXvpXAixYS7wozT5LoOYnb5U3/BFJ1IQ7wKf1KCTBDyPWq0G29vbkOc59Hq9JR26CqxCd+DkCS0T7/+lZeOxi9ie6xCohiCUiEtZroQ8zwudCgAwHo/h+fPnxc7YyWRSpFsXPRmC0L7L/RyA8voU85Tuiqa2mvaNMnVN8+L+uDW2801u8H58HmOQ1inKQO9P156hupO+Z2idx7QRvd6Alh9bpm/yCcup1+vw7NkzGI/H0Ov1iv8x/rtEWoQQzBxWX46Ob1oWj7skOaRnpPwlWHQI+kfW6zy0Mrgs+L3v6HH+rMbDuNom5OQC6XnX75I+5u1Ov7NwL1r50jteRFu+jrD4F7h4t2xM45tQrxKafUR7i1eKcF99MpmY+25VsNi3EH4l1J905cPzivEHUtYjz4/GYanyv4QNlgUAAPELAavC0mTsqgPeMmSF79nYIMHnzGjOCU3zusG6WmQVxBSWxb+T5HF9dv22bitHKCnhg9S/fWPFWoeW3zh5KpVdxrCvcixyQoh+LzkLvvryyezK19L3aZqq6yeGzKsi3xTgxD+H63upb6Oz7RqzFmcTAxV63CIl2zUZ6DtZcB51vgrEvlcIsbcKYPnz+Rz6/T58/PHHUK/XoVarwXQ6PUMyxcjrIl/Om1xGGTiRp8mIv+P3FhsYK5Mkm/U5CVzPl/WBpXz4M5Z7ZDkZRvN0+dQ+4pJPtkjy8Wcoms1mQXBy0m4+n8NkMoHRaHTGjlrzt6LKcUEDfn6EnkROuvzXqlHWB+L5SP2jLEJkwHLn8zmMx+Pi+GPtGNt1s6Vcd5cl1aQ+ZiVHuDySXfGVbcnfJxtvJ6tO8MVg59X+oW2qTWaUia3KjM8QMj1V3dJ3HY/HUKvVoN/vw2QyKU5X4BParyOqem/NZ4jpg7Hxj6Qn+JiI4VyoTbbwAvyzL2Z0cSO+/ELGqYvzcr1XWVvNy9U42nWbwIitZxfWzZ+gKBMnZ1m2tAgrJGaw5p8ClvqXZKY8KF9shpwOT4vlxcjo+uyT3ZdnSDwR479Z8rG0pyWGDJWB6hrNzsS0nUVW33M+WMfAuuoXjtA+IenjVdgMTa5z3Rm7TuSGpFRXMbFThTFdFwNtDWhTlnOeOC/n7zzf3TVGXPepIFwkvwaLQcf/fSuTyvYdzWjSnaxotCmpzdOHlknJVgllSeUqJidCwZ3QWHlw9SHmg45urGMrGX3axxuNRrETifcPPCJxc3OzONoQ75fDZ6i8FNJOOT628D48LlMMISHVubRLJRWqsoXSd3z8uMbSutgXDVJ/xn7ebreh3W7DYDCA8XgMAOnuOOPBCH4n/V4VYoPUVTnf3A6FkGscPrLf8ryGmD6O74J6jt+Z7SvTJaeUB/8/tu3q9To0m004ODiAg4MD+PjjjwHgdNdIvV5f2mVdBqvSGfxO5rL95Lyg6RCAl+MHFx654jX8W/PBtLG4Cqxzu6QiOgHc+oS2H+5+mc1m4gRgDGgeKXYmaJOTAGd9vxCbJ9VPqj7JTzjw6X46robDIWTZ6STkcDiMLp/aWKyXKv27Ku0o1gsubtOOkbzE6pDCv9RsCQfGXpY2l/q6RvxaxyfAS9tHr/ug+VdhW3gda+X4+AYpjk8lr49fsnJMvjrUJn3PE+vsT3C4JsDob7iQOAautqmivVyxjmsyul6vq3xOija19mXX85bvYsqm6XwTxWXk8JXtKtdSHo83eB8OlRPrw3UywyXC4au/KvV4iI/ySh9TfN5GUypXcqJSY10Gb0o5XEGXpU5DlLxlksL1jOR4S89bJsxS9l1X0JG6PG6oXMaPl+2qv1ACwxdo0TJRcUrBh0bE+MqX0vJgTfvbJS/maakf1/eWcizPuxwrV7DE86/aMOL/rvb0wUoqSRNV6GjRydpGowEbGxswnU4LUtJnxKXgFv927coJgdQmVU5MroJMiJWhyvemZbhkoOBtQ+Xjxwny8WepDx8xLvU/TbZVwKI/+W9V9mtLsKv5h/S3MsSVRY/w9K7vLe9kCXx89s0XgPveif6GpA49uhrlxGNmMb1093YZQkNKG9OOFoLJR/wi+cP7vFRWFYRpCGgb+dJp4H1E8vPKvhuVsdFoQKfTgUajAfV6HTqdDgC8JGVi7O8qIPloPn9U0gchfqdks7i90XSXT0e5ZIgh/mja2PbTbGSonQxNJ9WzJW/0TaUjUlPphjJ1WabcELIb+x8eO4473nHx5LrwLOeJsvE5fzakz7ryD+0n1DdAWahc/DsffM+EjGWr3cfPFr0cIpM1FkXUajVoNBpFPOvTcyF6mPs21tjD59fE+HmaXbTYy9cBKXwel9119XMXhyilC+nfVmh9E22QpGPQ7vry8sHnd1nSazEFfq6izlLllWqsWfV4qH8XovM0mVz5WZ7xpV2l3oqxk74+Sz+72oL2ZaveCElrrc/kk7GpSa11Q5Zl6v2Ql6gG6+jEvOr9PBS+AF0il12Bj/a8pSztOQmhToaWPyez6O8uogr/oRMWEiTwfLgsZY4lrRohBFFZ+TEg5HfrhcInj3SvL4J/N5lMoF6vw3A4hE6nA2+//TY8efIEDg4OlsqSAkiaF94BxMlM/I7fbUzz1iC9g3bH6EWBlfhcR1tD4Ro3uKIYd8ACnPaP2Wx25g5JF9leFehxsRZw2VKQ1tr7xhJYPhli+hO9ezoUVPdT+8J1g9Wu+H4PlVPSZzwPvtMzJv88P90FubGxAYvFAvr9fjG5QO8DbDQaMJlMSvnyKQinsn3O1693dnag2WzCycnJ0i5EivP2E7h+knwal4/DfTDtPr8U74mnWqD93dzchC9+8YvwxhtvwJ07d+CTTz6B+/fvQ7fbhXq9vnS/bCxCJyhiJzM0Mll7FsvibWYFjkmunyQixUJsWcvk5aW2hXThHcUqyUV8jsYWkj1wQbpLM0SeGHJPiqPo86F16CNVXTg8PEwWi7xuoPoh5BmEiw+I7QOuyR20G/QEBZccZcHzpSdA4GfphCULZ6KVR/uyNLatsZKGjY0NuH79OhwcHMDz58/V/EJthc8O8DqRdh5y+Gzbq4yq/AkXLKeSaNc8ALgn29cFmux5nkOz2Vzql/yKkdFolCQWtcS5LoTaS9dO5jL6qUx+2rtqMXEMQu/01pBCllcRVhth4VxTlBOTtxVnJmPLGuJ1UoqIGCJWC0jL1o9LQawK6ziRaFGclrRVyeD63ZU2hkyuEpoTo/XvUMcglhiRiFf8PobcQbhkpu/sCtB4nj5o7+FKI72/jxTzjeNUkwpV6IqYPMvIkef50sRlGUgkHgUPCunkCk07n89hMBgUO2p4ftJY1HQRJ6to+TETGvw9yuRH8z0Pu+PS30i+SGQ+9hcpP6svkfp9LQEK7yc+PefybWL0r5ZnaF6WOvQRNC5w2cpAIvNdBBqXwfU3zUuzERZbJuWHf9OjF2Nsni+9tQ1pXnw8Ss/Qcevz3zRygi9UcLVjFSjT92jdUDnxnXDn7+bmJmxsbMBkMgGA08VA60Zo+coPJaBdbRir11xl1Wo1aDab0G63l+5uT1WvoeRC2XIs+ouXRfWQKxbiejskpuPxQsizmo3TfrM8x2WTUPVYC7XZWptk2enxxHmew3Q6hel0uvSMS09KZVvqlkOypbFIFQMBwJKdWIdYviq4fKqUekXSFRyavyr1cdcY4P1c8k95vqH6Q5JXGjNSPKfBIhNPL8G12CyE1+JoNptLYxxP4BgMBku6g/uWPlsi2Q6f/6zla40NUunki6IbqvQnqA7XbE1MzOayzdrvUjpXnpqeCi1PK98Vw2ncjaRvfLrZpR8tcvJnXfwS/Sc945LN9R6u8e3TuzEI6eeSHfL5pTH9JUa2GJyHbxMax1HwvhVjH2ifLjM+fGMP07jKeKWPKY6B5CBZHaGLglflPS6xGliIGJ8iQ7JKU3ouZWYl6WKNiGt8W/O0kh8aMJAJMQo+4mddyIx1QJ7nMB6Pi35Y9r3omMA246sDqZMgpZlOp/D8+fPi/tj5fL4UtCKhyycFrWODjjnfLml0IufzOczn8zN3muD74ncxgdR59yXuDFGSjZLnzWYTFosFnJycqM+7HCtK7MQGbqmBfcGyO8u1wzukvDLvS+vQVUaKAMIaEFh0uAbN5oXKrwV+IXlIyLKXd127VqZrzyLoc3w3vo/IlOCaaJHIcWt9Uv2FR8nSI4tDJgPK9vVQaKQH1Weo01Cf37x5E65fvw7j8RhOTk6WJmPPWy9f4mKCE3BWnUGfoWOuCtlC0iMskzHa7y6sarzFEkuoTw8PDyHLssIPdeUl6fIQfZjSP6oiTkSfF+0NQLrdMBcFIfa6qnJTPCuNXeqnh0zYufwSTQYp9rD4GbTvcbj4FM0v077nslnedWtrq1hI3Gg0oNvtwuHhITx48KBIZ72nneoPza+T0mtw8U3WPC5RHinubaeg7Zk6b1dZAOExHn+O9u2yfc/HQaScXMM4goOeNoeLERG+02B8/qJvIpbrzvOwyVQ3l+VMeL6XOIsQ/9tahzFcpg8xeuK1moy1zF7z713kdZnj5Fxl+sp+3WAN+F3tFmKYQgi9kGeqbs8Y4+tytK3ks6vvSitPpGCAGjVJOUryWAKZkPagslYFLchAIoTfGSE5IFJQJ/X3lM6YBVWMMZo+xXtQ4jrGMbaMF97XpWewjXGS+Pj4uNi1ROsmZFKAykL/DwENbubzOdy6dQu63S6cnJzAdDpdOkZn1f0rJWhbYcBAJ2RpOo2sKaPPpbxi8pOe4RPvKLuPRJT6bEqbJY0LXzm0/3O5JN3og+t9yjj3FkJM6z/4jvR/izyhiCFVqQ5y6bUQIl4jRel3rnwssmManHR09f1Y/VXG30o11q1psE41mUPa7zzA5QslxasgbSjJ3Gq1YGdnB7a3t5cIan7c5bpBG8dlCAqXLtfSuPwcV+wntWvouNR0Wqw+xvTaMcVWWVJC82l4GoxBuDyh+XPE+LGuMiRIdRdbnxY/6SJDs90uSGM2z8+eLBECqa1c7cgR0hbUr5C4BN5HuS6k/2JRxqeJSVsVycw5imazCY1GA1qt1hnbZ7F/KeMfKX62cEeS7auas3uVoNUnh5Uv9OVjyVeDy0dIMUZ9z2FMQmPzmLtiQ2JSV71Ln/GKK5ccuIGg2Wwu8bfS0eox7eOSkXNu1jxjnuHQ+qdkI31/x46bVPzbefF4mu629nnLONXS0v5Y5XtLPoQGdTL2IhOtVvgUsqZEfSRbKrxODoGrLWJIVws5qqXjbewK8rV+cp6K0vKOlnJCCBMpL54nOh8YvKFyWiwWxa5QWhYtTyNoadtQok4yfD4jF0M8aHlpaXnfov/zOsDvtX7nk28VOioWPkOqjV+pfixOJgW/T9Fq3F19j3627j7EPj4cDotdu1RuaTerpd3LtDUGz7PZDBaLBdy9exeuX78Ojx49gn6/D48fP156v/PoV2XsouTA47viGMTfYsuxklsu+PSI6zl63xTqW/q9NT+fXpR0GKbX+izt09a+w+2ARWaXnFVAG3vYBnR3O68nWhfaQhyOkHFXhkDU7vl1kSZWf4P3EYtfbW1DTIdHbvLjl3k52lj3vYv1XWPqP7Q+Y4H1ft6ThhIZyn/DvyVCRktfBbLs5U5ygNPJ2CtXrsDu7i7s7u4WOwTwXuJ1juG4HwSg6yH8WztpwxcjcL0hxVj0b94nrbEf70t8Z5ZEzMXEWDRO0Qgfn460jPNQHSLFuloZVPdmWXaGSPX1XYsPTcvx5Wkh2aR0+JmfyPAqIcYn9T1j7Sf8dz5pL9luX8zKx5HFFsdyIi4OQdJLdGelNlkilaP1S+0zlQ9/d9lCrRyaj/ROZcHtA+oJvD8dj+jHyVi0fb48JftCP/M68Nl7aqN8+oimT11frxtoW7ruTbV8Zy3PmgcfLy4bo/mfIbGB1I8peDxCj/R2PR8SC/jqWiqDtl/IKVp0R+xisRBPc7PadZd8EkJ4hNBnQsFtjEX343M+35mjzDuExrkpIb2jZgMkOX32k0N7N6k/uGTT+AMJrvhCs92v1c7YsqBB1zoH1xcZ0qCSJk/w6CAA2ZhJCGk3V9pYcu1VgFQvLuPvUpIUs9lMJDho/vh3FeTkKtvT1bekIxMluOqB5x8TvK4TLASP5Uiier0O7XYbrl+/DtPpFIbDIUwmE/VuUF6G6zcfeaU5aS5nTctHchx8Y9ACfBc83pKjVqvBlStXYDwew+HhYVDeqUDfnU+clunfi8UCGo0GNJtN6Ha7MJvNzhxTzOELBsuMX+m7Kurap09T/hZDJKZASD2vGpQIDw0q6YQIJz9C88TVzbgaejabndFFqepL0pn8dyyTfqaLuDjpSPPCo96lo8ZTIoYESFUurQNO4vrITZqeHmNPV8JfIg68fk9OTor+WAVwTODEsCUOCgG+i2WCi+ojbTIhtn9ZfX4+icwJF8k3Rj/CcizveUEih/lvZXR0bP8Mac8yZGoZvSS1u08ebk8A4usoFXhfttRJTH/gsYlWDj8Zjsvk+00jrbVYxvW+2hhAXSQdk8snjrh8aBPxb/ze4vf6ZHfZaAti/XILNFlRv9JJ2GazCa1WCzqdjrhwhk/Y+/qUT3YfnyTZnZD6WEfdfxHBeXLqq0vpuN32xdZWXtGVx6rbGt+1qqsZpPI4Ysu9ffs23LhxAwBO9eXHH38Mw+FQzF/itFLrpBg+JEQG62Sb9NnKR0l9vCqeRyuXln0RIPlmFr+gCjlCeFXpM//eOxn7Okw8uYhsiRg6TwL6dYCk2PB7/NdoNArnbz6fm0kIyVHn30tpqVwSmagRiKlgybdMPykjL9ajtBJRM1o8nRboxii8UGPjasdQOULkkn7ndalNyFnlDpU1hY5ZtZ7CYJsHzVKaTqcDN2/ehMFgUKTzTcbSPKS8KXx6wBVkWMgHrgtdz4fKjum4g4Nl1et12N7ehlqtBs+fPwcAWLpXtkpIclMSla80Rbk5qN6WJntwwt71LA8yNfmsiHXqYvKQnlkHH69s+auo/1XASlLRvq75SNy2+PoPXdwg3S9s7SfSmNDImNAAmY87qRxa3nA4hCzLoNVqmctxlU+h2fbQQD4EUp1y4ssnj/Qe/K7fFLtkY/0J7l+HTDr4iNqUek7Li8owGAyCicMQ4LjFhRRlJmN97+OzdZpd5d+XIVGt/nCIb0T1nkWWVG1Jx0eqfmnR85osLt/SBykWkcq1xECh5Vmh9U+uK139u2r+p2z+mp0NLdPXJtzOhvRjjYzkZcWOZ247qD/E68bFT8zn8zM7Yn060lX3kl/Gn7W+owu+PqD5S5JMHLQ+kIdrNpvQbDZFTsy3Q9IVD0uQ+gF9B832WPK6qEhtQ8pA41fxs/YM9z99flzZtrOMjRj45AawLerx6eQqQXUm4tq1a/ClL30J8vx049PDhw9Nk7GhtgjLd32mefPfNZ8zNs50PeeKkSR/yCpDFT7GefUlCRJ/xr+n3/HPXFfwtK62s9jYEBuiPev6TRsTS5OxMU7xqwxrgJ9lZ3cmXCIefCcsriyfTCbQaDTOTADUajVot9uVrAx3QXKsqw7WXhVgveGRbi9evFDbDpUXvSid5lGlfLS8VYGWh7tV6K4gK+g4Ci33IgDrYj6fw2w2g3q9vnTUc6vVWpqw6/f7ZyYY8FilXq8H0+m0OFKwTBAnGVuN0JBWbFvK0OSSHImQiQKOTqcD29vb0Gw2YTqdwvPnz9fO1lGHzHqUGCUsXHWCzl/IM6GyU3uGq2ZT5O87pisFyky2WL/35UVlWSdfTOo7sflIf0ufJfB6oQt9qG2x5Ed3w6ySHAB4efw7P1LchzzPi52+52njsHweQJbtF1gPdBcPL+c84CLxAdzBMtez/G/8XK/XxSOoaezWarWKenERxBcNSIxNp9PivvkQcEIk9Xim7eIjXSRY4m8KfmcZfldmjGky0bJS6RSXr+aT3+fj+drYFWOE1F3qPqT5CZLdl+ySVR48kYjGFFZ5UqJs/lI7a/0hVVuVIXpjJuWsZCmPhzQ9QHkF7g9xmTC+dNkQrFtr7O1qK6l+zmPyjduKa9euQbfbLRYBPXv2DKbTKfR6Pa8tCtXrvnwucb6w9HPp5B4OHHc+vp3vyE8JjYex9FVrf6a+aKo8rdDqDsvpdDrw3nvvQaPRKPTlYrGA7e1tAAD4m7/5Gzg4OIBerwdZlkG73T5zuk6ZtvFNxIbmXUU/sfB/vu8uGteaElbuRxoj1P+mdpr6+z5oY++820TdGRtqMC1BSUoSrgqEOIScHJCeiyEW16EeUiL2nehz6NzSY6SoQ2wh5lIoQzomXONDkr0MeH6STC6kdt75u7vkk+Sg+TQaDeh0OtBoNM7cRUmDGl6OJosmq0sO3p6pJ1xcZVvSxbSbpofK6KcYGaoqg74HrtbNsqxwIgGg2DECsHwvaLfbBQCAyWRSPDsajWA8HnvL1d7HQhD4yGn+fq66c+XP29uXl0tH4fNbW1swm82g1+st3QOUktQpixgn2ZUXHtcc04+teopPmljuaZFgIVAlmarwxzgBJkGyIaFlu0g412/S3zTPlDprlfpWKpOC1wtvA35cn1aPWZadSZsKPr8K/T4+bsrkmwrWtg7VmZr/phG+0rjDBUuWQJT7XVVB64/8bwkuspv7o3SBVqx+lcqg9UzJKH7Ed4qytLbA98FFe6H30/piWC4Hl0nz/aU+GBIb8HJcyPPcqQukeM0as2jl+eSWxrjVnyvja4RyGPR/Pp6qID5j9LDPnmv9LwRa/6kyFsT8LX6ZheCl75DKL7f4S1ZoPmoMV0LjdO13XpbVJ/TpKUlOaaxrttkF3/hI3Q8teldK0263izh6Pp/DeDyG0WgER0dH4jOWMRTS/ppuLdvnV+WjxyBV/aWO+2g/l2wK/ezLR1uczsux5onPuXgZy/MUZfoYlcOnj6R6tcpIvwvRKfV6Ha5fvw7tdhsAlnfCAwAcHR3B/v5+8RxdxMT94ViE9EGLXYwpL5UetvKAofnGPh9SX6uyNfibpDMsfh+mtfonPt1i1VWuzzH9MtmdsZaGW5WDkRKaQ8W/o0fmlinrVUPIO9F7YHEnbK1Wg0ajUeyInc1mMJvNllbf1et12NjYCJYtVRCq5Z2qPV0O87rA4izQSZzZbAbz+RyOjo6g1+vBzs5O8ftisYDhcAjT6RRGo5Fanos0CjWWLsW+inGJu7rr9XrR5+v1OkwmkzMEtPbuuFKIr0I8r35SNfFNCVncITMcDot6wF2HVCffunUL/vE//sfF9/v7+3BwcAB/+Id/CB999BFMp9MlUjNV3WE+fEeFFtRz3WRxGHkAjSQlJ5Tws7YCnJL2/+///T/44IMP4G/9rb9VBN88v1SBsBUoNx4jhjvq8Z1id4Rh4IH3x96+fRsGgwG8ePHC+VwoIeUaF7iYgBL6qccR6hOa/6qOmw7BefhDKW029tE8z5d8GwoX2Zta97jywx12rVarONIXfTBqb0J1oo/w1wIvqU7ws+sYM21SY9U6ioOSuNSn4Tvjy5aBeeb56a5J1IkPHz6Eg4MDODo6gtlstuRLtFot6Ha7hYy4u4XvFqsCUv4p2yrLMmg2m0sLtlIgz18eYwkAMBwO4fHjx8U9xXhXsY/ct0Aj2rSJgTLgfgr9XhujrlXpMe9vIWO4DPR/1zNcP9RqNWi1WsV74IR6GWiTGBI5uiobJ8UEvvJT9a0yts0nn+v3UP9psVjAeDwu4q9V3O3nI9Fj+oePywipe2lyBPkY/H48HgfXkyu9td+52p/rKemUKK1ucPyXeafYcYW2mXIlWh7c3lfRV7kPhf1hOBwu6Umejvo0XDZXn3fpfkl/0jIQr8rJF1UhJQ/ve8bSFpI/r/Eevn7uswc+nRpqky1pUV6XXrHkk9rXQ45xNBoVsrkWEmp1j7EGlRO/D4GvDiy+4HlD2gGeci7gVYbVhmGdYp/V+KuQ/KwISRvqe3knYzmJ+7ogRMlq9WN1zqyoipytCpoz5YLPKcP7/IbD4ZLiQ2LEWkc8XVWk06qJLFpm1f3EUodSGvobTvx0u13odDowmUyKyfbFYmEONEIcHFe/pKQO/iY5hJbyLeD9nB+ZxPPnQY9Lx/j09jrrE6vsmBYDRbzrkE6s0TRIuOzu7sLNmzcB4FR38DsFMRjG+2RT15UWSPI2jXHkYiZLNKKw3+8XxyAiqZ1lWXEsPJWvauIeQccGEi0SQmVBInY+n0OtVoNms+klRaz616WrKTFK05Vx4n0+Ce4W0+5LLtPfLfWu1QWvs1Rln5eOkyYxfGQAPucDt1M+OVz54jiSbCPXRxbEEiY8DzrW6ekHeKLGdDoV7y6qAqlioTLPaj4W14m0z6G/PJlMYDqdFrso6bO4CMxHRlU9jrSJCFdspQHToA8ZSrRZ8scycOHCaDSCwWCwpFct/mMsms1mMaGIvk2I3Uhtr8sSvZLstO0k36isneTXn0hpYurJp0urGEuW2ITbAjqpk2XZmUnIWAJKsuUWjsRS31p8FAsaL3A9eF68V4r+IfEpljJcZWvHWfvaLSSG5/K6uDZNv7reQasHi98SE1/h89y/t8LXTpYxo+lOV/7S8xhHI3cDAMViaCtfEtq3pf4g5RHTruuMdeRmAGw+TYgukN5T60ux488SV/v0vjSetd9pOtfvLlj1teVZ6XkaK2xsbMDGxoaoo8bjMYzH4zN+raafQ+HyzS3xpzVerhIW7kHS/WXjkthnz1MnWnS3a5e89Jx13FrlsaS12nIqo5Y22c7Yi4DYoK2solk1ygSn5wmcRGk0GlCr1aDT6RRHoACc1v9XvvIVuHHjBvz4xz8ujkTB+yABTt895W6DMrio7VAGrkkH3PmJEwF0Zcvdu3dha2sLPv3008LgNxoN2NragslksnSErJY/nZTBXR0xzjgNmlK2nyUv7QhGzQmV6psbsVe5H+J473a7cOXKFbhx4wZ8/vnnsL+/D/1+H4bDIezs7BT64OOPP4Z/+S//Jfz6r/86/NN/+k/FPGu1Gmxvb8NisSh0TCpZERLpzJ0yukpRcspdxDwHJ8YwoAaQd7TgOJ1Op0U94MRHo9GAt99+G168eAGff/750kp5mm8oLP3UMlnA7xH05YcYjUbFiQvNZhO2traMkoeROfRznucwmUyg3W5Ds9ksxnnMHYAW+XAi5urVqwAA8OzZs6TlUMQS2NLESUof7Dx0oetoXfw+hpxDYhTHH+6G9D0rpanVasWkEj2em58u4IOLEIupe+wLeKf3zZs3YXd3F9555x34/PPP4f33318iFV518D5Ed3zyOsC6GwwGZ2zNRQKdQEagz6fpBnzGEihftPrASaM7d+7Azs4OvPPOO3BwcAB/9md/BgAg2sCL+J4xcPk/q9APfKJDk4kidbtY3zPP8+I6D1yQ0e/3i/5VNTR9FOJHUd1PfQdLneJJJKPRaG1sR5V91TKZqdUbv6cN/QT6DI09U9nj0AmJGHLbpxt5TM19U42TsNhbyl3QY+ZDJ14s9R1qCzmvwtP2+/2lPkAXr3L7Y60LDtckzetgz9Ydrnaw2sAyk4y+iZ2yeiikT4ZiVf0XY0w6PvFo8TzPodlswi/90i/B7u5uwUPQcf/JJ5/Az3/+84KbRX4Vd8RqPldKG0bb0dKXQvmfFLJa441LvITE1dVqtWJhAMV4PF7ahS0hZLz7bJFlfIb42q6T+4ImY1cZ0FQBixNX9t1SK6BYGdYRIUYUHWp+j+hwOIRerwdbW1uFYcGV4aPRSCSXXe3hC5x9TrY0GcIhOaGp+khIf6uqb4Y4xbR9kTBaLBZwfHxc7JDFyR1Me3x8vDQ5UYWR521UhaNvzZOSq/Rd+QQx/eybxLiogYs2Nvnxu9ifms0mbGxswM7ODoxGo6WV7u12G2azGRwfHxe7qer1OrRaLfjCF74As9kM7t+/XxxVjL/hPXAhQaTWR3k7WNuE9wONvOLptDJCx8/x8XGxmILWN82P3x8SitBgbT6fQ6PRgN3d3WKlNh69gzt6NTm0tsnzl7tFKdlEn9F0hEv3a79pNrHqYA+dQjzeH68AGI/HUWQWLctnb2NgCcK4LOfph2HZm5ubS4sapElNrQ/53pnrEa4DpOe5DcFyNJvhez9JFg0xfUqSAUmFdru95CdobS6926ptIS0Xj3sHWL6TqcoJG94fqP1stVpw9erVYgHOaDSC0Wh0ZqecZFtSw9WWkv3T+mHsOAqRE6/aQHvz6aefwuHhIWxtbcHJyUmlfQzfqV6vF2OBn+7B4Xr/UF1Z9t1C/SCXfBZ7xX1lWibVd7E2g9ehlYSW0lQ9xjS/Q6rHsnY0VKdJ7eQC16u1Wq04VYmSyVI5AC8XNezs7MBsNismoqu6E53LzRETR2v2nffH0LiDp+f/eDrrGJTy1/q8yw6UgZYv1wn0XTV/i+cr5enTX+gTIDFt0QESR1AW1v6HPgE/HSlV/q60WuyWqtxLhKPMGNXs9yrbTONTrOn59yH1YRm/IfL4OAn6G9Uz9Ioa/H44HMLJyQn0er1iEsx3go6Fc5H0vMt39/lmLi7FCks7WDiOmD5QdTxd1j6Ejg/Xs9yeSpOTfOEXPbmE+nXalUWW9vGlLxOTaOW6xk2ynbFlyP51mCiwlG9xkLBjWXfm8PzPux7WAa6g4bPPPoOHDx/Ct771Ldjb2wMAgFarBbdv34ZPP/0U/viP/7h4zkUq0ny141V4PjHQ2jQk33XsFzxwCTUmzWYTms0mjEYjmM1m8Jd/+ZewsbEBf/fv/t3iuGLEJ598AsfHx2fy4GVQgrHMZJCLBAx9lueT57lzxTknELJM3k3lKl9bxXuekxNlQAkGfDd6Lx7HjRs34Nq1a/Dw4UPo9XrFTvsrV67AeDyG58+fF23Rbrdhd3cXfuu3fgtGoxH823/7b+Hhw4cAcEp07u7uwmg0KnbIlh2HdDeq5hRIJAgtmzu1IcQzhcuZ5qT4J598AhsbG/DVr34VAKC4E4+Wicf64h0kVd7dg21/5coV+JVf+RUYj8fQ6/WK3z/55BM4PDwMvv8tz/Ni9R1OwuP3riAnFYm7SuC9uPheR0dHMBgMivGSWi6XHaZjWyJRY/X5quuWBw/37t2DK1euwP7+fnH/sG9cSLYUiS9ahlS2dKw//k2P47TayFXdv0XbGXUevb9Z05c4wU2DNx/hWwZl8pjNZtDpdODOnTsAcCr74eEhHB4eLu2IqRpZdrqDBXdBX7lyBX7xF38R2u02tNtt6PV6cHh4WByBi7tqadukguSju4Jl6hPRMaG9J8CyzU212w9P48ETfB49egSfffbZUrnaPdGhqNL/jyHHOXEWE+fi/9a4W0tH29RKpPHYEH2EmDtCXSSoK461oOp2D6kvlCe0DI2IC4VPhizL4N69e9DtduHzzz+H0WhUnJbFFw3id1mWwWg0gna7De+88w4MBgP467/+6+K4b4xRq7o71hozYz3SPov8El2QztsLbagvfytQ79Ij7bW8acwmTWy6/GctnXaqCP3fFbtbdU1ZUh/B/TWXDkM//OnTp8UiHw1SfBgqoxZjWp/Be+/pMcU8Hba9xea6dF0ITxZbxuuEqupBijl8cOk87FMWLj3V+6zSB+djMIWNSZ3v06dP4f333y+ubUJIetZVdy677eNVrT6mte188QX9nBKp7MpFhvTOeCoLQjrVdDabibyiFjenrmtLGb7nfTKYJmNDJiNicF6dUirXOhhdxGIZYtaCEML9PGExBNKgwePFMNDGgAiNMj/yDwOE3d1d+OpXv1r89ujRI3jx4oXYLlId8vrkExKx78yDElddaDLEtLn2jlbD5krn6+su46a9JyXN8H7KPM9hZ2cH7t27B8+fP1+aXNOOweHy82CWy0NllAibVUILYNEhkSZrNXByaBWoytHXxika7slkUuxG2draKnb80bScjF0sFtBsNmFzc7OYgMO6xuN4O52OKI/WfyQZXb9xksX3ziF2x5XW9x1/HndN7u/vQ5ZlxRE3lJRB0gq/w52pGokf2yf5RCHqi42NDZhOp8VdRjhJw8tylUvHmDapJT1DodWxqw/QfGII7hBg/14sFsVRMKkn3WLkj9W5rrHo00W+8RSjy/jz0iSoRl6G5I9/0/JC+g6vI5SBH/1aZoKiCuBOwO3tbeh0OoV80mR+avCyYvs5/T+VXLz9KVEr9Tf8DvUnTsaiTY0heVMipOxQMjk18jxfItDpAoKy+lUa75jf1tYW7O3twd27d4txS69pCV2MFCKLBO5DS763lqeLsPPJ5IsveDr6O14HQXWzpKe5rpXGsYU0luJBiw+WAlxWGktTX06K3yztGCKv5f25DHThNNXFVH5XXqi30Te8fv06dDqdM8fDhkwEpILPN8d3w2tUAE6P7ZN28qbwITUeQwNeP+SLy3nekr2SytcQq/slXaD58prfJuXv4n+4bgQ4e6USwNmJXF6Wxe+L9TGtcSON67QYT4r5tDrkNjLGd3fhPH0ZDXyclJEx5XgJfU7jMFzPSf0dAJZO2KKgu8ZddaXpFp9cFn7CWndl4iZXXUqySTqF/kb9fAA4c9/zzZs3YXNzE/b39+H58+dF/nmeF5/L9JnQeJR+Du3TFj9TSyfZKZ+MljSr8h9CYK0n6TP9LiQf3p54EpPUbxuNBuzs7BTfHx8fF4uCAeTNLNifpVgrdCy7/HwXJ+jSdb46e63ujE0F7lDEknavA0Id6zw/Pf6LBljtdhsmk4n3Hr3r16/D3/t7f6/4/L3vfQ8ODg6KQCs2UAyFZlQtpEKMDKHvFuMoVAGXDKikZ7MZXLt2Da5duwbvv/8+HB0dFYThZDIRlaEr8LLIJBltbqhdxBF3lKTPPgcVSQdKqnFjZulPlFgqC4ueW7UexKOuh8MhDIdDODg4gLfeequYjKWgk7HokLbbbeh2u/DixYtiJT0em91qtaDT6SR3RH1Otkb0SflqjkJqmzSfz2E4HMJnn31WEEJ4TDACdynjBB9dQJMS9GhSBO5i6Pf7MJvNYDabwXQ6hU6nA7VardjhinCNYW28SHUa4ozy76kMqcaoBXmew8nJCUwmE7h58yZkWZb8jtpYYN+yoOr6sowfjbB3BXMaKcd/s7yfRuLhbz5dQ+XABU64GE7TQT6dFuvHWJBlGTSbTeh2u3Dt2jV49OjR0u5ZXm5VfYSS+ucBTXe4/BKalpPBrVYL2u12oS/xmcu4Jg44nuikTgqgD4P2bG9vD27fvg1f+cpXlnxLtJG+Y9FjIfm02qRK1aDlh/o/eZ4XcQQfF5L+4Hdixrxj6DOhMbQ1P95faLwQ0l/p+1RxogaCtjEnmZvNphr30QlcHJc4ifnGG2/AxsbGkn+I153M5/Mzd6JWgZCx0mg0oNlswu3bt6FWq8Hjx49hPB7DcDgs9A0/yg9RJU+FsSr6D74+IMWlUj1YYmUpX3xWg8WHofLwncguWPo/JZP5CQq0z6IsEvB7GmdpadEOWXyFkEkgjQd19TPJV+T2w4p14LFicZFkL8NNur7PskxcvIGxCC3P4mvH1qm1z0mxu/Z8DDcQA24PeTn8N1xYj7+//fbbcPXqVfje97535gRCfs9sTP2G6mGJf00Nn91Jka+rPBdS941YVOEr8EUXmj1tNBpw586d4vfPP/8cnjx5svQ7PwUs1G/1+RYu7px+57NbVt0QNBnLj3O9SMYkNXyOLW3MKmXAstYRZfoJH1i88z948AAODw/hrbfegizLoNfrQbPZLCZPaHpcBUsDtjzPlwIwKWijv/E8fXVvJVJdaaX+o5Ub2tcsRG2KfKR8kewFgOLIo+l0CtPpFD744APY3d2FL37xi0sBHu0Lk8mkCDxxNS5tT06O8/+twUjsuKIkh5aP1Kck0BWydMWgy+hI8qfQ2eugZ6hxREcRnXkMSm/evAnvvfce1Ov14rjF2WwGDx8+LJzQjz/+GH73d38XvvWtb8HXv/516Ha7BanvKpPutuTgfUvSIzxfF/izUrtyApSn5eklhBAedKGM9i44prXfQ4Nt+l58zPR6PfjpT38Kb7zxBnzlK1+B4+Nj6PV68Mknn6h5Wpx9PKpOqnfXWAoN6vBv1F/4fbPZhDzPl+69TTH+kKSntq/VasH29jbMZrNi53O9Xg8+ns9KwPFnLD6lZn9j4dK9IfWtkRRZdjppeHBwAP1+H65duwa7u7tQq9VgOBwWQS+Vg+sLbTzzskKgtQG/q0x6P/zdSjJYg2qXbqD2DsueTCbi8fQUfHevlr9Wr9YA3dLnURfOZjPodrvwzjvvFEcEz+dzODw8LAJT3KXnK8sXf1xEWPQpJcfpZ2536W/0DnipvDL1SEnCVquVlNixlo/6nOp0zUfhcQ7AWT2T58tHS1r8h1DiUerLEsEZG1/xfiH54rFxKc+X+iVVxPta/WD5VB5rfnhX6sbGRhEXo17N81ycvJHg8lFd/pLmC0v/+3Qd7urvdrvQ6XSg2WyKC3U5Go0GvPvuu7C7uwsvXrwo4qtarQatVqu4e7YqSO8k+YUW0B3OPj0aymUAvJw8pLtPtHJixpjFLnP4+gXXayG+uaZ7JF9F4op8+eP/d+/eha2tLdjc3ITpdKpeYyG1Fz0pTrJ/9F1cckhluMrXnpdkc+Xj42Kq0KXrBs0Onqdv5yo7hLNwPS/tgtZOZ7CUGxp7lvUHXDGLL04K8Wn4uNaeRZuFkOIIfJYeOZxlGdy/fx+ePn1aHD2O32s7lDVw3RPKj7h0gfVZn3xSnpLM3I+x+llcp4XGGDGcQwhC/XT8voyv7Co3yzLY2NiATqcDrVarGP+NRgPq9ToMh0N49OgRnJycODlF7XurPqJxOn+O/o28mHURNtUzvv7tnYyVggzNkb4I5EDZQWFxWHDwruq+rbKoitjxDQpfXbomYx8/fgydTge++MUvFvdaYUCG5dEAFo8kpTsa+G4pyZjEBhfaO6Fs0ueQ/EPaLHZ8+gyQRW6pTmm90h2ws9kMPvnkE7h69Sq88cYbRXvhkRqYD05a0LPm+cS69L4uB8z1jJVkofVlqWspcOL9HNOgkcIdia4jfXzvf5GDHC47HmdNSYLr16/DO++8A8PhsDhmuN/vQ7/fL3YA3r9/H+7fvw8bGxvw3nvvQbvdLiZ3NedDC3gp6LNSf5AMsjX4CAn0ad+RyqdptbylIAMn6LT7Q3BMa8eIlL2zj9ffYDCAjz76CK5cuQI3btyAVqtV7JItWw6f8LEGySF6lrYL3YWB8iM5mso+o77FsvL8dLX/3t5ecQ+w5T1DCb8U8I1Li4+xCh2Y5y+P6n7+/DnUarVit/5sNoPj42M4PLgvkUgAAQAASURBVDwEACgWf1CbSI/rBzi7+5K+bwzJqPkhFn/EFWD6PqMNDyF0uP3N83xp0kAD1X+aPL7nU405qvPa7Ta88cYbsFgsYDAYwLNnz4o0MQsgXLCO4RDSaxXg/Uvq53S8aDYV6306nRYL93gZsaCyzOfzYjcdPaJ/FfEfxja+ewYp6D1/0viSxo5ULvc1AMJ8bp6P9DxPXxZl7JLmp7n0ZSodYiGeeLkuXw/7LO6Ez7LTydjRaFQQYT5IcR0dl65Yyhr7Uh9W+w139nc6neLIYVyk60K9Xoc333wTrl27Bg8fPoThcAgAL4ltzg+kRJl+IXESrnel6UP6PqblkyTUd9TK43m4ZON/W7kES570Wd/zVFdp6awxmGW8ZlkGt2/fhmvXrgHAaSzTbDbPxB3cvnFd7bIzrsktl/30wVU/1nx8ujKlD7ZOcHEB9HcXtJg+Ro6UcNlv+r903RY9SSSmT3IZqI2xcBuuOJKmk3QWLdM1Hq0cQqhPjv4nrTctbsTJWPz8+PHjM2mzLCs2OoQeH+7yyV16Q8urLHy2kaaT4l2fz2jto658Uo/FGF0uycBjMC1/nz8njS/8f2NjA3Z3d2FjY+PMZhg8jQ/g7NHEqeMC32QvpikT17lkNu+MXQWJVTWqNOxSZ6yCkKwC6+rw0BXcSPDTs+45ut0u3Llzp3if3/iN34Bf+qVfgj/6oz+Czz//HIbD4VIA2ul0zqwopyhbL5JRKuPIc7iIjIvQ7wBsx7eh8/D222/DrVu34IMPPigmDlzg5ACFhUgKcQhjx73Pqeb3I0vya33Kenb+RQddFUh3wXzxi1+EGzduwM9//vPiCGKOR48ewV/8xV/Au+++C3t7e/A7v/M78PDhQ/jd3/1dGI/HUKvVoNvtFqu0BoPBmTxCnDFfeklfuJwkLS96hAcnY3zEqa9P5vny0X4+UFlSBNiTyQSyLIPNzc3i+GQJWZZBq9UqyLr5fF7sjPaBEhWh49+CPH+5+0hqE2mXf2rM53N48eIFzGYz2NjYWJujilPAR4hJQXRKYJvyY564jPTucxfpxmXFv/muCC3gsYLuaqfEghaMWfOnxKEv6LNgOp3CwcEB9Ho9AICl4xGpbGXudnXBlx/vY7yNkOwouziFg06EuPQXXdA1Ho/h2bNnMBgMoNVqFToS63MV8QEnhiWEykLHSJZlztihLHBClOpvetw3Egnr6n/x8Uf7EIfVR6kSoSQoQtJh2K+su0FjwMs9j5gb2wnrKc+XrwTy1Z/PJ/SB2zlLvErHMH/GV640IYsnELh8HYwn8LSmVH6rBKtOwF2/X/ziF2F3dxc6nQ5Mp9PC/vH4htsACzQCnadBgp4vlreMm5TjipdJ9awPfAcxz8P6PhyW+s7zvDjFDRdXf/bZZ9Dv92E0GokLyzFvaQyG+LB8POFzWptbfGgrYuryVQKOGdxEQBeLYaxgfeeLVjfY9vzEGnolhgbXHdQuWGJ4K8eXqr5dMRrVPVQHuOIl5DbwOfTrcXzz01JoPIQ7/NAmcn2YcmHoKqDxXK70ljxD4NKlVSNGJ2vpQ/Jx+ba8DfI8h263C7du3Sp0YLvdXvp9MBjAeDyG/f19GI1GZ3asSvlbxzGH5jNInDueZiUtTnCNUd93CO9krI+Y1dKWQap8qnKey6QPURAhTvRFM84W8GBfGoh4NyAOKLxPtNFoFEcv/vmf/zkAQEHG4C44KQC1tI/kxNPf6f+WPF1l+MZeLLGcIk3Ie4WMAwz46E6xLMtgb28Pdnd3l44gxfd39X9pfFiDVClNmbb1ycfz1oJC33iX0p+XY1WlfqJEGiVCJ5MJbG9vw8bGBjx48EAlvXu9Hjx58gTu3LkDu7u78N5778G1a9fgP//n/1xM+qE+8R2NKckmAdtCGq+S8+JymGL6p0SGSc9rcqGjLsnB/7a+oya/BDwqWrvPN8tOd5biRCzahizL1MlYqS6p7LQc3n4cvvfxjYdYh17KV2trtIHj8bhYjV/2/ssy+mXVAYxvXKUC+hlo03gwzglyLqMPlOSQYA04qUz06H9fQG4lHy1wBVk8v+l0CkdHR8XiGKzfkPKssoSmt+hkC3HsI5Bc/VfyI+gz9Dtc0IL+NBI4tE6rGpM+HarZD/xsnWyn489VbixwrGC+dLIbxxQixKe3lIsTwb57IiW9w0H9UGssY+nDsfVt9Q185JtmF3lf4n3e56vE/pbaJ/bFi1J70neV8pPa31VGaDzlGwdSv3P1WT4OpCN7ud6VxgHa7KoXUGj1C3BW3zUaDeh2u3Djxg24du1aobNxQY9WL5Y+7Brf0rjS7qQtC9+Y0OqJjmXL4iaq/1x6w+eHu+IcV79Be4DHg+OiyF6vV5yo4Orn0vdVxNgp/ajQGG8VqJKX4OXg/y6/xcdjlcGq6jvEBkp+iIWvsL6Ly764+Aj+vPYZn3XpWJ+sVA+hbZLicE0W6U5XbaEF7+/IsUonSVD+1fX+Enw6U+JSLND0L/3d51O4ZJXKs3I8+J3PPw4Zh9q40PqWNda3fEe/d40VCzfA+0O73YYrV66cyQf/TSYTGA6H8OzZs6WYSgN9NkbPST4DXSRC5dfGpkVGX5qgO2OxYMy8KqyDoU4F2iFfpfeKhdTxtfslAF4aF6nDTyYT+NGPfgTdbhfu3bsHz549g08//RTeeecd+NrXvibmR4Mxl0J1DbAqArTU/eMi9DX6zrgyazqdwmQygUePHhV9BY8d3draKo7vzPO82OmMOxe73W4xOS+VxYMneg9ObHtyg1OGdKK6ledDd8qh7D4CSho3VZILGrhTkapvIiGBqwPxvf7P//k/8NOf/hR++7d/G9588024evVqsQNAwwcffACffvopXLlyBfr9vtiHpLtSXfD1CWtd8HScKHM5gBJRg+9ASUctoI9xbtGB6na7zp2rVljqCYm4er0Om5ub8Lf/9t+Gfr8P/+t//S84Pj6G7e1t9VmJpKS/UcdMI7h88rtAdYglSHTlo6HVakGj0YDhcAjNZhN+53d+B+r1Ovz+7//+mbR0l+FFAtZfzBitEovFAvb396HZbMLz589hPB4XAbTV9rhIGxp88x3xPA8XITSfz2FzcxM2NzeL+0xdd5hq8qGMWFYoccvlpERFnudwcHAAL168gEePHhX3x0syhALrFYkJn1+aEhZSSpLB5cfy/Ol31nZdN9B78rTTQrSjGS8KXHqc74R/9uwZLBYLeP/99+Hx48fFuJGussA6QyJkPB6L17WEwmKfY8lKC3zj1GWzs+zlDvVms6neB+WSM0Ufi/GLfeX66hhX+tMFQ3QhTshOLUnfuJBlWXFUYugiR5S91WpBu92GdrsNjUYDPvroI5jNZjAajZx3VlLfBp9fh3iZ6yxqBzkh+OGHH8LR0RE8efKkOA0IAJYmon3ktRW0zqR2xqtdpDQuX1mb3FgleNwTE49JeUpp8zwvrtLCjQAnJyfF8eCTyUS96zhkAoraRbzHHHeC0wXuKJOmJzhf4vJPOMeQihepEquSyeJLcs7xIvotErguwP4I8HJRB/XttaN1y8DnI6fqB9Q39eW7tbVVnOa2WCyKxZCxwHJdsRavX9xkkOJ0nlS2JqbMmPareuxXceJRFXVqmUgEkCeaXfJgvjQO6XQ68MYbbyydYjiZTIrFAL1er3jGJwuCH3eOkOpfkrdery/tzEVQGfL85UmA3M5Z5bTUcdBk7EUzFOflCJQp1+IYXpT698GqYDTnN89zOD4+hul0CtevX4fZbAb9fh9u3bpVDKbFYgFbW1tw5coVOD4+PqNUaCBqIc25PJKC0iY0aBqen+/9fb/TuuRyhjj3rrQ+5etK4xoT1HnHtuj1eoWjgAqdB810Bal2vx4tXyvbhap0ni+YoX9rQXCZ8kLziCGLJKTWxfQeQnTqj4+P4eTkBHq9HsxmM2g0GtBut2F7exuyLIPhcFiknc1mMBgMCkcAA1esc5zETeEMaQGB1PYhjg9HrJPKx6g2OekDTsbiWE7V5lIb4Gc8ghh3RuAdFKg/6HNW8kUiaujfrjYp6wOkBp1kyrIM7t69C81mE3Z2dgoCE0lR2nar8DVcfcTSfyQS06XrNbsY208tMg6Hw4J0o+QpldsFH6HA+6krLc8zy7IlAgHv17TWJ83fStjFAOVFYhH1uDWgdOWJf2eZflcSpgHw+zna92hTsmz52Fw61kLGXEgda22IC2YWi0WxQ57rvqrg8qX57/QzTgBIcmqxAv6ful9KwLiC34FWBlI9oU7p9XpLi55c47/dbhf9kBLBKWDxly3t7HtW0vlcBvqZEsAcdBdkjM+k+eihKDPutTRSXWhklg/ae8aOJ+1oZFdf4PoaTz6p1WrF8Xbac2jnsiyDnZ0d2N7eXpqsoicC8PdaNYfEkecvd8BPp1M4OTmB4+NjGI/HS4tuQ+2SKy3Xu7TttZglxoaFQPPhyrSPNbbz+ZTaMzR/3MmGfXY+n8N0Oi2Otdd8DqsPzGMU+llqv5TtZGmDqviUdUaj0SgmIABetgv6f1ofjunbVeqpWG6QpqUL2qnvhro5xXiWntfqVvrd2je5fXD5ADwt7owHgDO7/yyxliQzPxlIkoVzpnTSKtaO++rW8kxouS6+wJpW6rursCNW+PKS5A4t32VbpJjJlb8r7gKA4jS7er1exNd4yh3l6bQNVa68JTl87UHto5SWvjPfuOJ651gE74ylQqQ2qKsI/quGZkx8jnLq916XuuRyaLv1+DMcdAUVJYqlybfpdLp0h8pv/MZvwC//8i/D7/3e78GzZ8/g+Pi42GnZarWg2WzCeDwu7m5YFVIGe64g6bxhdbCyLCtWjR4cHEC324W9vb0iUMnz05XbMSupfeXSYNO3qqns2ArpY9quH+0uWf4sNySxWJe+RMHbAcfycDgs7hTc2NiA2WwGm5ub8P/9f/8fPH78GL73ve9Bs9mE7e1tePbsGfzgBz+Ak5MTWCwW8I/+0T+CbrcLAKdE59OnT4v7faTVUalRlgSX+nAI+VlWJ+V5Dv1+H+r1ejH5zfthCuR5vnS07snJSXF8eZ7ncO3atTNHQ1J7YV25qI0/GkDGyk/vFEwJa//Z2tqCv//3/z58+umn8Cd/8ieFXm2327CxsQGDwWDlNlFCyokMa7qQMl154/Hpz58/h8ViUZDF9Fh1ngf+TXcp8R1xvnKt/dvnl2LQxMeSNqlhhVTP2vtZx1is7qLkhO+EjRjQHUP01I/5fF74qXQCdFXA3YBHR0fwwx/+cKlNms2m996qsvAF07Q/0PLb7TbcuHEDRqMRHB0dAcBZQkvKD3WZdtJOCiChfvXqVdjY2IArV67AYrGADz/8EGazWXGCR+xkWgwo2ZBlp3eto/3E8U0nI6lfaZU1RiYOOsGSipSlk+LaQs0yk7EotwSu060TZSnaXPNXsF2pPveVLb2Hq0/4eI6QHbcITV6ePyX36fe4Cwjj/H/yT/4JfO1rX4OtrS3o9/vw2WefFTvLtbvBUiL0/XHB3P7+PvT7/eKIfnxfqX5CJkalNrXqHxxXGpkZihAfDBflaGWG8CL86hWNpJX0BK0rbTzT9tjZ2YGtra0zE7L81KJY4L2kSHij/2iZpAod26F5xCBl3L1qbvTmzZvwa7/2a0WZjx8/hmfPnsH9+/eXxjAitd5ZFy6YAnVWvV5fuhpDS+uCq0+GTh6FgvZ1X7tZ9LF0z7kEXNSRZVmxqI6Wry3swGepvZAWq19EWMZN1eMg9Y7YqmDxdUP0OJ/Y59deYX8bDAbOk6wWiwU8evSoWGRW9h20cmq1GnS73TPP00liOl6lKy80OWKv+zJNxlqD5rKoaqCkCuxiy/UhVC5LemsnrbpOfARJiFOL6Tnpluenlz6jcT85OYH9/X3Y3NyEbrcLGxsbAAAFwQwAxa44NEyxg9qHMgTbKsm5mOBagisw8uVPA/X5fA6TyaRoL4DTY9XwSNqtra3CkUXHg+/mcvUxV9+npFDoO9PvrMaM1xmXm8vjCjBdZWp6MDUZtCrnn76zZLjpEXxZlhWTtfgMGs35fA6DwQDm8zk8evSoOF4XQfN3Tc7Fyh8CX9tr6X02kP4u6WBtPEh9FeuLH60t5emT3/Ub3b02HA7hyZMnsLGxAd1ut3AG6dFBoRNaXI4YXcxtFc9rVUQ3rf8sO91Z1ul04Pbt2zAej+HGjRtwfHwMR0dHZ8j4qmWrAhZSaZX+IPZFXAkqEdySvdJsGH+Wfxdif+gzuMMc+wjA2T6s6QcJPjIkxrfg9SP5HBIBKj1rJVolOSyy4vNUDuwL/Og6zS+RfBoNMeMVd8Ri3j5/OIXtC/WL+Pd4tBXvExrZnErf+mJebKtOpwM7Oztw/fp1WCwW8NFHHwHAywVyloDdVa/422g0gnq9DgcHB8XENJVDgkYsxIzhMmm15y1xX1lI446PUx9CCN9UepDq3xC9QJ+P0XH42XcMIo9Z+G/4v3Tlh8/HlPLCiSzXEY2YlvqCyBW8ePECDg8P4eDgAE5OTqDZbC6dxlQVLD47/y7PT0+MGo/HxRHjGnj/pmWGyGh5xkKaohyh/ADtE5pfhLFdlmXFCQ98UkOLsfGzZQxrf1ueRTkxLhqNRkuneSH56/IBtXfhoN9xP8Micywk3yWV/U3pq1fp99N2Bni5EAQXheOx8DiRRvWhS1ZNX1vimCrfV2pXGn9g2ahXkX+xTlxypIqdLb5VCKz+FNodOvbpblXNjrnGlhZLWN6Hy13Wl/G1iWZTQtqD6+sU3IxVnrL1c97g9ihVnq42zbKsuA6Cth0ueJ5Op8VkLfpz/Dh9yzshrPqB6lyJJ/RxhZJuLtP20TtjL3HxUaWR9pXLBwKAHBBaBtRsNoMHDx4UO9jG4zHs7+/DN7/5TXjrrbeKdHfu3CkmZgeDATx69AharRZ0Op2lMsuCD94YJV2F87lqI1GWQOn3+/Ds2bOl/LIsg1/4hV+ATqcDf/VXfwWj0ajYiddut88ENRpcO0slY79uwDEjrYjmztyq23/V9bVYLGA0GhWfpVWWSGTg5D7ez7O1tVXohNlsBn/0R38EWZYV94/S1VONRqNYXU8nGlMjhXGPDVhcQRUNMrmcUj79fr8IwHzONv4eMn7p/UpPnjyB/f19eO+99+Dtt9+Gfr+/dP8b3+EZszuqrD7jZIsWPFUBuugoyzLY3t6G69evw7Vr1+DWrVuwsbEB77//PvzP//k/i2fonT7rqANdSEH6VNkm0g6I2HrmMuOYowsifO+CO4fQnt64cQO63W4xwWMZkxyaHfW9p2ucZdnLuwbpjj4+mULrlfpjIe/A89SCPu2zlEcM8F1RhlRjMc9fHpmMZHaWZWdWyl8iHNevX4d79+7Bu+++C9PpFH70ox8VO2O1e0lDgPrj0aNHAADw0UcfQZa93CGHE1RloU1Q+sZC7KSFKy+aj0ZGx4wNvjiiir5f1nfAPLS8rPoZYx46Ia/tmrPCWmeoXygxj4uTaF7Wd0C/Hxfl4m8ScCEUjrtHjx5Bo9GATz/9FJ4/fw4//vGPIc9z2N3dhdlsBsPhcOV6kNcj3dmIv3/22WcwnU6LOuN+BLUPku3xtTE9QpTKZZE5xaSQdSxzO7i3twetVgs++eQTmM/n4kIy+hn9JF++1t8kSPnjtTjHx8dLkzDaZE7o2MA02Hd53GO5fkTTL5ayX3e/ASfaaGyK/x8dHcHDhw/P1FGr1VIXv3L/luO84jL6bhJnQP+u1Wpw7dq14qjm2WwGR0dHpSb1NFA+7Dz4Tvo/gvphGxsbsLm5WcTiaGeQW6E8lpQXBy6k5HDFTwBn78RMgZDJr5TlxUyqXiINaMwB8FIf0AXn9Xodrl+/fuYUi16vt8TvY37SySnSnFGKfouxtbb4jp+W4erDPKZzpZVkTzIZe9nhT5GSJKki33UBDgA01tQh5c6pyzGW8szz06Pgjo+Pi50+AKcOwJ07d2B7exseP35cHFNK78nSHHSpbC6fy/hZ05YJiGketGz6P/09RpH5CBiahr6zzzGgf/N+0Wg0zhyzc3x8XKwsRQePThrxgMNF2JRR6Fp7huaptTm+AyWg8UgS/J0GdNT5tQRGVfbD8wTK/vjx42JStV6vLy26QODuWdxxDXB2DOX58k4WbeUiLVv6zfq99C48vbVttfGXghzUyqR/UznosauS04bpXPlKwH6f5zkcHR3B/fv3i3sfx+PxkgyNRuPMuKHlWkhOmp8WKFsJKl9ZKYCkDMDLo7x/+MMfwpMnT+Bb3/pWcWR/u90uZI45SvC8YfUVQhDTjvQ52qa0Xn3jU+pTkgxl3o3aTF4ukuWbm5vQbDbPBPzSeAmZoNHeg9eHVI+abbcShi45Yghsa9m44+rg4AAAYOmYYp+/IgWnqVFmMqYsqK8jgX6Pi6ToMe9af0hVT6H5UF+MxhTWyYZQufjdtC47NhqNCp+GL7aJ9V0tPr4FKKemO1zlSL4SjSskv04qX5OLy+LLy5Vf1Yj171yxiPS36/nQ8ul1Fr5+o9kfF39Ax8aDBw+g3+/DwcEB9Pv9ot/hhG2VE/Ncbukz1xOUp9AWyNG+LuVJ01nb0PLZ9w7a99ye+/xxGot1Op1iES3A6alZo9HIuavFZ9NjfTzXu2rP0X4e4rdq41Dy4bRF2ZpM1rQhaazcyEWLNTgoZ4VotVpw584duHHjRnFPcJZlMBgMiquU8FmAsz6/xkXG+KdlEKL7XX2ZLyzABVAhd8VWpY9j/R/+vC8/9AfpYihaFzwPPq5pvqHHC8fExyH5xyBUZs2/tTwbI1cofyM9U7UPaPH1LHGHpW4tNonXQ56/PLmUpsM4xCcXHQecO5Fk0L7D9PyqS+k5l0+ilevzKXxttDQZu+pO9DqirNJ/FYCGhO7UwUEWUi9aRx+NRjAajeDJkyfFBEu9Xof33nsPRqMRHBwcQKvVglu3bsHh4SHs7++fyXfVTqNL+Yf2mZQkVAqEyEJ3fOK/yWRS3LWX5zl8/vnnkGWnu7uwfXEXECpavGcWgXXiU6SxDk1VwHHS6XSWdjoBnB1HCO0ovHXqE1UC3/Ov//qv4YMPPoButwtbW1vwzW9+80za2WwG4/EYGo3GUl+idYdHd0plrBKolyxkM+/vUtpQ4iw0De+TuJuBHstFv8fPEpGgIcuyov/XajV49OgRPHjw4Ewa/B93z1vug5SIYdf9y7E2nZNHKfsW5o028fr169BsNuF3f/d34c6dO/CVr3wF6vU6bG5uFpOxIUf3X0Ss8r24T4M7NiyEM+p67T5D+p3v+EgOKbihwFNGrl69CpPJBPb398/0fTo+XOSwdVzgGOa2iwd71t35HJYJFSxbap8yPjvqqclkAh9//HFhy7EcyV7z58vKsG7gJCT+8+1YarVasLOzA3meF3eBakQC75cW4oIjdHfSKoG7DNGuDYfDpd/p++J79Ho9yPO8uJeJ6nqNiKgSLv1khTZWUZ+47qSLhVXGmD4T6ptJstBdji6i3FUu9zetcXEomekinkOe43JK+iTPc/iLv/iL4nOtVoNOpwNZlhVj4jxPB+C6Hhfx8JhWegYAzkxuWNvAuhDdihTjWsoTJ2OvX79e6LfPPvusWNjk0/HS8dj0OdfzZfSij6zF/Pn30riTSG8Kfge9q20l39EVK17iLOjRs4jNzU341V/9Veh2u8Ui2Hq9DkdHR/DkyZMzefBxK7VZlUenl0VIn0H/N7VdtozPlH3Z4k/SiVd+XyvAqcy4k9qXH/3NV3cx9ZBl2Zk+pk1qlUHVk6mX+kqGzx+I0S88PpfypDtgtbbXrq6QTuuIAfIolqPS0f/DtBaUlU+djA1xvFOiyiAwNEDwISZgjHHwq1CG6wJpEslyfAsFNWKTyaT4/cmTJzCdTuH27duwubkJh4eHxepJi1zaqomyQbiFWEsZCKbKK0QfaO9Ix6AWeEhOHT12CJ1WeocszRvzwEkeqfwyR2b43i30eU0voeHE40twMomXNZlMxElZi8yvIiQiazqdwv3792E8HhdHBeIRjQAvDTM6BJ1OpyDxKGHOwduuKhuj5as58BK5iu9nkZ/rYQm+vkRXveIxqHRc0rFOCUM6Ge7rz9pnDkpOSJM5GpnvImU4UekCfU8feL1Y8pee9T2PxBZObkg7x2OwSiKflwvwsi+5fAerbS77LpZxRNPSv/kEVQixGkuOYxm4YAEJE+3Iapfe0WSRQOub6zRfH3bFKr7yfTGP1I9ibSjmhQtBqJ/i6rOaHCkR0k/LloPQbJs05ui1EjjpOBqNir6plUHzRVh9P2wTbB/fZDlfSITfSVdJnDeoH63pFUvcKRExKfoQ9ncrQUnfAfUlwMujXl2LqKh/V2aMWWxL6jEcSrhK+pL7MhxcN9N8pfbR4jlsg1arBa1WC7a3t2EymZxZQBADLKNWq8GVK1eg3W7D9vY29Ho9uH//fvEb9guqN6js0m4jX3waA8l3lMYP50fwZBeXrtTicVf/tryTRUdYYPENLGmk8eaLgS1jXNN7Zf1A/J/HYlrcL8lC0+DVAgAvJ7c0WSU9zf+2xFqhvp8mQwiqiCdS58nfrdlsFv+o/ac+BULiF6g/WNYuhSCkXqS+w/tKt9st6mCxWBQ7glP3EVe/dCFUF/AyrTEmXoeXZac7o+kpjmhzYvwny7ta4h8eb1ryj61zCzRbY7VfPK2mUy0+bihCYtHQekvpf8TKQGGJCbT8facGaXVllZfnQcvjdpPLqckllSGNW5+sUp5Lk7HWBnIpjVDy0CLkuiK1Y+vK83UAJTNC6oH2Obrj6enTp3B4eAg7OzvQ7XbhxYsX5slYzFcjAF0y8DShZ4e7YHGeNUgBXIr+5qoPazmSkaFBC52MRWcOJ2Nx9Qqte0qOWR0m+r0Ei/MRG5y6Auo8Pz3mASdNeFq8CJ0Tu1qer7qOkd5zOp3CgwcPIM9zaLVaZyZZKSFVq9WKYxBxtTWdQLSgCqcpJg1/N5/DT9No/ZKXJxGdqMcBoLjDCSdjuWNMv/MRllLbWo7URSI9ZGer1oah48flWGqI7T8+PcLLwDvbtre3i4UeZbEuPpxFDl7P1vb22Q8rgcvHGwUni12TOhYyx9ouWfZyMhYnZJEwwKPGNbjqCn+XxrhWB/Q9tB2x2rHxvnYNkT+lzaSTehggnodt9hEYqwK1Sdr4wX9ohweDAYxGo6UjRV15I2J8Zmwj1265LMuKXbq0HCQhqyB+y+SJup/bJqne8XveNmXvGuXySG3Pf8PfNVtN02or7Xn6FP3eEjecl/+ttamF73HVjfY+Up8BeKmn2+02bGxswNWrV2EwGIi7xKzvw8ut1Wpw/fp12NnZgS984Qvw6NEj+OSTTwodi6ctSRP03MZIfnBVvo2vT2Bd0uPIXbZd4+YsvnWMbJY+HVt3Prlo2ZYTXUI4FJfvzuMYHyzlusqj5dLd3ACnC7LpSSp8bGs61BUTluGapDz4O1jzrWLMVR2jNJtNaLVa0Gg0zhzPSccxfmfRv2V9GQss44HL4nqm2+0Wx4kjn5JiN2yKuijDrbh0nlRHyN31+30YDAZnFhFyX4v+T/OS8pbiPss78XeQbJ+GUN2H6Sx+kvaspc/RsULfR+LgY/wwV/1r7RXCIfni51g+Suo/mm6WEOMb8DbgwKuQMA/pKhGtLIsvw+uenwCEZUqn5NH7bTUuwec/h/YvdTIWCz2P4PwSrwforikXCaBBUn4UeMfKT3/602L3ZLvdhi984QswnU5hf38fNjY24NatW3B8fLx0dwxO/sWMAV96zSiFBBGufC4qaHBAiSJ0XrG/4OpggJfHGef56ZEC9ChfDFowb4SP2LHIGQqpHIszg++Gq143NjZgPp/DZDI5kxaJSVffPS9C6DyA70qNLR3bAC/rDPsJv7MYJ2Vxx/1Ftol0dxHAWWKSvpsWALqAedBdxlqgid9jvw45DsQFXI2McBH1GoEVQj5pgQ1+Rx3C8x572Dahi51eNUgOOf0Nx4hGhMTYXMsu81arBfV6HabTqRjE0InQMuOUlqkRdb1eD8bjsTpBz3UGrytXcBLqt/BypB0lFn/RgjzPYTgcqu3tIkVSgdbPOh9Ld4nzBZIdeZ4v3Y2uxU/4N+/fLoRMGmgyuj7HQLK5dDyiP4c6N2QMaTEl/u3bVW0htCSdbc0f05atR95H+IJWF0IJefQ58F76vb09qNfrxUk1mBffUW4F9kU87UYjNNF+TqfTYnEgpq3iGOtY8D7Nxxq3txxlY5RVxMOhQE7AN5Zp/Gbx43ndSnc3Yvk+olx6Rvrb9awlv06nI3Jms9lsadG6i0fjcYkma0p+iZfxKnFXCLqwbjQawV//9V/DYrGAfr8Pw+EQBoNBscAbQeNl1H0uu7uuoONJmzTCxZ18wUAIUti+2N/5mHGNFWrDZrMZ9Hq9M3bGspCUp0/RB9DeWvLi74qcfQhCuZYyfqN0TL9rYk+TNeSZUBlTIVSPuk75iynbCj65CWDjB2Og6R/Jx3Pd02zhFKjfWhYN149lCIfzJh5dSEXc+PKnsBKymhF7FUHJNa0tqLLRFKxGSOLdhI8fPy5+29nZgS9/+cvFGf2NRgO2trYKggLT8TsgXI6t5T3pcxJBwtNqeUjfu+qOlrHKfhRSVxK5wklXmg9tF2wnbEuucK1OX5V15Aq6eP/GOsB3ppPQSJpkWbZ0HDeOH8055O8U6mRcRNB35DuRKGjQirtfEPQIbJ7nRQW+q+ZwSjo11JHm+Uo6HIGODHXWfPlJwHwbjcZSG9OdUyFEqSsdHafSb1K+PvlX1be48ygRe7SPcIfZ6secB2LrkL4DEvnYh6Sj7q15hQKPNOU2DFfX4/HqqKN8fdpHfvEAG5Flp3fnIWntG5c8j9g7XSXZNd1T1XjhZGzIuLXqQ9d3Fv3zukAjDajOChlvrrhMI9WkMWP1aVHXUnIotb7E/OgCRKq/pfLosVzWse2LXSzvFfLuVsJI02m0vrkeDJFBesYVb2n9yAVX/pIfZinDRyDRPNDeWcYUxiWueJjLh+Og3W7D5uYmbG5uwnw+hxcvXiwR8/hc6B1hUnzIOQVMg/5gq9VaOokLF7eu0g+TxhKvV1//DimPl6OlicmXQypH6i+u7/j3/Jh4SafyxbQ0reRL8HTUv6flS6QtzTuGG/KNUSojfcdms7k06SrJQf18zi9I/YqX60LKfnLRIfUxehT6kydPYDKZwPPnz8/YavoczU9biLLqmCumHNq3qO4HgOL6ITxhROrb1jIkG5NCd1v8NIvNlfTHaDRSy5Py5TJoslm5kdDfLKB6ymULtDiO5sHbMFY2XqehfBXASx9EawNLuSEIaSMLf2uxLWXhK5fWPeVUpOe0RQla3q5y6Xc+318qQ+KItf6q+WIxusg5GRvj9F3i4iCVASsLNNBI/PEdjpJC5HJL9znRe4MATp2gfr8P3//+9yHPX16aDgBndhpyAxK6upoPWMnBCnVEQpwxV3CwjkS6D+jU4Y5ZADhzFwc9Jg4hBST4feq+LxEVtEwriedLhwsIkKTf3d2F2WwGn3/+ebHSnMrE5aga66JXJCDxYhnPeMcJJ8Iu4vjRiB8KFwHgy5s6JryucJzSIxxxEYW2k4HnzyfFNKIKd9rySSS+G1Qi/6Ry+d9aECj1D1/QVhXxoZXJ5UGyAO+Lxfbp9/swGo1gc3MTut0uHB8fO+9LfJXASdEyARaHlBcdI3gsMB5vNp1OYW9vD37913+9+O7jjz+GDz/8sJgslYCBf57nSxO3fGe8b9Ixz3Po9XpLBJ5EhMQQKpKNoOPX5bf4YLWzMTKmhNTXXGTQutrUWFjIG06GY99++PDh0kIb+gw/3tt1NL0LmCe991XrEzjWsMzj4+PilAZ67zKNOaqGr/+iTqALFrVYS7KFodDqzZfWQvjxeIveEe/KP8uyM5PlqfS8a9LD8iy3P6ExC/dLsL1TkIYWYpPnjfGbdvIDldkyRnBsoh1899134erVq/ClL30JOp0OtNttOD4+duZBd1tS/7UqXRvSnpZFQZqdlPpPalj8dimtNMY0gjnPl3dh4ZVFo9EInjx5UqTDXaFWu845GfQ9JJl4n5QIWx98fVqyXTS+oOn29vag0+ks9Y+joyPo9Xpi3q5+bZGpLC5SnBwKGpvOZjNotVrQbDah2+2Ku5epL4K6mF9TofVDCefFtfj8AXzXk5MTGA6Hhf+TKo6MiTmsiB0TGk+E/hXWQcgkjksWy/UmnJORynHJQfssLTMkFgvpn2XbNMteblgBcJ+MBvCSQ/a1ayhC7UMIXPKU0QfamOJt6KtTyhVI9Uv9c+15CZZ3cz2rwXI/bMhpGbFQjymOITS4wxKKdSbxy6JMo1VVl6uoa4scUj8K6X8uQ0R3DaLT9OzZMwBYXoHrI/o1ea1GTqsHlwKkefiMrhVV5RsKqc2lNLR+pP8pyUz/WRRliK4KJUHK1KcmOzp0eDQzPZJ1Pp97CUOXvCmxKh0eay80Z0L6jgcP1vGSgtBLVY+WAIKPBR9x6tJ7mo6h5BMfq678pQDF5XShTpCOddWe0crTdLb0nU8unm+VwaT2DjS4ms1msL+/D+PxGDY3N2E2m8GVK1dgOBzCeDyG7e3tpcDmVUEIYYfg4yJF23HSHidzaMDbarXgzp070G63oV6vw8HBQfEb38nPZbf4RwDuu2j5HZgULl0RA63O8TdJ57jsvI9wsMqUsv9LetZFzrxqKFOXWEd0d4WUr6aLY9vS6rfTth2NRtDr9eDg4GBptzUlY13jMraerH1IGltUX1jHTowd8+lQLf5yyae1B/c5JDmk8svoCy3PFPmEtK/U/1McqRZbNzhucTFkWZ3HY72trS3Y29uD3d1daDQaMBwOYTqdqn1pHfSutWyu69aFK/PFDTFjyacXkMcZDodLz/jK0ngE/NvFQ2lcAe1DFr7NwglxPcc/t1otaLfbhV1xEds+WVzckwSffottawtHmNLPTDl2aD+hcS0ALPkqvL7xs2tSzdenLe9Rla5wcXb492w2KxbguPqOlU9xcRDrCjrWJO5J80tctpr3Mw2az+TKlz4n/e7a4SjJSPPlskl5lOHWqHz4meoY3n8kHW+RwZKuTL5W8PFmlU97b1c6VxqeXuon9H+q+7gM1j5tkccHl/3V0vh4lVg4d8aGoqzSvyjK9SJgXeoyRI4QpcVXu0vnj1NFUqvVoNVqLTnx0uQAv+QZv280Gup9ImVRJvj35XuRgcSbZhBwVTNOUDabTajVarC5uQnj8Xhpt/OqA26pP1pILvyO72ICABiPx/Dw4UPY3NyEa9eunemLWN5kMikuR0+FdQn+KULloau0+Gp4Cb53rmrcYt4p87GQhBb96zoGzPes5nBlWbY06YOEAz2SFX+THCGqw/F7fr+U636KEPDgAvsIEkSulb8WIj4FXH3n5OSkkLfX68F/+A//ofj8jW98A/7Fv/gX8Ad/8Afw/e9/v7iD7VUH9wEAqr2rk5J3UiDjurZhNBrB4eEhbGxswObmJvT7/VKrzev1erErmu5Sp34PAKi7cCVQIgp9Ki1NDIkn1Q3WGydGaf6xRE4KvbGO9vMSNnAiFceGRqzWajU4ODiAg4MD+OSTT4p2bzabJuI8tJ9IpH0sOGGC8vJdZFTOWCJeA5YnHRGvTVQgyUltbAypI/kS1N+xTrxYUabONBmk762LAFzw+VA+gm8wGMBoNIIXL15AnueFTZH6mAXUVvLyDg8P4b//9/8Ow+Gw2EWI5aG/qdnNqnS1pa198SH9nZ4KwG2s5I9XaX8km+uDRHJSubkfJF2ZoNl1F/mPv3GfhvteNG/8n8sU4xto+lMDjSt4Xx8Oh/DgwYOlU+SkCR/p2G6rHvDFKxZ7liruSoGUeSEn2Ol0Cv4Jr0ajC4IluxRab7Fyr9LvRJ8Bd7BLMlx0PzgklqB2LhZavGOVT/qdcyMSJA7Sx4dZZUQ5NEi7xjno0bc8P+yHLhk1G2FFVZNyFlivlbBC8zUkf8NV7xosJ+BpvEgZYD786jKXDNLzvnQhsmh5qJOx1GEI7aA8kHHlf55YhZNKy7roRig1uEGjRD9+ZxnAviCQAo8c09reFRT6lLfV+EhOsW+ghuar/W7JN2bsVjnOeR1LJFisw1/VmPT1R0uwzANTdOzoSkt0fF35+36z1EFK8uk89S3VLUj2+erK4oCugz0LQSwhRxGqs1z9jo5hrd0k0tkXlIQSEKF9U3PuXf3ivPoKddzxLuqjo6Pi+xcvXsBgMCiOisX/L6LvItW/j+hcBbje1+SkeqrRaECr1YJWq1UcxY/f+9pH64e0v+PuZ7p7z0IaWXSjTwdL7y7JGYJQUjhEhhAyQisjxF991cB9mhD4+jj/Tqtb/E3qvxY/1kKi0qNYs+x0cRFt8xh9GuLTSd9L9panq4o41/K36C4NVjklTiLUB7a2V6zOqQJaG/M0EqGn2aMQ8Gf4hLkV1vGCC3MnkwkMh0M4OjqC2WwGnU4nyK6cl88TWx7XZRaCVkrr04WuOFyTqww0eajM2rtafH2ss42NDcjz/MwVP5Z3cNkY/ruvXTSdhN/zk7BwknY8Hqu+JM8r5B3o7zE6OsRmXnRQPgYXfuBELdeftP/x7/DvMrpgVfwKgK4jpL5exnd2IcX7Sm3iSuf6nfv3oXpTSivpQj7efTZNkkeSX8orNHbWYjCLzPydXZ+5T43+RYgO9I3H0O8sv4Wk4bD095B8fbESTye1KW8jl+8Q44eHxMuSLGXibasvFZqGf5d0ZyxCUyAhz79qxvtVe5/UQEeGkoy4GzVk54fr8mXMv9vtFt9h8OaSyzKQfYQQGsFV3x27inwwj6r7ONYdP6KOAh1g7a7Y1NCME7+Hy0V2SN9xBw53ddO+incMbmxsOFeQ0TrgRMiqHPcYgrwMLORa7LHOVUGSowrZYvP0BVP4u7Zjm6+mw2c00o473XRM0XwkcB9EOjIF87XqBh+5gDLyZyzPud7FCkv/4bYQ72efTqfw/vvvw1/91V8VK7qHwyEMh8NoMnYdEUoSxKQLlceVN94Jvru7C3t7e/CTn/wEAE6JuU6nAycnJ97xzMcd/sP239nZgel0CoPB4MyJEqHy07qVdmO4QMc4H/+8TOl3ifiyvoPUJ6RdDdb8XLbYR8xJn7XfLvK4RPvrmpyhfVULqrHf0J1i+L2PfMJ0rjZeF/8gBWhdYP+m//Au95jd9qGT69wWI2JIW4mYA1jWCTiWsb+Ekig+W17Gjof4x3Q3qK8sy8Qnjb3591aZeHrat+h1QBK436jVKwe2JZaDR4M/fvwYer2e99257j3PMe4j63ztrPnYWt6pZHTJQ/8PgWtsYl9FeVxjTiKJAZb5g3a7DV/72tdgOBzCX/3VX4nlaWM+1A5LNl6ST8vr6tWrsLm5WZzutlgsiglkeq+5lIcWG5Q5Aeai28QUdh1tyWQyKdqC1yuNs+hCekke6e9QeaqGRTbpVKt17y98PGv2UHou5N20UxwlSN/Tce6LG1zvwPkP/qy0I9YVl/nexQU+gWrZYCK1B+pErg81pOaFuT1K0edTjx1LfmiDeTu4nsNxYI0D+Biw+uQStLgw1HfVgPo8pD5C38U5GcsDhJQd1+dErRIXPdhehzpMBUuAKT3jGniSk0O32nODxI8v5pMCPE/6WQqqLe9jnRQoMxZ9JCHPNyYYD8lfet5Xnlbv9O4UOmljrVdJTsu40si72PJdMlHSESdJarVacZ/g1tYW1Ov14ihS2l9dO0B9DlxZrIsu0pzfVA5TFXmsS91JCB1XvP59zrWmTzh5J/0m5YF/h8htDcDwbzrpayHQUjvZru8kshr/bjabkOf50rHE60BSlkWK9va9fxkdL/UjboPxNAQarIROJPDvaDn0jlprHqHvy30s7g8gkUwX4MW0mxQMu/IJeRfreA0NAEPsb2ryYNXIspcTn0iW0ONDEVRXS/0G07vGq9RenICSnqXl4T9qa1z9gPY7jDGqiJ/LgMsvEYPcntHfLKRY6DtLeskaK4QQYK4YTso/FJJe03wfXywREg+6QOPjUB/IYvuksuhnVz5lfQtuK2ezGTx58gT6/X6Rv+/0m9Qy+fKtIs539TOaXyqkGPOSbDRudfnQLr5H8nlpfhgvt9vt4nhZugAN+QO+OMA6FqTypYVCtA60eILnT2UbjUYwHo+ddUHh48m09NbfY3TmecYWZcvmtgTrgx7Ri/Y/VAdhniG6NBXKxkuSP5uab6kaUtuGwOXba2Pd5w9IaSVOS4snQv0dzR/X4GtXXo8x8Q/+jrJwvgLjSP7Olom+WP3lkt8ah1rLwjy1PmmtOwptvLr6n1Q+f47+zjdShJQZA+kdfbrK0j6hNtQVZ3FUsjP2IsJKtFzU8i4S6CrdsgqMK3wkN/GuNCk9H3C0nVLdPSghhcIOxToRRAD+yU2t7nFFVKPRKI7yCQlQXDIhQsYrXYEf218k56zRaMB0OoVnz55Bo9GARqMB3W4X2u023L17FyaTCXzwwQcwn8+XVobxI3O0IPBVhnQHxuuCEN3i6ve8P1v6juTUW8rVgO1H7/3VZEmhq3077mif8t0duw76lr4H7oLtdrtFXU2n01fqrtjYvh+ivyXiM3a80fLm8zmcnJxAp9Mp3Xe43vPtiuC6ko5dvtPcCqmOaMCMd0Uj4ViWBHEFrCGkJH82Nc7D9zsv4HuinzYajQDgZR3QxZDS2OA+jJSO5ucirmie/DmpD/r6PT6HO0xbrVbxjiHBfhXg9aWdQEH1HrW1fDIA8ykzPjSSVhv7XF5LfXGSjsoPcPbkgFi4/JqyNsH6my+ti8zl0IikEL3JYzeef+q+Pp1O4Wc/+1kRC2ZZVupO9VXBNYZcNszil1gQOklnjY1DJuto38QJLFdafs2Mi0DG3f7z+RyuX78OW1tbcOPGjUI/I3AiDe+4CyWJpbazTLJYfqN5zudzePHihXpNkfQM9eescZHVHr0uvgtC4xEajYZ4Eg2Pp0LGeBmk9Ces/YWizG63VSMmHoj5PTT+0HwkX1ofrLYf06bgUXygixc0mXDX63g8PmPbkSPFv/HY8FartTQuNVlCfFmr/xnazpZ6ttZlTD5Ut2FbaL44fca1E5nrRKoPtV24vAwXJN6G/hbbf6uwa1qeQZOxZQIKl7P2uhhyOnDLGKgYo4hYJ8Poanved1L2EcwP73XgJIUUQFCH3BVcWwy1RP74nrFAI4NDAiILQvVASFrr5A4nZGg5NPCIPYaHtzfmGUM8ha6O5KSURBRS9Pt9mM1m0Gw2i0lY7N/ScR0x+mOd9EZK8OC0TNC97kjRhjG6SuqzvrrmOlY6+jikfBd8cmifqQ7iOxeltBKRr9kXl3ypbaFE0GrE60Xo5wDyBIsvDX6npadI4ZNoMtG7ejXEBhe8j+FkL11A4CI1pTx8ZdG0+F6U6JTy4s9K6VyTH9L7Wn0u/v4x/o5FT4bY2FfV/mbZy135KQgfKX8A3d6gztYWn5QhMyUSlsrkknfVkCYdtHiHx7GuOIOP9TJjyWfb0eeP7UNU5pD0qSYrQiY+fGWHEssh8agL2B9csY5m92LKRr8qyzJ4/vx5sVg1pa5OAa1tLT6XBk46WtswNP6z6KvYuImWJfkdXA58ZytPoJVZq9Xg5s2bUKvV4Gc/+xkcHx+fibWx/DzPTUdeWmUIHbP4vpPJpDh+GycZYu2T7+QRV9zjakP6+6vqs0iQ7Cd+77MrITErluFru/NqA+n9q8w/db7cb6GI4RZSycV9K9e413SYlo73T02/Wjgb7RmJ83DJy3+nafhVdACnp+zs7e3BfD6H4+PjpWfpAgnMW1rE4xufPrligOVauIoYOUL4G+5PSOktMZqLA8R6536Lj1uI4aytaS3PlfVzLPGtczKWDk7tNx/KBLOrRtWyauRUVdDIRkmOUFligmpXPlQea4AYMogkxcvvRvMFAiHGiMsuKVL8ngaUmMZSvz6nzCqflG9ViCVjNAMuGXv8Pcvij6jCNpGMYAjRQYmoGLLRR2bleQ4nJyfQ6/VgY2MDAE4dE7xfttFoqHdMSGODp3nVkWWnK7r4/SYAr1c9ANh3/UvjzadbfM+4QHem+saepAd8OlTKQ5NV0+P4Ha7KpE6/Dz69IhFSrjRWuN59sVis5RGbKRBqNxGuoMnq3FtIOcsRvdxPsvquvC/NZjM4PDyEer0OjUbjTKBE0/pIJd9vNC9Mi/3Zt3vJR4RINrqsH8PHpS9gjMnfIqOlz6wDYuKnLMuK3dB4XHFqmVzAo4RDj8W2lIt6FBEyPjUbStNoiPWxXSvpKZkCELYzHvtF7A5UfE7SEZgv14W0XOk9uHyWd8Dntbx5Oa68Y20QwNm7VbketBJzrr5pISe1ZwHktpJkDek/0vfUXu3v7wff770qpCBt+eeYupTyLdMXJdk0HcbLCYmjAV7qAR8HQ3+nu+EparUa3L59G/I8h+9+97vFsdbSjhqaj0VOCp+OcHFOiHq9DlmWwWg0gtFoVEzEanliPi5imz9P0/raKMbOx2BV5cSCypfC3/SB2lBrjBHCWblsla9Mmnad28wCi32jv8Xwi7wczVeRPvMTwSxyh/wmTchJ7yj1LSmdaxcq7S/I10qgZfD7iAFOd6TfuXMHRqMRHB4eFnI0m83iBB58jzzPz/B9XA5NH7qg6XLfWPXVH/1NszHI8bp4KqkMLrP1rl6t7V32DOsd5eVxbUhd+9Jppyv5xoxWv1ZbTdPztD6ZlyZjL7oSvUhYRV3HOI8XHSEEF+4gdO26kpTEq0hQrwtCnEcK2k64s8jqKIUQ2THjlspAiaOY/kPrhzolWZZBp9Mpji1GB6Rer0Oz2Sz+n0wmF+LYrqogkfaXOEUqQibEUbLaKFew4tPNLn0tHUFMywxxDuk/FyxOoqucMkS9liddmMSDpFcVviAbJ2roKtwYG8D7Ig/2XJhOp/D48WOYzWbQaDSKVb/T6dR89KkkB5cHf0e/yHU0kRRExYCOFWn8uPJuNpuws7MD4/G4IFIt8I0dl/5IDdoX8L1dfsu626xYuVz+EG+PEFLJ0i+lfs4/o42wkpFlUGXb8n7O624+n0Oz2RRPeIjxGTEPejIMJ7xc5F2M7XXpplarBd1uF8bj8dLuSavdlt6Ny3EekPqvj9i15BnjU1j8Nfo5xZjCPNBev6rXkPC+DWAjfH354bPSzlAOl11M0f8t45Df362BHjk8nU4LHba3twc3b95cuiu21WrB3t5eoevQ5xsMBuLpBpT8ljgkLl+sfy+1B90RaxlDIe1E8ztvP+O8y7eC2g8cQ3yyAaDceIm9FuSi1OFFRSqbr03euHw2LoNLN4f0A6sfjTK56sDCcfh8BloH8/kctre3YWNjY2mM5XkOjx8/hslkcqYeqD/AJ3Ix/xCfIfWYsk5Kau2fYp7HN4Ho4j20ukN9yPlvrQ+H2EgNUlyj2eCYeLFKqDtjfQ0calhcBv5ycqs8YkhCKQ8K66Sm9GysXK60WhlSYKLJxRWf9ex43CmkyakNbJex4mMiNqCyjj3fdyGyhAbr1j7g0hM+sg7rgh4ZmjII8j2jpeF5+gyuJgOtmyzLllbI0nfF+xHG43FxdxkuPKDOSMjYXJcAjSJW/pjx4sOrZMNCHfeYPuHrT9r3fDxp49YXBEhjS3PiLKDBuJWAsQQymh4MrTdNHo2Ivkh3/Wiw1pMr8KH/LEEvfufrPxa/AACK+8GzLIPNzU0YDocAAMVOQquvY/md7oaWFqjx4DtF/+DBkqXeAE5XQm9ubkKWZcVkbIw9kPLmaWJINF9dS8GvRgq8CjbFB003SeNEaheXvqf9gvdfvjtQK8tCKtF8LOliEJun5ldSWbl/6SrPKoekOzVZuB7QyCcJ9PgzidwCgGKhIrXT+HfIO2nw2QVrGgqpT2q2yJon78uhdkJKI30XE/uXsSnY9jhRtq733pflQ2LskSt/bnetfdfnQ4XIYM0j1C+v1+swm82KvlCr1WBrawt2d3eXFkY3Gg24cuUKTKdTGAwGxffj8Vi875MT/C55pe98frpGKtP2suwU5r9bxramPzVZLUjlM8bGm2WfdeWJoLFfqgUhVr6ySlh85fNGFW1L806Zly/O8Ok4HvP5fDTug/Hfted878FlceXhy1PyPaU0eZ5Dt9uFq1evLp36NxqN4IMPPvDqal5f+Hto37H6RDH54TiXTi6RZLX0AR8sp6BZfE7+Gz8O2nXcf4px5osJY+rJ96w1P1/9Bt0Z6wIPcmmlrOvRMa8SVl23VuNXhVzWoNdCTmbZywu/ad6S08PfuYzy4AYYV9RJR3lVSe7Eour+JtWzqx60oAHr8zycWAC34YoNqqnDT4/Y6/V6SysoJceGj4uLvIo8pg8i+aYFu2XyvkQ4sJ/y4w+1tPR/F3wkAs2TB9Auh61Mv5AICU3OqnW96z1o8Ka9M9oqSmavIyQC0VW3NA3dgdBoNEzHw9FyfUS3NhGB+rxer8N4PIb3338f3n77bXjzzTftLx4JHjzhSmM8bYIew11mPGA9oy7G4HM0GgWR8vV6HTY2Nordbpg3ysjBdcg66fl18u+qBLbvdDqFLHu5qExrE9ydrk32+CYSXL9Z7I6Wn5ZnVUjdP/iuf4CX9TGbzZa+d61+l/4uQ5jTCZJ6vQ7dbheyLBPvdfQRl1L+8/m80Gdcbin9OumILMuK3ctoJyyTjiHvETJJzG2qbxxS3U7Hb9mJWAAQd6NdJFh8sqoQY89p+1GE5BGSVjutwzVpSXHnzh24fv06tNtt6Pf78PDhQxgOh8XibYrRaFT4FFj3aKtonGA53l7ayYuxO8or6TFu38rEPzzmqIq7Sz1JYcl/Fc9q+Wjth5+xf2i6D/92gccEF1nHVYWUdeKKEa1XOYXClyfVQaFXr2nl0bzp/9bnYsH7vWZ3uH7d3t6Gvb09aLVa3jIajQa0Wq1i8g9PBOR8v+WdU3OkMbbc9UzZWFzLUyuHf4f1KqXBv6VJ2JTjCMcs9YVT+EwaJ6hxYgBn5xqsMqiTsa7G1YyIdVC7nquSkLB02FWTNDGDqOzkXEqFugpoAb/rO1deXHYtoPTJElqe5dmYtgkJsi2OXxXll+nnUl5a+hj5U495FynlIuO1tJoDTx20PM+LwBGf4YsMrO/nC3gvOiyE0bqRcKlR9v1iiD1tfFrHbOjYDvVDpOdjxoJvcoB+77NtobD4bT5Y9Ci3matGivEpkcAS0YIEiG+ix6VPQkAniObzObx48QIODw9hMBgUE44xBJ0Fef7yvmCUxRU0xZYr+fwY2OFJDvx3PmYajQYsFgtotVowm81gMpkErfDl8rjSp2pbCyRZzmucpQatMzoR7/LpfPm5nnPpbz52ysZVWjkxOC//g5LIdBG1a8e2zw5w0s36blguXrlBv5eIb/pZm3zAyWdpfJX1T6oCl6vRaECj0YDpdAqLxaIgoELGSigRxu2i9L1L5qrhirM4zrs9JYRMjtHx5CO0tWetZfJntN9c4yZFDMD7q49rlPLrdruwt7cHAKe7WQ8PD2E4HC6dCIKYz+dLV3dIeaOv5JJZg49zovpIam+aj1aerz9I9RlidyTfjOe1jmMtFbgPjqDvr23qkNJrZQC89MP5ZGxI7FzWnwjRURcVmn8Sozc1WNpM8l9iOJfQ9DE+cKz/LPHwHHSTUrvdhp2dnSItnvo3mUzEHbGU/1wsFjCfz6HRaIh34kp/a+/k43Z845u2pUv/a3mkjsWtz2v63OJXuuT31WcIQnSrBVqftsSVoXIk2RnrC25Dz+OuyoCvo6FYR5kuEjRnUCJ5XI4jh0Y+oKGWFGpZY8SdgFfJkU3dzzXnkgcwKaDdLbxqxDiIi8UCJpMJNBqN4u7Yi7wbNhVoIEXHM67Ee9X18rq8H69radeyBZLDG6KHrbqbk0Dcvki7VHxOmqSz+I6tqgOxi9bnUwfErvyQwKc7ZWke1M+12h5cTSr1U0k/379/H37v934PJpMJNJvNpaP3UoAe1YnyYAAMAMVRwHx8SvWYoi/RIHw2mxVEFMDprr12uw1f+tKXYDgcwvPnz+HJkyfQ7/cL++YiiTVIp5LQv1fhm9HrFVxB90Uaq5cIR8r2raKv+Mgi9Jc1+8ZtfOh44ifeUNIaiTr83Gq1YGtrC2azGZycnKzt8bVW7O3twcbGBhwfH8N4PC7uDrcuvqRt4YpjXaD1TT9T+Hwqfg+76wg7izwx9xpfdGhEsq8NQ9rYmj4kHebv6nMu0pb3W6mPLRaLpbtiEa1WC/I8h7/8y7+Ek5MTmE6nxW5zjJNRv9B4meo0fqKAJLuVLwjRfa7YSPIlfZwBj30vYYfWHzVeSvpbS0MX2Ujgvqqvr136i+WwSs6Mj/EYPkTL97w4ZZ/89K73PM9hMpkUfbrb7cKdO3dge3sbrl69WvCYWZbBbDaDH/7wh3B0dLQ0XlD30/z5oj4Oy2Rk1fCN5Zi41oWQOQuXLZHSWvot918s/VxKYzmhAp8NeVctLc0H/+f2M3TMlpqMLUOAUqSYGQ/pKJewwRfQcVSt7F15S7KGKJrYlQ6WiVhf/6a/V1F/MePKKotVgZbRCygP/45OpEnyhJYplSdNVsSQFq58Q/Ogebn6H51sROCuI+k+gtST2KlQFfmM+bpIb47LoMYPVx1J9S19tjpxoe0R+pwvsHaV4UprlWOVEy/SeNDeHyfK1lFfAIRNtvp0si8Aig0ifLaMfj+dTuHFixdQr9cL/c3vsdfKkWTU0mgTw51Ox0tASnlrEy6avybZNElOnCjGyZYyRH5ZWG25Zmv4O1smqS7qhKwUxEpjlf5m9bMsMWBoTLNOCLE7lvRa/nl+ei8XTk4sFgsYDAZFmhCf1aU7Xb66RnRLMruulMF80Fa5jpq3QvO5Xb5C2b6F75LnuXdhpcuvjZXDF3tb5NZsDv0b019E3ZYCkg6j9WJtP+5PWHxS/E0aU2X0ZhkeIba/8vfIstPJxvF4DPP5HObzOfR6PRgOh9BqtaDVahXlW2Jjbp98/TWVzSnLc9J6tuhWTZdwXy2FbBcdIX3Axzvgb61WC5rNZnF3Mf0tlW3h8r1O7ebi/GLg4ilj87LEA64xzGGRLWYs+/wALS23U1zXNhoN2NzchG63W/g+dGJ1MpksnWIg6SafnCFpXWlC7LMGqb1dvnJZhLS1xIdr6Vy8Slm7zuXV4uqQ2NzyHS0zdb7J7oyVCiobHF7iYiGU/PDlQQdzzODVBqO0+4rvoj2vvsqdZfxu3WANQmKBO4d8K9IkkrkM4YBEb8gzWG4ZxMitjS0MJvHIRyTUAE5J9Xa7Db1ez7wSNvbdUpEqrkC2TP6utqvadr3OhFNKWEgRqkctO2+5w+kiwlykJy8jZIzzXZbr1lfq9Tq02+2C3HoVQftWaDtwUjmWrMuy5eOWMBCVjmaKyV+SmaPVasG9e/dgNpvB48ePiyOBy9h/7mvxYwJpmir9DF6eNGZT2HafL0uJUR+xso7+YAjwPfjxqi47r9ljPjZDSaRV9a11BOrtLMuKRR54R/TXvvY1uHr1Kty6dQsODw/hu9/9LgCc+o/T6TRI90h6ULurl44P3C3RbDaD24n2i9lsBoPB4MxpAqETW9bvUwHzxnrAXX4uQlYi76i89H8N/Fk6oWWFdIKCNGa197DIVRZaHa1SH/gmObGeaEyX57l3l48LLh9ZsjEW8tP1Dq7feR70HmtXP3HVG/eZUIccHx/DZDKBk5OTYnKr2WzCm2++WegY1BXz+bxY4JXn8t2wMX4h9XN8i0Is41Qr2+crSM/gCWDSe9LnKC9Thm+JgWV8rkJfazEfr78Ykp/u6Lt37x688cYb8LOf/Qz29/eLu84lf3kVWFfeooxcIc/G8tAhv0t8ps9m+vJ0jWkNrvjVN7FmrU++oEw7yeDGjRumPl+r1Ux3ylKETrjG5gHgrxd6RQ/Aqe/qOn1kFQjtdz795ivL0nd4OroxQJNhlfUXY6Mqm4yNeXHuXITkkZq0XFcSlILKVlVHC3HmyqSrOi8pKMTPGmJ/szzjU1iaE7cqheIK5lGWVcrha4sQeWL0S0jdW/J3OTAxeo/nw50lPPbGeuypFICFouo+kqLNrXre1w9dZIYr/SVkxARXtC15/7fqMs1O+Mr0ycO/dwVgWr6rIH5d5V80WMa2q8/4gM9odeebZNLKkvrjqsDrARfzbG5uFsfdhxzlbrWBPjKX/43H7+PEUOxutxg/P6av8OdCy62iH5x3jOPyMWL1j2syQbLhoT7uqvViiM/te3fXc/SYOACAra0t2Nvbgxs3bizlg+N/sVgU92/hjh16zJxLPh8oAWnZjW/1t32EZozcVj0YGrtp/gGWl2WnpyX4FsXQupRkkYjfVYDazlREZowMVZcRIwNCsjG4OwgX2PZ6vWTxrysPy28hMmj9z5q31aeiz+O9gXx3PJL/eZ4Xi1FonUr9U7sCS/usyZc6TrTaCzqxgf/TRRcuXajZUJ+NSQGrrk0tg8sXcPktln5K86nX67C7u1vY462trWKhgJSvdP+5FTHPVVG3KVBmnLh+S5mvCy496PJbLHrZGsuG5G3NV0tL89b8xnq9DleuXCnGw3w+h+FwCI1Go5iw5JO3Ph8vVP4y/pA0Zl1twnWyzwalRqgNo5B0YIh/F6JXuO3U4tgyvq3VL7M+Kz3Dv3NOxnJDEaqYeEd6FQi+1wllg+qqyrc+6xvgPmfaRRDSoJjnl0KBXo4VHVjn/J67qldr0t1qZcdAVZMtNFiiASfuCsD7cC7710uEOHCWvM47MLnoKEsQao6PFBDEtFWKviL1E8mhjZWxaqB+eRX0SBlSgrYNnzSwtBudJAhpa26HUts8zL/ZbEKn04G9vT0YjUbFztiYu52pjKETgXwyZT6fFztchsPh0m4Cy8RLCKS6jR2TKdupKltT9Zjm7RN6L3ZK0LtHQ2KAVw24ewzv6rp+/TrcvXsX3nzzTWg0GsWEbafTKcZ/vV6HVqu19DkWfFwg+ZbnOQyHQ5PuoPFYCp+hCsT0J/peSNjX63U4Pj6G4XBY7JIM0XmhpDq2P5bDJ3As8J1+cB4IHePnpRNQP926dQt2d3chyzIYjUbw4YcfFgsjUL4Q8D7j43wkO6gdle0rl+arlYn9HcvBCVVJDqof6A5CDpzcwonX4+NjAIAzu/153WAZmD/9XnvG9/4ucPm53YwljOlpAxTT6XTpOem4Zs69XOIU1naX2oz6HhsbG/DOO+9Au92GbrertjHa2ot+//l5gvuf+B3v96vU95a7gH2L3ujznKMGWP0Evgt8ESBFt9uFb3zjG4Wu6vf7sL+/DwAvx9F8Pl86ohgACt2P6VZ53y/CVaY0H4Z2LgVc8xa+NKlh1YmaX+jLO3SC1ZU+Ff8ei6CdsSGERJkJqRSTWKlIj/MOFqyI6cwayjqTZeqqTL+R6kAjvEPeMZRwtOa/ij7lev/QCcGqVuloesUVGPpksMgqTX7g35wcT9VWZepOm/TX8pfeT/rd4tSFThZcVGh9y/rer3r9pEDIBIwvD4lAd5XH+7CFXONET0pn1zXpuqq+5NIDmm7GnfZZlkGz2UxyF19VkPSlxYZIOpPCVW88/xR+DQbn0+l0aSFSGYKbp7WMBU02CywTm76xlmWnxwm+ePECptNpcaxgiI4ObQfNV0gNuktHIoNTwJVn1X5raGwRo59TgpdflU52jQmUgY9V7ZkU9SGReIhGowHtdhtarVYxUWvtq1yuVLG+Ky+cPEl1VyzCEitpz2rfSc+ibd3Y2IBOpwMAAMPhsFgQE4rQZ/gkqvQ3jw+0cVNVDGlFSBtKWGXMTo/svXXrFly9erWYeD88PCwWKSChHUJOusaKJI/Ubpp+CPWXNBuvfYf93scbUBua53mx0ITqgTzPYTweF/kipIV1mn7DeijDm0myl+1rVj/QdyQ0R8j7vmqQ7JZVj/u+p7+3223Y29sr8sejV/E0CqvNfR3byAVrzGdFjD2z8Jv4u9X/12Lc84JPHmq3AKA4sYC+73w+h+Pj42Kh0XA4LH5bLBYwGo2KBSRS/FqlnrLUs9TOFllcdkjL15fGxYtZOLSY/K15SP6Fpa9LeWmfLbJIPrt1nsH6PeYrwTwZW9aJjcHravDXHSkcRR9C294ijzbgy5Szjv0T666qNlrluESFGLu6ySerRLKGkNkpQct16VsfCeQjRsrI9Trg0u5cTFjGemigIxHcHJLecOUnObDrOLZc74sEMd5huu4TsVQnxhLCvF1D8vFNlLjanxKt8/lc3MGRAhehD6KMs9kMnj59WiwKmEwmxQ4aC9ZJx9P+4NrpQPvwusi+CmgTWbSt+YTRq1I/lHQNGZ9VxE+IZrMJm5ubxXFxmowWcphOKJbRPxoZh3LxXV/noeuob66RWJJcaGtv374Nt27dghcvXsDJyYla36ljP3p3potApvaR20bXfW8ufyklLpJOoHp+sVjAW2+9Bb/4i78IH330ETx79gweP35c7Iqmdo+Pe+md+SQ+/Vvz46TJSI3AxP9jJyh8fpWPE+DjDCdgcaFTq9Va6tODweBMv5X6Y6ye0upIK4NOINP3tcI3ycPLpXXjwqrG6bqhKs7PVZ/dbheuX79elNdutwHgZd/NssvdybFw+SDrBM03COE06XeSHgl5b8uzVrnq9frSvd7T6XTpdCOA0xhvf39/accoHTO9Xg+Gw+EZWyDZJp/vVzamsk4G+srQTn4og6r9Hp+90b7z9T2X3uVl8h3lsfJxhMQMZXXI0mSs5ARpjpEmpORoWJVHzAx9arjq4BI2lOn8PH0I0WmViypq3z0ZZQkCl/wxk1xS/wwdJ1aZfBOCVY1PV73wcclJIE0XSfVFn0HnNoagd/0WU0fWfiHlrxGXmH42mxXkjjQhVUWfXSeEOpA0jYXsvaj1clERW9++nQSSbpGOKaf2w0VGavraRVCuGlxml62hv60zKZDCfnPyPNSJ98mm6VTum5yHP4zlIqGpHefqg6Z3Y20k3h9kJQj5pM95jS+p7iSd4SOkU8q/apvO/QwL+a597xuPViKV63PpWen5VP5EFfDVK09DdQzeRzoejwuSjE6C4HUXVhnweW53XYQN6p3xeOzUExpJKU1mWOokFtK45bJZCR18HicxsyyD8XgMx8fH0O/3YTweB9cH/43KHfuePC+ep0+XpRoD52EbV4Futwt7e3tw/fp1uHr1Kjx+/Bh6vd5Sv8DYFcHjWdc4jfFtpD6EzwP4j6522V+pv7om8n3PS+XmeV6cpKHpFYvdDakrKX2sDYgZu/iuuLNSgxSv4PMh7cDlvKiw8MF8/CFc7cv7XqvVgi996UuwsbEBu7u7xQkIn332GTx48AAODg4A4OXYkuKBV1UHrgLUl/TxhQDuyR9LWdpnvmufl4tpXL6vK26nMSVPXwYaj6j5H6iDtee3t7eh1WpBlp0eJ9/r9c48j8cTx/rgXCbX+7jylLieGN3umoT12VwOi/3SOCnpGc0u+MqQvtP6p2ZfJL/C5UNoMY1PlhAeS2sPSXZrDC/ujA1pcCmolp6xkC6xQbkmc0zg5SMmeENbZDkPVBV0lnm3mGDM4nhKbaa9v+RIWftlCHxjQUJI/3bBZaS5kQlpEyupEwrtWdqu1t9W4ZCuw/gGCJuQlwxaqDPvIpsuMnwBl4WskGwhd2Behbp6FWANuOhvksPNn9McRNczWjmh/a8MLPZT8/HQiV1HIkDzY2kd++oW01jqXQvmY2Sm/iU/gtfq2/hktaShbRx6nJ2rPCm4C5EfJ2nw3kqpHKkP83qMiQ20z6HkrCVN1TYjpU6xxGDau8X2K61sK+iY1eRMjar1OYfUz30EFO42H4/HS3dyIWlSr9ejCQzr99gn6I4JTae77lGLJcdWDR9xPx6PodfrFcfzuXYxWj+H+LaUYHWNdZ63VqYV6+hbrAp4XOmVK1dgd3cXut3u0n2f0qJCq6+iffb1H+k7yZ7TtFzH+vQPLUObPPSNaSk/aUGli6sM4UJdtiOmTWi+KcZAlmVLu9G0sqXyXOQ3TcPzuuhw9Wf6u8uXdNUbTkC0Wi344he/uLQDFgDg0aNH8P777xfp0Qc/jwWwko5Yd5uK8LWNFjdIOmYVviEHLZNzeD55LLytZexaeWFXDEx5Mtdk7NbWVnEk/2w2K+71pnDdN0vLCpVfg+V57W9Lni4eRdI5vBxJR7tk8MmncUC+PMr0R+szLntE5bXq5JC01J/xcQIaJPmXLLPFmZAKDxmk1g76qhj0ixAEviqwGiYaXHIHHXHRjz2zBDspUXU/98mODqolaACQ6wf7wTrv9JKgBU9lcJH7fix8dqcMkX+J9UMouWAlWXg/oauZNVj70nn7E+ddfln49CR+5jueXWQV2h3fTjFNp563LpHeDWUdjUawWCzg6dOnxaRw7JUBFGXemY5LnJTlAWnK+lz15FlqW35ewHa4qPKfJ0LjZBepGIrFYgFPnjyByWQCR0dHcHh4WKzaPzo6glarBe12e+n+RdcR4aH3WXJQ0s43YcjTrVqvxvZ3l97C3waDQaGPaQxLy7bIQAlR/Ezzs9SZj5iTCMLXMaaIAd4VO51O1eNjsV7579h+WL849ujvFFZC1kUUu8hPLR6X5ODfcZ3i0yEuMpUedYnf8R1mrjHjmnyK0W2a/2fJi6bxTYpp8lKOA+/T9ukM10Lu1xnYHlbdj30N6523xWAwgH6/D4eHh3B0dAQAp2MhdGdylbByresiL0LThb7JHYx5eDrKOZaJZ0Lif+l56W/pudTt4YqPuazUV6Tf0R2h2M9fvHhRyCrZOCvPG4t167ccWCeh/n7smLROVLqed00au9Lzd6TPu+xlWZklUD3gKy+0fOedsSEKghM0LkFcCjGkXKm8kInk2PxCnl33QS1hlUGTpcNyZ9nnkEvGTSItqCPLlRR1fKQBH9I/LIrHhzLtsKr2LJt3WQJFaxNLf7E6MWWcLt7nfLK58qF5hMAqf9Vk1ro46paxodkoyQnl9Wa1g5eQEdJPquxTvr7hI3J8/YGWw/OS+lQV71lGF60bXPpLI+753zw/zQcI8ZO5H0N9DwuBzmVKBUreUqIS7zDt9/tFmanKddlpyd5K/lqen66wthJVvrEjyRDazlUjNAA/T1jbJOR7zDe1n6iVkxoxdUL7fohus4Ln1e/3oVarwWw2K46Io0cG1+v1JSKZ39kVQk5b5Qrx6635hupcH3xxROhzFHjvLfYBbQK8zJjD533EklY3Wr+15rUuOvY8IBH9SPbn+fLpFDSNRlCWHXs0TyR/Jf4EP2vPU33A83CBczAuuGwIr1f823IkKP1O0j8aGazl4+KS+G8Wu2jxCyVZ6AJR2qesvpELqxjL5x0X8jYLjc3Qx6a+K7bJeDwu0uHfvl2Ase+Qyj7H2qFVwjVOrZwY1SVVb9oI8U81XSz1S02PlZGR+wzWY7tR/yBwLIxGIyfn4jt63/WZf++K+SzQ9HmV/d/n+/s477JlIUJ0sJZfiM/MbXnou2hjQPJ5ff2GPufzl2l6LV9xMrZKAt6Ki+CclyEELmFHqFKztknISj+q/DUjXOVkQChcu0R9Y2ud3sOCWAPqI96rMKop65YGmtSZlxyeMkTWeRGS6wCfnCHvwZ2+S/vhR0j9xjiGIWmtTul8Pl+6kyp1EL1OKHN07SrBxxvKHNs29J1x9wndOUp3g9HfcFUw1wVWQi8lJJtw7949uHv3Lnz44Yfw/Plz9dmqV+lrbaMRvPQ3mkdKW5siT8tYubQLLyERJRoBRKH5Q3yigrYrT3veCJVJ81ktfQl34kmxTa1Wg263C5PJpFic4ZKX20z6j08alYGkz7k8tD5Cy11FX9DsTyrCN0SXuOJBSdfSZ3wEqE9vXrSYMzXQN8jz/MxJDwCniyMODg5gf38fDg4OzoxDrtfo97QMH6T+aJkUlN7HRTy6wG1trJ7QdDu3Hy5d6ZM/ltPUeBnu1/BJcE1ui4yLxcKpvy8SqogLrZDsGy9La19cxIS7AWu1Gty+fRs6nQ48ffq0uHYDn6/VasXR0qkn/1z8Fx6FTtNMp9Ol/vOq6WzJh3DpsBTvHqPbXDGrdoJBGQ6C6x4LfHw5TsJmWbZ0zcxsNltqB+1Y9XVDVfEaveOb+oR0HIba2arjSyoL749lx5LvBAcXfBP4fMe2FWX9E0RlPZ0HSvR7DalJiqomU2JkceVXhbPAnYIQsi9k8FQ9cV9msiNF+RK0vk0/WwgjV74h0NpC6ltaEC09a93tnhqhbceDEy2gctVPaBCmIaRsqRzu6Kcmk0PSV+2I+spOndb3vG9SxEfclh0fnDi8JOSrg4Uc1OBrGx7UWfqYtWzMw/XsKgNkzQ6uCyT7V4WOxcmfMv6tlCd/rgq9QPNsNBrQbreh2+1Ct9stdmNhkIwkkqb7LHUZ68dL+biIAqssvrLK1HesL7Mq+PzDVcFHvLv8kFByWiqbyiDlbZUnplxrXjGTG1a/FskxxGQygdFoBFl2ukuBPotpJeIvZvy42s6nr7X2ifHnffFjTB6u+nHF6PzZMv3NNa4sfTA2NpL85nXyXdYN2E7oRzSbTWi327CxsQHj8Rj29/fh+PgYhsOhuquTjxX8XoKrXa1tEWMnfL4z/2z111zxfEg8q6W11EkqX9KaJpQfs/rrZWzqusYCq4LFN5Z0e6/Xg3q9DhsbG8V3ZSYfrKCy4CJLvtiSLmxbt/YNjeVdeoJD0wNl5NT6AS1T+pt+LsMTa7K50lltCE/r8+ulvDkPpvFvLoSMGV97uGTE31KNCam9kYdH/W3hKF2wyhrSZtr31rJi+nVZngzTWPoopk3pE/G8GtKPMR1L2okn5RdKtL/qqMLQvs4BDaJsYEeP35IUJK5wkwzEquu/iiD2IvehUJIrNL0LFqUeW541iNXyp84g/22d7sn11Quf3DpP0Lp03asUmuerhFeRZOPj3HJfNb+/qyq5Vg0r2boqWUICRw3YvvSfr315UCeRnfR+WZrGdbfbKv3g58+fw3w+hzt37sBbb70F77//PhwfH8OjR4+WZImZGMLn8P8ykzSpkNL2Y36u/mclElwEUiqcp66g5bve1Wfn+Q50C1me53nh13P/nRIfqUg4noeP7DqPuBfrD1eHP3jwYEkuGg/N53MYDAZLz1sIN+vdsXxMliW7eNna+EqNmDFL9SqXE+8SreqkjSr6u4tIvQj8zip9Glof3W4X7t69C/fu3YNf+IVfgB/+8Ifwp3/6p8Xu9VqtBvV6Xdw5KeXra1uNq7PaLJ5P2TqjvhLKoN2fi7L68sN/IT6M5pO5ZDlP+OwIn5C12N6qsA7xQlmEyC/14cViAY8fPz7Dm+OOWF8/S1WHmE+z2TxjX6bTKYxGI2g2m9BsNou7btcF0uQfB43fcEGpy/eXxkCZei4bN7nyBDjL3/F6iJ2c1KCdwqflR/Wu1Kep/8nv9+bp1gHSnECZSdIsy8RdwLxvTyaT4LFXxUQtwPLdv9yWlOFCQ95PSquNMWvsJcntunPeCt9YOTMZqxlw/N0VGOEkFUITtkoj7Mo7pFPS/Oiz/PvQZ2NkSIGyytjV5rzO10VhuoKQmP4XEsDH1EFsvVkDCiuRHJpmHdrbpZcs7cTHqNbWof0mZd1oAXOVOC995UKVAZzPvlmcqpBJlSoIsHXDOgfcVtksthztTavVKogyDPx85YX4RJb8zgupJ7dCUdauW5/npB7Pz5UnbWuX75SKCLAC32k2m0G324WdnZ1iV06/309OKFh0n9V2h+jZsoQjJXY0UluT1SWXy9aGkMZaXqkJJk2GdbNpPmJqlXY5xM8u44e4nrcAd8Jjea77G0Pslksmrc+6CFbpb5qX5tevm90EcJPCCL44uAzpmtKPsPRZKe06twfAauXC+sAyZ7MZ9Pt92N/fh6OjIxgMBkv92mWHrTrCJ4/lu7Lw6Waf3rDk79LnvA+GkrlamTG+nM+n0PxGq13xjU9LPqn423Ud8xQ+mxcbt9F8pMkpXHhjlS8GEsclHSvKFxrTBWurhKWuLX3citAYQSvb5/OU4ZG1PuXyJSw+mMRt8DT4vYVXjpm04mWnmLfRvnPlr+XhkstVJ1Q2yfZgGun9tXiuqrHo8i9iIPWXUP1p1bmh/m1IPYbWt4UzEY8p9hEbGur1OrTb7eLzeDxWV/a4AqyLYKQRMcqmaqy6Di9Se5UBOisUPpJAS6MhtWK1GKV16rtlkKofouLEtj6v4COWWNHyKeMUvi7gbW8B1pt154eLYOTpaP6XuBjY3d2F27dvw4sXL+Dk5AT6/T5Mp9Ni5WOV7Vm17X/Vbb1PR1Knmvu2OK5dq4Yxf3rXrs8XXsWdw3jPLZZ19epVuHXrFjx8+BDq9TqMRiPvfWPn0Tey7OyKYil+Sa1LXwXdvKr2uvQt7MDxLsUaFHySwjc5E4t6ve4cT/Q7V9xTZieNZaxZJ3AvMrSdCHRxCIWLJCy7s4nulKYTxGgTQ8nQV7G9QoE+Qb1eh9lsBvv7+/D48WP40Y9+dKa+EZy85f2ATzpyAvci1Dl9Nx/BKukKzYeSJqN8OtTiT8RM4vDPvnxD2y2lD3kR+syqYdG9/HtsE8mvXpW/xPXDcDg8k6bRaECn0wGA0/fE3Yur3iEb2+9CxgufcC4LCxeE493SZ3z5hNQRbzvtnSU9mRI+P/e8YOkDaLMtcbprglva2Sx9p+Xp+s5Sh1rekq8hPcvlDemzFljnXqTYydou540zO2P5jL80U8+fwd/xYmF0GDGQ44EDJbG4Q+gL3K0kSOoKdgUXZfKpQtlU0blCJxQlxLyrVO+aspH6jtZuISsgpEA/JJ/Qto4lr0JXi1jSrouisgQ/CO0dXel841sKBlOAl5ty0pwH5TwfKQiU5ON24XWDT4dYg2/f85dYLWL0m/QMHxu1Wk087omuMNZIMkv5WKb0uaq+FGJz1w3cQXf5EhQ8HQ0eeCARqqMtizY4LMFIGWiTO1hOvV6Hra0tmM/nMB6PzfVohaUvUTtstU3SWAlpJ1eeoXCRydqklks/pPATJfK+THum8l21duLtGKtLzxuhBCGfTMHvJPDvQ+ukXq+X0usWe0Tbt+x4wrxcfTn2fVLG6pxPkeR2PafB5ZeE+heaftD0k/Ydfk8Jy4syNs8byJNRnwXJURd5r7W1q11pGhcsdlPKU9JfFlThV2K9lc07hqcsE79b/fsyZVziLDSOSOpDoXVJ/Wru12LMUlX7oOz1eh1qtRpMp9Mz79PpdODatWswGo3g5OTkzMIs+g7ngRAfXptjsIwrix+h8c6+vF0+UIi+5bGpTybfO6TgOy36MfS5mPzKwOf7peA/pFNneFtY+5OUxseZa7+7xgaVU+tXnBNzyemqQ0nXNhqNM3lSjkd6D0yjvZtU95LPKrVFSF/X0i5NxuLL0XsouDPFgYYEj+Sbz+fQbreLM+855vN5sfrmIgXOrzpelbZIGTjzfDAYSnU35CXKo2pnlX93UcbIRZFz3eFrc2rcrUcLabhss/WAdUJIcuRwwlVyFrFvNBoNJ6HGkdqmvW5oNBqwWCxgPp+bSS2XE85JlFUgJiCz5Gkh2hHtdhvu3r0L/X4fnj59GkTKW2GZnKAnVljzo581hNQvj5Us8I133gZlyb51h6RHefuHEGA8Xw2uSSHU37Ts8wSV1dV/XDYpBs1mEwBO74sLkdX1vY8U0mB9D5/OwPpZBztK29LXV0PytBBHrudpPtrY1EheXhadiA19l9cdeZ4XGxuazeaZOuQ7kBGxdRwyxkLHT2xMZCknpH8vFgtRFj5uQt7PVR8uAt9XjjQRK6Wx2Ab8/XL8xUOaZAgl5TloHEFtE128UjVarRY0m82Cu6fY3t6Gb37zm/DZZ5/Bs2fPoNVqld4xel79MERPhvgkoRNjKRDqE1ifl+x6zAIDK6+hYR38s5D3dk1WWmIJPPHE9d5ljiy3xMDc3rjkpqd6pYQW40nvjnqLYj6fQ7/fLz7zKz3o9xyab1BW34X0I/HOWHrcom9Wlx6fQtPMZrNi1Q1FrVaDVqtVfOZGIBXJxPOyBvjWvCl8Qd55OkJWZZxSPq1+XUorRXmuPFMELRbnuez7VGWIqjRwqQggS/6WdkP9xeXRDKSL/AwNCKuA1nd9BjZE71jelaaJJdbKogpd6nOssUwr+V+v14MWbEi2ySIvLfMS8UD7Le2cpH0jNFjZ2toqjnQaDocwGo2STdaXHQcpdcO6ENwSssx9fJA29tEPbrVa0Gg0oNFowGAwgMlkouZTNgCV7BInyC2TeYjQ/oF++2g0guPjY2i1WjAajYpV87VaDbrdLty8eRN++Zd/GT7++GP46KOPxLuRLe/J5eRtEUK0xqQPhRTUWic4rPJIExqpwOu+DKlT1SSappcwL3pfmau9JYKdfufSfyH2Pga+WCHEF5CeTSG3dtQ65m05BszX30J0phbTU/jqFeWpOl7hZVoh6X2rrK6+wm0L9+HL9jNL3CDJYr3W43WDNoZ98amPh9IQmj5k/IT2f2uf4mm0d5dsdKgNx3T0f8328L9jx6zPNrl8qNg2SRFTvIrw2WlfOhe0dqsqpscy6vU6NBqNYiL4zp07S5MbuND0ww8/hKOjIwBYPq4YY4VQGxL7Xin7liaD1ZeP4b4knel7Jz7pRSeXeL8JyT9VXUq6MFbfhcoV67NYf7fISv+5dL1FN/M0ea5fU6LN37jiJpcMrnelMsTGsK7npXfEuszz0ysbNjc3i9/wtBC6S3+xWMB0Oi04CPrO1neT9K/L5kvvanlnVx9fmox1KVasIE4y44pTWjl5frpTlk6K0HxwMjbLsjN3UVkJR2vgJeWbGjHKzVXXmnLzkVihZWtIVVcuhzJFWb7+4XrP2EA05jkXyaghtm19cqRwIKV8EVjvKcuRlKuVyLL0dT7eLHrjogQeNHizOmc+xyLWyUuhV6rU4wir0ZWAthAgfNcUPi/lGSLbKuroVYLr6DeqRzhZRD9Ldb6xsQEbGxswm80gyzKYTCZRk7G0DG33dRli1VXuKonrqmCdjKXvig5/q9WCdrsNnU4HZrOZczJWyo/WodXu+wKnEMIyFDgZe3R0dOau2Hq9Dt1uF9566y34O3/n78Af//Efw/3794t+XTaY9vkMPrKQ1n1qv8l1zJLFfq567PjqSvKlQmSM9eFDiG+pLAtc/iIfj6uIHyXdjHqc7sSlv5WJKS3prMSYKz7lR6j6yvLFY9x3l57xEV+xSEkUpoSl/lx17yOLLOVrz2ixnk9GGpNkWVZqgdqrAp8N4cSvdQxUQVqnSpuSI/DlLZVjlV3Sb9KYtPATKeDivMroxsu48Syqjq01rrdqYGwDcPpOt2/fht3d3eJzo9GA/f19+MEPflDI1Wg0imfyPIfBYGDW/xach411+TcSl2jluHy8oeVdcb7Fl4+VX+a/+3g+i3zrgpTj0qrHad27xoHUVloa/FuKp116ny5SleQrC19ern4U25cWiwU0m03Y3t4u8phMJkun9aBc4/H4TJ35+DwXZxFqy6Vy+Lv78hEnY7UHUUlbkOc5jEYjVYBms1lsNa7VagWhw2fiL1dPykRCiCP5qtbdRXEeUzosKVFVv1ind3URozFkeUi6EBlXgVhdsK79t0rE1BU9Ci+VDBRI4IZM8l7CjTzPi51/OInugqVtj4+P4eOPP4bt7W3odrswHo+XVhGH5F+WTLWWE5vmoiDLMvOxwlqaxWIBs9msOGYaFxxubW0V+mIymcBoNFoql/5dNmjheYb85gLKhStMP/roI/jss8+g3+/DdDp1EubSEWcpIJH9fDKGBlWp7JQr6EVg8OvyHUJJXwn8eNWYiRSK0PjhEumA7YdE6HQ6FRd3YF/WYl86IROD1P6JRPLh/ynKCrWbVU3WpsiTTkBaiDxESFqrHJifS3fRtFIaWi+W9qblWfyt1x1W7ovW/UXnfFKNMytCjiIMkS3lRB59lscS2PbaeLq09euJVY7RLMuWdr7SIz0xlgF4ueDynXfegU8//RT+7//9v2fkHA6HRZyQClXURWjsrPlZLt7dF9P5bGsIUuaFeJ10g+Q7xfpTVrvsmlPDcqUdmmXaVcujbOzo+y2FvaO+4fb2tjrfiBzMyckJzGazM9dh8COK6Vj26S2f/2Th6GLyVidjNUhb5XESlT+PlaQJhWfQ12o1mM1mS3fV0nQu2VwV4xto1tUPVQSUvlUUvs/UgfQZmFDnvCwB7COhQlYLxCDkfVNPNFnIufOQK0YGyfHw5aG1vfQusRODVvgmW5Hw4nlbiIgqUEbJW/L26RbX9ylkSUFOrxKhegT7Wpl7BlzjJ+aewpSoclJ+FXlLdYvOGeoCi82S8qcYjUYwHA6LNkPfxteXrHVAJ2e0ALIKaHZb0y1WOaqUmcI1qadB8tvwu8ViAbVaDdrt9pIv7HofqUxOpFrld+VJ04S0Q56fTm4eHBws2Ucf4YB1kYIIDm0T386qFHWDiJnM5P1BIwVCZfA9x9uiqonYkCDcldbqn2j5Wn1Mq75x+YFldFaWnS5q1uw475v0s9ZvJXmq0KlUJt8kHV2wQP0jDaExsqZLQ0mylGl9QF1vmbjk5Vv8dStZzMddSH/OMnk3q8tecF7GIuPrAFdMTX/T6i+kzWJ+K4vUbRvCHUlpqe8spQPQj2j3leGTKcROutLxhRwAUFyHgum1WCclLvqYtei82LER6h+kjoGkvkZPr5zP5zCZTKDRaECz2SyOLcajiG/evAnHx8eizzidTmE8HieTzZUupk6q6Je+mE4Dj9OlmF3TIaH+cJnfLdxuiK6LiW98z6Sah6H5aH+7no8pU4PE48S8N3++zBgIsWEayvq3eCWSxM/j78it0Z2ytHwpf58/oj1H38kaX7j4Ggmmba70YXRU6CosVPTT6bSoGF+HmE6ncHJyspQvdeZ5+bQ8zHsVzsB5TxxgffA7eqQVAy7Ct0qn7KIjlSPkMmixZbwKgWqq+g0hUDGNNH54Gvr5POqaGonz1jeXeAlrX0i9I5baNkpqnjeqJm1WlTf6E7jLGHdMUvuJhHkZcAdM821o2tR9qSpIhFas7qzyXfP89IQWbE++s5wTnjihWKvVYD6fL6283N7eht3dXdjf34fhcFjcuRQqjw9ImuCuOZSr2WwW8nOSxBJA+YIJX155nhcLL+lE9GAwgMViUaxWDT2y2Cc3tYt8bPgmKmLKq4qgi0GsLtAmJtdNr1gCZAQnTvjY5f3EUi7PD20BxrExBFwKZNnpYuXFYrGkBxDShKSvfVfZ9vV6HTqdTqGvQif8AOIn49etj0tAO0N39dOxwNtX8ws0kkcjcrWxhmUAvLQ/PgKa2xUA98IYOnFEP1/0+LZqSPV0Efo4x3naH9pf+akWCBenGCK7Nr64PClBF5RaT4B53bFO8ex5jYvf/M3fhO985zuwubkJ9XodxuPxGX650+kUv6+KdwdYTZ1YJzBDZNHSoo3lk0qh+XCsCz903liVfcH4O3VZqSZQpXx8viP/rmy/D60bWt7Ozg60223Y3Nws8pnNZjAej6FerxcTsZL8vsXjLpktMlp8sNjx6N0ZKwW9XBBpspYCd8BSzGazpbtiLeABgCav9l1VRsSXr4sYCQ04pXxp4ORz+mLrwDLJ63tGa5vXxXGMUXCYvkwd+SaJpbT0t7Ljx0USaGPDBZfRlQiC1P2rinxj9EFI+os6xlzk0bo5Q7GkuYuU4v3ZN6Ei5XMRiZuqwesT4CVJGOOXUND2xOCLrrbX2kebfJLSxxLVkpzae2gI8b3WAUhk42QhwLLPhGk48vx0gh4nY/FqDf7+eFwx7k5oNpsiaeEi+lAm/r82/hFlSQLJxtMyuO3Glah4RwsPflJNtvj6ly/msJThgmTjXX5MCoS88yrKriJfnx4KjTMsMY/2HH82y14u0qkKfAxLuhm/o+SnNY7z2Q4XQnwYX94ovyQrf3cryRGCVceVFt2Aaejx06nicwmuWMhni6i8Wnre16R0Lj26SmK/alRNBFt9CcS6+mKWerKMJd8Y08aVy576dKpFT/nGVwh4/vTkEVoOxiuLxaIgqzHmiOkHtI1elfF5iZfIsqyIV27evAnvvvsuAJz2H7yW5OjoCHq9HuT5y4WgZfnq80QKfajFaZbnfLZO0+9WXanxSDFccxVpY2D140PSW/PQYhJX3VrimFi5fHD1n5D3k/KVxr0l5nLFbDQPOjayLIN2uw2tVquwZQBw5tRcfqUp/S22D7t8ilAO2sK3cSxNxvIdA9pODiS2+O/SsUuNRgO+/vWvw8bGxtL3jx8/ho8++uhMetoAGnhQwxE6EFYduCGsJAJX5LgKDo+WoM/zursIAU9V9b9qh1JTgCna4Lz6aBlUHaCGlC0ZTkqIrGvwel5Y9/6WyrlO2e7cGUZi10KcWNI0m81C91/eHVseuMKu2WxCs9mEr3/969DpdOCTTz6Bfr8PBwcHZ+7zCOkvw+EQ8jwv7tjRnEf+Ny+r7Fgs28dTE+XrCOl+Rs3PpZjP5/Ds2TPY3NyEO3fuwNbWFly/fh329/fh+fPnxULEkKN0qU3CZ0OCcjrRxPuvFXTSOc9fTkofHh7C48eP4cMPPzwzPlLBN8nD0/JxWbXdyvPlnZOpbGWVEzO0DGlyJiWsetJKOFnTWNLT98fxhYQj3pc2nU6L3fQxZfuANofueKVtgnYd7RM9ArwMfO0SMhGbZel2wGvjp8yYXlffFY+BDDnqMTY+0fwLbWJUAk/LiWX832ejpHdY1zaKwavqF503YmyrjwiV9LqPi3P57q6yUgAXA16/fh263W7xfa1Wg9FoBE+ePCl81U6nA+12G/r9fmFfQuvwsi+/WsAYJs/zoo90u13I83ypPwGc9vP9/X349//+38PR0ZF6otzr1kdCuHr8n8d0tC65Hx5SVojuOU8O9lWAxN2X1f10/ir0WReoL0Zh2alpKTu1XaO+JM0bbZhUz5PJBKbTKUwmk8IuWucLfQht15AJaAu85/ChEsHAkH7Pg0g83oAflzuZTKDVasHm5maRx+bmJuzu7i5NICJxaTmSB6GRmNLMv0uBhjosVQYSkrxcProKjqaVlAcPnCx1FiqrBK39XJ04Vb2ueiLWV35s/fqMfsizFhmsBBmfLLCUnxKuVSxaGkufCCERU8M36eHSf5b6wM9W+ddlQraqsazVccrJqxBZLBOySBpjOSkWeryOkBZh4HFMrVYLRqPRmYme0H6B9/KgP+QinenvUh906TWus7XJKav8luBjXXRDCHzjhb8Trc/5fA7T6XSprehvdIGcZUEhz5/KqKXT/Daelk4QhupOzV7gZBBOytJ+fR79wDdGyuTjSsv/ttppipBJCd72XF5pHLp+5zpP63tlbGCoD7UqwojWpTZR5SIaq9R5ms6m/4fUUYr69JVpKcPlY4Xqppgxn6LNrGScVBbVE/ivXq/DbDY7Y+9d9RFru7VnaV3iaQ7T6XRpgZ+PR+B5xcSklzhFjE14lZDCBoRwJVzXumyf1hZWe6mlC9F/WD/NZhO2t7eLU15OTk7g6dOnS7sX+XUrvnwv8eqBtjtdyNVoNGBnZ6f43Ol0IMsymM1mRb/BRZf9fh8AYGnhtxafItahP5X1XUP8kTLllPHnXPqLwxcfVImU/aEq+0Dhi8VTyKHlwe2EFrdpfpn0Gy9P+j20jWJtNZWB/wM4XQCO91ejTgI41T+on3BHLP5N87WUHSon/T8k35DxiFiajKX3KyLJhGi320u7MJGYarfbS2larRb0+/1i1edsNoOf/exnsLW1Bd/+9reh1WoBAMD169fh6tWr0G63odlsFmm///3vw/HxcZEuNThBFesclYFlUEnPZFl2ZnWNdK/deDx2kr6aPJcoj7LkRZn0q8Q6ywbgdxolrGr8nzcu4kTKqlC2X4cQ2tay6OqvWq0GrVZryVG5nJQNAzp06PghCcl3EeLuN/RP8HsrptMpzGazM4QslsMneq2kDKbnz/km3/L85erckNWSWj/lx6Gts/5EkiEmWJnNZjAYDGA6nRa73fmpLPP5HAaDAbTb7TOrzbV8Q9IgiU/Lo+1J24D+i20LGuign0/HgSZ/lUe8YhnYz8vsFrTqaZ/PXGVfxzbn9eqakPVN1EpYx/G6bkjl72L/1XaVon2gaUImalIiZAJQSuua8JbShkxKWH7H+LjqU0RCJjzognU8LcM1nqsElru5uQnb29twdHRUnOYRQ0BJPsClbrGD2jP0V14HlJ3UsOZL9YKWLnQitkoehPpxiHq9Dt/85jeLjSwPHjyAv/mbv4FGowGbm5swHA6LSbRLvN7ARaE0btjZ2YGvf/3rRZ+6ceMGNJtN6PV66kkNs9msOLLY4t9bFy9dRPh2M7relT6bkie+RDpYJjbLgut0vnkxFtxvw0lNKV0ZpOBIJX/8xo0bsLW1VSwoOjk5Ka5FwueqkkmDdjKAS4bY+hXvjKVkBzYwXlqMDiMle3jQg3dmTafTJQW+u7u7NHmLL0sdm1u3bkG324UXL16caTAsn36WlKEWsFmcsyoGYOxKAu7wcdkWi0VBENLdUkjg4Gc86oofJaTVR6o68E0Ir8roWILb2DaiZfD8+G8pV6BUoWS1sn3tFfJ+lrRSGh+JrqWzECWuiYSQybXzQGrHd1UkEIB9pdp51XsICcr1qo+c5LDop9lsVgRX1BZz5+aSAJPhm6hsNBrQbDah0WhAu92GK1euLB1ZqfUHSX9Y9AmVS5PJlQ+Xx2UTQscQ173rqPtCQevCN0b4eEb/V/KjaDpcxUkn3H3gbaz5aVpbWvVKWb8L75Ta39+HVqsF+/v7xcK/shMI+HxIHnxMWn0Ll7zSOKf58t+k4635cxpcz/A+4JJXmsxxIbWfHwIXuR1CkseWac1HI+5TIWYsWnVJ1bqa90VaV1RXoR7E8RHjq4fqFd63Q3aJlYE1b4zZ6U4j+r+ke6z21xIvakclck4nFtzeSP7Qq+BLpIK1rte5zlL4mIhQ2xTCU4T4fJjeZzs0P9zlW/jGmsSzAgDcuXMH7ty5AxsbG5DnOXz22Wfw5MmTwlfgi9NC4tdLvDrAdsfTLOmiDlxIurOzA7u7u7BYLODRo0fw+PFj6Pf7MBgM4Pnz58UzyDWE+ubrilD+UeLcXflZeUpM69KZFu7XwpG6sGoufp3g0/dl83OlSc3VS+0o8VIh/SVkrPi+86FWqxULFAGgOIGLT1RLd8WGyBL6Lq7fU4+ZpclY+pJ47AVWCv7rdDpLk394XG673S5WerbbbWi323B8fLy0u+TevXtn7o59/vw5HB0dAcCp4v/a174GvV4Pvve97xXPFsJ67u9CnCfZEIIYp5E6cLxNENJu2dlstrTy6bzq5ryCsbJB5nkAlax0FPUlZFgmLQDWvz+cN2lx3uVfdPic81AsFgsYjUbFbk7puOKYO9wuYjtXEUBkWVbsasSjm7a3t+HFixfw85///Mz97Fwey/0fIc6+a8Io1SSF9Vluh84TKfqr1Y5SAptOyLown89hPB4vESC8LbVgGtNwIgTTcSI9pD3o87E7SqfTKezv78PTp0/hr//6r5eOY6a6KBYWm5yi7/MJDvxbm4jlASydfMJFqKl2BPPTiVz58n60aj2e2odyjUvt/Xw6VSMqtHIw3UWziecpr9Rui8XiTLwZO0kSKgeWTyeBqe0O6V+pgSco+PqtNKkixTY+8L5MxwJ/X3pHcQxi5LvEJTSk7j80JgtdBBOqG6Qxiz4bv+6NA7lX+lyWZfDNb34TfvEXfxGeP38O+/v78Ed/9EfQ6/WW8qYTcWX02UWNCy+azFUA+xj2ocFgUOh0tMm3bt2Cr3/96/CTn/wEPvjgA/joo4/g+fPn8Nlnn8FoNCrywTxeV77MNXmVZcunFbkWl3BIp2P5nvP5r+veRuuKKmIYKW/U4/yUozIThDQP6tNpsdI6ArnM0WhULFJcLBbFnecAL8cJzkcC2CZPpXg+xL91LZjiKFu/3jtjucLB2epms3mGDMK7RxD09+FwCD/60Y/g+vXr8OUvf7n4rdvtQpZlS7tmcfX9s2fP4OHDh8VL4q4DPikrVW7IChUpjeX5lKsoXOSrr3wkChEWR8z1HlVP+knvWpUTtaoJTI3wkUhYTQFbVkmVVdw8nxT14yOZtfxTtHkIeetKo+12klCmzkJW6vB6TdmXXeNP+r6K8cMd0VXog1VCGwPau0n6n9c/nj7B64rfs2DFRaznlJNx6FNkWQZPnz6F0WgEk8lk6WhofEbSnVIw5fMfXLqwKp3CJ598z1I5NZmqmBT3IRXB5GoH7BfNZhM2NjZgPB6fOcKL1iUS2IPBoCDFcBc7ptFk5/2H1zvmBwBFP3UF6jQwo+XSXfQxwHwxHz4JGeJ7uMqwpkVwcpPnJbWB5mtrEyCuSSTqy1nl5+NQGnOx5K9WBpWZ+jraGLfKETMefYSFSwfx9qR5SEQEz89VL3meF0fL83xS+T9IBuDCZQn0fmZsK+vEm+U7gDgiz6WnpDTa2HERnK60ZXU/gN5/UpMrUv6tVqsYfz4SDp/h7WKRW5JFGs/oN7bbbdjY2IDBYHAmb0lHSTbI107cpl1Ev7NqcL1zEevI4mNKSOlLSn02BD7fIBRWHczTop3Y2tqCjY0N2Nvbg62tLej1esXiknq9Dt1u98y1bpq/X1bmdcZFlLkK0NOzsO1brRbcvHkT9vb2YDAYwNOnT6HT6cD9+/fh8ePHMBqNCtuEeWBcg/mE2qF1iQstsvliXQ2hfKw1f1/MqOkOH/dwEZGK7+Fwxf8atLrnVwy40vI0PjklPS49R/2qKto6Nk8pNqUxe6vVKub08jyH8XisXi3CF6S7ZOPxXujY03xmy7M+uSR4J2P5Ebij0QgWiwU0Go0zBeN9dvQzYjAYwJ/92Z/BW2+9Be+++24hULfbhY2NDXjrrbdgd3cXAE4nY589ewYPHjyAR48eLc2WY9lUphSr0qWKd5GaIY6ONEi0vLkMPB8uB8DLSWpelgsSeeHqSCFGyhJk8nd1Ka1YJZDSoU4FzehTktD1nARLHYbK6KqrVPVq7e8h8kvkBX8fyRGjRLMGfjeilSTjZfl+cxEd1vwtbSKlQQdca+NUpCTC12dj6hifo/n4Al9ets+IWmQq0281+TBA531VmoxdB323zsB+jnX2+PFjOD4+BgB5ksdCNEnOML9/UwpuXYFbiE3QiFf+m1Qu15X4OdSJtcgsjbGUhFwssG3m8zm0223Y2toCAFDvUwJ4eVRtr9dbkh0JM4sulXQL/o/31M5msyV/XMpTu+OETkJIbeBqO/ob3nnY6XRgMpk460VCiI9i0f1Z5t6dSt+P222Xjrf2+ZjTCCj4syiXb/eMJV/NfmRZduYqE6t8COsY1drQVc/a0c8W/aL9bomLcFd7mZjDIguu+tZ22qOseMd1iCypZXflHao7pPwoQglVmofvnfEELytS+rk4nlutFszn86UV/65nLPJocTQnB6W74lEPtNtt2NzchMPDQ9P78JOaAKDoq9pkN8CybUodR6wjfLaEtzG90x53pYX4X+sAiTAOITB97+rizVzP+HxNrtdcPltILOnSWz7eEk+zu3XrFty7dw+uXr0Km5ub0G63odlsFuN3e3vbGT9cpP5zifLg98QCnE54vPXWW9BoNKDf78Pjx49hOBzC/fv34enTp0tpsV8ByPGkbwyuI+9g4YMoLHGHK46X9Arma/WJpNgFQJ+Qcn13XrDEU6uQl8d/Lpkk/e+zUbyNLNyJZGMk2VyyIHwbB0IQ8qyrf7tsItVPrVarmDfM8xyGwyHM5/Og0x0s8V3ImA/VZyls7NJk7Obm5pIA9Xod5vP50gw1OoiUhBmPxzAcDpfy6XQ6sLOzA51OB46Pj4s8Dg4O4A//8A/hzp078Pbbb0O73YZWqwUHBwfQ6/Xg5s2b0G634Rvf+AZ0u134/ve/730JJBak89y1jlxGAYQMbFeZLjLV1xG5cp5Op9BoNCDLsqX7fREYDOI9Pvg832WM9Ri6wyoEVsLARdxan11XSM6B9o7SJOC6I3Tiap1QxpDFYh3qaB37VQpy0UVkrbszq4E7CxZn5BLLoMQXwKlv0mq14MaNG5DnOQwGg8Kv8TnX1MaXGct0IsJFIvmA9p/nox2n7PM1Qux12X5Ytg6t+VvlbLfbsLOzA6PR6MzVGYiQ/GIIRQS/i9YXJGqTUq4+JsmVQrekaFPaN/B/1+Iha1+KJZOqJMvr9Tpsbm7CfD4vAtSQsixpfcTOJdKBjj068YLgNoQTG1ZCK4XPJMmMeWP+vpi36sk3lGGxWMDW1ha02+3ivQeDAdTrdbhy5QqMRiM4ODgw51uFrIvFAobDoUjehrRViD5z5YsxJR6b/OLFi6Vj4lzxm2R7cOFRlmXFroZ19Elj/amyZbrKQeLxrbfegjzP4f79+8VxfMjDVWlnyqCML6PlV0WfsZDEFOg7p7p+QJOFIsuyYpPLaDSCzc1NuHv3LnzrW9+C9957D27cuAGLxQI+//xzePjwYcHl4a5GeufeJV5foA7HUyxpH242m7C5uQkHBwfws5/9DPr9fnEsMfrRrutP1lEHhUKywfx3Du4HaWl99Wctk3OQISf3XWIZofMIUptq/Z5zb9xPpun4c67PVtksz0p9q8pxHGrDx+PxmSOJrVcwndeYiKk/n6xLk7GdTudMAk50oGM4mUwKB4Cj1WoV98Y2m03o9XpFul6vBz/5yU9gOp3CnTt3iqONT05OYDAYwNWrV2FjYwPeeOMN6Pf70G63xXKwwamS5MSCr8IsqxBCn9dgdQQtJBn/Ht+bOu08EEJHj27/Rkefr3TFu2it7ybJ53tOC+i1Oo1RQrEoMxnH25m2o6Sced/T3kn6LeXqF8mY8LQaaFtqixRcslonBKTnLflTGX1puByueqkK2phImSfNd1VkfAgkEjKUJC9bNiJ2wjZmfIY4ZdxpWUfya91B9cLJyQk0Gg3Y29uDWq0Gw+FwadGZi5jR+qjLjnEnnvoykl8VopNpOleZkq/An6f5aKS/ZMcstlxLI026pejboZMWWZYV9zTPZjOYTCZOGx0iZwyRiX6uxZ5qwLYJIRpXTcJotkny1V3kppQHfqfVneS7aPlzXz1FPWF+tVoNNjc3ix3I/D19vg4ds+tGornk8dW79kzMuDsPe+kid/B3gLP2xjUWJD9VejdLHCX58bwtLHW4Kl+ZHilPuYBmswk3b96Eo6OjYjLWNZarlhknSihvwW3vKvsm1tN4PIYsy4rrGXj844uXAF7uxOX6hr6fpC/PA6toa6lMV3m1Wg2uX78OeZ7DgwcPAOB0UoUfN7pOSCWTz2e2wjV2rDwLlwsnZVOA+7SSv0j9zL29Pbh58ya89dZb8N5770Gen/KuL168gOfPnxfc7HQ6FSdi17HPXKJ6YPyI+hyBur3T6UCv14OPPvrozLN8cw7PV/obYD0W8lljIiketXDt1Kf2+XA0nZanzw7xPFz6zWUjLLxq1VhVOSExuGQjpLr29XvpNBCfnx3C1fn6Gc/b94wkTyg0n1WCz97ioiKEayOi1O+5HCGyafBx4r5+Jsnpq2/vMcWz2axYOYPodDrwD/7BP4DpdAp/8id/csYJOD4+Lu4fyfPcucsS72gDgGKyEDv3m2++Cf/8n/9z+PGPfwz/9b/+1+KZyWQCs9kMtre3ixWZ2JjacWU+nIfDKyljjZB1HbHEyVWaJ1UWAC930SLwbjMMZFPBEvCcd1B23gjtb7yfcBIwtYMUSnC5yM+qEUvYSwGSb1f6q9xvUVdIk0HngVe5rmPA9TdOFF2iPLAeHz58CFmWFTvR8EiwKkDJyVSTjZgn35nkIs3pojuL/yTZmrL+E8pHT4JI7ZPxOxhd9dJoNGB7e7tYwNbv92E+nxeEha+erEQ2f0YCDfhijsal9Yn9HHfe0OOUXSQDbZ/hcFjJrhFajg98l7APvK2l9rEQOugjxMAa5DWbTWi327C3twej0ahYPYztV6vVnPeOIrQjf9cV3MeVdvdjOmkyiwK/xwkNnj/3GZHYvgjA9w4dAxSS7lvlZGBqYPtlWQb37t0rdpZ9/vnn8OGHH0Kj0YB2u13wB1WUH/OM1gYx49Y12SwRjRKkaxV4vKm9C3I51F75Jp1XAan889KJKAvuWvvCF74A29vb0G63C64ty04XgQGUPwq/KkgcRFmscpLHl7ekC/F9LfaHl4XPSTa72Wye8Snq9Tp0Oh3o9/vw8OFD+Pzzz+Ho6AhOTk685cXyIZe4uEB/ibd5s9mE2WwGP/3pT4vNT/1+fykNP9bep+el79a1r/kmyVKB6wNrWdxmh0y0XkKGFOvF5BEK11U5qWG1XzETtSHlxuYXy2VocrjK8cU6PlTFdVAsTcZK94oAgOhA7O3twXw+h62trTN3oIzH4zMTuBw4yYvEAgbd0+kUptMpNJtN2Nragq997WtwcnICV65cKXaq0OMUkEjCo17oe/iUmBSMU/jItDID3FUmfs+NiGUWnuYvBXW882NAwIlbKR8LQgMurT6kevANJkn5xgbIUnlauSnhKlvrn1obWeS01JPkHOAz3IkoY3hSBXPavUW8bi3E6zqgTGDlew8+ZqwE5yrrR+vjq3L+NXLLCmtaq+7kdmGdA6GLBKxDPE4Qg1u+O8EVOFkJzzLyWSHpDW2SUwtYq9bnLn/I6ntYfIjQPOnz6J/ifa3ahJ4W/Fn9UJpeqnfLBLCUjy+4p/aQHoXr8n+qWqxjJTZRjlBoz6SyrSH5uEgt/NdoNIp+h4QZ9sV1nTh02WnXJAjVndp93Tyt5pu6vsuyTF2okkr3+aDZ7LJx5bqkt6CK+kUeYGNjA7a2toork7A8baFlSPwjwWf3pf7qq1P6TAq/2xUnSkdKh5DElF8AgKU7B13vULXfukr/TCtTS4O6cGtrC65cuVJcI4V1hXfFr4IIjEWK9ltlLOniMqTP/BnLmODPW0B3llNZarUazGYzGAwG8PjxYzg4OIAsy5Zs/zpxFZc4P3BfHz9j3IB3gkt91srdrXNf89le+jfnAClCOW/6nNVPlZ7lCLGTZdslZVy0CoTwAgD6HAn9bOGBQ9pB4wMkSHbD0iah3GJovbnKDoVU37FzSy45zlNHuTgTH5YmY/GYvp2dnSLTra0t2NjYgOPj42KCdTAYwH/5L/8Frl27Bv/wH/7D4vJdxP/+3/8bfvrTnzoLvn//PhwcHMC9e/fg5s2bcP36dajVavCXf/mXsLm5Cd/85jeh1WpBrVaDb3/72/DWW2/BH/zBH8B3v/tdMb9arQbdbhem0+nSqldtZbiLQLM2Jg2ctWel+1j50ZK4ApKCvwfewUJ3QfGGlwKh+Xy+dNSipnD4SqnFYrF0ZEXIxB7/bp0NeFmEkie8v0l3wFnzo2ktOxrPw7BSB8V3vGJs/qn71+syucVJT0pWcWKeY9Xj+nVpk1BgG2G7NZvNYiffq6x3qwRd4KUBfQo+fvA37ZlQ5zkELkIJJxQ7nQ7U63Xo9/vmO/14IGORjd9zLuVnCVRXpWeoTLVaDZrNJgwGA/jwww/h2rVrcOvWLbh58yZcuXIFHj16BIPBoNgxTRf/xcrvChxxt5d1Bzw+32g0oNVqLfmSWZYF7QqT2ntVeqUMae863QLHrqtvxrSbBb7JACwfF6s+efIkCRnPJ05iViRXbYM5EeEizDANPoP6jX7PSUbqf0rt65swiplQc4HXZ9Xjir+TtexVTGBdZFj1BPY/7KuhcaM2SWp5Fp+hYwJlGg6HxUlmlvfAPOn/uCCfX5XEFy+FIJW+wViGnzS2DvFElmVw5coVuH37Nuzu7sLR0RH86Ec/gjzPix1tZfS/Zr/X4d0pXP4ihdb3feNB4vli6yDGJ9WIZz4WR6OR2N55nsPf/M3fwIcffgjtdhsAXvbh6XR6qZsvcWbhBt4/TPtHo9GAbre7dF0dAJj4gos2YUch8f+a3JofCLC8Qw5tuRXSJreLinW0IS745A21KS5uI3QCl5dp3V3ri8tT+U4afNeoaNDe0TWWLL4Bl40+o8U6WXb2+k6ejyZPKHzj/czOWOqwA8DSzlWa6dHREXQ6Hdjb21u6azbPc7hz586Zyb3JZLJELOAO2L29PZhMJjCZTKDRaMB4PC7uLEWya2Njo1jpSsuhx6yhzLhblhom6wQQJyx88E3EaqCOmRYk0YkRK3wBNf1dOt5ysVicuUgZZfTl7yNUQ+W1pF8HY+B7Nx5E8zQpyOaQ/kfTasGB5LjQZ13QCJ9UxJOlDkPGIR1zsbKkcKpSk3IWco3qGi5DmXpZFSz90hJglDGsqXVQSN/F/6Vj5S4RD4m44XqNLqIJ6X+aHoxx4kPJdPSV6GItl/0qY7dTjo+U/VmqY64D8TPep4fHwWL9aflY5NXsq7W+fTab29t6vV6cfsLzQL/edZTtKieLfO2slR8TaK8aoT406nUk0jA28+2Uco07Te+EvgM+v2o7I5Xneg9Jt2r+Dv2cyh+ncvj8bklu+nfMJEUZn1aTY12BYwN1nVRvdBxZUUUf1/S95m9z2xIbB0s2iuoV3wIW/plyL0j8hyz0CfFvpN9C2rHZbEKr1SrqHicfzsNX5j56o9Eo/LJQzsdSluW7qmDlDPh4tfBJGlen+WLch9dk0TgLfI6nkWSSyvSVS2M55D4nkwkcHx9Ds9mE4+Pj4qoMepetxXe7xOsJ2gfwRBV+gmSIHtX6c0ouLBau+MAKibPUnudpXWXG+NmhfK72mwspeNgQOUNQdV+S8rfGZ/Sz1f64bFHou4bWp8/2ueTxpbfKZemjmr8ixVRa+SFjz8f1uSC1Z0y9IJYmY1MQuVmWwW//9m/Dzs7O0veff/45/Kt/9a+g1+uJzz179gyeP38OAAA7OzswHA6Llf0ajo+PoV6vw9WrVwuCEScZ+VHJ+G4x96GVAZ2hx398tSNORNPjlJrNZvGPGs9+v68GEZg/XfWJzv1sNluaaL1x48aZNhoOh3D//n11ZUZVyjGGaLgo0MgU+n1V7xdKrtI+gw4+/tNWrXCSyWWIqmxDnxL2GVmLbrjI/VACkhKoMxC0T75K7/sqgq7myrLMaS8vEQbfPe1aAGYh212EfQh8+hwnb5Dsa7fbS8cuh5BevDyfPpRItlBYA71YPYXP0V1zHNPptCDB6A4bftKDj8ST/qYySL/RNNLqdUqqIymOk3jNZrOYPG40GjCZTJauIul0OsXz8/l8bY+91XwkV5u7diunwCondPL8dHcDLlqdTCZFjICT7Rz8BB4pz0usBin6INcp+JmfzMBtUJmyU+jvKkFlm06nMBqN4Pj4uKgTesoLwOluc7yCwILUk2LSKVn4mxbPx9xNbeFxuH/Pd5X7nkVbtLe3VyyUn0wm8PHHH3t1D+YRC2rnrMflX7t2De7cuVPozwcPHsDJyQm0Wi0zL5QKuGFgNpsV8uf56QaH4+PjpQnyi6inU3CIVYBPHGmw9IUq37HdbhcnBT58+BB+/vOfw3Q6haOjo6V0Ln/wEpegE/t42g/vH3yhpgva5NU69bnUE4Oh44vadUyPtjA0huHlWiekLrEMS5vxz/Q7yZeR2iKmr/DyLXlo/JElnYaYMVH1uHf5kNz20WP+NdA5OAu0xRhVvfeZydg8z2EymRSraIqEjQa02+1ilwDA6d2wH3/8MVy7dg3efPPNQsh2uw2tVmvpmNurV6/Ct7/9bXj8+DF89NFHxQsOBgN4/vw5bG1tFUTyeDyGBw8ewN7eHty9e7fI99atW/Ctb30L9vf3odfrFROTtIJw4qiswrUouthOKZFLi8UCZrMZtFqtM4Q6zZ/u+tVIPLrKFY0Bl3E8HsNwOIRut1sQdp1OB27durUUoNXrdTg5OYHhcBhMekpkrvZe2nfWCTX6u0R8xhiukNUXoflJxApNYyFoY2Tz/eYqi9evVLc0jZZfSifCRYC70tO/qawamcXbq+qJ5SqwSgK5LFx9S0oXkg+HTz+to9OrOfbrKOtFh8/Oc51HcZ59yEXy+p4DcDv9NG/JftH0Fhsg2Tuqk31twPW6zym3+hK1Wg3m8zkMBoMlv0sKFFz1YJVBel7yDSxBRbvdht3d3eKkmcPDQ5jNZoXsePyxRd7zhK+vufwRV7+kv2vlVKFTrfnhzmycXK/X67C1tQXtdhsajQb0ej2YTqfiTgf03VF+K0m16n7gG6eYRvInuf/Gv6dl4D+Lf2vRN1pZVqTwrzQ9YHlXnt5a1roB41scIzi5NZlMYDQaQa/XKxZlhxCfKeSi0Gwp7buWvmaxK64yLc/RXXeYjwTMn96njt/hdRmuOCoWkg7gclKOBfUiPzGNpksBn27Rfp/NZoV+t14dcd44L7/BZeO1tBad7/pdsy+a/xbjM3A7TXUaLiAAeHn07OU1NJewgOo3qltQN7t0Oz4fwoVfFPhiectz1rrx2ReuW2K535SwlHtebR5SPy77bvFxeDnaMxaZrBykxiFpn2PGp2+OxPIO1r4q8Rexfdyqs3y8F5VJipGt8lnHgCW/Bv9iPp/DyckJNJtN6Ha7xYMbGxuwubkJz549KxyDw8ND+P3f/3345je/Cd/+9reXCKper7c0wXrt2jX4Z//sn8GPf/xj+Nf/+l8Xx9ns7+/DwcEBfPnLX4arV68CwOkOze9973tw+/Zt+K3f+q1isvCXfumX4Nvf/jb88R//MfzsZz+Djz/+eGn3K395any0WXYXKROzWlIbtDR/DFzoTlW8L6Lb7cLe3l7xfa/XW7rva2NjA2az2ZljoGnZuNoJ76Llx0wDnO5EfvHiBXzxi18s6ndrawt+4Rd+4Uzan/zkJ/DgwYNS9RKKdQ3+Y+F6H67UfMo4lTw+hJaLCo2vsqYr1asgNy2InZhwwUqiXARQh53vKHhdsWodFDoucDxRfYxH918iHrH6yeVwWXV/GUh5IVnqcq61CQ4kLn13efD8QqGNMzoBE5qvFjRrEzgcdKfpZDIpTm1BeX33t/p2PVlkwDTUbtKrRHzY2dmBt99+G8bjMUwmE+j3+9Dr9aDdbhf+JpbfbDaL79cVNJizgk8s4POS7cY2XZc6mM1mcHR0VLT71atX4caNG3Dr1i3Y3t6GP//zP4eDg4MiTsMjjbF/ttvtYveVdnRrKqS0lSgnn5ig+kAqC5+jYzPP86X4if4vwXI6Ci8zZNIzhb8pyaNNSmk2yUqcrDuwL+C1R6i3j46OignZFy9eLMUhKW1uWfjsGz3JwJdHWfC+FKsH6/U6dLvdov5TH71rBS6kopP0HKuIc2jbItdCJ0NGoxH0+/2la7guImLrsYr6T5mnxUcL1Zt0zKKN4s/iiSwI5FKHw6H3WPFLXIL2D9QzsdD6NfXJ1g04LjV/nyPEJ7C+bwyH6nt2XXyXVwVWv9r3TNkyLfnGnJRSNULGv7QIJMQH813Tg+D15IoZ+dUaVcyNWLA0GUtXXeH9ofV6vfge4HS1fa1Wg/F4XJAET58+hT/90z+FN998E959990iPzz27M6dO8XE4GQygd/6rd+CTz75BH76058CwOnL9/t9saP95Cc/gWvXrsG9e/fO7Pa8cuUKTKdT2Nragvl8XhxRhLtyO51O4Yj7KljrUC4jxNO4HDKN/JFWC9B88F22t7eL+kFSjcoiEU48AGm1WkvH7AEAbG5uwvb2NgDA0jEW3JDxvEJICasBtJAFFxm0fV0ENE/vcyQkxYakBM+Dlqv1G1dZvDzf55h2rGIy2joRe5H6nZXMB/CvyuIXngO8PE5L2okfkn/VqJpkllBVP4kZO9adDJcoB647q8jfkrfL39AmZLkdl/oLtwv8XX1jIXW/89kqlyw0D+l7qRyNGMe6s+QdY095PaOfhyel3LhxAwBOF9n1ej04OTlZSq9NUqI+Rx+e5k8XckjBiK8PpmhzV79N4Tf4wMso804hz2rvKY3DRqOxdJQctmksGYQxVOx1LZa+Hgu+WI/3Q21Clu4IxpgJ70bDyRh60lOInHmeF4tncbIbY1kaE1nHeaivnEq30slITZ+55F1nv1iro+l0Co8fP4bBYLB0dQ8+s0o/yVWe1t/pdzx2tILbeTpmLP48b3+qP7Isg93dXdjb24Pd3V0YDAZesjCGuOfvwP9pxwhSHdFqtWBnZ6eQEXVBiC4tC1r3dLHX/v4+9Pt9aLfbxQJ91F3r5su79JF0DDetX40XC/XrQuvE5btp31n6hGssWvwZzQfHDTF8BzftD9SnX2fdfInzg3VsabDGAOsIybennDbAWT42NG8t1kZoiyW4j2uR35V21YipqxT5p9DZljy1uNCFFFfC+GQJ6ROx8agljavPu2Ic6rNp8mqf0Z+gY9Y3bvlYt/imrvL5b6nH49JkLB4tQ+/GwiOxsBI7nQ60Wq2l1Yaff/45/Kf/9J/gN37jN5YmY3HC9vbt28WE35UrV2BjYwO++93vFpOxAKf3v47H4yXher0eTCYTeO+99+DevXtLv9VqtYKkAjhdLfb48WNoNpvFUb/NZhN6vV6UU1vWkEn5ScQI/Z2TYlmWFZOx9+7dK1bG7e/vw2effVakoXlQ0F1SeEfYeDwu2i3LMtjZ2VnaiSsF3/P5fEk2XN1peUcfJHJFeh+JlIkpZ50gvTd9N8lp0Ihy6W8eyNP3R+Kr6nrhAUNVZaV4D0se6+KAppYD747FsZ1lWUHan+ddglJQqwWxrxp87yaR1fR/17OXKAcfOSS1nVVHlXHefelxBb5GtlJw26QFsquCVpZmEy32jRPhEvFrkYHKIZXhmmjhz9FjZ5vNZnEFyHw+h4cPHxaTsb4ysP3o8ZGo45GQxiOMY5HKf3DpeP57bL70s6s9+Heh5IOkf3kftaBWqxVXw6SywfS+aC0oPg8/meoaVx2hbJTowskhDNYx9sMJVNxd5LtnUrKneZ4XV/TgxC4ubMDfU+2kLjPh4ALvj5zk52l9BNBFwXg8LuJk6teWGc+W9IiQ5zSSCfsYJ3ZpGpd/KMkhkWK+dqb2A++pzrKsuIt1b28Pjo+P1TusNVsaWkeckKNxLAce9QpwegXT1atXl2xfleDtQ98T9Qje6f7w4cOlxTZ4j631Ptx1AeWzrLJXdWQ0RwxnZIEkc6itp2MD2/3w8BAajQa0Wq1i7KOvhp+xjukmFReHdonXB2X5a8kX0+zFuvgIGifKfUZu/yz1JI1xnj//jZ/Ewe2Xq6yy/HaZNlmX9iwDSyxhzYN/p8VNNL3lhB1fzOs7+SB13E1l0dJK6Wk/d+Vr1UlS+XxHLMaxoXN72ji2yJDCh3A9f+bOWLzoG8FXlLowmUyKS+azLINut1tMIGIeGxsb8NZbb8G1a9eWnh2NRjCdTqHb7RaO8nQ6hefPn8PHH3+8JNOzZ8+WHG2A04nk27dvw3g8XrpLFlczWypEC0RDCDmaxkIo0bzq9TqMx2N49uwZtNvt4p350XRbW1vwta99DZ4/fw6PHz8+Y1Qo4ULLns1mUK/XYWNjoyj7008/hf39ffjSl75UtNX169fhq1/9apHHV77yFXjx4gX8t//23+Dhw4dFIGY9JsUXdHHyVHvO6uS6yM+qFFiZvCQjalV6NK00SeUq1woqk8vgWw1gzCSCJhP/jjtZnNzwyWZJ62qjVSCk/BgZNRIhVf6hWEfnMMYmWFCGkNUcCF+aS9hBbQu1R3zMcD2p6SsK3EkglcnzsgaSVFfM53MYjUZqIIlyuxzWLLPtqqNl+MhiyZ6F6F5OXPMyXQEUz8en81yyWcerLx2SbM1mc+m0Enx2sVgUO//oMZa8bkajERweHhY7BbkMo9EItra24Ctf+UpxP9mzZ8/g8PCw0gmL0Oe0cYF5ALgX7pWxgalg6Vs+7OzswBtvvAFvvfUWXL16FX7yk5/AwcEBtNttAHh5EtFisYButwu3bt0qdtU+efIEBoPB0gJNzddJ5SdXlV9qSH0Ld6bhgoiNjY3i3mg87g/HHj/eOsTGcl0eUlda3BQKSQ9eJFB5MfY9ODiAPF8+Tt5FoK4SXGdJOirEDnHfw2W/fXbQF4NzGXBiEf9xoluDjxTT4t9utwudTgeuXLlSnBA2mUwKvab5G5PJBHq9HvT7fRgMBoWNddmWMtDaE8tF+83TcF7rIkBaKIB+opUjqnpyHCBscZ2PcygTp7lAeU4AWFoox/sqv07oMra7RGrwq/5oH6Mnkqyy72njTYr7siw7cwKlBtc7cD+ZfpZ4R/6/zyb6+GqNT3DxsTFI3Y5W3tWShwUuP0LjsS35Se0LcFYHh/jRvN9IfVd6J/58DKzccYo5Ba2+Xf4a/47rHq3eJB6ElkN/41cD+Mag6x1jxiP/fWkyFjPik7FWTCYTODk5KZzKVqtVVBo6Eu12G27fvg1XrlwpjuDK8xwmk0nxO135dXJyAnmew3Q6PVPpdJVJo9GAvb09ODo6gmfPngWRZlojSMSq7zn+PQ/QXUoddyrgO/N8MG2324U333wTAAAePXpU5IO/S04+yoEEH+LJkyfQbDbhC1/4QvH99vY2fPWrX126a3YymcAPfvAD+Pzzz5fklt7HElhpkMjUmHzWGS4DFWKwaT78fi2rDK7fJeeG9mdpHJUlqjEf3zOhfYrm61L+PjJDyi+FjBaUdZRC6tVa91U54a5gN6ZMy7ufN/g7x5K6rndN4Rxf4iU0ApTD1YddZGhseRT0eEp6T72kwzVdGTN+YvqY5lfEPOsD9/F8wQ2t9xT6RMsPbSxOomo2iR7rStsYMZ1OodfrwdbWFnS73TNlT6dTaLVa8OUvfxnG43FxOs3x8bFpBTeXp8z7c9ktaWndac+WIbapDySNk1g7JLWlpa43Njbg1q1b8MYbb8DNmzeLu2LpEdSYT7vdhqtXrxYrip89e1bEYBpBXia4tyLFuLEE76mQ5y/v38XxRnUoXuVgzYvCpX8lPawRS6usj3UG9m2A05O2AKBYqBBCwFGU7acamUq/1/qAJo8rfcgY9sVqlrxwp/lkMlnavW+tb+4HSXIg6vV6MRF79+5dePbsGcxms+KuYG3iHbmkwWAAw+EQRqOReF1D1eAcjUY4xtqW84LEN4XAxRv4nkNYOQ9X3YbmlxpoyxF4hQTdjEHrSvMlKNY53r1ENfC1eawPRu0rQDnfehXgYyXUB7Dw/nyihn6miydCeF3fMxp3cNGR4j1iuXWrTFIevD+EluPyCfD3UPsY866xeoHKx8eD9Dcdk9Y7cLmtc12zoflVVI48P3v1JpVNkluTq8zvFEtRJN6tsrGxUXQqfGlccZplp5OGOzs7MJvNoNfrFQJ/8MEH8Pz5c/jOd74D7777LvR6PRiNRvC9730Prly5Ar/2a79W7L78+3//78O/+Tf/Bv7jf/yP8D/+x/8oXrzX60Gz2YSrV68WzjU+wzEYDM4c34WrHmMdPAuqcJbREZOO0cLj6drtNty8ebPowNo9rvR7qR7yPC+O6+l2u9BoNODg4KCYjD06OoL79+/Dt7/9bfjVX/3VIp8vfelLRd7D4RB+/vOfLx2VsorLpS/CpEpZaO+Gq3/pfTdc0fDVHogUilaS0TKB5CIeqgY3FDGB4usG1Pl8TJeZkHmVx+slXi9ozqcvPXdOQ8kfasvLOomSjBZwh5hPJob4AJbJTzqBhGVa8kvho6UK6GLLrtVqMBqN4Kc//Slcu3YN3nnnnWJyAXWz7zjAPM8LAhp9ZXpaze7uLvzKr/wKDIdDePbsGZycnMAnn3wSFChZYW2TkLYrY8+loG3VdgploMcuUXCfKc9z6Ha7sLOzs0TcUrKW5kt9RLzapVarwdHR0dJdtOcFjVi29hMpPb4rXq+Du8vX3ZeL7XuoJ2ke3OeVJnn5+L7oPhqdbEEddx7922WjsR/yvmuZILKUSaGNj1D4np3NZvCTn/yk4IKyLFu6xormo/UxfgwdjT3wuPZutwt3796F2WwGDx48gJOTEzg+Pi74DFqPuIN9e3sbvvzlL0O9Xofj42N48uQJvHjxAobDYZHuPPQC9W2wr5a5LuA8gG2NbYVtOJlMivhx3XXueUDiTDiPM5/PC35uPB4vnfDnqtN6vb60yQUX8120vnWJ9OATk640+LfE/4Qu1KwaPh2DVy5q8UysjpJ881CExJjcT1hVG1y0xUEpINUt96cwXgzdCEURG2dX3faa7+rzKcty/L5+xuvb8izOByJcE7m+dteAz5YZJ0uTsWiwqVOA/6hzjA4k70SHh4dweHgIb7/9dqEAAU4nSEej0ZLje+/ePbh79y784Ac/WJpsRcIInQr6otRhz/O8cFKokqIVzysxJMBPrXx4J5bKoWQQrXuA05W+uNqdkjA4gUs7qEs5cPKn2WxCrVaDwWBQOIT9fh/29/fh7t27S3JeuXIFbty4UUyaP3jwoHAcaSBcBr5AVvstRf4++FbFlM1PUna8P0hHAuHkLDrd/B1dk5GW+nC1q1SG5X0tY7PqiTxXvqtyPlZF+PsmPmjZnNjF5yXZXPrydXPgUmCdgpxL6IhZ1CJ95xojVv/FqsckR5r7ehZok55SWT4CwGWrtPdwycPLt+bhkos/Z/FzQnWfJu98Pofj42PodDrQaDTEo4tdec7n82KBFvrGdAdRu92GW7duwWAwgCzLoNPpwHw+L8qg/WIV+pxOHlEbFNIffO3jslWWd7TWfUgfwWMrsb4xYOQ+E5JK1j7A0+A1MCcnJyubiAgdixbSUMpb8m0ti0RD/CIAWLo+JtZHrSq+pOPGEnNKeVQh3yqBkxAAZzmNKsF9Zl9ariNifWiX/S0L3zilx9vj3cz4PX0/re/RfisdiYl5tNtt2NzchKtXr8Lx8THs7+/DcDiE8Xhc3A/N80VdubOzU1xf1ev1xDvXVwFeF/huKHvo/WfrAMpJcA7OMhmLz63C1wjRb9byXRMnUv+nv9FyuK+Dz2r2S5MP09PxJNmDS7yeCPUZJZvG+9Yqwf1hadcb/R37Pb3ORYLLj5N0EtXhFrj8L6sPuUpffVW8pJUv9sEak4XI5ONVuM2ywGcPVomY/hTDQVnLkuJ9SfdI/LQmi+RzWRdoWnm1EO7ABfV8JU7a4E5K7mRLODk5gadPnwLAqfK7evWqmH+WZfDlL38ZfvM3fxMATidi//zP/xwGg8FS2ul0CkdHR3B8fFwcPwQAhbO9t7dXTFC22224fv06DAYD6PV6Rdoyd1JQkiTFsy7DgKQMHqszHo+L9LhjGXHjxg3Y3t6Gzz//HPb394vvx+OxKiuuht/Y2Fg6wunk5ATq9Tpsb2+r77KzswNXr16Fw8ND6Ha78I1vfANevHgBH374YTEh3Gq1irbAgCg1rCTNeRMKqWTg7yqtVqsaNDgAOLvi3EcGrRKxBFksVtnXqiyLEhjUiaXHxsfW6arbJATroCtisY71+bpjHfqSr08jYdZqtYrj0Dh48OmbMOXPUntRJngNTc//dzntKKPPQS9rz3xBpxRg0J2L4/EYnj17Bru7u/Cd73wHfv7zn8P+/v4SGUH/bzQa0Ov1YDAYFGUvFovCj/eh2+1Cu92Gk5OTIB/O1e9ov6EkLP6W5y9P9nCRASHjSyNgpfaM9fFDwNsZ/ebr16/D9vY2HB0dwXg8Luqd9oHBYAAHBwdwcHAAW1tbZ04FuuigY9DXxlJbYYyHx5Zi3WE8hfdlS0G/pNvwu9lsVsRhjUYDvvOd70Cn04GnT5/CyckJPHz4cGkn7jrY5FB/y6oz1xl8QojivN/LN1GbkkzE/Kroh3RXQa1Wg/+fvffqtSRLzkMjd257XJ3yVT1dPa7HkboihxwOh6R4KQoSdHEhQBIucPWiV0I/QdCD3vUf9B8k6EmAAIkyFCFxdIdDzXBsj2kz1V2m69jtTd6HrMiMjB2xVqw0e+9z6nzAwdmZuUwsFyvMMp988gmcnJwUju6mNFhAT3NqtVrZQvwoimA6nUIURfDo0SN4+PAh/O7v/i48ffo044/0ZDaed6fTgeFwCH/5l3+Z8dkkSTKZp2lY9YqrvGuROl2p88Pa9r5xwbFJh4VLDrE4j0OMxXQTShzHMBgMYLFYwHA4zPLDjRMWPRyPDcdNM7hDtgl7nAtXWbe+LpCcBSHzA9XjAIpza9X2LRPfRTff9Ybpl7X/S85fjQbKB330WsPSuqFl43pTE2PM5/Qqk9auIlRWqpOXSv0VsY06a9p27+tT3HHK58uQuTYEIfywiXYRnbHUIO9TIKSjdS8vL+Hly5eZw28+n8NkMoGXL1/C4eEhHB0dZenev38fvvzlL8PZ2RkMh0O4desWtNvt7I4rakyaTqewWCzWhHcuzErGJs0og9+kdzwsHzSu9DRozBc7HlWi0RiDdTufz2E0GkG3281Wxg8Gg0xIw3j8Pl1OJ+aF96xEUZTVIVWqXr16BR988AHcuXMnOxptNBpluyh6vV521y8tBze2uQwUlnqX6LcyDB5O+t0Uw6tTyODheL+kxu8yx4hYjTdc6eLxKU0a7Zb0ff3F2vZlaKBhfP3QRZPkIPDRxr9pfTc0/ZC2wvr3KZtWhBoGaVjJcFqVHo2+KqijnjZhxN1lgfiqQmp76/wUOiYkmSxE3uDv6hAsXfMBP+0jBD7+baXbpQhyOcVHT9mylAHlv0mS3/Ha6/UgiqLM0cTjIK3L5bJwvB0a+vj8Ii2wpAZxTd6qohRR+Z3KLWXha7+6nR1W0PaQDCkYpt1uZ3cEU1me9gHchYZ/cRxDp9MR6cZ7HDE+HvW5v78P7XY7u0OWX2lSpmw8vo8/aQbuEPlXAqbrOsaK8juXrIl9Hvsl6pxxHMOdO3dgf38fJpPJmi4qyd4uWbiMfBgCi9FDe27aKLMJbLIMFpneEsYyD5Wlpy5ZF3fg4fH39HQsGs7S/3CnOX9P267b7cJgMIDDw8Nsd7+mJyFwDpxMJtmzNAc2hZA8mrZFNA1Njqzal108OlSvDOUFIbyzbDjK/1utFhwfH2cnoAyHQxiPxwXbjnQ1BaUT7Xp08QENs2meflX781WEq225HcXHm2l/abLv1Gl74fIy6jCSg1ZLQ/tOafXxo5B64nqB1U6H/EIKVxfqTpf2OV8bbBuabFGHrcT1bM3PJ/v44vtgTZ+HCaHFJy/4xqHlfZ19yiLDV0HBGYsGnsvLy0z4RaCzjh4JgwaE8XgMJycnWdgf/vCH8LOf/Qx+//d/Hx4/fgyvXr2C09NT+Oijj+ALX/gC/ON//I+zFfrf+ta34Dd/8zfh3/ybfwM/+tGP4Jvf/GbGaF6+fAl//ud/ngkfR0dH8Pjx48KROKvVCk5PT9cqiAssqKBrK2R8k1NdcSSa8De961Y6emcymcD3vvc9ODg4gCdPnmR581WpuPJzOp2qeV9cXMBwOITbt29Dp9OBbrcL8/k8O3oYAODZs2fw7//9v4c/+ZM/gb/9t/82fP3rX4fRaAT/5b/8l+yoH1R0EPP5HBaLBfR6vcKKvNDVnxZhwSWo87CSomjNa5NwGT3RcDqZTDKBHd+jEQ/rmy5i2ATNdafTlHFK25Vu7QNl+USTqDt9HCu+o122hV0ZqzfYPLhAv0t9YRP08DtUXWNfM/BxpwR9L4Xn36myS49T5fwb6UySZlbkS/UdaqBDSCeYaAp3XfzWpWxrbTAajeD8/DyT7ajDiNcHygOLxUJ1UK1WKxiPx7BcLjNnIKaL+gD2Oc3g6oPUTrQPodFksViIO6wkSMYlV1j6n4bfBf5Rpj9FUQR37tyBBw8ewGg0yq6nQIPt5eUl/OIXv8jS3tvbg7t378K3vvUtaLVa2SlDuFt0G3M8H6vcKCW1keYwRBkYHTB0Jyz2sW63mx3brfVHPn6wX+IOvG63C5/5zGfg6OgIxuNxllYURVlYy6ICi5He5wxw8Q8reD1jmpb5ZRcRSm+T8sRVq7sQ4CJw5D0crvkex+xisYB+vw+PHj3K+Nann34Kr169Eu00GGc+n2cL8yVIeguOZUxHSnvTc8EuzD1NIHQzhA8WmcuaZtU6t8qXVmcXnuIAAHDr1i34R//oH2X3G//0pz+Fb3/729DtdgtXudH8+dw9n89hPB6r9G1rh2zT2GW9cFuQHKoAtnkJF2Ja0t80JLlHOqnv6OgInjx5Ai9fviz4J+gCVR5H+g3gPlnTdxw7/ebToTSHEqVn1+xxVxkupzp9toQrI3v6vlv0gDpRJT1LXGtZLH6dMmlWRZMLU9acsQDF1fI+IwddyY1YLBawXC5hPB7DeDzOHHOLxaIgKCRJAp1OB9rtNvR6vUzoQKE7juO1naG4E5MKJ5g/Fc7rMrZoQqTUyD4mKxkspbzQCMYbPEmSzNlJd0V0Oh3Y29uD2WyW1RU1hGoTDzqA6dGzaFDAtsJ7WbCter0e9Pt9mM1msFgsYDAYwOPHj+Hy8jI7Qhrz47t1JVq0/sXL7ur8moAcMljKKgtl+pmPiUtCpVY2Tjf2HZ6ORmOIMd/iIJUMn1ZIZQqlKSQvzRiI8I13Sx7WMJIjxDJZh3wro7DSMVulrutAiOMllFdcR1xHhZQrNrsAl7Ae0s985aki00j9nhpytLnB9R7/QvhcKL0+Wnh/qML3LGn4+Aqltyoo70V5Go3R0t3wGk2SAYDydHo0sKUPan1Jg/aN9iGNt0s0c2edK07oWCnTbnXl65vHZrNZdgVMt9uF4XCYyep8h+tyuczk9iRJYG9vD9rtNvT7/cwxiYZZKa+mYeV1ru8+JVySjS19XAI19uHiAUn39dGswepwsBhoeJ5lnB/XAbxvSzp4nfKES1+TaLLOnb5wm2wvfuQp/pUZV2gXwPvQW60WnJ2dZd9pmq751TcmuMMK35XV+bU8fJDyu0p6CK8zfl+jZKOw1IvWxphGGUh1XbaNy8rdLjmS9u1WqwWPHj2C+/fvw8HBAURRejw3Lh7A/osL4yT0ej04ODjIZAH8j7vW+WkbXIa66jx/F/XCTaOq7sPj8bjaTutNQrNN4VgBSMdTp9PJToFBRyravC0ylEum13iLy05mmcd4OloYjZY6oNVJXfmE2OpccM31vjhlZCmLfmpB0+1lnYMtduaydh1f3fi+S0d407nP10eldq6zj7nSs9gkNKh3xuKRWGsRXq+YsWTy6tUriKII3nrrrex+UgRlpKvVCvr9fnZf6XK5LNwNi7i8vIThcAiHh4dwfHxc+LZYLApxkMY6V5FUZYCaAiClR53QPkZw69YtODo6ghcvXmT37aKRjaYjDUy6whTv351MJoWVRDyNg4MDWK1WcHZ2Bvfu3YM/+qM/gh//+Mfwne98J4uDK10ptLvpyoJOfq4ByifCXVWALEyMMyjEpstUd102RT/nVZu4K+i6gCvYruP/bnCDNxFl5payvJPOd9a43AHB5Q88xoket4kKq0V2sshYLiVVCluHQljW6aKl1QSoUUz6Rp2kk8kEnj17lrUVLkrUTi+gNLuMpriDEB1LNFyTc6XWPtb2x/pB50BZGmh6WN5tyIf0WEFaB3THM71P9vDwEH75y1/C5eVlVpdINx5lSHcAJEmSORHxGhi8j+4Gm4VmAKdtWIbncF4ipSU5sVw0XgdY9MS68wuZn68S8MS04XBYOH2J8q2QMsVxDEdHR9DpdKDT6cDp6SkAFHey4rNLzpDqHPk5PwZ5F3GVxhvSSk/SsGze4AhZUBIax5VfCI0Wx0gZ4Fw8n8+h0+nA3//7fx/u378PrVZr7XQQ7PvoWJVw584d+LVf+7Xs+fz8HEajEfz4xz+Gy8vLwtUWN7i+qHOBCQc6+XcNURTB3t5exov6/T48ePBgbb6gm5UAig5cPq59u10xX64zWeELe5Xmg+uCMg7eOsHHLj/ZA6Ae+3XTDvfQfDn6/f7a2MXTUCy4qmNHdcZSYwetGDQQUQE3jmPY29vL7jLC+CcnJ7BYLGB/fz9zxn744Yfwn//zf4a9vT04ODiAx48fw7179+Czn/0s9Ho9+MUvfgHD4RB6vR7cvn0bfu3Xfg1evXoFv/rVr7J0UVjhx6rR+8lcK6UsCmhV774WVlOYOR0u+ufzOZycnIjv6cRA7/yihhoqlOEu23a7XXDgUvzgBz+AVqsFX//61+HWrVvw4MEDGAwGBeGQH6OC/YQ670PqjLeFq200gyYPQ9N1TaBVDCIWuFZPULok4wwNiyuS6b1W+L3J42g0GimqMkQtXd6fy6SLkJwEVl4Rmqc1HWnxgIuOKgKgtlqPh6V9MGTlz6bHUVNxbpBi1xez7AKsc5Fv3nelIY1BV3hNlsD5HgAyp6x03BOPGzKXlgWXgXyGdPwuHdnrc0ogsB7p/xB6aR5Wns/nUClf/D6bzQr3gUnh6PyotZe0yJKGaxpchkFHIX7T2onv7sDf9Bjl0PwpeN939Z9QuMZsHMfZdR94DynPC/v1bDaD09NTGI/HMJlMxCOkeX+S8uflCZFRXChTR7Q9aTks9PjkeNx5h/flXlxcrC30dfEFqjdhXxuPx9DpdNaM4z651CU/Ve1jnGdJtPh4nkTPJhAiU4ak4wpXh1OnCg0h6W9T3pLGpfRc1QknlZkujplMJnB+fg4ffPABfPzxx3B+fg6z2cxkNN8EyvSp6yJH4xzOd680WR9l7HuuME3xA+07p39vbw/29vZgPB4DQLrTlTqLeFzKp7H+8fTB+XwOe3t72Y5zgNzxdN2OJ76BDS5b3VWENH7jOIbBYAAHBwfZ9R2vXr0CgNTBI9m2MS38w/nEx1M0mzbXl122NYu/wScvvkko6z8ISVOrX4u/wJW2y4aq5Uf9br7yVLEDh8bXoNEb0m6aTZrXh5SP6501X1f8puVypzN2Pp9nx8cg8Ig0ekRTu92G4+NjuLy8LBh6PvnkE3j58mUmaAAAvHjxAv76r/8a7t27B0+ePIE/+qM/gvv378Pf/Jt/E77yla/Ay5cvYTQaZXEePXoEP/rRjzJnLEBqsJhOp3B8fFw4aosfu4Xl2BXGhcyZTwhaZ9UG7nQ6hY8//njtPRW+oijK7kiix0tQ5QV3P+NEliQJTKfTNWPdn/7pn8Kf/dmfwb/8l/8S7ty5A5/73OeyY4kxbL/fL8TBnRv7+/vqQLKiqvJ8FeEzCKPyg0ZMalTHYzrwGOqqdOwKqLG5ShoAurORog4jLDfwl4nP6ZHSbxLU8F9H/e8KP77BDaqiLI/Y1jjgxvrZbJYdW6rdd0h3X0rOEo1vlpW9tHmPyjFa2aS7DkMcDRK/riJ/WPuHqz9EUZTdFU8NB1pYACgYRTk9s9nM3DZljKpWoI6B8oqvnul1JLRt8Bg+vkOWz53c6cTLH7LquGqdcHn88vISLi4uCkYeSivezzydTrOrXngYuvgyBDhufONLilcmL4qySjsPrx1DGkURHB4ewuHhITx48ACePn0K5+fnqtGMy8uYBl3ciPHpqUIoj2+Kp2sGfsnQ54svjXG+SOIGbza4o5/PtSF6pmWco+6K42o4HGb879NPP4UXL15kuwt98/kNmgXamMo6YuvmmdK8FDJXobxVN02ubwcHB7C/vw/D4RAA0jve+WmCCDrX4ZjAeWg6ncJwOIS3334bDg4OoNvtQhRF2eYZvuv2BtcDlv5dxRbepB5QF+I4hjt37sDt27fhc5/7HHz00Ufw/vvvQ5IksL+/ny10QPA5jcrkPJzmjN0kbu6K3RysbVvW6SvZn2lY3r+aPNGgjvnXsoChCrQTsFBGrIK6bNtVId4ZSyEdLRtF6Z0GcRxDp9PJ4vV6PTg6OioIB1EUwfPnz2EwGMC9e/cKFZokCfz85z/PmORsNoPvf//78OmnnwJAKpA8efLEWwhUDHq9XuEoBc5seTldFe8yEmjxNUWYh5dWEISsrtAgHWPiuj+UtgVv416vV1hJlCQJ/OxnP8viT6dT+OSTT6DdbsOtW7fgrbfegj/4gz+An//85wVHMc0HhcKqTsKyBl5KUxXHWN0DVlo1Y53suSJMnfESeH/ylclCjyTQcAO4FFbLS6LV975OB62v3ssYIDVeESLQuepjE5MI5hNKe1VnhsWRwePc4AabRJm5ocy4pY5CblDn4Xgc6btklNfmIZ/zVfqNDgqfMlGFH1Zx6HAnnY++KoZfTq+rjqX0JAdSVQfiaDSC9957L7tbCe/soyfcNGl0wLTn83lQWTqdDhwdHWXH8dJ7dF2yis8hWwdCnGKULv5b6hMhyj9deDmbzeDy8jKT2SeTSWHRZSi9NB/tnYsH0fw0XuTLR/pG+SP+brfb0Ol0st1G+B0XmfE+QYELVheLBdy5cwf29vbg7OwMLi8v4eOPP4aLi4ssrGYYCJkb6hxrrrR87YEnYqERH48IK8OnfcAjaanu3rShs2kZcdcN12WBd1HTvh46R9Axv1wuYTgcZndkas4iXPxwcnICk8kkG8cUTennodh2/k2D8ldpAcou933rIhWXbCDZkixlposZMXy/34fBYFCIf3JyAj/4wQ/gk08+AYD8eFieL/LmdrsN9+/fh3fffRdOTk7g1atX2e7xy8vLNZqrOOVusDvwOXS0bzyMpldIstAujG0cb1EUwdHREfR6Peh0OjAYDOCtt97KNgAhqFyhOVoleZSGcdEiQbKJ0vdSWJ6epMdseo5rOp+y6bv0uzphmQNC2kzqX1zvkU772JSNF+m0QtKbLPqc9O7Ro0ewt7dXkO3G4zG8ePEiOwUU0+d/ZaDZCeqw/5fhk+rOWIR0aTf+RiUXv+O9H5zgTz/9FPr9Pty5c2ftqLH3338f3n//fYiiCBaLBfz4xz/ODEJ37tyBz3zmM076MB90xqLiTOFTSstCMpZpTibakbQ7vFyKvIVe7Ux/KQ0c9PhM4+FOGUwTIO0H77//fnac2nK5hMvLS9jf34ejoyN48OABPHjwAIbDYcEZS8uKyj06eUOMqFWMHFI+XIguw4CsYZsy+KHQZBW0NaMvfqMow3C0vk/Duurb2hb0OHItP9d76nCQBC9pEikrBIUYY+sQdEOMZSFKtKtey+S1bTQl1FYxVm5S4CoDqgS5wryJ0HhhCL+z9pmqwqBvfuAGI+5cClGE+DGe9L/Gg335YFyepsWQJsW15MfD87T4s2SkDGk3nzGFtpFFIdHKNh6P4Ze//GUmu6NzCe8bDZm/XPn4aNKOTtbQ6XTgzp07MJ/PYTQawXA4VB05vjm+CuqYR0LqzjpHcD49m81gOBzC8+fPod1uZwtmsY1dx5M3BZ9hgoP2d5oG3w3PZT3UU+m1Nho/k+oXx8Lx8TEcHx9nR6Q+f/684KREXudrR99c4foewqekudrV17AfJEmS1VWv18uOx26qT1Cn7y7eSdcUtDbYBYO3BLQToO4eor/zdDAuOmNxl6tr5x6eCBZFUWZ3KrNjJER3tOo2uy671w3J9iDB9X2T9VUmL0nGlNL1yWqYFtrc6CYIvIMZbRpJksDZ2Rl8+9vfzvo2Lgji463T6WTH8N+9exc+97nPwWAwgDiO4a//+q/hvffeA4D1zR9vUj99E+HT0RFSP0B77bZkwhBEUQS3bt2C/f19AIDsJE3qg8A5azqdirIi/00h6av8O9eNtXCcbuk3D6PJB01gF2WOTdPkajeXbVt7L80frvkB/1ttSU3ZgULSs/gANL2Gh7l//z7cvXu38P7k5AQ++eSTNV4kXallgWXsheikvjxC4HXGAsgKAgrk4/FY/MYxm83g5z//eRb2/fffhx/+8IcZ8b/xG78B9+/fhy9/+ctweXkJ7733HlxeXsJ3v/tduLi4yBx9o9Eo69SXl5fQbrfh4OAgSxfPjaf317pgYXhVDOwWWJR3i3ERf0uTqG8Q0QuiUfmOoggGg0EW/he/+AW8ePECvvSlL0G3282Onn769GmWDq7Ew3xHo1HWJiiM7qLisos0aXAZj/DIIAD/sY6udAHCmTWdLMoq6hjeNflFUVQwqklMmTsUQsoSegddXXAZYiz9M9S5UAZSHrtsQLpBfbhpYx04LiwCooW/aDKHFI8aclyQeAg6Eaix3UdbnSukrfOuxajncn665oKyhosqcDmTQ+JLc7aPVpTtOp0OjMdj+O53v1s4LhdPL2nSAaOBlovnzft5HMfZEcUAab/kR/XS8Vi1z3LDi9UpVhcwPzyNCHUwbbxSemezGSwWC/j+978PURTBcDiE5XJZ+mjjNwG4O5Q6WutMG0A2+GFb0rypMZ/2vZB2K9vGyCuWy2Xt9YAOhRuk2FUZqym65vM5vHjxIkt/sVhkxvTlcpn9fv78eWab8B2dHbp4oQrKzt/XAXS3CkD9NpRNyWmbaDdOV6fTyebeVqsFT58+hdPTU3j58iU8f/4cAIpHM2oy97179+AP/uAP4M6dO9l9sdPpNJN7BoNBdnVVk0dd3mD3UMdYpH1mV2RESd7FRZkff/wxzOdzePbsGQyHQxiPxzCbzWA2mxXuILeWxWpzszh3Q9Pflfp+k1C2X4T4keqg56r0Dale2u125lei4bQ70mlZrSethdBUduxa0g6ByRmL4E4fXHVCCeEVhXEWi0V2mTZHFEXwuc99Dm7fvg1HR0dZo0wmk2wl5P7+Pszn8+xI4yRJsmN59/b2CkYcPPJIopvn6ypjXbCsdnDFtUBa8cPz43RwAwCdWNBQQ4+9PTk5geFwCE+ePIE4jiGKIpjP5zAcDjMHGd4njIMG26jf7zuNvGUc3nUOHL7KqSm4Vo5YjCy++uEKki9vK1zG7CrCR2i7837MFx/Q99qYcNWtplxLzuWm+gqvExcdFgcMj2dBiJNk20YI35ii/0PqY1Pzw1WBZaw2PTZ2FaHjsMxiFc0Bh+9cfM03J9AjXiV6pXihi100Gq3zVWifCumvWvq0vSxOgxAaLc54SzxfGfg3/N9ut2GxWGTH4eE7dHLWKZOF9nHpvdbvtW9VZQ0fXVXnvlBnLpYzjuPMKeda2EHbG3fBjkaj7DseDyvlZaG9rHGhbL/XeAeXmyUehnUVOj5Rp6HOUM2oZ+0PFr7p4tlNyFsaHdjPaH+zyoUA8jzCZXRX3922bPmmwzp3ApTjIbgzFuOjzQHHFva74XAYNCdiepvQ6d9ESHoVtyM1gapyhDWcVI4yMjvG4zIangaA/09OTuDy8hJevXoF5+fnWR70Lndev2gX/epXvwqtVis7FZAu0kKnL6e/TDlusBsImX+rpM/lm21Ak/kBijZvvE7x4uIChsMhfPDBBxnt/LRMSa6mcOm8IeF933YJ26IzhP9YZWsXqpazrM6jgdJrsbnUBZetQ0Id7YTpt1qt7C5zDI8LX2lY6TpLfB9Ki6tOy8itUjo8n9C51eyMlRgRHp/Bj96I4xjiOF5bWR/HsViZSZLAt7/9bfje974HAPkRuJ1OZ23bMtJAG3IymWTP7XY7O2J3G7A0gMbUrQZVX4fEeqYdTZtA+Hs6IFarVXaXCwp0s9kM/uIv/iKLh6tVHz16BJ/97GfhnXfegQcPHsBPfvITOD09zdJCgwaAvHN6V7AN5S3EqMfbje4KocY5fM/HnGas4mnjX5WjAELqkdPFlRdXWpT3YH+sqmQ0oaQ07aiSDJJ1pWd5v6u4KnTe4HqD8lTf+NQcr3Re54bssuMS05PSQtC8rDsiNL5NZQdMW6Kbz3UuZy7OcavVKqOVO6x8ZZTo5/8tjiTNOWrJT4ur5aXBZxzFfpgkSWHx3C4D+wuWaTQaBcsn1raU4tUpE1RJi55+Yu0vuwSNT4U44DS+SNNBufD8/DwzyJ2ennqP3+NjBvO6desW3Lt3D54/fw7z+RwuLy9huVxCt9ttbPy4dDgLOB+g/dhV/3hE8d27d2G5XMKzZ8+CaPYBeT4ursZ33W630L/rxI3joR7UZdDEo4ZRntB2RrRaLRgMBpAkSXbaGbUhcHmibDtzuxLKEYvFonLa1x3W+bFM/Vl3znM+Z4FVPqujz6N8miRJZoz+whe+AHt7e/CXf/mX2VULq9UK+v1+5mCi9pwkyRdWHR8fw+HhISyXSzg/P4ePP/44O+YbbbLT6TSzw+6Cc+0GzaIqf6J2wl3G4eFhtglrPp/DrVu3ssUNq9UKJpOJuSyuay4khOgCN/PFm4Ey+iG3RYT4jrYJn7M19N3du3fh1q1bBb/ddDqFn/3sZzCZTGp3Qu9CHUoI2hkLsN7pqEHNYiCi/ynOzs6yu2JpXvP53CtsU+OgZHyyGMEsDaQNuND8JGhGFSlPycimGRQko4XmmOV0oODInXmXl5dryvL+/n6mWON9Q7RN6FFblL5Nw+IIr9ORRX/7jKvWvsudpppRxUKfy1iOv13jo4zhv27wFTUhTgnN8EbT4++rGBFDwmn5udKUDPouo7yUDx2nFkes1akRoqxLvO1GsH0zcdWc/xRS362rH0vORZfwK4WlcSy0otGUygQ8nEt+4W0ZKndpafFy+GQcba6t0se0OTw0DQllFT2LQxeNfU0eY+eiQyub6z0a8bEfhtR5FcdqaPtqfbcqysyJ2M5Nzaeu9ELykurMKrvwuEmSZAbqOI4Lyr2PZ/C00cCNRnV0Gvrkq7pkZ04zPrvCciOPVTbE99oxwha5UKOJAo+h5f2yzr5pmXub4NkaDZb03gRZl5aRLvaS6pMfzy2lgXFd+otlHqLjRpMx3iRY6tKlH0thysJnr8Dnsu0UEk/ipa506R9fNH56eprtiI3jGPr9/lpeNG6SJNl1BcPhEE5PT7PjjVE24qcZuGwZbwK/uYHbVr2Lejbvn8iTcdMVbghD+zLeD0tP9nGhrF5eh7ygzWVV7bch2MU2p2iCL2n1v6t1UAa7ys/xVCdKH73yErFareDi4sJ01agFZWSCTfePYGesBLxfSnrPgatfOWaz2dqOyel0WjhCDQULfpQa7s7F44nxXtkmhGcudHFDUBP331BBSku/ivDpMnpFUbR2VxAOKHr0w7NnzwrHUMdxDAcHBwCQ1tF4PIZWqwW9Xi/rA3ikCs3vTUadSnjIXQ90nLiMFUliO6qRpqulIxlctPJTgxGPSw2MUpm5Ya4s3Rqu0wReBlfByPSmGlGuC/Ckjfl8vvP3HrkMV6GOE8mAUkV5lBY40Lx86c7nc+h2u3D79m2YTqdwcXGxZkAPcbJSUJ5etY1DVndTuSqKoiDHHjdqac7sEDqkd5vgme12GzqdztqRXpuAJKu7DOoUy+UyuyONLgCksgKF7zqPUFjvpLWWR0NVBzLGRd0L2/g6zYuSY3W1WsFwOITRaATn5+drRz76nKjUqHdxcQHtdhsuLy9hPB5n70N5xjZkIBdflnj3crlcO/ayDuD4m8/n0Ov14Ktf/SoMBgPY29uDp0+fwg9/+EPodDqZfrjr870VIeP3TdCDqTyDd2dqSJJ8N+A2QJ1oAM3YeK4SOL9rqr+GystVUaV/WfKnvAwdRn/xF3+R2ccoHbS/4xGOko307OwM/tt/+2/w6tUreP/997N+yu2x12mev8GbCWmMnZ+fw3Q6hV/96lcF+cXV3138W5PTd238vAkLtuosn6Zfb8seuSu0VIFrTEjf2u02HB8frx1JrNXHcrlcuwbVh7r1+6YgtXcpZyw3ErkMSRq4k4TeTcOJ5GdHS4ZJmq8vb8lQSn9zBV0yXPqUeA6fk4u/s6zu9CkwVkgdwxUfw9JjhdApjoI6ruxDxy22K083ZIABVDfUbgpllRVtbGmOy7KGPQ7X6lKrUZinKwk9Es2+BQFS+i7HrdbHqhpDXfTwZ1/7bQMh5beEKVOmXRKALChLb9l4u75SEaC5Pq2VnRrOLWlY5uUmDUhl207iGRa+Y0GIs0Dru9Q41G63od/vZwZ7dISFyl4aDVpYV9/jjrgQOqqMN19+vO0kh2FIv3E5LX1tx+nxoazzPxSW9uIyyWKxyP54uevkn2VlLYu84ssTsek50yLruXSakLTKIKQ+cVxouoPUbyQeNJlMYDgcwmQygel06sxPg2+O85VD+u1bBBCKKIqynVu40AH/QvLQeDQdS71eD/r9PgwGg+zYWrxHcdeus6nSj3dB/m8KdfFan3FPs81UWaSizZkhsgQNf90RYtvyfasjbymvELscf++TnVz5hgCPIJ7NZtnVGlIfl9Lu9XrQ6/UyGWg8HsNoNPLeq3yD64m6xthV6TvY72ezGcznc5jNZtlR3ChfaA5XiUeE2Fya0jF8NEj236p2hl2GS/cpI1+73rniWPqGVQ/ywaK7V4WmQ7gQai+Q0sXF3ugPSpL0ZAeU8y8vLzOacHGSdJ0M15O0uZu3mzZeLGVrgi9K+dayMzY00/l8nu12QeBq2MFgsMZIJ5NJdoQHBQ/HV6m7KloKaxHsJSMJKq88XR8d2EGknQi8fiS6Mf0QRqExF8lIqKWB9PX7/ewbOsyn0ynM5/PsHt/9/X1otVqwt7cHy+VS3EHtAg5ihLQ6sEnU7TyqYqznoEek0RUhIc62UAMhzdMHdMDz9pJ2sroMNzQeXZiB/QLTwftxOc1o4MFnKZ9dwLbo0AQAn5JNJ7oqhuZdRZn54AbNAfncLi7ICekHIXMApulTMkIM4hL4/EHzkRTbvb09OD4+hpcvX8KrV68Kqx2rzD+hhjRMI8QZyu9Vp3ORtoAIw0nOU5yPrEZJyjeroqrjFcPi6Ta7yM8ojQhU4Kg8QGVRGrdKeVxzHH3GRYiWI10taMqIvQs7YnfZ6CfxCmz7k5MTGA6HcHl5CYvFwsnvQgz8XJ+k/Z33u5C6K9uHsNyr1QpevXoFSZIUeINFd9DkedQJXHE7nQ7s7e2tnZx0g+sFi1PVos/ysWTRWywGWOk9l8feZCD/a8pBQdPk6fL658dcW2QyDNsEfHIHzsN4pRfyemkHOJ2HWq0WPHz4EPr9fsF2qJV5l+daH3ZRFr3BOjbRTrwfD4dDGI/HMJlMCjICv3c8xMHqktM0eaaKQ/Smb8tool6a4oN10Lpph2DVtELjt1otOD4+LozNKIrg8PAQHj58CB999BF89NFHWdrD4TC7AsYF6xjSTvbZtRNOanHGulabaGEkox+G45WEd/XQMD5G6FsBwJ0JljLx9KUyaXlIabsQx/HazlOA4j2uWj6SkiO1h9VoJ022KAhi22C74X1ymCY90iZJksxhZjWoo5CJwjb2jdB7wqR0kUaEpR9XycuVjytOKA08fUt+vvylPhXqUKC/JSNLyJiTwuGz5LCR6tMyNrU8LPS6aK9rArYoXjxMmf60CaXONxZ9kNrGl07IPMLTa8rwgJCMvXXnaXGG+fhXXcq/xK+wv1Jnn2Skpmlo9Lja2mJgrhNSv6RztbUeJdlDqhstTV5uS94om/R6vTXll8NiGA35rrWTlaf7xhKtO8nxQOvbosS78rcgRGl31ZcvHg27KX5fFWUci9rYoN8tkNr+KtTbrtPngkt2scgLVduHGsVdOmWZPKR5OFRelMJKczfKxpZ+z/V0zv9csoCUNi4ynkwm0O124cmTJ7C/vw/dbhfOzs6Cy7pNXOWxtG1osqPU5y3jNkRG1gzrWvw33XDukqlC586qeh1Pi9Lhs2Fpafh0Ahe08lj7C71Sw2WvSZJ8odd4PM7u0kNeijuLQrDrfXrX6dsW6qqXXUvHB00G4ZuWfHbcEN4j6YBl0vHlgek1WZc+2WzbcOllVpTRfy12U2me8NkYQ3wsV20savlqNhXpirHhcAgnJyfZggr849eT8Hr29ZOqdV5XHYbKBI3vjEVIxivukKGdl4bX7pmVlEqepwYU3vj9YlYnSShjtnYQBBo7eRq4WpjvpvVNNj4jFIdkfKTv8QirOI5hMBhkkyKfHHFFNQBkd8b67gKieeEKbdwhi8ZfPN7FVeYy2KXJyYImHUI4RrAdqMKAu4ssoIsrXAZfyZHiYmj8G90hS595vjStsoYzH2+pmkddsDplLOlobdFk+Zqsv20JLlahG/kpX9l11XhUVdA5ZbVawXw+N8/X2jxN2wD5TNOKUJU8XI5ULTw3ZvKxRMvto4uGRdlkb28vO52AG+0RPrkkZHWiNAYsCmaIIo5lwP5mkdvoSQ/UaIbfrHlzaO1i7UMuh5Fl3Gybz/icXigDl1nhSuuBz9eSbCrNo/iHbb7t+to1hPK7UGO61WHJ26qMzrcp0HKGnELjS4/yf5fRv27wtLvdLnQ6Hbi8vITBYADf+MY34PDwEFarFVxcXDRGRwiNN9ge6hiTZdPgcgKdB274+zp8ctUm+GoUyUeScluiL41QB01dWCwWzjmMyvAok758+VKUcaW5YpfmthvcoCpQfkHHTbvdLox/yadQ1Yla5xgKcQ5Z7fhvKix1UXbO1vTuUNnCp2/veluWoU+y649Go7W0JpNJtgATIL1HXToZomod7YItw4JKzljeMS1GL5/CjcfccqVUOlquDgFZMlByOi2NSe98oGlpg5E+02NKEFgHeIwJpw3fobEe752QIBliKR1cKXcp6dJAo0cPU8crlg0nzyRJ1tqW1wenFf9LR1ZpcULAja2bcP6EGkOsjr/QuK7v3JBvicvD8jHropf2Q80ginlK7aQ5HLT4VcH7nhZG4gdNgvcpjZ/Rb9o713tL3lXSQFgdMBzSuK4DZQRkaxxaviiKMmcDvY+zaaHC0lZNG3N96XU6nex4UkkOcPUTapDvdrvZIi+cxywnNviERWwnnyJYh6BL30k8W6oX6R2Fxh+wnqfTqXdHrI9urc6k76GGMq40Wfiuaxe6T5FytalVYdTmNAt4XVnqyzXvW8sdipB21PqoVE8h/Jf2Bxf/vQrKm1We0MJULWOVfhIyv4TQECpTW+Vn5Hv0juKyCB3j2twvyaBSei7eyuNzoL6m8ahQYBr4R++NsugJVWCV063xbrB5SDKMK6zL7uLSa31j6k1FmfnGFcfXHr525vM4vds6pN1cuoIUpk6d0gXa3zl/xIWQ2pHMTelnN2gWm7BBXjdoJ0ZyhOqSEkLmIFe6Fr3SpzdfB7j4lnXu0N6XGUvWPK38tqweXbWfVU0rpK9pdiRpnoyiKPN5jUaj7L12nLBGi69etVOMKE1N6cZl0NjO2LJMYzKZqN+40RUrVbtXxmUIpfFp47nCcnDjeZIka7RoSj9NH4/gpbtd5/N5dreudGwzXw3EV1FbjG3ScyjwrjGaHv3jzlgso4VBUbr4GeKdTkcd7BzW8oU6GVyG7BA6yiiIIXT6aLEa9Xh8iRbJMMzvc5FAw9C4PA5vc04HH5NSnhbjVV3QDMehfYfGDYXGg1wTnDZ5uya2OoWGuoXOphXTsmNIAo6F6XQKSZJkjq9NCgiWeaFsf6yCKIqyo/DpqnKJXq2vJkmSnbawt7eXfccFP5YySf3UpzyFGBCtBmLrPE/TdtHjMmBimnjEpEZ/WaeW695WDZLyLckEGr/leZZRfnm7S4sDrMY7i3JgUUzK8FFtDi8751jmGx7H9RwCre9JdPG5jo6/MvMbldW0fmdpn23w16YR2qYuOcklw9YhG/P/k8lkTf6U5DsJPnos77W8fH2ojKyPYfA4TP5N42ecJokH0HfojAVo7g4ni5zrap8qMqk1zq6P9Sq00X4bUpehY0ULy3VFH//lMgwtRxkarhss8ofvvRbGx0u19kBY7pqzgM7/Lhp4eFcYC1wyOrdb4L2xfDOEpLvjb43HNq0f38ANTVb26ZQ3SME3M0l15NrgocXh4aR2CdERokjeyS/Rw9s+VJ/2YRfGOte1+Dctjs82oukIPlpC8iiDqjqxK12JV5RJqyykOUay/cdxDJ1OByaTScEZy/1a1vxc36WFWdzXsCn4+PjGjim2wjUIqt4TaskboLoRCOEqh8VYiO8pc6aGPh7HdfyWJli6jAdl6gPppUZtq1GMIo5j6Pf7sFgsRAc93leLTllMU7pPsAlBs6l+6JsEuEBA45VJT0qXvuNpVQWm0W63s1WstL/w+x8Q/Ax53rfpmKALE8q0U0gb1JGeNV1fntzoULWPWgxVdWLXDVIh4AZby7Hs7XY7W7ySJAl0Op2Cso31U+Xo07qxiTabz+ewXC6h0+lAq9UqrKDT5kIXfHNt6NiWjI08Pc14HQKfccpnYKRxOJ2u3QRSvovFAobDYaFvUrkG/0vvOLA/W3iWJl9ZFSkMhwI5ttHdu3eh1+vBZDKBxWKxdgcXLQNPmyohvjamJ6hwHsHLZAXn96H9t8r3uuPVkQ9V7uvkjzQ9vvhRaz9sb0qn9YqHptpml+Az4ocYLzSDjmbc0tKgaVGZFOcdPKnCZwAp235lxnEZuOqeGx3xnes0qrJjbTqdwieffAKnp6cAkNazdMfUdcZVGct1yXu+dMrkY5lDffJiiFF927L3NrEJndCVh2arsNCDvMzHX6Q2dsmyVO6oEzy9brfrtG9I8r1V/3jT+/WmcVX4/i6Byl14XDEHt5FYeYjV/hYq82l8Q7ONc5rr7ie7MMYlG33V9Oqsp6vEC616TZP5SXUvzbG4gY+e6CC1naU9m7B5YJhNt30tzthNKY80Lw1W46T0PUSYl/KTnn1OUF+e3FDqYuaSkdDH/H2TSlmhmw9CixGVQrsnmKdDnRO+42ksk6kWnsax9I8qY8FnEKftaqlLl1JhTdciRLggjTVq5OL3vdKw0iIMLX908FLDuMuATvMpUy4JlgnEx5PKpEvDuSZLXx7Wug6Fhf4mjOgSDVL71+HQKwssdxzHmZDC76Jsok4s/Kppw4tPCUKFS3LGhtBlmeu4guAzdlTlHRof5mn70giRWXxhLPxrsVjAeDzOFtFgP+V1SMviamdqXJJkB0lesioEWl50N+z+/j4MBgNotVownU5hOByWUrh9+fvm7dB5lvNLPudpyr6W564on1qfttIn9beyZXOlIxk6aVtofaIJo+11gWS4Cq0rOs58cxsfk3xsoixJF3r6VnDzdH16I0KTx63QZHgXndI7ngZ9R8dmVX6RJOlis7OzMxiPxwCQyvBVjoIuW2+7hl2iqS7ZxppHGXnUyusl3faGF9thkXHKzt2a/cyiz1p0JI2PSXn73mlzfp2Q+qd0Wp4WV5JPpHBvKrYph9VhV/PhusmZfMxKtnGpTjlvcNWJz1YawsfKyP4SrVVsMLvU/pwWq03Qkp5v/rfaBkLjWKH1hSZRd38JtSVJ75OkeIKspk9peoiWV8g4ddndmgKnlee3cztjtwXayNL9r6HplDGo4q4oitlsBovFAnq9nioYdrtdaLfb2Q4iDXxSchkVqq5KtggB2rZ0dM4Nh0OI4xiOjo6ybwcHB9Dr9bJwL1++dJb5usJq3Gkq3RDhQGK80qTHFQ7sq7gTgTqlfOXFsJgXn6jRiVC13iz1gPlseqW/psRWSQ9gt4xEZVF33Uig/TQkP+z74/EYer0efOMb3wAAgFevXsHp6Sl8/PHHZoW8LL2bhNXwtlgssrtirbvLENIRuL1eDw4PD6Hb7UKr1YLj42OYzWbw4YcfwmKxyI5PlOZy6uzytXEThhqXQ80KLuz6HBjIw4bDIUwmE7i8vMyuUqCyBU2XLijQ+C3OD8jn8T4RyQlG7yGnjltJeXU5U30KB72vmX8rwwf5QrEqc4/UnyxGSJ4GNdbtIiw802pgwe9lnTQ+477EG27w5kEbU65+6lLS+Vi3jglpbqg65ml8rkdSSM8YFvkq8thnz55Br9crlAnvqS0rL+8qP7uBDkuf1sLwo/C4XKbNl3EcwzvvvAO9Xi+Taz766COIovQ+Tu0ktuvI2606qmts0RNOeN1pertPn5dokvQevmC1aR7QZPpaffB+jnxSit/pdKDdbmdXugyHQ/VEPlpnbxrv3LXyNmWzuW7g5ZLum+d6J+dHZerGtckoBFYH4w3KoYr8uAu4jjIGAGR2d7StAZSzoyC0saLZ7HzhNwFNlt2qM9Zl9HPFKZNPKEImRd7wIQIhN15K33EnkObFRwMmvXPWSncVY5zL2InfXe0rOYOpwo9HEdMdsnt7e9k9f4vFAs7PzzOHtcVAoLWVVC5fGrsEn1EyhHafcuQKJ+WjGZtoP/DlxRdIWMaYFobXQd0OlCq0WdJFWOLS+tba3tUedfV1XxuEoMz41CZnn5FUmwe0fu7ifZZ+mCRJYcdeFEVw9+7drP9TJ2HdKMvvNuHQoUaZMtcVuMLjHRa9Xm/NAYu/rTzVJTeEOI5oeK3fWJxPPF8pf5/zgMfBncqagyC0P1AZiMoE2iIrbjzS5n2LDEfzxbyxr1nqpM5+WDZNH6h8qZWh6vi11HOZuHXOG1I6ITxOo0mKbzVs+sbmm4AyBkhJvvTJLTScJp+G5G+RW13wyRacthB9UtMrXbJvSH8tO2ZxMRX+Pjk5gW63C8PhEKbT6VqYEITwsZA2b4oHaShDm29uCqkXX9g65T1XWa31wI3tUh/X6MUTMegiP34M+XUHlbmonG3VL/lvqe60tvHZinhYTW7l9jEr/a68LOltq38kSVLQgyR7YLvdzq66wTAu+8yb0t8lbEKHpbDwWPrfEofHv65yJJVvpG80jAtWvVdLxyfja99cPFCLW+e43NUx7tPFpPrRbG5V5LuysOqQV3FcWu0WIbqPJf0QPc03X2t6lSVvV7rSO02vcy0QuNkZC7kgR41yALkDSArPf1sbXgJ1SGqG5sViIebBaQ5N33U8bB1Mu4yCTGnpdDrQ7XbFuwHiOIbHjx/DaDSC999/v3Cnk3b36FWFZFDl/TBJkuDdcjRdixJWVUigYw0N3/RoVjTy83LQdzQNXmarAknvrJWUPEs5rPltE7SvhPQPTZgtOylXOW2gKsq2VR1tG8L/FosFLJdL2N/fh06nU7jcvtvtwuPHjzPj0SeffALPnz/P7pl9E04H4E5ACTiWpZ2VAEWjzenpKVxcXMDdu3fh4OAA9vb2RGFJ6j+8P4c6AasCjTFU+bTGQ1DZwSLIcjmCni4gLZYJHT/oFB8MBjAej2E4HKp08zJJSplL6cW6a7fb0Gq1YDAYZIu8mjBklFUU6PdWq+VdiKAp9pLRlMsRmrHRZfxoCpriTb9TWSFEZqGnZvhAFaiqdRDKF3bNoNYUPb4+G1pnPF2sd20+sBqBsJ/RfqfNAXXDYhjw8V4q59P+7zJKhhq1tHbD3+PxOAszGo3gP/yH/wDL5RJOTk6yUxbK1uMujZVtoor84ZoD6oSPX/v6uzbHAxTtNlznwBNlZrOZc+dr3brKtni5j+d1u13odrswn8/XFvNbaebj3mePsqRHaXAhZPdTGT1fQ1PyvUWP0MqcJOmOWPxDXoqyEvL8benhu4xNjU1JDtdQpY3elLlQsjPRb1o9WOpH08Ms2DXZ/bqgSr3uSpvsCh1NQht7Ze5yxrBWuPS4qv4LK8rI4LU6Y0M7mUtI1NIu04mrdP4yHaNKHIsThCu7NK7mQHYJeZpBt6xS5zKcckg7UNCRisoSCpJoGFsul/Dw4UPo9/sAkBrV33//fSetFuVOisOVPyt8Bk6JBhcsSqgFrvGlwWXc4fF8dEkGGtd3qY9zumgYF8PlaVgUs7oEsqrpWOJZ2oIqZDQ9yVhpMYZK/TykP28bZZRzK3+T+qeWDx/f1HB6enoKh4eHcOfOHVitVjAej+Hk5ERswyaxiTzKwMWb6THlSVJcTY47IdDJG1o2n9GwzHwUCst8YGk3HsZn0G8CKL90Oh2YzWbeOZfzfembJW4URTCdTjP5IoqibAEYD+eiXcvX5ySRvmk831VW2s95PI1my7xH6ZfSsMDa37W5iOdHy4xH8YXSF9JnLPRL6Un8n4evYjCyoC7l39J3XfIXXksiOUGkvkjfuerKpTNJY8qnkGsyEP3N+5u1fikfsfBbLQ0Orf/zMFIaknzi+26hSeNV+A53xi6XS7i4uFDTaRK7KM/sGiS7QF1pVUnHN2dS0LC0H9OF29xQyNO0yPouercBjdfhOMQFyfwKoDLjgvNNi/4o0YjvQviZKx/NviWl59J/tXnCJ3uXhU9e5M8YHo8njuNYPDXOlc4NmodmK7lpi3VI8n7TCGkHC12hfKwqQmjxycJlIPEt17MmD/M0y+hgVhqs6TTd/+q0C4WiTrkuZP4vS0uVvuvqa3VB06G0/Da2M9ansAPozhT8VhZlDUZaZ5JWl/nysE66UZTfHUtXwOFqbGnHJ9KCigXerSflw3cX+kDpLnMGu6tepMvXcZdKkiQwGo1gPp/D+fk5DAYDGAwGMJvNAADgH/yDfwBf/vKXAQDgJz/5Cfyv//W/go9pDqF9W8qUC5KgUlc/1OLxuxetKy2l8eIyBPN7ZtFQL/Vrl7FY2vnNy1VF0AutwzqESovhLlQxpQYyrGvMh7d9GVr5jmc+GWpl2gUFpaxxgvZ5qdzSfMfrYDQawX//7/8dnjx5Av/wH/5D2NvbgyiK4OXLl4VwvqNd60LZughFiCECIfG/fr+f7biczWZwenpaaBPrThytj25yd5SLNgvfdxljsO5Q7kiS9fu2LeNTk90shsxWqwXtdhu63S5MJhNnefg4KnMSBrbbYrGAX/ziFxDHMTx69AharRbcvXsXxuMxvHr1KqNLKpeWplRm/kzlH76bpwykPmhVOix9yEpDXWPAklan04H9/X0Yj8cwmUxM49lnyA8tAx//dKzRb9b5s846RJqahEVOTpIkOzZxPB4XdtVL/ZLKtpLsKLWdpI9J8TldGs38PfKY6XRaaO+Q02h8Dh+JBgs/oH3LJeMjX9e+0/e83mhdle1TNL3VagUXFxeZzrdcLmE+n5dKtwwdu6jTlUXdcplVx2iiDn3zlPSOyi0u+xEuCMF3e3t7sL+/D7PZrHAdkpa3lVf4wm8TtL5w3sR67XQ6wX3JdzIFgK1/8nQ4f+TfOC/x2eOwPZq4S7Bu+V/i265TgfB7q9WCXq8H3W4XWq0WvHr1KmvfXeyLoahSjl2rgyrOhCrYxTp0yYA8b8tJkvwOaVe6PjpCgfRJNITKi3VjE/abEH+LS4e20rkLNsIbpHDZerhdH8NrYTX/WxW49P5QlOWDWrzanbGaUGJ1bG17svQZtFzxLIK6yyBKDYqS4IUCNE2XKscuJURibpow4CpHaOe1GNV5/aBTlRpAl8tldmznYrGAdrsNg8EAAADu3bsHf/AHfwCnp6dwcnKSKVwvXryAs7Oz0pOfqy9b6iFkUuLhLcoNxuX1V9cYcvWDMgyN11tIPPxPHbK+8SYpNL6wlnL56HalofHFMnmVVQAtSgBPWwvjc7SEtNEuC1VVBQMtnqXtFotFdn82NSYB5M7zqseyu/qSa4xUgatOLXlo8SmfQQcAHk93+/ZtmE6nMBwOs767WCxgOp1CHMdrR7VL/dNn7N6EDGPNg9aFtU5d8xs3xrvkPCvNLhmFhtGcF6F1gf/xjz8D6IZBnl9ZxZ6WJUSu8oWrMmdxBchn3JTS3VTfx3za7TYcHBzAYrGA8XicfeeGG26ADaEzRC6zhLPoSNcBtG+g3IbXrVBei/CVn/ZPOmbpM09H4xkWYP/h6Wq8j8tDrrHhGv9V5lmfPBaalkSPb07hZeFtwOsBjTTSKUlNoal86kg3RNbk8kaZ9pf6aYj8tS3wucqns0jjFeeM2Wy2tgDMpReF0LeLwHLgInd6Z7PPlsTTkOrdJ9Nb+7Y1HM/DJ6/UoWta0rLySYRPFpTsPbzvR1FU2O1M39Pfu6xva6gypnZpPPJ+usm2uEp1KI0xn00K/1t0kybqvc40m5hvdmEcaLyzzrqz8riqeV4XmaAMNB0If+P/0Dp26dxV5/Ay8TVdPZR/u9r/5s5YB1ydSGIiSSLfQ0WFHym91WoFcRwXnI9JkqwZK5IkEXd/otGg3W6rnVhaOWgxfkjlCFlZ6KoXGoZ26tFolBnZEJeXl9lRVr1er7CC+q233oJ/8S/+BTx9+hS+/e1vZ3T/6Z/+KXz66afZas864WP0mzQqSMYPrb5dzgJuZJHKKPUby6TnMqJZ6aR5S7uqtX7JDc1amNBy+RTOTcFXNgqXk4G/u26CwzaBfd7Cd0MManjE7mAwyO6OvYpKthXcII/vEJwX9Ho96PV6AJDej3Xr1i14+fIl/PznP8/ijEYjmEwmmWEOIHce8Lx5Ppa63vTcE8IPND7Lnf4U3EFR1aCAaaBB3ko3jeuSr3he1ICF5cdj3TSFXWp77dlaDyFKgSQPSgh1aGi8hs/RrvKHQupzrj7Lxzy202KxgH6/D/fv34fZbAbn5+dZ30V68ZQZlJtpWazjpIyDQyvHmwg8gWA2m8F4PIbBYAC9Xq+wI8s3hjTDvwV8gQ3+drUHX/hE+4rkSLbwHVeeLh4aIl+XhUsn4HqBCxoPdtGPTnqa3zYQMm/uIqrUnTSf0/e7DMkZhe/xnYTVagUvXryAbreb8Sb6bRMInQtD0pHAecndu3fhnXfegffeew+eP3+e1R8u7uQ7WbitQfrmu9feUhYu71h1Jksd+OS5bcIiv/E2kO76nU6n4ilmmk1n1+Hr31V1nk3iKsxvddZ3FYTyEarXcVTVU0NokBAyP+/CvLuJNrY66q4Cj5KwaV5TV35V0pF0o7rbuKzvJXRcSWk11Z43ztiS0BRkyVhMQY81lAR+TBedq5LAmyTr270BckHOMpDKCKOa8dBikPXRxAV4NODgN4rlcgn/6T/9J/jggw/g7/29vweHh4cAkB6xIx2bi8e34NEtPF+sSxftvLw+o4oLlr6jKZKa4hYifPC22IRiQmmxCkVan3HVva9eaXxqjJfotObroh/TdLUFzVei21ImTMM3SdFjiH1xXX2KP1sMhlZo/bFqP5XihwgJrj7Beb5mtPD1Z2yj1WqV8Ss8mh0Asjs1Hz9+DK1WCz766CM4Ozurbdy62txSZyGOKV53dQhsnL9cXl7CbDbLFvZI/RfnHtwZwNvO16Y+uGSCkHS0enLNEWWM+Fo/t+ZbVgYASOfj+XwuyjchTgENvv54eXmZ5TObzdRj1UPbM2TedtHnmkuq8gArLdq4teZvUXBcMgoFyom3b9+GTqcDFxcXziOuQ2UHjUbOs6lM4ZrLXWneoIimDVIhde+Tw8vmQ8eQdV7VZD8tHl+4yI302vjl+h6Xk61GFg4aBxdLuMrgS6OuMbRr4xPldK6vSOHoN4sxqi6DnYS6jd4WPQQAMnkZ78iUwklHRy6XS7i8vIT5fJ7ZHGj8JvlQXX3O1+bIM9AOcnx8DG+//fbaiTo4n0qLOjX5l//m9euTkXxyIZV5pPhSeCk/Cx/WvlntAT5eaoG1v9NvdDMGd87yutP4+S7DR19d8zF+b2LMW+qbz7musFXyrxq2zv4S2t+1E1Uo76lSfyFjN0TnkdLFtKseXdzE+K27jcvyRE3XLosy8knZvK3x6uQ3oWlZZBCtzlw2iDJj0GLfqxK/DCzytCUNX9jKzliX8QGJuIrwGYp9nVMyHPL/kjMW6xMdsVID4m4oHo/fs2kpo8twxI1MlrSkOFRZlBgrfqP1gTtV+HuA9NjOf/fv/h3cv38f/tbf+ltw7949AEidsRJQAet2u2u7X2azWeFIaE6nVlZfPVBozM5atxYaQtvbJQBxw2KV8e0yElkmZ0m40trIN8nSONYj8uoyLFSJzxm5qz1cYTAcb1c6brFepPyqGCR9KFPPFgO3pvi7hAqpX5YRqnwTsPYNF4j0ej3odDqFUwDQmPLkyRN48uQJjMfjzBnb1FyrzWNNKIxl4DIin5+fQ7vdhr29vbV4uPNpuVzCYrFQ76vT5qwQhPShTcHCR+i71WpVMA5LCqTUJyQ5Rhvvq9UKptOpaFDS5Acpf+m7b9fBarWC8/PzQnzJGSvlJ8FnQNPkP1/cEPB68+UjzbcuWNvVFU8zFlrSiaJ0F8+9e/fg4cOH8N5773nvG/bJ9BKdLt7nQxOGvasMl85xVfTGMvN6mTxov+PjQpMLpTpMkvwOcK4najumMF6TbaLpeBqq6kpV5nAf6qofOr/yq4ukRUo0nqSzSfr4tlBFDnLprAAA/X4f4jiG4XBYqCc6h6OTkeuCFxcXsFqtoNPpZIsh+dgro3PvAtD+geN8MBjAkydP4I//+I/hww8/hF/+8pdZ2DiOIY5jWCwWTvlEek/ryCVfaO9d+lyZunbpeBq2YTy35qfVDS7Q7ff7AADZlTaaDIzxblAErZO67D40PZ/OIj2/6e0UqqNquosm3/jqV7PRWnmSz855HXQDa71K9mdXX/fp+qE0NYGQfK7KWK5Sdxov47YiTa/Q9G0pHscm6leTBX00UD6gxa3sjL0qHawJuBRY6Z2LgS+XS5hOp9kdd5i+S/nS8gx1UGjpuYypUliJ2brCarQCAMznczg5OYFutwt7e3uwv78P3W4XLi8vsx1MHJ1OB27fvp2l/Xu/93vw7rvvwp//+Z/Ds2fPsuOPB4OB11Dqg6U+dgmWyU8CddS50qVMKqRuLcZWDEcN5FT5o2miMsl3V4UaIsoYbbTxTfMOUfbKCI+hKOswlCAd7crT4g6RshO/xHPKwsoPEb46q0oD9l26uGSxWGSOIuow36Yw30Q9VAXSg3fEolNPGoOaooWQHDDS/LYNXr/Juqd81ldnPj4rjVc6xywWCxiNRup1DC7Zqkp9cMOrtFjHqkRLDlyXTOabY62Q8qPtpfV7n7wooSlFmddJFOU716nxXEtjuVxmO5zQmYGGaKn9LOOY8lntKOuQMvryuy7A3TrL5RJmsxl8/vOfhwcPHsBPfvITODs7y46Pn81ma3OZpieUMZJK/MY650sOBp+MI+XZBCxyG+333W4XACBbdBTCz/F33eXa1rUKuya3cCyXS4jjGPb39zM+eHFxAbPZLONtlv5ohdS2TdRRE+PCpXfRuZX2d5yjT05OAKBYhyE62i7zcGkXcLfbhbfeegvefvttePLkCSwWC7i8vISPPvpITEMzriKszhLXe/q9jJ5lsSe54liwSb5eBniijCQrUewq/W8KQpwLbwpC+qSkK1EZpizv4XRouh63QVpp9vHRUFqvKqIoynQybfE7RUg9bxq7Stc24LOh+cJJ6YXyhTrAZUnOE5rk1zfHFHvgEj5dRsBQwy0aIumKNlf6PkdESBxN0AwVVl33lErpu7BarWA4HEKSJHBwcAD9fh/6/T5Mp9OCM3Y+n8NisYA4jqHT6cDh4WGW31e/+lV499134Qc/+AE8e/Ys2wXb7/eDaCkz+ELK7ArD0ymjQJQNW6Zv4fcyzNFaD/hHHS1USGq329nqZs3o6hsDljFoKU9Zxl02nqufSEZJS34WXhbqZC7DazQHQ0jfteZFw5Wd6F2KgUvwXywWEEVRdoc4OiQuLy8L94JvSxiUnJPbyNvVPjgX0SPoqXEO4eOvZfo4De9rI0sYiTdVqXuro43n7zL+SnIRp11ScGmZkGfjMYN1zNEhDkj63mqclfih5OTQHLRSHIkeV35WRV8zMEh5+r5b3oWCz72SPIm0cQMM/uHuMXSaojLv649aOUKVL6k9ffV13QykWG6UyXFMP3r0CL72ta/BBx98AC9fvoS9vT2IoqhwDL+UDsB6fVnnfGq8C5WHabwkSZyLAFzykTanhM7fZfUzjIfyhEaLJT1NdgmdUxB4KpFLf3gTjV64aLHX62UneIxGI1itVpkMiHUWsoMRv9G5pwx/2zYoHThPuGjTZKbLy8u1dGharrqJYy2/0Dqqq39HQIuXJABJssq+AaQL1u/evQv37t2D+/fvw+npKRweHqqnihWo3MA4dMnfHBY9ROJPofKzT27a5JjQ5gCcY5fLZamFBW8ytlFHrj5VxW50VWGRbSTbHD5XvadaykuTiTgdlBafzCqFq0pnFWyyn1E51LLJjOtSWt2GYpfknU2Pc6k8VWnw2Qo0G4yPrlDaLDKbj8+gzUCDtvDR108s5bhxxlYEVyRDYDmiSVoZgsdYSpMCQH2DK4QR8bDSwPAJwNJ9r0mSFHY6UJydncG/+lf/Ct599134Z//sn0Gv14MvfelLMBwOs7vDpOMO2+12lhYe+4lOXquBs07j47YEL6vxhSrvUr243vsQwoR535CO4kFlJI5j6Pf7MJvNCuOLGsdDDHRWo14VJwmlr6n0EU0IGSG8UOIxLkNn6Bipq560tEJocjl+tH4OADCZTDKD3GQygW9/+9vw4MEDePfdd9X0ut1uwaFVJ3g9bFtpdM1TSCvOG3gnGEDRAAcQflQi5pkkydriqU2N37Iok7drnsIy9/v9zNiPTrHVapU5WiT+KRngqUyDSrZEC87f+J2Hs9QzVxTos6seaB5SXq4xzeuSyneaDNUksN9zxXfTdCAtFNKR+RTooPjggw+ycT4ajbI6xdNmaFoUnJdZaaQKm3a3sYtu+m1TbbwNntNqtaDf72d19NZbb8Gv//qvw5/92Z9BFEXZosjRaCTKj8hfAWyLEvgzDxNqCMNxgbRQWXgTqLOPtFot6PV6EEVRdiSrxWjh4gV1zP3X2VnA73AMrS/c7Ya8TZrrmjDq7rojQBrvuPAjjuOsf9Mjnuk8hzIb/qbfrEb9O3d68M1vPoB2Gx2gOH9K9BafXcnTb0U7CA+TZO+ShMoi+fflMoH5fAnf+c4LODubZXYjmu54PIZXr16tzZMW3sDlJ5/8a9EXyvIkbf6gz2Xm+10Cyth0/C8WCxiPx8Fp7foYf5PxJrWN1TZCZW4+rvG71R7h0/Nc9GmOGpeu6rIlc1qabvtNyK+0rXBupnUxnU6d8juAXs/btp/cwAbs13zODbGx+XwwmCb9j79D7fo8vTrh6+uI2pyx2iDZpNFhE3A5DCxhJUZMBUduHNPSduXTpBPCAp8xSjLGahMSdTyjEoWK6Ww2g+985zswHA5hNpvBwcEB3Lp1CwAAptMpzOdzaLVasLe3BwcHBzAajdbyRwPyfD43GdEkGnm5tXAuY2tZJUVqe4mOsg4tGl/L09VPQsY/N4xrtFCDqKYM4nHf2H9C7qRyGaQtjJXSX3YsutrLUt8uGkP6uZaulmYoygqfnG9yGnj9Vy0rd9b4eKOVP7iAfK/b7cJyuYRnz55Bp9MpCLN8rsAxIR3zKpXHF8ZHv4+vhNS/K6z0zdIGKNSjIxYX6PCFHGXGq0+Q47yEPjcp9NGyhDqEtH7uaz88ElarA4SPr3F6NF4cWkYJ1rHMaSojb0l5SGUoI0NX7UvWfuOak13vfOm46HKVGfncxcVFNp5RjkM6tBXYlrmbhnUZgDU6pXYN4V91YVu6FxpikAfv7+/DnTt3sl1Y9JQHXzr0f9m5NaQeKN+j7RwCi8xukfvLtJ/EMzh/pmn75Cj8bZkLyugam8AmxwHVT8rWh2QLoN/o/6q0SmlL35qEVZbkz7hzmOuC/JnGo4uxARLo9XLjcRT5dfNbt7rwzjv70Om0CH+S6bSgyBOA/S46XvE5IU7YVL1N369W+f/5fAU//ekZTKfpPNjrtaDdTgBgDrPZEObzMSwWY4jjFfT7MXQ6EbRaEczncr3R32V0K97GLlmqyb6n0V6n/FIXkCZccEDvPeYnf1Stv03JJGVRhb6QuHXPX2Xte01gU3VYFRq/0RZWctq0Og2xidVdVotd0YWq9ITafHzxNFmcOlNxfgaQ77236s8h75vGLsq3AM3PTRYbgC9siE+gTD4hQL7C9fkqeYXY5ylqc8bu8gReJ7iAiuCGWVd8GodjsVjAarXKVnlK6bfbbTg4OID5fA6DxrVyAAEAAElEQVSTyWSNDlS662AYLnq5UM0NudLEaJnM6a7F2WwGr169yu6N3dvbg16vB2dnZ94z5weDAfR6Pfin//SfwqtXr+Bf/+t/Dc+fP8/uokXHbdNwGWLrSr9quhajdqjR22JgpvmHgMfH3YCI4+NjOD4+hiRJMkcW7S+aI0IyTFNod8/5sGv8EQVaLgyG8A2pX7t2DNWFXavLUIQ6fmazGbRaLeh0OvD06VP45JNPsu/z+Rx6vV7Wz+mcUYWGEGza+Ip50R1w3PhJ707iZe33+/Dw4UMYjUalVpVzWixGREnQa9rYZFX0rGWg4fm38XgMk8kE9vf31/qgZCyy0MR5lO+bZlgLrWerLNfpdLI+p+1G5/Uqld83t/L0JPCdwnXCJ7OhvFk3z/e1QbvdhiRJsl09lC9wWE7C0OR63n8xHS09yncsxqFdQt3GNloHeIUEXVR5FeZybHPka5Z2tNSjJG+6wmkyqStdS3gNFt5aBb4yXxdIuy3LtAmOH26U5rvHr2Ldcf7Kv0njBI283W4X4jiG4XCYLbzFOZmmIc0Lq9UKDg878Md//BgGg/j10cMRpEHzY39pc0VRBO12BAcHXYii4rcQ8GaSHLL5q9wBS8PS5/x7/rvXS+Bv/+3PwGKxeu28i6HXOwOA78P/9//9AsbjMTx8OIJbt/ZhNnsHVqsEJpMl/MVfvIDh0D2fb7Kf+Yybmh7vi6+lwb9p9GyiDqTy4DVe0m68OI7Nu/Q4mnA+1S1PbCPuJrCp8XTV6pDy7TqPI+bjvmy6LnnLqntfByDv4ZBOtXSlAUAXGdWvz96gXkj9l7e3Nm7rXlwQMoatfTI0XUt46ftOHVN81RkTp58ylhBhEu9O04yayPSk3U8hnabMKgffxMWNwJJy5aoPSaheLpewWCwyZxqPO51O4f3334c7d+7A8fFxdjcs5nvv3j3o9/vZiny8Y/YqGst8aMrY73IoW41ToflZw1DDJ/YZdF4BpI5BerwP9ilXOWjfLVNun/FMUxa54aHpPqnREeKQDZnUtHzrAK3zEPo5fLw6FFbnq5Y+Op/QMTubzbKw7XY7O2aXhm0SZZxcrjLy/l5FOdIcaVgvuHNOc1byd5Y5UQpL+ZEWNpQ/V1EWKQ1l83LFp8I2Gj4t/TDUSCTVnzSHhziXaVzaB/n8IuVBjbxan5HyouUJUdi1clnbVpMPfOnzuFq+ZZ0OVcY81iHORS7ZUhurFtrKhHGVS/tWRm6raz5tUv/i40jiwZxvSuMZ29rHwzWUkZGlscLTqgO+eTJkfEoGfF8cVz/WeKAWXkp/U9D0zibB53TLka8aMB3UYyUHixSe/pbkql3UcTX9isJnb4iiKLMTSHEGgzYcHOT3otJFo0dHHbh/vw/9fgxx3IIownRzR2s+P0o0uMunVTl/T599v5MkgqKDFnVf/A2v+00Et293s3BpmBUkyQjG4xGsVgn0+wDdbhuSJIbFIoHxeAG3b3eh26ULj/P8JpMVzOf2u9Mor3bJ93XYLly80WfvseTf5PzI4eNf/MhpTr/Go7W5tglssr52GXXbFK4LrGM+RKbjccrYJ6voWK6wuzoHV4GmJ/Nn9Gto8TGO9N4VR0JV+bNOvhUiz+wC6ujnHJqdo4z+VQW+OZG/w/Hqo72Ocb1Tzthdnbh5pUtefpdy6puIuVHBZ7BG4MpQa0cvMyn5JkiLIlW2XamTZzqdFnYBU2fahx9+CP/8n/9z+Bt/42/AP/kn/yRro/l8DqvVCm7fvi2mTVcZc4eSpNBKaaASWGUgVh3IkqGqjIOsTH+xoIzjwQJcAY0ro9vtNiwWi+yeQkQURbC/vw/9fh8AAGazGZydnWXl4yu3XM4Vjirl0vqWRZCoo07rMAI3bbwFkAVlF0/d1XkkFHxOmE6n0G63YX9/PzvuZbFYwGKxgG63C61Wq+CodcFXTz6Db9k69vG6EMeHNH9K4zRJUic2PUmiqrGnjj6G/GtbhmvJ6UHlidAyRlEEnU4nO9UD7/C0AusDF6Hx+1RxrtXytrzTgPnw3TS8vV3joi4ZzJdmXShTPy7FsgqtuKCEtq+VR0lGRUv/pXRr87sUh/KaMnIWpZnSge/fNGjjhr6nO+HrnJt2QV6g/Un7hihDL/IRvCsd9Vepvpo00HNDW9N1v2nDJy/fZDIBdKSGlhN3/Z+fn2dx0ZgpLTjx8RDuCONxtHI0DZ99gd7pyoF9yNLGX/ziIfz+7z+EVit1srZalIcD9Hq4OJs6VyOQyAupHom09F0ihOFtmv0CdLBK6ebzWDH9/Hl9V22SFN/j79Uqgb29NvzxH78Fq1Xy+i99v1ymf9///gn84hcXWVp19pey6ZWRQUJ5g1VGqAsumZLSgldtSeHK5Lnt+fBNQ9Ny/lWBJo9UgSRj12nXrMOGVjbvpvOqag+kp3smSQLj8di7QFu7lqEKTZvCdeadITYqSRe3jjlrHbrsENZ86rYjW3RTFzbmjK3TiLlt+DqmRQm0xOVOX1ROqPLebrcL57BvipGFOGHLOIF5GrQuaF/C+hgOhzAajbL7AFGBWy6XMJvN1i4NXy6XMJlMsrtF2+029Hq9zIHrK5v03Wr8q7sdkHFITisprJYOjysxVUtaIXS76LXE1Zww0+kULi8vYTAYQBzHBaFAytvnFAkRFOuulyqQJhXfhBEyXrdhTGuax9VhpLI4EVxxXH2RGqmow4oLPSHj3QLu/AiBZS6QxrQlHes45AZon0AXomj56pnmW8f4DnHgYJ4SL6iLHlpOyUgq1YMEq+CuxS8jpPu+a2niPbn8+FJfP9HS4/3eNweX4cFRFBUUXlc9avNgEzyfO4iqQJITy8oaFCHldskZdfOCXQfVZ+jCRd6XNZ3C1S8kWVDK2yXfuWRBiT5rX9LmD6n8rrmuDCRase5dedFvWpldfVbj83T+8cl1VfTqbYHW29HREfR6PRgOh7BYLDKnrFa3Wlp8HqX156pHF427xHtonyvTp/Bd6qRewoMHfeh2pXEH8PjxHhwedl7XG5D/nJZivNe/FLry3xr5eZjcOZq+o2WQ40rftGf+H3+nz3TXbP4+SfL3+LvVwiPZU+dvev9s6oRFh+z9+32Yz1ckbu7Unc1WcHrqXhCq8T1NZvSlEyKTlOWpZeTKOhFF6ULE+Xye9XmJrqrj21I/IXqRNb9t86JN0bAL5bwKsNisrPMG/c1tAHWhLtuQD5ocFjLefbalkD7qk+Oo7C/J8a78qsqBTYw1a3+7SrDYj/jvkPrX+khdOk8Z3d7CXyx2ozrnr53aGduUoacqOPO2MIMqyg4e8Yd/mA4a/5COdrsN7XYbptNpdm8WpZfSYkUTwhEKkvS5ajujQ6Lf72e7E3q9nhj2/Pw8U4wRs9kMnj9/DoeHh3Dnzh3Y29uDwWAAJycna3eQ+SDtqvTF5xNpHfXexNjRjMG0TzYBn8DgMyafnJzA2dkZfP7zn4d+v5+tHpWO9kbQe/fq7P8+A5hLONwlZUVCUzxbckxY4jRpZNrU/CQJP/wZT0VAPqgZrHe9/1SBq54QZRWvKsKmRbgtY0iygqeN8gQ1iPvihgLHHt6dalkgpr3nd+GVoQURWh4LT8a67Ha70Ol0oNvtwmQygfPz88KYtOZPje58brP0D59hv4yi4TM+WpQZK5IkKcivtP7KpMXrsSkDjI8GvoON3zd/3UGNxgCQnUyA4wcXBfjkZC5/arIfvb/ZNRdiOtYyuOLsYntinXKjPZ4YY5GfpSN2se5DHCYSbQD6WNDklRDdW4pfBmV5xRe/+EV4/PgxPH36FC4uLuC9996D5XIJ3W53bUxYaUB+Qt+Vmce5zFSnY6UMrO0qyS5Yl7PZDFarFnzrW2/D22/vF3a/Rq8drq1WlD0D2/FKnaOu4kvfLN0sSfL07aAJR2v55M8JpEcWF9/nMmD+vvhufVcsQOp8xf/0Gz6vVgn8+q/fhq997TjbObtYpP9nsyU8fz6Bv/iLF8APMNH0ExcsDlCXwVdKj44nqx1P+r1Jvo/zGtr5tPG/i3PRDXTctJcNLt5BdaRNyfhleBnG2xWUdSpa7dsAkN3fjmGt9vC6ZJImbYHXFXWMHVrn0sa2Ovw/Vexmkm3Bx2Okd1yW18pl7YMFZ+y2hA0p/12HpjRqBk/fRCEpGjz9JEkyZxINi0cXSQytiiM2JK6PgVKHQchEINFChVHqgPn000/hz//8z7Pv1CC8Wq3gS1/6Ejx8+BB++MMfZvUYqhxzcMOE1C8sxovQicNnbLLG0eBzbkhhQxikz4CMYaR+xePS9tPGQK/Xy45C7HQ6cHBwkO2YDoG1LSn9kqDo4h9SOr48q8CqyHI6+HiWxmiT88g2hK0kSQrHWtM62AQtuLuI0sOxKSVdGvfWvtQEXVofrRuW+dFn7OFzfZVx7ZI3QtKgtIXKDdQZCxC2oEVzuLh4o/RuU8o4lTk0/heaHoXWh3k782/8HX8vpeGivYo86AJvx1arBcfHx5Ak6XHiePx6GflT63NSnwqdt2gatP0xHh0DvE9rSui2da4mge2JsvbLly/h5z//eXZ0+Ww2K9SL5oB3KcP0mV/bIo0NLb6Ul0U2c9FbV3ta0/PNx5LszIHftXrw0VCmzD7+sg27QBmjCva5o6MjePToEUwmk6xfLpfL7N5XTd/UdGj6nuv5VXm0pJvQRanbAOpodDzPZjPY22vDF794C9rt1mvHar7LNY5bcOdOD3q91usjiNPjh7FcWC0Rc8ZK1RUm+1QpqYy0PaT+pz+v/6ayAaz9x52w6TPvA0n2f7VK6cAdskkSQRynjtnlMn3XbqfO2HY7gjt3evClL93KHLWpfSWBZ8/GMByGzenF+vC/o5DmWYuMQ99tQ7+kkOQSgHVaXYtxfe9C28NSH770LfP5JuCbB0PjuKDJ3WVou67gtjGOqnXmk/c0OYu/d/XvMnaQEGi0hcS1jn+LPILvqfzukjFddekK76LLQuMmsOkx26QdjcJih6GQbKNSulV13xC9xBfPFd9lU5BQtlw7tTMWsSmjWigok+GGFxoGETpYfJ0+SdZ3ENDfvk4TamCtAs6QUWBER0IdNPHy/+pXv4Kf/vSnYtz9/X34kz/5E0iSBH72s59lBiLq3NAEWg2+iXHbwnxdaHIc+oyfGqhBlDqnNAPCYDDIjvmJovSe2cvLy7Xjq5uAzwCmGcqlMKGoo+0kIZnWmXSPVR2CgoVHSIJDU0IKpof3EyMWiwUkSeLcde0TcFzg9T6fz9e+XRdeUweoQVm7YxTDVckDUWaMUeNQHe3m45V15aGVFQ2ndDWsxZjrEtZ5OC0MF6it/LYs8HQSSZ4JAS0Tpkfrg5+4YTFsWfpUHXNCnTJ6p9OBR48ewWq1gvPzcxiPx9n9llY6+G+tn+B7vqLVCip38LyxHfnY5joDOmU4b9o1facqlssljMfjbL768MMPIYoiOD8/hyRJYDQaFRxALoOz1q9R9mi1WtButzMeJKXjg9WY5+MtVmXcGrYOXQyhneKj5RkyvkLD+eL5+HhTKJsnjul79+7BZz/7WZhMJtlpVovFIrtSyCUn+uiSeE8ZaHWL9GJ5NglqT2m329DtdrNTPcbjMdy61YX/8/98DP1+/NohC2tO2fQ/gORwLeonPO/sV0nqsT34fFwmrfWdsJg+f1/cFcvDYDq48zV9zsPlY5z/xnD5//V3dLds8to5Oxi04d69fnak8WKxgvl8Bf/zfz6H4bBcv9dg5ZfUUeAD58lVaKtL93bpjvS7TwcMtbFsG03z/121M+8aPT5UbaeyY85lf5VkibLQbEp18QqeR5PxLDv5MF1LnVGdJpQeX/pXbRxcV4SMH9TFEKmc4Jcjq4zR0Hhl/XFNQ3XGWpWtUJQxsO8SJPrLKpwhsDj6XM5KzNtiBLY4dqX0pbA+mixxXPGoYrtcLjOjTKfTgel0mn2fzWbwX//rf80mjsFgAADpUc/z+TxjIr1eD9rtNkwmE6chX6ojS31K9eeqU5/CIRlL6hJsJFpcxy9ajVBSvmWcVTQOXXGOxs4kSRcv4E4MPNIK06a7pheLReEIcEvZQscC/e8SgrTxGVJHrvR94H1bo5n361DDZ9XJrowzSytDSH+T+ouUhstR4uOxVMHGd5xmLayLdikvV/hQ5d6HOtpdShMhjU1fHB6XfrfyeAm0T7jqn97h2QTqqm/adlbDsIWfatD6eCiv5TRboPUPWtbZbJbdGUtPLMETGLQ0Oc/kjiheDo0eCmsfojRgHMmYZxkL+K7dbkMcx6+Pi6xuwEfa8AQCrCde/5yfuuSPkP6mPfM8pX4lxdHaN4S2qwRaFzguut0uPHv2DC4vL+Hi4iI4rU3Cl6drbubhNH3RohuVMTJofTY0LUlW4XT7ZAr+nR6ZjH/8+hqehs+4R+ehOtBkfws5LYLKmtbwvN5DdLDVagXtdhuiKCpc6VJXvfrkIN72X/jCHjx+fADtdgsAEpjN9mF/vw37++1sZ2yrlTtg0fkaRXR80vTTMPx98XsV4BHSVdORkTpLqU7GvwMAcL1N+5+mRZ/z8bZ+jyxA8V3qfI2g1So6Y9PnBOI4gdUKst2ynU4LvvzlY3j8eA9Wq5SOxWIFw+EC3n//MjsauVgefS726Sz0tyQb+OL68rGgDj7CZV6Lnhqqh1v0E0pDKK/l/LsOG0ZdqGIjKQOprjWZ+irJhFVolXSisum67CkufUDKJ1RPtIy7EB1As8GVoVHTnVz932JHkeL75JVQW5uWT1MowxNC6KuDt7j0Bmsf1NrBdzqRK32q5/JrsTTbB6bt098l+PT1sv2mrF2TpxGaTqmdsa5CShV0lSYWK3xCDIWvI2t15Bp0Upo+ButL3xVWg6VsljyttHEsl8tCx2+1WtDpdLKdkGgMms/n8J3vfAfiOIaDgwPo9/tZGrhqudVqZff60Ls5rGWQDKKS8Opq79D6Cp3YQhR0qSzW8oTWnSuOLy8E3SWBfWI6nRaO3cJdGklS3NW0XC4hivIjf6yQjFQh8SzhAGRjS5n+wtN00WYVQLjgZjUGufplWf5qqVfKJ0Pv74qiKHP8S0Z2Cy8PGY9S+4Ya21wImculbyEKgTV8aNo0XohyxKH1ect4wPgYnv4Pzc/Svr4wdfYRC0KVlVBhu0yf4AI/pym07ih/SZJ0hzoeP0nvxy3DWzT6Q8eX9M5V1rJjjdKHJwXM53NzepwmjY/S+44pvVIcKp9IO19pu1qMHVo+PLzEdzi/53m/CcB2wAULr169gufPnwPAZg0sZeGap3mfou+1tnb1Aan/a3lL6blolNK3gsq2lG5pTLlorcJ/tHrE303PdaHpSm2HfCGUz4TApf9b4+POWJeu54ovwVp/UZT/PXkygK9+9RA6HXS85vfAAuT/0/D5b0pH/lzIRXhXDjwNt27rT89VTWkdch7Bf6PjdD2M6//6b+p8Tb+lxxWj0xXn2PTdaoXPALmzNnXGxnH67XOfOyjcLzudLuHlywl89NEwo9UiLtn7kl/+qCOfOhBqCwAoxytCZWctvk/HkuaEqrzJV0dV5KoybV3GplYlvzoQqk80Vd8Ibscqo7NzmqT0pXFTda7S4vhkNQvKhnXJQbwOXJtqLO0gjWeMxxedlR37FpsLDYs0vMlw6RHSsw8h9e/aEetrnzrHfdNw6W5V5PvGjym+Ckp3CFwKrw9ahyxrCAMIO3aK/vG06urQPmawSQwGA+h2u9kzOkul1R98J6xrVyyCl5Wu/PaFvcqQmE9TRkaXwwLvlcMjMgCKK3IAAM7Pz2E4HGa7bHD1N/YD2heQftcdLBLQMdckqhjNyyJEGGoanHfSNsRveEc0V/54HNpfMJ4PNB/sG3jENf3TBE+6C40auix5c9TJr33wOU12AZQH0Xaqg1YUKqW2o2FcxmlOB/Idukhkl5w0ZWjBeuGOs7KKJXeYuQ2dabh+vw/dbjc7Knk8HtfGm7VdTUmSHxve7/cLY5rzHR+2qVBa2kqiL0nS3Y+uuxC1dJAXDwYDePjwISyXy2xX1vn5efad9wUE39lryZP/pnybftcMjpKMEGrkxDnqTUW32812k/sMWXSeB4DC/O4yBEuQ9K46dLE6gHMXgFuPCE1T08d88krZ/DQauO5JxxF9LoNtyqkS3dPpFC4vL2E0GsFkMilt7JdkXZ9uUodsuEn5EvN55519+PrX7wJA6rh8/HgPBoN2wQkbMcdr+jPsOOL8Xah843pXn4NXQpLkeYB6XDGGoTtec/rycY/feNhimOJ73PVKjzmOXu9ozXfKpv0m3ymbys7a/bItiOMW/MEfPITlMoHlcgUffjiEDz7IrydA3hG6qM3HS0J2qG8CZWVti1xblz0O5ZZutwvtdru2U1CssMqmN9BRp0OwLt267rmbzplWxyjvx1rZNNs5/qe/fWlp2HY/LuuIrZMXaLraDeqB1L58LgmRAVFH57bMpm3iALb5zOos3TZqd8ZaDUqakW2XjJJ1oa7O4KubUGOehS7eTtpkVLXNmkgXV+Qj6ITBmc18Pi/cxViWkXC6Q8pRF6PQaEBItGiGFBqHpldWiHIZ0FzCkyTgYBty5xqldzabAUB6HDUep0jBnbGWMaEZassaXXhcnk6dfUjKx+Lo4PRqaW/aMCY5012QBEkfzZrBkhvLfPUkOe00hBiJ6+LBGixlsbZ5U30jZKy6nHyusW2tX9eYpkZpfpyt5IC0KEahsPSXsgolzrFlHFUUWHZJMdPSxRMxcMfqeDz2yjUaeLtod4yiEoILfdDB5KtjH7/ZBMoa6ni/pMbNUNpxJ1av14Plcgn9fh86nU6WltVZFDrvSP1LCgMgjxcr/5bCcTlUy8+VT9M8v07w8qBcTq+MoN/pb254xhNMaFjalvhb4qFSvZYZnyHl5e/LGud88nkILZqhhc4/VfqVFFdLTzuJho9nrZ9YeYOURp2g/W06ncJwOITxeJwt2OP90kIv5X1WPliGZtd7aY7Qvlvrt9uNoaheR3D3bg++9KVbEMfU+Rpl4fKdsNwZqztf12U7E3lryONFa2nIaa6HC0FajbSO6bei4xerPIrye2GjKH2fh8H+B+Rb6kDlzzQMpp+2edERW0wr/Y/TGn3O+Qm8zg+vZkiPMB4M9rO7ZS8v5/DJJ7l+jjT71qtadVLKB8oseNk1Q65VfnPJRmX0UMneooW1pmtFHfZhrT6qtm9IHZdtjzpQpQ7rqP+683LJMogQeT1UtqZzomS7q1pfrn5p/VaXPMdlEmu5Q3TLbem/Esro6Zq8WYdeUFVfsfKdMu2l3Udct60jRIamz1I9a7pHHQhNJ8gZywWaJpQDV2fbxQmkDMPj4ahDwbdqT+pMWseTaLTSGmrc4nlxZbkOQdbVjvT9YrGA4TA//qbf74u74SaTSSFt3g4A5ZyykiGaGorqRFkm2lT+ZcH7jaUc2Kb0eMTBYACHh4ewWCxguVzCcDjMjqrG3VI0T9exxFp7Se8l5c5i6PWBj+NNCCq8r4b0W6r8NgmsB3q8NKWBGmc5fYvFIttlgN/5rhQeBx0uUZTfc/a1r30Nbt26BQApzzk7O4PLy0t49uyZSjffzdVut4N2lVXFJpUpHx2bSpcbEC11wPsw5Ut0ruD9zKIYYt/Du61dYTcxlig0ozFXwPgch7tR8YjDMvfjcfBdQJowjQai4+NjuH//PsxmM5jP5zAajQp3ykug6VM+4lKcOB24I58u5qLhXWXkKKPASvUTKnfxepDo4flxXeDg4ABarRZcXFwE7ZIdjUbwP//n/4S9vT149OhR9m21WmX9ioYvo4xpYWjdURmxiiEDjb2aIyPkjmjOd0J2A28KPr1wtVrBbDaDdrudOd1ns1lWDukYak2upd9xvGK98IUQPD7l1VL7SmMvlBeXmVuqQJujJFrwvbawhMaRxm+ZPsfnRirrYPu5dLq6DTl1g9Y1XnXzwx/+ED788EN4/vw5TCYTiKIoO8bdmqaLBzelS0p51Z12txvD3/t7b8GdO31ot3OH695eG3q9uHAPbPpHnY/5e/ou/w1rvwEi5b2LzmJ8Pe11Otxp6VhvShoxEb4X47julF3fBZumn/fd/DkPk8dx3SkLgMcVQ3b3K90Zi//TI4zT+2STJN8pm/9vwVe+cgxPnhzAYrGC1QpgNlvCeLyA7373U5hMlqa+KdlrND54FeCyP6EeKp3Egqhif9vFeqqDP21TB960PqfRsI24ErhcVzWdsnlzOjaxq48ipF5DwmJ5cOF3SD2hnOGzY1J7gGY3oLRIuzDfZGg6tiT3NQWLvq7lz096ctkM6oLWz7T5/yr0sSBnrNXRQL+HDn4JLmNclXTLwGd09eWnGQK076E0+MK46JaMbDQMd9CEwsWoLXAp7TwfPMIWIHeAUIYjOUCs6W8bWjv42trXLzlcSkzIuJbCWurUN064IACQCh2dTgdarVZ2FzDt3/QoBUnQCK0z13i18KsmJ4mqSofLwFo3XOm76ogaWC1CgM8Ia6UTjfedTgf6/X7mjPHt9sG4Et2WcaKNQeucs6l2bFr44U4KhLVO6Hzm4wPaOPDJK668aRo+p6NUp3XIV6FtROvLRwvtby6ZQ4tv7ae8/ZIkgU6nA3EcZ+OS3ufaBEKcaxwhsqIlHO07rr7q46mWdzRd5IfcmW2Z/5bLJVxeXmYONdfOUddcS3/zPkX7SUiaTRqfQtpkF4x4Wn34HEd8vqPPIXn5+mySJKJRoUq9WXh+CC/UeKgErfwW3dsyTiif4PRaddTQuuXznGQ8qUuG2JTeRtsljmO4uLiA0WgEZ2dnMJ/PodPprOmfVki8XOtb0ndrHWjyVB1IHa0tiKIW9HoxPHy4B/fu5c5Y3A2bjg/uhA1xwK6/Xy+nm9biWJfi6t9D8nGFX6/+fAdrMU7uPE2/F2krtmO0Fi8dx3lYfE7fJZDvwl3fNZtkzlbcvZwU8sjDIN15ekgWprdapTtmDw46sLfXfu2MTWAyWcJoFMPhYQfa7ZRPLBYJzGbyQj+XnhUC1xxNw+yCXaiJ8UqBPA3zwcUzLrvTNhAyl5Zptzrk+13oL7uIsvZBGrZsH6zDdldX/+dyj6tckn7jS1eT3X15aLCMuTKynM9+ZrHz+ehqAiFl9fWvEN3Iml8VejhdND1tR6wrfhPg/dxqO0FY+1BTZVhzxnJDxi5PINukz2ckdzEQXAkuGa5Q+OFhpTzxnW8ykxi3phj6mIAvDA+rPTcFqe7pDlgpnCR8+1ZGSQzRVS90p20VQdZiiCmTrg9Wg3rVPCx04+4rgPWd5NgOaBg+ODiAxWIB5+fnmVEej5TUaKAr97WJH9/jWG3qHhrfTi0XQibXspCM200C86I7YqMogk6nY+Y5dNLmO6Ndwik9inS5XMIPfvADGAwG8Fu/9VvZ0ZroXMA0cLcE79tIPz+q1lJ+n7B6FdCkMu+afyWjs2t3DsbV6pw6F6R4kqEbj9FNktSBtb+/D9PpNDtSPYQOiSZeTh8kJ4lmPPbJG1Uckz4aAYo72JFX47enT5/C06dP4Ytf/CLcuXMHPv/5z8N4PIb33nsvu+/KtQvdqlzyuQffdTqdgvOXxnH1jzpQxSBBwWVR6b0G3MUaotTgOGi1WrBcLuHs7KxweoUWj9LEf1P6tTu5JfnPl5/0nt5Rzw0jyFf4qRk0LIbZ5BxaFlUMktgW0i5YDZrCz8NgOFyA6Zq/Jdrof4kulzGL5u8zEnEjmzQ3UB5MZUuJrlDwcnB+ptFaNp8QY2UVOZfX2zaRJElB1wAoHq1dJV2Nz/DfZUDnNFxQWJcO/1u/dQ9+8zfvQquVOl739zsQx1HhHthozQmbOz+x6vA5/w1rv2lZfCimITtZ89/60cNNdzmp2tN3EYBwh6zvd8h/zCftD/gen+l8Fr2+VzY9Uhrf4X++a7b4P71HdrWC7D7ZJEmg02nB3l4b/vAPH8NyuYLpdAXPno3hf//vkyxfra3p+AvhQxxaHpvgM6hL+vKrwjs14LzQ7/fh7t27sFgssl3+oXLrtnnytrDNcu/CXBiKKvRabV3cDl82PR9PqWt8WMca190R2pHiUv5c9+P5huh1kv3lqvXHJtF0X68bLt2HjqNN7Si/jn1pzSNRFEo3I3CE5ONTEEJpDnWq+eAy3Gj5WeNKcfg7ibHis5WZlhVa60yvLCzGFRrWZVi25OObjEPqJYSWMgYPC7R+WmceNC3Ob7Q8uCELf6PRCo187XYb+v1+Fg+dZ6vVCubzeXaPoMt4Q/NwGaVcY43SVxZaHyrbDnUb6xFNlJGHsRiH6NGvGo+0tKOPXnSgzufz7L7DXq8He3t7sFwu4f79+zAajeDy8tKZFhdkXHmWQWh7S/VjcfKE5GPhyzxcWWhzII5Lbsz0GV0kY3pV2gB0h4zFIO7jnz4HQRUHi/aubmOxRTFGwxUeVdpqtaDb7a7dMelqT41OTB+Pl8aFPLjIi9cnn0Ot7VIWknPH13e0/iUp9T4ZBsP5nGFafPqbO+ukPsTHHw0vyX+hkPoFf5bqRuoHfO4KHQe8L236+LS6YJGVKKr0IVf6vrGofQuVEXyyvDaHaPSFGMK0vH1zFu9rWngrX5fqFU+tQRkK71StAss8aUHV+HQeotdaUBpdeflk1ip8xAUXLwvRSTudFty/33+90zV3tD58OIBbt7rQakXZH36LiBMWk83HnO4M1d6vf9fKHJ7u+rOtv2jB7E3oCsgTx/tZ02/5b5pOXr9p/0odrPw5DcPvoi3OjfgNXu+MjaLUoZp/j7L8kwSg1aLO3jQOrQesq/RdC1qtBA4O2rBcJtDtrmAyWcKDB/3XztsEhsMFTKduHSpUJslp2w34dCZJ/sOw2hxjBcq7aFtZLBaZPaWK/hYyn9YBSV7UaOJhXLYOS1qa/aJJ1KlfbBI+uZqH056l9nPpNFZ9O4Qul+7lS9sVh4fz9StXv3fJ4VZbjY9eX3pl+HMZ1DUmQtOpWramx7KFV2vyqqTzuuwhWr6avOnrRxJC9LuQdOuCRkPQMcXXEVUEFR7PynzRoOK6z8w1AHiamtAlxfPBwrCvG6oOQtdxxzxtKWzdTMDXTr6+UiVPF/Osq//galE07OA9ZNPpFPb39wv3zk0mE1gul/Dw4UMYj8fw05/+FBaLBcznc3WHrM9QuE3UTZPVIB+KbfCMdrsN7XYbptNp4R5hCslZ4XLgSuh2u9DpdGA8HkMcx/DgwQM4ODiA/f19WK1W8JWvfAV+/OMfw1/91V8500HDHXUi+5yzvE2aMMppz1ZsQ/iU+q8rLSk8X0UqrTjndxNT+BR4TUGUUJZHVzE81dmXXEprSD68PJbFC9Rpivwdx42vP2h3fa5WK+j1etDtdmF/fx9arRY8f/58TYajfWa1WhWeab+kO3zr4LO0npqY313AfHFHq3R/egioUuc6wUXrY9ywUkb25W3FT8twGdc0w1CoQQ7nJqwHPBGE36N7g2bg49H4TeL1/H/I2LQaIFz9j+Yj9UdfmbQ8ywJlm7t378LBwQEcHh7CfD6HH//4x1nfpnleJV2Tzh0WGc4HlAsB8nlil3QQDUdHHfi//q+3YX+/8/r+13QnbLsdQRy3Xh9nG7H/OIbwd/qt+CzJpiA8u/q09Hs9H3teeRquvEIgd/l1h6UWB52b/FsxjPvd+v2y+XPy2vGKTljtXtn1nbG5ExaHRnqHbPR6ZyzO9fBaDk9/p/8TiGPcKbuCfn8fHj4cwHy+gvl8Cd/73il8+OGQ1UGKKIpEGd5iH9kFcCcSPSHBZfCWyho65/A6QB11OBwWFhlLpwqFzje7jKq6KH23jX51Fepeo896jVxImjwMHR8W/dDShk3Vt6brhcgbFrnPF84V3xqv7HjY9b78JoEfT0ztZ65xpenBuzLvbguNO2PrUK5C0tim55tPfJLRnJZFMyhZyqvl5TJK+dKU0uJ5uAy3roks1HClPbvyoXFCJoVQcEOr9J0a8sqUkX/T2i/EMUPrRRPSqzJEnm6ZvhxKB407Go3g+fPncHR0BIPBoHAMLW8vVNZ8fdpl1KLhJAOw1hf5ZBUKq5JlhaudfIKT9N3Kb8r2N96X6bG/ljqhcaoYHzGd1WoFnU4nM8ZhX6NHG2vxEdzQ79oFVYfzJVRRdwlQvvGrpeHiZ65wrjjSvKoZDLijr2xf8M1vUrn5nzUfq6Kp0YWGnTp4R+j8Y/2u8UxX/8D44/EYLi4uYLVawWQycbaNTymQ+g3n2dIzn1Ossqtv3IeibmOMVDbKs8oaK7BPDodDmE6nQfF9RpuyhgVedy55mCK0zjEdbUyinNLpdKDX68FkMikcdb6rqLPflVHesd7onXf43hK3KWhl0Y4lRtqt8xwNq/Un+l8auy65NGSM438sE54gcnR0BLPZLFvoIF3l4EpXK9sugPJvFy+yyDSuNvIhJC9XXWrzYRQBvPPOARwcdKDViuDwsAOHh13o92PodFpru2A1J2z02pGKSef/i3lpZZO+y9/kXbDufNJ4YfmUA8YvNlWkfNP0NPoG+V3uSE1/F3fP0vDpe/suWeleWcjuj02ysKtVsQzFHbLF30hz3jfwfbpTNtXzUif/w4cDiOMIFosVLJcJvHgxhcVi/eoiK6xyGkXTfMhnd3DZ3ULsMFKeuNh9NpsVFji78rwOKCNDWuOUsWmWxVVrjyp6sMXO6hu7delLddvlJITuTvfZBDg4D/XVXd19LYR+axqub5Y5wyVXb0sXC7HBSHEoNFmP6haSPd1Sz1IfqrPOyvSPXcLO7Yyt23hUF6x0hdCPCihXviVjgaWza3e88d8+oye96ypkdZKr7BaGUYdjxkdjWdA06b1w3HAqMRtXG1gdIlb6dpkRSf2al79sOTDeyckJnJycwLvvvguDwcAbhyosXLiRDO++/BGScUvCLvA7H4/gYXYFdAzNZrPsflYXaPkWiwXEcZw5cK1GRtpmSZLAZDLJds3hDm1EHMeZk5bfJUnLgO/iOM4ct7tY5z7UbfgIAW1DbQ71GZklZ5ivHcqWA+dX61ij/d2lDFh5aJ28p+62lBxhErCdaT2enZ3BfD4HAMiOVAvJV8pDu1cYnSicL9DvPiN6GUO7hqb6Ks9DUlx9d6370lwsFvDq1SsnrdzASNvdl6emfNPxwudCXx/kd46HOKp8xg5Ox2AwgKOjIzg7O1N5x1WFq565rCx9k4DyQBzHsFwuxTu5d2GOpcYNbGsrT+C6n8vY4Zv3rAjRT5F34sK3/f19OD4+hvv378N4PM7KjE5ZK6+mY5Maini5rO1bp/EUT2OowtO5rKL1hzqcImXlgCiK4Ld/+x587nOHr3fCAsRxC6IIXjthU8drWg6q48HaM6WZkpL+jtgz/75GGUu3SLMrD3f6chg/PTZQR6T+Dds/dXzSsPkz8suIvS+2NaaZvHag0vD8uRh2/Z38nO+MjSIo/Me/nNfld86uVvlO2dUK3yfQauGO2RW02xEsly14991D+PznD2AyWcJotID/8T9ewHy+zMpKFzhdl7mSQuPvXE6i70Pqod1uw/7+PkRRlJ18AuC/6z40nxvcgMLlMLTowdJ7vpPPkrd1QXxTNmeXzOa6T7qOBb2heg3C6ie5atgFXQGgut0mJK40h6De2e12CzRZZPdQHe5Nwk44YylDa7LDWxXb0G9aPjw/zcgbqjDS9F0DwKKIS+nTZ0qzxXDscoxKE5ev7V2DN7T+qkCb3FFBjuMY7t69m63Cn0wmcHZ2lrURX0XiEjYA3EYVLY7kKPIhxOlWJV0p/TJMWBN+tLTQIId9+bOf/SxcXl7Cs2fPCjRpjhuJfp9jILRcrsnV4lDhNFghjXeepq+efe2sGcnK0Ozrf9QpY02TxvGNHbx3mBpM+XeA9Phs3OWCxuButwur1Sq7I00ytmll1mih8Sj9Pp5bFlYFxsKzXW0o9R0Lz+TpW5wzdEcOn7fLjMlQOWG1WmUOQ43fSL9Djrfl/cLCm/E5lP+40rPCWi7ez6MoXcwwHo9hsVjA3t5e4TvuJOQyh0UubLVa2X20R0dH0Ol0svj8KGL+W6OZPpdVfF1pa3KohR4AeXFfHYqTxguiKMruJ0uNr+tHDPrS5ceIcxnRKhPT8NIiLYku3p+k45qpjCb18263C61WCyaTCRwdHcE3v/lNSJIERqMRfPrpp+LR2FcZWhuE8g6JN3Y6HWi329DtdmE2m2WLpFx8XTIwa2OaO+Kr6I9c/rCA9kOf3kX7HO2XfO7D9xovkerHVU4uX+GpBe12G2azWfaN82aap5Y2D1NFxtH4TRlZ3hXXkp5LfvPVv5ROFX2N46239uCznz2AOG5BHEfw4MEAer0Y2u30GGLNCZv+BwC2AzYvF5D/1Ryj9B1PX8uDp+3OW06rKvI88mOC+Td0kBbfpXF4mChCh2eShUv7D5DvfDdsGn79mYbJ4+R5R6/DJABs52xCnK/8D/PKjyumZcI+gmVKHbLLZQuiKCG7ZNPArVYEX/7yEZydzeDnPz/PjkR28UZ3ezRvV6Kw6EQUmq4nfZPSd8mnrVYrM7afnp7CZDKB8Xi8dvWGBKueqMFq29kEytKy6b6zy/DNVy4ZMKTtpbkS33O9z0ovpcOiz7nSkN5b6NHg4mm+fDTdMDQd6Zm+8+mgmxzbVposaVhQtWw+3SgkfZcejHDND1zv4eEk3SjEjlOnXWFX4aOvsjPWqkBaOpCPWdbVaL78tbybSJ8ahK1AWvhKYmk1jNQ+lglEMhZZjHO0ja6qQCIJ75rRlJb17t270Ov1ACDdoYnOWGoIoWm68re8K1O/vraRvlcZcy7+IBnT6e86jAhxHEO73YYoiqDX68H+/j68evUKnj9/LqYhtVEdhnIr39MEpjrqwzK5l1E+NKM0T7ssfHFpPUl3+7nSoHEAcgOrtot1sVioR4+jQY86Y5G/d7tdSJIEptPp2jHGPA1KP/72KdKasZR+t/KLkLBS3KphaP6+/qPxM+t4cSkomvHXYiT25YVpaTuatPjUmG7JIwRSuX3G3jLGapehH//7lFceB8ceQHpPOO5Wx3HIxzSlRVO2eT3giRg4niWFw8dvrEaykHaswmOtcoXvXV158yNly0KSZaV5Xhvj9HfIHbi0LdDRFMdxwYCp5R1FUcEZe3BwAL//+78Py+USXr58Cd/5znfghz/8IfR6Peh0OqZ6kFCFvzeZhyaHueYzV/t1Oh3odDqFRRn0u5aHZrThfNdiYLLwO0t/t8iAVNeQyhEi22l1Y5kjJZowPO6GBQCYz+cFZ6yVtpAwIeHqQlP5aXxDmz9cc5AEC91vvbUHv/d7D6HTaUG7nTpkowhe/8c/dKIVf6d5F3/n/6V3GcWgdTPpvZY+DZt/4zxYSt8dxgKMY+sakRo+fV901kYRAHfSpt/5McPp+/y4YZSl8JvumM3j545Xnn46zss6ZfEeWUpnRGjKw6T/UwduFKX3yrZaAJ1OC9599whOTqbwwQeXMJvl/No3FjbNI+qAdiqbT6bh7/N6Lsq76Iw9OTmBxWKRLZ7x2Su1+dqFJvXNbUGaf3eZ3roROv/Qb9q4tOpKXGbxpeODT0bbFB+R7EMaLTy8pQ4s49TSfjQtSX705SHBx3OsdgsfQvXxptpcs0eUzU+rH1fflspO74YF0DfpWccwp+dNRWVn7E0l2mFR3qtA2i2DzgBXftTgROMhqDFJgtU4XdV4tyloRnOs23a7nR0nqhnGe70e3LlzJ3vmd6G5jj2k/13ghkKfEXsbaJI/LBYLiKIo65+9Xg8WiwUsl0sYj8dwdnaW0XB4eJgdH4bA1fi+421dgoyrr9O2rOII2xaPtY5rF+hR7E30STz+Do+5A5AXjWjQ2tFa1tlsBt/+9rfh8PAQnjx5kvGGy8tLAEgdQ4vFAgaDQWG3LC7aAEh3b7fbbRiNRjAajbJxjOXQjoSyCNOSU0IK50rnKs7xFuMLV/zKlFNy9Fjj+eDjMT7ji8XIr6W76Ta3KNQA+vFL0px9eXkJrVZLHD88Xdc32j+SJIHz83MYj8dweHgIy+UShsOhiedoiixPvyk0LRvUdTSWTwYKmZdCDQFaet1uN9tpGUVRdhcxyoUuBdPV5kgXlS2xv8ZxDMfHxzCdTuHly5cm2suWr27UmYd1fGAdomMPF6tS2SPEiUj/0zj8G+WXEu90GQzpe+RV+A13QNc1Xl18nRrkJVkoRC+xhsP+zvMIQZ28bNd0JwpNL7DwN4tR3KerPH68B7/zO/fh/v0B9Pu4Eza/E5beDRt5HLCR0/kasis1EsPIzlhX+JweKb/iczXHrCU8ba7otfO1+G3dWZs/J+S5eJRx7tgsxkfnrM8xC46jiykd0jfLH+a3WiWvy0jpSrJ+tlolr//Su2fTo4wB4jj9fnzcg29+80F2j+zz52P48MNRkM5jRcg8F8rjuE0H5wa+cAVAntdC85KwXC5hMpmsbfx40xyLIbiK+vJVgmuerqvu+UJbSZe25lXWrqCBj/UyTuIQXaiKXLYpHlFXu19HR2Hd9POj/31Ocun/Ddax8WOKd1nhqRuaga/s4LAYEiSF2mWsRbiMidrRb5SmUEgGC0u4bYHWPe7e4LvnKK3tdhsODg6yuNPpNDPgAeROKslgF1KnmsGYvtu2kUOCpV2tBjMMS9tlNpvBcDjM3h8cHIgTA+500pzjmsGCvnM58rixlre3VcCzOJd8KNMfrMZLX77cWFnGGWhxpqBzVqIhlGYLlsslfPjhh7C/vw8HBweZwX4ymWR3pS0Wi8IuPQAo9LlOpwO9Xi87wjiERknI3tQca3UW0jBN0VTF0RLyzTdeXcbuMqB1bHEYhtavy1FgeedL24c65net7LPZrGDQCjVW02+Ub4/HY5jP53B8fAxJksBwOBT7ukRjKN/3lXFXUKcybJkbJPnWZXjQ2sfXbhim0+lAv9/P7geezWbZXOPiub52o7RFUVRwyLVarezee8lJdh2h8SOffMxlaWyXJCleXcDrW0pHA29rGp7zaWtbSf2FLiyz8CYePyQ/jEP1Rq3+XXUXUl7qJMfy0jys6WkGnrLjhOZfRU+vCxbeRNuFh4+iaM2BIsXn+WHZ2210xEVw924P/o//4w7EcbR2L2z+O3cC4u98TBa/5fmvv8vfy3RK4Xg6eXDpXTG9dXrSeBotvvf1Q8pI4wuRI4z2TXofOcKth8F+IsurURZmtUInq7ZTNnXEJkkCrVa+A7d4ny1keaTpJgDQyv7v7UXw2c8ewHKZwHy+hMUigadPx1ncdAduvcZhKw8KdW5I/NhqOwuBRu9qtSrcte6zK1rpkuxe24bPrmpNw6dHWvj6mwrf/M/tSNI3LU1LvjStEJmzzBi00B8qj7pQl63eEp7LIxZe4Pu+KfqrYps2Lsu4kdKz1hGGs254sejzbwp8dbwTd8ZeZ1RhQlI6NI5rxwcFOpyoso1HRFmAuw0xHzRIAawflcxpdk2u10kQiaII9vf3sx1vSZLeLUedsIPBAE5PTwuGPNxpgXEwLfrMf9M8rbRdV4aYJEWneJKkxwKenZ3B5eUl3Lt3D/b29gpOOu24OW7ACBFypDrWDDv8t4VHhCpwnIY6II1lbvhE0B2rlnSr8gI8PqlsOrStfMZa/I6Gc3S6/uhHP8riHR8fw2/+5m/CBx98AC9fvszqA/nlcDiETqcDh4eHa8d+YB7IZy0COX3eJjR6Q4ysrrRpWiGQ8vf1O23ORYOyRJ+VRvy+XC4r7xovU7dSO4XOEyEGijLw8VQtbWrcrzoepLGFJ2JoBj2NT/KwUtr0/3Wdsy3QnGscfI4JORWB5oVpad8GgwEcHx9Dv9+HKIoyuc5ydQeXD/CZ372mKa7dbhfu3LmTHber8Z+rDmk8cZ1DGjO8/vD9ZDLJ7orlJ2houpPVGMjppO9ov8U29jlXpXR5+fiKdB5f6lOh0OaE0P7G6zaO40wuPz8/hxcvXgAAZLt/ty23AKz3v23y3xADMr/3ni4+CDHY0jYbDGL4+3//bTg66kKrFcH+fhu63fj1bljsb6kTNqWBOl2pAzR/n/+Xjwym4aVvnFZXuvz9ej7Zr7U81vPUj0n20WkBb2oprZwn5DQlSTFs/oz9l++ApWmt75rFOJSm9f953GTNUbp+7yv9Q/r5e/6HYZDl0D6c/s93yEYRlhOvicFji9PvcRzB5z53AHfudGE+X8F8voKf/OQcXr3KTykLHedleJU2b2h2AYv+oM1Vdej/y+USLi4udkq3vMH1QxW7pjUO161ceSO0Rf1VaLKOxap1Urf9700f9296+TW4dJkbJ2w4dtIZa3HgbbqhyxhzXWnVMcAlR4hWL6mg2irE5eGjKFpzDEg0UyNnqMOKvwtJY1fAnXfUsJ4k6S4KWr/z+Rx6vR5EUQTn5+draVSBS8jfZUHaNQZCxzg1UiHm83n2h/edUIcYHmmMxqCqsChPljYo63TVftM0q/Q5GpfzAk53WWeZRpdVOOVGb41+V/pl6h8NvDi2AQD29/eh3+9niy1Wq1Vh0cByucwMzJIR1aK8a/TwZ4sBmCK0LXh4lyOJh90Ej7K2vfSNlkUroyanuPohf1dHPfh4jGRo96HONvH1C5pfyDjUyuVzcFh4thQXHRM4njXnm4VWKU7TDtmr5ugNNUS4FlPR9ufymwtxHEO324V+vw8A+jUTCM3JZ+WLnOZut1u4/5g7Hq9Se1pRdt7C77jQhfYHrZ7rGBNS2r65jssempGdt7eUXkh/tpbFKhv55h78RhcBo77ZpG4SWheW8E3rrbzOXXKLNlfQvuDigzRMevxwBAAJHBx04O239+H4uAdxHAlHEq8fSwyFHbH5c5pP8Tl/p/Hp9XrJ3+np8jTX81t/v/4sO1+tzW0JR7uZKzyGk3Q6+ipJivWTPyeFb+lvDEj7uvQO37vCRez3+rcoSh2mef8sphlF6Y7Z9F3+v9VKnbvpjtf8GcuP+aW8EfOAQl9IknQhQa8Xw2y2hNlsCQcHHRiPlzCZLF4fiRwOy7xr0Y1DdCcNkuzIaZDi+NLkJ7/x9JqWOepM31ovZWioM63rBK2vWGxhrvAhczSnIwR1tJeLT5TReX16q9XGEVL/PLzEz3zto/E1l92yDEJsGpqOVjbdbSLEll5WJg6Zm940XlcH1pyxVqfBDWzG7BCjrCtNF9AwRHevSunStDudDnQ6HZhOp5ly3Ov14O23317bzTadTjOn1Wq1grOzs0xQo44EqRy+QXmV+hoKqPR40Xa7DdPpFGazGXz/+9+Ho6Mj+LVf+7U1p3av14NOpyPugrNOINiXLA4RS5g6sIv8gvbJk5MTODs7g08++QRarRa0223Y29uDX//1X4eXL1/C+++/X4hL67fMJGSBz9hWJT86zkOcBFIaUl+jRjqLQCcJdU1N1Dg+6zJKWutL4rvPnj2DV69evTZy9WGxWMB8PgeA9TrAPkmduZLx3lLfPgeBr17K1plkVNDS2xbPKJOvZnjFPqbdx25Viiz0lakrl6IhG/Z0eWXTBhjOe6T8tf7F5RwpjPYtZHytVis4PT3N3mv1zfmxz5C/ybquiqbkCQ5psZWFDit9uLPMAjruq5Qd+4Kvb+KcQfPjC3tCFORdk9V2BbtgWMYd99jH2u02rFarwoJBTc7X+J70niPEGOiCZe7DHbLa97phlQN32aDOZW5psQnVHzqdjjM9OtfTtv+933sAX/7yLWi3WxDHEdy61YV2O8qcr/Qo4twJmzs3+TOn0fVu/ZnLW/Q/dQC7HL3ld+BqdEhhy8CXBnazYriEvI8KYWm4tB9kOWVx8nD5Xaz0PeUteZxkLY28PwILm//RZ+kb7nrFd2n+xb98Z2zxffTayRpFCdkhm5YJd8bmO2XT7+12Au12BN1uDH/zb96G0WgB3/72Szg/z4/gdbdHzr/oGHRBkvt8YfE3hqenOPATdHyypC8/LT6+r3rKgivvbWKb+e+6TN8UuD0j1GZssW1ocV3hJZTtH5KNwEpLSJ4+pyYNFyr7WHmKy0bAv9clX2p0VGmvMjRtQo9qKo8q9rgmedeNbio4YzdVIaED9Co1FlV2EFXKKRm5tXypAKU5UjRnRZIk2f2Gg8EgM/pQY9hqtcp2fuJdEhalv2zb+SaebfQLyfGwWq1gOp1m9z7yyYj+8bQwDIf2TqvvEIG/Lmx7TPqM2th/EehAp0d5AejOC8054eqXrrhlYBW+QmHhwVrZywhYIf21qgCnxQt1lmlORikOv1t7NptBu93O7jLWHA34rd1uQ6/Xg/l87qW/LK6SMqi1hyt8iBIR0sdo2taxFzL+6wpn4VVVBHIa32rk99Gjpa89VwFv/ypz5mKxUPmIpW4kOYHSWFYx9qGu+mxKnvDVn7VuaVhLO7vqe7lcZnwZT0LQjirX3kn9muaJNGC6eJx9FOX3FGNYeq9o3Q6nTUAah9JcS+vIMi4k2cvizOcIqdMqc7Wmo9H0XfKmZJzX0vfJpZJso8m/VftS0wa6UDrqSFfi5WUg6RFWGmgafLzwtAaDNty+3QN4vUvx/v0B3LnTg3a7Ba1WBHHs3gmLvzHd/DcAOHar0nfF334nbS6DlXHC6s5ZGlfKV0Ld7JQ2rZQ2PXYYsqOIuSO26GQFSNbSytNJWPy830VRnlb6n4aNsvwxHsbJ00nU3zmNCUBhN23xXauVly+Kis5ZgNzRikdkp3MFZHfN4h/WRRyn4fb22hDHEdy+nS42WC4TWCxWMBrlC5w0UB2gSV2K8oBQfVvjPRIf98Wn+ddZ5m3KIi4+rc15VfO5QQ5ev7Rvh8ppId+tYUIg2XnrSMf1XYvvkxMstFn4TNO8j8NiJwz9VgVa+eusk7r6kU8/qJJXndgFGpqGr4yljykOMd7VgaveWGXpp3eKIqjBhoKvNqJhkiR1tGorkwHSHbAffPAB3L9/Hx49egTj8RiGw+FaOW7dugWz2QyeP3+e5RHHccHJRcM3iSbT1/o4rX/JyYKrGRHaCsMkSXc+4I5NANtEZ7mH802GT7gbjUbw3nvvZUfFAkBhp0lIHpiPFoY64nzKT12TucsQ7XMo+Qx2rnxccNGyC0pLVRparRZ0u93CuyiKsqOwNSfZbDbLxv/+/j4MBgP49NNPYTQaqTRaFBZX+zbFMzctE2g0IKxOrDLzVaiTp0r/qtNAQLHttioDTrPUDppTB79R41KZeqVtalFa0YFHHY3oTKPxfU4jCSFjbhf47KYgzXPW8kt1OhqNIEkS2Nvbg1arlS28045ZxTaWxr+Ljvl8nsWZTCbwi1/8AqIogtFoBGdnZwCQLijr9XrqnbXbRJk5gDtcJWMwvcOLhtVkYS6j4xwbIqv4eAMdz1L+PlmrCjBvvgBMOlqSfsf3VvmuLmOjlPauoerd7XUDeQinieqTdPxL7UPbkH975519+Lt/9y3odFrQbreg12tljtg0byj8j4wOWPo9pw3Yb93xSt9R56v8nOdbTEt65897nZZIee+GFt7VvXicYlh+LHGRLgwbrTlZo8K35LVjFdOg8XOHa37cb+6YjQrxpWcaB/NN+18eNv+jYdx/GJfWEx57nNOANCaM5vwu2ThOHa9xHEGn04Lf+Z37MJ+vYDxewKefTuG73/0UrNNpqHM0RPaQ3vE5Uvrusgu5bBRl5muehgVV5o52u702v1WFJrfdoDlgO2py6y7Nv1Xhui5FC+saw1ZZX9JLpRMZ64RLTtw1HcUKS7vtcn/dZdpusI7SzthNTFouw/K2DPkhDghEldU+9JiS0DJzo4ZEBxqTUMjBFf9RFGU7teI4zo7Qwry1SUMzAGgo036bWuHhazf8jgrzarWC+XwOL1++LNwv1ul0YLlcwnK5hIODA2i1WnB5ebmmSNO0rXT5BOPQ77uEMu1JFR8pPvZtPFrW4rDxOQC0764wUlpWY5mLF0j5uejDZ03B0yA5bX2OEckwVIdztkw/KcPHrWnydLUxmCT5MZQAAN1ut7Aow5VPlfmHt0lIHlq9acZn7gjTHBRaPlVQZW7xjRlf+lL98fHN31WpjzK8oirKODJ5fIB66AqRsSxt60tL469VjG74nstkZdO6qijrXA7hmWUMkKvVCiaTSSbLWeUHjUap3XC3davVgtlsBj/96U8hiiKYTqdwenoK7XZ7pxfjVZlPfcZRrG8+p1jkZU3GkX7XDescy43tvnnSJW+V4WlXCU3TrMlyTecl5cf7LrYxyor0yiCLo30wiOGddw7gyZN92N9vZ8cSpzth+d2w647YaM3xWv3O1uI7f3qyU5bPy+v5yjTl+Wq0ud6HwJIGNp1EW/4tKYSnYaUdtMVwUeGb9p7m63pHd9rid3SIrsePXv92ved9N32X7nhFnpmGbbXSHbPpLlo8xjkqPKOjmNYPQATdbvL6jmSAo6MVPH68B5eXCzg7Kx5d7NLf+Ls6QdO3ODSq6s2aI3gbsM7z27IDS7D0gTfV2etqp7rG0bbiInxynsXuUZUu1xjx2QyroKpNqm7QMtfhg9gl3ihhm3z6Bjmq1EfBGRs6oG6wjqp1yOOic5Su6pYULt+EhnG4IafT6UCSpKvw+YDudruF3V6z2SxT/EajkTMfBL3vyEWf6/suMT0EpRFXHc1mMxiPx/CjH/0IDg4O4OHDh3B4eAi3bt2C8XgMq9UKHj16BPP5HN577z2YTqdq2nWVuc60rgPosbCIEINqXfxxE33c5fi0xLOGtTpCfEZF/nzV+i11nrRarbXViBJvn0wmMJlM4OLiAm7fvg1HR0e10EIVAMkZXlUgdzkRJacsOjPa7TZ0Oh2YzWbi3KDRVNe4k/prmfHhog2/W4ziVRyD20RVOsvGD5WvsN9hnmUcpy4nkY+Pa+3LjWs0XrfbhVarBePx+MrxwE2DjjUu27p4k8YHfTg/P4coijLe5boWhK+MR3o0mSxJkkwm7Ha7MBqN4D/+x/+Yfe90OtDv9wvzynXR2bQycF3HNX75N2wb3uZWA43LeW91AGtHSdPfSCfqerggg7ezFdKcrxnpXPVq7Vd8d24ovdvCVR83vV4Poii9LojLHNox6gAAd+/24R/8g3eg349f74SFtd2w+Btg3RlL36W/83fFZwDNwelygup52I4+1vLNf1toou9t/cTanXxDA9ORxyx+K5Y7D5qwZ14/ydq3NHzR2Ypp2HbL5k7Z9GeyFp6GpeFWq/X363/4rbjLdrXKHcn4mzqCcWdseodsGgbzW60wXkprrxfD0VEX3n//Ev7qr17VooO69F2f/mXRm7U8yy7IqdNJo8k3Lpq4fZPGq7Ij9qrz+V2HRQYtewLdpiH1vdDxZ/1ukSFDUNZ+4XLg8t911kVT0HRzREg93fCO6ripRxsKzthtVNh1cxaF1qElPBqaaFjcjWldseEyKErhqSJHlW0Xg8NjkLVjeTX6QmnbBUh04ZG09Hi02WwGFxcXMJ1OMwMe/ud932Wko+ATpc/gaBGAtTI1iVCjT5158ndljW2WOrM6K/GZH1fpa78Q53KZcD64JltLPYb2uzr7i4t2K2/W0g05pgYgPSb+8vJSPWrQZ3y2QKtviReFxNfosrznqNIfLHFpm/vmGQvNdPyFlrFsX66Db1OHxSZ5v8VB7ZMduMOBf5PysfZLXzqu9DSDkhZf4t8Iei9oFbj62q7LWSGQ5lJ+zKd1vsG4GH+5XGYyXBzH8M4778BqtYKnT58W5mvJ4WflLVY5BI+9v0qOLyu0/qjVSxm+HerYrAu+vkfzWq1W2WlE9Js2hsvOJ77wUjv4ZBLsx1elX/I5pSzdVfuKZb7Ccd9qteDo6Aja7TaMRiOYzWZweXkJrVYLOp1OYd6I4wi+9rXbcHjYgThuwe3bPej14mxHbBQV74WVdsSm9MDaM6UzfwZwO0PT77x4ND2eVvF5PU/9nT8/Hp+jbvXUnp6uW+hp0A+SrivvmoVKu2WLz+iIBfXeWPwWQauV72alYVInKnecwlrc1SqNl+6ETX+jo1ofxujQxR20rdd0JHD3bg++/OUj+PTTGbx6Nc3Kk9dfeWeEJLuGAOPhqRyUNo1XlIE0l1jtEWXB66TsPOay72zLIXBV5sGyuC6OFq2PuGRy2u+q2BAwb8s4ttj3pbFk9RVoCLEdhozlsrZDVxpN67XXfUxT1C3X3kBG6WOKNwmLwXwbjqRQRZYi1NBPGTUaUPG4NEu+IQIlGp9ovr5JClfi0mMoQ8DjuBi/y1C7zYFPnbFII+58WywWhaOgAdJ2pO1nrTM0/nFBfNMTEkddBrCmUZWWEMNXGSXJlz41yJSBNE40Z5xLoZTeW/ILFdaahs/wWzZNykOl/LgzZjKZwGw2M90dyevPxy+580oKb+0DFv7OeZLmVKqjrn1zm/TdMleEzO+83nyLpaTxV5Zf+8pfF7/j+bmUT1c/8hnzfXloxn7JQBVFUaHvufo0T9s1xlzp8R15Wtl96bp2XbrKwvOkz9vmtRZYjZa+vqLxNWve+D+OY1gul5lzrNPpwDe+8Q1otVrw9OlTWCwW0Ol0CvlSmqSd2bxvWA0dAJDJklehLTVYeaurD2hzmC9syDeefhVHnSQH4X+qZ6GxnV5hQGUFia4QaLxN4lHSvE1p0ep9G/o4pa8KQtu6jr5B/0tp0rpG+fD4+Bh6vR60220YDofZMea8r8RxBL/92/fgrbf2odtN74SN4xZEEWRHE0dR6oQFoP8B0HGV/iGdOY20qtPf0rvsCXjTFMMWd97id+kdzW89HVteHFq34WWwIopcDkEJ1sASDVJcHo6HiYT3eX0W+7MeVnPKguqEpd/y92mfxfkwd9Ti8cT4n+6SRedrGu91Stn/PP28DwMAtCA95rkFq1UCSbJ67dQFuH+/D8fHXfjBD87g5GSmztOhPEbSFXw8U+LTcr916w4+JxGnh9qnKB+xzj1VeL8mI4XE12go23aW/KR8bmDXa7V+jmOuDt3Fl79Pj+a0anqZJW/+zDdb8bAWmyHXe8vIZFp/rsLvdgUhNF1l3eoGm0fIWNP61pVwxgJcHUNSXeDMdLlcZiv1tTAIi+HBxeAvLy/hvffegzt37sDdu3cLxiTMfzAYwOc//3m4vLyEjz/+WKVfurDdJxxq4Sztv+1+gmVeLBbw4sWLAl1JksDBwQG02204ODiAxWIBl5eXACAfW2gxTNdN+y5OonWjbP+QjCV1to2k+LjGhORk07Dtdi3rGNAUxqbo2ibvSJLEZGTXFHKf40rrs/yb5mS0Ao2FfK7CXRu9Xi9zblQFrwsfD3N9L2vY5nH5mNwU/+aog89ViVt2Lg6Zh3zGJ94P6XvqhNDodDnVLbRYgDQiHYPBILsbdD6fw3g8zsJhPm+CLOxyQAMUjYZNj61OpwOtVgsmkwm0Wi149OgR9Pt9+OpXvwpnZ2fw/PlzWK1Wa4vryvSbJEmyu2P7/X4hndksvc/uTWj/6wRpruXf+fyMsgDnQa75WTMoav2lDgMn5rOtu4yrOkG3LRsDuNuB1q/vtATUtbE/ff3rd+Ezn9mDe/cG0O22Xh9LzO+F5c5YAM0JqzlEi45Od7m0uPQ5f+d3wOZZ2OngZNE0XOFckMLSd/5u5svMlYDP8ZqGidacrMW4eCzxeprcqSq9y48HztOixxAXaeDh0u9JFoYfJZz/zylId7bmYQHWnbKYFv7m39ApC9DK+v7bb+/B/n4b5vMVzOcr+OCDIYxGi9dxE/G/j5fyRfQSJFkAHTU8Ht4ZLfFfn+wh2TJ4nG3b0W5wAwC/7BSShut73bYgyalsoaUsKK+4wQ1ucLWwE87YXVKKNgVfWbmwhEqWdOyaJT1JyNMcpLibs9PpwJ07d8T8ut0uPHz4ENrtNnzyySdq/toxiDxNyekUshpol4A7Xi8uLta+oaG13+/DfD6H0WhkNtpRuBQA66ou6b0vvivNqmHqQpUVYWVWT7kcAj5nqi8tXx/X2i2kHLvKd7c1tut01rnS0XiixXDqc1SEpMu/VykndW7xuQrv0UVHU5lxaoHFmS3xP58hosyc7YM0vqvIQy4afOnSflDnwpyy5QjlxS4ZBPulr4yuOpPGkYvGEPkE6YmiCDqdDnQ6nWyHnMWI96ZBcqLXUT9S20ZRlPGt6XQKrVYLbt26BYeHh/DWW29Bp9OBTz/9tEAP729Smq6yoazf6/UAADJH72KxKPDOXZ27rQhxVocuvNkVSMZ7aTEILScd93SHEi+v7z7sUDnQMoZcNFw1hNC87fLRvqB9T8OkzqYoiuCLXzyCr3zlGNrt6PWOWAyjHUlclAPxHT6n/4H8lx2gNucnTb/olLXnZXPAyvmn8bUwvvdCSPfXyLrATMs3v4f1dUgxLLY9eWP6ln7PnaXF/KO1sOvv5OdinokQVv5d7Eu4MxZe75iNXjtQ6bdkrb/gUcbop1ytcgcurcu0zABR1AKAFdy7l+6QHY8XMJks4dmzCUwmy9d5+u1TLhk7RLegciGfI+gJefTZx/tdeqDFbtGE7GF1aFtRJp0ytp+yeb1JKOPgD7FnW+2PIeMVw1dpW+6MDUXVMRdi9yz7vSrK2Fl88UPTCMEm9A3rooAqNvsb1Is6xqXXGburDq/rDhSMfKvdQoy+FHT1LABkO1jpyv7RaFTY3QmQGjaPj4+zVXkc8/kclstlZnCX8i5rWJSEzG30TcuYQKPqcrksOL0vLi5gOBxmz7QepZ0VN0LfboK2jWQIq1tRoXndTLzbQVNzodZ/+HGnfEdEiGJDDcA8vuTYoGGs/Y0r1C4FezAYQLfbheFwWOqodg2bdFLQcklzHVfGtLrcNRmrTmesNIdxhygPF6JE0nh8ZxavU5fTwCejaO3GaeCQjkjmcfm3k5MTaLVaMBgMnPn7cB2VtdByYP3T+i7jWOc0XF5emseI1q8tSvZ0OjXFuQ5wtQl1UMZxDHt7e9kYnc/nhSN9tXSvGixO906nA1EUZXMo7dv4X9qxynkWXQAAUHTIufKn8fGkiziObQW8QQbNIc/bkF+Bs1wus+stkiSBz352H373dx9CHKcO10ePBtnRxOs7YqnD1XYcMXeAUqcmZU0Sm7Kmq+Xlzl93vmIcN21rb9Sw5WFLLIpyh+y6A7SYXjGsFr5Y9uJYLjpmMb20/xXTxHfFNLhjN6+3NEzRuUt3wGJ6PByGQadpq5V+T3e/0ntipWOLgdC4ft8s9i8kP42D18Ikr3ffpvngTvFOpwW/9mu34PJyDj/84RnMZm49TLK1SbqXy2bA+S8AZDa1breb2eoof8AT2SiP4HA5L6jTtyws84QrfaqLclntBlcPoW3XpB1tk7YzVx+XxraGUHpDdQz63XXiBs+jDI+4zrpLHQjtn8jz6zpl7gbbhdcZqxmuds0JtkkjLKWH5u2iyUeXT6CT3vuMpiHvpTLgzs0oylfd4a5PGh7v1MJyLpfLxhTyTQtmUp+zrsQCgLVjpebzeeFbt9st1XfLrgiyTNZXxWlghaV+qTKiOQY0ZxO+s+SjhQmpW9o+VdrJpbBtWwGyGMnLjgGehjV803OhREtT483XvzUHWghdWt9MkgTiOIY4jmE8HjsFybrLX6VvW+dN/k0yspTJty4FKMSJpJXZIs9wZ6UrnnVO1fqh5tR19XMKGtZVZ5ITg5fRlQ/PUyrDbJbeVTYYDLyGKytCxqtWhrrHYhXeKdW3Fo7+pn98rtcMQZJsvlgsYD6fF9q/DF+R6oC+4wsIdln+qtqePB1tnAKkJ/Pgsa2oc0jGJNe4t/Sdpg3TLnDeJYXHxZzUAO+Tc2na/LfEk1zzD12EhEdr7wqsOjXHtmRfX1/l7TCbzWC1Wr3mQyvY3+/A3bs9+Oxn96HdTo8kRqds+sePIF53xFJnWt4HoJBv/pxRJ7yjz0VnIL6jcWx5uZ2wrrzlb4U3yntXnHpBm5zWLf3Gd9cmSZEu3NmKDlT6PU+juIs0D5O/x3dJgvWbiO9cZSmGoU7YPC+kBwo7aKmjN8ni5sceJ4Vv3AlM32N6UZQuQEBnK0A6Hlar3Omaj7m8QtvtdEHM7dtd6PVaMBjEkCQJzOfyvO2yuUl6Ff3Owb+j8T1J0oUz3OnKZQYtLYk2GqYs3wyBliefw8o4iLR5uy57gYuGqwxLHTYJX7/ztZ9LRnbZ7lw6nBbHlY/VduUrr09nrQpus3Tp53xcbqN/WOBq+5A4PljtJ644ZeuP9nP0L2h99CpjV/uYC1XsW6WOKb5qFXSVwTskP5JEgkUoQ0bMw3Q6nez3eDyG8XgMx8fHsL+/n6V5enpayOPx48dweXkJJycnKk0hd68hfXEcr8Vxla0JWPu6xjjoUXO+tOM4zpirtKNGK3MT49Fl+G4Ku8J8NQOUZNjF73TxAY+jKQbUwE/DWo14GJfvZrgq0ATkq1SOpsaexkt4fylDi09wk/gt5cVWHs55WBRF2S4O3BlbF7S6cDmTLI4mPtYsDiAE8nPqtHHRX0aRKAvJ2UP5EdKj3VFn4VM8Lw4fv+eGq9yImMs/2m5xdNAArO9apuXk5fYZW3g4SpOlDqyOkjiOs7uVtbCWfhjSTptGHbyT8iPf+NHm2ypAZwje6yvtzsYdjtiWLt6kGWWvwpxYhkY+jrT06NzX6XTgwYMH0G63IY5jePHiBUyn00b6etk+IsWj/a+Oo8ejKIKDgwMAAHj58uVanjxtyuulsJKsS2VLpBvL0Ov1siPVkySBk5OTjellVcENkfgOsWs8kzonkJ88e/YMAFKbwGc+swf/z//zJTg87EC/3xacsBGgAyotO/2f/wYoOjej146r/BtSpB1PnH6joOnScDQfOV8uA+jveHwpf4luOYz0rXn+W7yvdZ2G9JtGR+INR9NPxzNNu+iIxHTyODQ97rRcd2Kux3PvjKW/sY3wjtiU32DcfOfs+l/ulF2tcudz8tqJjLtk87Jhn1y9Hhfp3bHLZQLpztiU5vS5DZ1OC37rt+7C6ekM/vf/PoHl0m94dc0f2lyvhev1etDr9WA0GgEAFE5eqzqPoB2B2wQ1+1tTKMt3XfPeDWzYlTqUbAyWudk11lxj0NXneJ2EOPZC7TQhfV+SHaV8qHzty8tqdwxFGbtLk9glOzOFJDvjglNEu91W2/S64TqVz9LnduLOWITFYHUV4TMYYRiEtRPyerLUW0jdovK9WCxgNptltC2Xy2yVXhRF0O12IY7jwmRFDQ4I12TmclppYXfJeeMSAnz0UaOw1bhrQRlnDR2D1vFYF72WNMrkxZ0oljHA28HXb7mBXkrPRZ+UpyWuFi5EsHKlvy0DFa2T0HmB8xmprFI/d6W3CXBaLA6iKulbv3ODuWTEtM5F1BgtHafVRF+3QKK/rBEe/4f24TLlKMPbXAgpM3Uu0LjcoMNp1cYmTUNKU2pzrR9wWUT7JoH38VAFnI8XazyJDjSSaYq9L10LHVdd3pbmYA5tfFjGOeVZ+IwnxkwmE5jP56JBtO5FUlYjbxVsylChzclWuQVPVqDXoUiQxnEVvq6l70Io76d6gJY/thMukqLvJKNqKN+wjCm8Ax6dsbugh1lg0cl2GUj7fD6HOI7g9u0O3LvXgwcP+tDp8N2w2i7Y9WOJMW18jF47IYvPLmdoGp5/k9Lx52PfBcvDr9Nmd8DyMkioq+usD0lOZ9E5S7/he3yHR/RCtvM0dzjm4dNdpTRu/lveLYs7UWlaIN4Nm9NL49EwOf9dL3eed0TSwd90ty/Pm9KDtOa7Z/NdtEDe5eXH+2fxO95Li8Bds+nRyC04POzAapXA0VEHJpMljMfyYrm0DsOdMC7ZDfmtS5bhcaS8LPYJKX7IXMfTqHPOrQtlZOky6dSlm11HSGOkar+xoGy6mlxmGdsYrmqZfPIdH+OusW2Vt7ktypp+CKrYdq1hrfHq1Jct4V36BaWTX11isU/Ugask328D1jZ21WFpZ+xN42wGUh1rA5Aa7zT4Bi+dXHBVxnA4LNxzCgDZ6nTtOGI8ssp1d6yWN+bvirMJhbqOPk4nMSktdGzTNnMZPzBNmnaSJAUhfRvYFD8ok0cVwcuaDu5YL3M8N23XTQmjPkgKncVYWhaagMvHDb0nZ1fQpGEcEWKw1oAOUOyjrrmA13vojhfJUEAFSTyaeBttGVKH1rC0LtFxg7vmut0utNvt7F63umCdT11lqMuZEJqexYChyQO0XLQva+BxXOWhczV1wFEaXDIZD8P/W9t/tVrBxcUFAKRHsvL75OvkN03y9U1Bcx65nLMhZcZ7SbENfvKTn0Cn04FXr17BaDQS54Berwftdju721GjIwQuWbIO1CHv1mlQoTwVsVqtYDqdwmKxyO7JwzB1y051jzPKVzhPw+8oD6KsI+2ipdfClKVFog3poXQBwJp+gvN5u93OTlO6avYAzZmxLWjyFu03tI2iKILj4x78v//vF+DoqAv9fhtarQjiOL8X1uKMzfMo0pE/A/ico/lz8TdNaz1d+k3Og8eh9Mjv3TRpdGvhQr6HIookh2whhCMM181yh6sUjn6naWq7ZbmzNY+TZO/WaVm/H7ZIQ3H3q/Qtd6oi/4leO0wx/fTOWKSH3iOLztY0j7yMmE76Gxz/80VveZ9Md8sCRBDHabna7T5885v34OOPx/C9751mi0o1Hpq3kT5vWxducd0C08dNE9pJMTwN13eOJvk6raerNn/coBqk+Xcbc3AZm13denzdfV/iNVSfpd+sujNNOwQhtpamULW96mxvi22N+wQkrFarbJNc0/zzhjdXh68OSztjt9U41KgmIdTotWlYjKIWRkmVeYnp1gmJIS+XSxiPxxnDQKZADe4htLn6kzVO3W2/qcnBZzTX+gMNLwn/0rOPwb8JqOLQtSxkcIXX2lczJlvysNIXCqnf+fiulQZfGTUe4lMurXk2VU9VodHF+4dPofb1U9kYFcZPuWHQB25QXywWa3zLWpeh4Tmq8gCLUw/j0LBVx6k2n/L6cNEkpaOBG4BdaVYFraMQWi1KvOYc9UFysFaB1QmYJAnM5/Ps9zbk2W3J0D7eJPVJrY1CeL5lbsf0Tk9PIY5jGA6HMJ/PC9d7YHsNBoPs3l88ytjVnzTZwGXE3TWUpZPLw9qchrvELy8vs92x0+k0q3NNBnO1rUWmqQKfTM/DdTqd7Ds9lUjqO1Zjv0aXVY/mOkoURZlDYNsLQa1oisay8ievf1c/ofX/8GEf9vba0GoBHB114eioC4NBnDlhowheO2Fdu2GLzkv59zrdtAr19wDAHKt5v5W/rz8X49Bwcn4S75fr0hXG/b7+/pPmw3VEnRb8lpeluNO1GAYAnZOQHROcf0uIg5O/p+ljmum34k5ZDJs7YIvPaVyeR0TKHGVlyNuXl4mWlaZV3AG7vhu3mCbm22pRZ22+6za9QzYCaiJBOlotdMi2AGAFg0Ebjo468PBhHy4u5nBxMSNx9HlcCqPpMpJ8wONR/kxPGqJypkt+tzhvN6VjNS1vhqR/Feaz6wpf3Vt1KAqrfmgJWyZ9a96uMGWdopptWHtH05by1PItW2912C53abxK5dHsGVa9xCLb76rP6wa2/rlTxxRfV+BAKmNUc8XRVk/UMSh9acznc3jx4sXae7wn7wZFaIxZeqawOkikHTwWmnZpErsOwEUS1t3giDIC5nVFVUfbVQU3KNN5A79L762gfNnn7Gqi7mme8/k8M+jyMHXmzevP5wCx5q3VmWaIwUVKTTgvy4wXSz3zMPS4XImWUOVQSwf/W4zVdMxoc6N2v6yUL4Lfm2VxyLraA9OgtPj6wmQyyeinTrk3bZ7gDkludKzKL1yyGU8bV9H/6le/ysK22204ODiA5XIJs9kMFosFLJdLuHfvHty9exeeP38Ow+EQRqNR8F2hfHHjdYQ2rqWxH8cxLBYL+OSTT7LvVA9yGZy2XY+asxj7w2KxgFarBQcHB9DpdKDdbsN4PIZPP/1UjYu7guuawzXexXlgkiQwnU5hNpvBfD7P5oZt1/GuIorSU6KSJFF3yQP49bhWC+Bb33oAX/jCIfR6MbRaEXS7cXYvbDrH5DtjozUnLHWK2pywlAzNAZs/23bc0rCuPHm4Yr7ae7n+ZHrztFxhm4UvM9d8L8WVwkeO75ZvifguKjhgaTgeBtt1/S5ZIDthMS46V3ma9H3Kl3CXfnFHLN4PC0Adr8X7ZvEb/Z+PE94HcYdsK7t/+cGDAdy61YWf/vQcfvzjfOGcBmoD5PIfPx2LxsE/voAVoTlbfHMCP20Ff9OFZZuCTx+9wZsBS9tbF7dhWEnv42PMklfT/ZLrdj5bhRVl/A5XFU3JoFKaljrVFsD47Ai8f16VBY83KI+ddMbWsVJik/Ap+3yVmq9cmkJM08N3fHWcb6WLlJ4FmlOQ5ms1WIYwsavSB6oAFXRqtJeYr7TyMWSsSIIJplHnaiekz0fLtqHVXZVVd3wsSHlKq1F9/MH1XqK5LkHOihAhyKUkSm3hSrvucm1S4JHayOUYwDiSo8qaF587fDTR95R/SLRLCo7PcEB5D5/jpLAc2zK0S/MdvuNtSO+atKJqeSTZwSp7SE5Enm6IgmfNnxv7ffKEJPdYFsFospQrnA++/l5mzGJZXAvuqo6JXXGgWOcxV1yESwbmPEUqv6XN0LGC13GgswUdaCjP0T9fmaXxQfv1LshMdcEit1r1JEtYnu8m4JLPXfoUtvX5+Xm2aEmLP51OxfR4/pwOaa6y6mY0fToGkPZNI0TX4HM1visztpow1Lp4zpMn+/Dw4R7cu9eHXi+GTqf1+ihieK07ohM2d4Lm/9cdo/h+3Slqv6+VxsHfmBcNW8w7z4N+L4YvplnMV3fCSvHWac3DaOHkOM2Adz2eX37cLwDd+YnxaPgkkeYV+g0AXu+WxbTy92leUVSMi2mm/bJAaZZOTottlyxNA9gdsXnaxXtk9ff0e7FO1vtvHh6f052yxR3E2F+RnWEd4f/0DtkIkqQFd+/24POfP4QXLybZDlnLvCbJ1TwclR/QESsdR+xLR8LBwQHs7e1lxx6fnp5mVzGgDcrCF+u2NfhsmJpdtIn060SIre5Ng2sslLHHId+x2ji2ZUewwiU/8nLSfsZtD9qCfC1trndI9ppd6s9VxhjtAz59q0qZXX0M8+Y6I1/AF0XrduQbbA8WG5UrHMCOOmPrQFkFqymECBBWA1mS5E68MrSE1o9L0UaBzpKva6JEVGV2u9T2HJLBfrFYZLuKkSHziVNbUYOM2dJvrMLJrtdhk6hiZOE7X1wGVu1Zg2XcNtVuIenWQQPlD6vVqiCghBoM+e9dFbglcJqtBsQ6FWRqIEQeT3dsuQy6Wv/Hd3zRCX7T2rpq3yrrfJLmb60/8XqR7jm2lkNTfELKUNV4EQpJGbbSG2oQwXkvRGZCaH24iToKSRPrTrpHbJNzMu2jTfNMNPy5dgyXLTsvh0/2pPlpdd/r9QAACotTOp0O9Ho9WC6X2a5mF02Ur7rKfJXmqxsU4eMrUvvGcQzL5RJevXoFAOmd0dq8SvuZxst8PLWsQxbHETqMr3I/bZL20LrRwn7lK7fgt3/7HnQ6LYjj1utjiYt3xFJHUqpHAlDHJ3V6ag7S/LlIDycL49Bved7FZ54H/V6MX6TD/W69vmQa1+nkcDePO25ZUOefK0zxe8Te5w7VdRqLcxd+y+Pid2m8R2vx+LvcQSk5WGm6RecvFByw+TP9BgDZblfucE3f8/D0P2RHEdP6wHd4B2x+xHHxe1YKNhZWK4A4pmVO5bPHj9MFEn/5l58WjiuWwPUbDv5utVplOtJiscicpdoCzxBZ8fj4GN5+++0s3el0CvP5PLNhtNvtgs4nYds8/022U111hOjAFschBY4z1/igYV1p1QWrHCDZyTWbpPSN6hbUiWfhDZItw+LArQOSntZkXhJQ75bayuL89LWvZitCSKedYjta+vINri6urTN2F0GNbD6HD2UGVKGWJhjLZCINZJ9hir93GeIp09buoQhxpljCXTVDFa0rqXx4DA2tX83hIRktfU4B33vtnRW8n0o0URq2LUT7BBLX2PCNNeqUpWWl479M+V1tR9/7wpVBSJu5BL8yjhMpbRctZXgkTT+k3izHoFqgCb5aXYY6aULC8DbC391ud03Ip3GpEwnT4vMdTVtaYKLxR8npFiqg1jHmQhQq5AUarXWPT4RPvrCkJSl5tDxSuDLl8fGDOupNUvKkRR4h6fJ+wed3mrdv3IaOZQ4p/Tr6VhPyFaULeQW9H1dShC19TAujjVsuY2m7/jmsdYLlQAUb40mLGqU2w36DxyBPp9PM+XaV5F4Jrr7JjTIA8hzLx62vv5fh49sCHQOSrM/Hu8arQ3kzrUsqv9JvljQoLbuIJvqAa/4N4Rkc77xzAF/5yi343OcOodNpQbuNC3aj18cTQ/YMQJ2ydPxwp2f4na05jWn4YlieZkTer6fP09ZoAMUJK9HAw2jftXc8Lx9CwkrDhpZBDrvuqMVvtIxJweko3yGb9yvORyhfBOB3roLDKQvK0cXFd9ozD1/8lrx2whbLT+PwtPi7FOi4TXeypmGo0zUdp1Q/z/PA+2OThIZP6zVJWqSuVgDQgidP9uHwsAO//OUFDIf5ccLaJgZpnnMBd8ZSfYLb1hCSzMn1Np++ajmNo6oNri4Zddu2JAuuAo1NQrNB83ch8fn3svaAMjYlC038ncUuaoEWjuqiWllQH3EtfOW6Cz3SnOu7dUDT+0Liu6DZKSw2RnSE+tra14cke5oUV+LLbzrvuIqw9AOKRp2xZSZqLmDgOykcDbMLsNAklc3HWJuG1XjnU+w1YweW0WIYKGNILBOnqhBZFVqfxgkvRCjR2gLrXBJWLe1hySeU1l0crxQh9GnGePwtrXDCeFEUqXdH+ZQLC41avW/KUFbH+GqCx0t0SU4Uq4KHAiuAW7m11Ac3fErhqaGUx9X6c6hBVgqL+XU6nUwwxz5urSdMkxt36VhxOWF8tPoUHDpO+TxsSVOjzTJvhjrqQ8aPRV6i37X3vnJgW3Mlro7xqfVd15Hu1nTo+NbmQytoWUPuf6XKHOUZGt2u/ll2jGj5bFOWloyErntS+ZjTeCT9z/OjcBlKfe9C5geaT4i8irwRjxMcj8ciT7pKyro2H2k8T1qciHMl8ghXf2iiX1etd+z3PnnEZ5zRHPuSAVBCiM4KYF+wsAtwyVDS7zpRV/20WhE8frwHv/M796HdxmOJ878owvYG9XdOU+4AzH/TMQXkf/Fd8bfsuOXp53ny9H3PxTSksC7a+DfpmZdD/FpjF/elRbshL0v6PWHf8jjFd1imJAuD39Pw+Xf+LYrQGVnc+ZrTkpBwVJ4qxsdji+kzKV2hLPQ7p53GeU0lK3NEwuJv/h/LLMkC9Fuedzpn53SgUxbrKUny44vjOD2qGGAFDx8O4PbtLjx/PobxeAnItq26t0++kE6f0+YPLm9iGM6/XToBOmF8aFr28PFSrlNqYcqmXxVXSTZrAtY20U4qAljX+0J1Yx89oTpQFR2S01DW/q+Vw6XjIi+w2KwwrHRcuY82q64k8aGmbf9aPlRvpN98+r1VdrY8czoseNP5yy6gTD/kbd+oM7bMJHcVlLw6YRE0rHAp6BYDLTd+agw9dPBz5qaFsbQ9NzSUxbb7mWsyR+aPxxYDFFczzWazgiEK06Npu/KjE/a262EXQY32HFbBkhrRuHHZagBzGY12vd20/lhWcKD9VXLSSPmX4VMhaaADweU8oGnVAT6OqRAg9dmydY87VjFOv9+HbrcLt27dgul0Cs+fP8/S5oJ9qCNx08Ik9iGrMwQgb2PfXLZNwVgz+qDyxR0XVrTbbYjjGOI4zk5voPk02feldqL8mZeZKnfYVtoc6WpLi3Bt+YZHzKFCO5lMMpok+kPGzlUFLd98Pod+vw9f/vKXYTabwcuXL2EymcB4PF47wlyCy0ggzaFYvxLPDjHI4BjAsNPpNFuggndonpycwHw+h8vLy+xuT2nximtuX61WMBgM4K233oKPP/4YTk5OoN1umw2luwjaLj6jES78oactWGWhbRspJDqlO62pnNhqtWA4HJZuW1dduAzw0rhJkvVTXHg6lIdZ5sdNwjWOQ42vVYE8P6Ru3nprD37/9x/CvXv910cTUydsfjxx2gZ096vsnAWvkzQNQ99p7/P/+XvMS0+fhl2nh4ZZp0Gjy0Uzhex49TV/8XtdfYXOSX46kkQybgNwB2PCnKf5s2TDyesDHao5inHz37lTlIb1v7M88/iJGC519PLji+lv2SGLRx4nCWROUnmHbJoWdcDyPkqPKwZIHbFR1Mra6WtfO4bz8zn86EenMJ3mfNzCcyT5D52wFnlT47/UoXLv3j346le/Cnt7e7C3twfT6RRmsxm026k5uNvtQqvVEo/G3EU0wcO3oZe+ieDyudUGbAGVt2g83GEemp4lvzr7Ih/LPH2fHsF1nFarlY1xCVw/xmPKrwpCbaSS/idd9xfqu3DpNNYjn98EO8B1hUufdeFaH1NsMahdd1iYCq0nHl5iLNtmFCGG0l1kaBbmLhmXW61WZgREhJSPt6XFWGEBdwpZ6Gt6TLrSt5bbR7vPMas5zSx0aDTReNwxp4XR0ikzRqqOp1BhW+JHVeFKxydYcecnN1Rymn10aOGt9GntLxlfQ8c0d160220YDAaiAdZaNs25pqHuObwOx6CFFl7+bTtp6V8oLegk0HZBcznBNX59sI4h6/jg+Wq0SelradH+rwnedOzEcZwd7z2dTgsLHULrJ3T8WOFz0DQFPCr67t27MJ1O4eLiIjOW+IwN9L2lv9D43CkWWlbu4Ee5DMdIFEUwHo9htVrBdDotyG1W5R0RxzEcHBxkfWhX4eqXkjyL7yU5hhsttLRd/MKn72goIw9Z28U1d6PxbDabrfGskHa38j/pu0abtS53Ud9ywVevPl5vzUPq41pdRRFAtxvD7ds9+PKXbzl2xCJ9xXHFv71ONXtP886f0zDr79bf53QWjyXW0l/PS86Hv9ff6XQVaQx3wPK0reBpursK5f1ZDDUuhqHvsb2SzCm5Hi5/xnpKsu9RRMPx3arFtIph0ZEbtks2Lzc/7jjJ4kNh5yt9Lu6ezcub/y7WreyQRbp42bAu6Q7ZVit1yKbfkkKY/M5alPPSdojjNOG7d3swGLThl7+8hOVyDsvlOg/Wx77MnzW9g88nVO7Uwg0GA3j8+HEhHkA+/+AiuE04Y7cld0r5hdjDLPKHFO9NQpmyW3UgS1iq81rT9NHi0/tcspfWVyz9j5fFIpdxeix8B//z03w0fcynT/vaqIo91CcXW+2FUnv46JL4q6VvaHqPFM9ia7hBOOqyIwOU0xU1XGtn7JsKutK6DtSVTlnDRVPhdxlolFksFtDr9WpjHnW1JUedDK4qNtH+VuMivqM7HUIcDlI8HlcSzJJk/ZjkXUccx4VnqlxiPWAYi1NM4ge+OkdHCV9R6coLdz1hWFxR6LuXAxFCn8bjNCFdckBod3q7jLI8vHR0DY1jFYLxz2VssDplpO9N8yRJMaiidG0KnH/wtqA7N5fLJSyXy8xJgN9oH6jC/zEezbOMk4waolz9RlOuKL/lz774vCxYT51OB3q9Hty6dQuSJIHxeOw1crkU+F3oO1UROj9b+BNXXBG4Epzed1R3HdI5Ch3JcRzD5eUlDIfDLJyLZ2J/de0AvWrw1TUdY5JRmc4LlDfw+QLnWm3u26Uxo829AEVnLEBR1qH/MWySpMd7c3klBK7+SPOR5CIt/i7U9yZoCMkjZD67c6cP//f//QSOj7vQ7cbQakXZrtgogrX/6Zgo/k/py9/RZ/yd/5fe6e+LaVZ1wtp2x1KaaLUXm2Dd+So1ES+fL3wZhKeDjlUpbvFIYSluFjIBkI7kpXnI32niScD70HfSc/Fb7sDNnbnUCUvfQ8HpCuQ3/5/vhC3uiIVC/03HZwSrVeqQxTrDP/yW3xnbgtRZiw7NfM75+tfvwNnZHL73vRNYLGRZ1CeT0jAuSHOfxp+GwyF88MEHmVyP8wie2oJzylU9eaMphMgT18kWuSuwzreom2rh2+12oV3K9HNuY3DR5rKTWMKFpiuB281cNpJOp5O9Wy6XMJ/PRX1kW3Key1ZUB03dbhfa7bbYL+jJYNY8Nfn8hr9uB7ugn0i4Es5YOrFxIWMXFe6qNEkTuYv5l2XiVsO/RlPZfFzODR7H6iDQ4uxi//CBGpy0y8MR3CilAQ19Wr1a2tXXB6QJ3tKernR8tITEKRM2FFrfDumz1rgaf9AUMZ9TcRdAaaROGoTFmC71DZ9R2MUzaHyq7FIBlzqnqHHZ4qTjtPrKE4IqzgdpPGM5+/0+LBaLTDBt4ljFMrCMA5qvZCS18hZt/PniWtukLscRlZu444KD9ld6NLOkhPDwND8ahr/30VomjCsv3xiU6hnjWOZLyQBG6zyOY+h0OtkcLI0ViQdJNFbl3yFpNG1QwjLhrvvlcpkdwYv5V+FdUl/3ydZlge1N2xYdwHTc8fqX5jtOq6sednU+p/UvHf1FQceaxZgsxdfSCU2rLKR+JeVJaXG1qaTj8XJgOasa9apA462boKHJdnW1ER+vVWmIoggODtrQ6aT84d69Pjx+vAeDQfx6J2zuMEr7Rf4fHZD5M6ZZdDJhWCF38r34nqfHy1rM07fzVne6FvOR3sl0SvGkb1I6vrAS6uhqrmFB0y+GW78HlsfBd1jG9DnJ3tHvdKdsMR46J+WdskWHaP7OskuW10GRpvV7ZCG7t7b4275DNq87/o2XmZcxioo7YQFSB+5qhf04Ic/UyRu9DhtBu92Co6MuAAAcHLRhMlnCdJovzHXZCHw6ixbPBwy3Wq1gMplkjpblcpkdhezj3WVsM1b40m5yDg+t2xA9fRM2yE3IOBJC662K3dqSlyQrS3JTGfsyxg210fhkQhd84S19i8spkszIdQ0atqqz2kpn03C1OdUV+a5gjKPZinyyf5U+z2msW2+97tgWXywDkzN2lwq0K3RsClhe14pqywSBTMNy1yJAcaBL9xxVRRlDLYaTGPum+oU0FkLHB58McSKwghoYXcJzFSFg09glHgNgE24s8TXBx5KGFBff+3ZEWJwtuwJaV6ggUgcGBdZJ02XgO2O5kX21WsHdu3eh1+sBQLqa8M6dO3B+fg4/+9nPsvue0RmDhnkLrMZ6CT4DsCWuNpegE3Zvbw8ODw/h7OwMnj17BvP53Js2pcVSHk1ZsBgKfH1ccopY6KaQ7iF10bMt3obKFNY7LiCg9+ZoRuVut5vt8OPH42O6cRxnjrRN8RWLwcincPN0+O48n7IuOUowHepMpGnjGMJ7MH3lcu2M2zao06ts346iCHq9Huzt7cGDBw9gPB7D2dkZLBYLOD09zcLwfsodWrztMExIWWj6ZcqB6VDHo7Q632rM5OWmTmqN/iplqBvIawaDAUynU5hMJmt3WGnzDB1Lu9Tnm4A0N3DZI45jWCwWhb6FcTTdDOuR9qGyepw2f9Gj61F2o+Gbbjvf3LvuoKumt/G4aLirijiO4I/+6DG8/fY+9HoxdDot2NtrQxzjvbDokKVHFMtHFeM7MDhHi89Ije6Edf2W0qV0uPMuPue/tfc6nRTr7b8exv1Nc4rp6WjgDsDXb9WwGj3r39Z3zebPEXmW8qIJ8XToXCvFoQ7YorOYhyvSnqjf6XORfyCvS48E5mHSYPieV1yy9g2dp+hMTcsJ2W5YdFZj9pyNFfstynYJRNHq9ZHErdfpJHB83INvfOMePH8+hu997zSrUw4qI2aUJ+6TXiRocwnK+3wOBgA4Pz+Hy8tLWC6Xmc593eddCu6I4ihbF5usx12R+wDs9UX1hzrpT5LEuXtRk8s1mwNPI9ReuylQeqW7cik2oTNItp4m7LwhbaHpHPQKGK2+ptOpaI+05EnT9PlgNIewNb8b5NgGXyzrlyo4Yy2efQy36UJWXVFQNY2qCKkzn5GCCmnSdylPl5He58jV0ilbn5b+VCZtq6E+NE3f4KprLGjpUEM3MmpJUA+pM96fEK5Jusr4cQk6nJ4q6YbAYqyn+YQImRjH4jhw0cPja9+kuDzsrvBxX79Cozb9o/3cpZz6DHAStH6gCZDYFxaLBcRxDHt7e9DtdjPnFX6XFtBoAiqH1ncoH5ba2mWwt7a1VIe4M3I0GkGn08mO/9TaQqPfNRZ4fUg8u4qRV+sbrn4k1bEvHUt/qkq7bxxZymbJE+s7jmO4d+8e9Pt9ODo6gsvLS3j58mV21FlVGSu0b0pzV5m0ePvyfqv1N9d4KiNruMYQP+68DM/W5paycMmVZdJBGcdiEON1xWkJKWPV+vCNwTLjgvet5XIJ4/F4bUGEj5ZtgI8dq6FNmmt98pP1W9l5j6IpWcmlT7jmThfv8clAvr7okjuuIrZJu6+u79zpwa1bXbhzpwdHR13o9VrZscT5+Fk3BufvoPA7BXdUYjztWYtXDE/zxu9aPulP7oi17o7VaeH08G+W7/p7W7wykNJCpx95sxaWdx/8lr/PHaH4jofB+sz5YfFbkmA6ydr7tC75zld0wHL+tL5LltPOwyBdlGZOk1SWvLwRqbf89zryb5gHLQ+vJ6nfFnfMpnWejockG4OtVn5UMd4hOxjEcHDQgbt3ezAaLWA4tC9e1VBWvm+1WrBcLjPn63K5hOl06l0svOtOAI0+Lt9r8kiZOcJiN3oTYLFFa9BkRJ89y/XOApf+aIFVr/D1S5dMp+lBWtrcRkV/h+girjwkWORVq43V955/c73T8uPpxXEM3W63kB+330mLzUN0G67LuMrExwSPs+u8+E2CVU9y9WfElTimGCCMwe8iqkzQ3EABIN9tyGEJQxkvp5d3oFCl3gVL5wzBVe4bPuAdUgDpxNHr9bIdhFGU77yzTrIas79BM3AZ9PE7PksCWRRF4i4Rn4GQ3x1N231b9xVQenGVLq4463Q62bfValW4ixV3BmE9YFxaDk2Y9Rlt6VjQxhEXlgAATk9PodPpwN27d2EwGBTCoKKL6Ha7mSLsg0Vgo8+aY4Lzdp9iIAmEiMViAcvlEj788EPo9Xpw+/ZtmEwmpnJY+ExdvEiao1wCkja2fLSFKpx0Dq7imOE0UdB7lbV5PTR/xP7+Pvydv/N34O2334ZvfOMb8Fd/9Vfwb//tv4UXL17Ay5cvodfrQafTye6X2QakMWqJI/FVabcl/S6NL/5d2oUg5auFQRpQUaQ7z6pg14xFq9UKzs/PC0fmIbAtyjqicSzw3fu7KvNw3t9qtWAymcCvfvUrOD8/L9zhWZdjfVdB5zL6n/8GkNvTcr8p/25RpqsipC9jW3N5jfIYAHDKFS79D+dAqhuEAOPRunXxzl1AmbHfFL/4rd+6B3/jb9yGwaAN7XYL2u2o4IyV7odNmxP/5w5SzRmKTVF0JPneradXfNZ+F9OTn4txaDj6TgrP3/O4/Jv8zh3WHbcaaDdaTzdaCxe9dvrJ72m6tA213bJUz6Tvef7F+Jg2jYfh03B8l2zR2YppFsupOWSlHbTu36kMz9/T/1B412rRRb0JrFbpe3Tmpt9xpyzAapVkYxDrDP94W6R10CJ1kP6/d68P+/tteP/9S/jxj89AAjfYY9ksi2cwvpQmQH7KShzHMJlM4Oc//3kWJo7j7Pt1RKi+RX/vqpxYBWXm+TJxeb+UbL4hdLh0Lmt8SpPLBuayhVghLca32jlcjlhu85JoRT2K8xJcRC8B06eLPkPshNa24f4Mza6loWx7aOh0OnB8fJw9z2azNXl6Pp/DaDQq6GWWHbmudnSF4XgTTgl6kyC1ZSln7C4qWmWNNU1iEzSFDlBtQnQZFV1phTJfKb7GsHz5bII5baI/UYOGb2LCHWqSgcYK62RWpf9a4lZpvzod+CGOlRBwg7vLOdKkw4oqeS4j5rZ4Jx7duVqtoN1uw4MHD9YEzNFoVHDOlhFmy8JS7+12G+7duwftdhtOT0+zsO12G+I4hrOzs8KiCim9kHb1OZjLpivlgQ5L6rzEdOnRida5gNJo5TFSG1jjSnOJa87RHGXaWMkNO3KZqvZFHy2cDl86VrRarexIJ9wZ++jRI3jy5Al88skncHR0BOfn54Ww9PhjjpB6oGUOKZMmZ9B+66JL6l++fKljhCtNqNiOx+NCPFfflRTVMn3JJXO5wjQBrS5x0c3Tp0+zHRuz2UzluUmSHw2qjQvuGNL4LHVENQELf3fRhr8XiwWcn5/DdDoV64X2jW0q7FifaAzqdrvw4MEDODk5gdFolPEI3iYWmrU5rU4da9Pyj28ewv8uOd83D5SR82k/4gsj+Fy3i6hzDtR0Mm3esaZ//34fHj0awIMHfej3Y2i3WxDH0es7YumO2KIjNnrtsEKSaLj8XR6Ghsu/FR1wtHj0PT4XZfFiWjxdqOCI1eiQ3+fxpG/SMwjO3rUQDXdrKX2py9Bw+Q7aohOVh8/f5c5T6XtRviiml4Yr7kjFuEW5mH+j/4vOWxo3p8O3Q5bu1KX0RABsJ+w6bVTG55VbdMTmZc3/w9pOYLoTttg+OAbw6ON0vKbpoPN2uYyg3Y6g243h1q0ufOYz+3B6OoXhsHjShYWnuviMlSejrEqf65AbyswJXNa1yKY+PcgHi35WRYfh8/euocrc7ZPDaDifbOarf0nG0+RGS5/AML4F8ZLOVdb2RtN01Tu3d+F/a36UPq4DAUDmhHU5chG03q0O6yrwjXmpz/lsplJ9Sn2K/ua2IdRT5vO5eCpRaJ+gdjMOSQ/ksvcNdhtVx0OjO2M14/8uK3K7Bp+xkQ5Yy114mgHKZRSi7ziTcxk5LXBN1E3u3tt2P+SMnO9ipGEokiSB2WwmTrghAskNirCMiarplnFG0HR4mq6xIzm90JBdRx+oc/y0221IkvROhn6/D1/4wheylbpI7y9+8Qt4/vx5If+6oPE1CdoKtV6vB5/97Gfhzp07hd21+/v70Ov14K/+6q/g5cuXtdFsBeczocI97z90BTUKjNpcoUFTrqyQymTti5TfVjnSmTodKE2u35uANC/gex/f4MB7m6Mogk6nA5/5zGfgc5/7HLz77rvw/PlzePDgAbx69aoQli84CKHbanyhZbE4B7Rdyda+Z+3LeHcuVdxmsxnM5/NsJa3rBAtL+a8bVqsVjEYj+OEPf1ioQ0nRleY0Dq6oS0q0Nh/X6djjaVrDSqdZzGYz59whyQbbQrvdzhZWDQYD+MIXvgC//OUv4dmzZ9BqtTIe4dNRAIq8TOIBrv5QhwFNQ5O6g8S/eVktczofN1ofoSeNSDuJaX/U2uOqIlRmcKUT6iD4whcO4Q//8DF0u62CI7bKjtj0HZXdiuXMn9N06DstPOZRzK/4vB4nTb+Yn06Hi4b19zntnP715/Uy6mG1MPX383XdTgojfY+y9+tHBBfTSRJKO9/pimlQR1gxHXQAFx2mKQ00Ds+niGgtHM0LhB2ywHYB53Sl39bDyb95HsVvmFbxG33GHbG4ixZpwLpD52te7qhQd/R/ux1BFLUgSQAePBjArVtd+NGPTgvO2E3eQYnyfEa9x+mySZSRX3yyhEXWoL/rkM93pT6bgqVOXXXP7QsStNNAQuiSwuOCYXo0rRY/9D5SWq4yzlTtmX9z6T4crVYL+v1+diQ5Tac4BxRlGMspbtsAlf9D52fX4lwO1OUvLy/XTnspIxf4bDOWsDfYPVhshRY06oyViKgi3FY1NDSlnNcNn+FcK4dmoKC7mrR0XGlKeVapS618TRpQOLZpTNAmQBekOuPtaqk7brwOqec622aXxqDLmCUZsUKFgDoMpJKxx+WMCBVaq9BTJQ2+y6nVasHe3h4AFI/nxh3hGI4f3cnhEspdShW2FToE0PlIHW/oIEbHynQ6zQzMg8EA3n77bZhMJjAej7MViSjY4ZhFZVgSDi3zptZ+lCfgn/WIE6mP8b6FAv3JyUl2dHGIU4v2XW1estBYFw/yKY4+47OmrFmVKSnPTcxNoY7IJMlXiGK94dHhEkLLEGLoQHq0ccOdMvSda2zx/snDU/7gks3waFyqwKES7DpyV+t/aJTARSuu8CFw1bmvLsrk5XNYJEmS9S/f1Ro8Dc24g+XAOtToKKPYS3RVTYPzIW3e0sJtQ67icwW2XbfbhTt37mSLqOhOe65zWPoHjyfVgaTLlO2/Gg1V2ljSnyT+I8Ei5/O6oXXgW+jpyos7Y2n+2z5CTRsvGqS53iKDSemE4v79PnzlK8fwzjv70Om0II5b2W5Y3BGb3juJfa34n+advssdTzRM/o4/A4BnFyqNmz/T/PI0eXo8rE6DFE+nDdNdp3k9vvRde5d/25w9QMprvf/x7/x97hgEYcds8Tnf2ZkoTtmcL607QbW7ZFPeRZ2SUUZLnkb6jpSsEC+ti+Ixx0WnK5D4UeF3kZcmLH06xvF7fr8r/ubfQHDa0j6ZOmGTQr2mf8lrB246jtMjjtNIeHfsahVBpxNBkrTgwYMBtNst+OSTEYzHutPD6jjIaleZQyX5B/l5Wd2wThT7YLT2zRqXwyWT+eRMV96uOWeXbFt1w6UjA4S3XR35Yx5xHMPe3t7atVwIPHXHpbtZ9MOQfkrT9NmgtHcuXReBYVC+pvBdU0Hj0/Rc9Enhq9oyfLq1RlvZPhbHMQwGA+j1eoVFu4vFIrPVSTT6dABfP0C4yhkq095gu3C1rXU+uDJ3xlpRh+GoboQaaaJIN6C70qFll35r8V1GRi7YVjH6+IwOLqHKUu7QeNuGhTZtUPPfmmHKkq6VBs3gWSbNqwbJwKcJYy5jcUh+VccYhdRHtg1JQGm1WtDr9SBJkswZi/yQ7kKU7owN5VGu+lgulwXjMaWXOluQTrz3ttfrwePHj+H8/BxevXoFSZJk98eiwIfpAhSVZInmUOMvFcq1Mkv5+NJEYDvQo0RD06DvLEKtT4lxxQ2hyzrH0HBopOZhXPExjdCxWFa24X2oDA9IktQZO5/PMyej5IwN7a+hNNQVT6sP6mCgipdVhkO+RJ3WSZJkzlhNmfP1HeQ7lA/WCcw/9J5Na7pxHBfSpos4KE/iO82leg+REakBReInXBatMk6oDF1FD9HkLG5IpdiVeR2P6o6idMHR7du3YTAYZN+0eYm2j1R/0n+pjkPGVRkjapV2dfVDa/6WsFq6Lj7o6mv0WTPCYbl2Wd+iqEJnqD5PcfduH771rQfQ6bQKd8QWHbJY38X/Kd3r7+h7/E3LmD8DAPB2Xv+N4aJoPd3i72I4OU+ZBjnfaO0dp1uK9/qJPUth6HurHGkKZoY2bH28AD/T13kUdMzanLI5D8u/FefbYnzXscXg3Q2bO1hpWYth0u8YnqdRpDUi5czjATnKGIiDlTty1++0leqTpkfzy+mjd8mm+mhKa6uVZDTi7mJ0yq5W6e7YTgfg3r0eHBy04exsBuPxuixUB2ibop6Juiu+L2PXq5NGSfby1YVLXquqz/lo4r/x2Ur7VYB1fnP1GYvt2mXrsMpCXBc/OjoqLKCn+vl4PBZPspKeNTolu6uUDu9Dlv5hqXdfvbRarcK9sHyzgys916I6jV4XXSFjQKs3LR/e7i56tDK1Wi04ODiAVqtV2Ogxn8+dOrYkG/vKJtlgrjKPaBK7XjeSbaKMrYDj2jljrwtwEvEddyEZdUMFAl/n552ujDFYuqOC0013kuyKcWmb8NUBbXvNGCK1l2tHrdSf3mSUnRjK1KG17jVhwJrnrrTvcrmE1WpVUBCHwyF897vfhdu3b8OTJ0+yO1e/+tWvwjvvvAM/+tGP4Pz8XDXqArjbzGUItYy3OI4LdANAdifecDiER48ewW/+5m9m4Q8PD2EwGMAf/uEfwvn5OfyP//E/YDQaQbfbhdVqlTmcKc8uo9C5xrClXBpC0rHSGJpWU8JZ2fJwg3oURaUcZE3OdZpMEFKXuDs8SdIdi0+fPoXbt2+rihdXOuosl0+Z5HMhQK6koSyF5XEpftaxQIFHXuPOVZTbrIYhGkZqH+3Y3qZQpwyAdXHr1i24d+9e9u7p06cwGo2yY7CxvqTjw7HN+J07UZQuCEDjQ5IkmSKt9YUQuuuWoy0Ijc/z3Pbcju2IbTkej2E+n2e00e8A/jlBc/Dhe97Ouw7NMKPJH1zO0+piU3AZG7elu23acMMNgXgsN33Habp9uwu/+7sP4N69PnS76Y7YdUfs+o5Y/WjiooMzn7+KNNIwPidoni6VbYrh5N/2/Nff8T6+Hp6+L/6O1r5JzzyP9W/qp9rhyosOG81xweNjHKyv/DkRvq87XvFbHg4zKDpfMW3qyEyIE5S+S/lyMSwIO2Qxn5wm7Q7ZPD2MS7/B2q5YWkM8X/qu+B9pwOd0h2sCdNyk/9M80MkKkLzeEZuWH+sS/6c7YyOI49XrtFvQ68Xkm38elxxXZbCLNjZNbgqVpyQdh5eVyh30j89noXWzK3VZB9y8sty3snT4ZCLuTOThWq0WnJ+fw8XFBUwmEwCAbBGxdNoHh9Uex+kC0HUOqxNH6pNS2ZMkyRa7Yp4PHz6Efr8PURTBZDKBDz/8MNvtyTcZSPJnqHO1rK3KlR+FxA+lXcC++Fx2o5jNZjCZTJyn1Vnzk2zu14lHNIlNy/NVEDpOXFCdsaGGpE2hDkFi14QRCl7XLsGgTDmo066M0Z/nJwkzPlDjmnQvAA+rfZPSvQ6wjD3XhCYpcppyx9N80x2y2phyGQ9DxmFdSpWmbFji4G9LGZsECoBUKJrP5/Dxxx9DFEXwxS9+ETqdDnQ6HRgMBrBcLuGXv/wlnJ+frylSocorH2OWuyQwP766cjwew3g8htPTU1itVvAbv/EbGU3dbhf29/fh8PAQxuMxfOc734HRaCQ6k7V6l4R33pZaOCtc847FEWZNT+MtVsW7ilyiKfzW7zQMnUeroAlZROrH1rql4ej8vFqt4NWrV3BycgLT6RRWqxX0ej3o9XrQ7XYzxbaMPCAhZN53hXONKem3ZZ7UwMck5dGWeVpKA8NXrU9uhLKijrkA+eDx8XH2/OzZM/WYcqm/cl6Pz61WC7rdLqCjT7oj1lWOumWdqm1VRt7btqzGxyrSs1wuYTKZFJyxktGnCh/nRiqLcauuPk3TCjGq4X9aF774FmNQVVnSla+rnXZF79okHZKxTaqrKIqg3Y7g8LALX/nKMQwGMcRxfkdsfjcsdRBA9r/oCCoeG5y+o32qSFv+XEyHfiumIz0X817/ncf5/9l7k11ZkuQw1CIyI4cz3HPnW3N1s0tkN7tFNikBhABBAsEH6D19gP5B0E5/oH/QQlsttJcW2mglUeAgkBDFBocW2VN1163pDmfOOTPeIo5FmFuYuZtHRObJc+sakMhMD3cz88nchnB3jlujT2nX0+p81Hmu16f+vOJVAutQ6XpI+UQ10pLyaHImSXgQF3EkgEFD/hz/uz4gTrtevvhd31la3ZHKd8Ty7wKnVO9cCOwCuPxRPiivRdv4gsRIl9Ln9oi7E9bdgauN5WpnbHX8MThpRUA3gTTF+2eLoG2vl0KW5Te741NYrTZRa6GWV9OdeB4NduUbtdIJtYlms/Ny+vyx61u+MpY2fZNA05vb1tXi46U7Ibk9IOVfLBZwdXVVptGgpUX/t8wFvjuTjx+fnsfLcLtP0v24Hp2maXn1VZqmcHx8DEdHRwBQHM+Mp7MhaLisdjEH2v4xvjhLu4TohoDXg+vg6ONYLpfOnboUeP+G7GmaTn2Lt22rvYXmELM2Nym/052xTQzvbcFdmRRdtVdo0UKQ3hYK8WBZzCTHW8hxtS9jJQbajvEmQRRLGUlJoEfXNMX7TYAYg6Bp3/P56TO2NJ64M6gLvihdi2OuK8C7Sfv9fnk/LN81lSQJDIfDMq+k/ADI4xvbO7RjigZeufzC+UNl5mKxgJcvX8JkMoHLy8vy3tgPP/ww6k0+H2A7WHEh3/TFFzrGaBuEFGkfaEYFxxMbEPLRigXKW+jUibY8WAzLfQQcD3hHLN7D84d/+Ifws5/9DNbrNXz88cfwr//1v4a//Mu/hB/96Efw3//7f4ef/vSncHx8DL1eD66vr8WXrbriDYNuknHFx502DilozhsNqHylPGkyVwoE7Wp9bRv8agP4FvZgMChPQJB2kSNf9IgtTRZhn2Mg9vDwsDy+eT6fw3q9LmWtdlcs/U2PMttH8I1nTOP5bgvo8dzn5+fwF3/xF/Dq1avyGUCck0VySEl2g8+pum99a5EtWjqVOZY1rOnc59cn0GAjzWPRod5EwL5YLpcwHo/h6dOn5VUUdDf4wUEf/p//5z14+HAIBwd96PcTZUesG4jVd8TqO1ITJ1BUlcPn9Js/c/HKO2IpfvrMxV8P1NZpa0FYKp9B+B0OwMqO0VqS59l2ZahLj69vUh7+rC77aZKLg+8orQKj1W/Xge6id3eaVsHOKhhZpVH9i/4v6Fd0E1Zvvps1cfACC6CCs5O23oZV/9EAK8VT4XPnUXGnK+bB44ZRvGJ9C7r03tniaGKkW9wVi21T1L/XS8o2AUgBYHNTtgff/e4JfPDBAfz1X5/CZOIeVxwKUOzDet8WQvanBUJ+RE5PKt+1nfImA/VR4X8LWPxokl7uG/NY5smTJzAcDsuTdnz+kZj+5nqQ5NuImYfW+lt0NVqHo6MjePLkSUljOByaeZL4oLxiH9ATmmIgdPUN6pCSb1rKj8F0DDBjn3M7Sepj9AXi88vLy/JZF9f/dCGT3wS5/hb8IM3vVsHYWMfOLgdZiLddG+nWhUtyPMQ4Bnl6DISch7H0KYSUzFA5X5rmnNKeW+k2Kacpe6FFuA0fofr7nlFnV9t2exMWEauzHiBuLLeRNdxgDuG2yo0mPPDfXQJtz81m4xw5Sd9mpMDv7JTaSnLEY6DIEvTGb5/TkTrnzs7OYDabwWQyKZ+98847TlDYN+8kkPipO1L848RiQHFjoGlA0bpuxKRr8inG4UzXVovDg6dL5XjfaM+t9doW8Dkh8c2f47jP8xxOT08hTVP4m7/5Gzg8PIQHDx7A48eP4dmzZ5BlGaxWq5ohLLWFVX7IjtW6DJb+N5VRmrFvyU+P0Y0dQxreNmPDJ9us7dh2bNLxgDhDclSiqzlkqBzFAKxVnmrjXaLj49WHtwlo8oLWVZNDt62DUR5XqxWcn5/DbDYrecX1PJbPpuuRVO6224jyYFmrJcA5he0tjRlrnaX+8K2L0lzZB+BtEFMn/G0dG/R44sFgAI8ePYKrqyu4uroqddXxOIWTkwG8++4BnJwMyiBsNX8xEJQABnMwHUAPjhZptJ5lqsNjVb7OPy1bx6vjd/NyHHogNsRX+Le2s7fOjy+P/My3vus4YkCeKhS5G/TU+ODP6rLNzVP8RzrSTtcKDwY6NfyYX8JRfct3xrpHGRe0OI0Kr7T7VuaTluFBVs5rvU3d3bFSG9fHM5UxuVM/nDPFb7p7tgra5nmRH1/COD7OoN9P4eCgD+t1DosFHmVct9d2KW+70v8sdLSdjj6Q7CvEJ9nI9HkIn+W5Zt98E8Dapvx5jM4Q0/8AUJ7QJJ1wJp2+aFnnff5Qi24hPbPaklQ2cTy0HfF6nMFgUAZgsQwGF7Ujcrn9b+HL0nY+u93S/0mSwGAwcGQDBQzC5rktqK75vdBfR/9rfkNL/3K9s41c+CbKlbsCXfSLNEdaBWO7cDrs2jDeB4dFDHBhpAkfKjhoGoVtTm6r0OLPqeOWv5kScmJbwbeoamBRBto4lduC5nSJxZEkSe34im/im+4xoM0rSZmKBRoAuSugOfOs4x53XdB7VBeLBbx+/br8fe/ePedtP26MUXr0zbk8z8tdWfhsOBzCdDqF8/NzpwwAlGUkRRXfDOQymO4wf/36NfyP//E/oNfrOTQ//vhjGI1GJc7FYlHWmTqpY8aMRdZK48gq/6wO8CbA34aOlZGhQEqobFe74egxvpQXzqME23Joa4EmgGqNxV2Klp1V0+kUAADG4zFMJhP4b//tv8Hz589hOp3Cq1ev4NWrV3BxcQF5nsN8PoflcunVU2LqwX/zwJ5lbcc89E5XqayPD83A5H3NgyNafaRg2i7BqhP5eIydtyjv0IFQBSVkXYan87ZerVZwfX0N19fXcHR0BIeHhyYecNxLY4nS6MohGdNO1uCQr93eQjzswjay0Kb6t0824x1hOJZRrtPj9yhOTWeleoI03n3t8iY5jHwOfA54JCDuxH/27Bn803/6T+HP/uzP4NNPP4XRaARHR2P4/d9/As+ejeD+/eHNjtiijfGI4iJAw48pxjFQ0KrSePAzFAjV0iqcIfw8T4VH3x3L0yhtmo/iqvNX57/+THP61pIcfJb824AQnSpgSvPimJTxYHrdWe7mwf9Ig94nWz0DACUISuVCktBy8j2yle2gB2QhYodsNQ74scMVXlrGTUeEOXmupRXfaZo7u2RB2BGLeXAX7GZT3yVbyNbqHt88T29wbsrfKG9+8IOHcHm5gL/8y9ewXG5u1f7flY80SYqTUIbDYfliy3w+N9OX1h66flp0XMtdjtJdpBJdjac3Bbgescv1n9OmOg/1H5+entb6dLFY1E5UC4Gme6HdHNKRfLq55EOyzHdq9yDO4+Nj+OCDD2Cz2ZTXX6VpWvqXAKC03ylI9pTGm4Unax4+Zri/ebPZQK/Xg08++QSOjo7g+Pi41jY//vGP4Re/+IVYJ/pNwXcqXRs/DJVVktyy7ra9SzGpt7AdcIKxPkcIT+sC2uBruvhxwdAEx7bBJzR8+Zs6fDge3/OQgyy0QGtjzFLWh5OX3daYRdi28PS1k8QHX1Cs/QEgH+NqAR9f+zantglNxkJojscaRNI8pOn8dwxPIfAZJxbgfKFjcL1ew2KxgOl0CqPRyBmnVBH3tRl3+OOxmfxtXK3d+JziNDjveG8hBoSR3vX1dRlMpkelUPqSUthWjlmDLj5osk76+Jb6aJsQkp+hdRVAr3vT/morH0O8UT60AI/Eo7SW4ssSOD4XiwW8evUKfvzjH8P19TVcXV2VBp90nGVb0NqY10ELONDnPsNJA8v6izh9YylGv+lq/dTkmJYv5GxpytdisYCLiws4Pj6G4XBoxhPqI3S84LcUTOV4qNzlz6Q6tx3P29ZBpfVjl8a9Tzbiixm70pd9Y9vyvCndbUKb9ZeWl56F0vFlMbxLizvG9tWJZK0zzd+0L7Msg+Pj4zJAe3KSwcOHY3j4cAgnJ5mzI7YIuuInYd/VB3mqqoFrNtXx3WesRiB1jSvr6jgofp4nSSq8lEeXF5cfSz6aRvmR0+v1kJ5zXPqzMLQd4pZhhTTcvNg+9aAslqmn6TtlKxoJgLpLtrr/tV6e72Ctnte//QHZqn51+8rXLqH6YF6k5+J3aUp8I18YyC34qf4XOHJwg8v0ztiqz4oxijtm3XmPu2TTNIFeD2A87sFmk8G9exnMZmuYTusBka7XGqufrivg6xja4dRG9+nzGm/cnqG6UMg3ym3wEC3p+b76kXcBFp+xpV1867VFx8BT1FarVe2EIkn/9Nl/kg1Mx2ZMnX22uQaa7S6VTZLECRBjfReLRbl5YLFYOHxLoNnFml9Z4zvG7yG143g8huFwCKPRCIbDYXlFEgDAbDaD6+vr8roTia5l7PnsdB+/ljwhf6s2zkN+xbdwO2C1b3z9ZbVFdnpn7F2EGKfdLsC3UzakFOBz6c0XSx2bOi+tgkV7o82CoytHxT6Cdu8ZQkjh4coBr//h4aFz791sNuuS/TcGQs79LhZQ+lafdO8Fp/cmLNq8HlmWlXcHzmYzmM/nkKZpqXBjOt4ZSOUZvZuathW937Xf7zs7YfHeCQyeSnNF6gdMQ57yPIderwej0QgWiwXM5/NyJ9inn34KL1++hF6vV+7gwvvFkKdQG0kGqwaSQSDVQRpDbRyTPnrbhFiecWdcr9erGXBWoONKetbEMOkCLO0fU09s29lsBv1+H46Pj+Hrr7+G//yf/7NjAFLY1h1MdK5ZIM+ru26avHQUc5+Vr864E7TJDvi2EJIDFLCdaJCT44mlnec5vHjxAr788kv4zne+A0+ePKkFTy3g45u/KU+PcdV4QqOe7tLdJ30/xMc+G+9pmsJqtYLT01MAgHJ9sxitIScGd4rhrhrr2rivQMcg/tfyrddrR1f05aWgObL5M9yh8PDhQ1iv1/DFF18EnZd3AdrqNhL0ej0Yj8eQZRkAAPz2b5/A9773AA4O+pBlKfT7KaRpdXck3hWLvzFAI38DuAFQN4BJA7ZVF3S7I5b+r/JJdOp0pSCsnFbnneehZaVnHI8vn1zGApbMckBRzU2y87x5XtFMkgo3lqH5qzRXjmIet4x7n2yeu/kwkIjpFHc9IBuzQ5bXMXHqhHTxWUGDBjrdZ/w+XCABUxfqvFTBUvqNZYu0NC3yu3fHVsHZNAXYbHJIU1yLsEzBH35o+xe/i52xm01Rh8GgB2mawA9+8ABevVrA3/7tGWw29kDgbUKID74u53lxEgOeFEV3j6FNZqFJ8fNrjKSdk1KghKdJLxtJa2TXtts2+7Ir3E18sF3S5vjpKSDn5+e1067Q9sO83Gdm1a+p7SgFR7kPXrNrJB3WAhQfb8/NZlPb+ZrnOXz99dcwmUxKvVvybWkQ47/39S9Pp+2EPq/lclkeFZwkCXz44Ydw//59cafwF198AT/60Y/EY6eb2ObbmG9t/B4+3fwt7A9sw4YAeMODsV04hW9jQvic5zwfVxS0YB3HLdGUFhoNl5aXB0EkvkNlpPxNHZghAXcbgQMOoSC6BE37iisL3LGFii3F20TxDPX5vkOTPpGEtG++hIIl9ChFyZDwgdRnVmV6H5SA5XIJl5eX5fhbLpcwHA7LFwWs8gCd7jFGXmw7cPmKjuF+v18eV3x+fg6TyQRms1kZBMDAjI8XiYaUjyv6ViNIk7WcvpSX1tXKWyid8xDi0RJEoXk5XmmNtc6dfQuG+JRE+qwJr7Sd1+u1Y0QBVE4ULcjWVLZY5WkMLhwrofVRmlNNeUc53uZY6zZgDYLR9Z/uiOb5OL9aP3F94/r6Gvr9PqzXa/HIrxi+KR/4Njh1qGF9eF/isfU4VvHYL0keNIGuZYHm5NoWvS6gjf5n0aO43npXgMqgLvpNw2NJk+YGb0+uM9Ey+zLuJPmtyXfMI6WHntO2wTtjAQo9bjabwf37ffjudx/Ao0cjGI16N0FY3A1Lg6x87Er3xILzjD6v8khjv/sdsTwf/V+lbTcQW9fTeP00vmQIiw0/vVBZeWhp4+3mqfC4/gzbL6+VSRL+n8tMKX8C4Nklizy7z9vskJXkRp0Hf/2l+12TWptg/XjA1uUJd7i6+ar8SM+lS+lzHal45uYt9KqKDgZ50dXS6yWQ5wkMBj3IMlm2WnTf25DLsYElrZxlTbfUTTp6WNOXQj5VDpa1o4k+v009pkvcWr1jdXifztGEh9VqVeubEF363+pv4OOozVyjtLnfKWSvY571eg2Xl5e1ubNYLGovKXLeNf8Hr5vES5MxxQOs9CX4w8NDGI1G5QttyDv67jA/v1KvK39AyC/UBeyLvvwW2kFT2zuU940Oxt5VkBQCq3OjiTJhHVCa4d7GSclxdQW7oHGb0EYRoGWluwuyLCuf0wUTwN+GPiXmmwJtlAMKkrO+LbTFFZItXcJ8PoevvvoKVqtV7VgSAFmploIGeZ6XO2vH47GTH98UpLh8b7ZpbcePHV4ul+VuCdyF++WXX5bHxVjwS8ohD2z4eJKMTAvEyk06TiVcIcPaIjMs4846trnBI/Fu5ZkbA1S5DxmbbeZiF/MwhjYPrM1ms9pdKIPBAPr9Pszn89qYaMqrbyxa24/Oc/pJkvpOWYobHTr0dAILTc0JhLsv89y94/G2gY9Temwc3rvN88e0PQIG61+/fg2np6eQ5zn0+32TvA3pHEmSOIY6P2WAlz84OICTk5NybXn16hXM53PIsszJu2vdJSZQ6XM27gvQuWd5Y1yzezSHqVWu3IaD2gfW9rDi0vQemsbBJ9NoGZSRXE7sUheMgbZ8WcvSnViLxQJOT0/ho49G8J3vfAzjce9mR2xCdsHS3bBV0AZ31ElrJeYpkvzHA9M8NJ3n1XBiep0uLy/RCQdiMV89zS2v8S4943il56F0zlNXIOOjawtNrwKeTioLnLrpyHc9AMnLU7mAz2l+X0C2KCvfI8sDspQnzC/lRZwcKhpYCXpnLM3Pbb3cSUccPOAKbGetxIOL3z2u2J0jADRIW4iCBDabij7mxXtl8zwp75TFNsN7fHu9BABSGA4L2VHIcCzvvhy/j3LXAtLdq6hja+tVrB2b57noL9BgG215V/unCeyDXoV9zvViXKMlXSdGd6R0ugzGUuAnEIXukEX7dbFYwIsXLzrnCXVU+pI1PT3M0n6cDwy0AlQvsCE8efIEnjx5AgBQzl/qu6PpCLRvfTpsiLd9GMNvYb/gNmIZajBWElpt3orYFnQV/NgVWNsw5IjU8mhlKF7NoRMCFNDaAsUNex+fPI0fM6YJV1+7xDhK92kMa6AFJaxOYRocAKgWL3yGi+t8Pod+vw8HBwcAUDgz8Tk6TKmTnUPIWUp5uCvzVeOvKd9NHNgSPUtbW+nFzoddzRnOF93FhEDvldX4o47gPM/LI4nxbbuDg4Nyh1+Mw1ijR9scjxHs9Xrl3BoMBjCZTGrHtdDghzRvOW06h6X1JEbuxoA2NmP1Am29aJqP8mfBJ+XVeA+1odTWTQwV/synDG57HoaMrTzPIcsyGI/H5TgHqBtL2wQ69nwBB2tAj+LFT4zxbh2frmPU38YhXpsCp01/0936vjphXZIkqclmXxm8JwxlLuchRj7RMug4sPC8WCzg7OwMTk5O4OjoCM7Pz8s7MfdFP5H6ed+CiiHga1QIYsa29BJQjAzndLfdrpwGnYNSIM6HB6B+XHtM24VkIeoiSZLU9BVqg1D6bSG05nHetbVc8leEytNn9LnUR5i+Wq1gOBzCJ598Avfu3YOvvvoKnjyZwOFhCr1e6gRhi/YsAjiV3Kz3Ow30VHnAeablBxbQlPK6+Gg6nUM6LR9djtfN55ajZev46nj4M15eeq6lhcrsCihtDMjd/Kvl4UPVTcc2zGt5k6ReVnpW/K7jqfLwu16xXP3oX15W+4ZaMFSjUbURfe7SKnC5+Kt0t12KNJefancsKIFxXsdq7CP+6t5YpEvzoAyg7YN507R6KaPXS+DoKINf+7V7cH6+gFev5rU2p+CzaW4LLD6LPM/Lk3Wk/Hx9l3QJTTbz523bRMNP69IlvX0HzS8BEKfDdEGb4w35QaQxEwKKUzoiV8onAddxtPFE5zHHr12jRel3YSPSI6Al/qx0qB6F1wUBhI8NHgwGsF6v4dNPPy3zXlxcOEFq3t+cLv325WkKFruiKezK1/oWtg+abcPTtrozVmIi5ITaFh8ArgC2Oq9vEyRnNP8dckB1WScUrNpbO00VQ5/TnRv/nI4GmtJ6G+OvKWiKn7YIWYIv6BClx0nOZjMYDAbOWf0YuEIcfIesxFOMAzm2P5uAz3CJBYsSLuWVHDo+8CkYFpBkmW/M0zrE0N32PKJ89fv92hEl9ChNzMeBBwswEItH2hweHsL19XX5VqVEW8LtazP8j/zi7lh8qWE2mzk80x0WlF9fe+Bc0wwBaayG1gkL+By/vjbT6MasD9J6beWXArYdfakodj2xzOnQ2NFwSzRinnUFISd/lmVweHgIq9UKlsslzOfzMpDXhDepXKh/+JoeWockkIxjbuyG3lLWQDO2dwm+NUpyTOC6b6kz1T9D+gg+p3cFWeQJ5ZXLADqXAfRTDWg9e70ezOdzuLy8hEePHsH9+/fh+fPnKm1f2l3RI28TYnaAamsGH6u0zzGNHk0dS8/nXJR4iwXOuwV3KB/qNG31Ra5XcJmAwVifYxPTfXxYnZaWNTnUNnQtiIHQWk7pr9drGA6H8Bu/8RuwWCzgiy++gMPDHN59twf9flIGZJNEuheW/pbS3GBQ1Scq54xfNx1xV8/kdKQvP3NxIx6XJ9oHOu9SWam+Up2lunGop4XaL1S+PfjEEm/DKq8bGOQ4koQHGQF4QJPm4XPLfYY0kpKum6cKhlJ+qrlW5wWcI46Tm++c9SENorpHDbu+LmC0i7K8DhxHVTe3XnXe+e5Z5K0KpuJ/qB1XXNEs5lBRPk3xTlgaqIXyiGIANwhbfKdwfJzBJ5/cg1/96roWjK34131DdwHyPIfFYiHyi0fAcx2A6tN0Vxx93hU0tWHeZKDzMbauTcdlLB1ut0inNFl54fKyzRgL+d+kfNKphZR/vhEh1k7ltHl5vEZG4sGKE9O4bPL5uPA+6clkAj//+c/Llzakq8YkG9Jqv3GwjBFp/If00TddLryJYO2zJnJNK7PVYKzmIL9t2AcemsA2lI0mOCXHe4xw0spIR/eFnN78TRmLsnAX+l9yMHXV/4jbevwwAJRHK9IdzDHtGOsk/6aC5CCn36FyGmjBjq6Vy21Br9dzxl0M3zRwu1wu4erqqnwW2s0XG8TkCjsGgHFH2L1790oe+By3KPuaUxPnMleopfwaDcm49Tk2MbjBlW2fU7PpePPx0BQf7qYL4bTMvcFgUI4vK2+3uQ61cVbT+zmxHdvK9lhecP2STurAb2280HnAA7hdjjGKl+4g9uXrGqS6SQ4AmscnH/C5FMQJya88L3ZD4MsweHesxgvlWcIVyhML/DhA6fdtgSabNR38roG0lmj3kTfRPaXftwV8voTWZS6jrE7BUHAx5NDP87w8Sk7Tg7CfmgCvh9bXPvnFx4Ik06X5ovGjAS+3XC7h7OwMfvSjH8F7743hN3/zBB48SKDXw0AsDcIin1ReAvu4xwcXNKk9QOsLLI3y6fJLadTT60cTa8/CPPA8bj2kvHXe5XSOT3oup8m7hf1ltgMSHW24Yd5qx6wblKVlq7xladCOLq7+V/Oo/kwKitYDsi6/9R2ybjkfuEFeHmQteM3L3zQ4C8qxxNJvlxY99jgp25cC0nPz04At3PCZkG8ADLpiuxT3xBayAOuYJNVdsdV3UQiPK+73c3j4cAi//uv34NWrBZyeLu70+g7g+jYkG4uuB/xbC95Y9E5OnwI/jYrifgvtYBu6FtcHQmNJsgMt/mnMR23eGP3A4o+z5JPK8N8xINkJ1vax2GISSHfFpmkKg8GgTDs9PS39ckmSQJZl5YYG9JNJdr6Fh5i2svSHrx/2wb54C/sLvvHhBGOtA6mJINk2hAzafYOYNtQcZW3a39JesQ4PLqRCzgBO3+cE9NWbO1sk5crCiwRNnNZNQapXTCBW6gNfXt5uIUcFbVf6hpKmEOEzH06KwwddLHqxC20TfBqfVgcY5qUBREswqIu6tXHwbRvQWavdH6EBb1s8cps+l2jxsdlE2UNHJSqfSZLAaDSCfr8Pk8mk5viUjAdtvCB+Wi8rXyHgcqdyttTHMB/fMbhjgfLQxTjM87hAom8NwcASDcbSMttU2tu0adM1HndQ+spvU1ZQmedz1of4omtak7Fl1eO0wJLEUywPIYjto6ZrSchAxvkGAOVd2r67c2NkSlcQM5c0Wc3XY5/zxxoosvB12/aYbx20ALYBHSeSzG+ik3P9Khaa2LzWucWDhzQvXYe1F1CstK1AaeJ6hi/D0ee++lntFkn2xqzHFgchjqfYF+sQv2RfFqecTOGLL67h8ePH8P7798o7YpMEy1IcVZqLH3+XqTd5ab4qv8BlLZ9bhyoPpeXWyc0v96ucl/LlFqvTpLzWcen8SPg0PJjXN/ybTA1rmRg1jOKUyuFzHpTFZ7RMlRcADLtkJVr4rPidKPR48BSfSwHZel45n0Rf469+XHGVt+KZ40OgvElBWMQj7QKmuLS2qOY03XFb/Xc/7tHGSYJB2/zmuOI+9HoHMJtt4PR0ESUbtwUhXcYHmE96AVazxUI+RaorhGj77Ddue6PtboFd+gi7gKb8NvWNdW0D03Lay+caryF/j+bH9I0Fi++U845p9Oo4Ka818GdpS9/4t4A2b0Np3FZH/bXfr8JPeEKdRpcGY2Nf/vPJTd6GXczjNjjukhz5pkNXsTOEre6M7RK2teDdpYW0q0AsBU1QhZxJvnRf3pDw48oVD6zelb7aBkjOYt6GPucmB3qnpkSL7trztXuv13MuZ8eAE0ARNDs7O7sxMOrHXuwams73bRpCUjAB+fT1UZfA72zeFjRpf9ruMeMbwCbHKGhHvXCFncslTgthNpvBcrmEw8NDZ04g4C4x+oZuaAcdOmYlvrXxEtPuMcGIfQLJWczXDu1NaARLcISXxWN18LjeEI/bbLfK2dXNPA7pBruGJgF5Pi40WUfXqNg+ktqcBpdovibB/y7GDPKDcoi/OODjUXIKYDvyZ5YjY3GnMA+Gb3Ns5XnuHHc/n89hMpmU/6X6tAGrkzJUnqehY6KLHelvoVvgY1jS7QD0O7O0gKykG1K8Fr4oxMo4zemmOQRD8wjHcZZlQIO+0hGVWl00eaHZiyE9WpO31FFKnadPn47hn/2zd+HBgyH0++nNrtjig7wVO2SrYAumVQEzNwhZ/ZXvYq3+V3mketTL1Xfp1vNqZeW8Wp46ny6vlGde//rvpPas/l/OI+fV8nTlT/E9re8q1crRfLQtqvT6rlaatwoWunSTxA2gFnnlAKZ/hyzO/y4CsnQnq0u3qneu8MXz1nG4d8FWvyl+IEcTS2lVOfxP29zNQ+cm7owFqO6MrdozJztii7ptNgkUO2OLPHleyA98mYSuB/u+9qMM1AJcmp2GaZiH64hN+NCA2txt9M+75Edu43+h64klwNUWQuOcvrQnfVvA13eantTUlxJ7bYePTtPrcySbrUvgPPMTGIfDoXMdHr2yZjAYiPWKDYaH9NvQcctWuCtz/i3cPoTGyp0JxoYWVMuk0AKC9Pe+KzgUrG/NaGVCeUPtoS3SPp66XqglOhZDPpYGxW1J6xp8Y1YbwzFzJs+LY6LpG/AU8O0kHiivnA7VApplWRmclYIfoXEj5esKQv0UM294ua6UNotT38JfGwMmhg6ChU4bXtqOB5/RJ6X5DERfPegz3MmCQVfuENSMh1DfacEfCYcPjw+nDx+HJmuFL48Vr8ZLCEJ9aJHptI/o3b8aT9sOwiJPTQ1Fa7mmddmF4bKtNm47Buk8Dxn/Uvkuxg+uI3iqBQ/Ghgx0KU2SZRLPmn64TacAB05vtVrBbDZz+qOJM0cCq+ywlJHGAg1atdVpJZ60NfC2YRf8WOru0xFi2i7GsR5a7yk+6X9Ir7HwKaXHQp7n5Sknw+GwvHfcQs/Hr8+578sb4zsAKHavjUZ9uH9/CB9/fAzDYQ/SFHfFuscQg7NzlQc++e+k9sytt/ztptX1txC+Ko+kC8v8cvwcH8Oi0Ke8yuWkZ+5/OY+fnzr93QBtBz0wC1DwLj3H8vSZlJen0f/1Z/W7WavfCYBnR249rciPaYhDOt6YYSnpyHSL/zIONy/HUc0tXr5eTk6rt3vFDz/CuD4+i//uM5xveB8tv1M2TaF8sSPLUhgMUthsoLyDtqnuroFlHWuiA2trFtf7NNxaILaJ3rNtP902/C23Cb5gaxs7MxYsvoW2dkRIv/H5iTR8Vn6a6JkhPDF+zia6p7WcxBff5UptyDRNy5eFsVwogC3JqtCYaaKn07Ix0FRO7SKu8Bb2B+5MMNYH38QB21XwxeJwtwjuLgUHd2pL9H1878LpHUrbBk2pzvjBNsOdPfxtJN+OPyxzenoKWZbBwcFB+RwdfsfHx3B4eAinp6flEZX0QnVKDxdYfgfbcrms8ZJlWYkjz3NYLBaN2mgfoInDnI9bqqRI+SwKo/XYHgD3LrBvghwNKTmhYIm2s5Lnx+Ac5l0sFo7DEecc3enrU/ikuY9zkCuWPuM2BE2d+9sINlK5tw2ZbjGSLHn4PdrceRFr+OwCtjXntx101uSlljfkUKLHwQPUd97zNcwXLJUAZQC+jCEFKDXeQ3liQdIDeLtY+44fo6/xS+UgAMBwOIR+vw/z+bzW1nwudd0GVC/q9XpwdnYGV1dXsFwunWsXaH6kLwW0rG0VMvpDASGuy3H+tHWD4uV3isfwviuZhX1PX/zj7Y714PLWcnSvBjFOmSZAx4rkLNLuvab80XbQnNJYDnecoh5O24zj19qM6ocSTzwvraOvL/Bo+4ODAzg4OIBnz57BZDKBn/70p6Wc5DqYNPc0PrRxopXP81w8scSnHx4dZfD//X8fwP37QxiNemXQpArIQu13gZMGYarvG4rlcx5grPPC1x43n0vDpUNpc55oWY63+l2nJf+v867Vh/6V6i/lAzXAW0+TaGrQtQmkTxvOv3QXq46nGstFWcxL81Vp2J55mYfnd9fbekBW2iFb8MB3vbpBUJrGd7tigJLn4fxxfrBOUn1w7BTyQ2uTijaIu2I5j5XNWN0Z6wZgKW6km6Yo+4v0YodrdU8sBnOrb4BeL4UkyWGzAcjzDWRZCh9+eAgPHw7hpz+9gtev52V/YT05dOGLS5IExuNxaWeu12vxGFHt9DRLIEQ6AY+u6SH9r6v1OkkSGAwGpR7Rxn6+LbjNwM226Mb0AbcXmgYYKV0JR+zJSVadX7NL+TPNVuA8UV2wDZ9I05fuiwnQZ+iron6wJEnKjTuSfYr6oIUfTtfSbvsIXF99C83hNuViLDjBWGlSceO+a2gjNH1578pi2pXDidfXYnD7QBIIkuEv8aE50Zv0icVhuQ3c+wKa01fqb81ho/UHf447YxGXtJBq/FAnKg0SAYBzGTvlHfNThZ7f6+QbZ1L73DaEnMhSH9C0UH15OQ04Dz4FVerTfZGf2+DD7pip5hpf1K1yCfNyx7JvHPhwh+ZwF+3VFEfbcROqNwUfnRgFLITHimO1WsFms4F+vw+bzcaRdSFjJoYWz28xTDg9Ll/b6AexcqkLiNFteF58gYi/kSsB75+2dbUGQXzrQxvAOvA1nq890vorrf2S0asB0sIrDZbLZfSR810C6ilS/WLWSQ3oy2g+56JPrnUxj3x12dUa7xtD9Dm2Gd/xa1nbLDJW4ge/JZ3XR0vKa51LVqA8abq9VAaDsehEz/PqxS1eD/otyZ2mjk3qWJd47PV60O/3YTQalU7+bY3HEF6LjozPHzwYwqNHQ3j0aARHRxnZDQvk4wZZKQ2AentgOel/xRuI3zKu+lHD+Fum49LgdOq0rTxR2jKv9f91Xtz/8nMtDQL3x+rlugGK2z8M60cKczx6egLg7CrVafCAI83v2q48IKvx48fph6Is5q+X4/fDNtnBSwOmdH7LtCVcvvbQ8vOy9DedR5XMkHbIFrJlOCxOKzs46MF02oP5fAObjd/H0Bby3L23HfFa9QnuB9F4aurvCNk1UhkNQmuqhG9f/CMIu/aD+fySVh3Wqmd3wZ81n88PF8tXGz8Kflvs/JANFhqzFj5DPs0QXqpLSum0DJU71n7geramy2pl3sKbCV3KRWm8NPVFSRDcGdvUWfcWbg8kQWSFNn0tjRW+EOCb0dIODc1ZTPOGBLEPrMGUuwhWp6iUN9S+ANUdb7Tv6B0mq9UKer0e9Ho9mM1msFgs4PDwENI0hYcPH8JisYDT09OStkan3+87zjntUvddg6Q0+PJZ7qbShLumTNBvCWKc4/sGvjHRxRrEneEhfLGKm8Ww0OSjpuBiOh9LfLcKdXzifNGOB/cFFDTFYt/Gk08B4m1Cgc4hDMhZjB0fII7z83MYDAZw//59mE6ncHV15TXsKM19a9+7CBZHepZlMBqN4N69e3B5eQkXFxdqfrpTssndnJrMarNDMSa/xA8GZsbjMQBAuTuVB0V9c19zunBa2nwaDAZwcHAAs9ms9owGnuinyzWN46Z1onVDPacJbQz041GsCCFZw9coDajDIgT4kkiWZa3umEK62wKsz3K5rLWdr12azEuKB7/5Tm8KnCbupOQvFwJU7Y2gXfthBXrKDNWNJcA53u/34eTkBJbLJaxWKzg7Oyv1c4seSZ/jPPHJCAtwByPOr36/X74c4qsX/ab4Qs4QrhPXg5OuPYPtLcmhwSCFP/iD9+DZszEcH2fQ66XOjtjqAzd43R2w1bf7mwYYZV2QftcDqlVd/HhpOuWjyuPixzKcjv9/vS98abRePN39H3pO0/SxeZtmv0S7Puz1o4xp+Xo63idb3xHq/nd3lOLz6rcW8Czwu8FRDGAmQIORmFbMITfIabk/FpzdtklZp/rz6jfy6P5Hfir+/Ly6d9difwC7O7bSb/gxxVDmqfqhSi92xuJueYDNJr/5nZQ8VnfIonxLIM8L+fTee2O4fz+Dn/70CqbTuBfZYm3ozWYDV1dXZdl+v1++4BNz76WVN9//bYC2uQBAt8nf2mnxII27kH5lCcA18fla0vlzrjN3PfYRpJN5NOA+naYQCnb69C4J+DOu12l+LAqSvzdGboWCvXcd3sbjbh+2tQ6Yjinuyhm+jbJdD8w3wUEqCc+mzvU27RFTlhvJUhBBwtfGOemjua/gezuDtxN9TuvnW4B5AJQubhp+mhedNpvNxjn+Tzt2F/NTZWSfFhurIsJBcxZJzmzqKJICqnVjse5I5rR8PIXSbmMeWNq2C9nclXIWcgzSdF9ZiT8f8ICBxosFh8SXJBObrh27AF/wos3awHH61gecr9yRS+cy56/JePfV0WIkhdrDgkvDLeHpCnxyS1qTQvOLvkSk4bc4BKTnFt1E4nVX8i/PiyPTNX2Aj3npN8fH80hrE83Pj92l88NCsw3wtueBGqsM1/paWqP58xjn07bsJqsO3VSHt9DmLyRsNhsYDocwHo/Lk1QwOEtptFnjOA+ITxoHmszHMtLO7sFgAP1+vwzKSs47yZahY8a3zljqRmmE5m2Mc80KlnJ4X/Pp6SlMJpNWtDVdSMon4Zd0HD6PnzwZwsnJAO7dG8B43GeBVnd3LKgBUyjLkKekXFwbVHgT5z/Hi7xp9Ogzmkb5lujI31zP0fnmZWSeKp7DeH1jWX3UKq8GVrGNtOT87s5QXo6nF2kJgLJLtvpf5ZHwhXwhbl5fXQs6mEf7bkKDPwfg//lOTTcPx1N9Y7l64FinVeEAEuwuxmNO+gWA7nyt5iVdi3LnGcqWNC12yK7XVcCWr1sVTak9w7or5sGX9nggBde7mJe6+LoaWo+sa1ysDc3bCl/2wpdyF4tFuV6jjRBD08LzXYOu6mOxOzXd26rrhPQ1nu7LT8vtEmJ0bZ/+rtldu/LjSHJJykPz+sBXv1i7JBb2zd/1psmYfYaYvtds+hj/mBOM7cIBwIm+HTztQGrDtu1qdRpiXt8zKx8xTjbEKx2TwoE/CxnjPiP8LgGvJwYBtDestDe6eP3X6zVMp1ORDnWicXzYXzT/bDYrlVrJcYWOYQCAg4OD8s39JkGBLkEbF77xEiMzJSe4FVdXc2Hb0GRubZvvyrB1dytJd/JZnfL0ueY01pz2VvnJj+728SndRRsjp3m/8bLa0aJt+8wXEJJwWxwQITrWvD78NM9ms4H5fL43u/nfZMA+kU51oGOGO5R4ujYe+D2L9HdIX7LqU1YjtMt1MM9zuLy8FPmQ6sq/OVhkC60nBthooEPCsY21n/cNOh3plQohZybVgTSnA8prqsfS//yeYorX2p4hZ0eovA98baCV1YxRDnQO9vv9shw6Qk9OTuA73/kOvH79Gs7OzuD09BQWi4V3J0sTwPaT+gLro+kw2j3tAAAnJyfw4MEDuLi4gNlsBpPJpHbvFY4BiSblr60Ties2Wr6ugbeLNDam0ynMZjN4+fJlo7WcOlPpkeAW3vhcpnzSZ5VMAPid33kE3/72MRwdZdDvp9DrpZCmeDcslL+LvuXBFAAeUHSfUd7cdqj+13FQXDe/bvDST+Lkk/LWaRfPXfqh//I3zaul8zpxHuVneh45n/R8W/Yl3115k+qZajS/m08/vjhJ2gVkLTtkka88d3HXaUu7XqU6Y0XdOY+0cicgWtF074eV74ekvOIzpCPdYwtA6br8Y5kirdr9WsmJ/KYuOfD7cKu5Wg+yunMUd8sWsmOzqQKteN9sr5fAZpMAQAqjUe/m2XbGbZZlkCQJTCaT2rqBAcvBYFDe8QgApS7nA9xNS0+7SJKkZqtSPD79ikNo/aBpGGwdDoeQZRlkWQbz+dw5yYj70CS74i10A018PiE/rtVusuhYNE+T4IxVr7f4PDT+fL4T6beFB0u6lb+m/EhtEFuPbdiRb+EtUMC1SrK1Yuy4WjDWEiCImUjbXrw0J7WlLndhomrOu1hhrRnFsbxobecLPPA8+MynOElBEjS6Y4/4oyAFrPZZydIWJM6z5BiieSmu0Digjmjf/NKMIg00BxbSpI5Z7JeujhOVjnYNjcFQXSz1tc5ZTVnjRx02rb9PfnO+mga6KPjKNVWyQuBzFNNxS7+lulvGhNS3PvmogXavoFYfDT/eCTcYDByZb5FrobWSOq1pmV1AG7ksOV21PBY8FrkZugtTM7oshtq+rlEcdjE2LG0h5cE5kmWZs7aE+jY0R3zlNV2Jr4UWxwCd023WApzTfD334Y0Zh9o4xx0INEDlM541/TcG3MBKXJtJ7Y26qeYslP6H5CvXo9rOIcQ3HA6h1+uVcglfeAu9nKf1tdQfvH0t/CdJUgZjKS9ZlsHR0RFMp1OYTqfO+sh1do2vEEhrLMoBTk/qN7xqBcvQz8HBATx9+hTSNIXr62uYTqeObst5lX5jMH+9XkOWZXBwcADL5RJms5lYT5+eENseIfy8D6T8lH8pj3R0N/0f0rV8fFpkKC+P/UNx0w8AQL+fwnDYuzmWGISAK/YtAEBC8BT/EX1VhtYlXi758FZ0KX7KF6efOHlBCNRWz7TvsCOXl9Pr5dat/kx+7sct598OcEJusBAgHJitP09u0vk8qOMr8iUO3fpz5NNvk0r0Qvez5k5AVjquWP9260sD0AVNmk+uh14nzpOEtxrLuLaBSJO2e/Vbol3hp2WrOY9yFNOqYG8RoMVjjIvAbJal8PjxEEajFF6+nJd3xzYB3BmKgPrBd7/7Xej3+3B9fV220/n5Obx69Qp6vR4MBoPyigvppUW3zYvAJ9U15/O56bhXTdfVfHY+HRZxDQYDk08ltJbsyv69KyDZ2JIO2eS5lleDkC3ne6bpNLHgs9EoTTov+PNYu4LrLD7eNLslZKtKfPDyfBOVL28T3dXid30Lbxb4fLuWtKb2kIRbGreWsR4C8Zhin3D4pgz0XTtAt9m2IYVJ4gXzW52SMYEDqYyURzviy0KLOzp9cBfGNecRhQJ19KADhAJ/y0/rE64Q+ZRrzSGn8Y1Ad/jx/NjX+NYl8kCPfPPxHwL6piU/SpTXzweS49EC0li31IHf9YY7Kiy777gMk2RaSM7FtHfTvuHA7+qLPRaJAm9ri1ynTlkfTnyGn1hFnivP0s49ia7Un7jLCx3cmMZlv7aWS4asJn+bQKicJK+b0IoxxHw4KA+aIcJp4c5Y6VksXQ7WNcxC97bWuq7kA4Cr02iOF6mver0eDIfD8jhRukuT8ynxDiAHE6w6hNZHPj2lCx2Uji2fPItphxjaqKvM5/NyjgC46zIFzVnWtC0keWcpo6WF9EqLI0XC06UuutlsYDQaweHhIbx8+RJWq1W5PqCeaNHNfTaANP6txjDuxFkul07a0dERXF9fw2QyUa+vaNpOdK2megY9mhFf+JTWoiSp7mXnO5s3mw3cu3cP3n//fQAodv6+ePECNpuNswuYluW7qJEG6gKDwQCePn1aHucrOe+6AKn/NJ3V58TDe2D5kY/aSy8UBwVN19F4860t1D6SeOAvgtKdz1gmy1IYDNwdsUXeehCUfgr6bp1u/jl5XH6lb75zlQd1aCCJ1luil5DyiYMLakFLitvPS53/pJYm4XR/+55J/El59HwSdDmd5CWBEsBx6i+Dz/kzzX5JEjdv8R+J1HeyVv/doKdOF5w89d2qFT6oHYHsD8je5HL4pN9aO1Rz3s1TtFH47ljkqV6Her0pDtwtC+R+WNoemCbNmaqtcbdslbeSIflNABYgTfF3Ar1eCllW3B17fZ3B6ekcPO99BqHf78NwOLypV3FiSpqm8I//8T+Go6Mj+Pzzz0s94ec//zm8evUK+v0+DAYDmM1mNR8El6v4fzwew2AwAIAi4IvBWNxc4dMXNDuM5/PlwXx5npe6v8Yrh9uylW4bLH6xkI7If0t6A12PNX3aorf71v+29pPPLpP0Ep/vRjoNJWTfaDoXH/vcZqL6i68sf8Z5jpkDIbuI5431l8VC2/nr88lotLqw199k8PVJU/9C0zwWepqfFMvzE0FpGc0ekZ6Z7ox9C7uBLh0xTUG629MqlH0OqCZlqVFP00NOMKuidVcgxuFrdTKi06kNP9J/Sh+Vdb6gUcWJ45KOrNEc602AKi0xigOFNottqA/5kQfj8Rj6/X75DI/Vub6+Lh2ICCFlwLJg3KYigW2jBQ18EKM0cZqxjnrKp8+RrhkrPvy+eviCAwjU2Y6KAp/nFqOHg3QagebcDIHmGPU5eUP4JNBkjpXHWD58ci2Un/Mr5bPguytrHVVqLW/JA4TbgQdP8DeVqYvFAq6urpyAIOVJo9VUvrRdqyg0Xa+wLAJ3gFkMB44jJMNoe9EdhFJZ+iwmYNMVhNabWGcEAt1xR4NuWN9t6B5JUr3Atlqt4MmTJ/Dhhx/CfD6H2WxW7ozF6yGkvojV1Wla6NQaOtak46HxLlF+tG9XQOnR8Xjv3r1SRqDDmOZHsMogXj/f2kD1cZw72I5ZlsHJyQlMp9MSLz8thtYtTVNYrVZweXlZvoyV5/r1JZwP31oUcqJo8oPKA8zjOz0ihibm6ff7kKapc2wml0MUn6UfAQA++eQefPTRETx9Oq4FYhMngMJ/4ziD2ne9Sgl7Vg92Ci0j5JF3x3L+OF5evuJFqoN8nDHH5a4v9fwh+nHPqjxyupa/e5BouEONZpCDiRI+/qxoX/fo4iSB2n9aVvqfCwFZTqeaT1JZmedcCW6SXABs524lIyq+pDaS+ZCPXQbP3bF1PHRnL7YvD75WZX1tWY1XNyhbzUVaL7oTln4XPKVpQb/XK4KyWZZClnX/Us7BwQEcHBzABx98ACcnJzAcDuHzzz+HP/uzP4OzszO1nKbPDYdDGA6Hpf8Cga5deHyxJKt9NPj6HQtaEJjaJJJ/rKkdcJdA8reFbHUpraneHKNzNfVBSBCr6wHo48RKw0pHK9sFXg2ovXJX/Apdw5s+199CHUIyntt30lH9TeZMLRgrGSt3aSLGLNBtFvPbAM2Q9A2cpgsi/x/joNEGpm+xluoQOlLNx4vmYPQ5vO/qwtNmrvocpKH+8eUH8DtcNKcUHm22TaCKvzUgwvmkZUIy02dg8DKYhmN+MBiUb5X2ej0YjUaQpinMZjPI89wJeNPxK/Wrb8Gw1L9LpTc0D3malhfxhfBq+NsENzSDxBdssDhn2wAqCL1ez9ntYzFyfe2C40u653CbEDMvEWLWxxBdioPy4ps31nmy7/rHttZCHnBoeq+hNs8QPwKls1wuYTqdeu+60uoc0xbWvKH1p8n41/ihAbMYZ5alPaS1j66x/N5UCSwOnrZgWV+aBnAkHJY1tska4MuPwToAgPv378MHH3wAf/d3f1euCzHtb+HBqjNJDlU+HnD3tDVYFwuUHh3/BwcHZSBzPp/DdDp1ZBTml2wZjtMnz3g70HGCOGn/9Xo9ODg4KHVA5Ek7tQLX/clk4vAi3Tuv8RcCbTxL/auVlU5r8q032pzF736/75yio+k1vLzfwZnD++8fwA9/+BCyTArE8t9YrvqW0oEETd3fxX+BE+BsVjiT8r+Lp3oupdNntLzLZ50PMbVW70R5ljhp4XT5meV5Pd/tAeXBnV74wBaUracnZdlwPqjldfPXd8hWv+WALKdPcdVpWdN8deE8yutmvR1poFbiuUjD31I74Dh15X8VeC3SOV2sIwDtYz73AbjviR5djI5flP0J9Psp9PtpKYssoMlWqpMNBgM4PDyEx48fw8OHDyHPc3j16hX84he/8F5rIMlmPPJ4NBo56fgt2UuaDyMEVnue2wShttN8M980yPPcrD/wchws4zXUn7Qf2urpsbglviSdzodfw+OzE3y6FMfVRL/32Z3auNdkimU+Wtqoif+hK39FaAzdls8mtk225cNpAxbfdCi9K4idQ3ye93o90ymVPpoI0Ttjv8mL0jcBfH1rUXS0PNxAxjI+evjWHB6lgmk0v/QGvXUxbKos3CXgwsNavybtgEq2tBNP6yP85sfm+Y6JDQF3VuV5XtsJRRUudFA2UTatSpgEdM7wu5CTpAh8nZ2dQb/fh/v375e7G4bDITx69AjOz8/h4uKidjxJzMsLMYt1l3PDqpTHBNbQUekLPnKg+WlbhI7ojZGFvnlH5aK02yWG/yRJyrtjOQ0cY7F9iHixbJZljpOXOs25EeOj5ZO9IQMshBtxbEMRDfW7dYxYcd4mdN12OIa4wzxmXErHe0rA5zKO4dVqBWdnZ46M8L3ZbDEcLLyH8EjjO7TLMAZQNiRJsQswTVM4Pz93jhNtMnYl8N05r+Xl+Wh6F+Mw1H/auqnpqJYXCWibWoz7LuQF4sE8uNPTUlZ77huHlvWZ8oNt0vRUlm0C6llXV1dwfn5e6z+6y5Q7dnGcnp+fwy9/+Us4Pz+HyWQiHuWIRz3i7uWQDbRYLKIMfpzTnF8ug2Kdl6E1FdsId13TvJpOgG0XO9/pOMc6DgYDmEwmpd1oqZvmbPzWt47ht37rQbkjFnfFFmNXO54Ygyvu7lhabyxTpQdryupdp0dpIq2KN7fNaB6Xh4T8lvhNBL6lALSLR8Mv4bDmd/9LZd18vvzNQZJz4VKUhyo/JvqDslK67Lh380n/XRxxAVm3nHxcMeav/mM95XbTyxVlqjzFf5c3xEPxV/mktsA8Fa06bxUv9WC0jBdpurTdcY5HEtfz4N2wm02xGxbrhEtlr5cAQBGMHY978J3vHMPl5RJ+9avr4NiT5C5A5WPjOvh6vYbz83O4urpyyuV5XjuRSwN6DDLipGuq9GIY14FDvjyr7o15l8tlefIF9T1JwUbJPvim+L6b6twxPkYNQjoAXfcRYvrIOmZ8/oZtjAHJn+gLZtK8/IqrkE1N2yvmZKo2/s5YeNN88V1AUx/zbUGsjdEEd1dAeeTXyki01us1rFar2ovDUgzDAo2CsTH5aAU1IbsNp6nGw77DttqC4ufAjXMtnxW0RYQb5LSuNI0vssPhsDTY6bHF3Ni3BD+6qF8Ib9OFO0axtDjGfPh9TrSYtrPUzToW8JvXz1JXPo64UxIFJh6ZQxU6Xx1i6hcayxK/Ujp9RneJYHq/34csy+D6+lp0pGu8tZGHfK7FjFUf+NaJGH5pGct489G30LL0a8jQ5OkhZyd1DvA+5zh4GY47ZOxI9aU76vh85en0mVQHnsbLNJGZtFxX8l0bNxJtjT/LerALpXnX+pCv/6kBaFVaLbokz0f/J0lS3rdN+yW27aV53GbNpPPHN/ab9hufX4PBAHq9HvT7fcjz3GkPaW7HrmGx/GryZpvjNUZXpKCtH5ZyvnkfWisl+SrR5zrNer2G5XKpBr05Dz5eurAPQjgweEyP2OU8cn6byE5OG+86HY/HZTBRKuPTI5KkOP758vISptNpeTceB7xuIs/z4N290k5haQxw+eLTbXn/avPMp6NrMlvSAWLGilWmc76SJKkFYENrt0/O3buXwbe/fQxZ1iOB1/ouU+0/pmE5kqNMr/Nk+xZKkjw0uFnRktuAB4oqHC49PtY5TY0vGqSqtxPHG5Of0/Tj2wZQxFWgrkwxDHnMX+VFBG7gTyrH07W8dZ79uC246HMLXX8e/YhkCw46b3l72trEzcv7UKorT6P5Jbz1cvQ4ZIAioI3yit4lizjyEk+SFMHZfj+F+/cHJY2Y5bjAUQVjsyyDLMug3++XO1kxYEnvc8f8/FQD35rIXzCnz0I6uJQm2bZSHg0f6hR8PY3RNWPs030ErX2430Uri+Dr/9g2CtnI3K/nwxHSkX30rL4mLa0Lm6Vr34UEsf0Tsg18dGJoSP1iwdG1/8QyzjRbxuLv2RbE9s9tgeYXsspinx3ZtP60z+nmKA2kQCznwWdbcT6jg7F0ZwKH0KDzOSzfQnOIWYR2xYtlQqFSxN/iobtdj4+P4f3334fz83M4Pz937n/L87x0KFIHSojmNmEbbR5y0mF7SNDWYUWFE8UXKte2HWiQEQUjvz9YAzoG8U1IAIDRaASffPIJAABcXl7C5eUlvH79ulauiZJCnelNAd9S5W+MJklSGkubzQaGwyEcHBzA+fk5UGc6f5tHA6pw012T1sUvxgFtgZDzLLZffHcCazKSG418sbe0jaUNKW7NaeoLFFgNC5SNR0dHMJ/PVQczB80omc/n5YsxEq3YcW+ZL5rCFuJ9GxBj9CPwAEoXQYS7BFQO43EueLw6z2cxDkOOAopHmvc8CMv7T5vnmk6D+fnudEleWYx9lEHWnQdtoN/vw3vvvQfX19fw2WefOfQpn5K+T9sJ6x8ayz7DBtf4PK8f8dqF40uag5wGgH50Ku1Xvm5qODluCtopMZznEG4JcJxjXV68eAEAAFdXV6WeHMK5C7mU5zlMJhMAqMZ7mqZweXkJP/nJT8o1a7lc1vShrhwOeZ6XjuhHjx7V1rYuAHVXOkf6/T4cHBxAkiSlbkrHPT2ieDabwaeffgqLxQKyLFN1fdoe3EayrNFctkpzwVdHTc/S9HXtPr4YZ7CGl5+aENLpqC5SyaAcsqwH/X5xVyPuhsWjQesBWndXLNQCnLpeWyWHA5ycnvvhwQ5QedBpus/l7+Y7YqU0f3rC8tTTpedYNzk9BBYbt06Hluc0fcMW81Z5sLB29K1cJkm4U9jNg21cjXspcJkAiEcPu2sxTdfKyGu3m5fXiZaTeKJ1kPmn9S7KVWMrL/Hhbl6arrWBzBuWw7zVkcX0ztii/jT4WtGu5mgVbE1TgM2myFPcGYv1KHbOAgD0eikAbGA4LO6OjQFcS/GUmOVyCU+ePIFnz57BD37wA3j06BGs12s4PT1lY6l62ch3xQeF+XwOV1dX5ctgdB3iOxkpaDqlRlPiE+W4tP6ijmR1/EvQhV56W6Ctr7dtj0r2lfR8WyDZaz6I4UfKy8dtE1zoQ9dw+3xpOEfa6lxdgc82a6PzW8pKeajdIdmmEp/as9ix1RR2OYcttJrIVfp7122FPnStbpJ/ggP3lVh8tgCeYKxlkQoJmNuEmMnry9t0sb5LINW/qXOoiVCXDGUEDMClaVremwTgBmzX6zUsFouacU35sfRfl05yX12155Z+kPDF8G0dx5JzRVpUNIUpZv75lDBre/A2kNo5SYq7wQCg3CGFY6oLh69Gk6dZlEwMPmvjmAdeab4mi1hovDbB1WY8NukPia62Rvn6SoKYeWmVc768FqD10OZQ6A0vqc2keYjKqGUc++oU294hOeIzOqwyNsSnj5ZP2eLtKPU9bzM6Rm5L5+gq2KHBYDBwHCT8qoGmsouPGUkf8JX30fatKxr46EoOpBi8bSFJijvCrC9pSNB0fHbVhm0hth01HZUDH3eazI89htrKL5XT0+kUzs/Py2NupUCwRMNS1yZyiublR/SiLLi6uiqP8N2GLOJjKkmSMiiLtoaU16Iz4J2z9GhhnN+0bUMvMGC9N5tNef+rVQdB/ACu80DSESS5Jun+HD/nJ2TXaPxadUUuo3lb0rrG2B1YX/ydZSkcHmZwdJSVxxInN4ES+qnjcp/RPPy3XF7rS1ouEWjwMVHHj+U03JyOmyYFXkVWBdwJ+e1rkyQiXTvWuE6vOXAE9TFNadSHPD6kckLL6+J0nycljvozKw4xF2h1ykmwEvFYcfp2uCIO+ZvvFA3RcvO58lyuWxPQeOR5EORnbvC1kDUVXoqjGO/VMcaVTKG2QSULivtjExiP+7BYbGC5tL2oTmU1rnd453aapvD111/DYrGA09NTuLq6cq59ouuDRY/gRzlKdg6FkL7clS6I9dD0cF+5NwUsfiiaHmObSHlDvrtQGl3zrWVCPFj8cxINzZZvYrvG+iM03Tzk67Lg3NfxHTsvQz7AEH6us1vx0Hx3qX2bQht52bRNurQHtX7nfEn+PB8vTXgM7ozVHI2aI2GbzpNtwrYdkLcBMUERCtvoQx8+6b5MzH9xcQE//vGP4enTp/D++++XZRaLRakgTqfT8s1/LCvtuN0HQEe0tENonwEVV+18dK2MtKhRfFIZ3/8QJEl1XJnGX5ZlcP/+fRgMBjAcDuH169dwdnZW5s+yDNI0VY8g8IHF8USdsVr7DYdDGAwGMJ1OAcA9HkhrE/oWKPZVqP0sd99tA5oGXBBCzuKmyhvvo5AMRYNWw4njXFov28x/ipfyTu/CofxZjt2geC2g6QZNnPNt5XRo/d71OiD1szTHLIpdLN19W/PyvHgTPU1TGI/H8OzZMzg5OYGjoyPYbDbwf/7P/4HZbFZeR2CVu1o96c4oHviiPNFv/O0bj4hDG+M+B1MTJ0UocNYUpGNgKS8YBOJ8U2cIzSNBrMHi27W8bZuCj5EuaNEgj3asXwxv1sAXzdPv9+Hy8hKurq6ce9G6bEvet9KY1fQ8vus6SYqTTOjuXTrW6P+ugN6ris5ofEEvTVPo9Xrl0clUV6J1ojtDT09P4fT0tDVPAFDWe7lclrwghOYE1bu16wXotzb3JLwIljlO5wEPAtBy1j7lNNGeQt2Hr7F8zGvzCHl8990D+H//3w/h4KB/c1esuzO2qEcVEMHvG4wqDSwjpetA80j3vdZ5kdIrmjwAxIO7nCe3LAiBWSkN84bTOH4prd5OdQea8y/Qpj7Q5hMd8/V8Er08d8uB8ShjfF49wwLuTlBf/iKfGwim5Yr/iYpTK1ek+e9PpWnFt5S/vrO1TrvKU+DmwdA6/zQvkB2x7tzPa3mqOlTPsZzLa7XrFW52wxa4ERely+uGxw/jbyD1wzHr4qBzOE2hvEe2uDu2OKr43r0BfPe7J/Dy5Qw+/fRabkzSppINOJvN4Pz8HP7kT/4E1us1PH/+vJSlSZLAaDQqd9GG5DS1M+lJL/y4Y4rH53uIsZc5b9w2pmteGxv3LvnttgGWIJUlCEP/+/pE8pNhGf4shi7mt/oNQv1usb0tPk+JNgAE/X+xsG9+gn0BzS/rrmXN227b9uy2oW3dKXRtjzbhAdN8p/1SHtEe7BqcYGzIUcQFkyQgOa6Q4yCmI5oOAp+h2BTHLpxDMfX18WNZJLS+beIstpT1BUPQAYJOD3zDPMuyMg8a9HjnxeHhYenI0cYxN8pjFlorWBTGJCkChjwvdVLQ/BZ6FgGvKbZtHFwxY0tq7xieLc9o8IkDHrNKd1hTR9vV1VXNEWjhcZuAPKBxhHMAAGA8HsP9+/fh+vq6NJRCSrIG2ny8DZDGpk8mxio3bdYkq0yT1kbfYl8Z/bZ213jkznDqaJT4igFu2IaCTD48sQGJtn28zfHsmzuU7yZO7iayh9MJze1dyrckKQIu0+kUTk5OYDQalcflnp6eRr0UEtJXfXNEyq/pLdr6qM0rn75pMf75WKd8hZ5rdGkdUEfK8xxms1nj9V+rc+ioYV9gRPvfBny4YvRbqy6GVw3g8XzamoVlNBnFdVXOq8XxZD1OmeIM2Ut0zEuyWZI3XAbyNC0fr3+X4wJpbTYbmE6npd44n8/L5yFnAZ07PvlBaaLd4jtpgtZZs6V9817i2zd+eHtb9XJp3mrrdZt1RuMJ6yntspbqo/GQZSm8884BvPvuARwdZZBlKSRJFeCpcCHu6ndFj+ZvK8N4u9a/OW88nZd1cfKgZeLk5d8ql2I+CVci5OM4EpZW57FOT8dr4Z/lBgAMomkOcprPJxeA4MIyXC7GBUJDZXz5fP/l3y6/bp5YXdzPc/HctrPWgs/CQ0x9fM/r/QwATuDVzcPrUclLylfR9oVMce+Lpd9pWrwoEnNcMV3zaHBns9nA5eUlzOdzuL6+Ln1u+HJSSN/kLyqiX4XeV8/LIw5pLZHWRUlf0ECzdy3+spD+c1ehKf+SPqe1a2ybamDRRdvq6xSXVk6z5a0Qw4OkR2o6T8hutdK32MvfBNDsz1i/qNV3eJdgW7a5pT0kOaON8xi+fDY554/TjPVdWiG4M9bnKMjzXHQwt2HotqBLI78ptHE2tBGqFppd8GV5niQJDIdDWK/XMJvNynRpZ9dms4HFYgGDwQA+/PBDuLi4KO8/AyicYrQMKpj7ADQgiLBarcRjA63joomyEAtNlFj+XHPSdDEH0cjo9/vOTgKAYjzcv38fRqMRABRvhI5GI3j06BHkeQ5//dd/Xd6xBgDqTgiJdw3a9gneE/v69WsYjUbw+PHj8tnTp0/h8ePH8Pd///fw6tWrGl1+1LHEt1Xp6NoRGgtW5zP9Haobd3ZSA1VbmCW6mtOUlqOyiDrK2+5I5nzRoxFDvFsB65gk1R13uOt6W+sCxx3n/Kn6l9/JZ9FX2oIvGMFBcxognhjZ2KUc3QagTPr6669hvV7D/fv34d69e/D7v//7cH5+Dv/lv/wX8Y5IDWj7SHeaSu2Bx9PjeKbzUgsihHjgdZT+cxnBgRoTmvOqTb9SXZ2eAgEA5vbmwA0gzcDxOQt8ZUOBsLbQxMjyBXhQnh8fH8Px8TG8fPkSJpMJDIdDSNO03B2i6RU4/ix61LZOtND6gf/n7RCaN3T3qNSGNB/SwDEbcsw1ASoj1us1fPnll+U8wFNr8Bkvg4B9ReuGdooWBEcnNR5jTIOyXclv5NvqxNacG03nnm8HtuTU57zF9DXfdUXnRkg20Wf37g3gX/yLD+DoKIPBIC0DHdWOWGA7Y7X7Xbn8x+cJyZs45ar5ALVvSgvLyjjquF0eaVtwWv4dsi7dej7ellJZf30l3V3mm+OCWsAW2PM4KMZeRYc/c2mE9VPMkpcBTgAe5Kye28omST1/Pc0f3MQ8IByDXP0OH1fspiUOfxSPFtwWuaqVl+nRfMDuwgWQg61Fn9WPRK5w1XmtaNTTKA0gd8fSeuOzIr+7QxbILthqHuaQpglsNni/akEnTfObb9wVWBxTPBj0oN+3+WHxRBS+UzXPc3jx4gVcX1/DaDQq70/fbDbly0mabpAkSXltUp7n5S5apMH9cFjOt77wuyxjdUcA/0kniNtqF25bF91n0NZsDvwl11g9hs/TLm0Crl/RcRUTxGzq/7TyTMdhyD8kzY2Y4OEu/MVt4Tb8jlbfX2yeNwGsfSHZStZy++a/yvO8tl4C1OvUlm91Z6wVsTZwqaDwKa0xAiGWv5Bx26bxunR2Szgt+ax0rUaphD804LTAmo+WNCboMWASXF9fw9dffw337t2D0WhU5qWKXr/vvltAdz1Sp4m0AEvOtS6EAlcqpIAw3tmB39yRYu0zySkWIwQtZUIKh9VxLM17zXnTtB/QSEjTtAx0f/rpp3B8fAyPHz92FH5KB8cMjid8zhUjn5NSqqNP1lGHLublONfrNUyn0xqd9Xrt8MjvPJN41eogpTdRrENgNbJC7clBW3+k+Y5OU22nnMSvlWfucLYYfV2tR8ijr314mZhxqsnQEE8xECu3pPFE57avbAw9K08YSJDwS2sqdw5YaPD5sa1jbbsC6gzCuxCvrq5gPp/DarWCLMuc+WoZX5Iuoa3teZ5Dv9+Hg4OD8r+0e1EbSxxnbN0t+ppl3YzV/6wQY8jz5z55Q8c0D7r4HCSh+bst4LTpmLS0Pe4m+eCDDyDPc3j58mXp0OR0ANo5RTR+JHluWRMsuH10LHxqukWIt64Mdc5DnucwnU5LXtbrdfki33q9htFoBFmWwWQyEY9qlPD56OKLpnzXEG8H1OUODg7Ko8WbvEzE7Rqk4bPdfWNd09O39aJTyJfA50+TcZIkxe7Yfr/YEVvdF+sGKqVy0oflqpVpBm5AlP6mz5My0CPzGs+PPxDL01x8iSePvKbiM52WvmPWxReo1g3oMswNZlbPpLtD/bISi+aeoKwmZt1nCUDDgCx/XvxPHD6sINtUMfjcfFjWfxRxVcZCy21zmQcaOK0Hr3X8yJO2dhdyA+VuvRytGx8PdAi6870K1hb2awKbTfHSyHjcg8ePhzCZrGAyCR+hiKfP5XkO19fXpS5MQbvGQqtvUdccRqMR3L9/v3x2eXnpnDiG+XhZDm11Ih8OyXbQQDoetq0e0pUOH9LdrH6WXQH3i4R4sfAWslu6GEcUl69Nu2xLi99Nm59SOV+a5icLld82xOtx/r73tYH2DF80Aahe5vbRsNr6+w6+udiF/IqZP9v0dUjzxWrPUbD6iDUI7oz1QcxE4UJYWtjehAG8D9BEaHKnNv5u0iexxjB1SHAHNtLHu5i+853vwGg0giSp7gbFPHwnJDowhsPhjfJa4N7lDll+19NsNqudN97v9537qvCt+abQxFGM5azOYC1oYOl7afELOfxiFSzMj0fsoAPsRz/6ETx+/BiOjo5UHLhzajAYOItwG4c6VZJ8ODBQId1bsFqt4OLiAmazWblrPM9zWCwWZWARoB7wCznVYtt+F0DnK+eH/7fwJzn66Y4Wno/fUddELtIy9Eh1Ov4prhhHeSxYDGHOh5TPMg+6NkgsbeCbW03XsTagBT+0tqHjTNONpOcS3duYrxbAl6Nwbp2fnwMAwMnJCSwWi3Kdxny+ezmwjjFv3K/XaxiPx/D06dPy7f3T01NYLBaOwRWCmPZFfiwvfNDntA6SLLKsf1oevrZI98NaQXbKumn4shDfvUzrxnU3xIN3t/tkpBVinGlS4McqR/r9PoxGI/jkk0/g6OgI/vAP/1A88QT52Kb9E3IcWeQFXyelORZTB0nfDK1D2okVscB5R9zokAYA56XI1WoFw+EQTk5OYD6fw3w+L1/Sk9pBS6Pfq9UKrq/l+/3o/M7z4uWRk5MTmEwmcHl5WfLXpM6cL7qDlMsAbaxrdZPqwXfIWmSWr38pTxb/Qawc6/VS6Pe1u2HDd8UCCS5inuq/G2Sh6dq3S4s+qzvFOH6ev3rGA7pVeYk+TZPbrc5HnUcpTz3Y6qbzALC8IxiEQGyciMhLnDy9CA7S/5ymFGzzy0HEl7PgYv1ZvRylHxOQ9QV96X/5d+zuWDfN/63v3uX5LbSLts/FttXK+9JlXpDnCj/vN6mvkL9Kj89ruCtcuHvWnfvFjlmUrcULI3in9fFxBh99dAiffz6FyWSq1iXP89IntVqtYLVawdnZWe20FPSZuO0g25A0bbPZwNHREXz44Ydl+k9+8hOYTqflyRNcdvvmTIzOxvPFrDc+h/s++qW34Rdok6cJPe772JavOcZWalLXbdjbVBeV0vlv5APnt8aj1M6+ObaPY78N+PwvEqRpWsYbAKCUmSHw6cV3Aax+qxgc24AYGtLYpvZE2zuZ2/rexJ2xmrFHHYK8jGZUa5M7tLC/hebQxqmvOVlCtLjSEjKqJVroEEBnYZZlpWMW806n09KJy+n0ej344IMP4PLy0snjo+mD2LbAPNKOKHokGYfNZlM7kpneDUrfUGwTBLH0j5bHIpxDbcvnvu84M422NRjBd+NoNKgTWKqTpZ18vHBckpPXB5w+jqPValXWC4PHCNSI0uZniA6vx7YW1hgDizvE6TdvU5QjfIxJ6xSnEcoXUwfqXKW8YTq+ocwNX9/aaeWrjVLB6XAjwGo8xY4b3o+W3Z6UH0lOaX3atd4h4dXkJq0b1btwXGh3/0p8h+Yu/W46xrsASjdJEri8vITVagW9Xq8M0uZ58YZ+7FriA7yffblcwmAwgAcPHsBqtYL1eg2TyQQmk0m5bktHbVFFHaDqJ5yzdE7z+c2BH51G8fuOVYtJt4xza5oGiFva9SrRjpFXtN1xvQPo/ohxLptpupRPykPrib/n8zlcXl7Cq1evYD6fly/gSW2i8cCBHn2rjS3OX2hcSOArQ8c3zxsjQ6zyuCl+K/C+ox8K6LyW9FBpjZZkLC0XqstgMCh1vPF4DB999BF8+eWXcH5+Xl6/QW2iNsBlG62b9D80ny1rIID/CEkfcN1e44nPE2ls5XkOWZbCb/3WI3jyZATDYa88lrgKyEpBWD4vqoBJnV+enpTp9D8rpaZhOZcH97luO7nlJV5BuUvWpc158em/Lk5srzoeKQhbT+PPJVo6SGNNCgjSQCyOeykwi/xjHspLQvIJVBMgOJoHDS1pGj6So8aDpZy8xmhlqnbGPPzbxxttr9Dxy9hPmIf/d9PculdjiNo7VN5rQVedLuKk5Xl9iv+0jar0uvzJnf/VccUp9Hq+uejKQnr6F80TuuMVoHp5Dv0Q+LIZzXt+fg7n5+fli0fj8RiSJIHJZFLa5zH2P6VPgdv3FvuI33Er+Qi6tg85z9Z0ri/eFkh6AELI7qH5pP+8HPeXdMW3L4/Fz8DL8N8aHWu/aXoXPov1F2I5X/2kdo/le1/A0v7cB4OA/kKpzlo7+K6wk3ij9KTrgbYpc9qA5GP1QVvfVRNfRJOyXUEXPAR3xloFFJ3s3Gi3wrYm/q6MeqTV1WJuNXy7At9EiXGqNS2DYwYFIr6dTh1ZeJwY4qVBy+FwCO+88w4AQC0YS+tkdSQ0qXOSJDWBnud5+Za9BPReDgAoj0VDsDindw3SrkKrAx3ApiD5INRX2OYaH3ScYZkmOw6a8t0kPzqnAQAWi0WpCPBFne5EsvC4bbm7TZkRCz5Fi4/PLgxFCahy3O/3y8BQjNzZppKsOTclHkJK2rb70we+dX8b8rSJIcaNTk0GYVvzu5Q0/D5j38JPkznr44cC1nEymcBsNiuPMEN5hnLb91Igp6WtJ0lSvfAAAJBlGdy7d68Mdnz55ZdlPj6PaRo1uvAUC+7EsayHMY4K6ZlEy+dEkpwc0vMmxk/ICcbza3XC39yG4LujuwzG0jr45pImNyifHBaLBVxdXcHZ2RksFgtYLBZiMFYr3wR8Tkhtzmtp0joUsx5K9CzjC/NQvUVq7y5kNx/31DkrjQGq0/P2kPRaTUZJDjY+/rIsK/WB4XAI77//PkwmE4cXixPI6jzxyQ8pH6+rlsc3BiQZ4uNPajvpP6VD11Nax6rtcuj3E/jBDx7A48djGAzQHgD2kY//laYD5tfAOt05XUqf4qA81dMpLokGL8cz1evqK8P5q/+n+F35SdvNnS8yDnfO6Pzy+tTHWg5uvXkgNoE8B3ADrvwI2gRA3KkqH1VLeazKIz3+LFxGy8v5wDw8P/0v47IFQKvniakuMg63rI8Oza/xXeGq8knjQOdR4qfaHVv0L+KjNOr4kF8ecKXP6Zih84h+ijtjcS3Ib+63TiHLemIwVrMP0P7kIK0t/D+uh/iyHMpaPPkpTVO4vLyEL774ouRhOBxCmqbOWma1nX35+Hpq0a+QR1rGshZt21fiSw/ZbgD+NbcthNrex4eW3+o/4Lit6SF9UdL1tHpqOp0EIZtMA9848NmTMfr1NxWkFwAtvgut7zW7XwP03yBQv63Fjr5tsPIV649qCzHtL82XtjxYbeMQHTEYaxH6nJk2YDUa28IuHMK34XS2QJNJjkKI94+ljtqxfJay1AFHDWqAIhi7WCzg6OgIsiwrdwXisSt4Bx3nhdLFnTK++/lilSCad71eQ5ZlMB6PYblc1o6oy7IMvv/978N4PC75o3V+/vw5vHz5slReKdyGsI5RcJtCSNm2KjD427ebZrFYwNdff13ixN0GJycnkGUZfPnll+KF3btsd1878GfSUY90fO/zAm8FukMKoF5X3/j0HXHIjTKch7FjmS7I6Ezm9/cijSRxj8DG+uFzyneME3yX0FQ+NqVlMTp8fISMp9sA6WQA7G90xoeCQRRwXaN5JYfHtvurCeR5Xr6UYA26SXqjpmzTdQGPdZfeTJVocNxYFk+6sBh0ktFPgepakt7Fy9Jxsmuw1FcDrB8PrqBzD48lXi6X8PjxYzg5OSmPhnr9+rX6Ytqu9BNOkxvkqIdOJhN4/vw59Ho98b5YDehRfnQNp2tYr9dz7nzrGmi/+JxjPJ9FzwitZ3RsS/RxjEj3vVuA05fmNq1PmqYwn8/h4uLCkU20730OuSaON6qT4Msjo9GofG6Rj7wv6K5/2mcx4yfk7PTJYA4+h2eMzkPlicQTnSNUB+j1UvjhDx/CO++M4d69AfR60o7YehAW/yO56pvLd7fcTaqpPnV8SflN6dEsEh88j1uHhJWrf/M0iX9feeTXpZXUnsl59fR6Pd266YDHy9b/h47iBSjSCvwYgCvKFc8qPJj3BpuSTnkPBV7D6TytnicBf4C0eq7Rlcr6ZH6IhxB+Hx8uD3o7AbSvS8VPfXcsp1XQw3pWu1uRD7luVfBfnj/8k5fHFOd5chOMTcoj1q2gyX+f3OYbDQ4ODuDevXvw+7//++XO1/v378O7774L//W//ld4/vy5s7lgs9lAv983nXiEoPkPpbUohFMLaCVJUtPn98FnEus7lcCnZ3QBTdqpSRmLniW1l/Ydw0NMIIqfFtRUB6R5uhqLEj+aj+FNAs0nSEE6gjhJEscXrPmRHj58WOrom80GptNp2Y7z+bw8DcAHb2K7bwO68md31d6avycWvxOM5QJAI9LU+JTo8PJvEjQR+vsIUkAWwdLfPuedRRmkDpDlcgnL5RLG43EZkEHnBQpT6YJt6syy3EXpq4dF4UuS6phlnh+PU7537x4AFIsAvQP09PS0XIB9Tp/YwITfcLKPVY2fkKIs4eC028oWjl8qt16v4eLiokwfDocwGAxKo+HFixel01dzXMU6mhCkdtbaTTMctHy+eerjRYJdy6yQHOBzWKsrH+N8/viciTxAQJ9r41kzCH19Qh29AJWBq7VBV0aTxG/Tftac8k14aFs/q5yjfWOV5bFgldWh8dMEYuZ+LGjj0DdvQ0Yfz08D0BYZyvnic5nmoc755XIJWZaZ74mtO7iL/9rJAzFzVpqPlr5rM05C9CkNa7kY8DlJMBi72Wzg4OAAHj16VL7QdnFxUR6Lp/EjrQ2++jSZM74+Q2dMnuflHZ8abSzLxxS2gYYf8/h4a+LE43qY5JTka6VE24fbClo/Il2svxaMtYwBn+yl9Vyv1zCfz6McyCF6WltJ42EwGJQ7mJrMeUk+ctvCgiPUpiG551uXKU9N25jLf6mO2LZJksD77x/CRx8dwWjUu7mLUfog7upT4ZK/ZR71cj58Ba912rRMlZ445VlOFQd97qtHnb/E81/eweu2qRSY1Z+5NFxaPr7dOvp3eAJgsKwIpuHvahdkFWxLEv4bebHsVmWclbgAIGpXaeLkbwd1XJS+tU60XZrQlPHZ6IK4+1nCU9GV8cfuBvY9d+uI7UMDtfVnKE9lvJUcq/7jyyS9XgKbTcV7yK8SC/QUidFoBA8ePIAf/vCHcHR0BAAA9+7dg6dPn8Kf/dmfAUDxsvtgMAAAMF3H4QO+Plv0Vcu6K639IVxYLtaejbWX2+j5sb4oX3oIuGzmPIR0YMwj9S2l0URPp+u+hltL9+ks2wKqg1vox+jieR4+gatrH02XYOHN6qug9fW93Jrnefky5mAwcMZ0r9eDg4MDODw8BIDKj8H9GruAEJ2Q/i7hie37bdZVkzHWcl34Uy3jrUkbBI8ptoJUSd9bxLsanG2ha2f4rqCNosPL72Lh4f+504dPQhpMS5Kkdqwv3TmAx91hHt/xtT4em7QDOlLwWESA4m33H/7wh/D06VMAAHj16hX8zd/8Tbkz6Nvf/ja8++678OMf/xhOT09LBZZeJI7HHms87WLMNm2TNgGgpgtDv98vy69WK/j888/LPE+ePIFHjx7Vyk2n0/LondgdGFbQlAbeRtQAQqC7QyV8bZRs7tjqCix9SBVF3DXO2x+PfdTucqOOPboTHmUJPwJTgjbykAZYqXGBb9mtVivIsqxU4EKwT+vlNnjpcp3VlKVdrWMYLGii61iNQf6cj9UmSnmXwRQL4Np8dXUVpB/C4+OP7qqfTqfwxRdfwIMHD+DBgwcODknvQLlB881mM0iSYnd7r9dTT1HQ2lhT3H0yJhTIiAUqD607kXkgp+48T5znEj16NQCVj3RnLOIZjUblztjlcglffvlleTy/xh/SldbGEPjasuv1n9cb/+MR2EmSOCem8HEjXYXRlVxGfrhjTNLDYx2Lu4Jd6L/SqReUPm0vLkN4e9JyVN9Zr9cwnU5rMobOHwk0WaE5j7tw+CJu3/UYkrNPGsc+uybkDKHORm3eJglAv59ClqXQ66U3O81Cd8VyRxD/pkHEIp2yWme7CiImiZvfn1ffsSvxwZ8BC17W21NvX16m/t/l0+UlYfwnN2nSLlk3QCvJnYq+y4sMNLDmBqrcNByb2h2fRR5wdsZKu2T5cbXIY07SeBvb0920ih7NV//PXzSNCbQmEAoS+9LivulRvm57Vm1JA6kubyL3LJ/bN24bYR6dH/cb2wfHDT+6uDp2uMBN8VH+6BipZA+d88WO2M2m+p3nKLcAer0Enj0bwcFBDz777BrOzpaEbjvgVzoBFDrW97//ffjoo4/gk08+KW3Z0WgER0dHcHx8DMPhsKaLcV3bpz/QNVbSL0N1C9HYF9+uz2/jy9/EzouB2KAcHyNagMeHs4lO2UU9+f2hEl8+Oj69hufbJki2mG++SLbamwToZ6CnJR4fH5eyBa+VkWAwGMDv/u7vwmazgf/9v/83rFYr56Sjx48fw71798oA7WQycV4ql16c7fV6Ufdl3za08c11YZd22U6xdgWCbkd0x1swGCs5+jRGYp15tzHpYwdWk8bmNNrW3aJ4tGnLmH70lbMuPqGgJ1/AqXMI02gghT+nQRdq3Gt8WBd/CY9FOcFj5Xq9Xsk37ry8f/8+rFYrODo6KoOxR0dHkOc5/PznP68547iTocsghlYfn+Jnpc/HcBvHe9My9OUQuqDO5/PyPxW69IhAi1LJn1n7pYki3qbfm/BF/2vjgJcJOc0swJ3WroPHfzc5bSOJd8l5quVtAhp/eZ6rL1JQ2l3MOw1/2zxNwTd2fHmsEDvmrEZ9Ez586yp1xlOHQdO2aKv07kIX02Rj7NHgmoPAEpjYbDblPbX86HNfWT4fuWyxjOsuIHatCMEu+p2Pcasey9tZG+N0Lml0uwDf2i7Ndd5XFv2YBx+kPPR/rB1h0VebOvja2DS8r0PlujDykb7UtlxmcDnh6++2ehmlt1qt4PLystRPu3JuaPpayHHHeaUQ6r9YvZXbZ1L7+tZLtL3oszzPYTzuw3jchyxLb4KvOO+wnBscYbUo89BvH8QOh6qe7ifEi0RLqoeU3/8dqkAdv6unF3mqdk7KclX96gFYYEFZCR+QADbFWQANeNEAWD24Vvyu7outnrn+B/ebBwrrv7E9KB/g2TnLy3pbXcHhy+Mr4+fJRyPmDlYRA4TqS/FZ+Kn63rIb2rZjWisLniB19b8+HqpxrZfH+mCA1g30V3MjTYtxORwW8q7ft71gZ67ljSzla+Hx8TGcnJzA4eEhjEaj0q5Fnwlf32Psm5j1tK2fVuPPgiMGQnWK9R9ZfLeSPqnhCLVByMbapu/AR78tPsnWoBDj47SU4+3cxC8m0aF9LfkbfP+7gja+SR9OH4TmEz9+HAOi+IIw7twHqIKlAMWpiQ8ePIDlclm2LZ5Sk+c5ZFkGw+Gw/E83eeB/qa8sPsaQzzJU9xDElGs6H7qy0UL8dAG+MaT5FS3y1wrRO2Oxga1v0+8bdCkkfJ10G9BkwsTg5Ya7RKvJYAy9xczvTkSB6Fs4ccecZcFp4kRCOr58dHwcHR3BwcEBnJ2dwdXVFfyH//Af4OOPP4Z/82/+DTx8+BD+yT/5J9Dv98vdu6vVCv72b/8Wnj9/3hlPbyr4xp6mYOFu1/V6Da9evYKzszNnnNPFGdOlOx7bApchPsc+rwf/5uO967FgCXrQtmpDg8Px8TEcHByUeUajESyXS/j8889L5cd3lx51ovAXObo09hA/4uV80PtkMU+v1yvHW57nsFgstqos7xLoGI01aNrU2WfsUMfCNtoVxwAehYtvZUo7sQtHSvWSSOgoTL4OYjmAuN17kiOC4twFIC08taBr2cpp4a5DAIDr6+vy+FHaDlZZQPPhyRf8aFmfEdG2nbsIyGC7NynbtJzm/KKGLLbj2dmZs0t0MpmU9/1SPJvNprxqAPW+6XTqGMVtockcQT41g5wDzasd2U3Xryb3pd4GoIzj85vakpLTRAJ6ZzC+dd7EqSDpTHlenVyBaWmawmKxKOXELtpwsVgAQCFXzs7O4I/+6I9gPp+X85XfYdVmDsfUJ0YH8jkCfbg0B0dMPfO8eNmt3+/D/fv3y/F3fX0NFxcX8Hu/9xi+972HcHJSvyu22hlLg4TA0gBo0K9Ko/UwsUry8aBjkYbPKjry7lk3Xd6dW8dPaUANr/yt4UvEtOp/dZ8l9rHbtu4H89ITgbjuQ+vrh2rXKwCOT0x304r/uDZhkM43/nIAkIOzmI7tUhWv8uhDOin5rZfX81vz6Xh9eGKP7pVo+XeZamXrfLm8hOtd5QMAsVyoLdxveXcrxcXx8TEBLEBL87kyJyf/c0jTBDYbgDQt6OPdsXhv7HqdqnfH0rEcI/vRRp1Op+X6BODqILPZrDxxLEkS+PLLL2E+n5cvxCyXS3V937UfFW10qkvtg41N+6Zr+9/S57F0pLU+BpfvuFwL+Nqpqb62Cx0vpp2b6nicjuQT2YaPaRvtF9MGlD49kZLDarWCi4sLODo6gm9/+9tl+tOnT8srBJMkgeFwCOfn5wBQ3JH97rvvlvZ+r9dz5CG1R+bzObx69cprp8XGHrYR44ldC5pArO/Pgq/NeN2mLdeUL/XOWB9yXyW4wyIknHe5AErOFKti4AtAWMo3ydNV23SxQNHyvnRLe/ic5Fo+6b/Uj74825h8Wh/h3XQYIOIOxPPzczg7O4PFYgH9fh96vV55vAtAdYwpBepM5sqjtV+30ffbBOtc9c0VnxMVhTpdsH2BfglP7IKqATeSQuM/lEdqO18fWtqyDWi84X8tGIMOdxrgGgwG0TI01hDxGYihNgr1M8/nOpls8+w2Amix9KjS5FP6aP0tbedzqmvgo99FW8bOn9D6RfF1xZ+kj21zvof4pf2u7T6L4dMiX/GOdrxf3jcm+JGbMcZrjNPJEnCw6tRWiMVD6UtroFXP48+5jMA0NKTxDWZJ58G5gdcJ4NqNd3zuwtBsClqbIN+aLYUvbGAeOoe2yWto/FkMZKsOo9EbDAaQpml5ygwGZ2PqblmPpDLIE+crdtz70iktfEELjz5rOv+1eobs3BjdScIRMx5ou3IZy/Fo7SDxSAP2+Hw47MHxcQb9Pg+8In732w+6fRkzHet5EyVdym+x+6zPeEZt/NafJQnXY/E/DxS7wVi0ad0joqUPxWcNxla7XQHcwGq1A5UHDKuyWEc+pvVvAHdna/XbxS3R42kUT5Pyeh4LhMrR5765Hku/y/z1Z26bVnm0dPe3RaZJ7Q8gp1W0AcDZVQ01fmg5+r8Y/1XANk0BRqMeHBz0YD7fAFWrY3UFyX+W5zkcHh7CwcEB5HlenjIDUPitzs7O4Ouvv4YXL16U+gz9hPAjDdTreH5Nh4jVf6geEKtHS2tQF/pXrB4eg5e3tVa+jc/LcjkzDwABAABJREFU2i5cx5NwavYqzxNqD8m+oL95/zfpx65s6Bj7sgsIy7L9tJ18wPsS/eh5njsnU9IXqLMsK68ueuedd8pg7Gq1gk8//RQWiwWMx2PIsqzcyENfoscX7qmNimld2KBt/I0A8b7PJtCUB4vPwydXtum/avOcQ6gPGt0Zu00hse0Gluh1vaDuC+AiQ+tnfZN81/2ANClv0j1LvrLSoiope9YdBaGF0Sdkl8slnJ+fOxd7c1iv13B+fl6+WTMYDOD4+BgAikWAHrGVpikcHR2VaVdXVzCdTkVe30IYsO/wyAmA+tzg42RbcyG0G47StjjxtP+7ghgeQ3mw3peXl3B9fQ1Pnz6F4XAI4/E4uPuWOqvpR5KLWjChqWMVjVBKkwLd8YX/Q3Tos13K5bYgrbHWdo2pJ18D6s7R3cwF6qDz5eE7Yps4BShQfNzQlIxWqa34KRRtgbaD1J+SkdyUhgXHcrksAzhYDtdUqc2QbwnQAcXzU7584zzk9PDJ/LbzHw1IOg7b4OIOD81o4voY0qa7R9M0LV9Qs9LH+7cxWIc7Y2NliBWs6xhApYdaHJF0TNF0Wgd6RYWVl6aAeDEASh0alAe6g83n5JNkDv2vyW98C/3JkycwHo/h/v378OrVK/jFL35hklea3KHyjstk2gY4FjXnn2Z/NIVerwfHx8ewXC7h8vISAMB5McTi+NBsFok/i+OhTX0sc9DiWOXPcN2MkWG4g6zYFcuDgFWAg/8ueJS/qzqUv3jt1HJ+3DJPFJ+Ly79j18WfsDReT/l//VlCeOI7iaWAagpJ4t5DWcy9+jws8lRlCp4Th6Z/WNJdsPiNH4A8r2Sp9sE6SvoZXfuq7yq4hzxWeOqB1irN7SOeT4OYvBI9+p/yrtGwHukr1evmSSM+/c+q9nbr4nsm1xMhz3UeML0a93QnNe17rW/d/ufyoP4pcGP7u/Mpd3b29/spPH06gqOjPnz66TVMJvUTeWIB130c57/2a78Gjx8/huVyCWdnZ3B9fV2e3PDXf/3X8J/+03+qBT5iT/Io2sK+5ljWKL7GdKUbxvDp8xfQ/9vSXTVo0h40v1VfB3D7gaaFdBYtn5Vvye9D213i6y75WihI44zqSV2O/9sAyzwaj8cwHo/LZ2dnZ+WOWA4//OEP4V/8i38Bjx8/Lv3wp6en8O/+3b+DV69ewXvvvafygqc2UViv145/GXloAne1n5raDF36oNqA1u4og6Q1rSnfjYKxALKTjz/3pWlO6tuGLviRFo8mIDlPffg0J7C0+PgGu+QkCkEXQibkPLcY4dIY48CdEF31lwTcMU4B76/r9XqQZRnMZjN4/fo1HB4eQpZl8Du/8zswGo3gz//8z2E6ncJkMil3BaZpCsPhsLxnNjQ2dg3b4MPn8ArJEys/dM5Z7+W1OJAsss7iHKMyN6Swh+Z3aKHx8RkKJPjw82fa+kEdNQjL5bI8xrff78PDhw9hNpuVDkvEJ/FCHcvYtzGLfsi5zvFJzlr+nwbhNFnlG3/7Mt+tYHXKYl7LWqc5yPizmPnXFrhc8q1DmqMvhNsn80Nz3Kef+eax1YAOQdfrVVP9wyK7eT7JmRMztpr0lwRN2xDrgDvvUJY1GYMSfW288PHO83KYzWZOfl/QBd9ypkeCN3H+aeBbo6R8lOfQfJXawyf76LqxC9D41fpQGsu87klSvbGO96HyQCgv3+v14PHjx3BycgLvvfce9Pt9+PnPf95IhvA5zPuNj1urztOVPEPbQDravk2/41y32uwajph1xQoWB3TIvsP/OPfpyURPnhzAe++l8ODB0An8FeWqoAfBJuLGLFpX24aASydJ6HeYho2mPjYt+H28VGmYKAWN5R2ufAcsBmV5MJaXAeGoY14vF3yBWPykxjGLR+vWZTkdt9U3D/ZVv4tnbpoVqrJx+dz/8XSb82OlpedrWufQMz2/xEs4rY4v9LxOt8hTjROKh46x6uhicP6naZHW76cwGIQ3XsSsV3SeTCaTMqCxXq/h//7f/wubzQZ++ctfwt///d87gQnNab0NaLs2xuKQ9FvL+mXplyZrrKU/JT3cR1fL31QH8Om1VgjZofS5pFtruCT/TRtdyaLzS7xawWeX4Dqq2fr0A2DfqHVb4OMtZLviCyFPnz4tA6Sj0Qjef/99ODo6gocPH8JHH30Eg8Gg/AAUG6QODw/L4CwCnmyJtLWjkEN1aOo/kXC1zdeGblu/u5a3Ce+heRXTbj4Z17X93TgYS40dCzRxMr2FeJCO9QCoC1+L4PU52boEiwOKAzopQkfKSsAnqWWibqMtNpsNXF5elkfsXVxcwMXFBXz44Yfw5MkT+Ff/6l/B+fk5/Nt/+2/hZz/7Gbx+/RoGgwE8ePAA0jSF4+NjuL6+hul0WtYj5u20uwBUUQg5a5oo0z66/G7RtvegWvhDJSrGeGmzoDfBaeExZi6HcNBdN7PZDDabDTx8+BAGgwF8/PHHcH5+DldXVzUeKR7+DAOyeMcglwO+RVi6C5D2sXYXoyR3lsulaNBxnFo97grQ8USNBWsZno7Agx10pzFf+zhYgghtgBpE+J+OF63fNVwcLO1JHThWvLTcNnUxiyNgW8DfEJYg1CfaHcCIs6v5ymWMJKticSdJUp7YgS904V2UoT7AuSXxQeegpIv49Cje/1dXV3B+fl6m0WsaaFmUxXg0cZIk5Q5o/mZyU9B0Rpx3lG9ph7oEoX7zld2GczMka6X8Ft2dPqMyEe+Ap0F3H2RZBt/+9rfhnXfege9///uQZRn88R//caN5JdlFPlkoyWrJ0UXHQ6z8pDRWqxVMJpNyl3ibtd7nsOP5utKdNboh3iz2GOVd0slRHiRJUh5d3uv14Nd+7RC++90+ZFlK7omF8rv6hHaX8nazrN9yGqdF6+zyQHeA1nfI0nKcHuWP4uB14nzw59UzOpexbGhHLAZYgQRf+XcCSZKKQVkajKXzsT6GacBLC8IC5PmGpW0gz8F5KanuM9HnM7VNq++Kl+J3AlpA1uWb16UqV6+j1E/hOezD4ccfhiblsQz/DuG10LLmAZDz1XkLvazs4irGKN05y+d6fazgeCl+5yQ/zUOfu/deDwYpbDY9aHnoiQovX74sg7HD4RDyPIfLy0v4i7/4i5puIumDVturiW6rrR8xeGL9fVbcvnzbtn8sbenzm9B06Rl/ycvSJtx+jykbakv85nKcQxOfaciHR/NYbW9J92k69rl+xHV1yW5DXxjHdRcgpGvjSUm/+7u/C48ePQIAgGfPnsG//Jf/snYdIAU8jYfD1dUVfPXVV+V/3EC1K+hC3kigyYhYO7Wtb7IL36ZWl7a+aau/KMYOAmh4Z6zluc8xaMG5TYhtpH0Di4OHLgjWfpUMHI5HUpY4xCoyEv8aTom+b9JJ4FvkrAqBVEcp/3K5LJ0qSZKUu2CXyyVcXV3Bn/7pn8J7770HP/zhD53yo9EIAAAWiwUcHBzAaDQqnVYW3vZ9IbUqatLvUN81XajobpOmDu7QM4sSF0svZtGJWTh946hpoME3T2OMKNwFBVD0G3e6S0olbw+qqPv41WQOd8bGKOj4G+9E1JRmqyJvoXfbQNsSZTA33HmwJUaW0Xz09Afetny8cece0vQdK2rlxze+2iiLsTKe49RkpYXnWFoxEKMjxhr7PN3CB28Pigvnv0/PkJ6F2pbrb6H2tOpLKCPxnvoPPvgA0jQtj5r78ssvTQ4A2j94dw6VYRjU9ZXV+OVrmuWlwTRNy2AsvtxiOfo/FriDR3rOZZq2joXk+jYMXAtw+4Gm80AF58mnf9ExjEceHx0dQZ7ncHV15fSX78h+dBqhTmx1gPD5RNMsslRaN5rKJ5/+StsAg7Bt+12qrwZNaGEZbdxbgctS+tIHPpdwc72Cps3ncxiPAT7+eACPHqU3RxO7wcOqHMcLZVqVD5xvG9gdyy5+Sa67tKX/SDPEo78ulJ/68cRVH/AdsfVgLN/5yoOwvR79j4HyehkAeYesDL7dsEVgrNLxcths6sfs57l736ZIJXePIk4SN6Dnjs3mQcqu8pESEBu01X5HUU3CQVeNfp1n+T/tDwkfgA9nrYT63M97xQvPo+sP9TaWntFv/sGXTNK0OIbdInsskOe58/IxzpHZbAbz+Rx+8YtfwGq1gvF4DKvVClarlaq70lOpKH5N99F0oRj7h9t3PjzSOhljT1t1Il8533PN5uB2gxVCOjkFqptR3Zzev8l5sdCP9VNY9Gduw8Xga+M38dl8fGw1uTKP4tR8ZgBF/4zH49oYn81mzhV39GVxXx0k+ruwSUI8ABS8D4fDkh88QW+xWMBms4HValVr+36/DycnJ+UuWDxF5eDgoLQruA5+eXkJz58/h1evXjl80GPYUa/wHWFr9T9oeX06sJRHohvCGzN/JTxN55TVX2O1wyTg86aL+e9bwyxt2fq1cU0YhBxUvsryCsUugLHQZAGLgbaOlRglheOWHEQ+PkOD0tJ/TZyHXEhIeaS00JHLMcpQiL4PtPyomOLb2fj20Wq1guvra/hf/+t/wSeffAKffPKJEzQYDocAUARl0fGEx7nRemn8vwlgcWZZ5pZVsQgJ0DbjgpfltNre26cBda6GnFoSaAaTBlgPqyJiVZJ5Gapc5Xle7kblhh4vF5KhWh9pBhZN58YI5tXGI9YDj9GTHMUaL03abR/AJ/s1BdNqeEt9zd/2DB0tzfmQFCzLvEH6Pgd1k7WJ5tedOnFBQM6zNA6bOD6aQqyjZZu8SOOFylRNt7LWQWrfkLMohEsDnAvz+Rx6vR588MEHkGVZeaTc8+fPnaCqDx81ONEpg8HepveDcZoUJwCo1zFgH6B+hOOXvyzTxbikvzVHD6UvrQPaGqTJxl05PCgtyQbjO8FpHp8ehs9xvvR6Pej3++XO7NPT09J5C+BeI8D5w+fj8RhGo1Ft3bfUUVtLNYcZfW6xuax2mkST/s6yzCnbZE5JToeQ48aHQ/rfBDS9iOtWsWsvP4ViPp/DYJDCt76VwnBYBSoSFsQoytCPZH8CgBPk5PpKPV1il9Om9IHtUPVXV7OP5N++NPdZouCo17fKX82ZIp3vgq12vdaDsD2SzoOx9Bv7N7nZ8VftzHWBzlccO5U+RuV2NRfcF3GLuZZCmkqyJb+hWXwXxRAXAN7tScdsNWewXNF2RXICWuCOtHZZLgwWfKxELa+PnvzMp6vE8CLRoeWb4VIoeHDhuC/6FIDvbMVvhOI/D77LdeD1c+ki0uoo4qrueCQxxUtfgKh2yaKc6wJw3vB7TXHH2cXFBWRZBvfv34fFYgHT6VS9SsFnV2vjx+oz0PQQpKOdpCC9eBvyKfI1LGQrWX2iMWuzD5+v7ZvYWKi7IWRZVurY9OV4X9s1gRAuzVblY7UrPkK6blM8vrIW/JLudHBwAL1er6ZHXl9fl//RN404urI3twVSuyVJAqPRyJnf8/m8DMgCQO2EGQzGoq89y7Jylz/NQ+fK5eUl/PjHPxZ5wPGPfj0rhHTvkDyx6MYx49ICFl+SFdrwbZkzTehb1qEmz310OwvGdlmhpnnfQgHUoYagHcVAnSBWaLKIx5aNcaJJzhjrRNSO3NslTCYT+NnPfuYYtC9fvoTvfve7pTMyTVM4OjoCAHB2yKIz9C20hy4CWH6DtHAqSAs1vQO56SISa6TEQMxCjfUEaOZAlB1hRRo65F++fAm9Xg9Go1H59pt1obQG0/j/UDAN68yd1jTfeDyGPC/eKOaObloH7sjnEKoDleu0P/YFfIEMAJuCJhmtmpJsMT5xbNH1ANdSy/rAn9M3JTmPuGZRh2Ov16uN41hdSaKFz3zzynVM7jYIxMEnP/dFH4wxWK2GUMjJ0xboWEuSxDHCEaiT2oILA2f07WM+Bq3zh5aJ4QXnKdYnTVO4vr6G9XrdidyT+oUGtTh/0n+an8qZWKD0tzEXpLEXWsMtvNC+5PKbtg0vg89x3F5dXcHl5SVMJhNYr9dwcHBQOl1i60lxU554P9O1ytdvriO+nS5JbZrbtk+sQNssBFTPAZCPfKd5rb4E3v6z2QyWy+Jo4l6vOgKX31tasewGUvEjge+ZHxL27ctDgy1VOqft1oHzlbA0fiSxXJbTq+jyY4LrJ4vUd8FWwVYMwuLLQUW/1D/4jK9b9FOvKwau5B2xNKhE5VHxvYEkAdhs8vI7z4ugrOtjkPuvwFMF4CSZlqjBPz2A2ibN9zyUvwug7cGeCGlNcNd/y3koPZe2lCe+bapArVze7V95/kk84X96nyy9M7bCW83NHNIUoN9P4OnTIRwc9ODFizms1+07G/Wr+XxeXguBVw4kSQKTycS5KgbAld8xOmATJ31Ib5bWC8mO9NGWdFwfWPU8q50vy5Xm+kasLombSkajEeR5cTw11Wm1+mpt5qOt1Uurv/TcN1a6tnG70Mtj9CgE6jdIkgSOj49hOBzund+nKfDxwn1q/KV7Dr/3e78HH3/8MTx9+rQMvj579syRUfj92WefwYsXL+Av//Iv4auvvoKf/vSnpc/94uLC6V9qcwI0i6fEwm35ZTjE+MP2hWcf3LZ9ZQrG+oQrnRRSZWKM0zaNERLOvjJ3YaBIwJ1WmEYd+Vw54UINgwAcn2VBbcKnNk58i5ivHM+DuEKLPXcEhe6/1CBm7GiO8sViAS9evCgF+nA4hPl8Du+//z4cHx8D3imLfNIdsjQYe9vC5DbA0v4W2ROTx0JPG+N8XEpKhs/ZF0PPCqE6U76t7WNVKLV5KtHD8Y93LeMbf3THFMXlk2GxMt+SH526vt10ePwJDSBTOZzn9d2csXwiPsrXvgFfs2iaNE8seoRkJGPA05KfOujwuXXsS8ADq5rByNciDhY9JdbZwYE6JbuCJrhC/N+Wrqb1C/ZZyFlgpWFxyGC+2P7i44s6vflR6VZ5h7xwZ4DGe6zOHeO8Qz1J25HaBkKGpdRHPt27KficTl1BV+tjSF/X5J40l3BsTqdTmEwmMJ1OyxNnlsulqEtJfElrDaZb+Q21T9sxx2V5l33cFS7fPObrpSavuF3ns/8s6RRXMaYA8nwNSbKBXq84thPTqzLVN/+0AWv5xAnG8CBNU1p8zNv48uOp70It+pLyrh1TjLti67tdi+NUMSjbYwFZbYesfmcs1I4nBqD3w1I9pwi04jjKIc9TyHO42Q0LkCRFILb4prSSm/z1O0CrQKwvmFfkwTa3T8mq3C4hjkd7mXqecP0kvBqtuj1gq0eRr7u2rsYGALCgrUy7+o1zqZJrVZ5iHtQDsXTeHR9n0Osl8OrVopNgLOJeLpdO0HU4HJY77qzrOgef/R+jB4ZohGxLC35tPfPxE3qu2WAhna+JjUrpxLYxnmySZVn5Eqa0GcaHt0l/0r6S8sTaYJq+KNnlPnw+21ACC55Qn0ttS/kdDAZl0JE+19pwG3bEriDLMmdnrwTf+ta34Ld+67fK/2mawsnJSWm7AlRHbb9+/Ro+++wz+NM//VN4/vx5iTfPi5MA6BjBl4AxD/oitU01oTFqsS27hthxasUnzSkrbR90iUuDWHs2BL61DUEMxjYxJu/yZL7rwB0Fi8WiFMiWshxPyHFkWfgtCo6mdFh208U6ISlPsQ7BLoDuhkwS9/g9fnzCixcvymNfTk5O4Pvf/z48efIE/uf//J8wm82c9onZuRWCrp3xbxpYHKF8bNEy6HTA3UTz+dxrHPhoa881RT1mboXAdwQx8mA1bGi+GN7yvDgKhL+pJtHAoG2b+RFy1nJ6lE/6DVDM2cPDQ1iv186dFtKJBhRviC4AlI5pCjTIi7svbxskYzYGpP6gzjZUhmmQG+cexcGV5n6/D++99x4Mh0PIsgwuLi7g888/B7znMPaOFy6rueGMCrwEsYaTVW5o6zum0TXlLbQDPs75iQHSeoFlun6JAmUM7dfBYACHh4fQ7/dhNBrBV199BS9evBBfcOF1wvXs2bNncHh4CElSXL/wq1/9CpbLZW2uYVn68h9+tMAKl5uIg6b1er1SluJdSF3KOD5n+dHjtA7cyYX9iO3lo0HLUGOf50F60s77rkDC2VTPpGsgfQHp7OwMAKDcYaPJdPxeLpfw5Zdfljrw8+fPnV0ZMcBpScYypmv2gqQP0o/rRA+vc132o2TXIR9tdXwLn9o4oWOWz3GpT2IdRTT95GQAv/d7T+H+/UF5V2yaQvldtEUVEIXajsfqG9mo2IlvQ6RFPxRnNb9p/npAtOLX/e3yJ+WT8vKjTH088EBr1YbSHa8YTKU7YlFeFzZwD5IkLb97vZTsku05gVo8npjywuuLUI2B6ru4/7WSP9VOrvXNfxx7a8AdsklS7I4tcG4Abo4k3mySG15wHaMBtLzMR48rdmVBN8FNP54EpKCw+z8hbSThc59b+LDYSRpPtnap89QEcNzY2tRtS18bchzxfV0FWPPcpc3x4nc1F9HGyctjigeDFFarnjhPYoHbMr1er9wkgMcSI/hkellT45rIy2jjy7opga/TNF3y2/iA3nVPoYt11gIWf4HFx2uxxzEAOxqNypceu9Kz28QbqG4do0NJerxGi7eZL1hj0fl8ejS3MbiPgtednrB1fHxc9g/HP5/P4ezsTDy5renJktsGiQ/JJkLA6/+0cYnXgr3zzjswHo/hs88+K3Hgkcb0CGeE5XIJX331FSyXy3JDBUAVb6H8hNouZoxyebcv/WIFTd7sE2zLzxVbXzEYa0USQ6xpha1O8LsGMUY6giUICgCOY8OH3+Lg1xSpNhBLVysXWux8CyZtS77Adl1nycHEd7+hQM/z4gjTJEngl7/8Zbkzdjwew3q9LoO6lNeuHOf7Kiy7Ast4iCnrm4+S0saDQRrukPPP19daPag8aDJWLGXajp9YJQYdtJZ29bVdSNnhgRKpfKjdEVA2o/GABo1mDFn7ijo26fjBO/WQ1j6A5nCngQ2pTIxegh+UjfxlGJ6P8nB0dFTeSYg7sUNjwFJPrR5NlG2q4MbwExpflSO1GpdWsPBuoS+l30XwGdx0vu5Kx6X8oOzcbDYwHA7h5OQEkiSB6+trePXqlfkoXdyNii8v0KOKLfJcqnvsmMOj/+m9VVS/qjvDm69TsQ4XSt+KX5sTFBdf27al/0myqQ0tLLvZbMoXh+jb5BJdWmY2m8Hl5SW8ePECzs/PnV0ZMe0s1Ucbhz75THFIzt3bBIknKY8GTe17afxqayGdRyHdzMoDzo8s68GzZ2M4OOhDdX+iG1gs8rufiu96WntI2LehhMCDjy9ehxjetLIVvYQ8cwOy1W/8pOWHBmarwG3PScedsUVAFp9VwVjef2otknowdrNJIE3dnbDFMcT0s4E8T2CzSaEIbBW7Yot5wB3x1ZHEFb3iP7DjcJMEg3jy3bF1/uODtV1DmAed/+Y4pXxxdDQa22jTWJw0f6UjOTnAras7frBcsbNW3mHLZVrxQkP83bEW/xm1Y/HFci2/5iPxPfelx4Ckq2nr4i71ccqbBrH2HepRTX2ZWr+jDMYXukO+BMtaLvnILDib9I3VrxIawxrPGm/aHArVoYkeWeg81b2nPOi6Wq2cUxUp/rvk++X2D38JhAZLUbdAPxieJDkajSBJEvjss8/K9p3NZuVxxKvVCmazWemXn8/n5QsnNPBPTxZFehabMOZ5KO7B5VosdFEmpMe3pe3zrzYpH7JXtLwhG7kNtL4z9i3cPlCnbMjw7vf7zrZ63Jllgdt2LlDgykDI8a05SnapeFHAewx7vR5cXl7C3/7t38J6vYblclnm+au/+itnJ81kMil5RuDBgl3BXVrAmzrpmsI+tUvbRQxgews8NR7a4EKliAbfMF1SXHwKd9M3PbnyK+1yzfMcrq+vodfrwcHBQZkPecS53OaYYgpHR0fw/vvvl0GKly9fwuXlJfT7fYe329wpy+Ww5JDX+l8yOOmO2CRJ4MGDB5AkCbx48UJUIPM8L41LHD/Hx8dw7949ePz4ceN+4GsP51PDS50BVoNRajtLGYCq7yk/+Ab0fD733uX3FgqICWiE9BQpXRrn3Cngk/OSM2qxWMCnn34Kjx8/hvv378M777wD3/ve9+Dy8hJ+8pOf1I7slgDfkn/x4gV8+eWX8O1vf7s0hKmjDucifqhslMYf/qbHIMc6YnDHBhrTXa3J0py2rGG0PN9hGrtGIw76Es8uoCtau+S5CUiyGyDeeWi1Ldo6U0K4ufNql21P24yubb7AvmazaSD1EQb1siyFfh93xeKOWPopAm0ufTmISdPc34mYztN4oATpu98APCh6U4qkSc5yKViq88Hp6PWhQez6EcRu4LU6aaTQqYpgKt0RWzhGcUdsv/xPHf3FPbGoF6NcTcjHbZd6sK4ejMXgapoWgdj1Or2R2wm5IxZ33+LO2E3ZLnmOAbECV9E26Q0Nd27RMhqPiRNgw9/xAU4OFO828ncLzesrtVlcXVza9T6TaNG0ejA1z7V+lXHx3/Qbf4fzu/fHFvfFVscUF7vN4+27UECBBjCSJHyvPMet6bUIkk+Lr78xPoYYH1DITqM2EV9bfeU0kHYlhsrTNuS+B17Xtj7OLMtgMBiUeNBPIfGurdkhG74phPQIK11NP+LluX+iSdBUoh/y22vlcc3lcHl5WTsljQYS7ypI7XZ1dVXW88mTJ/DP//k/L+t57949OD4+hqOjo1p7/PKXv4R//+//fRmA5XbmZDJxNj9J81KyW7/JEAps7hNoJzzGxgp8vrwYcIKxbaPU24Jd0butwFxb8AUYJKWGHueBgVnt3sUuoAkeS5/HKGUSaM6wEN7Y8agtvCj8V6tV+YY/VapwkaB4qAIWcrBsc95sA3fbAK+vPO1rqX/5WLA6zS2BQooXwafAW4MwWvkmZS3lQn0To4TzPLGyN5SfK8p03ki4rLy2BZTH/KhODpa2lMYUddL3+304PDws5crZ2Vkj47Rr4P3gq7+0Jvmc4nx+o8NvMBiUxggeC+1TpJKkOOYf10dsW7pOtpVVMc+0McrXAov8sqxvlnw+/pu2jdS2+66T8XaK7VuOyyr/ffPANybQYX5xcQGj0ag8uokecSXdAyXRTZKkPCL43r17MB6PnTsA0VEkyWIJp7RO+wB13IODg9JplKYpnJ+f145KbgPavOMBJskJFjuWQ+t4rMHYBLhu1MY20nilpxVIZbgsSJIiuI4vME6n08a2RWw531yT8lmgqb4UC3y8WGk0cS5SvUua43wsxdhYVn7SNIEHDwbO8cSJE4DUd4D6AceANX+9vKWsj7eqHvLzNlDHlZTfSLcaS+4a4H7S8hvvi8U7Y+mHB2mrl+JoMJZ+QPjmvzE4Sr/duuU5Hrm+gTwvAqqbTQppWuyMBUig2HmYOPUtvum6imPYpVP8h5u8tgAhzyeVs+LaFTStW9f4dwk+nqzPLPWqjwcce3U5imMbn9F8eBy7FTQdk9qNvvwhnE18Z741oqmvhPMirUdWXrnOp+HxrfeazdTGpxKTR1qzJV8X6vMI/GXdrn2TvF8suGh7++x7K21eRtJ1ML3pWG9q73LdDjf0oE+ZgsUu78KuaKO7+XhAHwwCvhRAT/BKkuJkM/SDjcfj8lTJ6+truLy8LPE8f/4cvvjiC+eYYY1+kiTi0c9NfMI+aCMrQ/g4dMm3D7pYf2LpWe2MNiDZhG1kc3BnbBeNEwu36Sh+kwDvjqX3k3IH28HBAazXa7i6unIW1q52S+2qL5s6jkNl2uC1AF0w+/1+eel6nhfHFUs7k/CohbYO632bZ2156bouTYMu1nbFxYIfg9oUtj1W2wQZeB4+diVDz9cWmkOfLsAowyx39VnBN+fojidJUUeeMDiq0ebjznKfB92RsF6vYTabQZZlcP/+/bLMq1evAADKQCTuHrsNQKUa6aOco3OHtyM3XKU7grAN8C3IPC92vj569KjMM5lM4PT0tAwa8T6bTqcwGo0cvHjUTey9xtxRCSCvrdh/lqOB2wZjrA4ArDO2ZRPnxJsAobprctfn2LDgQboY1IwBiR7KnMPDQ8jzHJ4/fw7L5RI++ugjOD4+hoODAzg5OYHHjx/D5eUlLBaL8ijjEPR6Pfi93/s9ePz4MfzVX/0VLBYLGI/HsFwundM+EOgYQ361QI6v7hgI/o3f+A34wQ9+UN73/B//43+Ezz77DI6OjkpdqiloDiCfMxCBHxnncx6G5rXUPtta6ynNbdDJ8+LNc6xTaH7hOHn58iUAgHPXUxPg7WftTys00ZXaOIR9IOlJ2x43lC6lRXfLh8YW3xlv5Xk4TOGf/tOncP/+EIZD3KGJu8XcoKIbyKBtJQX9moPbBRVuSp/Tq2wCL2anLM1Lyxc/5d21+Izz6/KWOG1GdRo8arj4Xd31igHX4nev3AGbZf3yeHvUMfCeWCgDr+h05Ttj67xWkLPfOfudAwB9CbLYCVvslpVOacDxi5+8PMIY8+U5AN4Ni3nx+Fh8ToOy7txLGM9aWszz2wGs3z4C563OK23T6jcOg6LfYupXHSWMwXtddmljoBhHOA/52KnPTZo/KXd8U9nXJVBdha7P/B576zoYGxyTjgPla4SEn983iS/noo5K1yzNNvLp9WhTxthMbfxM9DsWrOvqer12jrfFq6Eojhj7xsob/b4rQOeEL9il2RRN6NExPZ1OYTabqe12G7Z5SAZYeer1ejAYDMr/19fXom0JUIzRyWQCs9kMzs7OAKDwe/3RH/0RvH79ugzW8kAs0uE+wzyvH/v8FsLQdrw1jVGE/AddyRWf/ywW1J2xIaeABk0XlDY4ugQr7aYNvu26hRQIVDzouf9dBIJ8YFE2YttzF04TyZkQ65AOjW+fA5fuMKHOIm0B4hBq9zfNaW6FJmOtiVzj/UyN/dtSMvelz3n9LYEMqqBz53WMbNGck5LTXMIbmr+WYBc9VpkG+rRjO7kiryn6nLf1el0eTX9ycgLL5RLOzs7KF3Vuazxw45gGIUNGC4XQc3r3K5Whp6enDv1YvBLEBkikfrTKBq3/Le0ljV+aRncO444VS5A41qlwVwztmDXft95r+gSXN/Sodct4iGl3XIfwe7FYwPn5OVxcXMDl5WW5SzbPixM7LH2EeWazGUwmEyd4y8eaNkekNrKsu71eD7Isg+PjY3j8+DG89957cHBwUBrtTQLZUt1CoPHpqzPPE1qnfM7GXYJlvIXGLZdXfG3X8Gvrfeh/DF9Wfbnt2rRt0NrEpz9I/5uuURI/lHZo/ND1WqqHxDc+Hwx6MBymzs4wvyiRxlqoTBwgLsQr4dbo8XQfb3K6fQ2j5Yu24zt65Tti3aB3FaR1g7L1b7wXFkDaDUs/vB70d07+428akEXAYCoGUlMA2ECaFjSq+2LpLt/8ps5VILoYdjToVtBNknrwrvid1HihefYR9oW/JnxoZXi6H3e9zwJUAby7oRFfhdeda3F80LFWlK3oF8/xXtcE7t3rQ7+fwNXVKsqfodm3mu3IZbxaI0UX1uhqfEn2my8QxX0G6Fuz6roaHkrbp6fF+D0s9fLpSk30E6seK9VTy+/TQ2L1iBjdw6d383Gn8eTTwS0+Kx9dH9/0RXOfPqrx55sDTflqCr4+a+p/4nXEF+4fPHgAq9WqfNmP+l2pXYr+oNFoFEWna4jBHWt/bIOHJkD1eKufipaNyU9Bk7uaXUHp+dK2ZYNH3xnrE1RvwQ4xCpEVLA4d3KkwHo9LhxV3AHI+dwUxygHNb52wmrJnUYi2Nda545UC3tNwcHBQLs7L5RIuLy/L8cODN7ftANp3aNo+1GHatK1xFzQ6iC3KWyyPFlx03OwDSIEeNJQ4SIs5lV9NlHv8blrW6iykfY7HLQ4Gg/JNPNyJxndTofLg6zN8a48GH9brNUynUzg4OIDRaAQfffQRvPvuu/AXf/EX5c5QWnbXgLsjAKodw3wM+/oltF6kaQoPHjyA4+Pj8n+/34ckSeDzzz8vHYU0CM7x0/EWO2csynMbxwinYzE6LXxQHQF3T282m/Lt6Ld6XwV0vKIM4rsDYnHhvOTGZFftTneNz2YzeP78OWRZBg8fPoTJZFIeUzybzZyX9iSgdf3888/h6uqqXOd88pgf085flqAvq/hgOBzC0dERPHv2DN5//3349V//dTg+PobxeAxJUh0t1TSAFALJEac5KvlcbMsPbd/bnJM+Z1FMHX3yFZ/hbjo8AYLfAxUDPocp18122b5d04pZU2n+bQHOdW391urPZYE2r5MEoN9PoN9Py3tiMUhYBdTqH1re998KWIaWl/BU/ULz14OOSVL9puky3kRJr/MHwvHJbrAB87hHEbs7YlMn+Ip3xfZ6fej3C/22uiM2u7nPN4Mi2Nkr8Rc7YRPlw+vPIRe+tU/xvGpr99jXakgVwdbNptpZXRxhTNsFdUTOGyIJBemaQ3ucsQHHbUMcP/X6Y4DcjltqQ71dJRw6zxQP/w3gHsWPY0/Dg9+VHMjLsVs9o3fIFp8sS+CDDw7g8nIJP/nJlTpeYvxnUlrTwKBkA4V8LFqZJElKe5b7awDcHbVof9IdctY2QFuSw3K5NNnTXQd5eHtZg348aKr5LiSQrrbbBcT6zWL9yj6w+ABCuH1t5gsM87Ix99fuWofdJuDJcrSOo9EI/uE//IcwGo1gMpmI5ZKkOMKY2p6SfXl9fe3sBN8nX+ldBfSN+K6m4dClTzyEvwktaQ1qIw/VYGwo+kuNIOuCvC/QBW9tnSma8kEh5HyleSTFA59LQn29XjtOsyzLyuMdEXy7Ydq0YexbEfR/7ATwLWaxZS08xjzncwV3JPHys9mszEMVTY5rn+fcmwCxTt1QEKlpANFHAxUMyUksBWYs/MbS1+an1nbUqAkt2BSHVTZZHONaPh4UDfHkoynxQOvK66WtpbHBt9VqBdPptHSIae0Ra4y1BV/ggoL23Mdfv9+HPM/h66+/hsvLS3j06FHpyA/J/Ovra0jTFF69egVXV1eAwaLY43p99eH6lSRbtPUPy3BlMmZtswAaPRis3lZAax8hpp+pPAeI142wXfEzHo/LcYovVCB+OlaaAvKLjqhXr17BZrOB6XQKX3/9NZyensJqtRKPguN46GexWMB8Pi/1Rp98pvMwpj6a7Mrz6rj/Xq8HBwcHMB6PyzbcJrQx5HzzXWs/yRnhczhp60XI4dklaLQ1nV4D/nY7xRVD37d2hoz0GLtsF9BE9/A5/DRc0njR9E/pufZboxFqw7ozGeBb3zqGBw+GMBr1SHCCt0ci/t6O/cSDiLFrQ/d5aT73d53HpAw4gtOe7m/cEcvvg+2V3/gCRa9XHUucJLgjtjoyWA/GgvDNgQdhMa/kTE3KuuU53PCOayyU98cWweJN+V0MSQx4VTtki7bC44nB+a63f+io4q5gm7hjYZ94uT3QxoSeL6mNK54H56Zbvhqj1S51253VCLvw/YVsMWkdsOikmE/SL+hvtG9iAfVMTjumvLWMtG76fBEWmiH/h0ST2x4WvaHrNdXno4kB3o4WfUMah5rerbURpyMFA33ty9s1pNuHYBt6qqUdY/vRd40T+np++ctflr5E7AN65HCe544vHUE6hluTCU1sDam8VeeOxS/hipUxsfxQOcvTLP69puDq/rpfQOPZh7cJL7HAeRCDsTGdZ3WUbqtDfLBtmtYF1WfQWxZPDfjCqE08eiclAr+zcDgcOncncD5j+LLk8zmhLGV8OKwKA8fFy1gcRU3qwfNTZQeDM/QZ75PQnLuNudYFdBHoiAGLc4mDlUdfXyAOehxkF0Dx8rpRo0NTFmMcj1oen5KlzUt0zgC4LyT41hCNL97ukoObp3FloomTGhVFiaYG0o5MfvdODD6AusEEAOWO26Ojo3K3PS9Df+9iDnKDWXtOgfe/NO4wHRVw3PV3eHgIAJXiLgGOAbw/vd/vw/n5eZlOj+71gTTerfm1+tLnWEceLKPrlW9OUjxSOvYJDcRuY22xGgq3AU11Ej6eY9cWgEIXo2/sTyYTVa62MRyyLIP1eg0vXryAFy9ewN/93d+V/KPzPISHyqnFYuHcVyTJIvzNdxHH8s55WK/XpU7b6/Xg8PAQjo6OSsN6GzJNc/CFHCUSDsvahn3D56QGu9anmkJIH+FziDtQY3Vwy5yU2o7LTSnoKPXjvvSBtZ0k/cgKVK+lu+ZDc0FqN8u8pc97vQR+4zdO4N13xzAe98vgg/RhWAg+97+UJwYoLfxd8JA4vEh0papz/uX6hNLku2M5PuQJ+aW/6afQQ7SdsT1nZywNxhZHBhff4NwVmygfANx9Kg8LHowtPnmeAkAOxQ5WlBtJ+V3UKYXNpgrG5nn14lNxdPGG9FnFE+5CRN74rswkoQG0hPDYBvx4XJr1/7uCrunuqh4hOlY+7Pzq/VnHQccYLUd3xNJALMBmUxxV3OuhvaAHiEJ6iM925MDXyxhfgrWMbz2hR71qZenxxJIt6qMfsgM5PxJei39C4iNGt+P6ldavvjXap6v7dF+Jtm9cxcQNutCrqL3M9aNQm3UFsf70GFvBl+e2oImf3HeKG56u9pOf/MTRzbkfNEkSOD4+dgK2AEXw9erqqlOe20JTepax0Qa/hkuyGaSTbLrkR7NTdjneY33EtAwv2+eZ923ivqmwrckd04d0QV+tVqqDoykfoechhStG4ehi3ErOitiFchfwps7RfXFa7Qq0gFJbnKhsaDuCaCDHpyBboOkCSJ3KuAsLd20OBoPS6crpUIc0lR+Yl7enFGi08qrVzeJQtD7nAXKJv1D/aHSvr6/hF7/4BQwGAxgMBuURpIvFota+SIcG9LYJdNyhso0BQAmshgg3GlEh/Prrr2EwGMBoNILz83ORBua9vLyE6XQKk8kE5vN5yWOM8U35oXON10kyXgHcQL1Gmxv0koHfRkGlzvRtBRbuus5J+edjV5vLWhviOOn3++Xxulpwqot+QH750a/8Rb1QeeTx+fPnMB6P4cmTJ7BYLODy8lKU4fgb5TiH0HjnaZvNBv7mb/4GvvjiCzg5OYHf/M3fhPF4DEdHR/Dy5cvay2zbAN/8sMydmDnQ1Kil7c13cbcJWGvOta7mNZf5bZ1jml6A447T0Opyl+XWtoDqFdyeDI1/yTGN6yf+B/CP8V6vOp640qno+goljiTRg5ndQF1nqdPid7T6nvsY9c17H34trQq+0npUH+l4YnyJp9oFiztT+v1+GYytArC9G9yhXbEJSG3pQg5VcAq/i08RhMVAbAr1oC3c1JVeNVDtiK12yfLjiTE4nNzQocFivEvWLyOSWwqUvoX20HSNs/a5bDMAYOAV/xfjMmd53Gf4Yop0rRW1w0K6RcgOx2ehQKgPfME6yW9oCfZR3JvNpuQPTxjx+SND61bIj4nPKB68Hkcqtwv7G8Bmy3GeKezq+NZtBVn21d/o6/+Qfv8mAvdVoZ2cZVn5Ypc0NqRjnKfTqZPu8zm9CdDWr9sU8KU8Ce8u5rG0McbqQwzBtoLctWBsiJgEXTsb2kDbQRQq71MU2kATZ6fknItdyKkjUVIqNFw+x6/EnyXdSseXz5LXStuCI1RHC+x6zL6pi3bXoAnt0JiMlYdt+oMbImgIWZUMNKqkvJY5IhllGh7NqUqDsXiPCwYFMC91BPF6A7jOZC1IRXHR36F6Wg01q6JBHeDaOOD9quHgvynM53P4+uuvYTwew+HhISwWC8iyrAxOaPekbjtAJgWZfMcH036naVK/8qACKoQXFxfQ6/VgNBqVx77SsogTAMrneDc356GLwCR3anDgThJfkCeEX8svOb81HqT8XYE03u5SoEOSM77+knQ0/F8d81jsLpN2p4bWHSsgH+gspy9qWHDy44hfvXoFo9EIHj9+DMvlEs7Pz53ALu1nKs81Q9oSdEPn2q9+9Sv4+7//e/iDP/gD+Na3vgVZlsFoNHLWkbagrStN1gAJL8Wh/bc4/qwgtb/0XyrHwYdDK6OVtwDmDx07L9Gna1ysbaLNDV85Pk7a2DIhWRzSOZvY+D79Q3rGncyaTuFb733Pdf3OPY4TPzyQVzURnbciKYE3//M8d4Mhbjl/4Xp+O11/vhinOwYXq7JJGdRJav/x4+6Kpbtje+W94xigxR2xeZ4ABjn9AVmZLzfQif95utYOifCNQeYc0nRT3hMLzn25btAXdyPqgVcfP29h36Doy7hnOHVw7rt5iv734WXYQBov0rzmOKvxWZclxTOUlfpLvz5/lmR/W07ooDgQt9VPKa2Z0lru40WjledVkIfbWJb1H//z9S5UL64PN7XtmoKmh4TW41j/RhNdw4ePQhd2qU/PtoCvXhZdR7PrQ7itebZtQ4fGS1N8Unl+UhzarRpIYzbP8/JuaCs0qcu2/CSxNC39Y5UzsWMJfXq0bNNrnEJ0JDkm+c00H571SOqQX8Rn91rqrN4ZawXrovoW9guWy2V57CICVSwQ6BtcEmzbUbsraLuAtMHxTYMmMmObcsaqlMaAb17QZ01phdojSZLy+A7qeJxOp7BcLqMcgjydL65II9aoQMAA2mg0cu6P3Ww2MJlM4OrqqnTo8J09PGDEaUsLMP2m+HiwwAcUB72Tgit/FCTlnx41azFiQs5WBNqOq9UKzs/P4fLyEpIkgeVy6SiyMfS6VvB5f2Jam7duQzxSRVGiQ5VGPn66qj/ios5K7JvNZhM8wpyOMd+OXWksako2Dc7QubPtdW3bRuMuQZrLXImXZBLNe3p6Cr1eD46OjmC9XqtGZ1fOjhiHGgc6/qbTKczn8/IlBjR8fWNIGotW4wqgug8b2+lP/uRP4Pnz5/Czn/0MTk9PYbFY1Hb6+pxg1jpLRh0C3eXvC85JaXy8+BxRdL5qoDmcsKxPDu4jSO3dpj9pWWwPX1to7b0t/VRzkGsBzib4uwTNYYFjVjslQgK6Fllpp2lxJKcUlC2aEcd/VLWiytB8chkpUQ426Hh9O2brdZTy6rLBpUH1gOpuWCn4Su+FdXfEFi9a9oDuiK12yMqB2CpQix9eRz4ucvKNMjKH6mjiFKRjiqtvDMQmsNlULwimacELANWH6M5YIL9zgi8nz2BnwGndRfVq123WFHQ+ef9L45XONfdbwlfg4TallC8ncxfKeYsvPK/X9ZeDQjoE19O4D8AafKLPLI5qy5rKT2hBfVl72Zja/Rb8mIffV99Eb7bqCPtgE2m8NrGDm5Sx+pQk3Yu+zNmFjmvhI2Qr0/z8iiGeL+Q7+iYDv6YE+xf9nQA+HaqZ33MXYO3jNmMhRt6FnvPjnvG3NA+Wy+XO2tbqs2oiD5rIPWt/tQ7GxhLcNmw7OGgVttsEi/MlxEvM4hhj9GuO3rZ4KfgcmhpdyxiNEYYhGl2Nw22PYy1wtE1eLAui5ihoQ886b2LGcBM+usAdkkNUCZUcl9JYjXEch8Z5yOEs8V85bargUuhNNlS6Y3c/8TrHBK20fpMc6TFGrhaYCMkSX7AHAMo7FamxGho/PmU2po4ho4LuZJUUOatiFeKbGuG+8UufoXM+1ikc4pEDpUPTpLrQ4AEfs5bxQfNRPNwxo62xMUaiZc1t2qb7pHMChB1KFl0IYT6fQ5IkMB6PO7/vVGu3pg4WgMoYXq/XsFqtyhcItKOKQvhi1sk8r15YSJIEPv/8c5hMJnB2dgaz2Uy977iJrufT+yhOTTeV5k4buWJxZvLn2vyNkbO7Ap9c0/RDSa5b1mHtv4TXov9jmZi+teKl6fR7m/2n6UWW/NJ/K1idR/0+wGCQQq/Hx7F+DDBHjf+7aEaJDv3ukpZGz14uYf9pu3Nk+r2xeFRxsbu0HqitZAx+9GOJq+N/6cflA9Rdp3n5rAro0nIAVVle9+Smji5t7LM8r77dMjn5Xw/Q0TJv4c2HZv3tjiM6xigu6T/9cDz4SdMEsqwHSbIpA7IVDllH4HqB1fZt4i/UcIX8Nxa9yucvlNZdy7qjBWOb+Hkob742bgqxNrqvzzmPTe28UJ19fSaBNm4ojxa+m7azlV/u57DYhtvQ7br0bWp4t6WTSrJGuqM0dn62nWNt/R1WfTcGp1TON1e0/zy/9kKBZPNLstJi0/jq4AOrL8wHMT6mLsZ5J8HYNxW6MHItOLp0LMbgsgghH/9thTkuMtt4K98i9No4gt8k2Lf63IZTMDRvJMUuBPgmKi+PsFqtOm17HNPX19eQpikMBoPaghly7OFvS4AHdxxJQV9Lvfr9vuNMB4DymGIEvitMuj8MecAFX1r4mwQa8jwXj0HkSjQPmEhKdpMxjWVijuzkfUfbh/Mh5evKiRoCpIUnNNC3V60KK+4eDSlwm82mPHp4MplA4bzte8t0KYO0t7C5QRar+OG3dA+UFQ8//qdL2KYcv401wgJUJqD80IzpkMFO53MXxgXilWC1WjXekc7H0GAwqKVLQOvF75fE75ixnCQJ/PKXv4Rf/epX5csnXeiWVC5Kjj4Kof66LdCcTk1fZtoltFmDsC98zmIeWKJpTaCps6Qt3Ma40+qq2VehuaPhBdD1oCQB+O3ffgQff3wEjx6Nartiq+BaHbe/uZrobP7fblpSpkl8SOk+fmUc0rz3/edzgOrYlS6J/+vHEvdvdsb2od/v3dwTi7titTti6ztji12zUP6nO1CrdAy2AoBzRHFxL2yBA/9LO2IT9r9qM7wrtjiquO5ABxIMTpJdB1qtxG7Xrm/TJnvmkgAgAU4AEPvcNg6qMQMQzs9xUjlSPHP5os+qcVt8j0YpfPjhCC4vV/DVV/MQozf82TYYhHRZgLidSFJgRfotBbVCukxM0Eyjmed57UoPi08xRqdtwvMuQRsHTXWQJvWSXmK+a+AbN7sIZr4pYJ3L24Ku7AUA+zzSdGwfjS75jClrHXPWFy9iIdYX0HbMxJYXg7FNHD/7JgSbOsK5g7otWHDEBjHa0rOA1n4hhSB2IqHQ2dXi4OPfKgApv6Fxto+OuabQxcsJuwSLghOqi+Rs4sEQbfGjTkAasLPec9YUcNHhAQEOTR35vrsamuCj7aSNMc3JTf9jQFaSJzzNOoa76CfOtxbc9dEL8cuNVV87+XCHZDHtJ9p/MXIf80t97mubED++dqaGOh6nF+ITy/FgzLaA8osvJHDHQsjRbzHYYxV9KZjRFcQ4Rd5EAxJBqhvdzW5dd9qAZKw0oWVZ37Qx6EuzjNnFYlGuAV06abgM8M07nzHcVfC8KzlkcbTG4NkmWNoutA5y0MZIzJoo8UBlZldGvcaHpttsS15q+oXkuLeCVjc+LrnthemHhxk8eDCELEsBWavKgPNdp23nM89D+d3gXmzX62OFjsc4nBY6SeLirX4XQcciPwY+pbtUq2AtP8a4ksWxHxD+O1zffNNArJSPP8dxRvO65d0xw3FWd3P6IEn2MajIYe8ZvGNAx1dLTN7xI9Pxybg0TWA4TGE2266/TdONQnaUVI7rpKFAgwTb0E2onqf5MH16a2wQV8IbE9yI8eFKPPKyFnox+K3+5BieYvLG4AiV6Qq4DXMXIcafY+2bWF2c49lHP4LVPxuaVz4fp8XPGOIpBniMxIcvNlArzY1t9XUbHCF/JAVvMNbKRBeddteFzl0HywQPTSbqhNgG+JwRPr5Ced7CW+AQu3BRoMGePC/eoMT7mZOkOH5yG8DHON1xikcAI2CQJ3QfIQW83/Lg4KB8c3U+n5e7DhFiF3q8M5PeK4D3TdG6rFYrGA6HpbO/cAC5d40ibv5mLabRwJ2Pr6YLsBZcpLxJSoRvvOF/6X6eUH00oIZiEyWtrZLD21mrh6TM+5QaTZfA4GaoLIc873bXGG/rzWYDq9WqnFvI/6NHj6Df75f3Xs5ms5pxH1rb+I7F0BjjRrTkCJfKvoUKfHNDChBqY3Cz2cD19bWTj77Qs6s+wHmDpzg0ceBI6dJOWICqjdARpxlf2lzFeUTnbNe6H11fJNmAdYt1sFnlapeBWOlFrS7ke9cQy0+Ms5OOLZ/zaB/aJNYG6sK2DtVbws/bVApM07mNupn29rpPrmCAFO+KLWi7AcYqiEj/S3XRn2uB2Lqzmwcz6bcOddxaQDccmJXS5bxu0JPy7bajHGgtbJ201OFR/hY7ZNHm0O6G1XfGAgvCVu3LZZUWaK0CWfWyCcj9UqXRADLWn7YRjgXcsQs3Adpdi4ht0usW9+3LzqaA/b1bPO5Y9s3zan5yPQqcT5oC9PtpqVu5eFxZjb/pN4C7YzU2GOjzDXLdkvKgrXc+h7xGC9PanJii2ZDbWmdv23cp9U2sz7WJHmW5ouW22yYWrO1w1+p1m7APerkV9ilW1vRlixjAE7ea8qM9j2mHNr5cq6+NgyVWxqEWjPU5eyyMNHEWbVvwNDEmu8B7m+BTerYJFuUktFj7gDojJAWyCxo8f0ybNQ3+7vqFhDbjoO58kBUMTYY0qauljBWvr49C9bIqh3QBos7ZPM/LY1m5wyp2nIXGNl9MtONSeRnfMwweDQYDODw8hDRNYbVawXq9jjJwNDlBg1/SDis+vqRdUBJe/J8kSXm8cqi+MSApCjy4pZWL4UULQlDQjFTezto4kMoiDewTKdgd4tMHPoNbU8IkZwEvT/MkSSIebbwtuRuakzSNfgMUL09kWQb9fr/1vGoiV0Jtu0vYBx5ioCsjgfdBU90iFihfKItjx5DPcPLNV6vxE8IX0jPazHurXPcFkPr9PgwGA1gul7BYLERZJ0HX65YPuMy/LbCsn122S9uxAdDdHOVruW/9kOhuQ1aE9EcfD1mWlcEA1IWlvL65Q5/duzeAe/cyODzsl2UxOFHh5Px7KtcSJNyYFkM3hmf3mY9IYuLB7b+EtWuVxj94Zyz9yMFV94P3ulb3u/KPr14JgLjztfiut83u5JhFFN0x1eYt7CW445qP+SShwdDqueRHc0p6/Atcv+tSP5B0QCv+Jj4i31rjw6Ol+fySseALfEr9xnWBNj7MEF/W/D79xWoDWfBL9pLP1rCCb1748jalvU37rosxuY25HqLXxo+/j8DnQNfzM0TXh8MyPlEmS7aH70Vrmta2zk3awVd/n5z12VghWhoeDp3dGbsrR9Fb6B40p7Evn29gxQr8GGWL8tFmYenCgaMJpaa4dgm36VxrUldLma7bsHJCVDuTfIBvhq/Xa5jP9TtZ5vM5pGkKo9GoTLPclSnxZn2+Xq/LYy+lC9al8pwfdJwtFgs4OTmBJ0+ewNXVFazXa5jNZt46WyHPi53EvV6vdNrxOtE0DKzSXbQ0LwW+i1aTHxaFGmnw51KQL8ZxLzlfKc+UtsSPxYDG736/b54zlA/cEdH0jkkJZ1scPoMJ2zdJivss1+t1+cbeLvQWn7NDo5tlGQwGAxgOh95x6lNSpZ3UVn7p3ONjuQnObxpYnEKhslL/dmFMWyHPc5jP52Xw0KozNdlJznHHOEA0We8z+tq2oXRPc4yTaTAYwMOHD+Hi4gKWy6UT1NhVoFUzpiXYFV9WsDpKNRmp1aeLO4a7AC5vaXoXDsa2fEkg6T60XJqmcHBwAFmWlXfFX11dmceV1Dff+tYR/PZvP4LxuAdpWuz+QtKJNyhbHblbfxYHPMgh05PzUh585bYBnGe3PWjwhgZdU3J3LL8zFu+N7d3o73RHbH0XbLGrFAOy7q5YfFb1n7VRaCCWl83Jfz2Ii4FhPkaClJVhnOfdBF23IX67wrmLpWGPlp/GkCRN6lG9WJDnFAd/uYDen0zndyVzijnrYud6Epfd0m7YkMMdf8cGR/Elde4P0exdTj9Ey5e/qZ7Y1te5K72qC1tX6lNfP/CTV6g+FhOItfKM4ybGfvDR7zJItg+xkX3gIRbuIs8+2HV9fLKzCaBvNnSFFkB9TsTKui5ko8V2RftEo2l5Idn6YoGGp7NgLCV210AyHu9iPSSIeaMg9q0JX/7YNy9C7e9T7LoIqkrlfcoLL+MLgtwWbMMJacGFws+neO7ScRRy3FkcvT7HJf2Nx/7ijrbNZgOPHj2C4+NjJ3+SJJBlGUwmE/j666/LsrFB2RBwvnn7WwwTGgTVgo0YDJ3P58HjZXibY3vgUc74nO4aonyE6hsCzemtjU1r4CRE0zrWNKD8SQGyEB4pyMbz8/rwPKi0ZFlWji3cGW2tU6zxbAGtz6Rvn0LUtXyyrln4ogTOscViUaZLQfgYmeYro80Dvt5yed61/G67hu8bcJlrba9Qv9E+2FZgFmVEkiTw0UcfQb/fh7OzM1gsFuWR9NZAfyx/WD96eoHl5SEOTRw5Vt5CeTR+NBklyW+LEWupY0hO4GdfdNZdwjbq3HZuhnRqmicki7n8pt++PD7a0n+LfoRrGO4I9zllqZ6i8VvJhgT6/ep4Ygy0JSyItpvhzYN/fvqxPDWtQ6icu+bIz7BPkoT+dnfFFt8YsE2hCMaC0y/6B5z/xRjjzySggVQgv2kaK5GH2iUnH718lZd+bxv2Rz/ajqq2P/VD2E499fFpxpBovPEji/Gb7lYP4ZZ9XlKQVNJXqGwACAdCETS7UyorrbGav0arE6Zb7EG+BmtrvGQzc71eag9Jz6X6mdU/IKVp67WGN6btNNpaHovOYQW0mS1g1ce2YYPuk37dpH67sMtj2qiNzdKVryHGh0rzS2W7tqO18j6/ocVG8PEa8q1J5Zv0QVu7SlqzpL7B31zG+Owunx0eqqs3GBsabL4K3TX4pjokNJAWUN4+9A5GCbRJzQWC1Ukcy/+b4ti9DbAKYK0cVVb3tR/ayi5J/uHdSUmSwGKxgM1mA++//z58/PHHIp2vvvoKPvvss9JJRQNbXbSdtkBaHXr4LEmS8t5AWg4B76TFOuPbU5wXCdAIQfwYgOL3rHbpVEeamiLfRmHT+KTGlmTMaYu7ZoRKfacZOrhzQaqXdR5gH/R6PRgOh2X6dDrt9F5VCpohqq0ZvueoVElzwqIsdQGa4Ys713E84ksN9Ahwy/ig81MaXzGKMp8jb3WkMPh0oRiZQmWeNDbbBn1CsNlsoN/vw/e+9z04PDyEv/qrv4Lz83O4urpy5KdvTMXwxeduG9l/G/qGlT/an/gCBgKV600cb03yIw8xhuVbCEOMkzCEZ1f9sI25jID6XL/fd06EwblAr5vQZIuk76RpAr0e7taE8lPkc7/99Yhr4zzXg3kuPQ03DyLE8UPr6ccjpWvBYho8cIM4mJ/K42qXbFr2G/0U5fSP7TlvC/wtBV+B/M5ZmSK9CPDi2im3F50Cxe+8/Jby8fxdLD9Nceyjqb2PPO0KEjVg2gxHMSf48dtVPv7tS6uXT7zfANW6xq9Zwm/ftUHayU48wBmr28TqTG3W0xh7Sgt8NNVlm/Ld1IdhCTzzMjF4Oe6mQcIu+lXCK8Fbnbg5dNl2d7Uf2szhLurcBQ7fZhtu99C1oAu7PPbFbEneSDLZV9763Je3VTA21ICSk2Rfgy5WCDl4d0VTg23xog1WLV8XE4zjsrQ9d8yHBnisI9rCqxXuwmLB20O7BzKm3bbtJN4GWBRePtZ8bYMBK2zPzz//HCaTCfzGb/wG3L9/H0ajUVkej/bFo43TNIV+v19z1Datk1VZ1YKsWC5JknK3L73T9eDgAJ48eVIeU4wvaPDjg7VgAp2XNI3uvLIEkCx31lIHf+zLBbwOPN3qyIxZvH35pOeSvKRtMhqNYDgcwnK5hPV6DcvlUuwXSSZTubvZbGA+n0Ov1yv7N7Qbug3geODjROOPyh7rPclNjeUQaPOPpvPnSZLAZDKBXq8Hi8UC1ut1edetz9nB66M5N3hZqd0kvmLq3KTcmwJa/X06jiYftXK7gpOTE7h//z48efIEkiQpT3Gg0IVzi469w8NDODw8hOvra5jNZntzdKwPfGsDTcf/eLT/crms5fPhjqXvK4/yRBuX+2LPJYl8XYEPuK1ggX12wPn0szbyVlp7moK2rlBYLpcwn89LHYTSlfLTvqcvk9FvPJq4wCEFIfQ6adUtAnVSkM8fiA3hjclL6+EpbaUS+dwNiLr+Hr4rNiEB2OoY4+pI4gpn0XaJQ6P6+PjibZ9AFSS9yRFsiuqo13r+3Pmugqq58LyiKwVkJXzOk1zK1zVU9bDSps/cukt5uuDbhsO3DO3JEqXCrvjzjf1KNualjKznqds/3IdgscUln5umy/KXk1HWb8Pf5lvnrD6GGH+3ZrNTm9ynl1nxWUCz/yQfPs2v2YUh3D5/hzSmpOdWiLWTmui0+6D/3RZso7120Z4+Pfk2aEt5fDp9U7zWedoEN+bz2UkxfksL+GxZi9/eZ1dIx+9z/nwn/lntbKmsBI2PKdYEbsxibcl/22BdGNvgiy27LWEmLbp0QZboxzo8JJrSf2ugwgJW501TkJSWfXVItxUYHBcK4BgZsM8gKaK+fBqgcwIA4OXLl/D69Wv45JNP4PDwEI6Pj8vjjE9PT0sjZLFYwHA43MpxxRSaLtj0rgBczEajEYxGI7i4uCgDRSgreICM0/K1MeKX2kHKb9mZaQnMcR4kmpKM9AW8YuYS/qbjkBpPFsORAnViZ1kGBwcHpTMU703V+JbqhsbkYrGAwWAA/X5/K/IYabU11mIgZp2wjA0t2Crh4+Vns5njnMD09XrtvJUeCrRS45/Px9AY9RnhFmjrVLlL60hXvPqcC7EypS0kSQJHR0dwcnICDx48cO4E57IoZk5L+Wldx+MxPHnyBNI0LV8asdxPsy3oSu7QuuMLLfSlK5984DLGYkeFgot5Xr00tW3Z2gRCOpgGTWzQru28LoHq2aF8AHG2k1XH6QpWq1Wpe9CxJ43pkHMnKQOv1RG6PHhHcndeFw7IjyeHCUeTcjIuzUHl4zNx8iGeqgw9qhhq/UePi676o/jQO2LlOmnP+Xx1A7JAArOWYevmsThOq+9qOOakrB54VTA6eN3fmr1pS7ttuP01JN9Su+yyXjiuDTlv5qWlzlReuulyAI0GDaU1UnNyI/h02ZBu0iWEdKdQmZhyND/FhZ/YE6Sa+tZ9foI8z8VTsjSdMuQD1vzCPpD426bs2JaP4i1U4GuzkKzwAfczd20PNIU24zfWj9cGfHEdfG7BEfpNgd8V3RXEtJnFLyvJNgrSi+CWtaDJ2PAGY6mQ5ci0HRrfBCEW46Rs69DcNVj45QM6dFyxlda2hVNsgC3k1NiGA/s2wbfrSmo7GiSS4LYNs7Z94dvtx+tOFW5tnE2nU7i8vISDg4MyGMuBHyfbFqijlSszlkCOhK/X68F6vS4DyQBF3fCIYgmkBZx+a2sJ363dtk+19coa+OB9bKGntXmovbV+wrL0Ob/DEduO3l08HA7h8PCw3I2FR+PS/FSOS/IZ54R2of0unPpW+S3xww3KWAUav5uMQSxDDXKLI4SmazgxL51LSZLA8fExHB0dwdnZGUwmk1pe6ehsXufbWs/2MUDUFUjtKunYAM3uTN0m4PyPfWHIlzf07Lb1qtixGMqPL7Twly26AG0e4zPf/32bb5L+YilD69PGecNlc4xD9DZA02+SJGm9wxz7wjJm+TPUaVFP9PUnfYbleLs/fTqC733vPjx+PCp3xhZ03Y/LU7N6FzxJQbx64FICypvwlOS7jbHj1iEhgVY3KFoFWKl+Uf/gXbE8sFqUzfNid2xBzxKcZSliE+WeZ7jWVnmLvpTmcU7y1D9Q7ootcBT1yGvf9bSKDwvo2UIvY8ThtYrFWLxt8zXN30XZbdWlW9CDta6soS/yVv8r2eiXN9wejA22xcgzLvPrc4/WUX/J22cnaWX4em8NTjTRK7QjPCVeaB5Oz9K2Wt9pdCiETrqy8oI8NNkN/BbeXIiRHyE/823CPo3bXbRPm/repm+QAj21UirbZD1oyxNAxJ2xFkcddwzuMtC2a/AFXaS8TXG3BS2IFloUed9rRj7+li44joGQ80hSSNpCU6c8Ly+l78PCERqfvvlpVUg5nhCOXbYLX8Tb9LG1T300lstlucvHEujdJoT6xjdm0FiiwR260wEd9Ygnpt0kOSMF1KS8TcA697lD2MeDJiulOWa5d1taZ7U1mQMNmvZ6PciyrNzhTJ2rGn+8PtzJzdeVGFkQA9oY8IGPfy2IqeWPoUv7W8pvGb++O2I1WjQN0weDARwdHcFkMoHJZCIa5XSOSfjarmexTgQKu1Dgu4aQ44On+wISHO8u2oLrRVwHpGsAL0N5ldIxzScnkqQ65h/p0HvKOI/bBrsTPawP0bmmBbMtdWuj02j0fM+ldbgLkGQDrot8zMWAzxaVaEvPfG28rXXutqAp39ZxiH1J9URanuLwrccIh4d9+OijQ8iynpCPr5Hx9eoCNLp7YBoaoAriFH1HAzhugLYK8tAjUOXganITkA0Fgjgf6tNECozRdan6rvLyArnzO8+pfkvTqg+w44o5Pf7bB1U++xz0484NebYLPtohvu6oCN0zKI4lBuABWrjRr1LYbOrjV/Pnxq6/Pns+xp7Q9EpNF+G6amiNt+L18cSB49B40eyEJu2jraMafxIdydaldfHVO6RfxR4/vQ/+0y5gH+th8fPF4ol5Fou7S998l9CFT2sXODWwyLGY/E3odsmvlD/kQ+OyTfO7NOUlhufGxxQDbHcyfpNhF20XUlZ8C3mIP9/zriZUlzi2Ibi74HsfwSKo2jgK963daB34G5sc8OjBNE3Lo4Y5rNdr+Prrr2E4HMKzZ89qb+jgnazojF6tVlHt6FuAYvsFFXF+tE6e5zCbzeDLL78s2+Lg4ABGoxEcHR3BeDyGi4sLWK1WZZk2u+el/9seI75daVIba/xQI88X+JTSfDviYo1aCgcHBzAYDOD4+Bjm8zl89dVXjjJCA4G+QBHec0wDJXSc8fHP+y7Wud/FOuDbzWcNgjTlmQaa+FzwKajIN0/TlGVp3PT7fRgOh6U8keohORHuanBhX4GOMZ/M4IHPXUKSJHBwcADj8RjW6zWsVis4Pj6Gq6urki/6wk0MWIyfg4MDePbsWflssVjAcrncWkAwBix6M5+b2npM5yGvG+KR+l5qh6brwb7pWwi0TZIkMR/v13WQWnMm3wZoazHqFfw5noiBL1+14ZuO667aFnkEcF8a05zk7q4iuLmrVAoYgpOPfns4AijvNOW8YlqR5wZjyVeSAEmXadn58IO/vAV5xT+2l1SHOq1EKKN/OC0JL3ZzRUfiPxfTiz6hwaZq92rVVzkkiburtdoRm5MP1H7n+eZmzG9uglbuDtmcBGVp0JbWq+K1fj8czR8CS974KcntKvm5jNfuM9J5t9y766Plf67ltbSTlsfWxvutLycJwNFRH7797UM4PV3Aq1cLNS+/3kSyCSW7RBoHIb8h1WnoCW0+3ckCqD9b8od8hJagpFaOByM1WtzfFMId4pWCDx/VIzTQdKsQXl5mX3XOuwJvSvu9KfUIQUwdmwZAm7Zj17aM5K/w+cy7AgtutINofo2vbfMrQVQwNrSAWIKzoWAOnaD77gi8Lf5C7W0NFmhKkwRthCbtz6bCJpQvNK74s1AwhObh43GXC0jMgtVmceNBAyut2HIxfNxFoM4l7jRFxzbuDlitVpAkxVGis9msdicfQuzY7hI0fPyYxSzLIMsyAIDarpYY/vdN5vsMHu4A12Qbl3+Sw16DmLkv8cfT0MHf7/dr5XgwQJOT1GimRxZa15iYeml5u1I+m+gaIdohXNY1sM1cwP7Ae4Kn0yksl0uYTCblSxIxjo4ma4vUtrexhu4SpDqHnEe+OcJli2QkbKMtcVfqfD6H6XRanubAwTKfpGCjr/xmsylfGmgbSJICO1JaLFj71KKHhhyVPno+3ToEvnaw8rUNaKvHSmvXbegVXck63seSPkHpcYdul3o5voRBg7+x+H22V8xaUb+fFHktf4EtQMl50YOevmcVTYkXMKU3he1NUx5kTmppLm2tzS0MyoFXOT1n39IzQt05lpiXrQKsNLiK31Wam88N7jU7krjG+X6ZPw649dsKhVZ5mvLUVV0seHbRv5IsKORkQbzXS2A87sHVVf0I+JDvsIntE7KPfWk+H4Jljln9gLyOXdiDPhyxa6dFZw3piCG6XepITXWvN9Uu7BJ22UZNaFn9NW39KF2V6QosNhz9HZqrMYHYkE+1adwlNm8TWbgNkNawJLG/2N6FTRN6xnlstTOWErJM2raLJ8e1z4L7Nvmz0vVNYl9fSbvG2jjM2kJM8NCKI9aRsq26c+G8y0Ac0ozBve0xcJvO/Ni69ft96PV6sFgsYL1ew8XFRcn3cDiE4XAIWZbBH/zBH8BPf/pT+Mu//MvWNEO8t3Hk+4I3k8mkFkzu9/vRi/6u+zW0iFIHaJIk5Y5nHhSJkbmULsXTZg219OtyuYTZbFbmxV3YvByXOVJgCZ2ydOe2rx4WhWQX64emAGMQaJvQVQBZA76jOU1TePbsGfzO7/wO/OIXv4CvvvoKfvGLX8B8PofBYGCus3Wc74NOti0e2uKlQSKKkz6nfceDLrsGvFf6Zz/7GYzHY5hOp3BxcVHyslwuo8cOgN8Ixfp+/fXXcHp6ClmWlXdeA9THdxewTX3C1384P/O8fo8YL+OTkdq4lPTGJo4/Ce82xqPWVvRoaisOPHmAnswRq+dsa85tU0ZSvOv1ujyt5PLyEhaLBfT7/UYyH1/e6vV6MBwOYTqdOldU8DKSrKN5UH+wgKQfUZ1Mui+W/+YgpYeDrG6eUF7/87j+jx0uzYZX4nwnN4HXoh0T9p/K66qcPK599mqIJxqE5esITSsCo0XA1U1z06XPxvlf7ITlnyoYy3fJVh8AN2hb153FGgYCnNY08lTM4/737xDdhuhDnG1xh8pb8NfbXApM2ctb68T7oGuQ5hNNo3MZf1e8VWNXk83UHg7zEtZJ6A5Yba74grFSIFniuanPrO06LQUEfHkor7TeIRniC86G8khlYoJAyCOncZtBsV3CPti8EmyDr1ic+9guXUJbO6GrQHebMrcZb2vrT0Fo49PuEmL8hxKPTjC2iXNZK79t2PeJvu/8IVgc56E3ONrS3zZ+gLBSsy0HTJdCbNtjSgq6WEBSmMNGaLN26UqAhyA0Vnx5pABWmqblnY2bzQbG4zGsVqty5xruKsUA1zYD6xbw9T9X8vE/XYz4jqZ9mVuWOlnohNZK31yQFAmNfij4asGFfbRcLmE6nTrP8PhPnt9HN7Zf28gRzYC14NT6RTJSm+IL5Y+tOwdt7FCHtJYHj6gcjUZwcHAABwcHZQAIgxxSIChEW+LFVwdfvfZJwe8arzTWeMBCG48avl0BrkNnZ2cwnU5hNpvBdDpVxxxAxTsfozHGEgbRVqtV+bIIbSOfzG/TPl21rYVPrUyIj5AzT3oWa9NJ/RXrgI3VMyzPkK8QH1QfsdDYNVjmt6Zf8Xz4O0mS8qQLAPd4SepYl2S+jw/KS5IUL6JRvc7SH13NSaSTZSncv5/ByckAEhYgvMlpwFvlp79DeTnw9Fg+3Pz7A3Kf+hi1VCJ2HGAgFssl7Bn9nbN0Kegqpddp6sFWujOWHlNclbUGCuUAoC8gmAtp3UHXOGMDorugtw3wybZ2PHVbIVnG6DarFhTk+aTyfE3w2SkVf24wVpI/fOMH1wf8fREf0OxKj+j1erWy/JQZ3tZWvjV9UMMXsjN87a/pIDG6674ETbqEfa1D17aHFWdoznThL9qnQH/T/o+d67TMtn0mMb7vkO8zhMdal67sYktsqykfbaH1ztiuYV/fNLlLEOs8seKkZSTFq+m9kDFOayuE2sDnTOyKl205nG8D9mkBvAtAd2X0ej3o9/vw8uVLePHiBcznc7h37x588skntXLL5RKWyyX0+/3OjphrCnw+aM5CNDjwv2QQtK0HlxFaMFAyoroA64sGVkd2F31LZXBIWen3+zCZTJxgLO5cxp1EEqARHCPX6w4se30sznbk13f/a4gO4mrKR1PcTXAhPk0R5mOp3+/Der2G2WwGm80GBoMBHB4ewsnJCWRZVrZhkiSOnNLgTVi/dgl0PsYEWy34dgE4bzebDfzqV78CAID5fO4Effjc1pxX1Bkn0eHOANypnyQJXF9fl3l8MsoHXbedL7gZs9ZxhydtT8nJuMs5KAU+29plXfSDRl9zpHbZ912OIYsDjI4NDKqivF6v1zXn9NHREazX69rLVhSyLIM0TcsXHGL47ff70O/3YTAYOKdr4HOfo5WPdW2eaP8prvv3B/DP/tk7MB73bo4pLima6xMHGBT0Q9fTU8e3XTnQpj3lIYWBTymYyr8dTkh6wvJYgq/8g9dpuGn0W94VW90dW6yJvp2xUP7m9kJ+E4ClbVT9bmsHuHh4P4T+15/5A8NyHVSM/qe5+62VlZ7HiOR6Xq2wNM7s+Lvq0+0A3+nuv9+VrjGoD0rAbT2uG1IbUqJF8Uh6T5qm5cvqANVd6Bynz56T8lt4k9YqawAiSRIYDAbllR8I0+m05h/i5Zr4UREkm71L/TGm/r4yb2G/YNd2pgS3Tf+24Lbavus4kQTcR9lVANuXT5M922hjy45YC+9qMJY2nMXJ0FUQNSTAv6mTFaDZ2y7bXoT5M6l/Yt6U8IHP4I8FLvxihKEUCPK9XdIl312DzzESmveSwrgPC/q+AbYHPW5xPp/Dz3/+89LIePXqlXjx+a4h5i2pLvDHlkV+6GXsCDRA1/Uc4w5FzpeUnyohUuAsxKPknI9ZEzkdbjRzh65UJ1pWa+8mjm8Jny+4QesiGZnWAAjH32SsWILf2wSNPu0HfD6dTuHVq1dweXkJk8mkDHY1XacprV1BTB/vC/j6iIJv7mrzdpdtj/JUc1qFeJF0Ua0eof6VZGBXumVX4BurnA967LIFrzZncd5Lxzj7+svnvAzR9ZUP4bSk+57HjDmeRtdlC1gChDG8+fjigC8grNdrGI/HcO/ePTg9PYWrq6tS/1mv15AkCYxGI1iv17BYLMoyh4eH8PDhQ5hOp84VEr76SfwhviRJyuPJpbU6NJ64L6GpkyTLEuj1cJzT4EKV1gTyHMsWwcPq/92C3fNNA5xAvqV8GmP4jJeV0igNiW4ufKT0Iq0YezToih/fzljXB+DawlVQVB7WvmBnOK+tXHtoi7tJeSzDv2/+qXjltHYVkPuvbYPvRoeV5r+UFvJhcX3Btx7HBhG5vyPGByj57xDoyRCcH3whCddJSzCX06c6lw8wT5LU7ypEnVryrzexLTW9z+c30HDwNpHscFoPDfbZ7/mmQRu7jJbv2taO9cvcNRvfB1bbQap/jK8xhgcJj8Uu78Jv2yYuFZNfarsuxvW2fWZ7tzM2BG+DPfsBTZ0ZseW3CaEJuu3A1F0Bn5MFHTP0bq9dtNM2Am7bAKrA0gDiZDKBP//zPy/zpWnqvCHZ1Pke6+BqojDvOhBFZT72O955ic/RUYg7uLYFVuNGCnxSh7mln+gbV9QADMml0LjBAAt925iCT5mR6un7r5WJdeTjbiCLwRoD21QKt8mjloZjDGlfXFzAp59+CldXVzCdTmG5XDpyW+Nbkwt8TGz7nt27DDEOEATJOcTvqN7luof9m2VZOQ+7BIsDCIHv1LgNsAYnQ+tErBNQKu8Lzob48+Ftw1dXwNdHq91ncZJSnBb6tEwXEKKNz3u9HqxWK1gul3B4eAjf+ta3YLlcwsXFRakv4rp479698hoClBcPHjyAb33rW/D69Wu4vLw08yeN3cViUR6vuFqtanf5Ir8AIJ62oMkuGnAOAQbD0jQhu2IpD9YaOlgdHBUtFx/+5zR2P0Vs/O4OfPqf9FsLnibs20JTC7JuhPQNJMkG3Dtiq9+bTX5zLH71ke6N5TtjeZ3rwUPOaz2fHlzUy2htEhZRIZx2GefWYftByjbBXem37393kIt9uWugsoHLMWqjUqCBx6KcrKvRb4Bq52rIxrXY0nyeSfaGpkNL83M0GkGWZbBer2G1WkXp1HzeW8vxfPib75hFHUezqZrqY031ZrqmcxukLU9v4c2HGD/PN8m3HhtX2NYc2+Xc7YJWUz84B/qyjrUvQj7vLuRiVDC2TYN2GTx5G5DVoe0bDBR8ChQ+9+XxOVFixoMPB6cXwz/PE1IONT6szvLbgiZBUi6o6LGWXbxd0laA7UP7xvKABgq93wvb2aeE0zYLLTI0r+XN0yZvb0n4fQZKk+AtL4O08B7B+XwOg8EAnj59Cuv1Gi4uLpyyNHjZFCxygM8tfBaiy3FIbcSPnw052TUcCFxeS3cTU1yhoIPVOU5hm+u2Nk+sCpZFr5D6zCf/LTQ0pTA0hrizgQfver0eXF1dwS9/+UtYLBawXC5LRzreFYzGtrWv6dwKHfEVo9i21S27wNMV+PQQSV5oQI9W881HjrsJr5KziNJrG3TnAVZJfkq8WF7A2LU9ECPTbsshEatfa/Rvg3fKj7TbV6NtXXu18hINCZ/Ej7X+PpvIt45g8FXKk6YpjMdjyLIMxuMx5HkOs9mshqepfs1lz2azEe/wQ72W2ghuoKr+EhDHbbm+oaBXfbvPzFWEPC/y47eeLxS493JrZ2gPIDSM8XmeY9/R3+4O0iqwSn+D59vEofO76DukwT/V8cP1PO4RxZvNWjiaOP4DUF+raZvV6yr5NYRaG9P8efz32tJncj77vbj+tLi1QqcZbsumNO08NMON82bXUMkq10en56+vh3y95Os1xSmtkbRMyKbF37guSHqottYAVFdEIfAX3il+Depz3F3HeRsAFC8v9no956WlkI4t/eflJKD4m9gAFv2G+qko+AIb32TYl7YI+Q63obdTuKsva2+r/yx9oMnGrn1psfYhpRlaF2hZCx2rbyPWJ2bFT+lIdZNeFg35nTRcGgSDsU2M2y7AqiTs0glD6d4GbQtYnHwIkqMV05PE3WFD8Utt4HPq0ecSrzRv12NNcvqF6PicPm0cf/uyQFuB8ouKJb1vyte/PiEUat83FXDB6vf7znhP07S8C4xCaIzyNud9QwMtMQ5ALCP9pvhoHbihokGoj7VFFI0apLNYLKDf78OjR49gNpt5d35Y683HNR/fmmzTwGpEaf3DDSC+uIdkmlZHzI9HD1rGQAi/NL+1OR9aU7qWATEyu4nDuivcsWuL5Bih/PR6Pbi+vi7v3kRAeZMkSbnjkRrVEi4EdFbSt7rpvORj2lIHq4JtTb9NiJVvPuDB2F1DyAjrgifNkRYyZPZRT/AZqpostuqhMXp9SE/1OWgsfdpl21vmvnWcWWVOF/Mztu2oXLTqI3xNlHajAlTB2NVqBePxGJbLZZAP33PN0YI7YzEflfl4rx+fz5o+hzSos47rk7qDg7eNt0qdwx6Knk4hz+t1LPotL58DCaQW48ANWmCZCg+W542XE1wm7mo8VXSkHbE0D/7flGnguSuWB2erXbH1utK2o7/xP0+Xfqs1DgY4czWfD491+Q7j1TLobdMFXS1P16pSU3yx/Wyn376COC81XavIY9f1pPlA8VrSpecA1YtI+CKP5JuQ52JxFPBoNHJw8Ty4fkn80Hr5/CCuzKvuisX6UNw+ejS/BbS8El++fBIuqbymx7zpvruuoWl7xdgBPH+M/RTr25B4k8padOS7AL55a5lroXbtyodggab+lTZjOGZt8fkoQ3S0NN+6xNeIJi8UIK6YebSzY4pjG/MuTcxvCvicTfR304njezsN6e6jA/abBFmWlUeVNekLq/PxTQa+OwCF/XA4LIOylsAaOgq0+1OXy2VpyLSZN3zhxOBN00Wyazg8PITvfOc75a7Zzz//HF68eFEGvanhYHVmS7IopMzGGFY+B70FB3fK+owmXl4zEiV8ODY12dxEacdyPqerBDFOec7fNuE21qVYBVoK1AK4R0pyZzgvz+cF7rKV7kHGOYfPtmms49vvq9VqL9/E1QwPq0GMv6U2jDXOLbDN8Rwy0KkRg8Gfhw8fwmAwgJcvX8JqtXJ2N+wD+OZLCLBPLYYv4g3xQvNbjf62TkELvliwGNM0na/1Ur4QSPzzeYfjE/WqbckclGdpmsL19TV88cUXMJlMIEmSUgcHKF6qevnyJazXa7i6uirvhz09PYVerwfT6RSSJClPQ2gDkiNFcuZSeSU5sUPAyw2HPfjN37wPDx4MoNfDgGwVVOhK/CHJInB3e/fGNqPrBjtDOPTn1Q7IPK/yFWl5+dwNTG4gz6v5V+xGTW/GQF7irQKmCfnGIGlCPjn5lupZ8VLUgeJ2d70WxxPjf3lHLK41+F0/npjeI6vvnK3ahvNZtWf1WwtWxshOPRAbI4JdfsM8hejR8cNy1Z7J36H10PvYox/7cYfxep/6C0dBPK6mS27Irye1Jd31ib4GH2hBSw0/TaN3ofNd6xotLDccDuHBgwfQ7/dLf8B6vYbr62tYLpfOi/FNQWon9L1QnlCm8GP8u9K9NFza0c60/aUXvaztrPke3oIObdoI5w69Zor74vBaiduAtz56G+xivmi2aRc0m/ryrYHYGB5jx5zWJjE+Gc0navHNSXScYOxdC3bFOvi6Dh7tGrqavKHy3BEhlfVNKKuDKQYsjnuLcqe9EWHlgeOLwaW15a7AF0SXQBpvdIesj06orvs0r3wQGnPWMcnL0LZFZRjvAKNlfc4vNE5QkU7TtLbDjeLx4fKBVgdKmz+TeJCgaVCJwmAwgMPDw/L/2dmZOj/byCbeZyG+ucHD81h5sPaRz+kpyW0pH08POaWt0MZBLvEYUujarBU0vWlwISa/pARa2qgpj9K41OjRfFRWaUEIjReNTowuoj3HwAg6OzQcsbTaOESkPtXmo3Wt1AJQXQDy4Lv7XZr/ljHny6M5ohD3ZrOB0WgEBwcH8OrVK68Tb9vGrbauWdYUn/yz8M1p0DYKOVNjoIncsZaLAb7uSDta6G+q30jrtMRzyBHQVIf1yWMrfRz7WKfFYgFnZ2ewWCycuQFQOFsvLy9hs9nAfD4vnb2TyQRev35dBmGlXaht12WpLJ8TUp2ltUtq38rxmMIHHxzC8XEGaRri01KP3Jjv9iHPbycgTDgAKI81rQJaxe/c+U0/AHQ3qoun+k+/dbr1MkXAHOlUz8Kfqkyu7IClRxVXAVmuD5cc5e6nosXr1sTmsKUZMJlxaM+a0bWU7cJPpB+hzNP1/zn57+83v+z28ek+j23TLnxqSfkSi1+/wzRpPeX3ncbY61agOHFN881DShOf93o9GI/HMBwOy+AV3rOOzyUbJ1QvpMPzYZpki+DLHhYI6Q7WMphO+1bCI9krtCzH71u3u7Kj3kIBWr/Sl1LR/+fLvy3YNb1tgcW/ZylvzcNlRltfCMXhk8ex/qLYtuD1aTs+rPIj1h/C5ZmVX1o/ac7RE2Ul2cnxIOxsZ2wshBq2S0fUW5ChiZPbV7ZraDIGmioKPmeQdJzzbYK1XTTnElV4sd74xvDR0VF5LNpyuawdgfmmQagdu5JBm82mfLuUGgj06GGNLuZ59uwZDIfD8jneGfnVV1+VOPr9fhm0DclXBO6gpwYF/89xhHa7h2hzwLtY6Ju4vV4PRqNRySPeEYMLbL/f9/IpAd35qzn9+f+QY5MbkZoBFAJJhrVxvOMOH58yiru1sW0l53dT5eZNXsu5wR5y6McohNTw57i1sdsUqGMcd6IOh0NYLBYwn88dXiiEHCcA1drKg7ya8c/xUgcRBmU1mUlfetnWm8OWNYMHY+ncswZsdg0WY7HpPPaV892XeRsgzTXJkecDTW7G0N0V3Ga741yO0SO63qnqc14mSRItR+hpAppzmdLs9Xowm81gNpvV9MEkSWC1WsHLly8BoBpLWZbBbDaD+Xxe6jLakcAc6FjmskkClNnL5VLVIeh6pAe13Pz8f5oWn6rt8Zn73QTymwBMtc74cd7WlMjz9rQpjqqJse5VALQYBxhklHaCVsf3FmMMYL0uxljx0i5AkqRQ7EJNb3DTnbGYBiQtIfT5mKsHyOT7YqUdsvUdsXm+KXef052x6/UG1uuNc48sDcoW/3lgqPrkedWutH3pkK/bEPU6SsuCm5ab8/mWGBz7Gi4fbp22FhiSvw1UWX65nWLVJT2ApadxelJfx/BT4QiPCQufYbqJ8416cSjwiGsIDzQ2cWQD1E8Ik+tRP/pco4M6Aj21Ddcl6sPQfCo+fn0BRwkXXgPDy+xKl/IFfXzAbad9sj++yUD7cDgcOn7Z2WxWPkPgdyXv44lR+wpNYwQh4H3AbUgObf03IR1bordvEHrRw5c3hkbIP8xxS/ZoTHkJasHYfemQbQRBuq5bV5H/WLBE2X0LsCZsLI7TJjw2dThLuKx4thEIkIRnrHDYxliRnIOxEGpL7oinTnMfviZwG07Hrmla8VnmsgTUGYjzFncQAUB5hxe954uX1eZ7KJDjc+T58sc6nylge6LhiLBer8ujndFpL9GWcFloSr+1PFYaXchGyenJ+ZWCOlq/+hzOmlLnCyj46s/rGDPvKF2t7bqENmsLz49ltqkvSG0S0zc+wKBIv9+H0WgER0dHcHl5WR4hptHy/ed48zwPHjcs6S/84zOoLG1kyRPDH/9tcdRYZc629NC2xmAItwRSAMeXd5s8+kDSuWLnFeU9VE8LP4gnJs++ONuksc+dsCG9hJbV8HYFfB3y6c2cJwD3xRPLPEe9Bx3i/Dm+nIb58IW79Xpt0ok0HS00rmg5qS6SvPPpFL7nSVJ9YgHR8bJ5fnuB1W4gBzAcTdy0nvLQdOel9KkCLTnkeQL1HbLSt48uT+D4tM/G+V/wjcHVzU0g2d0hqx1DzGkW6fibBtX87VjXiep1DItlPQMvG/pvAb1MV/4iP06Jfkw9trHMuX0qPav3s4+PEI/bqAPXO6y6xmAwKPX1PM+d9Yfi5uuHtM7w3UW+tUF6ztcNajvQdQnXQ/rSUAg3rQun5ctvwRUqb4GQ3eCzRWLb2afPvIUCtqVv0vlDx570UjHVAUO+/ZDN6RsvXY2BXft6Y8HqL7OU5/ae1r6xsYOm/NCyIXkQAqv/wlK2CQ4rnZC9FWM/avKyie/ftDO2qfNuX8Fanzet3k0g5PzAAB0X9vy3zwHAYdcLfdt+ttwdlWUZpGkKi8ViJ2/ud4kb8adpCqPRCNI0Le+lsgC2L90NEKJpxdkVdN2GXeALtVO/33d2idJgbL/fh3v37tXuJ0Ggb5FKQB2fOF5xd1KT3a5tgTv6kqTYkfLq1Ss4OzuDL7/8Ek5OTuDx48ew2WzEu2AsDutYoLik41s1Z61PwZPyaspZyPkuGcR8Dkr9yZV+XlfEwef0NoIjmoOY86SVpYbMrtd0Ol8sjvcmvFnKcAd+kyON1us1ZFkGT548gQcPHsB7770HP/vZz2AymZQ0kBf+5rx2d2yeF8HXLMvgwYMHkOc5zOdzmEwmcHV1Ve7kp/ml+mdZVo5ZDA7jMwxGUKcMPvMZEFpAtsvgp289lO5r5nMN09qO6TbB5xiw4KTzRNIt+Xzigapd6Y++ORs7TrRgrEUuhIzopn351uEmA11XY9sIr3bIsqwcq9QmkBw0y+USPv74Y/gH/+AfwKtXr+Di4gK+/PJLmEwm5e4HemIFlu/1erWTAprKCe5k53VCuYs8WBzR2jONV9wVWzwDAIg/WaTquyo4SX9DGTwsfsMeH2Xs8i3mAKjde4tpdM2o0jC/GxiUjyGmO+QqG2ENAFWApZDNAMB248ntmpTper/mwrf2cXfDFgHYdXlvo/tN74wtds6u11XQFutbfNN2gLJtoAz4AvkOBZKEGioixZK3nscvn3hfy7j8Omudbu6k+fHI7eF+a/gkXt00qbz7TP6vpVn5d9P4mNVx0DFF8fn6OTwG6lCsM8Vv33UjWtl/9I/+Ebz77ruwWq3g8vIS/viP/xiWyyWMRqMyH74k7XuRp40PUAvw+uCrr76Cy8tLWK/XZTBZKrsrG9Gqm0n2eAwN+i0B+oF8fYIgre/fdD95l8DbF33H+Gw6nao+ZHpy3Gq1gsPDQ0ffRB3tLewWJJ/eYDBwfBP8JREJJJ9A1/Cm2H1aG8XEXyTfinYdVlswBWPfNEFrrU9sviaDuEvHngSWwJfPcNYcPb4FXgpAxAZkfdCVE5TzEeoL7iTgios2QXlAxHLXxj4Bd8TgDkR+X6impP3/7L1ZkyQ5chjskXdWdVXPdM+9O6vhco9P+5ESKSMl0UwmmfT4PekP6N/pnS8yvfBFRqNoRooiKZHctZk9Z3d6Zna6p7vOrLzje4jygMPhDjgiIrOyesrN0jICh8MBOBwO9wDA83dR5/suk6R2srYLbVPqNMVdogDuaMfJZAJvvvkm3NzcwHw+9/hPcxRayk/Vxxqn4dacDjzdzc1NXZ/xeBwc2aotttpAymjIw2J9LTkL+XMb+i2LJkk2I19R/pLqzcd8jvPAsujT6mENp7R34bSS6NIcelw+WvimKWg8mMtDWjtRgz7KFlz40buqm9CLpy0Mh8Pa6Ml3c1lopnhpHbjzLteJ0nbOiulQg8EA1ut1faxZzOmh0d01H+XORUgb/Y/xvWUc0vLX6zUsFot7oSsBNJNvUvrY/CdBrn4tyfz7AjEeSukiUr3vgrdSay8At6YYj8fw5MmT2shGP26R7nnGelqMq5Z+t6Rp4oDlaXibhH0lOSBzHbIVDvyX4r7ZUIJzzpLQkjsgaRg6aKt7Yv1wd0xxUTu56f8WXB+Wt88lhP1asueSPeNvW4c7JyndDRv+qt2w8j2xiAfrDMzpSp192GTuPyaLtLrZ0lpEFk8Ty0Pj3DPngbzyuoAQZxmJy8JsTtNtvdqtSTmPdQ1cb67KqsbA8fExTCYTOD09hePj4/qDH5xn8OM53K3HZbkm27lua5kb+TMPQxzogNpsNrBYLMRdvBpd0nqiC8i1+6bqLMnqpmDthxg9sfAHyIeiKOqP3k5PT1V+QP7G8STZ+yh0YWNqAvedN2JtZa0b7l7GDyalo821I9U1edS1neJQIGdtEbM9NCnDmjZl803Bwd4Z+wD7gSaGYfzaLWYwReVM2iWGgMKIg7Zbb5eQUrboHZIIqIhifn4kLMWJx0nwr5zoLp77AkVR3VuAhiCk37orxbpD9psE1IkYM6BJcfh+cXFR71g+OjqCJ0+ewFtvvQVvvvkm/PznP4ef/vSntRMFwPGsVdmmzhhOuzbpWe6F0UCTTXTRd3Z2VodPp9OgbKkeTWiQgC76MK0kFzUDMMXPFYiUPLIYWTnEjJwAvtOKLq5pXrqDJ1UWp5GO+S6doinHr2bo7QpiixxaNvIsve+YO7+s9OUs4lPKfE5f4Becq9WqNnIMh8P6K/jY3Z4SX/d6PTg6OoLxeAyj0aieU6STFzQFl8sxzueUh9HZ24QXuaOD3ttD+1dyTPNF72azgaOjI3jjjTfqo57xpAPrGDtkaLtYpHx7dnYGvV6vPor+0PUGi9OZ8+gh93UT+dQWrItnSe42oVFb1O/KuJErfx49egTvv/9+LeeePXvmxY9GoxovHsVo0b1iBgQrbRb8vL4p4zKnqSy3gSPWz0ZfqCMv5txz6d1uWFq2K2NXw5OWEUkFnHY9HzpSeXxVR4AwXGoX3zHHd8ZuYbut2mu7re6ExTmrcsL4H3lW62QsF8tyfVLRVQjxjg5HM3fkckcsd8qWNX24BscfGkCru2OrO2TpztjKIbsl+kJ1V+x26xy06JSl/C3rW5TmPOeqNS0PCx00Ok0xMZcSgRZasJ1onPwfpkuXGTqiXDxHEq8M7ye/rPjduzEa5bbPx8NigjRtp2eUzbibDmXzcrmE+XwO/+Jf/Av44Q9/CADVWuC9996rT0tDu9ByuaxPy6lo0uc5bcwgvph9Qpuzke5er1ffp462RmlnoKQzaOv1XUDMHrZP3dDSDlrYA+weFosFjMdj+KM/+qP6BDxuz/ubv/kb+MUvfgEAu9Fp28AD34TQ6/Xg0aNH9UYayX5Kj6HOtVU8gIOUXcYKmqzW1vvWPntwxnYIlkbP+YIpx7ueo7DsCixOBAr0653UFwy5g4YrgDlfRlhpoQZZbkDVlEz69Qs1DHN8+xammqOGG5e5IKJ9l9odZTFMftMh5TCTjGcYNp/PYbPZ1I5yjBsMBrWhH411mD9WnlVWcWdkqg4xyJF5PP18PoeXL1+aHDltIEfGAcTbtQvDsXWxqyniEk9phlOap+s2pbTsu78s5eUYthFnU6cnp8kyR9I42j9056qF9yTnC52bFosFzOdzmM1mnmM5BkXhPsxCwwjKpOl0Cv1+H25ubuoy0bAjtQMPQ6MqL4/+MA9+iUpPEZDqTemIKd5Se0p5tDEk7T5IjYVc+WOBrpxtXG7E8Er1k5w0aDjXHEep8aU5hLoCqa+tej1vJwv+JpBbRs5apslcaNHzc3R2LYzzTM68xedOHsfHqxVQB5PyazSuViu4vr6G+XzuHWtMZTzFzcEy/2lrsZhhWmqjVHvExi7P2+sV8NZbY3j8eASDAcrK0HEaL8/mTKXprHnaQFdlNMWD+bDJKxzOMe36wjlyMR8A5X96DULlqK12yG69D/sqFqU7ZB1Ud8pSpzmWTZ3qwJ5L8gNwO2Kd8xRujyfmTlh0ttJdsXh/LL0zNjySuLzF6drC51lNfoWOs7BeIVjT7moJTfFqz7lhJLYpWTI2BR2nm6dDfk7hsZRlyS+3435tIOH48/Uu1E25fMZdsXjcPl4jQnU16Q5LO12+zp6aU1Jra3xHOWQ9wSelK+TqECnbyl3CIdHyTQe00QGAN2dRO+xgMIDpdAqPHz+GwWBQf4gHAPDjH/+4fi6KwtswBFDpkU1sNym7USzdfQFtfdkUhwbj8RgGgwGMx+Pg43VqS08dhyvJliZ0H0KfNVl/xnB1aUfcFQ5exwdn7D2CXRjhKG4NdvU1DRoOYrtpdlGmNomgsdYKVGmM5aMGC+lceIrjLu7jRNCEOyoDuDuF7jSiO1VifcidOocwARwqxBYekiMfwy8uLqDX68E777wT4On3+zAajeqjemLlSHExIynv267GsgUPbY+zs7PaQbRrXpN4Xvoowcr31Bgag5w24WWmxildvOIzjnW6OLa0p9X424W8k9ptV3OWFbD89XodGCy6wg+gOyOwTbBcfp8xV1glYwxfCOBC8erqCnq9HozHY7i5ufH4SnM6UtpQFh0fH8NwOITpdArr9Rp++9vfQlEUMBqNoCgKePz4Mdzc3NTyiuKnu1vR+MPnY6w3/fK83+/D8fFx/eGKBtQYo/Ub/0hJ24lmnRe5g4UuovfFy13dSUN5ou3CFvUPSU9MOWLvGnKMebs0AOSkOyTIrRudwzQ9v4t2oLI0F/j9UJKuxWm8vr6G3/72t/Dq1Su4urqqPyThTtSmc6qmf8RkOnck54CGl9PU6xXw//6/b8Jbb01gPO7d5gMA49HEZdRRqd0PS5/bgh2X1P6UfqkuOfEhTX79q64sbh2jUNONzip0ThZFWe8OLYrqCGK3M3ZLyvRPpKiuNCih18Py3b2yQO6LpWXLtOO/5JR1v+3W7XZFJ6z07++IdccWu52xbkdwWWJ9Qn3ZtVX4TvuD10UbQjlpw7xcpki4tbnJL1MpQQ2XaHTtIv+nyomlp2H6fKtgN4drdwDT8WHHz9PIeWkg739Jf/Dppbgl/Jr8pc5YnnYymcDjx4+9E94QNpsNzOdzUQ/WdGmuH3IbmLbuTNku+HyG64XUOoyvVdo6BWL4U3Fd6vxa+78udrhd2sb3Bb1ez3Oszudz7wQqCtPpFH74wx/CaDTy8vyv//W/vHSj0QgGg8rNs1qtYD6f13HW8ZQD970PELp0NHPbyuPHj4NT/Dis12vxQ3dtDL8u7Z4L1j7JtVnG7Gq5YJ0HHpyx9wxoxzYZgDnMlHKwpIR5yhBFFS36PBgMamNHDr2ak1MKsyglUn76pS8aCQeDQW1E5pekD4fDejIsigLeeecd6Pf78Itf/EI9MuVQQKr/1dWVd0fI0dERrNdrWC6Xwd18AHJfP0CcN2NhsaPnsE9ubm5gu93Cr3/969rpsVgsaqcQOok0h6tmKONORimvVg9uMKThlnEbC6f0LZfLelx2zXOSY0F750bSmJGTt4fmaLMqiLzuFmMvQHjMeMoZpTlGpLJic4Glf2LORxqu4dqHXNXKSNFuNWxb6yCNzVhenp4eDSbpANvtFmazGTx//rxeMAKAaETh5VAHKd4Vi4D3p97c3NRf/GpOAl4ffjIFH1/OyFrlG41G9W7c5XLpfXSQGuMxoGNeyo/huFt5sVhAURQwmUyC8WelYxe83XShnhrr0rvkSKP4aHxsrPBx1rWukRpXTeebrhZ4FKRxS+nNpTHWr1I5GuTwsKVMTCfxSBOwymBaBueD1FzH88agKKrdDRcXF/DTn/4UZrMZLBYL76NIAP9DjhwncU5/aHOCZU1q1WWkcnu96hfn2RJSTs+ylB2X/LmiL4qqJcjHIsfo6qpcuD3CGEDHjfGUR4sC3/l9sOiw9I8r3m5TfIA7ZQEAeuB2xgKAtzNWqgP/p3fTOrtBtft1S3bDcies0wt8R6zbESvtjHX//hiWxzSVC2E9tOEvpU2nwzA+z8bz0HcLPZb0fpyUSKJRP8qY5vPj9HaU8uZA1c/xeP6s063hK4N4vQ9CXqJtkEM7Qkxez+fzehce6u2z2QyePXtWy/3nz5/D+fl5YMuy6BfSeOG6ipQmVx/n9KT06rZ2g5gOq4GkOzXJQ+Niul5KR+LtxddgbXSsXcDrYFcsy7K+8gYA4OTkBJ4+fQoA1Xrxn/2zfwaPHz+G3/md34HT09N6DQsA8POf/xw++eQT+M1vfgMAbvcl4gSA6MfHbSBnrN83sKxpLHmk8YTPi8VCtMfGcHO4r+0rgdV+FeM73vYxmyq32eTYypqChOfBGbtnsBqVu4LYoppDzBmk4UkZXiTnC+Klg4AaFvDeNLrDTduynzLScsUqp+48jhtLkT50TuLOQ6qYDgYDePToEQBUE+oPf/hDODo6gs8//xyWy2Ur40UbsPSbdGTy1dVVTc90OoWnT5/Wu5fQyC7t/uW4LTS9DgqWFSQDvrRowOOBpPua8avP2WwGs9kMXr16BScnJ/DOO+/UzliKRzPa0b7H9BwkoyS+038tnMsEiq/JYqgoiuC4Un7MkiaHpHrxuNTET/PRnXgYzmmJKRwxxUErn0Oq7SQFRLtTQVqIxfDFjNMpZ5fFOG1JJ9EHAKJMs+LSlGxprGo83FTGxeQmx8fT4QccFj7Bxdtms6k/MuKw2Wzg+voarq6u6vJQJmFbSLuzMB11xlInKDpjr6+vYTqd1s5YlHlSHXj7YxmUbnrkD/I4fjGMjg3Mw41Bmhyj7UWfNTnH5RvKiPl8Dr1eDyaTCSwWi9qxLckrzsMcb5fQhR4qyZgmdGqGNKt83jdIczl/1uYlnp6mldLE8Gh5NeD9k7NI7Rro+iAWj8+aHmItCyBvbaDNlxJohgELoKx89eoVvHjxosbB75emhrYm4wzpivEaXc9JbU5x0bypdRvXlSQZ7PjcXqeyDB2b5a3zoqJ9107XNlCC7lwO47S6opMzXld6NDGmc/kwvuoLtzsWjyQG6EGvh8cTVw7RzQbz0rFV3jptSyiKHhQFd4JTAiViS/Zces943DA6Wp3jFed+3ymLaeh6iJ64QZ/5z7V7qfwzyr13OU2TtGFeq4xO4Y3djxrmRT6RaTKSlCinCZ6QRvfs3kv2HsfD6UuFtaFbqnuct/x68XCeVpPh+KHgZDKBk5MTGAwGMJlM4Pr6Gj799NP6w+d/+qd/qu+HtZzIEFt30fypDxNT4Rgn6YiWMaLp+Sk7QE76ttBGH4vlldYwufU5JH18H9BVfbkz9t133wWAyo78H//jf4S33noLAMJdtJ988gn86Z/+af0+mUzq9TPaxHKuKuLwTe9PTU42wUvH02azgdlsFjjKLePzdYOYXVRa2+XY0mL2OG2tbsHB9T4rSHV9cMZ+w2CfBhWEmCBraqC7C9AGId1JtN1uPUeZpKAOh0P4wz/8w9oZe3l5Cc+ePavLwK/fESTH2y4g17i5Wq3g1atXsF6vPSeYZFzkxx9Kx2Y+gAPJwYNA24yOH35/MQB4R9pxHJxXefkcJPwUNGeVhJdORjFjXRcLDs1gzQ19sfIsBsjtdguj0QhOTk7qvrm+vg7usNUWiRwfdepq9OUsLCXjteRA0mjKgZjMb7pA7oqGfcgazZGGdNG4Nm2d63SI8TfeAfXGG2/AZDKBV69eeccaUdDuNucLd2lsbTab+sik1WpVG0dvbm5qWbVer2E2m3nHcWr11RwIUniv14PhcAjj8RjG4zGcnZ3VOPjdum0MD1Re0LFG60EXytguMfoPWU+SHK6xOSyGg4I1PxoxcF7bx3UP3CHI4wB8+vmpFhZHo5WOJiDxmNR2FnrumjfxCo0YLU0clFJYrs7K+1yaD6x9Xh31Gt7lh2uJNkajWPvQD3p4HbiMp3MDd6hajB1h24DnuNOAOhtK4ogkKdi7C8N8+2djiSYhVeloo8+mEiLpab2xzcpbx2jVbwDVfbF4N2x563gFqHa0Vs+bTQG9Hp4W1QMAXBOXUJZ96Per56Lo3fJIUfNUr1cAgHxXJKP2lraS4HY/PF64OipZ/udp0OnjnLL0SGLZEcsNcOG/o9d/p3XQ+4KmlcO19Ok02H6ptDllWvKl4qR0WntY6InVU8NV5S2DNH79rLK1VNrF8YqOyqch3hel92yfk+R1cVFUH/rwNflisYCbmxuYz+fw1Vdf1eMNT2jA/LhBock81JU9qO16SrNZWGEfNs0c52junEvj6Ae2qTssHyAfJH7jcHx8XJ9ASD98oH0hHWmLUJbV7kvefw82Vxk0h2BuPguUZXV1IXfGxk5A/KaDJl+7krtN5L0EuTaIB2fsDqFrQ/O+B6dlEo+BZKDbJUgKoOSQyQVuXKaTGjXOYFp+XCNdrKGQ/eijj+o0z58/h7OzszodTpwIuYM6p460brnloBOWKtFa+TQN3Q0VGyM5Cud9BW6c5+EaxI6Cpn0xn8/h5uYGxuOxd08Bd8RRkMaRtMCKGZa1dBSXtBiUyo05kCTaJbA4XLuAfr8PR0dHNd2r1SpwxiIN1LgptaVlbFCIOfm4LJbaXFoYpJwMnPeaGKjxfRf9kjuuYqDVVau7xnMaTZqhXoKu2wtx9ft9ePToETx+/Biur69VZyydC3Palxpx8Gh7dMjSRQnebZ3C3cTB0u/3a4esNBfx8ixOQqsDiH+UhEbg2ILv0OdBbR7ghpscnZHnj+XF9rFeaxGbCzSHUA5IcyWVlzlzkYX3moA092s0SnRYeLJNG+bkQd2V9r+WN7e9uaGa92lOvSx8l6IXTxSg6w90JmF8E10nlofzRZu5v5kMy9tNHEIJmsOzLKmj0pquBSW3TdStKHd0V3Ta6hGm9fMhra6/q/tkq12y1Ejpjiru9fy70/22xfKqY4z7feQneq898oifv2TOJtQjKhrQoeqOJ3bvvuPVHUPsO2PdL+2ExfKRJr+t/Pr6QyLmgAt6SshPYoXwcNzG81hpaTLd8HaQ4vz/nLbxHZEuTNOfXNqKbzVa5XcpnPernr8M0uh42kCpPGtpKtDW+vQkmrIsa0cQOoMQhsMh9Pv9ev5xH1i4D3Iscwtf+8TkvSUuR0eS1r8antg6Toq3lq3RY8nP9c2UzcRi80GcVJ/AdVoMDnWNcqhA21ezx0wmEzg+PvbuZEZ9l/YNB7ouoqc1dq2n7dKedghgbS+r7EH9A5/X67Xp1M9vAlh5SZNjXa7JYmVb8HKbUmyuALhHztjcRm6Kd1flHDq0qXPbNkOj7Gg08pQhfnRxTHBpdJWlfGRiV1CWpUc/BzQwoxHlxz/+MRwfH8Mf//Efw/HxMQBUDrPT09O6XtfX1zujl9OOUBSF1/54VKWWL3X/gCYoJWcDFVq7utfg0CGlxGMYXeRIO1hoGv7lHD0ChSp0NG+uwdwK3GDPjyvFY5Galpe7+KKKKuXBJk6umGwaj8dQltVxpPQ4VE6PNGlLEzqC5hCM1Znm1RbhUj5NhobGqerdKm+bKEJNILdPYwvxNvMc5TWKP7fu1Plg2VVOaZbu9cbw7XYLNzc38PXXX8PV1RVst1uYTqc170q8SMuihk0shxpZkF4cJ9geeKw9jo3YSRBSW6WUcnqHNB6xjDRRmWg1BuUAx0fbw8JP2G4oK6V8h7oYThmFME0qv6UvkPe4IZB/GCeN7bZ9zvsC6dCM+RbHG5eld9HH2txDIWWc3Afwfm2q71vob6ojIG0I3Fgda2esE/4kyDm6XDKAc+M719di9aU6pbVtJF7n5TlaaJzkyNSdjxX+MA+tI42X0lpxNk2P1ac08PfwuGF3tHC6PJ5X0zkpMtwVS51mJWy3AL3eFsqycqhif1S/EjYbqhNsoSwd33Ij8naLVwOgM9bNkRUKnx6koaIpdJpKjla8C7Z652lCh271jvipTuA7gkvPgegcfUgrHwKxMRFGcXyxtDL+XPHkp485DvNoc7zj42hKX6pc2gc6bXL99HCpPHe0sfuVSn3ds0Y//8k8FMbJdec0SR/6FfVJOOhk4zoxrmvPzs6C07WGw6H3AVRszrXqubF3gMN0TnAnKEA7Xa0r/YnqKVxHw7tE+SYSrp/w9sbr2BBw3XaI/XJfgK5X8ANkhPF4DG+//TYMh8M6bLFYwD/+4z/CbDaD+Xxe9xmerEjT8VOlHsAGXfI0bXuUlWdnZ57+/7DbvAKJT+W5S4d9yqKux9W9ccbuqpE142LXZWiG730Lyq4MJjnKk+R84O/UYIqAxkeKL+XIsNKbMn7E6Oa4UJhyY0S14Nx6i9CXL1/Czc0NAEB9h+dgMIDhcFgLnrbHEucYOinwr7Qkx6iu3Du8Kdp4n1ryfZMg1racvyQ5IhnSqPOD54sZvWm8RE+MXi09/lMDI369l2vIs5YfN4akjw3mOGgf0EUpjhu8D3M4HNaO5pjhOtbOEqScMVodcseZRlfbBWeOzLYYwGP11Qy/Voe0RlcT8I3AsoNGq2sqrWRg1WSERs92u62dr6PRCEajESwWiwCHNDfG5gXeB3QBgotGXi/eDk10F942ZVntVl8ul/VHIDH9xMpXKRq47mIZ7zmywELzvkHjmRx5TecMaaxKYan26IKnNAdaahxIdOTo0rtcL7RxMnI5ZM2TomeXIOG3tkHKgQoQryNd21h1YKucSukZsWcJZypMo0mbl2L5qS46GBQwGvl3i+ZCWYZOzqocP47kgJhjN1UGxyPHmTGrtDTHGzpxfVzYSCHtVb8A4P2xGAZQ3h5fDOR/CwC9W3wlAPjHjzqeB+j1sK0KFuc7Y8vaEYU/AOqU1Ryt1BlL/6t8mKasy3C4y5r+suSOMP0Y2pC1Y3O8nC5HDNvkbfzdGhfJ1Sg/pg3/S+89loeml9JZ6eB9Qfs8D5rO0WEbhryWrqdWb14fnMPo6TCoH5dlWduk+I5IXPPyo1ItNrV9QY6+JMkbSSdLram1tVFTsNghpDjJliHZjCy4uS57lx8Hvm7A1+Y4V9HxRT/0R0ft8+fP4fLyEi4uLuo8V1dXHm56dR7CQ5/lQ06babo1T0N3KQOEHzkAHM4a/j5BbB11H3j/3jhjc8Bq7L0v5QDIu43uA4PlgPWYuRhIStg++okK2bIsawcrAt6PBwDe7iDLV/z8K7W2X9KgEoAGoc1mA9vtFmazGQwGg/r4xl6vVx9FjOXzSR6VhRyaaH5+dPF9hiZ8pi0aUo50i0JNF1k8LnU/IU2bazSk0GSXZNcgKUlNlB++MJHyzOdz+PLLL+Gdd96Bd955p77/+ebmpj5+nJ4CYNkJrhmNadvm7lSPydnYIjDX0E6dI5Z+0Ohp6iigZeTmz82XcqJaDQOpdsJjfkejEQwGg3ouwSPjLW2lpUGe3G638OTJk/rI7cViAbPZzMMfcxpZ60vT4jxDeUf6IIvjTskv+rxer+vjni4uLuo5me6QjeHkdeXON6SZfvyC5Ur0ccNJSr5gvq4NP01BokWiTZK3Vv7gJz1IbcblTQ7E5jUehnJ2MBgEcfzIS47bel8TrVPXTlhru0s6HudNi/Ehhrtt3ZAGKvsQX5cLcuu45IY1XibnM41XNV0Q8e5yzGtjgOrnmpFP+keex3HD9fyYjPjhD9+Ad9+dwunpSKUtBmXpO2Kr58rxx1KCcwRmFeGVkQrX0rYB7Ao8Ptjhr+oZK7Pqp+ro4apNXDtozjXcGVvtaq3S9XroaMXji924dB9cuiMv+V2xVTj2r6uD62/fGVWVUd4+O0cqdb5WtIa7X/07YXFOoTgcXr8cSY8L6ZLbWAoPQpRwLb2Onwf57/KOy3Q5eek12iRnohzmcJeBQ9LlkducP4dpq/7Uy+b4fFpsQPlFanPKOyRGLF96l/ohTZ9PS1EU8MYbb8DR0RG888470O/34W//9m9hNpvBarWCXq9X74ItS3eCwl3rnV1BbP6R7JGpuqccqNZ24+VY1pBU9lHbANohJd0BdYrRaAS9Xg9ms5l3Kh5Nj+tNupP6AZoBrh9Qt8TjhwEAjo6O4OnTp7BcLuGTTz6B8XgMg8EAPv/8c9hut/D8+fN6PTmfz+H8/LzGiYB2XYSux+s+fR93Dbm2Jy0tOtdT6e4b3MWaJCeNtHZNyWkrXdL80PRkJs8ZqxFy6INOMmrtA6SJLdcYqRmwuEFHYniJGSxGWGv7NDVeW9Nx/NLOvRQ9Gq4ULSmDkNUAQ/HFjOjSIpGmwaNDAACm0ymcnJzUipFk2OPl5IKmlAGA50TG3X1INzV6acfkpuiSF5DxetyHyb8JfVKbSTyZO2ZjBj/qULGEW2jW6JZoo+/ckG6Vmbl8nzJ+twE+7umXxePxGADCYwS1OmjGUEtabYzEjMc57ZLT7po8pseJauVZ5XyX/UbDpHrHwEK3VC7/t44Dml6aLy2ylNPGdQ1czKGDlMt6nj5WVz7XSXRqepCGl+KwKtbUeYP/0s5YKY8FvwUkJxZdlFvGRRP5d5dgqZd1wcXnDAkff7aCRo8kZ/FrZvoBBE+TS0NK7nTV57nGRK7bSpBa++T0sTUNxWkxdlrGTY7emrP+yuWFlEyNQayeGp9KcwiN42XnjllenvZOYTrtw8nJAPp9/Theh8d3OvL3WL6KTp63hNBpm4+LpSA4q+dUWbQeOXUqiljesLwY7WXttCpqvAB4fHToqKyWudUOWbfu9deuFV/48171g7ocgZK6bKdXALgjhWVnrO+E9R24Fd3u39UHSBzWn/67NuPPfptJ4WG99DgdpPRdqgU5uGJp8+vFM1jbUY6P9ZOUz0KvS5NDm6/vU16zgp82ndHxshTnTnEajUZwfHxcn+hEQdNLrGv1WNqubDpt8DSZY2N4uL4k6ZLSeouWnUOTZU2s6ZIod/GjmaOjoyBuuVzCYrGor1my6FrfFOiC7+iaFADqDyBWqxXM53MYjUb1mCzLEm5ubuo5Dj8ultboFLrQv6267q4hR+7k1CcW1wWvU126yfrwUGGX9WiyBubyqe2aLoe+FP4Y7tdiZ+yhMPWu6KCTtXTh9z7BYghoCqvVCoqiEO9epfj30d9cIZFo4EoU3fnA71zVdo5uNhsYDAbw5ptv1mFvvPEGbDYb+Id/+Af4+uuvg3bpuv+pw7ff78Mbb7xRl0EVgfV6DT/72c+8YyuRHqospECaiFI7aw9ljO8SchTpmKEMn6nzgeOj91RQPqa7j/iO7Fy+4w4GbshDRw86+/c1tmMQm/w1+iRjNX7E0Ov16i8bdwnYz9JdLxpQHtCgq/5IGecl3uL808QJ1URW7kJRxv6RxgL+l6W7e4neD5rCqcW1hS+++AKKooBHjx6Z2yOn3ZBGHBtYF2cwDXdC8nJynSt0lyXfiavVQZNjljJjfE3fY7j5Ao4fi07z3aX8TPGq5JiheoeGT5rrOPA4ugsrRSu935jHa7rf0dERAAC8evUKACoe1u7dlIxzWpyUJgVtx3rMyBeTMU3KSfF6G9xd4KDrLB4GoMsGfmexxjcSvVp7xMY0p5OXJZWDdEk7JjjvSjg1XuBHVXK6+VxWlmW9M4SuPej8V7Wj2zUZc4yWpXM+VrikY3j9naPlrbMsZRxD3DlhlB76n8Id0sRxlmo7aGXw+gNwmrBdKtzxcVQ5Md0cJPEnPTmjIFf0FNDr4cfWVZ/Svqbjg/a3q7/vwAJh9yrdIQsQnlSg/Vxe8MJcOfQ/XGfxtpacZHKzlpG4WD5Z3klp/bD4rthccO0RD9Piwna1linLyYoXeDxvY2mXdVCKl0Yqh5bHf1JdffqkepUCLp/nfFy8zpyu+G7cogBYr1cwm83g9PS0TkOdcwBQn5CGp+UAtD+Z7VAgR1fuyhmTAq7PW4Cu/emmDgSc77nteLvd1rtdASod9qOPPqo/IEcn/bNnz+Djjz+G1WoF6/UahsNhnacs5evMHiAOdDxpOtfFxQWcnZ0l1z2vw6mCXUMTG05szN21XfIB4tDEp6CBxQEcs0U2Lfe1cMbeJ0hNsk0Mzl3m7xJihkX+TNPGmFkadE3rq+FJ4ZcMDpqxUeqPzWYDn332GVxeXsLp6Wl9nyQuHqkjh5eL5cUM1bn1poBHqCIMBgPP0RozWGrxEmhtY6XzdQF5UW03ymmQ4zzhRjjNOJjCaamLFJe6t1ErO0Zvl05E6gyU6JOM7+v1Gm5ubrxFz9HRUX1fNKVTM+6kjNa8zFhaqQ5a/aSxKY3VlCGT18kqp6147wOkxpSUPscJ4xsV/TK19xQtGI+GcjyuTKJRG3M5PE35T5pDMEyTERq/cno5n3MjMKUhBTH5lCOvJaeNFaSxu+/xYpFR9Nky38d4WcOt4eLpJB6SxlyuAUSSlc5pEd6rFhvnuXNhrA9i+nIur3MZEKMphos7OqWxbQEpTxM8lsV2Si5bPoKicorLCEtfcDll1bWl/BrOFJ7YR0La2OLxEv+GOgK2T0hDWfpOOrndS0DnYoXfOSE1vBS3X4aeXis3mSoLpz2vHyfTklO3qv0AqMMWw6nz1unyVfrqKGMn/6o+crtfaRu7eRhq/Hr9aHnOGet4TTtyOO6MpbiwXXgYLZ8/0zxSews1icTF8snhlrCUiKDxOWVbcKb+rflTYU1prXghzG/HEdNT8sJTZYT11xzalFf18t9880349re/DR9++GFg/8ErUaxrtwqvbW5IQRP92QKaDZLa1iQdvomdIaXjWddtqTVFTIeS9A4A8O4jpWH4cfzx8TF8+9vfhsViAR9//HGNazgceqfloZ3jvq/V9wm8b+l6Aq+MWy6X3tqBHhEes4dx2NU4OgSI1Tk2HnYJFlvYA+wGrPNMzhwVk7ld9me2M3afQtdi5D0UWnLSWoSm1Xir4bmPgx7rjPe48XD+TMMk45DVWBeDHKMTTgCpLyMWiwX8+Z//OTx69Ah+7/d+r/7KbL1ew2q1guPjY3F3MDf4pL5IazI++v0+TKdTD4eGOwWpPmjKo6+j4qcZUrnizw2ikkFee5bKQCVQugOEl68dg5Iaf7wOlJ6yLOtjViy8EqtLm4VZquwYbnrvMdZnNpvB8+fP6zF7cnICR0dH8OzZs1q+UcVaclrEvngsS7fTkhtltfbWIHYfeVfzSBM5knIwWZSlQwLKR/xZg5QiyHe27wJubm6yHCa59NC2oLyIxwiXZRnchxOTVdpCldYh9qETH4+SzMoxyGA+La3VSUJ/9GOsNrririC3j2LGhVS9Uv2u0RAzfmnl4ByM/MjvB6Y8hB+y4VHG1AmZkm1WmlL5mqyfJF7XHGg5MpbSVBSFeI+yFc8u1oVam2Eb0N2jHAaDAUwmk1qHT/FW6koWiQ4MQ97CNuRjjRpfrcBln9QGWC4eXx+jk8oomo7vzqHl+WMTHXXmKgAw5yPiiKWrynPH76bKs6TpOj/N4z/zfqL1ksqh7UN3CuOuWcTnv1e4QmcVQHl7d6y0Rg6PIK5wFrd3zOI/n3uhppHSX5XNnRP+ztiKf9y77IyFIMzhA5bGlcnHl9cKjDYXJkGZiE/FSevEPBzpNFXf5+CypYutsfA/bB8XJ+XjgXwHqZy24hOdDh7m0xWrqNxuHC+vbwxieKQx4cYF52d5J/APfvAD+OM//mP47ne/C5vNBv7sz/4MXr586d33jcfYxum8X3aZlC1Pe5fm2iZlWMDCH9a+ofPxYDCAwWAA8/m8tkcMh0MvzdOnT+E//af/BNvtFv7n//yfdfh0Oq1Phlmv1zCfzw9q7XFfgLYZtfeuViv44osvgvTj8TjoZzzh6ZsC99W38QC7h6Iogo8adnGKg2Znt5QVmw9Mzlir0aLriTiFb58Tf05ZXdHFjWyagtDWMaHhyRF8mlFBMlpK5WnKjkZXjG4Jp/Su4WjC35KRHZ1MGM+Vps1mA1988QUcHR3BkydP6vDValV/kdgGUk4MTq/UH5PJpP4KbrlcevRz4RczdAKEOytyDdpN0t4XsIw1bZznGLY1PJwGiSfQgMiNqrKBIH6XY6zv2xh5rZAy5uaUy3H2ej1YrVZwfn4OR0dHMJlMgn7SJm7anjn8oI1hqW15eZqjyTI+U/hT9Gt9T++msYDFIaXRyvlnF/JFMpDTcrWxHZvbrXzSFPDjgi7ahRrbNWeHJMe0NuPpaDxXlqlBmJZnodlaZ6l/U3IYQZKr2rwc41XLGNgX8HbnbUllDU2L457qTjQPB4l3UnoI0qfhTrVjWZYwm83qtDHZmNsnms7fdE7iuK3xReE+KkRDEfYJptMMgDFZZtEdUnBI60KAqr6DwQCOj49hPp8DQKXDoxEb09D0lNbY+JbKAnAyQ/qITkqv4bSs7bHf8MhKbac3TY/XMyDQu820ciggqbHxVZa6s5UfSVzcOh2ps5KW0wT08kN6ZCeow0NpqdqmCGimuGjZMTowzpLGL9uVw+l34Jx2uCO2yo9OWiC/EgB6BFdRtwOfyxydYZmOHq7/hM5Y+d3lwXiMC3ECC5No4W0SOrtomhjbN4nLE5++k7UZHnTW6ynaqh+Yn7f3bahaBg2LPfs8JMlAvywdp+z45fh9HKXIR44unlfiN7+sWDqpHgjf/e7vwP/z/7wP3//+9+Hx48cwnU5htVrB48eP4fz8HM7Pz5PzR1BSpp6Tmy+Hlpx0Gg00P+qm0ql0lnUnX3eEssje1rn1p2XR46ZPT09hMpkAQKXn/e7v/m4d9vTpU+j3+zWO8XhcOwTxozN0BFptsg8gA28valfV1lAcmujTOevbfUHKhpWCJnkw3wMcNnAel64YAmi+fuZl5dCSWrOl0j0cU3wHkGsUoeESWDu7LV00jWQ43Qdoxoqmhp2ugQ5+dKZiGO6UwPftdgu/+tWv4MmTJ96dsXg8BXfGpozSVpAMJ5ReCsfHx3BycgIA1Y5eriTQd+k4G8kYLtH/MBHaeJge6avdF0bvRUyBNJYpLkzDy6bxObil+uHdjZwvu+SJmEzVDJA0jQQSD+OYWCwWMJvNoNfr1Ysdmo8atkNjlG+41gy6vE48X4pmyaGjGWdjxnNLH0t5JScKTU8dAtxxYwVKvyVfW56LOdIofks7Unyp8JjjqOnCRLs3UUufUz6ln+4sT9FB/zV8Mdq4MUWjT9stbhlbsTbXeJ7zaazPMD71NfxdA5Uv/X7f033QWUXHQ6/Xg36/H9z1h/E5QOWGRA/+N8FfliVcXFwAgLsrVtoFKOk8UrikI7W5hkKClNzhcw2Nm0wmUJYlXF9fe3Wj9cqlpanBpC3Expckk2ic9Iw8OhwO4fT0tNal8YNKaW7UDLISPRItAO5UHHofHC+H7563tDmdZyWateOYedsNBoN63VCWJdzc3MBisajTp3XTFK0lgLALFpuxuHVk4vG6eF+qo1fOnyrHSo9EV4jfilun0dc1AOjduPw9pCfcHUvTAbh2cvypOfSq3a5ux/eW8R3VWXH9EspjhOoxLKv0HF36f/XMnbH+M4hOWPDiaVto7z5tHHgeGWLxlBYLSLhcmO6Q7RqwTK1ufptLMlBal+nlhPGlEh4DTlMYz+MqfuNhPH3cgU3pdHyq4Qt5SqPX4fPxAgD83u/9Hvybf/P/AUA19qbTKfT7fXjrrbfg+voaLi8v93YfqNWwvUtI2WRjOn2u/qjpASmcki1Nw6GloTvGPvzwQ/jggw8AoHK2/v7v/z48ffoUnj59Gsz1R0dH9bVqy+USrq6u1COdHyAPuD6EJ+/gOi/Gf9wOdNfj6C7Bsi7OtSE9wGEBtyvwuF3tiNUgJf802zOHTp2xOQz+OgqJ1GQuvWudFOvAVMe2mRwtwlxaPMXooO8pg76FhyxG11zIKT8FsSMQaVkIs9kMfvGLX3gGFIDKKUsnZX60Wez+phRIfdzr9WA+n8Nnn30Go9EIxuMxzOdzGI1GcHJyAkVRwPvvvw+PHz+Gs7Mz2Gw2sFwua0MrKg3r9Rq2220tKCm9FPhX/V32wX0FbfxxA7xFwGOa1B3MbRYhGt1SGimPli4FsbGekjFNQGprSS7zsKurq/oYIHonNG1XujiTjMUxRxuPt9RbWrRRPpDaTyuL1gOfLfyU6m+UbXSHLN8tG3MsWPqapo3xrpVmilejL5UH86X4OwapcWlpm1Q7a+lTaaW2ke6j5fyolafpUb6RmhtpQ3ownn7IIjkkuGNCqrNEb+wocA2oc4PrXFI70rh9zaGpupdl9eHJeDyGR48ewaNHj2A8HsOzZ8/g+vo66Bt6bL5WhkYH9p+F5yUHKk8bk6US3/E4aecArxPV53g4T2sB6zys1YumQx1uOp3CZrOBq6srNa02p2hl3LWOF9NLLOFSOnqsegqk+Z/G0XBpJ2qMzpgc4LoGpuO78yW8Wh3xGU9SKMsycMbiWiHW975u5f/LUAKQXaL4nwPlraNEnmN8fPRde9bypsOquoS02epkqXuVJtyZS/P77SEdXwzAHXplCdDr0f8Sej3c+UrvieWyjuqNiC2kjVBJysR5w4X7OojmfLX8h8+uLIkWndaUKIjF8/It+WziyqIfSDI+lT6lz1jwxPKULIzTRhHzI3nDvqV08HdOZ0izVInS+4/lx/I0nvLT6n0glSHjDmE+n8OrV69gsVjAer2G58+fw3w+hy+//BJevXrl6VK5ayANurD77st2zOWVhY4cexa34Ui6ZAr4uov2E12n0LUzdbCjXv7+++/XO2KLoqjteQDVscRPnjyBwWAQ3GOau058gDxAXcui9yHsa3x0Ddb1MIWcusbWIw9wP4D3d2oNT99T6ygqSy12bys/SmHSOtFzxu7TiGOBlFHSanTdBy1NIWbcT4F10Z/KkzIAxWjMFWgWw6XFOC7liZUTKy+GV8JlMWzFFDiefz6fi3cEDIfD4MsPbkSJ0WLlWUrvarWCFy9ewHQ6hePjY7i8vISiKODdd9+F6XQKT58+hUePHsFyuYT5fA43NzcAAPUdVpJySP9jbZHDQ/dV4bAAdyjx+kpOBuskwEEbj7GxwPu5bV9YjN6YzmL0zZ3DUjIs1r6p9ri5uanHCIA/pjEdnZhThvTUAjAGUjvlyPNcmcxB42ctHcolSeHiOLhclOoSmyPa8LBFyW8yT+aOX6v+1pRfcvNo/ZPDz5KjSgNqhJDmIumOZWtdqBOD027RlbS2sJRN34sivDec478r0Ppys9lAv9+vr2N49OgRvHjxoj7ql+PAOrb9WEuTV1b9SQJJttA+oTxCjV5a27SVSZzHUjglvCn9fzwe1x/YSTswLTofj2vDt03WhbHxpOWndeNyQ+on6/3dKZ2G4o/pJCn6pbIAIDBKWMvCsczlIuKja4BerwfT6bROc319HbSppn9U8Sn56P6LiDMzbJ4qHea3sp+Mi/IKrUNYFt+JK+HUadKOXbbSycv26aK7Y30nHD2u2L1XdDrnm89DVQnbrd8O7khinzeLAsB3DsecsYiL1iMcK6l/EJyvNI7Wwy+Pl2uhUUlhjpdkQzyvLb3rv3xweZvSYv3XwngcrUtZ5tOFOFxeX8ZZaJFo4rikvJVMdHmkdLxO1XvYB+HY0NtjPl/A2dkZXF1d1cfr39zcwIsXL+Dq6kr92DAHUvO7dU24S9DsK3RnKNcVtXUz4pPKkECqf46OZLF98HvaKQyHQ5hOp/Dhhx/Wp/PxNLgZY7lc1h+Wt+GJ1wV2xa+Sfc/qdMqF1NpACm/C3/y9jc0ud+0sxR3CevkB8iDH9pljD+frGQ20dClbZmztSOGgjym2TuT7gF2UJRkGu5zkuqJ5FwIspnw1dY6k4K4FMDdmFEURHGGK6QDcPUto5ECw7hrJrS81tK1WK7i8vKzxPH36NEg/GAzg9PRULBedKPiMfUaNrSkjkAZ33Y/7Bu6couHcsEWdERQkR4J1wqJHPlLDMw+PTZbcWJ3i25w+bmJUb4pPc8pIizW+Mzwm77ihUktD6UjVwZKeG5wl5dziBJHmCEsfWvqNypOuwOrY6ULW7EJe5Tpt9g3aUUG03amssowBCQ9958qyhRelsRtzGEjGGY5buu+YjzOeD/mblnffDB5It/bxBDrzBoMBbDYbWK1WXt8XRXWqBm373PHJ+1NywHMZzvUVPI0E8/OPZSRZznk3NhdK/U9pKstSPLI71QZUB2gDkhODP8f6JqWfW8e4Bl2uC6U2iy3auc6F6ReLBXz99df1bmjkdTomiqKA4XDo8Tpe0aCVB+DLk5SeFTsamfMdl8UUpOOIcQyXpX9fMD2hB8tZr9f1+gGguuKEyrfUXK7FUzLL0jn88Bnj+TuHQnTg8ncQ4tzRx1paWrbGinKcjDOsZ5XOhYf18I8qTtFE8UnHFbu6S048JxN9J6wvK12akA+hpt8+dNNOWTlM3v2aNg6nHKz2Y2jT8TE9uznuEDjvCymKQqHJ5syl4zGRMiuP7BCQ81RySU5D4yS6pTAfl3PgUtxcTvllSXYPCY/mHPbf/XQ+bbSsajy6dD/+8T/B//pfP6/nK4Dqg6KLi4v6A7pvAki6HF+7A1Q2MU23wXT0Azw+70rzLJWFg8EAyrKsT1ORaEM8OWthfjWaBpvNBn7961/DcrkEgOpUr08//RS+/vpruLy8rPUVhH0eBfoAry+0Xa9I6yhL2ge4XxBb97SBHBxSWjx5oC1kOWNjhuIHiEPMyI3vWtoULo63KTRhbG6c0pQNqZyUEyBFW8zwlTJKSfTm8ncToymfLKjhj6ejhsl9w2az8e68pe9o8On1ejAajbwz2jVjsmS8thrgH+RL2ghH0/FwbSyknGuSTLIYYGPjoklfthkDFnnE42J1jOHUDPaas0mSXzGZpqVNpcP3VN9JC7bc/rLwYy5IBvAmtGi4LXFdLRja0iRB13pZ03y5baTxuuTwSjlLYn0lOb+k/No8xGUhd/jF6NB0PC1PV7ALnFp9U/MI/qOeQH/SKQE8nzb3URqkclN0aTo5d0Rxo1Pb+UhzlqVoTgH2Rcw4EdPVuS5M+4THUbwpxytP05Ve0BVI7ZBykPI8m80Gbm5uPF1YkgX0Oo8cY6amW0m75Gme2PpGm1djcxWvG1/D4ft2u4X5fF6nQ4O/pZ97PeRTHlOC74RksUo4zWvJQ8PiOPPKQnwAPk4eVt46W+LjSnZEW2nleaR/pKEKw7bnRxj7zldruVUZEv6wfRiGGk/4HvJy+tl3xuWukyzxPr2pNLE5qx3+OGCDa4jormi9fP6vg9TOsXje7+my5PBSfC7LMH0VFvKXFSRa47QlMYrt7I8Ffhepzp9ff/01/OpXl0E41W9z1pE5IOF1NLfHn4NLooXOqzFaJVzWtSpfG8SuzuCQWvPReZnbImj4druFzWYD6/UaVqsVnJ+fw/X1db1D+h//8R9rXLg5RKLjwUbXHVj045iO2nXZnAaLbX5fNHGI6bz7pvsBugPLGjOVbldzDJ8vNNpScNA7Y62wK8HUJUgLfrpA32WZqba5S6HUdDJHpSXni4QmeQDSypi1/SRDGFVuuBFwNBoBNWJKeLoCzTiJcS9fvqyPFeRf/W82m2C3rnSkHcZJXw9qQGk49DG+a0i1gcYX9P4P3lex9pUmudw+sKRvirsJ5LRhrlyMOYlwTHAjNjemWvmcLqZSdNC0KfzWxWuTRbnVGLvdbmG1WgVfnDVxyEqwLznS1nCRK/NiPLEvkIzyXC7R8c6ddQiaQ5Y6zDCM46Vpabg2v3FIOWTpvaap/sUvyR8/fgz9fr/+uvzm5sYzwMTmQYu+0cWRck0hxqM4hufzOTx//hxWqxUcHR3BYrHwHFPIC3SnoIWPaV7JQSi1i9ZG2MdIM3UkSWkp/hhe6SQJSmMsbVNZxceCRG9KPiGOq6srT5+jbd12Lrkr4HWhbaHp+7H6bLfbmneltsf2w2sKUIagPpa7VsMTdvj981oeil+6+oTr6lxex8YiHX9FUe3w2W638OrVqzoNOmPpLh2prLIs4VvfOoL33z+CJ0/GjE500lWOOwzz+dA5DZ0Dye0SpWmqst29qM65qB8LrD1zvLQ+6HCscPN0YR6tzv5xvs55WRR+G1RhfHes/d05nQpGP9JK//V24XSF/1UZtA0xTGkNMcwfltpdr7r8z3XAcnx6mjR0iSsH/PFA32nb84K5w9a9V/kLloe/+4DlS/Xz4/ydn9zZyHmgkkVaWvfM+caFc/7gNIROUTlMLlOiVf+VXl6pbTgeKX1Y3/Bd2uHzYHeJ60na3Mvny5RdRgKMs+DX0nGdGm1vR0dH8PjxY7i+voZPPvkE+v0+PH78GBaLhVfGzc2NpzvsyqHxAHlwyGNyn/YVCqn1omWt8wCHB5KMlK6EaepL20Xfp2za/KMWgI6csU2+PuryixoJ910Y9nOM+NQIyQ1Fu5jkuppErQZNGpfTHhqOWLq2vNSEf1N1S9GkKU4xo5CF5i4NZBTXcrn08saMkJyfY7wXcwKnwg4NupA7Uv9oTgYLDmqUzhm7TdKlaGrSr1Z+zZFvsTaUJlGp3SxlUDxNHYkxA7FvgAvT0bqkFlIpvpOAO96kPNI8Z+En7lyR4mO0dqlftIGYnNf4iNNukedSv8fSpGhsAxZ8WrvQeIm/Y3hifEhx8jSSo05yqNAxFNNLJJpGoxEMh8P6CLD7YsiQjOlN8axWq3r34GazUQ1ZucZxjM/Rnyz0SotA+lFTDn3aeE/N5xr/txnLsTHFxx1A/Hg+Ka8ULo29fY4BqV5SGoTcOT/Fs1yG8A8vJdro/MrjUJ9DPDljRtMZrG2TisdnfqShRbctyxLG4z6cng5hMOiBVqxctRKA7ZzF5+q/iu8apP6hNOj5qn9Kq/8u82sMd7xcXn/53W8zTgemoTtkfecefUaHnBt/Wt9ZQcocOmQBuLMqzE/jY2F+nB7vp4lDrJxmuDSQmEGTC7wPse/0MsK4uANWoxfDYnEp0NqU9ltZ+vj4u6VMTivFQZ2ncVyxY60lnqTPnIdl+vSyK6DrQmmN6HDI88R90WFTIOn/WrqUbhmbc3lcr9cTP4yi+HN02NhameteqDfM53NYLBbw1Vdf1fcG46kWqKtj3i6O4nyAEKy277uG2BrEah+PrTmk8K5opeGH1q73HfbdppJtEK9y1OavmFxvS7tlHCAd9J/Da7EzlsO+GCOnnNhinhp2NIbiHd5m90uXhhCLM016b0K/ZETgBtvcvre0g8WIoyl0MQOxZNCld8o2gTa8H1OycVcsKnF49xWC1EaWncivi0IPsD+5oxtp0gZbqS9yjeLcEB2rt8YDh6oQIV39fh/Ksqx39mnyirad1l60rvx+NZ4vpkxQQy4HXNRpSi3dicNBCtNw0TrxeKmvsQ2bAM3blF9SbbsP0PpUc9A0Aeo8kgzc+wI6fgDCXYXUgUDpsy6eNEeCRANNpwHGW47mRlpQJmjjne4Gxt/p6SlMJhNYLBZwfX0N5+fn9VimeTguzQDEece66zwXrDilcSbJxevra5jNZnV78/HN+QKfpbah+Wk4l5GpeZHra7grvyxL73jVXq8H4/EYer0eXF9fBzsasT/4MbRSH2J6zTHdVV+mjIcScL0aj5ttcqKMNEYsu4l3ARaHItLM+xUg3E1LceKuIkme0bbEq0cob1nmR4qjKAo4Pj6ud9mu1+t6FyreOxfjeW3MaeVJ4ZZ5C3fI4q5gipPzkj+WAPp96Zji0NGAOzoxHMO4w5A7paqysP4y/b7D0TkV8V3edQu3OMN7W3k9XFhIn1Tn2I5dKY9EQ/hPjwrm7zQ/pRGfsdK+A84vw79jt6LX30lJ6+D6Kwa6riCl84M1R5buANPLi9EopbVlyMObluuUX25DlPAaax3v43f95njC4YOE45bunKXjNUwn9Zufvixdm7rnUD7QZ/89vDuY9xFNQ9MSLEKYj9PVt/TCeT2qXyk+c/pomhAHzV8SPKHzt9+vrpmaTqcwGo3qe0E1eN0dGdKciTpaaq7jV3UhSHevI/T7/cCOtlqt6t2p2nqgDRRFAePxGBaLBXz55Zd12PPnz4N1k3Q9xevc/w9wv4Db/h/gbmCXMsGCu9/vw1tvvQUA1SlOHBaLhXqSQO66OGVvSgE9mZLnC5yxh8rcu5oION5dTjjc2EIXtpymWP6YENIW4dR4kNO3TdpCcwg0wcvbKGaYo3VLGQza8neOgS9m3LWWk9MPKf6JxWl9x42+1IDI8+IXf/zYSSudD+BDTCbFxgIN0/gR47gcsvZNzoTGabCMzVg6Pt4lHNy4L6WLyX8qp2NjOtVeUj1i7a2Nl5T81mRhr9dTna4arU3lp4XOXJDaLoVf4iOa7y7lD52frG2Vks1Nx3GTdtCUUpwfxuPqiMl+vw+bzQZWq1WQT5tzYnM9pTmlGFv4gzokctrKwkO0HmisiRlUUro3bxerU2QfQJ1YqY+vco1KWj9rY4cbkHLKQR6mZVAaUvOd5sCSyuFjocu1F8UnGdVyIdWvKTo0Pm271mqzXtN0B63faZzWdxpw3qLGTm1O4nMEpWE0GsF4PIbBYFDLVoveH5tDJJ2pTf9ocl3Snfx6Y925EwTp0p2QDqfvbPJxpfNbcWfmBHoUMq2Poym8i1WnocLh6hffSYt5NAetRrOjM3TU0jQ+Tsmpi7to3bHHrl8oLivk6KbOcaXhiMX5+E3EkbS2DHliOZ8B+RiQwis+KMAfd9QxSxFojnMabnGu35YUSUbpsbdTTlqdBhqGz3K6kMf4c5oead0XSZ3VZpzXnX6QswmgybzQdp63Qo5uE1vb4pH6WnrLel3TC9BBy/UpfoVULljsjJodVut/zcayr/58gDgcwtqvCVjWOikbeyp/Li0PcPcgyRhJZtHrTvr9fv3hp2aXlfik7XWV3CfC08ZsExLP3ZudsbsaMNrktAuQ7svp9aqv0xBWq1VwJKwEVsON5mzZN7Rd2COkHASWMna1i+R1gZhSR4UbCkEEVCSHwyEMh0NYrVaqQ/ah/dNgaS8aLn1xk2v4bgop5ySlTZpkcQEUw8lBWhxZnJUxvFbZYG1jaVLmbWCV9bQsjlfaIUbLQqdYjkOW4rHm4Y5BTn8upBaIUlpNaZcM6XcBXOFsOz55X1Ejwr4Wa3RR3+/34Y033oDBYACbzQaur6/h+fPnwbFc3EFBw5HP+d3jfMx3cXSWphtpPBbjM4qTws3NTT3+8NhXzTEZc1pxR95d8zIFC69RXkUdIpWWP9MwTfZanOVaeeg45ztfY7sc6O5ZrU8xDR6ppNWL02OhmUOv14PBYFDvxIwtDC0Qa38rzV3IOgtdXeLWjAOS4zKmA+DaD/sDwNc1Ym1D6UAePDk5gePjYxiNRjCfz+HLL79UaaD3ENM0MX5GkOqZqi/GS6cNSLJW0o1okqqs8PhhdFwWzPlX4XHpCs/hSB2Y1KFYlwZ896mEjz/T/JKjTE6rQegAdTh8/L7Tk7dJmF6m0bVJLN61M0DoXI3xAncCU10dbp+pIyvmjE7ZO1JpUg467rDKg1z5ll9Grrzj9i25bM7vzgnr95G8Kzb1LJXp4qU2wLBq7LtnPz68KxbjpLRaHK8zTcPz8rLpL6SLykr37vKWpCxdh3E4wp2zFS7pF9aPtzPiv7m5qU8+a6NzvC5A5y7pDl1pvpL0IK2dhsOhZ/PF8q6vr4P51gKptFJd8N56fm8trcd2u61t0ffV6fcAhw85699Uuge4/0Btllr8yclJ/cE/gvYhi2ZbbstT1EYlgWab0uT1vXHG3ifQFie4mxCBGyYxbDgciobzNpNizDiVY3hva8ChcU3qkspjxRkzIsWMe02gSd59K7xcwbSkxy8qaRivq3S0Gy1PclQ9gA9NJg3NAEvxpRxTPH+qzBw5wtPGPgDIgSYGZ83gyGnizkY62abqbuXrXLlocT5rdFgcS5Y+1ZwmUt5YO1BaJHmcopGnj6VJ0aLR1gX4BlZZDvJ0nA7uzJGMBLuEVHvghzrUAUv7VaqbVCcprSaTmsiQVJ5c44jkwCnLEmazWW3YWK/X3l2PsTpoziApTWys7wM0J5VUT+t4amKUsshgTUYgrZRmmg+Po5XuYKcQk0H0GOsUDklO8HpoMr0sy3q3hSZTpTJThkXOr23nvH0C50GLHJZAksuIT+pb2vcp+igOjhtx4vpwvV7XOnhuvzSZE1NjTFpnSvzJj/KWdKk4pHd4+u8lgLKzFknFfwlXLvg0VWXTZ16e9p56jpdbh9Zl6un5fMzzhE5eyREuOWh5HAB3ykIdjmW5MAvEZGg83q+ftTxeRhM7RpOSpPHK8ebMlyEtrn/p/E37BxMXXn9C1AkrO2YloLRY24j2sZZfwsXz8TRS/hCPZCty/3q5YRj/aWmlfLGyYzh2YYOLgbaeOSTHCjWwN7E3WvRzGoYf/knzcs7aJTVv8vU+v9YGacE0lqtbvolwX9vCYiex6PK5fGeF3HV9DO5rH31TwWrbG41G9ccs9Gq25XIJ6/XaS49rI77m4h+hWmzGTeyyGmh4HpyxOwKp8/h50ZLnHHfKLpdLceGeu3uMQspYdxfGOwo5C/wUdG2Y7MJ42MTIc6iAhj76gQGvX2zXC4AbI1ZB/E0DKy9p44jv8pTGO9010QS0/pMMiNJiw1JHft+YhSYJdsFPUpvG7pfNwZnrAE3JF2rgLYpCPDoW8ViN91J+LSwWHzOSa7yeW8ZdgeZUlcZnF0YJiwOva+ALfXTGFkUB8/k8mZ/TyZ0RKRkXk0ExmmNGEIshRiub0315eQkAzumAd1JzJ5vmyMk11NwVpOS5tPCxzv9WORCjAds2ZkSLOVopX/O8KTnMHXK8Ly1jNFUO6mV0ByYA1B9G0HQSSG3D8/H5PAd2Ie9yIVaHpnVDWUId9VL9LO0em3sRL94tR3evAMjyUBo3Eh/l1DnWd5LswvpRnY6n8WkBkJxPFQ5+byp1HOIuWtr+fKxWYVVerYZ+PqySXy51dPjpMY7++/UI6dYdpnx3LATPai1KmRYJp5bG1V12yDr6gdUH3ymfhI65CpcfbqmbUNt4rNdX+dAmfzsxZ2kIHNfp/JwWyk/4Xj3b7hPGMUfbpUof9rVGh/xcBmFl6WhL53dpY8+cJl+uhTtzkQb/l767lsdrNHAaw3L8siTcAFTeSu2Yf13ENwVo2/B1aFcGeQp4d7ykU3bZPxZceGrPA9wt7GO9foigrWkOfd37AM0hZkPhMJ1O4dGjR17YZrOB+XweyFAM50BP8wSw8VPMBsUhZRPSIMsZazX6xojQDL+vI3ABgh55PJ9/vV7DaDSCjz76KHDMnp+f10eHIKzXa3j58mWwOOdlScyQ4+1v2s8p5UEyrNOdk5KhrAlvcBokh5CURzNcW9uhS0OTNinFyuwSunYMpOqTMqi/rjLCCjH+TTkFLID9LR13mxoX9F9zoknH/Wj14XSl5FnbeQllM8dtGW8WuWJJb3U8IOAXrNLR9zz/druF9XoNg8GgPh4J82p3WfJxJ5Wh1VnbDU+dHNLYpzIn1gdS2dZ0TSHlZGqKi/NDLi/zscfxaI68JnSnoCjc0TIvX76E4XAIR0dHsFwuo4Z/Pu9Tp5j2dXbMyWGRKfxZ6wcpXSxOo0Xq31h9Us4YqU535dziEJN5+JM+WJEMYJiPv6dks9afmo6J4ZJjiNJGnZyxuZjn13BKOjCvH39Gh590z9dwOITT01M4PT2FJ0+ewMuXL+u1xGq1guFwGNAsldMkXktL25bG3RXPSvpEbH6jfGmVz7E+jOWRaKG6GcbhTnuUkVQPkMZN0zVVjNel9snBS+sU5kVHDh3T6DgKjxcuSxeOqGh6js+n1y/HLy+Mc3iTtSR5q2fsBpqfh0lpOF7qFIWo0wwi/+Fu2HC3cSoN8hVtVwB6N25Fo2sHRzemkeY/1w7tIUdutcsfx9MEUowmxWt5XHtzCHna8WvIU9J9wZiejjVedhgXthPXHeTneHypPFdp5PewXD8tjY91rly3kJ6yDpd/NF5rrzKg08lBrR7hO8Bu7EixdWlqzdoEdyq9tM6IlcnnzaY0cTzb7bb+EBrjYziazt0aLQi4OYifbsfhm2572zW0tdt1AVY+T+mBTXCmytvVmHjg68MAbT0mXaOi8QMAiLJM2vBI11FteJQf8Y74JJuVZS5RnbFdEGsFzRC1a+OhBXIXmRpQZQCN33hc3be+9a3aSIJpvvrqKzg7O/NwLBYLODs7g/V6HeCmIDFgTKBpRq+uQTIKSMpZrhHDUq6lD1N8GKMrZ5JqAvvG0aQPJOVWmzSl9juE8X7X0NQ4aVFONH7kBnKpD6khHcNiPGIZH7nQFodFBkpxkvNGSptKRydq3p7Wfsf06ESlCovmBMDF32g0gtFo5JWFO2vo8URaudygri3cKI2SU4QrK1xpSi2QeTlavn0o27n6QY4xP4cGKV9XRncr0D45OzuD4XAIRVHt4qK6Dz2iV6KD6kpSOt73mk6h1cc6r8fyamGSPOFjXSoL3zW+iBlJYu2xL4jJf8pb/Gi0VF7an035XFpPcN1TWvRJdHFnrFZPK2CbaH2vzcXojKVhAJUz9o033oBvfetb8L3vfQ9+9rOfQVFUu9M3mw0Mh8PAkZvinaZrID5+uUF0l/JZw895IedEkKbjKiZTpPlQopXPz7PZzEtLP/TFMqleR98lOjS6Y/pRTJ+UgIZzXTNGT1k7D0qAwDnrO2BvYwDvNAXiAPVpcWljDi/Mi+mrMv2y0g4zKZ+YiuBytOtlh/hdGk6XTGc6Hx3HLo3vDHb5HC7kG7p7EtO6Ovo4bmMLuc/8NGIrRPPYh2/eOO9qug3x6M5Tmeds+oori8oaDKdzG/KGZUds6j8NtP7hM8Uh3xUbPvs4eBzlXf/dhfO0Th5ymmgamhfTaGWE5amxBH8lmzmdpVcO/fFyLMbhXJDsiHyO2LWNcZ8Qm+ekumMcrseb2CRj5ebALvr/AQ4DUnYc/G/a/3y90NZemSrLYhfOsR3H1v8PsF/Q1iPUVsAhZiOhvjG0NeXgiNHIAU/J4niXy2WjMg/ymOJdL9RzoK1xUjqqlRpCrq+v4X//7/8Nb731Fnzve9+L4kNjZmrxmzqelOOUnjX8KSGe015IpzZguoRd8RQ1VqSO5b0v0IVhnuKRQMJtcWh9E8BqqLbkT6XjOyv5PdUWkORRakzTcYMKl+aQS41dmpfiTTkYJXpiDppUu1oWnJLSqDmcpPqMRiM4Pj6u70549eoVzGYzrx/5vIPHVl5eXkK/34dvf/vbcHR0BKvVCubzOTx79gzKsoTRaBTcVY708aM1tTbRDO0xoy7HG3PUYVoLT+wDuiqnq/kJ+YQ6Pu6CDnQMnJ+fJ79EpAs6vvjisjDHmaDRRcvhRhPN0SaVa9GdaDwtSxtPsbpJY4rLvUMErQ/5Ql7TCWLxOWVSBxB3TEkGRIkO3OWNc4t05LBGCy1XMmLgPFYURfDBpQac3sViAV999RV8+9vfho8++giurq5gNpvBy5cvPQdeG37hfcJ3sFO6aF17vR4MBoP6eN1d6v0pXun3+9Dv9z1aKI9oQMcc/7BKO6UiBdLX1ZQXUJbSEyxouxZFAaPRKLnLhfN5qp6WNNJ77n3KsbJ4MDoXnPPIdyZienymaW9zADo5Ma37d3GIg+dz+at/Wrajx79PNUzn7yx0feKX6+PVjwz26dPbJTxm2NHip+VlaeWDR3u4CxbpcmGuTWh/+U5BXUckWFtPd3YEXU6tdlyaHOHh3GErx/MwXUw5vvTD+JgFr1zKF3R88HEj/4d4tWc+bt26wk9bvYf3ANM4jq96152mvrygTs+SlVcy2uTdua6sEJf0TOsTx4E0lEH7AgBcXa3h2bMZzOd5a33r3HZI9lsAWWe36j/aGkpyElltV5rOKOVp4zR7gAdoun7i0HbdnVNGV/bnB7ifgOsoSe7hiUAUttttvY7bB/R6PW+td3R0VG+m3G63MJ/PA9pvbm680xAkOEhnLMJ9H5SSM5YrKqvVCr744gsoiqJ2xlLnhGQglBaz2jGgmI+GNWlPi7HcgjtnIX7XEGsvyXCjTXw5BjDNKRNLn4O/DS0aLi0sty4xfF0ZD3PoOSTIGbuaMVlqB7qz0mJYThnZLI4yLIM7M6z8IdHA72DEdNwJotFtgZzxxZ9jYTH6aJ3RaDyZTGA6ncJ0OoWrqysxD+1XdLDi/c7o0N1sNvVRxQCuDblDvq2M5vMW52XeZhYjMOezmFOr6/nlkOSJRIvWzppRwWI41+R6LLwsS1gsFo3qwGlMhcXGUGp8pdpQW4haHalxZ4O+e4CHWcfGfQJOb8yRk+uM5XMBgHynZk6foWy0yJtUOdj3XLeO1UMDWj9c9D1+/BhOTk5gOp3Wi0e87xbvGc0tzzcw2z9AxDUKP8L+rmQmX1DT/9wxhPWI7XBG4E7U1FoK8SLfctmO/3THubYmkPgvViepjql0vJ5WsPBCWfrOH3zn/1Ja/2hV37Fno0/OR8uG4Ljg/HL8skoA5W5bqa7hv+24YvCOb/bz+mXGwyg++V5ffHbpXT1p3bmD0W+XGMjtHePzNM420C3+HEcsd7hqjCj3Bf2YoPovvDHkO10pL/qOVjc2dODxYfpSCU/lc+G+LNJ1MZoGZQwITl0rHf6zf0Qxy2XGG6OFpwnrDrBcbuHVK3n3Doe2toAmedvQZCnTWrZl3WFdu9J0/KNAnibXbvYArz+k+Cq2hqXv1nUkxw8A6oe/kj0nZ3zn+CdSY+Nh7Nwf0Owc0slp+LxarQJnLNpGm/Acx2/NS3fE4omDAO7EQo5vsVgkyzhYZ6xlYN5HsNbnzTffhJOTE7i+vq6NK/xoKgQ0LGgMGTsGS/o63WJ8tzoaLNC1ATHmEOy6HElgvG48e9dw3wzMXULKkRJ756DhwHwoR3ByS+WXxplmJIzRxOWTNBnHHCG9Xg+Gw2Egt3Bi5LQ3cdpIaaT2SDl+uGOS4tUA2xCdqf1+H8bjMTx69Ajef/99eOONN+DLL7+ExWJRH0OJRvLtdguDwQD6/X59HDHuUMLdNLStB4MB9Ho9WK/XdXm0zbgDQQJsc75zCPPTNoodWZsDdyUjqMzflYEhh5YmTo6UQzIVFsPLHQj4rukktAzOM1p6mi8VJ83XKecJOpE4Hdb5nvI/r79kzEFaY2nuK3Da+X2ptJ3b1pO2YS6NGr9x+W0xHFicWDhX4Y5YfvwRTyvxAcr6o6MjKIoCzs7OYLPZwGQyqWX+H/3RH0G/34e/+Iu/gMVi4TlTY/pEal6Twvj4x7krNX/sEuiYl8YyT2ulM2UgluZRGh/TCWj7pfhts9nU8gp5iupUdIzFvtTm9KbSSfTiM/8AwirDQoeC29EqHYMLZEcedRZRh+QtRgidUzRMxkXDq7r44To+RzN3Zrn28uvh53Nt6fdHeH9reGRz0Kq3/3bnK/YDTcfDqudw5ywP92lACNsO6xQDqZ53MTV2X6bUgZqjNXTmxNJoTlnHYz5/8TGhOzIdHjc+sd/DvLzNtDbE8e7eSxJesjThXbF+Xglv6cXxPBRnJaOB/cIwvSz/Xcvvh5WRd+mfp5fb9S7hrvVXbf5popNIc7LFdsrlbczO8wAPkAu5fJTL+5q+2lavz7VpPsD9Bkl2Wnh3uVzWax0JLNchafTwD4Y5TCYTePz4cf2Oa+j5fK764DRfG4VGztg2E0cTh1XXE5RVaHQhXLjxmr7HDPKDwQAGg0H9BTtAdR/UZDKBxWLhLaQlwwfHR9PG3jV6JANpl4JS62OLIUtLn0uj5FxJQa4DLFc47Eo5swjBrvo3Z7x1jRMgNMq+ThO8Np65I8Nq6KMLBa0/aNvzuUDrF4szJZUuNe654ydGdwxiDh0LaGNcM0Za5kQeh8csTqdTz1mEabljh85BuEsWHa8I1FGLR+lrBuCYHGsqs2LzVYwXNbpiOLqa21P4tPBcJ47V+cOdH7xMKgskY0AT4HRKfJPDI5Khwsob0hjQypDKa9IO0hjnbWxxalA6uhhDdznPxeoR408enjMWLE4eviDK1cd4OSkaJP2fpqPvdKemNl4s/NHv92G1WsH5+Xl9VyzS8fjx43p3rES/FmYBPvYkyDVcdgVSe0oL51S7x/BrfZOSASkZRWWqlIfO71Lb8zDruMldS8XmF61+epqSPftOIZ9c6uSk+KlzCNusCOJDurA+YTrtWcJBy5bSS+W0LTcsP747Nk2zdTdsKhwAIIzD+Kreft8gxNpYgl1Ne/sRVXxs8jD52bWd5IRN75LlvAfCBwau39xdsY63aBiA2yGL5eU1Xlnq7S2Hl148TePPxzROvysWw+x9Luk5YX5adg4+iUZaRiV3abl5u3n3BV2tFZuCZQ6jYKEvpttZbAFWOES7VU57We22hwr7pLGJfSLFq5a1g2XdZimrCeTYczncd976poK0ZtB4j4bT69SarGdi9FjwSCfe4lUyEt2W8XywO2N3CW0GfQ5st1tYLpe1YxVhMplAWZYwm83qzsa0fPLu9Xr1Fuh+vw8/+tGP4OzsDH76058GjMKPAZPunZLuk6UCeJdtIzEx0rQLiB3dbIFUe7Q1nFqMhxbowrGwS9gFbal+iSn9OK54fJd0do0vZhBJ0SEdzYgTxHw+h6Io6p2lWBa2IZcXALbjjGk59F+qDx9HmgFeagNtsosZPiX5x+sutRWvE69Pzh142k67mCGbyneE8Xhczy+0z+j9chxevnwJy+USPvjgg7rc1WoF6/UaptMpPHr0CFarVU1P7r2UWLbWHjG+0croWobsQ142ke1WxQ2B8gt1uljLarKwSS24nQE4NEYgX+S2f6xcOoYlORM7PpTKHE1+tJnn+a7a9Xqtyg+LMyPluOkCupy7aL9pDiQaZ5kncMd+TFZKi7vBYADT6RSWy2V91BEtD+c1iT8luqSwGK9gPNV3UVbjccJvvfUWFEUBP/vZz2C5XKon11BHIp03yrI6GvzXv/41LJdLmM1mcHNzA7PZLMCDawu6I1dqT37CAR3fWl2ldsMFK22/u9Jb1+u1NxY1HtVA0i9pG6Z0lxjvUsC+4cZbrvdMp9PaGEDvjkX5I5XFP+CK1Y3+p8Ycr6fUtql2xuiqjvyOV7o7k+4GdQ4heqyqvGMUaSoI3irctXHaURpWuXJiYVxR+P1f1Rv7snoOcTscfv143QHCe2Djd8Bq6WRcWplcvnLaQUjv2ryonXVSvUEI90LFNF4PdDYVdjmnpukOnaThe5UP+Yc+F0qawsvP83HewzB3JzDlRze+oHbWOkc7PYoagg8oQHj3gY5xnqYsufwI87jnMsgjx1H8+k5axIPx7jm2qxUR+WkB4nlknJjPtjOXxpHaiG3+TQVp91MXugi3JaRo4HpkVzbBB7jf0LXtMLWe4WXG+DCVVwvrgq9jeuoD3D+IraMobDYbL7zLvs89HRZ9dRxWq1VwxdtqtRKPKJbGS9IZmzKCceh6gMQMhl0ILMlg2DVeNJ5woG27XC7h5cuXMJlM4OjoqM6H6QCg3gnFDSuIv4mRk5bDn5sYdWMGKg26VkCaGlK7pMOKp4symxjuLWVaDKM8ftcTZAo/N1phHok2Or4OydmTkrdN+i6VTlsQxOohGRi1MjR6pEWRJpMlHBhGj+OTcMTqYJnfYu1J+4Xyn8RvMQXV6lgoyxKWyyXM5/P6WGLpPj7NWI4GXjzqYzKZQFEU4l0MuW2h0S+Ny1hdpXLpO+eptuO3ybyfk96ijGG6pjqIxZlH08XwaDRrY1DK03WfSOMslUeC3EUi14+ksVAU7kOzoihqxwjKJD4m6XiItbdEh0ZPV3NvU97rgoactYbkoErxtsXAIOFtA9r6gvIFnkhwenoK/X4fRqNR/XEFxWMZg3hv7Gw2q0/RwTw3NzcwGAxU3QfxaHWnbczzafMbzSPdR87bKAY5slFLKxlAKS08P6eRz8cpGixpY7oNPsc+9sK4wWAAq9VKXA9S+aG1uybf+LPUZhrO3HWHwxeEAHci8bS06LKkzkfn1LDxjytLoitEoafX86TzV/mqOAkHr6OFljhdfhtjnD7uHG0APD2IdLt+ADGvn06iL0wj5b8L0Nnb7xML3X645mSVw+W1OkWI6UL6pTHknmk9qPPe3xEryTs3Bmn+sN40rCy1Ni2DdGlIz/1+mVL6WJjOm3JYjt7p59PahdKdLn/3EJtndlGOBjHbVVs7tjZHWvHlzLe50HQtmYMfIJ++LteJDyBDTru2HQMcxy7He0z3zMn/AIcJkk3Daj+z4m+CpyiK+jRBbf1blv6H0tJuWQ063xm7D4cMLaftwLI6FHKA06VtX6bOg/Pzc/jbv/1b+M53vgM/+MEPVNx8ly2A+8p7PB57BsEcYwHmaQIWA/tdCkDNmNIVNDHK84lrH2Nml3AoE5zGa/TezVg6Kz5r/F0Bn8S4Aa7pWMitb+xi9X6/7xkYY87AmLFys9nAarVS76Oz0GtNE1MKuENYopfXiRq/NQWWl7FcLmG1WsHZ2Rm8++678OjRIxiPx/Xl9qgQSMoCfT87O4OiKOCDDz6Aq6sr+OKLLwAN5ugI0HgmpWDw+Zk+S44oXmeKxwJtx2FTfWJf4yiFC2mhPBpbKMcM5vgvHVVtcRBK5Uj9n1M3/mxZPMZoo23Fx4bmwIiV0+v1YDwe10612WwG8/kc+v1+ra/RLypRT5PkAaVPKzMVvguwzIWxtNJ4x7SWemh8LDnXpPf1eu2dRiPR3WRu1MYHhqNTjH7Zix/PcKf9Bx98ANPpFD799FMoigKur6/FMjUnGNaTOz0BqvH87Nmzulxeh9gY1vpIGj8anev1utYHdrXW0NLG5EUOT1vp4HKDnk4ixaEMofmtBlzEizu/y7KEm5sbKIrqAxFuIIhd2ZGSOdYwWmf+gZxkyNDowaiydI4h9185hkriJKLpeVo3rn3coDjKaBlIFuJzz/I9rTSuwhWmo+W4dtB2xFJnlr/TFQQHqlb/GB7erjTM7z/aPogHSF/Q+lEnHa8vzUv7oxDShSC1+WGDz2d1aCnJk8J7xvYFwLQuLPwvIvk47pCW6r/0+reSRyi7sB74TOsBjDcpXnsH4XjneVx4iLeKK5XwEC/Hw8vDsKruYfv4aaT04Z2umJenlcJcWjnOx8/vi/Xz8Ta8D3BXthWrPsrz0P8UaLpw1zbKLu3ju1pr3FU/f5Mg1sbSmj7W1035YNd27qZryAfYLWi8Zx33mE46VbVJf/L1bMp2hTAajeD09FSV3QDVmkeyMVjA5IxNGUxT6duCtmg+1IFlMRRKaTebDcxmM3jx4oUXxvNeXV0lF7O4uMeFeBd1kMCyOJeMYzS8ifHLml4yysUW/9KEkapjEwMeLbtJGzQBjU+k91h+yziUeCCFv4vxbFFwmxr0msTvG5oe+S0da6s90zA+lvFZAz4J4g4OAKh37OBRexxXjM/osXyUHkvfa0qiJDt4Pq2OPJ828aPs4MZ8iR7ERZ3WV1dXsF6v690wkvEX8WHboMN2tVrV8YvFAoqiqHdV8baL9akm36V2STmZtL5oMs5yZem+x7JF7lt4k6bV8FvzoNKLukPuxysanbtoWwvPaflSMkpzQEntiel7vR4Mh0MYjUYwn8+Duvd6PZhMJt6xsJa6xMbIPnnWMhfG5JYEOfoGfbc60DQ6MR1NGzuuKKZX4DPOXVSmU2cU4qP8gHnwSGF66o0091nH4WKxgPPz8/r4eeS3+XwOg8GgPooej+rV+F2iRYtP6XZN1yJdgqbfY19Z5yMpjB77K5VrpU/DHxtDOJfzo+qxT5usKyzGs6brnvi4x/8SQHW2Vu88j0tX/cvH8XqlAToK5Xi/PIq/qgd4uBEnjROwAT1amTvHOB20/pQe1/YQ1NNyXDHSwtuR00XTh+WGNPJ6uzhQ42l9wdvZFzq6eT4/7+sAhfDsrw8KxQFb/YcOWpqX85t7Lwm/8DFaACjOVOxP5DE37kjuAsA55EO8KfFRlrS/Q4dkN3l8p6eEL/yPyzGKhtMTB92RivRh+S4sXo4Lz58LHI5QT7Wui3Oha902hY/q85Y1r5ZfwsfzNl1LNW0Ti56NoNn32tomc3XYB4hDmzZssn5K9X9T2dDEZt4Gdmljf4AQYryQshfQtYvW9xJ+ax9b1/cAlU11Pp+ruPCkwab2y2/knbGHDGdnZ7BYLKJpqBEdQWIA/Cq66WK8CUgKiWSEp0ANIbuiM+Ug4GklRSplKGnq5LMYPbqCGJ05/RATkE3rsg8lLWYwu0/AeTFmBLQsKqRz+mm8VIbFIcAdgviPjh5qsB6Px/WXRbSM1F2siIsb65s6ayx1k5yK+I4GeZS/MceO9T5Wiu/m5qZOv16vod/vw2Kx8Npgs9lAr9fzvibDHVpXV1dimUVR1AoHdZLnOn5yZAIPb/MB0V1CWxnOnUKUv3JxN5XJmG84HMJwOKx32FEezim7qVJqKSO1yEsZH1JzjXX+o+nweNmjoyO4vr4OTgXo9XpwcnJS72qX5lvfqBrSwuO7MpTsGlI6VQp4O/JwrudK7UfbDB1X9F0rTwpP6ZP0rk6UwavVysPR6/XqueL6+rr+EPP4+DiYN2L9LNFydXUFFxcXXliv14OrqysYj8fwzjvvwGw2g88++6zezW2pHy0zpx9pP7WRAV3piDnGIqtTUpq7pPEstV1TQyWmnc1mNQ30VAwugyQ+p/TwscDjpLK5HLPqidpYrX74DgDkKFzJuerajO5Edfnp3bFAHKkhVPGOFqwnS1Vqzj8/Pw3DPBJOvZwqr18XmRb+n0MP37Xr4lz5FK8vj8K2rp7DfqjeS/Iup/HbInScyfpNEMTyxOPbgGXqjZdPHdS0Tajs8B2sLoyn0Ry0tN34P61LyfgC+QB5qSQ/VzfKB5wfCXZWFo5ZfA9bpirf5XXv4bOfpvRwhPhcfTGMl494KA2cVpcn3OEqlxm/41Wih8dRnCkcQotKgd9IsK5JAeL6XhNcTXWYXP1gHza1XDg0eroGS5u37ZddteGu1uxtoGn5mh3kruvzAA6k9Zc/d7efr7qyjaxWq6gzVgNtTcmhkTM2x/B1KHCIg1CiZ7PZiB0+Go1qIxQ6LvilxtvttvWdTPsA7AvtHl1M0wa/JYzT0wbusn3btJXVQNKWjhwcFudhTlkxY9MhgsUQ2hXE2rGN802K14x0aAwejUZQliX0+/164pOMmRLgIhQdvJIDN2VA1+IsOHgdkec0+nOdjZKRtyiqe14RNxpikQbpaHxqfJX6JcdwyuMo0HrzXZY8j1VZScFdz/HWuatp3Sz5Y32q4eWOAO5MiuHWaKBpOe1NZY7kDIg5VbSxy9umTX/RONyhvlqtvB3FuNt8MBjA+++/D2VZwnQ6hfl8DpeXl+KRstxJwutrpX3fQPU6iVbqMOL5KMR0uFwel2ikDiSt7Fj7chqoI4rWlTqpKH7kC3zGI/Y///xzGA6HcHV1VZ+AQPHEgMbzKwCQntlsVvPncrmsxzilsUvjB43rglfbyncrDbFyYnwYyyPJUnxO8ZxljizL0rsvVqJNmvdz9TdOO76j7iW1D9eDtDB/nAAA4PGochg6EjG+QoVOWf9Y3VsMdRgNr8rF8Oo5dN46py6/G1PqC1p2UXAe8I8wxrIRJwdaVxlflRcdbFV67d+VR8Mkh6yE09UPPDyuf3idpHjEDcAdt2E63hZ8XoeaRg3uepqk5evDjbaDPzYwzPV3eKJO9Sw5ZLUdsi7M0Yl9gs/+R0FlCVBN3QUAbG9xb706hjzC278aOxLwcRmH0nsOxzSVF+7Zr5+PKwz38VdpSvYv0VwyXD59fh5f5sl00zAfp8uvO2HLEmC53MJvf3sD19fyh9cSWOY2y5y8az1VmlesNFjXIzG8XdSP85WlHm1tRTH7Rkzv3Mc627ImuK+Q237S2hegXZvk8JGFprbrhxR+TU/MwfEA+4MmvJm7ju8qXRvebTqWeb5OdsZ2IRjagMUIu49BmWsMlhwG3MEKUNE+HA7r9sXj7pbLJazXa2/SlAx7uwSrcZ6Hp4xcGk/lGKTaQC6/pOosGVIlg0wbo1VX4zCnT7X8+1ISYoaxmPEL03IF2AJ3McHHjHkx2mOTDK1/avcpB80IJRl2U/ThvYr0g5Obm5v66Fzr7lE83pga+yWHBsUVM/rHwOKgoe3Dd2RrzljJSInhVLajER13LuJ9lZy36fHNtE1iC62yLANcKVpjbTEcDut7aKX8TRZ7TcagVa7kzuNaO1kN6DzeUnaOrI+l5W1C5YHGI5w+yst8V+8udcKiqHYd0g8QuIFSohvlSew+a5onNrdQXlmtVtDr9WCxWHhtUpYlzOdzGI/H8OTJE+j3+3B6egpff/21t0s9Jpt4vbSxo80Lqf7gfa3NG5ZFi4SjLN2R9DHZ0wT44txCW2rekujn6Xn5/Kh/nLvwXliaHj+cxDyDwQB6vR58/vnnsN1u652qWpla3SiPU57BcmazmUcTHQtSGbH+tvShRvO+dShNztH4mPEnNn5SMgLDuWyl6YuiUOVRCjcCPf6cf5il6X+581xsTovpEzxvTJf19fIQT1lSh4/v3ML0WjyjDCBwSvq4KB6Kl6fh1Zbw8fpouKu6y3fHhjS7tFWY5bhirR65O2SrPKA4Xe1HE2NfFx4O3l48zk9TRtNAwlm7T/DbQqLL11+qf9wRC7fP3Bnbu40vvHg/v6wXuf6j4ws/cqAOv+rX6+F816vzVHixfq7fhdqTuNi6kNuL/H527/4zlu/eSxbH04Y8RsunZdC6+XmcvuPn88PpO6WNlxW2gbQjlu/E5Ucsh5VaLjfw7NkMNpvd6eS7hJx1EQeu27XFRyG2qUR7b2p3kEDS+dvo1pqu0DQvj+uCxn1Crq66a92W65uWNRmm7ap8K84U3zehSRrLFtj3muMBdgs5Monbty08ZLUNSesiXONreSR4LY4pPpRB1gUd0sK7LKujKSUjqLaovUvo0tB2HyBluMyFfRiyc8HiWNgFxAxGfIxI7Z9Lo9Wou29oy1tavax15Hm4Qq0ZO2kfSEqcxuvaJKfRZDWc54JV0dXycR6MOUO0NsTjifFOyslkAvP5HObzuXcUMkB4zC9vf62dc5QTxJ9yeuQ6bPYJMfr2RYu2IMe+1sYOhdhca5F/WB7iKYqiPvIaAOrjijWHFyq62pij/Kg5LXKBOr/oUedanVOOlCb08HanzjWM546usizrOzvpXZ28/TTHBe2nWH3aGmLa4sX6UCcMPQY35rCh5WG4RIsUx/lYy68ZMDQe5noG/af56YIPHZ14yoN0dG1ZljAajWA0GtX3zfB2om1olc/UEUcdf/hP776R5h38WU5vyOGLQ1kXaDoL/Y/lo9BELyjLsv6IhDvBOT9qC33+Tu+R57TF+FhKK42J2NHgnG5J/vK+5/paWEdM43ax4s+VjfldWu4cBO941aLGTd99CB2SFZ3he1V+mJ/irdKEu2DDsuQjlmlZsXIxjP9zmly85tjWd8hKd+9iWzoek+hHfvHrF7ZvScLCtDQ9gjT8ZBHD+V1Kkwd+OZzn03nlMUP/wyOHAZzT1Y3VAnq9ok7H43w54O+SletEHXz8uYTttoSqz7cML5dldKy5espzQAG8j5AeX274OPkzT6vjCR22rp5Sm/D/8LhhKX1Ig//s2peH8TqHRxhr+Xi5DyCDtj7S5iQpfwokHBbcTfBieFMdK2Vv6RpyaD0EvfEBfB7pQh9uSkOX6R5g/9Ckb6x21Jyy6BU9AFBfzSXhaCq3rXk6dcZqE09X0MUkdmigGaEwDgHvm6JADX7SIp7jkPJ3DW2YFiA+yFK8ROucM1h5uSnaY8ZA6d1i6MmhVSorlk8zSFppsiiluxyXbfDHjERSOV2Vu29o4lRo0/c4HqnBWAMaLx1RaR2rmuE4xt80XRtIjRetDjHHg3WhRo0rk8kETk9PoSzL+m5xaiiNGWAl+mMKTqpdm4JFHmnvMbDIPS2+y3HeZCxy4HxAHVypfNq7ta9RIR0Oh9Dv9+vd19oYiMkIzanTto2oQ4Afp5yDI2aMoeWk5pGyLIMdkFRGYprVahVNq+HntEi8QMc+LTNn8RpbYMd0MInPqCMHdVW6Q56no3JR4pvUfGCpL+bhTjCpLSU+kMrh/1K/Ss7Y7XYLw+EQjo+P612NeL+sdoe7Vh8OyGOYhn8ZvFqtgnDfiN8eJHmjyfcUtNXFeF7LbhbJeSilk9JY6cldn2n8qF3PIJ0qYikzNtb5uEi1TWre0eRZFU8dKZiOOwslRyHfUQoAyp2w/L/CIzuI/XJDGlx+OS0v28LS/no+jpfXE9NIOFzbhzjlcjRHLeICAGUXLOYH4ijnafywkoTzfgzzcXwp6ECN5RiRChF/nuii9XXPlWym6xn6j3agHknXI/n8I44xvKa+phd5B6+SKqEoSqDiktLj/unYKmpcFS/5R35LQIN1OVAq6bX+LFm9ZDw8DdLg4sIdsrQMCVeMPsQp0evTqeH05wBKq94Wryfk2ARzoEtdwwJN1kG55cR0LiofUnN4U4itLXZla/gmQ44N3DqO+PogtR606MpWO0xsjbkrnn2A5pBq/y7sZJZyU/aAwWBQr0HQ1sUhJru0eEwTs1NTeC12xrYBvujatwMmZcjsEueugLeZVaBa0lgMcDn4qPBu205W482hQa6BlufVcN4laPVBo5v00QLA3dN9n6Hp+OE7wdbrdX2vIn6pZDVGx+hp07eSgdAy+XKIpcPJX3NKYPmr1ao22r/zzjvw/e9/Hz7++GO4uLioceHOw9FoVOfFdo2NWXRm5dBtTYfGYfzyLGZ0pXnaOOjuQgHPKddaN25Ay22zNryPeZfLpceTlC4O/OhfTj/92pDWKbe/Eedms4GTkxP4wQ9+AC9evIBPP/0UBoMBDAaDgObUGNR0lxivajrjfD6v243ufkPn4hdffFHfDzqfz2s5Jzn+LDyV69Rqmseq39E0dDc0HkWPTmhpUc95xsIbmmFBk9tI12aziTrxUXZRR6rkgMUwOqfRMjANx4vz3fHxMXzrW9+Cn//853B+fg7D4dAkJ3m9tLTaCQaIX3Y6hbtxc+fBruXwLvBJaz/6TNtAGzMp2U/nwLJ0H1DxXbGSrM/RNzgvS2PMAlgOztmaccJCHx/HKYOGe3fHo1Z50JHjnIj8zlgMd2X5d7sChLLm9g1LFtqiivd5xeFGOqt47pgMd+hjOsSJ5cfujnV4+S5a8PBhHYrakSodTxy/29anH0B2LruyXRu5NJRuDKfpAOg9ooWXxk/nO2Z91pGds7Ehsj+1UOYn2r4hOCdmUWC6cHdrUaCzlTpd8cff5R2yiBsAvH5ydPoOvoqPqjFYhW3rZwC4ddZW9e71trDd8nGPvIHjEMt34wfjSuZ4pM+0HR2Nocx2eaSjfTkeqGmiaXw5Jd8V66enedyRxBjO36XyOE5XDi+ret9u9WOKJYjFPYAP+1hDdrFW1eR5DuxrvZxavz5AM2hjL+HQBE/b8rugHXHErlp7sPMeJjSRC5Z1BEC1hhkOhyr+1Ol+bSH36r9vlDNWmrxS73cBMQMRBbrA5QzKjUa7BC6QtbIlI5lmKKLPGn7NQGSBmEFSa8tYORaDr2VCSNHVVX9qNEn4pfbOKSeFvwnExoiFTomnDn3CthjRrQZ8az9IhllalrXNNKcHygTcMYVGRe0OOw00IzktX6JJwqG9W4G3S6rfOB1cpmMb4V3hb7zxBhwdHYm7JalMzVUGYjRR/LG6aHliclZqd94GbeWGxKsUt1XB00Brr9S8FaMvhp/zdoxWyTislesbtO330XCc+JOO4JVoy8GNdA0GA3j8+DEsl8t6d6GmD/F6SOMzBjQNH1fcCbJer6HX64njE+/sxONrKV25c1AsvVb/GC5rmU1AkwESUJ7gjpwu9R+JRt7PluPYtfxlqd8bg/GDwQCm02lwx2csjwax+SUm6yxGvdz8Eg0SrV33awoo/bE5KUc+aLoNheFwCNvtFpbLpSiDY7pHjCe4/ADwd/1S/U2jmfetll6iLbX2k+Ypy5rLj3OOE3TgYfKypI5A987jeJEOpxcKIOzclHDyZ5rfL1ve1UrrQPH577k7YnmdJYes1Cau3rEy7DT4dNM6+Xnl9tbah8SQvtN3zUq4OOxJ7NzS4O94laEI4ooCf/6xxamf+wA5vE/W4cZnycFfejRU0AM8jhhq53Hhvft14Q0vhemg9RsNj4lnVxcpre7AxHAnV8o6nOLldPjxIR1VGllHdTj4xwehY5nXx+H1+y1Dndw7dGnPSkFq3ufhKbtqF9C0/traz7rWxHhNj+PtZNFFLOWmdMAHsENOX+fiy4Vc3T9nLZqyy1jGNeLZ5Vi+K9inDO0Kcu09FFJX59D0/AhiCpJ9mNu8UrTQsBwbr4b/G+WMPUSmbTuYcg14+4ZY/YbDIYxGIy9su93CYrHIMoak2i+mrHQFqX6gOzQtA5aGSUqRlj/XgdDEyA6QFoqIf5eQw/sWA1gXsMvJsSu8uXiQZ2MTFUKs/lpe3EGERzTm0JnT3l05OjRA+tGAn2s4p3KqLMt6Bx3G3dzc1HfDHR8fw9tvvw2vXr2C2WwGAKGTSDLU8jhangRcZuYce4h46dGkiCelZHcN2AaS3NqXQqu1mWacLkt/13LOwlrCJZXDd//lAjVaIH9IhkGksw1wPl6tVvDy5Ut4//334U/+5E/gb/7mb+Af//Ef1fy5u8VScswiHzAN9iPujON91tVcycdyjmyMyQgeFlswc7mD/EWPzdV4Hk9HSPE95WlpbtfqSPvDojemeJeebMBpRVkttSum22w2sFwuvd23vHzZeJ4GmpbyflH4d/hKtFHZE5NbFjnOx0sTObBrGS3V0bruoKcBcJybzQb6/T4cHx97fa6tB3CsYPtzGvi40GQ6p5/3lTb+8L+pPOI0xT4wiGCBsnZKFN5zVQY6GgEg2EnqO/h8A3Nxi9t3GmH+cIeqvxuWlhHbeYs4uCOUloG4kEbnyPKPO3b19dMhzQAuraur7Hil7cbTubrRcuUdsq5+wOjx87r3vJ2yNJ2fNowD5hDz01nWD8kkrYCTQNv3NkXdRo5e/zji6ufrVdUYd/pWryelC3WxiiZXDqfNH3v0ftjSG8vbbQm9ni8rHP4eAGyhKOguacf3KXBj1w/DnwsLd8LSOmB5Lm+p4PLTUDwhPWVQhstTBu8hTk6LXLb/TOdlF4e7Y6v/lGNZHyd3Bfu2x3ZRnj+f7A9itOfaNWL5+XqlCVjXNftad79ukGPzbMOnlr6xrBmttkNrmTwdtxvydDnl3zd4HcdP0zql8qE9la6vEObzOczn88Z2MIQYn6Xo27kz1uJA+iZDrvPsPgBXWLRFPr4PBoP6PjEA+5dYViMcpUkKj+GNOU1SeGK0WPE1Nb41BW5IlfCnFKx9Qpv2oXW0GBUt5d315Nilgst5ge70svCAxSkgyQNu3LTio+ktDipaNwmoIhejO0anlkfKlwKqRAyHQ5hOp7VzZz6fe/3SRh5R+jQ5ZJXRaJCmeHj6fS7KLIuHXBwcTxtlUpozOf4UdNnW0lwYw8nHDPJkm/6VeK3f70NZlnB5eQlvvfUWnJ6ewvHxMUwmE1itVp7zX6M1p2wup2I4YuNa04U0npLa0yqXEK9mHInVI8VvKTponficocluK89IdbDqZJyG2EI9JU+leK2tJZ4oigJWqxVcX1/DarUS65oCiXZt/McMJU3L5ri6hK7mMCtOrY+t9Urp7NQpIuHV+pHmb1J+SleS3jl9kj6mQc64l+vh/8Dbuemeq3eq73FHInXeSmVIfes7a7Gq9F16pvmpk8vR6OPh8Vo7AHAaffxhObnpafm0nWk6GQfm0e6RlfJrfVGFIV/pu2UxvRbnp9utfEqUDrwtdSiE54L9bkPruY5/8BY6YXu9Kh29ogfz4ntN7W0/8eOEe71tXQfnZHXO4iqO/lMHPsUl1ZnOTXS8u38gzk//Hby8ElB8QmwyDZU/nC73HzpaNbpQ5lDcsqyL4Y7pG1pd/Tp3Dbnr2Kb42+Sx6DlW+ruUK13pXhaQ1lExW45UT4u9zGoPwTiLjnbXdrVDgl2Ns1yw9FtKp43hjaVN2fof4HAhhwekcKu84nio/JLwxxyxVjtJG967dztj92m4fYDmYDFOL5dLWK1W8PTpUzg6OoKrq6vWXybQMrsWyim+o/fmadAV/1qdIbuCXbRvV8Bpi7U33ut3qHXJhS4dsdgmeKwmhqMDUMojhcUcnhTwHjU6fjSjoVRGrC5N2wWdPtS5o9WTtku/36/zWoHXG9/pl3/9fh/G4zGcnJzAW2+9BU+ePIHNZgMff/wxXF1d1Tu1ytLf7Whpg5jRFp9zFWU8mpHDLsZbroJurU8upJwwElAjPe07y70Wqb6gfZ/jnJBw8TxaXZEPUb5ieFvDBeI4OjqC7XYLv/zlL2EymcD3vvc9OD4+hg8//BC+/PJLuLy8VOvAd5elHFYSHTHgY8aKF9NjHv4Fp8WRxGWttW60zzS89J+WRedbrWysC59rpfyxNpPCttttLW+xrSSZE6u75JRCB6k0Lml7aPRqvE5Pgnj58iWcnZ0F9NIytblPMqRJ/cT7gafZhy5J2ygmA3D+t+xc7hIsztwmshPrgbyEPLRerz0dgY6LJrp1rsOTA8pF/HBK2qltxcPpis0/WhnOEeF2xwLgs3N0UUcsxgPbwUrDNaduVSbWAeoykFwah+8FcbKC4vREXL6MKOo8lHbwdg/Sst07byrtbliflpC2vB2y1FHn17sosN0hoNFvO9wB699TytsXaaspLzndpFYKa2pDoDvZpo8xqWzaln5+7oSVdsQ6B2u1+xUdrfF/6pzFXbToRMVnTmP1j+OucsJutzjeqp2ulVgoAKCKr5y1vds+K6Fy2Lq+rspC/sP2L+pyUkDHJk3vOyrl3a/gOVz1XbQ8DcUD4OfjNBGKGI6yzsPpomW4/9gO2XCHLf1tt6W3O1anLd3eD3CYEM4h3YBk++JrRivs2in/ABVY9cMu+8Fqw4vR0pYejQbtRLgHOCyIrbHarvUk3LFjijWQaNkXP0Up7cpx1BReB6frPtowF/+uaNIM3lQx1WgpCnd0Gr1LjRrBuLNCqwNVJiQjWy7EDDK8TJ6u7aRpMbJYnSxthErMUSNNtFpZsfp0yZMxo4/koNCMqq+DDOoCJGNqzvn9OQbf1MIjd2w1MW5KZcYcWhL/p5zKOTThommxWMD19TVst1sYjUawWq0Cpysvpw1YFmZSXYpCPhIY4yz15zzTRgbSeQbfpTQA8hFNmlPK2odafansQcclbzepL2PjAuMlOZbjOMrlUZoWn/liPwcfdUjR/BiOR99eXl7Cs2fP4Pr62nNuSLTRdsilRcLH42J8GBuTnL81/cbKd1r9yjJ99HXOWJfaReLDlBy28rgGqTk7RafWv1x/jc0BsfIkQBlpuR89Nm/E9BqNPh6WK995fAyaGveaAKVTMtKk5oCYfp8LNA86Y/GIYirXJPnIy7PKgpjeG+Ohoijqe4ulOSgGTYy2mlyv4qhDhL47RyAtUnrnafU0SEMh4kMa3DvWgebX6u/imvK/Tws+U7wVDfzo5RgtEn6/fVy7+2Vr4XIZUpsD8PkBArppG4O3my++Y5bnr3N1LnZCnuFlh3XS+qeo8RS1A9OPczIrdU9sD7gT1oUDVI5SOl7p/Ed5vYTtFp2q1Lm6BX93bEFoxB2xknwpwPEGPrv2Qr7w2zB0goLoVNTmJdkBycOkNOA5aKks8mmrZJiGI6wbrUeMflqeC5OctbJD27Vb9b/ZlHB2toTr63WWTpUCbY7q2nidYzOK2RofwAHVyWNpYusQTe9osq7aFe8cAmjtvKtxEoOm+m2MVzRd1oJXwxcDad0m2Scpba8jX90XsPQnH/+W9WYK72azEU+cktY2dA0u2Wr3AVFn7L6IeJ3hENtwnzTlLEKn02ltYOUDZrFYwHq9rt9j58QD6AYgSXmzGqVSQMvkA/k+TgaxNkwZVQ8JeD00nrTsbP6mg+Y0ovzedgx1AdQhY1EkU3RTpY+n5XdcA/g7fGLOPY6bxlN+LcsSlsslXFxcwG9/+1sAAJhMJrBYLGCxWHg7KWl5kvzJHaMSfZohOLXoQCMR0qopPJLDqAuD/mAwgLL0j06OgWTIxj4tisL7cKgN9Pt9GAwG9RzHDfaWRStNw+/oBJCdExrtFFdO+/OFGb+nNacPNdq4jvDVV1/BX//1X8OjR4/g+PgY1us1rFYr787lGFD6UkfVYNtS+qRxkaoLH98ItI94f0mLTC4jYnRY+VRKJ+3QprIwhtvCZ1pYWdruTdZolPDyMd3mRJOu5ivLTtBU/0m6Z0x2U5yajkflNZcnOWNZ0yWldG3uK9MgxZ+7WBNRnNfX1/Wz5Ixtq3NqRml8pmVIfMH1FGmXvBW4HLLwrRQWOjPorliMr5w7VTq+/qJOoNJL63iYOi/QGeXCsAmoo8ovx6OalenCEGdx62C03h3raPHLCx2wSJdzrGF6VzYtN8TD60LzY1sBxO6RDeUJxem3pXM+SmnkvCWL43UBEXa1JJUc+bzMkCZ3pK+PC52all+P7YT132O7ZGlZEs1Or8D/7e29sdUu2aLYQq8HsN1i/Xvef1GgHJN1AzrewrK5I9Hf6enyhU5QpF0qQ5YlkozkdEg7TaWdruGuWIke/yftcpV2yPJ0YRl4d6zQqlCWAOt1Cb/85RXM5/LVHQ/wzQPUB/ipZzRe0sWkudqqn+foiq8THEJ9mtDA9WLetzRO0l+1MjXbUS5Y1gmSL8ECTdYEUp5drS1yaLhLPDGw2At5+hxYrVaezyhWLreb3gXc+THFhyCoYtDE0HrodTo0oJN+UVRHEKJBVTMWSRCbLKx5mkDMMI7x3KgtwSHyTcoB0yXk9DXPQyFlENeMsg8gQ8qQy9Na0lj7WnJi8HdNudPGXEpJlMpJKVnD4RDefffdWo6h/Lq+vob5fF47hqwyihtP0ClxdXUFv/zlL+t08/kclsslbDab+k5ffhRlU/7WFCXa3nxXV8pZon1EE+sf6iiTHA0p+pHOwWAAk8kEyrKE9XpdH5OfUsIkvkLc6NxFpc/a3rR/cP5DXBwPLRN3L0n00b7BtJIjTAqz0s3nMk6DlseCg9MTw4u8gEfTbrfb+qMIGo5pAdzirav5V3J05eSRxqg2R6XKsdDQRhYgLXwusNDpjIqlONZi/ZGS1Vxmc4es1N6psrkhivOrNk+01d80uRdbGKdktBWP5kCTZAXH24WRDcvo9/swHA6T9z5bcPL0tF+1Y3i19ozpK5Y21YDOaTm6bAwkfFKb8blMKreLNYllruaA5FZtX5B3rItz9hXEYcmdhEXtxAsdi/QdgOLEceIfeyy9Q+B8DfGFdHKnY5WW0lal0e9jlfDRsOpfdshKtEo7N2l+SjPFI9Ek1YnHu3rSI23l9qHhfhzXK7j8hJ2Co8m1qV9m/D7dsB9ouDuyGIA7YsP30DkbHmlMcUl1QZ5BBx/2Ta9XOfWqI4l9x3CVj+oVBbgxkQu8P/1/fPbb3fGR9OzL1HC3LE1D80rlY14/XNIf9DwgOJi505XjwTiA0BEb4g+oicR1C7u2o8Tm4G+CDSdVR6tehOmsV0FI+qOmN0k6R5P10SH0Z45uuQuI6YNd+yWa6J4pvVVag8RwaetTaT2J/ynbTVP9tUm+nLXBrqCr8vZFd045OTyfWi9T2yW+59iKc8u1wJ07Yx/g9QAUvpadJXxQ8a+y0RlL732TjGE5Ru9YfGoC4ApG15OaRtddQxNlah/QhQKkCWKAw6vvIYBFsUoZ3TSlygIxo6nFUNql0iyVN5lM4Lvf/S4Mh0MAALi5uYHr62v47LPPYDabMYOITCPHzR02vV4PLi8v4fz8PMAxGAw85xs6PalcjslP+hxTcLlTRZKHmtMi5gSkeaT5AetAx+1gMDDJ96IoYL1eQ1G4u0bX6zVsNhuYz+fJOnN89MOh4XBY4+N1iuHggF8oS/3EeQAAREcFzYdz6mazqXcBxxZPEt2xhbVUR4mHtLEpHc2aYxjA/IPBoOb1+XwONzc3teOd00T5XnNYWWWURnduemmMcEAHIz+COeYw4U7JnLk8xrsWXSg1/qUv6bUxgXWJjQmKH8cFl6O8DCp3sB6cp3P4sQtILSABbPqlhQd5OtoGPN6qH3fRFoPBAKbTKQDIMq4pSPNqqp3a6gwxXsLytRMamrZlTCZr8i6lt1F6m4A0VqV4jPOdDfKxxUXhnCHckYj5+E5Q34GIvO07ekHYEeriXJjeFNKOWefo8tvAd+DR8vGdxvF7WyFyXLFrI32HrGtDLYzTHNIDgkOW0le9y8c8+20rO2V5Wh7nx3Ped/g06E58u7bgeDkvMQpu29dyFDF1xMbujO3d6n/+rlg8rtjxHeVT//7S6r2K3G5L6PWqo4t7PX+uKApgNEqnDMmVd+OahvlOSffvHJI0L8Xl18NWjp9fOgrYhQNzpPq4/d2wtD05XX5d6BxM49M7YkNcchvzctrCodhHdukIu09gaQdpzk19nCrltTzje4695xD7ctc0pWzJVhwIObhiax2t3tZwyls03lJGDLidyErTocirBwghxQdN1mJU/5DsABhuuUJL4x1L2lx+f3DGPsCdw3K59JwH4/E4mh6NGFzodwUp4Z07iUoG7ENUPjToQmnoCrpot5QAfoAKkF9xlwqOUZzEqPNPmvzov4SbGsRjYFH0aXjK+KfRI73H8tKy+v0+nJ6e1s7Y8XgMk8kEXrx4UcejM4U6DTj9VD5g+9Ly+HFk2Beas0uqQ0yBjSkUWpiE3zfYOLnX6/VqB+Z2u61PP6DtzR0so9EIRqMRfPDBBzAajeDjjz+Gm5sbsQ4SrZQncfcpOresOBDojkyp7pLRWhsbtK6cbxFPrtxF+sbjMZyensJyuax3AEtHT6aUTat8jNHJZQSPk9ojB5bLJazXa5VmyzFaqSNuNeC8ocVLPEAd5ppzmtbJcrdoE/olmS21U+5cyfszRrc2RlK4efukeAzfqaylOwSKoqjx0HSSw2ofuoNkMOPzRMqZpvWlNFciSLqqlDY2tnMB8QyHQ1gsFmo6yZBE5WXsQzsLvl1AroGrC+A6ljTX0D7epbE0xaN+WdzZQI8k9uPRoVTRxx21oQOSxrsqVXlp+eAdJSw7GxEXx+GHO1xF4egsiDMVy/P7RD6umDpAabm8npQ+Jytlh6yjOTzC2dEMHg6ap3qWHMvNnLIuPO2Y5fFhutTaos4RTRcDGw94OYS8VTh3YlbjRt/tSo8irnbI9tfEIwoAAQAASURBVOt00jHF8jyG/26sAWzr52pHbA+KYktw0GOJnSPZb0d8L8m/Xya2Wzge6Tj0aaV8QmUBx+vkRpheSsPLp7SB54jlembJcPFjirnjNCzXlZE6phhYPK83rSdvs9cHHuw27WAwGNS2CgDHa8vlUmxbzvOpNd0DpKGtztymnduu5XZVjhWftO6RbHYPvHj3EFtf7YKHpbUM1ZV43i7XPW3k4WvjjLVUuEsjllRezIAfc0poeWJlxXAeOnC68chIgMr4NBqN6rjUgLMaoiyGwF0Dd0wcAmjtw41dPOyQQaKdhyNoxxo+QAVFUdS76/BdcwACpMebZKDX+isG1nG9S9nJ72adTCYwGo1qgzL+MC11ZlvusdDmEXQq9vv92pHDFRD+npp/UuWl6JMcYUgDvwdzMBjUbSDd6cAXfDgnfPvb34aTkxP41a9+Ve9ojc21Et3oEEdacoHOO9oxwFZI8aAUb5nr0Ol6fHxc75jebDb1kcwpozwNs8wD0pjWaJPGZGyhZ5kvN5tN7bwpiiK4K9aCg9Y11u4WPHxMafiQVhzDEj/SvDhXacfnWiHWX1r/tMFPy7DyfM7in/Yddzpxfsb/2O5i7rzn8sLaHk3mNQ6cdvquOedTMl0yaEhOO6lcHhczyjUBvmjOyUfp5c80jPeLVmeOOxcOYc3By5OdMaX367rcXHlCHRB+eOiMxDDnqK3infM1dET6/U3zIs1eqSA52Nyz5NQM6QrveA3L09/lMsK28cuNsVgsnVxP1xaUTkpjlT52NLHv7JXq7IeXJNzmmOV4KcSHXIrvY3qXXIbUTz6+on6m6Xynqfzs//guWHTESrtjC688zjfueOIqQa9XwHaLjld/ByylnR8RLbUXHbOxtqRjH/kAxy1PB8xx6uL8cC5PaBqKh5Yf0uHnkdLx+sXiXVy4G9hPX97WgTt5/Xr7UIVtt9inrzd0NWffB0itRaR1HQduZ0UbAr0ajgJfk9NwTee6L/bC+wRt2rTt+raLsqUyMV5ba2i819V1XA+we2gqj1NrS8sarykdTdagMT9KCl4bZ+xdgNWo+DorBhyaCMWbmxtYLpdwdHQERVHURw1SQ32/34ejo6P6fkRangZWh82uoUtj1T5BMmS6RVovmEDvw2SoKZKH1D8WfmnCU235EMejpZ+ldpUcdk3BYujGyZHudLLiROAKH8eP/1dXV/AXf/EX8Pbbb8OPfvQjGA6HMJ1O613+6Ixtcw8eTSMdbygpsRanrwSxNqXPOQ5Jmgbv9OTOF/qOu4lxZyc9ani1WsFsNqtxWepTliXMZrO6DPqBQewuVv6MeWl6y7jSjNLIo4iTOtd5e0sKH3UoIM5+vw/T6bRu4/l8Xjv8JFpzHEyx/JJzg0NqLObIKXpcMcUv0cbpo+noBya5jkD8j+3M1GiR+kNalCJ+idfvau6NOQRToC3++X2eEr9r+Gg74BHm/G5Q/OeOb+0+al7+Ptu5LKudCsgnSI+kc1Ge5TKD0s3nRIzX7lDFuKIovDG2C8D6SPfFxuZEjUckHkOejc23+x5LlHfblp3Dq9ywJenDbenJdcRWaZwToSwLwGm2ursSed7tKOUOT6gdpO4d01NnLnV+QL3zjeN3dLvxRp291Cnpzx+8PJrOOcR8+mm9XB9Ijt2K1lvqAB1i1LHmO8iwMohDS+fw++XTOmI7aY5jIPWjca4tkRaehqbzw0sWFx4FLeWn0I6VeWbZ2c3rSsNlGUYdsvEfPxWneu6T/x70+/SYYpceoIBezzl0OW2uT/w7rCu6t7d6ftW/eNxxtVO2vK0D/hfkXXIsghfOf7S9Q6ejozXEUwZ4aR0cTj7u/XBM78ZpiNsP47theR2144Wd/SEWvt3yNsJwlI+8bVz5220Jn356DZeXK1itmq0DH+DwwaL/8zHPr4bTcKScaA+wf5DWTKk0PK6Nc6xrsPhRJDtWzH77wKOvF2jru7ZX2bTlE2mt3RQenLEgf4HRFKRFvjahaR0pGdm1ifIQhU7KkK8ZtqUfzTsYDGC9XgeC2WI4iMWljDHW/rgr0Gjp2qBiMeJbDVua8VACboCM4ZVobpL2LseV1fi8C7xa2lxDIXcO0fBcaGIM506+JrJSMnRz/Pi/Wq3gyy+/hF6vB6vVCvr9fr0rMVYfLc4ikywLpS74OKbw8j7OkTn0Hl2pPmhIWq1Wtczv9/swHo9hNBrB9fV1UBbvaz62l8tlvRDVnF4az0pyoomzm/MVlqntcLY4GjTZXBSF5/i26hxSmljamHNDCos5V1J5JT7R+C6GT2pbSW7F5FiOLsD7ldOei4MC5SPexzmyL1dP4s7YnPyUPnyWZAov0zo/clwxnPTfom+n6EiNhxikxoCVhljZsXFtrVvTeTVGT1mW3pHjGq2UDgtuaexJZe9Cr7f0UZu2lMY7gqU+OI4tZbfRj6VxpqelebAOzolaFFRWU+ein5+GV/1LnYglgLCDj9Jb0eicuvTdOU/De1UpbZwOXkeJZlf3QqwbbzqpDVL1c/n8dLQOevlY97AO2Lbxo4sxjTSv8HRSnOMJLQ3CbpZy8jHWEi3p8nkC59Sk8xiA+6+e/R2veJ+su1c23EFb0VqQcsq6f11fuJ2vctmcTqkOYTtYAWmh+WiYS5c+wljCiXk1vLcp6jj38/GG9NCyywi9YZyLp3Sh7OO0WPVNgMvLFVxcrEzpkYa7tH3EoC1dh1y3HMB6pNYxEtC1Lte9OR6fH2WdiZa/C90pF16XPgbIs7em1qxt1iNa2XcNmp2Hv+fYpB6gPVhlUVOcVj7n+SRbS47slGhK2bVy7CEPztgW0GaQl2UJw+HQJHABIHp8xOsy+dBdSwCyobvpTq+2EBvkTWAXAmsXIE14NO4QQXNmxOhtY2R6ABkk4yZfAOwDdqWM4VdZFO9sNoPf/OY3MJ1O4fj4uHYY3tzcwGKxgKOjo9oxlksPr4ekhEhta3WUSIprTMm10M/7eLPZwHK5rB3Vk8kEttttvXMzRufp6Sk8ffoUnjx5AtvtFs7Pz2Gz2cB6vfYcrBJfYdzV1RWMx2OYTqfegjRliNfkf85x05JCifTirnPc8Sw51ixQFNUR2fP5HH7+85/D0dERHB8fw3Q6hcFgADc3N8HJErzufIGHHxRodZUU4pRDqWvIle20fVN0UYdjURTeO+0jikvqa67bIO9qH5dhODpK6DHnGt27kq0aPol2S99zAw7KRH4vuSTjUgtwDKM/PLq7qa7O65CDC/V8HNtWmTEcDuGtt96C7XYLi8Wivv+Z1q9pfTQjG+KmZWj3YwOA91FLF4C7YmM7ru3G6LQBahcyicsE+q+1d5v+pHjwX1srSrRp9ABAtB/agja/4a6v6lftjC0KOmfij+6OBUDHKJCdelTOVP/OocGPJ3a4nOMV45BM+o648LkKd0f/hmHUgRe7IxbYe+HV39GFdXXtU/3TNnVp3DuwfBIuEMqHIE+VJn10sdSGlG4SIqaj6f04rpd5byqeNuDKcG3m11l3wldtSR2YRd2GmhMWf/QuWHcMMf73yZ2x6WOKKW0VXbIj0O2ELQMcPt3cNsDbXdr5yXeGlgEdbjy4+crRB14YL4eXSetG04ThUr5YupKVJ7/HysBdrn5bVO/V7li/vfiuWA5h+9ugazl/SPbJQ6GjKWj6TBO9AdfhMf0aw1K2z7Z28C775b738T5Aa/Nd2XO7wHtf7OWvK1jG6V2MPW6z1NaoXdDWdg2ZShd1xu7baN5GMLehUVu4xvCnJsAcejhDaYJHoim33vvuU6lsCtxAmcrfVZvHwKLctGlHy8SSwr/PyagLA1GusdyCt4lRzgoaTYe0uLgLyHGyWOSqFM8XGlr+WD9Ii4wUUJ6i/5pslgyVm80Gzs/PYbvdwmAwqB1f/GhEqWxOv9QO1jbF/LljSsMnjTcqjzUHCc2L/9KpB1oZ3MGFO2On02l9bD29LzRVN3ocMO9bXvcmyqfWxyn5h+0izXG87bBsiX4at1gsoN/v13cD4dGtMRkWi+eLdBpmbbc27Z2bjoNmbMjBGxsbTehK6TS7nOM00OZWTRZz/dUKUtqUnMzBHRsbMVqo7MT+iY03DZoYEPDDh/V6DYPBAJ4+fQqbzQaur6/h+vq6dt5bcFn0qthYj43xpuWl8pRlKd4jbsFhAdqvu4KU/MvRYXYl6yRadq3bajqENo/SpOWtcwGT4rsbm87pCeyI36psmt93it6mEGiQnWsujjo8yhqHX5aflu5CrdpCOq7Y5Yvho+X6ZQQ1EetnwVWVLx9bzNtIx41zvV+/sHxsByDtEuLkOKR4xBWma8/ftAxtV7GWz8XRRAX5L4Q0BYmTd8vafr1b3FQ35/Xxxw+QXbI+LfgszaXhuz9OghxBXv8/dMA6vCV7dzj995AuEBy3EnBapHo4eSSHSXSijJPyVM/SccypOvn12wXkzrex8K7mYctaja/vm6w9Dgly25CuowH8qym0dciu7Yz7avema7O7hpx1RhObaO56xmr/k/Q8LX3KfsjtWLm25EPox/sOTWwzMRt6rszKjW/jN2lSZmqtb7GRRJ2x+56g9l1eE8OpBYqiMJ3jjkcm0ovUNdAMMLltdhdKh9aenBZUDqS2Q+j6S3yNln0L8K6V013BPuizGoViygE39ucK7ViZhwq7NqZ13fe7WgzFFEFeXsxAyZ2NXNHAuOFwWIcvFgv4xS9+Ad/+9rfh8ePHQbl472mqLS0OrX0CdwIC2BRs/KcyHZ2hNI/UH3jPLsYtFgu4ubmB4+Nj6Pf78OTJE3j16hX85Cc/qZ20dFcVd14intVqVTs2kK5UnXIcbpZ5mvMAdw7jbjTqmMC68bt2JUC9YrVawddffw1HR0cwHo9rRzjtj7Iso+0Qqw+lBfHSXcq5jpWugTrUqJMNwK9rSsHW5ABPKxk22i4ocpy1Gn1WvLkL+yYOOAmQLzebDfR6PRgMBqr8jd3VTNNoRibeVwgxvRN5xHpPNK4BiqK6rxnLwnFJZRMF3LF/fn4Ojx49gn//7/89rFYreP78OXz66afw85//HObzefa4ShlAqLGSy+5drZM4Lmxf5IHYSQcc+J2/GtC727nM3QU4Z2H66GeNT5uUJQGfz3j/WgwpTUEyhmv4yxJgs6G7Y92Oz+q5uL0/tgorb50k220BOIQxDB1G7i7ZKg91QmHa6p/eC+vSuDtiHU50VCE+2naurnRXKyZy4a5859hDeioc/NnRQkqs48OyXBo/zLW/zy7+/bNIH8Xrtwt3UsUcfdj3RR1P60/zhc4x3sYgAmenMF0TmSU7hh3+sD/99La1bFFgPu5Axf+e917thA13ykrPFe7QGVvR68ZFNSWVQB3wbjcvzaff2UvbhqbB99jPpfN3h/rxpZheLlfbHQtBOMftnqUji/00ADwt3/GL65EwzMeFO1+B5MGds2X9zuvr17UkdOXBrufDfQHXg4fDIfT7/bptFouF14avE8TWHv1+37NXIOCJJLnOOSvsyzn2uvBvDCS7SZO8EnTVNyn7QQ4URQGj0ciz36xW8aPX74IPvgm8t2/IbdOu7chd4LPieO2OKW478GOGh5RBIxWu4ZWcB02FbI4BzYIz10mpGQM0w5+UntbfYtjuCtqU2YVzxdJuu6i7hjNV9q6UqpxyLE41azn3CXLkUSyPpRwLxAx52uIgB7eFF1OyJ2Vsj73TMK1sfF6v13B9fQ0vX76E+Xxe5+n1ep4TssnYTjmNUnm7GLOazI7Rx3nPoqyjwwLjLy8v4ezsDJbLZb1DjH/dy8tFGAwGXjq6w4wvbjRZYnVSaGCdQyT8lL9zxjG24WazqRcwlnnOwv8SDXg/7Wg0gu12G5SZgl3O7dQRkHJcaBCTuxqPa/1F+VuTlZIOps2PNG2Kp5tATEbGxrBEM6Wt1+vBeDyG9XoNV1dXxJgY8j/Pa6U3pR/wfsstSwKU9Y8ePYKiKGqZg6clSDTQjxuKojpyfDAYwMnJCUwmE09n1vRnrENM56ZpNONObLzvQvdL8RAHTo9Fb6fzcAw/H48pPo6BRTfpCrR2oMDlStP5bFcwn2/g4mIFg0EPBgP8SIiOS/+IYZ+HS6COIgwuS99BhvlijjKMp8cMo7OW0kF35HJ8krMWy0d6XfvrNPtzhHPcUlorHnPOzLRDVpZ1iJ86TSleyVErlSG1ObZJ9e7wS23D8Vbhch6eN5YmH/yyNfxSG7kwCzEFOKdu4YUXBdQ/dNa6fxdGw92zrhv4Q56+0B2xVl3T/1Vh1DFY1unoM77TfKkykF6anuIK08pp/PDQcUvjXXmyc9alLdUy6L+fnpcd3zUrQSqtRc630b9z7Ga7mPe0MqnORefH+2z/QZB03Fj9yrL0rqmR8DSlw2rP2KW+kWsf2bVOuwuI2ViaglUmWPu467ak8xd+UIkgXRd2F2P7dZAndwGSjYNDEzt0U3wx+1YuPslWw+U0wkE5Y3OMjF1BzsSQmlwo5AgGy+L5LmBf/cEnkpRB4VCFXmyisrZlV4bTruB1UFytyhjA/VbIdpEnll/j6V0ouJZx0cWCQhuz9J5GySlRlqXn7H3+/Dm8ePGiTjscDmsjsIXOfc+FucpOE0ckzxPbzVQU1S6p5XJZG85/85vfwNnZGaATa7FY1HfylqW/C5MqVEVRwHQ6BYBqp+lqtaqd5ADhnRKSc63rscPDJAVNM+Kn5kepTfHOSQAInBGUHu6oidEl1Ws4HMJoNILT01NYLpdweXkJAOAtnvYN/DSN2J2rEkj6CY2j4bhQRB6N7b7jx3VzwHwUH5VBGMbp4LRLdciBNguclB6MO9o/+OADuL6+rp2xsXbR9G1uaLPO7Xz88/HFd41bAI1eRVHA97//fZhOp3BxcQHX19fw7Nmzul95nfiu9+12C8PhEN58881ahnHQZLLkbOXjUJO/nLfQiYlxu9SbUn3HZXVO2bjrWjJISvh52U0hZSyW4nJ1gBwnLPJfSga1BdkBFKfz5cslvHq1hOGwB5NJ39sZS50M6PDw745FpyhNU3jpnKOEjhsJh78LFPHRMHx21UNcfLeqXybfBeuccNQJyh2inCaKD7wyKS0++GFSPlcnnPulXcIgto8rAxgtro0oHvceOlmlvOA59CjEHN7NwceJCJFvaDranz5f0DBOs//zw/l4rX494RnvhvXvlMW5JLwzNlZf2mdIl8RHULeBPCap7ohzEfIwfy6DfA6vv4PU9X94xLDDCSwPBDhDumh/SjhCRyyth4TL/4Vp3I5XmiZ8pycE0DScVt4v2213c/IhQ2w+2Ww29ZoPoSgKGI/Hnj7D4w8ZNP2H662SHoPt0QVI9hJe9qG3JYVDs71a4C78JW1twm1tW/1+v17HlGUJNzc3qj3jAQ4fsD+lzTJoA5Sgbf9KY33XPBNbbx2UM/YQBk8TR0Jq8Z4SPlLnoDKNMBgMvC+8OG7NWCjRmTPpcMGLRvJdANIVM4zx9BLE6iYZ3WPpKD0cb65RiBuBJT6JvWu071KB4MoeB66ANXXWdAGx9rJC106X+6bc5UCuM6OJ/NEM7xiXK8ti+Hh5miNMowvlIu7ClOJTTrRdL2Jy8UpyMAdy5icpLy336uoKVqsVoKNgvV7XR/3jvMQNTtvttnb4oBNys9nAZDKBm5sbb+dy7pzIIad9UnyYk1bLJ6Wx1jMl9yleCSddMFGcdwFII/IJ5QMum2Ltqs0viAPviZ5Op/Xx2hcXF7BcLgNZJeFKLXI5jRJOKS+my72P1apfxRxImgyl43Sz2cCrV69gNBrBj370I1gsFjCbzeDy8hJubm4CByWvf4yWVP2ccVPWbbRyLVCWJfT7fXj33Xfh9PQUvv76a3j16hV8/vnnIr0ATkfE55ubm1rn32w2Iq0x/VTjB6wbNWrw9Njux8fHAFAdD4bjpmu9huLjznFOO6U3lkaDlI6qybQmYNWPpfp0KS+1OYTzdIy/uio3BdxZ4p6RPtyN6pxHVTp5RyyQY3wxLb4D22VL/wvmAOVx+E7TuXr7ca4dZDp93C6N/+zodfn8eFo3TB860sKdm76sC52IDh8EtEjtgf1YPfvtK7cl9rPfhrxtpDhXJy+Fki4PZBHg14ums5cnJeSOWfm56ie3g9a9FwyHC/dlOy0b+cPnSw50bLhxWAJ4DlR8p2lLAMGBSn8UryvLd6QirTwfMOeoX67Lz+vF0/h5aR1Den36OG3hu5RHpsenTS/b7xMJz/n5Eq6u1rBc+tfBvG6QsvXxur/33nswnU7h+fPnnpEf7auHbK+J9WMO3bF1pmWdb7EDcrxN6Nwl3IcxYbVjp9K2AW0NIdHSlAc1/L1eDyaTSf0BJcJms0l+THkf+vd1A8saWfqwmZ8GhfH8yrEY3i5B4mNJhlloyZF9B+WMRbiLhrcYnlKdZClHAnpWP8eN4cPhEMqy+gqkaTlNoKkRnoNVYFvu2uXGkl3wSYre3DI1Wps4KboGjTaqnO2DtpSBbRc0NOVvTTjvS0mKQVdj1gqxsrjDImWoB7DJf5z46Z2ilkm0LP0drJrDJWdhQo36vV4PhsNhwAu4wzNXUdznXBiDHKWcg/bxjtZf1LmE7dvr9eD8/BzKstoBi2m0+yVp2b1eD46OjoK7cp4/fw7z+byuW9eLiS4g5szidMRw0LxNHEscKL9Lc5jkjL1r6Pf7MBgMYDwew2KxqO/yTOl+qbbCPtpsNt6RsqPRCObzucdjFJ8VJIeJNs9Iaagxtuv5yLLYiM2VRVHAarWCzz//HL7zne/Av/t3/w5evnwJn332GfzqV7+Cq6srGAwG0O/3k1/08wVdii5My3fo4/xA2yu1A1mDXq8HH330Ebzzzjvw7NkzGI1G8OMf/1iliX4gsNls4OLiAiaTCQyHQ1iv154jVJtPaRjXp3l63CWKd5nz+OFwCE+fPoWyLOHVq1f13WIcuuItiU9Txr9c/BbYp64p1XUf830T43Mbuui8E8PvHBHVHYtuZyzubg13uTqHagmSU6ks0bEJdbyfxsUBc3BSvPSoYprWr4N/fDHSTtMVzJkJynHFWD/nPPYdpRQf0ut0Ulo3jUY/n+uD0KnKjy1GPFUa2WGN9CNeHk/fKT7E6bcXkDgIwE9TqulIjgQOHXyaXZlhm/r1rNpWv4MWw7kcpo5V7mBN/YA5eR1vcB72/908g3XDerhw+ec7Zl2Yr3+6H3jPcpk+fhrm2t7vF5oW6dbSSHSGdMR2vvL6S/+xsOrd3Smrt1UcqjTPny/gq6/mqcSvJcTsWb/7u78L77zzDvyP//E/4OrqCgDc6Sz0KpdDBqt+22ZtR3FY9C/JBpZr69gF3HX5VujCZreLtd1d9mG/34fT09NgDUM/UOXA128PsHug9k8ezt8lm5Dm82kii9v0ecre3JUfTMNzkM5YabKxNoTFOJST12KMb2pcw2frXYZS2lwG4QablNGjC0gxOX/PrZPWVynhkAqzCJeYgdVSl121OcXdxHDvL8xtNFLniYQnRUOq3VO0dGlsTk0u2jN/R0cRQDPjVxPYpxKSKivmQKBglbddTrb8qyuezrro4bTT3U0Y35XxuCuloA0NUliT+uXyA4bhV5K8nTV6yrL0jjtGR6GmGGlhkkyMLT5pv2tyMCZHeHjOXE3jqcOUO8Yp7tgY1PQqLu9x5/JsNqsdPDztvgHLxQ8ljo6OYLvd1k5SCtTpRndco5OMtiV1HNF8/X4fRqMRTCaT4CjanPnLMhdrMofHpyCWrolOkKNzIIzHY3j33XehLEt48eIFTCYTGI/HUJbuCPJY2RJ/xfQPHjYejwEA6p3MEt4YP2t04Zfc0+m0vvdVS7taraAoKifpYrGA//t//2999Pfz589rZyiWrdFG20qiEU8MwCOwAdyHLfRjF6qz9Pt9b3cuXY90qdfEeIe2ndSXKeDG7Zx8Xckuiw7cBFK8j2ExYzXPG0trlQEW2RKm047+9B2xFQ3hEcM+abID18VhnSmOyjGI+Cra/HfHExUNwJy41b+/k9WVzctw4VVe+gykTHwGglff6aq/+7RhG/C0LqxKX9VBcrxim8d2EXNZ7MfTMMTpwjn/QQAaO+rsJ63ZvZxaxrrdKf/Qevt9oce5cgryjPhceFFger7DVXqWaI0DHRf+uCtZWMxRGHey0rFMy3SyhqeHIC+An9anndIf1s0PC3fZcnlG28PHKztbfdp0uuS2kd7ROavR6MoL8Xc3H6egzdrPkte61hwMBh7e1WoFb7/9NnznO9+p07z55pv1M36k2+/3YTgcwnK5hMVioa4L24Kmz0ggrcs0fDn6hFWPaaK/a/ktOvIugOsW1rrHaNzVGjYXZ2xdYylL4x1KB/c15JSZY4uNjQG83gsA6pPQyrL0TvRJ1eMQ4a5sIbsA63yD61peb34KLEC1Zl4sFlkyMxea4qE8J/G5tmaieSQ4SGcsgE9000brwmDcNWiGAIk2KSy1c9RS564m2hQOiyKgGQxSfR5L07Z+Ei4tzkKnNqk1Aam9uqxv19CF4LSODSwvZUiyTtypMlL5+CRDJ637pjxoYJ0sY4Y+CaemzEtjzmKUTfFAbFzF8tEw7Gvq8LLQloIu5sIU5BileZ5dKpY41mgZ1Bmr9QfnNzxiE/OjU02T4VqYddxaFyOW+TOm3MXy8PpJclGKa9OX6/W6dnTirmRJ39knYPnobJpMJt6dwZJsoveucZ7n9ZB2Vg6HQ+9eqpQzQ5pT8Dm2KzOli2lGnZTBIfau0SJBjiFmOBzCkydP4Pr6GsbjMYxGIxiNRrBYLGCz2dQLcKtcpuGxDx5p+QBQLwK5I92iZ0myB3e0Yn0k+jAPfsDQ6/VgtVrBJ598UvMT7tyQFoPS/BCbZ5Ef8N5QzIsfIGA83nEjxUn1leqktVMKYvoXTZNrPOXzRqpfU+E5YyFVb+vaJ1VurBx+F7DUflyPzpXdqXVT7J2WWwbOC7pzFoA6JKkzCqtP41wefkwx1PEuL3WS+vgQDz7LwHenujB8pk5fTjvSzR2f/NnR1d4h6+ONHVtMaZdo5mMUWFpu1HUtRFnBD+dzEuchUMEgapT8PGNYJ9qntH8kGuS4QnimOgC+F0LagsRj+oKlD/PJ7VGCGwt0DLgx4/4lByJ3woL4DN59srI+4o9LGuc7RGlafKZ1o+UDc+LKeCS6/R8Q5ywvw/+FNDu5JrWNX1+tTSmtnG4exsEy5+4Kmuj+OesdALeuA3DG/CdPnsC//Jf/sk4zm81gNpvVeY+Pj2s9L3b06a5AW0/m6OdS/lhaPt/ztUEOaPYNKuPvku8otNVHUzi6BktZOW2bwhfToy1rxy7alwKu13F8ojMW4yx4D4X3ONxXey+H3PaVnLHSfbGW9bqFDos8pGlz5W7MVpI7Tg7WGXvfmDXHQMTTS8Y2el42Be2S49SgyFVsDkmIUYOuBlbjeSpPG+Bf60igKV+pfBi/DwfIoUNTRbWrPFrbo+EV8VFFAsAZ+KlB9ZvahxJIC4SUs4wbnGPjIjbW2i4adtmPh8QjfPFF+4c7pZqCqqzcLrbxzk8ca9wRIS0QLy4u6uOoVqtV/ePp29DIF6CWhTXGd93HvF+k8Bg9baAsS7i6utqbDpFqP+roit13T+UN7hrEI8fRsRwroyiqI3cvLy8BAOpdjKmTT2JzSb/fh5OTkzrNcrms5w+uE0lOKq3MLqEN/6LMkPpovV7Dzc1N3R8xoE7CHNlOZcfJyUnNuwCh3inhoTxTlmW945Tuqv7Vr34F5+fn0Ov14Ouvv04u6vgzXwto82SKz2g9pPZG+un7ZrOpd5BL6wxNL2/jvOM4Y3qABLE5aL1ei3IA8aNBlubFvuV32XZlvKV8ldNuSBM+x9Lx+uC/5hjtct3E52jbWrVyQGy31VHF6AwMf5iugF7POVbBO2rVd7z6O2R9p0zoFA3x+I5JPx0wx2+VJtz9iuGhc8ynw3d80vpVaanD1+6QBfB3xLoyad0w3C/D5UE8frgrh+J07Rw6ZV1Y6CjkeWk7UTb02yWEFMvapsSwTlXeEsK2o2W7PvfLDI8rbjs1Yz/7YZQHyjodxnHH4HZb1v84H1RhWxK39d5d+vCZ/txOT323rRunpVcvN6biDk5XLzk95W+fFu055pxN1SeFX2p7uD2e3Zdz6b4v4cWL6njiq6v4lQ6HAl0460ajEfR6PVgsFjCdTuEP/uAP6usXfvCDH8C/+Tf/BpbLZT33z2Yz+Ou//mu4uLjoqBZxQN2MzrdUr4vZBJuWt8v0KdjXuu8B7KDpeRT4GqttP3K9NmX7TvHhZrPx7nmm+R6OJr4b6LK96YaJmJ2mLTRZ27QdC3ztKMHBOmN3ASkvudWoZDH2a2VIIC3ENaOStIDWDCIcZ0ogUnzWQdbVYORt0NYxouXPNXqknKXcwMXbLma8kiZIq+F+V5OOZhTMgV0qg234IsUTlvwxYY0KNgDUxku+u0Yq8z4pEJaJLKaAYXxOP2pyMEUPpSmFT+pbaZxK+CgtFqU3h9ZDB2pktSpQqXlYi6f3kKJBCNNzfuB9t1gs6vzozMWx2mQsSmNZM6qn5hAN2hjEaXtY6kdpT6W3pKX3feyar2P46ZjkjiaahgM6/aljzULHdruFxWJR797G442bAM4fdIdtWboPfmgfaPIwpVPw+KbzqyWfJoudsbj0juFF4xkeVUXTtqWP4ymKAkajUeD0lPQ7Cbc03jD9y5cvYblcwng8hsvLy2w9BGVdTO9LrQF4H9MxQdsf3ym+1WpVy0xJTy9Lt4u47SKa94mGz+LA1PqKHulN11TSOKDppLIlutvOJ1IdLPI+NgYlmnL17lj6lO4UaxO5jujQlJwbBXt2zsDy1vniypXpd/T4zlcXFx7f68eVtzRKO2AlR2gpluVwy7tNq3csK+5ow7Rph6z/T7CB7CCUd3/SevFwv15Qt2cYT8PQwRq2k8R6Uhv6ILe3BHlTSthXWIbkeKXtzctDng3LL255m0cU4Ncr3B1Ly8WyJBrcGKLjLLXLNbUzVsOFY6cEEJ2g4Y/SSPuWjnP3LsUDKSvU+aSySOuwf4eL0+/ooI5eXh/NgazV2cfJ6Wc9XT/NZmv4+uuFkm43kFrPxfI01ecoHtTRUdd+7733YDKZAADAhx9+CB988AHM5/PakXN9fe2dUJIzX8d0LC28KJwzlurxqOdy/E3bw9IPWrtb7MBN1gZt+7crsOpRuevzQ6ibBhZbFOcBrtfH1oa5doWYjivxIpZPHXSazabL0ycfYHegrckAoN5ggc8AMg9rci7X9sHBalPOAbrWSu32vTfO2EMXfFagi38OXQuQ+9he1n62Lejj5aDy1tSBIpWZ6tdUH6cEwr76tA0vxvowJiC7GOO5AjiFCyDdFlSxRqPuo0ePAuX78vKyvvMAQD+KoW073IWs7Kq8GG/QZ+nu7Db9To9gzIG7kLF3ORdypwj94ldaXHJoYnTGfun3+/WdhjSOy3CuqFNlDe9kREN/zMmTo5whDn6sbayuUllaWmm+a2qg522i5aVl8TblOLrkx13xNy7m8NhbHoflYt0k5R7po+80fr1ew/X1NSwWC+j1erUBiDuBrbpDr9eD4+NjmEwmcHJyAl999RUsFouok0oqJ1YfjN+nTOG8M5lMYLlcwk9+8hN49eoVPH/+HG5ubmo6cbzGIJd+xIeOdzxaG2my7PTH8Y66JB7DVJZl/fzpp596dUjt8pXqZTGKSQtY/ACF6h0UD/1AAe+2xXR4EgH2Ax8jRVHUXzO//fbbMBgM4Le//S1sNpv6yOeudTGKMyUzJRwxgxIdI5LRkp56gkbgfYyZ1NxI01jnKsnwJuG2GGljbdBUrhQF6tVoFCwAh3+1A9Y/drgi3z9quJqPCwAI07u0PC862vxdthimvYf/wMK8VrnlRfDi/Z2y3MlL8VD8qbRaGMcBNQ2u3hjm8yCWU9TOvZI8FyyOO2WrNDTeL4fShnnlo3UpW8lsz+c7KQ3Pb+PVcFdz2Af4ju1XjQOXjzpuOf3Su+PtkqRB3qb/bocpAHg7y32cdMfq9vaf7ob1f5tNtRO2+nfv/k/eLUt3zNJy5R8Ez45eWm8+/uNpXDuGaWib03heRkiL5T90PuMOWJ6GhrvnkLl9fvB/hw587miqI4xGI+/KGQT60S6uS2m51HagXSmE6SmtOfonjneqI1jnzK4hpS9p0KUtrWvgR5tS3WxfcJ/s6zFatY+NNd24SdmWvJyG7XYLr169qsPpB94AUK9VDpVHv2lA5aNm2+Yf6dOPaDD/crnM/qhXSt/GptFUZraBe+OM3UWj3JUwlRa5EuNIhgOL8TQW31Rw5TC2payUYbANaPmlAdbVoIsZaHm8ZpClcbvmd1nBb/+VYioOy9CMPzwtpzdFHx8jVkWA55Fo0PqWlzscDuHk5AQmkwlMp1O4uLiA2WxWL3qlcjS8TaBL3mkjNyxGRCuOGL4YX1vHvMWgKMnntmMmVXYX6S0Q43PJ+Bobv03KlMKpY4y+x8aNxC+UNvoBDu6Q4nksckyrA5dvljaJyb0UDbF+S5VFZZbkfLDgaiJrrTR2AXy+xXs3ed9rupblCgg+t5dlGSwceTmaTNHk1HA4hOl0Wju5tDpq9Ek6R9P+0sZArl7FeWe5XMLz58/h4uICrq6u6vtTm9KXUzc02tFdkzljWOpPfEcnL4bhruk2cyotQ4vDeGpsscgvjhuNHtJdowjD4bDebdLE8KLFazJdm7tz+5zmSc1pu3C+SjRo/NeFHkt1FknmS/qzhDunnSl+i8xxtPjOEKh3oHFHrORYDe9TpukLwTkV0u0ceJhWeye5QHfo0bL9+2OpY8+VEduRymn1nX8yHXoY5pPy+2XrNFW0+/j8uLAd/DpI9arSV+FcdvlpU0PTwrL8blqtLx1dhRdG247Xx/ouhbtneZczTYdjAx3rbhzwdL4D1OYozXGq+o5hTh/9+W0bdhRPJ+UL20p+d2G+EzekLXTKamXwPtLycxnqp5EcuGEdpfpa0u4LLOsnbe6xAuaTrgZDfKvVCubzOVxeXsJisaiPKr6+vq4/6KU77SSDvjQXa3Rqa1IpPBdHan1uBYtOa+mPlM0lZvPJ1WMkelGvteLT8Frj7hOk2k4KS+m1TXT6trYBPGUK8fK1ONdVH2B/YOlbiafoSWFSPqvNhdKQI0st+HgYl+FWuWjBT+EgnbGaMN83aJOHlT5tIm4DaKBCg85dQRMDSBOlqw10YRSylpMyZlPDADoCpPxdGbR3CYcwNjVoMlatxiH6PBwOvaP56D2wJycn8KMf/Qj+8A//EP7tv/238F//63+FP//zPw9w4hje5fn4rwtox1ZYITVxt8G5S7m267lQwq+FdV1uLFwztgP4d5vQ9HRxzr+aRBy4CKeymDrRrG2du5ihtEr5uHOs7UIj1r60vpKy2QS4g2ZXMq3JeKDtulwu4dWrVwAAwdGrZekft4oLA2qwiek9kuFGGkc5iwdckE4mE+/+Wqlszkt8EauNrbvWN7bbLSyXS3jx4gX81V/9VW1E6/V6MBqNoCzLetw25VNpRz+Ab5Cez+dQluGpCxw0GnCnPR8D4/HYC2t6hHfMkCY53gDAO2pbO54X32ML7LIs6/uPpfLx1IKu58K2RkMtH8cbM8TiXPKtb30LHj16BACVHPn1r39d73TexRyN/DQajWCz2TT+OEGCoihq5znVraQd1DQPwj5kBu7C22zw/uUqvNej98i644wBqFO2ALh1im231BFFjz+G2/jKcVXcOvwQl6unw4XveBwwj/chjNPuj/XzAAnH8rhDQMov7ZCFII0Uhm0Zp4WH+3FFATVd7rlgcZi2BJ+FYneuAqlvGEedxhaIDaEQh1xXR5fWt7SOvA38PqVl4jOdlzDc/8kOz+22vB0fWwDoQVHg+EY+BIIv3BlbfZBEd79u6l2weHJCFUfD5Z20fIcs/dd/ro3oOKXtRMNoXXjdsP/8NuP4wzLkMEtcfEctPrudwlC/03TuvlgX7tfN50tXn8N0TnAH7D5gNpvBZ599Bi9fvoTPP/8cXr58CRcXF/Cb3/wGzs/P4fLyEvr9Ptzc3Hg6tXayEdprcIxouj8Pk8LpVRyptDH8+wZqw9Rgl/xHbd5dt8chjpuuILZukMLpyWMWsPJ+zMnGZRc+8xOs9q2DPoAOkk2Vrq0poF2F81ZOH2r2EUkWx06f0ubJXa9ZU/hFj14Tg1eXYDVs7opGijvWgCmDdcygrOWxAjcepGjRmK+JYTMFuxCSqX6QBEMMtPaSjFAxeqT20NrVajzax9jT6M5JH6tPrgKQKn+XEDNIxxQNbZHR6/VgPB5DWZYwm83g7bffhn/+z/85/OIXv4CLiwsAqMYv7phBo1u/3zd/FZQCbUHRFprgaDvh4niiYzw1xnLK5/14KMZIXuauIFWXGC9ZFqWWslLyIgWpuazJHBHDJb1TJS9Hf6DyJNY+uW3TRum08rrV0BIbr23lQ04+NKZwGS7RCwCi4cVKG9ZZctJq+hnGoWEIoHL8LBYLmM/nHu05YyZ3brfgsspfKy2bzQZubm7qOTFloOLl0vGdGk8STfQ4u6bjRupjPn81hRQOaixzhtz4l8ZcZsXkTEq+8h/it4A2j1h4zNq2nG81XV/ju0ePHsGTJ0+gKAq4ubmB3/zmN+rc2JV+MBqN4OnTpzCbzeDy8tI7KjoGUvvz+Y8e5Yi/9XotHs+do/ukdAKpfWRDSwmbDXccAdCdrTTMlS3tMvWdcGUph4F3H6hz6lb0OdyY169GFZ+6t5XSRct1fcZpR7x+XIW7inO4+A5ZR5cEtB7SvbYVDn8nK8Xt20r89sY2xDYL6+zTWIXJO2Z5m/lx1BgIal05vhSE5WHGsL7577RNsY2kvqN19Mev4326+7QM4otCbns3P4TOUnSmascM0zD/F9LlP2u7Qd070kjzOtpl57XL4/qJ4g16sqTtEMSK6aW2p30S1t2vB6ff7yuOk3+sINcBy18ut3B1tYbFQv8IMndOTuFxdKRluWWdkMLLgX8oib/ZbAYAUNtTrq+v4eXLl/DVV1/Bixcv4Pr62sMRK0vTdS1tifTQtFQ3i+G1QFc6Rk75OfpATn9a6sJPlYutKR/ADjEdMQaxdYLGH9Zxw59T6/QUTQ+wf4jZOzBeWz9JYVZZ2cWapS004UPRGXsfGHqXNFLcOQYhDpZFMy0nR7DQL0bwzqtchuqqDTnTtxHkVkgZVnLx0PdcpbAJ5BpT9wFdGLrvGprygTWfZHDUdtJ88skn8LOf/Qz+w3/4D/Cf//N/hj/90z+FX/3qVwAAcHFxAX/1V39V3ymIRxovFovgiMsHqID2Ed/lQ/8B8nmR4kgtmDhwx8EhjIO2IDkQJGM1Gm4A8ndDWucKDvSeQx7O5+smzgFp8WAByQETS0vjcQ7X7qnkC/sU3RpdUpwFmhgJrH27r/kP24HvYMQ43k7c8RHTNSw6Q1EUop7mG/hcHDpLzs7O6nni+vq6/kKfykCtvhJtGn1dAX7BnvuFdVk6R/loNFLHeQoHQFj32GIQ43DeRV6gOwa5IShFA8fb1kEnLUQxTLrvGAHv0qIfFUiyG8NjXxTTMcPrQnfgxtLlAO3DHD6wtLU0J0jjhT6/99578OGHH8JoNIKLiwv4yU9+EtxfjtC03rzsJ0+ewL/+1/8afvOb38BPf/pTmM1msFgsgjvTUjKKy+SiKGA8Htdh2Gfr9dqrE51TLfWzrmEt65/NpoTVagObDc6NSBPmA6BHFkPtSHWOvaoMfzesi6MOEP++WYorFQficbWUFt/JCp5zlH/47Rx0SFdVz5I9YxtyfA6n3xVhGh9HmK4oHM10l6cfLtHjnH+OPgTK36EjTNoxq6WleGrqg/J0KBKOW30Iy+1P+8mnGeP5zlnqFPR1AH7/q+P5Eno9uN0BizK8Ci8K3AG7haLoQVlyfdiXdxR3uDOW/uMO2U2wOxZ3xpal2w1b3fNMnbnuPlpaJzceNWcubR8+fvVdrth3Wnpajuvn1K5WIHj9H73bVf7HfiqFZ7czttoRi7tnebmUGTk9Jbx6tYSf/vQiwrN3B7vS7/HDIQDHQ3hixenpKbzzzjv1vPbVV1/BJ598EpxigTofn0slfV5zEnC9nT5Lx3J2pXun9ByMwzbItWumdDhJ12ir51Lgd/suFosgDZ5QJ+m+XUFq3X2fQOIBvvuUx+fit66Fc+wDdM3blLYH6BasfZjiMQ6SPV0bf/1+P6BBS6vZXbqCtjLiII8p7hpyJiFNcOROZLllUWOrZHiJ4eTGH55uH0ZROnFbDb9dTZ5NjNBN8GlpeTlSuRpftaElZRxp0p9N8DQx0nQFVqU5lofmk/LzvqXGwZjxEo3Jk8kE3njjDTg9PYXT09M6jtPEDWwW0PoLjaOclkOF2ARKZYvk8KILAakPrQpDSu5aoK28OSSl37pYw7SaAZjn4X2Uo0zRY9CkciRDusVhpUGqDWIGZa1eEo3agr6LOZLjzeVziQZN7qa+NM+hVSqv7VjRHFGWfDmLctrXWh9yWRajdbVawfn5eX3fLaXFIjslPkstWjQ+kWgtS7eTl+5WkOpqAatMSKXRdGqtDm3mAFpOTJ/IxUvpk2jVxobVQEXjqf6BYyRWDuZ5++234fT0FK6vr+Hq6qo+AaSN/KI8lQJOW6xcxCvpCJJsRkCnRL/fF/W+NkY7ie/6/T6Mx2M4Pj6Go6MjODo6guVyWR+nneJhyfhr6Q8tTUqe5NSTjg9NF5jN1lCWAJPJAPp96txwDtjSc5boTlOeD9j9s1A78LhT1dUd2A5PKR6Y07MoXDqfP6hjrspTFH64XA53kmKYX65rXz+NtmPXx+0fW0zTI31aG1BctA4urWtnLY0f5vqJp+V5aJtbwO93Dnw86uVK7ULfadtTXD6v+vVwvO7bcapfQeKrOOec3cJ224OiqByylZO2AMebdGz4O2Gdfu2cqPzYYbcjlh5DzOMkx2tYJyo7wrEs7zx1bes/+2n5HBU6Zf0+lB21Pj0UZxjn14HXR3L0SnG0TyX5G4R45WrqbBP5nANanthc2gVwHR4/ZsXdr9fX13W5Z2dn9UeY9IoKPh/hs5X+1HqX69tdtkNq7RnTO7V5u6mezdsxt54xvWS73cJ4PIZ3333X6z8AgK+//tpz0vIPAduunZG2XUJqzcvfJR09hgfzxurRZL3F+Vqza9AwX+bLZUq4OK/HdPvcejxAc7Cul3PHYWxOsfYxT5eS1RqOHDlpsaVpcHDO2DYLWit0xTA5IDGGZgzMrX9Z+kes8bh9CqhdtmGsvFwjadc0SIad+wT7GHddQYxWbhCleSxgNf7hF8IWxXM6ncIbb7wBT548qY2U3NDY6/VgOBzWO6AksPYROmInk0kdhkddHjpY6qgZUbW+t/J1Spltk78J7GpM7nKsW+Vgk/JxjqNfRAO43Tv0XkhLGSknTQpPm/6WcNJdSNqC5a7AYsTnTnK+oNLa2hrOQeLjGP9xQ4HUxk11JSkf/aWuleA4ePzNzQ1cXV1Br9fz7k6y0BVbuMb4Pxc/4sI5rM1dmik6UsYmioOmzXEOSryitRfXG7jTKrdsDhZZSnkMHYb0yGeaVhsbHB/2L5VLvC16vR787u/+Lrz33ntQliU8f/4c/uEf/gEAoL7zt8kOZ26c0RbXOQt3Hm8JQ8Cjwk9OTtT7cbuS10VRwHA4hOl0Co8fP4Y33ngDHj9+XB/BKI3r3LKlnfVa/VO78K3Ax2Fsnjs7W8HFxRoePx7CaNRTHBgA1KFa/fs7Yiv8vhOkKh9I2SEOIM7cim4fv+Mv3i5VmHN++jih3jnpl+vwxJ4BgO3CLAoQcMAt3QChUxC8+iNeDKP4ML/fh/IuWZ9GXgawtP49vjRNFeYVCejEDdnEd3DKaeIgszUfW66skCbXn3zHdBVOnfg+L2BYhSf8R17Hu2ArWVrWZaPTFaC6I7ZaV6IeifzB56yqTP9OV9zVWp2gsF5voCzdfbC4QxZ3x+J9sfiPdPmO23B3rP9z49EPw7aP72AF5kTFNIjHtSEwvDzcz2eLi/1rzudQfuEO2HB3rcSTtP98+ji/3gXsc71K5w50wKEz9tNPPzXh1fQKxI9ppF2zMb1awkPrIeWjukQXtsQ2enfM4WWxd3UJlSxaw5MnT+D3f//3YTQa1Xfdl2UJf/mXfwlXV1c1bdPp1NNfpR15u7R/7BIonyNYN1ns2uaPNHVlJ+MfOx7yRpIH8CFl24ilzeXTHEdsE1kq8Z20tpfKz63bwTljdzWZa7gtjCMZyVJGri7BapzsqpxYvGZ0zK0zF96pwZLqJ82I2kWbxZSnWBrONzHDnNa2GjQxLsZo7Yq3rI60NmMk1+FjUb40wWkZEwCV0XGz2cBqtYL5fA5fffVVneb6+hq22y388Ic/hLfeegu+/PJLT4GhMBqNoCgKWCwW4jGPkrLMjcZ4NKFUr1zoWpalIDXOUSGVxj41Gkt5tbK4ESTlRKJx2lii49mqMLRVTKzQFC/nV2400vBLslJz1FCel4xT1KijfeHMQaOn6RzB6WoCdGFeFLZjOHOcB7w/Uu2izb8pHUdrdz6GNHrbyqkY36XyNelHS1pN/qT0yNi4oWOPfwRk6aOU0SmVTqML38uyMuQOBgP4zne+A9vtFn77298GjsDcMROTvRINvE4cnDFU1gkk3V/rTyk8V8+wQux461ge7SMAasikclX6IETSN/C93+/Xjkk0hk0mkzpNv9/POqIK8VrbidOk0UrD6LuVH8uyhK+//hq22y1cXV3BYrHw6oVtJx0dnFMPzIe0LRYLODs7g6urK1itVnWZeDxf7D5gjovSg8f+cRpXq1VUpjZda/A5IHWPsf8OtVOnqo/sKAHPocqdp9TRwXfIFnU57p87bJF2xOM73ar6OVyYh++I5GW6vFhvf9dplU/fLUvz0PJcWbw8H1w+qpPwuLJuQ4qXO2WldqqeiyCOvkPCMeun5XGlEC/j0MDO0kinXx8sJ2y3GH6fl6t02M7uHx2vOIYrp+wWyrK43QGLxxNXeKrdsfwqHZ8ffH2a7mx1Rw6jU9Y5Ybf1kcTSjlk8ptjNr9z5Sseq75gE5mBF2ugYxzaj6cI8ob6lpfH/HT6XhpYh72yN4eOySX7WdsYyTvHq5P/P5xv44osZXF2tvXQxOLR1JYJGv6TnSrokpkMbCt9BGPKGrDsgSLaGJiCtAax6bS7+2FrLarvm9MZsIIg3Zx2npaE2gbKs7FjD4RC+853vwMnJiddPqLfmrIlj8V3YJXcFUvs3qbeGO6U/IlCZRenia6/cMSONP75uydHVH2D3EJNfKTmT6kfJJpFj38M0fI2hrfet6xCJnhguKjuldSjH39oZm7NwvmvQJgxuLNIYKCVkpElXKo/HW0FSRrpo+yaCk+fNoSOmMKRoylU4U+l3NQmnhFCOMRXT0/9DAonOJu2560WCNj5pmhQNXBnBZzSOrVYrWCwWgTN2s9nA97//ffjoo4/g7/7u77wjdCgNo9EIhsOhd3dXapzThQf9GtAqq7qUJU1B6w8O0gLJsvsnJacsaVOKgNaGXHnVcKXKskJTWRyjIbYg43Mm7wfqNKVtgV8/Iu7tdht8SMD7Gf/LsvR4XqNZC9Pqo/EOXXRYFy8cDweqUzSZR2mZ1nlOoyMFTdJYFvCSLmBpZ1peyljA86TGYJM5TKu7pKDTeG7IwHFA0+Bzr9erjaM8XqMFx4kmlyyLeitPowz+8MMPYb1e13PgPuYVusCRDEg5Y5bmsdCuyb+2gDjpnV98ISfN4xQ4f/E4bczF1kCUt9EZizAejwNnbFmm7wyKjTltPpDAMkfzdBa9EKA6Em82m8H5+Xl9MgrNR3lPo98CiGO73cJyuYRXr17B1dUVLJfLeuwPh0MYDAZwc3NTjztet5jBpCyr+/UwDepQUl5tHs3VUahhwiLfsUz/+FPJ6SHtjMX8Ltw/3lhy4OJ76YW7ukoOSVpOlR7U44otxxQDKdfRF+6iBZLHd8BKxxFzeipaIEjnz4+0rpqj1q8LrYN79nmKtx1vP5fPbz8KEuu4NGUkXcpQH40m7U/rS+sfOsNd3/n9FspyxOX/o0PW/Vc4q12x1OHq9AI/3NWbz5P0mGK6M5Y6YOk/D6dyw3fs+uOWluWPv5K0qT82/fASKI/QeP5M0/M0FA9N6/q3ZGWEfeS3IbAfrZeUjjtgpTDKDxx83p7PN/Cb31yrRxTfNexyvavprsPhMDhBBvl0vV57OjTNx+e8JnaEGFjm1jbr/hhwHSi1LqX/Er0SbgvtsbUavf4B9ZPBYAC/8zu/U++GRdDuwbXSEaNPg330jRZvObEvZf+y2G9StEhrSx6eysdplj7yj32cvqt+iJV3l7bRfUFuPTVZEFtPpcK1cmLrOm3NKK3LLfIiJh9zbE0xkMpo7Yx9HZlU+godIM1AXU1KUrkpI8OhgNV4ZU0r5cuhwWo0iBkcmxgeOMQEncVoqOXf98R0X4Dev8oFMz3ag47ZlPGKAyoNVJk4Pj4GAIAvv/yyDvv888/h888/h6dPn6pKVUweaOGakR2g2j11dXVlHmOHKEsQqPEOj2DmCmRT5Y23OzewNmkXbR6wGiAPHTSDtbSgLIrCW2DhYhif8StmC9Av7zVaLJCae6X6xRY6qbIkPqBxkvyn5fD2tJRjdURJaa3OtyaA+KU+kOraRdm5elmsfKtDiNcPw6T2xXD6oQmXb5hH+iJck3+7NvDwOgBU8vOrr76qxyqO/9QCe1f00HfapnzXBM2jvfP0sT7tEtDAiB9a+UZen0c4PZqspnnou8Rz0gKbvz9//hw2mw28ePECzs/PawehZPjMAel4XM0IFJOzHKxjgo7L+XwOq9UKrq6uPBo2mw189NFH8K/+1b+q2+qf/umf4Le//W19Kkouf2Cely9fwt/93d/VRyTP53MoigLeeustODo6gl/+8pewWq3q3ckWXqRjNQVS2+fK5RjPWaByElXOHIDi1vHgOzYBAHq9uGO14lt0eGgOXOdYc3mrf5oWIIwLHX1SnHv2Haw0D0CIi+e9DSnDOMRdljh25fxVPHUK+zTQvEVBxxOIeRCncza6WJqf46ZpeJ38MMn4RygwsKS7s1YGH4fOp2HfUWc17UOZB2h9EIdbn1b3v1YyoLr/tXLA+nK+4v+iLpeOfxoX1tE5GsO7YumxxG5nbPXxyRboEcW+QxZx+ffLUudsVY7vjMWxHI5Pf57FMFAcseH85PqFpuF5ab/TdqF08D6S04aOZl4XP9z/wAQ/MgHibPX7zKeF64j3EXZBO64r6ZU19Gc91pWeEKKVc59A0hlz8lr0yS6gLCsnLMqZoihgMBjUNoTBYOBdEcEBTw2SaL2vQO18fO2can/tAzv6zmWn9ao2npeGafaH+9gnh2wb7RLa1HMXtobYOkWTzVS+xdZ/sfK4rSBVZhOQ2ungjineB6SMLTSO57MYRjnOmDBMGSQlfCk6LWmaDhptMk61S46hJIbXSjfNb83H81Bad21s0wyqHHi7WY3DvKxdQ0ohso4dK0h8SZ1AVEkDAG/3aIwWSamgfUCNzPTeV7zHAgDg/Pwczs/P4eTkxPvCbzQaiccRx/qIG7b4PZlIBy5KwsV7CLtWsJtAjG8ko7OUV5Kl0vhJyYqmyiTnHevc0RaajB+JntQY5byI4TSOLxywfelxizxOKzu1kMyRg9Y01n7yjWBhuMaLkqMDAMxfnMYgd96LAe0XDW8Kj8QzXKZq9FrrEVOgudzW8rUxPMTkFjdqSOOHly85MpoehZpK38VCarvdwsXFhcfHeFxujv7WBCyLLzQ2dGWwsS74tPKs+ekpAJIhVpoLY2PKum6QcNIP2ZCO8/NzKMsSLi8vvXtNU8fopmjj84mWNlWGJAc0+aut09brtXdU8Hg8BgCo7zT7gz/4gxrHV199BWdnZzCbzRqvH7bbLcxmM7i4uKjHPbb98fFxfXSfRa+gczCtK+U/7SNkmie1Kz+WtylUzhzuhEDeA3DOU+48QUejvzOWpi0KP48jV9pd6vBW9XL4qcPN3x3pf7AhsWmFW95d6spCOqoyMO4Wg1cWrQst170D8J20VZ5wlyx1rFK6+NHFfvtpdaHvodzjaWgY9omLK4R4P68EOeLed9xyOVjRU6WT52vkB1cv5BM/v6QDOV7GjxCqO2Odo7Zqi2o3bK/OA8B3y4btS+ePSkY7Oe2OJ96Sf2knbLgj1j1T3Lw88P4hcMRKO2Vde9J28eOA4AQvr4/X5fXbWnagyv2i/fu0urJkh7BfjkXvlRzIYradQkpnkmwm9H3XeiDXkaSTkyx6cJP1pNXGksKprQ2a4MrNZ8Fl1bto2lQ67C/8YBvzcv2M9isvv6u77Q8FuN7GdXJNR0eI8X4TvdqiL9N8sfWwRK8FXqf+va8Q6/NUulz5nyPv+LoYy9OuWJNo5evFpjTm8vg30hmLkMsQVLA1EQhaB9PLqrVLxw8VmhoaJGiryOwKmkwcViNJU+DtvmsF9z4ArT/uoKTvGL9er5NfPkogKT10rBZFUS9mh8OhtysEDXRlWcLV1RU8evQI/st/+S/wi1/8Av77f//vwfHCObtJqPI6HA7hu9/9bu3kOj09hQ8++AA+/vhj+PGPf1znGY/HtYHxvoBkJKXQlP+potuV7KUKQMoofSjKJZcpmmEa47TFFncW0Tz4lSsatfv9PgyHw3q83NzcROmTyqNxnMYcpwuvU6xfuHMthTdGg7TwpnJDwpfqpxygyica/OmiltOPaS3zm9T++Ex3T0p4eH/TPrE697jxh/Mjxa3xUAxoW8Ro4gsFbZFCHYV4ZDd1ekltlFpY7Atwznn16hX0+3148803YbVa1UfySx8O7Qp4/WM7h/EZZT/Kr6Io6i/xqROO81NX9FK8kiGNn+jB+VXjO/yX+JvvtKX/o9HIkwfL5bLGQ9t3vV7DT37yE+j1erBarWC73da6F8XfFLS2bqPzcnlgGS84NvGDOlq30WgEjx8/rndtHB0d1ccktqk/HgNN5QfqkFy/1CA2h2Mb4kcTAPJYuTsoYLMpYb3ewmaD9FV1rXbCuh121X2ZVa7qn++MxXHk0m639Khf3KlX4a7wlB4eBL25qQPYdxg6HBSX9RnEuCJwmvK0HJceRu+ADcM4zgpHUUCQJ4wDQh8tTzP2QgDIwi6O5+PxeXJZEuM+HfSFtg8w3tD6GEi4D+hYxTbDo4grx2rvNs+W8FEPytK1VVFUjtqiAKjukUVHrE8r1qmilx8hjDtY3Y7YSrZvoCy3sF6jI3ZDji7GI40xj3PcVuHhzlhXHs7LVb2RLkcffadpaHz4jG2E+H28IR75Pwxz+FIOWbf71+0CdvNvtQtW2ikMhEaf9/h4oDQdos2HziupNfsuabBc18TzaGHSmqtr2FVfxtYHCJb7FTnOlNNdghhetEXRay6KooAf//jH3ppotVrVea6urrzrjl43QNnM+4bbCTAt/U+B5KRKpe9iDHRttztEGfhNBc4jOWuJHF6k5VFosnZpKzckm0aTcXJQzti2RsUmeJpMGjxfzlcC3PGaYwzQQOr4WL26Fl6p9o6Vl9v+XU0ATdJyw24sr0UBygWpnXMUKImurpVlbjhrgq/ryRqfNZos8iI2xmmdERc1PF9fX8OLFy8AAOqj/NbrNTx+/BgePXpUT0LUMZqjUNFFLgDAo0eP6l0bb7/9Nnz3u9+Fly9f1mEA4CmwVkX6LqGJPJcmSS1tKo1FHklOHhpucWB1sahpAlo5qfpziI176nDgDjY6L2J8zMHQdn6PLbyl+kjA64r8ZtUHJECDPz+SWTKgUzos+C0KIm33FM6YPNWA0i8ZOnL1oJRBQGobrU9zdL5Y3l3qnin50ISOnPK1sun8ulgsYDgc1vMNHuVPeTuX5hwdMzX+NEPSaDSCsnQnSiCufr8f3BGaAs53bedU6Yh2rm+Mx+PaCKmVb9FhOcRkARqLLi8v63R4QggtNxdy1lRWWW4Zb9J44m1Ojyem4fhhET1WLwUWGYsOcdp3i8Wizm/RXaV5nM/FNNxCc856I6ZnpvCs1yWsVtvbXYG+Y9W/B5Y7M3yHKKZ38ZgGQHJauSN86U7PEoA4Z91ux7LGUeWl//7uVCzXpUdcIJZFcVLawLvD1uGgtOvvIV1hGTxMu082pIe2cVgvKd6VUYWF/YEgsQsfRvpxxNr8oiT3cNapgfaLK68I2gW8nc0hr/h4HZ+69G5nJZD7Y91u5i1p1+re2Kq80BnrxkZsZ2x4bHGVDnfDSnmlna/+jlAQ7n519QOvjq4dXBuGeHhaOteFbcnx+HRI7SPLFPk5dObS8n18fv2kumtAq1KWJSyXW1gum304k7OG4vly8EvrFyveJgbtFF5Kj2WtQfVVa5vl6FfWNVaX0BXOtjotxUF1TH4V1dnZWZ1+uVzWug9AZceifalB2zXZLsC6/ovpslw3lZyzGm6p3SS82jovVgetLjy8i/ZuY295gO7BKlct4ZZ+tJRnWQ824RltbYzr4BwInLFNJ+kuILdcjdaU0abLyUgTBJKHfjqdwnQ6BQDwDBgUer0ejEajevcegnVxj+U3BctgiA2kXCOPhYY2ZeRA17yfi2uXdXtdwaoY0J0aND32edN+jx3bhgbo//bf/hv82Z/9WV0m3VGx3W5hMpnU8oDjjQHSjUbY+XwepHny5An84R/+YdBOn3zyCVxcXNR30d2nHbIaYNvG7tLlgLt+qFKfOwa5wRFpQJwAbme2xaB/n2UANVZjPdC5wY8HpYpM0/HXpq1iiwwrPdr831SWHx0deceX39zcRPWMFL1WOlB5HAwG9Y5MzIeykx5lh+1lcaKiPoTprV8vxhaKUt0lXuI8JtGtta3Gm9KCVuKltryZmz/XIJGj21mA4uv1ejCdTuu5xeKgSul9OXRwYwKOISqHqXN4OBzCH/zBH8B6vYa///u/r+cEdCxSB21KT8T+p0473tac/3CXI+LmH22uVisRB6Y9OjqCH/zgB7Ber+HVq1dwfn4OL168qE8dwB2rKfrpGKPHDRdF4e3Q5HnwpA23W6rdKUIxGq0GUSlMa0N6ckrMYKydcLFYLODVq1fwxhtv1E793CN9Jfr5HXeoU+LRxWVZquPKMg9hPJ+P+fjRjjC2AtJiOdGAxpclwPPnSxiP+zCZ9G/5HXVnmqd6x6ausvv3wqLjttoZiztkXZrwvYBer2R4cCdxIb77zjasoxQHDZ9BibO+Q0YYD3dxVR+BGEfzFYFjkr7HxoVuG0ixoV+GDW8EG+MpCQ/vj/C/LHFMc97wj9asZKjjw2oHdwll2avrVTnWcT7zx1WFh+o04fq4wgdAjxbmzlh3XPGG7Zh1RxXznbD+jlh6H60vX6oxWNbt4uhxTsnq3X+mMsGl9Z+lHbF+ncPy5DDbzlh+By6tI8XvnNYA/q5YRyMHLoNdvQDm8w385CfnMJ9vwKhOe7APG2mX9rSubWMW/W1fePe13s9ZQ+7KB0B5QlvPISwWi0D/AcizhcfK3xe0KVPqE25D4mli61argyjGk7Q+ljVlF8DbcN99KNGQCt9FWbuALspqIzMpDimszXgHuBt7qsUWw+kKnLF3weQcJOaQwtoscpvQ0FYhoIyFxg2AygDLy5rNZt4XQNIRb3Qyy6lXikaaNtcgohk8tLItBsFYfilP036ytmEuPSnQFCJrPqsR9i6EUhfQ1PgmxccmDetkz/uLj0PeL1dXV3B+fl4bf7nRejQaeccUW4D3KcqWoihgNpvVR7ksl0sYjUbw5MkT+Oijj+Dy8rI+NlIyzh46j3Aj5y7mq5ghl/efJmuQTu6Y1JTYrhebTcFiqAcI5wkOVhzYTtTIbeHFtoZh+kz7VsOdKo/Ha3OgFodz+2AwqD+u6PV69bHNGm2cbovepJWN7/iztrF1oaTh42Mip9+1PBaDv8Uw0pVeZYVU3WML7a7Kjcm/HDy4m5QaYiVc0hjkZXPcXQDlgaIo4OTkpHa6avIgh4ac8YPH22rH+krHhtOxClDN9QDVMW/X19dBn+bI9V6vB8fHx96R8rgesa4RYuWk4rgeJc0NtE4p2aKViQYqXF+ljhrXYLlcwtnZGZRltbN6Pp93duWB1DYctzYHp3RTDQedF7rUTSRZQMuktCLgMcXu/knwflUe6d/tei0D50xRpyvLyoHn6KvyFIWLq+gNd366+LqGTFcEhqdKQx14Pg875x+th0vjl0d3z9K2c3T68VgmDwvzubS4o9Yvn49HYGlce1XpaH0oba4vwnpzWmxrZYlVm0+P1FlGeVUu0+1AxjamO5K1MVQQHCVA/WGAuyO2yotHFUt3xFbOWmxX1zah3knHYOg45f98l6zT1dGZq//88eh+Zd2uLh2dY/22d+0CQtown5SG4uGyAmrHuCTzwzpoz5JsorKOvocyTKp/+EzzLxYbWK3sntgc+1YXek5szdN2PunKVpdLR85aNzdNU9Da2apLSzpcW3qt9jMJ0L7D7QJW2iTdIlXfVHwbyMGVu3aO4dDW5TS+6TiU+MyCK8ZnqfW6hZZdgsVuvOuydgFNyoqNyTb9ERuXWpquIYfXctafKTnW+JjirgUWhdgksk/QFoqpCc/y9Qkaf8bjMXznO98J8nz22Wf10aYI2+022P3WZT80FZQanhTzSV89AcTbjxqKuVFq18CV1C6NFFp5HPY18dxHwKNNYjuv+v2+eEyi1Nb86FQJL+alCiSNQ0Mf7l7B++ewH3H3G0LOrs6y9Hda4rGQP//5z2v8jx8/hsViAR999BF897vfhb/8y7+Ejz/+GBaLRV1ur9eDyWRS40sps3cBSAtXztGI2sXODU05pUqsZJzUxinudqL5+Vde2lH1XS9ec0BbrFjlHf3ogP7onYvYFjTMumMyZlBuArH6psrVDEMUYvyCbYGOq/F4XB8zvlwu4eLiwuMhiR4JbwwkWmI72Sx9ju0l8QjnbS5v+TvlGUk2p+jB9LEP2DCehknjLlU+zWsBi3MoVgbKv5x5QsKPtOTqdTH5iO2Hx6q+fPkSVqtV3Q+r1SrgBamOiBN/w+EQiqLwdnfmgKZP4ryMND558kSkUbpXldabg8ZHEuAc8e6778LJyQlcX197jj2Ndjo+BoMBzOdz+D//5//A48eP4Xvf+x5cXV2JbZBqP2zv8XgMf/InfwKPHz+Gr7/+Gr7++mv4+7//eyjLMrgLFfs21SaHBEgP7timumPswyAqk+hc/vLlS/iHf/gHGI1GMBqN4NmzZ/WpBk3Halcg4eLzOV9PafnbrLWo/JLK0aDqE4DNZgubTVHvUkNWRjS9ntsdW4VZdsZCHSblASjq45GpI6dKT++SxX/qpClv8dF/CNLLzzStlIbH5bznhMXCXVzVFlpc1fYI1bufzg8rlHQOiqhzE9NQnSKa1AhyfcI2cH3oHLMAtD/K0vFpr8dtGfQO2W3NtxQ/vyM2djyx3wb+Dk7JGUsdr9VOWCcX3U8+2tj906P1/fIA5Lti3TsNo7I3DKfpLWl4WoCyliPuP75Llv67D0T0nbE0TXVnrNspG/aPX2daB+QzzP9NAGkdZoXYelpbU2nprSDR29RO2HZ9G5tnY3XcpS1Vax8ahh8VarSlHCBN6aBl7AMsa9uYfaHJOp2mja3ltHCez2Krz6HPaps9tPXENx34eMpZp+/Lf2MBiQ5uM+GQs96PQWNn7KE0XlegLVglsAgsyRAo4ez3+zCZTAKhNhqNYDAYmBevfMGcs1CJxWl4LMyX4hHNeCu9S5OwNKnHaE5Bqr9zJq+cMlKDPUWLZixpo1RyiOEpivD4i31PltzYj0f7UYM7dTzEnAEIEp9JxthYXbmxi+6W1CaslNGb4qZhiLfX69XOHXr0Id4rd3R0FPQXGiPxCFJOSxcKcFvgxkN8j/VTEwcVra+2sNLaI7ZYsPbpoUJK5qfmJ24AxvDNZlMfy8/71IpfgtyFTgo/pz+HHi0tvUsTy0jJWou8kcYKjZfw8fQWOWQ1lvB2i/WNlC5GR4oPuZzVdqxJ9U3pHJw2Pg/tG1L0pmS51s5SHq0PMXy5XIptLfGoVoeydHe40rnMApJepcmA7XZbnyiBZaCzDWUTH/+WttDieZqTkxN46623YDqdwnw+h8vLy9rBGasblZfr9TrYWSvRSvNLp2Ogk/rNN9+EJ0+eQFEU4j20tHxanjYure2SAmkeiaXV3pGvsb6SPqbxKpXTg8EAFosFfP7557Vz9+Lioj7uvQtoMufQfDlxqfmH/ufWLyVHY/ILHRjVvZkA0n2xZUmdePLO2OqH5TgniPzvdozSuKJA/EWdBm6dcI4/HS30zlZS45o2hxPrju1M04S7V3nzu/J8PIhLuzcWcbkw10a0DlU6205ZmhcAHYxhfaV2dWFFkFarN4c0b/L+sAHWh+PA9nZ1dm1+m0LI4/I5erH+WwDAtSK23/Z2LkT5JR9PHM5HjkY3DvDZ3QUr3RnrO2OpAze2I5Y7QekO0RKAOGKxzjS9ozt0ytJw2sVaXh5O+5DjDvtA3sGr15PLI74T1r37/eL/S1CWFR+cnS3g+nrdqUN2V+vOtnibrN9pvtR6SsLRhd7eZI0k5aWQ05aSntO03LuEGE1t6G2Sdx82sNg6ImVf0XBJ64FcsKx5dg0a7YfIt99EoOsybX1msSc1KbcrXBxHKrxLO4/njL0rA1Ib2BXNlWIaGpJwYktNEngXY8yggmmn02mwY2o6ncJkMkkedyUxvfQltkUpadOOTfoBDV7cgCQ5y/YBFuPEoY8P3m67UBwkfsPdEgDh7kV+qXxToZbDY6vVClarFQwGg3o8YN7NZlM7HwF0ISvdP6q1qfaFGK077uyZTCYAEP8CsAmgYXE6ncJ6vYbr6+s6Dh1e0+kUnj59CsPh0Ms3HA4Dg+uh8jrdUY9818WEHhoM5DZIKeXU2c4d7zH+36WSv0tIyWrkKX6HHjpYAMDbIQsgt61mWMex3XX7SYb4rvQNHKvoCMD6r9drWC6XdXtJ5aYU3lw6aZvHHBI0rVRGyoiP/R1z0iAN2DYYxvtawi2lKcsyuA9b+uBEozkFtM58p21byFl84zu/39eSV4tvooMhX5elu3OU6syaXJXwo5xHHRrn4tgdMrkLKbqb56uvvqodaHROxLurKA18nNCx0KT/3333Xfjoo4/g5uYGrq6u4NmzZ8HaQesXPnfwE2fcDiV/HEkGFqzjaDSC9957D9577z04OTmJ7u7s2khlHXc55UrzOpfBlE8l2crbGvXD8XgMl5eX3klG9L74XYA0H3BaDx1iY5LHl2V1XPFm45yx7h+Cf5q/2nkIwJ23uEO2arpwR2zVpv6OVj+Mz33OIRv+gyGsKqPwHL0QpK/6G4I8/tj2na2OPVwe0upCPiwLwN8Fig5GWi4EuOQ4Gs9pADV9GF54eQDiTiyeluK2iyxN9rm2QJxhPkmXregpivJ2dyv+A6CDtbondnsrp0oShrtnfSesGy/SUddA+FvaHevvdpV2vVLnLHXgyjtiAapjjKEuA0C/Kxbpw7DqnTpc4+GxvHJ6ecesoxcITdqP75DlYX4Z9F3iCYlH+G+9LuFXv7qGy8u4XfGu4RDmH67zHCp03VYWXaDL9fIu/QZ8Lfe6ArYhtSPydTdv49xTgiy2rVReBMvpn69zfz2ADnRdwkHyZWk2oZSfDSDOl21lfxMbWps0njP2ECbQXOiCZm6kaFKm1PG8M9HIOhwOvSPSvvjiCzg6Oqq/Qqd40JkEALXTUtrKLz1bGZHXh7eFBU+TfpCMCbEyrQOzjaKRKjc1QHdhFJH6h7aTVmbbyVDDI9GzXC49XrXmTYVb02h15btpqCHVavTjbSwZQGM083S40wd3YzQxeiNOdFxwHPi+Xq/h8vKyNpBzxwRN3+/3YTwew3q99tJ1qbi3AYkGzWDKn624pX7GcE050PoPP8iJGY6tY1WT0VLcXUCMPhq2i3po+aQ5PWXE1nBY4zQ9QnKgoBzAeR13WCGg09C6mI7RI/GgxLfcAZyCXF1Banv8RxnF+0vDycvEtBg+GAygLEsPr8Zv0gIiNVdJODkNNFzDxfPHANPnzhNN0mPbIQ/m8AOAa//cMUfL6/V68OGHH8Lx8TF89dVXMJ/PveP1tfySIYO3Mz0ivixL+Pzzz6Hf78O7774Lq9UK5vN5wH9NDE+SLOBtgA5U6hi0ANYD6cL5HuWIpLvQZ9RBuPO+LEuYz+f/P3t/tmRLcpyHwl/mGmvaY++eATSIJghKkEwSeUTT1TkX/M+13uC8gd5C97rXQ/AFZDLRTDKjURIJCRSABkA0etjoPdWuXVVr1Zoz/otcnuHh6TFkrlxVtbvLy8pWZgweHnOEf+kRmM/n6Pf71Z22Wr5C40morpuse3x7rl2Ij73ETysLOTbID4fonY7TJl5tlF4U1xcvdQ2kPbeh2Nzahl+sD2l74F4vY3fH2msQyELQAqtU/oAFXjTLWDh+cEBYenetSFEBpPZ3KzHCxWGAACAr71fV4oUtLF1Z3Xh8ngLLj4wj5XTDknw8PJeJqtP14zJyP3o37N3NP28edXej+GUiTJ12Gy4M48vXJ9YfXnDarW/UAOmyHOnDADo6O8+LrXtefWigWcK6a8T6McVu+3b3tGUf4s/60cP2Xb9X1v66/YyDr4D7sSuFJRnJjftTeRE/33N9DVZ3RxIQi5oM7q/m5vOz7i5YKz8CCK3jTfXL6+w2UGxdfptJ7jG64LNLmC7puvU1qfnbNVxsTdmknPdV5035auHl/nI4HKLX6+Hg4KDa86xWq+oqk10oVNapvFP1BaF9fSjubRnvvsuUuo/je5cUHUiszzapey29XcbeNmP7Lm219THFbyP5CqqJMowoVWHIFUaLxQKLxaK6OzLPcywWC3z55Zd4/PgxHj16VEuDW7CRZZ38uoDuPJJ5iuWrSUfQ4re5C0mjLKsfc6vJoSm0tTBdD94yfd7JY2mlKjB9ipcuB6umFOLN657AO16PTSbXrhernJ/vLsQmSiautOVusXxQHAlw0PHJdE+r1vZTyoQrYWXe6H25XOL8/Nx594E7ZOE8n88daySi614UpdRRDFhvosSV7iljpm8eIAX2crmsydhkPANupg52Hbd8blYxaMOEyqXpYixFWd10kRYby5qO3QSAcMt4ai/z+dwBZIEw6OSTkbdFDSCQ8SgMt6JrQlp+tb4hxyruzvOpWfNpaWr55Za1WZbVTiCgcPLDIflM76HNvyZD07JLbe8SyEhdg0jS+pkWpm0f4UqEoiiqD3s0IEZ7prZAZfnHf/zHeP/99/F3f/d3eP36NabTaXDe9JWLdOdtrygKfPXVVzg6OsI//af/FNPpFF9++WXSeJJaTnKjytsPrevlKSMynpY+fyclzWw2U69D4LJSH6HrDDg/YwxmsxlmsxlGo5GzD/HVYdt2fx1zmm9tRutWyrPcW/G6kmMkvVO9DYfDasxZrVbqh28+uXwKrdgYr7lfF4UULzIMp6ZKjl6vh34/x3ptkOfF1iLWoChK4IkfW0z3u1KyxvD7FS1YZv9DlrEkv2YJS3JSHA64mW1aJS8+7rnFwXm6cSTQWqblBz9RA1I5eEv+cMKgBtq6IKpL+tHF1p3LzMvHsOdM+PGwRrjJ/irzC+HP55+arx6J8U0ht6zrvN2y4+XF20XpZo98JpCVLLuthay19Ob3wdb/y7QzIUu9rfH2ztcqxmh3x2pWrxKM5WEsbxeU5aArB2V539Of7fgm8+A+63FD7q5//Tfm5+NDR6m7ea/fK8vbk95ufWk1NIb7VtCu85tP35HKOzZfda2/0mgfe4oU68Yuqe26WdIu5d1Un9CUugBnZJzRaITxeIwHDx5gOBwCAKbTaQ2MbSKvrHuf3D7+sX2RptORa2h+WpyPQvvQ6+h3dxSnproCIr7P13juMubtGjbUlttSLP53CoxtSqFJvAvim3WuBMiyDI8fP8bh4SFevnyJ+XxehWnTSH3UthN1lTaRtATgGwAZJyavVDx1mb8UJWaXvFOVFl0qY3xlnDIg0ccCMkzoWMF9klxQaGBAUx6aIjVGNOFwUIAUoQQctKlDqRyUd+QOh0M8e/YMf/VXf1WFpeObp9NpdVSzMeWRkv1+H6PRqMafnq1Cqbv2FqKUhRiXqU2/jMVLWexqfaPf7+Po6Kg6/YDuIgzx4vWpyXBTStcQaeUXktPXfnyA5j7I13+7bEMaH+qby+USh4eH+P73v1+BsM+fP8erV6+qUzPkfYOh8mm7IQvFTSl7X90bYxwwTcoqlYgUjh/LSgt14hM6konCcgBXrqcAOCAX3antu9IhZb6Tc/a+1gdaHfHfLMuq/IbaRChPbcdQrR8RDwlGpfZnik918+TJE3zve9/Ds2fP0Ov18OrVq+qqAWoj8jQHH/nWz1lmrxb54osvnOPCuUz7UAwCwNnZWdX3F4tFDRRMkYPm88lkop6YkUqbzQbL5RLffPMNFosFRqMRXr582fpYNB9dJxgr0wTc48pDeeNjmnTnzwTsxviF5Mqy+hHYmuwp7vuimHK3ad4l8XZhTHmSVK+X482bKUajDONxfwtaGQfIKuNaEKvkAXBgtX6kMQc9bVh6LwqyWLRgGgdn6RfK8cSulS6UsHCe69avKc9w3i0AWPcv/aSVrI2TZVZW3XLWxzPFj/tzmZmLygsiT/U4gExHEo2dik8wXkq/qt+Fi9pR0nVAltK28htkmXtMsQ+AtW4uCOuOA/W1nG3XdUBW3gPrA2V1PwNA3iEL5dldn7jv9We335C7Ho73WRkGkDJAkQsBv/ovB5wJbPVZBtN7OUbVGxxvg+7YasuqKIBvvpnh/HyJxcJ/bdkdpdFt3Ev76G2S9btAbfUEKXz52mk0GmE4HNY+zgTKsZ7rzdvoXLok3wefRDH5UukOgL152uUjCr6H6rIuffrUNu0+Va/WVZsmugNjAxQDpXb9QkeCsbxyj4+PcXR0hMvLS9VKTfLaF8WUQD5FnO+d4nC+3LKXysW3oY/lNSZPV7QvRZOm0A2BF03BEBm/qbtUQHHyWYveFBgL+NtrG0CWSCq3Q8SV3NwChazjJHDRpL3wOiHLGh6/1+vh7OwMz58/r9zKI996lT8pfReLBYwxFRir9fsQkBZqo0RdjVOyLXYxFu8SVstnv9+vLJ8BC/744qWAPreVUuv5OhbSoQVYStuNtfOU9H1E/Xyz2aDf7+Ojjz7CcDjEaDTCbDbD8+fPq6Mu5cYslo9UitVVCAyIycDHL21BK+NKQJZbkGugY6hdcSCAKw55fNq8EuDFP16RsskxpQlQ3RbQ1NLUNgSaXL52G5urdlnPxsJrG/QmbZeA1vv37+Odd97Bo0ePMJ/PK2tOqlMCUX0Uaouc6Fjlly9fVjLztijJt9ZNHf94uMlkUq2DtfUv7zO+NQ2NL4vFomrnqeXNZaN7el+/fo31eo3hcIg3b94k8dHy5kvnJoiDpXy84ncC+0j2RTlvhI6Vj/H0jTW+9Jrw33eZU575GLzLulv2Ixq3p9M1Nptsa33GwVjX4hU1IJTAEXtnLIXnACiJXKabOf7kl2Wcv7SItWEIlOHrf+InAVlKj8fn7lnmPvP81ePUgdT6McP1Y4vhgMKcD5gMEjwENEtda/VZ93PLUNZ3PT+8Dl33ehwtLqfm3UfOpTbdOl8K697fi8raWQKy9XBQgFpZrhKMpWfLw5MT486D9C7/fWCsfS7ggq7yH4K3TY+Di7wuXNmkjoH3y3o4G7QOykp3VzYo8qb/yrrX05DgMAeY9V8tz1RmZ2cLvHrlnpqzK3Wxl7jO/WnT+SwVrEr1u668dq0rkbzbrgm6XE+03WP7wnatQ2m6l9o1PRmv1+thPB6r/hKMjV0vlFquu+rCNPfUvfNNjCdd0nWstW8D8T1O031e7JS/FN1Kahl3pRP27V263uPegbFoDsw0aQxaWO2o0LOzM/zud7+ruV9dXVXPg8EA7733HubzOV6/fh2U36fI08K1IV+80EDMw2hHv/LNd+grdB91MYi3VXrsi5pOrDGF7q5yyMGUW3C9++67ePjwIebzefWhwXq9xunpqaPsIguOm6SUvhGLGwJtCPDMsqyyGP7e976H4+Pjyp2OHCEF8NOnT2tHjqcAI5rSmCsa+/0+BoMBBoNB1fckcAvY+2X5wo4vQLVjRSiv/NiRmyC+EI31jybu3I+UrWRxJMuIymG9XiPPcxweHiLPcwwGAxweHmKz2eD8/NyxYuP1RBRa6FA9a/FumlLGfkm7bqx9c0hMNorLFaaSZ5dlTOmQrHmeYzQa4fj4GA8fPsQXX3wBoOyrw+GwaiNdWRk1jZOyKNYWrJy4GweGqFxpLtlsNhiNRvj0009RFAWurq5wfn6Os7Mz57hhDbAgOZbLpQNs86PzyYqSjhGlj1D4naCyL/K20bTs+K8cI2Ll2jRNOS9r6ypNtts2dgA279Tmx+MxDg4OKkvNe/fuVcfv0jhcHmHadz5o4vnT+jdPT1KWZc482YZSypfLOhgMcHZ25lwnAFhLbjl2yF9NTl874uUi76snIjD2s88+q9bim83GuQO9C7oJxYXsL1QPVNaho9NC87QcO7QwMbm0PU9ow8/7io+uq4ybKElCPDhpazpjgPW6QJ5n6PUIjLX3eWYZkOdZBdQC9p38XStae2Rsee8sYIFWbhkLAMQ3A1WVWz3GcStB3PLYZCjWrbZfg/mXaZVxoMbTn8Hepb8WxhdHurmgbJ30OOSXVWCvC/TqPKoUFV6xOBL07abd8yZpjJ6uLENjeFumdzdG6VbWEdW/3cfZdx/wav1s+vX+w59t23TXO/JdA2UBYyQ4S272XljteGKAu7l92vaT8HPcTwdV3fzW/f1u/Khh+87zQnnV8izv0LVhZLsJzQluWsTju05d7ym/i7RL+dyV7X6Ir/0GgwHG43G1Jj08PKzujSWK6Sakn9Tb8nVjk3VnSloapegL3nb6NveNJh8iaPvfVLwoRYYm4X174Cb6gKb0rQFj2yjAUimm5E6lkIJH4yuVvtoGerFY4PLy0guoEI3H40qJ0lRhSm4pFFICNKVUcEQqCzlod51gzz7any+f0i/GIyWOVuddKtBIBnnX2PHxMd59911cXV1VAORiscCbN2+c+rtJS9kY+RRCWriQn7b4OTk5wcOHD6sw/PgROlqQf4gg+WtjY0hervAlCyIO8migvTweNZQWuWlgcGp8KXMoXopCk8vE3VL7S6yvxBSkFIbKnMACAM64HctTqCy7GJ9i82xojpRK55ji38cvJA9PI3UO22WcC4FXKTybrFs4kDQcDp2NF4GPKfxjY1AsXAg8SM2Hxk8+h+Tgc/2jR49QFEV1d648alWTl9zpQ4l+v++ss+iZyo/KXfKQIJOvPWrp+9y19iPLIGW+sUr7+gcCvrWEto5sW89tqOnahoiHp7par9eVRSyfM30bRDnm8zILlS8v56YUm5d5vcv6y7IMi8XCsQzn7ZiHS01DhtHWEvSrjS1FUeDi4qIKRx+PEDDblm6TwkKrc01plLLmiu0ptbHENw60lcHnd1spdc50+y8ccMJUQEgm3gECqdz1lvsPYWVq3cvfLHPDlnxIlvoxxRRe/m45VjIBBNBZN+LF49blt2HAgFAun01Xu6dWyuaWjXUr88flj1nKlmFcK2Iel8rM5t2Ws+tWt5qVYSUP6ceBrnoTa6LrSQq1TUNfv7p8qP64tSzFtW1cy1u9bVke2tjPX6lfkGy2n+jWre49sPIIYgpT5qfkq82xccvYlGcwsDXk57q7bvLZlo8Gzmqy+sL509D4hcjNv+W/XhusVkX1QUlb6nofQ5SyHm67L+uKUvU6TfncNrrt8sUottdvohe56TbXhPgalHR1gNUZ0TU8tEeQ19LI5ybk2xukhg+F0XRxRE31OG97237bqe3emMfnlKojkpTajgD/hwZtxoom/UvjHyu7WwfG3lSHa7oISVGC+tybKI2vrq5qd2Fpx+vJ+898CoLbRCTjYDBw7qokP57vxWKBxaJ+RMt1tJeuF5VtFrxSjpugLMtwcHDg3H3I70H9oz/6I/zrf/2vq0XDixcvcH5+DgC4uLjAixcvUBQFlstlzQI0RiFFpgwjZd6FYn3VpwDleSM5x+Mxjo6OAFjlJsn36tWrJFlCpCmhfdTv9ysrTtkeORi8Xq8r8IIrZvnGnBaM/X5ftbjdF/kACg2QaMtf46MpruWCc71eYzab1T4goeOK28rW1RjQBZ+6krAbasqLWwPqSqlmiyhtrg4p3GP8id98PkeWZbh37x5OTk6qr10JdKSPJQiY6aIdh0CGWJxU3iG/0FjEQdE8z6uxESjnCx9R2VBd0TtZoM9ms9r6AUB1/CuNWdI6zhjjXJeQkreUTafPremGgIAw3t75mBzjEbt31xe36VpSaxex9bKc1+ke2Nlsht/97ne4uLjA5eUlLi8vqzmG5i5jjDOmavKGyp/PY0D4/iNZ3r78aulocvB2J9dDPC15dzKfd+U81WR9GaoXOiKN2oa803lXuun9CW8nKcdca8oIbe3XdB9J4X2WylyBIOu4yV5yn0TtkbdRwK+U4B8e+PiRHz92O88zLJf0UWcGgO7ZpDqqUkae0x2xHPQqw9CdsWQ1m+fWjXgYY61lLR/rrx0/y++YzXNZL25YcjOGrGfh+BtD7Ym7o4pLYCkEoJs5wKBNh95Lvja+jcPD8bCyjni+mvhJ/1C4UHgX9A1RxgDhGM900vqobYM8jB07eDgrEz1LYJUAW/tsedr6yDz1ZtOyzyFw0QVhAX7XqWY1W8YncJBbxvI06mlpe1QNhLR+elyeBmppljLV48p4dTfN2pXGNvsLGCesdmesa80q53wrm8yzrKuiMPjmmyt8882sGvf2STetY9qVmuxdbsO8eUd3JEnqVS8vL6v9Bq2DeNuV+9wY+fYg+yC+TwlRkz3jHV0vNfkAAthfvaXoUIhC183E4sbS3BfdOjD2JmkXhZNU4Eq+WnieHoFUkpbLZW2wDSnzY4oYn79UGMWUZ7H4Mk1NDiI6NpWsAcifW8ZyhVSTepIK7VCH7kLprbmHlJxN0m2iQG8ycDUhslahZ06j0Qj37t0DULbR6XSKzWaDhw8fwhiDFy9eOLJJZTiXvQ2o0hYY0hRq8l1uIkPhfWnM53NcXV1Vx9dy6xdeFqGjJlPzoZUdv09Rkz80hkm+sky0/t9WKekjnmZKe287kcbAVymLL63Q3WkaaXlroljfJ8XmlFDY1Lkkpb5S+njXG+3Q3Cb9Q0QAIH35Oh6PkWWlVRzN6fKYTF+/alJW8r3puJpKTdcdroLQjnv8dADafGrWeFxuCVLQWoG78w9FpJ+Pj5Zmkz4Z6++pcwetfzgQrZE2hsv51Te/cb5dbrJS5getTdPHQmdnZ9Wx0nRtB/WVLMuqevWNyRpvLe3UPrWvDZpvDU59gsaI0LxD64aU+qM0Ym1Dlk8ThedtJPrwpd/vVye40Piy6x5AAqZEbdqMr63ddLn68hdrSzF+khcRvx4CAJbL8phiUwEf9ijh8p/aq7UYdS1nLQhWplO/S7aUg4NlJZ+txIynqd4J9C1BTtfitsyn5V1391u/Wj6aFSvxoHRtGRJgaWXXgFPJT8az+Xb52/AcFOTxSl6oypfySuHsu+XPw9TDcXdekFnNX8aPUbMu5aatpyXLxb7b5zqY7/b5rCpDt1yhtg0pD5y7U6lf1ddd5OZ/50ArxdcsYetpgAGitp55H+NxZRjD3OHE1fLlhk2ziJU8ZXvhPOp8XV683DS5NdLSo9/VqsB8vsF0usFs1v40ireN2sxv1xVnX7SvNeUd7U7X3U6k3kjq+0PHFe9L1n3y1fZeb1N/uC06uq7Jp0vQ/Il21bn64od0iKG9fUyeJnrNJtQm7h0YuwPtqpTgDWk+n+Pp06e1MNzaVboTtVGUdEEpaWqdVx45TF/+vPPOO849WZyyrLxbazabOV/oyzDaoN5lmcSUcb70ulDiyc1PytcfqXz31W5GoxH+yT/5J/jmm2/w+eefV0qvfr9fWUMbU975F/taPkQ+hW8bipWH1jZlHA4eUP/85S9/ifF4jD//8z/HycmJE5+I7jocj8e1u0l3odVq5VgSaWnTu085RnnyHaMqeae0K3fzGh9PUsELSpuXn1zEtjn2PKTEJz/fmM3Lht+XqcnOw0tF3U0sVJsAp21l7TJfKaCtz4+PQ12MixqP8XiMjz76CG/evMFXX31VzYG++5y7SFP6p4AzXRJvxwSiEW02G7x+/boCSYjoo5WQpTAB3KvVqirHw8PDak6hvM5mM6dO6WMvPlZwnlxu/iufJaW0PaKUr4aNKcHY8XhcrX+0+c63TqSyI3nk/ZghPk37cmzsbjI/rNdrrFYr/OIXv3DcyaKarISbfvSiycXbpa/+ZBvRxmeNZLtvs+GU62I+f0mraN6uffzkr1Z+8iPQXYFKLqN8vi4iC+SPP/4Yjx49wtnZGWazGf7whz9gtVphOBzWZNM+lCN32SbkmoPihdY2beaZ1PDXoSiiNELHV1OZUFnyj21iRHd/l3cWA69fL3F83Md43ENpGWtASRMgmmXu3bCuLPaX7ozNMjhx3HtmOdhaAp8amGbvk7XgGv/l99huJQAYiFaWDwfX6s92roIT14bT340hubm/FsfnluKu+Ul/XxgtXChsLF6I5J7HD5a1S9uWf1nu5GYBQJsmB2B5O+P9tm4BW+832n7DylC+27nDGPmeAsq6Y5luCWuBSHKHAGSbPXP+rp+WFoWhfuzKJsPWLWIpX+RevyuWfl0rWm4Jy++b5eWv1Ynr7qZ1errAb397ic3m+ufJO/r2km9NkKqv+TYCTzG6qXzH9p4p+9BUkvuClDQo/K5reYkJaOvq20p8b6OV3XVjMtex3u+CusJEZH59V1qS3uCmyiemr7kDY3eg0KDlU5aFlFtaJYYqVio4UuL7OoAGynShSOdKiFAYzeJDU45KPrIc2iihUyg2QUllS0oZ++L64mvxfIrTJhRLt8ngxeOTYms0GlVH3nGeKUcryjg+WboeYJuUrVTKSqUd0Xq9ro4goaOaKYwPlGtal6E+pvFrU27aOKeNQTEFdWpaWvtMHf8kafXYZPzwySjToHsOXQVFvZ+n5M23cdJ4dEXaOOlT2sfGNR4/5C/dUgAMn+w+/r42I93bjqUaEQ+y+FytVpVF1nq9xmKxqI7QTU2TysRXTyl50MpCjhG7tjMNmKBfCWrQIlouplPrgMozJAPlT35Q4gOo5AYxVNayL3e1aQnJGVpfEUjNLf8kHx6XtycOKvHyStloNO3nXF5qC/KofA1wlbxSxwm5Bvd91KaNBb4+5ZuneHxetk0oy7KqHmN5DJV9qI54XWv+PjeZRipdt5KCiI+xvL2FyLeXo2etLWjjqE/Zxfuaj9oqEa6rjGV+tfHQl3+fm8+/KOjfWu1xS1ljsup4YRLJGP0fzLrQDcstRA04cGotbjmIYkFetxrdMbXkZ9PmIFrpXrrJZ5KTP9s0rR/xddOSd8e66ZZ8XB42fVRhXf6AtJS1fMDyoJVN3WLWV37yrlkZtsqR0nX8TUr2V1+4GsfEcO5R0bauSzdet1aeDFIuKSPPT11mbY7lz6Zyq6/39DWg7U/1ZwjL2DoP3r/cZ5JXD1OX2xeH50eGkXLZPq+5+ccJmYYWr87flpGvPlx344Sh/83GYL2+mY9vu6Zd1g43sU74NtMuOrSbqotd0u2i/7RZszeRQeqJQuFja+eQvkhbm2r7gqa6taa6a7l+Tomzqy5i39RmXXsdMrSl2L461g5j9UX7Ws1dEl3vtgtpeeD7wSZtfFfSeN2BsRFqOsho8bR3jZrcoSl5S2WKj3z+EjySd1SlUkxhFgpDfrGO27XSIkUx1KYdhBRbTYkrSrvi2TXJwff4+LgaQM/OzmrtS96rGqN+v+8oTn0W0iG5NOp6AuN1JBW9RVHg8vKyAg4obXkfcpu+x+MSpQIyMn7qJBvinUIpcVOsx2K8UzYgfOxIKfuQ7PP53Dl2nnhnWVaz/KM2owFCbeefLkkbU30LtJRNQpv200UfbbJB4nWSCvKEeAGoPki5vLzExcUFZrNZ9b9YLLBcLp2j+mPkKnlNza8NtQFBeXptNlX9fh+DwaBKf7lcVvMGjYMp9UCWkhRGA1L55tLXz2jclta4obWJ5BUCD33kq8eUspXjFa2XRqMRjDFV2QAW/A5tsOifrHDpw6qUPKS4SX+SdzAYoNfrVXN9lmVVeyBQVl7nod0Z3bTPNmm/1010rG5RFOq9rSQzrTVic5cPFLuutWWqgmcfRG1osVhgPp9X73ytJscaOV65gIWpjRG+fZg2fqTsV1KVpNddnqEyShknZTxfGtoYWBQGqxXVmz1GlZLNMm7l6oIc3GJW3hlLYYuiBMdK9/LZys4BHysrWdmW1q0GBLbRXbRkOUu/Ww5wgbjyueRl/Y2xwKQMb/14mWvvYG7y3eeW4l76ZQ74ygEyX/vlbQYIH+scaifXtReO9S++Vi/D225gy92WEQ+rgdHWStby8N3vK+O6ctj2Kq1VjeMuwcQ6CBkCYTX+evr8ncet85HudT+eThuLWPq1FrF1N2khy+PKu2J5Xurkjh1SLyb53NEd3dG3n2L77lTwVeob5Ql9sfj7oBB/nxWjjBOymr2j/dK+9LsSAwDKuh0Oh7X6XSwWmE6nreUgWTTdY2i/3NXpo0n4RicpfQsppfB8G+6u0osNnl2mvwv5gNYQAKLd/yotOJqCUVKhGpPVFz8VvOu6rKWypumkfB11z4Exmd5qtXIGTHlHH6eYrHwQpK9ijCnvEX7//fcxHo+xXC4rPrPZDK9evari8HsHjakfuScpta+ltB8ZXvaP+XyOLCutJ2lC0sBYX5qhNqIpB0P9MMZLKvm0/u1Tfqcqd1OApNS+4asfmnRJsU1uHKRIoSZ5kuUWU5iGxi+tjEJ12wXF5qQmc5aPv2zjmsI2lb8sY62MYiBUKL0m/VAj3s4WiwWePXuG8/NznJ+fV/2fQCni6VtAhsrIF0Zru/Ko2ib1p5WZTMP3LuMsl0s8f/68ukuXyoP6bazeKQ1tzNTGKeIbGgOpLih8CEjwtR8JJvjuvo3VJwFxNIZJwEjyyrIS5D44OKjWVSnW1zJvBwcHAFCBsjItjZrOlUQ0FnOLRZonOc/UsU8DvmK0y9ouJNOuG1pedxpfLneTOUobL/dFKf1l30Ttij6Io1MJyE+Tk5Ovn2rvPI/ymZM2B8ao6d6gawr1wVS3GH9OfB4wpgRiLy9XODoCer0SkC0BTwuc2ntkS8CSA7bkTkcHyztlwe6ZpWeSA8yi062G+pGzqI4zdsvMhkEVzubdTdPy1UqK+9m8+Pja9Pl7GYfKhctLeaSwVDfWjXjrFrHSj5e/KxfJS/mv55c3CVnu0t+GSW93u3cfWUHSGtm68/KktkJl6saXR1tD8AwBsi6gV/Yd6+4+u/tVcnPdNR4hoFd/5rLxuCS7O/7yMHp6bhwNfK3LH/7XQVeZpgbeuuUv26nuLtOczzd49WqBN2+WeuSGFNtL3iTdgSp3lEIxvYMM8zaQbz0o1+EpehBNdxTjy/dYPt2TDywN5UPbR8g9Ng/rA7z2pWe/o+6obd3wPT6tSUlnr51WFOrzvr1QytxCH6xL4ie1Sj4hK91QmjF5vpNgbBulQ0rj8DUMLXxK+qENb6piTKadmu8mCp2mRAMwVwyS0i2Unizf61zIyXpoMlFch+IppOxpQrG+QUoRoA6Wz+dzXFxcVO+DwcC5G9OnONZk4NaDpEym/48++giPHz/GfD6vZHj58iWeP39epcGtrXzpa3lr4hdqi3YjVwflrq6uHAXgaDTCfD5X46eQT3kolfyyT/sUiPI9JkvXbTs25mntvK7oQi3MZrNBlmXO5LtcLlUgPEVGjfjkHRqjffFDX2KlLNL3QU3my13H6NRFVIxHSFmdkp+mwEGMZ5Zl1RhkTHl/6e9//3tcXV3h9evXuLq6AmAXqUQ0J2oKe9+awlf+KfND2/k8Nb5vnFwsFvjyyy8xHo/x8OHD6n7XkFV86hqFiD4Ak3LKzSetT2geonknNl5qcsljd33AcigvVA70EQ9vH75xDyivCaDTKfhRv3LTTO9UPpzn8fExsizD6elpBZRqcaWb3PRT3nlY2W5ITh/xkzG0/Dado7R2u8tmivh0rTzgQLx053L5xrzYOmVXajKe8vK5jnWxJGo/Z2dnOD09rfonWWT78qGVIeXFp8ji5Cv3pu1Y82+zn+2C5JpSK4vUNX+sLchxZbHYYLHYAMhwcNCrQFWyEC2tZUvQi0BYe5SxBVPIjeKTFSsBYWVyEpSVwIsFXoknKqCMA7k2LzzO1pW5QfUnEBS1Y355OPkuAVotfMgNLF0XlNWBTtcvc4BXI9414BYsT9zdB0ZbAFP3l3x0Hv74aoqJ4ThDt/yNse2Mh7N3ENu2zMtP4+WkaOSzcZ55G+Ru7vic8u6PW3/mYXg8+azzqL8bhy8P0+6uWDcv9Xg2vn5nrGHHpssyd+vCdasDuMYA0+ka//iPlw3ao598656bmC/u6I6a0HWvDa9Thtg6yaejA5qt2X3rfw5+yfAa+NSWYvocn//d+HS7aZf6obbH34Fyf+87HZbaiUzXZ1Wd2m/7/T5OTk5q7qvVytvuV6uV9zosjVLl+U6CsUBYgdhkQ931xlhT+PnSIvdQfJ97Ci+NNGVmKF0fkVKR89G+/pd8pXKWK0RSZGg7uWpKx1A4TVGZogzfhbriG1IyL5fLKh9ysPrmm28cEHU8HuPg4ADf//73G8scqk+K0+/3q+fQ2fPGGAf810jzjy2YpEw+hRL/0ifPc1xeXtaOxFsulzUleyitJu4xRbQ2xnBevnFO49OmDWr9QlNWUj2m8ON1IQEQfpF7zGLaJ5+UswtqO37te+HaRGlOwBE9c3f+HAIIAPf4Zh/IIGXkfrG22NVYzNtYSD5KK89znJycoNfr4enTp1itVpjP5/jhD3+I733vexiPx8iyDH/7t3+LN2/eOPzayEpx5NG0vvHKl06b+Z3SkWOFjxeNwdPpFOv1uppLfOMC7+e+dZOMz/1D7do3/sl8hTbSlKc8z6tTHHjfaFqmvk21zAsf2+i49NgpFfRPG3SyRv3kk08wGAzw5s0bFEVRzbmpX0trz1qZDQYDPHjwAO+//z4eP36M999/v5Ltiy++wNnZGZ4/f47FYlE7zYDnu2nbTamD1HayL8WNMaaqD94WYx/uhPYrTfplCqWMT7dBwUL5llYB/D5erb+H2lbKGOQjvp/xzUmxvepNlKtv/JPrLi4nhdVO19HmJmmprK0FjDHYbAzynPiYbdol2FX+u6AsFWeWWaCFA5v2uGK6e5aDsoaF5YCXBU8pDL3TscRuXDfMlht7BnMDCwtP+Lpf5oCwvJzLcip/Y2Cf7p5lsu7cMrXp23j2ncJycKoOzFIcwDeHl/FizZ93w266SgoTXxlaf15ONg7vS7H0tTWmm5Ztp8bxt+2+DqjSr3TnvFw/l2csLfLj4dxnPz9djpAsbjw3js/Pgq6anxvPhvXWltF/tTri+SOKrWVD5FufpKxn7uiObopS1+VNeaXE2dc6PsSfrz19ujXAv5clCunqYrKk7ANSefv2tynxtf3W3bh0OyhFpxZzaxKedBjceIn3ldRjhEO6D5mu5gaUeAcBsZr+YzAYePfcKe1+r2BsSInRZZxdqWkjkuRTBGsbzZQBT/MLHVEm3XYZBFNk6WpglAM2t4z1KYlTOpPmLiedNnmgsvXFDS/I64viNjLs0jdiSsWUxToHr2SbfPXqlXPc5tHREU5OTvDhhx9626r2LNP31a0EYzXFEOeR0kZ87SZW95ynHNhJ+UdEVnCAPQaEW8Q1bR8hQCBUjrF0fBNYTBYZx9dHZfjQWJPStyQvX/7kMZicT2h8JqVtTA6fXG3Ix5Pz3WU82ZW0sm6Sb67M9vFvKkub9prKe1eeWZbh8PAQq9UKL1++rGT98MMP8W/+zb/BeDxGURT45S9/6YCxu9St1mZ8VnW+8mvblrXwPitRskwjC1B69x2t69vwcX/fmiY092jrDOnP8+YboygPeZ5XAKKca2LlKds0T0NuRCS/zWZTbWTowyktXcmz3+9Xd5N++OGHGI1G+NnPfobValX7aCkmv5x/aNyVPHq9Hu7du4c/+ZM/wQ9/+EP89Kc/rerhb/7mb/Dll1/i8vLSKcemisYUkjx97SA2znQx9vP2xdddvvaXSlpbStmX7EJt1hL7JG0Tn/KVtVSYUZgYae2Vl4m2XtllL5dCu7RRuVZKrVcKp93nra3PtXUFj1MUBptNgV7PHv1qTHlcsQVR6T5Y2kPaXwJKXcBVAjw+y1jfkcT2HezoYhtX3gfrWr3aeFYe1IBX95mKzuWFSp6sAjp5XHpHFYfKsPyV+wWbb+sm1w7c3abB+VlZNd6Wv8vD8q24VvnRwmQi3HWTTFT2Mc0/xU3nIfPI3207lu/G6+bGcYHIWNx6PPns8nef62nzcDJ96S5ldZ/9bvV4PtDWBWwtaFuX11dX9Tqx8Tcbe//1ruRbJ+xTp7cPiq2Tm+zNdomzD7rN5X5b6abKbJc241vHdJ0OxU+VSVvHSj2ob6+YmoYWt4k+3ifnHd0eojqKjdMUlr/73IBShzGbzZxwXAeR0hbc9Un7scOY0hjNd7qZ1PMD8ZPQOO0VjG3TaW5LR2s7IKbc65SSNtFtKY8QpSgU+S+Px+PyIwJ3SU+mfRNl6FPwNrkQuimwsAu17avcEnY2m2GxWODevXvV0btFUeDnP/85Li4unLys12ssl+WdKNog2fTu4AcPHuDP/uzP8OzZM3z11VeOn91E6WXZdpDW6icEKlF7l0cw8wFeOy+/iTwhGWLE8xJSnjaxTk2llPBNFpnyl+eHrJB7vR56vR4ODw8r0CK0+LzOTcB1jltafcb6TAr52qPWZ+ScdxMKZikT5+fzl2Fi6W42G0wmE/R6PTx69AiLxQKTyaQ6UhYo75NdLpdYrVY4Pj5GURS4urpS55SUuVeWSZZZi3DfGNa23kNjg6aIp/dYW5FtUbs31ddeyU0DL5vKnzpGSp4ff/wxsizD2dlZdRxvqdBLu69abpABW26yzOh9tVo5AGZITl5G/X7fSWM0GuFf/at/hfPzc/z+97+vgNoUmaVslG8ae4fDIYBy7fDgwQP823/7b/H+++/jo48+quK+8847+Prrr/GrX/0KL1++xHg8hjGmdrT/LpTSz1N4+NrvruMRXz/4+qwFfZrNu9e5Pr4N+5nQnO5TQskw1IZD45WPYsqtFOWU9hyjXZRqGvH2nmXuBxa+9qnlLUXZznlwt6IAlkuaP/IKVCUL2TKOPYKYAFP6JSCWjjSWYfNcs6ilPFs+dDSxBYGzrbWuBXzlr03P3l3LgV3Khy0bAz8gC7ggLxweGgDbzi3FXfOT/r4wZbhMAWL94XUe10sx2UJzrw90lfUW4G60dxcY9AGA9OyG8fv7whJvfzqun08OmZaM477XwVNsrdslD/olP3vnK33Awd9dN/tLPPR0ZV3Uy89XPgaz2Qa/+90lZrON0vbrFNuj2PzX9U4pcW8Lxea4t1nPfEdvD+2jzaTqD7l/aB3XBNT0hSE+dJqSDzglXT2P00QeHob+ffI10Zvf0f6oC0yiKAr1REJtniqKQj3SuAlxPYvW3w4ODmpxRqNRLexsNsNkMqm50/VJmmwanuXTrX5njymO0ds+WV+3/KmAbGoYqcSKKUlS05dK31SFqiajxqdrarvQvI5FtqwLssA5PDzEYDCo7np99uwZZrNZrX6ltQf3Dyl2NCX2aDTCe++9h+l0qvKT720VU00UZT6SCxgpRxsFrk8hn0K+/MTyqQE9TdJrUwdNlOY+gIcf2ZllWU2pel19OsY/1d83prWRyZd2TGEqeTVtF75wTce/FMBJ4+8bG9rwjNFqtUKWZZUVLFBahQ4GAxhjqvshi6KoxlEtXQ3E1uTx1UVT4EZSCAjk6frkkW6hco+NRT5QMzRfa8+pefCRr9/cv38fvV4Pi8WiOmo31OY0eemdj72h+Yjuum1iySrToLjvvvsu+v0+vvjiiyAvCdBoRGGyrPwwie5EHY/H+JM/+RM8evQIjx8/dubJw8ND9Pv96vhqWd83tf7ylX/IPUayPTZdb8TKYl97gxDfJmNqVxSbs+T6hfep2FgUCuPbU7TZt/BwTRV3Tfh1sV6M+bdZz0oZJY+iMFivCwwGdK0BV3bUjwY2FaADcEtVC5jwI4hdN5s0yVQ/triMVwKgxJfKupS9DA8GtNlxnOfMiDJwAWDKD49n08QWzJQWt6XMBHRKq1kZh/JbukHwpvguT562W49w4to8umVu03SqeeuuW89K8jXP/apE6kCcSD0aVw+bojfxvZtau0QUWLVh3OewP+ehpSXTcJ99abqy83Zs+zlEWM16th7O5t3NX32MkHzq/j7y1wuXo/xfrQosFhucnS2wWunr9ZBb073id5F2Wdff0beDZBu4yf6Qsk7y7a+1dWsq8f2ZT3/A936htaJPH89l9KUvw8bGqH3r5d4Guok2u8te1EeavoafjNqWr0a+/kEGOfTxOQ8nr9AE7MltGh95pUpMfi3/d2DsNVPTDXCs8d/EZNIWIATSNvKhC8PbKLhu60J0n/JcFyDLiY5knEwm1VG8JANZ5hD4BZSDLz+2UFN4ybtgjTHOnat5nmM4HFZlSVY7ZFk2HA7VgbVror7YtE7zPMdoNKreYxZM+6KQoq8t0MtBkhSltiaHpFTreU40idI/HYPKefjGnJSFSEj22zbmNCHennn/TQm/y6JRU5K34dE2/VSAVm5emi5GV6uV0+6yLMOjR49gjKksBgeDQQXcaSBN6tzXpH9LkscKd92m+UKW13voDm1ZHrx/83YY2yxSenyekXXaBtwiMJ0A0Y8//hjHx8c4PDzE2dkZPvvsM+R5XoHtqRaykvjxw76+l5oHCsfvRHn16lX10RSddJHSH+ugSZnHR48e4fj4GGdnZ9U9usRvOBziyZMnODw8rHjkeY7Hjx/DGFPdyUJl1uv1vF+8XifFgNem/SWlvcr+ITeS3D3G99tKMSAWsGVFYTebTVW2vjYlx6vQ2KrtPXj/5H1Wjq/a2JWi+ArFkTJ32Sa0PHE/Psa4AGWdj9wLaLJmWYbFwmC1WqMEBDNkGR1ZbEEZ6g5kvVryLMHELENllVrGp2eAQNPy/liyluX55BaxNp3yvtpMvFM61iLX/lo/CKCX/FGzluVhSFbA5q9uJUv+JQ95d6yNY8FXWea8nXPA1nXnZOXT/SVfy9MX1o3jhvdRHRDuitKnndSAvA2kpSP96qBoGCj1g7LuWsi6heLrPEL8jQqSSj8Oguph7HPIre4nLWL50cOuZaz1I3deHlpdQAGkZZ5WqwKffXaB6XSF9br9OiZlDfRdtTAbjUaVnoV0APJDxTv6btHbvh7edc/DT6QCXB2Y5C3XuZq+U9ujc/KBsHd9MJ1uc5v11W8qaXuppjxSaTgc4t1338VgMHDcp9NppR+W+VmtVjU8oku6A2M91IXScZf42mCo8YwNgJpMPgVtCu0TiNWoSZyUdFIUJ234NokTGrRS00iR6aaAelJCE0mFcUqbpXtUNf6z2awaFPM8x3g8rniS1RnxDU30qe0lBkDxX/kseWnpNVWch+TwpamF1xRenFcTwCaF2ijxtXixNq+Vs1x0SqWgryx8bk3KxufvU0T6ZNgnaWWVMgc2yVtTebrg0UWY1P4ckllrwxyEo6Nb+v1+deyJJoesm6ZpxupLa+ehdurjn9p+m8gf8uMgAx8DQvmVY4UcE7WxwcdLyuUqMQ3G4zGOjo5wdHRUHTltjIl+KBQCWUIky9W3btTKkc/dk8kEQDnPXl1dRTfOoTSLosDBwQEePHiAyWSC1WpVpU9fqA4Gg+qkAvofDAbVR1XEl89RXYyVu65rZVtJBdGapmMBGn//66pM9kldz3O7zBcSJOTly48C18YGSpvc+LtMg8upjbOyb6XsTULE5fLJu0uZ7RpGzmcahdZ+lKf12lR3LZbzKvVFwN4PC/bOQaNM+QUs+GPDl+lbPx4ny2wYyjb5ATxM3UKWg6AcgMwECAvHWtaXFrlbK1nOzxg4cth3G8cXzuVh5XLz7lrLSlnrfcWVz3UzzK2elyqU0nTcpifbUD18d+Rv82nphgNpPKQbLz/u57Zdvkax77pf/Jhd/i55Srlsf9ItZ6UsgAtgyjCuTK5sFF+Wj40rLWR9Yepgbpzqeed+xK8oDK6u1phO7dUhbcbl2Nr9Nivy21LqHEnry1i4t5W62C/fJLXZA3bB/ybJt07nc6RvzcnDNSUff21vF9s/8zDa3vum9mZ3dHuoSRtIwQa6alNkEcv1Hev1Wr2uDrB64y7S1vpGEhh72wf6fciXyi+l8fgopDD0WUvsen42TzukNAhR6I7BXUlTYl2XwqZtWinKmBi9DQq0VJLtg9+RSiCEL478OosUtrzdf/PNN45lLLcsXa1WNUtTDga3LeNQXLkoCfEgmTh1scCSFGvrbYATSZqSWAsTUrS1VYLLeya1MpTpcgu/0OLfp+j2yUJtUx49ehPU9fhFbiHQyBcvNDeGgIXrXmu0Bbx4HOLhu8dTS3OxWFRWh1dXVzg9PcUHH3yA8XhctVWyHtTKn29+YunRmJPyZbxPAa7V5y5jiCaTBhzwOUM7DqauiPPLRWVJvLjVMV/DSCUPxYvNIXJMGo1GODw8rO5IPTo6cgDOfr8PY0xt3ksZu/lGQlO6tdkEkSUvzdm//vWvnTLZ9cvQDz74AD/60Y+qawuWyyWyLMPDhw9xcnLiWN5SHuUxQHTvbJ7nSZa6t33/kkJanfryTWMFjUVdzElaGd6mcm0ihzbe8xM8YuAr8eBzo+TL40nQ0Vdu1Lfk8XChfWITknu01LkgZX5u0xZSy4Wn4Ut/szFYLjfI8wz9frHtAxwcrNNmU1qz0m+W8f/ScpUv1SnZ0g8A6K5ZU/mXd8zae2TLcSpjYXULWbKmlQCODQeAWcJSWBsGLC6VD3+vW8DWw3M3605pum6o8k0yuGTTq6cheephJD8/ae1RArLXRS4Y2YpDJK7mz92MAoqWzzpQqr+HLGHlu+6n8fXF1Xnpfr4w+rPfMla/MzbdItZX1v7f+hHHRaHx7G5e3UU/uQ8K5S0139q6EEC1LpRznNyP0bpzs9k4p6rJPUBb+W6CbqtcdxSmEMAq26G2XpL+oXQkz5AeUvYZ+d5Wj6DJ+F211vdRE73ObSJt3Ex1A9rv4WJ85TxBYV+/fu3VWadQSO8f05Vo/TcJjL0Nm/BQml3IsguPkBI7hVIaZ4g3H9C7UL6kLog4paapKQ1Dz235hhZUKeFSqU38LhfE19kP2/Z7GS9Uv752xd352fJZ5gJzTY7SbDsppAAtqXFDYZso4WTY1Dhd5JUvHrR4TSY3n0KzqXwpCnrfxis0Rmj5IuV3274YWmC34dWk/XGKKdx9IA8PYxUv12PZuivtkgbfoPiOS9U2V1zJTm6z2Qxv3rzBxcUFsqz8am80GjkfZfnKX8okw4Ti+caj2IYgtGn0pS/TDfUt4uHrE7FFdKrSp+kagNddbFzieby4uMBms8HFxYVzhL92VFqTfhNaQ6Vu2EPpkYILsJuatn2G2vVgMEC/3682K1QO8shu/tvr9fCTn/wExhi8evUKy+Wyxt83X3a5RuIf9PA0fbSv9VlKHXS5oU9pN2+T8iCl7/L27pvjeBweVvLS+Evi/YHLGBpfeZjU+YHCNplPQu6hOY+Hkx9ayDixsVjOSTzsem2wXBoMBmYLiJZgYVEQKGrBDzs28l8OFNExxxZ4LNOyIGcZloBYaSFKblzOrHInHn43KjsrD/m7dZbVwpQySD7W4pWnY2V274SVRPnivLmbrRs4clDZWRkBeCxmbZ7ILXPCuGUi3Y3jtw1Zixui0LDV5TK0Ca9QWJl/GZa/2/HKfbduYaCV3ONh7XssvhvHhuXu1q8OYvLw1D/dX5+b62d5a9avdV71MnbL1kfuuGb5TyZrzGYbZ1zS9vC77lOuk9rs1zW/0HqCr69lfC0OffRKfLVrscg9Zc5rSjIvb9NaaV8U00XcFF133aSsw6T/LuWTwkeucVPrSlsbh6iNPvTbTk10uNdBKfsD37o8Fj8l3L7qnc8JRL69mU+OJvrzkD4LeIuOKd53w+xqsmxamSFlo/zqq0viisKUATeFn4+kEjqVV5NOLL980JSRUul5HV/k8DyHJp62yuHrpNT2oU3Osj2Tn8yrvLvPd+coxaO7F7mMXJHWNA83PQHeVN23bXd8gkndGDUZA0Lxdlk0EwAg02u6iOTtWtvk3XbyzXtdKAK0vqvNN20WOSG6zs0UjVd0LzG1qaYL0tPTU/z2t7/FwcFBda/mkydPcHZ21uncz+tX9lG5kZLKbwlE+fjH8qqBhr42wsNxeTWZtfvHU0CXVPAupCziYyCVFckyn8/xy1/+Er1eD/P5HIvFomor8/k8KmdIjtgc13ZtR3VM97QSH9/d2hrx8qHyIN79fh/D4RDz+Ryr1QpXV1eYTqeOrFzmw8ND/Lt/9+/w29/+Fv/+3/97nJ6e1tLaJ1G90hHiVIfXvV6TgF/b+fW7Slqfl/VIv8PhsGqjBP7zuNwSp9frYTgc1tYAmrUrjQ+yHuko7sViEQT7eTy51k5pD9QXNfC4CaWsmUgmLT/aGN5kj8HLbjbbYD4vMBhkyLIe8ryABUstoJjn9j5ZAlJ5mLJ+rIwE7AIZ8ty1YC1FJStYezesawlbt5Dd5n777AdpSxkt4MvLKGMAJ5dZs3q1ebX+JR/+DpZvLguEm+vOQV6Xh41Tutfj1vly8rWp1HmsWZve95CZyj8UTvOzbnVQkJ7dMaIMWw/XxBK2/m77sJtm6WfD6/5+Xq6fDrQC1EfDlrEUprRytX7cIpbClb/Wvyhk/kJlHs9Puf4z+OKLKV6/XlThb1r/8DaR1PHwtSYRfcx6dXVVW7vy+YfrkPhatStK3WNcB+2qN/m2t9HbmD9tvQek71XbpCfXarJf3cZyuqPrpy7bga+dd00SN5DpS+JXJO1C6/Xaqz9rBcZ+FzphE0A1FKepUlbjp4GNkmcqmNCF4lvbUKem1zSttl8pxBQTUomWAib70m0jx3eNfAp28qN3n3KpiZKGA/EyXd6PQgpNqWTn7rtMFClARQr/WFnG0qCwIeXYLuOCVnepAIl8p3jcKiu17mJpxMbnpvWtgTNNKTS2pfBrAqS2kY/3L54OKZpDZSpBK1+YFPl84dqOt03mMsonbUq0til5S3eK2+/3cXl5ia+++grGGBwdHeHly5eYzWaVYl8r35R6jq1JfP1Hy4sEFkLpxtKPAZv8N2W80PIUao8yDFHqBzwp4y3/SGMymSDLstqdJHy+0vhrY2cqiMLjaHng4LrGi6fRds6T9XJ2doavv/4al5eXWC6X1VHNi8UC8/kcz549w6NHj/Do0SOnvdF9Ldr8vW+S5aB9+Ee/KfNJ2/Tl3CI/XKNfbXy+Dnpb1rm+cZNAQyq/PM8xGAwqcFTOMaPRqGqTdOc3J20NENrPEC/tyo6mlFL38vqOJus+uWYPrXXatMOUfarbJwCgBDg2m8I5EriMWwKrxpTATZ5nlR8BqdStyzD8HlgCUPh9shYwBbs7lrvBayGLyq/+a/04yOm6SStTbhnLLWlLvzJtOP6UNwtMxyxlqT7k/bg2vpXVjVPnZck9Rjpj4WU4Kgt/u4g1s30MT22G2Fgc3b8O/Pnf62F5O/a5tXvnc4991+LUn2VY3U/Gs+5GSSMMyLp8dcDW/trjiutlra2X9F965v8XFytMJmvM5xvWl9wPE1Pm8NDa1KadPq7fJkrZj2nls16vq3Ul8Xn8+DFOTk5wdnaG2WxWxadrYL5LtEs7eNvaENFt6QOhPfuuusUQ+fQrbXnw99Qy5R85pMoj187ftb56G0nbz6RgX6k821BM9+aLk6or1XSWsXhN9+B7tYyNKd1uiq5Lhi4UIhTfB8Zqedn3oEX5ilmW7iqDTyHZlveuk0mbNNuCa99G0izlfBsHn38qGWNUZVYsPR+vXWS5CeqqHEP8r6s82swhvjFDTqix/tnmC8AuANmuqM1c4ANmNABVA8FCPDWAKJSexj9kmdmUpAJEm0tlHvgzB2Ob1LMxplIajEYjnJ6e4tmzZ/jFL34BoAQ+syzDYDColQEp/1MAQZmHpmXH2zBZ/6a2qVB5SEBX8ozxl+2Rnuk9Btpp7Sq2Uea8ZduXYBj905f5b968CS7oY8TbaazeQ7Lz/kdtiyz8NJC9yy+gsyzD06dP8eLFi+oueLof2RiDy8tLfPbZZ/jkk09w79696p7d9XqN5XKJxWJRO574utZN8jhpumuMr8+7WO/7SJtL+B3GfL3T5fi4D7rJOdE3xsjxoiiKamy+urqqlX+e5zg+Pka/38d4PMbl5SVevXpVtVlfmtJNG9v5HfQ+0gB3TYkfmkPX6zV6vV5tjmlCqfGkDG32rHIek+tyY8rjivO8QL9P94JTGI0f8aJ7W+39rNYiluR1gd0yrgVniyLbppVVRyRrFrIIHlXs+tFxyZQWGCDqxrfPxpRp18OF3utuOh8eLtXd9Q8BsxrApfNivllaG+SAdJfk8kzZSzblGXKT+gz5bBx36+8HWDU3/Z2PYfZdi6P727jlP393nykOt04ld9v/+K8NK++F5b8EvMp3eV8sz4NezpzqOiaZf2MMnj+f4w9/KEFBPm6H9lc8bCrd9P5zH0TlIvdANIcsFovqOgyaS//4j/8YP/7xj/EP//APePHiBQBgtVrh6dOn2Gw2tf1bFzrUb2PZ35GfblN9c1l23Zek7Dc13ZAk+jiC/Pn6VgufwvOOro+a6reuU4bYaW37/gBFy6/UncT64V7BWC0Tt2GwCiHlN0mxLw6aDKptQKc2pCkVduET4pUCmmhgixa3vpHXlRqpcviU+DFFsOZ2G/rIPslXF/JdKtplGE1BKfmFJnR5zA2/n9EnNwdDZDrXUYehthfqH10vFGO8ZB22Jb7Qi/GU9SzHA6ozqXjVNnRNiYNV2n00Pjk1f+mWWoZN+KbylEpPbu0XSqdJGj7SykC2hS7IB8Smysbdmiinebvr9XqVIj7LsuoIFXn8cUyG2HyWqvDm4B/NraS0pzbO7+7W5EndpDXJS4h84ISWjm++DpVfSFYeVuvv2toklo4WjsoeQK29xCyWuVtRFNVRu5p19z7mL2Ms8KsBh7PZDF999RWOj4/xwx/+sDrGeblcYrlc4uzsDGdnZzuN002J1gTvvfceHj58iCdPnqDf7+N//s//iclkUinxrmvNxts4X4uQH7nfZroN8smxQhu7NpuNc6yUlJusbw4ODrDZbHB4eFjxDR1X79t7UFryKCs5JnOK7Rnl2EOyHRwc4OOPP8bl5SWeP39e3eGs3WEdKkMOCmtrA0mh+TvWLuQ6Tet3i0WBzSbDYFAAyJHn3HLTTZOsY+leWftb5XAbzlrOlmJbwJXkKo8wzirwt5SzDAtmIWsMD6MBsaW8fuA29gyPn+8dapgS5AyF87tza1cdBKVy42UE4WbDum6hsHWi5nEdc0VqErFw9XLX43C38lkPb9cO9fDkxtN03dJAWHrX43BrVemfaimrg5qWr10fWVl0INaCuhx0pbUVhJu/nGPlqc0vZRr1E7skcf0GENZZ3ob5FLj5eX21WqHX6+F73/se7t+/j08++aSS6ac//Sl+9KMfYbPZ4OTkBABwdXWF58+fAwCOjo4qPuv1GqvVyplfZPtKpesYd+4onWK6mF0oZf8WCt90X3mdsu3Cn/v71quh672a6gHuaH+Uoh/por5C7em6sK1d9IG++T3Uzt+aO2O/zeQDnfY9+IQUoykNcV8LwVi+m4AMKbz2nYdU4GrfMnVFXcoXU4ilxG0LxmZZeUQoLXT4HWBt8qFNSrv2sdB40LYOmpQzL2NfHlN5NI2nxQ+Bslw+7tfv90FKyJQ6aluuBGbsYpmUAlZ10fdifUcD8GJtPNTvQjJoFKqXfY6NKYtAn5IlhTeVJ38uiqKyqBoMBsjzHNPptHLn5S77o6/N+8pPAyG09Qcp17nimx8b2/QeW01+TlKu1DqW7ZPnMxaP/1I8X7pt1hWctPvS+bOvbfsW+QQC0p2u/P4TrRy1eY2sUwFUHwOE8tJFv6NjmoG6Nel8PsfXX3+Nd999tzo+jv5XqxXOzs4qC2Oepy7Wyb55lvrnkydP8KMf/Qh/+qd/itFohF/84hc4Pz93wNh9rtdl3yUgVh41LfNxnUDx20Jam5GAK60XeB/h/lSuHIw9OjqqrLfleCfrieqGfwCxWq2Q5zk2m03SWBhai3GwUh4Pt1qtMB6P8cd//Md4+vQpnj59isFggOFwiMVi4RxfnFKWmlwxxZovbpM5QPuobrEosF5nODw0yDKDXq/kVwIwFmSUIGyZHqpfYwA6lrisL3t0sQVd6scWl4AsyVT6WZCV/7p+/LdMn7vB81wHYd241s+CopwHavF1fmB8bTjy08LXefuAWS4jIK1mffzq7i5IW4W+Af1tOE0+t6THr7tp1qz8vZ4Or6sUN/edr5ni7343/9HDvnByrcb7ZP1ZuqX/uhax1k+Wuyzvejm5fm4a7tHHDmfPeBjTAfjWZ03m/etScHdFmnzr9Rr9fh8fffQRPvzwQ/zZn/1ZNUf85Cc/wSeffILT01MMBgMAwPn5Of7u7/4OxpRXw1BZTqdTLBYL5+SRO7qjrimkF0sJm0pyb6npL2JypOo3KGyKfk+OXSm6rzuytC+MJlTeWtvx6dh9bSA0h8UodS/UhnbRV2phYvmWdAfGfkfobfu6RFPO7trhuEKE872jZtR0kR9TsDRVbO9CbSYnjULgQlOQtWmaqTKlUJOwMaAqZTPZlJrWPQEVXC4CY5fLpaO0lgsInlbMyoPnix9HQZZUb8s46yOpLA4BH74+3bbeJShIxMt5n5vk1I0EpyagEFfGy6O2SBFOv/IDEV+5+pQymoKG0tXcNb6klCDAj7dvqfiXijOZb8mbu0teGsWU+b58c/fQfNRkvtLk5+78tA4tPg/bBHzmROA93YPli8PrcTAYYDQa4eOPP8ZqtcLp6SlmsxkuLy9rp0XscxyjMRkARqMRLi8v8V/+y39BlmX40z/900qOy8tLXFxc4D/9p/+EL7/8Em/evKnu8dTy2VQG+uWAnKy3Xq+H4XCIDz74ACcnJ7h//z7Oz88r4Cx2UsYuxOsuyzJsNptauryOR6NRBST6+A2HQxiz2wdobzOlKJtWqxUmk0l1jKEMP5/PYYzBaDRCv9/Hhx9+iBcvXmA+n1dp8PZF/2RRK8d1ssTlddkkD9xdKgWMMVWaRPwDjCzLascrh6ip0kHOSdrHAz6K7f3k/GGMwWpV9uVeTx7dSzwtKMJBWP7LQm/dSytNO2aXPK3lLAGyLi+qRnKn3zJfVNfWaraUKdvyd4FbykspAw8L5x0CYC3LBoIff9fceB1nrFwsIOXWCy9Prb5ku0gJEwqrx+N1GqfUgKlru0RunnDW3Shu/vhuf5ThXADR78b7kp+vL4wxljfn6/OvP3PgUsbTwVnuxn/tMcUhP/c4YhvWdzSxtqatnoS7LINSltevF3j+fI7JRJ+bQ+Oqz/27qsOifC+XS+dEB2PKk4ZOTk6q+a3f72O9XuPw8BAPHz6seOR5jvF4jO9///t48+YNvvzyy+pkCjp15ru2Nrqj20m7fGzRBd/YvjhEtNfwkbZ/kmm+jf3wpnGXLueGLvKQoheK0a55uq3z5R0Y+y2nmDIxVaGZujBsS21BulA8qWQKKT5Dbl3nMcYv9YuXNvFugmKTfUr5+sLE6lIDdni70X59ynUpxz7KO0WRpSlPeR5D/ToVJGmSN0pPUwJK+VLBlKZ9To4FPD0NUJQK7lD70pSNMh++MYfL0pa0ce46+rqcJ3xAVcrincfR7lKQPEO8YnnXwLIu6sCXPm9XTdKT44zWdiTwqcnQtK9qcoR4cBBIysRJO769TdnH2oY2jzbtw7H0fW07lY82Dobqr0kZ8XbCjyqOEY15vV4P4/EYH330UaXIMsbg/Pz82tcQdNR1v9/HYrHAP/7jP+LTTz+t7t/M8xwvX77E6ekpPvvsMzx9+hTz+bxmPcjH9SbE51N+/DP5SX7Hx8d48OABjo6OMB6PnftE+bgj5+ldypXqjeqOZNXGDSpLrTx4mF6vd+vvlpXUxThOlLIOIdCbyl6O8XSU4WKxwNHREY6Pj3F2dlbdNyvT4Wn3+33nWgz5ERflNQS4pu6ZfOtdOc6lzqsxN+7eZC2ukZRTm9tlusZk2GzKu2M3G/tRHQdD7bHEgDH2iGLDgJMscwEfOJaw9G4tXUtZLGhJooWmDJsGgasZcy/T4uCom28OwmYOPwgrWZ0fvcMJQ8cMl2MYyVmmYfnYtMrfutz2uW4xa2Xz+7tlZ5i7bmHLm1H6dG8QafYNeDWP6+8/MbcuLWNdfvZXhtXi+o8klnHK/zoPGz52LDF3D1vGWt66JayNb5QwWvnXy5P7yTRtWAv4rtcFptM1Xr6cSwbJFNqLXjdweFv0TfQRExGVyWg0cj4wWi6XyPO8+hCt3+8jz3MMBgM8fPgQs9ms9lFj2zw2Xat0uba5Tt77orb7ru8CaXv/pvvb0L4kta2EwmnyaPsNvk9K2c/7dGuh/HfV9nfR671t/S+kS2nLo6s+3AWfXfKxrzh3YOwdvRWU2rhTFExdAxtv20B70+RbHEqFkDZBp4J5KTKQFQmn9XpdKTx9liWaUn1XAELyI5KKdlqkaHdINuFLlFKG+wZ72lAoHalUJ+L368UUgDHieeJf5Gpt9ttAWr/jCmOfv4yfooTVgDAOmBA4cXh46NQBbcpl32hbB5oC3sePW6jF8sd5Eb8QINB04yTHIgIH+MaHnxIRU+yTH8kSU7RrcoU2VvyoTi1/3I9brEu/mDIqNtZRWfnyINPxzU2+OaENaXmUbZ6eQ+0EAIbDIXq9HqbTKYbDIT755BMURYHhcIgvvviiuj9Lpr9Pku2p1+vhV7/6Ff7jf/yPODk5weHhIX7+85/j+fPneP78eWVJ2yVRH3j8+DGMMbi4uKjkomNov/zyS7x48QL/8l/+S9y7dw+ffvophsMhfvnLX2KxWDjKQBqfugI7id9oNMJ4PMZkMnGAPN7eyNIjBJKt12tMJpMqj8T/ts9VXcinzUkhhQ4HwvlYTOVYFAVevXpVWcnOZrPqOgSfhflwOMS9e/ewWq2wXC6xWq2qjxI4f14/mlzaeBeqd94ei6Ko0gXKdS/dIZ1KvrS1NRYvDz52NwFiU6koDK6uNuj3c/R6BUoQMQPp5TnYYgyQZQXyvARwyzzkyPM6IJhl9p/esT0ymJ7tPbL8jln3nS9LS9C3BIPtrwWDiX8pJ1nSUtlKK1rAWrByQNVUcpf+vN4s0GvDu2CpdXMtiTk4a9Pn/QlCFpum+y79qdwyyKrnaUniZe3mLUzd6vldsLFpmq67zqv+rgOFxug8yL3uxtfnvneXpxZO8jdG8pGgZ9waVoaR/nW3ujWsdCdLWPvrKyutnCqXWj55mZDb+fkSv/vdBMtl+ppAG/tiY+Ftn8O7JJof+QkPdG2HpM8//xy/+MUv8Ktf/QovX77E8+fPcXV1heFwiKOjI/UD013Wb03rYZ/19l1qE7eVmoDLsTVYEz2ApkuJUcpeMkRyb5zCJ1Xndtvpbe9rt72Mm4LE+wZutXbedt4IgrH7UKJfJ/99phmq5JBSMhY/ZSDuqoGl5kF7T00DqJd51x2+KQAUy8suk2ETcKtpOXRV9xpp5XVd/TO1nvjmpMmgHArLFWb8iEbfYmIXZVXbsHxhFFMgpii5UsjX/1PLXVPUcdlTQauYjJKPBEA0MIN+tfIMpePrf1KB2oZkOdyGRV0ToIuTT0nsmw/a8CIesj67ptR8d1XvlCb5+QAC/huTg/ORCv4UwJGe+SJT9oc2Msl4Go8UhX1q2BTaZV3mc0ttP6G1ojY2UJ340vbNYXSk23g8BgAcHR1VHyX5QJ6m1LQuePg3b97gN7/5De7du4fDw0P84z/+I16+fFnJJ60OtXGfk29ukmPGwcEBjDG4vLyswtCa4OrqCtPpFJPJBIvFAgcHBzg+Pr5WELMElHpVmhoYy/PlGzvIGsQY+8FZ27p6W8g3Bsl+5etLBK5L/6IosFwuMZ/PcXV1Vd0xK8dZmQZZxsorFTSZtfbsG/dC8wX3K4oC0+m0+rjBGFOBzTHlQ+peTitbuabwrc9ClDI2rdflnbHl3bCoQE76N1sQpwRisq21bGn9aQEcF1i0wItrISstY+2vTYt48HeWIxDoWgcQS7esAjUzESf0XL7zPNTTt+GzjM/rHHS11q8Un8vDeVoevJwgwlC7tunaMgZzMywOb3NuCckmY/21vlBz4r7iPbQnC/FpFl6TVwvP3eprYvkcAhb9VrCamxs2bkErw3B/99mG1cJp/Mnd/vrcQv8+a1lfPcXbgYxnxxeD+XyDq6s1Li5WIoy7BpYUWre45VIfU3VZw+siHu465/c26fE5lj6eB8o8LZfL6iMnWiNNJhOcn5/jzZs3ePPmDZ49e4b5fF6lO5vNah/f77KfvyM/dTXHd0GxPijD7qoj3acOVyOfzLE48tmno0jl6xt7UtZ+XZVXkz180zJrK89t20e1bZ8+HV0sXEiOptSkb4b2SbvwT8mfL50gGBsTbtfGdBMN8bY1/ja064AeU/p3XUZt+d3WttU1b+0+qn2nmcK/C8V2ygDHFf+SYvdmpcgQ8pOLAQnGpo5xTRTvKUTH6yyXy4pnr9fDaDRylHmahWyKYo77+5T9KXQTintf+pIPfeFHmyxugedTkvq+akqZC1NAp1A+Uug6xgFffXLwQztqOKbE5f+cnxZWpknPXL7pdArA3q9KMuwKkHD5UjcuofR8Gw9jjHNUNuAf71L6WCiMbNe+o6KlmzHu8a2xTZlv7PGVKQctQiBDChHvrvrIbdosyTqgMry6uqrKrdfrVX1BU9jRkboExk6nU/T7fQwGg2q+6ff7GI/H1fHFnEcTalNulMezszOcnp5Wee31ejg+Pq7aCr/nlI9JbWSksuz1enjvvfdQFAVOT08rfyormkO+/vprDIdDTCaTCsiiO0D5UbMpFtZNymW9Xlf/BKbSHeiUJo0dy+WysnjkZZTnOY6Pj3FycoI///M/x3w+x29+8xtcXFzg9evXnW2Ub1O/0UiuEcjNtwYm936/3C6T8pfuhgXKuWg6nTp3zfmI90E5J/J0U07xSP0Km48Z/X4f0+kUf/M3fwNjTA2Yj1Go3/nmw16vV41PVEacl5YPKpcm87kE7RaLDTYbGjMzAHnlB5RWqptNCdxmWa6CKzQly18uEj1nWxCSW8jSv3y3//auWG49awy1P2sN61rActBTs5h1/UiuLLO8t7llPFGFpzIoy64EUYlv3QIXgkfpZ935nER8DfNzarHmZtsVasTljFF4iOtW4Upl0ESOurupufF3mUbdr87DtvF6PLtecPnLflEPpx9XTO88fP3dfZY8ubsbpvzQAqjfA2vD1y1jyzjGuTNWlp0sW63MtTKRaU6na/ziF+dYLt1rFSTx/acvXL/fr/Y3xpi9nBJCsuxKTdYAbdPjHxXS3FwUBX75y19iOp3i008/rda28kPSxWJRHUk8m83w8uVLZ17iYXeR8Y7S6LavGYHddaT72Jdqe402AFEq+finrkP5fjTG97ZR2vpi/+PebSNNnxMK810jrt8KkQPGtlF+tRGqS2rLk+LJ+D73rge4pjJrilPtPaYE0Hh2XYZdUZc8u5BRaw8+wCulfbRpX7dlAE8BX/gvUWqb67pNaXVCSjEiuWCXYX18eJ54n9DChOQL8ST5NOs0Tc5QGjIvqYvM1Dbpm4xDfaYNaW1MG8991mNAs/7U5SKjy/JIqZe2gIo2t6T2zdA8lSKTHB8pPH2QAJQbcq5E5vf7tZ3T5LtvQ57S13x9S5Mvtb5SFQQ+/1j/DPn55juNd5M217R9+tY8KXW+S5/3ySnrhLfXNuvklHh8E+xbc8h5hN9ROZlMMBgMasfsarLsg7Q5kmSk+zoBYDweq0dZx+q9qzUEP8r7m2++AQC8evUKFxcXlTWhPNI8JFcbonIhIFo7ApfKj47PlelTvNFohI8++gjz+Rynp6cwprwveNf1BVHqWHHTlLp25+s6Kj9jTHU0MYXxWSpLXvyIYH70uy+eT6a2ZUn8lsulo9xP3UfGZJRzH/lxy1ueXmw9nZofbe23Xpegnz3+1z2yt7ScpftiraVr+czdyB3Vf5kGB2csEApmIZtlbhxWilt5XQtT/mv5ls+orFgNwCx03bajWau6cbLMhuXy2PLkAKtrLUu8KJ9uWva4YyofK4PbPqR8tj45AJZVYXgcG5ZJ720r9eOOuyKbZLidhpqx61cH//zvRvXnMmnu7hrNdauHD4OsOj9+vDD1Yz0sT5f3NQiLWRnWylGPY91kvDofmReZD0n1vGt5tL+bjcFiscFqVQg+7pwdWy/ysZSfDNJ2vb0LcXnb7Ku7WpcRL3n3+mq1wmQywZdffol+v+98+PP69WtcXl5W6yig3EMSsN10L3FH3dBtKetd16xN9OGhPWysL8sxo21a0i2Wf9oH+cLGqInMIR67pJGyzo3t465rrL3t1EYPuCvPJvuULihU96n7E95vfOSAsfvO2D7477Ih1eKHlKg3RakNvu0g1XUZ3kbah4yhsmyrKCc/qbC4bdRmEA5NfKEv41MGshDxOqFnUvguFgtVXu05VYYmmw0Kl+e581Wm7w4T+poTKO9HGQwGwa9pYxS6r3EXSlEg7pJuk7hN7tfV+l0KSNWUuhyPdlkct02vaVq8TJtubrjFV5aVdzsOh0MApWUgASRAaYEzHA4dQKItdTH++uKH2pSmqOZAFS8TmYYc6/j4kmVZrVx89ytLvr6y8IF9oTzLMUACihwc0BbCsi2lrn2a0nXPvaH05NwlwxKYGhsLyH+5XOLzzz9Hv9/Her3G+fk5AKuY2mVOaUO8TvkJEFmWOXdBt1E+xMJQ37i8vHQsTfk4R/ft/vVf/3VlkZFlWWXx1+/3hdLXAqZdjCHGmMpamR9VzInknc1mVfq8zZD/eDzGv/gX/6Li9/nnn+PVq1fV0X5txunroK6VuD7iawBep6TYffjwIYwpAezNZuNYcPvGb14Xy+USb968ceqGfuXYxv+18di3fw2tX3m7JYB/F5Jp8rGK0lksFlitVhiNRpWF7L7Hl6IA5nODzaZAv5/BmBzufaP0kQWVJVnGlvfM0q8GspT5tJzoucy3a4lK/nQPrJ1q7V2x1vpV/vM7Xl0L2LhlLH8GuDUt+VM8+w4mswVC9XBw+HNg17YFes/Ys7WYpfLk8e17yd9X5mDHINf9ONWtS8PhPVxaNNd6HBPw87nJfZT2bIJ+mrsdo+pp1du8dNcATR4mBMjK+H4QFnAtV3lY+2zdQhay3BJWylAvX1951utPzzcdkW5QjgPuCU68vLOsfjJAaJ4jK1B+L/11rtV21ft1ua6g9Q6A6kSKfr+P09NT/NVf/VUtPJXXcDjc+dS1mFxN8tnl2uY6ed9RnXYFqOT+XtuL7bM++VgVS6eJbo3zb0sp+3xah2uyxcZJTc+xz3Hiu0Ah/f1txTdi5JN7l/wEjym+I0ttCrnpZLwPuo2KlRRZQmH23YG7/NrDtwhvCtZ9W6ir9qgBQpynnAAkeEHKoM1mE5wsfGlz0tpCLJ+yLfANDgEUtHHo9Xp4/PhxpYQlmk6nmM1mtcWbPKrSJ7+UUVPgpeQ3lk4obiqlAo6+NGXb8Pk1JV857TJGpY4/sXCpgESKQjeFR0gmX/lLsIDcuEKcrF1JaXF1dYXNZoODgwM8evQIP/rRjzCdTvHmzRtcXFxgOp1WHzfwL6CbUCiO5ic3MPwjB6445+WkjWGcl0+hHpsbpbIkyzIcHx/j4OCguteQyjBlLEglnl8JRMnxTeaVyy4BjVSAsalfLB/yue04EZunUspa9gnuTtZ6AKqjU33tCrDHrL548aICRiaTSVVn1w3ESqL5j48NWr5lHF87SV1zLBYL9XQMvl4AoB5lp23iY2N0rO7lupGXiZYmbx9ynKDnxWKBxWKBLMswGAyq+4Ll2kLKECNexrE8pYwxWp11tRZOWb/IsZva5Hq9rsBuTanu66c8LVlG1L7v37+Pfr+P1WqFzWbjWN6GiJenNg/L+YA+ROT5SlWWaON3iIbDIY6PjytL4Pl8HgVitX4j64Onr7U5t+9mWCxK4C7PS1Awy2jstIAJATmllSxq/1CtX8Esa31hSv7YWrbKd/vr5EDxq1vAumFDzyXIyu9pte1FAq7yuGJptUtlzXlRepo7pW3rjFeXjE9pcqLm4FZzHdStl6Mb34ndwRTn5yHbYzoPfT+pvRvV3z43AWHd8L6werg68Ep+9fA6SCv5kLuURfprv27YOgCrl5Verlo495mXj01jszE4PV1gOo3vP0JrNR6G1nr7mBP3TU3msbYk5zE+H5MMXL/C11Vczi7Kt2m8fdbj29JGOO2yD+2aUtaLTSl13+ejUNwuyk7qYmLh9kkp+lYK16bvdpWHt7GfcWqj62jSxkJ79l3Sua5y9+1BUikm5x0Ye0d3dA0kO29XR6feBKUOonLBsYtSWlMyhaw6CcChuFyBStY/pBTiR9mE0o9RKliQ8hUs3Q8HlMey/uQnP8HBwUFlEQgAv/rVr/Cb3/wGBwcH1deyxL/LRWysvlOV3ZJXkwUp5526GEslqfRuEk9b/OnKlPQ+c5uoqTxNFnSyvmTbIDe6k5Hay+npKYbDIT7++GP88Ic/xP/3//1/+PLLL/G///f/xv/4H/8D/+f//B/cu3cPw+EQV1dXO1v++PKn5UfmS1u4cSVBlvnvywulId1ibffdd9/F+++/jxcvXmAymeDq6gpFUWAwGDjpkaIiJV0pr++ezCb9IbUvtuknTTepTcG1tuSrPwnwaGGpbzx+/BhFUeDFixdB62QKb4zBb3/724pXr9er7o6MfczTNcly7XL+is1N3GJ0Mpk4/ZXLQBajDx48wGAwqEAl+tjDBzCF+jGtX0L1xeUhWbklZUqeeX4mk0l1vHKv18O9e/dwfHyM4XCYfGcoz4NMM6WP3CZFmwSgtfUq1RGBsXS0M2879MvvdNbqVkuPwnz44Yc4OTmpxudnz57VjpxOWSPzdzl+AHCAWC7XLhYAvrZ/dHSEDz/8EEDZXn/729/i6uoKg8Egad4KfSAQUhhS/owxWK0yFEVpmdrrZcgy4smPNbUfEG02uiVlnpegogVzrTtVM7mV8rgWsnQUMr2XchPIUqZp74x1wdssgxO+5GstYOkIYso7pes+W1CUeJC/C7jaMO67DUflV6Ynx1deeBkLY+vGrS5Zd4Brwczja2EdF2hE9dnVlNZk6PKF9bV96WzfTc3fDesHGt1xjf9qcdJA2bqbYX6STxsQtm75qj9rVrB1dx8gK/NeL9d6+cr8c7mKwmC5LPC7311iNrMfPMb0Ia4s9Y+W6AQO37h52/aO10WUbz7X9vt9HB4e1k4cow+dZrOZ16r4u1qOd3Q76KbXxXx8ienUNB1s0717m/xqcbgOtEtqonPZl46gLe1LnhQ92L7pJspZ0+dJf41SdNN3YOwtoZgi/44s3abBjsi/sWo30eySx5Q0d+HfJG4KiJZCPmVfCNDmmyA6woYfXUGKsNBxFikgRAr5+jcpcklJLsMD5Sbs/v37uHfvHk5OTir3p0+fAig3GEVROHdptpGJKxFluCZ110TZGmsfvoUQJ7nBjYFhGnUha1fkq8Om+fD1k11lD81Rsuw5pfZVH0g3GAzQ6/Wq44ppw/3kyRMsFgt8+OGHODo6AgDn6NDUvtwkv7Hw/F9TkkvePKwGUvvkl6AuT5cfaTwYDDAej3FwcFCNNwAca0jOU5uDulqj+MrCx0tTYEnQ3sdb5iO1n/N68cnZhI/P3xc2NMfJ/BhjqnqlNqAdmSqVVgS+8jZ6E2tNXxsI5VvjIeexWFgZZrFY1PotyUJKB5prCSTT+m/KZo36py8PPCwnzfojlE/tfbPZ4OzsDL1eD1dXV5jP59Ux0PKkEN88GpKBykuOF9oaLqTQ6HKdH1p/NVEO0XrNt0YPlZMWltPBwQFOTk6qvHNgN0S+eVbOKXQ043A4rNofXwOHPhDV+IeIrPUfPHiAjz76qErn66+/xvn5Ofr9PvI8rz5ykGOUr600XW8TmS1gsl4XW0DOHllMQCaBsPxoYWKTZUBRuGAoAbNFkW0B2ZCFLB1TrFvGlrwlWFWCtFsJnPDWDY57Kb90hydO6L2JW9w92wK59lmLq8WHiKPVf0qb3abU8fSWxk8H/3zxrZsfGORhuL/7bILutq3VefF2WA/rt4Sldx6e+7vPcv3rupXTY/hYYulmjzT2A7OhsqyXlV429XzQ3AC8eDHHZLL23hNLFNsnaXOV/ACI3JvykvH2QW32TUB7/RKfK4uiwGKxqH1kxNfIGo+Q2x3dERDfv6ZSk7VhajqxcL59sy+ctubiceWJg3KtL5+1fUVKPlLGEu1Uoybki9OE120bN25CniZtte16vm2clL15G/9YXMIgQrRXMNa30b3pBpsqQyjcTeahy4Fm13hdlUOq0rIt7320w1jnlJNQLD1tAmsCbDWhNvzaLpIpvZiyMVVhFpvANUCDviiVwCtXrqXkIySD5harP7K4oPtftQ1Jnud48OABHj16hHfffbfy+9WvfgXAWtGORqNk64ZYvrgcMeVpjEKLuRjflH5Kda0p9Xy8NUBD+jVRdPv822wwtfBty132g1j9tiFfHiVAohG5p1gokRJ5tVpVymUCY+neS/pYgcBYit+2/FPnJRmOb/h5+5S8tc2L5B0j+tAkyzLnCMqiKCq/wWCA0WiEw8PDSqFDC8SYklsbj7mcMdl5fjXrWf7Lw2h3bjbZ2GlzjkZt+lrKZrJpn00ZU2SfpjQkGEttP9QO6ZQFDsakynId1HX5xeLJY2GlspPAIwJkd5GVypz4+u6A5nJwP996kvvTnXKyrWw2G5yenqLf72MymVRWvhyQ045DlP2QyyD9JRgrgT7fmCPHLa08pAxNqMkGXStjY4xz0oL0l30odc2fZRkODw9xcnLifCiTuk+VcpM7r6d+v49+v1+dhkBtkI5eXq1WtTS1dukrd+7W6/UwHo/x6NEjfPzxx9U6++DgoJqP8jyvyjI2p/jSoXxId02+oijB2PKoYoMsK++EJfCVqo4AnSxzwVj6J0tY+qUweZ45ca0cNH4AqIBXw6xfuYwu8EsgLcSxxcbAA9Si4snztj9QNtVd+mn+ZZgscwGxENhaho3N78Sv6zmtDt55Q3rCWHejuPnD8TDus86nfHbj2t96HNvX3fj8vR7GMD8b3hdW89Pc7T2wnKcLvkrAlcLye2JlmbDSUcuM+8sy4/m0spRj0TffzPDmzZKFa76218ZYvm7nfJrqLrqkfehzd9kz8zJZLBY1d43/vnRsd3Q91KSdhNaS10FdpRNb66S6x+SRHy5IPQ0HmLhhiy+N1D055xHT3/H0U8JJCumkiW9svfttpn32jS70nDGenG/T9GK6sVSSJzRo8+Zewdjb2oBTZbgNst7R7gu+fbTDu4Xb/qht3cTaCSmBtDS0CdfHSwO0UuUDUB3RBthjI+moZLJQkQsEOlaZrBuA7o/luM4FadM6TpVNbrwkABGKpynid6G3YYxoO7amLGpCi1wOHnLl7Gg0wmq1qu6wlEp9DjS9efMGb968wdXVFfI8x8OHD6u7M7taRGnyk+wxILKpglkDZkPtV1OO+xaiX3zxBV68eFHdS/jee+9hsVjg4uKi+iBEA/lCzz5ZZb60eFxu+h0OhxU4ENtI+o6vjIFVKdQGSA3xItm4XKHNqhaXlxP3o/Iia/H79+9XH+fwjbHWzzlo75P1bRjDiGT5xPqFFp+IAElSRsiy2aVc8jzH8fExHj16hOl0iul0isVigfV6XbOG1CycZfr8owWSmwO8XEnR6/Uwn8/x13/918jzvLprezKZOCCj1ga0MV8CfsaY2saTHwdI/pI3haOPRgj05vMElyEGDN4UyXE8JB/VEbWxs7OzyqKH7vTmZUuUotzXxj8CYgeDQXWqBI0fp6enlfJao6btnsaV9XqN1WqF4XBYWcPysmk6ZjdRtPA+XK6dT/Dw4X0sFhOs13NkWQ5jgPIYXuO8l/E5L/tvi4DGFt4XCajl7YD3IYCmLgJeSzm5JWwdpIVj+coBW2zdCWAuw9p82Gfy25ba1j0GyvrdSBYXzLLHGJdlSs+877rx7Lv0r7gqbvX0fET1JY8+3pVSpwCzBSZT41t3HUDk7/X1WN3PdavHk272vZTBfdfCpVnC8rCcN4Xjzzy+5i9/Lfhad9fKgedPL7vqKZA3N61nz0oQdjarn7SlkVyraH6uvMb5aK7r64ja0G2aezndVrnu6I5uimLryDb85J4kpCvQSAvTtO9qHy1q+p9UXeAd3RzFdO5Nwu9zDtD2Gk3alSZbK23+bdsAvw20jy8AuqY2MsYAqZgC+rZT1209xqtrQOimKRWskLQLICuf+aan3++rVhr0m9oH2iw6KBxXSvX7fRwcHFThyEJF8l8ul1iv1+j1etXio80dXyn5aUuxsUALt690ZV3GQHqt7lMWeCF5tHRCcnPlbUpZhpTkkm9bmZukF5M3xJMsWcfjMYD6V+ASfMiyDNPptDpmEwAODw+rjy32TbH2RL8xQEgCbm0pVAfGlPfsbjYb/NEf/VF13PlwOKzAWG2slMpyrY3I/MVAVC0+8fB9XCLHCVmeTcaQkOK/i7poGjcku5wDqN1z/qSYW61W1VxCH+7Exj9+TGmWlVbSofuL37b1iGwnbdoLUWy+T50bqP4ODw/x/vvv4/T0tALTi6Jw5nSa40kJy/ukr27Jj7cV3n/IGvGzzz4DgAr05FYkvnxz+UkODpLyuBII9pUPxeHHax8eHmIymWCxWNSOdupy37RLe4jxjbUXDkhTGLqzeL1eY7FYqBafGn8tffrlQDaB5L1eD8PhEMfHx1V6l5eXlRy++arpOEvtdrVaVVcM8Pxq844vLzzfqfUm23+/P8TR0X2s10ssFrPKsrS0mrNWrUXh3gtLxwsTYEoAjbWKpf7gHlkMWMtUW2f6McWWL33QIMuDwvrc3OcyPXoG6IhgqKAr5yv9/W4uXypzAq/cY5fLZ14WPI4LjNn3TAnjkk2v5uPEBfT4XZHl7dtfpcQt42thpZs7vshwdfCR3OtuOlgp3YzR3Orvxuj+GojJ/bh7nV8aIMvj8OOK9fKz5aSXlVteofhFYbDZGLx5s8Tz53PEKLQPCLnJ9Ti5SZLrg7brnZte7zWVwbdPkPya7lG+bXSd+5vrolS5UtY0qfqbFP1SU11QU7rpuvCVe0o/1KjNuCVPFgJcK13JW+rbfOlzOTT9yLeNmrZhX9mllGkbWZr2paZ9qul+MKRvjsmo0VtzZ+y+JgFt4fK2drTbKHdMcdAk3NtWN7vKqikibpLelvLnyksAlaKZH1vKQRsCQIna5jG2WCOZ7t+/X6V/eHiIDz74oAr7+9//Hn/4wx+cut5sNnj58mVlufLw4UO8//77ar5T24gMdxNtq4v2FAMz+OYrFFZabFwH+fq0PKa1LXHF/T77rSzjNmAUgXF05ysneYQqWb9OJhO8evUKv/vd7yrLGwpHSuB91aUvn0VR4PDwEPfu3cN0Oq2OAA1Z3u8qo+94HuJP406/38eLFy9wenpaHYnOv7Ln4yW32OKy0rMGCml5aQKEyU0P7x/0LEEMjaSfD9TYB6WkQeXm2+TFxikC1Ai8y7IML168cKzA1ut1TWkn60yWtQybmp+2tI/1hBzvUusDgPORk1YGXY0l/X4fx8fH+Oijj9Dr9bDZbLBYLLBYLJx2n2UZRqORYy1OgBqBbFxOPg5IYFfmd7lcVuukoijUI935+EHlQyTbqywbisPHGJ/Cmcp9s9ng6OgIH330EZ4+fYrJZFJ9fKaNcddBsjx4//Qpc3jdEPmOXKexudfr4dmzZ1Xb48fNc95SNumn9Vsq36urKywWi+qjjePj4+pkFgK95VhAckvFVoyKosBsNsOLFy/w2Wef4fDwEMPhsAKcyepZUuq6NLVcyLIcAMbjMR4/fozLyzeYzdYA+iDLyhJUzJHnQHl8MT+eGQAKEGBKyVF3KH9pfiKZtF8CZ/nds9S+eH641Sz9c8vXUiayviV/VBakNix/t8+o4pHcPGz5a61RbRnp4UgeW45u/NLftZjlZUPVZdswKh5uHdg4gBvW9YNTnrIJ7TrlNJkG6mF1cNDvJvuDFqfO0z5rlq31OPZXumvh4scVy2f9vRsQ1hhUxxHzd3+Z2vynlpsvj8YYPH8+wzffzHB1pR9fv8u6QZvDtY+1u6bQuult0QNJehtl3gftUg63tQxvq1xNKLQP64La8JIydVHOsbElRhJ8TZHJt/dIBWP5c5M9/k1Rl+nfJPbAdVFN9iCpwG3T+D7y8aX9VYoONgmMlRV7E41sX4uDEIAi02gqlxZ/34NZTIaUgfA667eJous2tDsNvNfCdzkQaum0pS77yr4pRVnjI76Q0TY0pPSidLqaYFPGqX6/X93Xd3BwgAcPHlRhRqNRTR46um46neLs7AyDwUC94y+0eJMT6k1NrpL2IYcEcIhS229IsdmWtPmTgzI+kvK3Ka/UcV/KGZOhCdAWk4/4aEcZyjDcWmw6neLp06c4ODjAwcEB5vN5pQyX95ekLLwpnK++NLkpDCnRe70eDg4OsFqtHFAstW/G5NPk9cWTANxsNgNQKqa1uUqCD22AENn/ZFnGFOyyf2hyaXlPacdaXtv071hbD+VRAjop85zWHjmATu2eA4my3fnS0sqgzbjZlPbFVxu3tfqQeaR/KkP6+EnOrbE1XihflAadAjAajbx3vWdZ3VpZWrxSPmL5k/7cKtrXt3z8UtdKsh3KuDxNeqaxs+srGHwycjlCfTo0hmn5S2kbcpyczWaOG7cK5mMpzW9yfPTli55pzUhzFJ20wgFLKb8236cQzc9XV1c4PT3F1dUVBoNBdZy67x6u1L5L7lQeobmVeNGHDMYA63WBzaZAluXo9SjNEmy097Va4K68D5buaS2BSLKg1SxkKUwpJ1AHxUrwFMwyNss08MiIsKWbm2frn2VUXlR/7jvA2xwcvhSW/EieEliV8vG0wfx0i1k4FqN1q9myXOR6isWowrj8eBOqp4laGJdHN+TnpwN+sbj1daYWRwcbefm47c3l7brp4WVY7Z3H8flz/lI+XxjuXnfT/Or/GvGy08vBX3ayDDcbg9WqwGSyru6ITd1TcD5EoXW4L06TPVdX+9lQHrukm9D33dHtol32JU3XdRS2rZ6lDcXS6boPpOo2Qun76iSkfwzxiOlHJNEHmsQnZf8ckrsrui06VaCbdqP1NW3+Sdk7plBoz9RUT+Or/5R2Eev/XJaYTPKqNZ9sQCIYe9snxdsu33VRbKK6K6fdKaVTheLcFO2ieH6biRSOs9msUm7JL0uBtDrapez4goOsUoDSMpYAWAA4Pj527v3jtFwu8ezZM2w2G4xGI0wmE2dS4NZSlG8tD75F07etbfjABx91tQjX+IRk8aXbVP6QPLuSb2EmlbZNZOZj0mq1qpTCXMFK7hygJaV1v9/HV199hf/wH/5DteBZLBY4OjrCcrnEfD5vVZ+pYAMPT/LSvYf37993jugsigLn5+fYbDbVndG7KlLkApkU3NpdkVJeskyiMZEr/inscDhEr9fD1dWVej+VJgvnYYxxwEEJIPG4NC4CqFntavwlD86HL4AJFPDxiJHW1tuQBuA0bZvc2pG3BwJauLwybTnua0CYT+63lZooVqi90RGum82mAo40Hlr5paRFdTCfz3F6eor5fK7eeUQkvwKnMZFk9aVN6ch+S+7yK2PZnjjR2OBTumh9XwLZkrdPMbzZbDCfz6txlNxi1NVcmUJN+q1mEau9Z1lW5VfWF//VFAcyjm+spHKkdeLz58/R6/UwGAxwdXXl8KG21WacIj7GGJyfn+P8/Lxq41Svcq3gSyMl7ZCiiMBnAJhOp3j27BkmkylWqwKLRVEBqmU9kfUrUB4XXN4hWzb/AnmeIctylBabubCMLX/NFgjyW8haC9oss/9E0r3sM8brBtDxyW48/g644Us/3ie5FSs/WpmXr3HyolnL2vxZ/pyvfZZWs5SuW3dcBl617h6cu/vakOrM4oX922wJQnH8bd33bmr+blj9+GGZFj0a449jx5v6eygM5+3GcZ9lnBT3+q99lhaxnFe9LOX4oPv78gJYi9uiMDg7W+C3v73EauU/+SE2V8qwvrUGj8f3FanUxb72jm4vXef657tA+wZktTXLbavD0P6eiK/NY+XVVK/ii0N7NPI/OTmpXWcynU7x+vXraHopdJvq5DaQNp81wRZ84fh+lqclT/lqIp9037Uu5UfTfM5uwlvTp701xxTfZvINrL5wbehtBk+0DqY931EapUxYkt6WtsLJN+inxuGKLAJg+T+nmFIoVb5YGAJCCDSgY+pokKev98n6lSaiq6srrFaris9gMHDAWEpLy38XC8tQ/NvctlI3wik8tI01L1tfGfnGv5Q2l6KwjKXXJG4KyXbVtFw1gIsDB5KnBJE48LRarXB6elqFHQwG6Pf7FT+e3q6UyocABaA8ktR3d0lqewmFkQrz1LboU/LzsqdfH6DgA/g4+cbZ0JrJN1414a/JJdtUaj10tUnuYv3H27UvjEwrdTzYpT3eNDUZUymcL4y0BvflXxvXU+baoiiwWq1weXmJ2WwW3GySO98ESmtGX55CY0HTcSIUN6ZgbuJGY2cTJU9Mhhil8NfmpLa8OEmwWvJpunZLHeM2m031gSKd4JACJqSmy+PyK0M0hQvF9435qfWjxeHluFqtMJlMsFqtkWU5SoAwR9nVDYoi2/4S+Gm297/SkcAlCEPHA5cWtBwYcsNZENIAlaWscdz4u5XbukNYxEo3slp1/V13OhrZpl/KRbJb/jYeB3StbBzorVvL6vws0EUgrkbu3a/8SGMepl7XVLcyrJ6G7t52aZwazz9WhNyMGsZ9vx4QVotrjB6ndHff634uqMplJjfub5+lWzsgNlSmbn5luNJxvTa4ulpjMlljNvN/BNfVnjs0jqesTXxzzLeRQrrGbzN92+uVaN/5bLvn66qdST6avsmXnm8NJv270Ilp8mlrRcm/aXpaPfByyLL6FXS+66na1tF3pW+lUGw9vgsgqwG6KfuPLvreLjryNvtsLV93YGwH1JWy7rbQty0/N0mkPA1ZP6RSqqLxu1h/sTyT1RVZj9F/23s55WCa8kEGfb11cXGBPM8xGo1wfHys8n/w4AGKosCrV6+wXq/x61//2kkry7KawlgeXUwycjn4MYcpCusuKEWJSX5tgL0uN1xN+ElALBSmDaUq92V6+9iAykUFWTzGQB/JI6a4Xy6X2Gw2zjGVdOSwtNACyj51eHhYva9WKywWiyR5uiReLufn57i8vMTDhw9xcnKCyWTi3PlIYUN3A2ugIvdrCoBIvkTyXlgOvJL17Hg8BgBcXV15lTrc3dcGY+2Sg+epbZiXD79PlQP2/M4OWZ5am7xpBY4sY14u9FGRPOaT50+C6GQdprUzKg9ZPrJMCPy7qbs7U4nmNw5whhSWqXMOB2h3aS8ETp2fn+Pzzz+v6oascKXM9AHWaDSqTst4+PAhjo6OcHZ2hsViUVmhcutDqkdffTX5UMXXl3nZpa5NtTAkb57nuLq6wtOnTyvr2C7mz12J+DRp+3KM10iui+S93Tyctpbj7Zf/a+ODpM1mg4uLC2cdPBwOneOr2xJPlz4upNMt5vN5dTyyr//F6oyPRVJWWaY0D/T7fVxdXWEymaDf72M0GqHfL2VYrZbI8wJZVoKppYVsDmMKALljGQvkW+s4ayFrtiARH15JDBfUxDYNG74sfwIwzdb6lt8nC/av+VlLVu0OWRmmfIYTjp5L+VxLWXJzwwDy/lxyK9/d+JSu2YJiFKfuByc+L0cbPlPc5fpIbzfXNa2H0nH90gBCCaBKfypXn3vdzXV3f6V7HWCVcVy3OtBq4+sgq3X3gbBp98RK4uXiLze9jGQ+uUXsZLLC//k/b7Be19cX2vqyKfHxnsZxzkeOzbH9AOD/oPKO7ui7SqH1oebeFeiTSk31PrG4MaA0JkcMKLuusYWfdiLHxsVigRcvXtTGyG/DuHfdev19peWbr7r4MCB1/xlLq60OS5LvrluNzx0Y2xE1UR6GqMkkEFM2xSgl3j46ZIri5m0FE2PK6hilAlepPN5W0oDOEKUM7hJQ4gPudU3WXFnGN1xcJgKdtI0YyUp+/X6/WpzI/JJylixw5bHH+wIRfTxik2AX41jT8VUDHzQgLGXyjpFMp43iel+bhKbE86K1z5R4nGjRQuACP95W8pXtVnMPzTH7HB85gLZcLjGbzbBcLtVjO/m7TyaZn5DiRWvHsbqI+QOowEy6v9LXjrV8aHmV+fGl6+Ml88hBxqIocO/eveqI5aIo8Pr1ay8Y6ZOVU6wcU3j4+DYh31ylzZW+Oa7t+Bs61va2ES+D1HGbg5i8jWvzAlHbcdcYU1np0Tv/SIwTXyfwMtfyResGrsxNkcXHT6Yb45NCsbZLZZNimRyjLttmaC0QG7sBOPNZSK7QWiQ1TtP6Co0f3C2FUvpbyoepvnzH1j+p81/pngEo74I1prwD0hgCVek+WBfcJMtYzUKWABvAWsgCZKFKgI+1fi15kDzuL8sxULOINYofzxPJX78XluK6fiWvLONlycvZiHdbPq6lq+S1ffPwpaqy/UryqxM//tjPL8jCCduEmg73bng/KOgLL8Pwd7fudL+6m+vu/uogrBvOlj0Po/v7rGilpavmHj6euOyvxomvl2W8zPWy8+W77P9FYbBeG2w2+1vrWRn8a75UvQj9G1O/nuCO2lHKvPy20W1ay3ehB/XpCLQ0fGn74qak6aOu2k7K2mhX0mSUY1KTtb9PH9AVSX2qL0yKX2p57qvcU/cZXaSl0b7HgxSdfZcypOic+HNXaad+2LpXMDZ1wbBrnNtGoQ1gWwXcHfnpptpZUyVtU2UOxZNh3vb+cVuoibKRwnPyASRNFpIE2vAL6ek+BK6IHQ6H3vTIikTKNhwOMRgMcHBwgMlkUil/m8oYoq7a4k2BjFS+PqsUThqY1IR8wFtowcvj3maK1VVsAUxW3W/evHGAP27h6FMaS6DzJsZKko0rmqfTKabTqROOQB8uW0rb9wGJcgzTFP6+NkvtnvykkpziHRwcIM/zClTm45KUlacVmvN2IQ4gccur+XyO1WqFH/zgB/jggw9wfHyM2WyG//yf/zOurq6cu2RvklLm+5C/LG/+Tkd0U7/hltgpG03fXEZz1HA4TJozb2odL+9YTSEuJx0hbIxxyo6HiwFZMTLGYLFYVPd0AmW98dMAiEgW3o/49QUkM520AZTAuQzThGTf5mOE1jb4l+q+Y2g5b58blfdyubx1+8DUcox97KCNz1SuIWtlOS5re4/UtSyF4fds7VPRw9uSvP9dUizvobWTb33F/amP8Q8u1usS1MyyAr1eeS9sr1daxcp7ZEurUQOyiAXcO2OtXJSm/5cAXvolcLVsD9pvGa+0rK1bzpagMFmlWv/ynYOVfktZ68atW33WshYc3cas3Hj+7XHJAAF4xIfXqdkCaLz63HK0FrScnwzLy9lHMdDXEyseIhBE9wuDrtZNz6d9jh9ZTG5UznU3LWz9XfIxFVDqykFhjXH58Hf6gIHc3F/NzQVj6+Vk86aVRazMZH65RawxUEFYPh7vY9+Wckesb9yj9S6t22azWas1wU1SbC1w29YK3xa6LeW6K2jXVXvvojxia7QmacgPFn37nl0/BImlLcP69BkpOo3b0N6IfLJcR3u6DeWQqqu8SdL2UrdJd8r3zzHaKxjbVmF9G+mm5OIbzDab1y7S3id1oay9yXYWKyM5CWmgQmq9yji3faDskrpqJxLQJCVY02PZuuh36/Ua0+kUf/jDH6q4p6enuLy8BGCVnKSAbQv4AsBwOMTh4WEFplA8Xg6Sn69dpigL2xJXeKeWp6Yk91HKQjgUpqlMMfeUsYDL1ibtpuOLlIUW+poieVeSstHRuOQXkp38U8BNLa1dKVYO2pjV5UIx1HZCfTgkm8ZDHu2uffjB0+P1oC2WuyBtY0e8+/0+hsMhTk5OMBgMKrkHg4FaHj5wTZPZV56x+ZrHT5m7Q+OHD4jhCkHqr3ze8PUPOaZz/gT0PXnypAI6l8tlNUf55mX5Lo/Q3Rdp661YePlMR0GHwuxKWZZFwTDKi0yTrlwgOeW6Rt5525ZkW9XaD+9zAGprC194/iyvVtDCXidp6wnpps1RoT6r9dfRoxHGj8dAVp9vFUNEGAIZOFBCbAnPo3BGxDUGZmNQrAvMns9gNvUPduQYHxqnms6xGj85b3B3LQwP5xsvQ/LJMPQBWNn+Sms3Y7LtccQAUKC8W9aCjgTOWDDTSQFU8HTXLPmX5QpgezdtnhO/8tkCqdl2/HYBWjDLVgoLx9q1DGeMBXmtTKjxgLCURdAS1hfG55bqnuqvhUsJH6L9zEH+6cF4/aWbiQCK9jkOwHJ34luPE7aCpXcfH2Okf9zP/vr8XSCUfim8JF4muns9XCjPvA7KPUY5Prx4Mcd0unas4K3c/jbVZH/M593YeOfKXedLazZaE1yHTq9rStmrStpXHrV17m0pz67XSze1/mpKTco/tL5s086apJfKN6ajSuGr7cl3rU/Ob5c9URvdGPc3xjin/E2n02ovRde68Dht+2eKriulTH18uu5fXevm2vBM0WOE2rAMH9vHppZrqG11OX778ptShnfHFF8ztVWMN/VPGeBTZGkyUTQlrUO8LQsAPjE0Haw0JUjb9PdJXaTRxWK1y0mGf41FFlV8Yg9tqtqAL6Gwq9UKl5eX+Pzzzyv32WyG+XxevdNkRHdO+mSLWQMNh0MMh0NMJpOKPwdL5FGfKcrc1HzG4sYmxhQFYIosWp7kIpWnpS0spEKvSdvsYuxMTS/W71LGdU0pGuPZNo+UFl9My3bpW+hwwEmzfOyi3LsYf1LGljYgEO/HMr0YcUBEAgzyQxBS6oT6o/TjVlDUf7rqB/xXgrGj0QgPHjzAfD6v5B4MBiiKojbe3wSlAB1UVrLMtbZC71RndDQ9gakhi2DfWob6Vq/Xw4cffoh+v1/dd3p1dZV85F2WZdVcu1qtHLCzq3ldyh0DazjJfkYfhMTmmxSlqpSNiNcHyavNPVo+5vN5dS82ufE0QmNgk7mK9y0f8b4FuKd0hJQQ1Eapzd4m0uSWY2zKfsqXdyrb8btjPPrpI2T5FnzNgIzAJQXLckBWDiCY8t3AAIV1M8W2XRWl+2a1wXq6xvx0DrNx2wMHAPh/KH8a+ZSd3HJazunymg5fmXE5uZ9vTeabnygczQMExhaFQa+Xb48YzlDeC1vA3g9bgrDG8N864FOm45aBtGwlQJWDtiRullk3fr9sybcEb8mt/K3fFUthKV1ADwNmzcpKvApb+mUizxnLuxuO8i75sZJhYXj61t9913jYMnbTkX7h+N0QnzsCoTx+hoF+vrD2PWRFWwcXJX/X3xfehtXCcX8KL59jfrp7/JhibkWr5V8vF38eZT60fBMAvNkYLBYbfPXVFPO5u+5JXQuE5t6YElf+1vMRTl+OuTe17gXS5kkKtwsQ0JRCc/sdXQ9dpy5FS+829Q1t/RUqnza6M5lWaHyJjTepdRdam8VkAur6yYuLi9ayhCikq5G6MRkvVI/7on2lk1oOPp2GJpf2QX/X+8BdyqPt/sdHKXHvwNhbQF0p2K9Dli5l8Cmgr2vwug6io2KJ5H1YQJnnJgORb8K8qYUEKVs1mUihe1tIHu1ByiEuM1cWt1l0aMogzY0moNlsVh3JSgp0In58cdO6Jf6LxQIHBwc4PDzEcrmsLGsAVEcZpo4/Uo6mi8PUsFJJSM/a4jklrdBCMrYw9CnTY0rnromDACltkCilzniYGGgTIl99pJaPVBqkyk50mzbSqRugkL82DoUADiJfG/GVDwdNZTtYLBZYrVZYr9eONR6PJ++21OpkX/2EAFbqj1dXV7i4uMByuURRFBgMBsjzvAKwrnt90bQuOPENqWwLfCyQ4TabTWUdTPcWS5BOs5QgkIzmbDpR4cmTJxiNRlXYr776qgobygfJstlsqvQ1AKgr8q2jfDL6+pVv/PStC3wbtzZ1H+rrvOyknwSRCQAH4Bwv3rS8fZvpoihwcHCA8XiMe/fuIc9zPH361DndwLduMaZ+DPRNkVaX0k1bP2jlcvTREQ4/OCxPuAVKoLViXIKtBKqOHo3QP+w7fjXZFCtXRx5T/jvtkrsZVKBsPsjRG/Tw6KePSjDWWJ4UhuIWqwLFqsDyxRKb1aZmLe4j3j43mw2Oj4/x4MGDqr28efMGi8Wiuofc1zbajJeyPWl1GKrHEnwBVqsCRUHp5zCmQJYBJbhJv2b7nzv3vhL7LKsDrNo7pV8CrCVIqr2Xd9eW6ZZArXWje20tiJpt+RtwsNUNw+cPkl8eWUxlQGXmvpd868AsD0tp22fOR/Kycd13XldOlVYyaMSr3wfa7kopw5fZgnuxuO67iYRJP5aYy6DF4eFluLQwaSAsULZd1z0OwvJnXzlp5ZBaZjJvPP2iKI8l/sMfZphMVlit6kpk+o3tMfm4pq19mszLsbGQ75341QspcfdJTcb7Xfne0beT3va69s9X4WPOYx9UdFkuTXmlXA2zj323pl+OydJWT/5twiV2oS7Gaq3tdrEv7YJ8e+xQv+2C7sDYhhQq+K4bh7aA6zKNJgrzVNCjCd0UeNglaUo4nqd+v4/Dw0PHT04epKgIKXl8fikK+K7I115IKauF1fJLcZrUPeXNJ0MKL1k3HOjk8kt5Y0BIiDSFOedTFAXm83l1x5uUxXePY0q6xH+5XOLw8BDj8Rj9fr9S0PI6ShkLZFnvsqiJ1VtIIbdLm9fSC+UjBv5dNzXJb2zeaFOOPpCN/EKARhOZtTih99BC6W1YRIfan2/T5cu/1ke0Zz5+S38ebrlcVnJIfxqfyI/7twUgYyTzQx+ykPtiscB0Oq0+fKJ7LAmQlHdzNlkHSWo7H4TKwbcJ4HG1uuNj/mazQb/fx71797BerysLYZ4G/fJjqCXPwWCA8XiM+/fv4/DwEFmW4eLiAuv1Gv1+v/ooJTSO83ufaf7Z17qPl61cP7fhFXpPje+b61LGzZC/zCdZsNM/Xzt08UEcH4uo3fT7fRwcHODhw4fI8xzPnj1zQGFt3cbXQ12PzXK/pOWhCY+aHwzIirXiyQDX8btj3P+T+8h627zl2zQZ8OYK5DBXZan5G1iQVgAKDghrbBhjDDAAzNigf9QHAbAVEEv/m/J3s9hgM9+gOC8As20/XFaB02lzUlEUGI1GePToUbXHuby8rKztnWJQ9lE+Cq1lUtaMHq5V2PXaAMiR5yXgCqA6VnizsZaxeZ45x5VmW6C2BEutJSwlTSBqGdbGz7YAJR1TDISOLSZZDQhYLS1jKU0tnM0fxbPlAnDAth429O5z4+5N/aS/L0wovBu3rJcIix2o5B2az2PuRnHT3tscS+zGs79GCdv0uGK/1azmx8OUoGwaEKtZxGrlrZWzVga+/PF6pPQ3G4PVqsDLl3NcXrpHYBL55jlXDt2/i/2rTyYOxtL6+Cb0balpxtbhu8reZA/6tusl78il1Lrfd73vAjhJvZncz8VkD62HY3Jp6/eQrPvuyzy+1J3LU4c0aqNTlfFCMr1NFNKdNQnfpA019Y/pArmbxqfpvBkLE+Obkp5M5w6MveV0nYrkpgr5rgafb9vihyu+UvLVZJF828CFXq9XWXdqRApYol02BF3nnTYqPrAihbS+IPOogWJaGCqnrjYd3EKFHxPH01ksFt468fVzfrygb5L08ZOTnVTw+uIQ+SZauahMWUjwhdu+7zK8zdR2PN913E5NV4ZL3UCkhrkp0hTYGnHFSkzZ0yRdLW1ep5SudqwvH1fomVvXSp77JH70cK/Xw/n5eQXCGmOPnSVQ9qZIAhXcTY5xvrYR6gs0ngGlJeTh4SHee+89zOdzXF5eVkfKcnCUeFFcbr1KAMpqtcLr16+xXC5xcnJSxae7eZfLZRTse/fdd/Hhhx/iD3/4A87Ozqr0uh5zU/sUD8spNn/xetPS4P3BNyc1GTe1dHzx5bpTytK2vOX8Ktc6si3LZ8mLfrs+MeU65u+8n+Odf/UOBicD5L2tMixHadWaAcP7Q/QPS6tP5+hhWRwhfIq5GXtGseOWmcy+G1OmQc+GtTdjw1S/BdwjjQs75pDFbD7I0T/oo/dPejBrg816U/nT3bPz53Msz5fBcuftQ7oD/n6UopjR5hkOQAD2zmvuJ9N3+ZSVVoKuxZYXnf5A85y1kCXQttfLYQzQ65UAKt07S1kjQJD0p/ydhyEid2Nc/zIfFujlJI8r5tawNk4J0FJ8fpQxWcby44jLdE2VPvHiebBglAW5bFxe1uTPAVJumSvrl975eFMvK2PcgnDLpX6073WQm2Zdfn/YMrx04+9Ubrq7G9/1d+MQn9C77ib5mFpYGU6G8VvIhqxhtb1fzclbFlp5aHko+3xpEfv06Qzn50tcXa0brS04tRnf2oIFPD0+1tFpWG/THve2yHqb95B3dLupbdtJse5sAgzKEwE1nWQsvdD4dxN9hPan/MO+VDl8OshdqQmA2eX4dpO4QJN0uyzn1DIN6c1u09jeGoy9baDQHXVHKYNu1wul29iWmrZxn8JcU4hJhbh81xbUWljJX8q/C6WAJKSgJEscPjFyixuuvO96EtolrgYo7kMWrW5knXepnJb8+RGFPtAkJK/mH5rkmvCVR6Sm9gVOsb7a1u+mqMsFYiwd/rtrf0oN5xurfHWhjZGpcXehJuXSZHNEblaRqStf+PgZkyG24JR9S6sHbdOl3e8h+Wr+IRl3qSttPCAZ+XHEL1++BAAv+Jjax3ztrqm8Pt4x4CplLObP9E5Wi/xjqBBAKOdq8t9sNpjNZuj1ejg4OHDAtxDAzd1PTk7w0Ucf4fLyEufn552vI33gqeaXqlhIKX/u5+sn2jutm9qO83JelHMn1Y0mh0xPy6cWRysHWvv58iLHG+23C2pSjqljad7PkfUz5/jgfJTj8INDjB6NSjA2Q3Xna5ZZ0LUqqzbDnFGeU36N+55trSort6IEhk1m7K/JYHJT+pnSDabMkzHl0cYwQLEpKstZOsJ4fbnGegtSVO3DwIK8sOOHLHPZnprWH+fj89famTbfSjcKXgIyZWH2eqUj/ZK1Hh0FTICmPd7YWqmW/ErrU4pHlq5kCUth6OjhUubSj9wJbCVLWHs8stnyp3xSPDg8SC7rTsCr7ld/t26ljFDDZZmsFzkOcoCsDqS69QVoYKtb7aZyB+DlLXm0IX8T1dZ3qTzC4Kt9NzV/Xgc8jvtslDhpVrD0rsWR/ry/2Tjuu+yTroVs/W5Yme9QGdXd4tawmnzGAOt1aRF7ebnC2Zn94KStst/K4B/j+LpUumthQ+mmzPEhCq3pJS/fuK6N+U1k0OTQ5AlRU/0dpelbu+2yZtmX7vQmKaZ32YVvilsK7VO/F1rjN+Gj8dB4h9pQavsK7Ydi4VLkDul3mvLUyJ1nwjrNFB2nrw2nlknbfUfqvHBTtI8xdl8yAP76alq2TefWrqg1GHsbFdg3SV2Xh09JtO9Ou0/F9ttGbRZykkajEe7fv1+9n5ycoCgKTKfTSnm3WCwwn8+rMPJuAK7k62Iy49RkMZVlGUajURWelLQk009+8hN8+umnFd+LiwtMJhP8+te/xmqlH/GzT3l3iUMU63N2U6l/eaa9c3fOw5d+2wmJyzSfzzGZTLBYLCpwolTs5NWvjCPllOloY4WvrEObzOFwWKW/2WwqMCXEg6cvZUkdI9tM1BTvOsZHLS83MS6nysAXxykAQKiutLbFj8T1xUlpizdJIaU096Oy5Eep+5Qb5N+WQn2HNjq+utXkbFKnu5AP/Lm6usJsNsP5+TkA12JQ2+Be10bItyGVftTONctBOWbxeFQ33CqMW63yOqR4ZA1rjFFBtc1mg+VyiVevXmE6nWI2m+Hs7KziL++SlO2Znn/wgx/gL//yL3FwcICDgwO8evUK8/m8Wj90Pa+n8NKAmZT4vI7k+MTLI1U5EZNVGxOyLMPh4SF6vR4uLy+rr8TzPMdwOMT777+PTz75BKPRCP1+H//9v/93PH/+HOPx2Jnr6QjyUPkQSavgXq9X3UdMR8/S3XTU5qg9adct7GoZ6+vLVKZ0VzT1Cb4GTen3J5+c4NE/f4Qszyzg2sswvDdE3i+B2AqEBepAbE3g7W8oWQPHGpYsXstXU3czriWstIolQDZDVlnEZqaMbwj0oOOKaWwxcI8wNgbZZhtnY2CGJSjb+7SHox8cVUcbF6sC66s1pr+fAkXZH+bzOV69euXsGfh9sU37fMp63Bj34xxKVyo55bjj9tsMxmRYr6md2jmu18u2vEtAsnwvw+d5hl6vfAa4ZXoJepby8/WPBRfp6GJeJGQha8PY33rebdgso35KebL/cCxl4fiTpSy58bA2fb91rI2HKn+AtJot+dpygcNr+8be+TqHh3H51ZuFK48sq64ozMtvmSvd7buJ+nM/99nU3KkM3XdfWJs2j6f7u2Gln8bDuvvduMyxMtPd04BpKVtRWIvYZ89mePFigcXCzl+Abecha38iH6jC993kJ6+KkHx8634fabLI/XMTSt2vaWv81DQ1GWnO1vaBbfLRhG5KB/s20XXtr/dZ5k3W4PskX/+Xa2eSh6zdKQz/+FLbo/tIroF8YXepa20/m7pH81Gv19vraVe+q/ekW2yveF26wi7T24fcb8PYGcr3rrLHyvTumOKG1GQA8Q1sPnBDhtEGYG0TG1LupcibkrZGTQZ8nyy+PL5t5Ms7HaE4GAyqyZIUQzQ58WMgiUKLzdiAoSkdfNS0rPmkTwpAosPDQzx+/LjyI/6Hh4eq4lVagqYMdm3aRmyybNNum6Qbavc87ZTJyqfUjdFms8F8Psd6vU6yyJFycUWnFjZWRlp+OYCgfdnGN6pSlhBfHx/fmBnaSMqFqq64666P+fi3odRNe8p81DSNNgoDwN8HuEI/dkdlqN+1pV15NVUexMrVVX7q7VoDK2IKFV8+Uzar+yj3FJL5IsU7za/SQlAbQ0LrtJS+3bS9a2nG+jyNv76y5uMz5X82mzlAhEwjy7LqqgG5DiEZN5sNrq6uKqBxNpvV1rgx2Q8ODvD48WM8fPgQ9+7dw5s3b3Ze66W01ZBiQZajT5naVKbQejxV1pDilN4Hg4EDbFG8PM+r8j46OsJ4PMbPf/5zBxjN8xzrtT160XcsWmgvw8fi2Wym3h/sq+OuxohQXfd6vVpeVVnyDIPjAbKeOyaMHo8wfmdc3f9aAbJ0R2zG0mdso3lTwSFjeRLYmrl+mSnTh4G1YN0egVzlzcBiGNuw1VHFOQNlyTrWmMoKlkBazeqWwiJDaUWbZ8h6GXpFD8W6tJotlgWyPCuPaV5nKDYFMABWWAFrlKCtMbV1v7csZLF5+kPqGKyNv/44vN2Xd0cCxfYuV2u9R3e+2nHEWvuVfZgfG1y6GwMYDpozINFsASJ+Z6xtDO6vXbdyPyjhyQ2KOwLhAAuW+sJzNypXv1uW2TzaZ218cAE1W8cynOVX57GVwtT5d0/h45B9flJ2GU6WJfd3n33+2pHFaVaxPEzYP80SlrvVn13w1l9WMfd0C2HbF4HNpsBstkFRlHdGT6drTKd2PSQBQD52xNaH2jo8tEZI3SNocYl/Svimc3Boj629c1marK34WmY8HgOwuiaax7nuoIkeI0Scpy9OKI93dPOUooeSbT9lv7ArdaVjpLafcr1ak3x1kW+tr7Ud03w6Ps5HA6l3TcvnF1qTxo6UblO2oTkiRd4UatMmfLrR1DmnKYXmjSb7bC3+dVMs7VZg7K5KlDtqR7GFRxva1+TTlm5bu2ra1mV5vnnzBpeXl3j//ffx4MEDAOUkMhqNKpCpy7uz9l1+ElSO0Xg8xk9/+lO8fv0aP/vZz6q8jkYjDIdDrFarJD5dkRzMQxa7TSaalKN/Q+lQGtxqhRZdbYkvEq6urjCdTqu0hsOhky9S2JNiXgKgAKKLP5knLX+SRwhYI0BB1lGWlVYv2oJNsyKnPszLgwN7Mr9N6G2eC5u0VQ1s8cWXVimp6cb622g0Qp7nuLq6qm3IQ3xvG4Xk9YFavn6itT/NjY8vfFzRFBAhuUObKy67Jv8++glPS/4Oh8Mq7RhYuI+1lY80JRYfn2Q++DHLst3Tl8EElK7X62p8nEwm+Pzzz7FcLqujimU95HmOwWCA9XrtgHPEnxRgz58/d9yJX2j+5pvnwWCAo6MjPHnyBB999BE+//xzXF5e4vDwEACcr7yvm5rM86GwVB9y3pZtj+qg3+/XFLsp6VNdHx4eYjwe4/T0tLKKzfO8Op76/v37+Oijj/D48WP8t//236q6I7B2uVxWa4KYQoHkBvQvxieTiSNjaJ6QZbiPfkdrnH6/j36/X30MyNMl6o/7+OD//gDDB6XFKwGv+SBHPswr8JWDsA4f2RRShjkJKikWsJWfEeVkbHgO1Fbx6B/uc1Zsw+SojieuLGfpd3vMrmMZC2PvlS3qz1m/BHiLQYHeuIfB8aC6V7ZYFSiW2/tlL5dVW9t1zyP7lOxH1AZDa1eNR30uLf9XK7MFZDPHMhYojyY2hixl/ZaxQF6Bh8YQ4EgWoK6lrLwzllvI0j/50a/991m++ixl5XMJ2Fo3aS2r/fJ8cpDUxuXheRw4wCwPx9f3cgyx9cNcPX7p4wuXr+2wFEpX4ynDyzD83W3HMowb3/7W49TB1TI+f+dh4v7++1d5WPdY4rq/L99xvybHNLvAb1EAFxcr/PKX59u7os3WStb2SzqFgk4D4R+u+eYvcufzJVlzrVYrh0d4DKrPn23nTG2c3IW6nLtpbUNzw3A4xI9//GP0+32cn5/j8vISz58/r8KQLor272/rPvxtp9uiA0mVoUvAqi359udaunIvwfdpqZRi5elz37Vuu76aLkahtLpup6PRCIPBoOJNH8dyWiwWuLq6CvKRY3pMR8bD3VTf22e6TerwNur92szRrcDY2zDw7ptuA8Lua3Rva/k3WVRKhY4vz9pA32X5dLFYJUWntoBPVYSH+PtoX+3Ex7fX61VKWlIW0sKajq/jRFa2tAi/bpJK0JCinsdpk07KBNLlpksDQ/hRSL7NS1swWfKI8dZAWRmXg6Tj8RjD4bCqs+VyWQOMQ+NASIluFWGukk7yjaWhxQ2Vx02Tlhetrae0iSZ9pIt2zWXz8Qv5XRfJ9EMAhK/9aW6hfGnrhNg8q8mZujFLBbG6roeUsTvVPxQmpd93BSxp442vHcu6k/4E2vGxVcpOG0h+p7gmj29uCuWX+BFASYArXyPsuv6J0T7XzFr/Cs0zPGyKPHKOlGXFTymRYUlh3Ov1MB6Pq/mTlMmcV0wWbVyIrZU05YKcD0Pl14ZCwJuk0cMR+kd9IAN6ox5GD0aldWx/K1e+5ZeJX8BiRAKIaiYsCQh7LHGJgVXWro4fYO+uzUR5bcORP90F6xhIGjiWsdJqtvrf8q6sZrf8SdZKzsI+51kOkxnkyMs0sgymKI82zvplWfaPyzGG5ComBcymXk+yvkJjvGxTobGIW+PG1v3uWrDMZDk+lhZ0FnAF8pxAJqqPOsCZZTRWW4CzKAi8pXTKCiGxjCndSv71O2Nt5TolAluxZXxK07qzhgeI95Aff08Nw92pXOt+0j3LLFDmvsf6WR3UdUnWs8IhMH3X/UJzXzoP6VZ/N1E/7m7bUD2eDE/l7L5TH9GeNR6adWvdnadfvxfWn39JWhvS8u/LL5dlszG4uFjh4mKF5bJAUaQBlU3Xs3ytxt+lnCnrWG09GNunapS6vk+Jx+PG9iextRGng4MDDAYDzOdz5yovLc22cod4xfZYWvym6b7t1OXaOrR28/WR2LuWRso+fN/Uptxov8bXMqm6vJA+ylfuTfpEKG0tHzFKGcfa1FVbXYDcN9PHr/JaQcDVd8srMnxr1VCd7JKXLinUpprGvS5qWkZt5i25L26j8707pviOOqOuFa6ktAP85+b77pe8bbRYLDCdTqt3OkKNlGm70D4Vjk1oNBrh5OSkeufPcnCiSYysl+g4xX1TaLEnN0j8qOUYryYKTY2kdZFPqZlCsc0OKcblBpHL4VN8pba12IKXE19MGmPQ7/exXq8da6l3330X77zzDowprZl/85vfVP68HfmstJos/posYr8N5MuX1vZ8gA6nmJWVr11obUYqW7X69d23dNN1lapYAerKaB9IlQqi8HbM2zXFkXfRSnk4nzaLWeKTYnHXlLcmj1S2A2knN9wEaYo0IumeZdYSUlPk0cdMi8Wiso4koo9ZQnWaZZlzSodGZG1JG1BuGRIrYwIDN5sNXr9+jcViURs79tVPUxVpEhwMzVc+ebV604ifeJGab5889PGb7L/r9Rrz+RwXFxcoigKj0Qj379/Ho0eP8OrVKyyXSxwdHVVxZFq+OT50lDEH2MlN26DydGjtq13TkUKheSvLMseCQK4tH/70IR785EF5BHGelXfA5lCtYKs0MsvfTbCN8Dy6GHeN/c3ALF6FX+3X4+fcG2sAswUQuVVsZWUrf7f3zDrWsAalxax4Nr0yXJEXpeybDL1BD71RD4PDAQ42B5Wl7Oa3G2xmbp2kKN5kPw21AR6Hn1zDPzwJ9VXOe7MxFYBU3utqLWTJMpYsYo3Jkecl6ENdhlvGlu8WGKJn7ZfCSrdSDgn48v8SfKXnuKWs/65Y7m/lsxa9Mo59t2FtGVg/6c7LhdejfTcsrltXkqek0l+O+2rQRuTnUQcJY/Hq85L27PLl7nU3vq7kfmnHFNO7MfI97Md58DDy11cOGtXDhUHsUL4p/aIA5vMNfvnLN1guiyqstrfhV/vEwAyNyvGiV3MjSlkny3net0cPhdknyfVpaC+dQnme4/j4GMPhEIvFQgVjr5u+7cDqbSG5l0sJn9q2Yvvm20x5nmM8Hld5oLV+V7SP/O+yx2uj0/GNzV2OhYPBAKPRSPXbbDY4OztzLPzpuHWgPAWqDeB3G6lJe0kFbN+2MiDaVe47MLYFpShjQmFTiCts9tU4Q0CP7BTagLbrwB1TPGvHuPRDDOXFAAEAAElEQVT7fdUa4LYQbfy1hagkrhiQ7rvmbZd2F1us0CQjZeRHymaZPdoHKIFa38TaZT022SilgCWaW8rGK6X8U/MdUhalktzs+QCd0MIlpqQO+YfqYLPZRIHv4XCIw8PD6l6673//+5hOp3j27JnT5+T45BvH6GMATS6Zl9TFXEq7SAmXklZTatrXUto5kaYE8KUr+4a2WQ+Vt1SsynkyFYDRSBufeBvisoeOvpX5j/WbpvKljluhsZzLHlPsxNKQSnLO3/ceo5iSnYejvszrZJcNWEr5NeGj8aX3JuuqlHL2pe9bnxpTfpgjrSV99ec7cirUzoqiwHz+Cm/e/ALGvMLBwQV+9KMDPHnyeKtYAJbLsZJm9eS8c2UvvWvKVqC0ZKMw0+kap6f6x3vUjiiPWp5SxhZeR7JuCSwfjUbVWomXeWpbIzknk0m1sSdQntI5Pz/H73//ezx69AgHBwfVsX5ZVlr50ckSTT6W8I3tPN+yXFIUX03mGh8PTabNZoN8lGP8gzGGGGK4GpZ3neYZDt49QG/UK++JzWDvg83cX4cnz0oGa6nK3HQhFaftna+O3PROIFeJpzn3wlZuFD5DaRVrWPzQr3xW3DKztWxFVlnZVnfUsvnC5FtAdlt+ZmNgclNayprtb2Eqy9nq7t0sw+idEYpFCdoWywLL8/LDujbjthZHzk+xtWlo/CplzpHnZDkHrNelhSwdVewCiiQPqt+ShwVEbXL1o4NdkJLiuVayZT8u+RHwa9PQLWLLMK47xXOfATvmunfdlvVf8nHD2ziUL597GU+6yzhaXF+YUPgYpbSzUNuJxPT4a+1ROtGcJv34vKi5a0Annx9DYeWcqvnLZ23urcfnbnp+NaqHqeetnldtveDKtNkYnJ4uMJ2usV7XgV25DuKni+xy7GYXc52mX0hZq3ahZ9HW1yF9p2+9IIn2dcTvvffew8nJCQaDAYqiwHQ6rX3IR/z1vpS2LtboNuoV7yhMTfdpN1nHKe2Py8cNkXq9nqNXXSwWjp6c69J4er5xp0k5aDoxmc4u/FPjNtHbtt3Da2nzcV876RFA7dh0jlc01antk7rWuXdFqXUldY6ptMu8neLG/ZqmdQfGdkS7KP98/EhBJBc734bFAs9Dv9+vKYWKoqjueOJ0cHDQiTXpPonfLcJJmxj4wO2bLENKsBRq0mZCbS3L3OOE5aTPv9LK8xyPHz+uLBbpbrh9Uwx8SAnbhlI3J0Azi61UhXAsPgexQjI0Kb9YnFQ+8qMLuoOB02g0wvHxcXVv6JMnT3B+fo5Xr16VStctGCPTCoE6ZOWVqqjbFZy5TdT1Ijm2OJJ+1E/aKDYk8JDSn5qOnxKY4soCSjclTb6x2hXY84F7WlhNDnrmxOce36Ztl7lHSzOFfONeyN0HJLaVKWXd1WZM8IF1UjYNfJXhZd3I8iA3H8BYAqXzGjCntYE27cCY0lLz8vILPH9+hSzLcHIC/F//1wkAfnKGTMu6W0Wu+0vASJk/q2S1vyVoUhQG67XBH/5w5QVjY3mK9WEq51C4oigwHA5x//59zOdznJ2dOQrI1DZJ49/r168rd74m3mw2ePnyJV68eIGDgwNkWWk5TR/E8bW19kFSSJaQn5wrYxQCUlPJ1/+MKU/Q6A17OP5nx+gf9NEb9ipL2Ap81UBYoMRoCHAVIKx9VEDamiDW3zly2Ai+23BkBZtlmRuX59O48aT1bGUBS24Uhtoms4Tld8+SpSyA6n7ZrHDvlK0sZI31qyxk8+18t7WQNb2txezGoNgUJcC7vYv36HtHpfuqBGKXF0s0xtEQBig48fEvNL/53kv+ve1atSzUXi/f9idq8xmAHECxBWnzrTVtDrKMpSGWb3erJhf4lc/234KteW4tV8lPA4D58cV27pfPNlwZx/XX3ykOHHcgY89ueAJny7wZ9mxldd/5HMTriJenNh7UnMjHefPxbELh/YTPzahh3PA+61cb3/XX3Pj6wr7LeNr8y991P/9dsDJsiOphjMe9vm6Q7pp85XqgwBdfTDGZrGo8tf07Bzl8a2l/fpoDhqGwvv1VKhiy6x52F0AhtH7ie8NPP/0U77zzDgBgOp3izZs3uLq6qp2A0+Vpal3rcO/oeuht1stosmt7Ldqb9ft93L9/vzqJ5urqCovFogrvM+7RTpbcReYuaFfd5nWSHGtSLPX7/T4ODg4A3NyY4ps3usSRQnvFfdF1l2dTMJaoSRnfgbEtyacQ60r5qqXjc0tJ07dQa9opmypZfIvEFOWVRqvVqhoUucKxiXz7JB/4RccIynBACUbJxajGt43SF2hfJtqkvl6vq3zIhfB0OsWrV68A2KNj6SiH8/PzqBy7yptKsr2E2mjsPSardhyhTF+TIVXxHevvscl4l/EqVj4pmzG5GJXjAtFqtcJ8PsdoNKoWolwBLfPgG5MBXQGdmqcQva0bghh1Nb7K8c2njPf1x9hHKylKEp62BEG4G4Ee9FFN03zzdp3af1PTiIElIV7S39dnNbl4urG2rim0umg7PnefwmsX3inhQnG1sde3+Qbco6NlW+T543MKv4+GePC1R6y+aJPJPwqT8TSZ+funn97Du++Ot8d31us+y4B33z3AaNSDr7g0ZTC50fGg/Jcrd/l7r1cCs72e2b6XFmT9vsGTJ2P8s3/2sBZ/symVs8+eLbBc1j+y8LUrOcfwZzmvGmMB8dFo5HxZrd1nyeuP1wmvb27Jy9sLjVvGGHzxxRe4vLzEq1evcHV1BcB+LMjrSBLv6/IkglC5+E7g0MLHZGhDWZ7h/o/vY3BS3v86OBpgcDxA3s+RD7bAd56pd8JWcpAoGepg7NY9XSD+mFnMhdwNStA0K5+d9GTxht6V58wIkJa/GxaHvVeg6zbvlWWs2f7mBihQPZMVLQxgsm27pyOMC5SAbV6CsKYwKHILytLv8N4QR987QrEpUGwKrC/XWE/WavuKzfGx+VTueX17YN98UrbvcowBCqxWQFGUxw8bUwKxxuTo9YAsoxM7yBq1tKYt+dt/e5Sx/9d9LnnyO2fd/FvwqrSadcFXC7Bad3m/rDEAt34tw/Cw/J3GCx7HhqPx3FaNLQOIo4d5+mV+DAvLeQASqOV1Z8ujVoVBartECcVz/YzHvR6Ov9efjdfdnUvl3OS62XnWD7hSePlcf/dbymr59efdloHPr152Ut66DLRWePFijsvL8o5YORbQr9yDSCBWUmhNTnM/P1Es9jFnaOzb5cQ8vnZI0TGk6GxCukXpprlzP1o/8GM+OdhEsu+yXmi6N9Lah4wT4ntH7SmlnlP0Tm3SS9URaRSSQVuDpPSzlPcU/dUu5dMmrk/PI+k26M9C4yCvp48//hg/+tGPauGGw2HF4+zsDD//+c9r+5x+v+9cwUj8217XEqLbUKZtqAu5ux6Pm44zoTlcI6dF+CbK20xNZO4yfym8tEVd00E31U/y7wJE6GLg1WSiMtGOFZRySXdpRcePvw1NaqkTQlvS+HOwaLFYVPfb+vLKy8dXj7tOrm0WGDzOZrOpFslyQ3F1dYWzszMA5YL54OCgOit/MpnsJLeM07T+QhuApvGajDf8V4sr27h81/LrKwOpuI2FzzLX0lkbr2J50/Ll28SklKVvU0tg7L1796oNm2bJ5VOsae+pcrXZEGi0781aaE5KTTsGnDVt+3LMT+Xp6680Z2h9KpTH1Lma94Fer+cswtusH1IVFSky8vhN0o2VlU8JIcPF8u8be7Isqx0jvCvJsSo0hvriS7nbhElJQxvTSXbfOEr+sflebvT4f+p6iK+p5KbTlUnP5w9/eIw/+ZMH6Pez6j7FrAIQ6nEta5/iuFTGl3Jga2VmKgs0HYw1MCar/MiNrMWKwmAwyPHgwbC6/5F+V6sC8/kGp6crrFZFJT/kXZ7wKxllWWmnNFD7HwwG1djiU/pKfsRDqxuaw7mSkn6fPn2Kr776qgo/HA6rtLsiva3UldySQke9p5A2bmW9DCd/dIKD9w/QP+jb+2AzlBaxWeYAsQ7gmgk5snpargAJQsqsZ6I8MpSWqsSPeRl+9K01r/XzNx436W6EnwzD/zPxXti65cAthc2MPa7YAWW34OvWcBRFVtgjjnsZ8mGOYl2gWBWYFTNsphsHSK6yk7Bm95FvnRAb5+v7MbrHGygBVm7pus0g6Gjj8qh0+lClCsW+WaDkbd+htKx7npfjn3b3K7m7/q5bmQ63nq2DsvyZj900TpflYOXbSlCF4W4Urvzlbry/Sh5Q+LthLD+bpuvmxrFlq/nvTvWmKNtWSry6xSh/L59NkrvrL/20sHVgVcaR/roffaDA3f2WsOEuXM+rL56Ul565O18nFIXBy5dzvH69rMLH1kpA/cPz2JpR6qRCc7wWR/qnjnupe2z6jc3RbdLj+fWloa2hyvVauYa5uLio9GXy9CPaT+wyF2gUWot0ndZ3kZrsn9vqZ7tsx13riDlpcqbo7LSwof27b4/soyZ5jo1bTdPpsrzbtANtv+3bw7///vv4i7/4i1r8o6OjSi/529/+Fn//93+vnvxHJ0YSFUWxFzA2RG3q+qbSD9FtGpdDssTkdMDYfQ4++6ImMndZ+W0nlRRFYReUImOK0q4LOSgtSfLYR251eXBwgE8//bT2pT0/g321WuH3v/89lstlxU87wrjJsbD7otjdXG3L/zoHImPqX+/0+/3ko0I5yWOcb3JATVXM+2RMAXochWHDcahJ/9TCpQAoXZBvrAspr2PxiSaTSQXoHBwcVEcYhXj4gJrY4lHWkdxY3xSRXFQOIcV9l2mG8qz5N12UpyjkjTGVhSrf3O8ytmv1Keud7iPl86QE0rQ2LkExXxpN5W0bV8oRK+vUzZIEfzgPcqdyBOpKrbYk07uOvtCWfOWptQteVpJCii1eD3y84tauEiiUQJ9MS9KjR2P863/9Dvr9HL2etYJ9770DHB72mWUsEEaqSElrleU2XxaIhQPKWiCB7kg0hixOqW9aEJbcKA4dX1wU1np2sym2VrQZ+v0cf/qn97Bama27qSxm1+sCr14tcHGxqmQNtS/fkdBZVn6AeHFxgfl83nhekeOJ1vfkOJllmXNnES/rEPE8yjYXGkuaKGi6nksf/fNHOPr4CIcfHKJ/2Efez4NHEteOJUb93fHT2rR0klnSopCFaoQqkFbhb+yDE9YBMA2c44m144qNMZV77bhig+q/so7NGRBbMGtZgxJ8NaYEu4vMvheogNkqPv32tnx6GfJNjmJQ4OC9AwxOBihWBYp1gdnzGQpmsS6V/SHgI7T/9rVR7i7nfqJ+v8/6WlGNMYOBgTH5dvzB1no1345DJTjb63GQiI/d9t0YAi65e+mW59zPvvv+AftBC8Wx/6V7/dnG1X5pjNeAY+JBxaW7leM35duWPQfWOIBtFP86L9edK7dr3p2TnkZzYFHzt8+6xayryOe/fktZ7b0eJw2M5e50goUvn3WK15OvrOplUQeISbbnz2c4PV1iMgkrvUNrNb7+1/z5uxaG71ma6i5T90n815cXPn42nYd96w6fzPzfF5/LZYzB69eva/yLoqjWMrdBpwfstif7rtF1lNN16de7Jnf81p/pfblcVvvo1ap+zPq+5ZPuXek3boJS9LG++2EB4PHjx7h//z6A8sShjz/+uDoN8vHjx/iHf/iHms7866+/xsXFRZU+Xcsmr5F7G9sx8HbV/22i1scUf9snoS6UCTFgIJXagkApct0UyQWZMSXQR3mleyEluDoajarBaz6f44svvnAUvP1+P7pITCW+OGwSB9CVAJLatInYglYL24RvyF1OvFxxTOAQTTx5nmO1WlX+ckIKASmp4N0uJOtV1nVque7aPrTFViy9NhTblF0XhQAsGYb7L5dLTKdTDIdDbDYbPHjwILncQ+n45ElZpIVkj7n55PJtavlz6JjlfVBKOYTkicWP+fM64mNGigJES6PpfMq/wvaloW1ImipbNJLp7VLvISV1G9m4fwiM5WH2Md5oZa+N7U3ix+LGxuRY20ztLyngljZeamNb6tjE+QwGeWXtev/+AD/+8X0Mh/n2vkSqV67YD5NUnlrFLnczgABirdKX/5d+pQI2c+JpaRoDJrNBlpV3OmZZjl6vPMaY7pMji9nVqsByWWA6XWM6XTsyxroir3Mq56IosFgssFqtHGWlrAut3aWObbJtpqwVpdwhN5mnUH/Z1xojy7LK6tVs/w4/OMS9H92zlrC9rAoXAmFrAGyG+H2wIffYEJ3BBVp9vDQ+BuVdrnTk8TZuVRfsLlrHjcelO2OxrRuz9cusn/w3RvGjvBZMVvrdlvPWSNT+8zAFkCMvLWSB8jjjLEN2nKE37mGz2KBYFli8XqBYFzbuVh5533JsTE5th3Ks1MZO2wfsHZRZlm/HFdrDUp+nfkK/FZcqXFHYsRQ1AK20+CddXTn+ZFv+2XYMsx+p0PHF5VqRZLAAKhVk3QrWVl45VtYtZLnc9fcmbtxd85P+vjC+sJL2uc+h8TsQQvGrrxG0OHXe7rPm77oRn/pca8NpYfgcpz3X3133MIXz7nN358i6O18bkPtmU/5fXKzw6lV5z5+mf+IUA2Tl3O6bM0Nzc4qugfzb6idCYXaZl5us5X3lE4o/m80c0LrX6zkfxqTIF5Inha5zj70L3aQ+97p0SLvoz1OoCx3bLmk2ibNarZyr4rosk5RxMIVHqk4nlMa+6xzQjaTkeKUZeA0GA+R5jqOjIzx8+BB5nqPf7+Pjjz+u7omdTqf44IMPaidPffPNN5UBGY1tXJeuyUBuN9HXY+Wfsk/VZG9Trzc91rV1S6HWYOw+C8VXcbcBRPSRNnDwRVtb2VMUx/LuqKbUVNm7a13keV4Bqpwnvw92NBrh+9//fu1s9ffeew8nJycAgMvLS/yv//W/qruwuqZQucQWl7KMJPCo3a3VtO5SB7cmfNu0H6rPZ8+e4eXLl5Vs/Pz8zWaDwWDg1CdNSNdN1B/lcX0S6OF1lKrMbtovUsJnWeZ8ie9LW6M2G6HUsFrZybFO2zwScM+t3I2xxzhSWJ/V9WazwbNnzzCfzzEYDJBl7nHLdAcipSvrkcsrx2uu4LstRGDgcrms5CKLzZsi39jD21uTu33keKkBanS3trwPU5ODyxibr2Sb4GOWbHu8PWoy8vhdUBNe17lG8qXlG2/a8GrKw0f7LhPZztoqe7QxVAMGQvy09uhLVwPVuMKr38/w//6/H+HJkzF6vRzDYY6Tk4FzFHEZD0hRlFvlrVRQkpv+zJW8rhtZn0llsNlayFprWmsxWwIfdGRhCXLYI43JUra0oM0xGBgMhwU++eQYH3xwiPW6BGh///sJFov6nae8DVBZ0pfVtOleLBbVh4eyzmLtJzS37jrPyziyPWoKbA6GkZtvD9Q1HX//GO/8+Tsl6JpnGD0coTfqOZawWZaVlpoofyv5M/YMOEBs+SPcJclwDSnK30C3nqU+JCxgpaWsMcZayxrrV1nGbp8J2ATgWspurXezwv5yvpVVrLFWrtVdsnSHrLSMNaayoi3yovzdFGW83vZ4475BtimtZPNBeXTxyQ9PUKwKbOYbbOYbzF9YQCUEmsh+kaJU4m2cr0219PI8x3A4xHq9xnK5hDEF1muzvaM6345NNEaBvZfHubv/NI7R3qQcV40hUNRnLWu2Vq8Q/vVn+i/zEnbj7+6zZg3rPtvy1H/rz+V4L93d9zKM5q9XaybC7h9YKeXwzbkhN6OG4f7cz32Wc2s9jv2VYWUYd551ebhWsBSnzsPmx0ex5VG9HKTupe4nZaPrCjYbg9PTBZ4+vXLma22/wX+luxYvNq5oPH37Y98d8ZKfNg9L+TQZfPorOX93STT3h056kbKRDqDX6zm6IvlB7D5ol7XSbaHr1p3ftvx3Qdexjw7pDWV/lCc+np+fV8/7OGEwdf/RdtwI7WevU4fR6/VweHhYG4+n02l1RPrBwQH+8i//ssIciH7wgx/gxz/+cXXc8IcffoiTk5PKKjaVSLerjZG3+bSvpvS2yt5E38Ld2/CsgbHX2Rl8pKXvW3g0lbVpnNSwsYGp7SAZkrcNT20Dm6JE9C3mON+mcoSo1+thPB7XQNuTkxM8fPiw4uH7miS0YI1RrFwl2ECToayrVOWstjhPpaYTog9E2TUtUjL6JhACbLmiL7UN7ToepQAxTRTpUvko3dvKy9uub8ESaiupSnsKu+s4mNpPZHpS+U9uHCCVG09adNKxLIvFogIn8zx3FqTkpoF2XI7YUUchJXcsjlYGklLaPx/H6OOGXq+nAoVdUKxdaG0xpECQvCUPja+Moyn35XtqHw+F8aXj6+tSTk12ze26N8ZN1jAxN60v7TLHtol/W9aoWv/1zSOh9h3Li9bPQvJo66BYOqNRD4eHgy0wUCq+hsMcH354iPfeO6gA2HJIlUBsJQXPGctjVoU1FWBgqjj0Tkdx0nMZR7OM5W665WyZrvbrKvXptzxWtNi+U5ss38u7H/sYjw2Wy9JS9uCgD2BdpbfZuGsI3q6pPPl6URu7Q+NjU/KtGZrEk2CUxiu2WQ35Nc5nBvSPSsVFlmcYPRrh8P3DEoyl/6z8BVCziKVfR+7M8q7ujhVpuq9KGHJPkD85/FYeB5A1jId85m78lz8D1qo2E+3N1P3oCOLMZEC+ddvKVDuumMrTKDJBPBfb/BdAbnKYzJQWsjAoUJTPmQHMVrZjoFgXZb3mQD7KgQ1gNunrz1rxKv0jBlxoYWitWfZ7WqdmyLKiAknJMpYAIq3ZZxlZr5aVZS1ZKQ1sPxwhS1hpGWs/UCF3qnxjLNBLlrJuQ4HyjCpuCb7W/VgJifdQOOnG3TU/G4bmj3A4jWcKhfil8/I1OdfdKG71MPy9/uzysL+mFseuC+y7Gy/VIlb34/L4KGULpYWp90W/3CTDZmOwWGyqj66m0zUmk7Uom/o6LXUdRs+x8SU0BzfVM2jzbpM9eUzHlMordc7W1qDcL7bfa/Ihb1NqqhuJrcualMm+qcneet+Umt+uZO5qX7jv8or1UZkP2de5NSzXm4V4p/r7wmvjT5PybroWS+HXRT1p44wcux4/flxhDkQPHjzAeDwGgOr49MFggM1mU+kiyZ14LRYLLBaL2lVNmmHFTes3JKXMK7vyD82pNzUXhMKk6vxSqQbG3mQj6AIgiPHpMn9aOrFFWpdpp7g1pdiirSu+2ln3u6ZHR8CNRqPqCxWarHa5q863KD05OcFwOMSbN28an93vW4CEyj+2uE9VAO9CkidfCPCvGbPM/eJns9nszRK26bgRKivOh+dN21xpfDTicUOKHp6+XGSRVSBZ14TydVssJmNj4WAwqD62MMbUjlyheh0MBtVC5s2bNw5/WuzweEdHRzg4OKh4P3v2zLlX2nfML9XTTc6BpNzjQPJiscDh4SH+6I/+CCcnJ3j8+DE+++wzfPbZZ1UceTw7UVcLZkqnCz6SZyqYGkuzyaZf6yN8DNDGOQ18lOOAr59r40tKHtrQTYKVIaWO/NXC7bI4bsorFfzS6l0bp6SMISV+U1klxdpTaH2oxfn003v4f/6fD6v7YMla6+hogH7fWsK6bd8vn7R+tc/1X+lGIEAZz71X1g1ft4glf2sJS3Mpt5C1lrHlvENWNNn2Lln7S0cc0nOvl2E4zPHjH9/DZmOwWm1webnGl19eqcrkLMtw//595HlebcQXi0U1rzUhWsfK0xtS1+xN2lme59XxW6enp46CgacT22uF+nyoT2g0OB7g4//fx+gf99Eb9tAb9dAb9+y9sDkbuzOUbgAkEFsDXpn4tbzIsEDQqrUGsoZ4J5JjBWsddetYCcoYUVeGKfjZc2UNy94dN1PmzbGIlffIZsya1hjHUpZ+yWoWm61subWYNb1t3I2p7pE1G4OsX/7m/Rz9wz76B32szleYfTPzjr2SYmvRVDBCjvt0BF15fcYa6/UGq1WBzQaVlX25Ji/HFG4Za8fZ0q2UsfwApFwDlmMZv0uWAFl5j2yWUVj7W/5rVrV27ObxNTd65+4pbrZMXWtW7dm6WatbLbxbT8YbJuzu64NtdA86UKiGrPnVj7nn74aBi3X3enw+J7rvblj+rsWR/tLP5V/PQxPyxa3vkeWzPz9FYXB1tcavfnWB1YqO8nT50RxWFEU1XzQBjuS821TXmDKuaDxCugIfaWs+3x5X2z/5/JvM3bSnJUr5iDimJ7lOui6d7r6py33hTe4xfXTb5OmKpJU43zesVitMp9Mojy7xAm29RfJpPOUVdSFebWVoQ7R+C417xhjM53PMZjMnzGQyqXSRWZbh+fPnmEwmTpjz83M8evSoGu9+9rOf4Ve/+tWNnQjpo9vQl1N1MN9man1M8T6oq8JuCszIBU9q/LaAb1dKQi1OinsTuZtaX4UWLqFylnGKosByuawBYjxeaAPdRlnZtN7pnHiaHOUXSiGwLkWJ0GSyTFU0+Bb9IYoBCKGwTRUgbairiTnkxtuTdJeKSd4G5aYlprSnsBxc42Bbv9/HarXCfO7efeNrazFwiMsZa6+hstA2ainEj1inY4k5KCvzxy2qObDK+x4dHzcajZDnOU5OTjCfz2vHmWvl3mbs5ZSqGI/xkPnO8xzj8RjHx8d4/PgxHj9+jCdPnuDi4qI6UiUmT4xiivU2PH3pSN5a+9PqY9e5NRReaw++o/9JZt9JAD6FSqosu9A+F62+OTc0z8ZAmRDvttSGVwqo5JsHUpVSsbA8jG8u5e58/NR4afNLOY/kePfdMXpba8IPPzzCw4dD9Hq5AxKQst3mu+ISyKlrxURgAPnJ+BxYsHm1v67i1SqF/XfJWhlL3nztaO9PLJ8zAMU2Tnnno/zNsoK5lfIeHKACZzcb4Pi4XwG8y2VRKYKzLKvuF6J5jc9fZX66U/SF2n3TuaDX66kfO7VRlMYUmsF5NwPG74wxejDC8MEQ/aMSjCUQtgbEbp/pntKKZwYVhHXSdMAiz5xHfAJ5Vfl5rGqDJLuL7137Ndtw0m37b7AdY7bPyGABVrKQLVgYIyxijXEsYw2275mxx0JTny1MBY5TPG4pqxlXkqUzDGAyY3kYwKwM+sf98ghkY1AsC5i1uw5Xi9PTzlL2/aG5r/zPkedmuy4ty4c+5jDG3iGrfRdsx1lqx+WHJDZdujPW3o1djmN0TLFBUdAdsPZ4dpLD/UUVjjcoGh+pItx3f0Mkfq6/DUPjr3SvdwY5Pmj1oY0hTTrV/kAV//Cmg5bSzR1jtXBhANZ1c8PTnKnFs3NmqoVsexA2FC8Ewkp5uYwAqo+uJpMVptM15vNNDYTV0/DvmdvuebS9q49HV2vemB7Gl25s7u5CPk0PQiTXFruk10RPFaOm5dmU303QTe+vmpCv/FPb7T7SbkKh9p6ark8G3p9iPHzr7ia635BO1659XD1KqJ5Sy7ONrnpX8pUVuS8WC5yfnzv39mZZhvPz89rHta9fv8bLly+ruJPJpNLV8fas3fu7j1PvfBSrj5hu+aboOuauNun6KCbPrQJjb4I0cOTbQqnAQrl5q1sK7WJNuiut12u8fv26dmfsRx99VLn5rMFkfvZdp/fv30dRFJhMJs7F6hwk0SYsvpEnCl3iLSe529BWJWjE2wx9eSrD3mYKAZIaSVCmaR3J+qdjLp48eYLDw0MAZTt/9OhR1TZOT0/xxRdfNMqXTJMfz0HvEtQkIMq3oJRtVda3TJPHlZTnOQ4PD7Fer3F5eemMXTwdkpvfoSEt3/v9fgVcDgYD3L9/H7PZDL/85S+jY9pt2TRReVHeCYy9f/8+PvjgAwyHQ3z44Yf427/9W3z55Zedpdsln6bAtgZwcRBvV4tvCQpqSheeNt31KHmUYFZp9c8X5ddBMVDjpkiOdbKs295nf5MUa7f8HqtYeN886Crz/f3GNwb3ej3keY75fO7wkscvSZ737w/xb//tJzg+HmA4zNHv5xgMcmQZGAhL/QNA7Q4+P+kKY0BDXEr3rBa+VAxnlRtXFvsUxfy3KPi9srqFrL1XjoAKei+q382m5NXvl+HX6xJ8Xa+LLRi7wWCQ4/Cwh/XaYLUq8OzZDK9e2U33YDCo1qp5nmMymbQay+RcyPsXD7MrybUp3ZOtySz7fUyhFFPUUDhO+TDHh//3hzh478BawvYsEEvAq3MsMeDeEQu4ftt3mSbxKr0zNYwjqwRYMwbURuKmUoplbAWgSoDGiHbiea9ZwG6fqzwUNt2aZWyWVcCuMQywLdg7uz+WAFuY7R6hKI9DNoWxvz2DbL2VIy/TJz5ZL0M+zDE4GWC9WGMz32DxcoHi0j8PU5vW1uS79h++9h0OhxgOh8jzHFdXUxTFeju2WDC0389RFNnWajbfjjvlxx72l98dW76XlrUWdKWj421f5UAsHfkO8UthLfhb5htet9hz/Ne1eJVh9OcMEFa1MtzWBdKa1h92vxRa3tj5Tw/rvoeOKDaKmxuHz4uxdx6H+7vPbcCs1HCa8ls+S7nrstJHUL/+9SVmszVCS3LfGrprwE3Oz22BEd8eRAvn4xXSRWjjX1MdSExmTvwDwtS8tZHhNtFt3be9jfRtKsdd2y31l5R+n7LOifVHyUPTwXc9jt4mevnyJf7rf/2v1Ql1QCnvixcvasYeRVE4VsHGGPU0pNtmKXtHLsX2DF3Rdx6MTSWtMlKVCTG+vgGz2ujuWPEpg7C2CGqrZE5ddIbeF4sFnj59itFohIODg8p9NptVg9dms8H9+/fVM9j5sQldTHjES1rqEihEaXJQTpZ7bAHNj6BtU+cyvSYTKw/jo5Bssck9Je3rorYDK1fYaeBDKB1ZH7G4g8GguhyeAEUAuLq6CvZhjZ9P0a+BsbE2FCKZfmx8lG2C91kJHshxMQT80t2ym82m9jFHan5C43ss3q7ExxlfXzs4OMDDhw+rNkJ1eB3AYJfzERDfUMiwMRmIV1MlK8XTrF3lHE0gmHbMDY/TNfnq9yaUEbHyleP9bdpk+eZibQyNtSXfGiNlHURtPyRPbK3J26UmvzvG5vjRj+7hyZMxTk4GODjoCxA2ZA0L9b0uGk/bF8bPo65Utr9WEeu3iuW8ShDWxs8yaRmrpUXH2JfASGlhY2CtbMv0y2NE88rirdcrkOfAycmApZtV1sd0p1CZTru+kLI+62rsoTlUtlGuZE4dV7XnEI3fGWP0cATkQG/Yw/D+EL1RD3kvLy1f6X5Y372wrP3KZ0cO8e6VNYNrDVtF9/Blbk3yrZJxeWnXe2Ymqx1bHLSMle/Sr2BxDezdsUAJvCKzv1u/6rcQ7syiladrjLXALTMh8t0r5ch75R2ymcmADZD37YcmfZTKwOKkQJZnWE/X5dHGLfdRvjG0SXzX0iGr7oxdr00FrloqUH50Ulq+loCqHZ8AIK8+KuDv7lHuPgtZ4kdHHhMozP3KfFKftu6UBslLfvaZyqsMuy0BljfrRmNvvSHLsBBpuvHsu+VRdyM++vy1D7LNTOo0QmHL8DKMOxeaoLucIzk/+2vDlo/pIKyUr4slnB840MNp+aFn+qjq/HyFq6s1VqsiCYhtMydp8189D+F1oo/kfrcp35T1tQYKh/IiKbbG1/ya8k8th6Zjc1e6p5Q2cEc6heosZT//ttIua33KO9dx8w9tuXVmSjohnXRoH+vjId2lfkIbm0L73esg3nd9RyjzU4u+/vprvH79GkB59PBoNEKv16viGmOqa9RkOhIvaPIRbmyMu+k+cZ06p+tIKyWNWJnvMlbtDMZ2AXa9jdRlR4hNUl00klj63NIsRa4UnnLxxxcyMWB2Op3i5z//OU5OTvD+++9X7m/evMGTJ08AlF+UfPDBBzg5OXHiyiNJU87Ul7JrJAdXurSb/EajUWNluQSZ2pJWpjfdL9sunG8rhRYlGpjZli9QArB0Qfx4PMZ7772H1WpVu7sgxkdb+FhljFU6ccvYJoClL/0QeEBp8UVlnufVscIpFFqEUjmNx+OK33q9rsKl3BUUAnv3QTwt+XGJJuPR0RGOjo6qNkJHSu7jK7vY2JWiBEgFUeU7H0N8PLRwofYXk4MW2QS4cp4Uj+5x0Rbz+2g3WVZaqK1WK+R5rs7X+6Cu1neaIuimSRuvNEVdCrDvm+tSlUo+xV6KAo8/83GLp03j4Hjcx1/+5Ud4//0D9Pt1S1gLAriWsKEmEFImu/HkPOS8CaUvXytyN348MVnC8qM77W95NyNZldnfEpjglrF0FLzZWp8VKIps+16693r0nNV+Nxv6zdHrFXjyJMODBwMsFgXWa4PFopTx4OBg57Yv24uvvTXpZ1rbzrKs+vBLWuOGxmVfuk37/b0f3cOjf/4IvXEPeT9H3veAsBKMJXAvY2UjgVL+zuJwYDCmrHeAXu3oY+1IYgqbQKYycRVxjPXj4GgVbtsvqmc6OtgwMNWYKpx8p2cOxNZAWgh3Ok63EBayWyC24lWIuXprIWtMGSYrsuo4YlOYyo+HMb0S2C02Jfha9Arkw7J9bO5vMPt6hvXUzsm+NXubfpgyFxpTnqhh0+9hs9ls19VkhV8ej17+5+j1AGOKLVBabMsI1dhlrWItSMatZ22/QzV+W2BXt5CV/6Ws7rsLAnOQVo9nw1K5y/tiXTfrV7ecpeqhfFED5H718HIspLoOVllnVE/Hn359zjSqH8973Z235zovLQzxs89yjnXfu6DwGkZ7l/K7fLiMdAz4119P8ebNCinUBoj1Uer6jN6bphdaA7ZdS/h0b13rNPl6IJZvWkeQ/mFXw4Q7+vbQtwljaJIP2ufLNQW3Rr3OU7lixMeqprrEm6CiKLxXfJERR1EU+Pu///vK/fDwEO++++61yHdbyQemp9Db0pd9cqbsY9vquBww1ncMVRMF6h11T10OaDRIymPsgG7qUipqZNpaeCLfUcn0NQoBD0T9fh+ffvopLi4u8MUXX9S+QqE0236JEysPOr6NnjXFFQ9L/rssMmMgtvRrW8dd9+vbPCn7KNR+uwLO+WYlVleDwQCPHj3CYrHAeDzGarXyftnVRibfsUFteGluchPMjxemvkRjk7bIDJU573fr9Rqz2QyDwQCr1ao67lmSHCNC6ezSZ3ftS71eqdB7+fIlDg4OnDo/OTnBu+++i8lkshMQq43ZXY4BWt+RZRqbH3xhNF6+tLT0ZN/TLLQ1HqG5pStFAn24QApdX9721S5T20CT9N/WNSPN3/KeVq1tpSjt5YcDMm6oDZGfbBdSlizL8Omn9/Dxx0fI8wyjUQ8PHgwxGOQVCJvnNj2rWCe3lHKJh4mRVLxKt9Az/5fAA1moau5Z5lrGWjCC7oq1bpuNzWcZJ68s3sgyNs9tHLIyXq8NgPX2+oEFimJZrQF3mWtDawWpAE3pm1oY/uW35O1L27eJjX18QO4H7x7g5JMTHH18VAKxg7wEYHsZkG/n+QzJFrEVb/FcAbCir2lgqtf6Vb4rfloZpRClWasXg8oqtbKKBasTg8qd/zpHD5O7Aqzy44q1f24hK/NZAb+aRawpw5qCxZdyZuw3Y37b/9yUFrKFKZBnOeieWwJ7szzD8NEQvcMeNrMNinWBYlFY/rBzfZs5M1SHul8pWOnHLWRLa1j7UQn5Z+D3VfNxrZxy7IcofDwrxxrqX9wvc8Yk/Z/Hda1lSV4ehviW/Zye4aQPZMo7qjhU7LbvGeZG/jaO5ePOD3YsIRcX/NWqN94NecPzU6zp+Pzr61Pt2Xj9NNC2Dr6WPOScGgZl6+HbUNpc43PT8iHlLuWczzPM5zmm0yvM5wvMZvErtVIVqb58dLHGjelTU3U2uyi1UwHkFP4yfOzjF16+vv1XCsX2ganhm9LbqMe6KdrH3nHXdG+i/uS4k7oup30/fweguvnS4mGa6rViug3ABYNJh5hCbcbXfegNUuqAf+C8WCxwenpaC7PZbGofyPOPUWLUps02KY+u2v2umFEs/L50jk35t5UzVf+jURSMbfN1Q9uKl0qEJvxrm2oR7qYRed+CKlUBndqhfYoY/ss3pDFKHQh27exZljlfwxERGHv//v0KjKW0CIw9OzvDV1995b0PUrMkkvdhhhRIPuJgklTMS37cGq/JwJu6cObkGzB52ilx+VENu4KPmly78OuKV0i5KMtLLjx4eE3B4yszLYzvQxhOw+EQ77zzDq6urjAej50vuwgoSGnHWp75ON+mrlM2cXLzRZZ+QJl/Ot6N8sJlC6XLw2dZhs1mg/l8jjzPsVwuMRqNvPFlf9TaehvFXZfU7/ex2Wzw4sUL3Lt3z/lK8uTkBE+ePKnA2OFw2Jm8Kf02BiikjK8+eVM2Ldp8T3UY6ouh8Y++RiVramOM074ovhwPYhsXmX7Kgo8+TJAfXWhrm6aKlJumXcfxWHzNv2lbkv4cjHWPowzz427aGBPrRxrRmMnjUDy+gfzxj+/jL/7iCfr9EoClY3PpuEtrAUXzXpocIZlTq9WykHOn/eXP3E3+l/m2v8ZY5b4GytrjPAF7PCcd61lavFq30jKWful40ZJPmXivV1rI8jLu9wsYs8J6XeDqao2i2KDXI6CleftNpdAcEBoneJo+q3+au2X8JvOOXCdTvIP3DvDkL55U1rDO3bB5+rHENStZDXzl7hJ81fpA5r773B03AeQ2JW7hWhaUdXfqkR1TzIFXFag1FXNwALYCYoHKyhWFiLf9p/AwKO905b88DRkXCb90RPJWjqJXIDMZCpT3ywKAKQwKlKBs1SZ6GUaPRyhWBeanc2CBEoyl7Ir9V8pYvOs8WqbXgzFFZR1bpoHKMr8EY/PtOFxsP44hwNYd46omF/jl/1vXLSjLwVY9bJmGbgVbvvMxs54ujaN2rJXvbp8nN1sf9KwDtDyvdv1oy5tXpb7mDNUWYBthMwrv033vJurP/dx50Khu2rt1k3F0/32QxtpXDjF5i8JgPs9xdtbD6ekSk8nUu/flfDjJecdtk+F1oI9Sxgq+z/bpijR/HqbJ6Ws8XyG9QwoowfdBmrw+GUL7vFQ9ZIqM+6C3YR+VQjet/96VmugQu8qrb20ca4dyTazx0vw0nRxPW+v3sv9InWVKv/blwTc2+MaiVKxolzG2Ke8ueHH5FotF7W5YANXRxaH4ofroSl/nm8fa8gGajdFN6CbHozblE4rTRf11fmfsrkLFCqgt/64r/qYV9CGKKSA1ufdlKdsVzWYzrNdr/OxnP8OXX37p+C0WC7x8+bKaGPr9vmNFe3V1Vcvzer12lE2ped2l3mMgTwxACPHzLVZuSx12KUdXvGLgiU/RqPWnlEGawmhHGtMzHY16cXGB2WyGPM9xfHzshB0MBjg8PMRyuXRkSgF0fZulFAArlVLKg34JNDCmvHchBLymgFdaepeXl+qXazyeL//XCXLJxRSlR8rvyWSCFy9e4De/+U0V59WrV9XisMuja7Vy2JWfb+yMbRp4/YQALim3lr72LoEF2lSEFBXL5bKqF2OMU/Y8P75ySy1PzvfRo0f44Q9/iKurK0wmE5ydnWE6nVbHFt3W9YiPulB07+IfA6WkOwGxVCf8o4iYDLJ9aptoLYzGg8uoyfn++wf4sz97B/1+jsEgx/e+d4ThsMdAWO1YYp5eNFuVYp6jTDxejIdsqqZStkuFMi+XUrlv32lc4GCFezwehdHe6VhiDiwQCFuGKUFc+58hy4rtLwd+DYBsO5eVxyCTZexmkwPIsNmU89xgUI4ps9kGk0nYmmeX/tHlWMDHR66k0RTLTYjHGb8zxuN/8Rjjd8boDcu7YSuL2AwlEJvVwVjnGfqz04/kO7Y8OCi7dSt/FH4M5K3lXeHhy7OPVPCAH0lcPtSAVv7ugLPbZ/5bHVNs4PCowm/vaKUjgn3grDEMlJX/2faXx4H+W8lOdbpNz+SmtIItDHLk5Tvy6vhjk5dhAMD0tnnvZxg+GKJYFuj1e9jMN1hdrsp0auPDdc2ZGfK8/Mhrs6F7YkvLeQJly2OK6aPOrPqww/23axe6f1YeV8zvi7VgKHd3jyDW/oF6mPqzZgFr1Dj8N+amP1Njqs8t9S5F/ft610NuUzIed+1dzut1P9et5O9zc+fPNIC2SwqxtH6+fNXzTB87FYXBxcUST59OkWUjZNlBZ9fJaHsv7kdEc6DcO4SIr+261M80qbvY/igkEy/jUPyQ/sC37wOsPkSCT10CK991+i6V477yet1lqOki2/TfWJ/1ub9t+gSg2zri+wR6puupJNEYRqTpE7uWzyfvrunc5rGiqzlh1/3qPqhzMPbbSuoGuUHlNBkgm8gg00jlqy0wJZij8WuT5zaLRsljuVxiuVziyy+/xPPnz2txuGL06OioOprUGKPe7Se/4okp34nIUsk32KbUUeidL5pDba6JxXoIEEhRSPvefXRd4FUbSpEnRcnvKwsJ+KT6U32Tsn8+n1fWnRz0IR6DwaCyJOdtpm3+fEegtiWrGKrnl343m0017lAfDpVr07ZEZTqbzZy0QmF9+ZB58FETGUMbVJk+WUFfXFzgm2++qer94uICi8UiqExoSl2UQyrfVH6poGYsDdl3+aZflp+vPEuQZeOE00A3riBtS7zNHh8f4wc/+AFev36Nfr+PyWRyoxsmH9AYC38bqOlcxtdIbddAPE2+1vCNkdqYJ5VUXKFFCvpHj8b45//8EUajXgXCkjI/yygvcJ6tvICKIkGGccPHFeQ8D3V/m2/LyyqP+dGc5bstC2k9ZgFX/mv5uO9cJi5HUegZMKY8RpTk5PKWwGsBayJI9z4abDblsZ+9nh1/plM6VcVfVqnE22lMCaq139BaX7rTfM0BrdQ+IcfWLMuAHjC8P8SDP32AfLC1iM2zyiqWg7HIt2Ant+YmAK9CeMowGTt+O2QV68ijWcXKMIqbz6pWdqUs0Lequ2B5WVLRZ8q7Udz579bfGFNZ2FZYLoGthoGpXOZC/BJPZv1KcQkYpTtfnV+URxUbU76zruHIVYHEsixINvIqAPTK9xw5iu1Zy5nJgA3KY63zDDgEigFdZosSjKWyiKyT9jFPlTzLO2FprCqX3GRhT/2otJDdbELjggRB+ThsgVi617qct8oxi35RO9K3bjVLYyA/uhggK1d+VHGZtmxEZTgensJKy1mSwbBndx7gwKrlk1XvvCxIjrp7jGTA+MAcGrvrfvW7WPk7zXfSz4YJHz1s41k3O4f64+za3FPmL56HurzWj+evlDNDvz/Y9pcN5nOD58+vcHAAHB31GwGFRL51uW8foJEzFwTC8nBy7pNhQpSqiwnth1LyI9+1/UxqevxdlrkWzreGaUNtdFBt6uGOuqVY+9o3tUlPa2uhcUEbi2LytBmbeDwtTmzdrsXtom+G5L2NxMu93GP3amWsWTHfhrGiCxluU/3sS5ZddZtd0LWCsV0pizVqqvRsEtZ3l6JPqUHydEkp/HwLTI14OFIyamBsShr/f/b+rFmSHEkPBT+YmbufLU5ERkQulbV0VnU3m0VWD9l1eckmb8tl81J4hQ8UuSIzwtd5mF8y/2N+AV+GMq8zIqSQFMpQhGQ3e6vqbWrLrsyszNjP5sfdzTAPMAUUagAMZm7ux09kaMgJc8OiUOyAfqbALknKf3FxgYuLi96w8/nc/l4sFqiqCtfX15NceE51v16vg0cWUJjz83MLIo9NJ7aoDFknjOGfeuc0No19t5cx1KfApPrOGbCH9v++srm9vcXl5SW++OIL26Zfv36N9XqNo6MjPH361AJyU9AuFlsp4guZ5XJp3bYh6hNXV1e9dcbTP9R2Sh+S0Bj2k5/8xN4VudlsvLurp6RY380F3w6RUm2A5sHjY/PFPY3t3JJdfrATA8f476naVVEUmM/nePDgAZRS+Oqrryz/2D3L72gchepOAqo58QF06iY2xoYUYLzNcd5Syae1xuPHC/zLf/ktPH68wNnZDGVZMCCW5jH+BCCA1FhT9deLvpuM09fcwwppmXfycwAAhTP59ZXV7q8LxPrAof9OgIUBTB0oQVazTWP86Y8DCO7eWRPe/CkURYO61i2oYuLQc7Mxz9msxGJR4va2xnJZY7lssF4fxngq1zp0bDv50Xvs2gYKF3KXNDuf4aP/9SPMH81RLkqoUhmr2MIAd1EQVgCt/Dd/SuBVKstiYKoH7AbCSuCX8/DCWodkMbi0iThYIaxhATY+cYvZ1p/7eYBn+9uCqKF30T+g4FvK0nzXgrAyrGcRS/nQzL1xv4mvF0e1foWCrrWXlwYNVKHQKHNccaPau2PbI3h12T5bcLiozP3CxbxAMSuwulhh9XKFo6MjzGYzexILHfUe+1BvSjJtkq5BaNrxGahrY3GvdQOlgKoyH9dUVdc61pxwAPuuNUDgKwGvSql2XDLjGR3JLj9EMfOCqSh3dzj9OUta391/p9/y6bvxOcsPm/s75z3mFvfnL7GxSiqx0/xDYbQAWmUY9zt8NLEEKp2/nC9Dbl0ANCXrtsRljqWRypeb3zVOTh7gX/7L/yuUmuFHP/oRFouf4ac//f+iaRpcXFxkrXlTIITpJz4PqRvj7/xD/G10fcR3iF4vpuvJ1dtssw9Jycv9YvmJrWPlOjkUb1u6j/vUd3Q/KDS28A92y7LEbDaz/qvVqnOi0hT6gRQekQukxnhwumuw/L7QuzHnHQ2lt9oyNmegyBl8cr5u6UsjtUgZKtNUFEvnLsFWKYP077unDYAFKIjoS5ahE02MiE9d197EKheTdORsLkCeSivXnfPP+appCAA7Jbiwb9BvKiK5pwCuc9oj3av65s0bu6i7urqy7W42m3Xus0ylwfvBVPU5ZGxLheNjrdwQD5XHKLv8Y8hjfTFVn1NtZseSTH+z2VglBL8vksaa3I8fxoTpW8j3hRnKcwifWJi++YWHobI7PT1F0zRYrVbZR3HuciyTvOkYfjouN2due0c+jS2voYBsB8hBfM3X9/GDdKP+XhQKZ2czPH68wCefnOHkpMJsVjBrWAnGAoCvZG9/RRXZLmxIoe679RGFo2z59wP6VrDmqey71iSns4olFEcpWEsw/gScRRh/N5Zf2ubBHAHqZNPaHdXpyp3k8EENPx65mSdZmFWVsZydz0tW32jnKo261tj2e4rQfBVrV7ltjStb6XfuOB4ag8uj0twJWxSYn89x+s1TVKeVAc8K2D8PTJX9SMFZodLvFrANgrIhkJXcuIUs/Lg2TZFeUBY4v1QZZ5HyAVbLWxt37mYBVwg/GUcph4+07kH8SQG67T/cQpbzJotX6DYslPW3z8KBttadWclq6E75QwEoWp4tf2mFqwr/uGUAxloWcMdal4ZhMS+s/PWqhqqMxXTshINtABaKl+p35l1B69qOMVrThx0mTfqII2UhK8clOZYr29Z9y1h698dJeG68kdAYRe5mbKbx180pfsOCFzY+nrs8U1j3W2Y61I9idZTuc26uSfGIx+sPE5qvY+9xa1neBn3AsgvAxkDNXLm3oS7/HBDWhJPzLblprbFaNZjNgOPj96DUHEVxiqI4QllWaJo1NpvNTte9qfEhdNVQblw5R/v1HF8bxojPy32UW15D9Zs5csbkaJpmsg9hhqxDQrJwPtvOBV93is2Fd1Ge+0yT98WiKLxjbeUJjSnZhupIY+Xbtw+Q4WIU4it59tXxkPQPqd/FdOqhMO8+INkt9elrx6wJDqG8PTC2D3Scig5JcdinJAMQ/BKcwo8Byyhu7ELusZSjcInVMR2Jyu9aPUSazWbBPI21Ph1CcsG7Xq8tKEZgj6Sp7jTJpdSiJ9XeQsBrCmQ7pD48BU2dn5zNUUypyUG2qjJHMf3oRz/ywkmrFP713VAaUvfbUs5ihn7nLNzk+B3amG4DvBwq0d0Vu6yrfdDQDQfFIYotgEPtg4eLtZvFYoEf/vCHUErh5z//OV69eoVPP/0UZVnadQDnQWN+zLpmm7qhNQLxWK1WeP36tU33bRuDp6a4MrwbLvQuw1JdpCzpY8q00L1YoXBjlFnHxyX+9b/+Lj744Bjn53OUpbL3wypF95fyPgEgCMZ2+bsw3fDdss0SHYBUyvr3wsaevhu3kHW/nZLfKfgJPKX2QO/+nYpaxCWLMncUJ1mZmbDk130WhQOFy9IHP8jSrapMHVVVgcWiwGy2we1tgzdvNths3Ji2TR/fdm6gtet8PvfkoFMZZFpEoT5n+1Sh8ME/+gAnH5+gOq5QzkrMHszs/bBKGbCMH08sgVXDSLgptp7iv8H8Oegq5gfLt3DhZPzgb5tJejh/vxD4TzEnSfBGB8JpF84eOYy2jZDlKzvq15a3sID13Phdslo8W4tVe2es7TfMQrbR3r2y8j5ZzyKWflMYXi5aPJu2zZDVLMkMbe6IrdunYu/tbwKSAVhAuamMRa2qFKrTCusXa1xdXHX6xxTzae66U6kCZWnObG4a2PEHoPGtaa3yVXuPtbKnHJBlLL8D3Pxp++6OKXa/uYUsvdO4zo83dopkUyHc38jOLWal9SyP4/yNXzeMKw8TNuzu4kh3v0zpV3/YqWgIECnduusO+TtkJdsPulK4OG1bIDG9QJ9bSHbnrrWbszYbjb/8y1e4unqOP/7j/zsAheVyOeoksJTiNhQutP5z10CU9vSc1WqFq6urZBp91AfESvlC+5a+OEPLKyd8bH/VxzcGDIXG4rvc38hx/D7vse+KttXBvA37WxozODibOx714Qt9H2jkyjeWhu5PcvGJQ6t3XpZ1XXv62b54h5aXt4GGAPoxOsS62btl7NAC2MfReylAdqoK2+Vk3jfIhRY+Uib6nTp6bFv5chePufzoSUojngd5bCuBXDSQcgVDjIYsHqcGLlOgVWqhGAMfQry2WWQOXSjIDc4u+kNOWYfKKhVnG6ByyLgS6yPkLj82kG1g6KYolG5M1hDJfhFrp7E2l2qnqfhDSNZvaJMt00gtiHMUdzEgZyz1LTzGbLSHLFhyaNu83sWiyAMIRFs+PT1FWZY4OzvDzc2NDcPvC+dtK9Wu+saWvrzz9NbrNV6+fGk3d+v1OtgPd1Geqblwl2ltE3YbGUPjM19fpMb2HJ59Y6bW4WPdOB+lFJ4+PcJ7783xwQfHePx4gapylouhO2L9+DxdIKTAzo/rx+8vC2kR5Pg6YNRZxLqyAZwyWAV+d48Q5n7cIrYoOAhMbdspiJWCPboToOOI4QEaIcU4PwLUPM17WSoABcpSQ+sCVaXRNCYQAbDzubLvsTUCJwuQJdb7Mrwry+7clmqX5Cfvyw6FJ948neqswux0hsXjBRbvLVAdVw6ELRwQiwIIga0dq1QRJvg7BKzyspRhAu88vVhcV1DoWqb2kARnvWYNOAvS0J2q0iKW+g93V6rDL2jJKp9KO2C0CVjfFm27aVw5eHfFRnhyq1mbdcVkbS1jbVnSewHDu9D+/bOFy7M9vrp0zwIFdNUCuxqoFzXUrYJeMbB3wHg+xVzo+o2rbDf2+JayLo7zN2OLagFTG8LGMTK5D0koPo1JND66Pw7O6nbsJH7uKGSX19Ddsc7P5MeN3yQ7jeHOshaMv4tL+SHiYzK9yznLufl8tK3jTjUEyM9DilLNpOuXf19syD00z/TxiOd3ur13bhn4eyz+dEDsatVgtWpQ1+bv5qbGzc0Gy6W5jqNpGpRlifl8PmpfyOei0D6eu/N5TWuNqqrseoxOpgFgwdhu3tN77FhYKYt0k/H61gg8D1Os2UP7ndhY2FcGfXvvfdOY9HN0AvukvrXfVDKG9ptT8M9Z81JaQ3ndBdF4Emsnqf4Q8ufUp0PL0bXH9hQh3rltfeyenI9Vh0TbyBMbw3edx1xd+L70OLtOayhtq5cbE7aPesFYvqHOHQD7wsWOpBg6mOyCUgWbs0AChi26pqQYEBBTLEqgu2kaq3wGEPwCJDaAD5UxJlsf0f2IpJAmfvxeq5ubGy8fRLLd9R2NIpWnObLJsEPrXC52+wbvvvro+5hh3wPkLgflXU8sgANH+Bdusc1Un2wxJaZc9ChlLPZ4GOoH24JxueM6l4eORwVcf5RhYnGHLkb6NhapfhGLw/1kPYbK/9AWEkRjPlQ6xHxMSTnrD1kGVVVBKYXVaoXNZoPj42PM53O89957dh4hJdBqtbLzIk+LLB+JUoqJmBwhomONZrMZXr9+jT/4gz+wfnS8FwcH9zG27roNDeG/rSyhOTvVhvj4QGMHjcd1XaMoCm985MBqSvlHdTmk/ZYl8K/+1Xfwve+d4+Sk8ixinbLePH2lPLWVMG8X1v3m7y6s/RXlJ6lfIe3/JkVtyC30Tn9O+e+7EwhBv2NFrTtAgwMsjAVa0QK97t5Fw7uAtJYFyFLW3R1blgbYNceYNe0cb46WXq0avHixQuYH2K28aUA2tLdKrUlCe4mqqjqnwRD1zflN0+DJ/+kJHn3/EapTYxFbzMyxxEVpjpIli1illH0nANYb3xS8MEopC9op+KCsF4cBp1F+IXfAj0+/W3fzcLy5u3tVUT9r5RoCSbSLS8cWW37auRHgCQ1rRWrdbUeB59+xiEXYQtZba1F8rQ0Iyy1jFUsbCFvKEnELWd2WSeM/5V6oUY1pL3VhgGLlwheqgG60AV5bWaylbN3KRsD/BwqzhzMsP19ic+WOOh2zJp1OuW34bDb8zljyozU/fWii2nW4Zpay7m7w7tH03GqWW8OCvcsnQEAsAb7S37i5p289C6BjNevceNywm0tfusu4cl4Kh8ulcTqa1DzCecbnv/BdsX0g5hiZpqZuOv1HL9M7nx+//HKJzz+/xXq9Rl3XqKo5Tk7mmM1m0Frj+voaWrvrZ8b0vdicGHJXylwLo7XGgwcP7OlTs9kMjx8/xps3b/Dq1atgOiGQMVde6rM0b8bk50cl5/DOlaNvDTpGByj1jWYsKqwOTuoy+F592zH2bd/zcurTX0+dzj73hUSHAtb1yUEfLS6XS+smjynOWYP3hQ/F36aMYjJxnind+depv+2Lhuogc8LuU49zn9rEPvVPnHqPKR5DQxvC0MVKikK8coGssQ04lFbfFy+56aV49MkS4yPl48QB2NQRu7vqXKS4zAlHiztZ57lg+C7zEOPd1w5iAF0qfCofU07KsY8lZDjZr/o+srirgbpvMxZ654Bdn9x9Zc/LLyesHKv4gjjGI5THMW0itUDkvMeSlD82Lvf1deKTqttQWYaAWk67AGSn4nfXC51dlU1uOx0ynoT8JCC/2WxQliVms5kHrPEwfXMvb0t9Hw7kktb+EeahcZeHPdSPCKamsfnctj74+Etgvfw4hYOxsbZHiqjUOpj8nj49wocfHrdH3RZ48uQIJyeVZxGrFLyn4en/dnkAuMKb3um3jMP9fR65ZUb5cXxJuex+E0M+P7p331/+5mF052mO7nQgA7eILQpaf5J8DgBRChaUIDe6Y5b+iI+veHbHitLdse5ZQOsGWivMZgpAgfncrH2Pjkqs1w1Wq65SV1Kq/W8zjpIbtWf+AVhozgyNw0opzM5nmD+e4+jpkT2amKxhrRUsO5q4A8S2QKcHuLLji5VivyHcWzmCICzgLCkLP6wtT9WNI3nZcAKg9QsjUfAUTQcCKbbm4VaA3DK2DeOlr104aXkrrVVlHBkuxoeDod67ieCsYHl6yn9yHqpQ7q7YxsW3lq/UV5W29UVpgbaMrbWsrc/GPQtdGLlmJqPVaQUooL6u7dHGd0G82yhlMmDujKVx1t33Cig0DVoLfxfXjat8LHMfirgwzvLVf/fd3RxC91jTeMnnCf83He1O47gbIygs9SMt5IEN5/LjLGh5GVEckqNNuVMOftl2570pyNVbaNxMvYeBV/fu55nPfWm+hvax5AtPKfkgrNYa67XGmzcrW0fX1zU2mwZ1TdcH0Dzp1lShfVu+zOG9YsxN7s+5+2az8fRjOXLk6qmkPNv474JieqEcPVXOWr0zd08oa4im0nsfil7rHRmaan+X0nnl6GtDbT61x4vpu3bZnsaU1TbyDElvjH57131v6L4qd8wfMo/E5LoL2vUHEkOxsilpXx9/ZIOxh/I1SopylFmchg5wIeuGEM8+xdoYiil/pxwQueJlCv5TUGzQG2oVlrsQnJr6AE3pN7Sf9bV1Xn67zDtfPEswPfTV4yFQrFxC4GvIj6ivDlKbldz64Up9GZ+/p2Tdtv6pHskyBoAFrca0XUk542sf5S6OQ4tcWb5yPLwrettBtRS4uauxgtc/3Qd7e3sLrc0X+EoZa3T6Gt4BXcMWhUqpURbsMaL2GfvYgLt9XQDZbfKXu1ZMxS2KArPZDOfn57i+vsbFxYU3tjdNY++6525kGUDto65r2x7lOpLo+99/hH/2zz7GYlFiNitQVYV3j2D4aGJpneQrp3l4ypeMy4vJn3OyiqpDvjLagaq+AjoGcnZBT3MnLPdzwIXvbmTm7ql0OTjB3WJh6WmmDWMlS4plrY0FkNZg1mauvM0dksB8bvxub2s8f77uKLj9cgyvLXIpJ956ve7cedwHAPOx8uzXzvD+776PcmGsYYuqMOArHU+cuh+2BevoN41/1iKWhZXgawd4tRWETlzvCZYuhJvgY/klgNjc8YlbvnrxCYR0CKsFN62lrPbfrRUs+i1juR//s/7it/1T8NOT74wvgakeMCvBZ9afbXk3XX7W+tUrJLiyb4BCF8YyFjCWsYB5b5d3qlRYvL9AdVvh6udXNsxdz5UGjAXW6007RhT2aGGzt9Ji7KIPRuh+Wdg7ZE14gN8RS/MD+dNd1tzP/XHLVvfhih8G1g3MEtZ3l3MNz2/4mfs79N7nPjQMEAMfrW80jHTr7kXk734LWSJfdvfSN6T35TlvKglb5obyQ7/dvGzmwcvLNf7yLy+gtfJONqPf1Be5ZVk3L3l7hFg4vs6iNKXFqVLKrs1MXsweYbVaoaoqeyrKrmlbUGgMb+4v98fSj8sTk1PuoXhcO7cr5e1zDkVfdB/p67D/u0uSfY/2+6kyD32kEPLbRv+xrd43pDObmu4KSN03vW35eUe7oaw7Y6fuiKGvRPYx4eZ8sdIXd4qBbSh1lAkBv6Hp5Sye9vVVToj4wldOXrlx7wMNAWtjcUILAs4rNtkPSUPyjYH2tJCWi2nyl8DEXdYVlznW3siNx8nZuMh0hvZJ7sbrUZZ7Ls+hi7OQLBxQqOu6cy9zLqU2b33tbgrqWwRyf7Jo43KFwLUx/XgIDeF3CH2KKFfu3DGhb84eOlcA/oc9m80GX3zxBY6OjtA0Dd68eWPDrNfrzmkMobRo/Asdw7XNOoLHCymRYvK8o90Qlflms8H5+Tl+4zd+A59//jlev36NsiyTH5dwMJaOyeY8ZbynT4/wW7/1CN/73rkHxJalO57SKbtI6T0ehHXy+HntKs352B0vqw52wu6MJaCyDWl5pe6MJX8O5BLw6RS/DlAYc3csQPfE0tqFW8O6tMhd5pOs0lw+nIUsPQ061LR3xzaYzQyAu1iUUAo4PW2wXmvc3nY/Ckr18dCcOmTdJf1J4Rwbf+W41jQNFo8WePi9hzj51gnKeWlAWDoqVjFL2NbaNQiM0jNguRoEVCHceF5YvBQIS++huPa3AF85WOsKMVCuAetWz09ZTxeOLAm1S9MCloxXyHLV1pcWbgSMcj8uN1mmauWBqd5RwkR0d2sj3iHcuZ/qvms4q9i2W1hA1cph0Fh3Z6wkSreEtbYFDDjboDHWsVWbXgvAzt+bo17WWL9Zbz0/j6GQApbaqdb0QYkW98Q6INWBsuiMffxDEJ4l8ucALIVxd13zpzyyneTl79LqNvzkc4orbx7OjMtcXj7fhO7SDZWnnFNCYccsk1Jxwnu40Lvu+Et5+2Tj/rJMgoNPRJ5+SsvTzZ8fnuZLwMynm43G8+e3uL6u2/nVv9phtVrZ+SZn79y3P0yBg6F4PE3a/9V17V1R1DSNtY4d8sFuCIzs288M1QlNCcJKOUjeqXSaEvTe1T7m67Qf4m3qEHWhh7xXDenL+qhPXyFPm+wDOlO6yFicHLlC493Q/h/iu2uaqn1MrUecksbqh8eEITrEsWEI7Ur+u2ofg44p3uWXDKkN/tB4IcpRXIyphDHATIpygbPUIN1XlkO+eskdgEM8UsBKKkxKptQkeVcbaKB/UU1h+ig3TKgcd/3RBHeP3WWilEJVVXZzFTq2MUZDPo6YgmIbGGkdGerDOWNGzqIzBZjLtOXHEaE2IOUaO7aF2tN8PreWsKvVqgPGxtol9+d/3D81ZsXKLVQG/O5FySdEMTCLZCJe8uMCeWzWEEX3rmmqRfMu8pG7weDtYsh8NSQMtR8OlG42G3z66af2iOLLy0sA5vj+1WoVTEPKTX8ckAuNI2Mpd60UUvrcdds8JOpT0nFKzQF1XeP09BR/9+/+XQDAX/7lX9o5kAAsyYPaA40vNF9SG5TpffTRMf7Fv/gmFosCs1lpQVh+R6yRiRTe1H8AMMtY5xayonVx/Pjdd/m7dQmWp1Ssm3w6mQgYIHfnRmUmj7LkoCyBr85yy6E9BLR2jxSmoz4N2OHSIJl8ENb9NrL5oG+sS5UlpcMtZM3xxEo10LpFnFBYGU34BnVt6rhpNG5u6iAYS7Lw30P6d2x9Eps7N5tNVGEaAmNnj2Z4+o+eGiB2zixi2V8HcOXv7RG1fEzlxwpbWSisgieflZO7c/7SjYVNWcN2gFdya393CzpS/iEPbT3DbvK3EmE0nNWpFuF0ID6FV8r5a/iAqkIXaC1YWAJowd6BDiirG2YV234AoRrlAFbtjim27Yn6NJctRSLPhTb3yza6QYEWkDXoP/RcGwvZJwtsbjZYX6xN+nuaI1Pzj1tvmqPM/Yw7S1a0Fop8uqCxzcwrQAiU9Z/+fbEOcOmGMfL5f4ADbt18Ef+dfrpG7s81roHJYvPfu2Btt3yT3r2UWsY5Px1w64bhfrnLw5D83bh8TZrHN1eGcH66+aV5mf+ua43b2xp/8zc3WK0MSEFgLI3H6/UaEsRweYlnZoxurW/+pPUZrclIJjo9Z8gaMuYX0xHm7mFTvEJpjtGr8rIZouuLpdW3d5JhDnHfcoigDhCu60Mqv0MtN05j9bmhttvXB2Jxc9LbF8XW/UNp33lIjVtDdLchvjl83mbKHZd3NX4P4XmIfUpSlmUscFhC3wXFFHRDgcE+Rd8Q8HNfDXwIuLFtWveVcvNyl3kemvYYoFG2X7L+yWnX+y6b2GIqtiGQ8WJ5jlHKvw/IzOHRFy6330qQSvIgpeyDBw+w2WwsSKW1RlVV9svhEIX4pTZtOXLnAFF9FJKLrNZmsxmOjo6s3+vXr7Fer4ObZor7No1t+6Ahc0pf+ab6ZQzYB9xHGK9evbIK0c1mYy0Xc+b6XCBvn0TpN03jHYH7jrYjOp6dvxOoSgArjaGbzQaA39aoHgi0n81mKIoCL1++RF3XKMsS7723wO/+7gf46KNjaxFblopZxHYBVaf87lrG+or0FBgbit9tu3lNmebSbjwOsJI7Kf/N04Gt9NuEc4AoIS8mLrlzwNS5+dawvuLYyaNaYNSBsAQKU9jQX6hcKD8GIHHzqlIEshhA1oAlRWvtVmA+N5ZwdW36a12bY4uXS/cRUGwczBlf+pSnPigzbKyYnc3w/m+/j+Onx+Zo4qpwVrEEwhZwQKsAYT3L1xj4qrrvHcvYhLVtyM2WC2/rst0T3/Z3x427Bwue/Q4Va8hfsXf5m4fRgSeFleG4e/tHlrBaMzCX/opueI8vD8N5MytXfverBWYLZnGLNkzDjiluZeaArWGvg/UAtGmV7KnaeMoccUzArNYautAoFyWggKMPj1Df1Ni83sha2Tt1FYgKdW2sZMtSB8BPZymL9ujiotCoazcG0binlDvKmOIQeEvjKoXlcdy8wI8j9q1z/fnHf4bcQs+wmzzOMVRmeW4pcvPSsHghMDQMWobCxxJTQflDsqXyuc1SLxTXzbndMDTf8t9aA7/61Q2urjbtWkhjvXYfqfF7yFMA565I7uNS+4bQMb1D06I5lf/JtPr2FLlp0XPb63a2qZNt9hqpPde+9jC8HEP6oEOmt1EPcQj71xS4M7bMU3HvOr/3mULlmqNTzAUav650HzCP+0RRy9jQQmTIlxxDgYd90BToeEqZyym2qBwyKKTKty/u2EEiJPeUdTUEpH7baOiEkKIpvsxJgRR9PPsAKN52eZtKbQqGftgQi7vtgobLK3lJK98hMueAQn1gNS/XnDyPJblp5PwJ1Dk7O8PNzY13p09s3Mttr0OAq1SblWPnkE0UD0sgycnJiS2Py8tLr0zedvA1p43valGa2gDH+mifPBJwIDfiQ9awgLsPlPe3vj7K05li8x77gKFPFi5TbNw9hI3tfaDQWoyDrQS+8nrhdSOtPAiMbZoGVVWhqiocHR2hLEu8evWqHXuA8/MZ/qf/6SlOTirM5+5+2IKBU6RcN+nSn3tvc2D9KKx8OoW5VKiHleAUNr8MQ/fM8fg64M77Kg/jI1GON0ejwH6bp7SGdUp+zcrNWdkSIOssadHyIT/YuxptLjRYWTurMbJ0LUtl37Wmp0GszL2xxoIIAGYzgybVdYOm0Vgu0/dRpSh3rJDKx9S6tbNXKBSq0wqPv/8Y1WmFYuaDsCGLWPnHwVIJvHrgrLSGVfABWMoPixO0nhWyWB5g8om8cnDWukmLWecRKWzxLsEbpQENH3TUXSBSa/fO/bzf7MjhqCwcVAGzYhWCdtKgsmsYr/ZdF9odKdyCsxRHK2cZqxRLiwBZaSHLu37RArSA40/ALy/L9qnaPocSFtAtmgIaGnqmAQXMH82xqTbYvNnEy2mHJNuXv8b3P0Qhoo9K5DhHgCwdG0xjkolvnlrzo9T93zKOScvF5/MMpUHjMB9H+RxCcks5/HnGyev83Ic2rny65cbnB57HcFl3XALh5borzCvl3127xeN3ZeLzZRiY7ePbN+TnLv0kAMvjuqcPwtLx2k2j8fLlCi9ehK+1Ce2j+/bwY+bA0Lpf8urT76X24DkUAmOJV86+Qu4nYrJLOXPX+WMAiCFxYmuKHDnvYo/N1x6SDknOHJpSTzGGV67uHOi2d+nepxuXcYbofQDfAGloH992jBpbRzkAYy7tow3vMo2UziS3HMbEOVQ61DFp13Sf6m0ry9hdK6FJwWUWdOO+7OpTyuZW1pC7IWKT99Q0djE4Jp13dBiUUoz1Uaq/DlHK7wOEkbQvwIvGGqXUoK9gpSKlr4xC5d23wUqVQV/cMUQL0vV6DQB4+PAhFosFAOCDDz7AP/pH/wifffYZ/uIv/sKm94tf/AJv3rzBfD737ssMHb25TVseQyFAOFSeSil7X1FZlvaPaDabYTabBfm+o3GUWvTG+sqYzWBsHUP8lFKYz+cd/z65Qzz7iB9hPJT4GBM7Ml5uLsmNPjIgy2+6D/cdDSN+BPFqtcLz589xdXUFwM0j9MfHQiKttb17e7PZ4Pj4GIvFAh999BFmM41/8A+O8eTJHKens9YitkBRgB1N3LWGlSAs+QHhY4kpHil7u7+dG+dLlNsFCcTk4bmy35Rj92hMd98qAAJtmBKYFL/uCODu0cWmLsifysL5g4GvBErwLtlNz897qAzIzViyUZ5IEdu0/gZBUso9CfQlENjI4xSYZQnc3GisVo0dF3nfvguiNlcelfjwdz/E4skCs7MZihk7mlhYxVqQlNosf/IPDQSAysNGQdj2PcS/kxZX7rF3CcZyoLUDupJ/+ztcSIkC1OEwSit7X6wNp0ScmJt88jSkO/0p95ssZKPWsDwchIwyD9CeDEorNGiMX2sZS0cray3AWyGrBZ55Oqr/WcAAr3RMMZWrLtq5v72rVikFfAxsLjdYv979nCjXpPx6F7kuIaprY/FaFA2KQqGqaD4w40x32+IqvWn88ZUDtpQOt5Kld4DcYf0AGbcLyrq5xK233biprb97h3ADAMfL5oj1FR4v5N8pjaDfkH10jp8MFNt3x/n6coY+ZHJ8Y/nNnRLicnf58LD+3Kjt89WrNX71q6Vt31dXYWtzWgOv12u7BqX99z73gzF3uc8Yo4MI7XP7ABsZpvtxRjoPY2gqECjFp0+HQfvuHNo1UOLGQx+Y2wZsu0uaUt5d531f+r5dpJ/bPvYxxr2jd/SO7gdlg7Ex6vvCbBtlZSp+jI8M3zfgjfnKS1Iqjkw/ZwEYipeKOzWNWWzkfjmWq2wfm+ZQismzDb9dLCbvAgAdSrv8kmifCzPZX6cYq0IbsqnqdJftgSuCyIILAB48eIDf+I3fwGw2w8uXL60cX3zxhd1QxcDs0OY21Q/HgLY542lIHh5fKYXFYmH/iOhYUaLQcc5DqG/z+rZSai7MHUdzx5sh83zszujQ2iL2zuNNASTnUoxvSJlA7lLuobLtWilySBSqY6XMnWKvXr3Czc2N58f/JHE/AmmLosDDhyc4O1P49V8/w4MH7mhiY2UZA2J9BbY/xnbD9QOyfPyFx6v91fHLI+oTMq5ElMgt/O4Doq79GZn5EccOWOjKa8JSHHpaX1uODgwgi1heXuRPIC4HJ+goUH4sqANZ3VHK5MatZumptUJVFZjNNBaLEut1jc1Goa7jimLZx3c9BimlUJQFTr5xgsXjRdAiFoUpcgI+Q38SZJVuEkztBVQDcTpuEPw48KrE75avefjvNs0Y8hpy1l13Dm5yXtYSVLgROKlVwCqWufP40vI19pRySf4a2isz7zhheufl1brZsiT5FEtbCRkEX28+5n6NiwsF/3jkhslFQHJhfpPVrKoUChQoT0s0mwa4gA8Ib0Gh/ibXB3IuluHIj397ZT7G4ICnG2Nc4wo0MtAHLCEwlcaw7vguw5kxL2wRS2H5mGjKwfFyYyvviy6Oybo/zpp8uzjuN9+3cZlleW4z7oXm8fx4cv7x57E43/hQ7c+HnHefLCkK5akPhN1sGmht5sfr6w1evXLX15g8hE+iAdzJIVOsIVP7xaHzXky/mROvT/eZs24O6Q5T4XN0ENuW8dC9dA4/Tjk6ub68TLW28dYdA9PY9X5oG73BmLhD42zb3lJz5tg9quTTl/6Q8DnpDvX/utOU+5QxdTgkzr4+IBgz/g/FGPrS79OF5aa5DQ2tmzH899k/k2DsLgpzCLgxRo5YAcYKlVsqxCbdsZTDK6Wo20VDuEuFaUr5fp8mpdSC4D7nY8ziicclpXIKiOjjdUgKfdogpiziYzLnLIZTAFFIsSrriftP3Ye4bMfHxyiKAp9//rl1Pz09xcnJCZ4+fYpPPvnExvnrv/5rKKVQVZX9yp/KMWcCJz6xvKaIj99cfgmuyd9KKXtfI+AseU9PT/Hbv/3bOD8/x9OnT228//Af/gOePXtmy+X2Nnz81jZ038bEKWjKvs+BmD7+IaBiCnnquraWkSQL8SRrVLJO3Sa9vjzy8YHSWq1WaJoGt7e39ijmMR8VjN0cvw1Ed2XP53O8efMG//7f/3vrVte1tfSQSkhyI6J2YupkjR/+8BTvvz/Do0cVZrMCs1kBpWAtY5WiY3Hd0ynPadx07wS4umOJeVxYfxNVWiX51qzhag4foWiyKpXQzvrVheEKeG4dqzvv3FK2qxB2d8WavPkghNYOMOV/XFZzhDFYOflWszJ/nAfFc2VZ2GOJjYUszU/sgsz2t9ZFWwZ0TGfRgrUOvOV1WFXA1RXdCRlft/Up0IYohGMbbqXa++WhUR6VKI9KA8b2WcRGjg/OtoyF+x0CWTtHGhcIxumAsoDnJgHaDuBqg7EwuRQLL/Ez6hsEpGjEn0o8KX7AStWGSbkF/jzLWZ4drdDoxk9XmTtibRsLySwsYbVmRxi3oKkNK2Vly3O6CxaAuzNWt+61hlbGOtY0h8JYxsLcHesBtEqhmBVYv1pjc5l3h+y2+8LQvonvq7r6CbO+Xq81jJWrtsfYu/GC+oX8YMR9oMIbDAFrbgzTXnw3VzjLWQnoktw+QAt0rWN9f3rn5cXDOVn5fML9jH+sqHmcXVGsnuV8R3L47nJ/xEJmipzKYy4PF06Ldz5fajbvaSyXNX72sysLyG424cSofORak89DfR8njCW+9pbp5sYfCuLId8o3t7bso1ScUBlue6/trii0p5d6EFnntL4Ixd1mfzYEnJPpyytHvo6Uo5/YVofRV0dT7zljH2EDcZxgCsD2HcXpPukV7pOs29B9y+euPqSYmoJg7NQTn6QxvIZMnrk8iM+u8snTHaPgHfM1w5RfRIUWekNoDLiWG36XHSVXhm3LZ4q4u+IbU9KlFA20gGmapnPcTKxM5cKmT+ZtlYe5NAaQ3oam6l9TLFglD7IEXa/XdiNCoENVVTg9PQXg7pKldENHc8ZkSrWBnDqX4WNgbGijJ/34ppasYmezmbUMrqqqozCQgPhUG5H7tvAZQrH5YWxfADiAo726iVFf/9mGZJsgherx8bH1J9CO+kvoww/Z/kP9QypvZX64IkcphfPzc3v89mazwdXVlddnD2EePnTiCvK6ru3d2XR3LPdPKfLIb7PZYLNZ4+yswKNHJarKWcBKS1indPatWQH32ynO4YWRYwtXiLtwMRA2ruyWRHxkXkPxCWT1lcgOTSIAAXBgAbm7vHAEy1l+8fCct6kPAhA4QODSpd+u7LpggnQ3f5r9Vu3Rww7AcHfOcitZwD+aGK1FrQFyq6pAXWtUlcJsZo4n5UpxXsZDKWfuSq0t5g/nmD+cW4tYFDDgZwumcuDT/sE9FXzrVx628w6hnBVhPB4ijBdfCT84/jwtK6PXIZzcHUBVydfEnisAmpBVaSgMt3blvKN3xUJ7VqpDrGI969c2rZAb8bZl0h6vbNtT68etXnkczo+6sGchq+O8bL0oWECV6kApxkNpC/gSSN8BYNuPB4qqgG7MhwX1ooa6VdAbxjtCY+fC1BolNJ/7a9g2s9CexWxRuLGFj4tuvHQfmTjqgrNxdy4T9TnfOlaCvl0/2DGa/N3HNvRRiisHktvPB2w+aEzmRcmrxC9iFQwzhvw0NHOT9dRNy3f3575YPlI0ZvkqAeIQnxAIu1zWqGuzdlkuG1xfb7DZpE9eIR789xg9UYrG7v+H7hWGykO/x+gW+sqR3mMfHuemk6LcPVUq/VQ6ct7mY11qPzy0XiSvqXWyMp23BaQbqu+cUi82BaCyC130Nvynom11Te/o7aFt+sm+dd77oJTOpY/2nccOGBsTYMoF06EOWvKrPOkXotAiKcU/x60vPfn7Pkz290HGryul+oVU9MuvLkP1ulwuoZTy7g2lsPehHexaxtyNz1BZZJyxX8jKeiIAkstd1zUuLy+htcb5+TkAA07QXap0J+U2cgyl2JgdAqrkuM1BMPrdNA2ur6/tfZAffvghPvroIy+cUsq7d/PruDDepr/0AYmpcSnFLzRPpmTgNHUdEji3Xq+xWCzwgx/8wN4P+otf/AJ/8id/gvl8jtlshs1mk3U3PS8ruWbhH8VQO6cPCi4uLlBVFf75P//n+OCDD/Dee+/hpz/9Kf7Nv/k3mM1mODs7w+3trf3Y4h3FicqbPjw6OjpCWZaYz+dYLpfRMpRjD42P19fXADaoqvdwcmKsYo2lk7GMjQOzXMFE87Tzj98Vy+MAAOfX5evnwf7qKSWpPJegACnzKZzy3Lii3Sluu/EJWCWAlIBPOgaY7kp0XYvACgeSUvoE5Jr7W7kiGhY4pbBclk7OtSsnfnesk7uAUtIyFuzZoGl8i1niW5aqBWYb3Nw4ICakoO0by/g4MmbcU6XCx7//Mc6+fYbZ2cwAWmVhADFmBdu5w5VbrirVfVI/ofhg1q7K8eqAsBGL2xD4GnwHPLcYGGtB1lCRcf9U2XEgEvAxsJBb6Ld0k+5a+IG5a/Fbhmki/iIs3f9q5yLKl4Y9KthaqNoOxeTixuKMr9YOkLXHDMu4vJz4H9VBA3tPrAazjNXs7lhlZKW2w+u/OC6werZCs+yfl8eSbH90lya58TU5fVjl93WFplGoa1NmVQVUlTsene6T5eHpIxR4wCnQbThuXeHmCojffF2tmb8/R/lHIbvxmuYe/zh5Pvf41rFeV+T3KrMy7JYxfwsBRS7NbvjuO8kRAk0dCO7LJOcKP3xXvrj/mPWpnBsCITy3+J2wTQP8/OeXePNmbedkYxXbzXNSosB+7D7sn2Iy9s2hcu2X2jsppewHk0VRYLVaeR+59wHH2+7LJD9OfHzaRrE9JG4MkJ4azJf8Q4YF90GP9TZSn75dAvjbgqWpDxAlST2XDLsrff19GC/f0WFTDt70daN963I9MPa+LYaGfsW2zYJgF1/VjKXQIB9TaA/lu63cXBkeWpi/rYuYIZN2LP62/W7KepdtSvpReqmPCQgQkPLlAimHvmjZll+sjHM3Oam4Q0GsFJGlMycCKOu6tvck0vG+9Jvqftt6HNq3YgppCfTJMAReEdV1jYuLC2vt+/DhQwDmWNLj42O7UeNpvI00dX+MgaWy78fmoyFALJc7FK9vTTBFndKmkGQ7OjrCyckJTk9PrZUs3zgO6cOhD8jkZpT++Gbx+PgYDx48wEcffYRXr151eI/J/1Tt5L72JaqL2EcZqTZfFAU+/PAI779/jNPTyirRSZnNny0Hj5ev8HbPOBCLThzz25fPV3r76Ur/cJlIPl3LVuJLyn5y41ZTlGfXLmV8P4zkyfm68jOgA4G2yir9lfckoILzdWHdu7SGdRa3/DhPB0i4+xa5ZawrV2oDBL42jWotZBW0NsdXmzi1VZCbMvH77pB90pC+p7XG8fvHmD+cY/HeAtVJZY8l9oBYZZ6hv5BFrB0LKYxS1prS5suWcfd3EoDlfoDvLtPg/qzZdKxhyQ2+Wy7ZuISBAZ6lqDfeE0jD72RteWitrSzSmpX4BK1fyZJVuoNZsgrZyI3f92rzouDJ4uWJ5BthIUthbXrM35Y3S9OGJYtZahutJawutG1/ZMWttXbHa7dWsuW8RLkogQZo1uwI5i0p1D9D/ZGuMuDXHXB/MzZBxDMfpBB4ZtJz6Zq5StkPS9xYR7xZhdtx0oGMLk0H2CoFb+xx/o4PjaU0flJc+m3i+OOrG39h3Sm/NE/w/Mn8shKXDs7Hy5sJy9Nwssm5zAeGu2FCMqlO+LC8YcDUhM1vhH3LMe7vt0Xn1jTAalXj5qZu25axhjXHEQ/TwwGuDfL3kPs2lNJp8DRjJNdoqfipfFI4Wn8rpbz9MefF3cqyRFVVmM/ntv/3faiZA07m5juXpuTXt1aJlXnfPq6PUmUWGp/fJj3mFPu2VB2nynZq3UJsjz9Gxx/bC4f2cUNlyqW3qZ3tglJl+67stqeY/m3fZXsXdblvHVTyzlhO2052h0o5E/CQcHdFcoK4y8Y7dLJ6R/stpyEAx5Bwki8Ht7gffVW5jRz3meTXe2PicfKUi4jfcTu2bFerVecI1cvLS/zpn/5pZ3N0fX0Nrc2Rm1S/+7pjRbYpvoHOAbZJ8UVhb29v8dlnn9k8Pnr0CFobS+D3338fX331lb0vVinzFXNOWu9oe8BtjMLgEOpFKXNiwMnJCZ48eYIvvvhiUFzZ14GuUoK3YaKiKKyFLmCs3U9OTvDJJ5/g1atXXj+563K6b3MAV6St12tsNhurQOPjoAzPqSgK/C//ywf4+3//CRaLEmWpmFVT2iLWuAGAau8lde4xMLYbl6/fwu9O/mApsN+8PbYu2oVzim+jVHa/ncLdAbPK40lhTJlyAMCF42HI+pVATfprGorDLWRJPuNHRwvzI4VNXows5Gf6jLvPleRwlrMUTz65wpvcjCVsVaG1fKVycB9SGCtfhaMjjbKssVrVUApYrabfj/SNm0/+/hO893feM/fEluaIYqWUtYT1LGNV+5s9bVj+VCp8VyzgWcbGwnUscEV6HLALgbLE37oL8JX7WTcJ0I4qbPOwRwvzNLQDF5PWsaFny8fOudp3j75rOEvVtp17oHPrp4tWXrKiheCB7m8L8MK5a62hGuV4M342be2XjyeTTLMJuDEia1mSXWmFQhV++QJQpULzsIE6Ulg/X5sji3dEtFbmV3wsFgucnp5itVq1R9lvvDs3wx+gFahrGueA+bxpjzsnS/uQxar7+IUDtZ2GZELAb/Dxd/8jG/5RCzpP89uN7c5PKsR5+PTvrlKdh3FjMfn5oKwbm7tzmT9/UX75/CZl8QFs7tcF1CVxuXOH+VS4EPBKv3nbahqgrhs8e3aLzz67YX55MoSI6wBCe+FdfZAneYbeaR9IcqTCc4rNk1VV2RNTiG5ubmxfj/EsyxLHx8f2o83NZoP1em395TqfyjPnZJ0UyXrYlt9QCpUjtQf5cf+2650cvUBOuHeUpm0/ELgrCu23U2Hf0eHQoeh83jba1dw8VIYhdNfy5lAUjA19gZRSAuYCK2M6R2xAHMIrFj+Wt6kp9wvBqShVV7GwY+tmiAx9cr0bQO+GpEJ/V+0lh38upT6YCKVx6AMy35RyZYuk0BehoTqZKr91XdsjiIn/arXCX//1X+Phw4d4+vRpZ6M0lsbKvE1bJMtXAPY+WNr0Xl9fW5levHiBzz77rD1ONJz+VG07Nk7uon6nlImHTYWPfVQQCp8r25BxSa5vctY4U7RNrbVVqhJASu2vT7kg8yhlrusaRVHg+PgYRVFgNpvh5uYG19fXqOsadV3beG/evMGbN28AAEdHR3j69CmWyyWWy+XWH08c+jg7FVE7pg9V6rrGe++9h2984xv48ssv8eLFC0+pLts/vX/722f41rdO8eGHx/ZoYqU4kMrL1JVtDFg1MnG3rlUsKbs5b6m8Diu5u35dkn3IV6j7fs4KygGxXaU9AQKOlwQIdCCcf0oLV5JLvk757yxiAQdOkJtfdmFLWQeEGzDE1AcBuxzgdccgFxZkdNa1RSHvjlXtsdUKWjsL2fm8hFIN6rppFedxq+ycfUjOWHr8wTGOPzrG0dMjc09soYx1ofJBWAl4crfUX1uqXlwFZyHrhVUuXck/Bsp2ANlO22cy8/eYG3Mn2XNJ3hsbuzOW85RuyTtjZX8MWcfSM2IlS2kF74xl+ecWq1ZOW5TKhlHKt261eCq3+HPdEElrWsX4FIButK1XXbQAL33L0ALLgAnntRPqg41CoQugBHRp4pdzM0fXixqNaqDX0+xRU+s6AkKKosDR0ZE9qjRkIRfeC1H/0ahr9zEKjVVlCVQVnzP4RyVpK1n+m7qBG2sRCEtjuwvjxnp5HL1zc+/hNBxPAFAirPP35fT5+WXuxzd+VEfduc+fTzhIGbaYlfGdnw74d+fRMRTfR3bDaG3mj1evVu19sMavrjUuLze2DcXaa58Msf0qH89T+8ht1papvRmXJ5ZGbM8Q4k1hi6LAfD63H2ASbTab6DUWtHanK3/IOpaOKw6t/XcJSvJ8Ux1NpaMbUp8pfc8Yuu96xkPTb6XkyR0vZFvL3ZvH5JFtNWc/H3PPBe5TdNd1dKg0pMx3VYax9jokXozGto1Y/u/72CXp0PJzF/002zI2RlMtBu6ado329/HepvymHLD23dFjoNldtqdD+PJjDOWWW1+4fed/ivoOLdTvUx2SUp8otiHNWcBOTXT08NHRkeW/XC7xP/7H/8D3vvc9PH36NBmfb+CmkK8PhOfPPuJ32yql7AZ4vV6jaRpcXl7asJ999hm01ri4uEjyvOvxa58UAhBTZX+fymWKepQbSq01bm5ucHJyYo8ho/uYCSzN4Rc64my9XqOqKiwWCxwdHeH8/BzPnj3DxcUF6rq2VppN0+D58+d48OABAHNk8be//W188cUX+PTTTz2A+B3FicYzKqvb21t8/PHH+P3f/338x//4H/HFF1/g+PgYVVVhtVp5dctPjfj+9x/h93//G5jPjUWss27lSkqwp/8biFvPEjBrwpgn5wHA42MxKKYQ7mBOo4dwGVFH/LRwS72Hf/t3D1JefaBVgsOuDJx/UajWElUCtg4o9cOZsBxk1doBr/7TKcBJ0U91b+6xVdayzRw5WrS8DKI0m5m7I4+OGpSlwmbTYLMBcr6lCO3bhiinHnzyAB/+7oco5gWKqjB3xLZHvaKABcM8oIvc+u6ILeC/UzyEeYTSUohYyEK8Kz+PIbcYICuByHDhxesAAKyVaCCOVUJKEFbBWYbmgLKqHasYmGrTkV1Qmz8PoFXKWalGcBIN7e50VQZU7Vi58vJQfvoeaNq06dOxwY2TQwK4FA5gICw/hlgrZ9XbutvslsqVJStTVbZPrVDMzNqwXJRQhcLmZAMUQL2p5fAxmPiaQCqc6eMdrbU9xYLm5dvb2+gVIOE+bMYmvqUwfOlDEX+cpA9IzNPEp7mOxj/imzNWK+XGt3AYCueDtBLMNfL54KoMz9Ny7mZM5iCpD6L6oKAETjm4LPPi4kO4afhVo4JhZd58/2nWyjI9Dv6SHwGsWgOrVYNf/vIGy6W7gsXJOHry93jJ+xWJN+2Dqe1PmTbxyFlj91Fszxnqj0dHRzg+PsajR4+s+83NDa6uroK8y7LE6empjV9VFY6OjjCbzVCWZfC0FSn3GL1sjCfP113rVO7T/vHrTlPsnWlfPJZon5X60HkX+kfO+x2lKVVGsY9c7htNjccM/TDhUOg+6OXvSr6twNh9A7FDvlwY85VDqtHvOq+5DcAqHRhNvWgdIouUYwy/UF3lfiUylN7Gr5dyy2XXi2o5ccg7OGNySuBxqk3XmH6y67rn6RdFYdPjoCAQP9pXytc3Lo3JT6rOJL/nz5/jj//4j+379fU1FouFtablPHZRtnzTzutcfnEtw3N5QnWSkpVbJkwxTg0pn0MEekNlHvJLbYgobKw9c3c5J4fCx9ykX6o8c7+ETcnMgVOyoPzss89wcXGB29tbfPHFF9lrC+Ilv/Tl5VAUhT3W8MmTJ7i5ubHprtdrO848f/4ci8UCP/vZz/DVV1/1tvl3FKf5fG4t6c/Pz/Hrv/7rdkyczWaeP6ePPz7BD37wHn79189RVQU7mtj1BaUQ+JMWsRyAjYGyrp06K0zOA8zNB2D9ZtEFZ/NJtu+Qgp67hxX9/C5Z/15ZAw4YBb357cYKUuBzINZ/8jhKuTtYqTw5OEEKdwOsmvAEdgOwwKwDbgmAdeMNHWNMwK1Jy9Ufgbxao7WGNXHKsoDWDarKIFezFjAyzwbrCaz2QmOZUgqLpwuc//o5Tr91imJmQFhrFcutY5UCAW4eoJr6k0cQMz62HgMArgVgRTqh35xXCKDt/Ib77QGwXv+IdIicfkJNkJd9zOpU+1au0uq1zzrWs2pVMFawESvZkJweQNoe7auVNkf88jh0fLHSXnl5gC3afBNQ2rR3uzZsPiWZlP8k61dVKAfcKuWOVAYDYluQSWllwNo2jCqUTdO2u/ZZ6AINGmchqwE9M4yr4wpN0aC+2h6MtUUb2YfQ3K61tidb8KNNc9YLqTm9rjWWSxdmPjfW9vJEBncCgJWuHWO195vGxjZ1G9a9S1mkmx9HUZtXEsw16RG46tymBWXNu/R3cobl6oKfNA9IcNb3j4O0Y4nLyvm7p8abN2u8fu2vTZpGt3fBcl75FqPklrOuDYUL7dGmpKl0S6F9J+df13UnLd6vY3nTWntWs1dXV1BKeVbxqX35kD1ibN+Us7c6FIA2RUNku8t89PWRbXkMobvSMcg+QR/GDzmauk8PENOfcQp96JwKPzUdmn5nl5QaA0Mk66ZvLJ+iX21LY9PJHV+nADjvAsPbZ7p9cowNM6X8HhjLKzUHjc/1yw2Xq/zMoSGg2xC++1gc5i5eUzRlWeW2hZQCfaxsfWkeCh2ybFNT7gSXA75wfmP6Yyhdeu/jd9ebCQnG8uNKSX65kJSbLqVU59iy2HgyRT5lWb5+/RqvX7+278fHx5jP57i9vU1uGLehVL32jVWpjYbW2quTGNGRpJJ3H92Hr8KGkOzrIYUE9x/Dm47pk+7yKceaVDvgSpQcuWTYofMvj9c0DZ49e4Y3b97g8vLSA0tzZQn9JlLKWHcfHx/j4cOHeP78ucefwNhXr15hNpvhl7/8pT2uOJXevtvt0PXnvomXCx1tDgBnZ2f41re+hQcPHtjj5ubzeVD2Dz44wj/5Jx9ai1h3P6xUhvtPIhr/6TjbeBz3m5TQFN88EfCDl46kcVXhFNxKyTUhKce7RxO7OO7d9+sCstKdlOSOh3u6+dYBtr48XcswXl7+ccX+McMGqDWS8WOLeRgOZhBQzo8npifVMx1TbJ6FB8aaZUDXfDG0Bo+tMWR4PtYevXeEJ3/vCYpFez9sqdz9sLQ+UaZ4+btCBBRlT0qjw4fihvwjVrQWoEUiTZa3kBwy/yE/7u5eVdA9Rp1jikVEbUxV/flWgK0UL/U7xDcExEbBW9ZXQkcMS1ksAIuu7JYfO3qYyoyOKrYysPRsGQkZbJxC2eOHOzLy+28ZmEvHFlsL2xbILcoCjW6gtIKqFAoUqI4q1KhtOtsQ72uxfkf9c7PZeB845lJqTUFHmtN4ada+aMcbSt/dle2PlwCNofTbgX9uXjHpu/jGzQGhoeOI3ZgLL5zJjx+WQE4K79KlOF138zsPlKV64MXowrg8tT4dPi6cjK+j/tkDh+PQddGhdzp2mP40Li7W+Pzzazd+bkFDdIBUvnxtT+vyFHiyb4qlz/MgQVnel1PHiUse5EYfThItl0sA7rSmFBCaU16x/XNoPxfT3e1DiX7Xdf+2UWieCa1zUvraWHvL0cX0tVXed2gfKz9MAJD8ED6VPj8BLRVO+k3ZDu8r0CrHhqko1A6ljiPVxmL8tpUnl3LmzV3rMrbl9bbpJVN0CHqsGHUsYw+xYmIy5SpTx9KQcgiFvauBdx9fg2w7MPYBtLH6fkd3S7scH6bchIUUjYdCfAFC+eRgLABvAco3rsfHxx3FJN0JSW580UlA7djNNo/DN4hKKZydnXXKt2ma6F04u6Ixi6EcnpLvy5cvcXV1ZZViHCjs+/AgR84cOqT23De+y48LuMKCKFYmvDxDQK/sA1KRMwRETI0TMRlSYeU730zQ5nKz2XgfLMgwMr98bKD2FxrjpOK2LEscHx9jtVqhrmt7JPLr169xc3ODf/tv/y3W6zVevnyJ1WqFqjJLQnmqwV3QISnlQkR1VZalHX/X6zUuLy/xO7/zO3j//ffxh3/4h/jiiy+C8cvS3Pc5m4WsYv0nwJ+woK20og0dU2yeIX6kGO6CsH77A/s9Zg5xymD3zvnwfqM8t+6dsoqF90EC/7cPznbjuXBkrUpheBbJIjZmGUtl7hTzvLxh72F01rPUX7ki1pUH6aYJAGka9yxLE46OLK4qDYAsZIHFomznfGPZ1N4u0EtybA6NobSuKKoCxaIw98QSEEtPGpfJSlaZIiY3C5DS8cHyGGF5XLFs+zyMtIQV7x0wmJ4SnAWTk4GCtp0H+oPDWl14v0BDTu34HgBOLG8JoKgWhKV0tAA7W37cP/TUuue4YrDwlDaBoI2zRiUg04bj4KbWzqq1Ef4NnKUqO67YWrTyMmN3u1La3CLW49cea+xZySpn6WqBVu3iwWE/Lh8EoNkPIYxlLDQMKIsCutHQ0CjmBaCA+eM56tsam9eZnSxBUhFJH00B5sjS9XqN169fY7PZ2A8BQ8rLHB1ESvm+Wun2iHPHryyBo6OCzTV8LtHeb4ojgVM+7joAlssSH/+7nWmcO59z3HzkZAnHpbBxYDYsg8chFjhBw9f4vky+FS4Br00D3N7W+NWvlmgaE2a53LRhuuvOcDr+OjsEqKQAu9DxxPeF5DobyOtzq9UKSinvWOJNz+TMT8a6vLz09p05e8DYniZn/RYCloly039Hh0dT6R/4epHcJP8YODtWBlp/8n6xC5BLtvlcYPpQdY33hVIYzzvaP4XG/j4d2aHSfWlDwWOKYx1jm8qQg/fQAoqlkVLmDqEYnyFy5pRZzgQy1cC+a2Vmn/I5J17fF1UpXqk2sU353ZfOSyQXRVOT7K9j0skB22Pht+2b92GhRItNIrLQlGDQbDbzFZToLoJDE+kUxL/yLcvSfrnIablcZn+5yGnsQl1uDPp4S6VDrmIBMHm7urpCVVUdpQIPO7bsQxsc6X8o1AfEphbWOf05NbYPnV+GtsOhNGRdZJRiRqG6XC5RVZW1nDRASvdLehobKB+kEAn1ewD2flhS+FRVZb+qpzC3t7dYLpd4/vy5jU8fhAwBoGP5HLMu65vH+trE0D4zpp+GyoS3yc1mg5ubG3z44Yd48uQJfvKTn3TA2LJUmM9LLBbOItbwAHu6P5OGe/phwmBrOhznqYQbVzDEy2pI0RnFu0lLKsHJXSqg/aOIKX2u1HdKdgrjy+bCO17ddHhcvwx0q7wnay5XjuRGZWfaBL1rr5wJkDDuFFfZd1nXfnzlWcaSVa0B7bW1kuWWslWlMJtRWxw/X3TWa4VCuSi9o4n5/bDeH8URQGcfOCotN+mdx/GUxMyNA7+dNPgT3bQ7fnD58No9j+ML2pE9hsF0wgG2SWphLW7vX20tY206Gp71KNDWlzJxLIirukpTpVoglsIxGawfyUhgLgtvLWXbtD2rXeXk4Pmy6YesaZVz52l6eRf8iIdmAKDNv2IWsUrwYH9KKQvc0vHF0jLWuun2WQJFZY4tLk9KQAGbi030Ht1tic/ntK4OWcaOWWeH2oa5V5a3Qd2OJ9p+JEJjk1v+0pgqKrDz27ybdGms9a1a3VjKAU8fZHVjMY3P3I14dq1dze/U8cVOHhrXTblw//C+tDv3oCM/ryJ5tPF25OZIoqahI/adJSxAx1LXePVq1VpE5+unQvulITRWj7YNgBOiXD1EKlzfPk/6bzYbFEWB5XLp9WlJnB9fq69Wq1Hl0Bc+tndO5S+0R9k1Dcl7rp556nZ1qJSjNx+qt0jpKULu2+pF+Nosh8e29co/sOdPSbkfr0wl1z4pJWuOnkbS0LLKpV3PRVPJINvBIenyQvLIvpbCBGPzR27a+6B9970x9bvVnbFDyFfyhAsm1UiHgrExii02dz05xyaw1ASTq+QsiiK4qN7FXZwp2aaiQ5m0tv2AYGxah0axQfmQJhQgrignv0Oj9Xpt+39ZltYqDQCOjo4s2Nk0Da6urqC1scLadmPMKbfdhSZcOj6Jy9InTx9Qt03cIWVBvOSXvrRxJp7SGpjqqSxLbDabvbWrqdLZdpwJbVCmGLeo7ci5LLQoDG30pugLuyaSj9oX/7AiRh2QIBGOxo8XL17g6urKHoO8Xq9t2dZ1bX8XRYGzszOr7JVlmBr3c8cMWlsNrZuyLFGWpS2r5XJpLYLGrB85OYXvNAouriS/vr7G559/jpOTE8zncw8UJ/rGN07wr/7Vd/DeewtxV6wEZcNAqzuW2N3vx59A10KWZCd+pHDmfubZzSfPcnd+tb865RICTFVQYS4V+JInV8jHfof48DAQ8dxT3iNL70WhrWWqvHOW8sHLnCxnqY4MiKpBYKqZy6meYBXlBVkWQnn1x5/GMtbcFWuU+UULnJCFLDCfl1AK2GyKVs4Gmw1Aet/QHiG2wZY0f2+Oj3//Y8wezlBUhX88MbdW5VavYO1YHGUc/GOWsiRXURSWn+UTCkthoDp3gHJZOPAaAmjtb/KX4Cu5UVMSNGYutKCiBGlUW0ckg3bheVhrYaqZn2L1q/0wVnYdTksrY3VqeZlm5vjIjEurWWEZq3VrxUrpyPySHPRsLVitVa5y/IgXt6rVhXYgNZzMumjTaS1ovTIngFlrC7ja44pLNvaRxXpVQCsNXRtgt6xbK/RHDZrb9g7ZgRTqZ/IoRa21/bjKysTm1RTvIWCMnKfNGGaOPb9q88b9Tk5KzOeFsJb1/0xY90cfxdC47/qeZv4ku5WScsQlb+PL8cyNy26u4TxsyDY8L2cevhvff/f5+DKExwBeVVLuXApVt1v/ujDPni3x/PltJ56pYyejbCM5a6fc+WIqGjKe7lKHwteMnPhHuSGrUdonL5dLXFxceO7AuPwN2a9LeWIn6oTi00fHPI+3t7dBIHlXNHStnqNn3hVIe8g6vBiNlTm3/cq9esoynuYc+k17Kn4q1FD5Yn65eQ7tXaduH4esU+2j0DiS0sNOSfelv4XKJ0T7yEssjft8YkUf3Yc2AiTA2L6JOpd23fCGLGpSQG9uY0zlZ9sySymd+3jschG6D4rldeyidSj1AUS77tBT8M9RRst0cgH/vjgy3pTtJnexMmQBkLOxyZ3sx2wYqH/TApQrJeV4RAAKxeUKRLlJzAUkuCw5FNq4y4V2Tl/NaVuxMDn1mxrjc9zkByzcUpA2prz+ph4fdz3ebjPOpIDYnDrPBcqGhpFy9bWffcxpOWlMvQCm/JHi9s2bN949czz/HOyg8SZkcctpzNqHeA35mp5kIEA2VwHVJ5uUMzQXDlHS8PImJdf19TW++OILnJ2d4ejoCMvl0n60UZYK5+dzvP/+Eb75zdP2WNmQItsBqG1KLE03B4TikVzmp79+6Ybz8xF7l2XV5R0sMi9MW4ptWRqlPCm4/Xd5lCWVvwsLZpkqAV8KS26hNDpSqm48nqbLv2bvPH98bpayO4ABkGCErHPNfnetbJVyIDxZ1hIw7/4Ke9x1WSp2L2T/2iA4rhcKs7MZ5o/mOPrgCOVRaUArdjy2tTjsFKz74+sb/mfTonKFs5Al904cwdP+hpBFIcjLS5PCiLYfsuCMgbDRsSlnyNI+X3uMMQNQgLZuKJiwalXUDxSClrHEh/OgdK21K60jpRUsd28jyztlyc2zkGXWs9ySl2S0cUg2BiJTfEo3KjMDdfmRzp4FLtq0RVv02kkB74hj1bR5oCOPtekHWmvzEUJ7n6yuzLHFup52PcHrnP74HJ7Tj3mY1JyXQ3Ut1/fG6t5Y59O4xMen7j2z7je8dxrvu2HTbm6e4OO2+8jH5Jv8eR+gsBQm5ef4mncV9CeSPH0/l4exy09/v2X+1mu6Q9SFubmpcX1dd+KETvPhYXLbxtA2FNunDdXp9IUforfI2bPLftOnj4utL2ldzdfAfC8Z68+pPf22+7jYWla2F3l9Us74MyXl7C/H8hzqtw3f+0BT1KnsY2PTlP1lKA1po6l6kzqeXYBW/t4qPhbssn0N5T1ETzck7n2iqcfgqctlSP2EZJH+sXVNbtgxskqZhuhnhvJPpbsPih5THKOpGsshdcgp5Ih1rlBa2wxiuXe5kTJzXw2Jp5sTpm/SHgMSvu2UuyHZps6HbGgOmbh1I6fQpiNGQzenueHlhm02m41a5M1mM8znc2s1S7z5GBECnceOvSFAeGraZlIO5TO1gAjxub29hVIKt7e3qKoKT5486SyW6b5Nis8tmsfSvufDbdKLKTFyFnQpnrnphtKQCiWp0ExteHY9pknZ6L3P0pNT3105Mp3NZoM3b94E+WttrG2kxc22C2hezsSLg7yhOLF0qV/NZjNUVeX1t6FEZVCWJZqmid7XNaZ9Nk2Di4sLGLC1xF/91V/hZz/7mbXqpbt667rGo0dz/Ot//V08fnyExaJEVamIVWz4zwfdjEx9FrH0dOWAzrv5DQDxd9/P70spMlXLldl0dKIEZH3FOTzTPT6XhfzCv3l7kZatISU/lQ0d8Wji+vEMOwfKGqtWfmcs1Qs8N7KMdWGNP037BNaaetSQlrFlqWwc87tAWRpGVWXeZzPzvliUKAqjyKrrYQot2cdmpzN88198E4v3FiiPSs8q1gNl6c7WAhbEVEqhUEXSKpaDY55bwBKWntYfEQvZED96MtmoyXi/I8CseTg/7m79hFsWKVfuHT4Wl+2xamUUtFxt+5XyBTZuBIBqdPlr+HfEKhirVfJvhBv8OGTBat+1ebd9nAFI1Hbsva6cp2rzRYBo4wOu3v2x3DK2TVtaHFswWTPrWChjEdvA3R2L9u5YmLwUytwdS08omGcNbLD93bFAfDzlRyfm6Br61gg5FFq/0d9y2WC5JCs7QKkCZQmcnhbs5AaKo1k4Pv+4J4WlMd7NB6EPd9AJZ8Z7gH9ww8NTftxvWdY+0OnmGTB+WrzL8uLzYrosc8mfP52b1hqrVYNf/OKaAbIuHF+jy7VwXdceGLgr2kZhv234FPE9w5A9uyzLGF8iuU4ifRyBTLnpEyDKP8rOkVfKFBs7hlBfGQyhQ9IB31faRRmOqdfY/JOzRySifSLfHwM+AHpX+seQ3n2fY9ih9ZMp87LNvj4njNS3HgLtWo6YXkm6x+SIzW/bYjW7wiYOpV6JQrrKPtrbMcUhkp1w7AZiSEWkGk7fBqePx5CGmlqkjmmwMdnHNNJtJ7x+Bd32X1KE0jskoHCKOhzqHwsXWpiPSesuy3fMGMDbRWqcOYSBvGkarFYr+07WVuRHG2cOyhAIGANciLZZRPaVVQ6vqdvN1JvJEFhGm+bNZoPFYoGzszP795Of/ARfffWV5RlbpAyVa58U69+yn4QWbjF3Ho+HG9I2Q2F4uFA/zu3PQxflMr+heWaIMifHTaYbCpva0KYoZ0zPHfdDG6hYGXElUO7GK6dPpfjE0kmtvYaQbIeU3maz8Y6f9+8BN5axZ2eVBV+7fO0v+5sU1VyhTf7uHdafx+V8w2F53wq9x8K5tHy5qUxcuuFqdKCoU7QTX24lqy0f4qsUKb67FrIyvuTPy1cquX1ZCYD14/E8cwW+X67SMtbNLzw/vD4onKtr/ps/nbUs3Sdr2pkOWMmivUfWWMeG6qFXiaaA2dkM1UnVAT5tX2J1z8FO66esZ+fPs2YltwB/zksp5cWT4WQc227Rlaczr4i23nnnbjkAbMxP1EVwfUrsyZK0tf6k8FrrDn/PUrV9t2Mvd+NWrczf+ok7YokPFCyoymWQ99sqpfx7bQkc5WXPwW3V9ZdhCTT17oplsspyJ/7W2pi1Ca1YnltZ7bO1hiU3KPh3x7ZPVRoLWTVTKBYF9EZPZiVLcwrvj31z55B1Sd/cGlrj+XO6H47GuPW6sWMTjVsUfzajj4fCH9U4sJTL7vzD7y6cmxf4WM7nBTnWh3nJuG7uUYEwvgxxv3xyZQtsNg1Wq8Yrb/JbrYzfZtN02oqzTDZUFAUWiwUA88Epv1ohdw0+lA5hXy0p1EfG5r9PCR3bK6fSy+m3ufuQ2P4oxlcSbx9jdEh9dIjt466obz8X20Pn6PF2qbdL8e5r7zFeUn8Q2wePkSknTJ9Fbkwn0hf2HYUpt4yG6GyIYnqKKWhIvxqjo4qFHSJ/LGyO/i6HX6h8h8S/77TNXC7pTsHYQ6GU4m4Ij5BbyH3MGfj7pn0DVjmLihiNafjvKEz3tSxDQNKuFfJT0s3NDW5vb4N+tJEuisK7p7UsS3vvJB9Tcib0sXRo7UMuhuXiPbSQ4feShkAu4rFer/H8+XN8/PHH+O53v4sf/OAH+MEPfoB/+2//Lf7gD/4AgFm4v3jxwlo5huiQPhJJ0RSLVqlEBHwr9V7lfyBMX3q54fo2TjFKKTpi/rGwUp5cYHrokU18TBgKWod4pcDk0HhK79wqNgXIhhb0m83GWpjG0gnJ01e/8l7iKUne6c1lUwqYzQrMZqVnEessYwGjNJbWrHQcLb8r1vmR8tuF50+uFEGHN7nLd6lI4Xydexz8NXkGCAylpxsfjCK+aaTymkBa3md9pTlX2vsKfKr/EJCqGG/fT8ruvzurWJdW2CKWwvrl7PJA9WT6s6sfujO2aUKWsbp9mnjm6GGTLoGx3FJW6wazWQGtDQA7nzcoS+DmRmO9zlMu8/FbQ6OoChSz1iJW3BUbAl5duwxYtso/dIFUeQct/ZZhokBsa53L3Tnw2gFhRfsPAYVt7UrcxoWV1De0kj+rEn5sr+fOjuCl5tuxloXPh4OyNhzvSlwODb+LaaQtYuVfj4WstXZtfysoNKpxvCkOt4otmJuCA2qV42HB4kJbNy631qzc2FHEHFztyNfGU1DuvlzA3R3bFMa6t72nWc81qrMKKIDN6w02F+MtZPsUzynF+hCle+7aRa6HedzQXqtpNN684TIBNDcopfDgQYnFgo5mdacCuHmKz0X+vBQ71l6mQ+MsH/fNb2kx68fp+jl/f26SYWR+Aa3jZeqTm4dcWdLTyPTy5QpffLFk/lKn5M/TMbBxNpvh137t16C1xsuXL3F1dYWXL1+iLEtUVXVv9ihT09A9Dt/fyL4R401had0pw8fW9qE+NkbmMUT7X8CdbrPNsbHbyjJ1nu9Cj9G3jwxR7MS0IeP9kLBT0VgdW0g/wNvdmHxIWVL8ZP/8uo6L72g4vWsr72gbGgzGppRyY2iqBnzfOkIIRJD+tAjiFFrMjVlQDiW5eJlqITOEzyGBQLugIQr+u6C+Rd3YL2KGLhZjYGPfVzp9fW4fxBWRRJvNBsfHx3j//fetGwewNpuNBfz44nyz2djjO2MbvX1Squz3nXaOXwwAlHJvNhssl0sopXB2dobHjx/jgw8+AACs12u8evXKAkchXndZLrugvn4jlRD0W5Lsm3wcmLJvhoDPkAwhirWREI/Q/Jiaq1NypeQcqkiIyTJ0HUHpcot8OoI3duQdV1zF0g7FI6t0fjyjBAi5uwcgifqg99DduVNRKA/kVpYK3/veOT744Lg9QrarfKbwoXdSZnffUwpsy4X58fYp40gAmNw4CKsE6OvXhytXwCmaORjrjiim3+44X4rjI0ZGkR62kKU0XT06EDYU1/E2T3/N4ADi0DsBseTmlyMp7Z2M9BcGEDhoy+tTW15dy1h31CeBsFR2BNRKcL8olD3eOEXB9VShcPZrZzh6fIRyUXrAqAXFqF0Efls3akNw6x4LjkJ1w4kwMi2ZHgdaQ3w9sA++nBxcTQGxHRCW3Nj7aPLYKHQsSBkIS1anULDWqdSkbTtnsnVAWWa9qqB8K1Zm/eq9CytZazHKwnKw1B573MoOwLeQpfSV8uJY0JiXSVt3Nm3lgFKPB8tDpzyZbLzuednJ9JRyFrIW0FXKHsvNLWPJOraoChTzAmquoDcaGIhb5M7nfK4L6QxC76k9UGgN1kcpQNZ3c2MgYCw5m4Y+NOHzjeM1mxkLWj6nOEtaCufGzk5jA421lL4DPPn8ZH76JxgEcsr8ef5THx/5soTo9rbBckl3ujr+FJ/XzfV17bl312zxdCi/BKTN53MopbBYLLxTmHZNd7nfzqHYGj+1H4nlJbSPTO0tp9CdxtbdIf6hMSEmAz9O+S51C7toN/tsi6F9C9Ddx8X2dan6zUm3b784FuDM8Q/1rW3a0Zh6G7rvl/t43s/G1sWh0ZTt/5D1W7vq5/vKY+68kxN3aHxOu8rvPsoxpWM7pDXJKMvYQ+psbyMp5R9vN/bLoLETx7v6fUe7ptAk07dA6gOCczZIRARe3sVgXFWVTbeuayyXS3z00Uf4u3/373phaAy4vLzEf/pP/wnr9Rrz+dyGWS6XuLm5AQDvThlZVoc04UxNY+owVjaxDedqtcLLly9R1zVOT0/xjW98AxcXFwBMHfz0pz9F0zT2C/Mhd/uMpUOvU9q45JZDaPOWAs1y+aY2gFMsTKccQ8Z+6JIK2yfbUEVZURSYz+cWfL25ucFqtYpuVOW9P9xSlvPk8iil0DQN6rpG0zRYr9fRcpZK4Fhb4eH23Xfm8xL/7J99jI8/PsXxccnuh+V/LjwpmklJ7Y58hBfef7owTtHdBW8Nf+Wl48JxBTgCMiqrSHcKdeXxIzKgKwdknfWUfFdKwy1xOSArlUk+mEnpyHSNIp4Ds8QvRPxuPR1452n4gCmBAn6dUVnEwNRQHF7XZC3sg7IEwJryomOJuYWsAV7pWVUKda3gTA37+zp3L6oCH/yDD3Dy8UkHjOXAZwiQ9f6KeDgbHu433UGLIsCL8ZNy2DhQ9s5Pz4/VDf/tuUXAWc+fuwXKbSx5QKtIwFrM8qOA4YeTlrIdIFaAmU74gJskBWNVCneELwBzR6tmbsoPa+9rbQSvNq60RIUGdMPG8hYQVVDWqlXBPz4ZaPcGPI8clOX1qmCsaBnAbeXQ8C1kNZz87W8Arm2VCgUKYyGrgbIp0WwalLpEfVlDr3a/h5ZK4hioxIl/3BS6yz11Px+t5+R8S7w4H/lba42bm/51ydlZidPTUoyXfB6j+N2nnEP5k88ZZn4A++3mBykWD+sale6ESxEHabUGXr9e49mzVXCd1gdY5OyTZR3QB3OLxQJlWeL09DQJxt7VvvhQqG+tLeeOWJ3weyZlfwulQ3xCa1m+dh269xlDIQB2G2DgbaBt+kUMGImB/9xtjB43Ng7nxp+Ccsqqb86KlRunITrtvrAxS+SYLOT+Tmf+jqaknHY/JGzfeED0Nrbj+7Ke8cDYMYPcPmgfBdm38BgjT6z8+OYlJ07OJiu37rat023qYminuOsOFEs/56vCbWmoknyX6acU3UOob2GZSidn8Tm0rO6qbENHWc7nczx69MiGefDggQVeX758iaIoUBSFPZYYMHf/8E311wGADY0hsbE71p5SbYk20Bz0rusaX3zxBd68eYPNZoPT01NrxXx1dWXrczabWYu+KSlWr6E65vNKavzatn30zS8dZXdAJr6JIXf54VGfnLn5kG2hr41wGXLS7JMjlJeceX0sGcAmbS0/NE0KX1UV5vM5jo6O0DSNtc7neQyVd+i3lINvmuXRaLG5I9am6F0eS77ruZWnT+N2WRYoSwdoxhTLvkI5BsJyP6moDgOxjidPTzE3DsiqDmBM4Ls7Jrnw/F26pHzmlrCNBWGVajxQFmgs2KkU0DRcUc7bBeWJ6tEo0JXyf8OCqb6SnZUqfMC3q5ynd+IRA35dufK1Er+v1uWBl7lvAcv/OIDrg7D8vSh0K5dq3YycIatYU54KR0cFyhJYLrsfQ5i8OWXvg+8+wOLpArPzmXcssQWvTHW7/CtYME8pZf34WOC507/WrQOYRoBYCfgG4/K6CfjZeKHfvE6Fu+fGQFuPthhOuEWpveNUgLMxEJa7hd7tb67ohwNAeboEcnaeIl4U7IU/Hsu4VBe6cXGo7Ky1Kx07rJTn5t1VywBqbqkLuHqVoCwHZkOArS40VNPeP0sWsG171O1x4RaMFXfHqlKhnJXQC43mpnF1OICUUh6oyedQ+SFRqA/TPCd1C7H1Smh9EPsdWneG5tJt59Tb28YbZx07Ba8rBsbhk5MSVeUAXB7O/4hG8ohZpEkXVx51rXB7a4DO9XrTCd9V/jvP5bL7sWZsDST9eH6lW6heANirHl6/fg2lFK6uruxJPyn+U+37ie5apxHbA8jfMX1Ejtxy/Znin+PP6yLVN2V8cgut/0Phx9Bd12eIdql4z+GbSl+65+wtZV3xeKG2ltpj9sWN0dDyTI0buXvRnL1yrP3F2nwsrRQAy+OGeE4xNh4KzvI2UKpP3VU5D+k/sTkpRTGdaCo8TyPWT3P779vSfu86H1EwdmgF32cakq8hm45UQw+58bvReLixg/629bUtuJPK+1T8xvJKpRHjt8uF3iFR32CdszkM+fUpE3LKd0jahzpe8SM9qc8vFgucn58DMHn64IMPcHJyYv3KssRms8FsNrN8bm9vreUZxdumfd6H9h2Sr29xPoR30zTW+o/4rNdrfPnllx4Y+/TpUwCubpQyYCwHYrdpf7F+wjfaY+fnXdRxTM5YOD6P5vThvrwNUXbE4o9ZB8j33Pl+yLg1ZjGfM9aO6S9KmWOKF4sFHjx4gKurK49fqD77lF6pMiPFcuje4b71gCwLaZmwy7GO0jGgmAFi6Z5YpUgmrix2yIDvHwNhweKHgD0X3vCX9eCn7aflg7AG3DPlT2OdBGNjChEDDhQoisZadTaNBkDHLxprTg7KktLbgalhENa8uzLwFd/SeklZvt26cuXBgQD/twNaqfx80MCBwF0/V0ek+OdhZX351mDx44qVgr07mI6+diAsAbJG9sWiQFUp3N42bfmH279SCg8+eYAHv/4As5OZA2IFQNoBK5X742GUcsArAWFefLA2JC3GxbHIXtqRdDoArNcH/PcgoNzpjwi7MXfKR8g9SdqBp1507WSyFrM8fQ139C8HccWcywFXe9Qvc+fAbRKIFccUS/DW8qfxmaXVeW/z1Anrhj/3DLkJfh4Qq9g8zurTA4GZn3f8MfVLygelz0FZBR+MBQwQqxWKqoCea5S6xKbI+xjPjQPxNVBsDg+FD11rFEuP3slt6DpLKutia73UWiBE67XGel17brn7EnNLSGHv3aZx0qQL6+be0fmdcnPyAOs1cHGhsFo1uLm5ZfFMxNAJIDyMXKM43mkgNsYvLKeJS3P269evAZh94+3tbVaZ8jTeNlCW/07lrW/9KvmE2nxOXmXfCvHpA5pC71PSlO3gEGhqnUduPQ/ZzxLlgCipONvSkD1rKkxO/5dh+nSQUs4p851KOzaW9LWDu9S13VW672haGtKGYv0pF7RNueXSXc4bsTlzVzKN6WOjjim+S+qbpIbGjdEUg2XuIiwnzX0vgnKV60P5AIc9GaRkO2S5h5BcQPQNyLENyNB05Bdo24AO95kI8KPfgNkgv3r1CoAphydPntg7SOnLZsDcXxpb9E0xXt1XGmJRGWvzHADidUTuv/rVr/BHf/RHSYXXPig1R+x6nhjLO6WYCikYckjWT4xCSsep5vactsDrRGvd+yXuNjJRGlpr78OAmPKPEy+bUDuiuJvNxh4hLNPlT/JLKZBidcc/TAvNP6mPFGL54vLseqwz853C//w/P8V3vnOG995bBIBYB7SaOC4u+bv7ZZWI11XqGjffn/j66Uh/nl5hnwTCGsvesgX3SihlLH1N2ALdcjegJSmk67qxY6o5wr1BXVPfkf0SHh9YENUBmACBncqm1Y0LC/YSmqWUdHNKe9cmwnfHOgtX8uNpEoDq5HLHEXMQ1sXp1pU8llOjKNCCqnQ8MdUR3bdrGPrHFZP1rPkIwMxjdISxKyPev7wxUQHFrEA5L6EqY/HnAajtH3+39R/4zeNwgMy15wAI27oRGCb9omkWXf6hdD3glf+29Qv3zoFCsPAsTJRi/uybARUIxK0qpb93N6tw9wBQbrmqtA0vw8XcOvlgxxRrLcK3gGUH3KQwBZwlLB0DTGEUk1GCsnTCNvX51jqWg9hKsbtnAwCrB8q2xx4DrTyFsdBFAWsRy/OndQuEFwiCsPQsdAFdagPINhrVaQUUQH1dAz6u6Jd7RDnNx9MckCg27/J0OMBDTzrhYrPZYLPZRAHEmCydsSOSt6F6kFj6fXR5WeP6uu6ET0UPzRk0btPc9+jRQ8znC9zcXGO1WuPi4gJ1rVHXBTvhAV7ZhtaHqfLry3PuHl2ucbV2x+M+f/4cALzrbHLK9j7vC/toV/sZ+s3Dh8oxtS7fBojPiSfbSR//+9AOhsp4H/IEDAMjD5mGAjz7yGds3gyln6Oz/LqPqVNQTvkMHR93rRvbN23Thsbq3N4WusuPIWI0CIzlirVdZiTFOzRY5soSCxtrlKHwfYCppD4AKleOsXQXgFefvFIhnTtB77vzDJl4pxjYdpW/Pr4hZTenbfLW3RhPV159aU290R3jH4tDm3RKe7Va4fLyEqQI5/fNyM09L8NY+ebkbQri/IeklVs3ufFkmL5NZGxhxpVIVNbkdnFxgc8++wwPHjzA0dERgPQX8DFK9YHcvhpSpEwFNEqKAV9SrqH174Mg8fE2Bub1jVuch/ydK2vfXJ9TX6l+uqtxMAZaxtY/5N40jf0IRNYpD8PB2Bi4LPmG0k+VI/cLjTOy7YR4hZSTfWUwhmIK9e985xTf//5DHB2V8O9+DfNx/iHwNObP43cV0b5/+N3MO8o+CYglqxr6IKiqylZJXVpltbs/1pUFjZ8GRKzRNHSHqQEYqTpNOAMgmrtSOyXbhjN+BKY6K1UFAjrlscQU3snlQFUvBc3bGOfn8yG/1tVLy5WlDxpLOUgGV0+OnztKU4uwvA1QGL9dFAWBsZrVIVnOUv369S/HUFWYo1YJhOUgaQdcBWtrrZtSvnWq9wfGB3684B8cPx43BfhKwFXK6aVvRVCdcJ13oCu3JM6vj5QPuALwmlJnnuJiSKtZ7k5uvD0r309B+WGY5WtHHuX/tscEt6An/1aCytamSemEZAuApiSLB8aSjPQhBFwYD2gW4CvF74CyfB4RdUwWsTELWbprlrc/XbRhWrCWjisuFgVKXaJZNtD18DVRH8XCcN1MbH0h1110HYe8EiCUVkppzd1kuH3t229vt/tIUspdliXKEjg7m2E+P8J6vcLt7QYXF2v7saZco4TeQ2uXULkO2afwuHKdLPPBP/jl7lV1t7YYd60QHbIH4XFkuNw8xHin4ufsa8buIXjbCrWz2Pr760ZTt9NtyzK2t9tFWpLXIZXDVCT7f+wj7xwA61DyxOkux9gYbbPOAYa1xZCOgN4PjVLjcYxywsr5Lactp/i8DTRWb7srGrUa20eFDNmYbKtYpfQOhYYCHLENDz/CNBZ26nyPkVcqbN/RdjTloumQ+sVdUF85jinnuq47bZ7uJH38+DEePXqEJ0+eWL8XL14cXN/IbWP7aj+h8SSltAJ8ECmmiAotyJ8/f27H1pubG2w2G2itsV6vg2PuPmmbjXNosRpTRuQq40Lvfen2ufP0hsw3Q8plyrVHbDMwhleMCPwqyxLn5+f2KO0XL17gyy+/xHq9jt5lLMtHAqdSubtcLrHZbHB7e2vvHpN5pA8ZQv1SUmjzS0Af8Viv196HKMRPrpW4co3yQeMtAYsxpfFURDLUtbFKrKpCWMUaDb/FfpQE15QF18y7DNMNT+EMP+kWCqeYZaW7D9a3hC0wm1X2rnL+rKrKA2vluNE02gL2db1BXTetBVaNpqmxXvP7ERsYpEODjiumo3QBsuhkyA8c8ErJcuDUxQuDtORP6Iq759XxcMCtD6668nSgKAeDfSAVNl1TPtqL7+oWgj+1AY2mcSCsuxuWLGPRPqkezZHPxgrWWMbWtbb+SgHn5zOs1xpXV3VnQ37+t87x6G89wvGHxyiqwj+iuLVUtXXdglSdMaLww/Cw/F0pFbWIlU8oWKtXmbZMJ+ZGVd5ZG0h/Bs5GAVjuLptUJnnxOfAJAbIq5Tfdttl2rFlVO/5FhBga3lqw+kK7bqpZGGbtCgVjzcrTbu9iJb5as3dW1jbdpn2iDatdXEpb3lMbqruQZay1nm7T8CxjSU7KR+HKSDXKt5AtFQoYi1gAKKrCyKU1inl7ik2x6YLugvh6KjSf2aLvmZ/MfFN776mwst/RuM/3JjQ+yDvXuUyp9UyO3IdEskwAs3b44osv7G+tdQvSmg/WcpSgfD0k0+njIdfbHHDn77yOYkTAu+R9V5TbNu4atJUUqoNYOE6xNX6IV07byElz23C57fS+Ul/bmlqXNpTX21TmuXmX88oY3Vds35maY9/RMDq0cVmSlG1bHcs+aYic9yVP7yhNHhgbqlSpZNkHpb4GiymHh9AUPEKUq5gdumDq+zpu6IC4zzoNyRaS+92AMp7kpHjIE+S2lMpbzC/nS8JdfPXXJw//vVwusVwuMZvNsFgscHt7i9VqBcDcWUrKcQlIpHgTTd0eOOjRF27sZlLyDymrOMn2HxsbYxvk0IZTpr9er3F1dYXr62tbN8vl0tYJgQ9Tj2Wh+psijT7FWk7Zxdxz+lyK9xCKpTW2T09V3mP6aahvxco9lmZVVTg+PsaTJ0+wWq3w/PnzzpHFueOTTI+UvvSUd1bz+NuAnaQgTil8eV5ieZBj0L7mxsWiwGJRYD4voBhIZHEf8aTfLowS7nzd5Mdxzy5/7sZisXA+yOusXYv2rtvSA18lGGssZKXyxCmIm6Zu+Zt2YupCoywNYGGAQprXZB8AONDpEB8JwqpAOOmOTjmQW6hrc/cu3zDJODJdU0a+PK7s3XHI8n5aHrdbZ34b6Pope3yxUkBVEdrVHR9nD2Y4/ugY5VHpACmv3QXWmEr85u22/U0gqn1XygvrgSACcLXx4dxCoGwH+AV7BuSUlpGdODwvXn8TjWiK4USylEcQk9Uqa9bKoI2enx0LFXunNgNhEauZhWubJr9/lfwoHrn7YisfbFTwrWARkVOAqDJPFvQV5UPHLXfuiY3wC5UzWffy+pfHHMv2QW52DcrCeG1OAapQKEoD0qpSWXA5dy1CdSPn0F3slUPr8z4Z+fgsZRrKayjtS/nL9xpa+x9ZKqUwm808eThYEFuPxMptW0qts2U6faeR9dHUyuwUr5Q+Y5t2kLvmDfkPkWOqNWdOvx9TJ9uAvm+TfilnvJuCcnUmPDylf190o7H+wNtYanzkv2UcnkZOurl7xpCeaciHCim53jbap545dx0yhM9d1NHbNFYS3TUI36eX3BVtq1vvk/Pe3Rl7iDS0MaSO9RvDOwbQ0NebnORmgMJwEOFQB5C+Sfc+LVympEOtr31SXxn0tYupy3BKflVV4YMPPsCbN2/w/Plzr5/ue7ExJF9cUTGmPEL9eVd9nOSjL8w5eFUUBU5OTvCzn/0MP//5zzuAq9YaVVXh5uYmyXtKOUM0Bvyekrap6xBxEEC2c2pbBAryOKk2EmtTORQCSHM2zUP6qA9GDVOQEEC2XC4BAE+fPsWbN2864WQZheZQ+ostfOmOOVk3UrnTp3DjbTbEj6wvV6tV7/pElhn9JutN6tu7Gj+UUhag/t3f/Rg//OH7ePJkgbJ0oJkJZ2O1cZ1fUfAnLNAp4zs+7l2WDY/Hw7m0ugCsOYa4xGxWoSxLzOdzlGWJo6MFyrKy72VZtfIXnfogwBUwR19uNsYqe71et9ZXmzZduruusU+0pnYEzjKuHrDJQU+XbteN3JXygVsKJ3lSeUmglsKYvIYsZWlc6ip7uJ9Lg9cpKenlEygK6hvuTtim0ax9xO6M1ShLYyXLj4WuKtUBlqntllWJYl4Yq1g6pphZxErwyfbVFoTy3gPhpbvHm1nfct4hvrHfQTcImeH7hUBZz8KS+7Hwba133CYh2x4ZoEnubOhK3vVKba6D9IbdLdDJjjIOPT0Zm+7TA2FJxkI5a1mybm0YH5IL2oKXqmBHKLfy2nYC5axn6S5bUZ/22Vq38uORbR3TXbaRu2NtWWsmj7w7trXwLRpjGQsN6JmJWJ1XKBYF1q/XzhJYVlNivu2bp2i9lWOlGZoz67rG1dUVtNbBjwj5O80P3C8VPpXuWMrhNYWikK+/tNaYz+f2Q1i+3oyVQawOQ/MkX+/wesxdp4T0IXL+oXoLnXgiZQzlQfK/ax3LXeg7xqQZ26enwubq4LZp50P0fNIq8Z2uKZ+GjucxHkPcd0m5428sDtcH5aYTSjO0x+uTdejcGJNlqo8s7iPtMr+hfX9f35Fz5F3PS5Le1vbxtuZrW9p27fkOjD1gmmLhG1uscwp9JbfrDheSa9u4Y8DsVNxtJvQxG6lDobFgxbbpDKFQvcnJu09ZcFfln5Jjs9ng+voaz549swvX6+trbDYba5GWs8Efmm6McnkN4ZlDYxfPQ/jE/GP8+VGvfMzkX8oPkbFvo9FHUyw+Q8BfbvnmLoRj7W7sPMPj96Ub4j9k7uFKkhTwmlsXctziirFQOeW2XwtesA1vVVXW0n69XgfTjMmfo0AKyZLTpkP1HyrfoWB0LK7My67mAZ6X4+MS7723wHxeAvCtYl34kAy+1Wo3je67C9914zy7fJXXbqRFbFmWqKqq/ZvZd6XK9q8AuBmZlYnAWONXlgZI5Up/AmLdfbNURwp0r6tSDgwNvfvoVOx3KGynVAHwcZDCOkvVeFwpH/Hy5fXLPjZ3hp7UrnUgnPLc3B+v164fHZ1d16ZeyuMSi/MFqtOqA75GAVVPbt6QXXj+tNatYP2RhyE/3hZ4MqKZheSzckTiSZC146a6YWTebByZjs90GEWalk1b00M73lrMD4q5MQtYa5XK+xGBkoCzNCUgVvmWsEELWQJJlfblYPXo3Q/LjwvWDrC19cfLvO1+Nm0uE5eN3VnL89MBY+H4e3fHwg9vx26lvfxQGGpjnuUs/2uHQvqAQRUKxawwIG9Pe5hin8/zQBQDXcidK8Zz1hl9665YPvapwJ5y/5Haa6XWJ6F1cWjN1ecfAuhSY2/o95g1dl/4qdprinIAw9Aaj8JL0Cek40rRkD3QNrqrqfiOoTF743eUT31tLbdt9/mn9jZj049RTv+RbTe3z8Xij6FUmfTtDYeMDe/6yDQk62Gbtgl05867pLH9fIwe7pBpW31niu8hlMG2Y1Y2GHsImd0VbVuZsUrQWgfvEJRffexSNq5s3/XiLkUhK90UkXIw5M5p23a5z43i141Sk2vfJDS0XvsmvEMav6Q8/C6f169f4+XLl/j000+99i/LMrTAzFEO7JqkIiIH+InFJ9pmYT+UQgoPrTVWqxVmsxmOj48tKE5+dGfsPsaPFHg6tEx4HmT99OUlZMU4JD6n2GYo1n5C8WPjS0ihlQIHY0RyDSnrnHKYqt0YYKvozJnHx8d4+vQpNpsNbm5u7LyasoThlqQAgmGVUsk5nco5pbilfFP/4TIQcCePAORhQjxT7lKeKfurVAaWpcJsZiwTyYrRtWXz5+KaPxeO+Ml3xdJyT3gAruXqxef5pXjGMtaAr0VRoqoc+LpYzFFVFY6Ojttjr4+gVAmzZSjYH6ERnMjCtYFSTXtnruFP7YravblTtkZdm3ouiqa9J5VkdQCr1ubd3efaBTulm4nTqS04sNhZ3Epekg8sUEzl7VvIyjtjSX7upzWVv4ZfvwC/p5YD0n570N5vbhnr6pWsY82fuUPW5amqCjx8WGG10ri4qHH6rVN8+E8+RHVcoSjdXbG2zVH6Ari07uIvBLISYGXDFCJuLE3pVjg5Yul5cwbJyeKQPDw/3D34HgByO4BfiKSzDrglyLs/VkQMWcZyN2mlGgwjLGJTcsQsZaNxVZeHLXd2z2zwztfCRnJAMvVLfrcrpS/qi/MhQNSCsgy45RayIctYXfhHNHcsY5mFbFEWaHQDVZk2WswLB1ZnfMwB9K9/+Tu/a12ukWOgFE+Hxl65144du8s/puFyxNaB93E/zdd5lNfNZuOVgywDfuJGrnI1Vc9Dyi12yhqXv+9qm7eBaO1Le+nb29tOfeUqg/vKKlc/MUTHd58ppf98R+NpivK7b3UQGkNzx83Ye196Kd2knAtj4y3QHYvH3HX7daMcHdIh6DUlbYvLvCNDsXIcOie+DXNQ9M7Y0AA3dcaGFvguC3aKBdEQwCmHx5CvJkJhY2DO2K8C5UQZAkly+OfGCQ3U3I3A7qmBvftGY+tzDG3LK0fWvgVSSp63qb5DwKZUjnA69E1daHGVC27JsSC3jkNtqQ+0CfGgJwFH3C0GaqV4xkjWr1Lm+FnAKRUO7QOSbdthauEtFVSyT8TCxMaRlPyhtDmfXAA2JIskyS+3T/SNdzQnrlYr3NzcWIvYFK8Y0CqPtwulRxtUCjO0bUqQXPZxPr/39X8J3scA+W2oD7Cn/uruu5XrJD+O8eNWobDxyN/xAXNHh6fLO/dXwTCUJgGyBrhzFrFlWbWW1RXKsoJSFYwlbNnypGfB0tGd3y5d3d4vW6IsG5RlAa0Llr/uX6zfKeWAUj/dLvnxw2E5Px7edzfPbvX7eeXhu/F9kJXz4OCsA4edu+Np0pNtwf9z8dwx1z74a+rbxC/KAuVRiWJWQAKWnay2Twt68nZloyn3JHnoXxvOAm8qnE4H/OThlEsjlJ4MnwRiRVremCXiB91D5ZOiUJhYPO2nTdamNg/8flbt3Cy4Sf7agZEWONUIWsRy8NCGbz8s6NzZKoFf932DAz4lmMzkVXC8OChLee+UDyt3a6EKOCvdSFlSm6Ny6JQdXJ6pndgyU0JGdn+sfBKIqxT7uKBUKBYFmqKBXoXXNrnriiFroVjcUPoxCq1h+vin1tq7+hBq17StHofzCe1rc9aKITlS+5jY/jm0fnsbiPZG6/UaADp6oW32JFNTim9qnzFkvBiTfqzN5vCSernc+O/obihWX6FwMfccndwUfSjVF2VaqXkqxZ9oNpt5xhF8HGmaxvvIg/a+72g7io07Kb1a6D3mNpRHTKYxYQ6FDlnW3HXoUIqNG1POSVPyilrG5ioR39H+KbbQ7gsXC5v7ZUJsIMvpTEMXt7GJzhyT5xYR3KrmHYVpSNlPteCX6dLkmgM07HoAPTTieeNHQ/Iv329vb73wofLg4d92ym0jUy1ClFL23kPJtw8kGpMW8VJK4eTkxLYBupNyW5qqjfQBXbK/D9kscWCGu0lQOnaCQgiYk3LnyJ6riIy5S2Ul/Q5ZnMZkyKWmaXB9fY3Ly0u8evUK19fXHcVUX5o0BpGFrLT85vEJwCNAltpm3+ZZfnBAT9mX6FhwqTzIWYdSGDlehpSV25LWxgKlKArMZjPMZpUFwkyanmTWrfunvN88nJPd8PDDqCR/wMni7ooly8nCm3fM0dbz9nmEoqhgtgpl+8dBWWXTa0vC/hnr0AZK1VbWqjJ3wZo2BZTlppWpBuDaAIU39aZAAKQ7Mti5mfJHxK2PHD+yXOXupsx0hBfFFa6qC+Jyd8qHqx+XfvcJ+7vbRtwdw7LtUN3yeqYyUQpoGoWybOMUqntPbNEFnEwe6Aesn9cGmbsERjk/bvEa+uO8pVsnbdWV1QKw/AkmB/0OAbH2wfLAw/Pqj1HAL2V52qEWLPXia1+ekOVryjLWO1645RcEVnX3eOJYeO9IZFbfQdkYKExhbJoM8LTlx38nnjY/PD5Z3moH8tq7axX8u2NJFuUAWW65a9+bNp8FoIs238xCVpXKuJUKBczdy4C5O7a5bbB+uQ4NF70k51u5rsnZh8t1ypj5T56UEZpXQzTlnnIflLNGleuUUDmE9gWpdZg8bWbbfQX/SO6+Uh8QQ+VCHx3yfTIRrW2mbH/70IPG6v+uFOsxfXBsj/Z1phydW86HGIdEOXrevvC77jfyXvMQyX7F9SmPHj3C06dP7ftms7Ft+fb2Fp999pl3V3usTO7LXLct7aLdxvSboXCh30RSrlwg9lDpPowRU9Mu8ruPuXsMjbozdsoBKFepvmseQ9JKLUr65ALCxxcYpUnRkTuWVoxiX0BK/xySk1aIZ2ghFpMrpHAdIoN0y/mia1+dbqp0djW5pxTYQ9sY999l+eYsVHn6qaNTD4X6yp/867qObmi27dt3UT6hBZYcN2JtNHdxtqt8yba+63SIKD1uGQvAAsJA/JiyXdCQsSlVZqnxJtTnZf+XCkjeZvraSaotxQA7Ui5sMxdzN9r89c2HOe2Ml427j7PAarXCF198gZubG1xeXmKz2XTaSqwc+PGFoXrhROPUkD6Rs8aR9UlK6JSVbshdKq63VUiH5OaK6Y8+OsFv/uYjfOMbx1AK9g8gEFXygHX3/ZXnJ+OHfvvhTRwZ18hMCrQCxirW3RXLAdnZbAZ3NywHYWNgLNWFOabYgYnmN7VNoGytZBurMO4q9RQIWCUnXtVKdcFWP5xi8jheBEZSuH4+Yb/uk9oXB4x52etgPJmf7pOAWOXxCMV3f9wytusOGHB29qDCe998gJOPTyw4GgJOO9WsALJ0te/Uz5g7WcLSMwjshtIgWaH8dHnakTiUrgfEKuXF9X57/QLddxmPhfErQIRJkQwWGoY5v9bfA2cJAGVgo3ckLvenu10JYGVWoRZY5Ra1HGwNrL0tWAsHoBLQai10CWRlVrAuOwwI1b4cnIeVhQBgZplry1GWQ6wcuYyszVk3iPQI+BZ/JItSyoCyZKErjjjWWpuPG7T50EFvptur8rmR76u5P19LD1FspuZE8ivL0n7gFZI9tvY7VCWYpCFKz5z1X+i9T0+SGz5HvpDSet/6kbHU1x61Nh/BPXr0CMfHx/j444+htcZnn32Gm5sbvHr1Krqeza3nnD1FTr/hvELr0KH7y33qYIZQStf0daGh5TZWz5nDN2e/FYub2i/JeSgUJ6X3ydmHA90THkPxQlf/DdUfxuTLLa+v4wcIobFtCIXaR854m8v70HTBMdlz5NxGT7RPmgoH3JZSeqWU313RKDB2SkoVwBCl3dj4OX454fusc7hMMTA2Npn0KVFjE+ZQwKavDHIVx6k8Dx28p9iQ3Ccau3CaKs1UHW/De9cbB66ACH3UkJKNy3dXJBX7ZBHWF17Gk/70+y43R6E2HWtnMcUSB3xi46pMY9v8xsbjoWH64vSRAUWc4iE3X7LPjS2PIQqnUD+XX6uGlHQ8bEzJF0uTiM8xsXkmpjRMLZJpTEmlnSIpC+/bQ+9ST/EmkLcsS/sVL1lz13Vt0+rLKwHGlO9UXyIwlo637ZOxbzMSqwuSRQK/MSVAiHdMSTCkP/b1hY8/PsL/+r9+gPnc/2q6G80fy9wf7B+PK9/DPA3fEA+XFvlxq8mCHU1cYjYjMHYOpeiO2BQYS/nRcMhS6HeDoiihlEZZFmgadzyyufdUdeT0gU1y6/5OUTiOASZzeZm6TFvIynRi9SNB1W49xZ5ULjx+t9347s5C1hwVrdA05lk9nOPh7zxBcVR6d7ZK8LMtLeakwEEtD/SkJiGbhpCJwvInd5egWQig9UBX+Gl56cMPnwJiPetK7gbBj8cLUcQrCNgGnOSRxDZuAJi1oCazeOVAYwh8pXgWWFUOfLXyaAR/e2BtwAKWy88tT4mP59aWr7WM5eVBMiuWntJefUk+yXclyo+3MwJ5W3BX+vM2aEFjBXu3rFLK3C9L/UibZ1G2FudluEH0KYxTikoJ3PF5OrTm4/NdaE1G8VPtWn4UNVTfcNf7rFxK7Vtz9gFD+XO31D5Ohk3xHKpryaVDAP+oDdP68/Hjx3j69Cn+8T/+x2iaBv/lv/wXPHv2DK9evbJr7tAaNQeM2VU+csPE9IUpnvve6w8FVL5OtO2Yt83+JDaej+Up56vUfo38QvPONgBpKB4HY8foO7ZprxKUTu1F90H3YY7lbWIMiD0EkH1Hw2iqMhsCPA/9YCOH732r+zsHY2O0bUHGFqtTTIwhHiEleVmWODk56YQN3XPaNI09aoWnFfriBzgsIGkIpRSgUukbWuDxxfR9yvfbSrmg19C+93Wp2xiYlwKI7gtx5U6Ooia1CAf8Lw9pXIwB7/squ5x2nVK0pRYQcjMzFe1qsTWmz8Y2UCFlGG3kpNKQg9RDxxgC+MaCc0PSUsrcJ/rRRx+hrmtcXFxgs9lgtVpF5/mxRPfbkFWAzGOo7nh/ojLlYbkClsKcnZ3h5OQENzc3Ni/brrNCG1o6tr1pGm8cSG1+Y2ukqfsT522ATTo+Nrxe5IAZf3e8lAjjlKsmnEMrXLyOVJG0fJDOWcWW9ji/2WyGoqiglDyWmD8L+EgFQGClSYqDse3ZoKA2bixyzZ9vDevy2M0PgadKSeDUB1Z5OeeArbFwJIdMi4PDKTlj6YTmQ9dWzPHO/pO3j254Xsdhd7RgN/0GmgbQV2vc/NlzzD86xew3HzmACa6N2CxTG1LhdwLSOk/W3mQ8+ZTpc/AvBspKINg+WfoeyMp/kz+67pyHwBm7Y01kqIvF7yUtZCFnBpRaYFbBB0QJlNVs7pTgq2rDSaCTLF0FCCxB2aw7Y9ty74C10k35cnDLWs8iNvLk9dYLyjKAlbcH8lOqC8LafJB/oaEa5bmjgAFgG+V+a2WPLS6qAnquUT00xxU3N/78BbC6Sii3ZZyYfyqcDC8/ZgopR2lNIK/okApyPq6NkffrRKF1r/zoXpahXAPz+JLXrsr3UPak1N5o3XJ+fo7Hjx/jww8/hFIK3/nOd1AUBX76059amcuyxGw2s/q3WF6m0lXIfsL5D6FcHctY/tsQB6DuSoZ3ND1tAyjydh/SZ/RR6rSvXJAmF+CTMhZFYU8io3fy51fw0BHFXEfzrs0Pp3dl9nbSFPjd122NmARjU4Wx7ZcJQxcYQ9MdQttOOlxxKf0Xi0VnUR0CY1erVee+i9ACfQjta6AbUn59MvVt4t6mL2J2qfzfJd8Q/xDoJgfUsXUS4hED8rgM96ENSEopZWLAbS7PsWPuUJJKmtRmLTU/8N/yYxe6n5H8d5Ev2T9jbXnsxwipDSwvH6kwG0qpPhHjN3aDHdss5WyiQjLGxpOQoqpvPA3JVJZlVFk4ZZuiupvNZnj69CnW6zU2mw1ubm6wXC5hwLE8i/4UceCUlKey78SAWJKBH6Mcuh+O5GyaBsfHx3j8+LG9n3a9Xg/60jXVLnhdE2DIlb59ZZXb1qcgLqv7S4V3f9yNP9Pp8fCq48ZCBvhz0M5ZptLdsXQHsDmeWMGBr/JPMf7UXzTsBYsc1SBArf3N7zR1sjiZXdicMScGtMaB0X1Sfx37+ZRhTFnoTn1THB7e/wuDsxS2ua2x/vQS5aK0wJMERkNAomr/dfNp4kogNAiiUpuF6vK0jwgoC3T4Sl4ddwrLQM6hQOwgEDanD4tA1npUxrUfByj77h1NTMAkAZncMrZNxwKgNK+xJmTXaMRHpMvDEn95JLAFPLWTi5ejHYvJTcPnIerAysOBYsWeuntEMrcA9tJmebfgqyxr1iYoDS8uuiBwB6wtFHSjXVsvnLVsURUoj82HxATGSiWwdON1HluL5ax1+tZeco0uQVX+ERQHtvidpKG9IOe1673ufaC+vKfAwVB9hvxiwMDQ9jNEvrE0RVugjxiPjo5wenqK8/NzFEWBp0+f4vXr152wtN4P6eCGyiX3qDm85DoR6PbV+6S3kHqfmF6GaEyd70Ix/3VR9ktdzLa0a5Altb+X7n2yxcbMFEkdCzf+od80J4bke0f3h/bV/3P1g5Lu4/g0ZT/I5ZWjW7wP5IGxfZU/BbASin/fGt2+J/K+9GIT1baLTRknBgaMASZyBp+QUpdfqB6KkyvDO7o/1LfADwE2h9wGdq2Y2Oc9otvQkLGClD9EBAjxI193VZ5TtSk+jt/lZnBX7S/ET25cOJDXNz+F+rkEBYn416y58x4BTxJ0DPEJpZ3bJijduq5RFIW1jNVa48WLF7i4uPCUnrn9IqTo4TKF5k/ZljkPspIkZRW3jKUyqqoKR0dHWK/XWK/X+M53voPf+Z3fwVdffYVXr17hD//wD/HmzRvMZjMAZr7OqQ+uEA5txOX6I9Q2QsoxWac8j9tQPL62VrFAF5DlgJoDyhRz5/4UBp5/vNsqL0w8LQ7Cdi1jq4qsYqUlbAqMdemZo4ULKCUBWXjh3XuXB3937ZVQHt/frwoDPBo5YmUUa48uTuq3eRo+vF609p/++EAZ050wdI8r3Q3L+6h78vII17Hv7/gVhbs/lo6CpqHTWHEb4Chk7NwBROm3aE9etSoXrhNG+PFnKrz3TmCr124EL17dLC99QCx393hz6ryqjpvHO5M6YVnT4cf8BoFG7WSQ1qjB44m5VSu1M2iPj5QlZBHrvP00PXftl6G0WLXuDMhVqscyVvl3x8pjhkPpeMcL87TZ07PSLVx52zthCw00rp3pok2zBWLpmGJyK8oCTdVYS1lViPJh87BSw44klWH4nBe6Z4/zD4EnUhaaO29vb/Hw4UN88sknNuzf/M3f4Pnz5/YDqVx5vy4gSA6l1iC5Cn55NUdo/dSX/n2sDyofWl8ul0tcXl7iF7/4BYqiwKtXr3Bzc9OJw09WCa3fh5bFkPCp8o4Bsqn6OxQlNF+n7EKWXbTPGM/7Pj7F5B+Tp6n1zgDsNTN91q+xMSx2FRF9QByKE9pP8ncOuF5dXeHzzz8PyrJer72To2LyvqN39I72R/d9zCbqBWPvEuzapoDHTj7b8pc8QkfPpDZcoUmEb6b2SaEJp+/+2pwFWShMn7KVx5XlJ+PkLmZziJd77ibnkGlXfSqnzvv4heqvj0LhcsDaUJwp+9dQfqG+FltQxt5zyngbGXOpr0760gy1CwIKyF8enbZrADo0Xo0dA1IbJj6WkfUvPcdudnc5VuUCn9Ivp/xkmL72OqaMeFvi/FPKShk/FD42xmitcXR0hLqucXR0ZEHLWJyU3Cm/HCVcim9q/qyqym5+T09P7dFw8/kcVVV1lMFDqW9zz2WMjYuhethFPyCeVVVgsSixWNBdqkB/dfqokVtnREIrHkc+U3FifLrgrFIFOzI79ofAO+CQixwaqvSMgau7pBYZSgC4XmglwVed0QYobjd/flwC7LX1o3o09SfXqboTxvj58ZULZMX2ADW/iVr+EnTzrFI5H9ZM+PzmWa8yf968vHSEHKH4HQBV+fL0AbGhLqVE2XTyHKpfWYbCr0OxpqWcvwVOCYC0OCRztx8MMOtX1nxDgKyXhmJHBYv0LeApgF0OnhJgK/Nj+YbyItKntDqWsPCBYHt3LLG17drlvQPCUhqKAb88n/zJysCTn9IIHJHM3W28Vk5VuHHWgrxbjGdD19BShxBb1/B4FKdpGsznc7z//vs2D8+ePbMfZ6XWTym6D0o0knHqvWFu+QCuTvrWfPSM1UFsXzZV3rblNXTdzsHV29tbXF9f46uvvkJRFLi4uMDNzU1HF5SzTo+5jwFut1mHj9Fh3ZVealdr632PD4cyHo3dt/TtnVIkx+8h+r5UfwntKXP2oLH0QrIN2ffzsHJsl1cF8tPX+DHFOW3zPsxvQ2hf+ZkinaHta2o6tLKaenwew29oeQwpw23Ku2+Nt6851QNjt1H4ft1IVj4HB6j8FosFjo+Ps/hdXV3h8vKykwZRboeTmylJsUaXA6bF+I0B4saEAfz7drkikd6H8MqhQ5hMD70/7mKgzwUbhoJiQzZf21Buf40BCkop74u93LFAjt+pRfM+23YIbJZ1R2VhLLOMbHTs6YMHD/Dw4UMb//z8HLe3t/jxj3+MpmmiZbWNvLsqn9BGoq5re/8mua1WKzRNY7/w1tp8Cb6tXEP7TEpu/ox99RpKi+bLvo1aKK/8SD/eh+q67p3f5CaXFDohSrWBIRtGkmmz2WC9XuP6+non66wQPy5DrFx5/XHLgdhHY6G8n56een2X98c+eaUCQK6rlHLHlEvLhticz8eYhw8f2vaxWq2skm7K/v2Nb5zgf//fv4WHD+dQSo6zIbnQ+euG5X9yjkg9Jbpgfrs8E/gaspAtUBRkDas6f8ay0rf4paI3vPvaNO/nofnKhDFu2r5PQUpxWc1v7kYoTGh8pHLN6bM+T8mDftNLqM/68vntw0eK5N2wPJz745axJh4N0UVh/jywSIX7ubWSpaLi4aiNBtz4uwRn5W8vXe6Hrp+0kPUAWnSf3m8WX7rLOB44GwJgFfMLxOn4SUoNQwRwUlDtyxmygpXgKD++t2MtG1DAen4EfKILiMo4BNiG0rIgrEInLOWHg8NRi1jxtG2EAbyddKjOuJtSXlivHkQ7lffF2mOMFXzLWG3K2lrGluZjAlUq414plMcl5mqO+rrG5mrjjTUxMDNnLTpEkRRbu6T2z8fHx/jmN7+JxWKBo6Mj/PKXv8Snn36K2WyGqqpwe3sbXMP17eNy6C6V2qE1765kCe2ReJrcjdZA/OhMvp7VWrOPqrr8d0G7LhfOn/Ya9PeLX/wCn332Gf70T//U7pPquvZOzAFgP96dUi4p2xg+Of1l6rhTE637SQ5+us5Yfu9ofzS2vMfES+mlpJVraAyT81VqbJN+qbl1s9l4p60R8XE2l9629ruvufBtKLddzoXB/cxbSF+3MgxaxvZN7kMHpDFg3ZA0hg4KUy9eYpuYpmmw2WzsMXA8vEw7prwMTT45lKc0im++UuBrTrhUvCGyybTGpH3olFrUjy2rXZCUMyXbmE2F5J2zkX9b2oCk3DzFxuypNopjKPfDjli4kLxFUdiNdVEUODo68vhN3Q76JuttFBuh+UcqWSgcAbVc0dI3RsQUeuQXAr0kjS3LKetCKqRS4aQMfcpJyTe1oQuNR7njk1SicfBXxpfhcvIRSzfGP8aHA9sx/qG62Gw2uL29zVa6DFkHkEKR1kYhoD41V1D84+NjFEVhN9nX19eTrv201lgsCjx9usBiUaGPdczfuBsEIMWD/Pxnn7Le/83jKsXbnvLkaEP18jekA7+1/XN1pzt/rm7DbWJXoGzKbSpK8eZ1kROWP1P8ZP1S/Znf2vPTqwabF0uUZzOUp7MQWxD4BMcqDjC2zaUz/lgZlNecOnxCcQPpB8EzCD/O0wkeB+ESFLOEjYGwoXwlKVTvJKv2wcqOFSyFZcf1ynce1oKqIj63oFXKHV3sWcSKPHKwNZaWBUIlKNvphy6vHQBYqY67BUxzOi/PnxL50c7fhuXxZBhq45QXJeQky1ml7NHFqlBACaiZefI88zkstDYOrT8orIyX2gvkUGh9ytee/MqQvnUkz2NOujk6h7ukfciSWhduyze0V9gXmJfbBkIgcqpdK6Vwe3uL29vbzsf6EozN7QuhthjbV+XoK0L8t/HnYcbKMDXJvY70u+80tnyH6GKGgIohnjFdbl+8sTLlhB2iXx4SdgwN6Vec5P62j8/b0N776OuQx33RUH3vfaNd998+PCKHz12XbRVyzDliLrawC9E2iuscuutCjNH19TWWyyUePHiABw8eWPf5fJ6lKI35KxU+cz9HIbqvhfdd0DaT9tD6+LpTqqy33Zzf9aZi15QD4siPM0Jf6/XRXZdj38ZC+ofu4aTf9GELYMpmNptZ5ZDWxoqUH2W8jcxTjSGcZ4g//S7LEvP5HDc3N7i4uOiEnc/n0Dr/SOa+PPD4Uy5KeF3JTXkMQA7VdR9/zo8s+sif37nalw9qU9zqMiderrwpIkURV2oCrt+P6e8kU0h+eVeqBF4p//yOV6moI77r9dp+vfzmzRv8zd/8jT26mNylAq1PZl4GPF5VVVgsFvYre1K20fHOIUWU7F9PnjzBfD5H0zR4/vw5Xrx4YUHebb7cp7RM2ZbtE0ACTHVgmRJP35/F6MSNy5L7W7Uyuqf789N0pAP5cqCee9cwR+FqAI11c38NtG6YFbZG02jWXrr9aggQq1QaaA3/5ihMViosfF7cUL1JWV0Yw9PUTxihM21Bd9qOfFIbKwpTtlS/RQE0jbGKXf3yEtd/c4kHv/M+Tn/7iQOf+B8TzbOQJTelHPhEY4VC0OI29pSAq+fWpivTt08B9AaBX8GHx++8c7cQCMvSCAKwsf6fQmRbL34kLm9mygXwjiv2QAIFZ53K3j2QlFnT2vGTQFcl2hsBj1xMDs5yvtwqldKGn54FYSl9YZ3qgb3KDxO0jKVyU4K/eOf17N01S/xYO0MBM3TROwNf6Y9by9r8F20ZFsJCtjDWsUVZoEEDVavg3bF8DqN1gPw4jz/pNwevQiAuf8aAEq5TCH2UdXNzg1/+8pd48OABzs/PsVwuvbA568ghOo4Q3fV+ZtcUWtfH6pN+0zu1AVoL8XYTWhfF+N8lUX4Wi4V3fQdZuS6XS28dGlqn0v6PeHFL2ND9xkNkiwHE/vqp26+JQuvbUDpTyLcv4mPG205TlO++62mbegm105wxOhXnEMbvlDwxvcWhjpnv6B0dEt1V/972g5NDoI7mOraoD1FsYc/pkAeuIV8sjSV+rB6nKdKTi8MhNOYLodBEG3NL8RoC2ueUU2qiHPLFxDaA7H1q91NS3yCYKoe+MPvon/umXQI9sTZ4V2UnwRzuHqKQsinFOxR/234X4xvzy40r3aQCrK5rPH36FOfn5zbc1dUVVqsVXr9+be+NTaUVSiMUntIOWdmOodgYG1KWpOSVsqY2RbKuORDbl5ZU6EjlI0+/r62myi80vtV1jdevX6MoCiyXSwu6am0soPuA9pw5X5alUs6aRQLWMl7ORpoA0bIs8ebNG3z66acoyxJaa3sSyBAwOVS3oXzIshkyfwDoWFwQjynm6hAo5uTw5T0EislqSJaHDvwmhEL6pf9M23NgrNayz8ae+yelusDurvhyN1knqbblwhiUyPgrEFDL68jwMe/EUylANQDWDdBkjJs+8uiPDwK09IBOAbDZ8DKNANDrpcfT4E8mC7eY7MiSS1Z0P08yDx0gNlk/PWQxQj//HQtSBXtccequWP7uAbIMILVhCZQUVrDEw7NS5ValupuuLR8tgFeRpudOWab4lL+UhaxSrlyUDwBLUNa7y5b4K3h5srKxcpZt18YPgcEqAOzytlkAqul+SMBJzu9D56dY/NC6Qa5vUvPuarXCl19+iYuLC7x69QqXl5d2DSmPleS8Kf1p5tjDmT+3pVi9xgC7WFhet3LtOhXtWpfBAeWiKNA0jQei0nqzqqqt9DuhNGMk96655RmqvxgAtwtgbt97fm4tL2W4S7kOgfr2JVOVxVR6shydXR84K/vjUHlC88UQfXEO/yHu7yifcvVfh05j8YKvE+XovfpoH21jirqcSkfUR0kzoqm+3kplJlUIfYuVKRczOcrit63zjQFw+4DX3I1X7CvQvkn40OvgkNrJPmTZ1UDVt+h7W4nyPdRiK6RYOaS2CPgy9o0bORuDMTTlnBIDm3Pj0tHL6/Uay+US//Sf/lP83u/9HgCjgPjJT36Cr776Cv/+3/97NE2D4+Nj1HU92mqSfz0PDG9jRCGgV+Y/pEjid9JzZZ0MT2Glu0yDg8mkFKRyzWk3JIsEJ0OWvaG4IZk48bxRWa/Xa/zkJz9BVVWoqgpXV1dQSlmrUm4tKylkOR6ygJBxiqKwd7ut12tvwxsDQiVPznu1WkEpY7H9y1/+Ej//+c9tmNlshtlsZu+QCwGgMXn5uwPr/LZDsofuDSYesu2RvNtazYfIV4CmNvt+Hv2wygsj4zCXLJlcWvRblnM3jtZUltYFgDs62Fi7krkYNx3jRJawdfts2F8NoEHT1KjrjW3vvJ75xxQkz12TUnmALIXjTxeXoU9pLjacz8+4y3r169f3JxTIWc86a1pAefGLAijLsHVPBzAlcAkOmOXApI3P2rv9x/z4swNeAUEeNn04GToych5gafE4oTQ4kBpyk+78fap9SiiK9uWwfYLS5lawlK5G97hgBc/y1QKb3E2L+2G1AD+FO6Vnx0CWLslIZcWBWA6EcuDW5ov4iPrwnjw8vVMeuSUuS9vWd4B/x/JW+XfShsJ4PBU68ZRSBoBtLWSL0gBNZC3uVTNbE9nmoJSd3+U6KDU2St7yJBQ5X/I1lJw7aU6/urrCn/zJn3hxyrK0Y3honSbve4+t74co7/alD9oH9QF+fB0aWpfF1t0pHc2h6rmapsHR0RGOj49xcXGB29tbz78sS5yenlqgNtSWYuvfMSTLIbTn4e6x/YJcV0+hxA7FS9X5lPUpea3XaxRFgdPTU2itcXNzE5ThkOltG1fugngZyT43Rs88JNx9aWf7pH222Xf94x3FKKdtpHSH95Fy9IYhml47FaFdLULG+A/58iflFwobSrNpGru4JGWxVIQ3TWOtSyS/2EI85BZTSubI3dcpuFI5RikwNrSYjcWNKeljcWNhdtWxY2V1SJPSociy7WKsT/kwhE9Mnn2Bv335yAUuiFdqox3rb7ue7KbsezRerlYrXF5eAjBHUd3c3GCz2WA+nwePVxtSjrn+oYVF35hG8ULpEEhGY+r5+Tm++c1vAnCKmJOTE3u81mKxwHq9Hg3G8nRDsuW2+VCec+pcKgI5Dzl38fAyHBHlo2kazGYzqxBomgar1coDa6XMlF6f0iUnT7G5mH7LdOi4taIoPAsAWYayHMgChSt/+oBnfjIHWd7mgNU5YweVLwc5+RphaHsKyVTXtVX4UNjYfBCbNy4uLrBcLjGbzXBzcxNtX9uSkS3l78JxN6VS4xUQRmmypeq4GKCT/+bHBDdtvWr754DVIvCbU8P8fTBWa/NsmhqbjQRifQtZI5u28g2hUPi73dtx5Gg60gBeNsCyAWoF6EKhKQs0hUZdKDSVRlMXqOsGTa1R1xq6PRIatUZ1vYbSvP0h2naVcoCTyZHqNCuv/SoxVjNAK0Yc3O2AnpwHTyuDbyAh/xlxD+YxJF+qHGJpQ+SNSDPQksdhTp2xsvVXylmqesBrCJD1GDI32VRJRNl8Wf6Jr2fRqtC15oUrL++OWUqXp8X5cQBUWseyu3F5WE921masrAoePwKzKQzx9uY9npYsY+LJ47G2qQoF3bThCuNWzAuUZyWaZQO9iX8UFfowLLRmifnZshfg0RAwl9xIPxHac3A3WtdSPL7GyUlrbNhD2e/2Uc7aKgTypQBIXi9SBzRkP7aLfWLfvog+StVaY7lc4smTJzg+PrZhbm9vsV6vcXl5Ca211Z+F9FM5+7Ep8yDX+SH/XDA8pbiWdb/LvKaI7x+1NqfjHB0d4fvf/z5ms5l3zcmnn36KX/7yl1gsFijL0u7JJL+7pqnHlUMGE3alpwzts2Np9emzQ7oAmY50S+mJ+/Z5ofixcfe+0D771V304SE6miG8ctZH7yhNOTiZpCn62rZtYoj+dgyvPj57A2PvA20LGtFCUbrXde196ScVmBQmBsaOpakHlaEbuKFhQ4vWKQb6d4Pr/abUJuU+Uk4/Si1IYzwlX3kf5X0k+rp+uVxapU5Zlnj06BEA4OjoyIJUZGE69mvobUhuKIhidU3Krfl8bsHVx48f45NPPrHxHj58iPPzc8xmM6zXaxwdHUEp5X19PFRGuitzCgopBXIoVSapsNKf5tq6rjGfz/HkyROsVit7pylZyubIl7PpCxHvo7zvhjZz1C6vrq6CfTVVL9yCkO5G5sBkSCkKwJYDAZoE7suwQxU7lGZVVR6/FAg+hKit1nWN1Wrl5Tenf3Nl9osXL1BVFebzOW5vbztlNla+bTZu4WJR1i8E2MpwEc4BNx1wd1avIUAWoDok5Rk9CWWQPDX7861h+dOAsV3LWP/eWJKJyzkNqHqXy0ClALJynYK+bDReNhz8acebipD2th9oQFP5bjSKdYNquYFqXNvqjJMMTDKv7p8XhoXN4WEtBtnTA66UD8raMBQf/m/7JJ7incsSih+lWFyRFxsk1KEDcvel6YWlauT3uBLWqJQDb9smZcFN4hUDZDkQ2fKw4xkHP+U7hDvxIBkZWOkBr2CykZzMstTOoVSmjE/seGKSwYaHnxYvNw/0ZWVB/HhdBZ/KycwBV24BG/vNAVl7f3KhUBwXmM1nWL9Yo964Y365JeyQ+TkFcsi1CekpYsQ/cqNnURSYz+f2ZJaU8qwsSywWC2gdvof+HRmSZSEBxtCpIjnlGALuhsqyL6K2eHR0hOVyicvLS/zWb/0Wvv3tbwMwZfL69Wu8fv0af/InfwKlFI6OjqxfiB+nbdafueFyAChOQwHZGOjMAftY2KnrlT7m5PTgwQP8w3/4D3F2dub5/bt/9+/w6aefYrFYYLFYYLPZjD6N6W2jux4Hp9SppcaonA8U+vjtuqyGlsVQ+d/RtHQI5TulDPvIz74wkDEf+R1CfR4CeYhgyFpz17TLithl40sp80KLbP51aGgzNERxTDyHyMRlix0R3Ecx/rnHQoZkGZK+jLfrOPugFNhwl5TTjmIAwF3T0D4g2zV/T7WbIfWVWpRyv9A9nqHF4pDN4l1SamMpFUa8PcVAJcCMN7/61a+glLLHoVKYbfIbqiNe9jF5Q/mJhUmld3t7a61/AVgAieaFqqo6XxcPmTMoLIFnUr4xC7ZY2imZQmCl/E3voeOKuUUmKbAePHiA7373u3j16hXevHmD6+trC7wNyVdM7jFjXCwOv/tKArVSabrZbDCbzfD48WMcHx/j0aNH+PLLL237lzJLN+J/dnaG4+NjXF9f4+bmxrOQ3WYO4m0x1ldCFGp3xEsqIUmhO3TOIR6kBKK/2Wxm873NeKGUwulphb/3957gww+PEdJvaw0oApmU+e3ij046QSGQlK+znBsHX7VuUNdNq2yvUVV0DDEHY6nMFfsDc5fHFHMQdoPNZm0t+2k8r2t5dywf//mcPE3pcOrj6QDhqYkhSC19uqzx4raBbuEhSpsD0xoKugAaKOhCY32kUHEBtXtay0QCZJuWV6Ohao1NcQo0rbWs1kCtcas16r9x8w8BudBAdVLh4ScPoaouCOkBlRyEYv4dsJSBmR2wUvnjhxdWsbT4kxetkE+GlTz4e1AWCcT2rcVCfMYQpcfuT/WajkLHqtUCjJr5B+6K9QBK+HE7xxOH7pEV7dc7LpnzBJNd5EkeH8zl5mElgOxZ01J4Vjf2+OPQcchcRlY+HHTu8FUMbIbvbsuIyWUB2cKVqwfIFsrI1hi+oY+X+JwYO81CzvHyWNsYaNO3Zgulo7W2d3dyWWK85NqC8vE207Z6idhv/iR3efqIBHF5PL6WDu2t+sC/u6CqqvDDH/4QDx48wOeff45f/OIX+NGPfgSlzGlB/OPcMWu4MXsdqSMgPrIOcq+D6dtryLEgFo/772q/TzoTfk1OURT48MMP8eTJE7tXffTokZXh5OQEgH+FzFTy5epeD5EOVcYp9v58HxcLH4sXkyNnnxbT3cTSC8mVCpta8x3CeLktbZOHbdtz7vyzz36Tk9ah9uMYDZ3nx65nYuFj68ox66Vc911jgDFZhuh9iaqcQDLM0Ea4q0a7bUFPrbiP8aWNDBH/slTGy5Ep1IBzyyJkgSPl4/Kk0uR+Y8oyt71JmfY1+aU2LX1lkRochgxysU2ZlGfftK0im3jsM22+WeJ9gB/lKeXaRVuTi7++9FKbsT75UmXVtynflqaa/JVSVhFE9PLly2A/m1Lhw8e83LLJDRfqz6vVCtfX15bP8fExZrOZp0yJbWRS6fI8hL5slvLLDwJy+XMeKRmGlKVUNNBmj/JCficnJ/joo49sW6FTJohH7OjcoXmLuXGZ+8LEjonmPLgipygKPHr0CI8fP8a3v/1tbDYbfP755zasbBcUn+f75OQEDx8+xNXVFVarFY6Pj1EUhVWsxPoqV+aGKHRc3Ng+IBWIvCxDHwr2tVF651aYSrm77qYY24+OSvz2b7+HBw9mA9r1OL+hRNmTPLX2y5rKl5Rmpv800JruhgWUInCWmMkxRLO/7vHEdW3A2BAQ27TH55J1LKEeRk7O3zx5tQ2pQgrbjbPb9aSGRqOBRtNv7ZWWBvCr2wa/uGn3BbyYJSkFlAC0eVaagVhtVmy7pt/sSb+bY/NBiG5a90Zjo4H1VzfOirY92lhvNBaPFjj/zrnpZy04yNOSxwxbABYiLwzIMtlx+bW/0Q3vWaKKp1XyIfyUv0NxOzJKssGU5xayFI6llU2yOSrj1rFCJRkkIMtAVw+QBTxw1rFXXbAxJgdz99JhvEwQ7edbCz+0c4uQReZB5oXniYfvhOXhKS2tXXtiZeaBzCyMl17bNrXSwaOeOTBLv22b5X+F+VON8oZQOX/JtU8fybVqaH3JKaZ/4PykG19D9SncCLjpU7YN2cvlrNXuak+co9DvW0sO2S/JtZLkwdd+9E5/UtdzSGAC7U+qqsLf+Tt/Bx999BF+8pOfeCew0HUtQ2nIniYUPvQ7tp+I7fFDfXSo7DK9HJm3Jb6foD1DVVV4+PAh3nvvPVtn5+fnVobFYgHA16+EPq4N0VAlPY9H8g6JM3QPeN+AmF318aFjVui0tiH6tpy5LUfOnLBD9Bpj0p+6f0re+2qjhzR/jKH7Lv9YysEoQuH6dMq5YwKFzR1fp2zPQ3kN6b99Y2DMfzAYe0iTUM6CZshmZF90SGU4NeUCrPsC4mJA1r4WJ0P9UyRlvsvN57aUWjSnwMdYnCGklPJALqn4v76+Dn6ccCgkFempcEMUA7umoRtQTvJYd6AL0vD6HEPyi2YCuuTJBjx9vsGIUSjf3FKP8vD69Wt8+umnVpZvfOMbWK1WNp90T24IzMtR3nHAJSQjz5PkwwG/2GZI9mkpZ99ReiFeXCap5BhDnFdojBmryAylEQufs2ahsqqqyt4tq5TC2dkZzs/P8fDhQ1xfX2O1WgXbX1EUWCwW1oLg137t1/Abv/EbuLi4wPX1tbW45mDsmE1uKE/5oGR8XI/ND1KZFRsDeTwC7bklBfXtMXL76QBFoSKAp/F3fvvaHMOTx2JzWrfuGlq7jy7quoFSBJiafm4UnxplCShF7UvBgKwSraAylJaxm/ZYYmMRu1qtsFoZQJZA2aYhUJYsdJ11rIMqu3kZ4xbyl8+xFIu/0Rr/7aslXq8amGJsQR1Kt/3/VaFQHpU+6OglQA8BXjFAFKyeLfDahpdgrH027L1xT60dUNvUDZq6wfMfPXfpsPhQwEd//yMcPT7yQag2u/Zp8bPAmi8AYAb7o3JhO0CoQvod6O+CAsDjbtH5KpSvTnYG9P02qDeusa7mHQGsjZ+1npXHErP0PcvathwJfPSsYTWzFOWWo9oBnhy45EcQWzBVKdf+2vKyxxSrgLUu1WvLw87RYE8O0NJdrW3ZeECo7WM6mE8qJxmncxSy8svLpiOOJA65WeBVA6pQ9kl/KLrreKUUTk9PUZYlyrLEer3GxcVFt3m0bY+vp/hHdiklF1FoPRXaV8j1Lc2bkgefizebDZbLpXe1glxby7zk0C731lNTzt48tm7hew5qC7xOeDnSGkZ+oDhEKXpXRPeNbjYbXF5e4rvf/S6+973v4fd+7/fwm7/5m3j69OlkaU2hMwiVf2jfNASgOUT9ZIiojXF5m6bBp59+itevX+Ps7AyPHj3CxcWFlf3m5gaPHz/GarXCzc3NoJMWY2UTA8i2WcfnjCt9dSrHNoozpR5p14DeLmmbvfs+QUU+bob6e0y+Q6uHQxs/9k2HWCf3hfa5zgrpnMbwj9V1TDe7q/6xDbZ10HfGbruYPPTOOCVImDv4hBpLSgmb22inKOuxacUAPQqbC0j1LYxzy3dsRw/la8pyDdV9StYhYbclqRQYq9DPKS9SNvMNLX11y+9sorCHOLEPHfRDeZCAR4pfXzmn+qCMM7RdUR3wcLKeJK+hm1wO0PB2MZvNsNlsomBszC1HEcOVVQBweXmJL7/8EoBRVJycnODq6srGobtQc9p8LP+U5jZ92Spse5QJvM5CoHnoPZS33PYSqsMQScWW5NtRZGfMH33Kr7HlXZalBWObprHHgdEdWxKc5LJQXMDc6/T+++/br9VDZaSUiipM+uqZh8kdg1NufWNTKK1Y35OKs1j649Y/Xd6HQFoDIZG0Jj9f8a61/3EIjTNFQSdI8DFDIl2AQSxoLHOWsXRHrAFfc+6K5UAA/WmWBnp/j5+qt5vja62xqunoXwNq3tYan99s8HxZo6gKA9gUos20xVlUiY96NAVlY5MsFs3+5Du5yVOnFfOn34UBrQiULVQBaGD5Ymnc6K82f1DA6jdXmJ3NoEvzXhQur+WsRDWvOpaCSvnvlD8f02RlxGlAd4tZyEqANBdMDY5dkbjbHFccHPuojlrentWo9sPYOYH7iXjeXBcKF7MEbduLPG7YS4+qTnflDB2T7Gc+4hbzC5C00rVWwbIM5X23tL5h7VXmnx9r7OVNuTYcsoy1+4k2rlLKALO1kaGqKsxmM8xms25+InOWBOb61qDSX64d5NwaWsfwNSB3p3Ut3RNL61u5fh+6bk+VwViacn8r13+pvMZk4FZjfP0WWmfLOg9ZLct4sd+73tenFKXz+dwCz+fn5/jkk0/wG7/xG/jN3/xNAPAA6W1kiLnltoHQ+n5bvZLkEeq3sb68K31Ejj6Il93FxQXqusavfvUrLJdLb19xc3OD+XyO29vb6GmAfWnJ34dCsTGRuynVtUKPxc3xl2Mo0D0CO1f/kEtTjZGhfWIsXI57Tvvg9ZKjj4nxk31/yFiQoiEyfZ1oirLcRg//jtI0ddkO1WNLGXJ0UzE+Y2SYgkJleNBg7CHTkMYYUw7ziTp03F8qbq4b4De0uq6zj3gJHWkc4s3zkTPxHSLlbJhy8jY073c9KNwX2ufkyq0HlTJ3U6Y2ldtQaLE7Np+hr4Bi7asPSArJmaswiZFU+uTGSYWXec4B4WIbHK01FouFHfNmsxkePXqE6+trq1ySyhMJIMTkjo3/dEfsYrHA//gf/wN//ud/bnl//PHHLSBirBwvLi6SgBGXhY/JNI4TCELWkDwMl5N/iS95y/BSjlBZTE00J5KclLZSCg8ePEBVVfjss88AmDosisIDLiWFlAyhtiIpd0ywCtiAUlLKQUD5YrHwFG1ffPEFqqrCV199ZY8ZJqsZ2YZDCtXlcomLiwtb9xL8knXXpySQROUs7zQOxe9bIOeOTSF5eBlTvNVqhaOjI3zrW9+yCs7nz5/j2bNn1vKYK42HkFLmLy7XVEoRng5DOvI52DimTTlFDp/reJt2dwSWqCqKX8ChC5w3QAhf02xaBesKdV1jtVq1H7Rs7Acl6/XGzrOm3XWBWY64aG3++Lssn1Ceu+79/dXVXyx9zsP9/tnFGv/9yxuArN+U8b2uCsxOCx+gAdJVKMXUcJaFLePOO/Uv7d49Pw3oogXX2mefpazW2lrxeZaz7A8a+PKPv0RRFv4Rx7VGs27wwW9/gG/+7jdd/uGe3m8OZjlPB+opF84CXkr5fJXyy5U31cQzBQJzP298CMkaytNQEnVv06Q6Vy6MN2Yq+PfLgs1RrazWXR5X3Mbl1qEeuAsXvwPOynQ4QEtgJ5UJywO3trWAJ6UVusvVSxCuHBS8+149kFfw88qtDWvTUAysFX82PLMWlhazFrgVPGwbVcp86NCOD7rQmD2aoTwpcfPVDbABjo6OcHR0hLOzM1xeXgav46B+Lk8eub297b2GglOuUpnP23KvL4nSXq1WXho582rfWuo+6hX6iAMGVWWOjl8ulzg/P8f3vvc9PHv2DJ9++ilmsxmqqrJztgRq+UeaoXX4oSqn+QeDR0dHePToEc7Pz3F2dgbArFG+/e1v49WrV1BKWeA2du3IrignndheaaiMh6wD4vUFmLytViv86Z/+Kcqy9D4iub29xe3t7VbphfYSU+vgpiCpU6C92xi9UaivLhYLVFVl9yuAKRs6OQtA9KPxXVEIoDzEMWZq+jrk8etIsfa7D53WfaJtMQ6ibcr1vvfBkPy9xxTveiGRQrVjyrZc2hWAItMg2jat3Pz2KYhlfM6jLMvgkZ+hO9Ro8TtU7l11lCFlsUvgTC68xqbXB8SO2UDtc9MVA2d20e+2zVNqYxpSYPQBB5LnGDlj7Sk0pvS5pd5zJj0JvIV4SoAnJLsMF5Kpr52H+oWMl8pPbriQTLz8y7LEfD7HarXKatN94zcvH65EofZ3dXWFN2/e2LB1XaOqKjs2kyIsF4AOyTP0qKgcvrL8+kjWd+6YlQpHIDN9bS+tDMbwDIUlnmMpNz1SepAF4Xq9xvX1NV69emWP/OoDdnk9rddr3NzctOBaEbxzdch6iyv+SPnAP9y6S+Ufycw/KiiKAufn59bq6Pr62spI5ZFDufO9BA+3KQofiB0SjtAC8vdBRg58GoBWsyOLawAKZUmArII5rtjw7M4L5k9rc9wx9ce6rrHZmD9uEWuOJG689LsIZH9+d0U+b7/cGg28WdXYtBaw0ECjNV6uGzxfN+4oUgvAGCiJg4npxP0wHtDWAlAECnXeOdil2bhMgFPj4hCwqpSxglVwIK0H5MK/J9bmgf4aYH21diBso9FsGuiNRr2qcf38Gjcvb6BgymXxcIFqXlm5QtQBVW2y4ztSdlwG5EmQNspPBdzHikrxZPumOhWAbJRHwL9zXDHGr9c9q9IE/45cYGkHeFA4Cw5zniF+mqULV/4eICysV730+HuqzhSTl/NSIh5rP6nfSilrDa8KB4QrpTqgB9Bdz8/nc1RVZY96ff36dTA8xYlRbD0Xm+tSIEMICAzJH3KP7Q2k3y7WFUP3KbvUedB65ezszPsAM7RH4nUl/Q9dgezP/c5QgNYNALzjlylPMcOFfdEQ/Rvgt5u+Phlr47n53Ue5hGS7ubnp+FE98Y/Zc8oulYcx/axv3NhFerF9f276qbJK6TdS428f5bS5lD6qTx+2q7YZGuuG9J+h+/+7oLvcT39daOpxYFc0FhcI0dh83VV/GrKOjdEU2GKKxpbNwVrGhhrc2AlmVwvn2MJLUuhoyRCvbRtxTB7+tdTHH3+Mb3zjGx35fvWrX1mrGaLr62vvmEx+zyan1F2AfbK9o2npLiaNPnCtL+4+ZOZtlDa7RIvFAkdHRzbcy5cvvbC5tM0EGYub6ktSNm5FTwqdmCW8vC8xR9bYBJb6Er9vgR7yC901mssntREJjbHyfbPZeF+fSzlCpwCE6iPVrmUdEc1mM3uMLAC8ePHCy3voI5pYPuSJBqEykeV8V+MxlS2XKWe+IHAHMJafX331FRaLRe8Rf7ENa2pTObRseLuQ7YPPs7IN0e+qquy9cQR0vnz5Ev/1v/5XG3az2di8ho6r4m35zZs3+PLLL1EUBU5PT23ZxfoVXzfljFP01fbt7a13hPjYsT0nXqqNaK1tH7i9vcV8PsfHH3+MBw8e4L333sNqtcIvfvELe+wzt9IcMhZrAYBqAcL68XuzxOJyRI5+C5TOjwlAtfK4cIafeVfKvDeNRlGYJ0BjmgMcCSQtS3Pna1mW9kOHoijbMdrxd2Cus7ynDwjqmoOyG2adX4OORiYgmCtnzR/sk+Qjt1jZca/Y7/6yj7trDaxqjf/Pzy/x/NYcPawUgEKh1kB1XPkgnsXl4qCeYUwP7b0DcNaO2vnJ44rtu2aAHf0mdw4k6TZe0SpJixaQJSCWWc/Ku2RV046fzDJWl84iFg2gSgU90yjmBV7//DUufnmBZtMACvjb/8ffxqPvPvKALKVUFMS0x7kG/Fggzy8G5tokJD/2jFkvR2XgdZyQcSiQ7NUVSysEyNrxmkRg1ptKKViQXsjj3d0q74aNvXOAVIu0tZMRyqUprWVt/ngeqNwDsgrB3ZOGOjk8snqUFrc8bZsfpbr82J9nEQs2p0uwWLm2Z5/Ux5TyLWOV6XdFWVgwlizJ5vO5vScecOtsurJAa40nT57gyZMn+N3f/V28evUK//k//2fvgz6vyDIU+6mrJMhNrp1C82VMUZ+jFwjpfHh6uVa/Qygmg9Qd5axJxq55Qnu5+Xxu1zC8HHl5pNYsEgDrq999U9M0uLm5sfvTZ8+e4cc//jG++c1vevm+ubnBV199ZT/kur29tR+xUpj7SmNl3wfINYSOj49RFIUFXgGz7iYL+aFEPKQVLqecvplbNtvqiHOPC84ZH0Jx+MejMbnpiHtuOb4roj37FDr6MTRmbCYK1XWfvuGugbpDGK/vM8XWDbyfSP0eAKuLOaTyPyRZtqEhepYUDdFdcl2jTHNoujFscewYOAqM3WbAzc3wkIJJFWTf5Mf95eKV/HdJfLM1dELJ3RxwoqNEeNzNZuMd+ShlS7ltA1btcxEZA7AOjcYuMA6V9l3euaB/6t7MEJAif+fkKzfvOQqJnDQ4kEmb+fV6HT26JpWfoYD6EHeZtiS+cJIgeihMiPfYdscBKjr2J3REcQ5JRVRsfOVPrmCQx2XzJ+cfojHzrFT4cP8YcBlTXOXKGAMDY8TbpTtG1RyP++LFCwvGEogpN42hfHFANDT+DinnbZRxPD2qd552XdfeUYS8XYXk5kfvXl9f4+XLl1aRm2tdEJuPQu2Bl+U281gqfF/7j/nzMuVHkYfWjrIucvPQV5y5wwcPpzXQl3QsjHQ37wZt0JrqjMYaDaUaNI1BFIrCALT8ox2lFMqya5FNdW+AVs0sY2s7hvn3xHYBWEJknEy5ZRULyOsewd+5/gDw8rbGm9saGsBtrXFRa9xojUKTBWnb9gsVBfOSJMAiD5Rqf1tQjQFoJqcC5IL2f6sWUAUDhkRYDe38GmdFa+MTCEXWipo3LPYkMK4FUBu0dxDf1PZezIvPL1x+DVqG2dkM5986zx8rsoMNHHtYeO+3XKMJ4DULiE2JEmh3nkWn75EGZGPxWTuyfTqUBsmZ0QelRWpI3s5HAEwWz1/6sT4kQeCgBS7/nZJVhPPKLVF/FsAVQLcFlXl85fMiYFa6y3e6W/Hq6so74rNpms5YDJj9/KNHj6CUwsOHD9E0DS4vL5Pr1b55PBQuFD+URu7cH9un7XPPm9p3jd1DbCM/X0PVdW1PQQmBqXJts++yi9FQHRatC+hkoF/96lf48Y9/bK9v0VpjtVrhs88+s3mWa9dt8j12rT42zi7qaJv97hiKgYL8j9xyKaZniYVLrf33rXNK7XvH6JJpfc0/qD49PcViscDZ2Zn9KHuz2eDq6sryvb6+xs3NTeekt9iph0NpKuBhbN3JdjdV343p/YdiEKk03tF+KRe76Kvjr0Nd3iU2MnS9MISGhB+b91ibGqObndQyti9Du1os9t1rGiKp5CY6hAXtrunrkMc+GrOQ2HW5DV0wvavHPJIAgdbaKj0Ac4QnLXD5sUgUd5uNbqpOcxYMfbw5/7IsvftOHzx4gJubm859mTFFyCGQUsqzAI1Z8PUtIFIgYghIIOLWCICxKCRrv1hafRuIULoxt7smDuDFZAuBtfI3hYuBWhx0HjsOE+BK9+n++Mc/9qxHyLKUyxU73rcPVB4qG1HuxlOWw3K5tF+aSx4EaPWB1gS8lmWJr776Ci9evPCsZYfIHtpsciCYPlgAELRYCAF4uyb5YcWrV68sEDvkqO+cOm19WjBvbJ/mCEQYTCVSyr3Tbw60kjvxNPkAtObzYIOmKaBUAz5OlaV5Lwpl21lZllCqQFl2LdepDZh2qVvljw/GUputa3M8sXnSRwFkpUt50oyvK9dYsTt3x8MPq71wxl97YUK8OZ8/erbEHz1bQpUKKBR0yb6YVqw8BICUQ979nL7I3Sf91pHf3I37qYB77E+Fn3wtpHULTLUWtRyk0lqjUIWJ0/rr0lnSfvqfPzV1v26gG416WePJbz3B7/zffscc72xFZgAWuk/yp3K276G+nKiKUD1x8FQeR5wLxPYCsDH5eD9veYTaSPDIYeHG68qrywAAKo8F5lajBMB7QCgQTMcDKwVYG8yLiOPx5fGVkKf9OMEUGfvAQICjHQvZVl7rxsqfg66dP+4v6ozXdQecbf8IuLUfbRTK1gmNhcvlEsvlEs+fP7f7EPKTaye6i/vhw4eYz+f45JNPUFWVPVFFWnlIkus4fqIFufE/crN1oXV0vcjnSHkCi5Qh9c7p0NbKUxKt1wCzd7u5ucGf/umf2vUb4K9n5AeGHJCVYNih7O0kaW0swZVSWCwW+Oqrr/DFF1/gj/7oj4J1LS3D39HdUKhu6LSfsZawQ9LaBU2dTmifGdtbhq7Ims/nOD4+tvF++MMf4tvf/jZ++7d/Gw8ePAAAXFxc4M/+7M/sOP+Hf/iH+O///b/j7OzMO+mNH3U+JW0zVo8Bh6fao8d4Sne5Px/C89349I7e0XAaM6bk6F+nliUlU0p3mhrnPDD20Ba7+UqwYbIPHVjHXCI/Nmwobm780N2XADzLuMVigfPzc8+fvrCSxxRvNhv7hWJMltB9a0PKa9s2NzR+DKTJLecYEBEK1ydDyF0qsGNWgqE0xgxWuXQoY0Mf+BYj6c8VFXQnKOA2vDHLy45CMiFbSNY+UDRGfXXNgREKT+CsbENSeTJ20knJN5ak8qdPoZTDT1IuCLptnnLicyUK/4KV2iDNPyFQM7bo79sM5LbLIeNcSBEXG2NjbTfVHkMbIwmy0p88gnuoPCGaYvzrW7jJdsmVbNxNbiDleBSqP2eN6I9voTKRafK2xtsrp5Alr1QMDhlvpiA+X5KlyXw+x6tXr7DZbOyR4AQky3YoKSa3dA4Bh1oD45oQISgxfmH/UFjz1NDaIBL0dMcW8/VFDa0LABso5aywDXhLCIOrW63d3MLvuOb9ku6K7R5JDMsHFnjVnvx+eaAnTD7F4r1e1fjZm7XxV8CzdYOmbEEUpYACKBQD7Nhv45CTOAVlcRm4ZPkywIaH9/q7ZnEkgKUjlrIKzgq2PY6Y/DxATgn39rhaFDBuBKBqlof2z/YnVh5kIWvDKuD2zS0++2+f2XTe+957OP+Wv0/p0NRLUiWeQ9JR8lWNl0+0BeLXB1Zy9zDbLoia/Tslo3LPGKgak4e3Y5kvw1538xiQxc41rQwUN5Zu35HNkrxjijXrcxy45eUCNiYwv+A4oWDHFSqL0MdCNH/T+2q1wtXVFZ49e4bLy0t8+umnePnyZWf+jhZbYL/ZyXdgvUHukgffV8TWhaH0QvfX83VRTGG+DcXWXOQXymsfTbmuCV31IPd3fM0S2nvmrN8PhSgvpMOKrc1z2/Y+aag8feH79J6h9f/bSFPrs3J1R2OV+7n7yJTukev8lsuldXv06BG+9a1v2atWAODy8hLX19d2rPjpT38KwJ1+CHSvyBurLyUa2nZjbrF5p093keIZ459KLyeNIfJsMz5t04/H6hXvivYpY6pOuCGf+eC4K1fIsvzrRHG9R1j3mBt/jByH3ra30SUe7J2xnO5DJRClFOQ5ceV7jiKcwlZV1XunytnZGT788EPPjd/xxen29hbPnj2z7yGwl0AfkoXf49dHdBfeIRBfBMWIb4Z5vKnloGfIgicGLOyS+vIY23yPoV3lS26uJQBLbT8ENki3kNJ+zCJsSFnl8ObtU2tt73Hk1nUUJqdOYwqhMbINodQ9MW8TyXKTwDMdJ5+zGAwpsPoAydQ8FVOchXjHeMXS4gqkkLx9vPlYw3lRu46lK/usvJ82lecpKMVP1h398Y8nOMn7oUNKU15O3KpClkFq7OLjAOch60DO+1ImqTzMKZNtiSuu1+s1vvjiC9R1jbOzMyyXS5ycnGC1WmG1WkXnr1BZxjbpWhO4RwhFmnh0Uz4KoeKgcL5fNw0/HIGtgLtD1gGwTn4NU0x+PWlNlrFlW79cQerC+3xcP9TagbJkMcuBWLKINWnxp8wPL+NcC1n3PmZq0hr48rrG//sXl+0djwVQAOW89AEV5QAlS0Oas5SNwB04QIkDsUqp8Lt2YBGBsuTHw2ntwqBo4xXsyOHWzT7pLySzFr8jz0IVFvgl8LdRjb1TFBWgSoWbFzf48f/zx2g2DZpVg+//X75vji0OFGjHLVXmgbqxfVzUX+h46ZRV7CQWsSlyXdXyDR47LIDaFHgZ4hE68jgoA8+TTqcDsDmdeIR4iegeQCvqIpIhn2eAX8dSWGnfn/oc/W7bKv/zwinGU8oCNz5498sql7adQ5hbURTQhbbKc9pT85N6aEyl+fj6+hpVVeGnP/0pXr58aS0KQ6dpRItPrDmIKC36zcOG1kn0LtdUnF9s3pd5jIFPU1EuOHFXYFdsPcbd5Fo3Zz1+qMTb9WKxQFVVKMvSu6uP7pfNsfjepZy7XK+O5X1X7fS+0r72HyldS0yGoihwdHSE29tbawijlML777+Pv/W3/ha++93v4vT0FIABa4+Pj+0+58/+7M8AGL3BfD4H0AVjpyK51wzlJRWmb885ZVvO0Z3wtIfS26yjelsopEOjq9yIjo6OrEU5UdM0eP36dcdQ7W2gVN/lNES3HZsjU33960qyTJJgbKoCdj3xxxbMoYU6V0z28QLcRc0hXqFNRIhSm4YQqJfDN7Sg7gMIedhQniR4SF/TyjChr0IkUEqbRE4yzfl8Huzk9KWWlIUfa5KbV8lbUi5wJSdhnrcQX34UI4XZph+E4vIy4MfOcqAtJn8ODRn8cjetU8UbEz6XX6hvyc2tvKg9Vb+pMWmMfEMpBB6k5BjSVkP1FwMrdjUP8LG0LMvsr9OGbkxTSgytNd68eWPvPOT85W/53qdQCqUr64hv5GIgowS5UhaPIT6xMCFrhVj4UL766oHLzYG7nIWfXPDROykhYwoqLnfo6DzuzkGlWF5zaKiyj8qAFv/8blhOZAGc4i/LwYFpkCk57AABAABJREFUAYAj0C5kGUs5ZVuTcnJFWggo39dCnB/r+OLFC/zFX/wFLi8vsVqtvHGF5yk114Zk74KI3d/cTWuAWMjfMqzx42hGaCzxgVzOk/MlXu64YsPTZLeBUgUA+qBHWT5kEevGCJkfB+LKO2HpXf6mcpDl6//2yyxUlu2vYPl1w4VpVWv84Vc3uN40gFJ4eVujmBXQCs4aVjlgpQPsEeU26W41WoDLyKtdOMABZvxdM6CLwvI/5X5LC0Nr4do48It42mfrZ3kXjq9utANUZdPk8khSQAED0BZlYdMjd0rv2V88w2a5ga41iqrAJ//0Exw9PgowjBMHUvuOjPbGLQHAdtwTrHKB2KD1ZajAeHmSnDoSlsXp3Gsq20orQx9oG3uGwqbc+NjPrV49mcHmByGrF4Zb3qbKgAGoXjmwMJ6soTQlW1GWNB6Eji723lX3NwGxqlCYPZihmBfYXGxo+LXp8TUS4I+XdJwtXWtA/kMptReVa4bQSTsUjstNT3nFB8Wv6xqz2QyPHj2y4AN98E157FvjjKG+uVxSzt5paJn3KUJD+4Wx+oZ9KjyHlq2MS/ssc+f8xvPj+pdd6x9DlLPW7stvjs4xFO6+0pg2m6rj1D5623Y+VHcwNo3cvXSKR1/cXfX5GN8hMuX0lSH68lj/SbUNLkvo5LFYWhQ3tTceqiuZmvr4jp1HxugP90WpcTU2xgLw5pjFYoEnT554/nVdY71edwzVVqsVbm9v7XvMqvZQaF+yxco6ZqCX09+Ibyr8EFk4vz45+vgP9Uvpj3stY6ceMIYs1nIbUKrQY4v5XQyEcvMQUxoP5ZkbJ9Tgpdt6vcb19XUnDQ78Ecn3kGWs5F9VlT3+j0gphaOjo07c169fewMahZWyxfxS7kPrl0AfXt4hBbhMY8pBToIEvE64lU+MxixyUpQDKHEgJRQ2BYjsc8MhF0tcZtoASkvtsRvsIfFywauh/KYOu2tKtZOyLKNfmIba3djNn6TNZuMtwmLHwIfkGbpooDg8P/LeGd7XOPjB0wttCjgPnkZKxhDQFpKZkwwTGx9jm5UQ6CXTk8AfxaFTBHK+nI/NMfyINK4YSuVlaiJZaLynL5vHfKjE+QH+/BIqa09hLtYtkmJlSOUU6of7KkNOXJb1eo3b21s8f/7cG+t5/4odcc3f/bzRMbscXIyBf13rV60BWSQUV/rFuqsfn6fRtY41ciuY44p9Pk0DKNXYcDyfReG3C0rTyerak7N69UHZ7p8cr3g7MvLH8s3d+obasL9iMgC3LRj78raBqloApCqglANcLBhronvPPrAvkLwQ0neT4Ku1RLQFDt9PWje2ZRkC0yyYCgVdaMdbhitaHoUAabnVLpOD0ota1fI4yr0X2lgFamh7l+bL/99LPP/L56iXNcp5iQ//3oc4eu+oW25jyjrXLyccr7MMIDY6/mnXhpJAK6Wp/d99IGX0iGLBUwKYsfDR45GHhKXXjDVbENyl/ComvxL9JhRfwT/KWJYnGE+ZFoS7zBePq3w+FMeux9iYMjuboTwqUV/X5m7lxF6Oz7U3Nzf48z//cyhlPkbj/mP3ejElJuk3+B5JntzB5//Ufp3WV4vFAo8fP8abN2/w5s2bzseXcu26Cxqyb95GBp5Oaj09ZJ8dkym2VzqkPR+R3PNQPuUHcaHw95GGyh8LP1Y/EYqfI1MOyDOUV6pfyb3nNvWeU1Zy3b/PdpYCJcYAB7vu531lk7uPHEOhPRlPK6VH6OM5RK8R2+PyMPeJ7qPMfUT5kbo7aiPcGGw2m+G9997z4m82G7x58yZohMbnp9ipoW8LTYHF5dCQcTBXnhy3UNoxvWwOr1jYVHgPjI0NLPeZYorMPqXbVGmn3t/R4dF9raMpFqxD6b6WVYw2m42dZKdamI9ZjOaGkzLxBUJRFLi+vvbARCnLEAXD0HzQxJN7ZHkOrxxKyZazgZBKEf6VviwD2edCCpUYmJkjmwEyuoBsDvWll/Lnmw364k+eChAC33KJAzJA/zwpyzV1n5ZUMIQUin3pHR0d2S/zp2i/Y4jykfrisq8OQ2687IhC5UEbzZiSVlLMKkfW8z4VgqH+yI9t5+AhlXPoSGaKn+rLPrDIkQkHBspo7t2Bpl1UwIXtFruP4BE/B7z6v7vxunOcyadCURikoGk0lKKPAxyQbMI5eem3BFrD4GsXjA3zkjJTOXf95e+cJvaHX97gZ29WQKFQA7hRCsW88O6FtaAJWHvi9SDBOOmPgH83W967tV5loCcBTAR2cuDT9i9p2UpPMBBVu7rWMNavFrxq/6zVrU7wJIC2cZaCZI1JT6010MCG0Y12d9Vqd1xxA/dE0x5trLSxxG3L7S/+X3+Bs2+c4W//H38b89M5OjTRUjRmTSvrLgi8JmTonR9Z9++Asn5Xten3WqNygJYNSaFjifuOHA4CuPDHxV7AN+SuXJ5D1qkda275wUBLdDR3SBZZDtZqmOdfMZ5cBuXvrYLWxsofG2QdWJ7ij8YWauuxNbacd+Xa6/T01CoWx+xT+PpWKWU/QpMfpmptrj6Zz+c4Pj7GbDbDs2fPsFwukx8Ny+OHKex6vcZsNsP7778PrTU+//xzOwfv6ijaPvBHrk9ia5WcdczYdc7QeCmg9j5SKP9vS95yKLSHSYXbx3p6rE6C3IYq2cfkbUzYGKAWk0uGnwIgkCdgzefzjhX4xcUFnj9/jufPn9u7ZGNjJP+IXOoPpqAUrxiGMPZj4vtK93G8uo8yj6V96iHeUT/x8S+15hrDc1uaik9fe4taxg5V0OfESU1w21Afch36YoFPUFNbPN7F4igXWOEK2RS/HF6hcKGJn752DSl9Ywr5IXTfBtUp5H2bJs4hbSA2WG+7QAbCluWxxWWKUqCc5BVSsIwZewFf/s1mY4/hjNHYdhiqA9nvQ8BNTnqxTVhsQ9HHMyeOBI1D+QjFDbW5EO8xG1neDnL7xxigNpQ/Pj/SuB26LzRnDpKyh+LyfkDP0OYtpw/JvOVuAnk9VVXlbWJz7ljehlJlw9s9z1/uhjilXBw6ZvaNa7F6kPnY5yI5tBYhZS8dn8zDymOhc5QZJr/0m8rEB0C7Y73T+JMlq9ZAKJmuO8V3/kb+cBz328WTMkgUxFjJUj6U/R0rBpdvehqLWFc+IfCVy++sVLl/yC+M8qTI5K1uNNa1gUq0Bj69XOPPni9RzAprkVmUhQ/CKvjAm3wPJNUBXaWb9v08N/6uIk9AVlcsy+4v5Kbhjh5m/loL4JbumQ38aQhLWS5rw/i2v5VqQVctjituNFTpl2uBwqTRaHz1o69w9eUVvvu/fdfUkQKKqjD3+E5NSjyFXwhUj1pGR8In06b+3ANuDjleN55cHNRNHlEs2ik/FrkDcvI5IgewFeGSQHHLIxpe9K+glS797FEEBUHnmExK1A/x4HLxMYWA3gDF1ln0ez6fo65re/f5UOU7jc80N8q1Hp+3aE24WCxwfHyMFy9eeGlyy8bYOoTLVpYlTk5O7N1txCdXnzGE5PojB5Adu3YfSjnruhQoF9uz5O4nD40OUea+fhjyy9Gr5eguY+v4sbqCXVJoT9kHyPJ4OXkbqjfM0RtJtxx9NR/3UrLG2kcozdBpjtfX13j9+jVevXplgVat/aO7SQZ+OlTOiXpShlR7jMnfxzNHLx1La58UKoPQXMbnkiF6rUOgXcuSo1cYKsPY+ZXrdKR1K+3/eZ1LfWnu9Wj3mabO35i6lWvMVNhtKWdcp3BTUyp/vccUfx0oBiTE3oF4RQ2xpOGK4mgFVVXwaGB5oXRs0S3dlsslXr161QkXutNVnpMeIz6AnZ2ddc5dr6oKjx8/7uTjr//6r60sWutgXrUOg8fcP7cT9XV0TmM7/ZA0hhC10UOcGLaRqw9g2Ta9qcpLyiT7m1xAj5Vvm80Vj7vZbHBxcdGRk2+Mxi6Ah8iYAoa4O1fkbDabJLDD+Q4FlFLKNsCvR542gTSho7NSgB/xGDomcGCIyxcKRxs4Hi6keJLWfnJxKsuSPqLh4FUobEi+ULvuKwPKy5jxM3Z3mZw7CFyL1RmlXxQFqqrq5DtGvF/JcaBPiRba7FHdkBVnSIY+gDCXiH9I7pQSI1Tnsf59KMTvLAX8E1K4eyjf1BcoXPdeWYCiuCdHuoy7Ut2n40NxCeB1QKjhFdpEuPBGbsfb+EvLWwJ/BXLC8hIbR0JV6YpJHtnsj9ExNxee8+iWZSjNUJm3uRb5Uvjpq1v8u5+8gaoUilmBV6sG1VFlQUBVtHkslGVh264AbXgy0iI2Br5FQTkNB9LoNhwTXWvdsZK1YGnodxvHsmx/cwtY60ZtXrhxINbyEn8WgAPs0aqepWyhjCWshrWK1VqjUC3I2lrP6sL4UXhdaDRlA107NyhgdbXCH/w//gCqUGjWDT76nY/w/f/z98Nl2kchkNSr1nzFYwqcH3x8dSB+EPhLAJmD/XN+86g96+8OSNw+k0cFB2Sz4KVi7jmk4OqX9a2Q3PbYbu3k4jw6oCmYVS2NDwrOjZeB6srOwUalWkvyNqwqlC2j0EkTsXmYrh0aM89SnKZp8PDhQ5ycnGCxWEBrjV/+8pfYbDadY4lJ96CUsidNSPlCHzHRb1Jw0lr/1atXNg+kS5D7lKksq6RMofLlacu4Ms62soT47UqH8I7G0770LnLtJRXVh0qyX0m/UF/q24tPqe+SYAyt429ubqKnTw0BJXPyk0N1XePNmzee7lVrjR/96Ed4/vw5/tt/+2+erpbn6c/+7M+glLIf5VBcyu9Upzz16ctlfuRHrzLeUF3C0HYxdiyN5ZHvz4GvB2C3K5pKB6mUuQqR4q/Xa2tBrpTCD37wA3zzm9/04mw2G1xeXlpeL168wF/91V910pJXM5BbSO77PHfH9DexI5hj4UMkyy+V3n2kKeo9eUxxirYBq3J5D1UoxtxjCkKpvB06mU7dkELphAaCGKWUpuS3Wq1weXnZSXc2m3XS56BIKk2p4KevXIlmsxnOzs46+VgsFr3nrOeUcW497GKQHDuZ9PHb1YAulf4p2kaGvo2s3ATLBZYc3GT8XW9QYn0p5h/ajEw12YzZlDRNg/V6nT12yXCp8o3lPZRWLjAlZQ+1l1QbGsI/1AdCG7Ch5T6m7w5dxA0Bu3L4peq5b4Mt5QqFDYFbQ/jG+IXcpQyh9iHbTij/IV7k3id3XxlIN6l8kW0z1NZj/SzWL1KbXlkmoXVRivo21Ie42E6Nfak2SpsSKjN35DOPy+OYd+fv3AAOkBq/eB8iOYO58dLUmsI5d+PGw5m0lXIyO8A2XV9cFlm1sv1Rfv2n7++HjeWvm346DpHJT601LlYNnt1s8DeXKxSz0h1HXBqLWA6s0NOyAGsjAnDp+Av3oFQShFLOTYhuLRLtu2KAK/stgS/7lL8h3nv+tI5YxjatbAUDX5XyAGEOBltQMsZbljcPr4CiKaBrjde/eI2mbtCsmv8/e38Sc0uSpQdin7nfe//hjTFkRGRlRkZONXAoTt0UUUWxS91Uk2iitgIaELTojbjVQlpJGwnQolsrcdcrQQsJENED1BIgtqSGmkSxBrIqk1XFzKqsiBwj3ot4L+K9979/vpObFn6P+bHjxya/fu//v4g4P374dXOzY8cGNzt2Pj9mOHr9CJefXroqO3xwiMlR+ffF2wKmEcbD01l+m/DE9JIqWxUraXO2OdZkKc0/m1c3NKXLK/t4KCyVXss/R0732ur1FfS+Neyf4pruAy4PeKYogXURn19L1nSSN6fJZIKDgwPcvXs3eJyBte1Zr/QPpHcxCa2LjGk9US4uLjCfz9W0sTBed9tQbn7a+i+lP8tnXFb68JN/IDZEX0qBF19SGWl9aiywLUePp2tsLRGjXHlia4YQlaw/Y/lJfkNBmFyij2uJ6rqGtS0Yq+Vf0v4h2Yasca21WC6XWK/XXrwXL15gvV7js88+c+Ot3HHwxYsXTk7prFNCsXLKfqnd8w+JQrtKlc5TpXbWVHtu8x5pZdbsHK8C3bZ1emg+j9l16DkHDeU233fv3sWbb77ppVmtVjg6OnLxTk9PcXZ21uN79+5dFXwN9anbUpcpitnSUhTr52PPEaU8xiLSzWLPYzphiELlG+QZGzOmjtERSxXs2FacIYVGW0Ds+wsXLndVVap36mw264GYy+XSO3ga6BY42qTF+Z6cnODFixe9fEIDIN8+iACeUBmAFuylr1yJDg8PcXh42Cvf3bt3cf/+fSf/xcVFj58xJgpGD12MaQNpaKtSHidF2ywOJeDE62LoQi03v1hYTpptZMjJd58ky0OKe2xgnkwmvbaL9amSyUmTbyhwx/nGJo+hbSoBnRySQBZfSISUxZgiEKobAlLke8XjyzbOabMYgBMjUiAluKPxl3MWHw9C9U1pQvJp3tx8iyPA3/pIqxsJ6PG2lJ6DqXEldJ8C/ORvzkPKlmqjpmlwfX3tvcOxPIYSr7fVauXagofzDyr4c14+Hpa7JZWWhqfT2lOre/lM1jPv07Lv5sg5hIbOI7wtgE427hHPPzSzljySqL2w+W9Bze6e+APGwAvn9/xsV54GoPJwsJRf4X5Tsbum6sKJl0xDv7k8/pV45Og+xLf7zbtN10/8Z/q9jK/z7CiEoBg8vVzhv3z/BJerBtO7s3Yb4s22xMaY9h6mO6OUKpKDJhtAVF7bx91vd59B0gMWSl1JT1cOUjpPV5HGgZ2b5z2PWKD1NmV83TtvWVhj27RNF+b+q1Y222y8Z6tNGtMBLdbaNl6zed7AO0+2qjYeshvPWH41tYFdWzRVe46sqdp7UxtU6wrrao2nP3yKf/6/++dYL9Zolg3+nX/87+Dd33yXVaft6jjWJLnDhQn8DkbfYnwT3dl5WloZTQH+Aq9qNsiZLWI+SJzLO3vrZf6cDYfuPFwZnfrjJq4x7TvrzWssvWw7dxbyRjbXHlxuujfiH+j3FxnH+HHkHDnEq6l0LiTA4vj42N07cU23e818PnferKSfpI5D0WSZTqdYLpf4i7/4C2drKNW3Suf6sQ2mOXUs1zekS9+9exfHx8dYLBbOS6dpmi/c+YqltGtbwZjr4ZK8uE4t9fyQ/ec2gT8la7xcmWNrPkmx9TmddU3xptMpmqbB2dmZW1/l8AmFaUfdWWuzHWlkOm57BYBPP/0UT58+7ckm76UjjBxPd2Gf57YvXs8AcHV1heVyieVyGR3bU3Jp5ZZ2G+KRe8RRLDxWz9JTcCyP4y8ipfozhclxMjQWlvCdzWa4d++ee/b48WP3cQYR6UTyPV6v197HHTdF286FOXbVUP/WwkNxS3SaXeMAoT6mUWxcCtX9UPmTvWnI5KdR6SRQUtBYh0wNtjytNCCnaMyXIJZH7oCVM7HwL1pTVNd11oDDX7T1eu22B+AU2vKYAFrtS1zAX8hoC6kcBSPUThoQEUtTsvAaSlJhDdVLLK8SBTaX57Z55ijioXYduuDOTRvrP7kGAQlOaCBGCgiK5aeVKbZoDOUVqpsYmJUrJ38/QyBOLL0mYywsRmPMTUNBndz0Q+ZE+Ts3j5K8OPjH08fe8SGLPK0MpW1R8r7I56Fw/iFFqbIr48v5KfVe8DTGGBwfHztjJwfENWNNirR61tpUe49jcueM1fsyGG37zspyUNl4HffrhNogxJ/zNr1woANwW5Z6vFTR2njax1I8Lect8yEQDWg9ZQHAsN+cdLSEZOBy+/VL5YWI0+OklVAJkzJtfhlg1Vh8crHE48slXi4brNCeT2oq450L610ZG37fm3MN+oAsl0RrrIxXwG2pqgF5vMrpt2zKzdXajdeplsbCAc9oRLhlYRu+ttrwEksj7hlrmg1QRSAtWJoK/SvJ1Gz4e0gUK/KmDKYx3T3a82KbVYOrF1ctGLtocPLTExy9foSH7z3E9Nj/8FMD2PrVm6HrlQDtrwLpr3E4LvLjF4G1A+Lnpk9664o4Emh14Kt8Tu+c6cfxsuBzCdviWMoh5+fQGiqlt4eeyflc6iV07qz80FuStd1HS/J8WU2GmMGP9C1juo+u+fPUzlkl1M1v/R1SQnN7Tp5D14+kZ2vbAA6h2wLK5VKurqbp1PumEllLwkP5hNZecn0v6ya0Ttt138hZ86eeleaTSzFblGYnoTw0u2tqHSz5DyWZP63/YmXnuyhqa5qQ3GP2DW4Ls7Y7h1zrgyX9JWbzCskheYTuc3hsS9uuS8ekEH6QynvMcSTU9jG9R0vPib8f0pZ/dXWF09NTL35d197un3x7b85Tc9JLvYu7ol3OhbG21RwxcsFoblOTPG7qw7NtcYEh/FP8bh7aj9CQibeUbuKF4nmnQKpQA3KPJ85Py4NTXdfq11qhPf1TRu2qqrwvoS4vL3tflxwdHeGtt97qecYul0vP02TIC7JNH5EKbwqk3odCy/PQtom+qf46Vr65dSiV+xgYs63yn/MeSeJehVJx3kbJDe3Nn0NcDjJuEKiUSpeiHHBL3g9dNHFesQ8kSiY83k9CHqYaLy6TjCfPaS0xymgL7RSFlFLe7pJfCGjS5h4qL50DVte12zIp99xUXtbQmbdaX0n1Lx4e6geyDqy1PY91viWc9AwmIqU819NUkyUUpr0XoX48nU7x3e9+F9ZafPbZZ7i8vMTLly+97XKBbkcP2rIq9e6l+hyvr/V63ftqnPddrU14nH0YgsYkrZ9TfREY3h+j6d+iaTh4y7co7oBOekYgJ20Z3OXFx5Owx6tE4/xxqNuGuL3y/iBRPKIOmbGW2tQHYrtm5mNHr8a8MC53Vx9lYakrJyrvxbLBf/2TU5ws1rATg7qqolsS89/0zHnCyn5ufMAtanQPAI3Ss5V7vnrvjNV5xDxjvd8xz1jyaKUxwcL3coXtzn2tNnMEnQtr0QG0m65DZ8y69566lOYhu269YKt11YVv4th1my/nw8+VNZWBmWy2ma4NmmmDP/+//zk++Gcf4O/9r/8evvKXvhJti7HA0uCW1PtQ07vXVQTvFwQtzaM3JwTKoaWX12h8fmYrGzJD3sQaCNv7mEHI6t5XXjYWwfP0hd//3Hiz+XfnL7P5VVvnDyVtjCIgdDKZ4OLiAtfX11gsFq6NNFuBMQar1ap3riGn0E4eUhZjWi+10DpF6rZaXiVUAlLw+7EBC8qXdOtXSUcai3LXiDdpo9s1yTUm0F8vlKwRQ3TTevjQMsTGv9wPNYzRd/XjZ8Vqa1K+BTCXJcdWWkrau8D50TFyoTUroDvajDFmlpA2lqYAl5y6i9WPZvMI1VGJLS2UTrb/53H8DrVJST/PtSvm8EvZTKy1nhMY112MMfjoo49wcnLipanrGoeHh+7+k08+UeUjfUiGj0k5NhupT41NoXdVs//VdY179+5lef6v12s8f/68NzaN9REa0RCb822iKBg7ZsGGTlY5aVIGdW0LiW2ppG5yjfSlnWmsuKnJK5VPaqDiRvAQ711PZqFylNZ/bp0PAZa151Ej357qblf5DeGz60lRm/C0RZKcuGRfDikymnEipGiMpfRo/ELvgmdIVZ6F0m4bX6ZJkWyLEE+eXwzk09pMa6tcpV/jo/WPVJvIOBrPkrrg7av1c/q6tq5r7+yXHOJ5x0C6kNEBCG9nkppDtTrV8uPKIz3LMfZtqwtpRkDJlxYQVVU5EPTNN990bfz8+XOcnJx45aA2AzpQduiWMLw+YkB6ah7l99LYcRuU5VydUsZtmgar1cqre2v5FQA4mEr3AAdmuzz839YCXfUQekAy0FbBMT2uvRIP4ufz7fh358ZSuk72NrzfT2NV19fveFm0tCVArBZXksEvTud4cb0GKoPLVYOrxmIN9LclNh2IxkERz9uVja0Ux3SoSg+IywL4GJjTiy+BH/6biHcB7bcVaa3C0yLuGcvT8HxpGVWx+81v8p61zQYoI29altZWLZALA8+LVs2Pl3uzTbExBo1t2rpvDCpUXrpm0WC1WOGT73+C+cs53vmb72B6OI29MuOQ9lrGX9VBNMjzc4u4u6Qx5ZC8Qls6a88kWLoJ1PujzEu2r/GvxghwF4FwOQyw+TJHPxxCmr5La/TLy0tVf+P3IX1G5qGR1BN5Xjm8xtTFYhSTp2QdqslbVRVWqxXm87ln7BxiN9i2PrYFLoby/zxRbO1cQlJPDtkSct6/bSjHBhKTaWg+pXFybSXSM4vvOCfrWFvH5lDOexSzQci8NR4pW3eqr8Tyzl0XyTLID+Y56B372GRXc5vkmVOu2JpWa4vUuz5GeUp5DJGlxO4/ZA0/VrvmvIsyDv+tHbMFdB+jUZwcvvsYb0ufj0m5ZdVs5ZQm1A67oBzbWizNmHFy7K8hCoKxoYreB5V29pjXTsjbMbTI+JJ8+rzUy7ZK35f0+afY5ELP6Sq/muTxxgRzNAUod6IbcpbFEMUN0BXWIXOInMxKF7cpGUt4yfYsnWBT4DDgb3cSkl37Ojj0hWzoXFzKi+5jeU2nU29roZiSSqSBeqXn5Qwh3l80L2p+/nBd1zg+PnZlm8/nmM/nHmA4tqId46mB3eSVPJ/PMZlM8N5772E2m+HBgwf4+c9/jg8//NCdY0LlpN905lgOUZn51970P5lMep7/Us4QT3mveee/CvOsBu6vVivXr7txiQOynTdsByBy71iwONxTFjDOK8qPD+fx2gGlm6fw0TfiYVy6ljoPWWn197ci5vnBhfv5perMu+uFdb/zPWe7egzl6qGh+IPHF/iTT69QzVovWFMbVNO4R6wDVjdnx3pxwNJIIFb+7kmmhLNm0DxjpQedlt554Xke1P49nZVK2wXzONbangcr3VuwLYcN3BmvzlOW3gvL5maLFpjlZeH3VC4CfhlfTy5j/W1cqQoqoEI7TlWoOq/e2nbn/9Yt2N6sGvzgv/gBjl4/wt//3/99TN6ZtG1a0kavCo1vExqN9uVtC9P1dw8kVbLeCszmPNk7Sv3VGMXbVv42SjgfwsWYsw8gls/tq9UKTdPg+voaxhinB/K4uYa60m38OO+QcW0XRlApw774kf5JW0KXAj9f0u0h+c5uA8hyb80c2vU7UUpDgYtS+1zIxhIC/WJbr8s1Gm/DEiBV3odkGfKeU7+Ire+GALFDSMrPbQ30wSq/18DY0n7+eaOh/eDLeeLmaZvx/VWjIX3tVeyfsbG61GYcekdTfAaDsSEj4xA0eltje2pRoPHQFhalk1lupwt9dRP64oaTBiZbq29fVDpR5zzLUazkFygy3nw+d0ZkTldXV+qB2RrvbQe/VHqt7kNgW4jGGISkUsjbNLVlVY6CWlqm20C7GNw1QFMb82J9QoubUuBD/fkmvowqWQCF5N1V/0kZZmQ8+XtofjyfHINY7mJN9gvNe3EIUCwpdMa0tkjW6paPObT4o/lGk4H4htpLhqfmmpw2JB7aNlV8bjfGeF9EG2NweHiI6XSK2WyGFy9e4OrqKuoBvCvFMtZXeJ3R/H/nzh1vSx0COquqwuHhIay1OD8/z+pDWntxUFeGy7SyjXn/kO+OBHTHJKks5+ieVM7JZILpdIqrqytnPMipO2qT7p0GuxIPbZtieGCp/9/f0pis9hSnlR3wEDv04wP83FeeN9UXkPaIBeNFPFLtx/uErDM/Dn/ul1mGtWm0+FReku8nJwv87HSOp/M1zLSCqas2ysajUoKxbVoBulZCDyCglV3bnMXvAKnPNuALbbUaTB7qipaBR9R+1r/Xrl6cyL+3nSwY2Mp5avxkvuxcWGuFlyzY+xjzjN2QaQyaumnB3BqAASpbdSAxeTbazbjTWKyXa7z//3of06MpmkWDh996iG/+1jfD9V1K/ddwXLr9armjXQKvxbwZaCq3EPaea20XAnEl0Eph2nwR6hMaCCt+m8pg+mCKal5hebpUx4/QHBczHIXmcBrnuC7Ij96Izd1S703ZTkI2EMC3W6T45OjbpRRaQ2xrl8qJW7oO3JboY0vSY6S+r8nyKtgIxqBQ34qtYbS2HNNWFdJth+SRwyMXcIzxyZWttL+l1rA0Zg35CH1bCtkPPo+UKl8piFEy5mvvXsjmFuvfOWXg77M2323zvg/tGzfZp0qBqRxZ+TFSQHjL55zdTWP6z8XFBebzuRfOP2oH2iMWQ8cyaFQ6d6dsX/sm7T2J6WmSptNp1rmx3Pu4VDaiIe+YnC+IQkdRheTIGSNyeKXIq0l5NlhIkJAQkodMs22DaGGpgnNlkxP3/Bg6qGovYw6gw+PzZyE3ei19CIwdohjF2lJOWqEyx/gtFgv8/Oc/7/E3xt/qVQ6OkldMSUvJpJGcBHIo1Gd2ZWwOGbe1uKHwsWQr6Vv7XmSm8o6NJSVjSqg+KU3q/Iht3seSuLlluomFdskiMJV+TANCzPgUmwv575A8obw0Hjky8vEnx4CUkp3icCMNLWy54Y4oRzkOlSt13rlsh1Re2mKJg4Pc0Hh0dITDw0McHR3h8vJSNUTFzuUZQqlFa6zs5I15584dHBwceOnrusZkMvFA2lJDCK/buq4xnU6xWCywWq2CILXWrtoCfMj4WkI5bST1KwJhqR/Is+9C+YQW/m0Y0DR9z9g2GgdsCSRt0YCOj/SQNY4vFbHj5+UMbLxaKQ6Ft23h/zamy8M/p5byBTgoK3mWkkzL5efPtHBed/00oj/B4Mcv5/jvPzxDNamcJ6wxrcckAAfGesDq5rcDYSvTga+i74b6cqoPkoeqJ6+xDmiJemZa9IEo2/F1/cf69xwo9QBViiu8Yx1fK/hL8JbCN32dvF0pP28saExXTpY+dCVvV2O6tuGAFXksN2jcFevWY7YxDSqzGasqixo1mmWDH/03P0KzbLA4W+Bb//638N7few+olTq3LK8Y5cYbGj+H39i0f/VvaxoD/HVetQE+brxnz40Jb3/M5cqVz5guPgyAGpg+nKK6rrA6X7ltwXMNPnwNEtNlKZz0JPJe4mEyLvHX1qRaPiGbSq5xLMYzRqn1bg6PoWuIXa9xh6zhZH0YYzCbzVx7cy+2WJqcvF41KilXbt2X6N+x/q2BP2NTrL8O6cula4+h+fD8eJ4akLJtveXY91JjIBEfV0rteKlnJXFS6VJjtjb+y7i5cpS8dyXvYKoMOXLG7A5j2ze3AfJCPEL9rNQ2HuKXY2tK5UU2B+Kn4R1kgyrpK3J8zdk1jOwpGs+xxt/c96XUtiHTlaQf0ndJj9gGjM3FacYka3U8MNS+8mMBTkOdH0P80jX5BaHQy16iCKUWAlp87TcnbhRNyTq2wsbLkztphepwNpup/EtkzgEU9kWyX5S2fSmlXu5910MJgHQbKWZUHbIwo74sB+iksXagwUFLL9sk5+zIWN+RxpaSPliiFHzRKTXG5ijqOSBBTOEzpjuHlJ9hFevrIYqBcDngNND/MEzLj5Q8aUTk76Hku1qtsFqtPKW/qipnlLzpsYzkooXJp59+isvLS8xmM1xcXADoyjefz7FcLt12grQlcM5cxBc4xrTeosfHx7h37x5evnzpvGz5OBJT/um5Ni/w/iAXN2OMD6lxio/NVB7qL2Pk3wGxYFf6LT1hu22KfRAWALiHbLeFMLURpdFRHvJi7TxsCXzt0APjxaf7Ll7Hp7vnY0S4Dvwqt4FwPx/+jH5zebXnfhkMfn66wB89vcTHl0tU0wpVXXVb1xrjth52VwJaxZUvDF34WF6xJvIsQS4u1Q/3iN0AnT3gFfABWQJfA56uPXCWdTE6B5Z7n3rpoBi+IEArlh/J0QNlN+1AoCzQgVXWbrYnNt3VgbMbIJbO4KR8m6pBbeu2P1jgxU9f4F/+p/8S7/7mu/jmv//N7PrPJu2V3IaXGpwxN20zfaXS2ow4N0W8bw55TtGMv92xanBmYKvnfWv0OD052HMH8PJ3rnBOCq3Tc9buch6W2wuXAnFcb6N5l+sZUr6Uzltq3N8GiI0ZB29ijR0jTX8i+Xmda+noA7+QvvtFXLOVrG9Dccey0QyJ96q0WQ7Is08KvUf8Gf2OAagyfah/3JSNcBc8tDE9BFBIoLzU+UXKFqvvIfOnTCvbKtUXSufJUNox6abHhNC7znf7PDw8xL1799w9HZXAabFY4OXLl65eaUcwSRKH4PlPp9NBttaSeDl8NNtEjp22JI/cdg/ZSrR4EnSt69rbVS5GqZ03vqSWkmBsjiJPdFsrNyQnNwyGjIOhzr3tC8rzjtXbUG/XXZAmq2b81cqjGT5DXr+chiyucsCJbepwbGWrRJEoXWynKKZgyvtt8ttm0ZfKe6gilNu3QgqajC+BBi2PWJ9NhaXiyOfyC/kUvxRAElNOtXRDDSpD4+5inCYq6auhdKn63UYe3je1etcWTjwOgXly6zLJR5ND9veQUStleMsJ5+Xg9Un/GojM+azXawc2Ey8CY3P6dCmVpucgadM0ePnyJZbLJQ4PD70t/fmihq68HCV6BdXddDrF3bt3nZKd8lhJLVj5b5KLt9GYFOtz2iIoZnjlcXLIWvrnQKsPxG5iemHG9NPq8reWel8eQn86FIjyaaN13q+Ul8a7fW5Yuj4fXk4dcdLmpdj9UCDWD1tbi6dXK3z/00uYugViTb0BUANnxDpglo0Z3njJwBB5lb/b2nDoSqw6/Lgyfog4H4MWvLGmS2vRApMUJruE7dK63w271+Q0LA69prTlMNt6OOjtWjG50HnHWti2TRrAVv1ti9Fs0lRsPGls21YMTOYgMdBd3e/Ns8q0Z8vayqJualw+u8T7/+x9HD48xLu/+a4D7p1nIskS6t5Dp4Ft0qb4up8FutIO0NRdbVFcTJu21+Qp8abV4qrplXZ1HyJocRL9IDQn5axTQmteuSaheFKn4/O9XG+VGPekvCGdIKSLxtZO+7YvyXLkAmrb2DRyKAQMULuG9B2i1PbEMRrD5nCbKHdtH0onn5esG3LjhuxuGo31jsTaN7cP5Ni1NJtJSfqcvHPlC9k2Y/mPuaYPycZlLE1XIteQPFM2JU3PlvaFXArNByXvRwn/GC8eti2YlvOujUnbvFechqblYCwds0S0XC578xLt3MFJc1CTxPtFXde9DwJkGu6EMCal7NOhuWcXc22OLFoabbeUxWJRBMbmxI2V9aZ0jn3lO8gzVlP2xqYxlRktXc5Lt49G2PcCYywqWaS9CpRaCIbCtqWYQvh5H3w4SWVtLIUhll+IcpRw+RVWzocFobyGKNklaXPlkHxzJ2siabQuNeLk5JETJzQ/bdunYgu2UJ45W2KUyrLLcZfzTu14wEkzCnHlq+Qr/FjfCckHwAMieRgBjXVd4/r62gGypEyW9NUUaQBlCW9aqNCXnH/+53/uQNbVauXOh+ULB7mACbWVNHzwchOPuq5xdHSE9XqNs7MzLBaL3lYt0uDH211bnMeMxGOS9gEB5UXXpmmwWCzcPV8YDqGWJ/2TlyzQNEBVdR6zTdOiMlVFY4Zxz9p/zSMWG7CU8mqfe2hcz1NW/qY66O77qIBA/eIlzqsYdHJTOn7f/20D4ZyMu35yucT/+8MzvFxszoitjPuPeb/2PGHlM+jXNlfjVU/Qw9UEnvduE4YuH3HzQEPnmWf9BXtwi+INK/c+bOJJr1hjWzDJ0wGaDS+2PTF5zNLvxjRe2spULi4sWmCXumbTyeN1SXq2+W0M44fO+xW23Z7YNpt81rbzjN141tpqc11v6qVu2/gXv/sLPPuLZ/ir//Ffxbu/+W6o4vuvFT2S43sAzM0CebV8R3jGvadz0nhjsUw3cJiOAp8j5ZFLOUBs0dbHWlvKMOrPGkvD/mVcHp5J2lolB8ANpZFhoQ/Vcg3SmlFRvkcxHeJLyiP6+JbqT34ATzpb6liGLyKNYfhOpf28AdljUgkgFQJwY8BuDMjbVj7tufahQwzs29WaPsZbG9NLbZBafC0NB8JK+/+2703M3kLybgNay90kvqSWQvXKdYX1eo3r62sXn+xEtHXxl/TFoyH4Yu4HETRehT4a0WQZI98cflEwdii4EKIhhc2JX/JFC3+WGkCHLgxKQYybJm0RFqLQgmpbAGXXlNvesfucNLHnOeXP+dpr6MSfq2jte0HsGUcDlAIYJL/cfImHppjS7xAIJ8Eq3j4lCl7MOJKamErG21Dbx8ar3EWIXPiHACmNb2wiDE2eGu9cGgrEhsK3mWdiQLT2bJt33zOwK/nxuBLY0oxnoT7C32dtPNPip/qxfL9CfVt7Z4xpt2A2xjjwjX7H+t0QyplDQvy5zLR4PTs7c+F1Xbvzvji4HQIUc9qb5JDbNtO2NGMZp0LG1214a+OZVrey/67Xa3f8Q+6XsCmjhrV07XvGitggT1fuCevhIZbiAYCBf8asjxIZ08X336/WK5bLbi3F755TGOVrnFeXL3tuc+nlDcfx+0iYj7XAxXKNxrbt+Wy+xs9OF1ibDdBWsfFmA+RxUM+FV/2xiadRQVjebwUg68IipPabVH1awZcBO84bdhPu+qYV8QgQpDCLbmtUywBZ9K9e+kp537inK+97xvp1ZFieTB4exuvbVham6X47UJm8Zm1XFqonBzSzs38BtHwAt1WxnVlcPrvE2aMzfP03vo43fvUNHN4/RD2r/fLmUvca5sVFIH5qiN1GFd9F2lu6lI16r9pIPIPsMqlpM/tAUD7Wx4Hhc2NsfSjnwFBcOUeH9O/SdVdMx5O6m6Yz5ujZKRlSlFM/mtxShpJ8hpDUe6TcIR0v9oyey7CUDLfZrjWExrT5Sb4Ub0jb76uec+wJ+25zaVdJxZOU8w7n2i9z2q7EFpqye41BchylsNAYPmZf1dZ8Jf2nZCzS8g+Fxew5OSTLmMt/X7TtHLNt+hgvOeeQ/YLbVMcaY7hdIKdf7IJKxoObpNLxU9rAQ1R6tuqYdREaG0I6cohK9d2YPKHyBcHYXSgkryLFJssS5Tv27KYH7qqqcPfu3R7Kv1gssFgs3H1oy+TY1wEpg/EuqPRFu800thGb07bAzpgyyDMi99lfOJW80zHPwbHaSRqOtbxD6balkjaOjWMlRouYIi8n0tRCpqQOYiCoZrAA+uOhtnUKyai1V6pepCGKvsDkX5mGzhPXyk6AOT+XdF8L7JBRTwtPvVt0z8+xkF4BFI/CyBuS6OrqynvOQdpdkLYglsTDqfwHBwdeH1qtVl58ay3Oz8+z5ebnvxrTeb1UVYXlcomXL19isVi4fKRBli9qNMNl6D0dg0J1yBdckvgYQe/rcrnEarXC9fV1dr+PlaFpLNZr6SHbesY2TbsVcLPx2GsaswknL9n2WVVRmg4EtQ6UJbSgf235c8RB+92/N4aDpHGEyBigX00KygEtnh7etVksTvf7emXxX/3ZCzy9WmFyOMEKgJ0YVGbjDcu2HvZA2I2nbGWqLozF4/2j17cIJJS/Xb1E5h4J2irps2kDojpW0hu2RTc7j1jm9Urxop6woXA6K7aB83ql5z0vWcUj1nnMNhugqdnIwuq0162ZZ6zbJtluPGHdi9HVqbs2nbcsgJ6HLN++uqor/PC//CE++Gcf4O/+r/4u3v71t7PaIPiaBF4zFdwtnWZdkW0vDBBjXoy3VeJsM+XbwvQifq4XqhYvVBecYsBniFwaLZ4Slrt1sfbxhvc+G+POOt7lOrWqKhwfH6NpGnf+vNQtga5Pka7Aj3SQ82XI+5LzyVmPS12X89PS1nXtbV+Ya7RPzfearvkq2BM0PT4GysZ43FYqsZWV2tViOuTnibaxN960rVKzhcn1OIXzOHztIkkrj7bG4bxk+hKb0T7qT7MrpPLW1lUxOwgQtgfLNiGbwxBbw5D3scTeRPG3aZfYOes3RUNkyLFRyHi7koXba1arVdZ7pp1XT0Rrfmkv43ZmsoeMIT+XI8VryHwcq4tt+3IOv6ZpcH5+XpR/ifdq6Xtf0idL2zhmbw+NtUNo8DbFu6YxJq6xBsXQCzRGQ4xtsMzNT4ZNJhN1oMoFDGL53YSCm1OfQwe0IQPFUBqj/ktpF+1VogjKd2vX/aeEvwZKpOKX5BMD0nicksUFzzvVH3IU122U6VDa0roMheWWM7QwKKmfWP1TO+5iDuP55o5TJAv3BgzNXzltFFtYpQxYOfKHjH8a8CfjhtJpBpebnHdz4ubOr7y/DcnLmBbsnc/nWC6XDrDXxq9Q+2r1P2b9jrXApP4/5My0Pv8WRG3bAJt/eo+Mi8NSsPA2Td+YDYB5ptI1LKb14lO8tg24B2ybd3ffxevezX5e+nCQa4CS91Z9FvwN4MXVCifzNT67XuH5fI3atOBaVVceEOtAvA3o1pZjA8LRtWLer4aBstCvgPJboV4fMixu75Ee7grsfloXj5+N6rYoNgYcqHUercxzNuT56jxTm/BzOq+Vg6Mur41XrJNH1FmLD2/yqGwL6Bom38YTkHvKUpvw394zkQYG7Rm1m3qzVfss6SFrLeanc8xfzvH8x88xPZ7iwbsPUB/4Z0o5vpQnb6PYkJF6nkv0/meAj91jq/ch/lvjsY2KnUprA3LcJtqyvYq2OU7JYML8YvqqpnPyOY/W+aW7QUidUM6pfL6PgZmaXiZllbqc1CPonoCAMQzDIZ1+CHiwS8pdS2p94jbQtvW5awAgRbG6TK2LY+uYMftXro2BKNUm2vsXe4eGlCU3LR8feFhIVvodWg8OtZ2VvF+yrnf9Pmq2tJA8obS54RrPkD0gFWcMGlKvux4bh9q1YulT72BJfiX9Q6YPxS2xeTZN422brwH8BMaWyilJ64dDyk+UM3bm2BeHlCU2b8TGmKHvnpYuBNxuY5cO2Y3GGjNycIibokFg7E3SLiezEGKuhYfOwNs3DakPGb+qKnemHicJxt5UebdRgofQTb+UN02pRfPnnYaACWPVj5zAafwhDzkADizJ6fslE2OKNKOKVP5j+Q5RHmKypBYPOQsAihv6aosbfVLypJ6X8pDgkSajD6TE+dd1jbqu1fONre3OIdXO3pSKV2oBQeeP5sQfQrLcofdVk5/iS6+OsYn30Zw+JMna7nwvDVSk3/JDDU0OyZcbZ6lvzudzXF9fezKHtvJNvbP8vRpS9jFJGqnlLgzb0nqte8bSvTHSM5a8YVsA1Vq4eHCgKgdlW3SH0nRoD0d9eBhEuHbPw2S4fDac+uOMfN7mrYcbNNbi//PTU/zo+RzraYXJ0QTVpGqBws2WwxyMpWtVVd0V6G9jDLGlMfS5LDSeeGEChJRgaxR8jVAPgHXYrPEALvXcWKpQ2/4bCE/YhgGyFK5crbVetzIwnles85rd/BFw7J0h29j2uvGO9bqpvG54ut8irucha/z/ymzOkZUeshbOQxZV+29g0Kwa/OF//oc4eniE//A/+w/x4BsP3Gukjm/a64ZIXKDbera08V3z2V6Yu7XhZ16YvEq+MswKfvKex5fxuOzW6nJp8mp5JigEfsaA0Z5X6lAQlffLnOhGz8eFb94bdy5yiSim/0EWEY1/tNPFnTt3sFwu8eLFi6DOywFPfi91WJ5XaieTmL4ueaV0hfV6jcVigaqqejaLXMrJS77XJWDbPig3T9L1Um3wJcVpKHgXo9tgQ8yhHAP/LoHYlAxAef2H+IVsGtr7U2J/3KXtegjIqsWJ2f1C4FWOrXCoZ+yX1KdXfQznc/ZyucTJyYm7DwF8cp7P+aAst9/z/hjKP+eDBO3d4PxC9qbcsFwqsb3m5quVjWw7nEJlzP0A8ItMo25TPJRPyICYa1iM0bZA5VA+RLucgIFhcpUolbkT6C4n2iFKcEhBiCl/JXV5WxSK0EKZU+4Au03+pfFCCu9Y+Q3l5YyTI9XZmO8Pr7OUnCWyDnl3U+/c0HYdYjDQ3m35PsT4pxZ4Je+VrAOtTkrGoBjQqOWZwzPU3vIDIzkPpOSQdZsDFO9qkZ8iLhd/n0Iy7NPQoim+dE0t/rU+Zq3FgwcPcHx8jJOTE8znc2eI5dv0hEDTUB1o8vBtkGVZdj1nhnRDPlaWvv8pshYMhO08y9v/Dmzty2VYHKrHjmcnUrdNMY/ToUEdKtSdLYtefOkVy3nwMMp3jLFc1lP/3vae8d9PLpb47LL1hl0AqCuxJXHFwFTDwtCFuXDe9gSYGjFm8XAGnuUsljUefoQBgJxhfZh4Orys89bsecayZ5yP5/la2eiZsZInAHd2rAScpRetA3kJZCIvWtPycB62ppOPe8ga07axbWzvmbtnHrESlO15yNbd1ViDylawkzbO6nKF+dkcj/7VI1x8eoF3/vo7qKcC4OleMb1+EZnHRNosYm2cipMdXsqnlKTMOXwLytCriyFy3+CSLWvuM+KaSbHxSc7DXMcL6YopXUjjq6WRekMsjbYe1GSgD8en0ymWy6U7RqkEcBhCWtlS+rxmRynNcxvwKccuMpS2sWvdJlBmDP20ZA2eKntJm+W0f4kNoMQOq8UpyW8b2jYPbT2Ta/fl64hSWXZtB46t/be1d4Z4lMgzFAuQfHPCQ7aLkvxz62fbds1Zzw9Jm5NmF32ypK9Zqx9JlaPT5NBYekFsbi+RaZdjwBg01PYaCxvrvU/FSbURhZXamGNzW0lfTMW9cc/YmJFW0q4ns1eJ77akKdO3Vdax6TYsAoh2qcBusxjLVeyGyi+VpW0XrqWUs5gMDeb76D+5spXKUgLklMiTS/tYiBMYkrvPf4zo66+hvEgWDajk6TUlVIJjOcCldi/TkSzaucwhRSWmwHBDmjHGGfy0c8hyZd9l/6Cv93idx4yQQ4nqYagH7jYLSLrSObNf//rX8d577+GP/uiP8Nlnn7l+PZ/PYUznIct5DmmHWP/lsu5Ll+My0Ne14+ZtsV43WK0aNE3tecR24xD3jG29WzvPWAnatl6iNNwY03rStmVpn3fWevqthcnfdA/AA2B5+2jv/ZA5JhZu1TgaIPtHH1/g9x5doDqsUR/UnUdsvXlfA2Csd90842fGEqDHf0sQNbg1sXie8ooFtutvBJiCqs70w91vqkOL/u9NN/E8Y9kZsM6b1nZptLAWD2XhBt35spbJyeTy+o9NXy2s5xXs5c/jukqC1wYVqm6rZoMWfGUeh85btTKABdarNX7/n/w+Xv/26/iP/o//EeoHNRyATfMXAbCbMjsZuZih+XlTJpKvB8rLdyEDeNQ8ZmVYCMzlfUXrNyFvXGrzQSBxxnPnXc3jin9PBgs/bii/nOGrcNofZVtihZ8xRv+YI4dHQje01nrnwQO+1yTpKcSHnxtPcfm91PE0/Ynv6hIDNHPKQ3rKvXv38M477+DTTz/FkydPgulTNBaoMwYvjUqBWKkHcj1XrmG21YE+D7aim7QD7dqOEHsnZZyUTLmg5RBAtiSdtn5OUWrNrK3NY3EBZHnjD5H1i0Lb2CU5D7nW5c/krg+loElq7P08jH+3gULjzdAdL0pp6Di8z49Pvmg0lq2sqqreOGCMwXQ6LRqDyIY2VI5c8sDYki9ZXqUBaQw5t0XFbwtZa1UjvEZyG6DVavWlu/mGxjSuhxS3nC89eLzSrz3GoqGKZ+hjgJgRP5SHtmAo/ZImxis3bxmeEz8EenBlk08s2jabu2rP0LNtAPjUAonPLTn5hPqGrP/Utmza+5YD1EljFQ8LxR/ynuQoELF6I8OZtsU+KSkchMuVUYKxVL4QGMsNRLkAs8wjVMaQXPucqymvyWSCuq5dOVerVfbiH/ANFcRXjvWhex4GAIeHh7h37x7eeOMNWGtxcnKCpmnw8OFDNE2Dq6ur4BgU6/dDxliebhvdLKdNeR3yfEvG8RjN5w1+/OMzvP76Ab7znfsbEBYOUG0aOOCz++88YrsrNiBkC8x2ovS3K3aIkF8bLoy8YLvfbXqSw39O+fpx5bMh1KW1Sph/r+ZTG2BawdRV693ItybeAHAqECv+edweACvG1tjc7wG09MwEwjfPXDqfUZhk/bDzX6np+bambZK+p6YDE0k2Br7FPGNh4LxYbbMZe4TKbyvrzmElnhowrXqykoesiEP3PQ9ZikOet7z8G89X1/XdRwu+ZyyFm6o9Z7ixTXvm8MZDFgCqSYXr02v88L/6IV7/9ut47997r0vP89Day0TulfhFIJ4SVQO3e+CkfO5eNJ23um0xjZUZ4LD/OBnB/x2QqZgGpvU+eMjlU5JXKO7mvTRGbE+cMQ2F5q/QWoyAuevr694REpSWp0mtR2Qcqdvz+T00r/JdNEJ6oNR9lsslDg4O8N577+Hg4AAAcH5+juvr62xdZB9ASaosQyikD6f0aLdVv9An92XLuY12wlyAModi/UnqyLKdQjaQmIyl8UvW87nrEk4la9AQvxQAJuPGxifJq8SelKpPrT1DPMZY4wyl0jEmFn/bMTI1V8VsNvx57F1J3ee8A1KWXPuCJuurgg3k2pg1yrGNlpLWZtvIWJrnkLRS5+HPcusox7YXi5tKG2ubmH0xlj7EM3SsVSzvHIrZCUO2KG1MqOu6uO/myplj9w3ltfNtim+SQsb3GKWUKR7vpupomxc3ZIjXeFRVhclk0ov3eaWcASsUPsQoXRo/V2GVsr0KlDsRjPXO5bS1Bn7wOFKJ04wVOYpoLB8iPoFsa0zYZpGgtUUpnxwQR8szZ9yz1npGnpRyl2orIjo7M1duzi93HtIWKFJ+zlcztmnbz1Ja7rEqFaa6rnFwcID1eo3VaqWeK6uVUeYfkpWHh3jkhPEySk8NXsYcBTOHhqZvmgZHR0c4PDzEYrHAer3GcrlUDaGxfFMKXIx4usPDQzx48ABvv/02JpMJXr58CWMMvvKVr+D6+hpXV1deOp537qI2JgdPXzqPbZMf5SmfhwwwpXR9vcYPfnCCr33tGN/85l3UtVG2LIa4SiDWONAWIM9YA1+sbrtiZ8WHgQ+g0jOAA66UXqJGxgAaKNs94/nL+U8+92X17iSWw3GP3vjd5WfqCvWshplsgNaQR6ziDasBs63cLC2/Zx6tBuyZIDU9qx7Nq62of7Go1lqfH29Cvxu4q3u3eLhlvEP37J+AWlSbsM32xKbZyNKge0bTSMX4ale+TTGFcTmMKHMDt92wi8fz3bxLJJ+3rTT16dp4dePC0QKxDRpUTesxXR/UmJ/O8Yf/+R/iG7/5DXzj737Dec462eDLY43vLevicPB8G1Ler+A8YP3fPY9X5Zr0rk3JxviFwGDu1W2t7/na84SVaW4TjS3SZpyxRtRbQZ+Rc5jc8YMT6UyXl5cA2g/F5DzI9coYD4qj6QU8f3Xs5UUVum6O/r1YLHB0dIRf/uVfxtHREaqqwi9+8QvM5/Od2GOkHp5jZwnFHVM+qePytQZfU3LjozySgq6y/l8lu8EuKce4G4qXw1e+HyF+uev9bXXzFI1d9hjv3LqXaUplDBnyY/mn4u56fROjoaBCqLzaHEPxc9o+NL/QR8pSLll3sboNjc3avTw+R5aT0oQ+UAnJetNUCqDdBiqxoY3Nd8z3MseGkGv7K5F9iF6Ro7dwkrpe7odb2rhQOmeVjp8h/TLkGauFp+owtLNLSJ5QuWLj5o1vU3ybSOsEocqLVeptVmZDHeXk5KTXQdfrdU+B1zr3F4FuUsH6ItBtqt+QcSDHs7K0DLlK7Xq97ims+1a2bptyF5ocU+3AJ+8SJTxE2kTNiW8Fl0sh4Fi2e2hukkT9h/7lYqiua/fhTe7OCVIJ2qZ/pNqB4nCjI9UFpYnVRQhY0YA5CfLmEn28tFwusVqt8NZbb+GXfumXsFqtsFgs8Gd/9me4urrCdDoFgOjWJznGiRIiMLiua5d/Xdd45513cHl5iZcvX2KxWGCxWHjAujSupoiPTfw9XK/Xgz6Oy80vtoDnfT51Zt42tF53Z8fy/7ZPtXFou2LaorhpWrSoqoBWnO7MV2sBaw2qym7CCfXprj7gCvaMfiNyz8NkuCTqA5s7FSgKpPTCrXcv01gL/OJ8iR+ezPHh5aoFYKv+tsMclOXjgQujbYmrdtvPKAjLrm0tdGBa77dBMJ2MD/T5ZdEG3HJ9WmtGk3kFOu9azoeDaRDhBJyKqwMaOTibAcraxvperFRG2wGX1loPoCIglLZUhgFstemDPF/Kg/onTAe60rux+faFzo6t0HrHVqaCbWx7nbb5Tw4nePnhS/zL/8O/xNf+B1/Dt//H3+62I5btsslXA2S9/HnbpSg0JNmOr4yX8uos3lbYMl1qA7J69/zKdREGvLqr1s+0fGU8Wd5tacyhfiAvWXeStt36WM7P/KMv+rguZpQm4scryLihdUcuaElxSI9L6ez0nB+jQKBsXde4d+8eDg8Pnd411pyeAxqFdHQZpt1vu9bVvF01nvzjRL6zEn2QeZuAhZumHNBzTDtFbE14G22LMaBsCHBSWvYc8EN7dhO2klC+u26/FBgdqveQXDxcrgtz7ARy/Zhjm0m1VQr8ls9TNgVtp7lUfpLHl5RHue8hn5uIxgaec8cFbZzOAShzbX454x3nmZNWS1dSR9uM7VrenyfaFVYR3aa4lG5SodMGyDG+lAjxuG3b9eZ2jlC90BezMZLnyhG/sQ3HuTT0hciZcMeisfnmKqQ3RTkKV4pu88IwpGDnTl65i1+pXHIwNqVcciqty1T6IYpobhreb3YxF3H+midnSqYQacBVrhwhuWM8pdxa3+NxyCBD+dKX8nKhRWAVBzpTC7dQf0kZ13j6WB5a/fG2GzIP72q+MqY904wMnw8fPsS7776Lpmkwn8/xwQcf4Orqynml8G2LNdA9JDcHkHPHWQKEqf2ttZhMJnj99dcxm82cVzTV55AzWzT5OHEDby6VzHch3YYW3A6w28G8aS1tS0xesWD/3EPWsLDwmbEAbVdMKI8PvBrT8QbCHrJtXM1LFi4O8QJaj1jKm+fFy5lTF0qoFy7j2BbzQWMtPrla4V9/et0CsRyMFR6xDpQ1fbCWvCVdW7N0wS2KY4Asy4+n6QGy/JkL4D8T6w1YcC9Ol56BU8RDu5e/vTCzOStWPPPOjoXpecRqZQTgb1dMcRsRd9MWtrFemNtGuEHnYWo2clftGbQurGo7h3rPhxMLf/tlqsONR60DpC0c2FvVGw/ZScuontW4+PQCP/gvfgBTG3zzt76Jqq5c3xON5YeJe2/7aPlOGOjhGkWASc0jNbhlMRgfGw8LyREEey2LE+Kv8QuEJ2W6LUsEWSclcvGhesCUFNMh6et/ikOGczlHa0CrfCaN6Vp+MUBQyizPpuV8tHtpMG+aBsvlEsYYHBwcuOMgSJ9K0RB9T9PL6TpEnyzV32Tc3LUL/02yyo9Hq6qKAitjGB93ZcAM5RWiFOiUs/4sbbvQGi7H9tjTN26YQu//UF5j2fBSNoZSMCJFsXoIrc/32YZD7CjS5iT7KB+HtXWr5CNtCKHfJXJxCtncjOkDxan3iNuFSrZZpWe5NqJYfd1mu2cOjdm/Y+9zztgck6m0vqWtEEDWznGUNkW5Y6ocR3LtzDFbXo5MQ+bTbWnIu6DNCaH+sM08FuuLJfqDpL14xsYaLGSwLWmMoYPYbVFwboL4VpXT6RS//Mu/7Dxm6MtTTtZafPLJJ7i+vvbCq6py6SjebaR9Lgb2Rbe1TLdRpl1SCBzJHfBDCgMPXy6Xan5DKLQQDPHMARhLeYbk2iZ9Cck6pLFQU7xIttA2xaSYaWfG5ipCmiIhw2Leu6lteGR8ildVldvuTW7xq6UPPdOMdznEt9YrUYY48EkgI/cWiJGWT9M06pnM21JVVbh//z7W67W35T+XQ3u/+PsUWhyWLGZ/8pOf4NmzZ24bavKSpe397t27B2utA4vJQBfrW9rCWiqjVA7tnI4U7VKXILm2HUuJrLVYrxus1wbrtcV6bVFVFnXdApzkEduOE3AescagBSJtC+a2HrMAYDdbF1M88pBtibY1brcztmxbY7LuU1yJ+kj0CLC22xLZWsAY2R8Bv+m0duSLN61+tHs/zePLFX7nk0u8WNpua2LxD6C/LbHwnHXvjoH/G91vQDesuxLSbyOeGx9s5PHaiwLaEZ8cxCXUTCbwO3SV3YDC5DbBEkwy6HvGgqXlaUq3K0YLiDZoAAvnZettRWzhPGkJwPUAYim7pEbEM92V1z95uxprWi9qdk4uDDBtpvjo9z/CP/tf/DP85f/JX8a3/kffcmkdaL3h7QB0Xo5NXUrAvGOiyC5IHZcs/2l7dSyBWMfDsmc2L22wjolHzODQR4j9tAxstdZCBV8pyNouP00mJU1EsF45YnJG+aXylemV98F7R+k+Y5iI2U2sbT+0ojNVrbWYz+feEQkhXZKDdaUgQkgn2Xadaq31vF6fPXuG3//933c2jJOTk9G2KU6BNpquo4EYFL6rj/a57hgCGqgNae3IAXlarxCQHaMx1vOvgk1giLF6rHLJtYAEl/a5Nh6Lbmub8/qMbVfJ46XWCbngxb5J9p2QbNrYUVUVZrOZV1d8Lag58GgAruRbKr+kFA9ppwnZdL6km6fQ2EbPSkizv21LxhgcHx/35sjJZOLhHp999lkPGwH0vhqzr409dnyR+720yQKI2jhDdVWiw6XaL/Y8CsYOaciQwW5spWWbeCH0OqSID31BbuKLghSRTHzCMsbgwYMHODo6AtACP/P53EvXNA0+/fTTXsdMte9tAQxvUoZU/wmBPzn9TiqP+6SbzDuHtjUA8Ks2ZoTGitSXMzJOzmQsv/RLgb8xpTtlRIil14iDRykZdtFPZJ45ecg0vD5D27PFxriSsV4u8ErlTcWLKXsaL1qsaNvzxsb3bQ0EsUWbRrI9tHN8d1m3Q2k2m3mySdLG+tB7yuPG+qTk8/LlS1xcXDhZqN6WyyXW6zWm06nb+ULWbapOuZwheXK2R0xRajxJGUu2UZRT9dyCqfKsWPrvPF8dNqKEWwImLADw7YqNy6OTp73vrtz71UJH77R7StvmSfx4PjLvNOKhpeFh1rtvLDBfW7yYr/HB6RJNBeeNyD1iW4G6fw+QZf/ecwJQObgKEYbImCfTynfS9NOrwGvmtKeBdnYDjvNn0guWP+95xW54eN6wm/e45yVrrVfXBFryeIAf7pWZ5GX17MpPfChf8oDd3PM0bjtgyoPLBBEu+gQMnDeu8/ytjLe9MQf2YdF6YKP1xK5shWpa4fzJOV785AXe/bvvwnna0vvA6p/aqdfGLCwIyioUHIcs/2mTryEHYmX6GG8VRMxJK64qEAzWZzJIi5valjmLvazL3HQjE3+n6H4oSQM07cChHeMQA5PkWqfEeMjTlOrlsThcz7u6usLHH3/sdnO5vr72dg4K8dbkz9VrQ6TVjRtb2bWUcnWdWDtyW4+WZsgHcjmkteNtsQONoevn1L2knL6pAbG5/DV+Mn3Jek323RLbwNB2LrF3hd67ULxcmVLr59h7edMgLK+DnHrKsd/x3RBpvKW0Wv9I1bP80CdUjhANte9ov3levE5uqj1L3pucekjZfUpoyDut6QY5Mg2xK+XkNYSMaT/6lx/SHxwcOLzEWosXL16oMqXmwtw6CdGubKwhvW7sfHLzz8lXS5MLpHK7b4hvbjul7FAh2rln7JBBgwzDmuC7HCBDvGNfkd5m0jrXarXKdrEfg257Hd1mGrqQ2wftavJL5bML/jmDe2xyiim1OQpvjow5+ZXw518LxpRjz8it5K+BYZJfLL2WXy6FFhbUpqXA1VCicVbOEyljFK+rofLJNLTNcK53Z9M0uLq6cvd1XaOua8xmM0wmE6xWK69cuQY9GTd3kca3VM5RwLepu130jW3a0VrbOwpAKvS0OODPYsS/ZiaPWKrn5XKJx48fwxjjtTN51VxdXXk7aOSMxUPP29WI6pJ76WrE6yFkSLG22xZ6yBnOKbLWYrlsUNcGq1WFum49Y9frFsmo61a+1mMW7gxZD8Mz5DELVBUHZcmo2p0f255F2/eQJfSn7TNdevq9kZbXEC8FrPVlIoC3tKpakeWcqcUBXszX+H/+/AynKwvUBlVlvO2JOfAKswFqjQLEinuAgW7GOCCvZzgigI9+G5GGpe2BryLceyYpVoc2EEeCYkb8jl1jv0MeslbE2fymbYxh4XvE0jOwsYinBYvPy6PJAXTnyzZotxzeALwyjtt2WKtK2wKnVd2eCWvqlp+pu3aqbNWCxhawppWdPGSbqkFtuy/hq0nl4nmArLVe26tjkOzzQxC/3ntje88koOi1hXjuAaObNu15zaILc/fWv/dkY/zUbYu1+KJve2kD9SbzLt4COfUsFp/JpeYbKZtaH6a7H7LWi+nvNG/yudta/7gT0g1oTszJh4dxO01s3pUUW1elaDKZOG9YXi5Nvn2QtvYB+l46Y69jQ+UGurUdHUexWq1Q1zW+/vWvO2+e2WyGO3fu4OOPP8ajR4/cx3g550CmSKv7fYG+pekBH0AfwkPq5xql1r+5NoRYHmPSmEDOromPRZL4+lDaSmg8jJG0JYTqXn7YELJf75tCc4MWj4/Z9IHu8fGxCz86OnK7LTRNg/Pzc29HKS0/bZ11m+ya2twXGr9i9oJdlSfU514Fu7ps51yZc+pS61NjzF37plDbhupKvmu5ZY7NS1pfzsHeNBtjSPYcW9VQitmFNFmG4Hlj7pYXoiwwdpcvfmxg0wzNu6ASRaiUX2mcbeuad8DQy6JNzgcHB26ireu6l1ZOujGZc+vstk8oMZAhtvjUAKncPOQiNgfoyKXSBccu2ydnsN9HPypJy9s2xXOMiWcXk1dorIv1WTlGhwwQsbQhgClH0Sw1tsQWTyHDEs8jth1wjFIL7pAMHnig1FNJvjxdyiBGz1erlceLFpbyfJhY2bj8vC5lulDbls7tvG5kHwstPnPfp22MPLy9aAtlql/eL2N1qPHiRF8o04dVPL7GRxoJefucn5+751JOzivn3Uv1s1Ky1nrny8lxIMVXkz1U76VjrYy/Wlmcni5hLTCb1cxDlsaUFtDswjSvWICs8/Qc6DxeO+9XC0KAWp7dldK3ZWrv+e9NiXlJXBhVJxWtvbde2BCSaem+sRYn8zWeXrf/cwtU08qBqj1vR+PPJ71/6YlJP7XxlcVznrJ05XF5/iK9Cs4CHn/V042BMDI+wIAey/KxcB6ysKzPGnRequzeecJSGHQvWOc5ysJJBum1B9uVmXvIkiesVy92E8f069rlJ6+wfrnYMy9Pw+5F/7DG97Sl5xTu4m3OnYVBC+ySh2xlYOzGQ3ZSwU4trl5c4cVPX+Du23cxuzPjrx+kxywAV69R8D2HlHcuOk5ZcXW3NptX0us0JFcgMg/XPFB7MlgRL/SfQ7ux/YxL1EdYn4pGLzBoNk3jnQPPSXp6pHSnITKV6l0UV9OF6Z7GB340yDbbUA4xFst0lDa2DhqaT27+IZJ2Cdp69PDwEHfu3MF0Og2uhcaiXH1tLPtETr+TOmFJuTl/njZkW8uRgd/H1tucZ2lb5bbDPijVNrm6Pf89ZLyR8bV8Y3YEfs/XzJwvtymE+IeelVBqnTOEOMg8mUzczkq0VtyFjWoXlDsWyHeqxOaUQ6VtXMJ3iJ1oCJWs/3dBmt1QGyPHlDNlrwnZMXfV3kMoJGNu2qH2+Ns0RmwjyxhtE6vHJBh7Gybum6ZSJesmiSsms9lMBVX5+ZMA3FeT9+7dA6AbgdfrNX7+85/j5cuXvfz4wi70Rdhtra8hNMakfBN0m2WT4NHQgX8I7WLyGLqojSnrKUotYvjigJ+BEFr4kTLBFXIyhIRkloYfGhtii0ui2NdH2sKVG+I1uUvGbPIQ0L40o3C+Tc/YpG3jygFHIK4Elxh7ZB68zHQGOBm4FotFcHEi5eJGCS5XyLjG49CcxPtaSHmkfGlBKPtniGL5y3dnCIhorcVisXD1eXJygg8//BDWWjcXTyYT7/wzSfxcr1Aes9kMx8fHuLq6cvlxD1atjxI/ekb1+PjxY6+8xrRfmJMXqUw/dHzS4oS+qI4ZPoboFrH3iPr5truFPH8+x+/93qf49rfv4a//9ddQbzw8ySO2rttDKTsvepKFl4PGLoDObW1l7TxbjSGjqt3wadPRFWiBV4pH5adnmxqhHDfP2/hUfJJpqFcsUVedVgkDrpYN/pufneGzeYNFZVDVG49Ys/GCrdD9Nl1b9c6MFf8ctCVQz+u/Bt1veTXiysM18NVd+uBbtF/G6tSKODbyO3SleDIMLDwGbhn4Z8cC/TNjOe/QWbFN/xmBtZVt59wKm+vmnuKFzo51YKeLKrYMBrqzYylYXCm+85Bt0HnIVlUnJ4Af/tc/xI/+Hz/Cb/1vfgtf/ztfb9uV1aUDZBl/DoB6soXaPTL0qGAqK7uX3uph3jPOi4fxeKQrbp5599jcW3/c5m3nrraLK2VTQVdKam0Q4PXy4PeyTkR4EESW74CWrXwuy6gAzWo6JY730YNJjBsBkmm4XkDtQrue1HWN4+NjLJdLXFxcBPOL6VRD1mhyHi/hEeK3zfovpBPkgJMSYNHWHCkQJkap9WMuP9LrmqbBo0ePcHx8jG9961s7W8dsQzdpnxii78u0OUd4DX2X+HPKh/ShV8U2mUM544Fmr5HASMhewO9j9a7ZorR1CT2jNjk4OEBd194ab71eYz6fJ8fZsWhs8GObdyNEQ+1jKSrlqfUTSa/y+xSifQBkY+RR0ve4PaFdI/ftidt89M/JGON2mbDWZp29HqISm4o21uXwC9VHSRvJd1bqPzEay4a9T9q3LEEwdh8TRI4BNYcP55WT5xDjYazT72NgG0IlLyp/oeq69g6nBlqFIjTYaMpRTr67ojGU033KGwMdQn1sW/l2Xb5Yn6By5ShCKb7bkDaplSyKhr73qTLkPNcmilR5YoYFTeGgMNqylsJoOyt5rrTMo2ck31Boa7MUaWWJgUSh9KG8OU++XexkMsHh4SEWiwUWi4WLLwGrEoWDX0v6YUnfCbW1lkYrx7YLG85XA/botzEGh4eHnvEqtACWvGJtGUrP65iUVG1hXbpg5PJPJhNcXV3h+fPnDuCmvsPLGGpPOfZba928TNvPEQB7eHjowtbrNS4vLwH0z+eJGSMoPyoz3y469Y7Jehpjoc3l47LRM1lHlGeon2lhKWOzjBN795rGYrFosFw2m7NjqT+02xJbq/23nq78N8C3J8bm3g/3z4ftSS7K1YK7xMtHg7oyUhV0cYkXXL5lxN9RUVcW+ORiiefzNU6XDa4bi2piHPjKPRr5b7p3cwr9sWdeXKADSSUYx/u0QQfYsnxde5uODw/jfLx47L6YrDKGuyw37boBkFw7UztCeJUKPcsY44BD54UKxQMW6Lxr5dmwXM6N5yq/9zxWOUC96XrWsvxEm3hXK+Z4wZe2GHblIu9c1gc8z1sRx5i2v9nNRw20XTKFu/OKa4P19RqryxWe/tunMLXBW3/5rdZDlpeLAGEryiLaJ4YvSgp5tHqgY69ZrB/Hdvc8vjfmRfgFQciATCr/ELF8Yx65UVA2l3gZlfDse/5IqcNgWtsP0967ZD7oz2shHYl/YCR1CTornvQGb4yI6F6llCPrGPpCqRyhOpX6gxYu9ZJtZC+pa7muisXR9CDuJV3XNQ4ODpw+SWl22Q631U5GNNT4WtJ28vdQXlKPzdF9Q+lT8qae5dorSvKI8ZJpNf6pdWMq/5z1t1bvFK6NNyW2iqE01jtGZVsul07exWLhjSVaP0rlr62/YulLyxOyjW1Dsb411E6zLWkylLaFRruY+1NjX0pOTYcplSGULqcPyqO6gPZdIDsL6Vo5vEJ5apSy1cX6eU54yTw0VE/R5I7R0Pk3t0+E4qZsRcC4Y6tGk5xI22ZcOjiOqeSGZPq8kjTi5nQoa60HNBwdHeHBgwdeHDp3RBIZs/n9q06lZRgy+efE/zzUJVFqkT+2AjUGxcag3MUV5xVbRA+RbZt0EojRiACZw8NDHB4euvTT6RRXV1f45JNPXFzyTpSLJDqXisureZ8OfedC/SY0znEjSmgb96qqcP/+fTfevfHGG/j2t7+NR48e4cMPP3S8Tk9PsVwu1bKHZE7JuC/idUagHQC3AKM4dL5mSIHR+hNfdBKPENV1jclkgocPH7qzwOT2u5JyzzDN7VOHh4eYTqeYz+dYr9de3iV6CNXBZDLBdDrFyckJnj59ir/4i78A0PcEzZXT2nYL4YODA7z++utYLpdYLpeYz+dYLBZ49913ce/ePUynU1xcXOCHP/whgBYQbgHBJvi+0zZ11M70nHvVyHFLGgW1suQYaOS9Vs8kA3mlU9vkLEhSBhoqNy+LVka6z9EprcXm7Nj2/Ni6bgHN9uzYziO2vbbA6oYDWm9WeP/EE+jqh7xgjYEDersrjYkkUwvitrw2KFcnNavDLi+/HijtkIW9FmaxtsB//9EFfnq6gDmcoJpWqOqqFUd4w9Jv72r0ew+o5f3Q9Pul9lyNS+AdgbEcYKT7rir955JkuFalRjzT7i27euw274JFB6SyuNay7XMZsOZ5lvJnG29R02zS8GG86uKo92YDfFVo01eInx3LedAj8oyld3FTHlfOyo8H2/GwVVd+8lp13qssT1O1gD7qtqyYAM26gZmY1mMXFmiA9XKN7/+fv4/ZnRn+0T/5R3jjl9/o3hOqR/Jm10BXqo8cCkVj7SXjubEpEKYCsTbCiz0L3ss8rV9G7/cmDaXrecVqZbf9dD3gWEsv5PBI63dcRijPefliukCANy+vJxd/h5X3uce+UGcIzaf0wdZsNsPR0REWi4Uzumtz+m2lXdiHpG5Dv/lzufsX1ZfUlfgaYxtD8lDjMxHJwI8jmc1meP311/HZZ5/h4ODA6b1jrsFv23o+Rtusp3MN3GOtV4jXUJvJPttlV3mVjIVa2iG2KAkuaLJo7RKzx95WovPGLy4uXNh8Pvc+yo8dXUek2Tw0O9iY882YdrZXgV7lsuaCszn6Tg7l6Dby3b26uurFubq6cufWA/7cmpJLliV01nUOv9vW9poeBOTZAnMo9m5rdZMax3P5cPvYNhTjMToYW2oYKwFNudE4h7ZRYlMv7W17CYh2pUynJricfG9rnUmSg0mOgp1S7iSl6vNVWAznUMyYHVLIti17rC1SaeTv3IVWiEIyDFloD6FS+TW5+FkhVVXhzp07arxYn5YfbGhtP2RRtY3hSFs0ES8CkYF266GHDx/i7OwMd+/exdnZGa6urpxn7DbjGjfuyLO6ueJSCm6VxpPvaW69aqAYf/9yeFRVhXfeeQfGtFtiX15eOo9S/gFQTGkNLZR5HO1Z0zTOKFlVFVarlduameRPlUPyp6+G6YvKyWSieqlyo13KQCBlJt68/0ynU29HCy53qJ9LWag8fLvknHeV15VWL1q5Qu9OyHOY6qjEEMMNotoRCrH5OtSPUguC9dpuvGPpvwVfjZFgLHpes2AesU1D4CrdG0jbh8NDrN2kba+bUPY7dE9tR/Uh+zMQ9sJNUbf1sS+zha0MmtpgUvkgKP2WwCp/poWp6YU3q3fl4QTIGeUZ8WPpe6Asf7Z53l4S9aY87nmoboA9eV4sj0sedtxzlnu0emfIchCMyek8ZG3nTcq9UKWHLPdu9Tx2lbpxsnN+kSu1n8vPQpWJt4/0muVeusaIM2MZ6Gsq40BjAnONNd022Rvv2MpWaJYN1vM1fvL//QlOfnqC9/699zA57HbQUEHZrmGHEwcgNX6Bd6x7rEXo6tbFsYG4kXx6AC/9JkCSAZPB7YNJHgnSeo8DZY/JGog3is49gIWaLxuqjcnzlC3JS+oYTdPg+PgY3/jGN3BxcYEnT57AGOMAudAxQz2xBxrX9r2uzTGGavchnY/POyFggecr4+cYWXdhw7HWegDLZDLB2dkZVqsVptOp22UlttWiLBPpVZoH9m2nXDtlbhytv8h3r0SeIfbSHHlDsgx9L1NrviHr4330IW1tFNLvQ2tcbdygHQd4utiHxWNTrv0xxYPScJBJO+IuNZam8iH5SvvJkHE9JkOM775I61u545G2/t43jdH3ND7eWi+TJ9mSJEn9JqS/yPc/1k9S9oIY/131t9AYL8NjOgmnkLyx/qbllUu5tsNcWXbFZ0ieoTTJM2O3pZjymfqqJvRS5uazbUePKeRf0pf0JXW07Tuxb0UiBBpsM2Zso5iOSbl1mRtvNpvh4OAAQOtJ99prr7n0fKESIz7WS0/ZXHlSCyT5TKah+9SYLpW/w8NDfOUrX8Hl5SVOT0/x8uVLnJ2deXGHkgRj+fnbEuzdZ38qBWKBvoEuxwBhbetJ+p3vfMeV/9NPP8Wnn36qntEbUh5z+rK2yF6v1zg8PMSDBw8wm80wn89xeno6eKtiAD3P3oODA0wmE1xfX3sgJ38PchR3oqZpsFgsnIzk1UAeudLQUNpv+AJFyhgzRMX0uZjeJo1WsYUEPy8rlQ/V8Ww2g7XWneOkAdEa0Jsire2axmK1arBatZ6xk0kFY3Qwtr3n/FpwtvV8NV78tiwE0ILlh0281rOWrq1cnbctNiAvnQ1rDD2nNgBLw+sdACwKuxBL2w+zFjC1QT2t2zNiq84T1gNEuecri8PDQ+CsHDNdOEQclr4H4LJ7CTK6fuYu/n2PDHxwztWHWNxqcQgM3fBx7zYHXyO/vfREwgvVxTem9TTlgKqBO1e1l498ZuDATWNN5w27OX/W2x6Z2qZq41E4B2PpuQOYqw7sc6As877lXrLWtl691jDPWVbvBps+RTIAqJoKDZqWn23PlCVv32patR6y/6fv48E3HuCrf+urmBxOHC8OrFEdZQPzfkP02kUL98BTUTYvzIr4ItyBp1J2y+Z4WC+uu7KMo9smc9lYHr3xludJcdl/tC7UAUepj1gc6Hy8MP6Yy4c+H68MW9IQPVDOUev1Gvfu3cNv/dZv4YMPPsDPfvYzHB8f4/j4GJeXl0nggOZUfrTDTRqwh1AMONSMvjIefVgndQ0tD67Pp/SoHPm2IQJjX758iaZp3G4ws9nM6ZOhtRkn6gP0keH19fUr1wd2QVp/kNebrqfUeplTyEaijUMxO0CJbUdbo8Vk2+YdCaUNySBl0c6DpqOb+Hu0rTdYCWnrvdAHNrE61LzpJZ/QjmCh/pVr20nRLt+h0vX+EPtADs8S/jdhHxqLQnOwvJdOCjn2Rj73EvGt+mP2jFeZQnUjvTtjekhOu8TCx3gnct+tm55Tx6KgZ+w+CjgEgMkd6MeQPwYk75OGlo0PPLG0tD0kbVN89+5dHB4eevmGto7UjJi7HsxCim1uvWzbfqH0ciHD++ZtHVRK8swZuPc5kcXGq6EgGe9bJQsITikALVVfY49dXJbYZCzl0s6NzM1bA734PRkG5IImVzmIgTKhtqf3MLbIJDCLwFag3aZ4uVxiMpng3r17PSVP8tOUSa1sxhjMZjMcHh7izp07uL6+dou5fY+pnIbMyyWy8vYhT9TFYuHOr5IArPQA1eozNsZq/ZrPjdQPaVvfWN/RykztuF6vsVgs8LWvfQ3f/e53HWj/9OlTXF1dwZj2a01a4GrjAJVTM+as12tcXV31vk6mraTIuMaBS61dcseXlGEk1ualfZfrEXLbbGoT+R+SVy625I4qUmfk7xp/FnqPY/V4crLE+++f42tfO8bbbx9ivW4NnLRNMXVtAmM7ngTMUv/re8bS2bGth2x7X1UWLeLDr+j9buuQwl1NsOfYPOfbGruS98qZQ131dPX0o5cLPLpc4cWycUAsB2GNMd5vd3aneCbTeGHoz3feVcmrd+VxYyBsoI/4geE6CoF0HMTicSTYyp878JWFp8KkVy3Jy0FTXgc9sJfVR8hT1tULA2V7+dC2wlRfBi5+VBZ6F8lrloBYwdc2tgOgN23sQFrAXW3FQNoarZfsxMBYg2qy8bBftX13U8iu7NbvK+65aM9Yu2txNSAvBA5y4LEHhErgNJJWBRw1Oa1Ix/PepNMAySBoqT2HXlaVAs9VQFYrlxXPlPi87iwUb14LdW4YAsrKuap0DqfdVubzOYwx+PrXv45vfetb+PVf/3W33p9MJjg4OMDV1ZXTPTSdlutOsXl4CI2t36YAdZJdm/dD8sTWhrJd6ErbP2s7A6VAGr5eGbom1ACki4sLLBYLXF1dYT6f4/r6OuoVK9eA9PEf39a4dNe6V5k0nZi/IzJcSxejFHAmx056FttJSbMB5IA8mm7M+fFdZ7hM0gZSUg88rfyIm/ooz497ZudQbD1O/5RvDt8c20XoiJoxKSZHbDwr4Z+ztqdryjY/tB62GQ9jPIF43YXeg5RtoCT/0mcpGmve0GzZMbm09XZJ3qn1t5w/Q7JoY3WpDkW2FMl36EcWuemG9J3UuzVknKR0MZ5j9HPJsyT+mDRGnqH6ivGOblMcM7593ihmpH8VSRtAAH0gaJoGp6enbnHWNA3u37/vxZFn6cV4agDJmODCkLbZR3tKRTe2eCvhSTxugkoHlG0G0dIySoVZU65z+IZk3UZZHJtCZcslqcjk8pN1W7I44TxWq1W0PbQFXA6FFhk5yq3WV2mxd35+7p5fXl66s2Hv3LnjbQWr8dPKplFVVZhOp7h37x7efvttPH361H1lPtZYOYRibRzTEUIGiZiivF6vsVwusVgs3GJbzh9kAKQ0of6jyablTf2R36/Xa9R1nVV27d2ZzWZYLpe4urrC22+/jd/4jd/Ahx9+iCdPnuDFixc4OTnxtkKW8mgyEm9azDdNg6urq16dkxGVzn+j/sONZaGFTYxC+lBqQcb7b8wQE1rk8jFKfqwRO4MtZPyhduXGJS29lDtUFxrR87OzFS4uLnH37hRvvDHDel1tPFp9z1hrzcartfOQNYbCrQNhu+2Mu3Cg84C1lryS23BsgNUOpIULpzK2oiqIEWS49jyfeLe2m/ufnC3xxy/mziuWADRjjAPhuFGM/3uAKfRnan/f/DTGtF6UBLYZ9hvw82D3Hr9NGg4oSiCTU9RjljVRDKyz1nZy8O2HFVBW9Yzl/V2ESbDWgZUQ2/1uZOjlYayXJgRM8niSv3b16tf6nrRyS2LeVqHtij2A18I/b5b3IQ7OWnQfA9TGbVdc1VXrrdvYzhN3I6tX9lC7K+2tRNCD5VxhlXALSIDQPbfiN4GmSlprrX6vzZFaPgHw15NNK6ftrpSnShY9eTTv3GBaJcyVlf1FZfSCbLh8hUMovZv8vmQtSHHp47arqytMJhO8/fbb+MY3voFf/dVfxePHj2FM+4HYbDbzPD7lXOzKaP0PK6fT6Y0BcdsY5bmOIef8kB6Rmy/x5LoG6bVS/8ldm25bv8SHdMjLy0ucnJw43ZIfyxIrFxmhuV42m822aotd0a5sJym9lUget0F1ra2lS9Zc2jonZquVa39ZhtRaWePPyyNl4uWj9PJ5ao2uxaFxivc/oPtYd9s1My9T6XvK02vtWzpGjrXm38b2KCm2ji8J3ybPbeyLMUqN56H8thlbhqzJb3qM1dbOKZvQNnlp/DU9JcVjG8rBUchLPIdybOra+JhrX4zFG/u9uQna1zuQU19DZAml2fk2xWMqaXIbRyLazpFTKM+UEvAqUK4Srw0iBABI+vGPf+wUq8lkgj/7sz/znltrcXp66qUl/gTiUrwc2ufA8KoOQjGFcKwylU5oJRNOiXwlY0Rq0XhbiRYMUv4h7bhN++dO6kT8APvZbIbXXnsNxrRepCHQhYgAoW3ajMay3D4SNMoDHsDDw7TfRBcXF/jwww8xn89xdXXljXdA2Zduh4eH3llLV1dX+Ct/5a/gt3/7t/HkyRN8+umn+N3f/V08evTIbRt29+5dEOh208q4RmTwo3LRlmex86d4GzVNg+fPn+Pw8BCLxaIHlOaOe/KZFk8zLFxeXsJa6xb6vL/G8qZ+aYxxQOvZ2RkmkwkODw/x+uuvo6oqt8sEGTzpS24OlvK8QmHWdlvt0jPNcDCZTDzvWk3unHOMQvWp9UHNABHjpT3XDDByXJFf4nNPHkrP3y8u03Q6xWq1Uj2T6V4Lk/Mfl5Vkojgk13K5xnLZYDptNm1iNzL5V2Paf/otq4+ek5ds01AZLYDuvvO0pfgE1lK5OOPOU5aet/UEdFscd3IBxpMrNe30u4DF+y8X+LfP5/h0ZVswK7A9sTHMG5ZvUxz5d2kRMDoy3qnfPA0HGIMArGu7QKXE6oqeWcavV3Obfma7+zap6Z5HfgfDqk0fEHFg4Lbl9cBNY7pwnpfppwHQbSfMti92nrG0nbDpQFYn0ybc29q4YuAWbX8MdEBoA+88Wb5dMXnEeqB0xYy9VZc3gO668Xw11sA0BhUq2LWFNRbVqsL1yTV+5z/7HXzlL30Ff/1/9tdRT2sPcPPO+I12gjT1xlSeTwhM5XGs9Z8p8ay1Xpgbz7V7Hp9dvTnAwnvu4oDdQ9xveGgAqOMjZVXqxN3zf/jXnkerqEOflciP110oH1H/Kqhr4D40kKTpKUOI67vr9RqfffYZXrx4gbqu8eDBA3z729/G+fk5njx5AmstDg4OevYUmvNWqxXu3LmDe/fu4ejoCNPpFI8ePcLl5aWzC+xzS85S4uN7qZE/BEjJ9Fw3oDo2xjjvU9I9OL+YXsXzGqM/kFxcZ0rpZhSX5H/99ddx//59PHz4EHVd48///M8d2C/rYNd0W207+5aJ2pVoNpuhrmu3FhvSd/gHsKH+R2HSg1Wum1J9W/Kj33y9Qx/tSn60XTatq/bV79brNY6OjnB8fOzJYq3Fs2fPvHWGZrfeB92md6Nk7X6baBdySZ4x+5g2F4fi3dY6vAnK2XkiRJrNIfS8JE/Kd4hNPZYv1yW4fjOWHrlvGkPfucl3Ycg7OvoMEVJyh5BMq+0DTosNGVcLkx01R8YS+UsbX2uYmMIfU9q1vOUe4RRPO4fvxYsXybLSV7CSuGE3Z4DT2kCjkDE9Ral6jdVxbpoU8cEkNfjmKKo5Muf2j1RZSuKmaMikk6oPOdmE8pJ8cttd8hhjYugZqyJy5tCQsSaWPiYDbbVF8fgZp9IIIXkToJjKIyRvqi/yd10bK7X7WN/Q3tnFYoHnz587L84cz0aNjDFuK16gPV9mtVrh/v37+NVf/VW89tpreOONN/DHf/zH3phKICEHxW+SQvNySAGU47HW987Pz7Farbxt8HheoToe+h7wdLTtLzciaV8yy37GyzmZTLzFd13XODo6cme5Uhzy/uXbvMm8eN+T9ShBVG5Qo62XY4sHbdyMvSul76w2xw8dOzU9Qcqm1ZvmPUv1LNPn6iEUl4ySUh7eZu2X++3Zseu1RV37nrHG0DhKZ8SazTO47YcpHmBcOAGyQBunte7zKyceJp9r91QGrQZ4HSMQR6QQcZ5dr/GjlwvUs7rd7pVAPOMDojysB9LSvwRCN38cUHXPNwAd8eN5yTw52OoBsabLLwnCMpmyaRNVeqcC6IBH8gAlYNVaODBn43Xq+uBGTt6/nR4D63maStCW0pMMzhOXpSc5HFDLvHV7ALNBj6eTVXjE8rqnuPy82573MCsvtZOLI9rHGuvydHE3YRzwdR6xvL8wL1lYwNQGy+slPvy9D7FerPHX/qd/rT+WkKjGlzu7X9h+eT2+VB/WD08CsVb85nEEfxWklGEQctp+WBA0DY0jG/mstf3yxihDrlSaHqAaq49QXgF+vM5L9X5Nb8lNxz30Li4ucHl56c4MffDgAS4vL3FxcYHDw0NMp9Petp8kK6W5f/8+7t+/j8PDQzx9+rT3QdQ+jX+lOsa2eommE4bWoFVV4d69ey7OcrnsHTER46U9j8ktn4f0ONKF5FExKaK2PT4+xhtvvIGvfvWrmEwm+MlPftJbm+T001z9K0Y3YXAdy6aprXFi+q7kI+d23ren0ymm06kD0IccOST7UcweF5N7rA80+A5JnOhjYHkUUkrmEOXYV2k8rKoKBwcHLs7BwQGsbcFYeZTSGHakV5lSdtbbUjcl78c240/uux7Lc4h9NUeWWFvEbAk56WW80DtaIhORtFMOoZx21WwTId1Ha6/Sts9pD/odOy6xhEp0qm14jjGHh3gMkS2kzw3pjyW0l891tEkoVkmhTj2ZTLyvkCgufS3Fic7DkHlq3jqhSbJkkBnSoXINgbeNtIPrY6QNjNuUPfUSlPQtbmiV8UoWbdS3eBpuFNfO771Jyln0Af2vHEvOvihVVnLiU71KgE/W71gD5dD3LzV2yIXUvuShq9xWQ5OXnzdF3qAETM7ncw+MjZ3bYq2/LSz/UGZf45szJieUGtpOme8AcH5+jj/5kz9xY8d6vXYLMCB+Vg8PlwtmGffu3btuQcfTlWyBMjaFDAU57778GEimp3NaAeCDDz5wQOVqtXLgLoGWJfpDiozxv1Sm89C5QSnXk5vak48/l5eXePr0qQOpSTkmY+dsNsP19TWeP3/ey4fiUl/jc618ZzioP5/PnYev5vnN33vKp2TBxPMNzYtcbnlGWoxvzIDL52f5/kp9Tj6jNiYDKBkeY30n9YzLoS3IiJbLBtfXa0ynNYwBJhMDayvUdesa2IKugDGAtXSQJhltfC/XtmwtcNs+h0tbVfDidv/G8aG4xKuV2bJ7APC9ZymdrJch06q1FqhMuzXxxHhescYYD0yj/u+8YoV3LAy8bYVVoJXkZWHc85E/ozCZhpdZgrw8fFNzCGJsJg7AeX2WA5IEahHQynh43q4EVprNGE3h6P/OvXryGQvTbPg3Cn/NA9Y4QZ0nrLsycIpAVte3KtvFQ5vGGNMBpXSmLNUNeb2SfKaTyYGOdlN/jen4ch6bOnO86R0j2Wz3rJpUaEzjPiawa+sAWrUtWTvytisiLb0CaMZAWHkf84jlv4NesPDv+b8by8Vz9xt+HJ6Gx+Hl0sLdby6zCHP1IutOi8PuVYBWidsrP9AvFxTZjfgtswsMsqXrbgBOnyW7yenpKT7++GN8//vfx09+8hOcn587O0loHua6wmQywdHREd555x28/vrr+NnPfobT09OevlIqZ4y2NXprxOvSGOPpBZQf1xfonig095Pes1qtUFUVvvnNb2I6nTqP5J///OduhzfSa2PrJnkvda+UrSP0XNvaNcaH6mE6neLNN9/EN77xDfzar/0ajo+P8eTJE3zyySf48MMPYW3rXR0CzjjdRtvWNkT9I7YjUIhydWzKR+rY1JYETB4eHuLg4MC1gdzNifLgOrsmD4/L85P9hz+jM6jpw+VUH+fPaK1LH4B//etfx2w2A9Cuwz/++GOVjyZ7qY2R17lWfvnOUx3wfn50dBTMe2zjvUa7GCu/aJRbh2PWc2rdyfv0PvpRDo0hR04dajaNVHr5XlKYpBKv1xwqwQxK+Q7lqW0ln6KSvLZ9D2K4iMY7NwzIe5dvy5jpgbGpCXkIhcAujVL5cYWAd3rtrLfYZCif3ZbBLUSpiT0GAMTS5cRPPY/VZU57puKmBrecPisVLi1Oqv/I+pbPS+5zgKGQXCmjdYxKBnTN+D+EX6heY+1U8n6G0gylMcaCkneA4qQW1ZxKJ/zSMkmwQXq+0xmqY+RfMkbF3t2Qwpozxmh5yw8prq+vHS8C2Hga3oaxPHuAAbovfsmbUi7mefx9zVUl77W2UM3hTwYFay0uLy8BwIGwNKdvM1+FZJaySkMiAfEUP2YE5W1IfWC5XOL09NTblpji0jEB3Eihvc+5ZaP301rrDBjyoyAtTWgO4u99yZxcooPI/LSw0PwZWpTSb16nvG3oOlTxzl0AkByLxRoXFyscHtaYTAzWawtjrDsntvOUbb1iraVFZwuK0pmxgN1cjYvTWfM1T1b+HPCRse53m2eXN21pDHRhbRn9cpXSsrG4WFlcr20Lwhrjg5uGvY8E5Bk4kNUD+Fg6+cxrC8GDe0m69Ju0Ia9aJyf89DwPFYSl8EwK6jqUJ/c63TSh5w0L4a3KvWRZGuLlecQGPGQ9+TZ5eXKA5Wu7evA8ZYH+2a9tpPYZz5ddZdeNecZ6dUF9RHlOfHg/4v3G85AV8by+udki2VTGXdeLNU4/PsXhg0McPTxyMnh1A0W2GCmvmrrNrdWfuT5k9fteuOTFeWqvfUg+Nar1fwuevflHgpeZ+Qcy93nYvpweMK0XLJ+86rR+/iUyb4jPeXx+G2JU4yAhHbvx9OlTXF1deTuRpABf0pMIcOE7vYytm4bWUbG5OEdfjK09uV5Ukr/kRfEPDg4wm81wcHDgjo9wHxwZ/SgpKQunkL4WKlesv5S0F/GhDyan0ynu3LmDu3fv4v79+zg/P+/p9F8kkn0l1EdzbWK5tpVYXyyxjcTyCuUT0sVpDRIC41Nl4+sT+nCB1mSvv/66+3iWy5EjYyy/EIXee75G4h+aL5fLno16n+v2sexg29JY5d2Gz1DbwU3VYU7/jdnB+Xszliz7HMdlnqHxRcYPUY7tXLMFbUNjvutj8AnZUUr535b5PGZn1HQlWd5cO45Gu27XoGdszBC6y8EqV1nZB42hxObQWANoLvEFACkO9PUZAKd0S6LtTobmtS3RQjC0SALCC7VchYtIlj+Vj7aAi6VPTS4pIELjfxN9aN+Ki5YfGQO0s6NLKGeBMJTvbZnMiHLGWakUAe0Xto8fPwaQ5xEaWwxpixviG3rH5XsptwKi+KX9Ur57fIFVVZUDSauqwmKxyPrqjvim6vr6+hpPnz7Fa6+9hgcPHnheuSSL5iG5C8qtOzmHyPkjJx8az4HuHaYFON9ii+KX8E+R5uFP2/DPZjNnKFutVri6uorm2TSNOxPs8PAQJycn+OM//mN3bhN5jsznc3eWbq6RgHtmaMomBx5DXqKcCKjVFnlyKzPZ11LvMjcuyrN3Nbmkd4pWrpQRmgPdPIx7XVO55JwljdyhsvEy8mtIt7HW4tGjSzx5co2/9tdew9tvV5hMqJ8bWGsY2MpdATtPV6omEoeu1lKczpPVGP7fecTy3y3wyuO3qJfPv43Du05XHUYJCxPx+MX5Cv/dk0sszcYjduMVC4Oel6rnDRvwjHV9RYJl8IEzF7cS9+y5d4V+79rbYWqGV4XfX5R6SQGzPfBTxOfgZ+/esPdiAzSFvGG1sBzPWBi4s1uhdXfyQm3EPTZXqjd2fqt7Rlf6beB7r248Y90ZrxL0JfAZXRtZ2O5cWYvWq9ai82A1Ih8C4jZnzHpnx1oANTrP2KZCA+YZO7F49uNn+G//l/8tvv33v42//Y//dq8N+dmxxRQBIj1PUHrEX1wCHiUQaVlc66fjYdQu8hm/98LYNfkbfd4yjrW2X0YrflM9WHj/FiytrEurpBF8NE/ZWHmC9QDGO0UGalqvCIm5METWWlxfXwNo9Z5nz57hn/7Tf4rr62ucnJygrmvnzahto8v1T9r147XXXnPed/fv38fLly89UPe2gAKcQkZePodowI7UPVP2BK4DnZ+fYzabeWuGmAG4RHcuib9Ne5AeR16X19fXePHiBU5PT1FVFe7fv4/Ly0u37TFdb4r2aQvR1mPcy1rqwClggQN5cgtpqedrfKy17uPh9XodtNnxOtLW+Zq9KvQ89kx7Th8jpPrIarXCL37xCxwdHeG9997De++9h9/+7d/Gixcv8PTpU8f7j/7oj/DZZ5/hzp07rv7W63VvZ0QiaXdIkZuPRLnkrmEAcHZ25njSmlim3ffYuG/b4Je0W5Lrd96+Ibt0Dt3WfhLzis1Zr98E7SLvXDyuVDfMoVL8pFSOfdBtk0dS0DN2SAWHDIax+PJ+yKHLsfPdhlIKXBiTSpSDELCTW35NUdqmrjR+Ug4tTANPchTAmEIoJyaZJ48Xklfyy6VQu8Sex9q9ZBItkZFfc+LmPJNK/VC5YiTbLHROUWoRHWrXkKEjVjZtrNvF+BCikgV9Si4NoNDI2g6ozN3iQyqKofFLKpkyboyP9l6Xjms5c5s8jyEWX+uTfH6j37RlLc1/HAim+ubnfu2acsZEOT5Za4P9IaYTaMYwMkLwd1zStmMO8eDjB+VNW/vRfc6WxfxDkPl8jhcvXjgPavpamoyV1M45Z7uGxqLQOMV55JQ7RildYUi7yPE6lO8Y+tcY7wrvnykjLaflsj0vdrlssFq1Z8iu19rZsdTPAGJhTAu4tuw1D1nKl35vLPnSrZCjYZvfbZ7tfVsmr7QsLVjc7pkflqo7YGktzle23Z7YMGCTxBJhxpieNyE95+HOoxV+HPcscs/zatkZ9V4FZdH/7YGzAqxNkSsDgUC8uTb5qF6xmzjuPd7I6sBa8miFMNygC3P3JWfICmCXy63eU/EsK5uoL352rAeYGlZ+3l8kKMu8Yz3Qmj8TfJ0cSj5uzjFQz5p1YG8FNKsGl59d4uXPX+KTP/4E9756D3fevuO1q2jwMMXeK9fk1rt3j63tx6M41r/35l+Fn7W2S8N4ufvNcwmMevzkb7mO4/nyssjfSh5e+bQ6E+FBYFaJLz1lQ+UJkia/zZiLNnHWV2usr8JHfgwlzm+9XuP09DS5hagkY4wDel68eIGqqnB1dTXoPMptSNOrS9PKMGkf2HYtS/xevnyJyWSCy8tLXF9f947XCa0TNHm5DrLPdSblDbRrlouLC7x48QKffPIJrq6ucHFxgfl87unQqXreh6xjk2b3KLEPpIivLyktXwuG1lFyjURrRmutd3yKpruW2rhKqTSNLAutfQ8ODnDnzh288cYbmE6n7kPL9XqN2Wzm1p8hoDpme0vJE7ObaTZJKkPJmmwo5bxT+3jnYlTy3u9rXBvaH3YhQ2rNnOrLsfCS+ix5J7ahfc0DlFdunFKZhtT3rsq9r/qM2fLGTl9ixw7pRPvWk4iG2OCjZ8bexAAVUuSAVh7tPAYNjKUvQV9Fihk8cztXyeJIG+xz9mjP+fpRMziT5xMRbTsiZU2dORKSawySClbsOVHsPLqbWjwNyT8Wd1dfvJYsZqiv0FhAC46cRepYiuvQ/nZTinFOueV7zxcVXGEZ0s9DoBInbQxIyR+a9GLlHQPIyyHZH61tzzfnW8YBwLNnz/Anf/IneOONN/DgwQO8fPnSS0Nb+N6GM6epPPJjmtVqhel0qgKGueevcjB0Pp9jOp06b9XSM0NiRGnk4v3y8tIzfgDttsmHh4fuK3O5yKbf/Cvsk5MTPHv2zD2jrbbm87lnJJlMJr13bsjCgBvKeJjkwcNIZwqd38wNOLy/asZBTW5p3ExRatyQRg+eDx+juDFEO7M4ZHzW6kAzfMYWwlrc+XyNq6sVptMK1nZnx1ZVA0vbr9oKpNZaCxjTXlt5uqu1HUhLHrT0zP/n3rH9eNrvNj+zCbOeDFwOkrmEqkkFcI9Y1mYEenkesNwz1nRpPLCWgWjuGXx+rdwRPjwM3bMgCCvCvWec+PMI+lbqFUthqpcsPWNgrQeqim2N+VmnDmxVAC9jzDDP2M29d44rxTFdXGsZOGxZPAPPy5a3gQR7XR70jJ8jW23qhDxkqY15PhSvafudqx+glane9K1mM3bWnYesNRa2sXj0h4/w+I8e42/+J38Tv/4f/3ofuCPxc94fDgwq4fxegqlZIKy45+EujABY7Z7ly3m4Z5ur95vHYXn17mH9NBwI5uVhdcFls/6DvhxSFl6n4rmaloWFyqnGySC7trh8dIn19caDUowHcm4dQjSXLxYLGGOcbpNzvmdd11itVjg9PcW//bf/tifLkLPJbgvxvjh0/cB5EFj053/+555uwUEkCiO9QVuzS307FHfXRDr4er3Ghx9+iMePH+PJkyc4OjrCcrnEfD73zictWc+/qsT16VjZQjqy5FVVFQ4ODhwgK70u5W4zMX5XV1cggFKuwahflfajmI4es1mWUFVV7qgaoslkgjfffBNf+cpX8Prrr+P111/HN77xDQDtmuQP/uAP8OjRI7fOisnKy6LZi0JtI9cNvO6191Zbe+2CXoV36lWQcd/E+witw4fYjoc+u0naV3/Q1vpj5R2yI2iUOxaMBeTm2GBvE4XG4ZBtN3S0w20tXy4Fwdh9FCw08YVI20ant6Bk4aGXQItbIvOuFE3PcKTw1oyRQ/PRqGQwKBmIZH6TycTb1lJux5LLP9QWGm07MW1T32NNikNl0EC2HL4xozWlK5Up9L6ORaF3PCfPbSfu3LEhtdDfdd3kUqitqN21BV6ID3/O+01oLOaL3BgYEjqfKLTYCoXHSCrLpfMFJzrfk+puOp3i8vISP/vZz/DZZ5/h6OgI5+fnve2qZL43tbjTjEFkpKmqysktv/CWPGRdDnlfpcyyD4beOzIsWms9feK1117D0dERfuVXfgVVVeHs7AwvXrzAz372M1RVhcPDw955RdqcSPxlWagdl8ulCsDKskiZQ2WXdSjBb+pDfEtvaoO6rl37afnwtuZGiZCiLGWicEqTKkepwTnlXSzHHlkmmb/Gq+Rd89sDODlZwFrg4KBGVRms1y3C1HrGms21BT8JaG0ag6qyaIFP7hHbetTy82T5GbOt1Z9fsUnfgazW8rql8sp7sDR0D8cjh67XFr+4WuGTeeMAL9f+m3sOdnrPAAesGkM+sKzvcF7o4vN8OF8vnF1VT0nGKwTIevdQ0irhPbJ+3N52tpQ/AVCbZuX9S4KyLh0/U9Z03q8EVpInLG92z0OVAb7Ulay1XlmcF67t6lO7p/y9Mon67tUVaxO+DXEPhKV79oyXhb8KQ8+O5eHGmBbEZWfHujpuLJp1g2bd+K8fa+9eW+WSTGIFH87bBuL0WIj+Ztk8ZEWe8p7Hl+l43taPJ8FKx8raHsjqlUXw9soQkjVWzeKZCsrG4sZYWwYoR/KMyiaG5V3oesQz9wM/TffN1VFuA0lZQ+uVkA4Sa3dvTBb1JOs3tYagcSa2nhqyDhmLeL85Oztzx3OsViu3FrutIMDYlNJXNT20RK+VOo6my2p5yTylrFoZQuuOEuJ9Y7lcBj/wKLXDWNt+xHx1dYWzszN3XBAAz/OXr2NC9q7UOiAUT1KqfjR7xxflvSil21ovY8ql2dDkuj9mPxsrX420vPc5l29j++GUo8to9g0KT83x3IEshFnwD9ZD771mB5FjUUoWrQy3nUJzV8gulNJ/UmG3jVIyRj1jd0khwfh5apJWq5XzEpK8JD86my0nzxLS8toV35ugmDE7Z8DWwBIZbzqd4vj42N3nfJkbopw6Sw1W29b7GO22Sxm1QTB3AZ1SSiXP3Ilh1xPITU1YISXrNrzbQ0hTcOjcyVzlgfh4xvOAQqJRzPgQM14MbXONDy36tjkPiZQ1UuyMMTg4OMDJyQmePHni4pFHKBEBuET76kshJbIFkfztlvnW1RIgp3rjYw71IdqGSvKMyaHJVNLWVVVhOp3i6urK7aBR1zX+0l/6S3jvvffwj//xP8bBwQHef/99/Kt/9a/wox/9CHfu3MG9e/dwfn4eBC6JyFhAz0lB52eX5shrrb71sxYv1iepfvg8e3h46L5C1+bfmNFVPqd7+X5L41GoPEONuZqhisumGUT5WCLzi9W1VgcheXkejx5d4unTK7z22gyTSYXlsoG1dHZsA2PIRa+CMdiAngTAWpBIdKUsre28Yx1OaML/BKa2svmgLD9Lljxf+dmxPE9WSoSay1rgZNHg//f0GgsA1bRyXrESlE2dCSvBUw+UhXjGeYTyE78leOsBIPQ7BsrCv88mI2/FXMjQGwfKMo9XHkcCqDm/JTkPWuUako88XgmoVe95MgMPUHXgL3mvWubFK+ubebJqnrHE3xjTu5cgrOxfqODOjLWNdf0SFk42WPTOkzW1H07ySiAx5h2dSyFwTwVVRZgES+X4yAFVDWB1YbDevZYnB1Z5H/bC2W/+73nF8vzgy9vLn4eJOvP4KXXYm+dYmbzysWeSp1dnokxqvgDchwJCnn0R1wmGpOXnPo61ttoXYKHlE1t75AI4mj4SM/6GiGxg8j29yTUkycD12pcvX3o7qPAzMl8l2mZ9Hmob3n78Y1pNB9bsifwdk3lp1xAPrR/SfWh9p21rXEK0lXnI+J561+Tz9XrtPox9/PgxDg8Pnf2QdiwC/I9cQ+dXp2yYMv8cQIDHkV7LqfAv6YtJsh9su6vitvbhm7ZPpt651JgJ6LZKzU4Zwi1idUAf41MceZwY8eBgLI31N123MdqXzkWUM57G4sbq81UfW4vA2ByjaClpk5pmJOPnBAzhnaKQoX9bviXxtXjbgI2hF40bC3MUjxjlACqh9iT56rruAefaF6U5L2yoDCEwI1RHIUVS4yc9BLV8hpKmZFM+KeN47rOYgTynHmJgWUgGLUy2S0yGXAVl2wG6RBEKjV+yLNtSikesX2hxuGwxD+oUH7ovGV9kf6Y0dJ9qw9D7VlrPsn0kXynfGER51nXtbU+lga+0SB5bsYvx43Uf67/Ub+hsVPqfTqew1rot8bS+QvVJgO3x8TFmsxmOjo7ceVS5ZchtF2OM93X1t771Lbz55pt455138MYbb+Ctt97C0dERrq+v8eMf/xhAt7U+7wsh4n1Yhseea3Fl+eT7wY1kMj71maZp8PDhQ9y5c8e1ySeffILlcunpVKVzZ4xCZed9ODSXpeSRz0PzCF3l/KaNLbn6a8m73/Vvg8WiwXy+xmzWyjKZtChQVdF2wu25sQCwXtsN0BoaL9vnTUMgLXnYdh613TbF3W+A+i4f0wBr6b7Ls/1Naei3VxPQqmLRWPzZywWeLxqsgR7Yyr0fe+EijP5cuABFKZ2XRuEVAmUdoAd4snnPeNhG7vbi33cNVA6+eeAdsaUtrNl5pwb+Ga7G+GCpB5zaNq3nEYt+fO9KY4oIl7J6YLD168m9y5s8vfpgbc+9Zr35FbbXT6gejDH9LYmN3za9s2P5Wa/Gj+P+gV7eMp01G7DWdls8m8q0WxjXXR19/P2PsV6u8c2/9008/ObDrp4CXcLzjpbAqkYuiojLw1l6N15Z/5m14rcIc2noGQdiWf7W+iCrB0BaoQNa9H575UiULVg3AZk1cvJE0qjyAmqdyfJyeWTZAbh3FwivT/ZhvCv12JTxeNxdrHM5pfStbfmn0pToP9paMHddwvVm/uGeBpiHdJ8cGYeS5EvHbEiZXjUas29pun1o9yaeBmjfSTrGhj6S5LxDgESof/HxJbXeKFlDhdYmMg7v+5oOLmUH/GPq6NlqtcInn3yCy8tLtwU2vRPWWncuMw8nPnLbY5KDPLpTRGsoTdbPI40x1r4KdBvLmbP+Jtq17Lm2CU5D1vCxtCVxQu2pretD9Vli69Xk2Wb+k/mXtm9um4TsMqm0MX2jRKbQB+8ldRmKO2Z75FBun8klD93cpjMMpZzCkLFaix9TBnLzjCkqoRc8N69tSFO2Qvlp9aINUHJwylFItp0MZHoNjA0ZTHl+IYUulCZGMeUz1B9CaXJBkpI6C8VNLX5y+6LkI+s6puBri49Q/qEBKxYm85CLCiK5SNUm3pwBMyZjbPLNoZJ3OId/rrEkNpHKODFjQUomLX6uAhCqW21MCs1NsYVhqo5z3jG6l32ktJ5i+dBZN5PJBHVd4+Liwts+N9SHcknr39vM71r98jY7ODjAZDLB0dFR7wvCUJ8jMPbOnTu4e/cuvvKVr+DJkyc4OzuLlp/3txKFmjxzAeDb3/42vvvd7wJotyp+6623cHx8jPV6jTfeeMPNPXR+rSa/pNA2xKGvNzmFxkFJ0uDBeVG4te3Xmq+99hq++tWvunI9ffq0dwasJhMf31MfHZUYcrh8MpzzzXnvU+95SG4ZP9doqj0PtROFL5ctGHt4WAMwWK8tgAZVRR6mHBiluuhb8AmE7XjTFsdUV0ZJ1wGtbV4ciDWbqw/MtmXsZKDipoaN+cri+8+ucbq2mBxNYDbbukqvRAfgUTiERyzg/waLxwIpHU9L95ynfM5BPHkfA2I1b0+Sw6Oc4ZXqVICZHl8GphIAS0ArAaF8S2L3bMNXArTEO+YJS9schzxkPZ6snA7M3Mjggaa2qz/+zKsvpd0prjHddsEOhOVbD1P7GJanYfKyvsb7gSsnu7ozZzdn1jqv2Q0g64GxdN203cff/xgff+9jPHj3AR5880HXLwLDiQ09EH3Ei2v7z4PesJuwHhAL/7e14rnteAbvKY2N5LN5Lvk7GTbPNE9Zr6xKmSW461WblresahnG+DmZRN3wvGJrR08uGc0oYXumkAGrVC/ch51orDxieoqmg0kdKLS2DNUlhXFdh8fV7CL00R+BSbRzjCZ3SEfR5Cmxb4V48GfGGAdyUbmG7m62a0rppyV2o5z0sp219g/xITBWfpDLy0FxQ4bt0Hok18ZTSnJ9zNcLObvN8N+83JR2tVrh448/xosXL3BycoLz83Ocnp66tLPZzB23wvnxfkplns1mqKoK8/lcbY+Y7UKOCfsY+/ZNY5Ypx+ZF8bbpf0Mop5yltq9cviFeobH2i0Ildq6QjU7jmWOfkO/2mFQyVsTmXRlniBw5cXLtokQlc4m220NpeVJ6z6tKo2xTHDMajtGpaNuLEH9twr+timGMQoZHGSf3pQp5y/Cw1EQY6/jSmxVIfwUYy2dfC7vU1o85inMOxdLnKiq5z3dFqfqKLRBjIEms38XqPjToh0CJVF43QbtaFKZ48MUS1ZccI0J1qIXtsk53lY9cOIby3mXZrPXPKiUwNhb/Jt9/7d2VoCI/42i5XGK5XDqPWJoT1uu1A52pfafTKeq6xtXVFaqqwt27d/Hd734X/+Af/AP89Kc/xQ9+8AO8//77bnsqmnPIUJUjryRp5Lq4uMCLFy9cejqX6Pj4GG+88Qbee+89LBYLnJ2doWka9xW21i6aMr1Nfwst+FLjhDHGM1BMp1McHR3hq1/9Kowx+N73vueOfIjx0mTTxt2YUUPrL3wM8gzgwogl+WlzszSaanKE6ji13aJmaJO/07qvwS9+cYG7dyf4lV95AGtbz1hrK1RVu0Ux0G5ZbC1gTAP/vNjOC9VauWVxC7626brwtv7IC7Yf3snXxWnz4GBul5Z+0zbGIbKwqCYVKgKuqB0ZwEb33FBpTOcJG7uXgKsHrmleuKafnwYKu/is3Vz7sXhdZcAHYJVqiXnIqt6SlvVlBmAC6M6BFbwJPO0wv/AWxZTOhTP+XAYNiFV50lwqwFnPo7Z7Bbr0VEa+TXEjAFFKvtk6mNrHA3mNeP8ozAhZSEbezsTLGC+OqQzQwN/WWICuPTC2ZuGbOiTALQS2JvuGaBMlkgrOemMYxZHgIb/X4lhfVwzeb9JKIzzPh4Osbnxmebl7zkvIpIGvXlkC/Hp1auHLgj6PHiAsnnn8RZnksyLA9WbUuy8sSX0gtq4MfQQeMwjTlfQe+RFfSE8h3dTa+HEWFD6bzVxZaHea0jXkkPUOeezuyoC9T8qtr5x64usdTiU2DX4OqhavZD2YKltofZHiKd+B2HpH6vKx42hC9ibyGj45OYExBnfv3nVpNOA6pMvTB8+h7S6H9OOcOuYfVOzDzvklfUn7pM9Ln47N7fwDfqDv5akdY8btHDwsND7J31pajUrqP6T3lPLZNYXG512M0beBisDYnElaUmjyKalUabyWeWqT91iAR0nnjxkkc/OKgSFDOqLkp73YY3Z6jV+OoTlUV1zGEoN1jC+vh5AHE48TMv7myqClG1JHufmE8ighbTJI9YmhfTM1MfG4PE1J+XImNI22eadvcgKQ/TXWj/jv3I8ptu0Hsfbbdb2V9DctzrbjIl+cpfKKUWpMio03JZQz79M8bEy3zTIpsPIMLD5fcwXXmPbL5a985Sv4W3/rb+HOnTtYLBZ48uQJPvroI+c1QPWnndmRIy9fwBtjcH19jfPzcwCtcevq6spt6UuA7LNnz3B+fu4p3DHFPUcOHifXIBYzGsbikmfv/fv3e4A4fxe191KO0zGdLiQLH1e0d017JmXS6oobOamPyTqKndck57dQmWNjaKzu26vBixcLXF+v8d57a0wmrWesMQ3W6xb8bBqgaVp+TdMiOVVl0TTtc74tcfsc4Ge90ivVNN29tVS+ziMWHgJH5eFbEfMySh2ly1OjtQWWjQWqFmpydbsBx6S3qeflati/dq+R6fJw/EwHtrl7agcW3iY3jge/d/HB4jO5QiBsD7CNir6J6PAg6zWLAxOpzxm0gCzFs50sHFRy/XQTn3hIoNQDomQZuFym85QluRzYyvgRiOvqx4oyUXXS9ssC6JXAqCvjJm3P05XaiPJldebqTWkzDvS6/iXqQANtvf5I/Yi2LTad/PSsWTZYXa9Qz+ounFHUIzb0yCrpqJ342MT7lHxuWbhV4vA8rJCFpxH85dXaztvVwgc+OehKfPi9Vi61fJbJoZH1/714WrgsC2dF8lml3Baq/MVr6GFqZZrtCAa8XdNQnXqbPHLX4yFwLZQHzUe8/ckzkT+TfCg+HS0ht0eVcY1pvf5IPrKRla6NKY9c/ZOXict322moDSCmG4f0ZS2vkvUJr1vZT0tl1/oNl0eTLWSbybUFSX09FEfmH5OBzoc9PDzE0dGRi391daV+7KmVWW5bnGODDBHx1dYXsmwheb6klmK2wF3mt2seJWPOLso+tJyx9ki9z9u8UzEaYpcsyT/HvsfHkaF6VY79UeOXEyfFbxvb9y7j5rZbaN75PIyno3jGjkUlnY2nuQ1esKEOdts7Sc5CI1b3KdK+glutVh64HvoKMKXASFAjJutNU0yunEk6NQDxOJoCn1MvMWP5LkmTL1VerX+UgBNj0TYLpV1RatyRoEpscQaE+5mMEyr/bakXol0pi0OJdn6gOuRAYYqoPbRdCnZBvO4mkwlms5m7v76+hrUWv/Irv4KHDx/iO9/5Dk5PT/E7v/M7mM/nLr22bTEtrh8/foz33nsPAHD37l380i/9Eu7cuQMADti9vLx0YGiOAi2JvrKu6xp37tzBo0eP8PTpUwBw2yNPJhPcuXMH1locHBzAWovz83PMZjN3nlPMICHH430T6UUkw/X1NU5PT7Fer3FwcIA333wT1lqcnJy4/iMNLdo8IMcOHp/nTfG19DJceo9w+WUe1M/pXaEPAAgg186ckn2FP5O6IzeaanOqNhZSmfg7SLLQtmhtPODiYgnAYjKp0DTVJh+APE5p2+IWcG23MQYMmsagrgFrAbMBm6qKy9KGt2fNdvfyvy1L/55fu/qxEE3VuydaW+D3PrvG03mDq9q0XoJii+IeeFqZfhj9I+zlGvqnvLx24vcMZJMesZ7XLUQYWPjmt+xHPUq98tQVHUvjwkMesF48x8Z6YaF71TNWFUuJr2wr3PO6ZfXl3Yv6cNsA281YoPGn/lKxsWTjsUpbBxMoxtvZ23J447XqnsGSA3qvnV04ut+22oBrbMtizTPWWANTt/3VNpv8rcWf/t/+FD/5736Cf/d//u/iwTce9Oo55hmrgq6bcP9WgIIyDGxeVEDE3twpw3LvLZsDWJj2W+alxZVy9fKMgaEW/fxEmXtzlZQf3bguw1XePKyx/WcpUuS6TfQq2DFKKNdArh0/pKWVa0D+mz5EzJGH7BmLxcLlH9Mv6QM77ulHenYsHy57yvYTS09xc9cer3o/yllTh3TEGPF1OOmdMe/RbYjLqfGiflVCOYbzlA2KgxxS15bjddM0uLq6cmGhusqxe+Ws0XLrIzSu7NL+8aq/U68avUr1XQIE75N2UYfG9Hff0uLEZOLxNHv0xcWFOibJPOR8mDMHhGR7VfpaLuXOazG7nqaT0bGXGoV2mrht1DszNqezhaj0hc+NP8SoOcbgExs0SvhrRs1U3NgEntNBS6gUCCshjRdtcUPPx54oSmUtWZBsI4ucHEPPUvKl4mj9NsVfM6an0m1LIRm194We5SoYY9SvVg+xui0ZL0rGhCEUGzOl4hJalGkUmx9S40ZocRUirc1j8fh9qH5vSilN9VVN+Qj1p9DcsGvFTcpIXxnLOA8fPsRXv/pV/Nqv/RqePXuGf/Nv/g0AYLFYBMf7yWSCpmlweXmJ+XyOpmkwnU5x7949TKdTAG35CNjSzgcqKYe11nmIErh7cHCA6+trnJyc4Pj4GKvVyp3fy8FXz0grKNTHc/pyafuVjOmr1QrX19dYLBYOUJ5Op24eJjCWG4NiCrJWTtkvU8ZKLmds3CS+qfGcyx+rC81YlqsDhcYablADfK+R7st54PJyhaoyuHOnQVUB63W18YDlnrGWecDS1/eWecwC1hoXvyszydLGB3P7sxYw5L0HascW+O0QA142Wf5432ysxWfzNZ7M15geTd2WwW1KH8hzYFugTrXsgl607N/zjCXeIbkN+vIZISu7SiA2V2aNPI/RNsCXC6wPb5pL85SlcPIMhYHnxcrvubeqA1tNP3/5rvH3z8dWjQOnpGzUBh5otpGF5CYglV9dd+XlIzl4PF5PvKzEj5WPg70eCE3ydq9Irw08ANl0eXh9bnPvxp4NkH76i1NcPr3E8nLZb2PqA7mkpbX+c827M+TxqepfMr7gr933dBaZN8/PoieHyluWOZQmIrPniRvjp/DUgN5QuRxwG8jLlRvw+zbYc/q9smiWjV4XAUqt81I6Ua5d5fNmEIzpYzl1FtI9QhTSi0L8Y4ZImR+NO3zb1ZCeEstTu88FsnJpX/0ox9gfszVo4blxQnpqSV2FdKKha9fSdXcpX8kvlF/O8WB0lXUg80o54ITea257lFSypk7Zy2L22zEp553KeR92mX8o7lj1o60Pd0Xb2pbHopy1NY87tJ/sok5vUp/IGVdD8smd2EL9eZs8ckjjVWr/Ssmxbb9N2Y9TcYfoFvIoCOKzrbPmvsaWHhibM2mOQTEDam7B91VJObQrMEWGlSp12u9dUo5Cs1wucXZ25t3LFybX+Fq6XYCm6OYuWm+KQuBS6CwbLb30Ogopk7FJQ6u7XX9xEsuf10tqMRzaqjK3bccaaySQRPLtikJya6AWT5PiMXQSz33/ZLybfgfHoNI+FOr7fGFZVdVe5uuQfOQZS3qDtRbvvvsufuVXfgX/8B/+Qzx//hyfffYZ3n//ffz+7/8+6rr20pAXwPHxMdbrNS4uLpwXZ1VVeOutt5zXrFbWGNAWItmXlsslrLX4O3/n7+Ctt97CP//n/xyz2QzT6RQffPAB/vRP/xR1XePBgwe4vr5259fLcZnKRjKt12vPu5Py3tdczM+Lvbi4wKeffor3338fR0dHODs7c+A4xZ1Op5jNZs6rc7FYBLf/ihk0JcXKbEz/S1L5nKflZy8BcCA5vQvaWK953qZkCenCWl/jnrfae0phy2WDH//4DA8ezHB0NMF6Xbs+ZG2bT123rnnk9Uoesq1nbHuWrLVdnRLISsBqe99d5X9bDyR/d+W/u/Lpv7X7xgLVpELdoPUUJK9X5v3KQSvP4KaF8z8nnJ6e8+FxyOvRwLgrz88DXSmMtWsPnOXPKJ37aXphIeJesJRGAmcuH+s/H+oZy38nPWNN2pPWhUnZ6F6pO89zFaL+6bppM/Jgpbgkk/OQNZ2szpuV+Cres+5asXpm7d47v5bFM9aAgGHudUvXqq7Q2MY/M3YCmEmbr6rfRDqKB+5FgMoe2Ao2PingYu/ZBiz0PD43vz1AKHRvfR4SRHJzs+1+u/vGdmkUfj3wVoRp8Tg//s/z1cK8egn88/Qqv8a2fZDKuflQxmtLo7Tnht/lo0uszlYtIJtJ+zRCv4oUq5vYeiJnrTEUbBkqk5a/MQaLxcJ9FMl1II2nZk+J2ZQ6HaNc57sp2vX7ELI/8DokW1bOkT/a2mBMkEq7J31ZW4vT8xBxHbfUbiZ195J2Glon3NPcGIPz83O3i06u/SzVp+SRQ1L/3xXl9vXb+q6OSbd9LtxVXxizzDdZd6U2eS1Ozg4NtIsEJ9r+nCjmaU8UOnN6LAq1awgXGipL6KiBHJvsbSGyI1ZV5e3UNxbvfZVZ3aZYCiAVutJJdBeF0ZSgUBxOYyo7Gu9U/rkUeul2Qam8xlg8yHRkpA4tBkr6TWn/isUfMgnkAlVD8krlEQIkh75zY76roYVLDoUWfpqhO8YjJltofEilzclnjHd1m/6h8RkKCoUW4KE5Ylsq7YNaWbSxONeQMOS5BF6416i17da82rZnpeWQ+YVk2BdpYyGV/86dO1iv1/jKV76CTz75xJWPK83SW9Zai/l8jmfPnjmjASnKdB/Kextqmgbz+Rzn5+c4Pz+HMe15XI8fP/a8SUnWELDHDTBykT6mLlS6EF+tVri6usLz588xm80wn8+xWq16czBvvxT/HBliBib5PkqdQ/vSkeJRGxwcHLh37fr62m3TV1WVt01zqdEplC+XVZaL5ArpgdYCi0WD6+s1Tk8XaJopZrMKVdV6srberJYBse02wU1DnrGedKgqi5a12Vz5GbNk+ecIgNnEobJ14dYCLagLtOLL+pJ1pZTRdCAsBze7FN0zziLmvcrjev3FoPdvjO896+6NkjexNex5L/vIWCxlH/JaUxoLB3ryMC8fOmuVtjDeNK3zot00p+uTRvDdyG9hu7NnFVmcJ61ytqsf3fc+hUV3ZixL68lv4IO9Wp2J7srL49WRQc8LuAd2GVEe+Sps8nfn1do+WO154vK+ovQ/KZfrL0Imjy+n1HTmmt5694AYy2wgTIZb+GAt+y3TePdCjp43qcg7CC5Hyut4W+vfU15WxJWyynz5fSCtA6JlnQC9cC++DciWq55YOM/YUh1h3/rEPim0FtvWLpBj2yjJh3hqek5I79B0nyHrPX6kSWp9UcJb2teGtsG+KdWepQBiimR8qQ/KME0+rb61ODFeMRua1Fm1+KV9vTRNSEaeP6+DnHUFT5sTj9bhWj9IyRYKC6Ub0o/GsGOG1h+7el/HWoOPYeu6DXPhEPvhbaIhcu+rzDnjt8Sn5Lwqn8uwFJ40dL4updQ8ocmWy6ck/RB+JXaVmN6UagvtXjo/hOTJHe/3qefs/MzYMSaYIYpC7HlOY+2SpAyhSVXzSskZkLR8Yr+H0m1X0EOT6i5fNm2w1+QKpc2hmIdPKH+eZ8yblRvBKV2onWMTkmbQjwEpu2wTbULOIf6uxRb2Q9s7xmdXY5I0AoTOa5b3sl9pEyr9LhmfSuUeymOXY5Nc8BljcHR0hLt377rw09NTz9OQb+9LHpT0vpCnXeg9vi2KvrX+FiAk9+npKV6+fInlconpdIpvfvObePLkCYC23OTpaq3F1dUV1uu1VzfPnz/H7/3e77lx6NNPPwUAzOdz7/yHkrkwRev1Gv/6X//rXp1XVYWjoyO3m0NVVeqZIJzo68vVarX1QjhnDsuhy8tLXF5e4tmzZwDgtn7uzjP1AdmU3KkFMecX68skA8+X4nPZJK3XaxweHuLdd9/Fw4cP8fbbb+MHP/gB3n//fUynU3euL+B/McvLqhmryKBJZ72FPIM1Yyr1TX6uLX2Ewct6ebnGD37wEu+8c4TDwxrWAlREAmBbMLXaALTtPZ0Zay3J2oZ1nrEtENvWI2AM3H37u/tv5dN/0z2/yt+cjGm3KUYF5xXrgCvjA1d8LvG2B2bx1QUzTDCeiy/y0HhzME29B7ww3sb0jMvTrwz2PEA90IunsX6Yiw8RZ/O8pzcoQKIHyAqwkSWEA0sz4vfyYXXm3VN8w/jleshu0lF7Ok/YTRzHk4XRObNOFnof6AxYo/xD3DPPWnf2rEXnLUue5fzs2NrArLv6MDDuuTd+sZ8x72QlsHevgZwhwBBgcoh7a/txKEy9Z3x5eC+OCNPuZfzsK5fb+r/5vwzn+WrxYvL10jcsfqOUM0a8vdj9Ta2h953vtnrRWKStufjcnruu4bqC1A24LpPaSapknWqtdR8qkvcflzVWNq7rhIyhsmxyXtZ2m9rF2v029BOimO3MG5eQt2uY7CsaXy1+KDyUluu6Uq4xdhu6SUr1EV4W+viX26a2tcdpfErXpmPV8RhrxS8KjbW2/qLTGGN0bP4JxQnJcXBw4MKWy2Vve2EZfwhJ2xfR2P1Jm3O1eUerm9RcIXncBMXwEu2orNiz9XqN5XLZizuZTDxdJTbu3+S7HwRjb9Lgu02HTk2CJZU9RtxcpaYEiCmRS1PCZR4hpbKUUkZXIu7tRPdDZdgGwMpaNGfmHwKqZH70PGfyycmvhGeu0ikHrJCSWVqGXHlCfSH1bg9py1KZc9spVbac8SIlT4pXikfOOBmTMzbZa5NsqdIQk4v4ldIuJlveL+m3McbzjCVwiAA6+Y5p71tqvlBBiz0qE1p7WmtxcXGBs7Mz56VIXqUknzHGKck09lO91HWNq6srfPDBBy7u2dmZ24aN119Iptw6IH7UVtKTkgBLHq4Rb38JFI81v4xBXB5NLyCjm9x2l6ePvfM5ZS0ds0JjFYU3TYPJZIK7d+/izp07OD4+duE5+lZs3uaGSi63NNLKtFK34vXZhgHrtcVq1WA+X2+MtQZ13fJYr1sPVQJiu7NhPemct2xXls4jtg0nQ3AL1pInbSs/ycJ/83LwsDa/7nf3HAA+WzY4XVnMN9vHbsRjkm7+jBcIAuwIlOp5ooK1kVHuN1cXn9pFaXYvD8PqTAFVVYCQ/VaBWP4sQXJ7Xw2Y5eEuPwsHdNJz+d71gNSN52hvjuKgnd/kLox7lXoeqJIflYe/C1Q+K/gxsLfnDbzh7UBR25XBGNOW33Q8tTCvfPSbe8aKf1e+DdDL70Nt3+t/m98OuN2ENU2DJ3/6BPOzOd76q29hciDOV9dA1+6hHizHWA7qWT88BMT2wsXvoIcs/RMfik882L8b78Tvntwl86OWXiu3mHettb14FmGZvCuVh6ff3EtP2F49xOTPCR9AN2m3KaGx7DBD1wAp4ETq1iH9husImqyanhWyb8ltXDV+8nnOml6LE1tnyPxDa4190E0aR0PEdeiY3SpnnR2Kl+ITsgPx3zk2qVx7UkwGTnzdkNMHQzKOsXbS8pP5pChls9Le/VdlDP6i0y7GlqHj8S7y3bctqCS/IbbHEnszPeMfz7dr4c7hIcVzWxt9CcVsoyl+Jf0ppU+Upg2lD+lLuWVMjf/Hx8eeQwvQtjXZ7Didn59jsVjcmA6TS15pSl+mXcYnCp31GKrYIZN4SBkvSX+bKFQvJR0+ZwAIKWyxNEC7ZSIHY3e9/zrPnytM3MuKy5einLPncuWh+LmTgGYwzn23Sgzm0mhfKltpe4byk3HkonZXim9KEYhRStEYqphpba+FD32nQzISz5JJezKZ9Hg0TeN9ucSVoyF58fYfOr+MRbJNqQ6I6CzRy8vL3hd1k8kEs9msNx7JduDPqN5iRpV9EIFevB2ePXuGe/fu4eLiArPZDIeHh5jNZp58l5eXuLq6cmnm8zmMab9qfPnyJf7Fv/gXLu7BwQGOjo6wWCzcvDFGWQnYnc1mODg4wMXFhedNee/ePSyXS1xcXAT7Kn8HrbVYLpeo69prG3k+0U31Vb51NskhPWOXy6W3UOF9kOpGM9xwCr27ueGhOU4Lm8/nqKoKDx48wOuvv44333wTJycn7kOAmG7Hn1H7aGWXBib+7oXyoHvtnCzKf7lscH6+hLWAMe3/ZNLyruvWm7UFV9szZK1tPWXr2sBao3rGEq+q6ni2YRSnDWtlQe9euwIdYOuHt/Rn5yv85HqNala3HoJGB74caGUcPNuP02XpAV7qlden6dLxME0Wb96kMAJpGdDq+qG7mJ6MKviaerUt4xeKb9FtSUxpeH7sueYJS/fuN+lLHKglQJQ9c+EExMJ4Hqye3mU6Prx++DMO9LryUDrNQ5a1owNLGWjL20x65GphrkybLZS1vuDOieWALM+HvHMrf5tkGLTe4JtzbE21qZdNWzXLBn/yf/0T3HnrDv6D/+1/gPor6TOtZB8JhatAvu2Hu3EpACg6MJXChB5O5fGugXAZpv2WfLx8RXwNBFbzgJCB15Xt5yH5hcrC//l5sLBozy0WcbV6irWh2p4D6KZ131eR3Dyk1FssXNo7QvGA8Jo21l6l+rzGi+syPG9tXS/fGbn+4L9lub6kPoXW5GMRbzfNDjWGDavEprQLyln/D7H9pIzxobVdDt99vxOv4pi/D5lfxXoBXl25xyKad1K29VKaTCYqQKftDiDnXTl/xuZseh6KM6bN15j+7ga3kbS60BzvQvhPrIxvvvkm7t+/74XNZjM8fPiwV9c/+MEP8Mknn6g26Rjt+51UwdhUZ8kBTmLpKC+toKUvYwloIhWlnBctN98Q35J0/L4E/MjNJ7dz5cbh/ELtqZ2blyuXXAzINDn1o7VxzP09l2JtzcGWUF3GBpqUcTqUb8m7kIpTomCm2kl7prWfxof3DQI2htBY7Z3DO1W2nC0TSif1ksk+9pyDDjm8tDiSBwEY2nYhBFSl8tMMFLfNKEDvDHkXciCG6uTevXuwtvWUXSwWODs7cyB1arFIecTu90nWWuc1ytvns88+Q1VV+N73vofZbIaPPvoIjx8/hrWtB+z19bW6xQvQjZ2z2cwLJ+B0bDLGuDIQYN6CYXWwrvn8rBneyONWblsn+dwEkczaOyuBQ01p5vElT81YqcXXZOLE52mtzoEWLG+aBi9fvsTLly9xdnaG9Xrt+s16vXZtGNpOSJMvtPiR8XrG+kh5QnR9vcbTp9d44w2LycS4s2Jb4NWgqoAWQK1gLWBM53pqbQu4tvFJ1v61+28BVR4GB8TxspL3LOUNAG0Y8fSLZ1oYgZ0V64GXXkzTA9ukV2zw3TAdENcDMV35jBffPYNIx/L38pbyQcThomn8cknG1boL8bfdveZp2iZnfdei7w274WWtv7WwMQKQJWCUA7Gb9BwM9gBd4s+8SV04ldWyeuRnx3JAFiI+lVGWgcBQisKe8zaRHrden2Hhnucvbx/2b4z/3PVDdrWV9cJce23at+fBmUNW3tp+uATzGMjI4wS9ZPlYz5+zNN49f86vIh/ueerGSBvIU/nnfDz5FTl4mKsDJV9KI8NCZVHrmvgyebxySVliJOpjKKXWBJ9XI++29SZ1GPksNvdLitW11BGlzSRnLS+fST0ktV7UdCyuU/GjHWg9Iu07nIasE2+ahtqLYrqhxrfU4DuEYu3N+0bMjqOtXSicp8tdk+bG55RT/hxbyDaUWp/lypiq5zHpVRzTh9TrtnmU0jb9cRvahmds/H8VSM7DoXknt79Iu4HW7zgGoK3hiVL1qukQsfEkNSbnyCDbu6qqrOPmNJl53Fy7cc68H8o79AERt9cQ0W54IZt/SNcK5c3bnGx8Ib6pndV2QSoYmyvEkMGU5xGrjG3z0XjuqnI1vtqLOYYMGo8SgGrMhZ9WNjnwxBY8ufnQPQexQltH5gyeISBgCGl9VfLXzuSQ96V9I2T0TsUtodxJIzQJaUpCTNbYAk9bCJcsBnPqS+O3C4VR8/bP+UBAjs+83iXAq8mvTaYhZSe33JoiQ/z5WZAEnsi0OXnxPELKzG1RRknRoy2JiWhyv3//PiaTifPEPD8/dwrHZDIJzok5BheKV6qcl8anuNxoQzyqqsKTJ09wfn6O3/3d38VsNsPz58/x6NEjAO0ZHpeXlz1wldqUlDI6VxZoz4rNBatLiJdjvV67rU9ShjCg33d5HfKtfrUPL26SYguP2NzI3+eSs7CIrxau1WWoL9M/P3O5aRq8ePECDx48wMuXL7Fer915MavVyp0VEhpb6SMQY4wKnofk1uZvmS5nfLq8XOPyco2qMjg+nihgrNl4uHZgKJ0b2+bTXa0FKAtjunvuIWsMjc12k08XH+jA2k7e7p7zhYeGWXAPwd68wgAtAsV6OoECyFI8T6/kfKS+KfLhfDxAlsnh0rH0PdnRpe2FiaoYTBoP23/GgUwP4CQA0rZtwbcV5nOlMaYHWklA1NuaGP72wB5fBox6YObm4vKyrD43fDywVfHAJS9W6RHr5AF6YLEHTBtWLl5nRtQr1Y8JlJPiib6ledlSX+TPXL/ZnEE7SJfUklj0wUf6af12CIKwEtzkcZis0XuW1oGvsXxoXLRKHIirVa68bLJ87J/nkwPKumdAnxfL2+PBwoK8MmgISB9abw2NNxbdFh0nh0LryVBYjI+ci7R6D9mDNP0kZGSUeUo9I5a/XDO58WqzXpnNZpjNZlitVu7sNfmhLKB7C+273XPsEqm+P8SuEbPpxWwgIdLaJCSH5B/qqyHbkowrzx4MeUTLsFwbBc8/RDltEKvboRTKN7eMKZ77HndvO+3ChiZ5v0p1PYa9Nqe8JTa8XJ65+Q3lFZuXc/nysayua3VMlCCfxld+fF4yZ3C+fAyO2RFyeWry5tRLat5M4RQUps1/uaTNX9QW3MYEwIGzY3kBy50FpcMHp9z2HnPcCZ4Zm0spZUOjmPdrDDnPoVDnCIXtcqLYlkrKkYqTm0fOi79r0tpQkzM18Ml0uYqkXHzcNirts7I+NeU+FFcSfw9zDM5jUajfl05uuTLyvrCrPqAtlmML29Cz0v4ea/8cWbeh3PbKHZs1uW7SKEQKhbXWA2MvLy9hjMFv/MZv4OHDh5hOp3j06BE++ugjV07a0vf6+lr1IpYLPq2cQ+azbepKMxLQF/bf+973UFUV5vM5rq+vcXBwAGOMA3BjPBeLhbvf11dq2jbI6/U6OR9Jg1xobrpp0gwGMV0sNL9qcajsoS80eR1J3pwv79c8roxPRkFjDF6+fIkf/ehHuLq6wvX1NZbLpWrklLJrH3Rp95KH3JqbZApRqu1PTpZYLs/xS790jAcPZqgqoK617YpbD1kCZNszZSsY095TNsZgk6YL7/6pbv1nlC527crSlvvxYo1HiwafEcDKASrAAVKa56kJpUGX1l2dHG18l47yMF0eHuDLeWv8TSeTCs668vrl8eJJtkPfczkcMjaun1HWBDDycMveI4M+IMuAUWsZ6Lnhxz1Ve3IxftKztY2y4Y3umXbvgaTsGcnHZaPyuTGAy8fLxHjy9vTic/lFv3D5UjyjbJtMcTnQaow7I9alr9Bud2zYltAVsDhb4E/+L3+Ch+89xC//o19GPS3brrjnaWn5TwHm2X6Y6yfWv+fAYS+M8aGw3j0fsyOgrBtDLZPdieTzjP6j+63xU/NRyi0BVQ1Y5by8OhHP3H8D2Ma22xdrJMu9kWXxbIHl6RLr67B9I7am3Rfl6NS3QcfJITmfx9YQMf0hxEPTAbX2kx9scv0xhzhPCa7FyqbpqnVdYzaboa5rrFYrXFxcBMtNPEuOShljTcYNtiE9W8o4tgzb2AtDazXe16hdeHvmGMWJ+LEj25JmDyvpn7G2uY1216H9IzRG3KQd4otCt3UuvM10G/QJSTky5Nh7rfWxIrLfyDiaY8gu6kGO7ZxkG2gYV47tK2VHvY3E64PmO3KK4DSZTPDgwQMvzBiDBw8e9LYpvn//Pn71V3+1Z9O6vr7ubVW9XC7x7NmzYN3Vda2C07uct7LA2KECxDp4KFzbPzoGxA412JfyCylSY3R2WU/SGBlLF5JBk1crm5ZvTp5aHkPrQuMzZACy1j9HI2T8jfGRL2BscZGKk3qWG98zSiX6uyZXa9TtDECx90nWvZQn5sGZUychI3xIlhhpcoYU45Q8fIG6D5ILnZLxJPYex+oz9f6HFrg5bZl6Tr+lV/A2k1vM2HBTRIoF0L0r1rbgYl3XeO+99/DOO+9gNpv15jrymOVAZIq2VQ62VULlXEWGnaZp8NOf/tTJN5lMcHh46BmgQvOHtbYHRu+qTfl7t16ve2OjHHv5ext7ZzXDWCjuvkh7H3P6T66OJetJu48tTEIGTGP6IC8fTy4vL/Ho0SP3heVqtfL4hdqHFmXUZ3mbpgxh/LdmtJJlkOXkfM7Pl7i4WOH+/RkOD2tMJgbWwp0N23rKAsY0sNagdbVzEngervRfVUDT9MNafhbtFsS0bbEB0G1hTM/aPLG5ynkK+GzR4P3LFSaHE5iJKLsRv00XZozxn6MD0Xo8jN+3DIvk6pbF6+Ut6p4Dqj2Q2Phy8Lx65dF4b0MyOet2xhh4oFzbXH6bsDC673myCiDTbS3M86e4DMzkfFw+8LcrjoKwogw8rVoPmzz4b5KZePXAYOPHIV4uDgGkwqvV42XQ93oVsrkxTHjO8nB33fBcXa/w83/xc1z86gW+8w++g2oy4FwsUV29ccn69e3Fsf171RuWh3GQVN5bP430YJV59jxfuVwyPvz8pLy9OUyEyTrS6sCLz5NyWcS/S6eE8WdFnq4WWJ4vMX8278kdTBJZ06Tm6Vj8lN1jX3pL6RpyjLxiOsKYpK2lubGV1ui5617NqB46GoPiA7qNraoqb5vAWF/hulxqDS9l3oZCIELux5olcWJ6n6bLSzuaxjMWRysbb0+tj4belSHllHqpJnNuW+fkq/HSwrZdn5aSZostSfsltbTvuhjDjrGL+ENk2nV/H9q/SyilT6TCYhQbh6y1HgAb2+I2lu+2dkktv9h9KEyzx8ZorHmQ5z9WWslD2t757mREk8kEx8fHvfTHx8e98Pv37+Pdd9/t7S74s5/9DBcXF94YcXFxgadPnwb7RwiMDdmhxqAiz9ibmGyyFloDeZTKMfYguUtFY4jxt1TZSg1oxpjeNgGps1LHrA/PiGeMCiSOkV/Im1vKoD3PodIBkAMgd+7c6cnABz1rLebzubeIS7UpH0xD7Wmt7dXLLr2M5XhQuqjX2kP72ngIyQUN/7L3pom/c3wxxmXj2w3zdPxKRHG4QkQL/TFllvLcFpJ96uLiwnm6kpfocrnEw4cPcXh46KWlvgH4Z+lOp1PXX2hr4BiVjvljE9XBnTt3AHSgdMojdhdyUL0NqZMUEKel4WMc36r4tvVVTSHmxMdvqr/YRzz0jofOZ81pd75tMPd81Yx+fGyx1vek5u8R3VN6+udjEpWNe7wSoCvHPmmoyi2b1Ae0NI8fX+LZszm+/e27uHu3/ZJzsgFuWmC22lyBpmlB2rpuUFVtPXQgawu4tlfAmPa/BWfbOEDnIdtuW2xcPHrWykt12MXpKhYtsFQxvcCIvrQBxCQA2j3u33vGXsVD0eVBIJgEaLU4huUvwTbT5S2E8crghfH8cqnHXgRwjIh7qFohg4W33a8xxgtz/cvA92TloCorFwdmjWFALEvDvXEpDpWBe91qoCwAJ4+XL/dApfrZlJV+c89Vs+nbXE5XLwSEMf4krwTSPR58a2TA6z8SnKX4sh+aitU38TRdXZvKwNQGqPR1qwcqS9KGFocv2l6cHvgoQVf+TAEQXRjX70L3lLZpr7bZxGFX/pyn6/Gw/Tg9QNhGeIiw2L0LaxQP2KaLz/97AGyzKa9FdxXlCJJsjx2SBqrwZ7dhDXJTlFsnY9qZqqpyHyS++eabuH//Pi4uLrBYLHBxcaF68uTkya9SP5Hx6cgPbpuRO9GkPDNLyjyEaK1D5amqCnfu3MF6vcbV1VUv/+l0Gjw77yapxPZTanhP5Sv1ZdKrQ2NCqt9pfS22s06pjKGwsUmzY4zN90vaL31Z959Pusl2leNxDoA6dDx5VfSwUjlDO6Vp84YWrtnvrLU4OTnB5eWlF3c+n+PDDz/s2Zop3m0fIzwwNtbxxu4suaBYrAJjMoWUoFSDxJQBLXwb5WGXnWOo8TlUHq1vSJApxFszZEreJQbNEMXk0ozO2ks+VDmUZczpZ7sgKSsBOfIZDZKpxQuvE24kJRqycOTtNHShGwJZUvxyx4BU/qUk66xk0R/qsyWLim3kj40LGnHgYxvieWp9WIt/k6TJtlqtPEMHgT51XXtgUGzrLf7FurZ98U2WOzbP0vmrZHyKfbXP040tW4xnaX5yfE/Nlfumseowd4yRhr/QOKHVV8hgFOIT6zcluh0ZkSaTiTtX9vLy0uufIY+EmAErx3gZImstLi5WuL5e4/p6jdmswnRaAWhQ11THxJfXGdChWH6YcQBT+9+ucwyahspE3q9d3BbM5XlQu7X5U9Go2O5dIHCKI18cZDMM6IIfr+ehysmI5yKti5PgzeUI8eBX165GiSPk6lGkGwbT8HRWAHR+8zo+Elh1QKYN6FYG/pbEnCnLuycT58vSeTykjJJfKr3Mj+Tl5ZBtYcWV2sSgl8b1rQ1YxvVHa61XN16XMQyA9bL3PWTlPfFrcWKxJhBFDnoJ+5H8uJIHb2sJ9gmAMBpuRR48H+uHpTxie3nItFDSav+yvFYZYy1bqwT49J5JflpZbIA3ReFjfsmwr5ULSrkS4SV6cWgu137n2F1i83FIhpumnPXEELBG1mHIcMvzPT4+xmuvvYaqqnB9fd0zGpb2hRI7hZSPzonlfEIG05w+ty1JOauqwvHxsVv/LJdL9aPUofa4HF0z9U5s28e3aVftndRsJNL2ErOf5JYnNJbkjA8hOUplGJuG2iNzbH83QWOvrW+ScuaoLzp9ntq7tBzaGKhRShcYW49JjY2ltuwx5IjJs8v8QnUfs69wms/nvQ//Dw4OcHFx4YGx1vZ32SO+k8lE9ca9KVLB2LEaJsRHKzwZxXZJOcY6MsSVKOH7eokkDVU8S0kCBHKrUfqdGmBy+lWoPLE2GaoAjQW67etMw21J25Md6LvkxxbqOYOlbI/YYDf0nd+lsrHt+5wLGI79/ubwkm0dOjshp25j4Avna23ruZYDNudSLlBzE0R1slwusyb6u3fv4s0338T5+TlOT0+xXq89hYJ7VkpD0W0qd4xy+9NNE5/rYh6t9A7FPEF3rc9olFuHOWOcNNxozyeTifuwgAOpxDOUD+dNdcj1itD7nWP4kaCoHNPW6zUePHiA119/HW+99RaOj4/xve99DycnJ85bnT6g0HRi2T+ofriOoo2hmi7UXwACJydzLJdtnUw350vWtUHTtNfJxKJpKlSVYR6yLYjanjVrUVVm87z9bYxF07RXAl/bK9zvVq52u2KAe8129538LY5gauNAs0207p+XHaLspruKiO6Zq0PTT8OfeXmw9J4cAmDzQFfD0kKUBf4zCg+CuQqpALUk3g14dOvLQsChe2ZEH7Xon6u6kYHH87xfN8+4t6oXboyXr+PHeDsgy4TvOTDJn3HvVOe9a1gehslM7w393pRXrQvW9g5kZf+eHKbzaAXQ84iFgXtujIGtGL9q037kIV6Z1luSt1ONoGdslJSoGhBJdcJBPgnchgDSHqhq+yCjer9JU+wRK8FZq/CNXHthTdgTln5r99Za5wnby6OxvbQ8L/KM5f8xYNWBz7wNBur+Q+w0OWvd26xTj0FD6lub96VeJHUSrm/IeX4ymbg1wVtvvYXvfOc7ODs7w8XFBV68eIHFYoGDgwO3fpAyhOTzxumALHVdYzqd4vXXX8dyucTZ2ZkzRtKOPSUgVMqQOpRI3rt377rdhO7evYtf//Vfx/379/Hmm2/ihz/8Ib7//e+7NPSR603SrtZjxDNko6F7qeeG1vEpvT5GOYBFKeV6Ye+CQnq4FoeoJO5todsq15e0G/oitHfuu5vSfULjdo79pgQn4jK9ChSSs2T8i/G4yXo4OjrCd7/7Xbx8+RKPHj26MTk4FW1TnKIUGDckfcqAHzMibkPbAjIhyjEy5siTSlMib8jASfe5dZx6wYYMXLHnqcFCUzZ3reyN3Y5aejmwyz4Ue2d4/nwbIMkzt2+F3vncfq3x4DLl9oXcvGS++5wUZP2Xvg85i9+c/jf2weQ59ecZtgrTvookwRmi+XyO+Xzu+t3BwQEODg7cGbLaV1xaH+WL77HkJSqd+0LjBX2kwseZfVLOfDRUP5HvsTRwvMr9Okf2kMFnTL1JGhpD/BxAUjiP0tZ39+/fx8HBgfPk1uZEnm4boy4fu0Nlur5uYMwad++2xsXptN2iuKoaABXaZMQH7trytOBN4D+ncrceru0ZsjKd2YR1XrNteroHlha43vzzskmwjrwFg56qXaC7UhoN0A0SB9iURK4M4lnUS5XHMV5AHrjK+eeUg+LIriXCvf5n2vCe/iaAUvfbdFsKa7I6MFQCtQqvpPzaveXR+7y4DG1S6+q7F5fKTHz5VdY3y5u3nQN9+RbNDMh2IC7P0/h5Uv92dcW2O7bWr7/1fI3TD09x+PAQx2/45x3FSG0zG3lu/TAOAPJ7DxiU4Cw91+4pvQB/Yzx7slpF7lD5rZ+/V05ethQvkZbLIAFZj6cVOrJV/qlsGflba9GsGqyv17Dr8FrNJYvoerH1be5aXFv/ybghfSdFOXN3DuXqAike29oWpDxa2hhfyaOua8xmM0/vp+12c9bhXA8LyUa6Bu3I8+DBAywWCxhjcH5+7n7zNZo85iGV/y5oOp1iMplgvV5jOp3i4OAA9+7dw1e/+lW8ePECT548wXw+x2KxcB+xcl1wXwCftDfl6sCaHSfHdqO9j7mU069L1nsl68ZU3pKn1rf3QSE5iGQdyd+v8trv80BD7WK5cXdFsXd/1/nsKu/S9Np4ooWVtFfOeJyrm2j5ht75mM6UMyeMQdvMDWONZTH9QcbT9Fk6MkrGlY4QV1dXeP78ec++fXFxgfl8HpRNHkd4U+P3qGDsUJIGPSLqDKHnuY0cy/emKXeRVbL4iVHuAm0skopKzmIo5G0UW3BoFNqvXMo1NsXaLtSPY191lvRTDgBZa70tTmnhR8/Ozs6C508SmJSiEsN9Lg1d6GvK85BFNecfM8yXEvdKHfIVb+5YkUPyK9vYOaTaAjenjXjdrdfrG1NyS2gsBYS2/eLtvF6v8dFHH2G9XuOdd97BZDLBu+++m6wX/tU398KPjadD3qFYWE4e0gByfX2dJcOuaOi7L5Vmfn4vPZfvhLYFs/be3BYqfY/3JUOq75HHeGiBxscczaBN7bRYLHB5eYmDgwO88cYbeOutt2CMwbNnzzyjHvGV+gfXU7gyHzLIhWTuxwGeP19gOm23KT46ass7nVawtnZesZOJxXptMJn4HrLtFRtvWLPxkKVz1wCAPGXhtivmXrJAC8p2ZZeGMeCTlcWfLhrYaQXMKh0AAwvbPDfG9OIROGaM8YHPDQjH08krB8O0PD1vV5i+nPIZbxeR3guTeSnlCQGwSQBYPHZ9xsCBOZ4Ouwl3Oopyz8+K9TxRrQ8gelgS5cfqiADHNurmt4XH2wGYyj2vU+4hS9ceoGpZvlRm5rlLZXN5sPaR98TTO/OV6sn4svB43j3j48Z2Fs/93njGGrQetMa29XT66BS/85/+Dr7+d76Ov/Gf/I302Gv5T6uGc7CUP/PGbMvagD+zfcOzB0xy4NTaIHDpeCgesb08tLBN2l7+LKz3TPIiGclDlZ9jS/eWebLSnJzyjCWv1wZOJuk1m5wflcfzZ3NcPbpCs/bXAZpuEWQr1j+hOPwq1zJ8XmuaJqpf5q6DYvFK9A7JU+NRqpukZCvRhzQDoWwPaf/guvzZ2Rk+/fRT9SPMVNm0djWmOweWt91k0pr5FosFJpMJvvOd78AYg8VigQ8++AA/+tGPMJ1OMZ1OvW37cmw1Q9ozVc/E8+joCAcHB64MJycnuHfvHu7fv4+//bf/Nv7G3/gbeP/99/H48WP84R/+IS4uLnB8fOwMtSU73I1BQ9aOsv1CazEyGpOtSPYrSUPWsNw2Ie1wqXEplh/1J76TTIhkufZlo9XqkK/dU3Kk1uG3bf33eaN99pV9yrGPMu2rb5bWTe7cIm2Z8r0N2dxTY6iUN7S25+94rk1pG4qNoaFyDOE3lt07RiFdlGi9XuPk5ERNJ2X7+OOP8cEHH6j5xPoQ6RicQruIjkVaXwmCsdpkWzLpDzWESpJeNTkK4rZ5llLuAiWWPudl1RS1EkoZCHN5xuTLMTgOoSHtnlL8Qjxi5QsNWjGKDd505XVXoujG5JXPpPyk4BOVKJ8l8mlG8SH5aJRqs5I8ZHvk8shpL814k6MMaBQbB1IGHK1cqfaQfSbEN7ffht7VXY17JTTmmMUXoUSfffYZjDF4/Pgxnj175i166Tp0HOKUo4Dxa2n6XdBYc3dIiS81WmjvqhzLct6NFIXG/pDOs00+Gr8Y8bja8QTybNXcfpebZyxtjFdsnKqqCuv1GldXV86zYjKZYDabucXcZDJRy54jL3+3cozZ/X4KrNcNLi5WaBqLw8MaTdMCrB1VqGug9Vi1ACoQa7pytrI6jAOUCHzt4lC4Xxbr0q2sxQJAZYCaoYc98DJCOR6yHEyT115S0+Xt6lOCcZqM2u+cMqjim/izGN/AayPBRR5Peoy6/rWJJ+97vM0GgOTesAyoDaUTAoKDvA6EBfwzbRV5Y/zc71CZDTyQufeM56Xx5OU3Ji6r6ZfP+pHdv+NFbc3ytY3F8nqJ1fUKPRA1Rkq03jhilXDKQz4T99b243jAq7znV3Q8XBwOxILlaeGXxfavHv+YjKF8NrJ65Rb3XJ6gZ6yQ1UIArxZqvCAJedEAzUo/lzxm7witHaNZF8z3JUZDTSca0+gY0rmG8Odzb64tZsyyEA/+0d75+TmePn3qvD+tte7DLimrlD/VL0L503qDtiyO6TVaX+PhMl4u5cZfrVYeUH16eornz5/jk08+cTyurq6wWCx6AHKujWpIGXi9pHjl2tNidav9S/6xdXvM5hKTNbbuKLH1yfVNbLvlm6BQ/ZDcJeuvnPH4SxpOY+ENJbaGofNnaVoZf6g9fej6fteUspXsSpbUvDU0X5m+xBaUOy+UUI7tSD6PheXadEIyjEUh23hovpJAalVVwQ+ByB6UmrND4/rQPqTxUsHYkIIRUtx2+RJp6HRICYrJosm+zSD7eaRYvebEy9naZgilOnwoXDsfM7agkbw0JSz1DmwzeIWU8tjiXPKS9c5d/OkLWeLPF2O0UCT+q9Uq+O4Bw8963QXFFhopOVN9YEyKfamb6ykbUixS6fkCI7ftYqBfiZIYAidyn7+KRG0tJ/q/+Iu/wEcffeRAoIuLC1dm6UkbM7iVtOOXtD3R+Mh3GqB2GWPxdpN9Pzdf8kqlvk11ctNndZVQXdeYTCbOM/b58+e4c+cO6rp258Xy+iBgVtNtcsBgbR6nuuPvsDQirlYWT55c4/CwRl0bHB3VMGaG9dpiOrVoGou6NpsxhrYW5h6yQFV1Z8fSObLGYHN2bOsxCxDIGz5D1i8PYC1Q1QamMg6A4iCXqwMw7+IIEik9UzmwyoEuCXpx0FXl2d30n5v+856Mxv89BGzN1oNlNOuHu617OWjIAclNmh4gC+bRauCBr1r+HJil/DzQU/Clsku5OADq8rbWy4uDnO5sXC7PBsDywFLWVt6WwhZ9QNWILZp5Pobxtn4c3sconncv4lC4y4OlczIYwFQGZmLc2bGubnpN75dDPPRv+di9qS8vngjrgbPitwRhe8Arv2fXQR6xFkF+wauUSfBJ3rPzZdVr06Vz8cW5sL3zYpXyJdtEjPc0ToS8ElNra+rHKaCA5yf7Pg8bYgSW8oyl05CesS2NrWMN0fOoHJPJBI8fP8ZHH33krcOn02nPQznETzNGUjr+L9f1L168wOHhIY6Ojnr2h5IjRVIGzG3IWouLiwtcX1/j6uoKQLvd4MnJCc7Pz128y8tLXF9fY7FYOHthCkTbla4tDbsxmxAfY3hc7X2UhmTN6J8qT+h5qA21NU2Mh/ahZg7F2uKmbK587Mr1Ek+tCbYFfr6kzz9pY0TIDnwbaBfyjM2Pr7Vz1us59vWUvWfXbRSyAYfCS3mPJX/pWFcSX7N9kg2H7KpEpE/RMVRDKKVXj0FF2xTvovGJNKAipITvckKL8dbKmStLqq72NUkPVUT5YBUCVHIUwpyBS1MKh9YPTy+B2ZQbekiJjsnLFzSAv4WhRhr4UkoxJZpvf0RgAid+z9OS1xCRBJVC+aeeh/rOGOliBvAU/1AeOW2SC8aMYeQokW1ovcoFIQ/T3l/aGivEk9ogVi/yeSyupNukoHLSxnxr2y2hHz9+jPV67QwLVVVhuVyq/ZWPJ0O913dJ285dOelj82foneJ1qfWt1JwlecnttjR5xgQmd6UTDO03NJeMbczaZT9Ote+LFy/c9fr6OjlWyfShPLSFNE/HF3Yhvajtcxbn52us10Bdr3BwUIOiWlsBsGin8GYDqpJnjdn8A9YCxnTXqgJaj1rjhfP/Vgb/N10t+AO6RBa6gWc8nAO3LDBNhv80argXZvz7HNli8Vxc+TiRJkkMzOT3GvApwdWgVyjnBZ9fD6BV8vOAXnQ8eFwPdAU6MJLi8XwlmGt8fg7g5OO1LJe4egAq5y3z4fXC8nFlYNsSS55eGi4PD6N2MdarFz5mJD2Frby1/XCrP/PGE4s+CEvh/LcAW11cFo/fq884L5KH/rnMFl5eLs/YP/x4PF8ZHryHnq+7wpcjxEuO2V47xppUqbdQPI24Th7SNUI6EgFzGljUk0/JT+pQWnhozgvpb5q+GwrTKGRPSIEiIZ4po60moxY/VQ8Uh+wD3GNW6h9cRyj9ANNa/ziF1WqFjz/+2O0EcnJy4mQg79xU/ctyazaMMXS65XLptk0muc7OzvDo0SPHf7FYuA/HaTeTUJ/YhnJ4lAKYpflKYDAFyqbsGVwP5c95uFwraX1e9tmqqrwP/+kD1qurK9cXQ7rzTa1peb51XaOua+9DU/6OxtLy90fW1a7Wc59n2lV/yJ1fbppCc+tYlOqbsfxz58mc/Ev4aeNWTrqQ7Sw2FqXySI2xMi8eNmafC437JXNQT48PxLsJSulYnOq6VrceDqWJ1ZFGsu+N1ZZbnRk79GXU0mlfApZW0hgUqthddch95pWibTpVzPgYC8vhWzrwakQLn5Q82oTDBynqp6GyaCBvaMIZu39rbbBYLFwYbftDNJvN3LOqqtx5skDfS09OTLltMmYZt+WTk17G2dWESfdDFfUh7wQZY1JyUViOTLQFhPQ6l30nxSsnv20Vw32SXJARGWOwXC7xs5/9zIXxbTRkWmNM7wB7zWCTorGVP7lQvwnatkypd4jXMz+Dij5qobE0ZVjgffu29VNJsfmP5pLpdHoTojkaYx4wpv2I5JNPPsFnn33mGf3kGbA5eeca1rU+oRnA6bpeG7x4scZ8blFVFuv1xKVpGvJONrC2Yh6yQF1Xnmds+4wWsm0+LSjL/7l3LMnSvzYVYOrN+BQCHAnwAruiBcR6oKkSl+K5MZSBYio/BoZJwDWLFFmj8ei2YJEYBa617mNEvzJtPBX05CCtgXpOrI8l+h61vfLZLj8XnwOc6N4PJweLT2C0fMa3XVbBSM6DhfW2J8Zm7LZQtw/ugbCbtF4dGAFEG/TrmMJJNupnMg38OJ7HMpWBzpIluUOoXWx4k+n4T2v78bTnVvxmAKT0jLU2cm/Z2GXR4+3CZR4snKdrL9aXA2FPVu235K09D/Gz1vqesY2Sls6PbRLtJNpMBXgVovdJnkHPdULN+47rMppepK3NpU4pP4jX9NcSHV0rV4zkWju1NhpDl9pGj81dg2mgFukZvIwSkOUyaTpkqk0pnOwRdV1jsVjgJz/5iYtPO4VYa3vn1moU+yh7bOIfgwOt/eL6+hrPnz/vxZ3NZphMJt4HgyndPlePzG1jTrw9ZTwOJoTk0Gw5co2d2w6d3tfZr2I7BYZsbqF7eZ1MJm6XGWMMjo6OUNc15vN5Vh/bN8m6nEwmmE6n3vnOALztsGV6Ijluf0nD6bbU4di2ky9peyrpG54+uiHplEQ8+fg6ZFfFUPi++3LItsBpiD2/hG7qvanrGsfHx71wiWkAvn4kKVQfu2rLYjA2NUnHFgGxsBBpcWMNXFKBoc6SUuJy5NCeh2TI8abJBUdyeciFGD0fSiWKYSrNkM7O+U6nU7f1j1SUcgYdWR9cWUsZ1umrDHq2Xq+9l11ucxnyjJX1NObALxf2mtxXV1feZKTtqx6qB9m3QuWi50O8yUrGldJ+Ld+1nPc4xW9oWkkp40iMf9M0DjhN5aEtFHOMKTKeXOhI4HYoacYo+WwfVGp8onfu4ODAGUC08YYvoGO8cupRM96E4mjl0tKVfDwVMxLyNDlzU8xIl9vu2ljOw+k9kdu6L5dLFTTX+Oe2TcjwsU9KjaXr9RpVVeHNN9/Eer3G6ekpjOl7xA+hUBvmGEi3HZeNMc7gEhuTQoa1GF9Af0fonhaDzsgfeN8o39Wqxmp1hKurNVarBY6PJzg4aM+SnUxagJXA2KqCu6+q0HbF3CDog7DtvzT8svfORUIfjCokz6vUwAGwGuiqpkEkf+PHJx5emyhpQ1sO55DaB7kcwYSbq+iCvbHOdHHcGLMJC3paUppNHbh3axPfXalPhPjAzyPkgcsB11Bar31Z2p7M4t4DkfljYzxvVi8/UWeUtyvrxlvWi7/5N4aBwJu0Li8ex3RbEnNZvLqFbbf2BlpQr7SPiWJ745Wli/XjWT/MpeHh7Lc3F1sRn8J4XAuftw3z7gGfAXmkLBq46sZM8TsJ0m6AVJe2EVdrvTjW9gFYPmZH5z/lUXPdYPlsifV5tybU5gi+Ruu1tcwmojdJcCB0jfGWcUO6n+SXu2YNlTG2Ho6t9UI2I2t1z9ISHWMo5dixZD1ba93ZrhR3uVy6rXg1XrL8xhhPjwX6W15r/Ti1ruJn245hP9JIey9o/aR9BFxqR0j11Vw7UYhXbA2QWr/ybX9j/TkmU+w5T09rmhS/UBzJiwB+osPDQ8xmMxUASdG+1kXynaC+lbP9Mq9Tei9Ca8ycdc0Xkcasj13Ucc68dpNUKtNtLIOkXP0hRTlzrxY3NPaW7mbJ+2PJXBnrc1IHMqb/MZ3kkRM+Nu1St5Lpm6bBYrEIxqedP4by33WdFYGxMaMpUc6kLu9zJjoeN0fJKaGxKz134i7lGTOYS/4lssRoiIFzGyqRP0T8/DfOZ7lcbiVXTn3XdY2joyMXPp/Pe4dJ87P35JeCckHBF+ZUjlIKLQ640l9VlXd2TeicvBD/oe2eWzYue8mkVvrejKGkxHjJsXNIfiVp5UIgZOCQsvHFdq48oWfcyEB9Sm5XFJO7hHLf032RZswwxrizoUKGEPne82eSZ868XCJn6FnqPYoZcPhVbpUXKn+urDlxY4YEyYNkog9nSGbAN1xohq/cOorF27cSGCJ6V8ko8fDhQywWC7e13S6McNu+u7kyURtKBT1k6A3NyyEZQ8ZRnoeWv8aj/aALWK8P0DRXWCyWoKnZGKDdrhio6zafdrviBk1jNufKtiCttRQf4NsU+/99YJbyaX8ADcnLi5XRRCoYuQHBPGAul4eJx3dxc2XT4pkwn14/keldsoL3l6JaGawDpBJwdP3SwNt6OAii8ny1PMVZsaF4rcisX1h4vz0QlT33wEo605Xl1fNcJbaRcjpZeD6m5dt717h8ULxWDUsbAKi9uqI+uek31jLAl+oPcOG51ANZuwdhABZd+V25RXxr+78lKOo9s1YFY724CSCWyyVl4vlImTz5AC9eCIiV4fTXy0tcHQ8JwIozYtU6F/VNdWKtRTNvwdhm2feCpPvYnNHjn0GheaqEX2pNE5vvQrLwsKFGu5gtKMRrbP14G5L6oGYM5mtx8u7gwJamd3Pi9gZ+T2m07RtDOqi1fUB7V/ppyL4ItPaJuq7dx3SkR5XKEtPPc9ZTqfy2qRte57Jd+JpExtUoVhZt7VG6/qI1Av8nHoeHhzg4OAjuTBeS+abWPaF3cUg6TrsaQ24j3VTbcYqNB9ranT+L0S4Bpn1R6by5Kxpi68ix38o4od1EcvPU8h6ig431Xmj6YGhsz81zbBlTNHY+1oYxnm3e6Vwe25IHxqYE0oQJfWm4jxdd27YjlG/I5Ty17UQsfNtyaobom6ahyuW+J1/enmTUTMnDtx/UFhTawnhbOjg48IBhuXDlRF+9ciJQQIZJ2bUr4J8ZK9MN/VpRUgqAGIs3tZ+cWG/bO5RDpQvHnLg5iwAtX60OtT4am6y1xWtOu2hf2efQLoCgGIXaS5sDYu1AfGJfcPH8UuVLLWjHJCmTMf0vuLV+xA2M0minGRmIUnN6icyp/kIGLj4P0IczZPSZz+dRpVfev6pjEyeqi7qu8dprr+Hq6sqrH/Iq3ff8P1a9hsBX/lzmmbtoiY3xsl9L/UOWbz6f49NPPwWwhrUrnJxMMZtN8PbbB85Ltq4NplOLujZomnbb4vW6BWQ7z9gWtG3bjwOv/MrDu7JeVcBHkwpzY3yQMlBnvS2JvUjwwTWwduDPjPLP0mi/XboYcfll3IyurK0FgvyHEAMSHT/rA69qvAgfD7iFzkN6yQKsr1I8w3ghzMuJoM2RCiCc2k6595zqRALGIu8eCGv8qzHKlsKUDiId+3dxjO3x8upMyKKCwiHyqlip783vHvjKAVrr33OgMOgdK+Laho19VvAI8ZNxWJh71vTzdVeRp/tv/DAOkGpX27Ath7lnbODq/hvxu2G/I8Cr33y+7KvlCpeXl8GxQc4J/Mplo/7F7yksdhSJnM+kfsRBnpCxT85TkoeUWStbCcmxSOaf0hFvux6WAwRMJhNMJhNcXl6q641QOmv97YdJbyupE6mHh3RdWZZtKbauoh3HQv1dS1fSB0rW5715siBNjoxUv/wMU+1d1HjLZ/zjeyLOVyNuNwuVJaeuaPtfOU7F+k6sLGMSrWFy7J/7kulVp1Ib1z5luGm5bgPt0m47BuW2kYyXu9PoTVKpXWss++9tpdswVtw0JcHY1CSspUsZLEMdMTeMP+MKYuw8C02msV+GUoop0KWGvhCvGB8tTQ7PUJqctKWKDDfky3AKyxl8pYwxfiXE+zQZ7nk/5Fu2WNt+ucH7LK8PAmK3WdiE+jgpvzw/fs8X9kPyoTBtoTYmhRb9Ofntc1LS+rlWN7I8Ml0OH/5MGknGKkNOeE6cELhR0teHvqfbgie5JNst9U6E2p8bmmL9fKx+nTPuSKNYLt/U2BAalyWPnHxiMmsGpdT7RCBtqp6Hjn23VRGlNqYtmw8ODryPhVJttm3eu6acuSMVZ9sFkGbk1tKu12unO7R6hMFkYnH//sQBrU3TAqitp2yDqjKo6+5jCWvNxmsW4J6x/bNj/X+gBWgXAJ4ZAwsg9QlXCogs8XBVEkdB3igAvAuSfFP50PNUF5HgooEKyEpgU/WClbx6WenesiHvWpWHMfCAQZ5nJP8cT12vTMbfXtmTVW45zPlxvjw+r0cJBhufJ8UDoMsMv84duM1ka1YNlpdL1NMa1TR+LtUmo36QHCOsEk5tIZ+Je2v7cTyAVN6H8mL8e7+5uJalCQCxPI6MR/Xu8bUsLufBReRrHCVP/ozz6vErVLec7GuLZt1gtVx5OyTl6PMeP9sHYIfoHqm1Euef0kM1fbDU4MjTabJoz1K0jW5caqsYQjH9QeYfOyJD6u4h/Za3U8oex/lxW8uu1/ghkmXS6mgbftrzXCA3VJc566VUHqE1S2gtnVrHldq6cvqLbAvNziR3hZOy3hQ4FOtDOWuCUNx9rulu6xpyV2Po0HYZAmqV9MPc8SIn322phN9t7T+5Mm1j24uNl6F5YQhtW78x3SuWx77G0W1oV33vtvZrjYrPjOXEDZUpSu3nXKIgyIPVc+TcNu42jRoqW0gJHjJh3CSVGOVjCmUO/5x+om3/G+KrKbqhvOU9L89sNsN3vvMdd+4qxTs/P8f5+XlSFs6TrgTsyvyHKAuaoffq6sq9k7QVEvGm8xG3JZlnauEXUpxSCyctzW2j3L6+SyNADr/UYi60KA6NZcSHQJ2hZ8aG+sMYNAY/OU69CkqQRqVznTQOUlguz5Chj6ctkSVmFEwZICk+ALf9GT9neZvzjrX3KsXrpsYza63zFv7a176Go6MjrFarpEf3baJ9v391XffOpZft150B29dPtDT8vZLG+/W6wePHV5jNKnz1q4c4PKyxXteo6wrTaYW6Nqhr6zxj2ytt2cQ9ZGmc1q7d79WkgqkAbM6c3RbcVHU5Bmi5+hAgGI/nfhsWxqMJHr10UQEz4hpdrqCsYM9luIdt2S6t6MYa0Kh6iG6uwbmIwELr85KyyDyzwN6NTF5ZWLmd9y2l5WVVyqwBnV4ZFUDX8ad0tA0yFdF0WwjzOjLG+N6uBL6KbYjlv9yq2G1TvOFHZX/2F8/wB//kD/Dub76Lb/wPv4Fs0vqH9Z95HrFgY6AVz9i9F0fMkz3vVMHT4yt/S748LOYRS1fNG9fC82CleDyOtdY7C5buPT1V84rlcUP/oj5dPUGUldeZBezcwn5iAbYU5HoTp5hBjevZR0dHAIDr62s3X+esr3P0DwL/ZJ4hXtqaVKbT4sR0tVC6ITrRbVsX0tzH9eXeGGRbr1Y66oj0i7quvb4T6kdE/HnoXDmtT0idg/oYeRFKfeQ21HFMhtA8uK2eOKaeGbLvWGu9Y6To/WyaBtfX11G7EO9jWj+JtZ98v2NrKeqvTdNgPp9jOp1iMpng7OzMyTibzQDArSVSa8199i1rrffRo7Qza9tCcxlTtEubwG149/ZFr6pd5UtKU2rup7BYH+Dr8BLiOg9QZuvZt+3vNs25t5lepfrZCowFAgaVQLyYUh/yatXC6EwCTqnFQiwOj5tSDELG5pjMMb6lRu9teZRQalHI42j1rClroTzkIjImQ4xfzjMt/1w+PL4crI+Pj3tn1S4Wi14dpT4kKFnAlgInnKRyuVqtPBlzwVDev1OL6THapbTMYy+WtN+h/HIBJrkoT5HMI5YutPjiv3Nk1tqWG11ShqBt+m1sLBqLSCa5eKX8Y/UYkjFEoXkkt78MzbeUxqh3aWjKySOWV84cnMMrZZihMVDuIMDl0AwedD9UKU8p9tuM+SVE/Z8+CprP5x4Yu+9FcU5+28gU61ehMVbTg2ILpZBuJI9dkDKFDKaLRYP12uLqag1r2/NiJxPAGMA64MlsflewFrC2KfCQpW2LCRwRZRqhG3KgVHq1brXV7w1RkVew/wAdBhvwQo2AjzKP4vQaCDqEQnxK+RPQGUpDZaF3zkAFgHtlDjWPCRhSSI5gsghfkp89W14uMT+bY/5yrjO08tYGnzkAVDxzZXAX2/1mz7Tf1to+XyWtBHg5EOvJZ20/TACx6r+Sj7VWlUtNK2Vi/14ZRT2EgGU1rqh3XkavvGuL1eUK6/k6e82pzUekj/B7mU6StmbhW9VK3T1Xt9hWt0nFKdGvQ7pWCNjKlWUXFFtHyLJba93H5fxDr5AeIetBKyvXY0L9J7R243a8femhpZTqJ4Cuh+Xq6yX9XvIsWQdJeyN9zEwkdcactaNWbt6WJe9YaP1Du+cQv8VikfSoluvumyR650LbN2/T52/L+5IzVsbSDCnHrts1x0YyxGZT0i9z4sTe05R8JXU49jy3i747pL7kuKjxCdlNUvlouNJkMvHs4rQ9fonMksZ8F7TxvUSWLwK9CnWQdWbsTU2Oxhh3xgCnw8NDTKdTL2y5XOLly5dFHrOUx1Datl5KjLVjKL4phW3MRZgcILbZx/2mXiRtgOeDNf9yjgZt2S8PDg7cF8wAcHl5ifm8NcJUVeXFz+kPqbqIPZcfPPB2Wa/XHnBMX+Dysub21aEgRGyhPLQP3MTYlduOYy1mh/LhikyukqqF03uglZmH0SJNAv0aEJGqw5TiXTKuxvjxRar8CIi+oM1ZxIbCUnLmLDB2SVS23HlV60sUrslL9cnPQgrx0GTbRiZ6pslIRgUyhPEPVTS+oY/DtHbmz0rGin0TvdOffvqp225/tVq5smrenfsw0O2zLqThMjUmhYyf/JpKq/WdWL2u1xYff3yN2azCW28dYDarcHQ0wWRiMJ1WmEyqDUhrUVVAXUvP2M47ls6VbfsmvN8rYxxgVUQWPlAlwS1xbzb5eM80QEym2wFQrJEHbggP2JhHbBawLABZAL2tc7W40TAun42DuME8JPAJBkKm0mOTljxHY0lE+T0PWvZc3YaY5FT6hOfVav2rVieuDxp4ebu53nRxuIzGME9bdFspO3mrVibTbORqIpVhodev5T9Ffdp+uBt3lPugd6xVeFA+oWfiXuPp0o7lGUu/FU9YGVd6uKres/x/raShMVq2i9aMVF5rsVqu8OLFC6ABptNpb0wPzRdaHHoH1+sW2OWeklK30KiqKsxmM7f+o/M3ab4n42OpLaWU9q3X3JQdS6OYEVn2hfV67XStmC6iAVrcZpHTnhRHc46gY5hiurS1dpQdtUqJyl6im4xtuNbe5TGI6rWua89eVNe11y9KwGQOmA55L3Jsxcvl0o0tVVU5T1gg7GWak8euKWTPuC0G/X2ssbah2y7fl/T5opTdMZcmk0nPmaqua7z99ttu3L24uMDTp097/C8vL72xOHZkJlHIBkjvT0g/5LRrHS1FX77r49HWnrEhhWYsMEXjxc8eMKbd+mK5XOLi4qLXObUtjbUvIIhSCloMwJBxc8pc8uVLSDlIAQk58twWwDNEpUo2NxRrabU+USqTNLCvVissl0t3T2G8nWjxS/f8q5tUHikqXQzIxTs/DzD0JWMubx5v6ISh5RVbxIbijkUl9Vr6PmlgTSpf3nZ8Ai/NT+YVGldC/St3zATy+0LJOKhRDDiLyZfiKcdT3h+1LcVDAI3MO2aUy5Erl3L4h+YMrT9ID4sckn19yDw5dN4s0Uv4RwOhuTSWr0ybqu+YnJJ2qQRLEHC1WnkGW4qjyXCbFPMc8FSTV6ajfk4fJIXeY/6fsxAba35q26j1Xr28XGG1asHW6ZS2mWyBV6D1nPU9Y9vn1tJv+rikvachzZgNOCLArk6IuIwqEMl4DfYmvS2UEK9I/higGknjgYoFPPgWvtlALQNZHY8WJQ1uT5zjyVsE8CLxHiXqwIG8m37onccbkTEoTygdk1ECzMkxQHncA2A38f7/7P1ZkyQ5chiOe+RdVx/TPT2zszN7av/kiiuZ7E/JTJSZ9KhHfg19Mr3qQS96kNFkpoOiRPHQLpe2y9VyOWdPT093V9eRZ0Tg95DpSIeHO+CIiKyq7hkvK4sMHA4H4AD8CAA83ON2zXfN0Ro4G10TR5CXhAV0Udocw494mSNW/If972BnLMnDd+bSXbM8rfQf4HLNMgK5htXLEuZqB+VVCeW8tI9HJjdiGP/NZUcqi6bkeC5vxvQPK7RZ0yw2iZh9w5LOAnfRqIj0xGwVsTAtLiY78z7kOiYNpzyk8c9ttCmXXzkdKTlcSiuNSSlvCtrwKOUDdGxq9PQpV3KI6bE8Df7Gj1nxSGWJl/E/ZUe4SejazxI+zlddbOI55RwCJNuTRp+Fb9qWT+FQvNLVFnXbYLEnWngmZ73NsRPH1g6pjD7a3DJPot4/Go28nR6fsfbKsU/G+NiybufaQvseIxZ8tyFb3UV5LgUHccZKxwgfCgaDAbz77ruqM5Z+sYBQFEWw6w8hNQlZ0t4k3CXhxQrW46Xb4EVcaDhG4JMnlqsZlC3A6a7rGi4vL/2uV3r3BM2zXq99GvzSURorXNiOKdRtgE/kzjlYLpdBfbRFvCuPdc1/F8aeVodch1QfwjPm4TtOEaz4UfjQ0qYUfqkcWj9UziSBq08FQhN0NMXcqizw9qFKMs+La2BZluZ1pc246GMsScKaZf3Gnf2oZMfqGitfMt6kDJF9QOpONOp4xPSYDg0ilntFpPw8PnctP6QjlhvZUH7iuzPedIjNlTimURnj99BIeansSeWLtoA4KJ/GYLOp4fnzFYzHBZydjeDoaAQnJyOYTIZ+l+x2h+yA3CFL//f9z++RHQy2d8buGwqJpATD3gEWYZGoY7JQfithN+GkRSchAOv3WNFBso7ykrILNLXTNOU8DJyPjuWTnLO0b2lwBz4X73rdbjEOcQrOZn/freAAbuyIdSFuxB84gQsnl1Ps6CGO20aXEodsUezviPXOwgKCMmA3lKI7Yyl4f6BrhAGwtqJpiYMw6YAVwsR3J+DmedlvH0by8rjGk++MrV3olK2bvxv3yToX3geL/3w3LE0n7ZCV2hfbjXQEbUvnHNSbGub/MId6VcN4NG62N8knOVARD64D1HlB7+6kOkDMXhHbJUmdIimZONfAG8NlhZSu3gX/XZFpJL3cOef1iVTfaPI0xsXyIUjyRjB2duHD4VDk2ZsEy9pjNVoDhLZLSV9NlXMoPqLXhEynU9/20uk0mp4BELZXzJ5D68L1II5PA3rUb1GEH/sjnV3tWG8K9D0XWssB2OttyDPWfH3AIeaEu2D/awup9esu1K0tHVY7mrU8Om/H7JJtQfIJ0PmUHgnfpk7WsEP3+SHXpbsKfdb3ptqvlTOWG+s4xASBGPB8uAOW5zs+PvZHv2Ia3IGYY9SXBmMfkBJu+i4vh45YuV3oy2nrtgqVpMTm5uXvbSZIi3BP0zjnYLPZ+B1GVHHebDaeBvzqkdJhcRDxdokJ2zSMC8fapGNxFGgKoBSnOcM0yB0nXcZVzKHYx4SszZdthOQYn2r8rTm7LHxmjdfGGn3PaUupnjF+s0BqfKfCaftSIwUdX/Sokr4Xc8vcrhlJtPlA+0ejhEYHnbPqulY/LomBlSe6GOR4X9D6Ie4Y0L5Go81oNALnnP/AhstGhxDiDikYanMzH4M3aUywgmWdSuWXjJ18LGPa1DqnjTtpbuZzR1tl2DmAqgJYLmuo6xLK0sHRUQ2z2RDqertD1jncIbvlf+qULQpH4nDdc1DXBdSVgSbHfnPnaVHsHVwM7tzu1x39VrruHP0AgSPytnCYdrsq6axhKTqDe12dnidKq5S3oK8G5zU6a8G25ngQkgV50UHInKQ8zOdx7Dd1kNK87D1wxPI0+NuFv4OwhCOW/wfOV2im5b+luGBep+F1M17ELdRfc4r7d4KjLmuoyiq5hrbVOelVORRvTI6lul8sXwonl6FoOK5pVh3FYiPRZKocnf2uGiaRLukIV/7MkcVi9Y7pBlI8ptH6+yYhx76l8S3GcZ0H02gycN86J00j6dI0jJ7Qwk/vsYDVFpdj90nZmqS8kp7YVYZvA3d1PsgFbDvaroPBAGazmddXq6qC1Wplmg+t/JpKq60DqTXFSoMFtPmyK37rvKfZ4SjcxPyZGu996Pht2yNmL9HmxRjEPkqJ0YKAH5LEZC+an44nnJdT/X7Ta+ZN2HA4vOnz603Rn+2Mlc7CbiMEWNPzOziLooD79+/DvXv3snBZy9PAIny2NRK/6WCZKPuqvzYx5gqVbUHbfZiC5XIJi8Ui2C1bVRUsl0tRGeUG4JQSpikg0k4++t62bawLZxv8N9WXqfJi4/vQi6hlLon1AQKOF+6A4n3Pv7qmoO2STNGYEmLaQi5OSZmmoDlF6G90MlLlg7cjx40KUJtjutsIxjnKkwRIr+R8kr7AlgwYMQXPYoykCmWXuSMwrgpl0TpiHBo5LOXi/VnT6RSqqoLFYuHpTikWOfXoGzSDJ1ccaPul+u0uQF/GQPw4in8VSz8KpG3Spi2sBk8ebzUElqWD6+sSrq8LANjAgwdjODsbwWxWw2g0gKoawmBQwHhc7HbIDmAwAOKQ3d8dS59lpcxjDgB3DnqHpKErfNoCwuctAKU9qIcGGU7aPkBdu5gDUHMm0nCrczRKj+bcDBPt43KcnnqhOi27HcJFUXhe5HnVOQKdqi5MG+yGZeXRp8i/O3xFER5LXLjC3ykbOD8pxJol8AG6RlqPz8lhqd2xJicsvlO8Ci4fTn5LTtWYg9anq8Mw6bd/53fHYv7a7Z8O/O5X+rvxT+bfhiN6/yOsH+zLLKsS6qqO3iPG5UoEuubQ+zxjp3pQ2VuTsaRTHKxA1yFphx7VNaR6WQz3sXIRt+bkeRNAkkeprkHDJR2+jQ6k6Sqx9s5pc4vD4RCg6W9t8vN3DZfVBtpGJk3ZFflYs9a3jf0iJpumdFSuL9N3Sd/gv631iuk0twlWGvqmlc4Zw+EQ3n33XX8S5HK5hFevXkFZlsEVaocAyh9t9cebtLndFFjsZjcBfMyl5p02uNv2dQp3qo0km1Qu0NPeuByTkmGqqmrYDdrCbc9jtwl3YR63QldaA2esxmBWgcQCFiEOAIKj4TgMh8PGRct1XcNkMmns9lsul1mDUROyui72XSbY3H45FB2xcmN42wiLOXljCoLmKMmhS8OFky3+Pj8/D46/pry7WCxguVwmHTNcEaDvPK/FyZMSmCUDvBaXA30IXxQs9+bwclPQpU5t8gPIwpZkvKDhtDxNOab0SHRJ8xj9jUed8S/m8d9ybK1UL25Y4HRI9GvzAI1PCUOxvFqclp+mo4owpuNtMxqNGoqnJEBqBjOpbI1WKR3+1pRmTj83+HE8lA+6zgk5vM/DJHo5Hg4Sn3Gj13g89kIzFcBjBgPEE7vzm44dPo9rxjjaRrSefQmksTU2poxZ5aI+6OEQmzP6Aizj9PQUAMB/PY73dOG8eJcUg/h8u3WiAgAsFhXUtYPr6wqGwwLu3x/vnLKDnVPWseOK98cUDwYFwKiA5b0plEdDgKJoOKcAQHdgHtiukHKiYpgYdwOK3p3cLZsJfThvu+K3Op2lfAAgpy32aTRcwV24iAuPGqZpCtfMtwvzDljiNPbfLNTyuBHp4UHc8YfBdF7ANK75Lu6idS76HuSjaZyS1+2fNE3jCGL6rOVw9Td3ppJ4Kdz/1008NF5tU9ofEts4AFc5uH56DeV1CVDJMqCke/EjYiU5RKNHkpmkciQ8VvmJHnPMZZWY/kHrIrUBlS/bzMupNtLapK2e2ifgms2vzsI6cacWh5jcrPGPxiscJ6ap6xpmsxmcnJzAeDyG0WgEL168gNVq1eokHA1SOoUkk6b4LseGJIVTO2Ss/BgN1vJ5f0njk9IijSmNNik+RY+Eg9JI256PW4nHYnp/W4jpNLcJVhr6pDU23rX0UnzsaGoLDbTcPnXXrrzyJkCsvSxygAW/JV9fOn4u9FFHDZcEiL+qqoadeTAYwNOnT/3aXJZlcJ0fxcHXwZuwjUhpNBmBht/UNaJd4S7M41boSqtpZ2zXCTmFW1o48C5NyeE0Go1gOp0GYWVZeqMqpSFGe0qwtYS3hZzJ8KbAUl6KF6zOAmt5qbQWRdVCU0yBpXj4hEbTXVxcBHF0wsNdsRK0oU9S7CXlhKeJKZ9aXFchKEe4kKAPBSeGT5snrPxqaVOtPS2GEg14n+f2E6ald3/S/LGjzKw0SmktTpWYsSTVX7kGllSduMEoNleg8k7plAxxtBxL39E2S81VWKZEt8Wow41sPE2XNUCjkdZNmsvagmQ84XTiVQeYht+NGptPcQel1C+0DaVxrtVTM8QcSh7gxqRYm70pkNtmqEydnp5CXdfeGQsADQc9z9d2fYwpu23GnQarVQ2rFRp8CxiNCphOB+DcEIbDAurawXCIO2SLYJfsYFBAPRjC69MxuNkQRuiL5dVFx4REotY0h2YtjZ4D5HsbnK6doQC9r2+jzESXNBy8RdG8g7dgv5X3YKcwhkl38hb7/8ApGgFxbnGRNG6PW3r3af0jTCulEXGSNI0dovS3C383nME8Xnk2nK9u7zQVnbBM7qG7XRvx9M5ZyanL25b1BS0X6Vk8W8D6Yh2csoBtm6v3WORuSW6IyY1Yv9j6w5+o19IrdygOSb7UfmvxnFYuE6Zo1crBNG10zkPmwX+0F3D5S2vbmPyggSZjp3DUdQ3j8RjOzs7g9PQUptMpXFxcwHw+79XhkgsxfqJ8oelgKZw8r4XHculOydsWO40mg8Zk01zdWEsfm4u08EPrNN90sOgkMTuHdsyqNudwWwOGFUXR+MDIQosGMb6x2n3azNM5ENPlU0dz59Ji6ee2NrvUutsXWPG3nSuscw29QpCWOZ/PA1zaOo0bWnJ4Lwcs86yGX6rXm2rbeVuh1Z2xVHDU4qXOb3v0oAVwkEiClEajxMhvinDwNgykNgqONV/XctsAdbbSSRvfuVIO0DySiCsQbUH6iCHH0H7T4yBGCxc4bpr3Yw4T/G01MsTCY2DpD3SmWuZmLjRPp1NwzgU8ulgsYL1eNxR3nGclHuujLilHhFXROASfSMYmrqBLTmxJmZeMSF2BK0ASSDRxwwz/MlaikdY1x9gh4ZLuyk4pTZLCqNFgaWNJaaT4aFvhjsn1eq0eYU3Ljo0ZWlYMLHzfB2hlxI4yvyuQO+6HwyEMBgNYLpcwHo/hj/7oj2C9XsN//s//GQAAptOpv9u97XxnAeSRomje5R4DyfAIIPMyAEBdA5yfb2A8LuD0dASjUQHj8XDnpB3snLLb/62CWWxdD4VQV4kN0CFRkCdmE5rqxp2YDvwuRRoW0Atbh8u3DtZMuIVpQTt+Obrbtdh+UeCcE9NJu3ABBCfcPoGcF8Nd+BvLR6ddCqTdryRSjPfj3jXfG+n9q2uGuWbaBi4nhDsX4nBhuOXpf9dhXMwpS+OCNDWjQTiquHE0sSN13NUjqK/QIQ72eY+OjmBUjvzVNJpTDUHS+TT9kMuf+EEZyiWSXIRpLeCca+zURHpQz5CchtLalXLMSGXzesYch1JYTCdLye687W5K38R6jEYjLytSmZHrbRZ8CJr8nspL5VrkLbqTN3YyzKGBy+n0if0v8WisDVMyeoqONukl3ZDH3wY/WkBzdPB+oP1jsU8cQjf+pgE6iE5PT2EymQDAdiPTYrGAxWIBq9XKp+XXsmhOw1Q/8jF5qB14bR2MUtpD8hgfu33rzl3w4Ya3GOCHyBJIdtlD2QYoXr7RCYEeCVxVlUq3BhIf4BiidEgyQgyHVIdY2LfwzYRWzliEmJNCWpxzJz2Og97xphlc6SDNLTPXkJuj2BwC2iwiuUJ5F0jRJy1SFoO0xfhuwZMCTSHUymkaPvfHUdJJnTtDaHl8kdGE3LaQyn8TiymCpEBrea1pc2mIxeeUEaM9lS6lfFiUZvydMrpgGroL1jkX7PBDoMJ6ClKKv5anrSAcE/xiY9JCU6pcrqzzPJJBSmufmFKRM39a0ms0SXWmzlj6z9u2qipVKdOE1ZQQG6tHqr2kMWAVkLmxU+MjLAeNU6h08p3lEt6uYyPXqJoqQ3vX6D2U4mpRrrW51Co78DTYL/R+pR/+8IewWCxgOBxCVVUwGm2N6aljivtoF6RF4iNNrk7RIc2Ty2UNmw3AaLTdJVtV299bnh5AXRdQ17tdsXUBMGLj2ym/WZrbcmgG5TpQnWK4O/GNcLp+q7OHUMB+56mapLkztTEednENpyz9iCCXtKLwTjs8mhhppeXXVQ3lqoTBaADFIFGYw4drhOFv7mSN7Y6NpRPTS+/Ohb/xFX+TPGIYf7pmWsmJG+BivyUcDactv3tW2CnL25PWVeoX/3tXnqscTMYTGM6G/iPdmIPQMm9rtg+6jqWMo5JOyx0gXMag7+iM5c5RSV7geCmuFGjprHoWrVssfcoGYV13cyCGi/Yj1dViebX+spSZUy/nnN8RjTygHeHbF1hwSv3G+ZnyZ0qfzpGxYzxDf6fGJadTK0eii47B3P7UgI+LtrroIXT0b8EORbE9ZRKdsZvNpnGNkpYvpgPje5v5sQ+bjEVfjPkirGkttFAcOfkPpUtbygbYn4hHaeE0bTabhlOTz6uWOuX6YWJhw+FQPNJ/PB77cjabjXoSZcymkbJZSbtnrdB1ntNkOQtI/J0rY30Lh4VOzlgKdGLWvizTJkHJmItfH1B49OgRPHnyBGazGazX6yBOG3htQDMY9w2WBeW24a4PTC4wIMQmWO1roD7bP9VuWJb09bFGT5fJmOdroyC3hb7xt6m3VfHILQcdMffu3YOiKPxX8AAA6/U6uF+AfkV8iDa34MS+l+7gLYqi8YVkVzr7qq+kIMf67VA8zZVeScnWxi2udSkDkFSmJUwzfvEyuCFOalN6FItk1EC86KQaDof+mgA6Biz9JdWDPjWI4UP6+JEygcGVlafRocVVVeWPsImtQdxYKd0BZjEA3ZZ8cNPrRZ9gMb5Rh/qDBw/g5OQEnjx5AldXV/6ed2p07JO2oij8nbT4TmmmLfsAAQAASURBVL/wbYsXQat7VQFcXlZQFABFUcJsNoSTkyGMRlsn7PbIYtg+AQAcgEQSdTqBA39PJjo5nYs7O63OUJ/OQegk4+8kzNPAnlJapL1wxd55FyMrFX9I4A4ga1oalsJhLeOGp4LGztNdP+C9rK3poU5Zdv+r5JhtjM9CSLf7HdwZ65xP99XPv4Lzvz+H7/3r78E7/793ouSJ49gp8Q4ajtlUeICD43X7dHRnKI/3v1k6DBfDhCffCeuffLcr/a3shBV3vZK0wXsVOnqD9uLtgnWBJu3zz+aweb2Bj977CEb3R8EVNdSBlVpHUVbUZAUKVKaRdEouX8R0S+3eWjyGD08Cobj41Q4ctyQLpepkhZizSFv/eXhZljCbzeDdd9+Fq6srePnyZaP9NehqI+EbCHJ39FCQ+pGH5wDKPKPRCNbrNbx8+RLm8zmMx2NYr9fqVWIAh9XDECzOD+5oSDmtOX9TsPJuzOAv8SuGpfBzfSwFOc4hrRxrWTRvF5osOL4FGVCfwDFZ1zU8e/bMrwnr9Rrm8zmUZSme1JcDXMe20BabKxBSG1K0sBjE1ohcPBpovgzMd9f05tlsBqenp0HYYDCA4+Nj31avXr2Cq6srH89PQkh9pNwH8LabTCZwdHTUoPv09NS3/+vXrwO6EWL2dgsMBgOYTCa31p/a8eFtwGJz+hZuDkyzseYEkgR6rWM1xtWEC4nZh8OhP06TOmPxji/pAuaUIS5FUwq4gdpaBi3Lkq4tSEKfdWGytIPGGzyNFt4GuGE9J0/bNJZ6tpnULA75mEJpwRlL06YPcuvZVSnLyW+lTVKWYm2szXV4PBh+lUXnH35sNS3H0u8pkHgyJSymyrI4z3IVM8scbFWUKc6YsnhTAkZsvtOU6b5BagssM7Ue8nZPhXNczu2Ps8MxQJ1LHGL8lTPHxeJy5xs0wPB8qXUL6y+tQ9o4t9Ao8TWuxSmHYJ/rrIbT2k53BZDelHyGBmcAgJOTE9hsNt7Zju1/CDkN1xF68ktbPDlQlrTuNYzHBVTV9mjiwcDBYFDAZAIwqJyoKGjOTc8PDg7rsOT46fuhy26Qohx93A7Z2wF3qB5erjASFTuamM/t0q5a73jdvXt+KPa4VxcrWLxcwPpqbZtXFGcgjW/sjnVBJhGflMaHuX246IgF8ttn2afzayXsHZYph2xQHxIn5Y3F0XC+VjfuhK2hWQep/himtCUAQLWsoLwqYfzBdkeS5tixQmxNp7xoWePwnefnODV6qTESYH81CtLQp+6Zs95KMjbNrzm/6PtgMICjo6PAtsTbNdUXGm2pdqHx3OB6CB091y6G7YAfWtIPLlNgtYHRcnJw5eoNMdxctpdw8nRS2RLvpfjECpq9lMZzGlN6gTRHxNLH6JLoiOnuHL9F9zw03HWdJgacd+fzuXdS4fGtgfxitEVp9haOK8Un0jjQ7A996FsxHH32cWz9s9QjNa6ltBbQcEjH/Q6HQ5jNZj788vJSnQe1snLt6Bp9qX6jPIe+IaQbj/pPQRtbNtphLHPmIYDKe7lgqW9f61TfIPHWoefpm1wHWt8ZS4+q6RNwl4KE+9WrV40jIJ1zcHV15Q3AHDabTdKYSMPbDM5UfM5k1keZXfPn4LdMClZ8NzmZWdLchckophTzs+zpbz4WYoLPoSCnDbnB4hC7kLRFBt9jR7egwRwB7xB85513vBCg5R2NRsFupy51SwkokoCV4nf8mIXXAQ0UMYcSL4fPoVbBwSLEaQpEn/OGpgRo9BXF9r5dAAh2QfM0PG/q6LEUSMakvkBTlDUDBBro3nnnHZjNZvD555/DYrHwa3nOPFCWpReukZfxaDyNTqnuyMtaG9Hwsiz91/AYx9NyoyXipl8g07S0TH7nl2QA5TTR/EVR+DlkOBzCer1unAxySKDt2NXwdVfWVYBwncR+ev36NYxGI/jggw+gKAr48ssvYTQadf4aVqo3HnN9dnYGp6encHJyAqPRCD777DNYLBZJI34beVWD9bqGV69q2KLD9RDg0aMJTMcDGGIo+iPcbhcpOiY4GZZmYmmci9zlCsKchw7QnaOkKBQHMJZDHLX03ljqSE06VV2IJ+r8ZeWYQGo36gjSwkkbSXhofg2XTlLTMWXNm5XGCoQnxDgtnocX7Knh8z8LwB3XjfKkrMX+uOLAIbt7FkUBxWCbJnV3rDjvuEi80EemXbE0HvM4IZ1r8ppzrhGOYaLzFVzjyODguWsTadcrTSPFibtf+f9uJ2xd1XL5dL1n7cDr58uqnE+Da/R4PAbnHKxWK3XOpieM8D7FPPiP8grXl2J6RUz34E4mLBdpwTxVVcHDhw/h8ePHfsfM9fV18OEdpuUnkvDftH5SnERbaq2zGt1Rr+H5iqLwp7tgHYbDoWmnamqdtgDKhbQN2zgSKI/RullwpeQblMfXa/0DkjYyCc2Dco9kz8vFRSFH9uQ2lNhuc638Lu1g0Zs5vwDYd9N3lRvbyvF87N1VuCs6Sleoqgpev37t3y06A/KP1b6Aawb2K59buU2J/+Y00fx8DMTGnMXGxPGnQDpBTvqNeGNtq11f1YXXYmuqZKehu6FxAxuFyWQCZ2dn2WO0rV5s2SnNceN9x9PpFEajkbe/5cJtjXHrWhuDQ14NQKFPe03fvK6F9Ql94LfWu9M5BdICrzGYZsjiwgQVHiTjFReMUTCkBk9OG5/c6ZPTL01uKaErNajaMlHfjJY7+GN0S86KWL5cOtosuilnTq7zok8HR1uILa6aYCAJ8rFFuy1dFqHOClyBbOtoyuUPHqa1E3cMYfjx8TEcHx8DAPjjLBHwGNOi2DtyLYJljPZc5ZwKvJQGrAsV0DRBOYZToqGLsNHXuMyZm61zl8bzkhNbaqO27ZIaa9q8IJUjjauYgpEqiwIee3N0dAR1XcN8Po/SHuMjjZ5Y3fi8p/GipODFlC4NuKyhKbrcyJkDqOBxGSmHb/uANvOW1Pd9yAZ95kPANn727BmMRiNYrVaBrJkyRuSuhfReOFSAHz16BLPZDL7++mtvyM9ta8kQZ6HVue3/7g0AAOoaYLWqoVjXMLMYOlxLPoygFnffRsKzy6VOMkvaNxnaDBElD/b3XQC6M9U71flRwz3gjjqBMW3hQgf9Lp8/qtixNLt0yXHu+KvQ/jwNx+mavwM85MnDG+/Oib8bjltH0pC04lNJ18BDyuVxHE/s3znixFX4WQpvtNnuv1pVUC0qqMvtWr1cLv0upADfDrjcZbE1aJCzTmj4Y/olwF6/mc1mMJlMgiMLU/qlRaeL6Rr0t+RolPJYZTjUh5xzft232mwOKXel+pS2qcRX2vpP00iQcmxwPm1jJ6LyD01P9dSULKPRLv2mMnMfemlqrEj5rTyP4Zb+j+FN9aFER1c5OlZGqrwcPTRV7iFsp21wUr7rk6acfrLyKtedc8qS1oG+eMlqu5T0eik8tc6kyonRltPHdG7TaE/lbcNTmAf9KdRuQXdOYxqtbMSVM69J6Sx6KucrPAUVbTd1XQcb7+jH9by81Dwjzald6tgnWGQQy7zbpby2c5lVHtP8AHcZYrRa27C1M9aqNODA0UA7zrALXfToHADwzgYU9HInTOk+2jeFSShYBLwc6BNXmzKlRUyDHKfSbdQrBRJNdLGhfI0LU5cFOwVdcfIFkS6SaBi/7X7g5Y/HY1itVt5QPhgM4IMPPoCHDx8CQLPdP/nkE3j16lWWAUQDutMv1a+SADUej2E8Hvv31WoFzjk4OjpSv4LT5kupfM0RRdOnIHfxTQnYEmgOOgsOXFs4r0ppEOiO6LaGAI7fksay+zr15T2FGD4s78GDB/D48WNYLBYwmUzg6uoK6rr2fGcpi3841cYISecTxBfb3cB3t+aCRCdfpzSjUmwOKIrtTg3u2B6NRjAajaKniPQJmtEvBTdJVxeg7fwnf/InUBSF332MsiM3qvP8bcoD2J6wcP/+ffjoo4/gD/7gD+Cdd96Br776CjabDSyXy2yjC/JiH7Q6B3B+voFJXcBpBeA/M4qR5CLxlqo4aNzd2thdingKfG3ubHWww7FLh+90By0tx6cXmkfbLcvDRX5ktMbqrbYHjQx+ujBMchrxcCm/QoNYbqoPpXjJyUUCLTt1ufNROhpYQtNIJ4BPU+h4UsDvJEZ89J7Yxr22Bdh2xvpulPlASsvDkrzgWLxjbU7fXTOPcy4Md2E45vXv/El2wfL4xj2w6ISond9Zq90Z63e9kh2xUhi2T1AurtmkHYLfLO3y2RKuP7v2PPDFF1/49do5F8hbKJtgXkyDtgZ6ZL3kVJJ2nrbR9yQZmpaLawkaaQG2u2em02lwIpAmq0kGZk2XlZxlXWwWMVsBtUnR9f/Zs2dQlqWX2+kOlD7uYI3R2kY/iDkR+O4Zq53EqmdKNFgdHbQs5C9sc/rhc1/yJu3LWB1i5cVkeCldCp8UnzLq0n6JOQ1o3922HYVCzBnSpzzfN7TFqdkJuoK1X/kJegBxnmxrT7XUT1rL6PinayKfsyy8QfHTsc7nbo4ntftVG898De8CfaxxHCTZgAI6MelHVXVdw9XVlX9frVZR/rHYaDSaeFjbdlyv17DZbIKPqNbrtbhjNnZiJAJddzSacFx16fvcOSFmp6W4YraKPuCQdh1tbbjr0MYGxKHbDd4CaMZRi5BDQWK8qqpgtVo18tIjelKCkmXywHjpDloNtHq3gZtmwrblHXrAa/hznShSXklRS9GTC9Y8bXiHC3lc4OA4UgtzG2N7DsQWYY0GLU/ftGq8lgrjDh8+t9AjQSzlaXFaO2mCvnYELhWqRqORPyaTC65Umc8VtDThpK85LaWstik3lzakYTab+fuCsS3xCDmO16Lsp8q0hGlxXeYiDtQoQE+rQH4ZDodewNeMBRSX1RASU4wQl5RHK08qI1bXWFkcD5/DJOGeGr444FgtyxJGoxG89957MBqNYDwew+XlJVxcXJgVIauBLFWnPqDL2s2h65wizZvX19f+N/1Q8BDGV4TNZuOPJZ5Op3B2dgZnZ2f+KMA2Bsm+2tk5gFoq37F/DMsoRnKi0jgASO9+JWV6HFKYUq6Ex1JWDnDHcAOnHVGynCBdCreT06Scl8n0LvxtciKmC2kNFodsTjpjoZ5mv35gWLELK/b9JY5xS/81glwzXHkPyiQ8I+2W9WlpPI1zzTgM545Y9R9YPhfiCsLrMNynVY49po5X6ohtlIttSNvFNX/Tunn8SEOxT4MykgSSYRc/0sEPreiRtdTOYZWBc2QkKY7LK5vNBi4vL2G5XHoaMU5aT2O6HKcptnZpcl9XBw6V75xzUJZlUC/eR1ivLqDRq8mrGCe1C43nfSDJl5pzI1Y2x2epF+cLrVxN/s+Re1J0c9x9gjZ2rGVK/GVNb02T0l84DW31d2mstxmfsfHxtkGqbbrWGccRnRssOo2FhyguC71d5mrNlqmVY4XUfEZptsx9lqsC2vRpyn5rBWlNpzZA1IGxPLy+jOOw0qqlT80/2hrB8aJzlZeJuru0jnD7i5Q/B7R+ja3ZbcvjmzvafHBlha7jPQV92YTfFujdGQtg68RYWg3W67V4Z2zf90viV5r0+GMKuQ6KnLR3UeDoqvDcNejaxn1OSH2BdFcowpved0j/oe8a0RR+LYy/U2MKQLgjH6GNgsuFBi5A8Hbhzlgcv9w5XFVVsPsKDULa/VOcTuqsbaOM9iVg5kBXhZe2571792A2mwHA/ou71WoFm82mMR7vwhwRA23NlowFWDe8px0/ksL1GXduYh6rA1QTZlPjTsMrKaBtQWuLXONITMmlgjrulLm6uoIHDx7Az372Mzg7O4OHDx/CX/3VX8Ff/dVf+TtTqPHwW9AhNddWVQWXl5c+LT5TPNwGUAEeDAYwn8/h66+/hs1mA+PxGB4/fgzr9RouLi7UjwwlwPnbakDIBuKwCHYA0nccr0WYr4FKkSljO1S9Y6eA/V2xBXF0YjJyHCzuTMQjZANnLebXdt069kT6Irt0NYdt4Ci2ADp9tAy53RrB53cFMidbThkmPksksTpC+3Ka9up83SOFYBcsQMhHpFx/B61Tdsa27GMelr0rloc5whuIk8Q30lLnCg0zPhu7Y+sQD3eo8jw8PAhj/wH9vA6s7YJ2xCz19t+V2/R0TkP5TzsZDOdAtDcMh0N49OgRAABcXFzAer2G5XLpDXDcsM4NwNzIJ41JKpPStUXSJfhpIkVRwPX1NXz55Zde7uMfbPJ1h69F0pxP26CNIZ22Se56R2nD+tAPsfgO5aKI77BsUzYFyRBN42K46PrPZUr8TQ3YOfg5jVpdNMeoZGSn9NG+7Pu0vC7Q1tantaXFdkTbibdNW5yxeki6TVeHj8YHsTzfQv+A9nHJ/tN3ORwsDlwLr6WcZim7nYVWiTYLaGO+jc3CSlMb+zPmkWwFdA13zvkPkjGfJDNY6GwLmozA33ld6DHFCHQt5LYkKk/F6Nd0aYkm3j4SH7R1xhbF9gQP2pd9+76+hduD7Nk5x8AeC0vhkeK1Y0tyJjrLMcWWgXIoYfHQQihfPCyCW47Abm272OKqlZM7WUr5rI4BC57cPG0UzZx0Fr6+baE3RqO0aNIFU1PmJRyx8DZjTNpFCgBwfX3td7HhzqblcgkvXryAFy9e+Lwx52bMcZSaT1OCWUyZwzjp6yreXjHeobRrc0pqvLcdJynocz7FelIjFBVUJ5OJFxBz6tBGuO4C3DiWEjIxLNWW19fXcH5+DvP5PNjVR/8tdFGwtgXnQXxa5owYdO0Li1Im0Ued2ZPJBD788EN4/PgxfPTRR/D06VMA2B49Pp1OYbFYiB+paes4HYtWA89NgXVdpWm6jDUeFvvgp685CvlyMBjAZDKB9XoNL168gJcvX8KDBw/g6dOn3uAN0DxuMAaSEa8PkHaLObdzhDoSrpDonHB8MM0j5aVxoOOOEK3iDJyqCt3iDtoYbsyj7ILN2e1r3m2qdLHoRKL5uQNKoEH6naIL0zTmPYF/kvXEfBY27oPVFRytnLbokOX5CvIkDvzoMcUWSPUheW+0KRm/DadrxAnL451z+zQsPghj6bxsgO0QiXOOOWOd2++S1Zyw/EkdseBC2nd/vJ0aO35hT1t5XcLq5QrKq/gd4zG5Cuf6s7Mzr0/M53NYLBbijtiUEVGT6drIQ4gLP8BbLBaB3oBrZkqWwCemp85gKotKdeMyi2ZUTbUF1SNj9PKjGaX68btNU4ZYXganQ9KjLMbiFKTaNiUrtLV74D/9wJf2XY5jxVKupX142RJ/aThjZcfkbQuk5FKpXTSbAc1v4UGaP6Wnx2jnNEo6WQwseujbAn3ULdcG2bfjxmpXzYHUB/4pOmJHDgPIPBbTk/kY4Rsd6Lv00VWsj7rODxpeDTS7nGQ7aFsGgmSLoXG58ouGW/vQjdvmcmnX5kFtfdJottirc+cCKkdJG37wgyx6ZZ5Go8T/qXWuL5DW91Q5b/OaEHXG5g4SSSCNQW6nx76Ysxqq6DZvKy05EBNAuhqG+4QcwVKiO1aXQ0xAFkgJtIcsO6dcixFZmqi0CStH4L3rQJW12J0xfSyE1jSIf7PZNIQxvBcTYOtAOTk5gRcvXsCvf/3rIJ0k8GgLo7UfpfRaO/C5meZN8aPEf5JCyOulKWkSTskIwSF2DHcMeDpq2IrVWeqfwWDgjyKmAl9RbJ1mKACl+oTTlqvMxMa81MZWZZ0aUXKV46urKxgOhzCfz4Md17xPY8feaHRaDUJc8ZT6wbIG0Hxtjuvm5aXakisneMxzUWyPw/7e974HH330Efz0pz+Fn//85wCwdcbOZjNYrVbR+iJOTSGy9HMuL2ht3GbtPbRgTg1H1LDch1KqQV3XMBwOYTKZwHK5hIuLC3jx4gXcu3cPPvvsM3j27BnMZjNRcY3Rxcd8bzS78Mkdld7RiI5IrVgH4Q7VHf3+3UHoxNy9N5ynAMGuVtW5yn5Lu2O1Xbg03vcBw9HAR2lRcMecsmJ/Of7qGuE+H+unGB5zHE+z66eUQ5g7/ESHJuJyzqdxzgXOrxiojtK2bK/ky3LIIt+Qd/ohQoCn2NeZl9eV5gAn64tGGqmvSPvzdNhfwW+Wz/cp6VvYiaD0jlgMb6QnzlbfRgS3j3OC01UK4ztjgZQHrM68vVg7+LLrrTN28flCXO8lOZcbzopiewoXAMD9+/dhMpn4/M+fPweAve2DGoRTxiy6rvE4DSScFA9exUHT8Z0ztK50ZymnR9IbpLaLAbaHcy5p20nJMJQuvA+O46G04Qkx2C4WvT5Gk3TCkcQ/MZ1Yc3jStpVk6V5lBdi3D93VTXkXacK0mg6ZAxrf5PQLr0Nu+RpPWcvX2oTGS3qURmuqzFzbUUpXs+Kw5O2TH99U6Dou6dxLj3S16tMcF6aT7DY5tjQNL31KNGo0WehuQ0ssP21TgKa9sq0zUFuDNdB4RMvL3yU7K1838D324VVsXeLv0pyfA3yN4PnpyXR9zG0SzanrJ2J2N/7bQiNPS+1EEg1cJrG2Q2rdkdLF+M8COf3PbSJ9rhOpcdYn8LKiztguAhEFi3HvpkBz6FoGXwwsOPvuzC5gXeS1RTZWl74G6SF4JFbv2KKmCQaWxdsiqFgXJkoLXQz4WfJ9K1d9gEUoaquIWSF2lHOsD2O013UNz58/B+cczGYzf7QYhTbChkZnLqASvNlsgjDkE9om+BWzlcacenHhie4oltLF5p027aMJFCkjDceBY5A7HHH3tGYU0spoK5Sm0loVJM1YFsNDhfTxeAyj0cjfI1aWJZRlGfBWrC+lPpAMSzxfjAcQJ999QedGqd21ekpxnG4Lb8UA0+JYxfzr9Rq+/PJLODs7g6Io4IMPPoA//MM/hKdPn8L5+bkXyvFYwbsw798lWScFEh9ockCfbVvXtd9BPhgM4Je//CV88skn/qMGjQ4JJH7umw88Pif8A3sWLA7Ybx+k3N+6w0Hj0Znlw13TEesgHN/UAebbh+HmaUSaOH0FfU04ZBEa1XRimzTKoq8xI4hrvjfKYL+lXYBS+Q2c/LdCrxpmgIA2Kz7Oc7F8uXQZ03vHLTphaZ8V5Im/HYCr2fhNFWatIwlTeYH1aRBG39n4585M6igFgL3D1bkwTnpS5ywNc2TtZjtiXe10Z2wlPOnOWaktKD3EMSu1DdQA5aKE+edzqBby7oygC4gMMRwO/f3v9Ool57ZHBOJHn5pOxI2MbdYlyQAuyT78HWU6pA9lLe5k03DF6JRkqZgcgc4++nGkFXIM9DwcHbWoT2Eb5NhUtPBUH2B5sbviqJxL43ib9mXMpIZ6rk9uNpvgQwKehwKn+y6DprNpY8aiqyFeq93Rorfmzg2HtBshXkknvAs6y9sOFt7S4vgcgjqLpUyaL1UeTYdzepu5uivQcRCzC8bGfh9gXRO6gLSGa6DtXI7RlOKpVP424Jwz20OkOZuDZqPqCpb1jtqF0K7GabNA3+tqylbSFdrMU13gptcgXoesY4pTQmoutFEgLAJIrDxNaJeEaatQdJeFx67thU8tX8phovXZTQhimmNBS5uaGHPi2iygMUFYUmT4Dj9N6cqhIQcsC7DWLppRsU8jcgpPH2MbF/3Xr19DWZYwmUwAABrGdItxgdOcGncWIZW2t3RXkIQnRyHrKqBwBYHv3u0T2hqstPzoSKFQVVX2F5EWQ1VXsM4/PG1KYEbjIh63So8npjg5LfS6AL5O0HlA4k0NJy9PUzA43i7tnhor2nyXUrKogbYsS3j16pW/y+Xhw4fwox/9CL7++mu4vr6G09NTGA6H39i7Y9sakGJ8dBOAczKOh88//xycczAajfxRQwCy8UrDJ/HUoeVT7gxthLtmOu7QBAfN+1slPFEfacKJysvR8JFw6gAW0wv1UEnIZS2WPuDNFrgsO0idc0Fa3p/xIkInl+Tgdc6lHY0CXTcJwS7YNnQQJ6t/d+E8RR22mFZrF5GnNbokPE7+7fkpFuZIPzqSJvbbMT5yzTgfzxy29MnTBOF1+O6cCx259FmH6aS6OCD6k+KoDWioHVTLCpbPl363L22/mHxRFIU/1QI/XsN0y+UyuBKFyw9U/knJFBajXWzt1PBTGvhRvTHg9gTJ4G3Rf/EdnbHccW3RZzRZl8ukWv0BIHBIIy1SfS3G6BxdLgWS7Mz1aqQ5V99O9Q/ixbTIy9Jxiho+qV3ayGUp3YWGp/iBppHeYzrPoWRKjX8kulPtTCFXXtT0whi0dSi8LZDT9m3GgNYndJxaaWjLv7G5lNMjlYVjCj9+seo/OTYp65pFabbmtYKFBgsPxOayGOSORdRXU3RQfFI/a9fv5PSJ1teSvBTDx+fSlB4dWzclmU0Dy7pP3yV7lkavVb7Iga48n9vXOXS3oe0urTuHu9E7AV2FKxom7USy4teE7rY0fguHAT7h9CVIWsvuG7rwFp2Q8TgGep9pjuAN0HRg9MH3FuGJwqEvIm9reJfoogaIZ8+eQVEU3qAiQUzBi5WLcxvHZXXEalAU+2O1Uot4iuaceTZGT8w5zNPmli3lbQv0nqzFYgGr1UqMR6PEoflaAhzDXepraVtaR94OtHxq9MF/6oylc452B4iVLq3e2pwYM7ZYFB8LX0sKQgyvcy6YT5bLJXzyySfw6NEjuL6+hsFgAPfu3Qs+/ECF9Zsis9wlIborYF3wWGKcm6uqgvF4DO+88w5UVQXL5dJ/8MDHT+7OoGxgTpbCFcFvgN14Yo4jdNAFxxcTR0iwuxVxFvt0we7SYu8oKbbbDnWjOe54hcI7X33anfPFz5NCGl8XgjrYmUvLdRA6krF+xW68dz1ydkevlMaPd9d8bzhGaR7N2SSE8TJEejkOoVyeNpirHHtKZSj0RfPGcChxUWdxjL4C9jy04ymA3Vgpdm1eQGOntp+3CW7pCHAzPbtwjWcajlYpjLVpwFf8N03jCI6a4CJp6ZPuiBXjHKh3xQbvsR2x5Enp5+++vrQt2Nrtagf1qobL311ud8Sy9knJp7i213UdzOHorHr69KnX6cqyhOl02jhGUPvATCuzK9A68R2xPI1U/5Qhk8ZbZDBMMx6PYTqdwmAwgM1m449P5h/6cZDkJF4+TYN1RRlrvV7D8fEx/PjHP4bhcAiDwQCePXsGz5498+8WuV8rU3NwS7+ldkN6uU4Vo6kPvqFHUiMPv//++3D//n1fl2fPnsFisYDr6+uAlyQ4hAG5i6PxULYl2peSk0MzwlPguwi76n8SnRbQyn1T5PW+2+3QeLuANue2xWWxyabWAQptj/m1gvThf2xt4CDZpNvOo7F1Ltc+25bXrE5vLEOiFeP4qY19gGSXvE3IsZX3Nfalk11RNmkDXe26MbzS+EUeS9n5cqEPXrjt+dnkjO3DsHuoinLBk5er0ZMKvynD5m1MKKlJjU8y0qSjtXlOP0t4Y0plrqCZ66DPETiteTVlsC3EyubO2JhCKk3oXWlLgSSUpYwIfQmKWEasfpohJSZ40KNq6eJjacdc/sQ01rlONFKztrDSYDX2tO2vNopBLg91aTf6xHj6AQTPb62PZS624JFo0HBq6XIBBS5NuJLaMWd+aUtbrE3bjDlt3dGMjSk8Fjroe1VVcH5+Dq9evYJXr17BfD5XP6bQINYGbdZSxBmbYw4FkhHzbQDcXYPKLBrYjo6OvAGfHsmoja/YOEvNBZJTIUSAD9dwGPndsW7ntKSOjQaayC5WB8CjxN2x+NsxfBwt0lAkylVocQXZHUujKK9jutB7u30oO36lssTyrY7YqMexiV9LH+yK1WhyJE4r1im/admuWQ/VwXtISJWj1aUNfQWEvCTU07R7OEYDD5P4hoY71t+OpaXv/DfNS/ozeNI4F4b58oU4P5cl3nne4Envo4WQJu2d/6bPuqphc7GBeh0/dUPTo9EJRZ2sKEfN53MAAH8XGOoUMeNVG90pJg+kwiV9h+ah6w+2B9enYvKppq9x+WkwGMB4PPZyOL3LNqW/SfKWxeiOTs3BYAAPHz6EyWQC4/EYrq6u/D3wKfkn1q60HEm+serydB1P8UFMv82pA5bl3NahPJ1O4ezsDB49egTT6RQAtscWX15ewnw+9+lovQ4pP2ptKr3zMKyXVa+Syub5JFkr146p0aPNQTQ+x46VyhejMwU5To1DQ2qsdLVvdIE+9Z3YHH4okOYp6Q7pWB4KXWyG0vinpxHFIGbH1MrJtePk6ug561msvBx7oNWGnJI1kjqnUv4hIUWTVtdYHeg8l8tnEm0S3rbA15FcfBIvaDICf4+VdRvrQo6NsE/6TM7YQxvXLGVLDEi/gLTi0gyI31TQhFA+OC1GV4sgaVn8+/xqgtIkXVT+tgFVSDW46fGcK0jk5s+BlDE6Fcbzo9EEhcrY7mRLPTiP0nGGiyTfBaWlp19LObe940gbfxy3VSm0Ku7cSEPLzAGLYmmlM6dsDSdfh7ANAeQdDDHh/S7NTbmCcax9Ynna8EBuu9I0dNcBOrxi6TWcOQYODW8McA0cDAawXq/hd7/7HSwWC7i4uIAXL17A119/DV9//TUUxfbuYq7Y3gRY5ss2kGrDQxrsbhIo7xdFERxZDLA9Bh0A4OTkBJxzMJ1OwbntvYLSuHHO+TwxBdii/AZtLDhBGv9AnkAcGZgfnN8RCA6Co3+9s7NBxD5fQBM6SgoIdsBiubgTsXEPLOKh5VHHLoUiLK9BKzaNIztokV62o5Y7VC2O2cYY4K/SGCH9EOyKdew3kHhCW9C/Cm5xLgTCi8grILwLuIMdu4xnxLq1ASf8Fng2SMP4uuEcFeqCfObfkd+54zXItMNfd6mggJeH0aZ1Qjsznmn0t8ZLjuV1+/DA8MTjpDtiSRwNS94Va9gZ26AH9jT7eD4mKM1YXrWnxwKSDOScg8Vi4e/TRJmR9gveDYYG4pgeYjVmIp42MpeGT/qdUwbtk5QDiUJR7I96xjVzvV57RynFrckpdK2lDnKahtJJ+2k0GsGDBw/g4cOH8P7778Pl5SX8v//3/5L15TRQOnmbaE46iR9wRy69zxefFB+VuamumnLaWuoymUygqiq4vr6G999/H3784x97/fhf/It/Ad/97nfhiy++gKdPn8K///f/Huq6hocPH8J6vYarq6tGPe8S8D6yOGVj/Mf7heqSPA0fDxaHaMyJkDPO2sDbIp9zeBvrZLmXNZaXQx92g9sAyRmZS1vMmRsbE6k24/3TdQ2X5hOtLAQun2hrkwTIJ113yFrlgq7j1CpPATT7/FA2kRik7FgxyKkrb9u2ZaLshlBVldnn04bnke7bOKVQA6kevRxTfBOLlMbkbRyrkmCVEm6kst9EoUNToKR01gF6aFpSZcaUQu7IstAScyB0gRidFHIcR1yBbNumEj19CkoxhSSm6Ej03QTEBCeJx7oIcbHyNEj1MxcuJaMHx0fTcCHDUoZGH8BeaEkZO3LGKK1bm/aj/7lrCS2bfw2P9yTh/bGHWiP6HKcWQ16buFgazg+UjpQhQ8pjKZeOV63vb2KukeoZ+73ZbODi4gI++eQTuLy8hMvLS1iv117IzFWC7zK0NRLxNouNZ60Mi2IszWHWsZiSXfjuGlonNGzGgN/Dkxob2vhqhO8cE8Fv4qyw3NXqn8QBGjhJuSMVjw4GBT/mL/YOWn/kMM3vwqOIkQZatnYccRDGHL76xt50vKmttGjKY04IozgkXKQvY7tfozjAUA8tvZCN70g0424zlWXmya2ndB9sCr8f5zm7tkMkapi2wxN/m52wmJ7GkXfnXBhGcPt3+gQ53P+uQ3weP3XEUrlRKwfp4PWi4XwcCPVwzkG5KKGaN+9mz12zpJ2cmowklRNbb3LkoT6A42yzrmK+XJuDVXeUZLxYWTHjPPbBarWCzWYTrLlWOazNuizllfQsgL2TJRhnkMc/ubyC+ZC3UT4djUZwfHwMDx488IZjpBOdyH0Cbz8r7/G0XZ0eOeX3jdNKs9TXbccvL/8m8rxtkJrvb7p8DrF1rosNqws+zS6USieVxXXvNuXzMCmtZr+K0cjDLPYpKawvGaBvm2WKr1Jtk8qTKseCT8KTu9Z0hRz6c+hpS3sfdb4Jm79ku5egi+1JKtOa9tbujNXgkMyMxi7JIMYFQkuHtJm4v4UmpCbpNnjuKmiLAxcGrIsu/6qEOhokuAk+fZPHAhfmUnWRjqq9ifqndvRJwqZkNAmMWSzOAppQS3EMBgMYjUbg3P44W4of68L52FquxRDWtn5SWmxf3L1wdHTU2IU8n89huVzCeDxW15Y3Yb5CyDWSIeCaS3mBx1HAY1oxPlYu3wFhoQ/vVx2NRrBcLht3PbftE27wa6tAS0bAoth+STifz+FXv/qVH6/SXbFv8twLkG43HGe8vlyGiK2jVsUKga6p9D92TKMEEm7Kwzj/0XR1XcN8Pk8aLTVFA2m1rmlR/ifOCfrPd7k2HBkudIr6cgoI72BFxytxyPr7Y7F8CPP5cH5nK83Hnb8FoYU4Zb1jF2Dv2MW2wzL47lrFqet3AEvONaOTjqdp9I1j4cK7tkNWxM2dUwSXn2MYD1CcgRzhGL0+mO2SZf8NepW2MAHi7St9ChfvasJ/nqcL4qjF9DWAq/f83wqkbKTNgzSMB/p2xkr84dNE7ohFByz/nbwrNrIztkEfp5O8B/VjT1c5cKWDq7+/gvK6BFc1Gzxn7eXzfcygzNcmSe65LVkyJldLsowGbeSWzWYD8/nc7zAGsB+7adk9S+Pp78FgAMvlEv7u7/4OHjx4AK9fv4ZXr17BbDYLdqm0qROVXSx4uL6PMi7uFI7xRcpWoOXR0tP5//nz5/Dy5Uv44Q9/CB999JGvywcffODlb4D9jiv8WFeS49pCbt0sZdL+wTJ4mW37HQAC+2SfY7qNY4mHp9qzjeNQsz98C3tI2Znb8DkHKb9VjzmU7mnBlzt35eK34jokaPpmX3ZeOmZzx6M03rWy+7aTHmKebFN+LKxP2rquhzlAr0vSIGWPkCCnDtwe3PWjLU2u7gp94QmcsZIgTaFPT7KGqw8PeW56KkTQiciC5003fkrQVXmKKYkxYS8FsTQ5wkQsrs1k2ocwZC0rlS+1QPexgKWMAG0Vkq60tM2rOS+ldzwKKna0Qps5TGtHLUxbVLQFR1sEpbkuZ+5P5cFdXnRnLOcfXveuAk1MWRANcy3LoeVRQQHvfsRdsVzQlWiTaM0xZrWFlJKdOtZa6zupXXl9NMNGSqmXxmaq73KMJhq9Er7YXJsrPEt9rrXRm2S8oONfU/RyxmFR2HcD9yVX5PYj1jM1hp3bO9Vxlw01+gIAzOdzv+5sNpsGb9By8UmPK5TSSPWmvMYNtZb1C3edSjtZMd454rh0LC+GFc0nOpR8GTunLz0ieJtdcMS7fXhQBuxpDZyvFKf0BJKXOmdx1y008YeNEW1KMU2j/Ul9w2An/3ZyeIMWJ5RtIdjJv51zelwMr1I/NQsvQ0on1TUFljwkjDtULQ5Wv3s0kS62a1YcnwrtQVq3f5qdsuw3TePjHYtPPBvOWeKU9WnwXdkZS521nLagHhqvSH2wi99cbaCaV1CtKqhL2UlmXZu5vBKTvbn8LsktKdm+jTxvgVg9+RwcKy/XuI/xVVV5Rywe95yi1ypTpuwU+JEU5r28vIzKNzGaUuFSe0j08uMKY7RIfZPSBbSyEfA+e5T1qqqC+XwOr1+/hufPn8PZ2Rncu3cPrq+vYTqdwmQygfV6HXwQ2YYvY+OurW2G828b3qJXouCTynfamLXaAjQ6LGlieloX3UKSL1P2EFrnlC3gmwqpsd9FL2w7PnjemK6RKo/jyx23Uj4LLTGaNBql9Ll8K635Es4YXus8zfHw97ZjLIajrSyUAosdkve71IbW/tJoy+EtDZe13jdhB5TK65LXshbTNZbah7S1921fG+7UztiYoNxFQEjh5vGpu0VvkgkkIS+mVFjiu4L1CwVpMdF2Jku/eZrcCbMNtGm3Pto7pVDH8vVBi5QvNu76bPPbBlwM8HcM8J6iq6sr2Gw2Pk9qPKaACpAWgYPuxJSM7tZypXS5PBSbW6fTqY9HYwE3nOQes8qBL/AcFzrNsc2kr71y6hxLNxwOYTwee2NDil7p3VqWBHznaaoMSVCnZaMTCN/RoIC8H6NbUwa0dDxcotsyPmJAj0hrgys2R3YZgxo9VEgdDocwm82gLEvf/n3N/4cCnKvG47E/vq7L3e0SX6XGP6a1tEvsPu4YxMZ0rNy6rmE2m8Hx8bE/erqqKiiKwp8m8NVXXwW4MFwyqOJv7f4i2j5aP9A0/jdznhSuCBwljV2kbu9IaTh40Im5c7JyJ25gFN45QYM0uzK8k9btxqGUH7bpxOOKCU0NZ6vbhwW7YEkdfb5der9rlzplYZs/aF/lyOXw1YnhgZNSaFfNieZpJOHB7lf6js5B2oc0D4tzzoX0YLmcLoqH5Q94RcHTCCP0qGlZu4VBpI0ce5fKE8rXykM+8+kL2N8hi/GkvNidsfR47Cg4IQ2nG39q/MH6iqfzfUV/Y746zE/nC+0p7ZSN7oTl79I/LQfYUwj3dadjg9JYOZh/NofVi1W8/XfQxl5h0R9w7uFzviRfvU36GQesLzpi+d2osbo31oYd8DUf00hGQYCt4xF3xH7yySdZOqRmyOX0S0ZJjOP379E2oHI6l3u09T4mw6bqgPnwvnqqZ52fn8NyuYS/+Zu/gfPzc3j//fdhtVrB/fv3oa5rePnyZWMHMN213Acfd7UfphwLmgyOu38Rx2Aw8PKv1u83NW41nS81dgDyddLcuUnj/1j6NjTdJT3pbQDk35wdbDhXSWOMb3aI6evS/NV3H/N1gdPWFp8G0saFrmPvEMDpSs2XNA3+7mN+xt+aDYznSc1nfa09Eq67Jp9pNjhpLFvvXuXtS+UT7UMlmg9356K9mLaZNsfchI/oUHDrztiYIRbBKgRhmCZwpvJZ4KYXcEv75MYD2IQuii+nDzDcKnTxsqR0bQykAO0umW5jUKdpuhr4u+a10qIpETn4rXCTk2GuU00S8uhCQif+2GSvtVVbwwwVMHGXJRV2c8ZlbPxwPDG8Mf7IFcI0enIgRWeu4ifhabPAD4dDmE6nUJZldAd1W+NHLljbQ+pfOk5Go1HDGWtZo2KGw1j6GM1t5yH6QYB0PJpEW66xqg19SBsABHcNUwVQcqDF2r8vxTEHuBBe1zWsVqtGnGX9ocDHolQvTbHvCrG7rnOPy+aACsdkMoHhcOiPF5SUGek9FsfbhENKKfV0OPDOCXTEYrh4P6qDwLnnjwFGJy4QXJiGOVKLYu90DfDSOB9MHKySYxWa734XLdKFzldo0iA6ZLGd0QGL9FFnLy2f0JoEKQmhW8RJ2jVI7/T0Ac868s+LZjjVeuxwSo5OKT3lkcAZ3Cc44Td5avXgcVG60OEPrD2BhRfQoCcY64Kjvnd+kerOw6R313xvOF8B9g5WR3iMpnHbNJQHTTtjLccU0zKBPZX6Sv2B+Nev17C53EC1aMpwKWMeTYNA1/RYnpReLc3zvM5Subl2ji5rqCSDWPRLKyDelEyZK4tS/BRQVuT6IJXVNBpiOldKppHieL/jOzr6rDagXFuRRd/D8OFwCFVVwWKxgN/97nfw6tUr+Pjjj6EsS++k1erTBlKyo/Qea2/e9rljgsvww+GwIUdKuLT2bgtWHTgVn0NLysaQAonvU2MsB27ajvs2APbDaDQKdB7+YXYXm4Y2/jgNGB+z1VIZPjXXx8rU8Fvz0DSp8c7p5yeuUdDsSlo5faSVwGofS7VTF5kjZ+7HMlJ2kxik1is+f/Vpi+jbhqrl75tuXpZk/+mjPIvtsA0coi0o3Joztu1imJuPTsZavCXspiF3IrOC5HjRyqThuQwec4KmJi9NCM7BgWn6WGisyptES04/tl2EchwdN8nb2tjTjMs3AdoCrLULFYi4cMTBMpfEDOkpurs6gfgimBJ8c8qS5pXAoA16nWM80gVEg1wL4PRp7UhpRmesc65xLylN1+auco6jDwNGStHF/hyPx427HFJ9pwmmmqMohU9q/5hxkgJdl6T7mXg/0/pb+j1Go5SWlo87x51zMB6PxXqXZZk01vA2vS15BsutqgrKsvTHd+PR5fRYPbpWaG1E5xRpraO7uBEn4stV1qR6pMYKT29Ji8cJl2UJ0+kUBoMBvH79OjiOWHtKO0gwTnLqSzwZG2u0nX0ZO+eFd37iuwudtEWxj/PpiUOWpqF3sW4LhtBptcsPjq2fxAFGdw/SO2e5wzV4Z8cSB3g4P1I6CwjyeToLRi/APo0VpKHq8OHCNDSchfk4Op/R/LQcR3gDCI+4EDdPE+Df4aBlNJyImIbwUaOqTqex0Q4AIg6eR6Ijll5Ny+qoOlg5YPzuWRT7XbMOHEAN2398j/FLaiqP0B+MdSmcjjcWxvs5CHdhHs87PI4+yY5YyhN8Fyz93XDGViQc/yV+5bzM+RpkOp1zsHqxgvnn80SjHxYsRmlNR+drnybL5hj4UvLaTUJMj9DkS5qPPi0yAl9Pi2LvZJNO+OHrsaUMSX7gbYxl8b7k8k5M3myrc0ltKrU9XqtQliX8+te/DtJr8i0+YzpEG0jpSFbZjkOMb1DOBdhfXYO6YE45KfsEpyUHt1XXovjb0KrZA7lsH6PNUv63sAVt3sgFaX0YjUYwHo8BALzuopVjLV/qW67L8Q8ZNLuSc07cHSmtexK+WD00/rbu5s9ZO3HOQKDzCT+SXqPZOl5icoAElrGaAxq/ctnFAprso+FN9VkMf1e+12jLtelZeDeWV5JdYieYaeVZbR/a6YQ5ZeVAW37sOy1Nz/Pd+s7YQ4I0Cd81sA6iN0EQsbRzjqGyK+QImn1BrjDMQaKpy8RwWzwTU6xomGXR6aufLAuI9F7XNYxGI5jNZl5AatOu/ItqfryWRCdV+KliR3EtFguoqqpxdBWvkzQfxpTQHGXdOj/FjsZMzXeSsYnHc2MDv0OpDWjrCPbBarWC0WgEk8kEnHP+KKo2YBXCaPsccn3DciaTied9ei+UlB6gneAM0NyBKPW5xYDG8dJ0lAf5+MP219YpSdmTytYMCZLR1LntEcSTyQROTk5gNBrB5eVlY1e1plRyhYWPgdw+6QOwTkdHR3B2dgbvv/8+XFxcwKtXr+D6+hpWq5W/V5k7ZCWwrmuSwt1GdpLSo4ER+YcrMHTsamVzvhoOh3BycgKnp6dQlqU3bGjzH53TOD9h3yOdvP95+TQsKbcwZ4Xf4YpOTLrDdedsDZxbu7zeUUqPHeZ50TlCyKHp0aHl81NHLAiOWMeOJ6ZNUJA2oI5d4kDzbYw0SfXmd9j6au+dPrE7P8X2xvwszLcncXxiHbR31SDF8dC0QOJJP3KHXMNpSmnkfBBEkzjOK5rXUVvqGH2N9pNo4HkYbUnnNaGT7n71fFQwXmZlnH7nFE7eO4GjR0fhuMxZzqW0Wj0B5HKEPm68C7zU4Be2IzZoJ/5Exym5/7URHzmmmP5jvqgjltJP+Y7XY1fO+vUals+XsLmIX8dgga7rrzR/x3Dlyl65cXcJNPkN4zhobcNPG+LytSZDUD2D9o3FoGqR37W68fU6Vi9JF5Fkki58w8PwagqURfhuuvV63bgy5JBg4ecYDVTfsdosVquV15kkuTBGh0VmlfQITW6V6ON1aeMEsODVaGiL/67bQfuE26xvSm8A2I6Le/fuBelQZy2KAlarlbiDk+Prynd8fFqOqrWCpR1StMXwauOE9/tsNvM2vrIs/bHwMdDm9q7tfQiI6aa5eKxzKEKbta9N+/U1li32WgxLzcOHmmNy8cZsP32sSV3B6j9oC704Y2+CwXLK6GNQS4vFoYAbUKXy+4I+8Ept2XaSumlBI+XQoWlSSkds4bSUE8OdQ5NGA4/jE3MK+nL2pMZwjJcOAVK9+G/6jkojvQNUGrOpMnmelOOHAv0iGxVdzLdcLr1jgAuhMT7k/dK1H7Q5k85pEg9a5oBYe2v5ueOXOk9ifRejR+qrzWYDzjl/LyYvNyZMUKExxzgmpY/NV23mWZpnNBp5RUDabWehWaPDymfSeMk1WmCeFK92AYqfjz+JlrquYTwew2Qygfv378PR0ZE3VtFd1ZKhUVI6uBHxpkBq0+l0Co8ePYLf//3fh88//xyqqoLlcgllWXpnbOq4JT5mpflKkptivG8dF9w4Sw1WWpvH6sJxDwYDmM1mcHJyAtfX1/5Djrqu/XijZXOjG4bxD30wXtqRk6p7VKlDJwZxXgS7RckOV7rL0ofTvAB7Z6YLjyn2aemzEN4d7B2jlntgAbxTljpTxWOWyU5YX45zgPd/UlwBHXSXL3fM+uAMxc4paZweRt+1Haocf8Pxy9ufpyH4PW9Ac97xjk3KO+AaOEUHLKWDldmgz5GyOA7pt/ROy7RMnZw3Y3gZHD06gnd+751tcn5nbKHwSAov72+l7g0eEviGvzd+0zQ0DGkgd8hKd8NSB6t3qFLnKsXnnOiMDRy7nB4gT9o2vB0o/+zwl1clLJ4uEo29x3HTxs2U7npIGSBXVupbx7eWnyPbS3KZtuZKuiIvS9spZZVXJf2T0slxYLx0nYLEm13l3VS+oii8E7IoCn8FA8p79CqGPmXvQ0BKZ9ToLssykMUAIPjwkOOn+LraqVIg5Y3xi0SnRvNN2/TeduhLh+8TkKbBYABHR0d+/qmqKji2GO/1pnn6pgGg+XEKhmE6a9mHmg85TQipD2Vo2GQy8TbI9XrdGKexOYWGSfprbr21srS5MWdusPB7au5rK5P1Zf+RgNOTY7eyyA20bItuf1N2d0n2kOqTks0OPYa1cmPhqbklZx29Mztj7/oCbh0MsfTa3SIW4f4m4KYVSo0Gali0HMfQFqQvlriBVRKkNTiE0ilNWLl9dNNjK2eivQsQU66cc/6YTXp0JDWAdxmznN85/1VVJbblaDSCxWIBy+USqqoyzS0cB43XhLcu8wG2HXcMpIDyvbaYIS6+G1gynqTK6lJHpKUsS5jP98fZDYdDGI1Gvn81hxOWzZ9aWk2A4v3YRgiNtQXesQqwNzKkeEsrJ5YnRxC3Qk5bUEFRG9fSvEzD+a7EHGPc2dkZ3L9/Hy4uLgBg+6GFcy7gc0kBo2l4uTc99xZFAbPZDJxzcH5+Du+88w6cnZ3BO++8A8vlEi4uLuDi4sK3lSac07pxxZr3k5RPoisWn0pL+1bbccLzc6B9gvPjy5cv4fz8PDgpIYZfow3zUoOf1q6o3Nd17b+wpnzT4HEHfhebP2YYd8funBh+96rbO1GCeLLrlTpw0bnpHaqYD8DvOEUa/JHCWEaxD/dOF+60xTYiO1/pLlqAsHwHhCbcZYs7X4tdHfnu3l34tljnaQgcs7QPUl41Hu1YHu5QImH0nTpBuSOKOtiwPf0TXIDLzycuTCvhDBx8lAcQJ6WJ4WzkTdWfh7M2o32i7nQV2oOXI/G0x1FAE58UxsKdc00nbBeg/EfeeTx3UAZhLkwb8JJzzfYAsN0Ry5+RnbHSTlhwAHVVi+ESv4tylVRXRtPmagPXn1yLd8RGm77HtTYlk0r2Apyv+dytyYffRJDWQ4tBVDM28/VXsh3EjuOzGJTpv7SLlOalRyVLhl8qlx4KKL9ReWaxWAQyalEUyZOcUn1j1fEskIMn1W8cFzqn6KkqFrCMWQlXbrukdDk6p8RsYqmxdUi++6bCTbYp6mqr1QpWq5UPn8/nwZigPIEnhsV2cVp5NXZscezebqk8TW/MwcHzanExHLETtmIwGo3g0aNHvtz5fA5XV1cer2ajoGWnaM7lrZgeTtevGE2x+SQXYvWLrbmHAkt9tPi7JLdJ/Rhrz0Os0Sn+vknIlau0NmntjO2rkftevK1KzCHAMiFLdZSUq0ODdfK1CMSpPLH6SI4mPtC4I0NaSHMnMQxP1S913IVEvwapdsnBZU1zkxOWRWmQxnuK37uOB6vyK8Wh0FfXtepQSzkENOUZ4yx9JOWr69orel0WJ+tc3nZ+aBh0E/m7CmC0HK3Pc4XnFG/TvkCgxoaUgU2iUYrDvtKMQimI0RHDQ52xXZxQqXyW+SFHyUiB5qiS2tei4ND1Atssh6bJZAKz2QwmkwmMRqOg/FwjDtKUkzeGM2dcjkYjqKrKH1M1Go1gOp3C8fGxrxdf62PzpBTO892UYYIaqGJ9Y1kPnXP+63E8fl4yplvp4o5YrUzkVV4W5/uiKPyOVeecd2RQR+w28e6fOEKdYztl8Z07SxEnkHGywxWkxzq4vVM03iBhOd6BGjRKGBc4hHeOM2mHrKeZ9lMBjd253rFrPaJYqFODB5wQzsOowwnpoPgoSqkdSd9GeZD2oQsdno1dqo6U7UKa9kmcTI9GZ4quWBij3QdHZIUUBB8F7AP3HyJwEuh8xngk6bAPE6thkuMVnxanLOUX8TfmoTthaRydO7jjVtsZKxxTTNPQPEE7kjoFc4nUNqyOdVlDtahg9XIV5LGsSzw+ZtewQKxMiVelcmPpbwJia1ifRjqOl5evxUv0SLpDCo8mux7CtpU68lKjj/6nPgxtY4eQcNG2pCd+xOQ2SsOheIRCjt4rtYuFRpTJ+PUSbenUZM7UPJVjm6J9o/F1rm7TZm66Kwb3uwg3OZcj4PyBJ/eknKCSLmO1vSLwuYzPLRouq82BppXGc47txrJWaGNLSq/N60Wx/eAZAU8akCDXNk5ps/CYtr5boY2um8v7XWlEyJEFu0Abe0IXOU8bSzn+hViZEq9beavrumCxw1jiYnzKZUcL8LStnbG3uUi+qQv0ZrNJXlw8HA7FLwZvY+E9NHDjNe4ko/2LR4DSPADNrzOs7ZMj4BdF4Q3HCPTYyLsONzlOcpwwtzV+U8IbB5qG73xEgTRWBseRK+B4Y3hR+N2ICMPhsKFU9y3MxAwX9LemXDu3vz9EO56pLS/k5qOOCo7DMiek+s0518Cf2tV/1+d07D/8mhsVsZgiRBWlNv3LlZrbaiPuaIsZJDBsMBjAdDr1O+k5Pg70Hmhc9+lYkuYO/B0TbmOKYVvIUZyxLfB3WZZwfX0Nzjk4OTmB8XicjbvN+q61H8ZJiq6kXGBf4Bi3KHY5CjAaNTSc3EAZw4ftXpZlw1DCjYf0XVLmfN4Cto4WdIrUAG6wd5Bs/Y2Fd2rQI4k9XgfBXbK+TrgjlR5jXOzxYpzfUUvvjgXZ+aXtgA3uppXSSM9iVx7fIUt36GI/MLoCx3RPjjXsGx4eOF6d28c5OY7vIKQONNHY65ppaDqOh+88xHyc3kYcr7uDBl820jrhH8sAFsYMeVIdGzhpvQSFW3TAbiP2HxjgUKJOWQfgKufTBrxjhRSvkL5vxFE+QXpIv/E0Eq/4NJx/BH4J+pvuiAUQd8M2wqqmE5bS3OBzFsbr59PUDqpFBRe/uYBq1fzw97aByyI3ATl6cpt8fbQrXzO1I3rxGXMyWhwKdOxTfPRJHW9FsT+qN/YhLy9buuYEQdIhtXlJKqtv/tH6Gz/Ek+QK52SnsibXapCjv/UBvO0t+jF91/RkDlJ/x5w2UrxFRrUAlxlTab+Ftwdw/kLA0+Gc2+5w/8lPfgLvvPMO/MEf/IE/Pvfq6gqeP38OAFt++8UvfgFffPGF573YbvgcoHfEYlmpOdwK2phryKHK79Q1TtL8rc2hdIzTj/3xLmqNfrQXcvv1bcJNz9OHhtz1tIudo2192q73fcsJFqdtTpmH7GOLLJUDsbWbQjBS+zCMWyvRtSEtwoeVpkMxOjeeSsZ5XPDatGFfcNPlIfAFD424PE0sD0C67zWly6KAcaUrlb9rW/Yh9Go0agKEtdyc9Kl2uEmesxjeY3kxPVWoYwpzDKwTPVfgaD48Ftei9HEare2es2DSttRokvhNa7NU32h8HDO2cDos41hy6lhBuwukD7638G7XtZy3FzUypfhe4wEpj+Sk1/LFoA+hU3NSUYjxLa5f1qO7MD1tY/qRh3WtkupykyD1N3XgbzYbOD8/h/V67XfKpgxSGGeVi6S5judLrXlSv3PFnM7DKT6XwrV6c3pj64Q0/i3rbS4/7TM3nSrBzlgH3pnUuD+VHDvM39GZWRTE4UmdV470CezTAMD+mGPEGZC7xxM4YotmXGOXbiHgoPTRO2YdRPODI461VHNr3efoTxemo44nnt6RPMDSOWjg8TxNHZikTNHZq5UtlcFxs3+6i5Y/G7gFEJ2hAg2NePLM2qnLw3j/GqZiHOPBTmyFDhmBMZz1JU8j8UUQhu8uDMewwCFKw3AOo/NHraQTjimm7w1cwMrl/MnCgnca5hxUywrKeQnlvARXsnkB0s4T3o5W2TVnDo7JJG3wpeiIrVOpdVgK6yKbxOTdmEOujS5t6UOel6+rdO1uewxlrAyLDtmXrpGClM5FaaU8nMJpkZNiYYcC69hL6clSHg1nrs2rb7DI4Ck9sAv9t1n3uwSWevfVVs65hsOPOgcHgwF85zvfgQ8++AD+8T/+xzCdTgEA4PXr13D//n2Yz+cwn89hNBo1jhO2QMqeRNNIcTQ+17auzVESTV14UaNPo5d+4M1PNWpzHH4bfrLmj9n2UnhzyonlaWtfzAGpbVN+hbZwW3N+DPqiyWI70eL6to0dQnayzEGtPpvok5n7hEPdLZoDUrtIO2UQRqMRPHnyxC9Sl5eXcH5+3sCJu0ZzIKefDjnQuzA31h3hEHRK9I3HY9ExzL9Gii3Md3GMaHBXx3TfkKonOkgwrZTfeu/LIZQIPA4XBWMuLPNyrWPPurBZ8NF4eixVCvrkv1xcKaNCDB+uO5xvtPXoTRxr/KgtgGab0XawGu1wLOGXnPzDpJsCTfkqCvneLwRp/ufGE3yX1ofhcAiTyQRWqxUsFgu4vLyE8XjsxzK2R2xOQuBOXBx7XQ2CtH5WwRdPEZhOp3B+fg7/9b/+Vz93rlYrmEwmUFWVumMkhvvQoCmtmhFU6t8chV4qnxt0JWE+NsZGo5FKK/IDftAj1YvSWbt6uyttt1vNl4uOjd0/OmgxDnfCBu+1AxjIaYq6CO5i3RKAj116ujN29853yUpPxNHY8YphuPNVS0/DSLvTcO9AJp4cGu7bNuaZpfVlYfRdcsyqu2PJe+AEow40EsedXv4pOLx4viAcQicaTdNwvjJeCpxmUhpGj+TgC9qP46T1Z3ikunAcnueKcNd2EK6NceLA93enQoIvUiAVJbUTTSvwEa+zyEcO1P5PPnFHLIYp98NKxxRzfhR5XupPnoeUXW9quPi7CyjnJUB9c06sNqDJENLzUMCNjl3ayipPdNUftPUymMeFOA0PjacyIl41QGVGSfbCPDFDeiyt1uZc7rTIfYfilxynKYbzDxk1eBP1pxzgfMZleJw/UXZu4+DQyk3h0GTgb+Htg9FoBGdnZ54nLi4u/O7MyWQCf/zHfww/+9nP4J/+03/qd8a+fv0anj17Bv/zf/5P+N//+38H+Iqi8E5beudsrt3UOeevdEGwnESVAynbRdcxQMc1ndupw5ufmISnS2F++kRbIL5TPBK0of8m5t1c+yLNl1NG38Blib4ht+0tdu6+oW/nt4V/b1J+kcrvE3/SGSs15G0IQpyOHAfDoUCaOCRhcjKZwPHxcYO2sixhNBoFk25MCbAK8JQ+CZfUn7kTXF9tKwmenAbNgCkZwmm+WHkpXpJoofk4HgnHTU+IXfvrEM7DGOQIC7kCG03TMOK0BM1wjXHWCTzl+IvlRUBHC62jJBBQum5rzmyzGKeE4VQerd5thaY2CoOWvo0wH+OR3LbtYgCztr1FoHbOwWQygaIoYDKZgHMOFotFJ0GrS7tK4VbexfqkjGUIqExSpbKua1gul3B1dQXr9Vr8gKsP3m0LKQOlFl5VlXfOYjtJY0DjoZgR2konx5NqR0zL55EcOmJzr4UWNDqgY5XzVmyO0wDLxae2gz+gcefAoE6Rxs5Y+k/pw3T4Th1OO8dJcHwwOZKY7j71Ts8dPUVBnKnsN5ZD74EFAH/MsC+P3hNL4ihOpCHYXcvbHenDeuLu3f1Wx7BfRc+ZADyZ9yc1EDadUjQ9fac4HMHF+q5Bwy4e27/xm+BBJ2zDycfxUhwKqPG03FhzUtp4nSSc1nDKny3BOQdQA+zZJI5Mddam6qj1A+lb0bFN0tB5IEhD+6GOPGl+B+ExxXx+YTthJXo0nld3NzOanXOwudpAtaigWlXbHbF83pPajIBlPZTmdDr/dtEBb9shpelVVn3jUAZzSVbWdDaEnA8nc+QgfkpKDIckc1rbiOqCFhn9JoDrWjGbCaU9xT+3zfcIMbmwb8ixL3QtB8FiT8oZC33QdGjoOiffNnShX+JnugmIf9xxfHwMx8fHUJYljMdjODk5gbIs4eTkBJ48eQI/+MEP4Fe/+hU8e/YswE9PTbLYdtvU1aLXaXWXaOjT98BtQZrcwcMo3VI6jjeHXgtY1sE2ZXa1Z1EcMd9G23Zoa9eV8nfpi9h62KYNrXKatr5p/KD5SHKBt5tGg6XuKZtrrj3NasONyXkcks7Yu7Iw8Y6RlJxDl2uhSzo+9PHjx/Dd7343CKvrGs7Pz7N2hhRFAePx2HQXYdtFKlV+n8AHmHR3mnMuOCs/hUNLk+IXbSF7U4HzZcp5fxN15l93atBGMEuBZsTW6OP52ihc3GgrLU6a8KAZhCzzEcffh7BjhUPgzsUpHfPK33k7AXTnsxyeti7mEtzW/FQU8hfanDdxDeTORgqY5sGDB3BycgLvvfcerFYr+Nu//dsbNxqlQOMT/sQTMLT5azwe+35HJxstoygKePHiBVxcXMB6vQ6OLLYKw5ri0VUw1iCloEnHWtP/tn1tMTpod8hpZWpjlK8B+E53K2uGBd4f9KQASdGWFLfZbAZlWcJisfBjMNW/MX6h98qmDJ6+zqXzu2OLYrfDdeeM0nbEijtj3d7hAgPwzk/n2PHBOyfMloi940W8M9ZtafHlajtjibPV52XpuEM2wE1xERzBe0GcsswxpPJrbAg4hof+dC4IazjUuLPKNcO5s8v3D3mK8x3NR37THay07+k7L6PRBjyO0OnryduD1LNRVwmnC/8bch6L47TngJfp8MMAgruu66aTVWWTsL+VROo75xf8rfIN++1xsLaUeKbxzNkRS99pOTtatA8PYvUI6Nztur36+ArWr9a7Jk87R/uUSyzrl1a+JLvm4D+0fNWmbm3LoWuvtuZJsg8Nw7UQ11Yr7Vi+ZLNAkOw7dC5J6YL0mdP/ElhPdOoLeL/E6D6UfHoT0EWOtYC0y1qyEdwkdO2v2HjlZVh0n1zQ5qg3kf8o9EU/tg9+LA0g3/e6Xq/hN7/5Ddy/fx9+//d/34f/7Gc/g5/+9KfwxRdf+JMeq6qCZ8+e+Y+Mi6LwxxhTXc1iq8Q0lpO0JJ00F3LG2SHXPzoHxOrR12lYbwu0nSfflPngkGuBJjfw9ZzbQW4CcubxQ66VfdT5Vm53visMnkOHpcOp4YICGpspVFXlj+rj4a9evfLv6KDMOaY4N91NCMLa4KBHqxbF/hhg55w3XFKjNR7RSuluC7H8tC/xjk48RkLCITnBbhsshlkNDjVxSc7JLsB5t0u7x9qJxlkM+xJo/NFlQbEY0zWDRI4Qy9shVm+N71J931U5shhjNLpvSqm1tNtdgpjxhBuUsG6PHj2C4XAI8/kcqqqC9XrdcOQiDIdDGI1GcHR05I9FWq/XsNls/BoQo4PS0wek1sQY/9D1TBtvqEjimoLhWM/NZhPcCW0do7Q8ejwx3vtTlmX2kcB9QOxYa2l+sK4LWrvkzCHS2kHLpvwd6/ccujW+kuQH2o/4zo0PfN3j8z6lnddFWtMkGl3p4OqzK5g+mMLZD8/ADcKdsT492b3K46mDNnCYoJMKcex2qGI8PqN3xtKdrrjDFZgDjNAX3AtLd8IiTdqRxUXonKVlIt6gLRjbNfhd8LqpOz1JWICHOap8HSSHGqYDIR7xkv6UnJ5SnN8Ji+ko/QSfxaHaGEO8LSjPMZpUJ6Vr1rvh2KN0k/cGnTnLTKGn921W73k6KKeBKrIOcDo5jhTvSP1DnZy8rdlv05Ptjk05Y4P8QGgBJ9MY4f+A1trB5mIDm6sN1Mt6n6cIccYcdxRuSmbjczgtm8pIEq2SjGA1GEuyfM46p+G7CYjpPTwcZVOUmUajkfkahVz7Cect7vjAj/BQbraUw2UQSR+msqlkNO2Tt6l+QN+p/CLxlEU+uWuQo3vk1k3Sr+jvHP0kF2J81sX4r/VxLJ63V+6Yk8r4JoCVP3gczkNXV1cwmUz88cIU6PV7aJcdDAZwcnLi8X344Yfwj/7RPwIAgOVyCV9//TWs19sPoPCKHtT1KQ2p/uXzXc5ckeLdHN7QnJ68DIqTrtf041xNH9bouss83Oe4jK1LqTmIx6f6PWVX0OarVJz2nqIpB6wyayyfBpa6afE59pw2baHxRy6f5PJs3+lv3Bl7W8L4bcKDBw/g+9//fhCGO2P5UYSr1Qo+/fRT/z6ZTAJn5G1CG4aNAf3iAo2O3Bk7GAwCQYAblWMTaC4tFCjf0GMWY4D3JsSgy6RzE3BX6UpBDm9qC6I0qWs4UamUjo5MlS0JyM6FX1hLc5f0fhPzqUQXjs8+gdenS91oO3PljTssuhiXcuBNGlucTzmP0zkYDVi4u+B73/sezGYz+Oyzz+D6+hoWi0UwtyN+NM6MRiM4OTmBqqrg0aNHMJ/PxbXxrs+deJ8zrmUA4XihbUqdsfSuLHqXDgA01v6UskDfR6MRjMdjGI/HsFwuex+vHCyKD1eieRzNp82/ljaQ5pI2RjMNFw3n9YkZQDTjsDTekI/oDlzNSKHtzuFtyo2jPK9U73pdw/kvz2H2ZAanH52CG+4dSd4xuXN8OLff2erc1gHCd8pSp5t3ejrSptRhCxA4V6Q7Y7dJ5B2xwbHEO6Ta3bK+P6T8BeGDXfn0N3XQAsDWweb2+CRoONDCyGZa14yP7YblTinTjlhg7+QZC+M4aLhPy3A3yuf157TCHofWTo26MRy0HYInhOl9WSSfCDuHa1GQXa9CvEQj7tAM0iog8aevl4Bbeg/aOJdneB/TttrVQXxy3qFOV9jVnxxZ7NuD0SU5YX19YnXBNKSMxVcLWH65NK8Ht21HiDkueDqrAaovOfsuQEwv4uuqJCdxeW00GsF0OoX1eh2cTKLh0eQZK+2I++joCIbDIdR1DavVKpCbUc+keqdGCw/DkzC4/HfIfuc6AtKf2nl8aBn1LkAOr6T4rK0h3QIpfbyrfq7RleNA+Rb6B+z3sizh5cuXcHZ2Jjpjy7L0pxZuNhvYbDYwGo3gwYMHPs3v//7v+zF9cXEB//f//t/AGTmdTsE5J17JowH/IEDauUd5V/ut4cZ0KZBO/UrZ6Oh8DwCqLdtS/l23h9w23JR9VIMce/Qh+/BNl+8A7lYdtP6y2P5jcONevpgwIRmtYkY7C/TlveZ04F2vPA39yieGdzAYwIMHDxpp+d2yaKymUFVV9OheCe4CM9PFI3ZkDrahdmceVzSs5eYAfr2FZdy7dy945zjruob5fB4IGpjupto+ZhBOQUyJtwrhNykU3IRzjDv0qOFdm59ynCU8v4ZLM8DjOOL8mHJ25ILkKJCOH+0b2vax5uyW0uQquNb+fdOBKw0IkrEEdxLgbs6zszM4OzuD1WoFk8nEn/RAjUqoyKxWKxiPxwAA3ikLAP7u2PV67Q1QbQSgGPSllEl4pDFLv4LFdwrolMX2QTwxOiXexQ+4jo6OYLPZwGq1ylJ2+wKJbn7XtZa2KIpgF0VVVdG2SBmOpHm2zZi1KE4xOmPO0dFoFDjmcV7HUzk0HLRciRaLLC3R1egT3MFaQ+Ckog4af2QxhE5ZvjM2KAdYm1LnFzq7uBOWOkKRNtCPHA52s9J0WEfeNAWhjZWB7RXwEaWlCJ3JgQOx2LelWC7Pw+MF51TMYcXjojtiMY0TnpQWFobpGvhRVmJhQX6GN+h7gIBOHs9p8HTw9lPasFEuhPTTOtE6NoA6XMmQoUdiUxifjuHonSOYPpianbEcbswZK/UzQNjnEr+wPmk4ZvmdsXRHLKWH0B3QwtKI9aD01ACbiw2sXq1gc7FpzKcxGTsFMVkhJUfgPMsNsVwu7UPfyVk3eB6rkzcFvJ2xnvz0L1zzUmt0SiZIheE7l7dwZ+xwOPSyBwd0clL+5LzKP2TVnMFFUXjDPJ6cIulXqTWeOl4xDz3SE+NoXWkZh9Lhqa2M2kgof8XGCNJq4dW7AF3075g+YZFdrX3IbRq8/C5jn/OWNO40Xs7px1R7SHXT7AOSredb2H9kTB2HVVXB3//933s76ePHj+Hhw4d+jsGPgNfrdVT/QL3n6OgI1ut1Q0+V+MG6zvaxpsfy0bkU80h2JUpHil+LomicwBjTlb/pPGqRD6xA+8aqv1tosczVljmvrzIRl9Y2XdapHODjB3FKdhzrPEDDDykrSLSk1owULyadsTEG6EP4oY2co3z0qZykypHSDQaDxk7IqqrMi/hgMIDT09PGroejo6NGOmlnrGWxkKCPdtP6LEYbTRubCJxzXhHTdqtyBSdWFk8nDVRpYNEdStPpNOgrvssLYKs84rGcAPL9CjkG/j7AqszdVehT6EiNdSmehtGjIiVjiQYWgTC1yFj6TuPvtooFz8+NFW36I1Vnq4KZu+50WSBTcJcMAH2ApHBoSgYCOs4QTk5O4P79+15RowYnHEM4ntbrNSyXS6+UHR8fQ13XMJ1O/ZG9fd9/Igl70nsOb0j5OG5+JBG+Uwclxqd2Q2phRbG9V34ymcDx8TFcXV3B9fV19o6DNoJ6jmKUGs+4xlKDYmwu5Xyq1YMbXqzAjTVdQZObcK51bu+Qx2MLLeuApPhr5aZ4ndLggd39CA6CnbHo/CiKnYOycOLOWL+LlKTB98azAO9oEe+MZb/5XbHoLPNHHAtHGO8bZV8utiGvC3XUBkcTC/3TOK7Y4UPpQ61rSZ2jTihavmO/qZNt99vLC9wJycoJZHdoytC8TO4MbeyWxTyUFiC00DZy0ORPgcYgjpYbq5tr5mu0M77SehUgl22A8fEYzj462/JOncbHd1ZLu4OjO4YV3gjySu+cf/hv8pTC/DxBjyjGY4nZO9QJPiZxAS/wMPruwnI3lxtYfL4Q9UqLocciD7RdG/jaFVsruzgLuugBGlh18FgcypAoF6Y+vkqBtf+kuRvXYPyXaJHkCnym+k4Kp+VwfJQ+KS+XfyQaqFwR+5D2UE4olOV4HfmpHLQeSBc/XvlNAt5/muyagysXYgb7lN2Dh2n0anwj5UvVwzLnaHm6gKZDWMrpwzFxV3kbnbH8XtdPPvkEFosFAGx3vX7/+9/3doDj42PvYEW7uLTu4tUr+PFLzkfDMR0y1p4p/tL0rNTYTdkptDVEst3xsmPHIafgkLx1l/lWgi4Os7tQTysNFnlWg5y0XdpE4nOUCbr4K5AnY+uRddxYgY9rae5I4Wu1M/ZNG4BdQKun5JDTgKblSgfC06dP4c///M/hxYsXSXpSAgPCIYRqpKFrfr64FEXhF/w+6NYM7pJQwNPgu0bH48eP4cmTJ0HYYrGAr7/+OtixTJ3osSOCDtFPh+r7byJQoRHfKUjj4dAKFpaLY4nSICnbViWbK/O4OI5GI//lunPbEwDwTqM+1oI2CtAhyvoW0oDth0oUN6is12tYr9dwdHTU+LiI8xY6bJ8+fQqj0QhWqxUsl0t1N8Kh6iMZpKQdBKlxFJvXuUNNWnPQYMZxBI4hApJCWpal/0KZ4rztNUEyFGI4QMgbSDfKSuiQlIDyk7WfcmnW3jn9KRwpAwL9xzDccZ6z/sT4jEPqXmZPPzpPdv/eGTkQHK31Lrwu/JG9ND7oM0wDANQp5J/1jrbB3ikjHU8M0HTIBvVIHGkMvkj5COPYb8xH3wEgOK6Y06GCgwbt3LkmOWY9X1DnFXNWBWmwT9EZ6sgTlHAHjTCKh6eh8Tx9o26u+R/wOiu7UU/ET9uGpPNxSp0buFh9Gv3QwiHry8WjfMkHAtE8NuTiu7SLFCDkBXxqPCTyjfVJd8UmdsJKa58Up9VBKntzuYH5F/PtHbGpJuxg22iz5tD1SlsnaNqu8vahnG1toSi2u1DruobFYuHrhjpH33ILN4DTcIwry9KfJkI/vuV5NKe+VR9EvHgaBsrCKHvSncIaSMZFKu9xw6TG35zv+taRTk5OYDKZ+HbFk2/KsmxcxcD1WSr7DgYDGI/Hvo1uUk/IBYucdpsQk0Ux3uKstRr+MZ0kb8Zk6JTTLFamVk4sHR8DN8Ffd403KKzXa7i4uIDNZgODwQBmsxmMx2P4i7/4C2/jfPToEbx48cKP4+l0CuPxGP7P//k/8PTpU/ijP/oj9bo9nKekDTgYTyHVh9a2jM3XFuBrKZ2LUmt17OPanPpaeFOyHfSpH38TQLO/9IFXgpx58NCAPisOfW+SsNAhveeOF5QvDjGva/4lC+90OqY4VpnUghxLa11YU3GHXEQlh6J07CA3WKPywfNeXV3Br371qyRjSZO8JEBTITw1kbRpp65tyw34RdH8atJShlQvy6SFuFN3mCDQXTonJyfw+PFjj6eqqobixPmD1qeL845DTl2t6W8CbnKsSuXllJmaSC0KLE2TM9/lQmyRsSoXfOzReUzCoQmdtyk8fAuHB+3UBrzXm9+pEhjnd4BH7r9+/dob3/CuLjru+hojkvFKeuc0x9Kk5pYcobEP3kWllrZhytDbR9nW+lnnP1QCrGs04uqiJKQEfk6/xk+cZzCfFM7z8TGScpbGwKIESHN5zGiNxxSjw4MfQQwOgl2k24zg0/i0iK/Y4eA7ZIt9vKePHIMc5KOOVo7Lk7CrE+zzOLc/0hjLNd0Zi2XuaMFwANjjQnp5e+d48FjSYKzEHFK0LEfSszTirlGaFvuTOTFVp+gOp48jdGs7TsV6Bpkj8Y6lldLTd0J3sMNXSSM6AjuCg51TsoDwPmPD8G7skpXo4kEKnzTCWP/S+KCvsf0wL+5qrUndaDrNGas4YSV+knhF5Hvah7WDuqyhWlSw+npldmZanRCNNjTEpfBK6yNdK6x6U44NJZe3reuQVR+iH6DxcPpBnEV/tvYR7+NgznQu+DBck+U0nBwvx63RhrvCqG2CgqbbSc4mbk/ha7okWx9KBy+K7Wkts9nMl7tcLhunncRkZnynd+gCND88vg3Q+IjGc3nvkDSnDM2ch2PjKVd+zImT+DZWtlWfiJXTJU1bsNiHcvAgWObxNmXyPFVV+d3p+DHEaDSCL774ws9ZL168gMlk4vU1TPOrX/0Knj9/Dj/72c/g9PRUrFNq/uHzQoqnYnO0hFuz01qAlsXnIsk2ElsLKK5U3+b0a0y/vu25syu0kWVybOYW242FxyQaUnProew0tHxrWq3cmLzVN3/l2N+Qhj7Sdxl7OdDrnbFv+sDuGz788EP4l//yX8Lp6Wnj0nK8Jw+BH3mMwJ16uRAbSG3hEP1c13VwNLBWTpuyJaUJQTpu2rn9bhQAgNlsBt///vd9P9y/f99PNlVVwZ//+Z/Dy5cvYblcBnhSSvY3HXIWUquCkVu+pAAi4Ndrli+UAWwLkGZU6CJIawaDvsY8HjNDnSKHOD62D+BtajG+3WXQBPObrJPEsymlZbPZwO9+9zu4uLgIjE0S71dVBV988YUPR9zOueAjmK6gjYuUY6wrcIMT9h/dwaDdPSMZIzC9ZvhDY+J8PlfvsE8BN1z31RZtgLZTWyO5NtdqvMDT8D6xGqtiNHMeSCmAEo4YWGiUxmPMWOdKB/WwhqIO26Koye5ZF+6UBWRtdK6ig2YAPt4VOxwQhheDwscjDu9wqbfvfmdtAf4/2G3ri48faRx7NvK7Ijz2mDkPfRtGHK/abkhp1yt/bzhZIXRO8fhgJ6gURuKCd+Wp/q4JfsrXDuQywIm0NP4BGrhSzlNeBs8jvUv0ogMx0pUm8HTUAK7a8ivnj+SYZnwmJGiWx+IoD+CzwS+UT5wL8yZ4Q3TKCseb87pweoP5z5Oj8D3+3pVZV1sn7OXvLqFe5R3R3xb6WB8tzqXY+iDN53cR0GCPO2K/853vwO/93u95Y/4vfvEL+PLLL2E2m0FRFMGJU1ZIraOaLsZ3qSK9MTm8KMLdI6gb8XtvKS38t0W/5bIH6mYoS0inoEjyp9QWfQKXIVBmxX6/f/8+bDYbrx/w8rFuHGdZlrBer/1JTXcVNBkeQOaBnPGaa0yO4dH40VJ2Kn1K9u1aZw0Hl92pnYLqWRbZvSvcls7EaeiyHvC8y+USiqKAk5OTYEf7z3/+c3j06BH84Ac/8Gl//OMfw4cffgj/63/9L5jP5+Cc807Zuq7h9evXSdp5G1J66Dyr5aVjTGoH7To8AGhclUPXIT7np+rB4a6s0XeZNoCb+YBFg5itoCvcpTbuGyR5JZauTVhXsKxlMVlJy9OWXwNpJidz2wm+z4GfoqGtg4aXwUHa5iwdsXB0dATvvfdeo9Mx/2q18jg0ZUMTVHOFKA33IfJY+1hqw65gNVBqeaT2xqM5cOEfj8fBsdMXFxfw6tWrAB/dCd1VyOV1kpxgfbTdTYJUX63v2k5ufS3euQrITdDEcWptFFvYYrRICjxdhG5SMLIoXBrE2iYFXda4vh2IqbA2INGptZU2RqV+2Gw2sFgs4OrqCubzuU/HcdCy1ut1EI9rpObwt86psblFckBZ8FvmKauhIub40sqkabXxjooj3x1B6yYpqbzN0LhXFM2dFrkQo1cK4/NOCrcEEs9ZaOe08vaR6pLTNhIdKYUgZVSI4ZLGAudBTnvjN3XMEOeItDO24eyCMAydKsEOWQC/WxUc7B2vxd5xieXtEm/TFk3nKgCEO2R3aRtHFfMdslI41h1IfoqX0cTro+14FB21EgsEPinXaNOGE4u8ez7geShPSX0klctoDn4zfSRwKFMaXZhWKovj5Ls1pXryMsQ0WpkOQnpjgH3ZQfxx4MJ2p/zdVq6K8I3W3mr7YR6t79g8wMP8nM0csMGT0yjxLKuXmI/RUa0qcNXWEVzOSyivyq3jW4GuspS0BqRwSvN+bF1MySJWo5BWRo7s0ydQWWUymcC7774Lk8kExuMx/OY3v/GOTC4DpmR/qyEwJtPSfoy1jyTHUTo0eSG2PufUFdPEPoyN6T83ZejGI4XxYwPp1BykR2pfjEM83BGitf9NQ46+Zm3zNnKzBSfFrfGe1q5d+CWXdqs8zfOn5OScfrH0a2qM9w2WtUab+7sA/QAEP57Bo4yn0yksl0t/VQ7A1l56fn4Ol5eXgR2V28w1PZTXR2p3mt4y5+fEazTxqwqlK4batLuF33PqGBsHNO6u25BjOjdN0wVy+EOyY3Utp23fW2S4PuaAQ7Rvro3TKq/mrlMp+8uheetOfVpmWVwoxBbTQwlik8kEjo6OGsoSnqlvndA2mw384he/8BegP3v2TOwsvGODQl3XjTCNoW9DIJXoaBMvGaBzwJLeufALTGxvvqgul0u/8N6/f99/3bXZbBoLMuePrjTTr3KHwyFMp9MG/sVi0err4RQcin9QyeZfv6bytOGB2GSdMnpw/ui6oFl4vQ9o6yzhIAk/q9XKC+SHgNz5myuNnE9wfObwGkD7PumjXfpaw2J42jh06G86Noqi8CcM/O53v4PRaBS0N441abwVReFPiuhLeRyPx15JTOGiBgmsU5fyrUIdfadH8uWUIwmmaLRaLpfmNVCSFXD3gXPOyxx98CU1UOI70kFpKsvSpOhY1oWYcZWni5UDsP8YKjafWA1olO+kuYumi+2G5h8ISkojhqHRAHeqTKfThrFUAucc1OsaikEBgxExpA7c1im5O3rVua0jhu5w9WmLPc+7AflAw20dobhj1t87S3fEknwA4O+S9Ue+FjsnarHfKet3yGJa5rXyDttC2BHrXMMh3Ngl6/a0bSu4T7t93TuZosfQamzHwx3IjkMXluX7UAp3LB7DwIXvyEs1ezriYNsdNxvk2fU5hktlUhqDJ8UBjDZGL/8dOAJJGA1v/NchfcHvmoVHu8+4XuzarC7rJp8o/BG9Y9g3i2uENdKw9hcdshLfcJ7AJJwveHvVrO0oiTGjGq+TY+ES7zoHrnJw+dtL2FxutnPejna+vh8KKB+nZC6p/rn05RgBLWlSulCfgHoEljObzeDdd9+Fx48fw4MHD+Cv//qvPU25jraY81ajRcNPy8G1kZ5yRuNRn6VpKHAdBcNw7eY2HUyL6SXnJaeRyxJSn0qOW/rRXV9A+Zl+mIk0o/zB9QrtN60PXoUyHo8D3UFqQ422Q9vGJB7qS7+xlJ2SZdGZhB9tSkD7UBuLEm4LcH3Imp6+S22s6UQWelP9kprX29ioUqDRf5u2XeccXF1dwXA4hHv37vnwFy9ewMXFRYO26XQKp6en/q5ogK1+ef/+fZ9ms9kER7XjbwvPaTtku6wTqfY9Pj729BfF9sRLtDWtViv49NNP/bgajUbBaZg3edc16ocI/EOY6XQKg8EALi8vTTaym5g7NbhJGeVtgrvSVpqNy8JPfc2DEo8fon1y6bpTzlhrh6TytnX+WdNypck55w1ZFNbrNZyfn6u0zedzfzRvbGcsvTdFKj9m+Lsrg1ACi3KlhfP219JaFVVsQ8kYWVUVrFYrv4BRIzE6IabTqX/nAmzb41xpH1KauJOD1jOm7Eu4Y+Va0vJ4y/iMvcfolHDnOpQwz3A4VJXmFI4+BIJDCTOSIqKlyVGCpHnoUJDiFal8ulCneN9argUO1RZ98UcOHouww39LeZbLZWOutMwhVmNbCrjhJgV0/pcMopIRTcNjpU/C17bOEt+3Mepaw9sAN1ZIfMTLxDknprhqPEgh1c7S3MHTSIZDjkOiTaNZo1Gb2/qeZ2h/4IcTnP95m7jSweZiA1ADDGfDraOD7oYF2P8uIAwndUHnCb3/1TniCHUyP9D8uOM06DvFmcrvfMWyAEC8O5bviMW6iLtsMQ4Ij6EjCyBwuFn9dWJaipPFe96QnFXUoUYdbxiPfUvS8TQUp+cP1yyX4uT4Gmm1J60Tp4PiI5EiHRyHUq8Gfpav13HnoMH/gROWFEUdsDmO3iC90LZSP2g7Yul74ESgfepAd8aSNI3ypXcr/QKt1byCalVBtdg+qc6FsoA0j2oyh0UWyeUNLne3Xa8tkMJn1ce6lplqO3ziNUV1XcN4PIbJZAKTyaRxb2swh2fosFoaTkcOcDkuR/7DPFROleRCdPDm2MakNZzGx+g5FHC7Ci9T0zt4u06nU3jw4AGUZQllWfpTyubzeeNI6BjclDNB0kPa6Dm8HXLnLek35TEq+/VhO+xrzsQ8msxu1aF4vXJthbxdc+eXVDnWebJNebEycvuD8yCewITztnP7D7TpHHR8fAzD4RDKsvR2JH7UOIZb7JsabVrb5urmUp0luwA9IRFPdUBo84F1W9BsFgj8Q14aj85ZvI5N+yCX9/1NzaEcYv2ZM7ZiebR0h65zF3lEwtM3HApvjq1Oy5+yXSLkbsrR8LRJG2u/O+WMfROgLEu/mxUBFyUOr169gp///OdBWFEUcHp6CqPRKGuijn1xqQkrWN43BTij97UQbjYb+Prrr31b3r9/P3BMvfPOOz5utVrB8+fPA4EDF2iLYkQBF/rlchnUhX5hiseE8DwxBeAmgU+SRdHtDuQ+YDQawb1792CxWMDl5aUP51+MATQFvBwnz5sKXGijc89dqXuOgG2ZB+5KvW4TuICuxdN0dV37e1XwgyTcQYkfGEl3LnOhs6/5aTgcNuZEip8q8PRJ/3l9DwkxpSImYMYcg30AKmXYPnQ3SBecCCnlEWB/1DLyk1bnmKGKh2kGcYkPsf3RIQwQHkVFceQo+5QGHDdWwN0M1HAmGaMkxZmWi/lxZ2xVVX4nuTZfltclXP/yGmYfzGB8f7x1ShZuvyOW7ZQrBvvji/1doui8dG5/V+yg2N8hu7sHdltZCO6bpfkBSFp8Sv88Dd8h60ha/u70Z4ADINxJS8LQiWsGLanm0KIOLOK80pywAZ+zeAzzaeowredz1wzju2Z5ukZZ/MnTA8lDyyL9RtPSMiX6eJ2DdNJ9puw9Bxp3CJO+cvV2B6crXfNOYzo/5hTKkwbswdoTCP+k+IXygtK2Dacsz8PrHxIn08niOb0BLfWW964/u4bl10t/JDE1PuJ6iYZivtbfpEzP5+A2kFrrukIfzhiElAETy7i6uoKPP/4YJpMJ3Lt3D46Pj+HRo0fw4sWLxulTXH6T6G/r5KL5ubwSw4lrJtUh6TiI2WMQN67rKA/gnbo0XayuEl9T4Mdo0jR99jnFo8lI+Ju3FQXUK+hGhXfffRf+8A//EC4uLuDly5c+729+8xuYz+cwm80AoJ3B9Sah6/jvyzgMsNeZNptNQJOmQx1iztE+9KZ1lXgpx4jPZQGtHik73ZtiK7A6jDnE+leaW3GH7OnpqY/jDr3ZbAbD4RBms5naB+i8XCwW4g53jVaKL3bscZt+43qvpP9h2dPp1G/KAYDA0Yx6JE1/SKC6Mt6Bjvd1S4B+iaqq/IctFCx32X8L7eFNaNvUvHCbdNC1AX/jusbztuFli92pKwTO2FxnkQVSC94hyjw0xIQhKsCUZekFRoSiKOD6+roh6OCCJgkjXdpFE75vG2IKpcYTuQqD1UirtTHeFTudTqN41ut1Y4czd1hI5WrvXIiQ4NGjR/Dhhx/Cixcvgvtq+S6iXOW/DX9I5cXw8t99jXuJP8bjcaM8dA7dxljoy5lxaJCcZzcpTPKyJWjbHjmKHOftuzqfHhK0sYttQZ30WloKmjLWxcBABSxNgafPFD5L2bnzqZY+hkfawW8xoMWUbK4YSnRg31AjSd/Cp9RfUhopnoZJaayKQ6o+1DAbkxU02mLxmhHYgl8zCNB4yahM00l1jMnlrnawXq5htB6Bq932CODdUcPSfbEYHrQHjYe9wyu4d7YI0/gdhI44OHeeGb9DFtMVDEexo7+Axq5Wvpt1h3D/jo5jviOW9BE/ZtbfHQuwd7a5fTozNPxYzFnlhHAXf8e29vlJPMZhuwbzpSM85+QwipP/9jjBiTQ26uSa6QLnOeOxRlvxMEwHRN4nvCc6eOm/EaIOVAdQjAqYHE1gOBv6DxgCaCtKSMUq/AFAxr/0TtudtlvdbCP/FJz2Ih0CreJcl6KzBqiWFawv1p7OalkFx6Fr86IUznWklIzQxxqYg6OtjaQNnX075VKySlFsHeWLxQK++OILGI1G/v7BlO6fK7+naKTvsTaPybh8bU7Rq+nqAOA/QpM+gk21q7X/UnaItoB1l2QaSXahaWK2mLOzM3jvvffg3r178PDhQ3Bu67z+7LPP4PLy0uv21A5ymzpajAbLWGtjK5HmOU0O5LqSJmvz8jkdklM9V1+26jHWvDxe6wuJ5i66Tpsx2aYsbRxJv9vgy11r6JVF9D5YfOc2b41H0YlJd9FK9ZHeufOFQ6xvYnMfjaPX1OCxy0VRwPn5ud+pj9cjSXXsU4em9HK9no9rehUN1//p+OXX9HF8tw1d26/ruOZ4JJ25Szlt6bHAbfdrbB2kYF0TY3HSmgewtalJ91WnyrVA7vpGofPO2JThqe98dxmKogi+PFmv1/DFF1800kmeeTwmgAKmuesXa3cBbxxhC6F10PZVPv6mZY9GI3j06FF0gXdue3fC69ev/Tv/AjV1TrrEC6ndoz/84Q/hj//4j+FP//RP4S//8i89Hn7uP98pe+gFAkEb37xv+xC2ucBD23s2mwU7k29izsldXO464Bh50+chPgb6XoPepjUtZcig8yZVuvi9VhYlOVaOBTBvVVWNL+LxHhf+pW1qPskxIuTSyfkkpqDh/I0KUqq9pLm17dzT98cX2viwGCmoUY+OXymv1HeWdJiWv9N1QzpuL4UjBrxPeZ/xMDR64FiLGRc47bzeNI6m1eivqgrKstw6YysHbrB1yOIO1+DOWAd+R2xRkONYHYQ7Yp3bv5P7XfG+Wb/jFCB0yroCYLBz8pCdsQGOAvxOWH//LNl5G9vByHe4Uuevc9u68PwNfI6MwRyvHtIgvEtOLd/3KSeWC9e+wHGmxZGn5oht/AYn5tUcqf4JzbRiGCmP0ivWRylbdeoS/FgXDwWhKRMcOBiNR3D8/jEUgwLqKrwzFtNIDtlOd8Za+YS1NecFsb94H9N6cDqA4FfqkKSz3o/39es1XPzmAgCgMYfRuTCmQ0tr5aGMpZSWLrLEm6xHSIAG9NevX8PLly/h888/hwcPHvgjizFN6r7UPtpFMqpKMoa2w7QoCn9kJz+dxWKkwzUbd4jhB95YJr/3j+eX8HWFLjoN7Tcqu/H25eVJdOPdlE+ePIEf//jHgTy2Xq/hF7/4BTx//hxmsxkURQHL5bIVzX0C1tWiB1nA0g8WHYGmrarK70CO2d364qk+bSOSrKzhs57s87bo8LfhYMH5Co9Wp20+m83U+YvDZDKB0WgUzH9amTyMH3vc1w55rjMNBgPYbDbw+vVrX89Xr15BURR+d2zMXta3nEHXB01vd86J1yFa5krtSOnbAk3fPRTk2Knf1PnjJmiXfCnaOLDYZ9oAHqeOH0xYypXapm9ZvJUz1mpItEDfQsqhmYkq6hTortaYUEDzopMIjWtcybDW5aYcl31ByhCeyqfllxRqqS94GfyOAlx0iqKAq6srv8gNh0MYj8fw5Zdfwnq99nn5sdWpekhpqXDCj0X84IMPPK/MZjN48uQJfPjhhz6v5GRyzvkjDSnem1pELU4cfE9BSsGgYfyLPPqRAxfW8FgeFGRiRyZp0GWMHgIkXrDQYU0XK/MmoA+DFgeqMGu8Zlnn7vKcmwupuvIxTL/elwygVqFHA8mAg31SVRUcHx/DvXv3gjx1XcOrV6+gLMvgXqTc8mJhsbzU+JQy8PF6IeD8jfVEWSFGX5exS4VO7FeNthyItXts7tGM6xoeyZlqVTKkNPhFN66/KMRLd8hqdMaMj5xO/s5xYp9IBmFaFjeucZ6k9UOlBHeTSDJTkM/B1hk7dP6YUOpopQ4tf/8qu1vWua1jBh2sFLd/kt/UKRukwXoLjtVg1ypJ03CukjDtGZRREMewUs7uh9xHli2QDhr14U427vTi7RP0F3W07X5LO0LpTlkfJjx5WBCONND+3v0QnYYkrZdboInHOeYcZXUNaKH1AJnWWF1Ep2Eb4GXtjvLdXyOcnldNzl+ehDZzhC8a79h2NYlTeMDXT3OyUtwJeoN0nC7ihC2XJSy+WkB5Xfq5CmV4zCOtGdIH0FqbS/lj623fRhkNLOXkODskOYWnja0xVlqk9ZyXhf23Wq3g1atXXo/jJ3NoeCm9kixqoZPiSKXDtRVpPD09hdPTUyjLEqqqgouLCyjL0ju6Uripzo6ncd27dw9ev34Nz58/F9OncGpxN6nb8bHDbTQWJxm2sXMOvv76a/izP/szePLkCbz//vtwdHQER0dHcHx8DLPZrLEjTZO1b1NX02Q9KR2P1/jar5vsKeXR9AdeBpdBY7glXJLOINUjppdp85LFTiiBxosSbRpOXjet/25yXUjxs6W9JL5sSw/FJ/Ud16e445WOeY0e7d1qe0y1SZs1n9Z9NBoFc5yGq0+gu3apDfnhw4e+vLOzM3j48KGn4cGDB8HxygAAL1++hF/+8pewXq8bpz3eFF/ngEZb1zbWeMwqI2jQRxv23Q+x8XUX+5yCtobQa9Q45MjKOXSk4rQ0t3ZnbN8TURfhWwqP4eHHxlBlEN8ti+NkMgGA/RdFvEzuHNKEKE77XYXYBGaZuCRhkeOxAE9HF0s+cK+urvzvyWQCR0dH8PTpU3j69KkPx6Mqcsul4bTc5XIZ3Lf4wQcfwNnZGQAAPHz4EP7JP/kn0TsdsU4cLz1+4jYn19iXW7G0Eki8QOtInbGDwcCPOYD9F2F8Vzo/6lmDmPB+CLDMK1Y8AHl0cyE2lbctrVI+Tdmx4ML8mpDE43jfH/puzhj01d85eK3zQ8xop41Zi1EwRyHEHQRlWcLR0RF89NFHQXxZlvD69Wsoy9LfVaN9KZsz3mMQ49UcGQXbgn4IxI0AVqODVKY2HiyGLI1eSxqN92JzkjTfaMYmy9xm4S9s36qqYDQawdHRkTcQ4PFZ/B47jjsGGg2p9ucGCm3MUNlRkhVoPvywDHFLvMXLrKsaiqrwDll/72sB23cotk6UQeiI9XgcNHfIAvijjzEed8hinuCYYnwHaDhQMYyDlCbHEas5eP1dshGnsG8/q6ePJWvwlmPh/B1/O+U3CRPTkf/AgUv70hE+ldJq+Nh4kXbAik5YHq7hJjwTdb5CvC4eCvbeBhxsP2Io2BxYhDyBR2+ncMXCGw7SGK+QtuJ8EXXESmVm0BrgcUI4L79yUC5KuPz4EsDt9WPNqE6Bf3AbmxNTDo8uYFlTefltyu0qNx7K0EfXF04j7oaaz+fqmm+pl1VuScnAsTzUCVNVFRwdHcHjx4/96RHz+RzW67U/Nleii6/7yKPT6RQePHgAP/rRj+CTTz4JnLESb2qynVYPyY5ySF02ZrehPK7JhdwZ+/XXX8Mf/MEfwOnpKRwdHcF0OoXj42M4OjqC6+vr4L5oaxv0pWu1sUGl+C0mr1KekuarlB4g4eI7urHttXFlKcOi+8TGhlSOVraEh4/bGKTuFKT6LZWzNZ1Eotc6RiU4pO28rQOG66UxHY/fXbparWCxWAS2SonfKF5tDU/RSOnMaUfeLpb5Ep2xuXZXXk9rPqxTUexPaADYricPHz70+up3v/td+PGPf+zzfP/73/cfsmN5v/3tb+Hjjz+Gq6srb4vuS/5py79ty9fGYJsypHgLL8TGw01CW5vvocpuU0asD2g59Nh0ritwWd9CS5v5MCf/wZ2xbQ3pOfjvIiADSIZ/vnB9C3mAAmNu31sGH18s+B3Al5eXYp6YwBwDFEC0I42Kogguoj45OYHvfe97/v3jjz+Gzz//HAC2QuL19XX0eI/bhkMYOGJAdxmjYrfZbOD8/Nwboa2g9WvsTp8+4SbnOqk+OQp7W1pz81mVFko7NZBsNhsoyxK+//3vw4MHD+Dq6sofabtareDLL78E5xyMRqNWF7/n1kVzkvUJbfBqCjc36MQUcbo7NaVYx4R2nC+n0ymUZQmr1Qo++ugj+Lf/9t/C0dERTCYT+A//4T/A3/3d38FqtYLBYABnZ2fg3PZI+UOdEKApeNrcYFESpHZIGSowjDtwNZp5Pk0pb2O81NLnGL3byEk5Sh/FT2lDA+lwOPTHbOERXJhPorcNcBo0oDtiqRykGWdxzdPAOfnoqhidm/MNvP7lazj64AiOPzje3hu72ylLjyl2bn9nLDpXCyi8g9XviCXHDONRwpgOHbv+/lXsUnSOOdji88HpHbJhA+zLDt7Jb48T43g4wP5OWepUE8LMIGWhTi8Xhgdh7N3zg4OQx2i8ECc9tbAGDgjTqU49+oRm+RYnrFYXjl9z9Kq/Td0k7NaV0u12kNfVVlb0/EzAzyd98IvEKwI/BLwi8YfGW1KZMfJ4e/JXiaYawFUOrj67gnpdw9npGdwb34Mf/v9/CK9evYJPPvlELEuSVWJriGWd6GJE7AJdbAXUMJ5rBL4NcM75431R1rbo+Zr80IehT2s7XgbqFbPZDADA6xhIv3RNBnUa0tOZ6K6m6XQK9+/fh9VqBZvNRrQhcTo47VxGp+W2bScrcP5N3RtJAU+BQVvHxcWFp/vjjz+Gqqrg5OQkOK2Mn+5hhT74vg0Ore15O8XqlGtERrmWG6bpmOPpNX6TyrCkaTs2+7QrWPQvKY7mk2w/38IWaLvg2ATYf0SN8YvFwttheD46d1nXaYDtqZNos6Ef0XZZG7SyOHD7q8ZnsXWFprMAbR/eVqPRCN59912/4eTRo0dw//59H39+fg6Xl5fw5MmTYLMKwHYDUlFsnbtUT+SO8xw6Kdy2zNEnxOTLt6meKYjZAHOgr/Yqy7Jh9z00SHJjSg5vOGPbTFKpha6tkJLKZ52gc8vtKy2nL9eBKAkz35QBnYIcYy6m71pOWZai4ZLvprXyJVXWYvEAoZDxzjvveAXl4cOH8ODBA0+fdnyhFWLKUSw8l6+1yaot/hitVABD4/Pl5WUwnlKKAu9TLtTxsSkpx7cBsfItfMIVNin8JiG21nBDBU1P0/B7C6qqgocPH8IHH3wA5+fnfoxfXl7C06dP/TikvHQo6Gv9PQRoYyVmYKFhkiEpNu5iYwiFK0zz8OFD+OlPfwoPHjyA4+Nj+I//8T/Cy5cvAWA7Z85mM6jr2h8p3+b4XW2+ksaFRC/9rY0nWo6kOFroxGNsrZBSDnPnsj75se16ZAHKu5QXOU8ir00mExgOhzAajRpygNXgbW2b2BqoyRqp9tHmb1RWqLwRg2pRwfzzOYxOR+Dedw1HFnd2qUcUs/tgMc6HkzTijlgHW6cWpks4YcVdscUubHfssB+bOwewD9/tVvTjdkeLx1XsHVZSGA3PAu+jEhxgpD18kAvT0fcgjvVFwPukP+kuVylNo98pflqO5LlzwlOqL+GlgMdJPkpfkIfR7/92vwPe3dVNc4ZanaSNdBQ3HumNILFEDptwkoLmcY025m3UcNqTtg7CrOSk5kDeNBK/1uCd165ysHyxhHpRw0l1AtOHU/jBD34Ak8kEvvjii+ADOb5OxuRAbU3LXUv6WJOsNFjWQp42ti6ljMEpaGtkjgGXtVO6dKwsfLa5fgZp0cqU+Ksotqed0StvOA5JzqCyMXdEj8djOD4+hqqq/MfDEs5YHbQ2tMosXSAlu6b4k8po9E7Kr7/+GjabDYzHYxgMBv4EnDbyah9gGW8UYnqPZGvQbCaWcrjORXHSMK4TSfTF7CWxsdoXn1l0IWl8tNEjUnZtHnYb+lFbGqS8hwBqO6XOWAqbzaZxYhXXdXL6gm5eGQ6H/uMWXoalv1MgjSutLvg7Nka4XcBStlQOhcFgAMfHx96xenJy4u/WBtg6Y8uyhMePH/swvOJuMpnAZDKBy8vLwMlsPX4/BX2PBasdxzJ3NPSNlmW2nbvfJLDMP7H6W+VZS1qOF9PTq0Q1XKl+0sacJMPn6ha3dkxxCm7aidF3eVLDS0ck5ky+34IdUoMOQFcOUoAGWYtgmAK6OOMuL/xq7Cc/+QmcnZ3B559/7o2/VVXBcrn0XzkdHR3Be++9BwDglROKmy6afV5oz+Gu8zF+8XV1dQXr9bohEMbaRROg7triKjl83hbQFFR6rDDyuubsou1RlqW/+xEAvLPl4cOHIj40krzNkDOfUeWDfuVqFWa4EJMykkp46A5XvLv70aNHcHZ2Bt/5znfg+9//PgBs+/rFixdQlqX/YGU8HkNVVZ371GLswn/kJ8vR65gHDXDcMMXT0yc3lLSdB7rkjYEkwMYMJG3nMm5k0uZwTgdvR/yqejQaNdZTqUwrrZIxF/mD8lRMlsE+0mihuCVln9NLDXLSfBAY86rtf13WMIAB1NX26Ya7sSztaq0BikHhjygOdsQOIDyaWDim2D/xd8H+B1vHrj/qGPPzYeOaeb3jF9sE45zyBBaG7ckdp4jb6tUSkjV4yglxrvke7HoUHG/BvCvFOcILwm8tjDtCAycffbI0Qf66iV9yzgZ5FFr8fw3+XmN0+vl8tQvaYd/ULebAXZ2c2x7DPTmbbI/jroizt8BH+NGAyRmrkeQIHjZuRD4Rfu+zt6t3LFyijfPH8tkSVi9WnqZBNYDBaADn5+dwcnICP/rRj+DBgwcwGAzgyy+/hKdPn6qnXWjyRrIamXN4ru7T1nhFZduUnHXb+hilM6fdUc6JGa5jgGXm7lrT2lsyqlEax+MxzOdzePr0KZycnMBoNPInakg8qR2RTcufzWbwwQcfwGQygaqq4LPPPoOrqysYjUaBw5bSqdVBq1Mwf0I+D+cAl+9j8gpNp9F1dXUF19fXPg4dOrd5rQxt1xjwtpDw0A8SkJe7zGXUyULDUYemd+ulnFYSHl4OTROT7WmdLboRBW18H7L/NTsEl6np3Z0pfDdhp7mp9UArh7cD/ZiVfzxsaY+YbloU4UkEOHbw1AX60Ya1TWKOFcoTtO/bAl9fKF46z/M60jZGXRVg29Z//dd/De+88w785Cc/gfPzc1gsFvDkyRN48OABnJ6ewnA4hO9973twcnICANsP2P/Vv/pXHuff/M3fwG9+8xuPfzwei5sack5Z+iZB32M8Z73vWgaHNmVax3QOHbmAJ4ukQBu/fbQ1t8lQuHVnbFuPd9eyOMQMXlJei8AVq1tK2Mwpqy3k1qkNzq5prcpFbh5rmVxYwkWR70BtWyalnS6oRVHAbDaD4+NjmM/nsFwu/b2x1PAwGo3g+PgYAEB0MkrCo4UWTNvXRMgVCWt7pfo2JsxyAzQKMPSIHo0WLlxbyrtrQPuP0p2a2ySwjLFDCfwomFrS5eCUvmCcTqfgnIPVanWr/dx2fHSBnHWIjwPOa1Ieje9yBbXAIbQLr6rKf7k5mUzg7OwMHjx4AJvNBlarlR/34/FYNWZ07e9DzA04V0nzpzZHcUiNS4uxpG/g9MQcpW3o6DouON/il9X8mGCtbbXyU+uV9B5bn3KMr9zQpdGiGTokIxQ6sJwLnVr0uGI8qhh3yPrwomg6g+g/NH9LO2IBtu909yzuaKXl8J2sdNdtw/FUQGO37Da4aODxdBQQpKMOW8mxFdspy3e8+raQ4mkbkrSB85U6OzlNjuHAfnRhniAvjeP9JdEn5Gk4YsEFNPDftO6UlqAOQn1peY2dsQAq7wV9RuvIwRBeDIv9vcoYhmNY4D0VYsNdansaztos1c6dQWtHRoOrHbjNfh4pr0tYv95fITIej8EVzq/js9kMTk9P4eHDh3BxcSE6pySwODC1fH1BlzVVkuUPVVaMhhw5/9BruKSfW/NagOsekjyLxv/5fA4AO35l9eZ0SnIE/sZ1ejAY+I9ENf3HKgdo8rMFcmwGUh7aFpoOasWL4Xg3Ly+vqyOkLUjGVR4PIKylEPKRBF7WUnSsWDkSLsnBQ+nP6RvrnCnNGVyXkcaMVgcLbRbQ5F8r/ptYMzjE2kebby1zcK79hOPPwSPpIpjXMqenyufHcCNerf+suLX3nPWwLcTGKNfZ6DxY1zWcn5/7E51wrTo9PYXT01OffjQa+c08R0dH8OjRI99PR0dHKj1IE+1Ty7jg495Sfw6HtFH0DTGd+pDzRYoGLD+1pmD+2FxyyP6w8Ik0NiU5S0qbCkccEk2pdYS3r9Tet+6MvYvQdYF+U+EuOppyFrougPXmDhr69Q/eU9inosfLoztb/+Ef/gFGoxGsVit499134d/9u38Hjx49CmgajUYwnU4BoF1b5SjWMbgJYUTDxyc53DUMsL+rYr1eq/zdZlK+y2NeUoRT6TWHQs6cEFMOrKCl51/BIk18hzqNk5ytaFzhZSwWC7i6uoJ79+5BWZbwZ3/2Z3B1dQVVVfW2C/5NBMsRb1TY0eagVPtxQSlWjgRXV1fw6aefwvvvvw+j0Qg++ugjOD8/h1/96ldQ1zU8efIETk5O4Pvf/z588cUX8Dd/8zcwHo/9DtkuRkNeJ14XqwGK46NKJf2nY0Q6PpsroV3qctsgzQdd5iMJP33yu9txl8v19TVcXV2Bc87vwsiZE/gahc+YAkuNcBpOpMOy65obRFMGiOSYrRzUm3rrZAK33xGLz8HuWezG1s5JW9Q7xyU9slUiuxB+0yf+445aGlazJ/lHesS7Yvm7g2bZPB6E30DepfpoIDmwOC7F6eb7S3C+Bb+pY5Y54/wTHZ5OiHNKHMOvOm21/1pO75zbxhGaAjrqcKzQ3a4ch7ozluyKbezeFLuJjUst7a7sutyOEw8FccZ3mW4DEkJ+0JywQR0PARy1xK+kfzaXG7j63dX+w45yPz+hwwBhtVrBp59+Cuv1Ojj6sBO5ik5glZ1pnlR4F5B0nZhRrEu5femFfePKgdQVQLE1jhrwtR3XqJPgbis8tQogvSMOy+PrMV6l8fz5c/j5z38O6/Uarq+vA7yarEdp4/XhaTTQ+irloIjhs5atAT3ZBOlDWwwCb5fbBJyvck/daaOrx2RDygf4Tneu3bt3Dx48eOBlx6dPn/oPCooivM6H63Wxu5A1/UPjS832IMV11dM4fm2cWuRfDKfjuGFg39kO+AYAC31t65jSmW7TqSWt6bETqto4q+q6Dvic2oqksWNd46W5tgtIthLNlgUAwZ23ueVMJhMoyxI++eQTH456LcD+FDh0ul5fXwcnx/H+mc/nMBwO4eTkpPXafpfsDLcJXeSjtraR2wTNRmj5oBLz54D2gVbqdA4rxMYlvbIiBQ1nbIwYvtB2GUw5DpCbZLA2ZcWUOUtaqwDcFVJCkFXQy4UYnjaTSZtFsS2vSgowj+8CMfzr9doLFYPBAB49egT37t3zxyauVivvZLy4uIDr6+vG16J0wsmZfDSBTptIU3U8JHABndJH64zhsXbI5SlJ2eA4JVpj0IfxIibUxUDjxbZ9mJpjUul5Xg54DwDvU2oE4H2rzcH0iM75fA6LxSLgGW444TTz40UB9oIAdfhxZZUqHBS/RdGm9bHwTA5vdZnrqOEkZjCU8liAK/qr1QrOz8/h/PwcXr9+Dev1Gpxz3mAzm83g5OQE3n//fe9UK4qts0074rANxOaD2LumJPJ6Ut7hjkMM5/yeawSgv/uYu/uUKbrk1+iIyWnYBihw4+kVMeOG1ZCDcV0NL6kycnBZ5xAAgGpVwfr1Gib3d0ewur3zi/43wmH7bOxkdex+2YLgwDQ7h47fiUreuYMpOP61gPD+1114ancqncc8HXj0MqWD9gNzdvk2dU38kcLFMMlR6HnHpd+DNdDt2y+II2HJvqR0cnzcOUjq3NgVy/mfhUkO3kY5hB7RIUz/XLgzVtyJrIGQjtPQ6Ft0NKP/tWD82nb48mZjfY+/LQ5mEVJ0afgk/kRanINqUYGrtm1WXpdQLau9QxxkeRydXl9++SXUdQ3z+dyv81Yds81aKOkWvEwq22lyj0U/SEEMR1uZH9NK7RRzlORAG/2jK1hxxdY96zqO/EBl+tS6rsXVdQ2r1Qpevnzpr1Oh97rH6InpPfS3poNYaG3jIKF42tgP+Ljijva+HSU5EKNDmgssfCHJ/Za6aXYQPpdhG06nU39akHSqGq2LRidPL6XT0ki4LXNPX/MEdTjTPrPye8zOm2NL0fQ/jtMKmm6dq2PnlpezXkjt2qVfY2szQPM45Nwy+5pbUrqjVl6q/JgeC7B1Gl1dXfkyXr586e0eePUeXueGui7C8fExvPPOO/6aN4ynbS3ZDqQ5LFZnLDvHRnUI2aIr7+fWoQ30PWdo0EWuRJpS/W7l7Vx7hzZ3x9Y0Cz4K/LjutpC1M7avSTOGv42wlgs3VUYftHQ1th26nrdVVt+QWiAQpEX+UDTQxbAsS1gul36xfP78OXz88cfeMPwXf/EX8A//8A+Nuxjwi1oLvRovUuXyLoO0MOPxkihAYDoLaIYP2haxL6AtgocEbduZL1htIKbg9wGxcZVrKBsMBnB0dOSPqOVjUxNOkScsZeAua/x6M6bo4m8cowD7uzuurq68QUWiiQsNGu9gvdve/9xWQMzhAVR4EIf0xRs3FtG1PyWkoSJAv6g9Pz+Hv/u7v4PRaASvX7+Gv/3bv4XPPvsM3nvvPbh37x783u/9HkynUxgMBrBYLABg2zez2czMDzGwtI/V8JXKLxncYuklyOGD2zCQavlSQnSOMYDiin29iM56qS36XhNpn9H7aaXxYzX6SrRSZTtVB03pu/78Gq6+uIJH//QRnHx4AoNyt4u+2vEnHslabP+943LgoKh397rWu3W72P6uoYYCChjsLnl1hdv+LnZxSAuSVCT+6Z2ztJpun8bvlGXh4m+Oi8YBiQclLBc0ZxuJa+w4jLw757xDzMdTucE102A/et4U0uDO1YYDlJfjQnxiuXWzHPxNw6U45/Y7Yxt0KDtjXe32ztJkd+yduGL/UKcn4Yu63MnyhG/MO2Mp38lE7X/myGq++AgBRnSiM5vxHMCuvUsHV39/BdWi2ofVzbUK3/Gup/F4DFdXV/Anf/InMB6P4eTkBJbLpb9XvUFTZH2U5A8JUsZ/6eQQPl9KekTOvG0Fy1qk1fU2dbuuNg4NpLVa0xGkduFrbEwGkWR4gHBXJ83PDdkU73A4hOVyCb/97W993GAwCE7N4kcn07ql5EPe3s7JpwVp+TAvyifB3EtwS+1Er1ei7YB1kk56of2Az9h9oX3bZawgOSMAZP6O0UllM4AtPwyHQyjL0nzVBI1HnRFx4d2OqP9Mp1NfBgX80FnadRzb6Znb/tLcGeNFWh+KA3nJMq8jzx8dHQV6Ku6qpHY0Pv41ulPzPs9D+Z7Xr28etuqdXfTTtiD1JwXLx6+WsUX1fMmWB9Dk3UO3hTSe25SJ4zSGvyxLb/sAAPjqq6+CcmkfvP/++/Cv//W/9nPCT37yE/jRj34E/+N//A/49NNPVTr4jmdtfYtBbv0t4+U2eLpvaDM2u8wlNy2bamlSu+Z5mLWNJFkDQK836iAccP2UYL1eB2MuBnfumOKUIbYLSBMDL/MmgQtrKehCZ5u8N9kuOX2dStuWb1LCZZuJTVPyYkoSwmg0ChwbX3zxBbx+/RoAtgvpxx9/7PNdXV15AbKLsq+NkZTAb8GXgi4TdixeM4hI6VKQO28cytDQBWKGJ23+jS1Qh6JJKpML3ShE0juY+LFWHCcVyNFZul6v4eLiwitjknGFGgNSbYN5kDapXSWelAwl+I7GD37flNZ+KYgZlySIKc0xw4JGX2xMasYlKS0ar549ewaj0QjOz8/h008/hVevXsHJyYk3ODjn4Msvv4T5fA4PHjyAoigafR2riwVSPGvBHzMmpNo5pxyt3DZ5Y5AyXnIlDY1tOXyZ01YcUoYfDWcfc19bxdtitKLppXKpgzk2J0ngw3fOLe9MQacWHgFbQPOuWH6H7M6RgztlqfMMd9yq98GSHbHBfa5F6ATCp0+/c4YhbmmXqp/veRnFjnaAIDx4L4q9A0rYAdlwgAmsqu5mpHhJnO87R95dM47iDfqd9BHduRrsXiVP0eFL8RN6g7wQ5g3Ko/xHeCEo0yXidm3TqJNzjX/VmdpocoHuSHpsU38McrHnSwAA3NUtjq/cKSFnqqa4I/zZqkyFF51zUM0rqFc7B1TloFpXewe1pTgy5+HJQPP5PPoRlXVebzsHY97UnMkdctqaIhmZ+4Y+cR5ap7HKSXz90tZGSWaX2v5QxkvOMxZZ0VKmJJPQ+mkfDNDrV1BHwY+W8Z3n4eOQ1yumw+BvDW8wL2e2AYXbtOdJ7c/BMs45H/fBKzwv/7937x4MBgOvB6dkX0nmlujXwiXdnM+PkmyaM6+neIPex4wf+ErOv5i+a9HtMSylp1nLaQMWXG1shm1pca55opmUTgKJfqs9I0ffs+DMKU/iAYs8kKP3c/uBNm5iJ4JdXFzAJ5980vjoZ71eB3o6/SBe0tm1Omhrg1bP1FGvlrGRY+/KtY21hbZrHe/X2DxMIVavHB7j+LR3S54YtGl/3kZt5rTY/MJ/4zxGP56P4eF0IhzcGRtbsNvCbQlbNwE3sRB+C+2gDS+nBjXHTxfHo6Mjv8uuKAr48z//c79T7+uvv/bn/zvn4Pr6OnDcWs8p1+Bt48OuxhcJ3rY2kgAFNk05OSRIxhNtwaOGBf5Vq4QHcR0fH8Px8TFcXl7C5eWlP7bWOSd+7SSNq9Q9jbEdblYoiu1XWWgk4X3SZrxj/fi9P0hnV6MR33mnKap8bErKi6ZI4o6By8tL+Nu//Vv45S9/6csdDAYBX1xeXsKf/umfQlmW8OMf/xiePXsGX331lZ8vU4YgSahLKYtSvLRbQsOhKXLcIMZpsgjqNw0xAwb2AT75PUI5hs5YGAXaNilDRYwHDwV9rS9WY4G1PGy3wWAAxaDYOijL7b2YAxg0dsa6wgVOKP/c3edabLe9btNRwLtgWb7GDln8p1MgvzNWuDvW/wOA38UovTvlCSwMWDh9h3245vxtgBOcfYrDSwqTdsRqv4O52QlPcPudzk7BJ+ARcUlPXja5B1bCQ8N5WLAztm6GBeFO2ZUJ8loVpNHiaDmlC+5GDvh292x9d2xBfxbN/AK+6C5YgICXrNDgQ8J7uOt1+dUSVs9Xvr58hwr/TcOoLIJHa242G7i6uhJ3dPUJfA2xGFO1cGkt/iboECno2wGA/KK1dczoKOXFd6nfUwZzq8zIZZGiKGA2mwHA3sgtyUP8Gh4sT7qeh+sLeFIM1R3wSGR6XCXFgXmLYvshI5Vl6YlAGvA25uOKf1zBnVN3RZalkNKVaDqAuMONhnOgMjLnTwtPUeD9XhQFfPTRR7Ber+GXv/wlrFYrfwJTjIe72pliYHUw5OJEJxIAwOnpqV8/8ENs/NCH5qEfQMcgpQ/G8t1F3j4U4FjH08Jia3if7ZKDyzK/W+J4upgeGdNZ2+hp/EnHK7WTcXj16hX8t//23xrhk8kkuKubnkrC68bnGMvpY5pD95DzzJsIKdtGW3wpnLSPLX2S02+p9dOKA0C2A1mBrrMafloGjqPZbCbOY1YZsHdnrFWwsEBMSH/TFi6JXnSsUdC+VslRAnNp0gZ2DhO3Zf6bUkb7UoL7FJosSijto+Vy6XmmLMvGwKfKprYbLwU0XZcJv037xvJ0nUek9755702bkxC4sMadOfjOj5891Nweo5H/Hg6HwRfa1IkjGdCocQ/vIKPHSND6WhRsiTa8mwTbEp2dVqNdCiRBoe28xNtGog2dY1JeDacWZm1L+tTyUIPuYDCAyWQCw+EQBoOB3zXz6tUrGAwG8OzZM1gsFl7Rxju2JaOdhb5UfXPmmJTwK6Wn7WLpP5rOSlMKv2So5vgtRk2OjztiaXyODIRxeKRabPzhBxOUz6V5w1IuT587NrlRlodR0PomV7awpKVK2Gg08v+DYrB1xFYDcAVxPu0coM5tjyX2Tku3i9sdIcx3xjrn9k5YeswwTUMcjd65SXbS+nyDvQOK76AN6kd21QZPV3gnMY/DMI6bvqOzljrBTI5YzEtfeR85Fu4fLmizxq5VB+FYleL4k5fHf7tmuYHTNvYvpG/s3hXwId824oHEQXM3LK+ftR9ov6l9SNrFOQd1VYcfAkDz2dghqzhVo/cbF+F4EI82LnqUeV34G/u+3tSwfrUGV5Mv0uvtvbD+zjZCh3XeovIY7lySPszrGyxGFIBQbqTvNL4vHfRthNx+tPANXT9TMoz0MR6VV6j+I63LHHJkBQ24LJIClPW0I3w5fXhU7WAwgNPTU5hMJlBVFSyXS38kriSPj8djGI/H8OTJE38SDTqxUvY6uquKx/PxI+3O5fjuCrS1ecX4hM55NB75UpITJVlT0wvW6zVcXV3BarUK7EroEEG9lfdLriybkkVjc76Wjl8bEptbY/rG5eUljMdjODo68umm0ymcnZ15fVEq32q/kOwWuXqERHef0AVfLv2Ul4bDIUwmk8DGgKdepNZOjovXI6eNLWVZ9HlNN43pcRqdMZ0st7+0uZaevEjj+D3K3PbDT0TQgM9bdI1NjU9Kc1tbtkZPDuTIbKm1720BulZL/Gvpq7Y2t7brbKxcq102pgsMBgO4d+9e4xhj6YhirQ536pjiPgzMXQbtIZUjjhuNx3wyRKGW56NHZ9zFwZ0Stm4SLOW1oanPekiLe0wgdc7BarXyvFHXtf9CCcdJbMdVypirlWuBPhTPQ4NmDMF/ScGJ4coJv2lI0WdRjLSFrI86WnHwI1IofUgLNchxQV4bY7Sv1+s1rFYrH4dKHs7NqWPwJGWLOn+kY4+kvJxOjlNSxNv2BV9XY4o23YnLcWgKBf8qv43yILUr/Y3GAkw7mUzg6OgIjo6OYDqdwldffQXX19fw9ddfw3K5hM8++8wfQ3V5eQmfffaZdyb1AZqBLmUk4MaKlPDK8aXu09Du4aLlx+QKzTipQWwtQKVbuy+NC/ic7i5KmHNN4z3Fh7vO1+t18HWu1q99gNTuMWUdQTqmnOfH3xYjl9RnsfqjM3Y2m8FkOgEHDupNDW7its5Y3Bk7dFtHZL0/GljcGVtsnUfeKYv3yToId8ZiXiQXnVyWHbHEOetx7MoOdu46EkbbFZ2yu3z+CZHfPK8VpKSO/nSqM0x69/3rGF/ReCGu8SRO3QAHzQssjP2OPS1hPFwKC3bB1hCkC9KTu2lj7R841nk8qXujXWoAVznvmASAvWMfx+nuIR1jjODz4hjCeAeig1b60KA3cHJ7YJ2rZQXXn16Dq0Lnlbb+aDIPn99oGOpA9NSLQ4Mm60g2CmmN1/B9U0Fbt7S1yKJjSmtXTKamabnuJ8lmMTxa/XJsWjQOdRGtrBhNkn7A6+mc87uaRqMRnJ2dwf379/2OyNevX0NVVQ35GO1WR0dH8MMf/hBOT0/ht7/9LVxdXcHLly+TdyBKRyZjOum0H609tLrfFki8ptkTpN8xWY1+BM31QCk9LV+LAwBYrVZwcXHR0KFR55VOTEIZ3jJ/WWRRGq/ZJyQ82C6pPo/JunVdw/n5OUyn02BX92w2g9ls5u0JEi1Ud0rpPPw9xccx+u8KWMYa1xu4HDAej+Hs7CyYj8qybHyMaykrp51ic2dsfrbOwbE8MZtUDt5YedYxMRqNRHsPHQu4exnzbDYb0w5XLAf1bkpb7MSrmH1Lmx9ywLqW91HWXYE+18UYnyIfS/fZ59CUkm0skJL72kBMFhkMBvDgwQM4OjoK0l5eXprHy51yxlrhNoWuvsAyyJ3b7/TiC75kRH4bJo5vIqBgibu6EObzuf+yYjqdwuPHj9XjPLigHhMqLPR8U0AyOgPslQ6qpFi/CHvb4FCLuQZ1XcNoNILj42MfhoLdfD6Huq7h+PjYG+PoF9xS30gGAKoES05fTeG0ChHcAct368YMMlI8rgW0Pm36BfHXdR0cMYNxRRF+GXl0dATD4RCur6+DOknGSa28GJ0pxYc677iQjvOcdJoENait12v4y7/8S3DOwcXFBazXa/9VaJ9jWZpL6JPzgJSPQ0pJ0AwymiEy1X/UaMKF35TCmDIODYdDGI1GXuHmoLWPBjh2+VfytDxKR6zNEEajEVRV5T/QOLSsqdGUUnpoOsrr1vJyacSxQsdaURQwGo7g6vkVrL9ew9kPz2B8OoZBtdv9hscUD3ZlEodqURCHK0C4qxV2DkzcYVvs0wTOqAEL505XJ6ThuxR9JZkT1pF0bv/040NwyBbF/i5bpNHvou0yzQjOwoZDDCJOQRDGO3GgcQeqT8uPJRZ+B45SIczHCWGWNBanbHAsMUmHztbgWbvmkcVS5/Bw0o5if9J2BNjeibqptx8mONg7/CmfwP7dp9nxVOH2jllKR7EP3D4Yv/J4/5EDDdsjE+stAuMp5xxszjdQXpdBmrqsGzzniyviH/5Iefo0VLaBmAHWMudquhg3UL8NNo22QOU6KuvReOl3SgaK8RjHibICyhP4oR/Ga7KUZlyX6kj7muPU9NAUUDy4PmuyjoS3qipYLBawWCxgMpn48nl+lAHoB2uz2Qzu378Pjx49gvF4DK9evQrkMK1NuKzG6cU4dIR10XduClLzksZDVtwSz8TKseiXVVUFx/FSHDE7U6p8S1wf8zjqxG2M9PyI5txy6ZNDjv7ytgOff7g+OJvNAhtbWZYwHo9hOBzCZrOJ8nKq3zUdOJY+tt5redpATN9LOa9ynPkcuI2Kh+O8wO2ellNIrPzMN6DltmHbuTRmD0G8dxluiz7tqGHpSGkAW5tKMhjaGKybVzTI4Q3cna+VJdGCG2wolGXpHa8nJyc+/3Q6hUePHgW+HA16d8b2xTAWoSMnvQXHocBquOThODFKXnietq/JqS2ubyEPpAmLTzir1coPeq5kcUEDJ7NUWTl0aSApW23K6htiCh6GpYDmQQGEt/mbtIBTiNVfE3qpocQKqblZEqa48DcYDODo6KgRjs5YFNg1gYCC5HTDfuQfQNA6S3XhddDK5nftWoyQqXqg00kyWFmB5sd1BRVvqqhSYWI0GsFyuQw+RmgjEKfagOKW6NZ4McYDRVFAWZbw93//9z4NOgUl2mKQmkesAmTOfJRLEzeASXyVU26qr/juBW0OpvfBagY7zamaokXLw2mjX/hqMhlVCOga0AZy8mnzoSUPb8uUYk/zp+I5Dknm2LzawGKxgOP3j2F0NNo6uyrwzlR8Fq4InGaFK7a7BwfOO18DXiLHD/OdscE9swMI0nqDJD32mB1XTJ2kxUC+w1U6lpjGIS6aVouX8lqhwatOiPMPt493YXxjtyyJD94doZvjoOXR/MyhGzhnSXzjycptOFRJuOScDZykvA7Ck/+HzeqCZxugx/VWqwqKARmLOwer57uiyUOclmh4UQAnNaAdnb8av0WqyXdBN/qsBti83sDqpfDRCuUxkJ0vKWfBXYUcuUeSIft2SLyNoPGNlIan52k0XYS3PZUV6PGsCBajolUvxDxct+TxXG+RcFJZHGV6/B1zhCDgTsjVagWr1Sp60gr+ozESP5i9d++e19nwqek9Wp9Ksh8/DS4lF7bVS24LpD5PgcYz9J3PO5qsi7veeJ/jjjnpA+LY/KXxpxTXtp+kcS/RkqKJjnfpY2yeXypLa1erbdoie/cNMX30pmnBXZjIC9gn+JF97E5TikPjc+2qmxik4vuy98XwSGNFq6PEr7E1w2IfoM5YisfygYZ1Doulp7YpjfYUWNduaf2OzU1d5Lcua5Nmj5TWegyP8Y2lLPoekz0kemjemBzGeQHXJSttGkgndNByEQaDQXAHsgTS+JD4E52t1G6NVzrwe8gluLM7Y98koSoFaNyjgEfD4BnTeHk8n4hevXrld2l8C3cbrAK1lI/yOt19QgXFV69e+QVxs9kEX1pYt8Kn4K6Ou1TbxhYFmjdnMdW+1LEq3W2hLR91Aapsc+ekxeF5CHrwS+zhcOj7E7+YxOO0APbCW5t2w7xccEHcXFGjQg5tlxh/aUp3jEc5vj74gfYvHqsBsD1KoyzLhvKDAvh4PPYK0nq9NvMCP6ZQogchplhTpZkanijeuq4DnuDzIQpckqKhlZsLlrlF6vs2c5MGw+EQptMpnJycwLvvvguXl5dwfn4Oy+US1ut149jpnC/EOb/iM2UkQ57TDAF8zdEMODQsZgjB/9Fo5J2pZVn6neCcL4uigNlsBqPRyH/soX3Y1DdoShSNyzXmxNYnaX2XjrGWlH76j22KdzNDsd0VV20qGJQDGMBgf1xxQZ5IDnn6Y4wHsD+6GLa7VIsBcbpSf08RKpveWVvA/sjXRoPt89H0jaOQC/YOzad4rCxtMv5OccRAc65xXE6IIw4z6d255u+GU5Q7VQl+n19Kx/G6Zrzl6X+z3a4aXufCna8+rma42W7YwElM2562M2ljBy5oD97O/r/eluUqB6502w8NdvzmwO2dswYeo+PAg88uHH0tsXwhf2jAIRjv2LYbB4svF+DK5lwAsD2SGOcCaR3AeTS2rmlz/U3Lvzmg6Uia0aoL3IYucNNA+YTLClS+A0iv/7F3LQ2XgbiM1lUGj/GFhFtb/yXapHaQZEuKB4HqPS9evIDz8/OGA5T/xviiKODzzz+H+Xzu4zabjf9Qlh53S8vl8jeV5yldAACPHz+G8XjsZYyU7mGxXdzWeOpbf+b1sNQbYN/nNL1VB5DaTtNtOS5JJtWuT0nVgYdJ8iyvY2zeKMsSXr9+3QjHHYH8DmZJr8+Z+9/2+ZwCnz9iY3Q8Hgd8ulwuG3p8bN6X2rUvu2gb6NLPbfNyJ5HmQKXlaDYTjrcPOyC3oWnA7W6S8yvVRqmPuzlNEl7JHprKcwiI2UQkuM05hq4DsT6w2AVjYbHyrWWt12uoqgomk0nDKVsUhf/Q7OrqysT7ePQ9p3c+n4vH/lNIOmNTwk8fEFvgNbCk4QvobTCoJGyiMXwymXhnrLQd2jnX2SiYMuh9C/1BF/6iggpfsPB9sVgECyd1nrT9kihmDI7RepMQo8dibAYI2zdmxOaCnaSQajRo7WJZtC2KQ2xR4/S/aaC1Hc6VmAbrV5al6iiVlKVYuZLRw5LeGh4L43ej0H8a3hVwLcE2Gw6H3hmLTip8UqMY7hxOGVVjApRV4MK00ppJjXTcyFMUhTf+SEeIAIT3y7UZw10hF69ljtLyjUYjODo6gnfffReKooDFYuF3PVjuWdLK1dovR0a0COB8HEtjQSuTpuUfc0hp6e5wfgdhjoHFAlaDmUSnpY1jc41kAO0KKLNiG9br7W7A0XS0vTsWd8Y61zh2mO6ExeOKcecs3TkY9Ee9c0Dtdr/CIHSK0Z2sosOMpOG/LSDllXbIYp15XgRTmVIS4hwMfIiOhbG60/jGGMYwHkdxMfyiw1bIR8sJdp1y3OQZ0IEO0F245JxtOFf5PEXS8/9Ge3E6IcQdgOOvu7IqB3VZQ72poS5rv+sanbD4UYF3phYAxaDYH9G9c+IXxY6H6dHFO76mu2upc5a+B32CvyuhIpSnSL1c7aBe17C53IDbxOd7i9yV4zjQ8t0EtJkXcw1lUn4t75sqz6cg5lRM8QpPm5JFY+udJvtzfs5dP2M8QfV6jR6pDjSvJONq+odmTKaAp3DRk0C4vszzXF9fw3A4hJOTE2+s5/cBSvIebxupP51zcHJyArPZLPiQLgVWWSkXcnXrtuVovC+VnztX8flZ4rE+9c4cvS8XT0PuEMBqx8IPeXke6oTlerpWNwtdsfibcup0Lcui/1M+0/qQtnFR7HdfWuUFiV+tdgcNr9W20Xb8WSHXlhVLZ7HdSHWylG9pLymPtQ1j/MPLlPq+TT8dyh5kHXN03dRkgVgdU+XE2r6rPKutU5b1K1V2G16LAT2GWwL8QISe9qHJU3jMuuR0Xa1WQbhkW4o6Y/tmxL4gVzACCAXLNvnbgDaJv/fee3B0dASDwSAQqumXQTEcMbipun0LMvTZ/jhgN5sNrNdrePHihXdKYFm03JTj/pvEG10MzpPJRPy6UjrulirWMYGnr7ZHZZniwqOGuuCnRzJLdexjLUjRFztGFOlC/ud3F0p5coALYPgVIHX8UUEh11HDlbrUfaXaOoAnKFjvDaF9NxgM/PG8s9kM/tk/+2cwGo3gF7/4Bbx8+TL4+uvk5MTfFwuw5Q/OI9gXmpCF6xl+NJISqGkYN+SgolYU4fFZlF82m01gTBoOh8Ex79gGHDfdlUHpvQnoc63A48XwTtwPPvjA34G6Xq9hPp97B6XUvlalVzOmxQyj9IhraY7JAZpXuivYOweJ85nyqWRYxVNJEDeOk75lYIuiw9Mgb3a5K4iDZvSl8VymQB4DAFgulz4c58rL313C6GgED372AEbHIyhGBRRu62iqoYbB9qzgbR3BbZ2pfHcflg2EpwZbp2dwN/huZ6qnv4Bg16u43vI0dJfsLj62M9aBC8pDOmg7BmkIuGJ3LLMVJL8Z50UnhKNzjce5MC5YZ10zn+iEldLi7zpME6RlYY1nvaclCHOw3Wnq3D4N2wXL74OleYMn7lit97hS7b2PCtuTOi9pGznnYPnVEhbPFtudsYKxSILJOxMYngy9w7YoimAnOOUtHubpEMYRrZurHSy+WEC1qhpxeyJJ2K4+3BErgSR/0bkiZqhN4e0qe/Yhd0v9KH0IiPGaDKuthd9koPqstL5RWU+Su2lbY19jPL1PMmV83Gw2gW6BZVL83HGg1YfSw+UOfj1GCjg+/DgS6UntPAEI+Y3jxv/RaATj8TjY+cpxSWXUdQ2vXr3y15jgjjYLcHrwwznstydPnsDJyQlcXFzAarWC9XoNRVGIdrJDg0Ve64pfM7rTcvq032h0Wwz1UrzFgJ5TB2lMa/RaAevGx3js4waprtqpTzyPRd7/JgGduzabDZyfnwfxdI2k85fGA/yqpRhYxpdVLrFASl9rwxPaHC6lo2uWZDPmQE+gi5Wp0RF7l0DaiBArUytfKgvtRfwDodgpGBrg3BCz+3UZ55Ld/jZOI8yB3LVI66OcOlrXHCrDSZDaCc7rNhqN4OHDh778y8tLUcZ59eoVFEUhOmPpGATY2l/5nBWVDLsqQhRiCz9Nc8hFyypIU+iqCEqTG54jLZ1r3XZCojhSab6Fw0EX/o0tcM5t77zDRUYqN1W2hba++a8PsBi1NIOQli6VhuPjhvEUXk5/X3Nb3+3LBQxpzupKO82bs6ZIAolkWKH0ScqiNO+n6kfbwCKgxhTnmLIWA0nAo/1jFQBpfF3XcO/ePTg7O4PT01P/Zfv19XWjTKo4aTyQGo+ctyzzFKWD4+QfSVDcKHhrp0xQmvBd6luNR3PWUks/t1FgYviokImGu8lkEjjVtXK0/u1r3pL4VhtDsfmSj9sY0KOVeP/T/EUh77a+DYNfil8OQZPG/7Hxzg28zjmolrsPHzb11hmFO1/JDtiiJs5StytnF0ade3SXbOEK7+R0busYk3a/irtesWqxNLR+ZMcrf1Inr+cTYWdsA2dBaM0BKbn3/TXr1nCmCk5ZbD/RocrSejzOFxCW46A5HnfhjXLRCaw4fAO66LoLjBbmCOVl4nvjScu1tDEvS8tPcbjdXbGLppIf6/tqVW0/XCiK4AMAP/7IBwHgfxbBewOoYxUAXL0dn/Wq+fGKz2KUoa3A130OkvxC1+S7IC/H5IhYem2ejsmU3zTI0UdjcmaOLK3hwngq6/K5PkafBXJ1ay6vavYkjc5UGVz34+NQwkXD1+s1LBYLWK/Xwc5Vq17CaeT1HY/HMJ1O4fT0FJxz8Pr164Deth+n9TW/URx0XEvyk9Q/MZ1R6ntOe1taaXkSxMpI1cGi91jmdkk/T+FOrTcazbG52MofOWObpzmEzawPyOG12JiXxkJRbD+upPNG7P5XmlfC3UZvk/osNo/m2G66AK9T2/Jy6OVXfnF6UmCVi1I4ctLHyufzJwWrrU6jz2pvs/SfxQak8R+dt7T12kJnKk/XuTG3vBxI2SlidPAxxp2oOCaKIvyIDuUSbH+0t+FTcsZyn40ku9ypO2Pv6qLUFnDbshTedZeDdQL5Fu4+SMJgbJcrj/um9r+2cFkFXb5Qo5DIccT6AtPhrjQeDgC97bSjE75Gdw5o9MYU/0MC3S3qnPNHB0kfH8QEZonmoiiCHYEU+PGtXCDlPMS/lIsBFxBxUUeekHBQwxBAcxcG3UGcAuec/+p9sVhAXdfwb/7Nv4EPP/wQJpMJbDYbePjwYfCll3POK0l4WT1tX2zLmHBF27APJ5Jz+2OWY3fR4hf02m4Amg+/xMcjRLA+4/G4E82WdZkbF9oo/RRw13Nd13B9fQ3L5RIWiwUMh0N455134MsvvwzSYxtIygBXIiwKg2Y0pWMFeYnSgLTTtkgpPdLcJLXler2Gsix9uVS4pmUDgP8Y4ZB3xVrbEccb3/lvySutX1peiQdiSiwC0iauO27rXBqMBjAYDwAc7HfGFgOooYYCChgU27hgNyqioVUjjinqHA12qu7wBPdzFmGcJ4+ngWJ7V+2uLMznnb+7NPSOWHonLb87VtoZq95hawHeBdRJSJvdhWH0veFodc30MUcpz9tw5DoFP4tvPMluVwx3zu13w9Lf0k5ZxE92vGJc7Mnb0T9d+N6oB6kzrystPxfK1yWUF6XHqc17bQ2NWCd+92tbQDq0uRLlNZwnsE7SiQwS0HnJYoS/CaC7N3MNYG+bXaMPoOuMtGZRORMgbHfKH/SkD4yjYNEHKW9Kx5Gmxh3dUUT5va0jJ6bbtdkxw+mhcwzdjarxttTuAABffPFFgxbcuUvzdYHpdAp/+Id/CC9fvoTnz5+Dc1snLZ4GxWm0tnmOzG2FlNxsoZHyNT61q1dyQJpDOR1cz8zFTXlM6pscSI1ZCdrwHdcDMEyaT2IyNwdJd+dl3hZ04f22ebltAGCrGy4WCx/ObQp0/k+BpCtpH/OnIKX7YJoUrrb97Fy4U5uX1WXekugejUbB2MFTojA9lecojQC2D2Is7dBlTMTmVUq/BrnypVZnzR6dKjc2V3BcqfZO1aHLuLfm72rvi9l9pDBJ3rLQQPlis9l4ezONv3//fiPf6ekpnJycwHq99rv7rdcoICyXy+Y41BL3tWB0mZA4SBOJpeNue/HjUFWVupWZgqS05gj538LNQkpQacuHtM/58xBKBeLtEyzKQJsyY86EtuVowngsr6TsUjy5C4yUfjKZwP379/3uP4T5fA7r9bqTk57Pl3zusSzyuXzIFX7+jvfCUgeFdoxWrD68L7S6Skc9U4MMp4/eYSr1Mx+rFJ/UBlI7xOjNAVpHFDzQCUmdZJiO3kmtrcWcPl4v7hBta1TFI5LpBw8xg4dFAAbYK2t4ZcBsNgMAgPPz887HfluA8kIb4wMFOjac237I8PLlS9+PVN7Q5kepT6VyLPWJ1cU65+Ua2CRa8IM4bkiU3jltffVNW9pT85x1jQFoGhFS8jWte6rOAR/XDjYXG4AaYHi0O9acHBNbDAr/GwawvQd2sN/9uvWzFt7JRXfAFq7wx/363bOwd54hLgBo7lCtAfxdtc4B3tXpwPk4mk97AoCng5fDd8lqYY32Exy1ksOVvwd9uGsjzbnq07rwN48T03Bc3BFL6XEQ/GOY+CR5HLhGGum39M5xaWWL7dts+Ea8mJYF4f2quDs8B/ixybVTPsIo5PnJR9P5G+LXZoh0RGRbno7KRRoe6w4LPjfxdfEm9d2YfGHVIzQcVr0kJhe/bSDJ/QD7+97x48WYsQt5RjJUxvgU4+kzVQank/OstG5rcoSmy2trc45OZrWVFYV+NHNq/uD0aOXlyvsIqJfMZjMvm6fw8bZP6QddxpelXtY24O1IPzxFOTZnDud8FNOXcsFqkEf8Ek/H5ldpnMTGrwW3BrmyvTaGYnon1zmseA8FXcrKsbvkQszOENPFtDmxz/GZ0mPbjKuUfGDBlWoDibZYGTGZThrTqfVVo5HGtZ2DtDXJmlejObW+UDy5+bW0qTkkhvtQ61ebMcH5IobPUt+uMkQKr/aOa+5isYCqquDo6Kghr+H6PJlMfFjsZD6+6YfDndoZewjIEV4PARJT4t0XKRqwA2n8eDw+CJ3fQnc4FA/l3jPzTYaY4A4gzwexcddGeEYa6BetOTuuJNyDwQDOzs7gZz/7GVRVFexk/PWvfw3X19cwm82CL9zafE17m3cVcGfAcrn0TmbuUJLyaoCONclYgwIB3emlLdT0q2+A/bicz+fBzjsKscWX4o4JWV0dg/y41mfPnjUcrfyYMdxhKt1tQNPFeKWPr7mLooDj42OYTqfeMDGfz7N5FAVEanhCR/QHH3wAjx8/hvfffx/quob/8l/+CywWCzg6OvLjKFfAzjHu9WV4pncJX15ewq9+9SsvMF5dXfkypH6jgibyC71/11r/NoZkSdHuCnQOR17Xvn6P0dQ3WB0Nbfggt4+w/JjxUsPN5zqPs3Rw9bsrGJ+NYXxvK6sWwwIGMABXOKiL3d2xFWwdZYXbPwvY/3vEwnMAe+ctyRPsQB1AiA/TYJuz3wGOwrAzFu9/JXSh0zbYiQvpMRBz1IpRjuQh8b6PHHl3zTjutNXCVXw0rRPKcSwtC/NPfldsHabxO03dPo1PJ9wVizgxnO+iFY03EMaJ9aI0C23kagfr8zVc/vZS7i8DpBwftwEWA7hknOIfp9EdsZadFDxPSqa/CaDrY8ogZnFKWY2Qt13vQ0HKLoOO2Ol0CgDbE08sMjbVX6w6F+1blA9jfazRG9MxUHfBMqRrI1JOG2qwtRj/LbIFdfzF7mbkZTnn/Aky9EPZvgD1v+VyCePx2Bs86Wlz/KQjLldJMjYvAyDcyX+IuZcb3PE3j0coiu0JSvgRKkCow+WUaQULr+TgbOtk4eVKY5jHae2i6ThaPE9rnZ+5I0XLx8fuXVnnbxtoG2pzPIAsa9C4nDnQQlMMYienYZjVwWYBzVYpgSR/xPgO7+iWcKRol+ZYXFM49LE+8LWL02ehl+OR4vsam5b1B39bfUISnrZ8npoDeVrnXNKmmcrfFrquKYhDa2cqk+GHYM+ePYPpdAofffSRagc9PT31vzebDSyXywaduH5Pp1PVn9PJy9Nl8utLyejLoNbVEBoDCa9z4XEAPB01nmuGr2/hZuAutnfbSanPxaZNu6QcU23oijkAtAUgJTBLYYFBELrPddr8Scf7ZrOB0WgE3/nOd+Ds7MwroIPBAC4uLuDq6ipwzLY17luEmNy5Noc/tDmSHp+lHfkTE7ByDRcWJxoCLs70+FOpbHRqUYNRztHVfYxZbD/nHLx48QLm83lA7/X1dUAflovKER4L1tYY0Na5NBgMGscI4xix7pJGXHytxXyTyQSOj4/h8ePHUNd148jxHHoRtwaaICgJ5rExp/E6wJYv67qGq6srjwd3mWM6bRe91E5UFknRwpUzy+4ord2wHbR4qmTmjFs6j3PaY3T2CbF5KXe8S/zD24Ubiqxjxqq0Bul2TrF6U0MxLMCNt07YYlAADGDreB3s0xWDItw1O9g6vIp6l97td8gCwDYN3SFLd6/WDuj9s1gOHkWcvDMWd98W+9233iGL+cjO2CAvvae2gP2uWOcCBy1NH21/6vgjbet/Uv5wLMz4LjoYiUOykceF787t0waOTRfGq09o7oj1cw3B4d/rZjx33vpnSvYzDK+Go5y2CS0fHcIZwMckQo4TiY97DMd3Ta7JmWukMS4ZGmlZ3ADIy4jN+VJ4V7AataT0fK3QDJcavjZz7zcFpDbB9kYDVqy9KA/Sp8R3lCd5mJQuFyS+wI/a8N7Tsiz9P46T2Ik8Wp1zeJHztSQrSGMT09PxLMmpvOy2fM4dHC9evPAn+MzncwBoXmXD20h7p32POJA+epWGhovH8T5LzScaHhpO6yU5pbT51gIxGVpKkxpzGg4NJH7O/ViClq/J7RLE5FieTqOVp4mBZa1JlXOTushtgUUXPlQ5CLGycux2twWxeZuGp3ia6oupPtBku9h7bl20ci1hXcqI4Y2tLTmQy1c5MnoKUnOnZd5rsw5puo617SzzYe56qwEdCwiLxaKxXvFrtwBsG2e0+INvuZMGdtvFOwdue8K0CAj4tacE9E4Mzdj/LXwLbcG64LaFNouxFWJ4c40uKaCLiPZlV44QkUrLv5per9cwGo3gRz/6EUynUyiKwtPx8uVL+PTTT8VyciBHQLnpeZXu0pN2tklGCUmgjLUNfumV235IE+0vyVjBj9jFnc1thM8ugEYIvOuJ15l/3Y+/q6qKrlUWYVHLlzI4OedgsVgEOwtOT09hNBoFu3ul/qP8wY1OlJdmsxmcnZ3BBx98AM654M7YQ/E751tuSOxyf9NoNALnHFxeXvrxw/mU37srCdhIG3fC07bhdOIuC0xj2QkVq6e2jvD24/0spZXK4HWQcBxqHaNtKLVpjlGI5pf6iuaJjZdUufbKbe+OLQYF1JPdfbGDLR/i/bHgYO/UJKR4p+YAAGrwO1N9OuwuPF5Y+qdQ7NP6u2SVfH4HrCPhDsK7YdHZS+nmT7d15Pk2FprT76RVm9DRl8bvxu7YXZnqO83rDHlZGud28TStI+EAwW5X1THL0oiOWO2uWJpHuCfW766tBXql9iVxngYIx5AfNwwHpnMVa+MMkHY8oZwXW39u21gbc85Ia4uWT5Pp+r67W3IU5RrmUsYebQ3qW256G4Gv89hm1LglGYFpWtruMf1THNusD+gJKim6+X30mB9pm0wm8N5770FVVTCfz+Hy8hJWq1VwDK2mx/C6SHRq84Qk60hh9GM73ob0g1M+T3H5jta5DVAduygK+PzzzwEA4De/+U3gKMAyYnXW2hTfadvjx8zSR5iSHBibvyR6LMZZqu9gO1jk0tx1QKMnJu9a50o6t2q4aBpLW6dAkv81m3NuW1E8OQ6UHPv2TdjC3wSQ5n4erkHbtunSptY+4baoWJ7UuIyBNK9zfk/xcMququmV0jvHmapHl7krFywytSU+h3+0tagtvi6g6f9WGlK8htClvWJgpTuXV+iczNf1y8vLBj6UIShYPuzS4ODO2JjAlBqoOROxRRiN4bSG50yOaIinuIqi8McJakKrJEh8C99C35BaGHIE0BzcWnybxY2/c7rbCrJcsEgZxjSBJlcA4nOEpKCgw6VPg5WkXNLwLjglvBJIDpyUcUVSvlLKIBVGrAqac/LOXJ4GYTQa+T6iZazXa38sjLT+abR37Qf6FZd23IbUvtpx3bHxgLi4EU1bj3k4XRuLogg+gkDjyWAwgPF4HBhwLAI/Gve0o1aGwyF897vfhel0Cs+fPweA0HHZN0iyEK2/1lcaHgSUPbCu3GhI89G+0dqEj0teFuZHR/Z6vRZ5xyLbaHwiGTDoWKZ1sBrBUvLdoWSvmPLCDVa8b2i7Uj7mY4XipXHSx32cPzRljeeR2rkoCqjXNcw/n8Pk/gSGky0PF4PC3+mKzlXvbGNFeYcshu92uPrdsMUWl3q3KzpqicOWO2JjjllfBqZBGh1JBxCEB8cXA0kfVswGkgORvyKvunhYtlOWhTm3y8vfyW+aBts/eDpQHbX0GGHnXMPxyn8HxxS7vcOWP31eYPRK7YNyBk9L2qURXgNUiwoWTxdQzvUrFDTAo1hxrnz//fdhMpnAs2fPoKoq/1FNypkHsHdaaUbpNvOYZmzTcNF1cjwew8nJCSwWC7i6uvIfrvEPjLU6WY9M7RMkeUuak+k7nf9oGDd40TC6uw9x3pQhrg/om1ZNZ5NOkOFrDu8H2pYav7alP2avkeQGLHc4HMLDhw+9Xvfll1/C5eWl/0gTT3jR1lOJZom/Yuk13qa6QRe9XqJDkw0k+ngampfqApLsR/NpbSfponhk4KNHj6AsS7i4uIgeB2yxA1hB0kNjeHGtwP6S5GCNHku/0rmZy5+0DKt9g6eRxmJML6DA82o0xPQNq+7J06bsNxLOWLtL+r2Fp2LtfKi1I4d/ugDV4aU4K2hzEI2LQeoamxgvWHgmRrMUluLN1ByaC7kf0XC7SBs5Jnfesuj1bSGnD2N0WOdErexUPitfptaHWB5eDr5b51FrH2lrKq55h4DYfEvLp0CvcUOYTCbiqbXHx8dQliWsViuxbG2uu9XLKNsMrNQEFQtDyBWa2gJdmJG5iqLwx9R0hTdJgfsWDgPSAnJTQtQhQFvQrWPWquxZwdKGkhJtUS4kWvC9qqrGHEGFHr5TNEV3Sjmn9MeE2r4gNvenFnatbjmGAgteGp4ylnAYDocwm80Cxd45553s3CCXA7lrJv/S1OJcxLWLfzVvpY+ud5QG2oYxwxO/x4T+3mw2MBgMYDKZgHPp+50pXmz7mDP2yZMn4JyDL7/8EgDy7nvmdFiVQW5EtBqtY/xI7wLTDG6aIExxWu9adc75eWmxWGTddczrww1CuTwvGZJ4Wbxc+t6nwmc1yuBvycio4aQGPa1srmDxd9qnqbXMKlu40sHq+QqgBpg9mW3veR0V26OIC/DHCbva+R2w2wLAO1CLugiPLAYIjyeud87SgeKQdRAcU1y4vTNYJ3xXdsGOKUaepA5ZpBfzsOOLxeOMHWbb1cewpbLhSCV4AEhfOPYupI06Yclu10YaFk/jnGuGN57EQRo4Ysmz8Zs4ZX0Z2jHFtY4v1qZmhzeNJ3WolhUsvlyo5Yhl73AOh0MYj8dQliU45+DJkydwdHQEX331FVRVBdPpVP1oV5qnpHHbly4g4ebzAl3rh8MhnJ2d+XWHX9VAaedzb2yNaTsvc37U8Frl5pSsqNHK2+lQhsUuoOkCh9QnpTZDeVlKp+XlcpRFx7CMEd6vNA+X8QFCQ/VgMIB79+4FJ5YAgHfGoryr4dfojYGmR/MwKt9L/JgqN6VD8HfrfCTxHW9bDJPkpxid2CeTyQSm0yk8fvwYlsslzOdzKMsyMJZyfszdtcfLlozalrZAnR8gfvdiroMg1qe5uFKgrR8xHpPWsFj5sXa16mIaHRLOVL5YXF9rcxs8OX3Yt71MyqPJEm3p0OiK6XeWtd2SPqXv5UBOGRwkuaoP0OwD2n3pVpzSb8saxvP0AdY5UOOJVFibvmgzb2ltqc25lrWUQ65sIuWX+JvaSK1zviUuJhdKc48khwLs5Teefzqd+uvVaDjiynbGWoTY24bcxec2FR8uyFnSfwtvPsQG/ptc1iHBughoEBjwWubPpcF6v5GlbE57XddwfX3tFwQ8clS6j5EbByyAda3rOnAA0+MzpTwW6MKTVOnG+Zsbs6SPWrDMlDEsBlq6sixhNpvBeDwWHaq4IwT7COPxqF1JMee/8V2j6yYAeSnWXjljBPFQ3pQER9xRPJ1O4Uc/+hH89Kc/DdIsl0v4T//pP8H5+TksFgsYDocwnU6hqirTPbz8K/vhcAjz+RzOz88BYPu1Wx9tnNMutD3wC/jpdAoA4J2avC9SfYNAjfnUAW0xYHL8NC3nDzS206Pe2ox9xM95ixtDJIE5lUYqh/+W8vYpi+UYD2MfTXCjgrRLHP/pMeypMZviC1pu6qhAAIDyqoSLX1/A0XtHcPSdIyiggMLt8DjYOisxOT4H7AkQOj/xOQB/T2xR7ByfBfj/oij8bswt+t3O1QK2u2qRT3c7bH15BYT3xu5w4zHFGMbpQUcwhqGjT1TGBe+ddIctydB492mdki6VBuNZ+/v+c7s05L3xG18txxPjE9NqO2JpOD+mmBxLjLiCf5KG1080qNKfbr+LltZNqkO1quDqH66gWlTNvjECzvV4//m9e/fg9PTUj9e2X4b3MV/FDHjSXEDnC3Ro5Ojc0k7YPmUdaX3DMH5SQI5xh9ZdOsZVWksxHX4Yxtf1uwDoQKeQoq1tf0lyIC8rZjuJraEaXbn6HR2PEl7URaQ5pqoqeP36NUynUzg6OgrSaKcfWeik4zBWx5ixFWmXyraCNCakNHVdN4yXKaDtLsl8Uvkx2iiezWYDo9EITk9PYTqdwmKxgMvLS3jx4gUMh0PP/5ItQfuYUyo7ZkuV5HicQ7Hu/GQgrR26Qmq9SemkbfhHm09TpwZqOoY2j3axQ2i0tknbx1z0tkGOnKDl5xCbM6XdbDHQeDRVlhW/hpfi5jyi8ZG0u91CY4pODV8qT58y3KFwdoE2skcMF82rAT8eN3bKqpVW6xiyzlXamM6xi/UFKftKW8BTDiX5AACyZZ1k6raTTtvF5VCDzYrzUApHDHduW6XS37UJKxdy6Y+l58r3TbfLocrrurjm4L6pdssRHKzCRpd5KCc/GpOs/YJtalGunAvvlx6NRt74rtFiAantYuMoJw0P50aqFC7JyIDKqYUXUzxLFciYgQ0BlWLsZ6qo0zIHg4F3pFFAZ6GlryWnGaU5F9oqybRtpDbiaXJxc/pQyJxMJnD//n34wQ9+AP/8n//zIN3V1RX89//+3+Hy8tIbLNDpbRWA0TCEZa7Xa+/0xPjc8U9xW2iQAPl7MBjA6ekpFMX2WDt6kgaXsSRDSGz+1pQ6qb6akVgqE/shNR9b2oXyllYvGq/NLZZyrPTwci0g9QPFkYM3ZbDFMcDvkOMfCMXGa876FaMP0xTF9rji1YsVjE5GMKtmUFe7UwGoQw5gu7vV7Xai7nbN+h2xxd6p5u9zBfDOMbozdhsc7pLFcopi7+zEXbV+B27h9kcawx5/4zhi0J2mPDy2+1W6KzbmiA3ieDLH8rtmXJDOCbgcCVfS0Xjntv1BaaNhsR2wmEeLk35rafh/cFdsDBjdvO6NNqdZnYO6qmH9ag31pt39iABNR8N4PG71MVAferc2b0syAA3jshKurfSpQWqd4mV1Bc1owsvj9FlokOZkxCHJfJyWPvrQAjF9w6pLHaJvpPaXaInpC5ie82yqz3k/aO8ol0s7J50Ld7dSHHVdw3w+9w5u6YOp2PovtbMkQ0t0p9orFZcqxwq8njm6vmQ0tdIQawO6ax8AYDabwWKxEMdmSi6O1cci2/F4PM0mZuyN6WYpiM1PEo4UTq1P+5y7Uzj5upQaM5iub1o5Pm1us+JIzYk5oMnuKX7Ixd9FD4udBCLxQZf25Xn5+sGBl4m/rfKBlM5Kd47ufEiIzXmxeVPK27b8LvlTuBHa9gudrzV7i9Q20pot2ShQb7CMNam9Y2uJVB9OnwY5awQtV8vH56UY3jY8oeWJjX0+T8VOLqL2sP+PvT95kiXL7sLxj4fHnMObX1V1TT3IqO4GCROg/skwkGHY19ggVmzZsOVP4M8BY4dhxoIlBlJL3UJq0d2oh2pVV5VqenO+nGKe/LeIPJ7HT5xzB3ePzMhX76SlRYT7Hc6999wz3oHyu9oRfUzxNie7SzHQFDLX6qmqk12DuhkI9WUVBh1SzzaZVyyE4BIyOUPSy3e70gca1KUE1QGWANkVOgpRHi1hGNIGn7Di4BNyPmOY8NMuAweQH2P1xRdfIE3T3FmXJAnOzs4Kq9dDV0hpuLTbbfT7fdy/fz9/fnJyguFwiNFoVLiYPGbFT6ysICEWk96nOIeAy6ClsSFeTUcNUz4y6sl4Bi6NaRorekdKlLYiPkThqANiHBlljtKjNvOdBNJZJdPTkYyj0Qj379/HP/tn/wx/+Id/iH/5L/9lnq7RaOD8/Bx/+Zd/id/85jf49a9/Hd0mzjdo9zIFdj/77DMcHBxgMBhgOp0W8OZ5Q4DzGeseZl4ercSfTqdIkgR/8Ad/gNu3b+Ojjz7C0dER/vZv/xaNRgN7e3uYzWaYzWZe3sJ1C14npyW56p7GnOhdKp80/3m/cKCjWfj4c17HDYn5fF7Az+ewojHT+lK23ZVGvpN94oK6ZLRGA3IHswysWmUlSYK9vb28XLqvxHLWWffKckeEy3AIOaqP+Djhs5qvsBgv0LwwOZIkQZKuA61J44I+GglWWOW/kaGwW3XjMxO/Hf8J2DHDCS53vl58Jkgud8iKvHJ3rLVLlo4kzoOw4jePv4YcT5z3Qehz9qwwdtlmmvx95nhOAUntO0uXZeJ56Ke8G5bvds2K37V7YbMsQ7Zku2Ev/i+bmhXxBquf74BV+majrfxzlQFLFMazDCyXS0wmk1wuPn/+HIPBIN9h5zqiVR5jX5deHsIHpf4t9es0TbFYLPDy5UvMZrPCwjXitVJP1XanhrYp1i6R6TVbQfocpO4i5SlvA72XMkvybH4XOz9Rgpdfdz/4ZCyXhVI34O2tg94sO8uy2WP0ZZ5Xylr+aTnStLJbrdaGXCM6IX2fgMptt9tYrVb4+OOP82PJ5/M5Op1OXgbvdx/4fB28/3y2URmbItaWpnSUj3RIWkzsu66rDJ1Z7eK0m2VZfizxkydPkCQJptNpjg/ZdHRygTU+Lv+DpuPx35z+NHz5ncka74m1eSwI0aFdZcu+8dGVnMcaDj49n0OZEwe35cfidC5liWsuXidY/NYFnH9U9Q9a8yPGT1FF7mlA9KfZSlLnkb4OFz1aC0u0NpehiyqyOaQfY/i/xD/Wvt7WHL1K4LQgN5Jo/RGSRgJdDWX510LKiuGLPr+Tq0yXTibnDekKITtY69JHXX4Pqx4NvxDfnIToY4p972JAY8Iux5Mk0hii3abA8znLtN++5753MXl2iamFGINl8saWdZUQK4TKQgiNlRGQshyrnpiyfHMmdqx5vlhmqr0vwy9ClJOY+ckVq8lkUtgBSM46F08MBRJ4tCORjtyaTCaYz+eYTCZqnhhDPwY3njdESYhtc6yyI/Nqx9FZ/zKN/C7x0BT9MnjWCdoYxPA0zXnADVSucNFK9du3b+POnTu4e/duITjV7Xbx8OFDvHjxopA/lgZ4PnJ4vHjxAuPxGMPhMA+K8rRlwMUrOT/lTiIAuHXrFu7fv4+XL19uOKw0B4hVh6veENDGjpyPWlrXkXeEM3du8WB/GXx9OmOIo0mbb7F4+EDOnapGtyyTAh6080YrX+sra5w0Y8nC1dXX1NblfInFaIEkXQdh892vKxR2SSYrdjRwdhkQS5Cs09IdrAkujynONnfC5m1nu2TX2ZLCs8Ju2kzZ8ZpdtIPeiztgC7thWVr1vey3kGheXrRShnzk+s0CjYV3xvO87y+e+QKxfKxkEFSmUfOwZzyfmSbLirtgs802mW3U+iZjdKj1JWtvskiAhZEmAPh84XyUrqLQdIEQHhX63soT45BxzXX6Tsd48TyhelxMG0LLDPURuPCsYhfwcmmBH1/Ap0Fd/RAqv1xySdM7fPaWC09rsZFVnqyrDM36bFhZHx83qadSGtKHpJzl+cfjMZLk8hoHnsc3bhpesk2Svnhal50WAlVsD84TeFm+MmU7YvUvbd7L/GTnDgYDNBqNwgk0Fo5VfXLaeMk+4mldgR1LJrh0vKq2b1U71IWbNU4u2efCJwTfqnMjtNyqc6guiOGXLtD4aFW54Mpr2YZWHvmujK1MebU0Fj+SdryrTMkDfLiEgs9nVEVml6VrV74y9r1FxxqeoXw8pp6yIH1KFm78naUjxYxhDA8t03eu5zKNJQN8Yx1aVxUZF5Jek+dVyiOI3hkbCi4GuI0O4mljVkpVdbDF4BZaV13KkwVSOa6L0VSFOvC4yvbsUt/FQJ3KXUyd2+qrugWmqw5ZT4yB72Pa3CnD76yRMJ/PMRwOg8r1AV+R3+v18O677+L4+BhPnjxBr9dDp9PBZDLBbDbL87juMqyKTyxoDhoOku6095oywu8wkzuO+Wp2iQuAPEiu3XmrAcch1sG0bSgzb+VdaFoZnU4H7Xa7cPw2AXdWzWaznA6B9VFiH3zwARaLBf7P//k/WK1W+S6D0PYQkCOUdhL+8Ic/BIA8OMvv/I0FjUfEjCvdhfvNb34TzWYTP/nJTzCbzbBYLNBut9HpdPK7+ULLJFz4J6dLzXHG+VKz2cx358/n88JiEOpL2j1i9QntDqHjobPs8lhuqy2+fqvbUJJ11+G4kDwzJGhN/e8z7KlsuoOSdnXI0xYsh5/GH+tyRFJZ0xdTzE/m2P/WPnoPe0ACNJoXPKJxEeRsYL0zNkvyzzzIRlVrnxnWO2iTzf8kYccRI9m4Vzb/x2U9hR2wSbLxGyimKfQbLuviv9eoir5P3LylcCSz2bn8qxJIlIFJsLFl7/ju0Y2ALH+fFfNvpFkpnxdpNj4j7oxdLVd5Hnou/wttkX3C+kM7nrjQJmy2L8dlCaRHKbJhhvl0jmyVbRxHZQ6VmGukV5Cu9+WXXyLLspzHSrlozV+XY2ebQPX1ej00Go38qH+uB/H+DXGIhjg3Yu1on7PHqkcrS3u3QUMsj8Vv6f7Q0WiU69bbHL8Y55WUt4SzlCVlgU4k2d/fz+9TtYDqtvwVlsy29ButXF9bSD+R5dKuSb7LU/YlPWu32/lz2slC9t1isfAuSguBbfiKOPD5yf99c4X0viRJ8gUadEoQ9Z3PZ6fZWi4dxeXUpROLSL9//PhxnkbjuZp9pt1xLevR8Pa1S5ajHYldBUJozKVvy37X7IlY0OaqnOMhvoYYndWit7psiZCdvdv2V+2C/8AFPhxj+CG3p2J4n+Z7sOQL+YIkEH/gdhiVzXHhNEGyg9Jx/1qd4OLNZcCyza8SytRp6Ww+/utLUxZIn5I8XktHctMnI0mvqAJ16B5lwcK9Ko3F4OaSJ7FtjMXbDMZaBfkcQ75noUaZVoZLwQrBrwq4mHRofplPc7RZCp5WZx0Tp45JtEuCX+vnqmWFvL8OoeSDup3UVdtYhbn5aH8bOFoKdN3zRwPNGKFji7jxXvWYOsmDuJJIRyJzJZMf2esqM7RtMfml89RloGkGnqu8WNAUNaqXH0/M67FoOLQvY4z8MhDbFyF4yzSchrhDh9KSwTMejwvHhjUaDZyenuLs7Ay9Xg8HBwc5HYbeI+zDlYKD/DjeWOPORWvaMx4wWy6XuHfvHvb39/OjHtM0Rb/fx3vvvZcHY6fTaW68+eaiDxeNl7l4qRwzCfLu7BC+HDp2IfJ4W8ZnmXKsvnU5guR8l2OlvU+SJA/Ayn4PoV/N0SzH0Hqv8TXJ94B1EG01X2ExWGDWmaHT6KzLWF6+B7C+t5WXwYKZWOHybtmLQGW+y5XuhG0Ud71qO2KpXN/dr/kn3xGb4TKwy8vOsssgbIZCoNW8OzbzOAOKkVYb5Lts87sWbAUug42FtBlra1b8vfFdpLE+C7tXWd6cRpTy5PPCs1VWLFNp98bxxKwftL7NsqyYhwVtkQGNRQONZQN3D+9i2V5icDrI9bEQ8DkeqRztPnoLfDpBiBPbeubi4XxuN5tNNJvN/L5Fl11E7118idLwtFUhROeUekiIfsnzc34Y0gcUhJc7K68bZPu4zK/ic+A8IUnWAenlcol2u50vLPPVY8kaKtdqg5ZXo28p40heu+aZtrDKpxvLeaLZEVadmu0RAnXZyBq4cMqyDN1uF+12G71eDwDyU5foLl1aPJamqRnwkOVrdFoGbz6+Gg2V1V1dtgDnEXJuuHD12RexfWDp+L76rLrL0FYMb5Z1lqmjbB+H1BEjMzhekieE4uvCxQV12GNlyw8BjSfLd5YcjsUnxD6idL5xkTzWJa9cz3xg9U8VGV2mbh+E9G1V342vzS58LTlcho7KgNV+WQ8tWuLvk2Ttm+U2SFU+GQoxYxaDQ934x+Dpm7vaMx/txfDZ4J2xVzXBrc4rcxeiBmVXLJVlGi6D0rqvpA5heJVw0/B9Da8eVFGirfJ8sG26l4ofGa91lEt8kO9ekE7Fvb099Pt9fPHFFwDWuxL5aj7Xiq6y4Ot34pmxK6lj6/GBJpRJMNOxzrwOq69czgTpINw2hCryoWn4GFFbuEOG6uT3XdCdWo8ePcLLly8xHo/z4OSHH36Ix48fY39/Hw8ePMidmHwBQZk202ensw4QTSYT1WFWF3Blr9VqodfrYTAYYDQa4V/9q3+F7373uxgOhzg/P0eSJLh79y7+7b/9t5hMJjg9PcXPf/5z/PznP8fe3h7a7TYmk4lzPnCdwnLyURCVnGHyGD6iDS3gx9vlCkxwhxM3Jny636sA8mhmcjxzoP7Q7iuyDDY6Wm8wGBTGju/Wo7Er47x18ST5THNSy/Tjx2NMnk1w+/u30b7bBhKgsWqA7o5tJA2sN1Sud8Ym2UXehNWVJSjcGct3xRKwZ0mSFI831v7lO/k7Kz6no5QBbNwhS32X9w+MvqdyY8HKk/m/53OfBTA3ArVaIJMFPel3/hzIg+kb79h3cyesfM93v1I6ZUdsvmOWt0O0jbc5rwcCD4HvRpszACugfd5Gb9XDP/n//ROkaYpms4mTkxN89dVXlexTwoNOFfDd/cTzEVwH7yS8+/0+2u02zs7OVMepdJhlWXERkpQr9KzuNvmCIzH1a05ZagPnvS7nPNHQcrnMTwi5bhmoObpj7m/0lQms5RrtjKWxH41GODs7y/vOd/oOB6Il6n9N7vBAn3bnuVYPv9t+tVrlJ3rQmNEuTzophxbGyfIlrfCTK2LHW94VLXEPCeJoer4cI5rbXNeTY8LTSByobaTr3L9/Hw8fPsQf/MEfoNfr4dNPP8Xjx4/xox/9KNdzSBfmizAl8HG1giRae11902w2N3RXWiRB4ynnAI2rVmbomMp+ItrQyqjL/pM8rkp+7V0I/cXWE8qXrblcJ0/V2iftdDkXaJwlb9BgG36s65YpIcD5SAxfDAlkxQZLygaadqGvQ+dcqK/nOiCWh4TowZZ/qKof0QJ5nYEGhDc/AdHiEbdu3UKzWQzX0Qk6JycnODo6KoUngavPq/ggt30CwasEhdGNVeo4uAydULAUEPlZFmKVOB9oiqgsXz7jea13IYrYrjLSXYC6hOJN7+MqSqlUMLcBcg648I0VylY5oWVZOGpOZ199VdNKp0KZenh+K7jCHfn9fj93DpZx4of2cWy6uow9H/B6NENL6xMe2JJygX7H0o4l+65K8a8i1+UuSSqPnA/aEUHtdhuz2QyfffYZHj16hKOjI/R6PbTbbRwdHeGrr77CZ599hsePH+fHCdNO8SpAjhAfH4oBre3ae04rdIQbOXVv376d79AdDof49NNPMRwOsbe3l99zpekgvF0aPiG8XdI9jRs/HlmW4TOMyDkX6hTi+G7TyeKCWCebzEffuSNX00WtfBovkr/5HODOQ467xTs5/fhsAI0/WQ4R0wm6AlaLFVazFRrNxjrwurzoh4udsoXAKguKJgkLema43BXbuNjFuro4Tji7CAI1Lj8BbO6OpcAuq6+wK1bsenXttOU7XXme/H3enGKglkPMPbLOZ1pwkn3Px1kLXGppsuJvSld4to6ir4FipDIAK/Nm2Lg3OMsug61WwLZQt9IP+a5Wow+c8isrtpnwGQ1GWC6W+RGzh4eHmM/nuTMlVgZpPM1yDtat62hyoIzNz2W5FURz6RDyZBefrXvVThyrf1xjQmld75fLZeGUm10BjZ9rz2JtQy5/ms1mvujO5T+xypGyi3YYk97Nj3zkZcmjLC0bl+iY6/E0Zrxe/t2nZ2l4a3Tts2H5SSgu2at9t+hXk9M+oLolz+D/PKiyWCwwn8/R7XZxeHiIt99+G/v7+1itVnj69Cl++9vfFviHBUmSFJzXobqkS9+i5z7b2hrLkHpd712O+7r5nYW3Ned9/FjmDbFDNJ2e01JInRJcPp4YHqXlkbRjjX+WZYVrnyTP0PKG2m0uCLHhtg1V9BPXeGu05vNJyHHcZh9U8S2WrUeTmWXK8ckOK19sfS5+EepPraIDhuourr6x5ruPHkPoQ8NPLogHNgPKVHen08HBwUG+kG08Hgct5LbAag8fh1A6ccmQuuZlTDlV56uPX8fqUBwq3xnrqrwOIRGiWIbUVcfAcwLyHSu0LaYcAtsSQFXL9eUvW75mKO8qbGNs6qbtusqsUv8267lqkEZ/FcWGr47Ksrj7sYHiXbSUn8qgXVbtdht37tzJ0/D6XEryVfQtN/brABfeIUqJBuQgiDEqLRm1jT510WCdc5Dv9JB0SkFHDo1GA+12G+PxGD/96U/x9ttv4/PPP8+DsV988QV+/etf47/9t/+WrwSk+0tdO499Mof6OGYu+cp1OXPknKKdEsD6+LbBYIBGo4FOp4P3338fjUYDg8EAH330Ef7sz/4Mh4eHuHfvHk5PT/NdvD6Q9EWKPd1pJp3oXPHnfasF0S2QfUT5+HPJF13KboiTuA5wGVGx9XF+mWVZvruGds8TaI6gkHGle8/4sdWWY8syQq3xDMVDyjcOhIt8vpwusZgskDST9d2xjSQPjDayC9qjoBiwufuVf8rvriFiaZLkIrjauKhHPudp6ahi/p3yZJdtzbIsrz/JWDkZC8zyI49ztC7exWyV1ZJm+ve8/2VQ0rUrVrzPMvaclbfx3Pq0dsJmlwFPvjNW7ojlefiO2LzfOJ7KpwzCFnDhbYDAfZkhW2R4efQSjUkD3W4Xt2/fxoMHD/J7ssvoYsCmg8NyEJUJmJSFGHmSJEkeWORXWIQ4nfhzCn5p9ZflvTx/TBkhfU18V9vBp+nJ8nM2myFJktqCsVVta5/szbLq10HQOPf7faRpmt8xTH0gF4qGyB3gcocIzUF5Fz2l5fczuxaxEV2TPURAwXPNJ2XNW/49NBDDcZC0S8+4ozbUUS/vOeX4hNgDsq2aDkf1yGtISK9tt9u4desW7t+/jyRJ8Id/+If48Y9/nAdjfb66JEk2dp6HHPEdoitSuZozXDrCOZ+rYqPxEwJc+Grzs6wu6svLdfGqzmsXDqHt8dWpBQAA/T7QqsBpno8J2XC0iJ3qHw6HG/OXL/LYZV/lVYBFA3X6d/inLNuiHVdZGs+0bNMQvcM3D1xzMKaftkFrIX6/kHqtuaCNW2g7QvqmzDVPVLYLH+udVpfF6/nRwy4c+/0++v1+XtbTp0/zjQpAcedtVbDmEX8WM6dC66yLH1SFUDzK8PbKwVjAP0Da8212rrW6rk5G71IcNOZaxuAKdYaF4lYV6phU2yj/Jik014mrz/irCiF84DohBKdt4O1S2kLAEnqxDF8a8lRGq9XCw4cPcfv2bQwGgzxQdnx8jLOzMwyHw+DyLXyvAmIU3hDgCnWMEI55H2KAVjXCJcQ4JGPTqc5u8Z4Hq7X+oqDs0dER/vqv/xqPHj3C4eEh/vRP/xSffPJJvmCAgoSTycQ81szXjrK06jMctGfSCCcHNB0znCQJnj59iizLMBgMsLe3h+985zvY39/H4eEher1enp/vRLKOtaT33HHE56imX7hW50sDQ6NLn8OHHHWyfi1fDL+uU2GX9bdaLbTbbUynU8znc6/DUAO+S5wcxTH4ugw/lzPWZSjy31qbLJqSczfUicb56fTlFMvJEo20AXSBJE3QyBrIkgyrdLU+rjivlBXSYM9E8DVJLu6MvQiCJsl61ywSrHdqJrjc3ZqxvCtWB3tOu2KT5DL4miSXAVbpbMmyrBB45UHXPB/VIfrNF4Td2DGb8a/ZxrPgoGymPGcByfydfJ6J5zSXV8onS5tlmb3blZ7zoKwRjC12BcPV6keOI6t7ox9EcDpbZZifzjE/m2M5WQIr4MmTJxiNRjg9PcVoNAo+VtgCTcewdEbOm+rgeVX4J+EyHo8LwVR6J8uUdfkcpDw4U1Z/42WGliEduC7928rry7NarfLjb2OdjC6cy77XcJB9Ric6xBwhzMuiANdwONw4ppoWhRHwo/p9Tk/+3po3IfKK56OALYA8wEJlTKfTXIbz/kiSpLCwTsOVf0o85fywdDStbdZcc+Gh1W3hGaKTyXnDr74YDodYLpf4kz/5E9y5cwfvv/8+er0ebt++jeFwmPfdbDbz+srkcd5l7D6Xw1jjiZJfSVrT7g120aKFm6Xf+XQ6rbwyerSrfF/eqrZWWRu7DO4uPdolW6055pLd9M+vJwm1Hy2oy9YJKTvUX1B2/Kz3kp+E4MA/y+oMLnqK7RuJi5SnIXmrQh3lhMqWMvW55I1VbgyvcemBPvkQQqtykVMVsMqgK+M49Hq9fNMMwWq1wsnJyYbPlvSUsnNDmweh8ku+c/V/iH5RBlwy1wdl5WhsnYVgrNXYMsaQld4n4LS6ywxCiGMpBA9XOdpdKrHtC1WMX8PVgVS8dxHK4lfHPK67b1yGUQy4xq3sPApVRLcJLp4SY4gQH5c7ENrtNt5++200m02cn5/n6Z88eYInT554cQmFMoI21JiuApaTx6W4ufLwNJZMsMrQyiybt24owzu0/uAONm1VO+0KPTo6wk9/+lN8+OGHaLVa+PM//3M8ffoUe3t76HQ6mE6nAJDvMqyiJ4QYWaFKmeZcA1Bw1HFnI/VBo9HAs2fPcH5+jq+++gqHh4f4N//m3yBNU+zt7aHb7RbmMCnYfLcGd3STw5Mci9oxfQQuHhNiBGk83Eor7xKWdZU17LcxJ7JsvVjl4OAgv9uP796RYI09jZe8z046HjXDUZtHPoevxEd7JyFkt4d0FMc6QrMsAzJg+nKK+fkc7TttoIH1ccXZ6vI4Ybl7VBbFArFJgwVdL97lxxU3knVQjYK0tLs1UYKy9E/1id95HsA+vvhid691bDHl3eifhH9VZAsPEm6+VH9v5GHf87ozlj4r9jmNlfzN0xWeZfqz/NO6M5Y/X4l39L/arEe2Md/RygPG/JloU+EZ7wuGY7bKMD+ZY/JkgtVshSRN8OTJE5yfn+fBWC7D6rAdQngs5/PyfVWbMSbwAmBjlz+9t8rx9ZEmO6r2aVknqvXOWrTkogMuE2hHKM9b1/jVBRx/CiTI3bEhsprLOr5zFUB+dD99p7T0nXRFjd61enx96AqESNlL6WjnCR21S7vd6JQL0rGkfRUje334UBm8fyz9zVeXy04JxTNE36N+SNMUo9EIg8EAP/zhD9Hv9/GDH/wA9+7dw/vvv4/BYJDPCQp0W/Vx3ZfAtTggRo900bLUTzlOWlBFpnHVG2JXWu94v7js1bLgqjsmf0i6kL4KAaufLP+qpN3YfrTmaZIk+QkK9Hy5XKLZbBZodlf4/XVDrIyWoPEki5e4+jx0vGPx4zqDdm95XfZrqI0eC6Fynn8vS9suGVAGt9h0MXld+ol8pvlpfHglSYJ+v4/Dw8PC88PDQ7zzzjt5GmAti37zm98UyiO9zXcFAK9PtiGU5kP4eBXaCPUN1clTY/QKS+cPgaCdsbEOMgtC8ocwDMtYCzUeXRBqOIaW5yI8SeTbcCa+hnh4PQ5rqDLf6+AXZcA1X68anzocc1qZrrpiBR3dYfjJJ59s4DoajfIjLqQDqophdFMgVFkiKNPWEOdRVYN4l4CceuTA5jS1XC4xGo3y30dHR/kuiiRJMJvNsLe3V3knkg+se++40cQNbAuks2Zvby932i0Wi7yt3AlJjkrqp5cvX6LdbqPT6aDZbKLb7WK1WmEwGBTmfJZlhWAaOTnpfrbRaJTv6tTapOFN7XMpmFJ/4Y5XVx28LmmY8v4PPRZZc6pUpZF2u41+v487d+7g3r17mM/nOD8/LzheQ4HSS2ejxmMsh5zL0JPtDpE9ZKA1m82c3mT5HH9Oa9IhGgO58brMMPpyhLSfYv+9fTTaDSABGquLnUZZst4xi0YecMsDZnyHLP2m74nymz4pEEtBWVx+5+/k87wu/h0sQMufZ8p3lkf9nbEgrWeXbN4PrmdKsLKQJhPvKH2WbX5Xfm8c5cvfZfo717HE+U7YbDNQS/+FYOllAzfbKZ4VeDWr39UmCsLOXswwPV3viG+1WkjTFL/61a/QaDQwHo8xn8/zuy9joYp+eB26dVUdmrfVtZtgW22Lcdi5gjNcJoU6uIBNGSnLpDTXAVo7SfdfLBa5nJC8P8Yx1uv10Ol08P3vfx+dTgdffvklzs/P8ejRIzQaDbRaLSyXSywWC3Q6HbTb7fwuWC43uSOTdCmu/1AajcbkTlstACDH4Pbt27h37x729/cxm83wV3/1V5jNZoWdsVJviRlHTZfk/Sz1TS7zQ04ykc+1ciQuMl+Mv4vw5WXxBWzz+Ry//vWv0el08Ktf/QqDwSA/2jUEfPNTa4fPSarp9lrf++a7L42sVy6Mdh3z7oIyvJlotkx9dUOIkz8EpM4amkem5XdGy7Jd5dLR69/+9rdxcHCAN998M6eHzz77DB9++GHhih5JXzF+lSS5vLaK53Ptzt8m1Gl7hYI2PhJi/PexfKUs+PhTKGhxkCrgartrfLfp56yjTVq5VXCS5ZYBn1+E+16fPn2Kk5MTHB4eFuTL6ekput0uut1uVH0W39+W/nnTynWBxaer4hIcjOWfPkalvbfeSYWH1xOCEy+/amfEMOCyhmmI8JDPY4TMa/j6QYzSGQp1KB11zBEqZ1cg1jAlsNrkYuohfIAb5DLQwoUGd2BQWVmW5c6OFy9ebJTN75fleUJA4uJqhzSA64BtKc3bghB6kN/rgBi6tPJo+a13WZYVgrGyPFrF12w2MRwOcXx8nNPdwcEB2u12vhupDnDxGvmd9w2fTz4aIfzJwZgkCabTKc7Pzzd2mpCRTs644XCYtzdJktxhOZvNkKbpxh2hUuFO0xTNZtOcYz56sniKxds0R1xIPRy4scH7OIRH1OkQSNMUvV4P+/v7uHPnDh49euR0qHN8LdCOOa6iu7ryav0lxypNU3S73TygpN3bGNLfls4v500hXQbMTmZIpymWD5frQGyzgQwZskaWByvzXbIs4JmsLspsrANofCcs3xlJQVvavSp3sVLg9RIlkYYfVYzMDJgWdrsmm4FVWQe1vzA2niBsXoZIVvWY4kJ/yTRZ8XeWXaaVAVlfIJZ/5+XJtDIQu5HHEYgtyBSWNn9e6IzNMnIclsBqtMLsxQyL+aJw3+STJ08KzlTJg6vCNhxRrvlZpjz5LMRGpkAF6awh/FnrizJ8neeV8sWFr6W7akelWo57+s6Ps5VQt/4bAxbeUt+hhZtlghTAeuFnr9fD3/t7fw97e3vIsgzPnj3DV199BWAtb6n8NE3zAB2dSMGB6zv8tAmfr4r0zxjodrs4ODjAw4cPc71L9lHZ+e/ylRGE6uQcl23YLWXmn6QNGq+nT5/maWjBIOA+KYTyu/yM8nmMb8Tqvzr604WrvJtW4411+0TkeMTm03ByQZX+i82r0ZxPjsj3mo7Ov8v+p9+LxQJpmuLWrVt48OABvv/97xcCpl988UV+tQGvy4WLVg991+6D5DRlgcvPIPunin2igUv++WSJC48Qv0SV8l31WeWH8HfpR3D1TxncY+ePS5/j+LqgjG7nktmhPHhbfFLzafiuw3SBph/KMvjcPj8/x2g0QqvVyvnJZDLBaDTKT5Lj5YaAr099fNKVp2yaEHyuQ0cOBU328Ocu8AZj62x4SEeHQIxBGIJTWSXawiMkL4cyd7DUAXUJ2TqFdUxZdSsJNx1e98f1Q+gY8HQhilas0JR5+TtLieBHhm0bXErTq0LHV83P64CYvg81CqSjjDv0NGOU757lQHd2lr1/PcSAyLJMNXDpfcgzAums6/V66Ha76HQ6GAwG+QII3n46TjjL1veoff7555jNZuh2uzg7O/PWw2G5XBYch/zILJezQb73Ob+A4k4nntfiNS4HMDns+c4cflyhD+o6Amw6neLZs2fY29tDu93GnTt3MJvNcHx8jNlspq5K135T24Di0X2W4i7zuRwVIc5nnpacb41GA91uF71eD/fv38f5+TmOjo7y975jkMs6n6XzOssyrKYrnH98jvZhG3vv7yFrXezuXjWQNC/SN5L1Tln6TNa7ZpNVAjSwPoY4SdaBtASbn9Zdswkud8I2LnfEJklSCP7ywHDebvY8/w39WQYH7cZ2YyZ/ZhvPnLthtWc8MJmxNFnxd5aJoCXlX11+AlgHUum5yLNxFLF1TDG7M1YNvCpB2Pw7axevf+MIY2onkfsKSKYJmi+bmJ5OMZvNAKzn63w+x2KxyFehE0+K2dW4a7qNC58Ym9pKS7yYePjh4WG+IIlOeJDBBx6wLQsunVq2WfI0F/+mxWL37t3DYrHA2dkZkqS4Q4na49MjNLy2SR+usrMsQ7vdLhyhSad00MkJ4/EYwOZiKR+QTKex/uY3v4m33noLt27dwscff4xf/vKXaLVaODw8xNnZGabT6cZiPSvgytPIcdToJ8T3kmVZQf8cDAZ4+fIl7t27l8vN5XKJ+Xye7zChI6djToyw6FD2HdFXo9FQ7xnmfSB1A1eZUifh/WGdbGLh63su53en0ynMNzl+ZfW2bdtcrh39km+FyoMsKy4Qkbq37Bt6XqWfXBBiJ+2SDLMgpo/4Ag1uMxEkSaIu4iBdud/vo91uA0C+kJiu06Hn9+7dw7e//W18+umnOD8/R7PZVGVEqAOfFtsSHlXBJx+0d8QrLRuOp4vFxVVnmbJ4XskDJdDpRwTS/rR4blmoeu9onf53l/5TBSSNxpRp6Uwh+erqG0sOxuLDP62yQsofjUb44osvcOfOnYL+0Wg00Ov1NuoNOUXD5WOwdKcQCKXvUJ+iC8rIRBff09KWPTnBBUGe9xgnZF0d4WMIGoFYzN+Hf50KTYhyvW2FMRS2waSusqxdVAivW1HdJm2FMFLNqc8hBL8QI9WXv870IcaJ9js2nyudS3hLAy2kPAlcieZ11klPmiKiQdX5UxZnyznmSmOVUQaHq5QLrrp8dBTi8HGVzf+1/JrzzVImQ6HsXLSctmVxSNMU7XYbrVarMOd4m6mdq9UKL1++RKPRwK1bt3BycmLiqjlpqDzZj6FtkA4hDegddyzIsZLlSCecVbfPYKZ0Ln5G9ZYBcsjO53Msl0u0Wi30+30Mh0Pv7hqfU8MaB2s++MqV76V+azkPaee0dApZ/eoy1iwnJJVlOnVXGRaDBRppA8vZxY6Bxjo4iiXynbFJkuRBzaxxEfhrAPnO2MZlcA4Z1jtfKcC6utzdCqCwU3adPLvcXSt20W7slOX5ss1yqTz+2/cs7xdHZFbdAXv5Uv2tHd9LeOfPZECTByu175n4DuMzE5/sHlitnPwoYnFfrHc3LGtYIT3LV8ivtefiXYoUyTJBMkmQzYpHhfLvIfcra1BGHw5NG2OnaxCqO0qZGBt0oOPzl8ulU3e1+LdlH1TVG0N0GXrf6XRyGuDyjGQ8lac58a/KRnTxXJlOjg1wGYwlxxPJwE6nk8vEGKB7cmmn6RtvvIHj4+O8n+ikD44Xx5vLTpeuTu9CZKvVH1x/mU6nGI/H+d3IdLw/1amdJqHh76tTK4PjzgMcvGzZLqkv8P7in1wH095bOIaAS0flPJROZtKOenfpnFXxi9GTXHnkOxdOmi3J69TGjZ779MYqfF7DPaQfrDRWe3zg0olleaFg8YpQCG2L5Pvj8RjD4RCTyaSgF+/t7aHb7eYBWi4/QvC2+kbjCxLvsnaQq35gMyjDeZXkLxYeMfZGKK6u8l19ydug4SB1Plm2a15Y853jFDtOFg3EQKhcDOELdZXnylOVll3g42tVy3ad/qDpa1wOUNAVWC9wnE6nuU8JuNzIIHmK1GlCwNfHof3B8ZdyLbbsGBp36VIhMu+q9HSCQjDWtxqeg1z5YqXTwFox6iuLM8iQ/C58qkzm0AGy0sWsKKgT6iSuqybUXYEYgfQa1hBLK2WcQl8nsNpuOah8/CZJklyYXyVsY/w0Re26+V7Zun2KxzaV0lDjwoeHVMQI+P1eGtAKPzrCLE1TTCaTaAdgLGiGFTmOY4xICVmW5XfE7u/v5wEwCvDRziFyctL9bD/60Y/ydHSfGqDrXxwn4PKuN3KmcnqiftR4g3T6aQY1r2e5XOY7XWazGWazGR49epQ7by0cNYMZ2NyVwQ17V3spr3Qulp0jVP/JyQk++ugjdLtd3L17F3t7e5hOp/jss88wm81y3smPHrNAM/Ct/vXhxnVc2WZucFj9vFwuMR6P8ezZs3zXuctB4cOR+p6frsBxkc5F2ZbFbIHpyymae0200Ua2ytBoru+LTVbJOnhGwddGAqRYB+4aWb5jFhlAO2IzZJdHEV8cX5w0LvBP1v+FXbDUtKT4n+9qZWny4435e/EcKL67bLDZhRvHJl++sPMEBWJ5uky8o/RZ8VnBaM420/Hn8hn/5DtfkWHzjljld6Ec2SaJM4rp5LN8ly7hqgSWs1WGVtbCm9mbmK6meDZ/lvNk2iXB7y6n8i2d67pA8hUXVMXTZ19zfwLHK0nWx+1ru2dCdAme1gL5TlscJH+TTqLpGJyfJsn6lAvux+Dv33jjDezt7eHly5eYTqcFh3yIDKtLX40tg/SMvb09AOuj8WgnMJX18OFDfOtb38LHH3+Mx48f5+PocvQRv2+32+j1ejg/P8dwOMSbb76Jly9fIkmS/Cji1WqVX6sAbN5tFrIr19fHkhb5My6LSfc7OzvDeDzO74ml8bSc82UhZL7SP7+zONbxzU8eoZNY6B2/0sLS3UnOu47d9uFCTuRer7cx56jekN25dUOojskd3ly/kTwqFN+Q3bSW/cHfxzrIvy4+lBhewenbR3eUhk7NIDg9PcWTJ08K+jAtPnjvvffw1ltv4cMPP8Tx8TH29vYKO9Ln87mJJx9jjnuZu3/rGPtms4l79+4VTjEi/QhYnypAc91Xn+uEyFiZqPkvJA4yjexDyTNdNFSmLyVfkzhx3F1lVAVrx2osLnWCz/elvaviZ9P8IJJW+Px2laONaR36wWq1wrNnzzaeP3nypIA/LaJrt9sbJ124cJc4+9LEgPTtuMoMqSfG7ybBN9ahEHLqGy/fh693Z2zMZKBKtXQuJ09MnVqaUEIPSWcxaytNCIQoTFchROtkpl8XJU7CLra7Dka/TbD6LEQAWGmrjEOZ/vLxBU350+a6T3GrOpYyv1WfNDJIYSjDV6Wg0Rwcrrwu/EPrr/JeQgy+Vl7el6HKhVW3b/zqklMcpPOLDBkrGKopG77fIbBtfkt4u2Sy697kmDaRoUoBV+pb2oGp7Qbmhi0/Rjx03tBulNi+5+MZQl+tVgvdbrdwp4nlOPABOfI1miqrvJcBMq7m8znOzs7yFai0K4pw5U76kDLL8nhNBloBihBcaC6TI0nyK01vteY0Oa75M1c7NN6YLTMsRgskjQTLzjIPflIAlXa+Fu6QTS7KW7E6k2I9CZL1LtoEhR2yhV2xF0HbjThohkL6LFunUXfW8l2xGePpYkesczcsBQs5Hj5yke+zze+FMckuP+URxRvBSiVwWdh5mnk+ZSA2yzbS8OfymdWeQpsk7mCfPI3RtmyVYTFcAEtgvBxjOp5iOp0Wdm4Wujcr7lTiQYmq+ps1b2Ns3BB7s4o+Hep81PgJyTntGgKeh9L7+pSPBa+L183T8HSazuprD/1zWc0XPGVZhl6vh1u3buWLXci5HuoQuy4bk7eLfksgHaTdbufHdYf6a6jPv/jiC2RZhm9961uYTCZotVq5rkNyn2gEgKkLhNRJUNYGIJ03yzKcn58jSZJcVpbRbWJB0pwGVQIBSXJ5fUWof4wHJlx6KE8jeRK1x+IDVt0h70N0xtAyOXB7oNfrbfCyUNuwDpvXyqvRpVWfpYfFQkj/1jFHYvwmPh9riPwLsXs4X+Ppl8slJpMJnj17lvPKVquVL051XaXi6yvL/tTKivUryPchujy3+biPwMULfD6WKr4CrQ/K+OylPHb1pTWPYunfJ7Ms35pmC8bWVxV8elqZ+qvIcA1ifYW8vy26lL7UGD4V8p7joPnfQvw7lr+wzLzw4WvlqTKnffXFlh0yt0L4lOu55ZuxoPQFgZrywc+wl2lDDTheliakfKtWY6EqMdYFdRjyr+E17DqEOFco3XUBBZ6kY6IOR1lMOinkeX7aOWgJWQ7yPhRyHnGhMZ1Og3Dj+LzKUJYXS6dJSD/ReMjdl5qT8aqBnC/9fh9Jsj5+ie/y0PSAOh3SfDfoVQF3FjWbzfyOMAqmLhaL4PHg/IN29r58+RKLxSLfmTAej/N0ZLSTgt3r9fIxoJ2zgFvn4Y621WqFyWSS/w5ZQc0NZo0euQOacGi1Wuj1euj3+5jNZvi7v/u7POAsnbyueoFLfkX9TPXF0lmog9GFT5qmGI/HeTCW2kl8tKyhrxnOlpEfGihwGYvSAMuy9U5tOpaSHIuyTbwPNccTL/vu3btoNpt4/vx58NgX5Ncsw+TpBKvpCmgArb0W0m4KZECSXgRW0wt+KO+QbSR5kC3fGZusg6zqDljj2bpw5R9Q74t17YqVgd2NXa9ULsTzUNC6NCJwqT3Psmzzu/jNn+e0sWKf2Wbawm5X385YiSvH0/rOcWF1h+yIXc1WGPx2gPlwjsezxzkOSZIUdnnTc82ZQcd9LxaLK5dXEj/CS/6uo3wOLl1ePideQPKL5BuXKS4eEcLLSU7w+kkGynTyu68OzsNWqxXOzs5y/SBN01yWz+dz3L17F++99x7efPNNjEYj/PznP8doNMJ0Ot1JvZn6n8aE7yCS+E6nU5yenqLf7+Odd97Bixcv8rtkLaB+XS6XGI1G+C//5b/g8PAQ//pf/2uMRiPcvXsXg8Egv383SRJMJhNMp9OCH0gGAfmYhTrQJF68D+QzguVyieVyiRcvXiDLLhdfxJ5wFuMwpfQkP+XOO833xvPwNLxP5HvMPI+uAAEAAElEQVS6v5n0WqsviS643kPB87JA9xBrQQ/q513ziS2XS/T7fXz3u9/FdDrF0dERzs7OcHp6WrhvOQY0vur6zfNp76r4Gb5uIGlMfue/5dha+jqwtodWqxU+/vhj3Lp1C9/+9rfzY4sJJpNJLhN5ANM1fnJucltU3iWt5bHwluAKVnCgxTnk97cWaxOf4PqUxC8UQni8vIOZ1+Wid8ve5O3iekYs/jE6k08vcuXV6rXySLooy3Nj+ImsQ8p1K42mu2l4x/K0ELqwYlJ1gFWupENt/pB+4gO6EkCeWLMN/m/xjxA/UKxcCrENXHiFptdsGk1WUztj7UAzGFuFyEiB9KUB3J0T6nzTHGJaWs0pZeGwLSXQhWeMsHwNr+GqwWc0uIDTdohzZVtCIgR4MMMFVZSkkLkeo3zwNFaZXHhoSo9VHv+MaUeMY+SqoAoNh5RbZrxJ0dOMKe78kUHeq5gfhBPt0JSr8GJwsOjZlX6bQPTpo1Man2azmR8BQ89dwB3NUqmjFfW3bt3Cw4cPMZ1OMZvNcHZ2hslkUrh/FcCGEktlxBprIXxXjq+lN3HggWIeqJU0XYUfynSSlgj3UN4aAhz/6XSKwWCwMdddThmJd1k8rDyh4+9yzvAdSfK9Sw7L9A8fPkSv18t3BVBfaY4RU+/NgOV0icX5hZMpuZh/aKx3xgLrHayUXWt6clku7TLNjyk27n/NsgxooPA+L/8i8Mp3xtK7vP8TXO6uzcS4XOQt7OrFOj29l7tlL5ti8BgleYEO+PtMScP6T+6OpXFQg7CUhz9zffLgrHJnrPxd2KULhpuCPz+yuLAT9uK3GYjFZX2z0xmWoyWW0yWypdu+5HdwA5cOPy4fpNNuY1zE723J8BCHh+WkjHHsufDXeAd3UmiyRuIvAzT8mdavljyX5cjyYh1E0+m0QL+8LfP5PA8kuo7pd/2+SuD9yY9gJaB2pWmK2WyGly9f5um4wymkDymwOBqN8PHHH2M2mxV2DxM+Uu/R5LvVjtC20qerPBcdaeVpeIToAq48mj5m4Spta8t+ozS0wIzS86sWpH6TJEl+jHGSJOh2u1itVvnx0lZ/aGDNda3e2IV425hLhBvNjV6vlweyF4sFTk9PkSRJYTOKdvQyfXfxHO291l9VIFQ/rQt8dFG1/tj8mh1B3+WmIu2KGp8NyMePeKY8wlcuWKRyQ/UDno/n1fo4dF66wJLno9EoPxmJ+o/Xq9G+D2J0pzL8VQNLB9LsPRd+2twNaY8FkieG0rpFR5Yu5eMxobSj4Wjxs7L0GJM/hD60cqTckXPVqovaH6NXuMDHa6wrqzRcY+jHl07Oi9ByqtYf03cxcsHXnhi+IvkglevCvfTOWBfI1cFlV4yFgnXvmbWLNhau2lCKnaxXDTETehfL/zrATerDXaJ1YqLaHIzFs2q7XHxAGt2AvqOXgAwMS0nQBMW2eKVV/3XylDrrlsqur2xOc9Z7eZcMrVLfJmRZlhui3IjkOLTbba+ScRPAp9xTf9NYhOozFOSSY0VOrHfffRd//Md/jKOjIxwfH+PP/uzPcHp6ilu3biFNUwyHQ5MPaSvvpEEljUoZ0NfmhTQofMYHsF7lPRwOcXh4WFgtzXe3cvykwzDUEOTlWHSnOSXKzG/eX2maYjAYYDKZ4ODgIF9l6usfqx11QlneRfcSj0ajXD6E9Jts82q1Qpqm+OCDD/DgwQO0Wi0cHR3ho48+QpZtBmOtsaPny9ESk/EE2fIyTbpaz59kuQ5qJmmCRrYO0DayBtDA5d2xjcvAZ74zlpwk2m5Y+s/Yd2y+z3fByvfY/OQ7ZvO8SDbTiGdBYJBQoT95GiOYSZ/yWZYZQUzlOT3LP60dsmJnbJYVd8QW8ACrV2kbxzfHQ+Lj2xGbZciWGYafDzE7Xsu2JElyecYdsPwYWm2XJfF3OtFAu/PtqkDKsV2xAXgwQwvIWsEf/snLcvEojVY0J7J0cErZopVJcnwwGOR6G8kJSnN+fo6XL1/i3r17wUe383quSw8m2iaZTThTAKrdbmM4HOLk5GTjZIzQugHki9p++MMfFuaYXIDmskfqsFW0cqzykiT8GP66QOpKWZZt6JF8PEP9RjTOtLObTr3h9+Fq0Gg00G6387q63S4ajQaePn1qHunua5tsn6Yb8H6/LluDcKB7g/f29tBut/OFlI8fP85PRyBw7QKy5qHkhTGw637DbYNLDvD3LjsbQH4VCcF4PI46TpuX12q1MJvN8Mknn2y8JxtJKzc0eMh3xtY5N0LLWiwWODo6QrfbxRtvvFG4SoeXpX0nCKXbunUai16kfSPtZh+4ZKzLz+bqg6ptJlvVR/v8dxV60vrAsiV3hWdp4yJ5hmYDcOD+Ags0v4prfH06Id+ZzsE6ucKSO7Hg88Fwuq4r/rdt+V/XVRBcX+TgkiNmMLYMcZDyUcU5xZ01rnQ+fKsaNSGMJBTKEvquwrZx2+W23xS4jjFy0bl85ztit8rxR2WAB8Q4XjGKbkyQ0RVw4GVpvFDixHGWCqsV8KB3pFzw9D6jxQeWcukLyJSFGEfXVQHfNWOBr82EL43P3t5enk8eW1ZV2bHkMJ+HzWYT9+/fx3w+x9HRUW4MkmPO5SzZVZ7uM4QkLwg1kq06aNcgOezb7TZu3bqFRqOBXq+HXq8H4DIAYOHmo2VpAFu81prrIUopKdm0Y+b8/DxXNufzefB8c/WrdMxKZ5VPT6U0sTxCuxeNxm80GuXPQo/SK2toV+Efsm5trDXZ4ZMBkp54WqJjuk+QjBLaSaXRnkXf8+Ecq+XFjoFeBiRAI22AdqEC688VVuujimmnKRWnBUod/0ki7o2V78HeJxf1GMHYAs3xvAw/7VneN8b9ssVO0p/xHaMbaXlwkj3Psqz4nd6JAGZeBn+mfcYEY3ndjiCsxK0QgGVtCAnETo+mmJ/PsRwXF+xqfI+OASN+J3kQ8QV5l2QIuPQzrf2uMqic0HyucjT+WocMt3iMFoRw8S2JE9c95NhQOsvhGAIyLzm/+L3v9Pv4+Biz2QyDwQAA8vuHy9RTN4TqnADyBQj8He325X6aGFrjaWlHJu0QC8FZ1mfZatrvEJysMq8SXPqzNhc0ncjHh6jfXSeu8Lq57sqDSDF6GC9P0o41t5Mk2dhhWtW3Vwb4PJjP53j+/Dk6nQ46nU5+xQ8/5ptwDQGLnkPKsOx/q7xQCMG9TNlXxd8k/w/Bh2ifghgHBwfodDrY29vDcrnE8+fPc5ub+4t4fm0ckiTJFzHQu1AatnRxl30XCqF055vjpNvTFUZyvmpla7JYA00uWP0cCr78Lv7rsu3rBpfdXsc8D/EtVoFQXhaLu2V/xuQPwYPLQUs/t3RIq/9C6SVGDli+GlcgVqMryQ+sOk2bTMFbpvG9d+FZB9Q5X11zhOSDBNfd8oVgrOxUSYCWkku/y6we0kDWWzW463rvw+M1vIavE8QIiZC5ZTE/635pwL/6yAUhgsECvtvQUoRcbbTwKIOLVobGf8lBYgVuND7OQToZKb8rEOTCUT7THP9lnDhlIYSe6xTQoUqE672ku+VyiVarhf39/Xysz87OCvf8aru5qxhpfGECldlsNvH2229jNBrlR9WtViu02+2NY5ZdZV831GUkxMxx6dAig5WCsf1+H3fu3EG/3wdQPOpXq1fSmU9x1viX5ajW5qZWH+HRbDbzADPdF8qPrbMMSp+TwcLHx6dcxoKszwUc9yRJcnqno6rp/rQQA/0qHYguGajhoO2IdeEr+QJ/TvdL013HVD5Q3JEjcdFk2/x8jvn5HI1WA7QbNmtl6+OEVxfj0lgfYUwBt/VD9pmJzwY2gqxqYFYGXnmZ8rfnM8kuj0vO+4rKV6btxlHJPpBJKQjJ32XinXiej2VW/F4Idq5EGtdnRDC2UD9vhjanBf4Fvsbfye8cvxUweT7B+Mn6rkuL99HzxWKR7yLT7pijXWH8uO+ycq6qLsL1ONf85XVUwdcCF6/jY8ZtAA1nzUEk5ZbF7yVP09L7ZJP1W94ZRzyt0WjgxYsXeP78OY6OjpCmaWG34S77FHi/Wbp6kiR5MDbLMvMeU5fMpTnS7XaRZZenrrjsBolnrO5VJ8TqhTF4WPaldO5xOtZ4FtcdLd5KehpfJMXvjpdAJ97RcaR8N6xrvmj40afcsSVpj9Jo/XOVc4kfUT+bzfDkyRN0u10cHBzkdyZT/7RaLVUvjcU3hidrvNNlI8hndfJ/nyzXcKwKPlrX6pPfadHVcrnEbDbDnTt3sL+/nwdjX7x4UeDzrrbwOuVx9TTH5BHsMSBtoBCe5PJNhOoC1rvFYoHhcLiRhnwJEg/JDzhIm5G3T55oEQKaj8dnL8vv1gILq7+s/rTSWj46ny0bA2VpLbRezdcXW0YIHtocln4JK68GFn+UO1f5Tkef/mHJ8SrgoiPtmoAYHclFZ1J3k+k0Wre+W4vuLNxcfCK0jND8ss6QvC5+4PJ9aVDLMcVpmqLf76sEQAq7RjxVA7cuZyUQ7nR9Da/hNVwtWMoHf1dGQQ2tOyZ9TPnSeSHfcSFPCh539MfUxXdpyPo13OV9QHU54UJxlQ4Fl+J0kyHW6WL1ATc8Wq0W3nrrLXQ6HfR6PXz66ac4Pz9Hq9UqOIlpR6J0boTgzOmQ8t27dw97e3t4//3382PqRqMRgHUgcW9vLw9KjUaj4B0g1wU+pU+moT6l3QAuvuUDCrQOh8MN3YdW2ZPRPp/P1buKOF7yDuiQI2nkjk9pqPrmo6QnykMBC17HNhw9/G4l6RCkOkOVYI1Xh9AH5XE5wK4bpPNFw9XXL9Y9srJ8+v3ll19iOBxiMBhgPB7neSynk8/ood/zszlW0xWQAY3OOvDaaF6cPHBxJHGSro8nTrLiJzIUjivOg7IUmIXyKYOzF8/yI46x+c4MxuIin3VEsUIuheOLfSCHMLssI3RnLA9aAhfjkm2+y+ezFpSNOJ4Yq8tyN2iQ6gTDhbdL8JS8bCVAuxGIXWVYnC4weznDcuCWU4vFAp1OB/1+H/1+H51OBy9evMBoNCo4FjiNE7++Lp2G31vL+aAPp23h6woG8OexZVq6tcbLZT9wPCRPi7ELpAzlv+lezfl8jvl8fuWn/FSFbrebOx7n8zkmkwmAYgCt2Wzmx9yH3gtPQOXMZrPcd7RYLAqLC7U8dcwtaYMRxDj9dgG4DgLocpnaal3XpcnbbrebB6Ms24Foej6fb+gYGnDcqN/5TvKbANwOy7IML1++RJqmePnyZW4PXSdu0qavYqfcdOAyOTYPXxxEPKnX6yFNU7z33nsYDod4/PgxgM0FORbwY/l5Wt98scqSfNDyu4eUbclS7b2LR9KJQRq+sXTINxfQb85nuB8rZAF4HWDRkib3XD6XqrpQVZ9dTN5YP6n0O/EyypRXln+5YkJV4Kr0+7r4tuaHcdGljxdY4BrXWH7jg+s4gc/qtzJz2JXGGYzVlDWtE9I0zVfLSUSzLMuPL+CwWCwq3+kqHYmybg7XZSD7wDVBdqnMXYavW3uvG2L62qUkahdc8/K3PaYhDLZOvsH5FQUmrTbSqmXNqJKOIMkHfe3SDHgNYpxSIUBtrgsk/mXHalvKrRWsCe1vkrXk4Lt9+zb29vZweHiIFy9eAFjvVqUAXpZl+fG3sTwxSZLCDjnC5eDgAPfv38fv/u7votls4mc/+1k+hq1WKz86GUAegCk7b7fFx60gj2vs+Jyie3n44okyQEdVnZ6e5vds8kUKfHczHf8c6tjUwOeUsfSnGKB8fId9rHNbOhDpmUYPGh/jTiheRqiBESp3ND7jCgzskk4SY+wDm23VdgTIfjg6OsqduOTAp7w+ndyaowCwHC2xmq6Q9lKkWYq0teZTSSMBUmwe9Ss/tUAp/74qfia4oJvkYixpB6sWgL0I8CaJ2P3KPgs7YzPkQdiNgClrt7kz1ppK8nneJZnaLxsB2Yz1IX+fCVqQAU75KYOyWjCW1weBk/Zb4CvxUXfD8nZR3asMi8EC8+dzrOa2k5CCBmmaotfr4e7duzg4ONhYZAAUbWLNUXoVIHVKwkUGCstAGYcxvbecumVwcNXncoRKWWAtMClr02j5aNGWXIS+S/LAAtI12+12vrBP8nmS876TIVyQZZc7ykkvomCsz5EdWoeVzkebZWR31XnGywkpXxsXzR6MBVp0SHJcw4sWbFIwVjuVx8Kd6xNcp3ZBXX1bBxC90xHkVUDqnRIs/VnrD6lDh/BnSedleZXPBg7JW9XZbdnOMq9r3kt6XC6X+cKDVquFe/fuodPp4OnTpyo+rrZaiz+stln9oQUFNVsp1vax0lh6uyxHHk9M5cTqAdIvJn1G/HesbuLygflA0xX4M58MCeFf2nwPpbG6+KOm28bml+2O9QdICNUnXHnKtIOXI/1iPt4SgqMFZcqRPhBelqYnhPCGWBy0965xqKJzu3Q0bd6F9n2ILHPJTI1uNPy054VgrLznLkRAumA6nSLLMty/f3/jMtuTk5NcqHEkaZePfM5XFmk47YqypoGL8W/DQPMpLTfBKNTAwv2q23OT+/A6IWSOlp3Ldcx/TVkD4NyhJkHes0TPLAMpSZJCMI1gOByqdFYX7fEdZhpsg59KY8cnVF914IYFX+3JnXmtVgvvv/8+er0eZrMZ+v0+9vf30e/30e12sVqtCoEPKiMWGo0GOp0OAOQB3SRJ8Pbbb+M73/kO/r//7/9Du91GlmX47W9/iw8//DDPOx6PMR6PC87HMjhcBR1oRqQLVqtVfucb3QtYFnhdb7zxBv7oj/4I3/72t9HtdvG///f/xl/8xV/gq6++QqvVyuuz8JfON8sZ7QJuxPuc3fyT8tIzXmfozugySrlP/vscr7yt0rjy4cnL4fcF8r6XRzNfp07qczq50sYaasSvvvrqq5yf0e4p+u7DUT6X/ZotM8xezpCkCabPpkj7Kfbe2UPSTJC2UiTNBI20gWR1sTOWPi92xCaNi7nSWAdXk0ZyGYS9MDeyxnpHKn26dsPSc9r1Skca80BrTndg7y7yrotj5VL/Q7xzgRymPHaZbb4XgczgQCyydT9R3szzubrMk2Wb98LyujYCztkm7taO1w0j24X3KsNqsMLy+RLZyOaPmiOJHLH9fh9JUtxlJp2fVjlXCfy0FE0+cCgjq+tqG+cTEkKcm670WZYVHLaaA5Xy0WdZR6GWngfCr1sOxADh+vLlSzQajVzfc8lNeSJLSHCNw3K5xGAw8OphmlwKccaFgOXn2kW7RJsXQNHG1OS7ZUtOJpMNnVbOHyrDwsM1djJfr9fbCK4sFgvMZjN1vsg5qjnEr3KcqE5+Byjp6rQ4AfDbFVV5gtVPMfnrxqkKXMV88/Fil14sgXSDqwTuP3HZWTRXJH6WfeTqE1fg02U3WHNU068kLrTIg9sPPhtVw8micR/fuGreX0X++OZsmXbE8POQ4BXPZ8mv0PpCQfaf1PFignOWX9iqy1eeCyw6D/Wda3mte5fLgMZXrHpC9WpLjtHz0JM9QsovCyE8SPYLP7WNA/WhxKspE9GnNekspZifiU9Ad4H0er1ceaEVNLQLR5aTJJu7p0IdZmXfbxuuS6nXJucuGhihcB2434Q+rFN5cDlxYyBUeGjPrtsokL9D8bH4J+dpfKzouetODE2gWYZ1SHvqhlAFWToKZFs0Bfm6HSIuQyIGfA4GoHiUJ/9vNBo4PDxEu90uHG9Nx8TNZrONu5vK4EmGHtEplb+/v4/Dw0N84xvfQKfTwYMHD/D8+fNCPnKm1A0ajYc8CwU5Jtr8ovlPCmFVnkj5u90u3nnnHdy+fRsA8OTJE/zN3/xNvjPB5WjRxrqKYakFIVx18aBjiHFVh0wpa7SFtD22LiqXL17kTmteb0xQoS5w0YILuKPdojlLZ0+SJD/ClZy5nU4nnztSHoY4EmW61fRyAVG2yrCcLNFoN/J7Y1dYre+PBZAfSYx1IBbAZRC0kayDhCy4igRIVhfB1YtPAOtdrSzQmmXF70mipM2KuCdJsg4Qsh28eQAXl3gW+rmunbF8vLLLT/VoYnrHvmuB1MIxxZ7jifnvAl7YxCskEJt/GkFa/i7LMmAFLGdLZJMMq/MVVou4owtj7yhz6WihdZYFqTu45lwVkPKR12Glj33vcuJIfuty+oTIBZcuLct1+Uas37tk/4cA7VAlPcRqM++TEDlnyVoKBvJxJdDKdo2dC1x2lDU/Yvrwqsa5zDzWcCPZbI2xi2eUbWur1VIX5NI9tSFzUT6/DpB38hL+tBjbxfOq9in1mZY+lIfycnYBQnDx2RZ140O+ajqlCMDGccNVfAJl0mpjX9b2iQHiD6G0GzpWPJ3mE9J8Q1VsyBh7VcqjqvVrdbigjnpC7X8XuGzBEB9AVT5Tpv/lPLHoM6RvNLqpQ7d38e+6ZV0VXhCSV7M5eN4QP4uW1zpVK7Y9oTTu4lEWvVv1abqsC2/vnbGkYEynU/XuVwDY29vDd7/73Q0COjo6wnQ6LeyKHQ6H+OKLL/LdNwSdTkfdFetqBG/sVTi5bhrcxP7YtXEMxeU68dYEzS71oQaagyvLLldYXwfw3aIxDjjAvr+a3qVpWgimJcn6eC6ZZzKZYDKZFI68K6NMuRR0TdBvY5VnkmweOQOsd17OZrON+x+1/C6om86t8lz1VK2fB7bo0yW0l8slJpMJ0jTF4eEhTk5OMJvN0Gq1KuFCDgXC51vf+hbeffddNJtNvHz5EuPxGJ1OB++//z6Oj49zHHkA96aCT7dIksuAc5W28mP/RqMRPv74YwyHQyRJgrOzs436LQcoPyIw9sgmK53rOc1hWhAwnU7z8dfurY6t24IQHsb7g8rnDkatPM3Za42rlofK7nQ6efvpnjVKz3e8hwQsJNTJ26gckinylBqqj/9LHiQdExrQznq+cEHKMdmfrvkk6+Pfl+Mlhp8O0TpsofNGB41WA41mA1lrveu10WwADaCxuvhsrD9phywaF3R0EZhNkqSwMzZvM+2MTXC52zXBZQCWO27YM74bVqYFsLFbNn+eFPtX3SFrDEFhbHgaI2i5EXilNOJ7/izbfLbxqRxTnLdX4KU+08Y7w2WAVR5DLIOyDE86lvj0b0+RLBOk2eYx/FofJsl6cfFiscDJyQmyLMPx8TFGo5HpJLkqx5kvP5fhFoQ4ckPzh+DkcnxpfLVMXa50/J3clQds6mAhdYXww+uGWLtQjhOduMJ1DEpDd8TzPHJuucad67n8aG0Np23YspbN5HMQXpdt7bNHrXmkyVwNON9w2UBlHetEK3t7e7meQHdcn56e4vz83OuclvfFXcddzNr408LVMvdXlqWlbdBg2bHdVbDsj9C+Gw6HGI1GOD09BXBJw7G7/+sEslX4tYBke/A0sq0+vrbrwG2JmDyA3daQPrF0PItXhdKYLzBj4egrJ3RHfh16VSjI02RiNttZ+Pp8nj45LU+BdZW9CzxR0pY2r63FTHXgz8vlvpbQ8uX1RtaJOCHPrhNC+5KuGQSQ+0l9bSl4ZTQnDH8nEWk0Gtjb28P+/j56vd7GZOj3+xuCK0kSTCYTtSxJTNI55INdmDSvoRrs2uQLhavE2zcfYp0lV93nLqNO4zMxQtaqj/L6yrEcCiF18Hqkw0vyVQogaA5veSxDiLLC2+lSwMuOdVk6sZz6oceZhuBl1et6H1ueD1z1aQo99YNFM1wWLxYLNJtNdLvd3OgPFfAuXCTIeyGzLMP+/j5u376drxLu9/sbsl7DvwpY5cg+9tFzDJ/0OVelLhJKX7wOfhT1YrHIdxg3m02cn5+b+Xxll1W4Y8aL6C22bEnTPojht7zd/O46KxhrlVEGOB0kiX10D6Wl+mR+F26hOPig7Fzl/ePrJzknNYNLS6PhR2klXRfmXLbeKbucLLEYLZB2L2gzARppA6tkVdipWtiJSUHSRnZ5VDEPnK4uA6p8N2weF81EevY8b1eCQv18p25+OjG/SxasDPbA3CFb6KzN3xuBTiOAae6SzdiYr4ppCu9Z4FMNylr8lONAzzTHl4KvfF94d1F3tsqwHC+xGC6wHC3X75i163OycUfneDzO5Z9rDsc6ujSoIke5wzIEFyn/qAz+LES+VbW7Lf7In4XIOg0XTWfgv6uCz0G7SxArU/j9upquZB2DyeWhj/7K2nLW81BbiX7L8kJ0hlAImctamlCasvJJ28Jla/ts41j9zQVEF3SFAdnAZMdovNUao+vwW1DdBJodYvFdaef5xjiUD4fanb53dciuXYNQ2rX6n3gYbUIifkiLGa/K38zHhnzk5C8vewSpa/74ZKgvP+WxaMxXtpVHswl4GRZo/MzHD612WO22eJJr3tapi/D6Q+a2a25Y7XPVrdUnn2k2X0zbfbaojyZ9PFTWEeNbqlOfdMk9Fw5W2hjcrLF3ybc6+aDVxhD+UGU+uXiTy/YIpTee1+Jj6s5YbeW8Bvv7+/jDP/zDwv0JHA4ODrC3t1d45jvrnkOWZRs7aF/Da7gquC6F3wdSsa+jrDJQpv5Go6EeaR4KdRnLWh8Sc+ROhroUJc0B3Ww287rJMB2NRsG4hz7noLVXU5RCDMYQkApgmXKuch5u08CSAthnDJHD4uTkBHfv3sV3vvOdDdksdwW6ynXBarXK72rpdrv4/PPP8eWXX+I//sf/iD/8wz9EmqYYDAY4ODjA/v5+dJvqhNg5HpquzNhbiqLmXKLVy61WC8PhED/5yU9yg3q5XDp313OgPifngHViCU9fFTi/0nAMXekYk0Yz3mS+LMs27rfj/cHpU6tLrtgMAeJH0uHMy9Lu5LacnGUhxJmiGeDUJz6HIS+P9HZtZxkBpZG7YfnOJ07jPnqnMqhO7R7IxWCB+WCO9r022nfbSDspGs0GGq0GkvRi1yvb/Zqkib47lu6RTS7ojt0JS88A6Dtl2XPXjtiN39DHKSgAe5nY/s2+5zTBApdWEFa+o+dBnzxwy+vRULecdVmxjI3nrB0FnAmPZYbldInhb4dYTBb5O34vYQyMRiMMh8M8aLBtJ2xZfUfjffwTKDrtQpyKmh7ocxJxfFy8V3NIuJwiVhreHq1MCyidJQNCeJPEk8uFmwiS71sOZsupql0/ZdVjnYK27fkFFB1iFm1u07YOmYNWuioOSI038LHUeEYdQAv5Xrx4gTRN8eDBA7RarZwG6EoD+W/NadknVz3nqtZXhc5dPNVXpwby3s5XEWL6W+tfLSBxHUA2GOnS/X4f0+m04Cefz+cFP7vLn2/JUv7OZytsA0iXqYseY8ae81xLpmt8WdLYNvomxP/p00G0sawTV01fcPksY/W2KiB5XRVfKgcL/zInqcXckazhIOvUcChzigOBnPuxbUySJNcTQ07xcW0C0Hz1UresUy8PpR8tny+uUODS5ByxFETtWavVKgRXpHKnXepbBjQH0auqOLyG3YCvM32FGtQyrS+f5eShvFUFRFUIMUYt412mkQq87Cep9Fl18b6SznyXImXxTGu8tkHvUrnnd6OG5pflxOTTYFvtlN8tB0pIGZwmptMphsMhXrx4kcvT09PT/KjnOmmfyloul5jP5zg+PsbTp0/z9/P5HC9evMjHcj6fF4JSu84ztXnKv/sMB6s8Vx6Lz9FckHPCwlE6y6x57HP0lQHuICPQjnWXdUhDy8WrNND4lzavfA770LJDjAM+R8j44caNpXRf19yQckaOheVo4b9dCz60vuZzidOvlF+hfN10Wq8yrJYXO2TPF+udrh0ACdDIGuvgHZkg9Jmx74nyKf6TRL83tpA+U74rn4W7Yi/y52UWGid/Jpe4K1DIz9PIoGhWfJ7ny5Tv9JMfPQz2LsPmjlif/kR4aLjnH5mOn2NHb5ZlyMYZslmG2XSG5XSJxXSB1dy/Y52+1+FwteaCBXXwBD6PXTp0qBPOxw9i8dLKcb2TZbjqlzxM6tVaXaFlhYBW76sCMfqrlPkan5dpQ+1Gy/YJ6XNfvfT7VRg3TefT+lhrv6tMXxpXPpmX7BWyXcjOsPQBqRfv+jj58NNs+RgarvqujJ7sK6MuqCp7tbIIytCOzKPJ16ukR2lHaUeLa31ntV3zB7nK4PUQWP6k0DHkdoKrXiuvBrG2X0w+F8Tk5/1ZBZfQORPCl1zlaDQUQvu+MbV8Lj5dMVTP9vFHn03r0qVDeKlG26H0GTqm2vytQssx/eijAR/flfwV2FykTT4WLSg7Go2Cr7cI6dNY8MmCmL4sBGOtHa6xEHJvjYRQZgHcDKXsNbyGbcNVzoFXdb5ZylBsGZqwTdM0P1aWnyFPQMfekZApKyg0o44rEy6lldLF3OMQCmQwSOcJgIJg3fWdBHUonTFKLvUT7cQZDAYYDof5sbbAmnaWyyUWi0UwjrGQZRl+9rOf4ejoKH+2WCzw+PHjPBA7HA4LzpRtgtVXPkeGS2nm7/hRt5ayH+OgtPAhnDqdDprNJlqtFqbTKabTqbNuWQ7NLYlznWPByyIeliSJel+cq+46DATpjPUBd8pbznl6Lo/3lPVwOqJPonsKxspjTK8LLAOAeLzWVpmPr86l0yxWqxUmk0n+nJehOa3kUWp8fhFO9KmNj8VTNUfG/HSOxfkC7fttNPeaaC6baLQaSFspkjS5vDs2bax3wNL9sRf/SJDvmM13uTaywm8A+k7ZdUR1487YQh72PD+mGMX3/NnFj8t2K8f6Fjtm87sWfPUFNfN+zy4/Y3bHbqKVyQfF5wqu+bhnm+ksHLMsw/L5EsvjJU5OTrCYLwonj7j0PIveuK4ied62oazzOBa/bTgorHr4J5eDPpALziwHsvbM5wiifDyvdg+75WiRZey6LusD3mbS0bXjiDXZwecYLd5x6QVWX/l0LGtcy9K+bE8dNmFI3THgcw5Xze/TOS0bhd6Ftofm1mAwMJ3JfF5peFbVwXcRytoSu6Bvvsqwa/TFd4tm2XpxNPkALLDkmMX/fOALclQ5JcnlMynLM7X8IYE0/s7Fjyyw+Bs9y7KsoKMCxauiQvQ5zedn4WHlu2ogfU7e22rZ9yF6VVm/g8SFnoXMB20euHSamDlWhfat02dj/SYEIXqazB9Sp6U3tNvtDX90p9PZOGV3tVphNpsV7sv2QVW9Ud5bz/OGnCjs0ocLubUE5PS1os+hxwjP53M8fvw4vwydgO6MkI4ijriE1wpIfdBqtTb6c7VaeQX8a7geCHHUW++rKpZ1zLuqRmWVOl3vfQae5YzheaTSpjFsnp6OlJOKrBZAiBGkVd7HQghtSYVxW2MfY6SHKOOa8h47l2Lmq0zLg21JkhTuHCUFNVTxkWk0xyUdfcSPY/ziiy8K95muVisMBoP8NAyiYVmuhQvRtAzmheDvm4Nau7heoYFmlEgeJZVGF56cB/jaQwE8wH19AwfOXzS8Y51ivvnIedhisdjQz2JlgmsMNVp2OUnpHfWj5LeWsh9qGFnt02hBHpXsciheBUhjiuPE37sc5lmW5QuK7ty5g+VyidPTUywWi4J+GMpLKWhtGbuuvmo0Gjg8PESaprkDajQaFfNkwHK8BJbrz0argc6dDpJmgnw3bHYRdE0vnq0ApADtXOXHFfPdrvx44jVCl+0q3Pt6kR5AIVCbv4P7O91TGw3Z5vfgYGyWFb8bAU8zCCvrNPDaCKwKHOVYBu3kXQH39u/hfv8+TqYnGKUjDAYDzGfh19v49AYtGBgDZXmA5Wjz8WvAlvNlZGgorq46eFtCZQDPJ3Vrbcx4+SE6lmaLhPJFX5myvF0HX7/w36H9K/PwTx//12S9NR+s8kLwuwmg2aeaIzhEj3bpJCH6rhwjX1la/VraELtQ0ztv4nhep17IQfZ5FRlnwbb5n8/e5HjE0mpM/bKubYGUS7SAt9Vq5b56H3+W4xzbfmlLUDlAuYX1LptWq1d7HlOX9jtEnpQZ1xD7mn8PuWs9pI5QPU/rj5B5wsff1T6y+yx5T89dV9ZIX6iWn9K5cPZB7DyQfh5ffk2PjcHN1T8yndXfPlsn5J1Vt5bP0iUpr3VVhTVPJc+x7s2ugwdrvNIHZXyYBN5Q7mKxyBm+hCzLMJlMNhyJrVZrI0o8m83wm9/8ZiOK3Wq10G63cwLy3X/2GuqFTqezsf07ZLXVa3gNZcElWK4LXEJDA1cAhyumriDQbDbL74vkAp0vTvEppzyNJfA0p0YdEKLUa8qKhUOZwE4dbfGNfagQjlHoQ5xZki64oSX7vup8ssr/6KOPNtKmaYp+v58fMRaihBKQ8lQnHfrqTpL4+yJCjRvLiRmiOBN/oAVtrjkU8sxXNwfSz0jOhzjCuO4mnaNWX7jo3XKsuxziVjnUhxIvAoknfWoGndUOC4csW+8C7Xa7WCwWOV8nutsFfZYMfe3OV5ob2vHKFGR++PAhFosFlsslRqMRJpNJYeGGzCeBG15l5n6j0cDDhw/R6XQwGq0DbicnJ0iSpIDDcrDEIrtYINJK0Gg3kHZSIEMegE0aCZLV5a7YJFsHTPldshSULdwRy3bI5sFBfg+sEoS1dsiui8hAxxRzMHfKFhIpj3if8vdKIDP4mGL2Xf30gLaj15STGdw7YQVuWZYhW2V4+/Bt/O7bv4vPk8/xvPccjx8/xmg08uLmcu7QfOcOstA7vWUduzD/dwEsx5Xm8OBjEeLA0vh0LPh0Mo3PvWpjy/u9zBUYmvz26bwyP0+r2Q4xDjJON3XYHFcFMkChycxY3mI5g13y2KXHUlnb7sMQx/JNg1AHPk/vSqu9D7VJLdxeNahDFl+nPJf1kj7e6XTQ7/cxm83UYGxZ/4V8J+WfK5Bi8VpfHXWCj0f5+sXSUULyhgKvg/wB2+CpIf4mmVazg33lWXX7yvT5TLQrNMucwKoB6fghPFbirdGFpi/K9y5/iAvP0LkcU25I2ir0uM3TYrivXEKsrIuRxdqzqnO2EDG1dr9KSNMU7777Lvb29jYCeVmW4fnz5xvGMAV0tfQ88Bdk4N9wRewqQGOe1v29Pia4Kw7F11AO6p4vVWlBM/5cNBZjRJcxuOugbWk40zO+UIX4q3b2PR05Sw7zUIHqmru+MuqgCc1Z4qrDZRyWodOyBmdo2b66OFCQ0Xesh0up09pC76yL7Ouc2xQcTJL1Mbr8TljCIUkSc0eshpvPMLQMuxiQ9dMckuMRgq/m8PM5jzWwnJlWH2RZVtiV7MKTv6PyrBWoWj2kjxGO8k5QLY9sgzU/fHRBea3jrCyewcvWDB55/K7lRNf61mVgybIIB5qPs9kMvV4P77zzDiaTCQaDAcbjMabTqXc8rsq5Ix3k/JkL5vN5ThsUmF0sFvnOeF6+NTY0B2XdlpNV4kw8icpvt9sb9auyYwnMjmZIOymaty6OLW6vjy1O0iQ/sjhZrQOnjbRR2BlbOLa4cVH2BZvKVmKnbILCd2cQln6zgK1sc94u19nE2qts83vepyzAWbhv1XNMceFTlOPFEdgc54zl4WUE4J6tMizHS4wej4Bs3V9H2RG+wld4+fIlhsNh8CkDEiyHdqzjqc60sbyB6xiuIEYMD3DhEuPolXJem7McfykfJG+QbdTKk7JLkwW0GJwvTPq62rsufV7KdT6eUu5LCNGbNXks8XHRbox943p3Vf4lXz2+d9oc8IHLGSzrrNK/vrbJ41ZduLrq8OGx62D1gc+uJpD83CrfKiPUkb3LfRwrc6vw9uuQCz7fymKxwHg8LvjQpJyV5cX0g1W/PLnLZTP75APPb/lPyvgIfHyuzHj65lRVGrF8SLItml/DlV7WQZ+uPnLxnRDQdDYtv3YnaKPRKGzq47sgs2y9AJv8piH+Eg4uG5/e+3iqFji37AUuq3x1a3lc6bT28H6OHV+Nz/h8Kb62hLTBBZIWqEyNbmj+uHRHDZcQnYjy+MbYeucCc2esK3OapnjzzTfR7/fVtCcnJ3j27FnhmRWIyLIs2niuOrC7BD6l1TIwQxgtByJc+czHdFxHDOwKlDGersrgqguq9Heo0yfWORTCyLT8Wlu0YGyswuRyHJQda5+x5KrXFWDWFCtyBmn3t2rKLA/a+pQebayq0H+VvCGKk+tdqBIh88TWUyWtq26X08mql/PvOnivpqgAl6sNW60W0jQtXFFAOCRJ8chkH/5laKWKoyVJLnfLhezctfiDnEcuJcx6zh2WGt3KZ5qTzZovmoLv6y/CicaP8JNBYK0ejiOAQrt42VZejiNvo2aYyeeSn/My+fMQXdLFf0J1S+o3UvybzSYePHiA0WiUzxvrRBmtrrqAO1p4P/P3LlkmgRu7SZKg1WrlJ9/Ilcku+gmZgxIIL34ENVA8eceal0mSANn6LtllZ4mknSBbXjiq0kZ+dDHtjE0aCVZY5fkKxxaz/szrooArBWmNoGzh0/dsowOszgp4TsFL3q/ZRZtCjyleZcVPeqfhlcmfGw/8AVjtHW9HtsZlMV5g9GiEJFvLo5P2CZ62n+L8/Dx3StYFlvMkBKrI6bI6axU7yCVfXM+0MuXvkL7g9qZsf4iuGOME4TjRvW3WqVwu/e1VBcnzCLRn9Fzm1/JYTkNepwvKzAufHbltP4BLv4wpQ+Z12aCyDmkLu+ZkDL1b4+6bi6E6SKwP4FWD0Dkh88jvks+T/sp1+LKLmOqGMvw2pJ/KpN0VcOG7Wq1yW0OzH7X8msws42/TeI0Lf4v/7/o8d+lJMl2IDiHzWM+s/tLGs4zuJ8vS6is7JjH5rGBsp9Mp0AhfZE86G9mHMaD5dvi7MrqCxmvpt/bdpQvFQkz7y8xznq8qHppvS+Km5dHuGNaOKeaLRLTyfT6QqvZe2fzOYCwZtdrFtJ9++unG5KHOCTki6jWswTdwZZR4TuxJkjidg7PZrOBcpXvP5MXiuwxX4bR41SG0PyxmFqIMxBzzVodgClUUy9aRJJvHUIbUw40eMoJcQixEIariNLwuqKLo3ZS2hvDqUGfRVRgqPACyWq3QbrfR6XTy+mnBQEj/k2NVXk0ArHWKZrNZWpEmfCxwHb/L+RfnZzQWvhW4rnHSHAmWcm4tjqKjy2OdV65+oWedTgftdhvvv/8+Go0GHj9+jMlkgtPT04JBJPvHap8LNCPH1bfkICJ9Bdg8hkbuyCb8uCOdOyPkuHLZwN9puITIM15Os9lEu91Gt9tFu902j+PmQcxQmosBbby09tAzbcEd0QHdD/vkyRM0Gg3MZrP8SGiqg9rE9cgQCHG68TShJ7TIclfzFaYvpkga692wzYMmmgfrnbJJmqDRbOT3yOZHF1/80w5ZJBf92bi4I7YBJFjvmqV3FKTM+9zYEbt+iMsjiBP+OIEZhNXACGby74U+kwFZ+T3LIAOgeVYqJ4Bd++6H1fCVeBZwWWVYTpcYfjZc3wu8Wpe3XC7x6NEjHB0d5SeLzOfzjZ3TKo4OvU3jMVcJ123TVGmvi3daThgNuNONdG3Ka/FV4luuMdNkKTn+lstlwSa+KXpmnWDppNJh5ZKhllOav9fq5TLTJZ/LgOUg3TbUgX9dPMhXzteR3ncJJN/xjXmoM9uqi5zZ5CfkunRV5/JVQ8wcuQ6ZXieE6tghfLiO8aV4gW8hnJQnMXWXPcLXlyeWDjS71lW+6528iqpuqEPmXYX/iXa5NpvN4E0HtGGAx6pWq1XB38RtUi3g5jrFruy8iOXBBD7714JQPVeWtw0eaNGKlCWudJPJZKPds9kMg8EAh4eH2N/fz8u4c+cO5vM5Tk5ONjaNWP4C61ldfKVsnxairNL5ZzkNAeD09HQDkTJOpZsi6HcZNIVMOlEBqCvfiKERyB1PFoQ40r6OUJdyUydc1dj4jDzJvHzBp7KKRIiQ8dUdApai6wqUAJsKQIySqfVJiICT70Pnd9l+DE1XpzCLAWvc6py/Fo8sa1BcBfBxz7Islw/kDNWCp775ph2vHNMHPqe5K731zhpn67lrLLU0sk9CHNRybrvya7oXL0u+o/IajQZarRbeeOMNpGmK4XAIADg+Pjb1BqvOEJBBDasczbglfPmdoK6gqwsHWYerXWV4uhYgCG2nz1GwzblvObylQ340GuV9bS0UCMW1rJOP+A857K38G3NhBawma5m7xBJIgaSdABnWO2SxDrg20ABWANKLtmQXfZBhHSBtsDbSM/4P5bv26fqu/XaBJxgrd8Hmz6lvfMHYKFSUYKtWjvzJ34tAcLbM1v+rDKvpCrPjGVbzVSHfcDjE2dkZgPXYt1qtjQUGLr5ovedprlunj9Fpy/LpKiDnnEu+as98c5m+U1pLx9Xkjat+nrbdbmM+n2M2mwXjFAq7QEOh4NJjNB3EGgstj8s2sXSmkL4L0QNddHEToIzPJYQnaLLfp1PFgK+cGLv3uvxM256/Ibq9xKcOoCAFD4Dwa+NiIFRv3ibE0EndPszr4ivWHLfmsOTnlh/JlY/np3fSr2XJ6RhepOFQpp9D6MJHD77fVjk+qMM3FuJPidUhXXLbByE8X8r65XKp+orkmFM+vojEp6tpOyh9cyMkPa/DZW9ouoiL5/sgdBwtcOnSMeVqPKNKeUDxCgP+bDqdotvtFvgMLXqXZVXRF3zjzD/LyhCNjxWCsWWFMIFrZUyo4nhTFWVgd/DnRw668Gm1Wvh3/+7f4b333gMAfPnll/jP//k/b+ygbTabBSa5zQuZbzrswvjfRHAFHuoqv06DLsbwkHcdSCWZ7okNFf4c6IhMbUGFVc5VOBilcK7bwC+LS51pY8qR7Xbd6VIFl9hx9SljfJcIle8rj3YljcdjHB4e4h//439cWPEIAH/zN3+Dr776Cp1Op7AT1OVkpU/XyknLcehzuvO6fUEyy8ikvtcMDV6uT2mXK/okbmWAAlnD4RBZluHNN99Er9fDYDBAo9HAkydPkCTr3Z109A9vL4CNXSsSHzKMZJslUD/wdkpFl4yzXq+Hbrebn84ymUxynidBK8vV17JtPI12H48mP5Lk8m7lTz/9FKPRCKenpybPpd3m9+7dy+sZjUYYj8fBMkWb41peTR/ndG3daUzlEb48/Xg8VnEsa/S46Jkb3cB6wcBwOESz2cRsNlPvOXYFEggW5wssR0uk+ykanQaavSYazQYa7fUO2UazAbpDFg3kd8eicVF+gsJuWfmZIcuDsvnuWQCXG2HXaQtH+Sb8a6I+L3aO51kea2UB0ozRiQh6Oo8O1nBR0hTa43qv4ClxybJ1AHb0+Qiz0xmy1UVAdrFpe7RardxIJ5rlq6QL5VNTPA5HLgPK0vc24KrwKNvmGIdf7DsqX0sr74jnQQZL9pOsGo/HaLfbhTu/Q5ybMXCT7ELJl+vCXcpnqdNVmWsWXWg6QZ124C5AjG/NJS/l81elf+qA65q/1jhoNrxrvF41mrdgV3yw24ZQG0DLp/na6ugzqV/F+nwsu22Xx5O3z3XVD4HPr6DZtXTii5RlsRvfquhddV6RRaAF8ix/AdUt/URS34/1I3N/Bb+SKzR/CFh+qpB7gUPLLIsn98XUCTH6Q0xbRqPRhn+bdkPLNuyyrNPaqB5TXIUIXc5OX5kxdbrKuyqBvC2jJaZ+qtdnjJDDgqDT6aDf7+Pdd9/F+++/D+By14lG1FI4Ws7GMm3gzHaXBe91QgyTdjmPQ/KHvIsdb1cwxMUzfKDRTpXyYvPIcXEFH+SzqsJKHnVJaUPKDqWnqvMxFJ9tgabwAfUH5HkbLaPChaPF+2L7v8x4+QIiVsDMKoPTZ5qmuHXrVn487ng8zq8xoEAPBWNdOPjwj1XCy5Yhx1YLbG1Df3LhHZKP3/VLwcx2u41+v58fQy0DEFrZMX0dO+dknVR2mqYFIzWmj1zjUIW38fEnY2YwGGA8HmM8HucLZLS+azQa6Pf7ef3L5RKTyQSArmvRc1mObIPloLEcAC79WabhgS56Hqv7lnEG8HaSwdVsNjGfz4NoX+3Li92WyfSi/5MlstZFPWkCukt2hRWSVbLeKZusd8qiAdB9srRbFmCfCfuH8h3Kd/Y7QWIGaS8bZTW2+F3bFZv3hwzGyvyeerU7YTeTO4KzMgh78Wy1WGE1W63fr4DFaIHlcOl0XEh+FQsuXk/OmtAjsuuo10pbptwqzlZLZy1Tns9WL2Or+IDzDpeziTvhXLLuJtumsTqJld6nF1m2im9cYwNJrmeW3h1Cty7H4K74JyxfD4cY27lMXl8ZMaDpMlqaKjz+pkBM+0LowAeUj9+zZ6Wr4lfaNmg+z1cdfLyqzvLKQFmfS4hPLaS80P5wyQsrX4xPS9pJPns51n8k05YZxxhfFYG0VXma0Dq1Mrmuxo9xJpC6OAVoLd8ML5vjp713+aEseorxacs0lr1u1cvTaDiE8ugQfSsUXHaCq16fvNFA2zBKNLMrfL+s710NxvoGow7DTkKsorstJ1sM7Ipi2G630W63Aaz78fz8fIOpvP/++/gn/+Sf5Dh/8MEHePjwIfb29rzlz+fz/J6wRqOBbre7sSpnuVw6GZkFsQ691+CGuvuwzvKqGrPboI86ywwtK0TxIUWnjJCh8svMx6qgte2qArJXUYcFoYYRD24AxdWNu2Tk1jUviIY7nQ7eeOMN/OVf/iV+9KMf5fIkTVOkaYr5fG4qtaQ405xwOfx4EM9KowWSpDIfogPJdD6HUUhgzGqftms+hl4ODg7Q6XTw8uXLPHCYpinu3LmTH0FL9fAVvpbBFYK/xe8txw8FjOWOTn6XrdZ+aYRZDnRXf0mcqL+lk576iPAkmM1meUC11Wohy4r3K/OVxc1mE/fu3UOv10O/38cnn3yCwWBQ6v5k3h8h7eRptHRyzPnuMd4vPI1VlgskH9TeEVCddKS2y3nLZY3EUcJytMRqvMIiWSBJEzRvr++RTTvp+i7ZlnGXbJLku2TlDln1/lgWjC3slL145mq7F5Qg58YOVFfg1arOMYwbgdgY/MBoROCVrTJMX0wx+nyERnIxxxb27m0Cute4jMyyHFjA+kSgfr+fnxQwm82uRaeqClep47qclxy0e6opv+VECwna0HuXs0wrbz6f48svv8zrr/MO712AKnOjTPnyZAkuI7Rd6z7Zrf2+arju+jnsgo1wlbBLfW9Bmqb5wtIyO4220UYXnUgfAZ+jnIfyMnaRL1b1K90EsGSi9V5LQ+l8ZflwCLUHLR+IBVagpg6/SJkApQ8sf5PLvtd+k75BNqO0d2VfarKVIFZmu+SttfB2W8BtZgI6mU22keNNtnu320WSrE+qWi6XuY+J8vAyWq2W6Zuoox3blM9JkmychFgVb42vh7QjyzI1rzU3YviAlla7T5bXGQoWTdcxbmUD3WowVma2jJkYJELqiYG6iF1O0m0J9m2Uy89Mt5yH7XYbd+/exb1799Dv9/O89+/fxze+8Y1CeQcHB7h3717uVOS7mHg7uLAghe4qjIOvg9J108GnOIXSiRzrWEbL63Lldb2LCUKElGkJN8spbuHge3bdhnrdQi7E+RZaR4ygrNqP1o5Pl/LMnVI+g6Qug2KbsFwuMRgMckVZBkikMyC2z2MDQaGKXKyskQ5HrUwZPIzB13KOcHwtyLIMnU4nD8g2Gg2MRiNkWZYvtAoJvMr6Q/pI069C8OXfaaGX1rcuHELkB6dFrf0uuihz9ze1ZzQa5Qtt+BE72pyPBZdOy/mKRlscyurFsXOYt1cbM447540aP7Hqt8pNkovgf7bCarrKd802mg0gwzoQu0o2g7JZku+WTZKL78k68Fr4jsvvwMU7sAAtoAdEXV1tdG+h3TIQK48fDhmiGPLzlKfhlmXrvp6fz4HVGsfFYLHeGdvYXCTjRSHbXKBB32mcNZy0OugZ390eOx9D+HxM2TFOU58slXPKh2vMWJTpJynfXPLOZVtInibLdPWL3GHxdQOfAy3EKWv5i+R89PVz6HzQ5o/UkSUd3fTxLSOLtzFvQyFG373JII8StfiXTxctCzHlWvaki/9rz3w4+/w426KJMj4IzpfqxquKnzlkXGN0A5knxDaywEcvPjutSn+H2C0WuOZkCJ1Y6UJ1Pk2Wch8C+fP5d63ckP6L8Xm58oeMUxUZovHMEBqlNNxHoAUnOe7L5XLjajg+JjHtDPFpWBAiG6w+kHasD09fnTE808LFhW+oHq/V5eN1lt+kbB3aew18uMSANxhrgXRc3VQF10VU26ynDmg2m4WjhzW4c+cO/sW/+Bf5PX6Ey4MHD/DNb36zkDZNU/yjf/SP8jtjP/30U3z00UeFNEmSoN1u58HYxWKRB2+3DTeVxm4y1OmccClk1wG+ue9jzrGGhW+Xq+YsjBEyIauj5CqmXbr/+TqN9bp5Cyl6FHyx6nDJ0Kt2HlUxGC2YTqf4u7/7OyyXS7z11lv5fZmnp6cYj8eYTqdIkvVdKS5nYKyxGeKQlnkIXIq81ieEv0wny5ZGlWt86R0tuKJn8k4T/qkB3RV7eHiIt99+G++//z7a7TZ++tOfYjKZoNfr4fT0NE/Lj3/l7SN8XXWGOGZ86XgdtJiB7oklXGjnrkzP8ZXffQ4FyzmlPZcL3uSuXa0+jud4PMann36aHxU9GAwwmUzQarXMnQchjnJpsGgGTIhzmjsFYgycmHnqKwu43BFNcrPMneoakIOD6Gg6nSJbZlicrldlZ8iQdlO07rTWAdh0fY9skiZopJe7Zenu2CRx75DNn4E9x+VvjlfUrlPZByLYyssy76HleeQUEahsBJE1HDZeKumyC/xWGRajBU5+fYJswQJpKB6HW9VhJ3eqc14m+TrJbH5yBd13PpvNouu/SeBzRFUZg1jwyQqX44zzfEs+aHxe27H5dQFLTlL/uRx+lE7TvSx9KbSPq4yFtUD9VQHLXqjiHH4N8UB0Tos5aMHjLh2dqIHmw5W6c2zwZZfbGwJX5f+tGrSisbF8RpRum+PhC5AQWLa4T54QcF1Ms9W31cZQ30GInyTUl0InhXF/vcRDuzPTkqlWsKgMbZQNprnAmheyjZIvaTY+xS20dPwaKSq/0Wig0+lE6SMWyA1pZcu0bGjXiQTc1+gLQseCteu1ankhfmfph3DlifWVbtO3Ku2JUDCDsXU5Vb6Ohs1VgZzwdIyWPMaA75yVeZfLJRaLBZ4/f46joyPcv38/d1o8e/askIeCsHUwr9ewXdCEFVCNMdchfGOV+1CwnOkxeTn4mLXmDLKcQyEOoRD8LFwsAS7HnY7/DOkXq09cOMRA3Uacb7xcimTdvEw6peSRfJZR4lKcy4CPJnzvQurVaIIbSESb5+fn+OSTT3B0dFTYgeJqH6drXxpNEbbmmG8+uRyJIaDlLTs/OG1o89znrKb30+kUo9EoN0AWiwVGoxHOz88xHo8LRxPLdsiAhXzvwyeWDnma1WpVOO5X5nUZ+HXNa9/YcRqVc5+AdtglSYI7d+7gBz/4AZ4/f47f/OY3yLIM3W43L4cC+1rgnX/XnOSu/idnRsi8kvldPIpDqFzjwS+Zn4D4SKgTxzdfNf7Gj10uwBLAFGg018G4+XS+vq92b32UcbISwVgKziaXn1ljvQs2awj9IMlARxbz4CY/vjhxbEsNua/VzJOs0+flW4FZ+Y7KcNUl3/GAMAVgswzL8yVWsxUSJFhOl+vdyKtsHdC+qMfSaTTgNKfRdaxzkhvT8/k815t2aeGaBhp9W3LM4smh81vrZzkGlgPJpXuFjrl0Olt5pfzU3tH3unXSVxWsfnGNiU/OJMl6QZt13ZGrnJCyQwMHMeXuAvB+jtE3XXPGmp9lbFZeXlld2ir3uoG3q9FoYG9vD61WC6PRCIvFQr3iYpfwlyD5N6Dz5zJtcNlass5dgJsgC6S9YaWpCpx+Y+RzCC4xPjqtrXX4RmLK0PihxXdlHWXnDgeX7I0pw+JFIX7EEAjVu0J10xgb1IIQOaTprFIfkf0Xog+50nGIoQ9pk1TpF5+vLPQ5fxfj5wypL0TP02ygELutTN9Z89nHJ613pXfGVoUYxlQHE3tVgffLdDrdWB3ig9lshuFwiF/+8pcYj8d4++2383dffvllIW2/3y+s2HkNRXhNp9VgV/rOxbxjeJavPB/T9gk8LkS1crhiQU4OiYt1d0IsPnVAjLJfZ95tAPUVXwnmG2vNyVm3MVUnWPyO6Iy39+joCI8fP8ZsNiscyyp3fpYx+LRVlD4l0qdMW45tVxoqywpQSmelnMM8rewX665Cq520WpL6eTAY4OjoCFmWodVqYTabYTAY5Auu6M553gb+T2XSp4ZTiALqokFpvCZJktMSv0tGBtBijAgNrLRagEcq93zsrCOPkuRyd95kMsE3vvEN/Pt//+/xp3/6p/irv/or7O3t4eDgAOPxGPP5POfJ0+lUNei1NvP+0trA00iHATcupfHoqs/V/xpodbtW/NJdnTQXeDBZlhsL1Ga5Wz0vawkkowTNdhPtThvTsynG4zG6b3TR7Dcvd8KmIhjb2NwlKz/XSAu8+dckfoesVs5lvJUFXvPYqLGIQ0nrBa3M7PIzp5PVOug6fTLF8nyJZrO5lhNL3fmiOcxiZTyNMXeMh5RBecbjcS7LXuX7Yn3ppDPMkv2ud/Teem7JTQs/y6nI80lZJfPwz1BdLRZuul2oLZjRxorrM7EOc9qBLueZlDGWrAp1LLtgl+wHH1jymr+Xz1w6mGu+VqXdXbPNyoLVF0S7Dx8+xOHhIX77298WTnMB1n2gnaCySxC6UDtmLHeJ770qdMghZMFTWdD4SWgfhgaeqgbY6gDN5xKLv0sHicGBvsf6QngZdc65WP0xRF74gpR10VcMkC2q8WipD8b4MuoaC42+5L24lt9L21Euwadr1wmka8eOIT+6O7a+XeH7rvmxEYzdFtI+B4oLyV0S6LsAjUajcFQw3/Emmcl4PMavfvWrnJB///d/H//wH/5DHB4eYjabqQ5HX92vQYddoVOpIIQ4yWPANZerBNPkd01IS8e4r7y6+Fmsc4FDlmUbR4lI51MZYcjTySCrDOTQ+06ng2aziel0umEs7oJiHGMMlnXCW88tJ1MMbpqTyLczNiaowcfIMp41AyFm7oSCz4FDO/zOzs7y0xmWy2Uud2TA0QUh93HK9lo0zR2v1C9W/a557zM8LP5FdKY5GjU8XO2QZUn+0u12cXBwgO985zt466238PTpU3z++ed4/vw5hsOhemyMz5EeesSMzOdzHmpzROZ1tTcEZB1Eg7IcH52F6qtU/nQ6RZqmeOutt3Dv3j3M5/M8wNxsNtHpdPKFdN1uF2maFhYtyLplWyQuxHMk/YbMfYsGtXdaP4TMUWoXBZ7J4F0sFjlv6/f76HQ6+e/hcIjVahWkg2pt4HOPju8mnDRemSTrKzkO9g8wn83XJ8+MllhNV3kgtnXYyu+QTZIEaGB9L2wjudwBS/y4wQKd1Bc8OHuxU7awixWXz/UOFX2rTINsvRUWhR2xlDdT0oaAlizD5e7ZDFiMF5i+mObPk4u/1XRVoGONXkhv4XO+DFA5Lh4P6HbNarUq2EhloQ69aluBJc5LyvAFCbHOWksfdpWlHclmyQNXPVR+zNFpZWBX7MIQcPF+nsayMWV/cz3L1Q801wDkO2Q1/VaTX5ZOYckADhK/XXHahYA1Dj7eWraeKn1TV9+G0Oe2QLMFFosFWq0WOp0O3nvvPbz77rt48803cXZ2hp/85CcYj8dXjlvou5D5wcvgundon8ektUDjP9a7UBtdlhOLw66A1pZQ+Stlv6WHyfosWy0UV618kulSNlu4a3wvljdodKTZdrF6owtny9cj8ScfhVY+nbJkjUHInLP61+VP0uqyynX5E+Q4h9RZh24q03Kdg+MlfQK8ft63obtSY/gN7xc+9t1ud4MWOp0O9vb2cHJyki+01+aypVuH8DQXb5DpfO0L1dt8eaVuE+ODs96HlBVTfhldpxCM3YYiGsJQAX+H1mHQvipARw0S0HFawOURdwTT6RR/+7d/m//+wQ9+gN/7vd8DAPMOpBjBtqtKytcVNMcyQRkFKiatz+AKNRBdSgb/7qPHEAEZC2UZfx1GiYWLplRy5Y+vNO90Ouh0OjnPoLzymNJQ4RqquF4Fn/D1hw8sRdmqQ9K7DHZo/WPhFLsqWSq01wE+mqaFQYPBAO12G3t7e3kwViqbVJ6EJLGPGYlR4rVx8tG6NX5lwUVfvvnGA/ouvi6fdzodHB4e4v3338e3v/1t/K//9b/wxRdf5MdFt9vtgvGkKaWaYu9zimq/6VmoTiifc8ep6x7mkPIsPLU5FaP3yOdk2M1mM7Tbbbz55psbwdg0TdFut/P2UTBW0q41Dlb98rurTS76C+njUF4k20T3cfLjKSlQ2uv1cPfuXcznc8znc4xGIzUYG+Js1Jwh/J4fy6nTarWwt7eHwWCANE3XwdiLwHHSSpD2UjSaF3SZZOvjixu4PMY4SfLjh5Pk8hml3wjCsvcUN82SbDMgS/l4eyHknjKc5nHFrNyLhDZk/Gt2+Yy+ZhmQAYvhAqMvRwWHW5qm+ZhTWm2VdKyuajmMSH5I/q8Z4XJ+0SJXjr+PL7h4i5W2Tvmi6SSuun3PfKDpQ672SPxiHTjymcW3+Dwn2cGdcFZZr2ETJM/m8l/bTSz1A/lcA7ouqdVq5TvmfTiF2h4h6ULnzVWDhZMl+y0+Z0FoO2P14Fd9LpHOQvpIu93GO++8g+9973v41re+hdPTU/zqV78qBGN3haYIQuSX9t5FC7H8NMRfJMsP6UfL7t+1MagKUqcNhVB9X5Zdpv+kTRnqX9Hw1XhekmyeCCTxl+VbECMDYuePZmto+cguabVa6jUq9EzaL1ZbXePsG98Qf4r2LrQfrXQhvgRfeb733O8hQdtNKvu6zLwLBekfo0009A4ADg4O8M477+Czzz7D0dFRqTpCoY42hsqN0LyavVOm7FCItUNj6722Y4pjEH3VBGhVoBUd1C8uhpJlWeHo4vPzc5ycnBTSzWaz/KgVAPjiiy/w4x//GM+fP98oM8uywhEsu36P0muoD+oSOqGGnUuJCOUJIcw61tD0lRWCU5l3sXhkWYY0TdHtdvPncrEG31FPyolLUZd4VlHO64Q6x7AMEE2SEmXRnaXghb7X6ozFsS4ILWu1WuVH6Jc56rEszuTop+/8OS/XcsRJp6Ism3+XCrrWhlAjhQIInKbke163ZpA1Gg20Wi1Mp1M8e/YMR0dHuHPnDjqdDm7fvp0HY60d9fTdMthCDL2QZzHveZoYYy/GAJf5NOXaZVTTcxoXXv/+/j7++I//GG+//Ta+8Y1v4NatWwCQH8NM9MrvG5OBhKryRUvncpZTG7QV2vTO2rUe4sCh9pH+Sac2jMdjvPvuu/jud7+LLMswm83wP//n/8TJyUkBTzl3aQc+LTRy1U30L+cA9fd8PsdkMsF4PM4D53x+YQWMn42xt7+Ht999G6enp3j69Cnah2209tc7ZrPGBQ4Jiv9AMVibIQ+wZll2GSxN1kFVmQbA5S7UPHYrnGis6RtBVwqcJpn63AQeiM3W9WdZhvHjMZbjZSHdcroZ7KZFYNzZwI+SleMaIkNdIMdX8jQfcLreln5RxdHpKrOMs6VMv8jnMVCH3qaVofErSmMtAtvGOLxKoOlQloNcgxC7h+QAv5aAp3GNq5RVmo7mqpv0rpsEso1lbXSp827DwfyqAdfNlsslxuMxBoMBkiRBt9vFv/pX/wpPnz7FD3/4Q2RZhl6vh8ViodL2LgPn9XIHI72PgW3a6tftB7gqoHbK6xdcNiuHUP9EHTiGQgwPku92jV+57GMZBNTsbG4Tyrun6bsmj8uADCz6dvvG2OnWO5dstvLG0HcdwK/SkmNWxm9n2RGaziGPTB6Px2g0Guj3+xv5Hzx4kPt4syzD8+fPMZlMCvUuFovSpzTEbIbwga/ftDT8eYx/dJdBa/e13hkr4esgROsAUv4IuNOWG5S0eo8rf7PZLJ+o5OSif0p3fHyMX/3qV6aDej6fFwSEdA6/hlcDpJFrvb9qfKQwDmHwrvK0MlxQN43X1Y9SAVytVmi1Wuj1eurdnJSG3y8pAztW3/oCWi786gItOGSl8ZVTFjfNEaUpDC5l02qHC/cq+GqONKsPqhq3VBfdb2EdvePC1defsbiE0mkM7cSMVSGgI575xl8LoFmQpmke2Do/P8f5+TmSJCnswpQyXtIpGfwyACZx0Wi4rFPPxc9jHL0+Y9Wn2GuGn689ls4ErFe3fu9738PDhw/R6/Xye3r5kbkACkFyXn+IA8wVIKkSbJB5tb4t65STzj7SQ2/duoW33347p2Paxc3bJecfOfPlXTqSRql+66h+ALnjVFtEQulmwxmSdoLb3duYnEwwO5uh0W6g2W0iSy93yq6RwzpAevGZ4PJu2EKA1fF749lF0Nb1nL/baEPg9Myy9X2vhfQXgdhsmWF2PMNisNjIo5Yj+Le809UKjmiy1qpH1kfpNd7lmkt1Gv9l+WFMXk7rkm/55mcobj4eU4UPhODC22fxA58zUJblgq+TX8KaUyH95MofWrf8l+VqjkzX/NXmgvSTWPrFTfBlSD0wxLHt4iWaTA2pPwa2aQdeNfBdavP5+ioD2t39wQcf4NatW/jxj3+M5XKZ34m8y8FY1/zV+GasfNTslhC91leehp/8/qrwcd6Hsp2ueb0tXKrYE4Cu11ntKKOj+OxA/tyl28TW66pTs3G5vLLmSV0yydUn0i9E+El8rTEM6a8Q+aLxFh+9VaVFXk8ohPJArsP49OUkKZ4EtlgscnuI56UTpPb29vJnPBDLy5PBWJdNH9IenrcslJUfoXksvdEnc6rOszJ68MYxxdsUWNsov4ow4Iqn7/m28YkpkyYhQbvdRqvVyp17wNpIOT8/d+5Ems/n+E//6T/hs88+K9yNNJlMCmURTCYTr4NkV2HbtH3V9bzqsE0BcF1AQpgfL1IntFotAMiPcwSAe/fu4R/8g3+Ae/fu4f79+wDWTub/8T/+B7788ksVRw4uRU2DWIfjTXB4cPC1P1aR8xmKsU4RK9CpOaJDFOi65ho/Wr8uRTfUGa+Vw3dh8Z3MWll85x8FJrVjbKgebc7w97z/LaegNJZcCqO1a5GCSGma4sMPP8Snn36aB/roOe8bWUen00GapphMJhv3a1pKsVVWCLgMPAJ55CjVCyAP9FvGrPytlc/v45H0Rc/lHYMuZ67WT+PxGE+ePMlPHqEjeKmPx+NxoS98ThYXzYXosiGOMZfRKPNqdxrJcuh/Pp/ntCjbQjtTHz58iP39/fxUBzlneD+122202+389BZ5EoSr/do8GgwGGI1GeXv4XbcAcufr/fv3MRgM1uWNMqyy9ek1y9VyzSsuAqSNTgPd+10gZXM+wfoo4ovvG7tncXnUMb9vNr8LFiKtfM7yXf5M1AAtIAK32fp/MV5g9MVoHZAFc4xcFLycLIN0X41eLF4aAtYiMl4fOcGtFd4+niDx13iLxtN9wPlLVbvBlb9uHasOh5fkS2XbznkJ162lw0suXnaVR3nqsOXK+hN2yY7UeDn99u0kjZkL1E9cHrgWJvF5GEtHUrYT74+1X7YBIWNv6SgEMXxM1qnpotfdJ9cNckyIn6Rpitlshul0ml/7Rcdtv/vuu2i327h79y7Ozs5wdnaGJCmedOKr57rBZeNkWZbbEDG7p3z2mjUH65A7ZWHX/MxUhnUqTQhYdiNQlKsEPt9QKEgfsixHnphi2RGu8svgtA0IlSfa/NFOdSGokx9Le1bauSH1xc5zLX/oGPAdq5rct+zZUNBODIsFbf7wd/w7P5XQAkozHA7zZ8PhEC9fvsQ3vvENvP/++wDW7T08PESSJBgMBk6bR44xPb8qCNFxfGk0f1AMLVlpt90PWvkFT0UsQ4oVJNtgeFWMOC1/HcZh3WA5JTmuUsHjQoznH4/H+fni0+kUn376KT755JNC2Wma5s4mWacFu66sb5u2XfXsmoK961BV0apKi5aBG1J2iKPH987leA+pm8/9ZrOJ/f193Lt3D2+//TaAtZOb7iXk9/S5DCEOPnp29Z+Wtk6DKaQ+X1oXTq52u5y0oXi58CjbVy7aukq+5HJCcFzqNLRcwSX+XDOMY+gg1gEfUgeVq9GBD7hyT4r5+fl54b5GXzlpmqpBMspbxmCxgia8XMvxaz2n76QHyV12IWMTQiehdMnrlPknkwmazSZGo1HuvMuyLD+amAcOpCNC9h03+MryUJ+jVcoUOYerOKgAbARPeHkUjAUujx8mA9yqN2bnfQjwHf28Tt4PRHd5vUsgm2VYTtb34GYNNm6rDMvZEkmaIGmwdiQXfcmCrWgAjWajeERxdhG8zS4CrpmgV36H60Vwlv/m6bJVhmyhjH12mYZ+L8dLzAdzZEsRjC3pCNRsExf47DLNsUBjlqZpvgCF4xszZ7SAj9UGTQ/T5IWGi0uu0DyXaWN0GSnnOJ9ytcMqN8S2seqwxlTrC4sPyzIsXliVZ/Fyyvg8Yu3CXbIXffoJUKQVS5d15ePvtUVOMq+mC8T2mavvfbpDGR01xMZz5dfy+mwOVx/KOewakzr9Oy4bxMcPt4GPVrbFC630i8UCw+EQp6enSNM0X3hK3+nobdJjLNiVeV+GxwHFcZGncWlptHJi9fXQMmJ1Dq3csvkseqpjvGNksIZDnfa2D4dYW0XaUi67MRauaq6V5aNV2+nSmULmQllfUVU5p+nPMVCH3Ar1+4SmiZEnBJp/hY6uBi7t4/v37+eLYrIsQ6fTwWKxwGQyyU9hsOZ6VTkaQ6M+HTG0HF63j8+XbV+VvGXBuWzc12lVmVkZBboqXHWdddfnKms6nRaOQNF2t/7lX/4lPvzwQwDryf7o0SOzvCyrtvKKl3PTxjmEEZQRTmXhJvbhVUBVYV2lntBypIP4KvuU7rJpNBrY398HsBboDx48wGAwwPPnz7FcLjEcDpGmab6LpKwiRFCX88tV/jb7sYzDltKT0zfkrkceXAhRLnzGiKtfrDGpqy995VRZbWg50bU+8Y2ZJdfouwtPGldZHt/tzu/7CHFkxjxzOdpcwYFms2m2V9bBd/+22+38qgM65kZrm6Rhft+JCz9XMICe8/HyrebmK/XlnNL6K9SJodXNHSp8vvN+IV6QZetA7C9+8Qvcv38f9+7dy4/UXa1WhZNJQuiC6qrCp0Lmo4veXPRj5ZHP6fgl+kzTNNdhj46O8Mknn6Db7WJvby8/cp/6WDs6mMYh9jh0aoPEV5PdSZIUVuROp1M8fvwYJycnefv5TnIO2TzD9PEUGztXgY1naSdF581OHrjNy0twGWhNUNgJmx9RTPVZ5xBnwGK4wPCLYR7Q5Y556g+qM1tleSCW3q1WK3We877in5Lvcj2D0z7/J/lo3QMp8wKXc//w8DBfnEFXsRAvlE4K17Ht8s4uwkkbY8vZwftiW7qR1BO0+eriF7F6AO9/zYEm9Z8yekaIU0TrU04/Gn3wRTuUh97Rb9f9pBa8qnZhDM0STpL2XTRH75bLZa5LcRnFd+/I8fT1gSUHOD+6yRAj+zkfkjuhALuvbgrUMR/K5v+Lv/gL/PSnP8Wbb76JW7duYTQa5Quf6U4/WX6IrVJGb60CVp00X/i8jp0/Pn2cw3XOy5vg++Jg+Wkt+tqm3iHflbFNfHZHbJl1wHXMxVCI9YGElBEDkv40WnCd0sn1NR+OWj6ZJmZMXGlDdM/YPBbwtsuri6y6tfrv37+P27dvI0mSfMH3YDDA8fGxt69i/AlampC+LztfYuRmKEh5JOk3xmeptSumP53B2G0zGWms+6COAbhqxlmmvlAByo1L2lrvctwmSYLJZFK4T4s7VCRj0yZuGYZ/HcLqqmj3qiBW4d1mndbzkHpD2lGFH2j072KSoaCVaxkVVeuKBe58I5zSNMX+/j76/f6G0xJYH0FKd8mS80MLYPjANQaudlcVrNs0uPn4VuHfmmNWc1KFgBxfq17L6esruw7YBp3HOj99PMH328XbtHnGj1RarVbmfVCWISd/a4qhD3/rGQdLSXbJdO5Al7iUmbMx/FI68avU68LFWr2vzZ8q/CBJ1sGbzz77DKenpzg+PsazZ89MY87Hn0LSuPCJzed6bo2rby7x35zO6PtoNMLR0RG+/PJL9Pv9wk5inofjQTtZt8X7pJFG3weDAabTqV83yIDVYrVRZiEJd3ZOVnnAtdvtotvrrne3pw2cn51jNp+xguijGJBV+WMGLEYLrGYr5BtgPfTP39HijlBjNYT3afW6Ai4ajpx+KJBOdpHL2WvxF5/uGFKGltdyOFZxomlzUdMbXHha4+ADWb6PfrYFLjqTciUGXDpCXTKpDGyrLzk9yraH0IZGD1oaqyxtvla1E6zyYuydq4aq4+uiW5etFzrOVfiWxNHiq1r5sXqKr/467MnpdIr5fI7j42PM53N8/vnn+WLoxWJRuA4lptyQZ3VCrI/Gop+qEGILWXms36H9v+0+rgtifVEEIbaOVVcZvGLByiftUSuPTw8oi0MoH9oWhNpuZfWbOtrjmmNV6vGNeVWI6T+XDRDSthA+5iuL3k+n03whMAHZwfyULTohqOoRzBoeBHXZNCFgyQWLP4RAHboA4SDL9YH/QqXXsDNgMbLZbFYIsEpYLpdoNpsbRw9nWVZYsbdarTCdTnOnVggur2E34CoUdJ8icJU0se266iyfVuJTuXXj3mw2CztUsizDwcEBfv/3fz+/M4/uJSR8Dg4OcPfuXTx+/DjnHSTEQpWJbStH1wFSmSir1GbZ5s4zPvbyPg5XPVXuxvAd+XaTwHKklnXSaQqTFiiycEmSBO12G81mE71eD9PpFMfHx6UUMdk213hp99aG0IdmSNLOIU3ekwOJBzMkXXOnHe8714p5bRy1gAHHmS8U8RkoEnigTo57kiSF49o1vCROBNbuX14P4dtsNjEej/Hf//t/33B0amNngcsA4c9chpDlXNecXxb/0PDQ8sTMMX6UbKvVwvPnz/Hs2TP88pe/NPHnzpkkSXIZR/OjbqC6iV5o5/iXX36J+Xyey1u5U94qxznPZyvMn82xXCwxnU5x671b+PYb38bt27fR6/bw53/+5zh5enK5Q7PB6JruqE0al88zYLlid7tmgLZx1uWIp3d7e3vY39/H6elpvmPeBxTA5Udya7TIF4jlfaFcyyL7kdMjlU+7Yul4L3JGhPBGyYMkvbvGlZdTBXxOUYt38D7iZYXqny4+6ytHo+0Y3TLUKWaVpT3XrvFx5X0V9KU6QMopl75BoM1rnx7lkmUynW/cXXPQN5/kTtxXCUJkDvUvXU/BeelNt+0sqDLXuX5H+vjR0RFevHiBzz//HMCl7Gq1WkFO9psAVRztZdpel3/pVeh7YFO31toVcp835+Mu+aj1mWbDuNKEgo9H+8CV9qrHvk590LJLNYjt92378srID0tf1Hxr1wWa3h2qX4fooz5YrVZ4/PgxXrx4sfGu1WoV+PTh4SGm0ykmk4l61yqHGDqV7VgulxvX+tQBkl8B+iltFm4x9ZTFj+MWC1sPxpZlRrFOt1dBwIaAr52yX3z9xBmbi5jqYByvYbtgKcia8zsEQufYtuaeRqsaXtazOiBUsGrfNScA/6zqdOJ5+RwmxxMdPQwAk8kEWZbh5OQEg8EAZ2dn+TNZVmhfxrQhpj2hUMUgDAWLJ7ocP6G80serQ9PGzodtKkl157fmi688wG8gUpmWAq31uVQGs2y94vDevXsYj8cYj8f5sb6x+os2pjLI4KP1GENWc6rzvqE0dHQgf28F2Xh9vAxXX2pttvDVxkoGYfjqT196rQ6Zzkqr5bXScTyIR4fgoOHieiafl3FMhDhrQ8GiCateOQd4fVKG+niGLFv7XVV2JEmSB/x4wFD2k4/HmE6HxQrZKkMjaWA6nuLo+REWswW63S6yVYZ2q43xYrwuJxMOjAxYYQUs2fPV+rl5fLGnrQRpmubGvjXGknf1ej10u10cHx/n/NGan/LfogWtbynPfD5HkiT5qUF8ZxKVIwMN/Lm8QkC2qeyuYOuZBRZPCskX0nfa8epauipzxuL1Mo10Dmvzg9pi4a3V4+NpWjqNH7nGsgovCcHzKoC3wQpIhuAY2w4+7vSdHyUt9S76Hqof0hhzHsD7PE3TXH+wePWugoZvqL5i5edl83lmzbeQ+R0CuzIPYkDiSvNGyombRFMusGwADSzdOyStlS/Gxvk6gTYmMbKpjByzdHOuO3H8YkDjT2XsGe1dXfo/QWw5sfaQj761fi5jc/hs47LzV5YdY2dL2e/S/WU5PtnmwjWUx2l2T4hOWhftyYWrhIO8n1zaVBwfa374IETvqJM3+3RwX1qXveDD3aojBJcQnfJKdsaWUbBeC9fyEDPZ5/N51CqTV0Wh/LrB133cYp3IGvjy+/rYtxqprNONC2NyOCwWCzx+/Dgv58033wQAfP755/j888/x7NkzDIfDjR1sV73ibJfpsixuMYqzVh83aIDNMfEpr5Zze1twFfMq1BiLpV/u2JV5Xfel07PFYoE0TfGtb30L5+fnOD8/z++KonShBqkMPPB6rLQaaLs7ZFpK43J2EtBxNy665Q7/UKeK5cBzGVt8TDRnOb9zTu5c1QwR3gd1gtZXjUYDrVYLaZqi2+1iOp1iNBqZRqpVTki9Fv3EypgQI8LHz2Kc25I+Go0Gut0u0jTFcDhU74ktg3OdkGXr+4DpWFyua1jBA60MbawoaNlqtXB6eoqTkxPs7e2h0+nk98BPp9NCcJMHFvgueu4krto/aZqi3W7nPNcK3BBfXS6XuH37dn5X/XA4LNxjzfkH5eOf/Lgt3l/anaA07/kuaXrOnSxJkmw4Mqg81+5ugqp9WEYntWjLlV77zqGsY9KSazJIGuLE4Gm0Xc9avrKO3thTanzp+Hi4HI1WXk6Hu+T3KEtnIeNipZc8SqYLGTufA5b4I6cvurvdZ6NtG8rSQKhtyttsObm1uUn9Y13D8RrWkGVZLpubzSaybL0omsu3q9ZP6gSpq5aRHZZOGsoruXz+uoLV91VkeFWQY0J6WFV6l/Rxk+ePhBB7OTQIVDeUmduuuSx1eVd+WVbMSRVl4k11g+ab4GDpL2VwJr+Hq36tnljf0lXNubL2SCiE+EwJYnf4VqG5WoOxoU64KuW8Kky4CpSZKJoi7XP+Wcr5a7h68DlS6oZtKDx14FpXgCzGOewykC3lIbauqoKZB1XJAXp+fp6/f/ToEX7zm9/g8ePHOD09LfACUna4EIzlMZJXuAJBVZxOLkdPbKDBKtvllKijPHKOh/JaTbGzHClaXpfidVVQFy8JkVfab21uUoBif38f7XY7V2oHg0G+m0rmsYCcfL1eL98lZylyGi5yjF38Ro5pqFNZ4quVS+8ajUa+UEsLTJBDhPrQpdjL8uV7n2zjaTR69jl8NQekliZEf/WNkc9wJKf7ZDIpBJh88sVFgxpOPn7iAkkLIbqApGX5TvavxsP4O44/P9aWlxkbjNmGfUK4akdWh9YfOneprul0iuVyiTt37qDVamGxWGA2m2EwGCDLsvw4RAD5PXaUP5SOLYiVI8QnaPz4uBHfkEeEa84365hZSq/NE21eUVp51zeHRqNRCGhrbbIgRE/kaX06TKhcCAFtvlDfhji3rT6Wz+R8l+Pga0+ofmiVo/EZiR+NMXB5aoymU2m0KNvN8/Jj/fkzjk/s1REu/m5BiP4e2mecBq0yfHLKwtslA3jdElf5nuMt65PpZRpNZss+qEt/9YGvn6z0BBqPlL81viP7V17pEKIDhOAbC1fV71VA431JkuDevXtYrVb5aTnAzWgPYDusQ2z5EHszls5lPZpNrOW/bru3TqhCO7H9oNlcdUMZ20TmC5GDPj2L1xvbxz5cQtrjk6FSNskTeLRPq35f+yQOIXaxy+b09btWp/Ze6pM+0OzRbfBel25Wpl4trS8QbfXpdDrd6NOQDQbac+K/MTTuG1cL921CqD+DgNuLZeZ3DN+sfWeshXCIMlnVWREKMcbedQjzqnVahhi/V9bHZH1wXX1TBkKVyF2EqoycoE6BVJdDCCivwFhluxSDEF4jywnJpykcmhDkaTUng9UGiYevPir77Owsf//FF19gtVrh9PQ03zHCIWQFUKxQtRxYVvqrgFDnRagxGgJaufQZctSeRRP8+VWsFL6OMfP1DR8T2Tc+5Z2O2rx16xb29/eRZevAD92b7lPo5Xu6O3Y0Gpl3pvqMJZeuRH3BnYdZZq8S1/rGcn5qbVssFhuLNuifAiyuOc4VX82pJ/mqy5GiBXOsdlh8Uho1hEsZuuZ9odVl8RLauct1MUCXDxqE4kttk3Qo+8+lc3M64/hptGTNC9czn9FKdc5ms5zmtDa42lE3yHZS/2rBO5es0PQUa45yOiUjezqd4o033sDe3h4ajQbG4zHOzs5yPkR9xE++4f3mmmuET4gTy9U2ToMaj7LuXKU+tRZ08T7jQXqLxjTHEndKSDxoB/tisciPOi7TPz6a9/GfmPnlA0uuUPtj7pfTcLTyyDSyvb5+dckL173ksi7JAxuNRr6DbTabFY7hJ+A0YrWf46vp0JK++A5Y7aj6EAeWD0LtHA343KJyiD60/vbZWdpv65ksxydnXHmtPuBym5dvOdvKQJUx9MljDi4dxKeP+MaI9D46TaCKrlQGysgdgquaO9Z4UP/ev38fy+USjx8/LuhPLoc4panShm2AxUtdtO7qyxh5ZtkWWrm8/Ovuw1Ac6vArcPDZWj4cysoPiz+H8mxeTmha13sp812ypSpfK2tDhvyWuoJLV/PZvDKN1WeaXLfSa2lcdWj1uOoA4NTzQ+dO6FyMBcsWkPWGlO3qXwt/S/5Pp9ONtPKEJAsvTf+2fofwFh9Y81Hjja55Lp9r5UqdSdqIWl0hPJrTgSWzXH1xJccUX7dQlFDn5L0qqAMXH4OMgV3qGx/EOhFuIuyC8hkLLkM+hAlzkEIhxEC1ynb1I2eoLiEpV8NruGxrvKieVquVO/9PT08xn88xm802Aix8V09ZvuBTdn3PQ+vYBriEsZZGeyfBR0MWvfqUOqufX2XwKTgynZbPUi4BoN1uo9vt4uTkBLPZDJ1OB0mS5CsLtV0T5HilOQWsHa2j0SgPHoU4GaRSaAFXIqVjTDp1Q/pKvtPq0wy5ZrOJvb29/GhUUu7lbiCp5LrAp1zzfiprPNfFO1zlUJtdPMRVTl1zOdTQDQkG0GfIohELyhiYHD/teN3r5HtaH/K7R2X/lzFWXXKTOyYajQZ6vd7GXKOFJpPJZINv8LHV6gmZa9PpFOfn595jK3nek5MTLJdLTKfTwphq8z3LMufR6LFgzQXi7zR2y+USzWYTBwcHGI/HG4smqtZJECIbtN8x+aSscI219luC5XTSyrVomuPj07VkXfIIadf8iuEPUg5beoRrblAaLdDC88ljzC28Ld1Qw9HCpQyP5PXK3Xw+nVb+1vQRi/eH4Gr1WwyPcNEe8QLu7N5lu7oKbj6ZQ+/5Qh7eb7vaJ7sA/CSKTqeDb3/725hMJjg7O8N4PMZgMMiD3BrctL7ltsKu2KO70IehOFTFtY4+j+GrLv+E9b6uq/BC/XS+csqUd5Xgs4s4H5ZpeV9LfSTEz+X67UsfkiemrKsEH11bv115rXyWjqb59yxfjARtUanEjWyckM03Pj1elq3lj+UhWl0+KOML2sa8j7GlNKgtGOtT0rbF6HaJgdYNIUyAIJSRuNLeVCgz6UPopqzjd1fgqvGONa6tdLEOV81xURWHMnm2zYti8SSljYJEckdskqzvoosxpKoKVyu9y8G3DYFcJr9PgY3hKVre0HI4X7IcrT7YdZ7mc/iGguY8lkCBCzruk+7H0mhUGjWLxSI/0pjyxwYRLBw1+WM940Ean9PdB5rTjQcuKPgjFXoNtzKKMs/rOu7ch3tMvhjcrLHiAbm6QevTMu3Sggo+fF2OmirjG5JWOhtcc+KqQTOaCWQwwpXXAqvdMqDQbDbz3bCUJknWO2RpsYS8a9FljIfQx3w+x3g8zu+q5W2SeBCMRqN8cViIfOe06rKFyjjleLmcf1IAqtvtYj6fb7TBx1uq6FA+3EP0AimftHxV5kuZ9mtz2JJTrjKpHE77oY5brVyJX4xOrzl0XL85WAtbXG2RdOqya3n/xvQP5bfeu+imLh6s6TWu+kKcypIXuwIDrjqrgqRjiWdofgt8+ol8J+ebTMP5b1md5jr8T9vS/0LrIfm2Wq2QpikePnyYn5azWCxUm2/XwKIXH86hsjiELkLlQxkoYzNfN4TyjKo2oKW/uerWdAyfHeiSuy4IaYtFq65826CJuuwUqZNbOpQmv2Q6Xx+UxctVThkdXUJs/21jfms6tmXza30g55Zrfll6rk8nkrhxIF9ViN4EFBdjEVhXrIWUVweE8iBfmjrme4w888GV7IzdZdCM7ZsmpF1wFcredffZqzReryKUHZ9QAV3GyVIGhzLtCHXQ1AFa2WmaFgIa/LixUIH6qkJdR/tSP4asXuPpXc5mjp9U/uTKfe5ct5yUu2z4u2AbyhLvR+4codXqx8fHWCwWaLVaeXptHtOz6XSKjz/+OD+CkO6jC3UYckerVR8H+t1ut5GmaT6n6XhliadWJ31qNMudxeS8TJIEnU4HzWYzT0P94wKtHTFjyueHdKheFw+T92uHBAbqgpA6fDKL4+wbC353HOc1tHiBvye+5FrcE2LsWbjKNtXV31WdJBKXJLncYRXrZAjBhebgo0eP8OTJk3y+El3SndXE33jZmuyRuGj0IdPN5/N8/EPbd9P0dArOavyHoIyDU3OOaXy6jGNMc9rx9/J7lmXq/eguZ5prTspnLt3cJRd5OzR+oo2H1lYXryD5SYESX5DBcq6RPLp9+zZu376Np0+fFna/yeOOZVt5ebxcek+/fTqeD9+rhKusW+pRsn4596TuwOdACD+rE6rqL74jb8uC5BVVZeRN4/0cysyz+XyODz/8EAcHB/jggw/Q6XRw69at/OjIWB1hmyD1Ow04z4nVV2QZWjkyHeFTh5Nbg6umx236mWODENsEixe56rfsWwll9KFQHHx41UFzVcac8nJdiPwNHGjhpfauTggZT6t+jX9I3uMqP8R2teiwap/4fHahEEpbWjqr/WSruPyQITtiQ/CSONZFa1elK/jG7zrkciEYGzoZ5LtQpH0CeNtgOR9cv+sGnwKybdhGP4fgva32ae0pwxyqCMltlR1aZt3OSa2OqnljBEAZ5TK0P6oIDk2h1nBx1WPxzlhHkoabVg8JHW5sSYFdRskta4SVqdPqZ1//uMbHVX9s+8rMEx/O8rvWVssp6nIaXrfh74JYeuc07svjoh25QIF2t7bbbWf9BHQMODeQQo51DdFH5Dv+n6bpxnFnvEyX49eHk+b0JUOPO4f5blDLWc7bZRlfPpys7zG6qMuRFGN4+PhJCB1bssSVRj6PbT/hphl1oW2i7zGrY2U6jUZ9PFQbuzqdcjH96Kqbz08qR/6Owcv1fDweF+Q58QJ+/yXnaxpePpvPokHXHU6cX9Bdupb8qaKLaXjXoZvw5y4+Zel9vrK1dxpNldFfSPaE6Jn03Fr0FaujWbzVqj/UF2DxJ9lnZXQ6a/6HlkPfl8tlHnA5OjrKd8VpuLnmgG/eS9lcBkLoqi6b1TdHYkHKDj5PXU5Il/5LfFLKxauGOuxSyw4M4WFl9JUQua3lrwJ1lhVSV0xa3t9nZ2fIsixfEGU5wi2duAwfvqp+qaNOjZfyI+gtm7eu+q8SYuy82LLqhqr8T5P9Pj7j65+QOV9mvkjQbCIX79T4YKxd67OFYvhdqE4VgpdWXhn9zQU+W6oO8I1jqO3qy1eGT4fU7fOVaPa1C6+y+j3lteZvXXpTHTYhB9cYVp1XdULlnbHEtEJ2Gfk6ZdtK8C4L7avA7aqNDC5E6mqfPHLNd2dVCOwyXYTAVRonZaBu3KRCEFK+PO6yrl2RQLH/LYdAGWXNVY6vDO701nCqQjNlHFfb5D0hTuVQKIMnvzdQ1m8pQvSd3/8hIaQd0klH+GhjbjnQd41/SENI9o+cu+TwlzuGtfLkHVjL5RLj8Ti/X1kClSv5DJXfbDaRZRmePHkCAM77OCznAq/XRX/NZhOdTgdpmqLZbBaOROZ0RP0REkjQHB1ED7zNSZLku0doV6TsJ56P8sTOJ81w18rZhkyJMaK3qa+65iYfU81ol2VoDgN5ZK1v/ss6NfrW5DA9k6u5JX5aW6x28d/bDBiEpuXzSM6Z0HLkHAzFh3amcwcm/S8Wi437YpMkyXkDLRqx+JRG25K++IIT2Z7lcolWq4W7d+9iOBzi7OwMi8Uix7XZbBb4Xgz9+cDSOeQCGf6dB85Wq9XGcfNV9AstveSV/LlMEwu8fbJMK73PYePS46Sd53Key93zsk6JM6+X71KWeWJ4MelBk8kkP1nC6muS/bK9WXZ5QgDtEj84OMA777yDJ0+e4OjoKD8mXDvuWkIIfWu6nlZOqG0jaTBEFmwbLBkidypo+qGUy1LOEVg6ZQwd1WXPASjwReLRMeDiIVraEHyvwh9XFq6SPi35qPEdoiGyCejZ3/3d3+WyZzgcAoibp5Teh1doOZqsXq1WhasOJEia5POS4+PTGzTQ+LnMq8kGLX8oXDefu2q4qvaWqeMqbbmy/RDDDy1+rMkMS7egd1yGcV3E1T4AG34lyWtC7S0Nl1CItavqkDdl/VpSt/Dl03SKkDpIb3RBaF+4dFb5W7OFJN8NwUXq4bvEQ60+K4OjpoPF2hmxEB2MdQ0aB8uBUgZ2acDLQgyT2FZ7r1rB3oaQDSkzVvkLzberECI4ZNo6GVcI+OrloKWxnKBa+b62aQaJC4e6nb9VoQydckdtTLk+Z7mkLekYiQHXmPCyLQPZwq8uvhGS38fXNd4j2xY6TjEyxOeg2XWw+tY3tiH8ne4/JKeqzKfhwssnBZU7WFwOtRCcLGd4o9FAs9nMncByB47E0+XoCAWf0q7pehrfiFFmfYZOqB4aAzFzxsJpGzpEWZkZW0dI34UYcBbIndQuGc7xCsFlF/mb1k5rPhIf4wt7LL1Ezi1tjnHDP/TeZWvecpkU2pfUFromwdK9eN1avfK9Vo/Ekf/24WjpGfP5fCMYq/HkEL02ps0uXEPwlnWGyJcYB7pVjwZlfAAazqGyQOsTC68sy/IgmA+vWF12f38fd+/eLRz/7AMfvfL5F4rvVdv7dYOvvWUcoloZgO6s9skpnl+zsUPqBS6vkuFXZoRCqH7l4r+W3lO33HSNo4XLdYJP17V8elwurFYrDIfDXAbyO9a1MsviFZNX469Sdlp1+fwBLh+ArDvGfvVBjH+pTPnXBXXNxbraG9rPIbpH3eDTMWXaOuwqXz0huFgyzOfzcuEZy1N8OmCoPyQkfQxOofaKxMVHp7E6XSitWD4qXkYdNq2W3sLJZ0f6yrbK2AUeGjuHY+zXuuoPzRscjPU5Pa8KYifRLsJNx/+qgPeTXMkhDRdaCcSNqiqOw9ewuxASHKhi4PGdJryMsoKvKsQKaA5ZdhkoumrHDM3HUKHvKyt2HKsKyrL1uZzvoXRkPb/JzjUfuJzWq9UqlwEyuEC8P0mSjfvvXAol5T0/P8dwOMzTaDuLqXy+s4c7JmjHmeZs8bWP46c5UWkOU9C12Wyi1+thPB4X6uO7fCzeFWoI8LppDtPK+dlshsVikTsQ5/O5indZmbttGg+d2zGOYEq/DTzKgM+4rgN3C39t9xs/slYapRZP5Ed+a45Oy3FxFcDxoPkvwdJDqE1pmmK5XOZHnLbbbXQ6HWRZhuPjY1V2ljHW5Q5WTT5ZDlQtncZTJS7tdjvnF7LOWOeTDyeJjwxu0L+2E1d+NptNrFYrHB8f5+Ok4eqDEMcLlzca/WrzguPrSy9xcN3lLHGqAoSbHEtLvmj5eVs4H5D5QmUbvef9Nh6PTbxC+AnJRuJ3w+EQL168wO/8zu/g+9//Pn7yk5/g5cuXalst+Uw0qt1LzvtVtqUqP981oPZYwWxJX7xvfHeWW7xImz8az6wLSFe7c+cOWq0WXrx44d2Nb42zXOS0K/66VxFc8kg+Xy6XOD4+zn/TbnqrXNdvrY6yvFprgzxO2bV7ymdHhMg/DReXrLhqHW9XgeubvD924f5hCaHjz8Gl69UJoTbxNvvUZZNpurAFXA8BNv3lIdcmEYTqU1cBUuez/PuxoOnVIfreVUFdY8B5hebXJoitZxdoIxSkXijBOqVHK0c7Pa8syDqcwdhQZ1EZA85SNHxw0xTMbTrceB2x6W9CP8pjJy2cpfEv32nfqcwqyuxVQOj8i3leJ8TwCNdvIE4AaWNJnz7HYhXQjAyXkRLqgPLBdRsiltNUPiuLpzb2Wp0x4+kLDoU673wQ66R1GfNaH7p4mMt45XXugqFmtdsyOjSHm9Y38igfl+Kl4UIBXF8fhfQfx0XD1yrXZ3i5HIMyyOByQsbMH4uX0Q5ifrweTx/qIL8uo6+KTChruPscWVelj1m820qrGXA+fkJzQI6vNodd7fb1iezTMn1Yhr9rDtHYuvnRqLSIYjabbegXLvnlAikXQsc8pEytPAlEI3TcLwEtquFluvrPN9/ouGMZtAnRiV3tkelcfDX0WUgbNdlVZtwtXLS5p7W9zHjIdmgy0IWfpedYwSWJp8+JK20DVz7+3NVmWjDRaDQwGo3w/PlzHBwcoN1uF/JzXDUdN8RO0OxVH/+8LruhLtsrhH6tdsa0W5NVFi4a/7dwt8rh9dHiv1ar5dUhLN2h3W5juVxiPp872+XCy1ePlq4KuHinZeeE6E4x/MzCK8TepPkoeYqPb/hsXVeeOoHkZ7/fR7PZzPGYTCZYrVaFqwxidHWXPRND3z57MBRi9Bae7qp0clmvBRwffj0Nf3/dNj6Huuy7WL9NTJmav8Wq4zroAbD5hKajWu/oU9K11c7QeW6VoeHkA4vn++qXaWPpReuPKrpESD2+56F8LrR/NTovq+f70mxjntTF1yz92Wc7UF5NT/TNA6t8Cc5grG/S7hLj31W4Lgbugl3EiQMRuDQsOLTb7YIioq1YiBUGryEeyjpTy/IOS9BuQ3nSBLzmENHwoTwaDZa9r7Yu5bYKhPSpxNNyREkIeRc7pnwMXKvsZNmu+uQdsdIgdyl02so+iZtWr0xL9aRpaiqT1O7lclnL3dpVIUS55mkoQErOKqk48SOB6VlIYFICOR1oJxV3TFjOQOkYkE6LmHbzdNyxaPE0WR7dSUcgv/N+jXVM8PxJsg7OjcdjTKdTjEYj835iWQbHX2vTLuqSZXjVtttSpXxNnlk8T/JreTcxBcA0g47mD72no7QpPz+umIDfy0xtdN2nzXG+Kh2P81a5E1bKOG3+yvbO53N0u110u12MRiPMZjMAl07SGL5hOV+oLssIjQE+Hj7H6HK5xHQ6zZ26HA+pF7kcAlod9CxNU3S7XUwmk8Lx8hZeGo/UjGstDdGsVV4MyDosfcHXP66yLXrw2USazmbVY8kc/lvyEi5HQp052i4g+u3DU9P5ZN9QGfx0JalnWUA00Wq1cHx8jBcvXuD+/fu4detWAUdtnDXas2Q/PY+92zQEtsFD67K9fA4uufhN473W4iANV3mqg2u+cH7ouneY6tTmBC9rb28P8/kcZ2dnAIpXXVjlrlYrtNttHB4e5ldthEDVMb9pfpWY9kq+q9GgZfsBmzttpI3G02q+gLI+lVhoNpvodrv4xje+gbt37wJY7479/PPPMRqNcHp6CqBIhyGytQpYdm9d5W0737ZAytHZbIYkSdDtdq8NHwKXnar5WSzZVjd+Fl6EQ6w/4jrB4hMcP853uO+EQ9mTXkLwkeUR3/PVY/FbrptZ+NY9RpouoL27SihjB4SUVxW0k5vkjmyCbfhEYsvUaCWmjCS5PAFPO2Wpahuj74wNbdC2hPWrDnVNlJvc3+Qc1+Du3bvo9/t4+fJl7rwC7GOdXMaR6zeHXRHIdcJVtKkuHiDHsQzz0xxHvvzcIaoplRwXC+cQw86Fs0bDLofbtowijpMvj8tJ66szxPnuK1tzTst+5M6bELxCIUTBjynTRV9UXh2O9l0EfvywxUt4+zVFUJsj1nt5nKcLpMFASppWV1ka0wyt+Xye3xlrGSc+vDnd+/onBG9enotvWPPtOnSVGIMhpI9ieUQVI9Kl17joP8RZbB1NFyLLZfncOU7OAddCJNnPlsHvw6+sXsDBkrF83ki6l3PANb77+/u4ffs2BoMBBoMB3nnnHdy6dQu3b9/GarXCL37xi/wY8ph2aePEj213tVe2TZYTUp/MQwtFeJmybyl4L/HlaWUeKfc47co0WoBGAu8jrY1JkmwEoyXNuWSViyYIbxnQCZEnmnPR1VYN71Dg5bp0PatvZJ28T1y4y8Vv2vzXcKX71cmJMp/Pc5uR3oeCNiYab8iyDF999RWGwyHOz89zp42lw2tl+3TvuuXlTdAXQ3C05q4MqkvZQrRg0bJLblL5QHEhYIieT2m63S76/T56vR6m0ynOz8+d9GnhQ9dX0KkldcEu0UcMHWg+njrbkiTJhuzSZI2mE9UBITqYBkSzq9UK0+kUR0dHmEwmePPNN9HtdnHr1i2kaYrT09PC4gS+8IHTt483UrqQ9rj4q6udLvlyU8HSJ/j7+XyeX3kh08YG+suCZk/S3OA40UkpWjskbmVs6Rias+SxVn6oLhxST2w5PntZoxHX3KjD5uTlawFgLW/ouLnS1WF7W/Vo88ylh7t4TF0+gtB3VemxbHmaTWPZPxqUGeu6gexNrsfxdxbE9llInxaCsVoHaMbhVRsDLkZ5E6AKYZVp803pJ0txdBkSb7zxBh4+fIjBYIDRaARgLRD4sVAhR3JWVYpvgqLnM+pd6cr2jybQQoVtSLk+XuBT4F3pZX3NZrOwWt7nkOQCWrvnTqP3EN5Xhf+FOK7Kli3r8fUP/x47FqFp+TvN2Ve1bPmeK8O+OjRnJqeNGLCcl9b9B7vMr6QByRUjbVW27CvaeSfLC6En2XeWM8VycEtjiO/w42lCnOAu+qFg72QyQZqmaLVa6hHBIXRUdme+xMniLS65E2pY7zqU4UnWnHc57vh7KUPqMEItHCTNuox9q528rNVqVbjDMwa/mPkcC5YupLXdhYv1TssLALdu3cL3v/99fPTRR3j+/Dm+853v4Hvf+x5+53d+B4vFAo8ePcLz58+durDGV+R3upOWaI6vZnY5FCy7T9NHrHZnWVa4A5N/8vK4Q1ve+a31IwdrpyPHWePnHAcNd/npon+f0e7ijVxXdOm0nGe4ZFEoD5LPrfSEY4xux/mUxMnSf+SOe61MeRJGSDC12Wzm8hLAhjNYG0drbK32yD799NNPczyte25l/SGOH01/tMBFCy49Yxf0RG0uagFPF9/h4OLZMl1M+6XuX8ZOy7IMvV4Pt27dQrPZxGg0wldffYUsyzYc3Xzua7TfarXQbDYxHA5zWUvtku2U311yRMNZg12gHQ5lxyNkbgHr+d3pdArP+XUDWv1S3mj0askqCw8OvDyfPbFYLAon3Dx48AD9fh937txBmqY5HfLjigk4L9baJdug6RIhup2vH14Ve4JA061cizJocS7pUNc1B7l8pt+0aJj0GzpGXabT9Cv6DKHnutvhs93L8BWrLl6Oq32aDiD1QtkGTQfQZJ7VDo3uKC294xtW5LVFvjZJfHx6qFWeNl6uukN1LdfJKC7boAqUpfGy9Wr0Y6UJfV8HHw6Rw3WVSzvIXeMsy9gGBO2MfRWE3E2EMv1+k8aKO2sI0jTFw4cPcyWv1WoVjuIYjUb46KOP8kAsAWcI1sSqwwl908Fy4tTF+CxHlc9RZEGMgVwH7UshK42RsnVwQ3rXjNa6eIbmPAgVZrEGswUhfct33mv0pfElrX7uNNaUZQ23brdboKkybaCVsI1GI7+TT1NIqf9vCt/zORe0NHyspDNYlhNCGxot+NJLZ7LMqzkoXOVLY4vXk2VZfvzndDp10hHPZxmQMX0ym80Ki0y63a66GnYXedw2wGeUa3QoDdyYubnNfuV04jLifQ404jeawSPzaI4WTV/QdArX71Dw6UJ1G9Zcbshxf/PNN/HBBx/g+9//PsbjcX7Mb7vdLtzf5sOfv1sulzg4OECv18Px8TGm0+lGXulcCXGIyN9aHroH1+VICXEEaHVQOXTUc5Zl6qIdWVeII8rlVCB8Ned0FaBdR1xuS/xcMoSDS57II1hDyiPQgjay/fLIWL4wSfIU7kgk+SlpXOpUZeYl5aOFlZajVaMFizdZ4y7LDwmyy76QUJYXlemjmwC0KE0eeU7AnxE90dG9PK10rrvGVtIJ36kty3TZv1qZADAcDpEkCW7fvo1Go4FOp1MIWsi5x8tfLBZotVrY29srpKNFOBoPk3hbclYDn8y5KXTkgtB2kIxutVqFa7NIJvloCbikSUsPlPzJkm1Jcnn3fIhOyfki2SxHR0eYzWaYz+cYj8cbvJj4mZwvWZap1wRoINsawtd5X4UcHf8qQJqmaDabhfGkeZ0kCW7dulWgt8lkkveLdVTotkDjnZwm0jR1XjXgwlXTha4KNH3lVQRt/mm6uq8/uGzUyogFV5+H+DFifB2uuix916rnOkDDQS56cF37E+v38uFSx1ype8656NslU65q3kcfU1wWqjRoF4j9quDr1FZNcWw2m7hz506+kpmOTQHWffPrX/8ajx8/3iiL3/GiGf70Tj4LAZ8Rft2wLSZiMWiXkAutMyQdd9ZsCzSFgn9yBdjnPNTyyt8kYEIcqyFGis+hc1X8hCtidc2XMvlDlHtNSeHv+aeWX3OaWiDnBvG18Xgc5ICTCgR3CDWbTSwWi0IwkjtCZZtuCmiKkWs8yLnkckJoDjsLYgx+Ggs69ssaO9kGje9Y8kk6zmazWb763mdwcCcKoO8ssUD202KxyJ0+RMtypbPE3+eYuQngmqP03cW/rWd1zUuLBiQNafTHeZhP3vAxjZFX9FxzoGuGbki/aLI1VPb5HDvSWRoqz0LxlguVkiTBvXv38M477+Cb3/wmBoMBlsslZrMZDg8Pc8c6x03rY44nBXB7vR7u3r2LwWCQO+xC8A11PFhOGam7abqRa+xC8MuydaDF5aTlOpulp4Ya/T5nTQhotCVliFzk5ZJFlozRnGca7fDnLtDmqcVTZD5+R7SPXrRx0nZKy3ZauhKBdrd5qP4Wowvwfgrhaa4jxF32hsTdx7t9cBU2bhXnGp8noXoe5Vsul/n4a3Rs4SZ1GDlvQ+RuyG+yBQ4PDwEgD8KQviV5O5enpHN2u92cvqfTKabTab5Q00cTPnnoSyt5OU/rK0uWEwox9WwLSP7QQg++C9Aac043kh5d+orrOdG2FfDS8OYLc+j32dkZZrMZWq2WepwscBlY43UQrXKctmVzclkSUt9Ns30J0jRFu93O7StOP0mS4ODgIN+VOBwOMRqNCjK2zqCYCyw/CNGUPBnFVY7v3XXbi3XxnFBbMaa8OuzKED3Iqp/S8EWRLnwsPTDEvnDpQ9azEBnn4r910F7IuJexNbU5yHk8PfctDuRpQ+0/33MrrUu3tXCS9dSlP7iehdB9XXBlwdjXYIPPSNGY7XULpliwDHX+/Y033kC/38ft27dzpn7nzh289957ebqvvvpKDcZqddCEDzFIXsPNgm0o/UQvnU6n4Bxz7ZKU+GhgOVB9YDnQ6oY6eInl7LquXZmhbaKgJnAZ6LLGWyo92i43qSS1Wq3CfS7kXKQAP69b1sHL4WnpGR3p51LGb5Kc8Cm9sv+pX6kv6NPKG1puiCM1RFkOURZDHPwcP67IcnqydAKag0SHtHqe7yiznM1aeZSX3lt3SfG66zJmbiJU4d1lZJxr9au2WEYLgGh4ULoQfi53xBFIGpbl83c8zbYdfFcFfM4eHh7i3XffxXQ6xWKxwN7e3kb6NE3R7/cxnU4xHo83ygL0oCZ3lna7XRweHuaLgGi++u4UlPOWnL0aDfBx4QEB/ttKDyCXhZLPuUDe30pA/JDXLR0RVj2UjutdGt1bOLrolT/T5LW1W43n1eq0cHClCQHZFouPabiRPKLrAzQ5KMebj5tMq/GCkHZlWVZYLEQBBi43twUuB45sj0YTryKUaZ+cD1J2ceD01Gg0sL+/j2aziXa7jdFohMFg4LSn5BjIBR70GWIPWvhL/TLLMoxGo3yBHYD8iGFKY12RQ7yeAmm0mw4Aer1ejnvIyU6WLmn5bW6qjREDIXOS/EvT6XTDBpb5Sc6RLPKdRqHVpfF7Oqa23W5jMpkE0accvzRNcXJygmaziQcPHqDZbOLNN9/EZDLBy5cvkWXrnY6dTge9Xi/PSyca0Gk9/Ah5Pne4fJMyNgRXrd0+vZDPuZsKFOinncq/93u/h8PDQ3Q6HRweHuJ73/tefkrSj370I/zoRz+6Nly18aQFI/SOrtfR9E8aZ0tn3JVxvG48XMdW80+CbeFLPIHXE1qXtP9kuXXgptmeVJ+lJ5fx9ZTBKaSvLBks509ImTRWfNGOhVsd4Grrdc+fGPDZCHX2WaVg7E3q1OsEn+IaOilD0+8ScKeGC5Ikwd7eHg4ODtDpdPK7fg4ODnD79u1cEe31eoUABt8x4FPYqjhGQ6GK0mApl1etiJR16LiEXFkcqhjw8neokkK050sXMy99BoMLyub1vQ9xcvvmjHReUHl8BbvLKArtWxcOrnnvA2kUa44PlwPDSscNC6InSi+PSdaUaDnnNScON3Q0PKTDU4NdMHJkOy2HtVTuZBCQ+lWjh1DnkYtHhPAPDf+Q+jVeYo1rrJOBcOGLAigYGwNa/1uObauvqsrfuul1W/RfpcyqOGn0FmoMWXRq0SfX71zGb6j+xdP62uXC3QUxNFi3vkjzho6WPDg4wK1bt9BqtdS66PQDV3muZyR/NH3K4m3ad3KkEZ/lu3W1cXHthNBopYwzIJSe6JPvAuJts8rl/RMauNNkmQWcn2vtl7aT5WzT5kuo7HfhLp+5gOPI69X4gIaHT8fV2qjxOFkO0eh8Pt8IUoS0LZS+QvJZeolvDl+F3arBdemGrj61HHz0nn+22220223s7+8jyzIMh0O1TF6vNZesPNpvrT1aGnpOp9sQfbp2S1s4TyaTfEdtlmUFXS8ET62NvH4fnVelE6sclx5s5dVspzIgeaCFIy2u9dmOnJ+75rzLVtBwIQe79FtIHHy29nQ6xXw+x2KxQLvdzq8h4XKT7AgCviCWl0U2geTfZW0XrXyOv8t21uhDa/8uAu/vLMtw79493Lt3DwBw7949fPDBB7mv5auvvsL/+3//Lx9Dyn+V7eN9z/k1X4hAeJWxP6u2xcfbqR5X3XXJYm0uuOwonkaWY+mGVj1amS4dK0Q/006ecOWz5FOozJJlhcJ16TUuHmWltXa4a/aI5P/aaUEWvYfSdBmdOWbuVBmbunSQ0Losfb4svN4ZuwMQSoB1Kb5XCYSr5pyRQujg4AAHBwdoNBro9/v41re+hXa7Xcjz1ltv5YrGfD7Hp59+itlsVrhDtt1uo9PpmHXFrGyNhW0wBJchVActhBguPudOGTxCHBEhz6uscLeMb0638i7UGNyoDi19qKIRUgelrVthpHpDHA5SEUuSZOMOzTqM5FgguuW7adI0RavVKuAaYri4nMx85+pyucR8Psf+/j5u3bqFfr+fvx+PxxgMBs7jXYGiU8bXPuKJ2pHLPiV8F8BlFEknhjTQeXrL0Lb6gufRjnFx0T29cwXFJd4aThJ8xgin59Dx4w6b1WqF8XgcfL8Uh729Pbz//vs4ODjAvXv38PHHH+OTTz4xlX7XnCqjz9QtC+vK49odzNvpGns57mVwCznCUZsnLgcVOVGyTN95Hjt+IXXXKb92DWg30/n5OVqtFh48eIAsy3B+fh6960rrJ86LhsNhfhccveN8w3UkO3ek9Xo9vP3227nB//TpUzx+/Di/u5ycALPZDL1eDx988AHOz8/x29/+Nt+5Y+3wCnU4yecanya+SG0l2qVjnzmuki9Tfv7P32vzWAK1UePNllyhQIylG0kcOB6ak1qTORoesj2cP/CFNjKtJXepvzivID2IdvhoMpDrLy5eou0kk3xS48Pz+Ryz2Wxj3GJ3pvnAom/rRAL6HmPzXSVcFw583kndLESX5QHJg4MDvPfee3j+/DmWy2V+XLvcsV3WESyPFHeBLFvWSVdPuGwRDafFYoGTk5P85BPi0bQAwZLtMujL67V2yGq8kuevE8qWty269Y0H7cK3FvtwmuN9B2BDZll1aDY2B1roxXGKGZvlcoknT54Uyud3l8ojiYlWeFqCxWKhBmQt0Hihlj5mnt1UkCeycVlGp47wkx7SNMUf/dEf4Xd/93fxX//rf8X//b//FwDyO6gpb91gyS++uITao8lBS3/l5UuI8YnFgIs+66YpTYdx2ba8z7huadndPtlVZl4BME86oblO46wtCgmpy+evCcVT4ifzaCd21Wl3WnjHli9P+XHBW2+9hQcPHhSeLZdLjEajvN7T01M8f/48f88X6m4TfL5M3xzYNlg2sAbbwtEbjK1bIXqVnSxlwdfHPufVTQGXMxC4VEDov9/vb+xQbLfb6Pf7AJAb2JQXKB5NRnW5IKYvt6UEhNbJweVsiS2LygvNJ400yzDw1RuqVMf0dagBG1qH5hgIhTrmqaZIWE69UHoI5TdVHEVWn23DaHeBbItUajm+EmT7LVqxHIzA5d0vtKOfgmAuXF1AxrZ0mvBdoRp+r4KBKpU13q7Q+RmaJ5RnSCd5HfTumnOWLiCNCo4Tf877UHMIavXye8n29vZw584ddLtd1TDz/ZZtqIsur4q+XcZhFRy2gb8raKGl8eEROr+0cvhcsfAIMYzrNJivGrIsy51jWZbh7OwMw+EQ0+kUk8kEk8kEo9EI0+l0Q8eyjFVr3tPv+Xyey5wYR42mY9BRiJ1Op+DwBYoBJzrqkMtX64jjULBkLu8X3+ImbivIOSv7hut9Glhy1pIB8ruUY3VAKA/R5rykI01WyDK4DcLbLXdS8fs6NZ2K93loO2OcmUDRGczL4Z+yfS67JcQmrzquZedrlbQ+faBq+hAoU5Y2X0k3psUg5Hi0bALfnOdpfPi75KpF7zHylcqkuvjR4NQm1/HGMeNm+Rpkv8k8Fu4+HaMsLdVh+5atV9pgHB+qM8ShruHpsvcl8OsEYvkPlcdP4uD2JtVPdzDTb4vGNLrhfeLzuVhtrFN2WmVdt73MdSUu34bDIZrNJvr9/oa9f+/ePdy/fx9vvPEGbt26VShHswW3AS665QvOuE4bI7tCwGU/x5Tvkv8xdYfWH8v/Y8Diz2XKq6MtGi3G4hTKB1x8xnWsvA/fUAgpMyYf6dQyf6fTyWMjBFImTSYTtNvt/DSOsjJCQmg5ll7kK/e6+bEFdfoignfGxjLCsoRdRRl71eBV7Qt+xwYFWxuNBp49e4aTkxMAl4FWy4DWgJSUV7HPtgEx/SSVuZBxcR0HV2WMNIZeJ1Mk4Cs7l8ul9561MqA5ByRYfGAbba4K14GT1W/a0amhSpXrrju5W5rTxWq1yle48zq73S6azSZ++ctf4vz8PL+/wVJAOe/j9HFwcIA333wzT3d0dITBYICzszMsFosbyfs4fXMHrjQ2XWOiOam08mVaWVaoUs+VSAoESFyksSlx0HZVWLxSrpyX7bWcHMS7pJOOO0osmiHn5Xg8Rrvdxu/8zu/g9u3bePvtt/HFF1/gxz/+sXcnHy+b7xrwOc+vAnjbY4wJ+ucBhiS5vL/NJSdi+GMV41zb9RJSrqRdPi+1fNpOfJ4/BmSeXXWUlYXVaoVut4tvfOMbWC6X+Ku/+iucnp7i7OwMDx48wN7eHv72b/8Wk8kk3/XQbDYxm83UIwI14Dyz1WphOBzmK6PplBnNYUzA+Rof89VqhcFggL29PXS7XbRaLfR6vVxH4vOg1+vh7//9v4/PP/8cf/3Xf50vSJK7PULAMsa1ldbSsOcLMykYQ4Fv2qkpZY2sm88BzoN5PZLuicdqDpNQu1g+t/TvGAe/Bj5nt2afWzoq3RlIYw2s7648ODjA+fk5RqPRRl9zOcRp12VPuO4pp2cErp3fliwK0QEkzhw0vU3rL16Gq895fSHvfVDVXqKx5jLwKkHTYQiIR1LgIk1THB8fYzwebxyjWNb+lQvELdkk6VzSi8SHjoF3laeB1B/n83nhGgqNT4Xey+hrK5+vrv6M1Xvq8g/E+C19aa1yV6tVvvuefkugk5hoo4Emf8vOSa5X065ouos+BqxdUpzuZ7MZ5vM5+v1+YUEW6Qu065zfUe+zqziE0JKEkAVeddLBVYD0N9Hi11/84hfodrv4wQ9+sJHn7t27ePDgAf7pP/2n2NvbA7AOvvzJn/wJhsNhzq99OmQsuHgJ9SW1RS7iAzb5CC/DBzFzPZbfbxMkT3btgJQ6Evl5aL6S3emSD67fLtDw4XVptCRP3LLoTdudGgMkP63TmjTcXfaHphdZui6ll/l9aWQ5Vn0uvSpJkny3O0/Dr4YjkHRx69Yt7O/v4+nTp3j58uUGLVlt/TqCJQti5FkMRB1TXMaIjIVdEITbhNg+eVUmg3QAcSOEFEgSNLPZDOPxuKCMzGazXBHkjghpxGrG/bYmz65CzBwKcX5aebhCEWtAxoLPaR7SZsvxqKWzjh4tW3dIfl9ddfVlnfw6Buri7ZqDUL4LUaokuOiD8y6N3uV7AjqmT65cl3yKlyPnJHfcEb9cLBY5f+R3ytwEiDF4qzoeeRnS8RFjCGhluJTvMnLeVwf91sqWPJk/p8ADcLnAhN652s/fJ0mS3yO1v7+PVquFyWQShJuGp/bsquk3tl7NgaaVF/I8lB9VdVDwZ2UdTS7HYUwfavqCxcs53bmMorrgquyONE3R7/cxnU4xHA4xm80wnU5xdHSER48e4c6dO4X7LWWwMwQkL7HowXI+SIcoOVTH43HuCJB3Tkvdnu5r7HQ6BWeRjwZ9ePO6tPZqv1erFfr9Pt544w0Mh0MMBoPcWa3pvzw/D6iG6BQSDyqL7Bt+z66rbXJe+ZyOfL64dHppe1k4yLH12VBSVhBttVot7O/v5wuCaGGBqyxLD5N6U4we4NMZZb/4xlY+13Q4V/+G4C51Sk0vdMG25Cp33vlkYtV6JFhzUKNrWvR9fHyMyWSSH9Op+Q20crQ6fTQS2i5ZX4i9zfFx8QCJs0Y7IfXI/tSCXhqdh9A1z6fpvrG6iizLJzustoaCNn6SB7jw1MoqA2RT0jH8VEeZK0hC5DLVSXKM6pdpfEfNauXH2A5V7CuNR++i7SxxIl1kPp/j6OgI3W4XL168yI+GbrfbODg4wK1bt/Duu+9iOBzi7Oxso2/5iUahPq4qeAOXfc4XW3McYuZFWd6r8ZQy42/xkFBw0bFL9ylbR0i9Vp2aXJWypdFo4ODgIH8mFxKQf4ofky11myqg4WXpuHJxSBm9KhbK0qpcUK3RBsd9Mpng/Pw8P4WP0rTb7Y28/Dh5Xra1uFo+i5EVvnZq+Vxll+nPkLKtuXdV4AzGxiDjGrjX8PUFYnZcOSMGTtDv99HtdgGsGfnx8THa7TaGw2G+kurZs2d4+vQpsiwr3AfrolFyAGj4hCjOXzcIMUK1dBKq3OFKUHXFfxWglatyZalGK1XwrJv2Yg3YKvUQcEUo9I7TKhDjiHSBZjy7DHWexnJKaAoTKUh3795FkqyPeiXD2VUWx4FojPhZo9HAZDLB6ekpgGrB2KuiGR9wIw0or09suy2WMcd3rnFnhZY2xhHtAho7yYM4nbZaLbTb7Ryv8XiM+Xye3y/maienQ1Lq9/b28PDhQzx79gwA8kUBtFuO3x0DFHcJWc4PTt+hbb4O4HfiWM5ECVLXkHoQPZfPyoDPsLWcHho+li7A+Zw2F2S6Mk5OyuMzDOtypF0VPdEcunfvHgaDAQaDQd7Gjz76CMfHxxiNRvnOluVyieFwWFiAWKZOQN8FKOW4TCPlyvPnz9Hv9zGfzzEYDPL5qq3IprbeuXMn341K6UMWg1j839JJpeOC55nP57hz5w7++T//5zg+PsaLFy/w6aef4vnz54Udfrxezv+0hXmyHuLDhCP/B5A7RMhhzkHuuJXtD3X+Wf0px1vOS80JEbIAQOIlaWu5XKLb7eLNN9/MA/MvX77EeDw2cdHKljRMz6Utp7VbOpmso6x9/RbS99qYye9anb4+9jmJXLzRha+V1yqHp6Ud8qRP8KPV6+Knsiwud7Sd0ZJmF4sFTk9PcXx8nN+lCqBwQoBLTnEa5fhIurD0L60sPuaUjus/SXJ572aZ4Kcsn59OZd1jrY1bCF/W6NfFoy2w2mPpKxbtyrHZll9Hsx2t/pM05IMYnYbGlxb80u5v7fSB0Hb58CKghZhcV+P5tYVOZWybKjhbZYbwKB/PvQrQdhX3+32sViv87Gc/w5dffom9vb3cR3pycoLFYoGHDx/i7t27+Oijj/JyCNI0zX2twHqTSx0nvvnGgS8GlvcaJ0mi4iDbL09gqdPfUba8qqCdnhIKPrvTlU/i4Ernkut02s83v/nNvJzBYIDhcLiR7uTkRJVpUm5L3ck397hu55u3fNMXr3sb/mZLBsm6LJ3U1w+ynKOjI7x8+RLf+ta38uB4mqbodDobeUkHIiB+TbzBsqdew/YgamdsrOCLTXddTrbXsD2wHD/cEUyrpQE9gAoAZ2dnePToUeEZD07wZwQug9gytLfBeMo4JENBMwTL1iP7S3OwxdalOa1CIUah4M/L4Mnr0+7YsHAKNRp8ddZBd7EOmLLKrFYfD75wR2QdwjzEGRVreAKXzg8NNEeDz3nG8Ww2m2i1WoUVaAA2HLu+tvExo8AX7ZxKkiRf8e87fqXMu1Ao69DT0lj04uMhcmxCHZSW88aV1sKNlHp+lLBGl5pjjp6Tw0xbTWqBxoO4cSPpzaIxCfJo1OPjY3S7XWTZekHU3bt3cXZ2hsFg4MSN18MDN/wI+JA2uXDV6gtJT2lc/J6e0w5j3p/cseC6o03DM9ThVgYsvSu2zNj6XbLXmtdybsQ68eqQoXXKYQLZFqIdfi8swWAwQJZl+M1vfpPL0DRNMZlMSgUvfXqJJd9c9JIkSR6IlUFFPh8WiwU+++wznJycOB0lEm9rrPlzl8Pb1V66q3d/fx+r1Sq/EoXGQcpjVz+7dFopx4iH0hGVVIbLweUC2RdSzwrpE1+9vDzeL765zJ2kpOcsFou8j2mHtKWraOMv+0pLI9+5+DnP4/seq9dw3EiW+9pn1U1llJFnGp4uPURL7yuv1Wqh0+nk893SQbflzPPZeNT//Lm1wIDTjXwnFwD42iPniOVncOXnAVTZ1hD704Vj6PyQefhnLMTQQCy9uOjZopEqNk/IfKRntKib2kSnSWgBchl49tkiLvy0hUN1gyUX5JyT9O+iS/5p8SwtTwxY+kMdtKHVQeWXLYPySr9mkiSYTqf45JNP0Gg08k0sn3/+Ob7//e/jjTfeMNvC+VxdtGGNLS0EpjStViu3mWazWa73lumzKriHyLhtyC1ed4xMlulC7BUrjWxbqGzi+flR61Ku8oWHnG7lFT4hY+7TUy2d1NdX2wq++kDOO83epee+tml2AACcn5/nfqMkuby2gdcjTzWTOPL0IbvntXHS7BLZlpByXlWQbXUGY0OV9W0xrddwc8E1AeW9BePx2Lsr5uXLl/lKLyqDyueMle6aBTadDj5Hz1VDiPHtyy9Xu8Zeys3T8uCUxCVWWIc42eqAOpwVPC8ZRppxH1J/WRyq9FGdxqWrPJ8TghuffD5fh4D19SU5BTX+oBkqmlJh1UeOX7q3RdbrCtpoDiEqnx/hTriPRqONVYix/R2rjJeFUIUuxNDwlUH5t83bOc3wVekhoO38ox2rdPrDYrHwlmfRLV8Fyvsi1BDhOzWSJMGjR49y52u328Xbb7+NLMvUYCzNF77yVK7ap/eyHt4Gq41XDavVCr1eD51OB5PJJO/TRqOBfr+PxWKROxZ8sG26tJzGsU49V/o6x0GTtSHzeBuOs1AI4Zmak3y1WuH09HTjmN+TkxOcnJzgq6++QpIk2NvbQ7PZxGg0yudPSFtC9TZrEZ/vrqL5fI7JZLKhw1N/0B23f/M3f1PYHWOt/vbVLWWBdaeWBTwfHZnc6/Xw1VdfodPpFBaCyn6jfreCEZInUR9wHkZ8ot1uF/QjC08X0PhqcoMvAHKVG2ITyXKtdERrXG8h3Y/+Z7MZRqMRVqsVms1mfr+idkeVr7+t3a2anmaVoTm+rO+h5cjnnC589Czpmj8P0Zd8jq265QyNEZ2SAaz1hLOzsw0bntNEqD1VBh+rbOpTWgTAT7WQ+TXdm89VzoOtk5+0sZMOVUkP1r12mi6s5Q8dY95Orn/xOlxtcoHES9PfY2gxlK75mIUuhKtDZ9DmtyZzid83m82cF2qyXMqPqriV9dtoZfloo8xxxK7yQuvW8oTU7bPfr8u+sIDwoXugCWih3s9//vN8ZzTBf/gP/wFvvPGGWd5VnjrX7Xbz3XZpmuLOnTu53nh6eoqTkxNTRhC+muzV6KOqTNF4/7b9B7EQorvFlCPllEuv4cD9EtLn3Ol00Ol0cHp6WliAyK/WajQaG0flxoIlh0PmsGX/VOnTsjaqjyfx3yF659HRkSpjuO7jWkAPbPZPyKlloWXF2KlXCdc936N2xhLsGoN6DbsHFmHz+wpoQqZpWjBGF4sFzs7O8OMf/zh//uTJE2ddBGWczppCHZLe9ywUQuvnBpo0HrmB5RIsPjzrchTLNsUo1lZ/yHbVzYdcTp6YumINBMpjtTtWoPscbKEQaoiHOLy2ITMsh0do3pjjtF1OVDnnyCE5mUzQarWQJAlevnyZ3/UKhDkcXMDvouV5fPPNcs7G0BzPYxlKLnAZWD58JX7cScWPjw1VHkNpXKuXfifJ5e5ROq2BO4gsp41WDwU5KBhLAT7Kpx27T5/acdWxzjcNJ2rLaDTCyckJvvjii/weNtcRV3JMyQCjNlBwhB+hbOEY6tTWHMC+MbZkHuFL8+yNN97AW2+9lR/H/NOf/hTT6bRQjvx+FXqBTO+qv6yjtOw8iQU+V6wAE713BW54Oh8PKYNrmTxZlmEymeCrr74q7BrkK5fJQcGD/S7Z7ponNG95Ph9fd6WVBr2mr2XZekX8kydP8jtCeXCBdnG4nGnyCFLpRHU5wDlwB/1gMMDHH3+MZrOJZrOZ7zimOd5qtZBlGUajUV62LNO164e3QermWh/HgqRVi+8RL9XsAFlGiP5jzS85L6ndWXa5KC9NU4zHYzx+/Bj9fr9wvYxWBy+7qtySvEHqZ9rc12SHBRwnrY80XUx7b82BMmDZS1VAk2mr1QpnZ2eYTCa5c530acvBWqdNSeVpPEHDXY4/34Wo4UU6CXceWxDSLotuJZ1pNEn4uuahpEHXvNH6zTWvfKdjWc95Pdbck2OhtYm3QztKXjtJJlSHdEGobeYb/2azidu3b6PX6+HOnTt52168eIHT09P8OgIqV9NF5ZjJ9su0dcw1Kl+rk3/Ka0hCcdHsNwmSbkLGxDVP5PNQuyBE7vPn2wafXvvjH/8YX3zxBV6+fInBYIDxeJzrlkmSFHbFVQmy+HAhO5wCxaRv8Z2yMi/XWTWweAbl1fhOmXaE6gB12He8vNC0IeDSm3w6lcTFkgNZlmE6neLRo0fY29vLeRxweTqcVQ9fmB0ypyx+4uobK08obfj6vSyN+HBy5eNjR/oJz8tttCRJch8kh3a7jUajseFDtGzuMsdpu+g7lO608mLkbyyEjlUdIMstBGMtw4Lela1kmxDDEKsyz12poypc11hK5ZErO3zV6XK5xGAwwM9+9rNC3th+dTHuugxXn9D2GVsh5Vvf+W+5MjS0PWUcHZSvKp27xkJzXMQaGrFpLUNXw4PjXwZceS0j0uLNIWWXoW+fIUVpeLqQu8bK4uAyqPg7rX6tLb6VdVrZMo1WDjmc+Q6i09NTZFlWCMZa9Wr4asoxOR6s8d6m0qIB52+x9YUY3NvEoUq95AyiAEsZ3Uk6WKQR43IuuPhCKM9w4UN1zGaz/LqA0WhUuAfS4tmSf1LgKcvWRx232210u10sFos8GOty8FA5LtqmOvhx8xafcPUf4UvBhfv37+M73/kObt++jeVyiV/84hcYjUbR8l9+j4UYZ4Omc5RxVmhlEsToGhIfl37kkvdVeI1W11UAzSE6yYDmOi1GpB1nSZJgMBhgtVo573WmMiVoc6OKY4n3MT9WUVsYQm18/vz5/5+9P/ux7Ejuw/E4dfe6tXRVdTebTQ5JzVCakTzQSLJkSZZhfwXBgi1AejDsBwM2/OA/y370kwHDMAzJgrVgLBka2dZoRrOTHC5Dstfaq+6+nd9D/SI7blREZOQ5596q5vADNLruOXkyIzMjY8stPMcJUK3NPTa0V5dptslgMICPPvoItra2YHt7G8bj8dJOuU6nA/P5/Np45oE/jVZL5qO88thFll3Ag1aazcrporKvqA9l2bxcd6NOwLuPR6MR3Lt379o9VR4ZQOvg5RuaR2zCmcuklFiC9dsag5LsktJI9bPsAAsxO0KDJD/yPIfLy0vI8xy63S50Op2lhWfad6mQeI7rbPqMf0Of8b+1+1PxW1ycYU2E8u8oYuNYA42RaGNcsymk+lq+oCWTsP3o+LFOJeB0aHwgjWuentqIvO8kuUp3WVH7W2unMkjNp1arwfb2Nuzv78OXvvSlQPO7774Lk8kkLFZC+j16WqKlrE1H8/fWkfKOl24tb6lcj6wqqs9iz2K0pZZRJB+Epve0vL71rW/Bt771raVn6FOifWblnwLLPsc4CJaHk0IoRzSZYeXL30ltUwRcvxVFqq9f5HurbElWpup8KZ129HmeXx2//uzZM9jf34e9vb0lX4EuzpJkN4XH1rToTPFDi+bl5VFeXpHvPPlibEIbE7VaTVwg12g0QoyJLjjjNg+AfVqShZgfX8R3L+IHlkVVujWGpclYy+j0KpJVE8yR0ujrCLysM7hTFYoaCUUgTVxQoLL2OAwWitSnKO+mOPBcsElHjmn5cqFW5XEjHoMU6afPJBr5M3qfaJHyq3DsV4F1jptVoIgyjOUHYBuCZVAm3zJ19Rqz3DnF3YR0JWoKn+N4oQEGPA4VV5tqBi8NcqQaqVaAhctiyYmxAjz8G15+bExZwWAEvZfUC9pOlkzDuvE7fLCP6E401GVSn9By6DPcRTafz8NEjRaU43QjJHkrGcZee44a8OPxGL773e/CfD6H8XgMs9kM6vX6UhvQ/LEO6IhjGy0WC2i1WrC7uwu//uu/DqPRCP77f//vMJ1Ol1bMxmiTQB1+z30nVl703Xg8hn6/D1/4whfCBNNisYDLy8to/pQ2rTxNzpSVoRK/xdJqtFk8Q9NQ2SPVS7NtPAFGXs7LhCzLwp1K+BvghWNNA2WavZQSzJGC4lzWWcEtT33o3yi/tre3YbFYwHA4VGnmtqS0i5fTRu/Ppd/SdDjxi/nX63UYj8fw0UcfLe2MpYuZ8C7sfr9/LcAhyX+p7DK+qDU2eZCNPqdHsdbr9TCpTPWRNg7LIqW+o9EILi4uwu5JGpCl/Wrly+vukaW033gbaP4Ltb+0Ra6SDYQ0aXaUJsd4uVi2xx7S6l8FLBsKacL7gLndQ9PFgnIcUjt57D5t7EjjVZIjUt7UZon52/wbmr+mq+hzvvNT+057RutnyXlpMkSCZ3zH2kXSPzxv/nfMdqfpUdbRBf0Ir99WNbDcdrsNWZaF+8mfPXsGP/dzPwdf+9rXAABgf38fvv3tb8PR0ZErX82vwjIl/ywV3m9jNgh9TvvTI89i+Xm/KSIXPe0YO5GF5yflXwUwL9T7CKQdF5wh8NoI9FtSfeQYJF06nU6DLYKnRiHq9frSVU7D4XDJ/qUnxki6WyuXPk/lgZv0J2K6LAbNvuD2Cf7t1cV0PHA7jZ50OR6P4dNPPw3v6TsAgHv37sFkMoHj4+Nwag6NXyGP8LIpLLoxraSPYjpVy0t7VgWfePyGMvYT9td4PFblWZ4vL36X8qcbbLQ8+G+PzUr9F/q8irb10Fk0z1XJiELHFFsoEyC5KePps4BVGWAexzjlW22lpeZoWwLAEsqp7WHVx5OXl+c5bdrf/JlkjGjGiVV2WXgcRZ6OB7PwWYoQ9xi/XsVttUNMkVgBkhRh7VXE3vxSIOVbxNmxflNIgYGidSvbFjFDLvZdqqzkOyWlu9I02qgTgm2Ik2B0J0IsCOFBTG9L45fTSN9bZUhpJVkmBbZifJPCxym2ihRkpN9a9w7SPCQ6eVtSpxX7N+U4KSortX4rArwv9vDwMORDjxmWZCNOxvIAQJZd7Ubb2dmBN954A/r9/pIzpR2/zeuogdebfxdzrCivYh3QgWw0GtButwOd2l1gMdosnWbxWgyaExujQ7NFPHpC0vdaALZM3WgZ3oAYx036FZIMo3WhRxby7/g3PJ3G6xyWDWNB60du0+H9rHgMsybr6HfSb6n+NB/NluSBA9zdfn5+HtLghGCWZUE+5fmLo97pjn8J3raTaIz5J5pdrelOlD100QsNoPD2tOokvdNs+RTMZrOwKI3u9i6jg700eXSf5StI4zR2fygvW6KZ/u3RASm0e+wxL3gb0HFP74WmZWu+WFFdFrOdPHWg32jtI9ncHrvY0pG0vaRxbeWlfecBl5FaudJ3qek4X1jyi6bT6u8d0/T0EylPXNS4Tp2PtKPNOxgMoN/vw+npKTx8+BA6nQ7cuXMHsixbOi0g1lfcH7LScnqqhNffozR57HfLd6JlecejR3568oq9q7p9vTRg2bjrlfpPWfbi7nZMhwtdY/ZHlcDxiXoSF09g+bg7D+BqMpbqUz6ZJ/EQ5S3JHtXAv5F0/E1Cq0Oq7uS/YzqIf8dlOv+e+rx4vSCi3W6HidaNjQ3Y2tqCer0OJycn4QTM2BiVaInZSvy3Zv9K7VDErvfAa4Pz/MvKMAD7KHJ6RaSVl6WPtXrFeLdI3Tzt7bGpUlBWp3p5StwZextR1Am8LXhZ6F8nndrZ/xpui6IsAgyYSEIWg9TetqeOiPY+xUnVHNUYYvR6diVJgbSbRqpCvu3wOByWQVYWRQJoq4THmLOcTRqsAbB3fEu7EzVI73HlIDo0s9kMzs7O1HpIeaUagdJR8l5428X6HumIga+4xv9T+SrVwMPfPMDE5RjnEykfXjbqgn6/vzQpaa1e1Mri5XiMXwvo+OOxhNTI9wTSptMpDIdDaLfbsL29Db/7u78Lr7/+OpydncHz58/DsaydTgem06k6kSPVgQceqU7V6iLlifmirp5MJnD37l148OABtFotOD8/h9FoFCagMeim5SXlHRtTKbJIqxeCHsWK7/muoNTAmlSOZENoAViP/KXP8R13Kj3tfRvtRYv3yoCPQandedDJWsgjTQzneZ60MIR+p9UX/QDpXqKYrYtpKA9zfsagDwb+8D1dQEPvVQO4vogqFVhfDCji3d/0FAteR0p3ll2/71f6jgZX6VGE3N+I6UUr8K2NbQtcP47HYxiPx4Emq205j6bIPUvX0oBiTA57ApT0OeaHOsyiGfmR/sO86AIB5Eeua1cBrZ05fQik7/LyMtCJC5bwO7RXcdcinSRIsdMkm1LqPyk/agNY9g/3x+ld8PQ5pUH6Xhsr2jeaPrX0K32fWjcNVvk8RiB9K+l3vqNGku90Bzj6Omi7IZ9I9hWfhEXZcufOnZB+NBrB8fFxpXo2RR7h8Y/NZjNcK3N0dATf+c53wqQULuTrdDpLC4FwxzmtNy58xGd4OhItE8H5oao24PzGd8R7fH2vvbnq+EDMX6LvuaxeB31eTKfTa/oB5SwALNkcyIc3gdlsBh9++GHQBVyv8Ws5vOOM60/PN978P8cyLF3A/e3xeAzT6RRarRZkWQaDwQBms1mwURGWbePpq5h+svItA2pHWvTEyrJsBM3G8ehnaRFSLCZvnUrGn2tjzatvqD1V5Vikdpckr1cVEyhbB9fO2BSleVsretMoQv9N1Jn3JXVgtXSYtgi838UCmFa+ltNjoYgTY+XFHTbuAJbJ31N+kfdeReJJL/GMFZhNrbvmCJRBan2K5q8pkFSUoYkH4Ky+0X5LsByeFFh8YTmiqWVVPeakAA1NE2tnHuigdzxYciV1bElGJHdIteBPihwvA28QV3ruHRtcpmlBytQ6S/yg0UOPypT4RXIAPLLaosNTH+o0aEcT8jwxuMZ3c+/s7MDe3h4cHx9fO54qNfgs8b7XZpDaDp0SPE55b28PZrMZzOdzuLi4CHd9SUFIjbYi9ZHo5P2o8X1qeVIdyuQp8Sh/b+lszfak72KItX1RnZ2q92JjrWiAyBus4EErKY30rqh+L2Kvcx5MoUkL9mp9QOnL83xpB5VV55htxMvDPKW74qnNZ8FKE2sL7V2MN718aOXD/Rs6OUO/l9rB4p+YvyH1kVf3FvGTPN9YfCPlg+2Uetx+DB77SaNH8qnRTmk0GkuLx7C+dMcWPo/Vw2PnF9Gp9FurH1N9Mdq/mj7jcs1jY1r0WXnz+sbyj9nN1jfaO42XYnYSykt6RLjXXga4mnhCniu7oEaj0QvObxsbGzCdTqHX64X3/AQYfoS01Dc0P5oH1/FlbRQJEn9xXZoKiSekseTJu2h/W3Yo/p1iS3r4vSqg/eKhC397ZVtZuhDYDnhtBR3nFGX6vIxOKIKy7Vcl3Sn2Wkz3adD6RrK3sywL8ht5E0/8orwnyQ6NlrL+3irGocfWpmWvkwZpjGs+Pk3L08RsNu1dqv8nIcUe9/Cu1g+cJ2O0eeny2P2Iyo8pRkJWrYA+x+oRc2A98BrTsTxWjZvkWct5iT3T8tMctFSUaRceUKD0SWlj0OiI7UxMoT9mcFQNT3DCQlmDMGZMWLRJ7c5XLN8EYsHLVMNCU9T8mccw4yv18Z8WeKJp6apoL6QAKC/DAjeWKc34T7sHnAcSLVq8TpcUMKOraYvkWwYeXkcZVMQBjhm6mmOj5VFWl9NJVeneNfwb6zydTmEymYQdsXfu3IHBYACnp6fw6aefwsbGRtgFgHTi8Vqxe90sOuk/C1pgtF6vw2w2Cyt779+/H+5//vrXvw4XFxdweXnpvt8WIS26smSS1s+xOlHQlej4fZ7nS5NP3NYrclIH5s3r4wmsSfYP5sUDTfSO4nUElTi8bZISPKD8KjnQqwC3zaQ+t2w16R3d/ZZ68s1tgzf4yu96zPOryalarQatVgsAAC4vL0UdwPuc/o+7xJDPpfvHuW6md7RJ98JJsi7WBl7ZxuUI7pScz+dLu7ooLWXuE7RsMYk2/rcVmOJ2v3TPJspQiX4ur6X+ld5jn+KJBqhfcIFSGXumrJ8h3V+P9UAepcf57+3twSuvvAKTySTcFTccDsOu2lh/SzovRbfTfPBbb9AN6bPsKUv38DKxH6078TjPWXlrJ6Vwn8Jj38eea/0k0cnHdCwPCjxmvdVqQa1WW1qk5/HbcNdfll0d/yvFHtYF3tdIk+Sr5HkOl5eX4Q5NKoOwXnmehzsWW60WbGxsQLfbhfl8DoPBwOSd1HEi0eetc9FyvLZt1ZBoQT3L9ackgzz2J+Xdm7CHtKsv1gXJ5qHHFiNw/KP9IulFmmdZaDIpxea5CVRBWxXtJ8V+KPBdv99fem7Fa4oAF0XH4kCSj1lVO1C/WUsjlc9plJ5LaTw0ac+leDxe2yKlxzgIRyzW623bVY01bWxLpwhUkbflK3tQajI2FmApm5+FVMftpnETtK6jjbQAA8LLtBSWICnK8B6no8q2ijkOHucila6YsLfK1MrTghM8uCDlr/V9ivBelyOh5XGbDTPJmPDQKgUd6HOP4aDRkBooKQJPnaUx5gkA0W9TUTbY5aVDclytoI72TRU00ndVlyehrOEXy6+sAenpM75ARAsKS4EAq2ytvBT6rXSxAA91znCHwvb2Nkyn03AnLE7S4CTDeDyGw8NDODw8DPlaEzmSbuL08mCWBM0Ro/YMbUM8Ovri4gLOzs6g1+sFGq22jAVrrXogUo7e0sqlAVr6PibrtHSWbOWyt4jTy8vDcaPZmlXJ6yoChWWdaY/tlxrgk9KnyPMYPfQ9HeepSJVzKXlpdcrzFxP7nG76Dd6vRCfFYmOCH6sao5MiNm74dzgZgXWw+i9lvHhlBU1T1K/ylJGaP+8j7Z1GD/dxuR0p8YI2NmN6n5fL+1GS31pdYnZ4quyU8qd0cJ2Fd6tvbm4CwNWChMFgINKglUGfe2SDZYda4ymmg1O+09JhPlqf8npYSPVLLb7x6qQYTfR+QOlobYkG/oweWc9tFpqHpsvwBII8z8PErNfvWwcmk0m4ZgYAlk5MsMY7/k3fox9BdxEjitSV27y8fOk3pV1qZyt97Fnq2KoalA9Ty5H0wyrgae+Y7KuaHgqJJyxZ6uE3K58y47yKfrL0kvebIjJaqrfXr7PKsuxFra8sO0Tb+c+fpcqCmK3DIfGjNnasPKQ21/jdy8tFeNgaU7H3WA/N993Y2FhaiFfVKS2cRgmxPvfIFfrOQ3dMnnryLdI+K9kZuw7cBsPqtqOKNooJhlX0A19pLtGUgpsyxLmC8zqeUj6p9Ft3DKaUT50kmg+/+0rKK9aPXho89FUJ3nbrMKpXhSraPjb+MUiZZRmMRqNkGlcFbdxY/WndC6WVUQZVyCbpeysQTg00boRp8sJadUhXEuNvToPk6HvrYtWBjlGPvLFgBeO0ci3aYuOGBzBooA4nBzA/6Rgqi7c1VCXDuNOB/+Nxn1tbW/DKK6/Ab//2b8PJyQn84Ac/gKdPn8KjR48A4AU/jcdj+Iu/+As4PT0N+eB9udQBsOrB33snSSntVn+ORiM4PT2Fd999Fz799NNwJKPloNKxRceGFzQfuiPew1u8jvzeaq1deX9i2ix7sZrUcvo1npDqxesjpefOOT0K8zbqYq+Mo+DBEI+9rfFrakACQL53m5ZBaeK7ACVgGunORV4PWl4R2nl+MT1mLW65uLgI+dA86f9bW1tQr9fh/Px86d5PrW70vuaU3QCaftZsUSpjaD2K2hZe2cLzl9qb60u6KxLbKFauJFO43pTKL4KYjNVkm2QXSPfjWjYDfSddU3CTMs/iPQrk+W63C51OBzqdDrz22mtw7949ODk5gbOzs2s6MYVHuazg+oqmkb7jz7S68jKk/tbsEppWsoUxnfS3V85KdfLS5M07BsoPeO0E9utgMICLiwvz/mSuA5DncQcp/kPbQ2tLfJdlWZjs59+sIk5QBEdHR/D06dPwG+vSbDbDKTEAII57KjOpXmk2m+H+2TLAnfhYVspVIak7kDX7XNK/HOuSgzgW8XSL4XDoKlsah556FaXxNoP6uAA2vdpOZMuf4GVR3YvfePvsZUGV9g7Px/IJJWgymX6D/iZ/jr+rsP+RhlWNMy80nwDfSW0do9NjQ8ZiEfSZ1McW+F3lw+Gw0EJbDVrfx3RKVf3rsfc946LsuEyajOVGY2qnSrjtyqQMqmSWdbUTL0tyQixaygrUMmVr31VBlxeS42wN6FTaLEFsKYHY3wD+yZOYwkmB1Vda+/DyPWVaxrHldNPAgRWEKAJvu3oMSt5XZQxQqZ4SL1DnzUNbCqo2NHnwUJMlXsdBgqWMeUBRGrNlxk6R8ViGh3m7xmSzJUv4c6/zRWnhfF/1hI1l0Ep1iAWKY+M0xVBPeR5DrM0o3VI/YfAty67ui7t79y5kWQY7OzthwhWPo/rkk0/g+PgYBoMBzOdzaDQaALB8/I0UePXQGws0clmrjVn6DQ2G8bbg32He2jGW60KWXR2P12w2w465fr+/5LjGdCMPqJSth3dc8nJrtVo4ong+n8NkMjH7sIzeSZVB+K33aF6tDSwdwuV9zEnneXltZy63+C4lTf7F6hYrt8x7CbzeXptIkg08yIcBcclfom2Ek7Yx+UK/lSDZpVZ9itgwVdtc/Fh0rqfp+LZssZQ6aPabp63ob2+ZsTGmBZroO+vbKoNeHB6/AumgfI3P6DuefrFYwHA4hMPDQ7h7924I6En+Qpk+ttJg3pxmrSyv7cPLSMmHTkBb9iF9Fis3tQ95XxaRvfQZPd4edfR8PodOpxOunIjFE/D5YrGA8XgcvrPqKfk/2L5UD6/b5qJlSvqZjgG6qM86zYD7W7jzmMpR7+JFDXQxLe0va6IlxSZPRRk7grYL/k7VB/hNs9kMmw/o8bp88jvL5EWX6+TDm+B1Cx7/1NvPq7QRU+iwyvLqVC9NRb+TxmjRumL6WCxDKlt7xuWUV4dhXpJOl8oo44ulfGfZArG+kPIq0j9Svlp8jafD2ABfuG2VVQRaH6XqrJR+5flr/JlaX8/zFJlUeGdsFQr3timO24p1ttMqFJ4XnpUQKUbVTYHSxCesJKFZZR2q6h9NkWk7gsqUX9ZY8ARAvAaDVmeab1VtzJ2sWLt6gwHrADp/N00HwhtotmAFJ2IGUiywAnB9sUMKbRaos8cDLVZ6hDXuYnxJA4q0/KJ10H57gEEKz0SsN5jt/UYK/mnfaAFWzSDVaPGirINo8QvnD7qKstlswsOHD6HZbMLjx4/h6OgIAABarRY0m0345je/uXRMGwaT6AppbUxadUp17iXjWaoj1g1plMriuh+/xXuQpLpUAas9ut0u7OzswHQ6DUdGz+fzEGDSaM7zF7sj6vU6ZFkWAqtV0aw9o3YS/t1sNqHRaEC9XofxeAy9Xk/NpwywTO8OJQQevU1tvpjs5JDqT9Pz8VZ13dety6u0faWJBgmp8hAD31mWhZ3Z9P5zSWfi2MEFA/yueIs2TiM/1t7Ko4pgYFWQdrlI8sPi59Rgf5mALB972L+Sv+m1Vygv0jRa0J77GvTY1lXA217e4CnSO5vN4OTkBJ49ewYPHjyAN998M0zU4fepvGrxvId2lOlan0r5aunoyR3eCXPOC3Ss8/cSXZ7YR8wu8shHDzgvo86r1+tLO1svLy9hMpksnaRFy+c72BaLRdDrfFet1HaSbU115037ppx+3MnKMZ1OzT6h7YSTsDgZiN/hJHjKjlYK/Bbv26W7kqsE7xdNxlfRdzSfVJ2P47rb7UK73Q53uANcnZaj3Wds1e+m+XGdsOpK9VwVNktZ/ViFHqLvV22DxfKP2Zop9EljsUwssgr9w2koGiNZhZyhz4r4/EXaRmtT/oyffoDAO2EbjcaSXSLdL5sCy8eneUpjxmq/FLuVp1/lPfJl+No1GVvFwPEY0rfFifwc6wM1LqVjBqTfUqDqZYAWuI0Fg1OhOXf0HaeDp7X6wYKl3KQyNEM1xdjAYJWnfTm4kKaC2lrlGKON16UKhc+dd/yb1t3DN972iAUNaWBDom1dKFKmZjDTengCgVJfWN9U7ZjxIK92fLg1tqQgBz6XAkb8N+U9KeCUEgCKGf1a+hQD39NnEqx0VhvysRnjK0kHWHKTfyfBI1s9ciHG3+12G2q1WjimDo/0PDg4CHfHoezAoF1sctqqlza2PHTjc+kdThq0220Yj8fw6NEj6Pf7Yv5W3nx3GE3v1Xcx2a61D8oGtKtarVaYVI0FcjEQ2mw2Ic/zMJmsjc+isizWP9QhxAAZBno9ZVq2CO8LLAftCTxyu16vw2w2W1o4wPNaLBbQbDZhe3s70Dkej2E2my0d0xWD1+7hdYzJTY8NUlYf3QZ7PMbX9FkKNjY2wtHxlFck/qc8jd/EJmy4HJN0qZYef6/a9rICIkX73hMXSIHVz9o7zh8x28/jg2KaqoJwHvvG0oUeW9YLqV5S/ig7nz59Ct/5zndgsVjA3t4enJ2dBdlaVm9Q8GOPvfZDSjvkeS4G86h+t2jTQL+hCz1o/vR/6XmKfKf8adkwUj9zuxSfXV5eQqvVCnm2220YDAbiuEmx8zX/oaj8WYestMqWeEGyD3lb0b7C+8ERVCfht6vwcyS6vN9RWqTvvYjZ3EXB4xiYFx4d3Wg0IM/z0O44UU0XI0h5Sn/fVpQdG7Fvaf4x383KoyiqtFFTxlTV8JYd89dpfvR/Tc9o39NvMU3MH9dOYsTfsTHO86d6MzU+4oU1PmJyUbM1JB2u6Tat/BTZbl0PIZ0oIfVNit0ei0vF7GmrLO8YSLHvU20JTqNVH6stopOxKY2jweo8rYzP8dkHNy75O3rPkuQE0Hc3DY0erW7ad5YgL0ILfaY5Q9JOMskJ8ygBqQzJmeLOg0RrrE6cVs4fVtvRMmgQVnO0rfJigQmvkxwzhD0y1OPU8m88RhSnAfmBt9nL5HxwvtRo9/IRfhcLHlTZLni8COZrTcZyGcBB08aO26Rym/KvJAc1Ax+feeRezLC3+jJWhyoNd63OXqMxJgtiskfLN5a2rA2G37daLdjY2ICjo6MwGVur1WB/fx86nU6gI8uuJvpwNyHnGxqckmjk44z2pbfv8FtprM7nc6jVatBut2E0GsGjR4/U+7C1MSXl7w12aPWWyuNjHEGPsgO46ps8l4PJKMuRVtz5g5OxsV2olp+Q4pDQPqQ6BmUNTsamrG61aKZth7qs0WiEyVe8Myx2Bzces31wcADj8RjG4zFMJpOl+9284zBma3GHOZWfUhBzlOnzFJlk5ZdKnyevIvWn9cmy5d3tfLcqHTcUOIFvBWGk56iDvd/Q77xBCo4ydonXxl0VYjYNT2fZ6FpghefhsaMsee/1aby2g5aHVUYZPpHajOulRqMBT58+hePjY7hz5w7cuXMHLi4urh2JV5QGWibvWz5+NZlqxRI0f4nbmzHbUypD8h1oPtKulBQ5IiFWtpRWKovbM2gjTKfTsIuw1WotnZ4UGw8SLTR9yokysfzXDdru2m7TmM1HF6WhPYSQbKKY3WghxW+pClXoH8vOjtkKXEagjh+NRpDnOezu7kKe52EXs3TSVZW+5E2gKlqL6j0NMb9Yel5ULnrh0d9VQaqbJS942ljeHrkcs3ckH57rGM1Xtejygupfjy/i6fMy8Rb6O+Y70d8x+0GS617+lfwUzke8rpqdprVFEd738mBqWTz+AgDm4mitr2K2rlfXWrZm4WOKveAd/TIpptuCdbZbrKyytMSM8o2NDeh2u9eOExqNRmGFGqZ7WXnJ24ZlnIyYILBooG3rVSLSc00R83ccXqMKd/loeaQGB/kuQ8yD3olTJTzOr4VUA9JSHqmgzghX1rdpXFrOGT63+pbfdySNMSnQg84zf1cVL9F7NQGuxsL29jb83u/9HgyHQ/jDP/xDyPMcWq0WzOfzaxNeEmhgRTPQaPlYT23MS0GyqpwditvAb5Ks40em4btYe9HnyEftdhvm83n0ODMvresIskwmE3j8+HE4lg0nM3GScDqdRo/v5O+koIsEry6U+gexWCxgMpkE/pfuVbGAR5pivjFZRGnHfqdy1qOTkT50OPA4Ypwkx0Agl2lc3+GkZLfbBQAIRxtrAS5Oh/aO8x51liQ5S/OaTCaBftxZZbWhRpf0jDqouAMC69toNGA0GkX7vtvtwmuvvbY0GUtt1hRaNVg8VPWYluSEx+7L83zpCE8Pz6wKVZSFenw2m4XxlOd5kA10YtYTYPIgZr/H8sa++6z63N5AkCRr8G/Jbovl7wW3mTRZiP97gkBV0VYFJH1BQW3J6XQKk8kEJpNJ0EF0oXWZsmmbpU7uegJ5tDwtPb8HVsoD20M6cpzvske7ARdy8KN8LRms0WnRn+on83xpPrPZDC4uLqDRaATfA/s61Z7ndg/lmZSg6csGzXbxLAjT9FBKW3CdrZ08dltRlE7adpK/2+/3w27/TqcDBwcH4T36Bjhx+zl8vlnV5a1jzJeRl7cRUn3K+hZSX1C9rdFAxx7qSy0th9fn09JWjaIy0/KFPT6AZodIvpzVDqhz+GYtiV9WEddbFawd2fgsta2qwLXJ2Cobilf0syK8Yqi6nlXl5xFMHiFcBY9IwWsACIFnbsDjLgPEyzwZW2ZMSAFZDAhJ7yzlpylhSWkWbWtKU4y3pGCSBOrYxoLa0rcapIAi/h1TRkUQ+z61bl7Exq9X8aDTxvmEBw1W3U4ANs0aH1s8ht9ZY4AHa/gzPEqTluO9XyoGdL5xN1e73Ybd3V345V/+ZTg7O4M/+qM/gjzPQ+A4FsjhtMfKRnjSFjVIq/omhf8sGRobF9R4lvKx6OJBOwrcnYeTAfTOQg1lgjGx9Nq44d/MZjM4Pj4Ox+PixBQ18unkoEQ3gjso1tjUxiPPT/qbp8F7tKyjffhzjU9S+wCDYPR4VDqWLXCbiu+Y5zRJtjoeJc3bitJBkRpsxT7kAUSpj7PsajKMHvvsdQZTdD7Ai10mdLGRp+9arRbs7u6GiYdHjx6J9ea/rXb06r6qYTnc1njh3/D067LZqywHxwLKLW0sAbzgWdq3ZQMVnrpIPsVNBz1uAyQ9KMmzlLxS7COtHI9+kGxpLyzb1Cozlh/+7dHXmD/aLfS4T2lSMlZ+0XFgpfPa9978PD6n1vfUxsmybMm/SuknrsulMrU4gvStx9ag/s1wOLx2hKvkD8b6gOt6Ohlr2cBWH6xL/5QB7wPaDlp6TKfJCsvejfGsNtZvk35JoUWrL7dHado8z2E8HsPGxgZ0Oh2o1+vh2hWAq/jkdDpdsht5mbepvapGjOeqGncxm98jq6x0KbIvRS6nwKOnY/6tlk8KiuRp9bk3VsTz4N/FTnL09osnBrBqpNhmaBMgLB6WFscViT3id57xkuKDl5XX0ntvnlZbWzEWK/YixS5SUXpn7E05fqsShJ8l3KY2svjk4OAgHGGY51crzhGTyQR6vd61o10ajUYwzukq0s8hG34xoelxOCV4DHucEKJ3nPAdUdoKKOtooqomtjQgz2lKu8j40oLYKfmUGdNVyGm6IznP8xAkR0OK7sBaFTwBLw2egE3ZI7Ew306nA81mE05PT2E8HgcaG42GKx+Oer0e7mKazWbw67/+6/DFL34RXnnlFdja2oKdnR04Ozu7RgvuVPIaoNL4kgLMlizB71PvB/PIFM+7mwC2DV2lzsF3OvDvaRoMOG1vbwdnfzgcwnA4dN+bWRVijhYGXjHt+fk5/MVf/EXo+/F4DO12O+h4zotYVzrxIektHmBOdfqk+kjggVHLKZHy5iswPQFBlA00DR7nLO1M5d/SI3GxvOFwCOfn50HmNBoNVb5hHqPRaGknKu7I5rtTNHroc2tnBQ88036VZJU1rmi5yIfW6Rmcn7HPptNpkFnIqx59hn20u7sL7XYb3n///aU60mADHee8v7y4zQFmWqey9o6W3qPHqwSVyVimJK9jK6/pu5SAkNYGVL9rRxtX0d63AZYOQtsT/44Fg1PqWYXdnLrDjNJ3E3EWTi/9n/Mtykfqx/HrM2gdYoubOKgsseQBnqyV5zn0+31RD0u6ib6nclXqL2q/8TpoQTluz/FvaBmz2Qza7TY8fPgQxuMxDAaDcNIC2nzSEamcBl6nFN+I2/oeXxu/mc/nwX7gE4mYX2wXM/dZsM2azSZsbm7CYDCAfr+/VC4i1ue3GUXoTOlXj/zgvFLENrkNkORnCpBvhsPhUvuhf03bBBecttvtsCBB4vOqbbbbqqs9+jc1v5uop+SjvyxIpd3TxrE8PfFRlO24SBhPzgKAa76W5HdJ+rMMNPnGdXcRePtA8gVS42Y0r7KQfKsi/omVVstP0tc8LY01e8oq6mNzWAsByrZ70mRskcKKVN4rFD7HFcoyx00pm3q9DvV6Hba2tsJxeIvFAnq9XjCmccUZBT/+s4ywXDViwVOA1a3Q0ZwyjQ7+O5beUmA0kE1XC1rfaO81eNPGlAmVN5ozXbRftLHJ30sTDdo3Vj5WXVOMMy0/2q8AL4ILKRMVHljjJmYMpjin3nw95fI0aHTiJEiZxQM06ErvBzo4OIA333wTvvCFL0C73YazszO4uLhYoof3mUR3zPgpAx6ULxNwqNKZ9fR3UZsnRieXsTwIyOuLu7Hq9fpSALFov0ntmSLrtXrRna7z+RyOjo7CO3S8vBNqHrkX01UcRQMEtE+k/pHy9LYZfUf/p0ea0/JSbYrZbBaO2ZV0svQ9TizS3cz4XnK4pfbXaJV0i9SvKOOQXzxOodRetCwLOG5xJzTWyavb8jwP98zS012kdF6apG+kdk7Nr0oUkaMp+sXL+zRtahmevLhTb9lpkr7z2N5avrTMFHvQylfDbfeti8jwMrpcQ4qNWtTm8foPReDhS0ne829QV0l0UZ6l8pzXJbV9pHbBf7j4ly8K9YydInqDjk/620M7tf+ovqnVarCzsxOudqDXjNC0ReUd7R+trlp7SaDthv+qWBhC2xK/bTabSwv2Jdy0TuTw+gP0b9o3VZSRgirkipTPOvpD4hkKbzsh/yMfo01IF1LjEezUJ7fs66rhtWtvwzgo4/eXhcbPlj6oMgayKqTYILH09BvNtrV4SSrPSo+6utVqLekM6oNKu/3XId+0unB4fHFPeVpesfaTUFVbefwXyyeR6OH5e9vUsqm8faXlraWX9EaMx8vIjGuTsWU6PpbWi9ugOD5HOXj68I033oA333xzyZChq8oAAJ49ewYnJyfhm1ardW3nyMugNNcJrxHPneRUoDJF0OMc8zwPEwcSfQi+u0ty/Gl5PJ8Ux4UrDQyeFtlh9jLJKO7olTHO83x5h3OtVjOP7bsN0JQ75U3c+eXRZ5yHcLKA7qTudruwvb19rW3wWOHUPsCjatHJQzqbzSZ0Oh24f/8+TCYT+A//4T/A48ePYTKZLDmNWF8pSEIDvfR/qe4WOJ9hUMxzX+1thUemeJ4B2Medcn6UHBIMRA2HQy/5a8d4PIYsy6DVaoU7lBDIC1wO07rS/70GOG9T6tB5+U4K4NDAYiyvKvgbj28cDoehz3FiT6LXAuWXwWBQiGeyLAu7cVFHUhnCg8PS0ZNakN6Sqeigb25uQqvVgufPn8NgMFjS05rNgOXduXMHNjY24OTkBPI8X5KFvF85vYPBYGlX/3g8dgXWRqMRnJychHZAPYltY+2u5e3Cg+V43KNnQqEsUgMu0nuJzqr9Qk6ntguF/s37HnnKUy/8h/pMkuf4u8iK9rK+NOpcPFqd0g0Ape7pvG2gR4in7jj19HeVwHbnd4BSID0ob/k9opKfc9M+CB97klylafjEaAwefUvz0e6n5roCx65VHwncTpHucvXyFpddqKPwnvpGowGvvPJKyO/dd9+Fn/zkJ9fqRYOhPJgttYFHztH6oBxrNBpL/n2ViLUZvp9Op8GfqtVq5sI+TPey+h0Atp0CIPN2VRMVq5YtsdjOqsvjkMZHvV5fOn1vOBzCwcEB/M7v/E6wJ7/3ve/Bt771LRgOh8HXybIsnPRHTwDSbORV4yb0BMoNbXxKttxN46b16SrgqRM/8QUh6diUfsP8aLyexskAADY3N6Hb7YaTHzjtqHfoO9yQgEg9FTOV17QT4mheRXiniL3v0eOajeO1k1Pth6rHcor+0RZ8URqqutKSym9eR0tHe+89VqPoHoe/TKNbwTQt/W0TlpRBq6ItZXCntL/EQKtsTz6ApRUujUYj7Iilhic1zukRBjxfAHnb+E1BEtJSf1YhwKsS/mWg1Yn/0/qIB1Y99GkyyApSSLKGB6i0Y58846bqdtXkicZLUtCRgzruPA/rO+l5rJ0thb9uOa7pMdoOFk1FaMXFJdJY0ILpsTpQQwDv4AJ4sTIXj3yZz+chWIxpLV7iz3i7xL6jwSD8TkORcVIkoF+kzzx0S04JDVzR316j2QM8hh/1qIdmCxptZcclHf/I/9RpirWxxyb0yOJYcE8b75I+4+9XYWvQ/sjzHHZ3d2FjYyMc/44BnZRFU5RObnt5Fs/w4z653OI0p9JEf2vOX6PRCDtMqeyU7ETO061Wa2miDd9ru4F5fTAfOvZi42M+n8NgMAgnE9DJWAnWOEwdm5Z9VUTncpvCy/uSftP4pgpo7STZRNxG9eRB683/53nS72MBjBiK9Be1EejOnO3tbWg0GtDr9cLiQ6pLbptfnQLJ/q3aRkj1s3k5lv3A7QYtHykdr2tsjMb8mrLQyi8iz6zvNNnEbTHrCGJuo6Xyg9XWkk3oqaPU53h6GNpRXK547GOvn6bpVJ5PrF6abNVo0+qv2di4AAMXr1Edjem9fp015iSa1+2/euHlN/re6hvJh9H8SM0GW2U7aTytvU/Nm35Pg/m4OK/ZbMLOzg48ePAAfuZnfibQ0O/3wzUX9F5jvtB2FX4E0nAT/OmRBUW+R3j86CrqzeVfVe3p1cup8NixnA6rr1L5UmovDZLNgWNjY2MjbOyQdpV7bfRUmovAwxOx/LX3sbwlnvSMDQ9iMlXKm+po+kyzu2Jl8rI9YyM1/pA63qy6ee1IT3+V2tKkNfIqFMJtNIAQt402qf25IFw1zShgAa4CWnhfIgUXuHgk3vb2dviW7orlyPPbs+vKI5zLCIEi9GhOlxQwo3R6lDoNsuORhqhM0UnCd7Tviyj72LPU1bp5frU6C3cVDgaDpR1c1j1zq0YKn2C7p8JqU0//II3IA/yOBymowJX2qiAZAvy9tkMkNi6ok0+/oUGfer0OnU4HsiwLK9wxmEJPAOD0ecfFZDIJd2EBABwdHcFPfvIT+OpXvwrdbhd+7dd+De7duwff+MY3YDqdwmw2g2azCa1Wy5U/1pHSJckRjYes9uO7Pl52UJ6mC04sQ9syUml+9N18Pofz8/PwDI9C1WjSjMWi9SsCpHFzczPUB/mRAtvEw1s0vQXNIfBC6xMvYjqLB4TRVsJdxf/f//f/wd27d+H09BSOj4/hr//6r0Nb8jbU5Ad3knn7xRw+1OG4K9RaXcp3CpVFnl9NFNXrddjc3IRms7l0ygbqGF4/Om663S40Gg14+vQpAFzJZek+T4AXuyMl3YWLWzy72kejETx79gwODw8hyzK4uLhYOgWBB+SkXRJYhrbL06ufaX5ldW5KQI2fMrJOO8qyM3ggH228wWAA8/lctPk0O5PbPdquQKl8Kd+yQDsQd5SjHY73Nn7ta1+DBw8ewJ/+6Z/C6ekpbG5uQp7nt/qEhRi4f4PP6G+OdQeqcQzjYjk8jo/fjS7xjnWUr7W7qmygkZZj+YKxIJqVpggtmkzR9FmWXZ3OMZ1OYTweh2Avp5XbSrwOGqiNIdkumg9EF0Jwmqlem06ncHp6CltbW7CzsxPSoOyy4h6W/yXVm0KiS8vb007aDm8PUHdRnY2TsHmeL42D09NTGI/HSwvNNBuQ63LNZ5XovS2xPj5GPTEbS2ZISLU1PgtAuYxtMp/Pod1uQ5Zl0O/34fT0FP7wD/8QvvSlL8Hv/M7vwK//+q/D7//+7wPA1dj55je/CY8ePYK/+qu/CncaNxoN6HQ6MJ/PwwlcVchpjf7bAhyj2juKVLpXyXeWrllH+atEzO+L8WXMR0cdq7WVlner1Vo6rng6nQa5PxwO4fLyMqTlehx1akostOrxtyp+KDOeY7oc4IX+KOq7e+1QK39PTCcVtHw+P1A2TsFjK/R5Sh4c9VgC611KA76swktDLGifgpiR5BGOGm2p3/LvyyCWz2KxWDryFAMiGxsbMJ1O4fnz59cmY9GRob9vE4q0twTa95LikIRBLH8t2E+/j/EE9g8G2QGugg2j0UgN/HHh5W0HLa+y/ElXYlFgABcDdEWOspKgyYSYM+0JLqVAC1CmfssnE1YtR3i5/FlsDFjBaY3nY22lORNcPtH7DrniTmkfzBfp3dnZgd3dXQAAODs7g9PT07CTjpZBHcsy/aS1oWRo8/GFO3b53d8aXatyVD0oGpBD8N1GWmBTqyOmx3xwIh/7n95n6UHRMVjkO2lcacFS+k1szHqeW+mqlEMxntXGhkQX/sYAIx7FtLm5CTs7O1Cr1ZYmXmu1mnnUY5GApwQua3j+PPjM9QFFbCzH7Gj6jzr6SCNPg0D9jUcZ8jpI5cUgOV5U5uX5i2sP6E4mWh/aVlRW00lMWjcacOb/czuOl1UlUoNnMZ27CtroGJTKwneNRiMcgd1oNGA6ncJoNHIHJWIBqZgMoGk5bbG2sWxDOm6lsm+br1QUXLfS59rYqKK8VNp4QAjlEN4JStNKgUTOR1z+pOjCquyF1HFM6+ixPz02UuzddDoNbarZSp6xIcmTGM0SNL2o0YS8Qa+o0Gi1/BAtjdcPsNokVcdIespTFv97NptBv99f2nUYk8eaHcYXNXj8Sw+tXsTaMDVWwu2yKvw+65tUm8lCVW3qgdd20fp+MplAq9WCL37xi/DKK6/Aq6++CgAQrmXZ3t6Gv/mbv1HL9NgGnxXQTTmaX2HJWfyO/l8EVfC6Zstr3xXxVVNp9Xxb1ThN8dOt/Og3k8kEer3etSvt6EJHnheehOA9ftaS31qcoGrZw3nC6xd74hhWXpJulNLzMSnR4oFHZ6XaTkUh0aLZYVY5VchpKj+09ozujNU+XPXl5KsIKKwDMeNKwqqV8jouki8CDIIAXLXN7u5uWNl4fn4O3/jGN67tpKG7G15WY0YyLqydTvR/AN8Z9jwtBvZoOVQAW8IY6cNyms0mHBwchLzw+DMO6ZiWWDkSqGORGtiTxhy9h4++f+WVV2B3dxfeeeedpftpvGWl0IDPU4LDtB3LBldSDCueF/5PAx3rktVehxkgLouzLIPZbCbyrvUtD5DwXeK4wx/gaqzge3r8Sizoy43/PM/D8UcAV/dt/72/9/fg0aNH8PHHH8NHH30Eu7u7cHl5uRRYRj5Hmi3ZwX9juZKTL+3cwjR4tNrW1lbIbzgcwtnZmVouRxX8VNSGSDkKWJKhXEZ5wNPj8dLdbncpEDUcDkP7F3W81gGkTZuA176JOeke50Qrj0+UxwJX0nPLuMf0KUE0gKvx0m63YTQawWKxgG63C3fu3IH9/f0lvY07YiR4yos5HLSOeDQy52Vtx5YUYLHKTnXwcMIaEbOBsC03NzfD7lbpnltad6nvtSsWcIEEPYo4z68mY+nRkrRt+GQyti9OGuOEPJ24oau+tZ29lO9oG6zbf5L4nga8Vy3TeZCMB11wt3Wn0wm2Xr/fh9FoBD/+8Y9hOp0u6UutDISkOzlP8W+sOhS11Wg50rUEw+EQer3ekt90W/REKri9SceR9/tV1x1PQOET43jyAcpzyi98Mpbb+Zqd7Qlmeb/x2MuxMlMDmlmWLd3vifcd8/tYvcjzHAaDwZL85pMBnDZN9nO5Sr/V2tTDi5o9g383Go1wzx7SzMeuJVOoDULrbN0Zbd23Lf2WwOW85VvQbyS9LPHRxsYGTCYTePbsWTjth6aj1xlYoD5YEXutKhTx4bW4AH33ssr2m4AmH2NH+D948AD+6T/9p3Dv3j24d+9e+O7hw4fw4Ycfwn/7b//t2kaSddtjSNNNlAtwVd9Go7Fk904mk6VFMp740U2MT012pcQbU3V1WRTpZ0nWWrqRPpf+5nRYYwvgKnbc6/Wg2+1eO72Nxq8oMGbHeUuiL5WvqB5c9byJVL6mI1c9hq268ivXPO1Slte9NmYMZXbBWn6S1Hcaz8VOFkO4dsaWESpFO+WmAwurgtSW2oBchfDWDLuq2hedTSu/ra0tODg4gN3d3eCkzufz4IQAwLVjjdGBve1HXFqGQ8wJ5s6U9J3H+Y7lL72z6KJAQ4ru/sCjiel3Fk/HAuySUJOCXFZ5CDT6Njc3A707OzvwxS9+MeT59OlTODo6gvF4DM+fPw8BVnp0HQZ0Y+0TQ8xIoO+l8Wk5XF75zfP3GpiW4cCDATeBqLL7//cnl1Exg8j7njr2mAYnNTDYpvEvz5Mfacm/HQwGcHx8vDTxO5vN4NNPP4XDw0PxLmQe0LEMP21Cki/mkMYrDSoBXAWDF4tFOF7Ma2iV1X8pQTH+PFY2dda1sWjlockBfI78ibs8kIekYNUqUbUjnDq2yspYrjs1nqdleR04HswrYqfiN5hXnudweXkJFxcX8ODBg3DkOS7yoJOhKfwdC67ysSu1hdaWMd2ujQ/NscOVz6PRCPr9/rWJCutYQWxH1NV4LBwtk8OyHdC2ofd0S6BjdDweh/SUX3CSodPphHJx8gFpo8GFjY0N2N7ehslkAufn52IduAy26rMqeGwZntbLj1ZZlNekdqDPcYzhaTxZlkGz2QyT/BjIt46ArQqcZq1+1rcI3u98F3iWZXBycgLT6RSazSZ0u92loxJfdlg2jITUvtVkF50spJNltFwc76+//nrY+dHr9eD58+fhG5y4xcUilj1RBtzW97SbpAskn8HyU7TxLkGzbWI2ofReSufxG736QdN/tA6S3vHy33g8DpOOR0dHYfcQwPId8NzWkdouphukekj1t77lut/iV28b0HJ53RaLRThJRLNDYnXDMastuKJ08O9jfnysThQxe9Mqz9IlvDxPOfQ7bVzTNrX8g1Qdo+XjyUPj3di48+SNx/7v7OzAdDoNmw96vR4AXPm3+/v7YeHs5uYm/MEf/AF88MEH8Cd/8icAAMHGqNfr4aqRqn0rxG2KxcT0Z6xfPD40TV8WUp7SGLR4W9NXq+pvXlaRMRerSyrdlp3qpS/P82Cr4jHf0uasWB4xOj1+rQdWnbU0KeXEfKYUpNjHHrr4eIjpBel7L1L6I8ZrVl4e3aHpG6ufNZS6M1ZCqjMpwQoI3TRWIfS97yXm8Awqj5Cw8koB7uCwBtju7i787M/+bPg9GAxgPB5Do9GAZrMJAFcGDv0e87Xov0kUNdY155Mf2VCEXwDklSFl+h+Dh7j7A+DFZCwNOsYuYEfaPHzO6ZIUsOakYKCz2+0G3nr48CH8w3/4D8Oukx/96Efw/vvvw/vvvw+np6eBNnr3rXTfYRnEFKsWGIkFQVLKlN5ZSsQyfFIVahWwxo0UrMDV5jStlIdlTON3Uj9I+Y1Go7D7P89frAKnE6PopCFoPjzAgGX1er1wHyJOek6nU/joo4/g7OwM2u32Unlam3DwNDToyINKkqxDAyXP83BEKN472Ww21Z3ItI0xz1U7LzEarGe07prs8dAvjfM8z8PCAXRG+JGsUj6xOmhpNXjtAU33SfmUKdv7reVQaLzvcdowHf7NdzdJQVKtLjxvOhl7dnYGW1tb8NZbb0Gn0wk7QuiOH+/x41mWiRMFHJIz5ek3yuvSccBclkiyggNtDNwFTuVFnr+YcJJO26CLGGazWVhYFZts43yBY67RaMDOzg5cXl5G7yRC2pBeLg9xweHW1lZIj/oB09JFNI1GA+7cuQO9Xg+Oj4+v6Qm+oyhmQxRFqgyWdGYV0PxCTe5wOrDvcYdiq9WCzc1NaLfbgZcwTcr9UylIlakA+kSHVF+uW2u1Gjx//jzcFYv3KKM+pt++rJBsklSk6ml+N7JkG89mM2g2m/DFL34xLAZ9/PgxPHv2bOme33q9HhbV8b6OBbk0W0XSc5LtJ/322sRWm6WMe87bFi1SOfR//E5qI2kMWXnS/CR68X/UsfQ3L4f7ULH2GY1GcHFxEdKij418E5N1vN70f81etaDZ+zwPy2637An+Df+bl8n1LC7Ux7R896tmZ/D8OZ1aW2j1KgJtTFo0WWli/a6NjRiNWj09vkaRNuK8VKadLX8iJkPr9To0m01oNpswHo+h3++HBXIXFxeQZRl8+ctfDovsut0u/Nt/+2/h3Xffhb/8y7+EyWSypGsHg0GlsSSJdk8dVwnad9wXQHlG44QpPFRmx6LHPrDkf9F2jI0zr60uydcUX5b3Cf9esrG5b+eh0SpfOqFB819wwU2324XJZALD4TBaFrchLF3E0+V5vnRyiWVTem0Tbxqr3cr6cpLOkuxKzTe2fDqNlzS9K9HjpVsqx/O9Z4xIPBEbtymbA2N1rnwytgqsW3GsA1Kd1nV8sHfAVwUq2PjxcACwtNIf4GoyodVqLQnpLLuaPKE7QV6WgIFmrEt10IxELbBrlRdzgLQ00jv+HTqAVhnoIGnpOB/g3yl3IErlSqDtx9PVajXY3t6GwWAAp6en0Gw24eHDh/D48eMwGXsbUUYxaW3h4S+pf26bjKZBEM7HWoBJmvSMOZxUucccHUoHyrG9vb2wSnY8HsPx8XHYCUZ3m0vAPOr1OgyHwxDUy7IM/viP/xhqtRr0+331e4tWjW7uVHmcClwAgbIAv8ddwtqxHSjzAV7csVZUNsTq5wksaMEhCx5aadBIC8rRiT5+PGlVsORJTN9qbagZ85jvqmA5BBrP0jpSR4yCH6dF86EyhB4t66UNn8/nc5hMJuG42svLSzg8PIQPP/wQTk9Pw4QsrqanwUfLSfbYD5LzrTnrVhvTbyVZiTTTxShSHhTD4RAmk0k4urfdbrt5CJ12utuM1ovSzMcW2gevvfZa6N9PPvkE+v1+OH7Ys4MS39M7n3GHBU7CHB8fL52ewAMB4/F46ahvpJf3URUBIw2cJ25K998mm4PqKoDlO0EtOmP6U4Ilp2OBL4Bl2x3HJz/h4mUB93U0/Wl9H0tP0/BgHZbH73jWkGUZtNtt2NnZgf39/RBcRH6p1WrQbDaDDYiLkCWdw/WVRLdVR68PXVU+ND2VW1J5vM2r5smY76TRZdn2XH9J93vTMvjfsUAhX3zujYXwsiU7W7LxpffSlVCSfgdYXhwl1ZfTwNPyPLnM4t9b7aDJBa3NNf9vnbKxqrKK6hbeJ7yttH4oQncRPVg1vHoDFxMDQJDfZ2dn8O1vfxsePHgADx8+DPnt7e3B5uYmAFwtqPhH/+gfwaNHj+D99983ZfeqcJM2k1RPHjdJ0d9afvT/MuC+i+QP8nI1umg6KR5l5WdBk2mpbchlPLcJeVmp4zy1jpPJ5NqVRlKetVot6SQDT7touoD/XvW4XaX9k0oDR1H/0hMjKtK+1KbUEPNXvXWyZJSXZvT/LbiOKY4V7HE+f9rhYcp1lL+uMpH56DFxCDzqA+m6c+dOWFVGGZY7vLc5aOClzRoP1OHWFA4VDFowziozRXjQ7/guDJoXpp3P56pC1YSRx0CNOV3S97w85J9arQaNRgPa7Xa4S6vRaMDBwcHS6kWJRl7muqA5SSnfIiSDU4NX3t/0uLQc/hRDlQcTuNMgBY08yPMXgfatrS1ot9vQarXCjid8LwX5KS34N07kjkajMGF5dHR0rR5l24PSEAvQUeDkIQ8e8R1uEn14qgIN3lU93ooY6B79o8lmKV/NSaPv6a5kS64WgVdf8GdWEK9MmR7E+FczvqXd8rwfJP5GHaKtkqXBBKk/PbQBvDiWFyfi+v0+1Go1ePLkCfT7/bDDHCdj6ZUN3E6g9ZJ0Nm9LCVU6gzRQy+Uop43bKXS3GA/4WsjzF8dbxU4/0N51u134mZ/5GZhOp+HISBq0oPd/e9qA0r+5uRl2WvT7/aU24e3Edw9Q+1CSN/SZRl/MFykjb63gbpmAU5XAtqb3SWrpJLmHbUzvKIyd+GDlHUtnfUvHKg+eIeh9w1IwLrV/bhpcdlgL2Irkjf/H4hp0N7WVrtFoQKfTgbt378Lz58+Xdl+jzYNHZkuTsZz36ASZpmck2arZXLwMKT+aPuYPpfIRXZgj+XGWfa8h5V2MXksfSjacdsUH/R3zu5Cvqa5E/RADH+Nee46/l3x2ydbh36TyhybjuP/ubUs+dry2DP2Olhv7fhU+Sio8MtxTD+1vbptRpNiLMdtdel61PeIpm/LCdDoNvIg6vtfrwfvvvw/1eh1eeeWVwCd40gYAwL179+AXfuEXIMsy+P73vx8WRdE7oS0aPivQ5AHVofxdSl5emSr9tmzhmE8X86Ewr1g/c1qK2GMe/rFsAUtu8/8tORErW0srzRNw4MlAXpmM5cbolviQvtP0WlmZJ5WzTlj2IE/npc3S01bZqTGH1PaKjSltzEtlSf61hx9jNCTvjP0sK411I5UBV0VDlUAj2qpXr9eDjz/+OPx+/PjxUuAZ7+ha187hqpBi+NNvEB6n0Pqep0Ulw+niv2NODv6/sbEB+/v74biWxWIRJoS0uqUYSNo7DFogbZpQo/yCRwwjfcfHx3BwcAD/4l/8C9jf318K4LTb7aX7ijFvTIN3Xt4UqnT2JKViGYj8900YDRQ8wJAa4OXBO6yPZSx6+Ji2Dz9inB8rhncBIk/hAgEe3MN86c4WXu/Nzc2wa46OV29gOMWA1p5JmM/n4fSD6XS6NIZp2bQ+3EmjRnARnsPv1hUssQx3iSYrH8wDeRUDczeJWPnrsGc0HRgLqMTy4DvFqM7DZxLwuTTRUYTnFosFfPzxx7CxsQEffPABLBYLGAwGS3e148561G+z2WzpfnNKg0Q3ppWOO8Q248cuSvogxV7htgQ9RpDbIvQfrQNORmM+Fq+h085pxnc4wY0T4di2SMN0OoXT09Nr9cfyse0kJ97Sq/P5HC4vL2E2m8FgMIDhcAjj8Ri2trZgZ2cHfv7nfx7q9Tr8yZ/8CbRaLfi1X/s1ePLkCTx//hzq9Tp0Op2wipwH/bFNblpOICiP8MlAgOXFllwPV1UPzoOoF589ewaDwQD29vaWxgI/2UUK4FCeoPqeTtZzfSZNOEll8LI0xPSIxPurWtx0W6DJqlWD8yrKFbTd8Ijx119/HXZ2duBnf/Zn4fj4GI6OjsICVsnXor8BIJycgmMJedXapV/Ebud5oe1GZZ2nnbFdpAUxnH89fLmqfvX4E5IuS4H1vVV3HLex/tP8Oq39pXJizz2BTC2dRFMMnN8sOi1IdYjVi/LlZ1lmerGqNig7rtYBvEaC6tAnT57A//gf/wMeP34Ml5eXsFgsYDweB1m5tbUFo9EIarUaPHz4EH7/938f3n//ffjOd74DzWYTOp1O4K3hcLiyaxFuGvx6LyrH6KJGa+EgjwOU5cNYLIfLCPo7NSbC+Zv6Vxpd65I1XIfzuq/iVDKLFqksqZ3Q95XSrJvulxUaLxfR91XBYzdweOJiXh0ei9lxHrXGsgbLRyl8TPGqmP2zbvhIwS/+TgpO8W8kpUHz0QzjVGWSChSGnFYKaxV5lmXiDkWvAr0pVBE8sr5PrV9Keqn9pPpg3zQajWBk4X2YUp6aosffGq1acEoLCkvf4Cqq8XgMeZ6HyePXXnsNtre3lwQ0DchSmui7VaOIovAoRSvgR8vm6TSFcRscJi7bvEaF1l6Wo88nBGJl8bQ0+EDvLWw0GlCv14NDwnd38D7R2p3eI4j8izyr6Q6trlI67bcEnifu5rSOG+ZygQYhaf/yXYCSk6PVoSrdYAUgU+Ut/0aSa0UCqZ5ytd8x3k4txxv4sp57yuGOukeP8jFl9UXMztJ0naZXpXrQf71ebykAyxcJUVmi5WnxDD1aOUYXD5pKejzmREllWDpeygfgumOuyeQYL1B5orXRfD6HXq8XjhOWytZsEosH8bSY0WgE5+fnYbFOlmVhl0Wz2YRutwutVgsePHhw7U5ZnEyfTCbqIpey8OqJWB5UbqO+w2OneR9JAXrLQbag+UDYb/1+P9zZSR16KygoyTXuh9Fxz59LdMfq57HtYtD8ylSU/X5d5Ul9peVXpc9F86P/DwYD6Pf7MBqNIM9z2NragsvLSwB4cVwx1SEav+B4ksrTYgJe31jSY1rd6DfWb+077T0fN97vabqifFk1P0tjn7/nOsSyQWI0Sn0h7WrV8rbKlb619Ls2/mLgepN+W8Q+SylLylsbD+uQfTFUoZ8lWGNIe+ehwWMnxvi/CE9Z9HjBrwzLsgxGoxE8evQI9vb24O7du/D666/D9vY2AEBYHI0yvtvtQrfbhZOTk/Ce+uzr0qXr5FvN5qC2Fsr6FLlmvZPGdOpvSQZZOtbbpjyt5SN48i0z/r12lTbeqipboyXVNpOuB5BsoVi+qxofMbtJe1e1bOeItUuqzNDsNy+K+jop36X4jRoPlbEJrHS37s7Y22DolIGHgbmRZwlmDZ4BfRNtyetG70HU7lXDIA3NIwW3gWdSncgygjb2reS08/eW0LeMhLOzs6UJE+rwVbF7VDLeNEjB5Hq9vrRziAdze73eksK+c+cOfPOb34Tvfve7wXhut9tQq9VC0PC2gx9jCLBaRW4FF28r8jwXd4JpAf4yoEebYjs9ePAAtra2QnAfg+9bW1swnU6XjqHFI+swkI2LAaTde6PRKNwdSftFM0QleNPysVnGcORlTKdTaDabsLe3B7PZDC4uLsK7TqcD7XYber2eeFzvOuS/1K7U+MTnMXnBv9NAJ55XMca0YIcUGPTgJnUw7YMsy67tWrSODeT50P8tpw3/5Xm+tCudl2H1Ierp2Wy2JJuw/bvdLgDA0t3LtD4Y1FksFuHeUQAIx/DjjvRYfWm5WA7Sg5O+PB9+hCLWxWObIO0S+O5Cmt90Ol3qI28Am/ZVnl8tzMLjQAGu5G29Xg+yBe2c4XAY5PBwOAxt7R2PKfLx+Pg4HE999+5d+Mf/+B9Du92Gt99+O9x/i7y2v78Pm5ub8NFHH8FkMgn6xKp/VTIkZZzXajVotVowHo9hPB7Dr/zKr8Dbb78NX//61+HJkyewubkJWZbBYDAAAAh6DI/sjgVviwDzHY1GMBwOg57B+3wtWcFPmcEFT+jXaPTS8eRBSt1S+rZoIP22weIBHjzV3nnL0IC+j5Qn9jnyy9HREfR6PTg9PYXxeAynp6fQ7/fDyQaTySTkI9kPSAsu3Gi1WlCr1ZYWkGpB5ZTAplYPTltqfIHHBPi7qlAmCFj1OCgTxOS0aKcvaHZas9mEVqsVZA4uSMbTIvhONcveW0Vg1QvtegheDspgixb6PV2Mtg6+XAeq4mGP3FuXv7XKPiiaf61Wg06nE9rg448/hk8//RSOj4/hy1/+ckjXaDTC2JPKlv5eJW46RopjGGMjGNdDfsL2on3i6R8r5sr1qacNpPhQzFcvC86LqypL0++xb6rYtU37NrbAVwMu6kefDIGbt/A+Z0+Z64TXJ76NWJUMlk7stCDFG738HLMRtEXAkmwpOx9gxVhdk7FFOuRlZkALMaHpfSalWbVDsC4DM2Y4S8/50ZwvC7S+TTFaeYA/Jb+yQXMroCnxJL3DTDJcrL6XvvHQagU1ufGFvMQnw5D2i4uLYFzMZjOYTCZwcXEBx8fHIR1+X5QXvUZfGQOsKifSCiYVyW8V4MEKCTxwRL/F93TyAN+V0W0pxj0uSqHHYWfZ1WIDHqilExye/PnOCq0dNCdQ0z3SN7H2ou8lOcFpw8DidDqFra0tePPNN2E8HsPTp0/DhAi2E6XJ0wexNoy9j30rPYvRJbVhTKalwlNvz7caXbG8eR+tA5Z88AalpTzzPA/6AIPfPK/U8SqVQb+nsoynxTz4RAAGWvndO0V0kfU3Hb9SW2rvtIBDim6X0mjfSsCy7ty5Azs7OzAYDGA8Hocdpvx4eZyMzbIsTLZ5yomNE3qMKdor8/k8BO4ajQbs7OxAu92GdrsNnU4nTMwjnbhgh/ONVGduy2j9ptXDShN7Tndw7+7uwsOHD8OdapKDnWVZ2DVStd9Jy+L3mlsT2rGypON/vfLAKtPqVyldVaD08JMqViHTU+wppIHbe5pto70r0s/SM8uGRPrwqhR6mhBO5KMs59/RvCV9I9m7Wr2lOkvtorWNVT5/zunwPF8HLB8Xn3Hd5uVHKc8UHVzUBtV0KPWB0SaQFouUGc+xMevNNyb7pLQSb0t2h2Y/ac94nSy5YtG+Tmi0VpkvR5l6cx+Vl0fTpYyLFLusLKicwCsjnj59Cp1OBzqdztKJV61WC6bTKfR6PRgMBtfinNx2uA08tWpY+oLLJEuuevOPpaPQ5A61MyjdHhtZoydl7K6aP2I+f5WQ6qvpE4sfaBoA/aoh6TuPv8PTaTRLtr8Fy/5Iae+qeSI1P41vV8EznvYtI0e9/afxURW2gXtn7E+DkpDgMRYtYRozAFORYvzGHJB1gwZa8PdN0bJqUMGaOnY0Bz+lvawVHDF+9RpAeX591ZRHoWjlxwx0nofUTpzHKEajEXz3u9+FVqu1RCceH7MKWEbHbZKpqxiLVTmIHkOVHuWpOZDUAYodP80DYhJiuoEuTsAd2W+++Sa0222xvemKbVwB6KHFCqRRWnnwDr/FoA0dy54AGjcg+U513PFB88BjNjFA+fbbb8POzg4AALz22mvw7//9v4eTkxP4v//3/8Lf/u3fwv/+3//b7TSlplkFv3uCQTG5VhUtReonBbW85VVRvqccKRDHaYg59Qi+A4/KCdQlzWYTms0m9Pv9pZXunl2SsaCWVB9c6YtlSfThkZd4hO3Dhw8hz3N4/PgxACwvmpJoonTRHU9IJ99VjHTiXauTyeTaoiX+jeWoSSehcFnC7Sf+rWVba/ILAOCf/bN/Bv/m3/wb+D//5//Au+++C3/2Z38Gz549C3IId2rm+YtdREX1I8pzgBe7ifF4YgAIi3Nw96v0/e7uLvziL/4iPHr0CD7++GPY3d29toBHsyfo7mnJXovRXtYxp+129+5deOutt6DT6QAALC0oQD7sdrtw584dOD8/h16vF/Kg5cRo8Pg6eHIK3yXFda1UtsRblt6NBQksmj26fZXASWpsH76rrkq6YjqD8kq9Xg+7//kClNR8PeB9TdtB4huAF3ciX15eBv7G9/TEKEq79IyffIN2FT6Tdv946svbRbJXqH3I68fz8pQHIMt+D1ZhU0j2bCwdgB5Ip3e5I59KeUk7fKS8LRo4KH8BvFjoiLY25i3tTIr5OJINIulhyeaS3lu2ibUwP2ZfWz4Zl6WcD/mRsdI3twWrsq9XCcsmk9r5NrU3pQ9PoVksFtBut2FrawsePXoEz58/h1/+5V+Gg4MDAIBgn3/66afwv/7X/wIAgM3NTQAAGA6HYXHnbarnuiDxL9ehVrtIcYnYN0Xamcor7h9JOkGrV9V9XMX453LcSseRUrY3rWSPSPaQJj/o9Yaz2ezarvSYfuf15O2i6QHNFvBiFePf8r3XjbL8kwIt9pBad23MenxLD8QTYmMfpVYiRYB6UbZhiyDFucC/tfp5gkYWw8acJutbLTh12wyA20YPgG/iOyaAPeOB58edee0YxJgxo9VD4iWangZYOW24wjYmrDz9KY0B6rzicSZ4PBctw3IeaQAZ+2dnZwe63W5YoQ5wFezu9XowHA6XjkO27tLT6i05nJYjlyrUV6lcyxiPsSDjOiDxKaeJ0omTnTyNtywLnA+QB5Dv6FEq4/FYPV4Y4LphUcSgoHRI72mAk/4dg0Rzs9mELMtgOp1ea1+NF1qtFuzs7MCbb74Jr7zySjja8u7du2E3GB1HFh0p76x6SbB0LpeVEr1awEp7zvO26KT9QPuSpuUyP2ZvSPTdBmhykPM6f+bJU9Pr6BRq9/V5eEbjn9j40N612+1wtG6e57CzsyMGEyUgj8SO6aN8jMe4bm9vw2g0CkcfSnXiv2P6ROo7KT8Nnras1WrhLtb9/X3Y3d2FbrcbFsYAvDharkjwRJKH2hjkO2PRzsvzHIbDIVxeXsLp6Sl0u90QLGk0GsEuozs6rSMsNVqKwPJhtPdoL6IuwJNIcIKYO6SLxQKazSbs7++HNHg0vRYYoWVZ9nCs/poc9nwr8T3noSIyyKPXyvpzll5Cu4W+s/SKRDPXibGx7fGj6ZiQFiVobaL5RzFI+fETErjO0cqT/CqetqhNQNNr47WMz1D0+6LfVS3DYvRYNp43Hfc/kU+s63a0PvOMF812NMHwvwABAABJREFUoZOv+IyXU2QMpH4n5SPZqLwMCTE72CpTyt+Sz3Q8W/ZkER+jCtw2u3wV8MQWuI1ZVsbRvD3vkD/wqpBnz54t7YAFADg6OgpXbGB8C+l8Ga7BKgKPvNB0oDdfK+9Vw9KzFk0p9Fo+bJXjv6o29IzXFJo8/jPaqNK1JhY9Hr9bssX5MysO44HHL44hJq+8fngVSI0def0i6VlsnHnlieRbenw4b1tq8Q2OlR1TzImhTpKEdSulVCG6SsSElyeQQAfcTZ6PHsNNtbEXqzCuPYJfAgZcLy8vl4IOnv4tWibyD99Zg/nRXR5WsChWhvRNll3tcMT39XodWq0WDIfDpXvTLFlBj/vDtPV6HX7u534Out3uUtnHx8fwzjvvQKPRgFarFZ7jcWKr4AMrEEPTWaAOwLrH021xAvlEJQ3s8nbhK6CtHbE0XQq0dkEjEY+nOz4+Dg4Z3hcGAEvBGuxfXIGLu35TgspSgBLHAz/CW1rooOlr6Rnmt729Dc1mE05PT0O9tEApotPpwP379+Hf/bt/B51OB370ox/BbDaDN954A77//e+H/HGHjocez7sy4AaaFOiyQO/8lED70LOTrUhw3jIKtcC7VJ703bogGcq0HYoEEGl/cpuK7mThwXUAuPYOQW0yHpjX6kPzk3Dv3j3Y3d2F4XAI4/EYXn31VZjP5/Dee+8BwJU80fQkPaYf6dP6E2XPdDqFRqMBb7zxBpycnMD5+bmYHvMDgGuTw1K70LQ0Hc3L45Rr3wJAmLi5d+8efPnLX4aHDx9eoz3LMuh0OpDnedjJFvNZOA34Dd9tKQXK+THFmP758+cwHo/hhz/8Iezv78Nv/uZvXisP71XFb7WAgFRHLHcdPsJisYDRaBQWv52fn8PTp09hY2MDut0u9Pt9WCwWQffN53PY3t6GL33pS3B5eQm9Xg9++MMfwvHxcVjoE5NNlk0qfSPxGepJS99qPpukG4rAKreobZ8C7BPc4YfP+N1ulg7h41Zb5JkK5N9Op2Pe1y39TinD0n9UPmhyjcof/B9PFZDyoml5mfQZ8qY1wachRW/H+jilTNpOHjv2Jvwaz1iX9A/lBeRH1Gd08bKkx+jC0FQauMzCZ4vFYmlBJJZB03D/qOyY5LRxmul7TY5LkHjQa+NqdOG3sXtmafvygCrNx8vPN+k7V1F+VfR79HURIF9Zvk2V4H70YrGAb33rW8HeQdRqNWi322G3XrPZVE9v+6yC97N03QuPKZYZ51y+lOEHS2em2qEanTcJLvslXZXiq5bRJVwux2ycPM+XFjpI/qRFN4Wm2y1fqUiMQcOq7Hqub1fNc159qNm3iHXoyyyzF8pp/gW3S7S+o/ZOrD5LGiG1cYoMutQ8VtEhkoElGX0aXVqgQ4O3jTyD3nIGypS9DsT4C+DmJ3uKls95yXJk+TucdERgsE4TEprDXqSvKV9ZfGQFRCk8NEgKDBUpBm1wJwjdNaLlJQU7aXAjyzI4PDy8FkA+Pz8X+6pKHkztE48spEcP4nG7WvBQ40sraJsa3Fqn40MXJXgNIdouHlqrqI8UdFwsFnBxcbE0QYuTo/TuWFo/60hOWlaZoKNGrwTNMKf8hPdXYtCRBzUkPTedTqHdbsPOzg588skn8Nd//dfw4x//eIm22wh0qiW+5AFICZ72ttLztvfIjyJ9rCFVf6/K4QC46guchESnjvK1ZihTujhwFyIGN7U+jclJ5BNcYCGl0YBlzmYz2NzchG63u7RoaWNjA+7fvw+LxQK2t7dhMpmYC3WsY4SltFmWhftL6/V6WLxEj1PHIDDN19JF+H+Mv/m3Fui3ko3UaDTgzp07sLu7C1tbW7C/vw/37t1bOt7K0osxGul7TzAGbRXc3ZxlGXzyySdweHgYrk745JNP4Pj4GAaDQQjyjUYjuLi4uHYPoNTe3B6S0sZ8iFRIgZp6vQ6ffvopLBYLOD4+DnXhZWLAkvJVGTqos4086pVtWnvyMnh63p6xto0FINal+2jZuNvg/v37AADhOODRaHTtG48/zK9esIDtxWUtDyjhXc/S9zF6YuD+kKYnYvERiYf4KQsxe8Hy/auC1mYpcQWPr+D5ft0BOQtWP1jtv729DbVaDWaz2TUZT/Pgf8doifnCFFguXcwZs9dSxk6svzz9H9NLFi1a32hjKFXuW7GbIvLkJlE2rlX0G4+tJJVD+8vSibyvqNz2+lapMSv6Gxf/Yx4Yu0JQGwbtILTlP6u7YjliuhPfc/9K+kaCRx5qPGnJrlSfg34ryVmNJ4vwYYocKmMnpIxl6Zuy6T3xDG+6FN8yRVdrsqgoNPlVRod4fRFvPjFYutNK48nH46NL0MYfyh3t5DNebgo0m0vyg6KTsUWQapR7DcAq6JM6UqIhha5YWUXT00EutSkPLNykI2+hCud43fDSJ6XzGFm0TWq1WrivDOBF4IOnw/IsB8rqb/6OT/ZaQi52TJwXGo/i5CsKKrxXjH8TM7T5KmOk+yc/+YnLMbAUqxV08gRrYvCmrdfr0Ol0wkTBcDi8drcfp1dTClp/VKkEi4KWh5Py2rG+3MjQnPIqaPIoaakNF4sFnJychN3a1Enb2NgI/Yl9SRcoUL5H2S/RpkHSJZzGIu0kGXetVgs2NjbCxBOdUMYxSb9ZLBbQ7/eh1WrBvXv34Pvf/z78p//0n64d97YOXZZiBGdZFnZs0XuEpDYpyouWw1G2PayAR2pw5DYAJwkxSE8nZRGWY0XbE3mWBlL5HZc8H6t9cMKP7oqi41+igQZ4cNFNs9mEvb29pQnEWq0GX/jCFwAAYG9vD3q9Xth1KMF7xC0AhEVh3W4Xut1uuEN3c3Mz3HtlHRGltYfHKUR5EbN5LGBf5Xkejj/f39+Hvb09ePDgAQwGA2i32668vOVx+qwgzHw+DxNcWZbBO++8E3htNpvBO++8A/1+Hy4vL8OJH/1+H0ajUXRnD8ALR9PqH0qzNe5TwO3bWq0G7777LvzgBz9YuquV8+B0OoXLy8slnc/z47+tQFuWZdcmIzyLEaw+4+1l8bLFB7G25bJmHXIXeWUymYSd8LVaDS4vL+Hs7AwuLy/D4jFvfgAQrhpBO78IsB1wwQ1doEDLuk3g/buxsQHNZnPJTvD47ZI8lfgi5q+k0utJ65XR3I7l7zRbnn5bBWL5xOjQZBJNs7e3B+12GwaDAYzHYzg+PgYAuCbTYj6VVm+UCxr/AEBYQNZoNMKR75w/PDpYotWruzW7V2s7Lb2XlzW9JpUvyWPuG72MsasiqHJ8efKV4iyUv2JxHsvf99TF+tZKyzGbzZbuLO90OkuLv1BX4VULzWYTJpNJ+C3dPfpZRaxftPFWRbm8HE4T5wcu42Lyiqf1yIjb2O8xmxghxbY8eiEVnlMjNKTa29K3RXzPVDpXFZ+8aT1VJF5l2Qz4vggsPw0Xnlon1XnsJs0flxYWS99fOyvBagBP4FYzzAF8wR+p3Bh9UtqUPL2DVKtXzKC22s1qL/rOywApTLIK3EYFkwqJl1KEgBVsoJMKeFwbBouwjxuNRjDoFosFXF5eqrtOJGWTIowtJ1ByRItCalPqUEppNEfYumeTl4H/0+A1PqdHRNEV9qkKTQuUxOSl5PxJ+eD/eNwND4TRO+SyLIsegaO1s+WAat+uCnm+fEQrPTaaK2zNYOLOWdlAVeq3NB3uTuI04C4JrEetVjPHMOd53A2IeePYoEcxx4IiHl6Xgoo0z9lsFo4xpEcU0/5BuUh3Az99+jTsIODAyTV8L42nqvjRyls6Uokiy64mZXGVNK1rnudL31uyKs/1I3FoP2lyk/OWdPwc9gXPg76neXkCKdL32rdVgtbFmqzndNK7Nz0TAyiH+FF/iNh4jTm4WuBR4kka2Gm1WvDw4cOl+xO3trZgMpnAycnJUvtY7cHpx8lfjtlsBpeXlzAcDq/RZo0fSf7G5A7Xqdb4i4HKVbzvdjKZwPb2Njx48CDYBnSCpAzvxtrbeo78WKvVYDKZwHe+850wQTmZTAKtFn2pAb5YfbX3VoBqPp9Dq9UKu5C3t7fhyZMnYVJCQq1Wg16vBx988EFwXkejkSkTKY38eGjKN/Qdv4KiqP9ZRNZ5v/HotVS/xANubz58+BC2trZgsVjAxx9/DI8ePUoum6bDiXl6QoAEfsQ5z4/aOpJulfpJ42MqWyRbXntvQUpLA5aWbyPRxusl+SiSbZdCb+xdbEGcZL9I/chtC6w79Wv4XcBV2BKxPKT28o53lD9Id7PZhE6nEyZk8aQDPNGIl6XpQ8qDUvnSN/S0JOnqBN4nKTIktR+Qbk+cyrIhPL4bjgn6v5VeKld7ptGzLn84hjL2Ec1jFTa7x36Q5GERXvN8E7M3Pc+1dNPpNCw6on1CFw1R3ly1j3TbEBv3Zb6L8ROm0d7h35J/bOkFq2zJjy6j14r6P16fxCrHw7NVjFnpmYd+PK4YAEQfINVG1+xKD30Wnfy7qnVIql8SS7NKHbdO+WfVA20mCh6zoM8t30DyV+lcA4B8zWPSzljPANGcDUp4KjyGmAVLMFtlSfloTlQsDytwQWfNNSNfEiqSgX4blfttMViLwlLeUlrtPVfMtVoNtra2lnaO8dVy3ImRlLv0Hv8uamBb9Yh950lDHXtN0VoGgbc8zIPfOYnCkQbaaZ1TaLAUqlXHGB8hXbQOrVbrmvHIxz2l3VPubZQZGGyjyLIX90JIkwW0rWMGr9VnVcgrzj/aTlYMQHGZrvENT4er3uk7fmQuz0uTKbxsDh6AoDyKgR86zniAiU7G4u/j42Oo1WphdTEtu16vw+bmZuAFWo8qdQrnlVgghk+uIl9S2qgMp8EhTV9rdYvJeyktlw+UTrrjswpUaecVLZ/zmSX/OLzOCjfUuS6hz4rwp0Y/pxGdBpyAvXv3bli8lec5bG5uQq/Xg+l0CrVa7ZpskOinNMQcFtzpw3lNGjPcF5Dkc4y/Y5BsYuk3jkeciJ1Op7C5uQkHBwdhMVyVu+9jNo01bnCcTqfTcFQ7wNXiFJx0t/LB59aEllZ2DB5fLM9fLHTY2tqCe/fuwauvvgrD4RAuLi6WHFNaj1qtBsPhEPr9fpi0m8/nrl2Y6EdxuUv/8eNh8TtJ51kBjXXIN2ks8nGzKjqwb2q1Gty7dw/29/eh0+mEYJc21jXQ9HRXtGZbW/d90XI844B+F+NdqqeldJZPEIOnbG8bWjbaKngi5qdpz6x2kvKi43xdJ6FwSHazloaD1h19tWazee2oUgDZ/uLtzG03rXzJfsed6DG/NNWf9vrb3Efg9Fs+aMx3i+lOPlaK8mQsnWTbrNP2rQI3TS/lhbJylSO1bkXjIpR+PJGHLoincSZE0dMhPkd5xOJu1KfUbIFUv1KLQa0LRf3RlO+t+IO3/inxJw4tppGqswD08Yn8wSfXLFhtUFb+lvn+JuyrKhCju0iboOz25ivJBm7j0W+4DogeU5wCjbE8jgYKOsngXpVxoOWrGf3rYFRcPcXbRjtWj0I6asvrwKzSkf8c10EdBXpXRJ7nwVnD37Tvz8/PYTQahZX89ChfHmjmvz0GhwbtqM0qIDl/WZYtHc+KRyvN5/Nw5CQ9xtUbgJGAQXVPoF6ifVXBWloG7R8+pjc3N5f6P89zGA6HMJlMxAnnWHn0vTfg46lH1Xj11Vdhd3cXPv30UxgMBksBdGrsrIqeMhMsFPTIRJrO2hHBA9cUXMlrY9tjwPAdVVbQhAZ98Nl0OoXJZBLy4t/NZrOwk5dOjpydncF7770HFxcXUKvVwu4b/A4nT1Z1woMWYJbqj+NxZ2cHGo2GqHMxEMYnB2i9sT1ioDyd6lTwoBHd8ajZXakBiNsA1Ju1Wu3aEZBaehr4LBoE4sF7bfIEd4HjYgV6hLLH+aTHluORh8PhEBqNBoxGI2i1WvD2229f29HK7QmJfgTXOxR4jDjuvEVYx5VSfqILNdD+oeVxe4Y+s9rFA6RjPp/D6ekp/OhHP4IHDx7AF7/4RciybOkI6ouLi1BfrVxvUIKmw139KBNjgTiUq1mWQbfbDbICgwAecP7WAvux/FL1Hp9oG4/H0Gw24cGDB/Dee+/BaDSCer2u7r6muoPvjpPSUdsRxz8u4Dk7OwvHjNPTI6Q68rxXjVXYKdJYSqWJ1n0+n8OzZ88AAODtt98Ox3nH/Aee52KxCBNTw+EwHLeNefGyuVyV/Bxu81XRZym6z5JN1Han3+D4xZMNaD64c4ratR6atHgL/zbG45SWMm2r2UwaXfQ3XXSONpRFc1lo+praS5KfrX2Pei7Pc3j8+DEcHh7C1tYWZFkGr776KozHY7i8vAQACHYALQ/1YqvVCjIf7XvaNpK/o9mIUn/weBOvlwcxvvDwjcRfRX1s2o4pehLLq9fr0O12l8buYrGAyWSyZKfH/KMiNH+O6vzrKlG0b9BnTfWpPmu4Sf7WyvbKF+l0GW8//rT2dwqsNrI2I9Hvf9rb2RsPSn13m+GNha0Dkh9EZT+9O5yDn84E4JyMLSKUeGBFeh/LpwzDWE5KjIai5VrOjwTpnGrv0XkIbph77ke7DYwMkLYa/7bQzBGjS3OeEDSgyZ3P0WgEw+Ew5MO3tktBCo02LSDH25YHRTmqEuI04EIdUXw3m81gNpstHWdm1dFyKnlgWHqHiAl7rzFXJo3EMygr+IRrnueBf6g8KeJccxpWCctYxuc0ALG5uQm7u7vw5MmTQvdTlK1PVe1Bd4cirKAKvpPaS5L5Eq1FAnoe8PGIu/bouOY08Hd4tO/Tp09D0JwfZTmfz0NAJLVuZepH6eXPms0mtFotGI/HIXBD6ygtlqL8LO0M08rS6kSD7zHQfMtMalvBvqKBtDKQ9GmqbLAgBal52Vr98TeV39KEqZcO3CmIE0xZlsF4PIZWqwUnJyfQaDSWJjslSHWJ8Vye52Fscl6nddTKw50CeJQ3/k7pp7K8tVgsYDQaweHhIRwdHcHx8TG0Wq3QnnmehyPGLRqqgseRzrKrHfdUB3j9Jm7HeZzY1PQS6EQGAITj67vdbuBfzzUKfBxp6ZAnsb3wXjYuizU+teRrGXht51g9aVtYflAVMpjnvVgs4Pz8HDqdTnhPT/GJAY9tXSwW0G63YWtrC/I8DwtMNVud15M+08YA/UZr59S24XXkPpMl87R8aB0sv0vK32Ojp/j5mi9pPYvli98U2fmF/CXRVbU/YvVtLK32jvZpv9+HLMuWjmsHALi4uFBtN6x/o9EQZb7Ut14/U+JB+j4V3v6IlSPJP2tslbUXuHyh/EUXu1M7y4JHT1k0rgOa3IjJD29+ZVFENkt5UKwzNsDzyfP4LquqYdkGN4Uq6SnCG3ycW3zvkfuSb1cGMRm+Cr6kKBsjrEo3c7vHimuk6OJYGi9NHlRVdpF4llZ2FXoev6uCFyU+jMUeytLkTefpv9h3+C0unuNtj3EgrZzknbEWoZazmzIIblKplA3klRXQ3BlB0GexLfKrcmBuCi9jPbyCgu6UxeAbvtMc2iLBdEoP30knnV++aqDjSfk9yzJot9uQ5zn0ej31myLw7ELT6IzBEyDV8pScCF5mvV6H+/fvL620SV2wodUj1eCpWjHj3zgWms0mvPLKK0GZtVot6HQ68Pz5c/je974Ho9EIAK523OC9iZiXtJq+CFZRR8yXT8JpQUmaxsNbGJDm+UmTghqduBsrxVmhsgN3veB4wKNT6eTQbDYLR09i4HyxWMB//s//OSwqoHcjDgaDSvrUG7zKsuzagiasB/0e/2+1WjCdTuHo6OjaLmU68STtFJaOOy6L2DgvE7SwwO9rXAeo3MU+mkwm4aQAj560HFXqFGK9kK+53qLf8PFHeYreBe+ljY4jDtxh8+d//ucAcLWAix+TRusUK4vXg7bvbDaDx48fh/SxOiBt0+kU9vb24I033oAPPvgAnj17tjSu+EQE/R/tIGtXN6dfygd37Z+dncE3v/nNsOtlMpnA06dPzXpIZXkmL5De+/fvQ71eh8FgALPZbOmYZwt5noddhFZ6uoOL8ok0tpvNJmRZptJwW3yHWPmSzYWLdtrt9rVxi4t+tLZZRb2toJLnW88zHmSs4hh6nJgAAPj2t78Nu7u7MBqN4PT0FPb392E6nYa78TQZUK/XodPpwGg0gslkAl/96lfha1/7WuC9//Jf/gscHR0FOcqP9qITUJ4gaFUBQfybT9oUyV/StY1GA7a2tmA0GsFgMIBWqwWNRiPw7OnpKSwWizBOsR898obSjv+03ecxe5DKX3qtRKyuuJjcimNo4wFpXdURnrRsLgd4kIzre9qWHvsY04xGIxiNRnB+fr6UVroTF/saT4/pdrswGAzg/Px8qf0pX0q7d6V6a6B1qlrmU53E+5TyF7c3JFq8+pLbuZYcpeVOp1M4PT2FTqcD29vbS7YGnrpAeUALtN603vwc6bjpmHMVeNnpXweK2Hibm5tLm2X6/X7Ii8upVZ3cxVEFv6bapCmxKA8k+S+BnryUGmctCklnSeXGdK/mU38WxurLUo+bmNdotVqwWCyWTgBCPtne3g4nDHFEJ2OrYv51BeiqomGVnYiGtWYoaoEl7bdXIKwDkgBaNVY1eVIVJEVWr9fDrgfJIdKcOymvFCNDCjpr+XrKTmkzDx8j6MQQTcf5K9VJK9LH1IkvKsekoJIFTnOr1VqaqMdgAZ/80OiUgiDeCSqJttR0sfpSQ6Xb7QZDaHd3F/b29uDi4gKOj49DoAKPl4zxVBGsUmZJTnyZsmnAQ+KHouCTMViWRisGDvlCD0ojzZMe2ZnnORweHoY0uAMcwD6qsky9tPpodeSBTVwQRYNiGxsb0G63w8RPCk30f+ldDF45GMuTjsPUdqf1oGOzShtSowsn63CyP9Ux1vJFXkWZ49mFzuUSDWjzsWCB8invuyx7MZk5n8/h7OxsKY12VyzPP0Xe5HkeFsGg7YKQ+po+azQasL29HSZ5UK9r9MV41cvLmBYXSsxmMzg5OYGPPvoo3B+LdZK+pWUVaa8sy6DZbEKj0Vg65SMGyebi44vT5wFfeBfjQ6vOnvaYzWYwnU7DbkgvvVIdPTaTNGGC+WjHl5eVTzHaytgTVfqsKfyLehmPVcUrU/Bofr5jTJNP+Lvb7cK9e/eg2+2GxVaSrCjC26k60qOXvMEzXgdpPNHfOBmLJ2vg4rnd3V2o1+tBjnvGJaeV04H/vAu3eXl0sYz2DX9u+WSSrc51HNd1Vdp+FiRbN9XPkfgZ7Vd6z7u3b+miL40HNVlWROaU+TaWZ6wMiYc9NEnPvWVyWxdtR4AXbY8nk2nfaGWvO+6mwZIBHtlWxiepCql2F35DYfGbV75b+d12FGnDlwVYtzL1k+xF+g79A2lhdlmk0l12LKzyW69tLdlgMZ3rkfU8bYoNYdltUv4e2cBlTMyfLQJrbFcdg+H5SrR406bkuwqk6DdN12v11XQuXqUjQZyMTRXcmiCUnJMUI5d+Y5VdJo8yjnlRxul0OuKRsymrmWm70mMcbxN4/VY10G6jkcHrO51OQx9tbGzAvXv3lhwzfgwnjhNcGYSDO8UpKUqrB9pqaY9ypGXxncFW4EAL1Kyr/8sqtBRZhTsPJODxzf1+HwaDwdLR5lyOSIaBhapXpVt9JD1rNBrw4MGDMJnw8z//8/CLv/iLsLW1Bd/97ncB4Kr+H3744VJw9zbKPy+swDt9L4HeT0rBA0P02IwUA03Khz/XgnBYjrXCEOUB3oXcbDZhNpvBYDAI71cdLOe00HaSAjgAV7uA8e63er0ODx8+hK2tLXj11Vfh448/hh/96EdQq9Wureyk+eC7PH+xqr7I6trUfiwDrS3pDqeqnVWE1ofYzrhyGeWfxKsxp4jqNZx0uHPnDuzv78PR0VG4V1RCnr9YDIHtQXd7Z1kGo9HIxY+oAzAtBnJrtRrU6/Xw9+XlJeT51QkCAC+CvzygrTmaSKvliFKdgnR7+JQuDEEnBPsEF9VIE5SSnKI7lTx8xWUc6shutwvPnj2Dx48fh3d4woK1kKWI7PTSlvKNBOQtnODChWxSHniSBA0yewMLEjgvU5mGJwZ8/PHH0Gw24fT0NLwrG+RZJYrIU8ux52MpVpeUuvJxXlW+FnB3d0oAFH3UV199FRqNRpBXUlCc18UKlNLnVhtYdugq9BTPE08B2d/fh5/92Z+Fg4MDODg4gD//8z+Hd955B/7+3//7cPfuXXj+/DmcnZ2VKtvbLzgO6TcoPzY2NuDOnTsAAHB5eRk9jYvmiQtfsuxqJzAujrLGB8oLPCqW5ofpYuXG0tE+oXf25vmLe77osfAaqL9axtbh5WBMqN/vh9gA9wE1O9tbPh1j/LqEdchYyX8vm09Z0EVtiJ2dHeh2u+H3ZDIRTw6i/bGuNtQgjXvccd/v9916LWYjrxuroOO21G1d+CzXNzXOrNkWFKjvBoPB0jUbVCaMx+NwUtttQ6wdvDqD65tVnVpB5zIo+Ikpkm3I66ktPMH0MRq0fPgGOvTL6TOt7KptzM8itL5ZlX5N8W01v0GL0WNchf6O8YC6M9b60AomeARdDCmMmxKYod9IjZzS2R4H0frWChRa4IE2D32rRtUBhtuK1DpQIcJ5Dp1WLrzz/MUKTYlPJV6LBfdSgktcaPBgLuW9ImOF58shKUAP7WVoKasoq+RtTTbRyXq6K5YHycvQt+4xSnmIBjhqtRpsbW3BnTt34O7du7C1tQW7u7tw584dOD09XTpi8WWQKxqv0/rTMczr5AlO0nt0qzL8vHreSqPpSeRfDEDRycgid2rGYC1k4dBkBH1OV9Bj0GxjYwO2trag2+1Cp9MJMlw6BYMGj7mBX9T+4byUUuei7cx5OKaLUpHiMNLJNHp/NjeYrTamdWk0GtDpdEKfYpCc19Ma3wh6vF2q/aY5idye4PXT8ud9pDm3kgMhHZUo0cjBj4nl9Ei08LaNlaH1A8+TL16U5DD/luadonNw/OMkehVHmWG/4KJOlJk4sc3liQStXbX64ztuD9I0WlmDwQAODw9hPB4HeRnrS+u9ZquiDMD7lL02Km8LiT7vJEJsTPAx62mLWJ+sAlSOLhYLODs7g9FoBOPx2Fw0jHXCUwqQ34fDIZydncFisYBGowEHBwdwfn4O5+fnKj95kOqHx+SWJ0ATo4f3K81zOp1Cr9eD+/fvw/3792F/fx92d3eDjtnd3Q2LLbmNQP3IFHmUavdQfQrwYoGFx9eQ3sfGIS+3CH8XqWOWZbC1tQVZlgXdhAugeJ7eWJdGO5/8lfLE9HiNBx2D2Iba7v6icsCSdWVki2VfxfKP+TpF7ACtTK4r8XhBnHzBu+6tUy0022FdiLUL2rI0HT/+PKUOKfEWSsMq4NUVXhun6nJpes7LL0Ps4jbB02apbSrxP5XRuAADF4/SxdUIa+PETSHV7q2iHE3Pe+JHGlLtMymNV3fT55oPLfnDmk9sle+B5j9IbVJVvCVGSxGZ5fWXpOdFbMEq7Bfv9xZ/SnyFC1mlqyGT74zVCKqSCVcNrZGL3NG56jryDuXHQ2GaVa1Y8eCmjYrbbNigU5tlL3bJ4PE39OgLvCMoz3MYDocwGAzW3q/Wqh7+TrqTrgi89aPjrOiduZbDYQXONOG+irFP+QXbJsuuVrbi0dYSndzxp448v3MwNYBVBaQxKt27iHjllVfgn/yTfxKU1r179+DNN9+EDz/8EJ48eQJ5frVrHFfeS3LxNiAml6RFObH8aJ70GF98t7GxseQcUJ6SjBwtb/5MC4JbddRkM+7oRbmIxx96V3CnAgP0khFk/aZ1pc/p3bd4DGez2YTNzU3Y29uDV199FY6Pj+H8/BxardYSr/Od67SNLJkjBZjod3Q3Jj0yOjXALAWUtXJ5m/F7VFL7kubLdypq9aBHRtN2wCNxcTcq5uEZA7VaDXZ2duD111+HZrMJzWYTjo+Pl9LQky6s+mDaMsFzbFMsE/mY06I5xBpoX9Ggr9Q2ki7x1gEn5HBHJp1YkGjh/aTxUUqAJs+vjlluNpvQ6XRCntokMa8H18nWuMHyACAEdFN3qUi0ZFkWgj/379+HnZ0daDabMBwO4fvf/z7M5/NgI0jtQm0Lqx+loAMNRPH7sfEbekcrwNVJF6enp3B0dBTuxrTuSdcg8QrdBY5jAOUylQMUvN8sGafRURY88CfZlSlBJ0tmFsmXjrdGowHT6RS++93vhudaUJLSMp/PodfrBT548uQJNJtNePvtt6Hb7cKv/MqvwP7+Pnz9618PuxJ5PrFAjVdGSPWryl+k/MP7lZ8SMZ1O4fDwEJ4/fw4HBwfw8OFD+PKXvwz1eh22tragXq/Dl7/8ZXj+/Dl85zvfgTzPw5FmUr9qdaBjwuIFKT/6zeXlJdRqNeh0OsHGoX6sRIt1byYvU+oHHNP0/tiq7EGqL3Fy7Y033oB2uw2DwQAuLi7gJz/5SSgXj6qlC6MleyzGh1n2YscttcnoP5onXZBYq9WWdpFr49uyaSQbqkiQMxUpPgamp+NFkos0fRk6JOBJHWjLb21thfvdBoNB8DH5GEi1uaoGXZxNQeUQLjoAuNrliydqFZGF666r5R9Vkec6EPM5V43bHCP1YpX0a+2DsnhzczP4kzjWut0u5HkOx8fH0Ov1KqNF8/9uApYNQf2hMrDy4DFLLYbp5Y0y7SiVLbWBNz7moUWK+fA8UcZ/VlGVzF83aCwMbYRerwf9fj/Y+xRLv6yBRxELQmjptGfecmh5KUjJRzMMq6CD0sOdEimIY/2Nv4saVJ8l3ETdLT6W+pILz9lsthS4oIa0duRqqgMVc3wxn9iY5E66Nt494GMqVrZHXnjkjnes43MtmCEFXyz5UESBSDyDAVgaANXu1aXf0nfaUbaSYZNCt6cdJODRkdj+dBcGHg+D7zGAjrQ1m02o1+sib95WUDpp0ArrzxU3h2aYYd5aWTFarDxoOSkyhweotHxQh+F9nN6x5QHNq9PpAMD1wIUUXKO/PQFQDLLh/ZOLxWLpSFYpP6+88dYR4MUqTTziTlugkBLApvXV2ozyrSfPGLh+KRqM4d9wenk+NB0u8BiNRsEhl3bYemjy8hF3ODc3N2GxWFy7twzpk3SyJ3+NXi5/suz6TpwUntHuM+ew6JZkBq+rpce0cpC+lDu2eftJ+Uu2EZ7k0Ov1lnZeFQHNFxex7OzsBF3I6aHf5HkeFqXE+F/iDW2HOS2H2rG0naxJGg+sYCZ/Jx3TTO0ES1dabVAFrdIzj5+s0ch5MXbNRyqwTNzVbR03KwH1Ua/Xg0ePHsEHH3wA4/EY+v3+0gIS7yIPCxoNqXZQFeXSfuFyAXfZ4LhAuzfPc9jb2wtjFGC53WPl0zFt1Usa83QxEx3XaJd7eEfTtwAvdljH2ht5INXX9YLb1nRM0YU2njvXrTKk/On/0nNa1nw+D7YH1clUR3PEdG3qws+ykPSMRzZKkGi2xntqHXn/jEYjOD09DddLtdttqNVqoi1m0btKfxRPFtrZ2QlljkajcHQq6nt6jRHAcrxpFfSl2Obe7zSeLyq/V9kvtxE/bfUtAm7LUtAFm2ivcH+RvuP5eqH5OVXEQ4qCy3GuQyl9HB7bVsuDjnl+XDFPx+NOZdspZkNxe5teJyh9x2MOVdGn/b5pxGxuL6QYkLesqmhIgZe3JYjb21KYOVbIKoSHl/HKdkbMMZQGXGonawPT80wKEBbFbRvMtwFl+jPG93Q1eIqjUQSUHm0FTeo4TXWOvOXwoC/d5eABDxDGaLPojd1zVAVieeF7XJVOAyN8t6OUJw2wpBz/6q1jrF2t9zzIhKvQHz9+DK+88spS2na7Ddvb2yHojMdIYT6Il0GOcYOdB6CkoFaWLd8fFRvTPHhDn8eQ0u/W2PYEiHGBwWQyiZZZBBhM3NnZgTzPwwp3PFZYMuzp/xzSeMvzPKyov7i4gOl0Cs1mc+n+RM+kT6zsGPBYtU6nA+Px2BU4Khv0xDGMzmnq3Z4SJHmlBVE10LFEj3JFnRL7djabwXA4hNPTU2i1WtButwOP0iA1loHPueOa2g5ZloW7iO/evQuz2Uy8lwiDhJ6gH9UB/DnSyetPZRD9lu+2pnXEdNgu2Oax3VKcnlRoecTaZjabLR1pa+kOrQ15GmkM93o92NjYgNPTU8jzPKyw1+ribQc8UeXg4ADa7bbLRhqPx0tlaTYEBx3XAMvHc9H8cJEh5Q+ckMPfZSFNbEiBMU0vemzXInpTA6ePt48WvPGWren6KoD91263wwKVlDLwNJfj42N4+vQp7O3twYMHD6DX68FgMAj1bzabheyAMoH42JinaWlZMTkh9TfqHTw9A3e8InBH94MHD8KuzMViAa1WCyaTydKuPI0+iTaN36m8jvG6NNY1SAFC3t4aqB4pysce+Ulpwt30FBsbG1Cv14Nt6o3PaPRQuqgtItn5iNlsBpeXl0uyE9uFT5xb9HjoXIXPxK8d4e1gjR9OWwo4L8fKo2VSe+Hi4gJ6vR40Gg2o1+vBf3jy5Mm1K6RuCrPZDJrNJjx48CDQcnh4uGQvSj4A2mhlF0jdJMrySRHchj6/TXQUwW2lPWYT9vv94M83Gg3Y2toK7/gmCen0rVT+9OpMC6tqa5ovj0Fp7RiLAVv6wLI/PDZv0Ta0YkAIesJbzE5KXfxbhNYUPfc51oOYzY5YmoyNBTVSM+d5ewVDFcxi5SHRkSq0UgQKAlfEAoAaWJfyowGv1CCBty3XoSBvWhHHnOjYM09bpvRH1Y4SD2Dj91RQSwJZ4qdU/o4ZDzxIyQMGGmLH6VlyykqL6S1lrrWdRj+vo7d/PbRiWrobVkuHz7mzRVfgx/pX4pWiBmUsDU6wjkYjmE6ncHFxAZeXl9Dv92E8HsNgMIB+v7/0Hb2n47bd10HBg174zDMx7uVLnp6W5+GVWBkIKwjO62jRz8sp8s6TJ7ZzvV6H/f39cBTy6ekpPHr0aCk4JtHt0Qk4pgCuAh+ffvppmAgdj8fuY3tjclOjjcturBNfqUm/T+U3ThsN4OJzegdVkX6z+MjSWZqcRJoorRjExCMDAV5MMkljZDabQb/fD1cKjEYjcwKf0ovyVxrnHhuhVqvB66+/DpPJBA4PDwHgBa/h5DcHtxfpPXUxIL3S85i8oXWWngNcBTOePXsGo9EougtO09PS3Twx519qa5z00XY6a3XQfnPwAMV4PA7ta429WNBYwmKxgOfPn4drLWggSLIdU3bEUFrxuFLsN7x3F/vGyg/tFvpb0y00P4+9SfOU9BP+xnxxNzG+l4IjMX/Xqqc0DlLsdyvvWLlVgfcFvY9YS6sB747d2NiAZrMJn376KRwfH8N0OhXvn005ljbm13hojAWosG0leWDpnhjeeeedMGa3trbg+fPncHx8DPv7+0vjCoN93kUTlAZJ9he1yXD804CipjeRZ7AvpftSaVrNbizC0x7ZjPqT7k7e3t4W9YElS60yaB5S3ayJMG4D4fix7G8Nln+s8XUVsOxdiW6a3moXzzfUTvDYLtIzqucAIExw8jvPqzweMlWOZ1kWjj7vdDqwvb0NnU4H9vf3A62/8Au/ANvb20tlPHnyBL797W9XrjdSUJWO9eRdFQ1e2VumTVPHdNVYNU+sg9/K1kGSM5PJJNgw8/l8aZEDP4klxc+TyrX8Dc1esewe653ly1p2jiWjNZ3CfY/YOKWyldsaUhnaCSJWPTxppZh6LA2+l2SVFBPiNjfN37JNPYjZMbF8UnVSLD+uZyV+523g9fe98MZEvGm0/LQ8JpPJtUWArosfeeOkChn6vKwwruL7KhR5EdTr9XDHIQ5ezWjlTqk2iSKtSFllHcqgakW8LmPS67B4nPOYQ6CVbwWfrO9SeEFzrLV0qYgZv1IQiypayfn3KnaNnhRFh3LQa4jE6pvqqNL32pHDCH7HG00n3S0j1YX+TR1bi8+LBFLwWFW8x2Y6nYbJ2PPz83BXIy1LumesShSVLd7vNANP+w0g85fH4E5BSlBMGr9Zll3Tbdo3q+o/pIHy6/7+PnQ6nXB/66effhrGkXQUK4C+2pPKAToOR6MRPHr0KOwgopNmVv9ypwPL4PAYzfSuM80ATzGWLUeGyk+PE+RxvpCHuKyxFi9o5fAJYpyYx6MfuSzktuF8Pod+v7+0k8VzsgR1wiRHQepj7ozVajV47bXXYDgcwne/+92lnTSaHJbK4e0pwaKVt780JmJ0oGwfDAZh11Gex3coW/DaZBL4SnZPWdyx9jiA2Fa424/zl1QHyxGX6jmfz+Ho6AiGwyFkWbYkb6T0Re9irNVqsL29HfptOBxecyalusV4j6eX8vPYUZLNiH3M24QeQYo7PS3e18qU6C2rc7XyJKSWpdUvpuep/PP6CPQdyt1arQaPHz++xjd04RDVxxaNUl2yLDPHdZH2WpWN8t5778G3vvUt+I3f+A14++234eOPP4bJZBLuVMbyZ7OZqVtjbR+T+dI3EjY2NqDT6YSrGGh6rY28MlqyT1bV7lS/ot+xsbEB3W43LJqhiPl8NF/pN9e/1G60ZAiVSdw+LbpLuYhvht+WkWuaruQ8TP/3lse/5TYktQE1Wmjb0P/p+KO2dZZlS0esS/RIdK6Cp6fTKRwdHcGdO3fCZCzuum80GvBbv/Vb8Nprry3R8bd/+7fwrW99K0n/pyDF17DSafwqtaVHHqaOYc83ZdNX/T3HKmXpbUWR+mq+GGIymYSTaObzOQwGg/AOT9lCoLzg8beYz6DZoZSmImNLK4vnJ/2W4oyxsabZ0p64ipYfptcWDAPYMQhenvWc+vk8RqDRLZ3OhzxgxVOk/Hk+UplF4RkbKTK7Ctli2X+r0lEeeMpOtVMQ0glArsnYlEKrgCfQsSrwgVMlHbjSTjM86MoRKfjmwU0y77qxbkMJ4LrgKEtDVf1lKdciZWi8F3Oqi4LfCYB58UUI1r0NqeXTcqx2om3hCTwUoUX7tmg+MaMP4eVfD89XKXsODw/hL/7iL8LOWICrvr+8vLxWZpH6xFA0H+s7aWdy6njiQYNUeL7j/IfBKwkS/amGVJUOIx4Vg5P1X/ziF2FnZwcODg6g0WjAxsZGmJBFgznFSedyEY2qer1+zVHQZL3GrzwQzaHl12g0rslCXi8eZEoF54larQatViuUhZPPReAJYHFZzREbR2hf1et12N3dDcdC4qQSD3jS3bNaGdZYpMFXq448LwCAbrcLW1tboT13d3dhNBqFu0cBXuhFvvs1FtCU7BeNVyRbgi9ekMqQFk7xYIV0aoMWJOVBaGtHK6Wf/41pab5eucPrpO0wXUUwDfNFHsa2Oz09heFwCJubm+68uGyO0ZtlGTQaDdjd3YWvfOUr0O12YXd3F7773e/Ct7/9beh0OtBoNGA0GkX7RXuXKo8s+agFfaTxsWpoNqUVqCoKr+xN0bVZ9uLUEvRJUa9KctnKR5PZrVYLWq0W3LlzJyxiwtMI6LGAWZaFHaP07lEaPIvpTw/K9gPlLylwiAsN8zyHVqsFH3zwATx9+hQGgwHM53N49uzZ0rF3VOZjvlbQUuNzKZgrvZfy6/V64bc02e31fWI7ZD11rAq46PPJkydQr9eh2WzCYrGAg4ODsGsb+d+61kKiX4LW7il6RCpD2jEtyRceMJby1ni2TF/QslPiCDStZldTXqLtSduDnnzD9QOnEcuWTsrB4/e53ZXSDlWkoXRhoB9jiovFAra3t6Hb7cLJyQmMRiP4xje+AXt7e/Crv/qrsLm5ueTH8XahV43cJsTkQaq/+dOEsvHJn2ZIMls69hvlAV+ETn9rcserO9HnprKv6iNvy8goPl9hfRObNPWULdWf7zj15ONBbPGTVd8i/cP5IiU+lVJG0W95HqvIfx024G3D0mTsZ6nylpOoDR5pIHuYyttuaDBJz+k7eudWCj43RqpFkSCDFQiUvuffciGcMialQCsvx6KJB1A1WlcVgKRBWxwP1FmVHHZpfGpj36sgUuWGVE4VY7GqwBCAXfdYYDbVScTfRfliY2MDhsMhfPjhhzCdTkMAkAYDpXJvs/4qM47xmfa3NmbLIGX8SMYjdUBi8qJKuqkMAQDY39+Hvb092NzcDMFElBuegFdMXtLAvxT8520mveN/e8CDMvx4Ut7usfK9ZdHATavVCu/oaR+peUp0UXq1QLGWD/2bf1ur1aDdbge5UqvVrh2hSusZswct/oi1h8YjzWYTms1mmDButVowm83CsZaczzRZwe0JrS6pAWb6ndQPvO/4zm/NYUYZL/Ex/Ud3u/A6xPQbT2fJWSkfTc95ZYmWLsXhxvLw/ms8fp2no/lKvOYJctKxfvfuXdjf34eHDx/CkydPAOBq0QLea1lVEFcbe6nfYd20le0xXoyVRfOy0mk86ZX/qbzqkVlcN0jtBvBCr+GkVJX2VpZdTfQ3m81wJ229XofxeBwWHWDZKBvoRCzNJ8VXitXB0o9l64/HNuMJDScnJ/D8+fPw/vj4OCwYy7IXO/A8uyEpv0u84gmeYVr6N05M4uSPJWM99Fk0We1bZXwjz68msXBxZ5Zd3Vu8u7sLAFdXTuBubrqTu4j/bLWtlifPJyZbuW6T9NJN+Eexcan57TFfm+fL2zXPX0yYSjKYj3Gpneg3XL/y9FXyphf0Cifk50ajAdvb23B5eQmDwQA+/vhjODk5ga9+9avQ6XSCr9BoNALNdFKWX61RFlWOYctv0vjoc3wOCZqOj/ma/FQPmobLL+7LxGSWxbeSjaPpBsvmXxW8cQXPGNZkRkx/VbUYj9Mm2V6aLyilk77R6lJUR3v8EOt31XY95unV/dr7VFpiMYuqUeWYcu+M9aIscdr32oCoioaiTrW3kzGIZG1J155LTHkThvVnFVW2JVXKFk/x4xGrKrtqSIGPIvRgMIWD7nbZ2NiA/f39pXuV6ZFY/X5f3N4vGSn06DON7ljQSoLXMKgCKQEmCZTWmHMrvdPSSHnFHCArKIl9nOc5dDodePPNN8NRS+fn5/D06dOwq3GxWECz2YyOr9uCmDyQAmcAqzWcvShKAw9yr1NXcWdnMpmE++7Oz8/hW9/6FoxGo7Dz0QowW0EJlFvcLsFdFNJOCj5OOK1F2xsnpzqdDgAAnJyciBMQlv3iGbvz+Rza7Ta8+uqrsLW1Bfv7+/CTn/wEPvnkkxDkKeIMpdhQCL7qWMqD3+WD6fM8h36/DxcXF+LRyLSsLFs+1lR6LznDNJ3XGcb8p9MpDAYDeO+992A+n0Ov14PpdKruEJHokoK++I4u9ovJeE6zFKyzdItEo0QTL9OiKzZWtO/5OMc0/OjBPH+x83s2m8F0OlXLknivSDBQo1kLNgJcHYs+HA7DferSrjW6mM07zjjvLhYLGA6H8OjRI2i1WnBwcABf+MIX4Ctf+Qo8f/4cTk9PE2p6HdoOVik4nzIpxesC8GIyjL/X0nv9Qq+tdFNAm5i3Mf2n8Qge4zoajWA0GhUK7mGbt1qtMPFK9XOv14PNzc0wGUbzxkmxRqMR7vHm8OqdFJqLBIOksvjYxUkUnHzGiRFaHt2B5wHnea53UoJvSAs/DUVaBGNBqz8f1zTQHDsZZBUBPNTx8/kcnj9/vjRG8J7Aer0eFpxou0elcSFdQaHRTfPi9fDu+qH5pdjfZX3NGKhPn+fLp8BptJSdFJSOO5d2vfJj7D27aSWsW9ZjeY1GAyaTCTx+/BhGo1GIk3C6O50OfOUrX4FOpwO9Xi/wyN/8zd/ABx98EPgcrwuqCtKO+FR/x8vLRWwvK6/P8dmGpC8k/wX/9sQEMF8PNP9I82cBIPij0uRj0fgspdmyZYuMCcln0+xsK/917dhHG00C1V0UUqyBy6IUH0aiKRaj0Z7HYr0xe75MbOpz+OG+M9aDoswS+16aHPAEXKR8yjpYqZAcI/q/RiP9nubDn8egOVo30QbrhLfMsnRZTq70TFI+MZ7wlhcTql5D1TJOpHKkPK3AogTqWOCxZDy4OBqNokqbKx9N2VShXCzlRctP+ZYixUHWZKEmT1LB89D610rHHTLqIOPvjY2NMPE6mUxgOBzCYDCARqOxZIQib3j0irdesXRVBOYA5PFTtq+L0hTrR657Y/ItJWjhkZ0xxPLAHZDT6RRGoxEcHx+HAIxmWGt8ytNg4AZgeXLQkoe0zbk+9/CB1v60fHpkcCqveORrs9mEbrcLd+7cgWfPnl2jyfo2ZuPF8kgFbW8M6uf5VSB8MpmEI55pek5HLFAc07seUJ7L86sV2JeXl0v3D0tBAo0eTTdrgQYJRepDdU5KH3JZaOmRMu0s8TftY5o3PwLaEwhMoU8aD1z2WMDANk4W0yNlNT6O0c7ri79xQnY2m0Gz2YROpwNbW1tweHgI0+k0lF0Emj6UeJjyQszO0nQYv9/Jw6uabE7h81g9Mc0qAh+U/pT8aQCJLlzh7y2g7MS/qe7FBco4MWlNxmn3b3E+0cbhqgNKWnmaDM7zPLQr5UOqzz11kewIfC7ZG6ntUEa/UZ0Wy5//rclqb14pwHylu0C9C0AseeT1kTFtSp15+3L5YuVP/69S9nAdotkEZf1Ribes8ablpcUMOD9aesZKUxQWL1CZjouM+v1+uDIly7JgP47HY5hOp9But+HOnTvw1ltvhZMGfvjDHwZZVKvVkif+LaBPT3UAr18KuH2p6c6yNrnlw1A6ypRxWxCjvyg/Vz0WVlVeme84UmyjWExFiw+UadeYzayltZ4VSVMVvPZnWXhiMlK/SJuuvO3K02v6WaLNU2cp5lK0z638te9T6ZZkvhcpNNwUCu+MXYWgXYdyq5LmIgxP4RHC3u9SkBokK9tmN8HwVRgQVRvVAKBOIt2UQbeOcjXnCEA+3rJWq0G324XFYhF2ewHA0opN6jDhXVL43HPGv0WTR+BL31flvKBjJNGmlU9hXT7vBW1P7Z5rKYiS4gjzwB4ezfnOO++EZzhe0Nm8KeXpDdbyZ9SIvk2KH0A3hmhfNZvNpbuEcGd6ykkVqwRvd76j5PDwMOwsxHvoMAjhGeNavzWbzaXJGnpUmDZ2ve3jkSVchs7n87BjyBMc4gEnLNMyWpEHzs/Pwz289+7dg/Pzczg/P4fxeBx4JRY85HRmWRYWYWxsbETvoKUyLmZjTadTaLVacP/+fVU3SPf9YJ2994NZtHhsWx5o6/V64XQIpENrO54/7vy2nCsp2B2Dd9zQv1Fux2SGFGTENoktvtHy8ID2MV3oQ69JSIG3fbwOPqeV7/jBRUqYPlXPVG3vprY9fiPl4WkrLqO53uV8xydjLTq0Z2VBd9jxAFtMFqfCYytq6dDuGo1GMJvNluSuB7xO0+k0HL9Oaciyq53pFxcXMJvNwoLMPM+DXmk2m0v+AqflNtlX3vaRdupJkHQqr7ckm1P8Eq5TtCtiaBrtWwprl6Ekeyjv0zGi0Vym33Ec4gTW5uYmjMdjGAwGS+m8Y1J7HwuCF9UZfJGWVA5vI6wHbdtVjR1sWyxTOr2BgvJHyl19XH5TGcHrz+uKu5roojx6Yhftd63vrH4v07YxH43aV1mWQb/fh9FoBHt7e9But+Ho6AiyLINvf/vbcHx8DHfv3oWNjQ34yle+EhY60zvnsyyDbrcb/ImiOojWGyd58bl0ulmRvHn/r9P/vE265qYQ4+2XKc7M7W3vQsyYXLfKs2SS9Z12VHIMfIxobe61R2JIiQVqkGJqMdqK7DylQL8P86F6gftbeBIaLVuqJ33m9TE88TkPJB7WdP46ZWgqPusyd2kyVhqc3FGkz+l39H8JlgHOmfcmhXLZMjwCLgZNwJcZKLG+iQURre+qUKSrhofGmFOSEqhZhVDzKrNV94WkECWl6eEprpzwuEuqCHFnGw3IWgqXt1NMgUvBbA8fWGOzaECUB+Ws8r0KvEga61uL/8o6RZKxyQOGRej3jp2y+dN8tPK0Zx6DXysvlocHUiCEHzGlBdUsWjWUMco9+WZZFnaNnZ+fh+OKiwbUeEDOukukrDzwggZN6TGC9L3VXzSdx37L8+W7vOv1OrTbbbi8vITFYnHtaMNYfhot2niy7NCikII7UhpaHpfTVmBQghXgpjxkHYGsfcedrlR+t+QN5W2tPP4dTtBLwQAJNG2e52FiZjabXbuHyVsPHlixnHz8jZMItI6W7C4y5mN2Bpc1XL5w20WyZTxlx2jF47L7/T4Mh0NYLBZh8URZWUfrYvGHJ/DH20cat1r+ZZESUMP/q+ARnibW/5qMsPxWOg48fOWNBfBvpFMAUAbiJG6V/mZZG5rbBPS9h79itoaXLs3uiH0n5YPptdM1irR9Cl1S3a12qgqoqyRZa9kfRWInqWn5GI3FXbhOkMYu1xdFwGng7SS116rkrqXfLZT1Vy2aiuRXNHYA8GLhA179g/7P8+fPIcsy+OEPfxgmE9rtNrTb7aWJ59lsFuy1GI0e/pN+S7xp5RHzM2keVp5l+tlre3jhaUPP9+tAil8Uy6eIrCzbVkWQYpul2JRaWi5Di/KqlqdEm9Z33nReOig9HjvAU16KnxODVk4Rv06SS5xOL71V6BYPH8fa0fILvM+1fKTvuX74LMBTj6XJ2DJGZcqA+Kw0sARrYBfBOhiyaP6awX0bEaMRJwERdLelN49Y+V6lTdv1JtrWcux5Ovp3TKkDXK8TBj3x7263C61Wa+mbs7MzePbsWUiHu9KkPCUayhg36wbSz3djpdRDuwswplQtx5o+twJiRfiV7/Rpt9vXaNN251aNqsebxZcerEOvSt81m01oNBqhb3AxBO6OwWMpY/dH3hSQZyeTCYzHYzg5OQmyBumnaRHcmPYaonmeLx0pixOT2j2fGs3Wc0sf0QlSKjuyLFvaHWAZ3NLECpbLn+ORaBsbG7C7uwunp6fRnTRWXbFvkA7JgaEyQrrrVaMd79bBI9za7bY4yUm/wbytRT+pwRep/7Q+pXW1Jrgl3Ye8SOlPkTdSQBX/pquAUTbQ4B13knFHG+aLckSzDfipDvP5HO7duwedTgcePXoEs9kMOp1OyEvKg9aFv8O+pUfxYVvhb8wD7wik9ZICFfR5EUdZkzF0TPB3Wp21figSuKALcfr9Prz77rtQr9fhK1/5CozHY9jd3YVGo3GtjM86pP5ICVho6Xg+sfaM2d+WDE0J0kjlptihkl6h91Yj0L5A3sXycZzj/e6anF8HeP/gb+1uZi0Ap8mpFDki+VFUX8SuKuBlUflHZRo/as/Dl5ZMs+oo2cvcJlsFJDnLF7dJdee6RALVEVzH0Hyk7zi4XUJ1qaSbaPn0H7elivrIls1KT0nBf/TIWo3eMkB6+D2wsfxpHEKSwXwsePqvCFLy4f1J7y08PT1dau/vfOc7kGUZfP3rXw/f//Zv/zb883/+z8Pvy8tLqNVqsLu76/JTPPpDGjN4HD3A9bHhBeVf2serkA+rzLNo3jdtaxWRyWXrWmWdi9prkj/IT9qS/LGqQMeJda+p1lZc1ms2gIcORBGZ5c1TalMpNkr/jp2+kAorVgDw4u5eLB/lLqXJslnL7uS1oLU1tc0pPPGCVdraKf4Px7p8gFWh8DHFHFpDeBo01oge56YIYkEODx1WfrcBLzuDrhpUidK2kgSwV4HHxoKnT1IVnAeS0x9LJ5UTczw9NPLAJk7CojLlRzKm3Dfiea6NfS1oUmQcWcaFBSmgkxLY423LadBo5HnQ76T20YIqWpDFChbQZ0WPVvbQkmp0WuV4x34RvbBOuY11oTvBGo0GdLvdYGjSu1b5zgHMg+ZF86b/p9arSNvRsjC42263l4IWNOiL4LTFJuL4TtCNjQ1ot9vQbDbDbtHBYHAtKGUFIYvUW5MztO1pXa0+0Jw1fJdlVxPcuFiJBgel45m18aCNHcqH9DmWje3NF0t5xiIG8wHg2gQcp4/SyYOXWnlSPb1peFCqqJ1ryWTtXYxuy7mXvpH6l9ZNu/+Wlodl0vslO50O1Ot1cTEQHwNa+ZoOlNrd0+fSeJPy1+rqyZ+PXa1/eHtov720YvmUN8/Pz+Gdd96By8vLcDR5Gb+H04VlcsRsCovvPYERqSyvHZ8a2KN0S3dKxeCxwWg5fOx75QDmj0el06CjxYcWvRqk8anZi8jrtO/L+t5F7BJuS1o0eNq9jG3E5UQKtL7UyqoSnrFu6faydFllUV+EjqNU31ySUx4ZLNkhnn7WfC2eh2WnS5MLFvjYBAD1+EbJFtX0Tmr5vD7SM01+c1mp0aNhVWPEW5Zki3N5OhqNwu/Dw0N4//334eLiYqkN8GSqVHmkAccQPSGF94WEsmO8jJ637AntmxidVbVn1dDqFBujFFXJ49uEqhdepPpfMX7x8pMm91IR4w/Jp4vZ0Cnl0eeW/0h9TQ0eWiW+5zpZoyEGyYaPoYzdKOlTq428tsltkmkeHc1xm+RWZZOxFqzAAP7WoDl3RZTh5/gcHGh88qNR8Q4ZhMdo5H9rKBqwSElXBKtcoWMhy7Kw+wXvhMKjCS3H03s5ugcpynuV4PWV7jerqhwJVpCgzCSpVpZUJ+/9gFqeq+6r1GCM9ryMMVc18nx5p9nm5iYcHByEO5vPzs5gPB5Dq9VaCtjQHXjIu5ITs45+kTCdTqFer8Pdu3fDiuzLy0s4OjqCRqOxdIcshzTpDABLdcSdYdPpFJrNJnS7Xbh79y689tpr8P3vfx8++ugjaLVaUKvVwtFhq4DFZ9g/APYYlmwyWu9GowF5frVLjteF7pbG3wBwbZUqD2jScijf8JWmzWYz7GrN8xzOzs7UST2pv/L86ug2vK+KTqTT+2G0vHggUXL4UoLh9E5aXi69Y88KDHodWloXrVxeb0zPg8eSAy71gUY73kGJ9pXEB/gP7xpDubS3twfz+RwePXoUeILWi9Mv1Y3mT2mSZDGtsycwgjRXAS1gaY3RmA3k6U9OA8CLBRqNRgMODw/hf/7P/xnejcdj953KGmJ6kPOYZG9r44HqJgTnFfpOOx2A58npkGA5+lUGcyzw8RgLZPEy8vxqMta6K96iS5MTUlorSES/xQUaNxkI8vqD3rauAvwO4hikMSUF7aS7eWO+Uoo/JqX1BkirbFPkdWpXxHbFxMrnJz14QHW0JjtwDGiQ+gh/cxmHaendnmVs1VqtBrPZbOluULSBuU7R7jkuC2vBKCKFh1J5et1AnkA6W60W1Ov1cLUDwIuTBxAfffQRDIdDePr06ZKeGA6HlY6r+XwO8/k82HySXeWVWTeBm/JdbwoeXS29+yy1Ebcx+fiXbMdYPh5we83SGZbcjNme0t+03JtGjN+sMYkxHWuHrHdMS76hdFJVVf6PhCJ5W75FEXkm2YX4d9Vx4TJYhY5el/xXJ2O9gZ5Uoz+Wn/W9FCC0yirSITHDcJ2CKhYw04ztz2FDCuYgMHiDzgPAlUCmjgWmWQU90rsigjOWr+asWd96xp9FDwU6vdTxpQ7wYDAIaekkkWakSMaT9p6j6nFjtR1HLFhjBVaL0OWV61Y5nrb1BMWl77n8riqYVZWsTKHBG3zkuA1yHHU73gvId8TSCUz8jWk2NzcBAJZ202C6VRv72KYoX2gAqlarQb1eXzqiWPue0kn/x79xdx4a/NPp9Joc29ragrt378JgMIDJZFKIl63xjw6iZwIBy4yVK9Ubn1OZe3Z2Bj/84Q9hOBzCcDgMwTve1zFdJI0RyjOYB/IWDZhiADGWL/1bW8Dj5cmqg0d0koSXgX+nTtxI7U5tFmvCRMoL00hBCP4c+wT7qV6vw9bWVkjHg7QWDViPu3fvwtbWFozH4xAopO1i8Zam8zzt6Wln/J8ei5iSj5eHaF1TJwS0smLyWJID2K/0WdHJWE9bxXhSChLwhSdFgoUeu0uTk1I6adwUKVODVDd6bL0HUjvRZ15/1BOopOOW563ZSdYx+CnysQrwI/VjPOChrSzdVEZIeio2lqxn/J03ziL1lTTGPTGdVdmNNH+6EMpKi5DGNn9n6Smu73h+Ujvz/sVnkn6Xxgn/FhejZVkWbOPJZJLU3rSO0+kUtre34eDgIJR5eHgIw+EwTBhqAVxN/ku2GrcxY5DkU8wW0vpMk9/auKhKJsXGAtrOnU4Hms1muCJiOBxCnufhCqiNjQ2YTqdweHgIg8Eg8E+VspPTiD4SPV3BwqrleBF5YunIGFYtx8qiivZetx6uAh77nNeLj/UUXzLmC3vtBw8fef1u6V1V/m1q2phtjHqaL+a19J6EmP+jfcN1EKffgyLxg6L9YbUntoEl+z0+YgodVdi5nnKqwrrkmBqVtAwLno6iaGDASldGaaakTaGJwhu0qYpJbqsyf1lgCW28O7bdbi8diUiPd5GCGx5nUvqmqEK1HMaiAhLpKWNoas+5AzSbza7tgMSy5vM59Pv98HsymSy1ubSTKYVW6xuueKpSIBIkY05y6LVveBoepNTgvRcglg9NR+nztJVkRKUq2SIG5aplp9U/nm9ui2zHlYWNRgMajcbSSQF5fv1eDqR7Y2MDtra2oFarwcnJydLKbJpOghQsKQqcsEPEJmOlABg3vKX8cWJCmmzd3t6GxWIBn3zyCQwGg3DXdZVGNdYNHRReH/68DOjCmZOTEzg8PAxHotHAHpaZZVnYvSjVgbY1pRePIKaOAvYfBpu04z0tWST1pRWg1t5reZUBd/A1vcT5U8pHAwZC+RHPCG+AAWmgulK6WxXvd93a2gr5DAYDGAwGpp6gPLGxsQH37t2Du3fvwpMnT6L3ARX1R6wgu/Y37RO+GtuSZWX5hvMB5wfNNpKCDx4bgKbDsY3v+PHkEp3aO6tM6V6oWF60L+hzGrix+C5m90k0pPqOEiTe0MqJySv+DecVKQ2AfiQfvrfureZ0aDa/xXceHxnHlnQEpwUuu4pAk82W7qmqbA9N0jut3CJ0xOSXxpdZdv1+UIuHU/ydorDGGLcbY3Rg/Xg6abLeEyOQxqom5yUdEKsj0kbpwt/0dJMidiq2xWw2g+3tbfjKV74S3vX7fTg/P1+6LkRrA6l+kh+XSp+mk63xbNmrkuz3+MxVg5aPu1BrtRq0Wq1wms14PIY8v5qMRVt6OBzC+fn5Ul6rkFGYL19Uz1FEnlvPtPdF5KEUY0nFbfHtPdDGp9SOknyLtak35rMuSHJXsn0l+SDJpjJ0WL+1d9aY0PpMy5P7olq+NwVpAw8+53X1yIVUHqR3c6eC0rQK20aD5W9ptBSBp81XDcvfQVQdv6kCrp2xVRNddX5VMFIZmjwDetUdf9sY6zYCgzzdbjf0V7fbhd3d3ZDm5OQERqNRcEaGw+FSEACdFWqU8SOOvZAEl8VHq+xjKpSloJ0GyTnh7yTQI4uyLINer7d0NBIa74PBIDgXUnDQUx/6vycgZOUXS1cUq3TiaJvxoJrWzzRIxwMFWtvHgorat1XuMl+1gZPaT0UCGjcpy7vdLuzs7MDGxgZcXl7C1tZWOPKq2WyGezf53aIUePwvBgJwojLF2a5iLGRZBvv7+0unHOBz6kBKwZQsezHBwuU7pQ13+eGz2WwGjUYD9vb2oNfrLX2HAbDYhBLSEXtO2wkDaFKa2GSsFrS3+kBaSWmNvZicod/Tb3CC6/XXX4ft7W3o9XowHA7h4uIi8CGtg5U/pxHf4b3Inm9SYOma2DdeZyIlqIW7i2m78vwAluVxkYCnxH/WpJ1EP9ZhPp/DBx98AI8ePYLxeBwCelz+rEon4/9cZlC+y7IsHN+e51f3so1GoyBzytCWqhtjOprSYwVkKH9J4yEWsLHyl95LgS8OWh7f9WrVg04e8/Roh1oymbeBRWuK7qJtqAU0PbZWDLQMqUyAF+OJ56tNfMZkmzQuvbJEa28+QbRKm1miiYL3vYeOddCKZaRMpsXSFaGbynDan1x2emmQ0pVtzzzPw8K84XC4lC9d+BWTk/wZ/Z8Gbr33Q/P4gjaWaNn8+oGYDuDvUE7O5/OlhSspYxbbstFowOXlJfzd3/0dPHz4EO7duwf379+HRqMBR0dHMJ1Ow/Uekm2dYnPwtkJw/UBlhTeGIKVfpb1RBpQuajOgXtva2oLpdAonJyeQZVnwzbAfbgqr9HVv2pf+rKIK/4jalrdtLFl8Y/ld9HtMe9twm9s9BaivaB0kXX0bZcBtpEmzc16G9iyK28b/S5Ox3kB21QYxR1Hjv8g7jQ7L+aS/y5abgs/KILhJZFkG7XY7OBx7e3vw6quvLt1xh+08n8/DUZv4LQZvyhjllrLW8isSlJF4OsZDWgBOA3eGPAF6gOVgfpZlS/f54c7k2WwGw+EwrOTUAu4eGnndUvKpUt7xfLmD7TXkyijF1MAHD9JbAVqef0pAtijNMb2VqmOqMqZTA3a3wdBpNptw584d6PV6MBqNwp2AuKsUF0xYu6sxLT1aFiC9XT3pYv24tbUF7XZ7KU8pqM/LRVnPn/PJEdQXmN9sNoNarQbdblcMdKzSAJQCeIhYW3p3j9Gy6IQYD0LywD+ng+tQHkjDyTvcWY3H3tHyJF0VG2teHtRoS+2/Ivo2NpHhlYWSLqYyXLub1uuoS3wmtS+/V9oDOj6fPXsWAodasFlrK/5O40WrjhbwPR7njsf/SeOiCJ9a5cZkH9LA+4mPVak+WuDaIxs8kOwe6X5GTY7xwHisDzWbD/tMm4y1ZBj/W6qf5Td67GXN1rLKjtFkyQjpG8/4SB1Xsfw0WqzfnjzKwIqF8MUhN2HHcX5KaZ8yfWaB8jnffS21lUR/VTEiiz66yBAXXHshtR3VXxLfpvjMXEdrfkKKv8/bnMpIfhy4lzfoAuvhcAgnJyewtbUF9+/fh93dXajX63B8fAzz+Rza7bYpp2J0e/Qj/VtrO03faXLY6mup7KrhyZufYJRlWdiRTK9TAYAwgY79vi65laJDy6CsT+3lD28+LzMsn7JIO3M/7iZB9bhkm9I01LavKlYk0QLg1+EpdHjsZkumlekry+fgaTy+l8STXjvRC+/3Wj2k77U6VmnXSNBsLs2X5z5sWXlaFh5b0IoFaN/cBvmsX57mhGdwpcIrnGPM7qHDMmy9HXbTiuSmsS5lmloOPc4Qj89ER6vT6cArr7wSjlF88OAB3L17d2nV5ng8hvPz85AHDxZpRxoVxU3wUZXClefl2dWBTgA/5hCP1ZEc4yIGEHWOtXdVwaMMtO+qkjHaWLFWelt0YZ70f3znWYVfhUNUJL03uEcNbAvrcMJWYeBbwHJqtRrMZjM4OzsLk1+tVisEq9CRpwEbGoTkR3TeBHjQpd/vw3Q6DYs7zs7O1OOyOF83m82lu2H5xCsALC3OyfMczs/P4ezsDC4uLiDLMuh2u64jHjm0ILwUTKL8ojkoHhQNyNBAa6fTgXq9Dq1WC+bzedjBKpWF4Dsx6S4PPt7wmFssl9JA89XGstQ+lAYp4IbPuD7jvy1H0JKhNK0ku7T+5s+sfqPjk+cvlY1tz68SiIGW02g0YLFYwNnZGdTrdWg0GuHo81hQVAI9+lGi2aKJ1kt6V0au5/nV6SitViscA0iDNZyPtLyQx2i9+P/0nWdXp4aU3c9F5UkK6LjnR59LabV29Nh3vC3pzllJpkgBw1gbpASEuJwrIn+5fOFjhdp9PMBC88Hv6Q56+r2HztTAHe03uqONy1cteHhT9gaVdZosirXhKmgqEzTjvMHHVArtXP7xoN9tiJugTZfnORwcHMAv//Ivw5MnT+CHP/yha/EQb+uUutFvYmOG23nId/xED69/R+Ud0j+fz2E0Gon18eSH1wnRRYibm5twcHAA29vbMBqN4MMPPwwLrDXExohkp+Df3K6s1+tLtrs3T2xHy0bSaPf6kqvE5eUlDIfDcMVMp9MJC0UBysmiKutW1D9O4csqULbOlt9WJVbJd9w345AWXtNvtecpvsW6xpRUR8mHqhqp8TlOZ4r/ftMyalVItT+rLpvyepWn/q0Kkv2REjspamtWhc8KH5t3xmrQAoWxoFsKvA2sBbvos6qg1cUKGmjQlBV/d5NM7sU6FWQKqCOZZVfBdVwJ2Gw2YW9vL+TZbreh0+lAp9MJgWR6dx2ngTuWqXRpdUrNT8rLm0cVwcyUoJOWtyXkeXCyDCTaLPlRBbz5lg3GWQ59TJZ65bnkoFNnvoj8L8v/FmKBH27EFi1Dyl9qDw8ttN3XJVdpABZPA9je3g5HWWEwQwt00++lAGqs7FjwidPpyRPT4cRrvV6HyWSydBe1VBf+m95VKtFEJ4bm8zlMp1MYj8fQ6/WWJn05bR6kBPTwb87zHjuqKtmaZVeLnFDPSvWn6aXxodGC+hj/aXlYugKDbDQIieV625rrC+kdLU+iQZML2jc0DX1P+1dqBykPft+6p+xUOUQngjBIS+/65W2vBak4H0s0lbHDKKRyU4IaEl9ROmP5WXws9RumQZltjSVtTLwMfkbM9vPoXaueWl9z/pL0s0aPJiMkecPHXxX6gfY75yOehtOM7YcT/XiEu7Yoo6pAiOUHUJT184vYVpa8TuENj4xOoYWXx/uiin6pKg+LTg1lZJLV1tq4bLfb8Prrr8N4PF46iUmSH1IeMXo1WWP1qVY2z8vyM/n4pvnx57iTski/a/7BxsZGWKSUegWCR/ZrdlmWLZ9uo03IWj5ICsrKpiqBdjLaDujDSEe9p6Ks3KoCMd3nTe8ph441Tx976roqvqhKF2Ne3MeI8XaqDZOCVbRZLE+rPim6PoUOj42i6Z9V2fSWfkmB5sdKeVv119JKurUM36TUW/Jl6f9l+bcK2ebhDw8fSfrWY4ukIsUHL8JHRcpaFcTJ2FRlsg6nXhP8qd9Q5Ll832dRY/RzpIMPoirand+Hhmi322En7L179+BrX/tacA4+/PBDeOedd2A4HMJisYCPPvoIBoPBEn+gY0F/F8VND/wqEAveVqWEtHwR3MHTAk1aftJzqX9WscqpKM/HFF4sKOmBtOOVGhj0PiRsZ629U43NquFpi5QgkWb0VTGuq3RoUvlrNptBv9+H0WgET548CYsh8AhxCgyuoLw9ODiAbrcbjpfVwHmhiiClRFue5+Geyel0eu0oXl4mBm4wiEHvCgfQV5OjHVGr1WBnZwcuLi7gb//2b2E2m8F8PofJZBImtss66inBpFRgPjQIH3MAsO/v3LkDW1tb8HM/93PQbDbh+9//PoxGo5CeHlXL84g5VlmWweHhIfR6vXD/MAZLKQ002JcaNJWC6rQ9aF50gVCsfVL0UQp4/vwOUwm4oIL2HX7DrwJIrRcHBgGRHhwHOLZooIeDjzNcQKcdKZ4qPzSnWdrtT+nU6rtYLGA0GoUFA9PpdOnIRiwjFhCXflN6OT/i0ch4xKbVJlSX30bbkwfOLRqz7Op+QtomAMu7Arz+qbXTgz7HMYK8HOP/Km1e3FEe25VB6055BnnRs2sC69btdqHVakG73YbxeAyffvopALzQhdbRzhRan3C6YzLyZfDJqX6j9eHPqtbXMZr4N+uCZROXaYMqx9bm5ibk+dWCoWazCffv34fZbAaXl5fw+PFjeP78eTjtQ7KBNUjyWJL73Nbw5h3LPwbLV+P0pyDPr07RQdlweHgI77zzDuzu7gaZsVgslu7oRXrQZpCOCsU0Unmcx6i9VqvVgl4ZjUZLCwS5PcFPR+H6liLlpIB1gtM6mUxgMplca29Nb/60wTPmqvTHi6AqfZFa5sbGRthRTWUfjg3p1LqYjruJ2A+nx2pPfpQ+Bdqd9CS/KlDGtkn5TrKpipb3MsmLKsaPJyYjyQkp7nEbEOtHfhqK5k/dJpTt55vm7aXJ2FgABtOsujO0/FOClB4BZ9XX2zFF26aKsqvETSh8AD1oUiYfgOW2w6NaqGFer9fD3bH4/WQygVqtBo1GA6bT6ZIBgvcf0vw9/bNO4yNGjxSALJIPD0576KqKpy3Hi5cp0cG/k/LUyuVptSCwN2Ado5fTmfptLH1MzvJ+4+2Hx1BaTqtllK/KAOX0F+E57RurTzV+KMrzRRx93q6pxjrWb7FYwHQ6FY9qswLXWZaFiU8MIEv8tCrjmPMoGpV0Ekj6XuJfzeHCdpJkQa1Wg/l8DpeXl0tBHeuOXakOEj20TD6GpXy1d0XsKwuUJjxZAvWtNl68dGM7jEajIGvoJIBH5xUZA/y3Ra8luzUZVJXTYMk3jWZvm3HetvSaplNoWi3o5wnaIB9YOilGC/3G4osi8hoDNNJR5ohUXcTrq6VBmlP0TdW+RVF9TnnNY8MB2PZnEX+sirbgfLqqcjRY8oXSxHlQ0omor9BH4uWk9rP0Df72BjWr9CE+a9DkitSv3m+rgqZDtGcxaHycSo8kQ9Cn2d7ehgcPHsD5+TkAvFh0iPZkzC636mrRpL2rQp6ktHURO53SQhc14d2x8/k8XIOCaSwfPLVuWn/y/6lNaY2bMrRIv8v6OzFYtg4ABJs5tuBp1XSm6I9UnpWQojNidmhVcjK13TU/sCp4ZBPaAxJ/x2I8sbZbNc/xMrxy2eMnp/JESl1jPB1L6/UbpN80ndcuT4Gn3dfdN0XhlTE8rhD71ku/ZV/HvinaRh7ZvA5dwsuzfG/pG/4tTRsrr2ok3xm7DsFZFhaNfIWCd7WwVEbqAIjhJtv2ZehXCxb99+7dg83NzaW+XywW4Y4TAIButwsPHz4EAIDpdArvvvtuSFuv16Hb7YYycPeDBMswuW2IKWKKFF5PDTjSvNCRs+5ZjK0y4o5Unl+/S2wV/O41kqswplLBA9exySHaL5KMbDabsLu7e23VLU56eWgo4lSkpKc7nDTwozM1IzUGKxia8q0WBPEaTlXpINoOtC34c2y7er0Og8Eg7H7DyVytHbMsvvuySN0kZ5HvKpLu/pTsgvF4vORM0nTSHaOI2WwG4/E4pE8xqjUaKZ14BFnMzvHwPwUfAzFasd+zLINerweDwQCm0ylsbm7CvXv3oF6vw9HRUQhyakc9c7qlelxeXi7JcLpIAOlYLBahXSTjWtr5SN/ztuB/08ByLCjM3/MxLo0vfk+jB7EAkiXnKY0xG0AKuuB3MXql97QvpHdUJvNxJ7Ud/y0d6YvyKjbOeL1pHvy5V97GvpX4COuuBbx4fWIOPbezvGPdg6L5aN9hvfiY0PQjTYu/8X9Lx6zaLi8S8EgJfmm8RPmG7nrnd8fi/1wW4LtOpxOthyQTMN+UgCL9lv7N78dcl6+aYst7+pjf11gVUvU8IkZDmWAdgC/gV6QduCzVeMlDu3R07auvvgpvvPEGDAYD+PDDD6FWq0Gz2YTxeBzNTwsQIp18MkzTy3Ss3pS/WCQ/1N0bGxvQbrfh9PQUjo6Owu58a3extIMc4eFV+r+0e43rUcnm52VxWriM0mi5LfEeTiPfqbVuOovwVFFerBq3gQaA9U1yzOdzGAwG0Gg0YHNzExqNRrgPOs9zODw8DHFQ9ME0WGP7ZYMUY6Dwyir6fYo/EfNbuc8pybOyWEWeVWMVcjimk6R4z22RGxKs0w81WDE9z/dVQPN1b3NbxxCdjE0RDimdkNJoKUEDKy0XIKkBFZpWKifF8bQG7G0VbrcV3DimDg86APiu2WzC66+/DgcHBwAA4Y4/gBeBB74LFvORhE0sALZKoPCpSgjGeFATvhJdPJ23nbSxEisrJoMoDd6AEf1WCmBpuCll5EXRAAgvk64Yx13n1o7Kqui15GmZwExMnpcJOHsMHJ7uNhgWlKaYAYSBLX6Mo9YnPH8trZSO06DRpJXL0/KgGZcLNIBh5YtHE2PeOBGQOl45PyCNHluI68OUgGhRnsN+v7y8BICrI+GkCWPeN1Z5MT1rfYeTEBy8Tbx2F9cX2pG50jcAy4E/r+7Rxp1WjqeNPLqUQ5MBsTFGv+G8bNVB4nManNbaMlXOW3qF8x7PWzoWGhcDSHwbK1PqF6mteXlF/RitzBQ7R8qP5xPLo6yOy7L4YoBV2WO0/WJ9kKLXpXGijVtvAKKovcrHIv/bkhkpOpvLam08SHI7Bo98XJetVSUvSnreU6akfz2yPwUeeZza5kVp8ZYzm83g7OwMdnd3YXNzE5rNZph84AvyY+NJsiE5LfiOH2lP03psvTJ+SoqdbD0HkG0cPC2CXongqZdGUwo/oU1Kv9Vs6Kp1xG3x3QB8NvdN0xvrV0v/eeAZJx47ykpThodug26i5fEy6V3SOzs70Gg04OTk5Np3AL6+pJDSp9TZ0l1F4e3LWNlW3dYRJ5Rg+T0eHRuzeVNtzVXK4puQax47vajPpoH7F7H8Nd0Qk7Mp+a3S71rHNxxl/awYrk3Gpjo6VRBRFbTdJBx5nl/b2WjVuagToEHKS2L2KsqM9WdKfxfljSLw0i31b6PRWDpe6+zsLByPc+/ePfjVX/1V2NzchCzLoN/vw/Pnz2Frawt2d3cBAGA8Hps7M18WxNrQ25cp/EH/t+jwCPUUGrjjGzM4YtAcxlgAnaZLKS8VRWUDP2rbU47HiOh0OrC5uQmTyQRGo1Fhh3sVoIFByqO0LlIwEP9fl/FchmeqlM1U3/H7Ma3gKl0ly/Ph+dO/qwjaeccl5Uv+jbVzk/MI5Z0se3GH6XA4rESHaw6rd5HDqsafxWeLxQI++eQTaLVaMBwOw+5gzjtFeFU7Xo3LI1oObysrCGXxNf9OOmXB4mPkD0ofnUiTaI/xjVXv2DdWWksva3pd07XSc4nuLHtxByhO4NM7QTEdTnTW6/WlhUCYL07WavY1H7OcNnxGd8ho41CqIz0xpapAELVzeR2oD0N5kOu6WFkS794W3X0bIMkb+rtsW8Vkj8aD/H/LTvPygwQcj5LcsyZRkWethSuUZzmd6/Q3iyCVNtoO3iBYrGzadrEdsutsV2vMlEHRNvLQMRgM4Mc//jF84QtfgP39fWi1WrC9vQ3T6RRGo1GhWIl06g5Hq9UKR/hSHShd86DZMKltzMccpxvHtbRzWMuv0Wgs6VDpW6ktqO6O+QNa/aXneJc7vscdu17cZtmDiPFkqt+wSlqKpr2NuA30e/q+CI1ZlkGz2Qy/cRzhu7feegv29/fh008/Daei0THI5YoVA1h1TCUGy16O6dGi5a0aMf/upvl2lahyXHplq+b/0jTrREobSOk8cYSXiYe89Baxo6rEtcnYIp1joagykH57GssKuCG4k6sFj6w8eX5l3nvKKIpYvkWcm3WgKN00QAcgB08wSAxwZWh0Op1wxMZHH30Ex8fHwcjA/HAyF7+hdFj9Kzkjq0JKQC02zj08L6WPGTBFjTDr+5jjpo3zWB6pfSXJGXxepVyN8ZRmJOA7T71432Lwt1arwe7ubljwgAGg+XwOFxcXlQSjPfXQaOXQeEB6VsZBqLq+UrBuXeUXgSYHuZ6l/zY2NtQrADy0Sv1VRObRYwOzLBNpkhxL2k9eXtVgBdZ5GguWDSONfToZ47GzaJvn+dXEGB5VTNtCkn3S0c5l7EOUO81mE9rtNoxGI5jP50v3wNP8JVlAA3Xe9kX6NbuRtiktj773BFklGeyhTStHqh99hrKctxmXS9L30jc0PW0TjQ4M4PKytre3odlsQrPZhPl8DkdHR+5jdj1B3VjwQstX6mMrvSdf7RtNF0h0a8e/e/hbGptYV3rMakqeGnjbSTJDkk0a3TRfznu8TC/fWG0t6WjO9/zbFLtaq4P0m5dB5ZS1SEH7djweQ57nwaajfaDtRE4dQ7Q8Cyl+jRep+scjq2OywGOnxpBSd4tHNPuJl5MiQywdpvEx2oGWDPaWh99LR7Bq+aO/srGxAePxGH7yk5+EUz0ODw8BQD7ylpdp8QTXFfgM6cRrJ/jR/UX0En+fIjes71JAaePXC+A/nGimV5lI+Ug2q3b1B7dNebvjO6lPKKQyvahCNlVZ3jrpSSmrCJ+V4Ulapjct3bGOepTKAknXx/RKTA9L0GzHqvpe6guuH/jR+rVaDV5//XXY29uDfr8Pk8kEBoPBkgwuKtcpLWX4V9PZ0nUwqfwo+Tha2bH8udySaNbo8thFlqyL0WflX4WuSPnewwtVyrvUvKwxr6Fs21n5xuxmzX4qYltI33j4NwarrNiYkMpP9TWK0mtBy988priIo+LNz2tkehVPCiTB5BFU3vRF6JHyLMsYPw2gRkOW2fcWAFw5Vv1+f8nx2draCsr5Bz/4AXzwwQfX8tPuiC2KVfXtOnjGYxisC5ZxI2EVzgnNs6r29wQdrW89gRGpHE3W4fio1+tw//79EJjFo7yOj4/h/PxcpUkK8mplpQR8yrQ1NVJ5H1ooY4R6lfW6ZL/mcHmdyZR0dJIsdYdnKt9LzpDGO1h3BHfStIAO/k3LKnoXkydQTumMOVcUUlDL0z4x4E4DXEWNAQyeLwL7nB5bJ6XzIs+vJmNrtRpsbW3BfD6H0WgUgijSmKb9xRduSfTQoB4tN4VuSxbH6offW7yNaXigkdIfK8frpFhjkdKojReLBuxPju3tbdjZ2YGDgwOYTqdwfHwMs9lMPeXBy8u8jaT2pmOPlkHvyuZ1tJzBVGhOJJUF0piT5KY25rkOkIB1ldqj6sAZH5/4t4eP8zwP7YH199gdMVro37zuMZskZaxb/ZUCWnfPHdRUztVqNRgMBksnG/B0PMAnyRlLTvDvPTq+rO2eYlOlpL1JHz2Ft6TnkkzQfld5Zy+WTYP2kuyPwdp9TcviwDrgHaa1Wg1GoxH86Ec/gidPnsDjx4/D5IKHt6021uwLlG/D4TDUfWNjI1yXpLUHHTdSn3h9DEtup44Trkuo3MYrbOhpFrgQE6+IkvjOajv0R7W68QkzKQ8Oj44pizJt/TnWA+TPRqOxZFtNJpNrvkuVft5tArd10ddD/q3VavD222/DdDqFx48fw/n5OVxcXITv6C55ybZBVDEeNF2tyTf0D6XJWEuu8PKsci0ZbOlcjeYq40FW+RItlh0n0RbzEV+WMSBBqquVVoPkr1bdLlrcQqPLazdYZWj1WEX9XlZe0ug2Z648zq9VYIwgL1LSWgIfjTRP8CDmpBSFRp81QF5GhlsnaPtQ42k8HsN0OoX5fA6NRgO++tWvwv7+PjQaDbi8vIRPPvnkWhDt8vJyadKA/u9BrL88goumi+WlBYK8hk8KtIAZzb9oAEOjjQe9ysicFBRRWKnB1ypljNfhlAwJq66cx/L8ajUzGqzeHUo8QMyDAdJzHrArAm+fYDnSziyNjlgQ1kobc1RiBn1V4OV7jOrY2LACrPx4UcsQ5Xyh0R6D5GxwWcZX/vLvPKtoOQ9rvCv1LW8DmocEa9UxpU+zdawAo5f36IQU1vX8/Bzm8/nS3ZnozPMAnXUstARK32KxgGazCXfv3oVmswmtVgt6vd6SXtKCx1znx5wHzoOS3OQ8weUODWTwHaB8FblVDn+vjQFaR4tfaZ4035S+4fTSfipiu25ubsLu7i5cXFyEhXN5nsPOzg7keQ77+/swHA7D0Wke55imwfbmz+l7gBf8TccyryvXgxK47KD2pdVGqbY/HW8Sj1B5RAP9Wj9Lz3HsURqL+ihc51BbkgYAOWiZ9B5hbEs8xQaDbpY9r/VnjGZv3TS6q/LpvLKT9r0kFyUeWSwWcHl5CXn+YqLMCkRLcirm33jqIPGYJm+raNeY3NQQ08VaurJ2Hr2jPtXviNlgALYu9ZTD24DL3slkcm0Mp5SVZVmwJzxpJTmOfzcaDZhMJnB4eBh2rHps4lSg3dRsNuHLX/4ydDodePLkCQwGAzg5OVFtRCu/oijLj5pvVK/Xw+QVvZYBF/Dh/3y3Ic2T8o61w5/zpyXred0tubIqcD5cdXkvM6qWl1K+1M5A/wVP2cETwDR6kCYPXdqpJbcNeEcst8kAAC4vL5fu0sYT0+7fvw+DwQAuLy/DN1SuU9uHL/ym487yzbQ21uQC98WzLAt1Q/uQxoyx32NlajqE0y3VS6KRl2XpQU8+qe9S/HAJmn3GyyiDVLtgVUiNV3jSrUrGaeVp/VWEtzikvsfn2hjVvk0tKwarHuvkK6ksexthiQK0DimDWB5WUAHhMdjL0lOlor3tSvs2gRtE8/l8aeXr22+/DXt7ewBwdT/MRx99dC24MBwOr+00kIKjRRw0z2DXFK8krDWD3goKWPnG6NPy1wwpKw/puRUE0ZymlDbVDAJPfbR8ixoxvC2tAKFEWxHwesVkNJ1AoO+kAIWnbPzHJ2diMruogSDpI09/xYwHqQwpX4+BZZVR1kAuCo0/PLC+wXxj9zZpbVmET7R60GBxzMinYzVWP06TBMuh1PIsI2Pwb08eOAHisbWQLpxcBQDo9XohuIoBuTxf3vWCgTgpsB/rYwTuiD04OAgyhe6I84y1mBOk0SLt6rYcc4DlCUCaP7Yf3eFDv6F5FLEFNfkiBULo5JfloHt0L29n/p1Wl42NDdjc3ISDgwOYTCZLk7Gbm5uwsbEB29vbkGUvjlLldMXqTwNEsbaxxg2+12wTTcfTNq/avqeBLqnu0k5HHlji761TDLAc7642zW625DQvT6IBJ2No0F/aIU/ziPUtT5NiC2jveL28cl3yOVKhtYO1w2wwGADA9d3XNA3Ni9uxHv6WZIX0W7KR+fOi8Ppd1reWDMBnVY13mg8Gl6U6eMuL+Qb0Wdn25r7AeDwOOyc94ONWk6eaT8XlDgXe3TocDkPaGG3WGJBAbaNGowFf+tKX4ODgAGq1GhwfH8Ph4SEsFosw4aHVhT+3bGbLx43BUx9OG+1fALjm76FsbjQa4Yhmqx0pvXzhk1QHqb8s2VIERW3zIr7VquyFz3EduFgSF3U1m81Sspvb82X1QBmf0EJsTAG8OFkQ7YE8v1r8VqvV4M6dO5Bl2dJkLM03Zkut2i5GoL5EPxRPt6Hyyguvv0rTa++1unvjDjQfqZyUfKQ8ON9Z9VylnLqpuFiViLWhx+8o0waSDREbm1a7WzLJ8reK6OQYDUVx07q10slYC6kKKMZotGNjAqZoEEvLb52o0oH7rIKutAS4mizC3Xv02OIf/OAH0G63AeBq16ykeDFQB5CuFG8SRcdWKn9VyYs0mIl5F3XIvUgNDiGdGrR3KfWQVvVq39M0sWAyLaMIsI1xLEn54MpIHvzku1GsHS60vLLymvIzN2isfqV05/ny5JGHzz5rcprvXgSopo7I7zxfK28pYI/9SfvdGhO0bJpnCt34f9HgS9mFYOj4esc9fiPRzo/3o2MP03llJa4gp0fSUVnA86GnVWSZfyKH1xEDuXQyk9cF60rHttQ+XBZRXuI8ZrUFzxef0SNlOa96dAUdA7FV+hZNAHagkqbxjhFaF85vNI22+zfPc5hMJrC/vw9f/epXYTQaQa/XWypjsVjAs2fPYLFYwPPnz69NxKaA8j1/HtP1WGar1Qp8N5/Pw5GWmh4CgCX7tNlswubmZgj8jUajsMOA0mDxhtfGoPWbTqfQaDTgrbfegslkAo8fP14KjktyCtuLL8LCd2V0AuUdOonM5Qa9VoT303w+h/l8Dtvb29But8Nuq2fPnoVAIS2Pl63R5aW/SlAZU1Rf0LakdZ/P5y55gTIJJ0vwOf6v1bnIJINlW8SCN+v0xcr4SdgPm5ub4WhWTQaVpVEqW7KJy/J9EdqQF6fTKbTbbfiVX/mVcCT24eEhfPTRR+KipRiN2u9YHTX+smwEmkdRGxLjFaPRCIbDIWxuboarX549ewY//vGPYTKZmEcwe/rPEzTXxl3KOMO0OHlFv6N2Pl8so9WH20Ve34Dnw20OaTEc/wbp9NS7DIr4EZ+jWlBbAwBUG6ff71+LU+AxxpSntZM88BvP3e2cPvr9uoG+HR87h4eHcHx8DAAA9Xo9LCShwAUWuJBFih9J45zGXlP0o3TlDJ1Qt+qIV57UajVoNBqwsbERjqSO6RrMg9NyE/3lAaeriAzSjnf+HDpWLe/XoU889sTnKI7Ck7HezrcMX3we+1ZLn+qsFWEizoCftaD7ywSL32gQC40qgOXdJUdHR0tGQ8zhKNrX9Dtv8JbT4VWaKfStSlhb9dDSprZLCqo0YiV6Y+2YKuc8gS5v2R6ktA8a5HwXG3WwqcFODWLvJIaXVg/NnqCT1Zce49sLT/kUN6VXNBqL1N3DT9R55WVKf0vwylhOU2pAVeM/K+jFafPaSZIc4H/Tf7RsTgulRypLo136W1qcRIO8NMCGz6nzTlcfA7wIyuE7azLW0oPoSNdqtWv8JAX8UvqC0+DZzS3RS597xoaURwqdsbxjkPjW8y1PK/GTRC/y0Hw+h3a7DT/zMz8Dx8fHYbcUpsMJz9lsFv6nO4dS6koDYx5I/Y/BG8rXMVroeAG42nGBCxlGo5FLV5S1LXGs7ezswHA4FOnj+UpHVsf6l6b32tGaXJXSUFmD8qRer0On04Fut7s0ec939qYELqy0MVo9el7qX02mx+wJyTem7/gkQ6xPeKCa96lUH/59qtyRnltyQ9K1qTEFLz2xWIYFnIBDWxqD1auCJjd4+2CbeewcLe9UfYWy9969e9BsNqHf74fF0RpfVeX3pNiK2rsicQHOs7VaLSxkRbmFd6JzuUInMzwyP1V3VwEqX7QxS9Ol6ANLNqTAE1vxHsPugbe/UrDufv2sg8sbeu0Bvud6hS46BZAXTUn9Q32kWPqy8ZIUX8ArUxDD4TDUudFowO7ubnhHZQDattz3kXykmB0U0+mS35lie9C+3djYcB1XLLW1l+ayqEoOWL6Zlp7rwZR+8qTzoKrxctPwtPu66ub1K1N18rrof1l5AFF4MtbjoK4DWpDLG3hLLatKpK5s/xwyFosFDIfDpd9SmpOTEzUPNK6snVNV8lMZZVIkGFAVvMFACR66PWlSykV6yzg+VUOiBVflIa10wgKdd2++1so1/r+2O5zmx51VPKYmdhRUnr/YLSvdPULTSePBMwHiCZBw55/yBD1ilZdfhbzXAtxSuqrK9MJykPB4d6SNHuUjpfeW5zHeveMuFgyXyuffc1qswLJGr1YGvR8XQJ7UkL6X2iilvT3OrQYeyMMxQunHdwAQdsXj0cR08gOf37lzB958882Q95MnT+D09HRp0ZRWD/631Ba4wwQn8LjsxPagu+piTlCZQLAUFKVBeCk4Qf958teC5DyYGBsjWtCorLMv6RC6a7rf719ri/39ffit3/otODo6gg8++ACm0yk8f/4cer0ezGYz2NnZEcuS+MSSMZSXJL0YaxOOer0OOzs7S9di8AAPwIvxgwE/PKYSAAL/IuguUdqmUt9IfUzLQd7Psiy6U0CCVh7XvxxeO1VKw4/LlnbEYjq6GCTPc9jb24ONjQ34yU9+EhaK0Tw4bTFb3BtgqhraGLfGP8CLBXLY99QG8wbPOO9WFfzDPGI+BB2HXJ5Ksr0KmorYHZ500+kUNjY2oNPpwMbGBuzs7MDp6SmcnJxAvV4vvJOG276pdoI0lmi++HeZ9qXf8rttsV0o6vU6tFqtsDMJ80D7k491uqjLQwfnPSqbEeiLaXeZ0hMOimA2m8FoNDIXoS0WCxiNRtBut2FrawuGw+GSTS7RnYKYDPHykZaPRVee5yFeg23AdxlSGriOtiDRT32rdfpXqXEKgM8nWdcNyc7a3d0NE4wbGxvw1ltvQb1ehw8++CCMwel0Go7wB7B9ySKxaC/vrzMOiGVh7Afv1MbTVQCu6G42m9e+pfJKi2fl+fKJZLjIVrPHua9N88cy2u12oLMIuI7VbFXJhrzpsZwS3/AiZi9a362LV6soq0ge0jdavKFsWRxlvpd81XXB44t4sE7+WhVWfkxx2QYumjZFGErfxjo2tV5FlOlNC/ObQMxJ0L6J7a7J81w8RoenkZASnPHSm/pNWXo8+XkVbVGhJxmWMdq1cVyFcuMOuofvuJMXgxUIpvnwewN5Guvo7Fj5nE6Lbq2+9PlkMllaGarRoQVoPW1C89CMceu39k5yzDV+9LSFBzEeony4ToNVAwY88zy/FiwsQl/RgDynk/ZdFbRIzopWfqpOwrxpGdp4qBpF5BL9lo7HWFujvJrNZqGuNOjf7XZhZ2cH7t69C+PxGAaDQdhRiMefa/lbNhymx6OopOPFYjaXxkurCNpRHSPJLk8wvYic8NZDcyLp30XHMddjdIEClS21Wg263S5MJhM4ODgIV0pgkHY0GoUyqhpLsfaOyQR6T3Ge59fuQubfSe2q3clq6VT6TuMn/h1tt3q9rh7fq5Xpoa8IYr6aFgjjMpZemQDwImio2VxWG3rpTkHMR5XkEn9H20Eas8iDOHnF627xWYwHUtuoKH9IOpnr/pjtVgSpfoYXlHaUGdad1UXhtYGRJkob5yk+Nizf0JIP0nco7y4vL2GxWEC32w2LUmKy3SPbpO80ntIgyRpetiaXNNA60Enks7MzODo6CjLszp07UKvVwlH9nH9i5ZXR+do7bx4xeqjdRt/RPozZfCllW3LeY7/ztKvczW4hpU89acv4UFVCkjc3AW63ZVkGnU4HWq0WPHz4EJrNJpyenoZFc/REMNS5CMkei8kfzS9A2vgzTe7E+DvVx5XA/bzpdBre8VOQYvlYkOqi8Qm/k5rnLelbOnEb08XUd9P8R8m2j/FCUXh0vSS/PN97y9TqKJWn/b6J+IenD4r0kRbDSPmuCO2aPSS9KwvN5kmxPbU8vfDwd+z7m9Z7EgpNxq5DoBRJRw1c6QjEVXTAbexUxG1lOguroJcfswoA4c4HRNWOcQrKKEpP8Jamrap9i+aT6lDFHDRvmZYRW8QJLQMenMaVhJRH6apsvG9qsVgsrcbUAiwaqILW+N3KA52Cfr8f0vJAAU1Ly8P6WIsmvAEH71jlaTzBZ+nOWCnfKoxbz1hYp0ziQbk8z2F3dxdarRYcHh6Guw45ranyyuo/rV1Tx6UVXIzB2nXgoQN3W2N70rtRq+xPHGOeABHvL20SAODFHYwIPG6Kl40LMvCoYbwHNs+vdj7s7u7CP/gH/wD29vbg1VdfhW9+85vwd3/3d7C5uQntdlvUyxLd1OlDuuv1ejjtQpIXUoCW31OM9bCcfsmxkd5ptNOyAZbvjKWyEyeR8vzFaQJaW6A85f0m0e+FNJ6rsokoX1E+qtVqsLOzE/pxOp3C2dkZZFkGr776KnS7XQAA2NzchFarBR9//HGY9OeTTd660d+cFzSfQQvm1mo1uHPnDsxmMzg/P4+Wj3yMtI9Go7AwgfN4LOjmqTPlD8pTtVoN9vf3l0474PeDrxKW7AGwdwVL+WDdBoNB2E3WbDaDrqJHQPP/eV6rtv+sYChdqBALEPLxSuXIwcEBvP766zAej2EymcCzZ89gMBhAs9lc0heWrPDa3Vm2fM+blJ9Ujia7tHrfNl9Wooe2F22XVqsVTgNoNBrQbreX5HfRMZcSjJL6kn+DvFfkDveU/ul2u5BlGXzjG9+AN998E/71v/7XMJlM4P/9v/93bXck5ok7KVE/UlueTwBIR74jfZi3tQOETrRg/kgL+gYox2M+jZY/HqueZRn88R//MTSbTfjVX/1V2NnZgd/7vd+DTz/9FP70T/807KLVdnZxOenVG5Q/AZYnR4uOM/zWuusW6aUTOPRbTefyOvIFTDE7UpIplp6p1+vhH5VveESrpzytHS0d8DnWjyzLgq0wmUzg/Pwcer0e/NIv/RK88cYb8Gu/9mvQ7XYhz3M4PDyE9957L1ybgf3WarWg0WgEvka+shbmabwXi+lRG5GfXMHTSj5QqrzS8sXFklgf75hIjedjmTQfLh8mk4kax2s0GtBoNK5dDYBHwuOR8VTG4glP2hHUWnvje/zt9c+1vCRw3Wi1KdVhnJYqZM4q7LJV23q3yY5MBad9XXpDizFQXtR8Kk+eElbFB1Ib3gaeiE7Gak5HKlKYyJO/1fFa46YGjb3QgjtF86sKGh23gfFSkGLUat9z58vTBrEgXgoNqWVr33jKXlf/SkLZSicZnjGHUfrbG6SKvZeCE2V5zYM8z6HRaMDDhw/DDhUegH38+DH0ej1oNBpLwYcU3rOCNWXqwxWwR6bwb7T0Fp2xPi8SmLfSacFFjb4YuLMg6QvPmFqFDOdjtNPpQKPRgFartSQ7eVtTWqx+kPox1m8Sb/F2SWmHmMFIx7/kOEp1p9+hs4N/cwfIwytVGLA8PR1zWkBWkn24YwVXgmM6Hki2jgHHtO12G1qtFrRaLQCApZ2smmNryQx8hpNz6Dhb8pvzk+bEpox3yzHX+Jt/gxPbfLI+1d4oKtNXba9aPEt3Ms5mM+j1etBsNqHRaFyb5MEJf3oMdgqtXttA4jVeDtKCvIf95ykHgWMKg7uSncTL1ejV3kl5YPCKBp+8somXSWUcDQ7y8vBbbcxpdUkJ3qG8oX1TRk9qct4jMzQ7R9P5Gi976af9QfU22o+WrE3JX3pO28XSpxSW/RfzJ3geN+HTeuxXqnMXi0UI/pbtiyJ0UZqs51af4ftYHlq+FIvFAsbjMfR6PXj69CksFgt46623oNfrhcWe/AhymqfEJ5TPYzyh0aXZllJ6fvx8ar8ijaPRCKbTKTx79ixM9g0Gg6Wj5bWAPi8rRV6m+uNF4OG3mH7zPOf0W3nG7E6+IBcn+1N9jdgzza6rQmdZ+aToUy9NVdHvwSr5lNovVJdubm7Cq6++Cp1OB7Isg0ePHsHTp0+Xvrf8e0mWUFjvYzZ/Ub7U6JXS8rJoffliFYlG6W8JqbYsXUCEfiYuasOTmLR+4PWQypRsM0vGpNCfIt+q8sdifo2G1PJT7D3+jYef123v3VYUiWFY8PCv9E6zyWJlefJeNW4LL0UnY28LoRJSVpx4lFaKEIzlxY+WWKUDxmHV9Tb3pwSPIRND7NiMKgOPZXGbaNFQhIe8Ar1o/ho8q/XKItUgXiwWsL29DX/wB38Am5ubIQ8anP2v//W/wvvvvw/b29thwpauauRGlcf5w7xjtEn5S4sZtKOTNVBHN2WCqgrEArMpDkMVKMPrVctwqW0ePHgA9+7dg5OTk6Xd2LgogK9sz7IXx+/RCRatvBikXWraSlmKWBBGckDwb9xhxQNF0l2v9BSOLMvCnVc0OI2LKKydDRrdHkdJchitvDWe4+Mb37/xxhuwu7sLP/rRj0JwkOZFxzE6wBSTyQSePHkCzWYTWq0W3L17F9566y14+vQpnJ2dqTtAKR1W0A4DZkgLtrsWzKB9YPFPkfHPy8X24HzMj8ZaLBbQ6XSg0+nAeDxeOnKZ96+0c3GVjruWf5X5np+fB3pHoxE8evQI9vf34d69eyENHj8r8Snve2+5Eo/EgibU4cS7w5CnWq0W5Hke7n312gS4e5Ee841lSvIGn2NbYCAq1ud059N8PofDw8Owg4zylpQPtjkda5gOd4TgHcDSorHPClLGAuUVL19yOe3JnwInDXDRy+bmJmRZFoLGfBED/S7FhvPQhmnxH/IO3fmLaXlQONVPv60+LR1TtA1wx/9tAZWfmg4FSG9njafoQqyjoyP4oz/6I/jiF78I/+pf/Sv4y7/8S/jrv/5raLfbUK/Xw+Qkp4PqVlzMgju/ubzWeA2/5fEFKlux33CnFKUB7d0sy4LeTvUDcYcsAMD3vvc9yLIs8Eer1Qq6T4IWF/HES6x2KgNN3km6jD6X6I/5a5xvpeNcud7EZ5Zcpvdh4re7u7vXTlaqSsd9FnVlKqpsTw9o/y8Wi2DPURlC+anZbMIv/dIvhXH/V3/1V/Dtb397ic+kq1KkKygkecO/wXeeevA88bcmE6x8pLRabATlHS6wjeVb5YQitluz2Qzjstlswuuvvx5ORXn69Cm899574Tv0x3k/oQ7gchB5gPq5Wj1S4xFVoEiMRZLz3K/8XB693CgTe0v1p6vEunXAbUPld8bGFEBRBcGfWUamF2UcDs6smnHHHQAPo5dlyNvqnEqw+IH+XtVATckzJViyalqqghaclNJwlGkPOl40g9KTB8W6hLknGETpQCNwMpksOYJ0Vyym+eijj+DJkydwcXER8paO1OJjw1N3qb+8gcIyATBtHHsmFqR0Rcrn7SP9LQVrUoOUZcfCTQEdjv39fbh//z7s7+/D9vY25PnVkV1HR0fi8UaUN/BIL3R2UgMslBYpfy0vb9un9BEG4SSaPY6OxNveY5fwmVUOT6Plb9lQFBjcxKAm7oymAXzP8VaSvcNlPZYjTeBKdZX0g9S+ll3FearouI7xLw8OSn1LsVgsoNFowNbWVjjm7Pz8HObzufvuJQqPjOeTJR49mqozJLro8X64e5Hme3l5Cd/5zndga2sLtre34dmzZ9BsNmE+n8N4PFaD4vSf1taaDqX949U/NIiHu7im02lYhCJNbPIgDwbvpIlUr2/A6fbUA3ny5OQEZrOZOkFH8+MLp2j+sV1Dmu7W+EuThVZ6TlOv14ONjQ0YjUaFjuTzBKZSZIhEK5fhmJ91h7ZFJ/7O86sFAefn52GHOW0DKpe0+mgyl9IsyXg+lqgc5BNqXt9BCip7/UKvbWvRUYUvTttmPp/DcDi8tviiSL4SUm1lr+1Zxr6l31E7BYPoFxcX8OTJE/je974Hp6enS6dn1Go1aDQasLe3BwAAg8EAZrNZmKCkuxixTa2+jMkeTiuvM7dlUKZyPWS1FW9zTMd3eXltGf5c0/cWJHslRS9Z+Wp0UX1olVWEpz32Ck/Dd8TSo/vH4/G1ndcSyo4T6duiMsKTD+8bjf6y9t9tA6+DdKrOYDCAk5MT+P73vw97e3vw+uuvw9bWFty9exe+8pWvwL/8l/8SfvjDH8L3vvc9AEhroxTfTkvHZZEFiW9j/olHNwO8mJTVjvSN0eTR55R+Wg49op7aobjI9dVXXw2xtbOzMxgOh2GsS/Rpvzldlo6I1Zum8eiLKsB5hbc594W0PDB9kfKtb2mfAFyfIP4c1cBr72FaDkuHVIEU2yWm37Qx6yn3JlD5ZOw6oAkNblCsEh6nUHJaAeTA0E8zNKVctj+tgZ2a56oVQ0pw5zZhVQJO4gmPwVPUsCkTGJFAy8eVepPJRAwO5nke7oV977334C//8i+XaJKUDB0bUp29ddG+1cZiLC9qYKa0p5S+ivHA+SeWZ5H7PcogxThaJXBy4N69e/Abv/Eb4XmtVoNOpwMff/xxWD2MoAZ0ll0tLmg0GmHRAUcVPEHf0TSpAYxYEBeDMlmWLa2I177H8qiDi/9igTVt7KU4dB5o8oG24Ww2g263C9vb2+EeJQS9Y4d/j7CcKNzZ77lzKwW07fG314gv4gzz9LQPKC2xfLE9Wq0W3LlzByaTCUwmE7i4uID5fG7eHWtBsju1QCj+rQWIqwTyFy7Y4Lrw6OgI/uzP/iz8xh3DuHNU2h0KcL2tpf6lwZdYIJXTLPUvwFX/4c5euotG2smFdNJ8cRdtKqTAGuV5Hlih7zCg/PjxY8iyqx39Eq20DJ4XzbNer4fdJDwfbLcUp17zmbQ2kO79Oz4+hsViEcZPir+l0ayNl5RggQbtONIiPhAuEHj27BlsbW1Bp9O5diqDdqcjl4Wa/uL8YO3YxyO8qcz3tIvVtik7eW8SUh2m0ylcXFwE/rxJ3JTtiXyAd66en5/D+fk5vPfee9But6Hb7cJgMIDpdBp2eH/5y18GAIDHjx/DxcUFPH36NNib9I57D29ofgaXO5JOpGOBHpkv7YDzAstttVpRe5fTmBpL4vKby5gqguCa/vPQVaZsrR95GZrPW6/Xw6Iq5K3pdBoWUGTZi7tFUycmboOPVwa8vquQvzF9uirQsU7HEy6KfPz4MXS7Xfjd3/1d+MIXvhAWLP/mb/4m/Mf/+B/DZCyC2qdV39FJ4R37lo9Zhi7Mg9q+VfC5ZIPic1oXtD/RhsXJ2DzPYTqdQrfbDYt4AAB+8IMfwPn5OWxubi75A/y6Ds2WuSn+pDRQpNDCbbn/H3v/9iNZctyH43G67tXV15nZneHu7HJXK1K8mKQl0aApQ/rKgB/kBxuCYL/4n/Af4n/Aj4YBww+GHwwLgmXJpixLMCVZEmmullzu7IWzs3PtW1XX/fZ76F/kREVHREaec6q6Z3c+wGC6zsmTGZkZGbe8aXYdL2tT9ZUWZks26kvo8PKIx+6T5P06ddi6xtZVjtlUrH0ydtNGiCd4ZQUHPIY8DwZphhkXJpJz/aIwSh7QwC0NvGGgm6aT/qa/uRL2oKiREQsE0bR58s9DixUkkuiLlZnSRp5xpH1jpbXqyL9LyQefWe2d6kxpwVzJgEFDUQu6YCCx1WoFQ7LZbEKn0wlpptNpWHmIu6WovLEChzFFpAUaJNkmrRyl/YXfeFYcxoJs0k6cPEFPi185rVq/eiE5DpRuL/3r1gdS/hJ/jkajsBstdkdjrVaDarUaeJg7ovxowjy6j6bld7GmgvYN73tufEo8FOMV5GEaoEsNSFnf5TGmrfJonvQetJ2dHdjd3YUHDx7AcrmEs7OzaB0QOJbPzs7g6OgIHj58CL1eL7yjjnMeSOMN/7cCilJ/SjaH1sax9qR0SXyllQnwvF3q9boqAy2+oOXHAo8SOO1lQHPst7e3oVqtwuHhISyXS3j27BlMJhMYDoeX0kv9mWqDaRNBnAe5LcoXDnCZEAvkaOXwv8uwzzAfynvaGKMT/ZbdhLJM4y1cxCPV0WMvcrtD2hkqyWLpSEpaN20xRBF5qvkpsT6K2aNU7kqQ9EIMWlsjP8f8CC67NH9X4y+uA/G3ZGtwGafZfZbuLeqTSfkUzYtjnYF5LyydK9loFGXTjPyMO5uWy8uTiziR/9FHH0Gn04F33nkHHj16BI8ePQq7ZnFRk7Yz1uInCskP1fweTIML9rTFh3mBdeJj3jv2NFCdgHXj9j21NYr0uVZ/j+zkMs/S/7SNrPbQ8qJ8X6lUoNFoBL329ttvw8HBQZiY/clPfgKTyST44an3xGu0bQIevqDQeEJacIrp6GIITV9YtHDfbNOgY6LX6wUfuF6vw9/8zd/AkydPYHd3F27cuAFf+tKX4O7du/CP/tE/CnLr3XffhbOzM2g2myvjTLumRqprzG5KteW1fLCtrR2yluyT0uTRw5JfY/EHp5eOXRyrAAC7u7vwyiuvhPwePHgAT58+hclkEnRHlmWXFotp5a6LH2PjEv/nbZRCkza+rTGpydUUO9Sih4OW5TlV6osMzRdBaDYPf6/lSdPxceahx1Mm1y+abtbotfJPHa+etGX6AhIKTcbGDCkrbZ5BlvqNJxiQmkfMcbbK8XwrlXndBJJl/PJgg3SEmbQ7ULqTUiq3KDyDOw+veseCxyBNLcMLSYCnCDCuhD3CKbXtNGMvr/zwOgBFFb/0baVSgWazqb5HowMNd4CLXbR4Z9ByuYTz8/MwIQawuvPO69RKillrF834wv9jbUS/5w5BzABIGReePsX/efncCLXuy7MMBE6H93sJKbq0TFDnhmI8HofJsxifYQCDtrlV79h4j5VJJ2MtXWTlqcEzFmL0owNOHbxYm/D33Pnizz0GspQ+Vm96VFun04HDw0PY3d2F6XQKvV7PdFhpGbgDr9vtQrvdhidPnsD5+Xl4RxeV5IXXUfDkw2HJxhTaUuqIu8jwaF489pYGwiQaNdrx7xQapONEy5RB2Cbb29vQbrfhrbfegsViAdPpFM7Pz1cmYzXZytvEskWl77mNKuk6yQbn3wHApWCs9L0VrJL0MUcRp1KzE/hOLk3uaLYRvqOBRpQdefkFdZE0acXb07IJccLPu8vLI0PzfJvSb9wmoXl421OytyTejh2FzGUX5X3Nf40FcqT6SO8sWawdl11Uj1jwtL9XR6BdEJNb64AmdzgkO2SdNGXZ85NHpLZGO+L+/fvwyiuvwG/+5m8GvwkXL00mk2CzUNlF6efP8Z0mfyWdQd8ByHEMrUzepjG7BeuDaSwfRAMtQ5ID2I5WPdftf2iQ6ivxIrdvYz5HrB23trag0WjAaDSC6XQKd+/ehXfeeQe2t7eh3+/DT3/603BkMU6YUzq0fPNiXe1vtadUPpdZ+DetP/9e0wkxurx2SUq+sTJ5HnjCRL/fD5N3P/nJT+D4+Bhef/11mEwmcOfOHbh9+zZ897vfBYALefDxxx/D8fFxOBoXAFbuH46Vaz3X2tgbg9DK0eSD17bRdFmKbyal8T6jdt/e3l7YvX779m145513gp3653/+5wAA4QQSjE3TBcieutLnRevogTW2UnQDl5VS2hSbRPNLpfw99oTEU5oN+0WEpo8tHtD8Py1/DTGb0dIlMb/Wqzfz+MFl2tgeO7+IzbS2nbHrMCI8QmQT8DC3dr+e9OxFEzBWW1MjBMB37KenLzfVRuss56ocGw4u/Mqqc4qBHAsEWWmkPLzGkKeueRxf7VuOarUKX/va12B/fx+ePn0K8/kcDg4OQhloGI7HY5jNZiHQgKv4Usriq7ox8CEFGrQdrV7E+k3Kl9/9x6G1u7c/LCeFG3gpRrWnXEmmpfLeuuUF3cmKGI1GcHx8HO7k+vjjj+H09BRGo1EIgPF6YGAfeZbfg2i1fQzL5TLcrYyBTPzfug8wjxEWM/ql4BbekyvxENJqQeMLLaiIf2vGtpSHVQ4F9u94PIbxeAyDwQAmkwlsb2/DdDqFJ0+ehHScJikvAAjf/cVf/AVMJpPAIxJijgMfzzRARB03+k5rF40nY85Ayjj23qGEvPz06VPo9/tR21EKUFH6Y/ZpzHnmgbeysFw+PxJsZ2cHbt26Bf/gH/wDmM1m8OzZM1gsFnB6ehpWrQNAmJCW6NfGq6V/pLrjO+v0By0/Pha0smPjXKLHCmogvZQGL2j+1FbXAiYazy6Xy3CENK1jzOHX6iwFimiemk6l6fIckUnTefqI027l6dU/y+Xzuyfz3HNLgX0yGAygUqnAZDIJ40nrW6398Tm/F5PLCEkWUeDuR2uCnMpuBLU3PPfpXhcfC0Ftbm28luWDSeOK6wLLZ4qN3U1gMpkEmV+pVIK+WC4vjnW/f/8+tFot+L3f+z24d+8evP/+++FUlvF4fGk3Nn4LcPkI49iYjwURY8AxTe81BNAnZ+iiFgAIu349MRSuhySdGdNlnwdofarZEPQ9XqFAdSJeq/Hmm2/C1tYWfP/734eHDx/Ce++9B8vlMqmPvLRyujYl07SyuGxHvgbQbUnLxqbg48zymzfVFpYc7Ha78L/+1/+C119/HXq9Hjx8+BCOjo4AAMICSim/2D3QFKl3r2p1QHA9jf9Lf1vg+RQ50rwsnTcYDGA8HkOr1YLhcAjvvfcetFot2NvbC5saEHfu3IGvfOUrAHDhVzx8+HBF5tIYgxcaT143OwTBfSav/Vo0FhcDyll+giYvax1+6YuCFFuOPo/J4RgPxKD5h2WA1rMsmVEG1jHu135McUrHe/PTgt08XRlClYMzhlSO9MwKrr6I0OinjgcaIR4FEHMSX3RYPEsVHg8IrqvuknGWEriKOTeesjk4b9AAkdRWUp6x9oopp5hiSQ3McYO3UqnAq6++Cru7uzAYDKDVaoX3dNU8TsRaxon2THrPj0zlAT/tWBBPe/J0KTxLx4XGV97219LEgn88jYeXLMPAa7iWrRtTId1zhTvUsH4nJyfw9OnTkF4D5VlpHNO/Y7KGO3yoUzDoMZ1Ow99S0I3rEq+jyWn1gAf+eD01ftacZYmmssDp5O2FdIzHY5hOpzAajcKRbLgYhAbjPZjP53B+fg6np6fhW5zAthCTdVL7Ib/QNJIDE+tr673Ga9pY1uwd+hyd0H6/D6enp9BqtUIA36LJE9yy0lnPrGNg8wLtm+XyIojZbrfhtddeC7uw+/1+KLter4cj+q3yrbFP7Qft27x6i9aJf6sFNDldVj7cLovlaUEqz2PvaTYefY5BFC4XUmwV3k/L5epxpTE6efuk2gs8XUpfWnlptqqWll7TwGlI4U0MCo9GIwC4mNShkzVcB2nyQeMRzZex5GaWZSvBTq1N+EkSlJaY7a/9tuDhcc+3VltZKOrr0Tah7RXzIzUdoekrKa2WF3+eUi+06/AYdcoP8/kcjo6O4LXXXoNvfOMb0O124b333gtXwaDtqdVbexfj29R+4X2CvE/rqNUdQe/Q48fkW0j1S2I+TizNplAGDZY8Xi4v76xGn2Y6ncL+/j60Wi146623oFKpwPvvvx98E8n288p86fdVwqKJymFeR02exMaW9ZuXa+Ufq48nLaVV0o3L5RKGwyF8+OGHMBwOYXd3F7rdLpydnQV7ne4Upm1k2XFe+r1pvH5NEXuX65i8eRWhBeD5NV6NRgOm0yk8ffoU2u02VKtVGA6HMJ1Ogy7Z39+H27dvh3588OBBmIzF05ryyHuJfou3yx7nee0dyzeleXsWweWlR6KFjiOaH+pRj+/yRYDH5tTSpPqO3vSWrE4pj+ZH/887dlJ93atAocnYVMFVtMJXOQCzLBOD10VwHRigLOBuBh5opTwyn8+DwyQB25Z+n3fVYQxFhUae8iyFbDnBqXTFxiXyMuZNnRDrm5jT7aE31Zm0FG9epb8p4MQRTm7g3SMU5+fn8P7778OzZ8/g008/DfeN9Hq9lWMqJfrLkL1lyzRv2dTgajabKytttSN9LLkhOWf0mRS0kuhLaYs87cads6I0FAG2Mx7bA3DBjw8ePFgJcAEANBqNECDiTthsNgt362C/arIVg800UKUB0+IxyBj4ODk5WQnYad9aoEEF+kzrHw58R+uC453mz78pQ/5wvuELK2J0cxpo8J8GDT/66CN48uTJJb3tCdjSdHj0Lj/WzaqXlSfPn9LtNbppn3nkikaz1zGUxjc9BeHk5AQmk0koM2bzaPKC86X2ngNtAl6udDRoXrmHRwBubW3B/fv34fT0FP7ZP/tnsLOzA9/61rfg3r178OGHHwanG3lFOs1Byl/qK6SXB31ofjwIJ6XX6p3ipGp9K41JzfmM0cD7WhtnqbtpOegpCTzwqCEWsEX+wzaSdrh5bFsEjgF6DKpHz3rldNk6G/NrNpuwXC5hNBrlslXwdCJvv2j3uGpjStPtUjmLxSLYEACrk0w8AEfL5X/T/IsGZspECg2cD5fLJTSbTajVajAajQrviPaMfc1OzrIsLKzw6vcyQO1B5A0qJ5G2RqMB8/kcfvKTn8BsNoNvfvObIY/pdBoW6FE5XeTeOa4fvLKNjxeU9Zy2GKgc1Oij5abYgDyfq/A91g3ND+TgMgZtVLxi6KOPPoKTkxP49V//dTg4OIDvf//78Eu/9EsAAPDpp5/CT37yE6jVatBqtVZ4MA+daI9eR1BdItkOKYv3JJ0m2Vxafl6bO296pBG/w4WoJycnAABh0u/DDz8Md1V/9atfhdu3b4fy+v0+VCoV6HQ6UK1Wod1uh3zx9CiEdUWbFv+U+sAj5zRb02Nn5uFNru+1k0tSZRAfN3h0eKPRCM8fPHgAZ2dn8M4778Bbb70Fv/IrvwJf/vKX4ejoCI6OjuC9995bsU2Q3phfyOnwtN11BNYR6yzpSy2OURZwoTfm+/rrr0O9Xoef/vSnK1fWIC0om/kcwUv4cZ3sZ44XZeysA67JWMshjMFSrCkGo/ebshhMKkcLnkvPUoPEmxgYeYySWH4IDHrwyR1vcIj/Tf9flzKI9WfZsMrzBuPKpkMrX/qG05Ri1Fn5p9QxFmSwsO4+1oLi9Fiq5XIZggc4QdHv9+Hk5AQePXoUAiLcGCx77Eo0YznWc/6d5ehq0Ay8PDI1FjiNOeLr5AlP0FhLswmjBOtPHUO8G7Rer0O1Wg0LNVC2S3IL7zTW2pM62zHH2gqQ82CmV8dKvGzRKn3Hn0sy0FM/jcbUAAYNFnjHkpaXRv9gMAi8QSfYpcA5z5uXj/yRZxJI0zveSRNvuhQaKGIy0JJhGATHIxa1caLlh785r0o0eYMc65KLOIar1SqcnZ0BAITFC3t7e9DpdFbSa2POyt9Dg7dutA2tQLpnzMf0t8QjKfXN01+WrLXaibaHZKOUZYul+pll2PNl0u8th7ZblmWl3KfN/SgrnRYQ1fg4BcvlcmWCgk62Udsjj4z22n78G2/eKflq31v+PrZv0YURKeVqoDJf0x/4LrWvPDEbzq9c1+Ou6l6vB71eD87Pz2E6nQb9qdl8Un5WbCEGy7aUbDKuS3m7Su0s2ZYpvO4d+7E6rdM3SsU6Yj4IyhNUXlUqFRgMBgAAcHR0BLu7u9DpdODg4ABu374NvV4P5vN52ISAvnsM62zvmL9cRjmazW+VwfnXK1c020rzGz1jxKMTOa1ZloXF8ZPJBEajEfR6vZCm1+vB7u5u4B2+GJIveEL6i/S9Zb95/T9LFnr6NUaTZjdrPjT+9tryCLroZT6fw2g0gvF4DKenp3BwcAC3bt2Cra0taDab0G63YTwew+7uLiyXyzDGsVy++FOLH/BnUlqtTaRvU9rAw8uePDSfXOsb7ZlGi4df8B8u1m02m9BsNlfyoBs0LNu0LD2xzjzLRgqNmq3Pn/H8tXy8ZVjpaNpU2RyDN9888MpYL0o9pvg6M23MMCmLdskYkxTSVRi66+wffi+KtrKIBvTpqikODEpIdzCkwjPAJZQR/NO+SREqeZxGWhaCt7fkxHohBeFouR7B7g2e8fHjaQ++KGCT421rayvcJYOrZRHz+Rw+/vhjODg4gK9//ethVRii2+1Ct9uFLMtW3lnGYV4aMV9ahgSpbM0A0IIC2GeSfMRn9O65VOQd4/R9EefIci5eFGRZBoPBIBxviM/o8T3SHY78OFHa37EgmQe4oIHvqMkbSOPfag6jBJ6O74wFeC57ygqyWG3IgxNauR7ZgTuc6XeLxQK63e5K+1t1wvLpBD/dHVVUduUZp7R/uCMn6Qgt0IP/e44NTJEFw+EwjDl63JmnraQgFg0o8vbi9Fn5oqNOeTsPaHviCSq4CxLvbaIOON53yccr0sB3QZelF/m4ovlqK+b52NfqT9PSRSUxp1azYSy+84wN2r88HZ5uw4/9lGTMS/hgHTmKwSbsj+3t7bBILyXwhXnhe08f4ZHgfLdOCrAcrh/wH+qD5XIJrVYrTDbTkyToKRdaoNMqO5YuT31S/DML3C7Ab2j+uGATba0y4a2HtLtS0oNl2rcoD6nO42Xy9nj06BH80R/9EXS7XWg0GjAcDoN9IsUTcCKXnsqB6VAWSydApNSBjgGutyT5iqfOSGOO08DtO5qGxlLob06f9k6yha87ygqQ03ahdhTuvkKMx2P4d//u38Hh4SH83u/9HjSbTXjttdfg+PgYACCc/FJmrOq6+pDUjqNy3XNXu8f3k+xUSR+kjs/Uca3pzyzLoNlshtOCED/72c/g3r17sFgswulnkm0F8Nyf5bKe2wbWIh3+LmbrYZ4aqM9uwZPGQgrdtExP+uXy4jSR4XAIT548Cc9HoxE8evQIAC749u7du7C9vQ2/8zu/A48ePYI//MM/hNlsBqPRCFqtFjSbTRgOhy6bXvqbt3Oq78W/yWvjeHm96IkcKaDxJICL+kwmk7D7/P79+1Cr1eArX/lKGEeDwQAePnwY6t7r9WAwGIincK6D3usMjw9J09LnRf36q0JRGcRxFbpW6jdxMlYLViE8ys0T5Offx4QaTZ/HIJOEYiwPzXnC762gsJS3t102gTxt6KWZtwtdNUjbVHK86PM8wrAsAWopwZjC5e9ivJxCSywfq1+LtI0ngJv6DdIUcwitwCsPSHtkEk2nfVvG+JTqNRgMoFKpwLNnz8IChtPTUxiNRmHy1lqokDdIJDn01n0Q3OFP5SmJTnTi+KIMrRyPk0F/e2WaxAtWG8TyTNF30riPBUzWIdMQtC/4sUhoJFNaJPC6WO3GZbtUP0mv0omQlPbIM45Tv9F4V+IL6VnMVtBAA3XS90X4Blejpi7akewiLqPLgqaHraAkpQefp7SVtx4xu5C+p8eyajR7YNmjvMwUmV+k7zTdvVxeTEINh0N4+PAhHB0dhXeak2i1R1F+57Yo1Zcep9fjv/C8vXSl6EF8xvW95sPQcvCZNGlITz/AI+HwXi7t7mxPnZbL5coCNvovVn+eD32eqiOksWeVLcnuGH9KZXH66ZUNvByP/sX+k9og7zjmNOA1ARKQT6QFJZS2lHK1d962j+Wbx2aUvkvRc8vlEqrVKjQaDdjb2ws7erxHJPLy88pnj2yReKksXS75rzxvtEG2trZgOp3Cs2fPViYzedxA0l8eP9PzjoL2tzbW6FgoIpMkmyUv3VaZ2rOyfJBUFBnnecuhNux8Pofj42MYj8dw7969cIIHHqOJ3+CpH3kXuVv+UFGk5untc86P3vFVFmLtHJOPHruOfotjmB6pjvqOTipJMhyvD8CFT96FjpoMiNHphRWP4OnyyJyyfT6eL7Yh9R3oRPlwOAxjdWtrC/r9fnQRDC7gieniFNtQA5c5nrRS3pbvayHPmE3Ro55xh/2HC0B3d3fD0d7VahWePn0a8qnVamGjSt6Y0IsKafznGZNFYzGa/cxtlBidqeWUAc2eWJeckiD1z6XJWOrAWytzvKspigZwrPeaARyjxwqSSJBW86Q4TPS764TUoBBCE67UqKBpUDlKA5gOXM+q4DIEbh4hkaJUaZ6e8+21vNc1dvKA3xMpIYXeokEiLkwtQ0Z7l2qIa3lL/CTde4oTkWdnZ3B2dga/+MUvLtG4tbWlBrk8xrJFJ+ZP06Ecx0lhuoNDarfUgALVE7VaDdrtNtTr9ZW7c3u93qVjSJDmGLicQSdHa0P+jWY4WOBpy1pdlqqXioC2AQbBMYiAQUKpDVPGqTctl5tcl+BzPMq1qB71fm8Z+dozKZiD72LOFm0vr2zitNKyPflQYIBhPp/DfD6Hfr8PAM+DCFL5+D8/frLsFZcxh4MGRb3gx2diPhL9ZQQDJZ1H78mMpaf0WZNfmu1uBcsw6KjRTQMdGixew/wlek9PT+E//+f/HO7Z0qDdb87HlkdH8XbAAAzA6l1KNH3s/j7+WxqjHt6h+VkLlaSyOb18lz4Hva8R0+AkB12Ig5Ol0+kURqMR7O/vw6uvvgqffvopDAYDqNfrl8rx6u/FYgHVahV2d3fDs263C+fn52H1u5QvHT90skPaoYmwgkPSuOK2CJezNA3PT8rfAqdfusMZ87J8VdxxynV4ql1F60zjAnSXId2ljmmq1eqlRV34Hu/BbbfbIT/kAYtPLT5fVxCuSHDTI38WiwVsb2/DjRs34ObNm5BlGfzoRz8KweLUcq2FlUXbiNs2ZYHylTU2kW9wB+KDBw/Ce+pjWz6SVobk46TWwSobbVce70gdh/ib5pFySocETgcf6zyfMseaN791xHw8WC6fnwQ0Ho+h1+vBf/yP/xG2t7fhzTffDHeIIprNJjQaDTg/Pxf9fw9d6xhjUjll5cVjW0XojsU3pPRlyLU8wCNva7VaOFmC7q7HyT+kEU+82N3dhZOTk5UjjtGvpbB0Ird1eX08dgbmQ/PUyvK0BcBl34CW4/EfNDpjoL4L0qtdm7RYLOD+/fsh77OzM5GmRqMB9Xpdnbi1ximtL5WnWvqrhmXH0ud5aedxDVy8ifF+yaa8c+cOHBwcAMDFSRj37t0L+W1vb0O73Ybj4+NwolSWZZdOGbyOba0hJsu08aml5enX3RYxHrpOuK40XpqM1YwDgMvK0upgr0JITet5Tt9JznNZBkMqTan5boJpyjBm6H2C1LnmzjwPosScbwwKl0EzF3aSYyYF9bx5SzRKAR3N+fHkmRfU2aVlegJEGk1asMrzLUILNErOsrXSX8s/ZaxafOiRM/wbWjbd6cAdGeRz7qin1EOix+IrPja14E3MibdolL7HgG673YZWqwXdbjfsrOHjPA//4y4DlBspckIyoDnKkscp7bopoEzmzgNC2s2SMubzGIWoW6hctoKyvCwrDU+n5ZsqIyT5roHKPU2OWPRa38RosMY35QVebh4U+Z7LRE/bWrwQ4w2PzvDysNZ+0nOqoyX9x2mgaaX6cgeYv5fAjzaOpefwpMWjsJGuDz74AAAgHDXJ8/HyYB56PflReUgdXN62Hv7hsjWFlyS6pDyk8YKTstL3+Izy0s2bN6HZbIbdZ9I3eDQjPyZMmxzw9iMuCOETqin6Q7LpUZd47/TD7+bzObRaLajX6+GeSst3sWS2RBNNg33Fj4rHNFmWrQQdad/nvXcUZT1dFEJlCv2/Wq3C9vZ2qH+/34fJZLKiozm9ND+L3+nYouXyNtO+5YuBPPX26PwY3angehvlYb1eDzs+cHddkTIoPHaOlY9mf5VtD0s+My2LvudHveexLyV5bvlz0njVxrdWL85PnjaUbMoyeVLLyyPLipa7CXhtBwqUxQg8Sns6nYZrWXCM4gIl66hofK7RksK/Hr0TK8+LmA1bRvlSGXiVBV2Ugsf7arrXooXmX8Sv4TJwPp+H08yk0yJoHAInbKvVKjSbTTHuodWD8lZMnnt0m+YnemSppaOtOljfSt+l9o9kfwBcHFN8dHQkLhYYDoeX2oBP7EqIyd8Um7UMOc5tSi2NVLbmK9JvYvXR/Gw+1jT7AWN2dHEf8ny73Ya7d++GI6gxn263eyn/PHbAdUAeHUWRoqs9dq+VLkZHTMfFvvcgr017nZF8Z6w2mPI0YoxhNmWsWUCjrCyjhv5OyfO6tAfAqiKqVCrQarXCcwQ9llhy4qQdENzIwaAdzzsvzdIzrlTzrO4rInyke3ryIGY48Pt88+5csgQ5dzjz5K19FzOgpb7UvsvjLKWCBslwZxkPVLZarUu7xmO8lyozpGfe/i97zKGs2Nvbg/39fTg6OoKjo6OQFnfXpOgSmrbZbMLu7i50u92wq48jZkBzw7wsWHy7DsckBTzAJb33OCg0fUrQTqofHTcA5e0+tmjKE3yK8ZOHDm/fxvggjw2mvee8kOpQlhkstEAnECW+S7E3pb/xt5cXioxTrsO00yi0HaIaTTx/aSU76gR69BpvvzL6czwehyPEFosF/OAHPwAAWDlWzII2RqUgktX3qXXx2CaxclGG0iPukGfLCCJIARHU91gGrkbH++2w3bIsC/dWfuUrX4HXXnsN/viP/xgGg0FYcU7HFx5TzO/v9dImPVsul+EOU6/8oW2O+fEdgpgv5unZ6ZBlWdhh+sorr8DNmzfho48+guFwGOwUDNDTPrT0ntZGOB4x8Iy2i8TrGKDGeuKYrdVqsFzKJ7JIQFro5DfWWdul02g04NVXX4VWqwXtdhs++OADePToUdiBi7vIaN7oB0rj1KLLCvhJspqe6lDGGFpHsIfzSJZlMBwOA893Oh1oNpswmUxCgL9sHZpHzlB9ZKXJY+dptHB5jvcMUxlBd9NYdFO5pfmo0k4qKk802R5rT+zvvHYB58OYn2jRo9GhjavrEm+6ClC5DvD8uhaJ38bjMYzH47CQIuWKhZQ+0fK4Cki+ch6ZogF3neJd6gAQJsJRD6aUqbVnKp9TXxjg+WIaakdRuYHvAC54aDKZQLVahZ2dHeh2u2b8T5JHWptLvo63bWI2i+ZTxWinf+OYwDikZ7FRURmENl+324Vut6ve0U0xm82CL8JtZwne+A2mXSeK+p55ZU2efuL8iosapHz29vbgu9/9LhwdHYUTMZbLJTx9+nRlh7lURooe/KIhRV4XjTsV9b83gU3FrDSIO2O5UqHvJMGSJwiYx3lPyZ/Dcu5oGs2Bloz5mPCyyiwj+LJJaHVdLpeiEE0xBGiAUILkIKfSCwBigBHzxX8eQR0Lynnp8gYcPLSsI3jgpUkqm8sJK42VliL16EUtL6utyjKckI8kx4xfPC+V55EdPJ3HOcEJLtzNAADhriou9/M4hPRbpKdSqcD29jY0Go2VtI1GA7a3t0MZPECs5U1/Y1tWq1XxmBKvkyIFU7V65UVe+UV3NVHHJk++mHfKN2Uarp5+RSD/YECXBkgs54i+swKIHuOrTLmq5eXhOylQ5u1HK/9YHpK+ssYCDxCUjZj+tHQB3e1r9aXW5rE09B1t1xQe49ACITE6rDIlvUttMMnGzbvzTisbQY9GR1o8PKnpCMxDQ2wsxGC1M9czfLxzucR3lXpo5OktvrR0HQXqTy1QhRO4tI/G4zGcnJyEnbNUNkt1suqD45IeQ093mWj8QOsoyRzpHW8Tq58o79MrVNB20torRb/SdNgOsQlVK+/ZbAadTgcODg7g9PR05ahnPrknyUd+ByetC/Ir3nHabreh2Wxe2nXtOXadLkygfUT1u1cn0n6iwfsUxGwKms6CZMfT9qO8WKlUYDKZhKMTW61W+C1d25EXXF7mtXnKtH+8kPgV5UNKjIHnZaWlfhD6cFIeXNZoKNJ/XlnC9Sd9hs/XRePnFZodO51O4dGjR+GITL64Km9ZMb87L3h+efKX5LPGa9J3see87Xg5kr61bCBLd1g60Eu/lo7SqNnTSAM/AYSmlWwViV7JL6RpU+W35F9b+lb63iqr7EXVMVDbAk9wlGwE1Meoo2m8IcYjRfUaz4vb0VIazR5OpU/zFyQ/U3pH+1uKC1iyZzabhTFAfYzhcAg//vGPYXd3F+7cuRP4rN/vX1rYR+nA/GgcUFpc+EXQdV6bx2NnW88s/9Lyf8tEmfnm1eFl0LAyGYuDnAbqEZKxR5/nJU4KbpTdaRK9WhlcGfJ3MUHJyysLKW2yTsbnwNXjqfTx+9rKNkAlUONHUsaxo5MleOjm7zZtkHAaUozRlLy9Tn5qUID+LxmGkqL3ODfSt7xORaAFpOhdbBz8zlZKGzecvGVS4FFozWZz5eilfr8PWfZ8B3VqQEYykDB9pVKBvb29S2Or2WyGydjFYgEnJyewXD5fBW+VA3DRVo1GIxxPLClSKRBFDV5PoE2rG81Pg4ePON9K72lgSCvDO5a9vOMJ4ORx+DRIfUV35Hp3c0tOML6LfesJHnh402sXWd/w9rdknVZXj9NGeVjjwVhQQKLRY2ul2g0SjZ7xJ8kACVp7UXmhBVB4Odr98JTPpDs7NbokftDqS7/TeIZ/QydG8BlOlqKDm2LXWzoV6aK7/JAGb6BBsgckSGNOGuux+/di/KzlK7U/lkfrEPue/y0hryNZrVbDYijO72gT4AkeW1tbMBqN4Pj4GCaTyUoAi9Pi0TX4/Wg0Wll4g6eJcL0A8LztsFxrcps/42OC2gNSG/L7rfhkLKVDa1+p3vQdrWPKKRQUuFOw0+nAL/3SL8HPf/5zOD09hVqttnIyizQuuXzhC8DovZw4GYs7OfH4RfzWmqTGPOlkLA18SsE2bdxxO047yjEPitr/li6nMn8ymcBwOIRPPvkEGo1G2F3M7+T1QpPxlm2s0Rmrj/U7FVIfW7ZYyrUmlk7UQPmJy2VJHlm6Lg8/er/nsovKRSk/3r7eOpSFvGOzjDGdmr9mQ08mE3j48GH4jfoB8ymDhpgfkmK/avCMNalstAEALttMFv2pZdBxJk1cWnWI2dLrwHK5FK/awHeSX6Tt8MV31gIqS45p7eLxyaz3sTJivplkg1j10Ox+aaxI45WWh4vSpNMz6CQe2lEenWf1M/8mZsdrulsqm8Oj2z3jj143qNGHf3vKlL7FtLPZbGUzRbVahcFgAMPhEP7mb/4Gtre34Vd/9VehXq8DwPPTNiUfUbKZsuz5CUB5cBU6p8h3Kf1BEbOHYnmkxgQ0GxPT0P+9eaai7L4t0n4I1zHFkhLB32UbbHkaSGNMqWNTGGcT8DgGefLcBDRlZP2WwA2OIsfoWqBCXAru4NFQ6yiPBrjob4Tk3JXFFzxQ5M3Xa+xJeVpOXh5QIR4zVLjTLEGTXXlkRQqWy6V6D5vXgYjVid+3BnBhoGBQLssy2Nvbg1qtBo8ePQp3VsVgKVGLluVyCefn57CzswM3b968VNZgMAgBPS9over1Ouzs7EC/34dutxvudSsylsvi37LGMToINEgEsB4dTBEzMuiYLEpHjK9T+gTbKfUY+NT+ssYEzYvfJ8SdNEmm8QAgRYzG1PbS8qT6Uru3Ow99XpowHZeTkmPrMbCRfjoB4KFHChLF0vFnvO2svDQdx/PV8uBlegNhNAgEAOEKCrwywjs5YNkyEs3azltN32tt5q0vb8+y9b7FI1JAgepLb3CKB594n0s8U+R6ChwzW1tbMJ1OodfrXbqbnfuIKcArG+h9fNbuC3wvyU/6DGmhE/60LgDPFx3wNs2yLByFhnabdW2Ndvx0CrRAF68PpuNjtlqtQrvdhm984xvw1a9+FT744AM4Pj4Wy8E25ztBpPIHgwE8fPgwHBdpHRFHy7DGqnYEbCw/bXxYAVcsl+bFnyHw9Bi8y8yDmE8kvcOjFLWTcoranhotHn3K8+JpyvSPNHtH0plSvbx6lJaH7yWe4ItApIkRSmPsBJayocl6Lhs8+XhtJss+pDRZ+edti3W0YUr+9MqtLHt+pY4lQ/Igbz5F/UyrH/PknfcbxHg8htlsBs1mc6WN+ckZ0l3h6+aVvMAFbEgrXXjGeQnrGNN3qcc1e+BtP4/Ph0d34zs8gWUwGETL0nwgD6w2azQa4rv5fG4uivX6CEV1dxn8m5KHZFduAqg36YQptYPoaTQUyO937tyBvb09uH///sqVhph3GfStE2XyR5njf53IG/Mpml9Z360T7jtjLUVnCU1PpWMGcx5YCipF2RQxtrzK5DoyBsKqt+YUxb612nS59N975KGRGjroVEn0c6fbUsgpQQP8Bo0rjWbJsE81aK0AnrRrQaI5BVo/SgGYlHHE5Qf/JznQnsCH9czjSJYFaYJIKidF6WryDg0enIzFMdBut8OdLLhCDR0EDRqdEmjgc7m82PXS6XSg0+lcSjuZTMKumzw8iBOy/X5/5egoqU0kPrT4mCKFd72Gu5Uv1z+z2Uw8YrpM5Gl/LUBVFmiQmDsMmqz08KrHPoj1uaXTacDZSpMa5ErVCx7Zq9FAv83bnnmh6RGJFq3vtTHtCeCk8AFN77GBYmVZ8oPaWjEezjOe6S6EZrMJABeBpOVy6b7LM8XuTw1qSumxLbRV01IeMZ4uQw5o+XDZ7hnjFi9LeWNf0vyLLFCi/UXveJJOm8mjy5E2uuMU/4/xusdWorskuI3JZQH9ezQahaNjY7IX2yOml6ktq73nNEmLYaS/cafBzZs3odPpwJMnT+Dk5ORSvbCN+LF9WltOJhMYj8dQqVSgWq1eCoBJ39C6SO/zBlw1+YYBejp5gv+n8CO2Yeq9rZo9hH/z39ppTevwO7y+fN78itBM+drabee1yS3aLLlKaeB+Z0o+PG0qLHskVg7VbUVsMk3OpNj46+DjTUOyx1DOoKyXdmp76x4bl2XZ1ZaNFbO/YvpV4kErv1gZuDibT5zRvrCO+N0UUsrCWIt22od0ZD+1E6Rxz2Wj12b1tJVln2r58XRoK2B+9XodptMpDAaDFRkl2bCcllQdTscOzY/unETgGPaWoaUrwns0z9j4SdE1KX5/HrtdyjOWB60f90lo/9B74fkd8Ts7O9BqteDhw4eXbNGyYxEvKrw2X2qsI6VsjRck3WbZemXSZiGP7ioDK5Ox0vHEMbzoTF+W0VQk7YuK2LFuHFrQrWzjiRsPtVpNDNJtgteRFo9Bk7cMCykCzXJ0aWDPyiNWtte5sHYxS/SlBnauk5Oo8UZK4EF6R4+7wyN99/f3w11fdPcJHpE2Go3Can2kIcUhlOTpYrGA8XgMw+FwZTfFYrFIPt4J82+324FH5vM5DIfD4LwhBoNB2LnjHfspumAdPMQdhOVyqR6rQ/sJj7f7vIHLII+Rz4NnkqPK88a0ZUILzEp0xGRvSpkWvE64h24r/7KhyaEUuYGyAI9nx+coHwGe6x3PpJVl/3j1vcSX2lUKKaDjgE5MYF0tmZ5lGXznO9+BV199FU5PT6HX68GPf/xjmM1mUKvVVJmk5eV5RmlGB10ax2XB0mv4TtoNBbA6XmmgyWvnWRPGUhAdf6N/RneHAPh2K/PAJV8YSOluNBpBv+K3V6VbKA9TOcTtQ2mnMf5/lbYetisPfNAxznlG+o3faf1ATxY5Pz+H+/fvw2QyCVdQjMfjMGbpsdJUTuTpYxowo3f88jpwPUyP6kV5ol0T4/Wb6I5zKZCs6TEpAJqX32k7Yn7YL5pOWS6X0O12V/ikrDu6KQ3rtneKQJJ7nm/o/6nlefKl+hLB+/Uq2tFbZlG9iWOJ20wAq7uHv2jQZLQF62SZdaGMsqh85DYv7hAGWL2yzMt3XPYiUJ4PBoOgJ6iOQdBTKpBHr6KdY6C00LEEcNnXo/WIIaar6Pgsw4aTbCwLdAINdX21WoX9/X2YTCbheixvvqnyhtrl9Do9+j+/YxTLpzp4k1fLle3reJHi55cFq6zRaATvvfceAFyOZVKexg0YCC6j6HUnL3G18Pr1VzUGrhIrk7H0vHCpIVIDYbGAnycPD7x5pAaGPGVxx++LCkmQp7Stx7HyOuVSedyI0wI3Mfr4916aPIZ7Cv/kVZgpwWteHjWyU4LNND/pOxqk4eXRPFLqYI3LF32ceusj9WGj0Vi5p5X2K3+Wt50kXsedJXgUOP5OCRBRQxwdNDSYMS90ZPiYlpwSLSjnrZ8UZE2B1b5Z9vyuPusITxrkjOVXFLzdJCfK238pZXJnldJCwXmZf5MXvG3LNBSluknPqdyN0ZQiLz062qJLen5V8jXm0HtsDO4k5GlTz3spT67vyt71HhtH9O+DgwO4c+dOeM4nOWj7pIy3mL3M+VrjNw80O4PnlzeYT+UNBiqtoA3lJYtXLdkm7Z6wyqLfS+8wLzqxQI/E97S5Jddpf+axPTVbXJogkfrTyzMSD9P8UnwDTOflYz6ONBlvlUvzmE6n0O12wxGPdCJW+t6SbbyNkVfoDh/t+FbLV8b39C5bnlbKg9LhSashxhcx3Sq1Jd/lKi140MrFxXTI13knY4v6lpbc8OrXsn3TGO1eGeVJa9kxHhvbYxeUYY/Gyigrf8mm1uppjY0y/I/rBCmO4f0utS28/oaVLtZnXjq4XUzz8PIJL1ezM5bLZTiNgvq5Ft2UBzW71NOWXB+ntJNH1nhoibVlGT6IRYulCzSaeF6oB2n/4SJyze7x0pw6/iQ7TmvXWF3LkOEeXeItJ4+/WQby2tcIq/8XiwX0er1gbyIsO0vK5zrpniK60GObpYwJTU6l6oQ85abaENcVsTiK1JZa+146pphmrq38kxww/v0mB8BVCSIJViCFC46yVr++qOBGmHe3RSzPWB603efzeTgiFZFHyUvwrqZaJ29yGqSxjM9SdjpLq49SaIkZItrYQIOqKJ9YgajU/qDK5SoUP5bJV4xRTCYTOD8/h1u3boU7W7PsYofpYDCAk5MTMXiUd0Ug3fHAcXp6CsfHxyv3lHnurEWasyyDfr8PtVoNbty4cYlXxuNxmPTdhIz1OF1eYJttbW3BV7/6VdjZ2YHt7e1Qj4cPH8K7774LjUbj0p1meRyUvMAjryliu3Pzjg1rbOE7uks4T/5eGjisMc/lFJU5mjOIz607Ezk8afIESrkt5w1irAN5gsmeuvJdfx4ZrvEBDxbRdNhHlo6t1+vhXu/FYgGnp6crdw2n2CiWba4d7wYA4T5IbSI4xb6ynEcarKHvsK7WkWHUXsGxRNsXv4s5mZSveVCA/8P8JHsKZQ8eQ6fxYOpJMjx4hGXRKwAwnZQvpZfWgQdU5/N5mLDLsgw++eSTwHutVgvG4/ElBxptPl625TNK9aNpy7DrLND88X+0EfA47uFwCACwMimGi8hona0gUpZl4b4rOmnJy7Z4i/YV/Ya3K+eBWq0Gg8EAPv74Y7h//z5UKhWYTCbiriJvm3F6zs/P4fz8/NIpAnT3Am9zyneYFk9kQRsmNiYoDVTvAzwf9/Q0Efod51Me5+DyguZF60HLQ37AxQv1ej3w0XJ5ccdu7ModzB8X3pUNqe3zfM+xDltTGv98nPG+2traCidfjcfjJJ9bol/6nspbai/Q8UTHMOWZIoHO6wQcn5K9hBNmeL883gFo2ZypvvJV+dYW8L5tzc7JY3OvE94xy9Nx3Q/w3D6j8g35g8pouisNv+dXhXGbBcvk/ygtki3JkeoL8DbI+61FlyUPLHvZUw7XUfx9ik2WCsnfQftnOp2GeEW73V6Rm3RXKsr3oicDSTrESovyKhbHQfm+qfEs9eM67WNaDkB5cqtoPltbW1Cv18Xj4PE9AKycHAQAYSxcF/kLUI4u/DwgRTZ6407XxZ6Q4jQ0RqFhxQNICfBojZmqQIqk9Thv3rSxMlMEYcw4877LA4nJymC8FEPBM9D48zIGHA92xGjC55IDVrQ/rO81gUzfbULparTwdzx4obWvVa+ikIzzFB60+r+o4U3bKQbJseHl5+FjLWBC/6d8jve0Yt9qOyeKGGZcHywWCxgOhzAajWAymajpYsAxS508/izlCDFrzJUhOz1OEO0r7As8LvLw8DAocjzOjjtgNB8+Pso2OnigmD/3jM+UsqyglscRp+mL0iLlHxsjXI5KclWCxo/aogtPgMKiz/tce1eGrKdtmaoTpQCSlC+H1W5F6mQFv6R3aLDjXYUSfZSmWJAhLy3L5TLcCSqV760Pp0MLuuH/kryiwTdOI/72Lrjx6DJedkyWWX4BPqfBJ54ntwdS5GYeW0B7Ttum3+8HHgBYPbqtLF2i8UWe76U+sPhFek5PheJ08eM4tT7CMheLRVhUgd/jWKJlYlrt2Go+Hii/S3yDaefz+aWdBFznxPwTrT0x2IWLROjY88hn7kdoOtAjd7k+tfgg1b5E/ud2lmYjYxmehSjWbyl/TT/F6sR5JNXWiJVZxFf1jKcU2qyj9z32TRm2i0WfRQem8/ZnKorKbMo/Ul4YBNdkbBk0pfjWRdOkwMs3RfXnuvpdo8vSb7Sf2+02ZNnFAh1LnvM8U+vj8fMsfzeln/L2UV7+i9mjlo9n2YAePY/5SHR66cP0MfuenobG7S0uO1L6oKgcj+lq6d0mdEfZkMa6xCOWzUGRR/9L/gYvk/M18jIuRNXkCLcFpbpsCinlFpE3PA9tPJbNoyn5SXyntU9MFmmw/CdPeulbD3+XIW8QK5OxnmPRyjo7PVX4ap1UlOE9DmRMGMXy4wLE2plg0eGpq+R8lmWMe8rO804qLyWgxAW5BjpBQwMtqdCcfi3ti4osyy7dI427JPA9KkjpWDtLoHmNdgrceYKgq+o0o8L6fRVIGSMxx1ZKT9PiSm6+6n65XMKjR4+g3++7+T+vjKJ9NBgM4IMPPlgJWnlBd2EgLXgXLZaJO7qkcY6/6f+xenH9FHMI88pZvquT8nilUoFbt26Fdjw5OYnmR53msoITWpCLfov3SY7H45U09I66PLCcbA00kLrOAIjlXPM2k44gjJWh8arXQfaWI33Pdx1p7WnZSHlhlUXptOQ+t7soD1pjWRrvMZnBdR3lWctWkGjCccTziuUj0ULL50fcSvQjPefn53B2dgYA8TtJJUeQwnJuYgEjnj/Sz+Ub15VSWVg3esyVBloGrQOC73Tmi39wwirLsrArAO89GwwGIY3UT15di/+4POF3pyG9VH/SdsI02M9HR0fw7NkzqFarGz+9RxobUv/T0yDwfzwNo9lsineyar6ZFPyh4HnRcSLlN5vNoNVqhWOC5/M5HB0drez6QP7gV0VQWqQdm5VKZWXyg1774LWruNyUeIHzM613pVKBWq0WbK08trwEWga322LxAl4XXidrTElthr4G7xd+jQddVKjJVa+sod9If/NytIlfLvMsP8zSg1obS3ouFbE6anzI7/Gbz+crPoZVntYG+B5lKR3nnLdjR2ojfalXDHjaMW9bF8mPjyNaV3zX6XQAAODs7Cy0gdR2eZDCY1fRhh7w8cqfIyzaioy1soD2A/qntVoNvvWtb0GlUoEf/vCHKzui6R3giCK2hGW7SnQiHako0sbeb/mpklJ8xlueR6/xEyskOq3F60V4D2mYTqcwmUxgNBqFHbLaqRFa7ILru7L8eulEEu+3+EzSuUVRtJ5eWD50GUipR4yf6Ql6nkWi1FfYJK6DrH7RYNmcqbD4IdY2RdpOih15celsHCsTy2HVvs9jIK3L6CyipKU8tUCQBKtdJGFu5WE5aKmwmD+VF7w0aAHGvMrHCgR4HEcPX0vpr4vAK8rPvP7ckZICMvTbFL7n5dA8suzi2FycnOJ3BXDjjecRCzZL9JQRRCoCzfgr0qe836gxgsdQ4vF5CHr8VF55HDNiizjoUntgMBL/xmNMpOBiGWVZaaUgojcP/J7u7MUJAwzij8dj+Oyzz+D09BT29vbCzjVtTHqR0rc8X6R3Z2cHOp1OCFYOh0OYTqfhvg90orxGSoymWABRCshK36UYZTEZl8JnnB5pXPDfKTyJ30v1LUv+eXT+OmSol3+4TvOMD29/W9/F3ueVR8gPMbosXR0rP8ueHzN3fHwc8sHFFbjwKsVeorqIykgrj5RgFP/Oo4No2pT+kAIuaG/w+2J5n+NxmtK44TJL8g1QJ9Tr9UB37Fj4WD0kvozJUCuPFMR4gJdl8XWtVluZHKSLAwEuL8qg5UuymP7W7En+nI9P2mfSsYzIEzQ/Xr7Gz9y+4+CLuyRbm5flked5fHtMx79FOcPtNdq/Gs9J/odHdqf41dIY4GmkeuL/mv/Ef2vvpLx5O0k0abzq6SuJLk/6MsGPApbGHy+3Xq+HHXrT6RRGo9GKfI/JeY8NI413+rclC64j8tohdNIG67e/vw8AF6f28AB5iq1QFp3rxqZtXm++qX6IVY4mR9COwVhMtVqFRqMBr7/+OsxmM6hUKjAYDMJCPq9NJslaTpP2O4V+bz5FkGLPSjpCGj9Fx5EFyeaU6LZ0jtcf5PfH0oWD9AoOXoZEs5RO0oUpPBF7z3WJ1FcpdpEHtH097ZwHkr6KjV2NP7S2iPWTRkeMboumzxOK9H0ee2RdvIaQxlZRvzKGTdkT2niyaBEvKoll8iIhZoin5qWhrB3DmwQPCABcXtHp6XuPEailsYywoqAr+5fLpbjDgztZEp3X0SGwULQttRWMUgDJWnWUQgfeaXXjxo2w0nk6nUK/3w9pcCKR0sn7JnavQBk75sqAFiTwBB9i4KvH6er9wWAA/X7/0p1a1WrVNK7ythWOJ7pLlwauvTyC7ULTLxYLGAwGIh9e9X3cKcYPtu9sNgt9hYF3DL4fHx/DH/zBH8DOzg68+eab8OjRI3jy5AnU6/WVOyU3qYcw8PXGG2/AO++8E2g4PT2Ffr8P7777Lszn88L3oWkGd94A26YQM2bxucSr2Gac76U8PeOUOnPXzSi3wIOyvN6WruK/taApLUf6htMhvef0esED4BKdqXIEv0nRc/gt3nV57949eP/998N9fAAQ7qiOgfM1pSsWeJOCvTGaY+ODpqfBH7QPU+pEfyP/of7h45Aeb4v3klJdTPORyqH9hoHO7e1tmEwml06B8CJ2fD/lAT7xHoNkO+cdD9r3NJCHaLfbsLe3FyZhHz9+DJPJJOxMte7txL7iPEDbVbqj1xN0RN1HxzXyAtXZ/H5kztOpwPy5LMA60vsfKc1a3ahdgen4DlHaPhbf0PGQZVmw5/kEnAakhZcd07EU1p3LWEekk77j/oaUN+1bTEuPq9bkSKpPQmUrz98zbovey7cu4MIKetdyTGbt7u7C4eEhdLtdGI1GMBqNwlHhKQFvXgaV47RNtZNN+O70Fy1uYAHlB8o01KNbW1vw5ptvQpZl8ODBgxU5Gts1/3lETHatq8xYOxctG/m/0WhArVZbicu02234h//wH4by79+/Dz/60Y+CnSLZtByW/sHndGxpdpKW53UB1fH0fw4tDkTtTg2aPcl1WowGKU8pbex7yptUPqBNjPfKanlyG5fbRx7+l+iM2QHSM8mv3AR/XScetlBWbJXLA2/M54ukayg8db+O8pBC6+PrTrcGK44j9dWlO2PXXWEtSGKlTflGgpU25lzxNFp6b/DIKseDosEOmg+vy7r6Pk//piDG5Fg3WmcMlkiBOC2/onxo5RPLS3LiUx2dlKCsNx8toOMBVbS8zdHwxolZakhiEFWi1RLkZRkKZcDi0zzfawY2D0D3er1wVKJ0JxwidQeUl6dT880Dj8MgjadYfl75XhStVgsajQb0ej2oVqvw5ptvQr1ehxs3bsBisYCnT5+Goy45+ITAuiCNM9zFu7u7GybfKf9ZQXEKy7DU+k2SI9o3eZDidGl6TasXdS6bzWaY9KJHoHJn1XLWaWAbn+etiwU6LjbllNJAuRc8veVgWzoi5phLtErfaXnNZjPY2tqCyWRyKfhkgQclpPexgBVvA+0uSKl9PP3hlbc8f68THssH4PkCF3oEqQbKZ5Kt5akPtiHKPZx0ozsAeNvy/qbjCnV4lj2fMAV4PtkznU6h0WjAzZs3oV6vQ6PRgMePH8Px8fGKzVRG0MITXOV+k6fPOW3Sd5VKJSwew2NKG41GOJ745OQEJpPJCm9rY5Ee3yy95/aj5gvyepepe7msRz6h8kHSOfwZ5yWvzePVY9K32jt8zyfcvIjRro3PWP9pdMbsR+ShyWSyMjY5b0lto40NTfZxfqY+rKaLLdtDS5eq78oAPVKT6kCtfbD+8/k8HGHIx31enyqWThprAPEFLy866LhFtFot+Pa3vx3007Nnz+CTTz6BWq0G1Wr10vUxL1Ee8vjmHv1NQXesT6fT4OvhCSqvv/56iNXMZjPo9Xrw6NEjePr0qavMFN/aSpunrpuEZj9rutrrByNisimmky14+4C+l/gIAFauMuKLXfLSx8uR7CaLVol23p6SHXgV8MakvPloeaX4w9I3KbpX8/143ily5Kr7adPIowtiMpP7Ddb3ZbS3ZetxGjeBlLHmjYtIea1MxnqMJc2xTRUK/NtUpRMDDzJ5mMgTlLMURqxdqHMQy8dSmmUIYu7IS6uPipaB+cQCaes2lCQFKgW414GYIKOIKRjv3QZ5hRTNUwrScvAVwJROj2JHR1o7Rg7vpuJKAYNxKXWSJt03IcylsSz1nTUGaRr6vdXGNC06wwAX9/qcnZ2ZQSktOCbVI2Xs8ny9Rq0kM63gEqfLqwN4eo0OD/1FZFqn04F2ux2O/QK4CHbcuXMHnj17Bvfv318ph/6jtJYdEKZ50/8RuKsBV09jwBiPkPROxmrgPMn7gh5NmdL+Hj72yHBPwFMzKLH/ms0mNJtNGAwGQY7ikdRSHho/Sv0vBQA4zUV4Zh3y1MvXsT6k9czjLHphyWzu0PNvZrMZLJfPJ+Ty7O7HevIAtuVUS/Ti3ZRcXnsccOs9/5t/w/OhdqqVZyxvtBvo7lStPviNtaghxjeUbrzXk07GAqwen6u1H/cr8C42ukuPLraq1+tw584d2N/fhxs3bsBf/dVfwdOnT4M9RY+2LxsxOWI5qtaY5PlubW2FO8fG4zHU63VotVpw8+ZNaDab8NFHH618p01YYptk2fP7ZvPUlUJbJJgK7qvgMyqz6S7M2C5COp64P8HTxnaKxOrmGSf4HMeExP9aWTE9G7MNYz6O1+fneczncxiPx5euZtD8Nq/u4XqDLqrgfR7ztTGdJtc88nsdehOBE6vI35L/xstG+6hWq4VJIoD47l/kE94nHt+X5iHZFohN+JibhnTPdrvdhu9973tBnv74xz+Gjz/+GCqVCjQajbBb+YsIbbxskjc0/03zazht1WoVarUajMdjGI/H0Gq1oFqtwuPHj2E2m8Hh4SFsb28DwMWx4dVqFWaz2aXJWF6WZhNLdFj2p1RXLtfWJbM80OQn9//oM21BpJQfz9ujpzXfL5VXtXaVbFukbzQaraS1fB2JrhitfDJW83c5fVY59HuvP3UdgbRbCz/LKkPKW2szzfa3eJ+m89DxEj5INo3H3/bYTx77l9vMKb6+hpicykOnlReVxR561GOKY860luEmwJ0OrzKwaC07QOFhHg2SYirLkOXOB32GQAfPE3Div6+LM4K0eHb9WXlcNaTBLB3PWwQ0qMdB73iQvqHAiVVKn2Vk4xGBWZbBjRs3oNlsrhxRjDw/HA6h3+9fMuA88Brw6wI3CDXZ5Wlfb5DAMnq8AQbPN1a70mPyMGhId6JbMpk7i1ofLperuwJidGoOjFR2jGd4ntRQp/zvcQglOZVlGezv70O73YZHjx7BcDiEwWCwcowxDTytE5bBRWnBoNnPfvazsDsJ65LX0E9xeiQn33scn3VMosd+kGiIpZFsjmq1urJ7r9/vhyP3cEInlndsUYf0jcX3Hjtg0zKWB0+lYCoiNu6Xy+UlPqF2kiR/pIA2fya91/qG0o96jh5zq9VdqkuWPd+NLvFDmbCCP0VsLPott0HQTqEnO3h5HHdUou7gd1jFZJVkJ+NzLcjhhWQXUB6Yz+cwGo2CrMVj/3l6XLjRbDbDwhh87tHtLwMY+YG8RSfgAVYDhLgwqd1uQ7vdhvPz80vHV9P8+G/Ml/KGZRvGbHFajkfPanJRs7M8QThqM1FbSPPLJbsrtUyexgp+S99L3+A4k2S9hdhpFhRaO1MdpumI2HiP9f+6fWLcJcUX20r9iTzT7/dhNptBo9EI7yRfVsqP5hnzVaX+9MaiPq+YzWbw/vvvw2effQZPnjyB27dvw3e/+12YTCbQ7/fhwYMH8OTJky/sRCzA1fNEGfyJegyPlkUb47d+67fgzp07sLe3F051QXD9h9cGjMfjpHgrtc+8/hX95rohppsk2eSNS/B88/Y3lYVF2lLSRfSZZq9460DzoeVMp9NL949rdotX13rjYi8K+DHyKTwmQYubSPkWLesl8iNFjuZB2XK3DB6x8vDSmycOrn0nfeO+zI0LSE96DwHaN5by5Y6HB1aQ0SP4NyU0MJDGy9QEnfR9LH8pWMTbwJv/Opk4LySlqwXRYnnwZ3lRxIiSgro8+OAtwypbGn8Al1fCakHXxWIBs9ls5a4eaQxLhtjOzg602+2VfPC78XgM3W7XXRduRPJyU2AZYFo7WHJFCqTkHctWWZYB7VXGRcAnJLVghoaYTObtyINikgPA87ECYHkMFrojguYn0cLT8AAkwMWYaDQacHx8DIPBAIbD4coda96AU9lOA5dBNJi6WCzgF7/4BRwdHQEAhB2ynnsZJXA7IMWR9YLWR9N9sXz5WIsZf9p3OMGCdytjf2Og0doh4nV289Afa5N1yJSUgHIe2zTm5Gtyi3+v6QSv7qFjie6glHQE5VMLdGW4xdO0LtLfFmJ0WM44z4e+j9nq2okunnJwty+dlKXj37JbJHokueSVH572pn1Hj0HlR8DT9DjpirtZcDLWuiLA21dXCa9MLUvfaT6vVRa+wzsvcbEhbVd8jjt8R6OROhkrlS3xPP+bL4rEZ1qeWj04ND/R0tExG5TaDzxfCzydV35J8pvLYFpGLB+abrlc5rJ1Yv6mNj41HUztf15P/M5jH3rHXFmQ+NvixSzLwm49PKYc31EaNTuSx0Isna61kyUz1yGXNglrLGXZxQKhzz77DGq1GgwGA6hWq3B4eAjT6RT6/T70ej24f//+xhaOvkjw2LWx7z1yDv+OyVUrP7QfcNfreDyGra0t+OpXvwp3794NPh4uRKHl07s5NT89VodU/8Ljj63LP04B99WoTSqBy3P+juZFJ8JTYxmWj2rRpOXL02ixEaleWjma7QPw3E+msXTOj9b3nCbtbw2b4imLxz0xEt6366Q7j48k0XQdfZNNIq+9xr9N9VM9+Ut5af23jpiRVI43rUWntwyv3yTBNRmbd4Bqjpsnf+yo2MShhRQFVEYdrbLz5i/R53VWvflLtHqYpwzBvS6HjuaLPIQKGoOd6yh3HcpMmuCxaPAEQ6TvrGOQeVBQakP+m66mpEFUfMd3v2rHpnnHsbTzY1PgRqV15LsUSJHy0uBxqng+2P7S2JD6Bu8v1AKSHiyXy3A3CJaBwfBYP8XGEj2KjAc6JWTZ811RdCcVDVrx8i1QQ2KxWECr1YK3334bxuMxPH36FCaTCUwmk+ikKS23Wq1CpVKB4XAIs9kM7ty5A1mWwfvvvw+j0SgcgYcTnB46NeTRe1mWQb1ehyzLVvpwOp3CcDgM90Mhz3Q6neiEsVQGp1EzGq0gmJSOgx/3ifAGY60yLfA75LA9uUzNsiycFEBPDODwGJE8+BgLIHod7KtGjEYvn2vBWS5DpXbjuxOxP+n33mBDlmWX9Fhe54seZ+k9ph/bLGXihvMZlosLCsq0t1CP4P2v0+lUncjC9uRlT6dTOD8/DztMqf7j+lHrc65LpeASDwANBgNYLlfvzk4ZQ9iOdDcvHau1Wg2m0yl89tlngYfOz8/Dc5wARHh5LA9ieWuBNe07rgvo8byTyQROT0+h0+lAtVqF7e1tmE6nMBqNAj9ynuZ3xeIzTE9PIsDnqX6n1td0fPATLjx2Ea0Lrxs/4QH5l+vsGPiufKSxUqnAbDZbGdPcRtR0C6WHpvPocQqaXrLfpDHPdS3fFULTUduXPuf55PHDvXyU2iaU1zSZRdNKz5EfsX2sq0rW7Wft7+/D9vZ2WIB4dnYm7phFSH1JT+GhPEFpt+wDXseY7RRr96Lw8E7ZdpllI6AexsXXR0dH8Nlnn8HPfvazlTshAS4WE+Ik3lX56ADXx24tA0X8cituaeVbqVSgXq/D1tYWjMdj+E//6T/B7du34Xd/93dhb28Pbt26BY1GA3q9Hnz729+Gt99+G/7qr/4KPvvsM3FCnttJsbp5/UMpjzw+b1mguo76fwCXbRFqM3rjL7RdUY7TBWEWuM2ltWeR9qO6V3vPY2f8vVS2JUvQNsxLM+aBsk4q7yp5Kg80e2CT8F63VxR5ZP3nST9cJV60ceGFpauKjiPRstUCUHkQE57Wkat5g1ApaYrA60ymtKHmVEpGSBmQHBNengVe9xRe2aQS0OpJkUK7xtcpdbIM4li6WNAK/47xDX3Pj/vTDA8a3LVWu/JgDc+brtybzWYhwJZl2aW7sKS8aZ5a8MCiS0KKs+sNAvF8Y+Xnkbe8HB6A0Oog9Q39WzNCLblOy6VBO5xstOBpJ4k+LT0N1vGdsFYZErTgC04M7O7uwnA4hNPT0xCw9ARZaZAW4PmumslkAvP5HI6Pj1eOJ8aJOUvmxIzKvDqdLmzJsiwErUejETSbzTDhjcFmunNLCmB6ZGBRPWG1j7YzooxyKTwGG7YNbx+kky/KsZzooo5IjE4p73UGImOQ2k6TiVIAn0KThVqdJRsIAw/Su1jfaAEqXi/rHeUbr0yl7Ve0D6kOj90VLclVazET1o3faUvfW+XQHRz0OH2JFsyPtgvVnSl2L572IR0P5vVn6PecZpxI6ff70Gg04OjoCMbjsYu2PPLCGu/rCGpo+nc2m8FwOITRaASNRiPoSJz8thZY0LFG27FarV46xprD6j8eWIwtqJTkN/2bf8P53hq31njQbFkqC1COVCoVqNVqsFz6FhR49UkMkr1K+0yqgzWmuHyV6p1X/lr1zdMWks2kpUFelezcGE34t2fhwbr0Oy2z2WyGxXzj8RjOzs6i5fIxII0hzSbQaJF8POlvyxYrCx55WrbMtYAyDW3+wWAA5+fncHp6eolnUabioqCrwibb5zqD2sL4m7+XQH2RxWIB9+7dg/Pzc1gul9BsNuHGjRswnU7h4OAAdnZ2YDabwU9/+tPwLX7P4zrSOLR+W7Jd+jY1TZmQ6qH5wCk6gtorPH/qL/LJX40uq1zPtxakeJHWLlJZWp/F2lazQbz6TTulIVb/TfOYtyzNVs1Dp+Tb0t8erDNWUKROXwRIY1JC0T4qKjtSy8mbv4dOjw7S8o7RtTIZm+cYkViwKgbLIfR8WzQdX+1YFHkZAgP63EDSlFMqUEHHoAU8UgfkdRJqnjvF1oV1Kps8SDFIJKcJJ4oALhzmmzdvhndnZ2dwfn4eglg80KnRoWE0GkG324X5fB523FHa+Crp1D7OO654G9LgMUKa5LHyx3zo+Aco565oaaeftQhGe2/JATrRulxe3HvId0Qh7+DxifS5FTzy9Iu164O3Kf9uPp+bvMrTI9rtNjQaDXj99dchyzK4f/8+AAB0Oh2Yz+fBSeX10WhEYDv+9Kc/heVyeWk3pNUuecaA9xvk88ViAcPhEF555RV4++234fj4GN59991wTNxwOFy5P4gfc+6haZ1yUwtccz4si4aY0Ut3IeEuYz52uOO9XC4vBU4pX3BZIi0KkAxLLz/kdeDyAumj94Vm2erdqBJoG/CJkVj/0qCGdTw0TY/vMY02GUPzwKNkqW7FutIABe3f2BiJyfc88I4H7JtWqwWTyQRGo9GK/WmNMUvH0B0EWH8+ZvkECw+sjEajMJGkBal4mXjfuXRcNd8Vzemg44rfoS2lTwmQScA2efbsGRwfH6/wIbYZL99rE6aCT4B4QNuB8jkdw/P5HIbDYXiGtsZ0OoVarRb6GL/nRwVT+vAfjjXsY7y3GwDCCS687bjvy2UxXVAg6Rw8DQZPvOB1ldoSQRe1eduX7+bm5Vn+Zq1Wg2azCXt7e8Em5zu16U78FH2CeaBdOJlMzPs5rXhBrC0obbVabUXGovzV9Cl95mlzbbxZ32v5S3KNj1troaPHlkY66akzkqxeh+6np+bM53PY3d2F27dvw40bN2AymcB/+2//DYbDYZj44/p4uVyGhSd57DauX2k+fOxL10ghJHvrusUA8kLr98lkcqmeeMUG1bF4qg/ukH2JzSIlBqiNb5xU39vbg3a7DWdnZ1Cv1+GNN96AL3/5y/DLv/zLMJ/P4f/7//4/+OCDD+DevXvwp3/6pyvfdzodmM1m0O/3S6sbwvL1tfSbhhYzor5MihzT+gtlJabRFkVKZVk2gce30OLGWEfpKhapbPo/t7Eo8Dn6a5VKBarV6so94v1+XzxZygPqb75Eufi86MeXuAzNRqdj+br3/zrsXVFeawmsgImVoSYoPQ2eUuGYMxNLR8uTAjdFaMubnis5SaFpDrukuLRyvG3EaeHprTLo/9dpsHkGljcYnRdaIC5vnlJ/aoF26Z1VX+6kNhqNkL7RaIQFBABwyUnlgStaFg+60eNU8N1sNgvGkxYQ4QEJPlY0mbZOSP3pDch45YamxKw6a8pPkvU08MWVpwTsi0ajsRLYxImMwWAAAJePby4jwMN5lILzGf9GCn556KCBmZ2dnXDPMT92ENN6JtV532CQltNkGTHeNtSChBpd9Ds68Y3HFmIAHFc90zrT9J5gaSpoAFjTWVY5WoCT558HqboEZR62c4wWjw2WErCO6fSUYIHWxqmIfauNrxT7VHqfRx5ZfC7pJ3xOjzOX+pjnKwVPisgDno9UppWvNIZQDlJZw8eodv8lhaYbJLnCZRqfEKOTqny8S7qI6kGJN6QJLk3/cxnF/+d/S/aNFxgIl47AjenxsmHJCo2WmOymE6x0ghaPweT2wHK5FCdIYrJQC15L9gTlb37ML02H36PNwBcrxeRrik2r6UXNTtb4DdPgojt6nK3Ex1KdPXRqdhxHik6TZAQArARtcfKIvpfaIkXvSTJaokOqg8Q7qW1i0avxZqz/vXnlgVTfdrsN9Xo9TNLHZImHD2I0WDI4lmeefntREPP90Nc7Pj6G+XwerlahOtIaR2Xx0aZxXemW5Ixmg3q+xd+oB/j7ra0taLVaUKlUYH9/H549ewbtdntlAg4nczlidrmEIn5ZDJvoU80mlGyXGH2W3kRdLV1TJdHE85TA9URqHKEIvHShfsc29ZzC6Rkbse+uOzbB1xwenra+T3n/ecC65A/3xTcBSzZJNgBNe5XjSvOLAGxbW4uXxHyb6J2xWubWCitemLTzySvA8+BFEowasG3ojq3l8vIuqbyIOYwe2oqW/XlEHiFqDXov+M7AmKPtoQUAwgp4gIuV5F/96leh1WoBAIS7uqQy0Pix7ijDQAjuphuNRpfuLuW00b+t4w9T+TsvT0s7n3i5mqzDNNLufG9/aeVJeVA6KL9g0BEdJgT2j7ZjgAJ3M7zxxhtw48aN0P/b29twcnICf/mXf3mpP/mRVXkMBO+OWOQ3DNzyu1To7o4YMB0GI1utFmRZFiZleVqtbrHgRrvdBgAId9+VhSKGHuryWq0GvV4P3n333XCqAwLzxt1Jmzb+KA3etBKNVhAjlp8W7Ix9hxMKNNjhcSCl8pCnrV1UdLIq1maao1q2HacZujzwI9FiAVeKU75ESHIc5SHKMnzG+cK70IKWg3nhb3oEKMpS751RVMbQ+uCkSWr/WHIpJY96vX5phzdvX8v5omPSa7toeQE83xmLbUMDhNI32h1nvP8xb/qbgudhndTC9TPlS2wP9AnKuos3Rbal6I5YOunEDmqLWA4vvScY2wV3aEljRpKNNEBH7UWcmOP8xO0zjT4JNH8+Ti37JdYvnrHBj1pG3kfZJe365UCdhOOl0WiEyeQUGYWg1x0gXXj/c7VaDROkZZ5qhHRin+Mk38HBQZjM50Frrd+kfDW7G5/xYDj/RgOngafFhQl012jM5+D0Yz70W4s2TovmB3lBdS0AQLfbhXq9Drdu3YJKpQJ7e3vhyGIrD1ofj0zjsjxlTNNyaZlevf2ig9Y7yy4mzrvdLvzX//pfw3ucoAOAcAKRhuvcXrHxf9U0pKAMfU8nVSeTCXz00UdQrVbhjTfegFarFfqcotfrQbVahdu3bwf/GfOyyue0x+oSC3rju9j7dUOSsZp85vSgrKTfU9uR+0r06gVqO/FvJZ81Zodrfi79Nua/ab6lVI72nl9VxmUNxrMQHvuZng6h+fVXgetCx0usB2X3bZE4+DridpKMXld8sEg8Q9MleeLUAKDGkQDYZKyk1DxOAhIrBSk8AcgY1tFJRZidM1AR+tA5tO6u0toyT7llKD0vDZsIvnuMAwtlC71YEChP+ZZxmTdgk6feWZbB9vY2dDodALiYJKITRWj80MAhBnwkOrgByI0pT72k3yk8GQtCeZUFL5sbuJqRK5XDy9IC1DHE0lQqFXj11VfD0VH9fh8ePXoUjHfpnrNYkBTva2s2m1Cr1WB/fz+kpzsRtHvceN2s4EhM9mqOAH1nOXJan9C2wSASOjvj8RiGw+Elh0ein4OXHWuHWP68rzivFzHocVzjynd+pCovc12QdNV1cFKs8SzJFCortWDtOvUpH38S72jQgrWeZ7E86Vgoal+ifKIOuTTpQtN7+kKjwcP7WDcaQKG7ZHk6qTypnBQ9GoMkJyUbOGb7SLJHC3DwvqZtThcZWLax9Mya/OLAPLSFVprj6nH+MB2nxTOx7xmb6FdI7Uh/a3RpsPSxlAflac9VDvx7Te7xtN7ggiVHaZ/QhX5l+F1aeXlkIoA8PjCN1R70G+24ds2/9cYDvOk4/TgJi/Tjvc4af3FZktqWdOKxUqmsHBOp5cXHjGRfxtre20ca33P5Y9mqlr+gyRErvaX3PHXSQHUILs49OzuD2Wy2sihGOi5eg9d+Sf0mRX/wPNeNddvbFJqOlo6QRl1kHU96nbGJNuX8otm8nnwkv4+Cj3Fvf8xmM5hMJiuTVNjng8EAHj58CPv7+/Dqq69CvV4PxxnjYt1KpQLT6VTUr576FfVZryM8upLrOyst2rkUXDYXkd2SHeL1xzy0pMD6FmNRCLoYBBdmxui0yky1OcrEdeJlzQ/KC8seTc0n9dtN6s+rhBRLsOods4dTvvGkLWNcWboz1Wcoiy8snavujE1xqKhjZ0ELwHvgYZoUI70shZ5HINM8KpUKNJvNS2n4xFQZSM3vKpVNDNeVrhQUHdxWAMojPPA9PypQ+25rawsODw9hb28PAJ7feYU4OzsDgIv7tmhwg+9AtPqOB8et4J8VpIvBazR6vqcBHGlnqZZ3kf6PtYEnaNpoNOC3f/u3YX9/HwAA7t27B7//+79/aaejlAefrKV8sLW1Bbdu3YJOpwOvvfYatFqtkB4n8gGe74yVgsZeeHb2ace/o0MpTVzwfqM7Z/n9uIPBAKrVKtTrdRgOh/Dw4cMk/uK6Fu8yo8cU54Gkq6zfqfnSYxb5kZixMq7a4KVt79l9kydwIZWn5U3vJsVd21l2cVdflmUwm83EO7y1/PPQK/FjHqdZstVi39JyYoGEPMA6NRoNODg4CAGhbrcbdmNROYE7pChw3CPP82MtaT0te5UHnheLBUwmE6jVaiGAgEGrVFD6cRV82bYSnwSgq/SpzSiVS9PQbyz+pc+wXriTWJOP/Lk0yULpkPpLOoLV67xKdcEApBVYw7aM3f8oHW1LoS2OicEKQKWOQapnua2ZZc937NPrKag8jtk4dEcnXQCo0a/1My0Dn/EdeJu4A1IbA7wdUF/gu1jfcB6mY47umtXGgEQbh9Qu3L6ybNIsy6DT6cCNGzdgOBzCcDiE5dKeFNfykoJ59BnyzXA4DPdB427fLMtgMBiovCSdyMB5lf/GdDFbLjWoKZ2oE4MW9LJ8/ZgO12R4KpAXa7UaHB8fw9nZGfy9v/f3wr1/GEDPskz1q4qC14P7q9THk2JedFzh703iquxqHKuVSmXFx8MTr5rNJmRZZi5+e4lVFPXPON9qYzTFV8UF+I1G49ICq9PTU/izP/szeOutt2B7ext2d3fhl3/5l+HVV18NMYbFYgHdbnfltETUZ6mxnhcZmr600nv5gZ5mR/UrnZjEPFPyp/1FbRAOKR96AlAsvUfPx04CBLjw1/B0MYCLeBe1xSeTiehTW3GSq5LrL5GOPH30RejXIvGrz5scXgdifqvWhrksWk+A1XJ8LcOfIhbUkdKm0Ov51vM9T1t0oofTRAMPeYHKVsvDM5med6KrLAFXhkDYlLC12oCPEw9NPKACcDlAFHOmtd/0OXUm6YKA1157Dfb29qBer8NisQi7/7a2tqDf78Pp6Sn0+/2QT4qhxo08nq6s8RcTklJZPMjC/5YCLLVaDVqtFszn87C636KFO0rcobfgkV0YcKIG+iuvvAL7+/vhjleAC+MVAx+eIBjmS48bbrfbsLe3B/v7++G+GFxwgmlpvnnGo8brWqAJgYFuDPrU6/VLaWiwgNNJ+3y5XMLh4SG02+1LxyrScWT1PcDlOwdp/usM/KYgJi+kQHhROSsFyiUUMSxT8/DKV0/ZEo/xBQ1UltEdBTF6tcBLbHyk0pyajwUqf/G4XqoXJN7SbEzNXqTPa7Ua1Gq1FZ3F03C7y1t/LUhv0bhcLoOu0BbixQJpkv2dp29S+JzKOewnnNjGhQX4zjq+UZsU4HwBcBEQ7HQ68NWvfhWOjo7gww8/XFn85W0767lGH38mlUV1ulWGxFdYRxqslPjIgjZJoJXPn8V0Viz9VQY0UtqpKJ2ecU/LSrV3vDrQ8i04L9LnfEJXqgv9PZ1O4fz8PNxHzOurBSol/uUT8PicnpqC4yvmm2r6QKtbLB/8m+ohvviB5013iiEkn5v/zdvF2q0cs4O8PmBML0j10L7R5Hle0PaYz+dw//59aLVaYeFv3vJi8l+TY5rcRLtXsz9of0njL0bXuqH5u0WBCzRxcSG9fsFaTPgiwSuLi+SfR1/kLYv+r9mr1rfD4RB++MMfwsHBAbz66qtQrVbhzp07oQ5f+9rXYD6fw1//9V/D6enpJVknlZNSd4+evEqbxAvNHkNdLS0OTMmbH21MZVQsPyrvNP3g8f9jY0fTMdozy/+bTCbQ6/UunciG7+lVVRgnk2wJSUek+g0vAv+ViS9afa87Uvwi6ds8fOxJWzR2ZJXhKd/rY2nvNd9Xst9j5ZiTsWU4q5qQ5v97A10aUhW3V2l7gppl0Wflm3o/lNbueZm/6KDZFK7SuclTthS4swYywtqZKH3roY1OqiyXz1elb21twa/8yq/AnTt3AOBiwurk5CQYid1uFz744IOVMj1CkvOk5aTS394V5utymmLfNhoNeOWVV+Ds7AxOTk4uHUHOgf3vlRFW/XgeuMt1NBqt9OeXv/xluH37dph8BbiYXN3e3g6rXxHSscK4Q3Q2m4W0WZaFI4pu3boV8sZ8B4PBSr5o4OeBFviy0uDkwGKxgFqtFlb3UvR6vUvHbHF6ccfqzZs3w4pfatTzY56tsSkFyay7kK8brLtfLGwi0EDLArAnJGKLnbxBXZ7O8x0PSFPH0DMZqEEL7HryQ94s4nSm9u98PodqtQrNZjM4ynRSygtPm+N9gXjnOdaV73qhMlODVndJZ0kThvjbCpbwfDGNZheWba9ZDhm1GZbLJdTrdahWq2H3MabXJla0CQpa7tbWVjhBZjgcws7ODnzve9+D9957D37+859DvV6HZrMJw+EwBINpO/IxlgJrMoJOQHnsGKsMAAg6qdvtutqLQ6qrpGek71Lo5d99EaGdqOAZJ5hOuzdXgySTpb7jvEhtTDx1QYP0LcBFcPPk5GSlHtJ9y1zvUJqpjZNl2aXFB9TWRPmPp0N4wMceL9tqMwo6iUTvENbsFk1Wc9nG+8PSxan+vnTfK68vz1uqD+drLvvoO83GKAPz+Rz+7u/+buUUGuvOrTzgu/M5pDFr8dV1xiZs7uVyGU4aQTsgy7KVBbsvMjbR13l1sQepckbiGf671+vBf/kv/wVu3rwJ3/ve92A2m8He3h50Oh1ot9vw/e9/H371V38VPv300xV7G++41uiQbOEy28SjbzcJy75EW7BIe9AYhSW7JB1Ky5ROC8D/Yz6jZjN544UpvvV4PIbxeAz1eh3q9Trs7u6Ge3MBYOW0KeuaQM6HV4lNxk0+r3jZhumI+Y9aWu83RWkqK78y6dTy056rk7HexufHS9DAhRYMKAIpLylQogUFtbpowpY/lwyGFOak+dGjxHh+9J8WKI4xPVV8MRo3YWSuq4zrIFhjNFgBR08e3AGmAU4aJJD4mAdCOF2Sg8kxmUzC0W00wCqBrjizxiWnQXtP08VAx5MmA7xC1xo72O64+xOBwfbj4+OVo+6kPrD6I+YgafKVfofHXlLcvn0bDg4OwoRHu92GyWQCf/u3fwvHx8cr39NJRcof0nG0N27cgIODA5jP5/Ds2TO4c+cOTKdT+Mu//Et4+vSpeBS2xZdlgQY8UR7S3cDNZhOazSacnJysHLvNx6gUYDw/Pw+BRQzYDYdDkQYEP6ZHCnStsz3KREyvrlMuW8FCK20Rg0tyBqVyYsELKU8tWMr/1tJYKJOXKP/HbClJ9lv8vVwuwzF3mKbb7UK/3w+yLLZrXOsDDFYDyItLUE7gd3y3O77nciyF76kswrbQjmfjeXE9jbYjncAty8nUeNGyN+k7lIXn5+fixA/tP+moeCktvm82m/Drv/7rcPv2bbh16xbcv38/lK8teqL6NgVeXYzl8zJoHQHsI04pjalH0/O8KpXKig3GwW2kdcjpLMsu7TxAWwL5tNPpwNbWFkwmE5jNZkF30qBflmVh0ZdVD4DV9sbyMR2+5+ALpngfSUFQLsP4Djnal1bZlL+8fpqUhsoFPLo7ZZEG/T62KEmzV/BvWoY07mML1AAubKRGowH9fn+lDySaNboofXRMcD5aLBZwdnYGWZatHFvI5Qk9WQZpBIBcC+eQdikwTesVk+l4XPv29jYAQFj8MplMwnjj/GXBY89RPlkHkFb0MfjpCmXJKs3Ol+ihsOQlHxeptqY2brR8uAyKYZNxEnpFgmU/XDfE5HUMEr9cF3jsdUt20/T0ig4cq+PxGP7u7/4O5vM5HB4ewu3bt+GVV14JR1S3221ot9vhmGL8vlqtuuRJqgwrM+06YNmq0nN6MkDMptXs0VjZkgzj+Wrxppj+53TwOmngdaVtwP00re4AEDYkYIxud3cXJpMJDAYDWC6XKzv6uZ7T9IRki3GUyWdXzbNl4Srr8XlpQwlFYj3S+Kf/8+cx0HGYYmN58vTAyteKUeWx2TT6NJkhPXcdU2wRKAUYPEKdfxN7hvloQbQYbbF8NRpTnGTtW14OQpuMpfXRjqyjsNrQqxwkBikysD3w5F9UIGwa3jbzCAqajjpdfMzxFW+etpGCF9q3aKjg5KK0cprCCqxKZaU4bJ77Ha1xTGkp4txj0KrRaIQdoLgLdTAYwJMnT1RDmJYvPZfuTJSCjviOG6L07iWOmzdvwt27d0M+zWYTJpMJ/OxnP1vZtYqGLr2bCeWvlO/+/j688cYbsFwu4fT0NMitH/3oR9DtdlfqgcfG8LrEEHMmKCT+XCwu7jWt1+vhfb1eh06nc2nynH5HjX/Kf4PBAObz+crdrpPJxKyXFOylwdB1y9wUaDI35ghK3xYpO9Ym3jbjQc7Yt5KTZ+nTlPbQDFXNhsqLIoalJ22KYY7yQ5okwvpWKhVotVoh/WAwCGOOT8Z6y8X86e5UTjeddKEyFfsc/3l2UNP60PphObSMPOME24JfU7Bum4j3uea8YRuNx+NLdaRtadFM39Ex0Wg04Bvf+AbcunULDg8Pw0QED6JotOeps/ZtzMeR+lyihcp+j6yz+pnzVh45VyboZFW9Xl+ZmKbXGIzHY+j3+5d2WuJYpXXhsjPmW2r2IP3HbS6LTymf02eWvadBCwZ4bXj+bWynn5YHH6NSfWl6yQ637G6+CMWydXBXKp1MlOpKabJ8iCx7PqFPxxn+3ev1Qlq+eIDyH6dRklFe0PIlWHxAxzSOI4CLydjRaLQidz100XI0PpbalMs/LmvyyhSsFwCsLDbKqy+1MqS2obRbtl6K3bNOePzhqwCNW2ltti5fJ8+YvI5t6EUR/R1rK03+0HGJcYLpdAoffvgh1Go1eP3116FarUKn0wk6qdForJx6A/B8UUtMFvLyX2RoOh//ltJoz6Q0WntZOlR6z+MfCOu4Yi1vjVaPrtD0DKUn9i36I5PJBJrNZtCb1WoVRqNRWKiFC3UtveuJCbyEDy/b7/pAGs+aHRrzuTxprTLzgNMa83nXCYsGrX5VnggnFPgH4/FYXQWKypnmk9KgXsWD9HEUvU91E7Dagx+LySdj11m3626E8sF13enNg9h4of2vHRFSBg18BwDHYrGAo6MjmE6nwfE/Pj4OOxowsJb36FkNXqNNAw3AUOMspmiktqV36dK22tnZCcEbfiQT7y8pwERX4Em0eCAZrThZyOXzm2++CTs7O9BoNKBer8OdO3fCROKzZ8/CrgSJbnrvqzaxgscR7ezsBIer1+tBr9dbCRrSvL315cEjqf74DtsBHUCcTMbv+E5V7dg17HO64+Tk5GTlLhf6txS8k44u5vz4IkLT32UFRVINdqstqSyILSqxvs8zAeDJuwgPpOoCqe4xGqwgZax8LeCL44anpRNsmtyM6U0e9MbAfK/Xg263C6PRSHW+eUAbaaR3TyP9MTokHUMnKqgc0OQbzY/mIfVZWXZBbGzzZ1zm0nd0F6xUh1S6lsslbG9vwxtvvAGDwQD6/X5YcLMpfwBliGdyivMt/Yc8dXBwALVaLZzSwBct5dUTmlySxkde0LzweNlbt25BvV6HRqMBx8fH0Ov1Vk7syLKLRWN4TC0fB8vlckUGIKgNodlMlg6g9KLPi3RzWUF1BW+rWBkxHUhlm9SWtC28QFsD7XRNhnCZqy2Ukb6l9NN6cNolbG1twauvvgoAAGdnZyGugLvpsQ5cP1n1SLUfaR1w9z4+Q/kxmUyCT4N00xgE8gdvC8/VApyX8qBarYa7z/EY9+Xy4jQJq72wLrE2s2jT+LpMvaPFe8oE7iKWFsYjHYgU2Yj961lIj/lSvuI8qh1Xv1xeLFhpt9thVzSn+/ME9GkR64g3vGgoKz6WR3biM9zBDgDw4MED+O///b/D06dP4fz8HFqtFiwWC7h37x48ePDghbqGZ1OQ7BsAEG3Z1LGt2fDUZuc0cFqkTVf4txYD8vIitUXKjIFQGTyZTFYWiVYqFdjZ2bmUHiB+DZpUDv07pvtf4iVeFGw6Llm0rDwxx+sCcTKWBquxUmjkISxnMRZAkp57QJUCF3hWICRPx3gdlLyKkbedFISg6csaFLGg4TpQNF8e2OC8abUN59NNChYNXqNXQh6jhfOWRI8WWEJHFY2ufr8fDJt+vw/Pnj1bcfAlx0gLOliBCut9CrRxhs80egHktsZ24Dtx8H4cALgUJIy1P83bU+dY39M603sXaZB8b28PDg4OAOCi33Z2dsIOT7rzVXO8EDTgjnc+4pFFABe7YXAiE4+KSw0u8j7T2kFyaNAYpwY/7TsaAKHfSDRwuvn9tzQwx+nhu4FjgZ88KNuRiSFGryZrvOVu0qBKtUPo/5psS6kL5zsvb8RoiH2jyWbpOT6LTUBYZUtpOU3cRkq1M7U2oXpuMpmEwL8VzKNBc5Qh9H9eLqfPE4ylu+Ot/HidpGBKUUj2dOo4l4I7PD2vr6c8bCsM/C2XS6jVarC3tweTySRMPJVlP1h2EadLqoeWjvcZ5a9WqwWNRmMlQC/ZLbGyKD2e/vPU01MW5jefz6HRaMD29jZsb29Dp9OBfr8Pp6enl3Y9SmVLNgKtC+exWF4xupEeutAM4PIEpWRfWPRJ74qCymGNLyqVyspRkNQOksaHZvvzvLWxzumyaM+yLJx+gAsoACAsHKxWqyu2FK2rFVvICy6P6H3h0ljl9eE0pNi3sfpwmcH7jO40r9VqSQtRUmzQFJlTJsrsb2l8euwmre5Wm6ToDEwfswGlMpAH0GfDu41jeXjt+5g+4+NSksFaPqk+BpX1/HtuI5ZpB5SNmN0qvbO+pe8sn8tqB++41vKg9vD5+Tmcn5/D4eEh7O/vh0Ui5+fn4ejqlDKx3FSejbXppmVZDJJ858/XzcseO4WPLXqahBeSjE2xkSQ5rpXPF9HiUcXtdruQv6PZmmXaetcdRceRJN95n6a05XWV+WXgOsksy8/hWFefeHVhqt4rQq/kn2ppOFaix3jcDcVsNgtOHd1FhAF+vpK46Co1zMNjvNGytTQIrQF4MN6LFIdLKp8qMQSd2OBGZyp9XiHmbb9NI6XOsUHpSSfBa9gVAR/4HqMAadF2F0rppZ1H+D/dCY8BEczr8PAQdnd34fz8HIbDYZiIxW9rtdoK7R5+SjF8rLw832rBcG1XhdRWmA+VN3t7e+GYE76KH4/CpXlJd+fxcmPjHZ1uvJNPMwSx7MlkAltbW+EoRwCAbrcLv/jFL+BXfuVXLuXf6/Xg448/Fo/a5WUtFgsYjUbh/dnZGVQqFfjWt74Fr776KjQajTAhOx6P4fHjxzCdTkOQrchdW9JzLb2km6bTKbRaLdjb2wvP8Gi8mOKmfMMnZGid6I4KLeCDefBgKS/T2w6fR1jBhZTvNtFeV+0ApMpHTQ57AmlSeTFIZUjO2GQygXq9fmnXupQfDWLyhR5YBgbVG40GzOdzePr0KQyHQ9M2sALVrVZr5V7OwWAAAKv2sRRI0ejn5Wpp6d8Y1OI2o6dcq3xeniW78gQyEEgftYFRv+ECIpoW4EI/zWYzeP/992E4HMJbb72VRLcXy+XFcci7u7swnU7DIiWaZ+zuS80mov1Ed4Rjmnq9Ds1mE9rtdtCvWh8g3/P+uC4nBdXrdTg8PIS7d+/CL/3SL8FoNILHjx+H3UzdbnfF7kTbgNqX0qIH/Cdd2UH1qXYfMeV77YQKzJsuROTjBe0FazdpWf3AnXtJfqJNVqvVVib0Oa9pNoXk5/PxFJP5MXmH9vKjR4+gVqvBm2++CcPhEO7duwez2Qz6/X5IP51OVxZfa8HqGD30H8Bln59fFcGfS8A+53xDy5QCM5p/QdvIWzfc8fP06VNoNptweHioXnGi+X9YJj2m36JLQ2oAaxO+NS8L67lYLKDT6UCj0YBOpwPz+Rw+++wzWPbDLtEAAQAASURBVC6X4hUsNB/OhzG6qZ5I1ZNUfvFy8B3aNhS4WCnluM08kAKOnrhdnjLo762trXA90Gg0gslkAtVqVaRHsuGuo+901TSV0S7YL4gPPvgA7t+/D7du3YKdnR347ne/C7PZDP7oj/4IxuMxtNvtIMNiyBMLtGRZnncxlNGGKFv4gqTZbKbeAy/RgfaRVoaHDpofxq+k2FTMT7Og7bi1kBITsPT32dlZeB873Si13BQ+uApdWDQNomxaPeP3RcA6+vFFbg8NqTZRWbaLBymx5jKwMhmrGaJ0RxEliAcK8jSQ5GBpQl/6zuocrwPh/ZYHBaw8Y8BAAxXCZXd0nv7YhLGaUs9UJ4+WUZazwf/2fpMXVjBDKk8LGscgjTXuuKPzMxwOLwX9qIGWBzHZYRk6Vh219/ic96vWflbgq1KpBGMZ2wQnbGez2cqRtfxbLyRH1JJZUl2RVqQB75Pq9/vQ7/dhPp/D+fl5OOIKd4tx45C3CeeT6XQKg8Eg3Fk1Ho8v/S21h5d38ugZLq9pkA1Bjx72BvvokcM0mMt3oli7ajQ6PShDxvA8PEGLTQX4pTGjyeJ1OdZ589DSW3zlNUJj9tCLgph8xoUmqcfNWnoBxyMAhAVFHkdayo/eaUgnEDSbVNMx1ntNb6BsoXeypeSbUk/rW2kSQsvfypu2Ff/HbWIM3J2cnECn04FerxeO85UC5amgZW5tbUGr1QonPdAFUJLNo7Wlpw1pHvP5PNhVyF+8naS2p7Svw5fIgyy7WKyHC5/q9Xp4nmXZpRM7+HHlHv4pSh/NSxuDUrma3ZsSUNR4KG/d0CZL5QFNbnnGU0wvafILF3y2Wq2V9kee4FeBePOnz/iY9PpPPC/Lv9J4h5cf8znyAvUlyorlchlklqc8TZ5o38XGSB4/OTUPTxmavYX9iTp8d3c3XL8jLRDl8RlLV1v0xXSyxEe8b6x64r2dzWYz+F1SebyvPfo7BWXY3BpoXbC+kp3Av8lDW8w2uiqk+s34jaSv8vjUGqjPixgMBtDtdoMd/9Zbb0Gj0Qj3y9Kj0mP0l4l1+VEpvGXpC2xHfpJWKrTvUvS1J2/L/9bK1OSchTzlSGkQNF5TFDH9b8HShWXDk79Xv5YRF/GkK2oXW2VpKEMeptBRVvo89rKnPG/+ecos0x5OzVfSpykyJC9dElYmY+kOKkqAtXLJG3iwCKPEaceG8tU36Lx7VyWnKiUpjxi8jIo76Xigfl1G37qE2XXEOp2BdZQTc3a97/gqbjqutIAI/k13bfIA7/Hxcbj/U4K0oqxM504Drx+XQ9R5pmWnrOKTdjoh6K7QSqUCnU4HxuMxfPbZZ5dkEtLC28oal7yP8O4yesyP9A0AXDpqD+D5CQc44fruu+/C/fv34cmTJ2H3D72viy7M0XYKU+DuoT/5kz9Zqbd0ekEe0IAthRUYwXfSDgfc5T2dTsOqU1qOBNyx9corr8Du7m5Ih+335MkTyLKLncm1Wg3q9TqMx+NwdFiqjN+EHNskPDLTo6c9+swKWqxbD2r1lILd9J3E3558i0A7ip3ThWlSHOdY4Ijmg/c2Alzsssf78KbTaZBF0kQN5oM76+r1+soKcgxOx3SSRitfiIioVCpw9+5dmE6ncHJyAsvlMuzqxHvoUgLikl7C9qaTEiibUWatc1eexBPSMylIjXXCxS7aGKY7hzAfutCF5okneHzyySdwdnYWdlfi1QlFxwc9qrZarcKtW7cCLffu3YPz83NoNpsrx+3zXXapwSyaz9bWVtg56tEZGs8ul5ePvo7x30usD5ofyvvXCphredCrMjCv6XS6MpmJ8hG/1crLExTSAv0SkN9pfahNjM/oaVyxsj3BFr7THuG58gXtQ2kHNaWDwrPLBqHpXek3ppfyns1mcHp6CpVKBW7duhUWRlKauE/kpY/Ld7r7PEZvXqzLj0e6UX9++ctfDqdwdLtdePjw4QpvUj3Ed6al0Md9SSr7MU+qJzEN8hK9kxNpo3l3Oh1ot9uwu7sL9+/fhwcPHkC9XoetrS3TZywbm9AlvC1Q5gE8txG+CLEuCZuO9fH4CuVnSsN8Poef/OQnwU5vNpthgb+FmA+xLlD5s6mYIsDFWG42mwAAKzICkdK/km7S/FKe1tLpXHdLJ49YNGh0aHXjNo60wJ3Tzif6y9BXlq6Wnn2e7erUuml8540df15QRp3X1UaW3ozJwE3KyHXAq2fWafOuTMZSA4/vGEJoRyVIglSaeNC+057xSQkU7loQMY8xkqLwPQENytQxoW3Rmceh89BYtqHGeSSvwyKl9yg96ft1CwYPnUVp4N/TI2BiwQhr7ElBGArquGs7cDAdptUUjESjZrQU4UurrS2HwYKlYDCPWq0G1WoVZrMZTKfTS3f2xGi1DLgsy8JEQrVaDUdIW+l53WgfUp45OjqCwWAAx8fHwbgdj8dh16dGH33GJygWiwWMx2M1qOBtE6ksKY1l6HP5S7+l/Dyfz4Mj79UDt2/fhtdffx16vV4I1uH9ybTPqCNFdRb9zQNd0rj1yJbUsVNkrOX9tog89Pa9BW96LMuzMydWVopNQQOfHvrKguYoWWm8wfdYvtJ7Gji3jnSk/YS/MejJd1bRsSTd0UrzpHKUfo/f1et1aLVaYfIYZbOHJ61y8T3nHcm+4jwjlZMXXvtNs3O9QR0Lls0yn89hNBrBw4cPYTwew3A4XNlBWnR80PbFKwekxaDaGLfGPh3jUh9RPrJsO8mmkvLlPEzzKBu0XJzEwIlygItrcA4ODsLkmLYAivtxmk1P20mye1JAZQjlNTqxxvUxP8LYA6mu9B1Nw99JY03Lj9seVK5JiNnoGo30mQaaDulqt9vh2PjY6SEe21BLp/nhXh/EGod5fT6v72FBGgvoe1i8IuUh8Y/kV3j4x6s7YrBkVRHdhvmh3Y8LbPDKkm63G07z4dfP4BiyjqbXfDuvXkrRXzQtHlfcbreh1WpBq9VaoZsvJrD6dBOxDQ+stsDFe9VqFXZ3d6Hb7cJ0Og16WrrmQEJKPbxySHpXdCxYNl9K3mWMHYtfuA2A6afTaTiRhi9C4Plo9uwmeI7Twv/OC06/pquorgZ4fj2WFIsvC5Zc5/RJvzXfRPpNy5NsPA8dMXpjtjMvM6VcnrboePoiw6vXNftbyoM/v279s0kZllp+zMbTvuH5WnK9zPrH+IX+LoMPJH61/AZvPoiq+BQuVoT2er2LROTs+slkcmk1Pg2CFQXfTSAF8TEALsHjoGnIyyxW0EVCnvtDitKzTqSWV9bg+CKB7tQAuDgCxtqxSvtE2k2oGUxZdnG3Hk4uaqBB75SV4FKQSfrbyx9WULLoOODH6nLZlGUZHBwcQK1Wg16vd2midLl8ft9Pnvs7siyD7e3tIH/p7lVKg0Q3vpd2Ty0WC/jggw8u9UWlUoFGo2Eas1gvgItj7bW68UBGWdCCawC6cYe8iu/H4zFUq9WVxQ383jAE73MAgN/6rd+C3/7t34a//uu/hpOTEwAAePLkCdy7dw8AAJrNJkwmk3CXJOZPeYkHIIs6f1dt5JUB7qRxPYFyJnZXvBUwTHG6rLxS8khBmfLLA371BKcF4PlY9hjeHtB8pDGLgQc+ocD1FAdOnOHOCTwKk45hustJAg2CAKy2D+Z7eHgIBwcHYRFOq9UKAVyej1Z/rT1p+0jBXNo2vKxN2VSSc0z7hu+EjS3EiZWF/zBfPHHg3XffXSmj6HihdVgsFjAcDgNPUT6gC9T4wiUpcCrVSSvfCx6wk+pAf2snDq2Dd7CPJpMJfPzxx3Dz5k0AALh79y5sbW3Bj3/8Yzg+Pl6RK5q8Q/pRh+MkryQbsGzuX9G+0+Qc6mO6CwPvfecL2fDd9vZ2oAUnmD2Bf4snkH6Jh6jMsOwgq648jUYPB20X3ldIrzYm6Pc4Mf/OO+9Aq9WC0WgEw+FQLNNqLywX7U9Pv1qQAqx0LPM7orEN6Ji37PwYio4/lFeYl2Z/5wm887pK+v9FsT+RftTX//f//l/Y39+H73//+8FeePbsGdy/fx8ajUZYcLFYLFaODaX/rD6nk6A8Tsb7Qoo/cTsIQfl6Pp/D8fFxuGv88PAw3IlIxxZd/ELL8/LspvvaKqfRaMD+/j68/vrrcHBwAH/9138Nz549A4DnE1hlB3+vElQWWfYzT48oW79L4GU0Gg2o1+swm82g2+0G+5kuGimbtusKqc34qRAofygmk8nKGEa5bvlt66AVQctDe4df1yXZn1Le2viMxQTRJuO6GMBevBuDpPNi6alO5Pz8ounGl3gJgPXNz8TGQYo+0GSKlfd11zMrk7GWYgfQhZXHAY01nicYLTVmrANTDDItKOZJK31rfZ+SdwwepeEpl6fJo0Ri+fOAe5G8rO+umwK0eJen4YFFvGcDgw6j0SgENZDPpECIFjTX2pWOabyThX4jBYek/CSH3Qoe5e0vq03z9r81jrnxTCesreBgzLCjO5FxtzH+k/qEGqK8DazfNNDHJ2h58EbqL62/qUGK+Wx6/Gn8xt/TsZJlmbqrReIDrF+tVgs7oheLBfziF7+AZ8+ehYAN311cJvLITa9zlZrW+j5Fdlt612NnSMFqT5k0yGhB04cevonRoAXjNNm9LmjBV06L9m3qeNe+kRx5iQ4anKLPeF5FdjdraDQa0Gg04NmzZzAYDNTjC6kMTbEtY2n4HanSd2XWOY8jo7UH/5sGuAHkk3f4WMD6Y6Cc6p91AeU6rweli9OryS3pe/yNAa7YTutUn4aOac6XmgzKC1rWZDKBXq8HT548WRkr2rjWIMknqQ2loJiUhj/jx01r9ZHGAgYHaXrpW40m6bui8I7XmD3ukdMAMu1W3nTXFACs3P+o5SeB97dXb/J+9HynxSi4rY+gdmas/1NlrMbblEdj9hLmE5NTedpqnaD9rdXT8k0Bnvs7k8kkXDlTq9Xg5s2bK5Mf3I5H3tVsC609PDYAl9X8nTUmp9PpymQr6hB8jr4lvrf6LXUMWnnwOhRFlmVhEdzp6SncvXsXOp0OvPHGG7CzswMPHjwQj+eO0SmNibLtKA20b6XJJD72vDpEspHLQqxdsGx+yg3V/VpdNtHm1wGc91CmjMdjaDab0Ol0YGdnZ+X948ePo8eOW/YPfy7Zhxp9GqyTAvB7y4f26H1PXrw+RcHtIA0xm/MldHhkbFG7SMPLPltFzObHdzStB572TZFZ/Js85Vnw6n2rvTw2B4c6GRsjhk7UxArnaSSBqQVTUhysIigivL2O6LqhBaXKoqUs41Sjz+prq1z+3XUx5iTDBmHRiBNx+Pfe3l4Yb5PJJOzGy7IsrMqn+Urt6+EBfg8NXcXLV+dad9XxyWRt4jAvYsESS7BbDrBWFjrddMJysVjAZDKBfr+/cr8qL4f3h+Rk07v18K5E7VtcaUqP1tUcOWm8SsdOY76cdimdVE909LMsC7THdqDlgWV8U1gOLd3JQu925G3Nj+zHtqzVaivvxuMx/Nmf/VnYpV6tVqFarYb+sQJiMZnwIhiJqUFEKx8LeY65tto+z071shDTo9ox4akGsDe9d2JECsqmTKrEAtKeILj3G4BVWafZl95yaJrt7W1ot9vw0Ucfwfn5eThNQKPByt9qO97WPGhj0VxGQJWW6W0bydbQbLrlchnsGrQnMHhnlTefz2FrawuazWYI+BUJOnrGCi7C4RMANLhIoU3uSX1KxwXdHVFk7NPvpHs5tbFYlvxD23QymcCzZ8/ggw8+CPdYSgvBkKetcYTtpY1l/lzyNyVbTPpO42PqY+F7XJQ1nU4vvZPyjZWv2a9l61m+o5r+TydLKd0pfr4HSAM/spjvSI7pJQTfwSql9fgPtM7UH/PYaFKfx4JNMdo4JF6S5Im3LG3s0PrklUfrBB2TKcDTDs7Pz8Pd9O12G+7evRtOtJFkTZZdTAYul0v15Cit/aneps88ehYXePJd8zjZOB6PL9GDE82YL/p4MVlbJsqwQ2heWXZxctdwOISzszP4+te/Dnt7e/Dtb38bRqMR/MEf/MFKnT3jjiPF5ikKlLP09CsOeq98zIbktNPYS2yceMeRt12oPM9j26fSlYJ15JmaL/YJjbPN53M4Pz+HVqsFt27dglu3bsHh4SEAXCy4+MEPfgBHR0cr4x/z8pYp0WuNk1iduI8j2T/rjv3x8vPEUrhNT59pabV3Vx27WRd/F82ff3dd7IirQFlt+BJxXPV49ODSZOxsNoPhcAjT6XRFyNKAtHR/Es2DGqOSoYC/eR40rWR44DEX/MhHTgOHFnCQnHXtGw2aE50yWPIMLInmPAooT5ll5SMFPfLQfB0EU0oAhRsMVgAzy7KwEw/g8hGAWt60fM3A4t/R8U4DEJiHFFimdaCORZZlYQVfytgsCm4IeXhLMp7ob0kW4ft+vx/e03u2ad60DC7jAFZ3A9FAJd0dOxqNLh3NrgX8pLLxf+QjyeC0HD0tb+rkacFLjtTxquUv0ZKSP5fXliE/nU7hO9/5Dvzqr/4qfOUrX4F6vQ77+/twfn4eAiXb29vhfkHkB09AQHKiyxwXRYy+dX6T0k+SvLRknfRNGbR4wfMr6ryl0ucNctD/tTw0/rHsOy1fSx7zgJFHb2hyx6JH4x0AWJHl+AzlOtq+eFQ8HnUemxilkI5MRd1K6fbqTNpeZQUBPHawxN8xmjX9gLqQT55zGqzASJF6c7mCdwAfHx+HY1TpkfOevGh+fBegBUnHaumQV2K7fzzllSH/aB7Yj9VqFXq9HnzwwQfhepnJZLJiU/FjbiltGi/ydrJsl5ivpMkpfl8bf49Bf/RLJXvesvFpXpJM8iCWXrO/PHY5l5f0Wy8kOzrLMuh0OrC7uwvb29twdHQEDx8+FK8/snRKnvbSdJ5lI3G9pNGDv7nvxP0mjS81fpeeafa7l07+LNUW8yDmn2jl5rXjU4BjFo/5/fjjj6HVasH29val63+wrbEvcTJWWzSngfJCrO9pud4yzs7O4Kc//SnMZjOYzWZQq9Wg3W7DeDwWF+F66LWeS/LUa7NxpMgVbPtarQYfffQR9Pt9+NrXvgbb29vw2muvQbPZDNfwoC63Fo/HULZPZsl6yX7w+OfYftznxL+lBfEpPopEv/bOC2/asn2zdeWZN19qd2Kb4NHO+GxnZyfYyN6j9z12PH+X6qemjomYv+ix9S1Ii6aQXz31TK2fZt+ti7+8WHf5efNPiUt4vi3b390k1tmGRRDTdyk2m+Z/aN+nwDs2PZDo9sggSbbkxcpk7HK5DCtzuBHIjzrB5zEiuDMmPeeVWS5XVwvhO3SOrTKKIDUfzUhal9DgZcSCNTFD3jtQPN9JNGkKSnIoLWxaWFoDUYPX8KEBV/rMalPcbQcAK8cVpzi2nmfWmOQraWk96Digx7SORiP3rti8hrkWYLPy1RSGxo/SfdiYtt/vB3ml0aYpN+xH6ijSdqbHFaNDLcGjEJCGarUKlUpFDTBiWikv6ujxNkt19PME0WLyjubtDWLwYIi2i2g+n8PXv/51+Ff/6l+FOu/v78NgMICtrS2oVCqws7OzckSxJxgl0ZL6zpM3T1eGTC2q0ygdMZpS9Z03aBjrj5Q6xsrT5I5WjhUM02RdjAaexnIiJaNToq2IvUPHGM/PUx98zwPe0j3p/LfEI9IkEd4HiUeT9/t9mM/nUKvVYD6fw3A4FPNL1T1SOi0P/p20Qn4TdpOnnyVZrOlKaSdzWfLKSyfqx5OTExgMBnB+fu6ejOX5cZ8JwD+RHQsY8YCrV+fxvPDbstqYypRqtQrdbheOj4/De77TkNuIXj1P01vjRZJdHp2MEzYS8DhB+jtGg6dOFijdmu+p5RvTNTwvix/zBB+4n7C9vQ2Hh4fw+uuvQ6PRgP/zf/7Pyr2cAJd353IaU8DbQuJ3qX0tu1aTtdZkrFQHqju8Pp3Vhyky2Tvuef8Vtf0oHXzcxOReGaA7sOfzOXzyySfQbDbh4OAAzs7OxG9w8pbuvqabFDRdTumXeMwjL2ifa/mfnZ3B2dkZdDod2N7ehmq1Cq1WK5wcwSfqNHBZYdl3KfJHSxuT3zxPzKtarcLHH38MH330Edy5cwd2dnbgS1/6EtRqNfjggw8A4Lnvru0Etmjy2mR5x4NUtlauV+7xca3Js6LX6Hj9cWssb9pWva6Q+mQ+n0O324UsuzhuvF6vQ6vVWmk3lEea7qCIvZf6M0+faHqV/22lsdJJ6bnP6tUnVp70meQTW/KZtnVsjHyR+X7T8NhW1xkeu30d+aeWEdPlsXJSdC995rHnU6DFiCS6OG1ee4ZiZTIWd19ZTj0PVntXnFFjkEKrKN6dRBEL+McEvEVbHsQUT9H8i+AqBI3VHtIAi7WLNBA20ZZltp3E79oAxkkdTLO7uwuNRiMc2dXv92E6nUKj0YDpdLoyQcfv6rQcdg+sO1DxWZatBr1x0pgb+ngMXZHVqRZwohrpTKl3qgLC9N473aQ8arUaVCqVsOqRpsF273Q6UK/XYbmUj8OSFI02SS+Br5RO4XlLP8QCBmVCU5QeueLNX8q73+/DaDSCer0eJmCzLHPdFet13PMocy+uoxGqyRe6yMEblOB5aGm04ExR2ZmKokYjwltv63spD04fDz564Qm0aXR6jHGcNKXPPIFHWm/pTm1pbC+XF0cD4t3tXBdyHtKOmMNvU+WYxb/rAF04ZO30TC2fLq7kbUghlbUOe4LbEKPRCCaTyUpZsfFq6UDsa+p0ShN5lB95UBW/ozskpCAUTY8o6+qAMgJJVtBMa18rYBYLttD33BdNDdyVAV4m9hW141JtWisQSPPRyo4FbK124nYo/Q4ntpHfnz17BlmWwVtvvQW7u7vwxhtvwPn5OXS73Vw2PP7zTOxjWq89kQpp8jUWF+Dtb91HimnzjGXN95TSxWRxHhsp1W5YR/9kWRbiSwcHB+GYcQ6MhbVarXD1CN2Zhm3EdYOkH4ra/JINRtPSXXX8yGJJT3rla5ntT2mWxp63rSRf4bPPPoPpdArT6TTcAUx1JC6ckxYhXxWoXKRH3HthpaXyg9ob9Luifk7RdryOfuimERtvw+EQZrMZvP7667C3twe/8Ru/Aefn5/Dpp59Cv9+Hp0+f5rIN1gmpTmXGAFPqy39T3vfqaW/enL5Ympf8/xJfVGwydrEJePzUGFYmY6fTqXrGPw3CSU4zJyLmfODfksHPA6Je49/raEjQlKKnzFhaD5OtS0lq+cYcsTyw2j9PAPdFG5ye/o8Fzeh4aDab0Gq1AODCMcSdptVqdeVOTulbS9h5+0AyWPh7Cr4inNJl3eOp0amVyZ0MNPSkIDr/Riqf9w/vF+k73jaaXJSe4e5Uelcaz7vRaECr1TJ3xALApfbWII3HImPRK1fyjmErIBHry5icsQKJ0nsu18bjMQwGA2g2m9BsNt0BzTwBGU+752lji8YyDAvt2xQepTKNBhSsNvbSbjlPsfGfgpTgpyddapmp31E7j6JsvrBgBdKtculxwvi9lofmGGtHpvIds/QIU55vlmVq0IHbtvSbPMExTValHJ2cWoZkm1tpLWB/Yft6FxRhH63DRqQTIvREoJhtQG1cS2fT+sYmVLifRMcntpP3PkveZx77yDN+YtB41NKzAJd9Q8uHiOlFqd/yBMSk8suQg1bg0Lr/lNLEf/N8rXElfYvfaLLSo88oz9FdhL1eL9z5XKvV4ODgAJbLJfR6PfF7qwxejmTL0fe0HYrap5K+xPxjtmosb29bp+ZvpdfsYFqnWBmxto3Z53nGpQXuG+Cz5fJiorVWq8FwOAzyGMvHv2u1WrDz8Zh1lLsxOzqPrJH40xrjAKt3JaNdErN/YvSU5WtYeWs6IIU/lstlOFq6VquFe9dR5uAid8/iBUt2eL9LAaWT+jv0fUx/cn6R5AfmS08eWMe9wZL+0NJZ77+ooPYcwMW9z5PJBBaLBdTrdXjrrbfCItDj4+NLk7ExPozJXk6L9H0sjZQWeZtv8vDm74kbcJ7i5XN5rF27ptl3lr2q2aZF7YyXeA5LFuaRI17eLROemEYe+62oHVsUKeVvMm6kjT8rbpFHBnnKiGFlMnY4HMJ8Pg/GJgCsHDtKhRlfYYbHvXhXa6Iw5OnxvkkOyyHl6VNWjOZlZI8xW3aZAL7jRbiRtW6F4BEwHFI9Uib+rgu0gA99n+KE0Z0ieCcVwOXxFsvHAt/dHgscxhQFH8voDGIf8932RYG7b6VgldTenvEmvbfGmrULkhp2NN96vQ5Zlq3sHsa2w11d6FjhvWq87XESPs8xQ8vlMtzbZikuK2jH60hR1q4bTk9KGquvsT94EF9Kj7utAZ7XC1eiAlwslKB9sFgsYDgchuMLY8GQVJQdoLouZdEyAfRxWNaOY6mMlG9jsBwGfM//loIr/Nt1Bi9T9JP09zp5hQdGLeAOAwret7yt6XM+Xnl9Ma+HDx8CAIhXZmTZ6uIgDgwKelaIazIaF2TRXeMYgCx6/Bwtl5ft+Y4HoaU8y8K67VkeyKUT/RxWgAmfpU4eb21tQb1eDzRRvqFjXgq+Yh8sl8sVW0wqf51+DLZhs9kMNmKZerFMUP5F8KMA8RlNz4Ph/HsKSf5QG1zTRTyQiP8wuC7pkryBKk6bxFf0Pf/Okh/o3z979gyGwyH81V/91YoNjHavdE2Rh2ap3nT8eXxMSrO2OETKh/OJVgYth9vc1uQFtV+prOd8qAWjLUhjuWjcICYfpICYxvvaN2XQVK/X4c6dO3B+fg4ffPABLBYLaDabYXMCyuFarQaz2QyOj48vjXcruBcL+lrjlNod/H/6jRUfowt/PLxdBsrsMwn0RLBKpQL379+HBw8eQJZlKztgh8Mh1Go1qNfrpfuneYD9gX783bt3YXd3F3Z3d2E0GsGPf/xjmM/nK/IPvwGQJ+olv13zQcroi6vwD1908DbT2hD7Gq8LxJj6//t//w8ePHgA3/rWt4JNSONBAM8X+SPWdRJdHqDswR380iJWDSl6iNpmsbgBlaOYN8b1tHirhxbpXVFd+hIX+LzJnutQn3XGcsrQO2XG5zSsY3xatp1Un5XJWBTsfKcWzVwr1EOYBIlID+FavrGJJa3MVDq1ho4FXmP5euBxrDbNvJoDHPtm3XSuE96BmyfYDQArE3TogFvOqmecaEa69czjWPFgFQ0upTpBMcFIgzVSmxR16r0BhJS2wyA9Gog0qEKDUQh+5CZNR/NNHT+Ww5aCq/oW4DJ/pOgLXn5Mp9FJoPF4DGdnZ9BoNKBarcJwOITj4+NguGMQgB5datGv0RR774XlFMRwHeWyJ2Bp8XaqA0XLzSPr+d88kIbP6b912APe76xANv8bf3sCDNK3sbrSvGi/ewPdvCz6tzTWrCA6bws8Bg8nQyW6LBvHkj+YXrOf8B/qQJz4pbtBiiIPH3plcJ7+w3dau5Upq2I2fWo+CIsvuWygddUmpTQ5J/GiNXbyykTrvdSGGPi3xhnnu5iczysvrb5NsY0sX4fSKT2X3nP+T+U7q31jdHjhbRdN92FwdDKZQJZlcHJyEhY70Mn6FN2i0WXxB+XRGD9aQRUr3xg0Xvf4WJ6yPLaQpdO5TErJPwWa/vT0kaVbtfwp3Wi77+zswHw+D4u56EIn6rNp5Uo0cHuU97G33Wg/0Hys/Gj7UftSotFTJw9tHHwcF/U9eDl4x/TW1hYMBgP19C16ty/mEyu7KE9bwHosFgtot9uwu7sL+/v7MBqNoqdheXXeOuuR1y6gyGNfllWXsvLK6xfS39zHQSDPYkzh5OQEZrMZ9Ho9aLfbYZIW7Sp+76w0LmP2V9mQ+pieBmfpFOl5Ku9Tu9f7vWabeXg+VsYmZIuG6zh+NOSxobz2QSry+LEpkORAKl3czlgHUto5b52scvLaEnmg2ZQpbeyxMThWJmPpjtgYyliBL0HbbWDduZUCy4FeByOvI1AUK8/j1EvHocTgmVTTHDc60UQDTBRXoaTKRJ4x4REuo9Go0Cq3mADVhLlnjMznc6jVatBoNC7VnxuImKeULz1mKaU+aFxS+tGIRWO1VquJQYc88AR4OBqNBtRqtZV0i8UiHD/D89ja2oLhcAij0WilXVJp9vCjZlhd5VjkvFhUhlr5cAVP+RNXp2IfPX78GH70ox+Fvvwf/+N/wGeffQYnJyeXystDc9HAyIuI2E4VeocnvXdOSsv/jhlE3jZGGUPHk3dnI7ddsC40X/qP2yfrGoc80Ik7wTFAqd2pqP2W8tXe8/HG62/1rxW45fTydFtbW1CtVqFer4f7xXiZXLfg0Vp04QwN1NJ6WHQjfXQVO/2W7l60QHdoVqtV6HQ6kGUZTCaTS/fllgEvH3qDFfS4XxpEksr05K/lURZ44MjTtrGAF9ad7lblPDabzVQ72UMz5ztel7x55wEPhtOxmWXZpV1AVrAH2wzHJb9zGPOnv/FvaZExlz84OcMDCvRvfmKJtMOM0glg6wtJdvGyrfQpSP2WjtUUGY3feoBB5vF4vPIc+4vugosB+4/a2xx4Mg23JZBeqvv4btfYKT+SLpCCO9r49ECyExDUX4jtxOc2TWrQjI9TLYillW3Vm+pL2p64s8qiVbPnKT04KXB0dATT6RS++c1vQq1Wg6985StwfHwMn332GVSr1Ut+7XK5DJNljUZDpSEFXB8U1d/I37ydtBM7JP8/lRfot6nfWfKe04npqY+m7WKrVCrQbDbDAtkicrMsSOUvl0s4OzuDra0t+N73vgfHx8fw4x//GAD0Y4U1G9gzNmJ97O2PTaJMevLw6SZiJNh3yKv0eq9erweDwQD+8i//Eur1ejh968aNGzAcDuHs7Cya/3XoUzwZo16vw2w2u6TzAXS+pEd5W7qGjgP0q6Sr0lL0rSc+qY0rHmO6Clzl+HmJNMTihxZ/5SmL+kaSPbwpePwe+rdlYxehgZe/Dn0o5bcyGSsd92k1TJ7GkJwIj2HtzTeGGKNLQtMyWvLQ4E1rBaD4+5RgEc/fw2wxwy1WLgYfY0EJq9xNDZSyYRnQ+J4LGmxTaQLC62hrARNP4CclIErLkwIRGi08qCAFvmLwBD6ksuh72t487xRY/Ck52rEgRJl8rSlZScFpAZZNjTNefkwOFgU3lum/+XwOjUYDdnZ2oNFohN2wo9EIHj9+HI4s48f0pwY889TrKoyl1DK1uqXkQ4OyZfY5/T9Gk8WDKYGk1HdF0qaCO62ptloM1J6M1UNzXr06wuov75H/lFbpb7rbD/PW7DArCMZ5kOtMywanO8nyBkXzAsv09ENMv19VkIJDs5li0HSmlIbySCxv/IbybJZlYTehR/5I/Mlp3jQoj2t2sQbLN/XavfhM+i3JKMrrscCaFTTQaPLIDakcjdYYHVYbW3RJfSXpB95W+IznPRgMYLm8OE4UF8dI7SDRLfWH5INI+Wk2piRHU3wRLotj9GtpvHJV+50CukDGe/KO5k/xdxJ9tH29toXWHrS9JZ1p+RJZloUTiPCKLnraBeaF98SibYQTfKh/Oc9JdEp19vrG1vineXv0vyWPuK7W6JLK1NJZ5fGyrLERk1cIOnEuTdp4dbk1/orYLrSPcNE13kncbDbhlVdegXq9Dg8fPoTlchl2/Q4GA7V8j0yRZLqGVFmSxy+8DtBsgjJka5424QsoeJ/N53PodrthQUqWZSvXlWAaT53yoqidjnwPcLHQgC6a8l5zmEqDx87mecfsLp7WQkxevIhjZxPwyqt1IFam9d6rq6RvUuxDnq/XD/fCw9+W7ecdP15o487j13jHqgav/vTkr6Wpik///x9Yq0sp+AplC9TgjwGDDl5o9/PkHcyaMSrtYNACAOsEH4AYsIkdqWM5KNo3MTo0oIOzv78Pi8UC+v1+LqeL0209Kwt5jRgpIJDCx7VaDarVati9QzGfz8NdstpOGsuxsZzovJjP5ysr3GKTJtwhjn0jpeffcLmi3enKHbe8K8M1SIrCky8eO8mNQMkojOXp4Vnrvluef1FF5oV3vKUas95+lYJ6AABf+tKX4Dd+4zfCgpK//du/hXv37kGtVoN2ux2OCB0MBkkBPE2XXFess/8tI0q66y0lUElhtbcWJNRkTqwsmgb7WqoHDYTy93RRxrrHH+4EWS6XybsstQCGtDiB18cyslPbOobpdAqDwQAqlUoIaiDouJfkLuoUvruQHinG89Oc+tgKa+tbmn+v14PF4uKuXDy2r0xI/ajZYXRykKfhO2JR13knxjeBmF2aJy/NtqZ3fVHwgHi1Wr10n3y9Xg/2obTr9LqCy1UtEG8B0+IuL8zXkut8kTH93yNjaPuinbZcLmE6narf07qtM1iN+Uq73rSJNY8OLHu3OcoE2paTyQTu3bsX6Oan2CDd1n3HGjAobdnhUvAbkdpnks9XBDGfnI6bVBuS540nG6E8Qb6WvqPjR7JnKB9qbWiNwZi+89z5i//TEyzwW9pe+Pd0OoWf/exnoT54zchsNgtyF0/UqNVq8MYbb8B0OoXHjx+He2Ut2iV/RdqJYrUPIqaHMY1UJh3/tD2oDVoEqX5iTO7S/ozlifZFvV5fsVmwLz100fYoAxLd2O64Q/DTTz+Fra0tePvtt6HdbsM3v/lNmEwmcOvWrVD/H/3oR/Dee++t1BXp9QJ5lE5Qr1NWlYVN6M7Ys7LyjqVHf4TyLI9RnZ6ehn6v1+tw48aN8A53idOd8Xlo2RTq9Tp0Op3wu9frwXA4jH7niRPy9HSscHtC09uSftM2VXjjEVI56+TxdWPTtL+o7UThjV9KuoO+K0t+b8JnlMZAmXVI9R/zoAxet75XJ2M5EV5whilj8MQM9Ng3klGbWo4Fnq9m7HjqYQVePQ5ajDYtEEr/1uojIda2jUYjBDF5HT0OyVUiVcHS4EsewUnbRdtBLAWWeB60b/MezSFB4iXqyOE/z1EePF/aRtoYSD2qnNLloYPSoiE23mg6akhbO11p4MKTJ7YxpZW3HQ9w0OCNVAbP1+KTdY3Xqx7ztO1wlWa1WoXxeAwPHjwIbXh6ehpWyksLX1KNjJixHoP2zXVxxlLtB87TlgOTomO9tHBHS2tHSxZYfKDJt5S0XtD29PKldqyTtzwNXjvMm48HNC2dMLXGhof/pPz5hKOUl5Yft8OkvsK+xBXluFOfB1+LjvvUtrf61evApMq9vD4JQLq8lcYy9rE0UWT1r5cP8H/kVzx5gQZVtePayrT5JKQ6pR65o9nLkoyU7ESpfV8Evef1CzSZhX1Bj1OP5UPziNl6Gr3amKd2Jk8vyTXJ/7QQk83tdhu2traC/UYnFimfUJlJF9VI45PrUKncMlDUduF08nGhjaUUnpB8tRQZ6qmPlSf3o/K0Ge1XtPW73W7YoVitVmF7exsmk8nKggv8O3ZtUBm8IfWbZg94eFKTHanQxnssXUqeqflI9q3GFx568/hwFl1WWZim2+1Cu90OPMY3wvBd215oevVFwVXr8E0C5QxdaIbPEVRH4caM6XQqntJz1ZB09Ww2C7artIioCP2WXWrpK0mmSfa+FluLlR3Di8zjm6a9iO9xHcaGZVdxWLFd/K3JCa+tlYqYfvXYhUX7QfJ/YvTy74rGRjy6nSMWy4tOxnLDnBp/KSgirLwoIgzLDlxpTnGKw5lKRyxYvGnBmWUZdDqdsKOMQwseaOmvGyRjg48XNDpoIA2fS8IBDRa6M0kzFuh3+Dff6ZkyMaopBAzwSfxE7xqczWYrddR4TnsW40/clQAQ30nL+0QCfZcalLJABXa9XgcACHfASXc1a0fbciMc+xdpjQWmODh/UEjBvOti0F8FHTj+Go0GHB8fww9+8IPwDulBJ+hFgeZcXCWs/pXkKX+fWoeYMSWlp6d+1Gq1cESo51teDpfdFh0x480D/Bb1jWcXHd6tOplM3G3sDbZSGqRAIv6Pskhz2lP6nu944fRkWbYyycXpQLlpGeBUNuNuGn5XsJdm1HHSrlFsj+3tbWi32yFgzGlZN1Im6i0+5zqYf2ehTJ1tlUEnNvg9lnQCPk/eCD7WkQ8nkwlUKpVwTxjlR34fKZ+cTbUPYrR65FFe/tOCxh6bUAqe0W+pzeShb1N60aoj1keSkTwPatfRO025/NHKKkq/RLsWMOHl1+t1WC79R8drdGAZN2/ehGazCd1uF0ajUdhpgzvRaHr8Bm10PHGI5015i/MSbYeYryPxOP6TjsfldFB6rLbA9o/ZKeh78PLwuSS3NX/U6rs8MkmKO0nPPbu8ad/xMpfLi0nWJ0+eQLvdhjt37kCr1YJWqwXHx8dwenoa6jcej4MN4a2zJwAYswEtfqD1p/rJgub3liUb8uSn9bcmNyQdgXYcjUtIsOTpJkDLxZ28jx49gslkAqenp5doxztvd3d3oV6vw2AwMOOLXI5I7Up/X0e/8LphE+2CvFur1cSFo5xfZ7MZnJycrMTFrjvwPlzk+9lsVsp4tHicp/PEyfJ8R+XRdYidfZHxIskxL+9KKEt+l60TvXQU7SPvWMvrk8ZiPmXiksVCAw+WY0CDVSkCjk8IeBw6L7Nqjk8sLYXlJEhOv2Uox2DVXXqvtUPeYJaUxqJdoktLj0f6HB4ehlV+6MjgN8PhcMUB1lZMXQejmUJzuhuNBgCsBipxElZyHHh+WrtKBrT0mz7nx9dpdEvl8bSWHKCTr5KDQOvtPRI4RjMPhkjgwQ4pPz6WU9rH8472K67Up3RJ/UPbi9OqOfb4HQ8Ua7R4630VxoxHHq2LLqntsb0wYAcAK31ZhCZJblv8WgTa+PbojFjaPPKZGjNan3vyLRpIipWBR1FjGePxeGV1ryXz8pTH0+JYLZMPJNlJg3saD2j0lEkf5lOv1y/tBpTSSc84PbgQ5uDgADqdDty4cQO63S50u12YTCYrk+1Yf1o2t/uo7avpJw0e24nXicuDLMtCUIMv0ikKj7y19Kn0DOnDYCn2T4xnLFrWpQNifM11tFdW5e0b7F9qQ+KxxdJ9hZROyUeIPdPg4XOrT2m/xSYMNmXve3mI9zNtbysYgHWVxovXb+Q8KPEnpamITrZsRA+tnD5MZ+kbaRLWY4Pwb3ChY6/Xg/F4DLdv34bxeAynp6cAACsBbo1+viiS29XeMeCFJT+Kjk2urzFPLS0P6FtpLblsyZlUaPrck6dEp9Qm+LxarcJisYCTk5NQ1ng8vnRikEVnrB4afVr9JB88tSzNv8zbJym2Xpl2Iean5c3LkeRKyphK8cGsdtW+pTYk/65SqcD29na4SqPZbK7kh7IMd9FaV4FY9dLqUiby0nHdsM5YCPVvarUadDqd0K+j0ejSscXL5fLSIowiev8qwE94Qf+ALpjJG7/k/kVqmxSVkQBXEzv7osDql3X7h7wcTd6XMR65vtJsq5itHkOMVkvXevwZzf7J20Zae3hiFx66Y98iUr+N2QYrk7EoCPmdBJKTjcahFijTKsIn2rQVsdIqRk+jFzUyUxpYcjI1GqRz6i1arLxi32j0SuCDQqtTjD4+QJvNJrTbbbh582aYpByNRisrt+fzeVi5jA6Rtnq1bGj94OkXaTV+lmXQarXCLlh8PhwOL91bwgV2jBbPqje+Ct66wznm2NK6affPAMg7m3lAyHIQKK95FQE+8x5xzfnZEpKpd7FoPCo5hnSlo+cYQc5f2pEuNMCg5YXPab/xZxzSOJR+pwafPM+kctYNLsdoW21tba1MxvIJnNQy+DPad9Zx1pSuvMjTruvqC43/LB7j8oLLlzKCTPTver0Oe3t7Yaw9e/YMRqPRyt1UGu0pepXWxyOzUurFf0tGrHbfPKaTZA3P3yOLPciyi8UP7XY7LNhK3YmJ/6MurFarcOvWLbhz5w587Wtfgw8//BB+/vOfQ7fbvTQZSxeEcR1F244uruF9TcvPC/49bUtcFECDGmXf84jQ9Au38y3Hhy9eoIEXqbxYfpwWS5dJ9oPmtMfqw+vstQHygNs5qIswEEvTSeOa0iKN2zwOqdU33n4rOi7KgsUzNA3Aqv1FeRhlpqazYjzh8UOQTqvN6U5t7+642HOPbtbSeb6jfoq1UFMb7/RdpVKBSqUCJycnUK/X4dd+7ddgMpnA+++/DwAXQe7pdGrabdhuuDNNGldF7A0pfdG4hSSvPD48z0OKT3DaeKxAgmRbaO+0evCy+HOuk7W0vB70e54nTnAdHx+H58hTks9Gv+W+kkeucFpQjgDIdz3jP6uuUp70/6K8hvDWL4aUPGJyh+s2GrewbFDNXrdoK8v3QLub01GpVKDT6UCj0YB2ux0WgyLq9TosFouVe+QxDz5Jx8dfEf+9THja94sCyquNRgN2dnZCP56cnFyajNVs55gvBnA1/S2VSWOktVpN3IgTs2MkfUdlpGZz4LeW7eX11VPjV1c13j7vwH73yI6y9CDmlWLXe+0nKa3mxxbRx5Y+SGlLb3r6nWSrWPnzcjzt46FDQxH+iH0rleu+MzbFwExhDI9ikZ6XHfiI5SF1dFkClzNVHqOuKA1FwNsiyzI4ODiAvb09qNVqMJ/P4ezsLASQxuMxnJ+fw3g8Nuu6ruCiBm+7YxC22WxCrVZb6TekeTabwXA4hCx7vmMWQF98wBEbR95gDebFgx3euvJAkzXutDxjR/nFgoG0brF7sax8Ut9560dlI1dOdPFBHkh9xZ9R/vOWhel436TKwc8TpAAUPd4Od8pZ90UVLf86oWjQpYyguzcgXATS+Nra2oKdnR31uDMM1MV2TGAb8KCLZvesA8vlcmXyRgoiIY38qHkOjyMTM/Dz9B+2Mx2PUlkaz1YqFWi323D79m34zne+A1mWQbfbhcFgAJPJJAQENH6L2Vg0YOqBVgdqa1v54VUGZdvBXqQGUnkAQ7vz3Juf9VujNy/vbQISXVtbW9BqtVbkh4VUu8ir87Vvs+xiAWKtVoN+v69OdGGf46I06b7bmFOPz/A4V8zLoi+2sImW7QlS0/aSfB7uv1He1nay4HscE1rZGp1FcV3Gg6f9pbS87Tz14bv0kU/a7falhQ5lI9aH/OhxCo3fpHTcH9H0F07eoy/O/QLr2xQbQAJdQMD1gySrPWOZ1l1aLMXz4nXEY7P5NzT9dDotHNDF73HxtlYXSUbmtcs9geDPi38n8U7MbvDUnV/jkxrvtNDr9eAP//APodlsQqfTgU6nAwcHB/DkyRMAuFjYP51OodVqqT47f1bmxMNLlAvsm2q1GmJFHO12G2q1GpyenoZTBK2Y+YvUz3RBAfqdVAbhQpjUeIslNyVouuzzJA+/CIjFkctC6vwW/ztls4/Xf8mDPLGKWLo8OvWqx9h1GedJl3N6mEialJDAjW/6jP9Nn1mC00tbCqygWUo5qUxpBf+s9vIYh1KwoAhdXPFl2cVdsfv7+wBwsZOs3+8HpTqdTqHX613KgytRr7BIGUxanVODgRgYxh1zaDRgPvP5HEajETQajZXJWHT+PWWnTkTwYBDPC8eOtduVP+Ntm8fYS91xKtHBHfQYHSlKwfPOCrRxOikN2skB2tjl4AE62oaUBvrPG8gCWN0BS+VrEaPeKzO9wZVNggc8+ErNPDtii9CxrjxigXjK70VoSQkgFw0yxZ579dxisYBqtQrtdnvlFAQ6vvFYv5js0AL3kp6WHEj6LmW88LS4iAVPWeBOAr7n9xRZdfPaYZR2r52GY4/rLesbXi/+vtFowP7+Pnz5y1+Gx48fw8HBAfziF7+A2WwG9Xo9ev+cZzylBK61QDHPk6bH59LOjzICb5JuitU79l6z7Sj9qYESms/nDbRdcDEj1ztSu3P5UVRmxN5l2cUO9larFU644e/xfzqG8UhZahtp9pRGh/QtT+vhG0qjNyDn4dWYHUXvHk0dcynwBiWLlpeqazli9kisbK4fYjpM4sl6vQ6z2cycjC2zb1LiBJq/6m1nzSZH3Y/H3tPnKf4ntkuK/0DbUhoDNE8PvONXq1eWZWECQNJZSAvec4i2VGofUF6nbabVR5INXrmk1d9rh2n55skvD2J9X+Z45OVq7c/L1xbxWZDoHo1G8OMf/xgajQbcuHED9vf34datW9Dr9SDLsrCzv9lsrnxLdYlUD4nuTSGPz+/p86JYF9/kAV2MwuVOs9mEZrMJ5+fnl+wF6fSeGGI6cZNYLpcrC/Toc/T/ME0qUq+RsvQPfeaBZR/y95bP/xIXWJcMS7FvUmw1+t76LtVGShm7ZbSVp86SfI8tKpXyS4kned5p6TQb7CrA6V+ZjE1x3KVvyqhUrIE/T8KrDAMOn/O/vX2Jd6LxfCxYR0l86Utfglu3bsH+/n64KzbLMtje3g5p6bEbABCOJ44pPq3+6+QDj5DrdrvBgcf3W1tbIZgP8Pyo2kajAVmWwXA4FCfWeFleY4D2I5av5c0FX+y4QP6t9E67u44HSejzvIahdScqLdMb4MozSRwbZ3Rs8XpyI1pysGl70jbnAScvYoESqb3493mwTke9THCljO00Ho/DszJ36m9qV6SE69gfXK97ZENe20NLi8G16XQKtVoNXn/9ddjd3YVbt26Fb/78z/98ZSFRqrOGQTzkNzruPAECT5r5fA61Wg22t7dhZ2cH9vf34enTp3B2drZy5G+WZSs7f/HaANRV3GD11i9PcJIfUbW7uwuvvfYaHB8fQ6/Xg+Pj45WxSAPm/L47zBsDqxS4C2hnZwfeeust+PDDDwHg4qgsPKoQ0/AgAQJlg3Z0PEXqce+ajJZ4fhPI4xNoaeg99nTSnwe2eV2L6BDJ+YqlvS5YLBYrsgbrgOMzthhk3ZAWFfIxgZOus9kMXn31Vdjb24MHDx7AYDAIR73jRLPlh1C7iMPyi/g7r3wtarfE9BeeqlD0lA1pwsBLuyRjUvxHD6hdRfWdZG9J3wLod7lqmM/n8PTp03CvMsCFvuC8gzTQI/q97cbb3dte3viGJbd42fyIYYDL48Sij5/2otFojSV6xPNyubrLSxtPkr2t0aD5/VIeki0Qg+UT8XJofbw+gZcGz7jQvqV/e9pPKi8vrsLPo+MgxTb18jd/HisjVQbQ/OgiSX4az+3bt2F/fx+ePHkC5+fnMBwO1f6lMQV8npenPs+w4jabsqkk2T4ej+Gzzz6DVqsFOzs70Gq1oNlswmuvvQaTyQQePHiw4gfRvK5Tv3rb0ZPOk0/K+ORxN+vb2H3xGKfLW9ey7a2XkMHt47Ih8YAWc7XszBSb4jpCi3NIfI/xbYR1ypxWRmpfblK+WzRI9bw0GZsq1DVBVlYwPy/yGh9lBJ84A2qOREqeWlprUFvl5S3bCpgAXByrcXh4CLVabYU3qtXqyrFEPE/PKtMiPFRGQI8Dg4qTySQEh7e2tqDRaIj3zqGjqAV4NYVv/ab0We/4e09QSgK2o5SvZtiUqQjzjBOr/zx5FDEWY0fpWeXEyk5ZgRRL55Fp2vca/xV1DjbpXFBjSnPyrTFRBHnlbxntw8duKh3etF49lVKuZPwW0R9UfuERoXt7e3Dnzp2wY4aehECPwUsBl//evpSCOFIaHKvVahU6nQ7cvHkz3L2K9x1LbUGPjaKyxWo3zbbhASH+TsqD8jZOJuOd63zltLSQSXOGsC3a7TZUq1UYjUYwn89X7ini498ToPfqhizLXA5WmQGzok6+ZZ/GbEApH+wz5At+TDFNH+PvooG0FPqvApQ+605N3sceeydmA3htHa9diukXiwU0m03Y29uDR48erQSxeJ977BTJV43J0aL+g0aDRaeVnxUIzGurU/nP08Tky7rGAy+XBkF5uV7+lPwQmq7X663oZ+lYdCk4i89Tg0JlBXlivKXxfWrZNH9p3HjlvyZ7rN16mtySyrLot/LQkJqO82qevFIQa5sYNPsqj20fiycUoTOWr/ebWJwiFXz8e2xuXq6WrzS2sTzuE6AtPp1OoVqtwvb2NtTrdahWqzAej8OCS2ks0vIs+/xFRZl2spX3poF+Al5v1mw2odVqQbVahWq1Cs1mEx49ehTSp/JmDHl9Bs2OT/me65cU+8eTrmiMyrI1Uusae3eVPGihLBvnqmG1cxn1o/yr2UdaOXmumpHKuw6gNGl0aYvVLfvTC8u38tg4ZcYJPLaUeExx3sItw8iDVCPhKoTDdaIvRsu6B6h0H2alUlmZiMVdo/R+2Nhq8HWtDMnjkODfuMuXYjAYXLpj78aNG/BP/sk/gQcPHsD//t//O9R5e3s77JS9KkOYrzyJCTytvbhw9QT5tDKkvJFWCr7aOQZvXbygQXXehlxuxeQgDfzEEBsrUnDLoh/viKL0eBHr57zj60VG3npoAdOyQfvbi5RgTOr3sW84NB2m/c4TaJDSz+dz6Pf7sL+/D51OB37+85/DT37yE3j8+DEAXNzftLW1pd4pi7LCai/ckYKTo+sYEzs7O3D37t1w9PJ4PIbJZBJ2peHufdxFSuUbTlKiwcx3sHEUDZIgPePxONBZqVSg1WqJxytL3yO/U7nYarXg7t278C/+xb+A2WwG7733HvzFX/wF/PCHPwQAgP39fRiPxzAajUT9LAXAPXXBdkVe0MahV4YDrC7AWZctsQ4+1E6zwKssTk5OAADCeEJe5PRwRylP39Dv6Xc4FtY1FvNiuVyu0MZBbRP+nAfsynQwywCXPRxSkJm2A7WlYrpCm1C6KuC949PpNCwOAdB3/9K2kGwHyic0jRWY5yg7UM/tYysYxfvVC9r3KD8+/PDDENCmi4ykbwHy+ZxWW6Xadyl2VV5I40Kz8SS56u2TWq0GOzs7MBqN4Pz8XDzGVbIVJD7B/sTTtKgfGAtoSvaXpWvpyQ20DC0PbVG19IzrMMkHTIkXcT+Z0ol2gXaKkjQhQW2+TUKKJXBY7WJ9i7pFutKB559aXh4Zaclviul0Cs+ePYPj42P49NNPw3Nq12r9JNlHGr1XbeN8XiZ3ioLrLoALX+vo6AhqtRp0Op3wHNtrOp1eOhGobN3tRdE+5PatpA+s8qgMiZ2a5x2/mg5cF7yx+qscM5IefDl+L8DlMuc5jANIC/H5KSKWXSHZEpuC5n9q8RL6np7ipMVCUJZVq9VL5UynU/H6kLx6LRajvwqsRBK9k3t5YE2OlJFvzMkro6y88AhaKeCgtVkZ7SXl7VEE2u9arQbNZhOq1WqYQFoul2EQ4ZFc0+l05ZhiroBTyufwCClv2/G8aPtsb29Dp9OB0WgU7vHAfPf29kJdMcCCK9twQle7zyDmMHjqFOP/dcEbmIjRKuXrGTeefk2RA1ifWABDkjtWW6QEXaz21N6ntEdqsCWVtzzG9HUJCluyDZEyjng/WPVMDUCkIsWpSDX0vIEM2h6eulGarUBeniAm7ROr33F3ZKVSgdlsFhbf0LQx49iye3geZfQ3zQedg3q9DvV6HWq1WjD0MUDKF3vEApE0Tarz7x336JxPJhORviy7WByFAUer3bANcJdwv9+H0WgEvV4Pjo6OYHd3F5rN5srxzZxezR7T0vLn/O5bDzzyyPOd9L4spzrPN8jveEIIHmsZ+yZV9qbaeZsKuHjlnjc/Kx9PuqKQ7rPV6MDfaAvj+PWAtoumL/F/rY3XHay0dBZPh/9zGePJV5PJWhuk1jlVh3ny4O8kn6cMvY4TUXgHaqvVEsuTwCfjNH+M5hGbFOHPUv1czzepcpjbYjE/w5sn9ZlqtVqYMKBleeilfM77wqsX89pUWlzEwz+xdzFbykqXB5x3tHFclt9Xlv1KaYqNRf6t5pt79AOFN12ROmvtj4tHsuzinlhM57nKy0sTj1tsyg+3xq82PrRYDP3musQRioD3LV6XgjtlpZMFuaxct42zSWgxGI2/y6h3nrhPqk4owrNl6QYPvHZsGXlpaegzS3/mQaxvvP3ubQfNvqVjFuMFmt5OpSlPzEIqV6PfSiPVgY5fTVZhG1Bo1y5KdmVqv1B4+KmoLailSZqMzQuPM2c5Bd4yvEZIkXK8iqBocKuIUR5jklSFIwlDnsft27fhK1/5CoxGIzg9PQ1p8O41AIDRaAQPHjwIAVZcGU7zuypDggsaOvipQ5llGfz9v//34fvf/35oy6dPn4YJ5qdPn8Lv//7vw2g0AgCATqcDBwcHK0KI3+/K4e2fmPLypPXCw/feMSzRohna0s4zjZaUe5JSghw8nbTSWypznbzsVQT8LkaeJrbbDd9tygiU6lVmgCKlfG//eQKpKeXid2WgqF6N7daRfq+L771BlNRvkL+tXej1eh06nU5YUIMTm95xuI5gmwY8Jl+azKS04N/L5XIlHd0Rm2VZWGwkGblWoESDJ+1oNIKjo6NQLvLfbDaDarUKt27dgtlsBmdnZ5Blq3cwosyj7T+dTuHx48fhHlhvQJoHYjXHiLcBpsXV65hPkVMJpDLpM9pOHv3En62TNymfLRYLODw8hEajAQCgTubxtpfqLo13rq+88sizK6hIG8W+8+arTXDEghXrCNThMeIYPLbaB8fCjRs3oNlswpMnT2A2m0Gz2SyNnqL8G7N1UmwC6Te3HbW/tTw1/cbfFQlIlA0poIY8rOlcWh9qg8T8GJR/qKfH4zFUKhWo1+swm81UWbNYLILP5kWWPT8xCWVv3vGVGqzkfCr5U7E8U2ylmHxBvsbf9Xo9yHs85ULbIYvfSW03mUxEv06S1VTnSzogFvtA/ewdM1TXxvqd2gOx4Ke371J8/3WgqL1Q5FtsT2kccNtAshWksSPFMih/UmjHK+alm74DgLBYDWNkW1tb4QQFhDQ5d9VxibIhxR6/SDg6OoKTkxOo1+tBdqDdTO19inXYeRo2IQNoGq5DrMV83riVdIKA91tNpniwybhaHpTpF6b2c8p360Ae/1z6hspotC247SKd+oibua4TNPq1fqPyCRfm4ampNK4fO7kCn0s2n6eNUnVfWb5Taj7qMcXrHgRWo0jGUZnIE9S18shLpyXsuEKNtZfm/HvaMkVQak4nDZrie7z/AAcMnZjlQbN1Gg9efqaGHwpI3NVL6atUKtButwHgQpC0Wi2o1WrhyL3xeLxyhyydcMadtFhOkckSrU4p+RUJpEvlcOMkpX85H9P+0PhZC8pK9Fp0a2nzprPGpJWnVi+Pk6WVze9v8hjrvM21fpSeawHC62x4AuSfTEwJqPLyYmM4j1GI31l8nqLfNhngoXlbgTPruxRI8gzl9WAwgMFgEO5okoJ7ecpFHbiONqRGK+oaPKIYj8n35mPxpsUfEg96+BjbuN1uQ61Wg8ViEe5jx0nWvb09qNfr0G63gz2BwSotOAFwMbn7ySefwHw+h16vFyZxcRcCp523hRW49o6lmL706Atse9oHmq64TvKW81Oz2QyLG8bjcZh4x37kx5bxOuUZO1wX5dFNV9GmHv0Sk/XWGLXyjtU3trMV+7TRaMB4PIbT01NotVrQaDTg2bNnoQwcix5IssniC56WT7hY/GXpvjy8QG1+TzC1DH7j+aX6B9KzGF3ecZp3HHvLB4CwSAdg9QhXzvuSPk+VC5aesNJ5QeV/jD5pzEu8EMtPsnuseqFOxYVPMUhxEDpGeFppjKbydYwWjbaYXU3pkuDxn7S0Fn3abw/ytF2Mz6V0Zfo6kv6m/ByzsTX9l9f384wfK3+Lzy1b3Esf1TvXyS6kSPFJvyhAWxgnMyxekOR4ETvZ095F+iTPt5Lv6Y2RafLbssUsmmMxupSx/hL5EGu7dcapeBlWvJPaWRZNksznPoNGQ0pMIi889Ft2meWD43saB8I6oU2JC/swLbcXMV9aBi23qP1d5recd8XJ2BdNOGya3jxBCwoU+p570IoaKLHBk+eOkOl0einPyWQCZ2dnK2mm0ykcHR2tDB68Hypv2XmQ0jdo8ODK3sFgcElJS2eX1+t1+MY3vgHb29vm/abdbhfG43HYvbOO1S9c+GXZ6qoSS2nw77nwks68T6WLC0ttPHn7regdw1JZHoebppH6XFJEHkMXDUMpf23nk2WI0nsUqYKM9d2m7w/S8KLpIwuSoaD9zgNqGBZ14i1aYzRI46loENgap1r+KcEH/L7RaECWZfDw4UNoNBpwenp6adcMH4cpAVx+f5210z4VqLsmkwn0+/2wc217exuq1Srcu3dP/Ib+z51+rwFLHVr8PiZbqTwajUbQbrfh1VdfDd90u13odruQZRe7kN55550wEXt6ehp25MXuRj45OYE//uM/hslkAt1uF0ajEVSr1ZXFUQCwErSX6I4FmLWAGy5Si8n9PIFJdGCQ7rwoyoPWWMM+wn46PDyEGzduwI0bN6Df78Mnn3wCi8UCarVa2D27LrmP/SjtLLluKMN5XCdidyHPZjNoNBrQbrfh+PgYHj58CL/5m78Jh4eH8Mknn4R7oZfL5cpEmcc2wbQePUXtbWknRIx3PUjx1TiPa7v6uEzw2qm83JgtQOu/iaCOlL8UOKG05L0jG4PZ9XodGo1GuF6mWq2uyHmvXWzVJSa/y5oMyZtHig+Wh4bFYgHT6RT6/b67HeliUcwTJ3M5f6Cs8PpRmEayta04jidgus6ApybTrB2Z3GbjsYXrrks4UnQAvYKDBq5jJ/pQP0lqH8yHLqi36NImWpB3ub7U+pH+r72PAW0urndelP734vNWHwTvt/l8DvV6XfUxvgigNp81biXQU+J4TBQnemg5aJMiLLuI6y+Pr0z/LhKrWTeuK13XEXxuR4LXZtd2gko6aJN9FIuNU3CbnZ/AJtURF5688sorl07GfPToUVjEi3kAwKUF9Zv0YWLwli9OxubNLPaN1FkpQUwLnm89jpCnrtpA4AK2KCylWyazFW33arUKs9kMTk5OwnM8EooKjzyBRoTHOdJ+x76nAgGPhZHa/s0334Rf//Vfh69//evwyiuvhIBKvV6H0WgEP/jBD+DTTz+9FNzFyVuusD3g/ZzXofKWS/sJjRGtPXnalMCQ9VsqS/o7LyzHPIXP6LcpPJfK/xp/Ux7F/vU4iimKPNYu2gTYVSvAq4bHYeL9IY1Rrh9j/ImyC//HADSfAEyd7JGeeQJhWFYRBzI2vlKM01j7ZVkWgoDL5RKOj4/hpz/9KZyensLx8TFMp9PQth66rT4tog+9GI1GcHx8LOrjGPIElrV+tgLd+BzvDz0/Pw/P5vN5mKCLOa1cJ+FELQbqMBDGj7vUxkWKbNV0CganpTKK6gdaV89RdakoqqcQlI+azWZw0PA+NDxpBI+klILR2rO89Hr6VEq/DlhBV4nnOe8WpSvP95725+OdBriq1WrU7qPf0b+1yQkur+hvKtNj9bDqZEErP5beC8oPRXWH5rPGJgK84LqZBl5QrtOAk+cI4lhdpO/4hAQec48LcfBkhVh+nBYck9LCXI89Hcvf+00sL9R9qD+1CTr+W/K5NL9N8itSbU1NjnU6nZUrCHBht7dNqC0MAJcWY8S+5TTi87y2LG9L2o48VuKJa9A8AS7v+rdQhj7bhA3Ly+O60MtrvN80f56XJ/G1ZD9KvyW7xfKHJD2PPJu66FzSidaYve54kWgtCskPAYhfcea1Pa4TYuNASq+9pwt7+FiVfEc6Lqgd4BlvqWPpReqTzwvy2FtlgMteWhbls1i8b910WjRoOsrSoSljeblcXXgbszkBLja9bW9vrzybz+fQ7XYv+cr0t+arWm2bYtuU0UeuydirAnc6tQbdlPHpZTStYz4PwpjXF48gm0wm8PTpUwB4Psgortv55wg6eDFwi84br8M3vvEN+Nf/+l+H3+PxGGazGdy+fRuePHkC/+bf/Bt4/PjxyjfUgaS87HHoLGcsT9AiBm7EAIC6E4imk1Ywa/TGAnDW/aYarAvPNXgDgTHwlfVSGbzfY3RJDhwtTzNGPU4pHZu8DCnYlAdS0PMl0sH7xBN4r1arUKlUVu7hQzmVEkTCciyHhAeGvXni357v6C5NyUGN6eQUHka5TwOsT548gbOzs7CoZrlcPd2B1ydFZmvpykS/34fHjx8H+rBueOyvVb4kD2I8mGqT0TLq9TosFgs4Pj4OOqXRaECj0YDhcGjKFaq7MCCJk314WkUKX3BH3uJVWmdMh5MP9L7dmH7AZym8gHnjCtKy5O66+HF7extarRYsl8vQp5VKBTqdDgwGg/BMCkp66ZZsN3ynjVv828p3U5DoxIUKaEdvOgguwdt2AKt8SRc8Wum0Z1QO0IkmTpOUXqJVC3xqdfLqrnX1jRWwkey4lPGD35RBu+RP4HOU0XgCET9W1CNvJfCdg1n2fDIWF8Zsb2+HEy/4XaZUz1k04AQh+nb4zAq0XQVqtRpUq9Ww0IXLD4D4pJSkn7gujQWurdMHtG+zLIP9/X1oNBownU5hPB7DkydPIMuyFX0X4xW8xgDv3ZQm0Pk39H9eTup4ioHGG2KyyoJmZ3BY/X0deBahyVnaD/xvapvH5LS0y1jje0+7SnIO+5WOG2kBkQZrEZH0m9cZy6aLc1HeSnriRcWLTr8X1sk9XyRo/hRduIPpJPBv8T5LTM8Xr2vfI99R+8Vj10q+30tsFuuUGXRRlNT3nvGr0ef1m/JC8us03RZ7ZvG5pL8R2nhqtVqX8plOp9DtdlcWVkoxdK0tr8sYXMtkbF5HKpY+5jSsC5ZAT3VKitRfe8eNKu/Z99yx0piVvl8ulyuTX/TYB5omtrJoU8rIY4wDPJ/EoMfdaEDam81m+Lvf76/0VbVahWazGRQ8XZHLA0g83xRQYZLSltJ3vL+koAwNsMT4RXon/S39pmV5kcpLUt08+WsOM39uOXCWkuNpaEBNajeeBx+TdDcYp08rN8WgzIProgARZdOTyrtaHp53WrrZbAaj0SjsjMWgFHXEvX1dJrx84zH28LmUPtXYpQZ0lmVBduPdpKm6PW898wLH/WAwgEajAW+88calVYTVahVqtRoAXG43jRck49yClSYW1MJAK7U1KCaTycqdsVoZAM9XoOKds7PZDKbTKYxGIzPIp9WFB+p4PfjxcxrP8LEntS3VDzSYx+E9YpfWDY86Q5oxOL3OgCzVQRaNOIHOj9YHWK0rzUc7slbCdQyCWMFgHAPVajXUD4+ssxauecdp0b5el/91nZxkCXn8MnyW1073QNLr/P91li99D/D8mEW8DxzgQibwa2Dy0EZtY26j43OUJ/P5HHZ2duDg4CAc4Z8H0+kUms0mvPbaazCfz2E0GoXFJFagzat3eD1TweVjtVoNu6q8dqX1TvP/8R291oHHDCxwmYQ7IdrtNvT7fXj69GmwEagPreUt6U/eBtI4pfWybG2PHW7VFb9DXrWuLorZCRokO69sWDa4t11itiEHH/P0ea1WC+Nd8ts5v0p/x+xeLa1VJ86vsf6jfeaJ62n50AXYVlnXWedaeFHpTkWR8fV5AK0r2sBSm0ixg9lsBltbW5dOPqQLA1FfYD60TCtmosmTWD2s79ZlW6cgVSZf93I41lmmpjt4/I3Tgzwdi0fwcspsQy3WwXWlZZPQ9PwZ1WUSzdPpFB4+fAj1eh12dnbCc9xUQlGpVODw8DBcQcXrgQvxtLG2LhmaamuvTMZqHe0NUuVxGlNQBqN5goE8vZbOur9D+yZVaMcCgFraGPixUfg9Z1ItOETzoXngQOOTjRK/lOXoc3gGAL8XDydiccKC58MFZJZl0Gg0wgpdOjELcBH0brfb4TcGI/DblKAZ0hITxJ48aPkxQ0AK9vEV7LFv8oyNmPOUAo0HPem196kOudVvXmcM02gOKP+Gfodj0eq7TeKqy78qaPxnyTGLZzU+pMHHwWAQ3tPJ2BgN6zJOrN/SOzo+1u14cnlTq9VgNpvBcDhcoStFJ0tlrANI12KxgPF4DK1WC1555ZVLbVapVMK1Ahbtmhzjsi5Ff3lkcZZl6u6i5XIJk8kEptMp7O7urkwqSrSjLsLJxuFwGGwTquc9SNU/lrzNkxf9juqBFHsSv8O7EgEunJvJZFK6U0p5A/mSTk5LOp4GTJDX8J/FL5QvU5wfTmeROpaRTvsWYHUnBA/Wa7Ycl6Fa+nUHQVJsU/xbs3Os4Da3a1NlrTbOykSsPgiNBk8QQZINUt4aTWWB9gfKXVxIk2UZzGYzOD8/FxdRWLo+ZgdzmULbcLFYQLvdhhs3bsCDBw+S64N54nHHr7/+OozH47AyfzAYrIVv8oC2k6brYnRafSDlj8/pccLeXVxSu9VqNWg2m3Dz5k2o1+uhHLoAR6MX+YMuXEnpF80GLROxWIBUpmRPeGWsZS9RGvLKBCkvLU+PXWTRo+k3gOcTLFRXeuwjT96piNWbQ/OT8vo/MRsK01j2ZFG+KAIv7WXmeZ2g8YOnL4r0W9HYmxeanWeVze0+nh/Vd6gjcEMM3z1Pjzb2LOjM0y4eOea1DTeJdfqF6yznKuDVc1YcBOdluD8UK0PKqwhSdY2VNmZz0DT4fDabwdOnT6HVakGtVjPjHFtbW7C7uwvD4RDOzs5yxVti/oY3H4k+L6I7Y3kQDWEJyes8sLyGdWo9UtsJv4mlobTwYEOsDMsh12jhz7hQkAQLvSOV78DzOhgx5DVELfC7YjFIuVwuodvthjuFXn/9dfjn//yfw2uvvQaPHz+Gg4MD2NvbEx3cer0Ot27dgslkAmdnZyv5S5d6e9vCGm8pwa51jE1v4McSktSAkibzY+XGdt1IZVJgO1qK0vrOU56XPsrrPOhhlaGNNXpkS6xOKTLjJS5D6+M8ber5hk5w1Go1uHv3LhwcHMBXvvIV+MUvfgH/83/+zyB7+ESURasmwyV+Tzl2y6ojLY/yv0WbBcrvMZ3Ey6KBVcQ6J+/KAPIB3mH+wQcfhHd44kO/37907xC2DZ8EQ1g78Ggbp8o6Csm2oWUgDScnJ2FH02AwgHq9DgDg0hfakddYfpb5TjZJDa7F4LVtpN2i2jjRsFwuVxZo4DUTuHM4hcctSAFkDIYslxe7zafTKfzsZz8LO/ipHanRLv1PTxzhgUdpsSCXCXkDed7vUvyMPLykBetj8m4TMgoD4sPhEHZ2duDmzZtwfn4eFlVw/0GjkfshKMNwzOKEi7SjzQpmUJsTn/N2y9vPlEeQHmmHEucB6e+YzuP1yQte5zKCubHvqe2PbUHtE4+M02z3FJtXWiwrAYM/r776Knzzm9+EJ0+ewLvvvmuWsWloeo6+9+YDYE/K8nRUX+Mzr9/F9e/jx4/h/PwcDg8Po7Rq/qUWt+B0Ur7D63nWHYCT/DucLJAmBlJluiZXLJQVa8mjW4uUhad8ZFkmXiWC4D4259XY2Pf4Erw8AN99vlJ/a3ooZoNIdZFiUNb3UrkSiugJb95535f1zXXEOtr7RQK3qajdr8l96d5dlBn4HK9PwBgw/V6CFnuT0n1eeE+DJfc/z3WP6TvNPqFYLBYr/pAWa+MoS2dLdBWV7dSWQZsK45Hc/vOCnjSKiMUPJLq4fXSV8tScjI01ksV4VzHo8hgPnvw87yVHkP7WHG/+zHJ6UgW5lJ62kYfxPA61dglz3rzzCnJv4EL6hgYEACAECwEAOp0OfOc734F6vQ6DwQB2dnaCUYs7kfB4KtwRi88RjUZDFKRSELootABfTPB4HbeUvtb4mvOmRJvEq+tQ8jGFYLWTh2+lvHi7aEEw6X5XCZps4PWK8ZomL7R0KTxgYZOO++cFdJzgYpJOpwOHh4fw9ttvw2QyCavK6GQsLjrRFjBoY0F6vmnnwhqnkkzLo5cQaNxJddxkkCm1LDzq7vT0NDyr1+tQqVTCpGUszxSZgSjDaKf54DNaPh4ZvbW1Fe77Q2NfsieofuX9mJdOTx6ptlXMHvPKZascLIPemVetVqHRaIjjpGybhP5DWdTr9UJ/4lURVuCe/63ZBV4ez8MDZbYL7/fYGPIG5y17aVOyi9ow0+kUdnZ2oN1uw3A4hOFwGCa/vMe/0z5HnkFofJvCz5wfUvtCSmvZZbE8eSA+1aex3qf69ak8E6ufZP9rgSfPSR6e95g/Bry8tqtkqzcaDWi1WtDpdKDX6wX9SnVN3v6yvvME9OhzytP0Wy1YbdHoKVvzbzRo9hrm0e/3V2wAOsmWRwdK5XGepHoq5XjlWN1iPrVko+B33B/25sfTxWyXonExj2+Zwt/ecmj/0lgOLZPbglJePB9P2al0xsa71U5WjMaTd4o/QdNK7ebNg+Klj18cef2WzytSeYxfR0S/4zKYHotq6SpetmZ3SmPoRe5PSZ5chzGe14/16Civ7ZkaA0DQRYGp35aBIvlq/pPmF3nsQ7rwFiFdAYX2mhTXLBInsPIosw9WJmPpqil6rCpFTCFf5UDkhkNRpDoSZeSrOUixFc+0zp7V0dL9oDFaPMIhFvAsoohShJyVR7VajToyFnAnB8DFHXb/4T/8B/jwww9he3sbsiyDTz/9NATy8Y4C/E6jKQ+0IFZR3qc7iKxjoIpAG6Oz2SwEalON/5QACNKA/3uCebysVEjBZC0vj+EnfcMVYErwRhu7mzAWr4MB9yKBHzn89ttvw/b2NkwmExiPx7C7uwuvvfYafPvb34ZHjx7BgwcPwj3WnEdSx00epzwPvGWUtZuPI2UVOUdZNkjePLa2tqDZbEZpokFOAFjZRY/le+6qspAqR2LpptMpfPbZZ6K88+QtpcsT8C8bdBwul89XfHvuIIy9Xy6XYXc0Oit4XCjABa/X63XX3chFgPXCHc1Pnz6FdrsN//gf/2MYDofw85//HI6Pj+HJkycrO/q94PzA76ah74uM73XB4mfc+TmbzdyLKqz8NwWsy9nZGfT7/ZXjRvFuPykQRv/m9iD2LU7eU5ue75SgY0Qb/7F2iY0zzWbEscuP584TEI9BCtRbduZVBAFR13Q6HZjNZvDo0SNxYh2PNMYFROgT0DRe+nHXP8DF4pNHjx7ByckJLBYL2NnZCTu0caIPgzoxPHz4EP79v//38M4778Dv/M7vwJ/+6Z/Co0ePYHt7G5rNJpydncF0Ol2bfeLBaDSC8Xi8Mjm1tbUF9Xod5vP5ysKcFGi8JC2QoOM5D89lWRbujX3nnXfg9PQUHj58GPQD96skfYH3+lKa+JjlfMjlkOZP5Y1h8Pahx2lKNHLQcmk78NMztG89k3dWmXmhtVneALqnPKuftAXPMTvRowskpLZhik7iNiPdZa3RSm1Empe0Q/uln/4S60AeG0eSoRLooi46uYP8TXUgHytaHE4qt+ik5Is4tl5EmosgNR7NIcWAJdms+fzSsfsvQh9QPy5F/43HY3j8+PFKjAoAYHd3FxqNRrDdAS58yZs3b8JwOFy5OxYXVPB5H8vnK+In5/1WvTM2FrS3iPDAM+GRJ19v+rKCpZhXnrx5MDG1HOm5pqxS4fm2qGFufc/bxTOIvPTwvqHHM9IjcvE4qk6nszLo6dEVs9kM7t+/D5988knIezKZrGzL99wtzHkm1jZ5215rO8xTCogV6eeUb7H9tQlgb0DamoDkgblUGj2QHH4Pr2v5aN9Lsph/k3dMWOVaz2P5vUQ+SO1JnzUajXBH9fb2dph4PTw8hNPT0zC2+fEgALYxgu+5M+41aiTaPTxZNv/EDGPrm6sIWhcFleN8YkoL1Ev8kLevvHojlTfoMbdZdnGvr5fOvEgJrsXSetqq7LogH3Q6HajVaiEQT3ek8nvFN4Hl8vkRtTdu3IDRaATPnj2D4XC4Iq8A4rsnAWS+5nYVtXOs71LkT5m+hFUGQJqe3qQO5jaPRA8utOPBXToxQP/n9qgWwE8J5Hn7WLPFPUE4T9ne7zQaOB97g+VS4L5sPtH84Sx7fqQ0/pZ2HublZWuMUBrwiGy6KCClHMxvPB7D6ekp3L59O0zA4gQy96Ok/L32UhFIvlSeeEps3Hj9V6s9eF7UHhkMBmESuVqt5jpG2IqTcJr4eNLajdMaq1uMxhRI5Vq6TyrDww9FY1RSW64T2NcenvXA8r1oH/C/U8qI0UXll5UG/7d0Q5ntH7NLvOm9sa+XyIcX2ZelsPxKSxZLafGfdj1BkbayxgMfA6mxt5dIQ4qdVWab543r4nMvLVTWb8KmtGDpypQ6IZbLJUwmk5VYQJZlYbMoP66YzrfwfGI0peqwshG9M/bzCq8D7UVeR9vjiOLzdShUTSBZhqy2i0RaFcsHhhVUswayB14lTO8MwOOm8He324XRaASLxQL29vbgd3/3d2F/fx8+++yzkEej0YBbt26F/E5OTuDJkyfhNz/2L29AW6tbHqfN07ZaAKEM8GAdggtP792vNN/Usbcpwz/m6ErBBKRHGyeeuvJvrcUAfHy+NABtbCLw7gWVMf1+H7a3t+Gf/tN/Cnt7e1Cr1aDdbsNrr70GR0dHAHCxcqzRaKwcEemBJif42KULVjbZTmXz7HXp4zx00EAMXUnoMTpT2nFdekID1mU4HLp2flB4dLDXiS+CGL2xenltRV5mvV6Her0Ov/ZrvwavvPIKzOdzODs7gz/+4z+GxWIRJkJ7vZ6/MgWBx01jUB0Xvb311lswmUzg448/DvJqPB6HiTxaLy94m+bta61vyhwH3O7GvHGHHd3hllLuuscqtfeRNh4URtrH4zEsl5d3H/IdCZa84vXX+nS5XIa7kOmiS063lm+svkXb1RrvUsCA61c+WVTUttWC5Km6gafHE4K63S6cn58DwIVM397ehul0CsPh8FL5KavoPfKd1wVPN6LvveVNJpNgQ52ensLf/d3fwWw2gzfffBNOT0/h7OwMlsslVKtVcXIoL9DuwoCUF6hb8P/JZHKtbX3qi45GI/iTP/kTqNfrcHh4GHglBmlCKpYe9RH68HSc0ysRJHrzticf2xa4j47leq6Kij33+M1l8Yw1SVyGrqKnkEltxtMgDTyO5Tl9LK+MzDL95DEux2O2B4830c0AAOnHkku8pNFGn3E564lnvii4LjRfFzo0xHyYdcYXU07zRP8Dd86hjWIdTW/JQEkmSDTmxXXv9xcNZbVnSj5cXmv2Os5TSN9L/LwpW06a59nEAm7qx1UqFTg7OxP1J0D63bEW8rZznv64NBlLHQdPUKgMZr6OAsbqBI/jJ+VRNlICAh4FohnzHmEjGbF5g4frhGS80v/pzsytra2w4hmPOer1elCtVmEymcBsNoPhcAi9Xm9FcOYxzlMVgxVEymssxN55DXSLTl5GSvAoJhh5G8acT6/Tqjn1scCeVUZRPpeCRzFnmbcNr1MsAJpCGwVvo+sm71MUrpR20/Wh/YWBueFwCIPBAGq1GlQqFTg/P4fRaBTuh8X0fFdsEd0RS5PSNtL3Xoem7D4oGtCO5e3NM4+MppCC+Fo+kk1XxPBM7U+v/qDpLdrXjdTAW5G8LAfOU1/cjdZut+Hg4CDcL43f4nGPKXcKp4IGHzH4QW3ELMsCXXQRgTQWqTzTZLfEJ2XUQUJRGeHhDz5RqQVmrXrnsUstmmieEjg99NsUuyVWlvR93rqmji0tbcz30XxEbpd5ZLhVfoovtw4dystH/2o0Gl06YjZGn/Ue28pbN8kGkvpIS4eya2trC0ajETx48AAajQZ89atfhXfffRf6/b5aB05T3vEo0UdlJA3cSUc8Ux+iLJmg7XTWdL/WlzzdeDwO7/DUF4DV+/+keki2gScgatlLklxLsemw3prveJ38I0mHlKHvaN9740sxeNrQ8t8lWvLWl48vKy9N7nDeSvV96DjHfK2yNZ6UxkcZPCrV0UKZ9ouHJq38MvItYmPn0Y/eb/NAGjN5yk+FJfc9ZUl9wv9Z5cby4zSmgo/HTfq2V6mDNll+nj72pvV8I9kCKfDK4xTfwfpW4m9Lv+D33KcpQoPHJ4r1X0wXclo3wY+XjileLpfiPSLXyUAsA3mcPo8hVeR+mDxMimny9o+kkCzapPd0RRGliQaQYqsnNsFf/I4wDFLSe/IsOp88eQJ/+7d/C1l2MfF8fHwMg8EgrMTgAiPPXWcSihifqbzB08f4oSxIQY9UmjwCNoUe/pvmT+8Ci5XBlZl3TFv1pAFpbWxqhqH0jtNattG8jnyv2mi8CtC+z7Is3AH77NkzGI/HYWHIgwcPLskf3LmasqPCA+1+eYDNBX/XgaJy96rhPWWA08rv2JHSUKQEJlPahcs2zvuxsorCCiJLf5cJ6rxIwWN8hu3Bd4JQ+vDewHa7Dbdu3YL9/X3Y2dkJR5bXarVg9y8WC5hOp2uR05VKBabTKfT7/ZUdY9Z3OHlDjyOiO5SQJyi9Xr7l9F1XoMzGXVuWni/DvniJYtACfN4d/Zo8tSZweHlWvjRI7+WBlLSa70y/Pz09hSzLwpGzvCypjfhuL37MssdHsGjGbzzH32KMpF6vw9HRETx+/Bj+5b/8l/C7v/u78G//7b+Fx48fX/qm7DGn6cDl8mJStFarhUU3g8Hgko1WqVSgVqvBdDo1746NyVJNHpVZ12q1Gk5KqNVqUKvV4OzsDE5PT8PR0NYCcEl3Unol/UF5jdbL2iHrQepY0sa5FuCkv/n3RYK29PvUvi1zkiJvmV7QO8wRnI8sOU7lCNIRs3X495rdKY1FqW1jwWqLbum3Jlt53WIyODXojtjUvdvrsgOtWMw6y3kJ2ybiQH8jFmO0bK+rvCO+CFDuXDUPXXX564bEQ6n68Cp9Ny7rLXvZc4pIan/H2i3LshDTiMXxkX6elvtr9IhkXp6EPLa+emdsCoo4QV6UHTCJ5ZViNHgmOfJOJmllltnOKXlJRgUfjNTZj+UfazuaR4wHYm3MjTu8f2a5vNgCP5vNVsqYzWZw7949aLVaAHARQKB3xY7H45WjrsrsH20wewxc/FZzKLRvLUXsqU/q+NQCqLxcKSAdQx6eTuFTjW+9eQDEjwj2yBL8nbd/Uo+FzlPGunRCCr+tKyi/acORGvx09wPARYDwwYMH0Gw24dmzZzAajeD8/ByePn268n2eMjmw3K2traTjBPFbqxyvjL+u0GhEg857jIpVV41XrfGHfGMFTrBfKV9Zk/c8sI/fxfhBCx56cRXjTvo7Bq9u4MFVT754csfW1hacnZ2tXL8AAGGn6Wg0unRPI+1bXFCWevyzF5S3cOEeBR6bjAv6vPXndgFtv1hbSjzH01pB0TIh0RGz/zSH1pKhXvsC06boTB6kpu2Pjq3UZxo8dmjMN0B+kxaXpNSR08v7wOorKyiu9ZVWF1omf6aV4QWXUzHdkqfvKDRelAIinL8ojSl2r8ajGn1eOYh0DgYDOD4+hmazCTdv3oRut7tydYNWT6/fz3W0RjO3DS1fRZMnecD7yROwSgHqCTxdYTabXdIlVr70nllOp8eWwrT4T5q0syD540XaiNMt6cJYrEmza7T2iMUQLHln5Uu/idVZyz9FX9G+iF1/IMlcqa24PuI6z6LZG+vRELP7rbJidkFM7ms8zeVLWbBst3XFGr4IyNtHZfatxyaXys/b797vUvL3yNwUnZFafl5s2qdeJ7y2qoZUX0kqP49t6qF7HTLVC81GkOIXVrwpdaMatqcUN7L0lSdvT6yKnsASyw+/ieXN87t0TLFlOFwlrlpQWMYUZ0LPd3ngycdbVt4gE/+OBteyLEsOzGu0FEmngQ6oLMvCJGuWXdxLMxwOw3F9ABf3Av3whz8MwZxmswmdTifkMZ/PLwXWyzY6AeKBD43vuKMW6xdtJSf/tgzjhwZdcedLLKCVtyyKFMePf4NtKq1805SoVifJMdfS0zIkxaMJfo/RV+Y9fFq6FwXr1DFSX6QY5RSLxWJFTiGm0ym89957UKvVYDAYwMnJCXzyySfJ+acGl6z0msFEkYdvrxM89GbZxWo9gLS78Kz8UkCDiDEHN8uylWNsR6P/H3v/8mNpmtyF4/Ge+yXvldXdVTXT0zPjnitmPLZBFkhImK+EhZAwEjs2iBUSfwEbdogtC1ZskNgClhEYYQmwZTP2GA2juXf3zPSturpuWXk9ee7n5Ptb5C+eihMZEU887/uezKzxhFSqPOc8l3ieJ56IT8Rzm6h6TNMfVh2xYJDVhpumsgEyq0xqWzy2utFowP7+PjSbTRgOh1cchlarBd1u1zy5vlgs4Pj4ONS9jrmHOgBPa7VarRWe5vM5PHnyBHq9HnS73ejOcuRPe9vJo5OQUpyldZIXj3hxnMcZjNXjJWmRE8ewXq+HhX7uK1nBf76AyjeySAFgCfPihgR8UoTKubetmrzg4o70G/7Nr5fWdmFb+pL3meVvplJR3JYiWzE/BseJP6Gg6SJvYCRG/HYZ6vcUKf/o6Chs3n3rrbfgZz/7mal7ixLKMD0ZjHyjXdB0KB0L+iRPKllBuXXZ6dlsBo8fPw6fcW4DxIN7VKYwLfdxpXnF8/HPmj+okdcH0PSBlt+bXqunaOCX1m2NuyQvWsDba58l/ix9xtN4fBIao7A+0/9xvmMalFFKPKZQxaZoLCs1TqiNgye/NPeLlCfx8aqT147cBn+3yvhEFbwA2Ist65AVakNjZOkoCdt5YmW/pPXQuuTFopjd9Mamb7NO5HNTiglL7edxI4twYyHHXikYIUYe/MLjXLEYA03r5W8FJdBdnN6KKJXplNtgkChJA6SBZk3gYgNRhUDF+swC2R4h1OqiTggPONC/ve0vMvZF5I8GSabT6Uof0N3ErVYrnPpaLBYwn89hOp3CeDwO6fAdm1SyghL8b2/wPFaPZ15r8k1lucoAH5UhWm6e5+GUMuefy5QHqKXOM8tQSvV5yrX6jbfH4l/TS56yafAQ+5Eu6PFAmNU+TwBByrdOKms/1smrt7+8adDhx+srl8vllcVZXPygQU7PFTx0zHlauonC0u+WztKCXVXSdeKJWKAK+4zrtHWSB+xrhAAYF2Sn06m58MDrsOTjNjoXMdtWlGdvPkyH76Viv9GFJ6usWq0GW1tbMJ1OV94qzPN8ZeH/2bNn0O/3YWdnB7rdLrz22mtwenoarqiMBXy9pKXHK5BRD6Eums1m8PDhQ+h0OtDr9eDo6AgALnUbps+yzH0KisqdJLMcS6RionWTZcvpCWf8zsIM6+Q/5hvV63XodDpho6NVBh0vHGv69Ml4PBYdeAvX5nkOzWYTXn/9dZhOp3B8fLxyA47WZxLGpIuoPDAg5ZH4omNSpR6UcBuvm//GyRs0Xi6X4un2WLm0P2hdHI9IgQ4rwBPDy5R3/lkauxScRvVHo9GAhw8fwnw+h9PTUxiPx7BcLqHZbIbNCFZZKSTJHyesE+cT2hYa4+H2wSJp/CRZWzeGxg1ttG1WvZYejI0rb3PRhetUsniV5JTKobZByaqHziG6UO3F8PQ77CeuSz32iM9tms/j91McJ7WRt4Pmof8kGaf9yuvAfGir+DXW1jyxfAcvpfhg6/CzAORrhKV2e2JVPA9PY+n3FJu3bvKO4U1gTA8PN8UXnyMxfMD1RKzsVL/Mw6/m51bVh7dJrl9F8sZIpXw0Tep4ptpiD5a16knRr968sXzevDSN9qyEVo50iyTFY9JzEhKfFt98o6yEGaz8+Jvkn3toZTE2ZQenBspjRIMHmsOl5blOioEDr/NKAZ9VvjbwMX60MahKWUtjhYTCG7vGUCrTS1K7YgDW0/aLiwuYzWYrn+kJ32azCbVaDWazGSwWi5XriKVTaV7yKkWvovMEIzzK1hPAsNIWdSrQgaTODg3aSk6PRVJfWHLBHcUUwxxLJ30fk1+PfHt4kX6nziYawmazGdJKO+Vj/VGVbvYY5SL1aOXehE0pQnzu0vHDecI3w9A8zWZz5XSGFVDy9Ie0eF/U1mgBRUu2q3Bwr8uRQd2Gi5raCVMpn4c8MlwkgIF8ow3U6ophkix7eUqABr14+pskrvtTnPUqCYN5uBjLA3kWX1mWwcbGRjgRT+0ovX74xYsX0G634etf/zq02224c+cOAAC8ePHC5C11jKz08/k8LDKjPMznc3j06BG0223o9XpwfHwMAKv+SMrpIypnWpBQcq60ORLD5rEyUsia0zToS+XBOzc5FbGFWlru5+T55UavXq8HeZ6v4GdP+fV6HVqtVsAnuLglLcBYgblGowGvv/56uIp7PB7DaDRyLaxwx1rz/ySMJaXDz1XqF0mOJT0Ww2qWnFN8yK9CT5F7tCs0H53jtJ9TfQwvVtD6y0qHny390Gg04PHjx/Dw4cPQzp2dnSun4or66TQd35AhEW4gBrjsh62tLajVaitvw6LvbvW1xx+6LsJ+pvbRm8/6TZID+jfqHPpmeRGy4kcpvh0n7I8ifHHdptmVFJ9X0g8pZdFyvPKn2QD8zdJZ/OSNVhfHs7w8ai+ovKwbT3pjRZpt4v3M7Z6nft5mzleMNwtjWdgmZn80GXpV/P+/bOTREXzMOfaMlesZd0kGNYxh6TbLp/T67p60v6Q4pdofmvY6+7+IL+ct0zOvUsiaT9b3GEfka0dWf1N8Ix3WktpYdl5qcSuvXKTI3NX7M9ZMkmPrzSPRbTGqns62nD9KMScy9lsRxR8rWyqziuuXqgz0eUk63cXfKsMTZxoPngBdUVqHTKcYFWvntXU9T4qMokLmJ1fwFBa9AkpTaB6QzqmIvNF/VjqNF/oddVw84C6FT61eiS/+IDn+zXdWx/oxBRCvk1L77DbYjCLE+caTArPZDObzOXzwwQchaBALWHmuRKVjin/Td/jKkCQv0jx6VceKn07hiyicrsMWWg5eDJ/wa/kooPXoR6r/bivdlP7iJM072s94wg8XqQ4ODmA2m13R3agH8vxyMfbi4gLee+89yLLLE8/z+Txc39poNNZ6+kcb94uLCzg/P4fRaAQnJyewWCyCXrOI7mT1YmuLF8xrBfwl/4XXX9U81njkeMSD7aw0t8lu0jYtl0vodDrhVJ/mb3DHGrHNdDoNN0Z0Oh3Y2dkBAIDRaFQoMLNOkuRGGjOP/K2bcFGW82ERjo92xXBZvql+RIwiLcrwtLEyMV9sbl1cXECz2YRutxs2yHnqK4OZaXm46Wu5XMJ0OoXPfvazcP/+/bC55yc/+Qmcn59Ds9mEPM9XFmVjvFjxBE/soSrK83zlWSDen1wn8vlTlDcpGAegL8p6YwOaXHG7b9VR5npbS79YaTjx2AnljbchNu+kOevxTyQ+6byjPHJ58ARaeVqpDRwfx3wkjl1iPGj1SpQq85YMePJJtpmWQ/WhNW8snU1J+4y630O33Rf5JV2lGI5N0bexjemeOD2Pe3F9RHnmeX9Jt4M8uvIXWVd45Dy1LJ5H0smeTVDcD8f5hriWHjLRbJhW/m3x/ZBKLcbehsZ4BYUHDul3Wtp1UEqfpQCqmBEqWq5Vn/ZeHA/4Wg6FBv6L8uQhyWnDCU7L4s44/ex92w3Tp/AnUUxhafXE6uSyLgV2pPIoEJEc4Bjx/kaiO16kgKPHmbPqjKWh6VJIcwL5dxIf0uei88IbYOIOtOaApgaLPOnLzgPNabsN9ui6qV6vQ5ZdLs4sl8twxSf+1mq1ACBdpqsGaDQQosm/J/+rRBi0RsDYbrfV9xyrbp9mj61Ak/Q3/cxPX1iBIms+vkrj6dWBKTYpZoek+qhNybKXNxssFgvIsgzOz89hsVhAq9VawSs0SDYcDqFer8OTJ0/ClZV4giq2UcDTNg1XW3YNf8eF5MViEd4CjMmPFfT1koQDPbJJ+7gKu2PVyfuV6lIJF1lY6abmXur4YL/iaXGOV6T0tC6cI6izGo0GdLtdOD8/d9fvlQVOKW21xiOVB6/flUrSHI+dxLP0ZswGeeeflJfjw6L6zMsb1QGIt1CPSWVX4QtyQn8UN9Msl0vY3d2Fz3/+8+G95HfeeQfm8zl0Oh3I8/zKCVmtfVXwVhVJOjpmQ8vGd7R6qvA9Yn4ejzt4+NS+l/CEll/DH5JvyNtAeZbex7bq5n6ClFZro4UVpLKl2EaMJD0jpcHftPZTvmkwWtM5NH2MP00/xcrwzAerHKkNEh6JlZPKk8anxAfn9Zd0uykFP8SIzklahpY2hUf6f0zfWXM8xYf8JRWnMv1cRPY85Vt2L1XOy/CnlRmL2dHvJbnW7ILHzkt9weMgUhlV+kAx3mL97eFlZTF2nY76TQfguLDzv6W0HuIdXGSRLoX4aQCrnipOL1mUYkyui2L9znnEYI8EYtF41+v1sKMYQL7O1UvrVBDcWaB1WrJgBRarHmMMWNAr6LCe5XIZTvpI5AE1scBWCvE6JEeZGxN+TY/UrymGVqpXSmO1gf6OQU1+vS3+hteqUWc7tnvJcxVkVSTp8VeRytpD7F88pdrtdgFgdYcyzilOUr2eABfWSa/f8uxsi9UrBXpuyvmoCqdIZcxmM6jX69Dv98M1+Z52lgHYlm7ndaCd63a70G63YTAYwGw2c8kQB8nWEwa3ce7epLNLxwivYpXS4E7SxWIBb7zxBmxvbwPA5dW/vP+lQC/ApQz+n//zf2C5XIbrWnHDRtV9gLtXccGYyiD+z6/x9JKleyjekU5zW3RxcQGTySTgFAnrZdnLjWR8IXidsq2NKSUt4LkuW4wLpXQTHY45YrxWqwXtdjuc5ubtuem5lxp843n42KcuINC5LZVHCe09vvWpBW9SePHYvPl8Dq1WC3Z2dsKCH2JI6wQ5raMK0uayFgy9DlujyRC+k1yk7dKCguWboe/UarXg7t278ODBA/j85z8PR0dHcHp6qtZBcX4Kb5QvKbhm8V0V8XJRt+CzEJIdpRs0MA23TTG9xMfFmmt8jPjcTu2fGIaTrv2OlUdlAP9ZbwlTPc91GCcuW1XGAWlZMV+d8k39Wvp2PU/LfWAvISawxpa+jQ5w9dpFSlZMQ2p7KlXpV0hjgv9LTyBJ88Hi0RMDSsFiki7T5nGRfqIxIGkelC23SlpHmWXL18ZDK4dvgPDGrXieMv0g4RPLdgP8csOARuuWyRS6Dh/vtpInxmfZYLSJ1N/Hp7DogYUYSTFrWuc6bvZCO83LpzFYSpqcxLDeSiQkJmSpoEoDS7eNUpQ9/80DoKwB8AZXeB6vspZAzDoUfcwRScmn/V5WhqT8VuASf6fG1WvoKWmGN1XB8fze+mLlcgfEAg5S3SljiAt+9N1dS0ekzk3p99h4eeanB6BraaT+lHi0HEiLP0//cxnXgmipDqEWVCiqD6ogqR/XbX9SQWNRfiRZzvN8ZUMJ/lbmCjNeB/8Oy5bkO5XKjE3VYN0qS6uL689GowGdTgfm8zksl8sAQM/Pz0Xw5uXJ088af9a85gE1GvCnJ2hiOiD2XcrvN0Epcpwa6LHS8MCWNqcwDS6g9vt9GA6H4pWhmiOwWCzg8PAwBK5xAZ7zWwXu4gtMMTmx9I2FDXgf0vRFcDIN1sf8gFiasiSNaSw4q5WzDvvL8THvR887ixJvND99GiPVp8jzPCwa8gUGLRiaGnTR/NyYPNO/U/CeNLfLUEzG6ZzodrthTEajEUyn09J1F5XLFOxbRX1S/VgH/k//SQEmLptlbKrmV+Dmmul0Cu12G7a2tqDVaoWAUqp/56UYdsI0ZTEb1zP0e/znLZ+WYwXPPHLjxQSpbafYoGg5KfrFIo9fx/sq1neSbFj4pyhxvMB9qZhd1eaJZr8solgbYNUf97Q9pX9jfMR+Sy1bsoepejr2vUdOJbsak1XruyKkYbaycYl1YM7UMquMeUh2OrUOj32M2Trpd4/uKsJPSpkeeaw6FnIb6LrbU3TMylKqz1GUJJkuqudTCP0HTY69/c751myD1x+zqKwspM7HwtcUeyq5CcWwboXEy055n6BofWUCuFXxkVrXdSkxL9GgUSydRhcXF1fe2ll3OzUnscq6i7z9y5WcR3kCXM6XTqdzpU38ymLc3SyVoznjZUgDg1Z6gKt31WvpJOKL/NKpWl6Wxxgh8WvE8WpKbdczntajAfqi5H17NpWuU6/x8j2O67rK1wjfhORvK1s7rWmd/G9vsHvdwAQpluc6+90KnOJ7bePxGB48eABf/epXQx995jOfgUajAf/pP/0nOD4+XslD399bJ/EAA+oeSY9KJ55Q19D0mg6htlYLAJehKjFeLNAmUdX4kutxnLv4nfR+OvJ8cHAA5+fnK/LE7QqeXhyNRuoiwTqI4y3LucH24cYF7w5XXgbKLX+PXtqYwu09f4fGW39MHq3fqRO+TqdYwxJFb89BWWw0Guqp4/l8Dqenp7BcLsP72Z6gQ57n4Qrt4XAYrqzGDSK8TXwOI0bP8xym0yl8/PHHYfMf3rzC9RmtG2UB66D6Kzb3McCOeehcjgVk1+W3limX8t1sNmFraws2NjZgc3MT3nvvPXjy5EkpH9gTVORzhI6RdYLPalMKr95YB5789gR9veV6+JPoL/7iL+Bb3/oW/It/8S/gN37jN+CHP/whzOdzOD8/XwmMpZwkkOYA5kd9ixtwLB1ate3mf0uEdgHtDF0Es/iUbAivl74RyjefaKeveD20bzEdvneN2JLfeoN5eB38b8v2pI6FtFAlEfaFNz3lp4h/Tzfs0PIA4ErfSTehcUr5XdNXPD0dW7x5A58uGQwG4ckIXgf/v0pfumyZKfn4nPPKHpULL3l1Nt5+wuN6tD4ai0Kb/kvyL4iXKYvjplRfko4j9Q2qsEEU+69zzcHb3ptYb0klLa75KvAO8Gr08W0knIdcz6YS91sp3kJ/lKctWx+1v9L409uhylB0MXYdwucBL0XrTslTxokruihgBaSscmN1FM1H81q8e0Gb5iClGqyUsUnpDy9Ik8q3eKpShqX8HIxKPFnOlxXguA5CRdlsNsX3vzD45g1OVuGQWOOa4gDQcrhTzckKAmo80LwxZ14iGtTHawOREKDOZrOVOmPv3Wj84f+p10VYcqgFMauSC0+edc8Tj2PD09PxwUCRFDDi+aT+S3V2PcTLk+aUpYfW7eRo9ZYtp16vQ6fTgX6/D91uF5rNJsxmM2i329Bqta5cMQlQnUMSwxMeOaNyJOmpKnBCGapaJrzzXwqwx/oi1ZGm81eSD/w3nU7h/PwcptNpeGeV6wT8m+oIAAiLW5r+Ljt2aD9SA57WfC86P6QxkIKc9Xodtre3oV6vB3s4HA4BAMJ3kj7T2iLV5yEPxky1FZwPrn+LzicuOzTgDPBycxe/CtLiEQDExUye3+IZ02E5o9EoLMbO5/MrDjbNZ/mmtG0axvbwl5KGl0/nlscvKVqXRrhhAk9aplCs/yh5cadHx0rj4sHVnGIxC802xuZYqtxYlOeXi3jD4RBGoxEcHx/DYDCAL3zhC9BqteDTTz+F8XgMx8fHYYNEjLhdifXDTWE21D/4/A0uwHG+vfxpmJST11ek+lfD81Zeej15jD8Nq1i/8zTafE2dc9pvnjiFRSl4RfPLU/LyemPzwCqPYx0MIuPmWlqX1ifevrLK4GloWyR8ZmELq1899VvpvHPLk4+2j/6j7ZDmCqajdo9j7F/SS6rSDmjYlf4ekz8PT14ZjWHsmB6WyJJV7fsYrli3LU4lr00tQmXba/mKReoqIwMpsQOrHF5vVaTJn4YxJCrjM3vtSwpG8MhmGXmI8VD4ZGwZum0KglMRhVFVIMsir9FP6d9UkH3bx04jdGboZ/q35qjx04o3STFAcpup2WzC3t7eyo5h2p6DgwOYTqeioxKjlHeaOcUAkJcPz2kaviPP47BK99Gn9E+WXS6CLxYLmM1m8ODBA9jd3Q1ljcdjGI/H8OzZs5Udq41GQ3xXlpdN+ZR2gVuAuQp6VeR/nZTnebguMAZwpN+1N3953irpF3nccPHgi1/8Inzxi1+E3/u934Of/exnsLGxAc1mEx49egR5nkOn01krD0jUtkngGX/DHeLcViLhiTJaJifUcdIOyFS9/otAXp2HMkPzcVuBJ5parRYcHBzAs2fP1DGlQVuq12u1GvR6PciyDMbjceFAkpQH69E2XHnICsSV1RnaPGi1WtDtduE3f/M3YXt7G3Z3d+HDDz+EP/iDP4BOpwMbGxswHo/DhqUqeOHkLY8HCgGuLpZQWvd8o5s28GQx8rlcLuH8/HzltGiM8MTQfD6H+XwOk8kklAewGkCl3+NvNB0GuE9PT6+cjNMWGZDognAMD16HTuPzH3dhU/4k3VyWt7JPHXA+tGClZZto+tT6pP4pSp4gbOy7ddNisYDz8/Ow6eB//a//BR999BH803/6T2Fvbw/+5E/+BN5//334r//1v8JgMCh9UkEiOseqkh9aNl84QarValCv12FnZwcAAM7OzoId1E6oesbIwz+tB/mKlY19w31hiTCNtz8lW8fbrPm+lHeaNmUxgevOlPiY1HcpOMpaEKHEN65qPjflwcMX/S6mw2azGWRZBr1eL9govElCaxf/nvKt2StP3IHzTN++xe9TbjvBz9jP3tsmqtAXUj/Q+cNjgRJ2aTabUK/Xw4YwxLXtdjvknc/nK7jwl7ReKoIRJL1UduFGKr+Mva8Ko1D6y+hr/5JujqR5VQVetnCKVLcWv/LG3rU8VD/QWA3G/vltnpQ8uE1djPV2VkoQ4TrJA4YxHZLHiU2Z8EWDSFU6v5QHCZx4y0mhGNjTAilWXq08CRxz0hx9DVhKjrz0t6QQeHlSsEEyvFLeIpQaFLD62wrc0++84J47nRT00zpT2i4FJSUePJSiM2L6QZPn1O+9JI0Vfkd326LjgdcjtVotaDab8Pz58xDApFc9eIjKBXeyqpJrK6/X8f1FIkvv8O94ALuqeiVKcfqvk7xzu8r68Iq5PL+8nmU0GsF8Pg9XgGNwQtvIoY2r126ntBnlAwMRWvCLB3/497Fr21+leVlWJ9NyrDJi41Skfkkn4hjxhZx1zEeOkTwywXWWpT+sxRv63qtnDNF5w4XXe/fuwcnJyUo7aL3UGVtX/1kk1YeBRvyb/2b5It5AEB1HPtdj41Wmjzw2x2pDTM5T57nVVpQlTMNP4lKepL8BfJuj8BpQ7cQwD6SX1WVY32g0gk6nE8rHK1R5G8vGDzQZlyimX4uS5l9advm67Bvng/pSiD1arRYcHx/D48ePw3u/7XYb6vU6TCYTWC6X0Ol0YLFYqBgk5qtTfZhll6dSKRbw6hZvm7Xv6EJLp9MJiyuTyQQGg4G6OciaF5JMaz6GRwa5LfESxXL0BgxaLueH/6aVq+XT0mqk6VfNH/CU5ylfy6vVK/mjVswA9bnVx5p9tfhdLpcwn8/DBgIsJwWvc1wiUSxW4YmfxPxui7R+k2TYG3vh5aQQjz/R51rwxofRaASj0WgFT2XZ5TX0nG/pPfsYzvglpZNmf3gaLeZkzXFOXptvlafJKcfQUjkSjrpuH+MvK6Xoupgu8uTRyLKVZeIBFlUhayl5pf6T2lqkz3g+z7zS8IvEk4YDLFurPSeBVMmbsbdRURQ1fClgyEPr6puUieMR6DJ8WrKgOQjrcs6kNNJbaxIQ1YgG3/Czx7inAEdvQKEqeUoFjJrSsviJOSPYp/ydnZhuwe9Sr0nzUEw2Yw4lDQRTufE4Wt7AcUo6egUxpa2trbDD8/T0FN5//32o1+vQ6/VMHi2+AeBKAEYDx0heeY69S3YbbdB1kBdkWYCiKn0s1RsLxqV+X4aXdZFXbx8cHMBisYDt7e0gz/x6dm99qQG0lKAYfftOIvouKf7PN3y8KnRb9EYqH0WuKgW4HLvxeAwActAhlRcpLQbmi7znGMMW9Dv6bgwNrlF9R9/x0wgxYqfTge3tbfiVX/kVOD09DfVRO471X9e7uxp5AttaoLVIEFSqB/vmVZrv6yLsA7wOGWVzMpmEd8qQJHzEbyUBeHnaTvI18Lpg6TYZmocHARATprYNTwgdHx9Dq9WCzc3NsKnv/PwcFotF2BmuBSqqImwfbaNnPhSpg5ZH/1+X3SgyH5EX+kZns9mETqcDz58/h9FoFE6YA1za96OjI2g0GrC3twej0QjOz89L8Y0bfLrdbtDHeOpW8wOqItT5uFiyubkJ7XYb+v0+nJ6ewvHxcdgYx6loHIvLOR03LXjK57InbsL/xzbwN7glovpZ403zJ7lP7iGUP7q4yNuXOjdT8Y2nLIpfAeQTpfQtZGmsKVFf26uH8OaHdrt9xU5rcmW1C20CluEJRMeI6xWvzyHVp9mEFAzBb7coQtRfyfN85c37fr8Pe3t78PTpUxiNRuGt4VarBVn28iYZSvV6PWxAsfD4LzFScfLoDtrvMb8mpkss/MJ58cRCfzn2xehV9C0snm9LrOE6SYspaL695mNKZdJy+LyUbjStSpYkexazjx77uYJOUwOjkmKqQuDWPQE9SpmDKq+Dya/j8vaHVJaUVzM0Vl4NPKby5AWFHkpVtKkyYaWni7OaUbXmAgVdnuAG729NQRWRe8nJ1ZxBT1mefEX4ROecK9LZbBauw8V+SnEWtL705AXQAyuxvuB8UkeI8kSDtgjqJSeaGhEuW1RWeUDIcuKpw7K3twd3796F7e1t6Ha74UTDo0ePYDAYBAeVz4NYoM/SWx59EAuGpMhDrPxfJKJOrwU2Uh1vbzpvuVZgSitHcuiroHWCYZyn3W4XhsMh/PSnP4UvfvGLkGUZ7O/vw/379+HJkychYIhXAtMFK0+faG3xBtkk0pzVIv1lBRxvG3n0vpbW4yCk2iauY63r99fRrxqfFs7X7CdPJ5WvyZ1Xdqltarfb0Gw2Q8COYgopUEb1y3Q6De/CpvTLuknqgyK4Xer3sg6qFESlC9/4G9+cpvFKy8NnFfB3L8bWiJ+U1vzVGH+0XRKe579j+7XAsYaTKL+4mY5+Ttnk4NElVvtpG/P88qThixcvYDqdwmQygVarBffu3QMAWHmH1CtfvL80Pris5fnVa901zGDxwPsd4OpNPRoPUjkp86mIXrHmtjbPLi4u4NmzZ9Dr9aDX60G/37/yewxv0THS6kz1366bpL6h7Y7Jn2QHuT9G83vGN2bn0IekesRrD1Lly7I31D/VdCL+zU8Lan6g1vYy88Lqx5ivieWgHUO++eItz2/hPV4nr5e/a4x58GQ3/s7nmDRfJV/dIk12OD7wzGnpsIKWT+LPoz+tWEOMNOw5Ho+h0WisXD3MP+NNQfv7+7BcLuH4+DiUhzcQIM1mM3WTxDp82r9spGHXmD9GZdGDSaRy+HcpesqyCV5Mf1N+yE3RbZorMZ9K+64K4nqjSptflqy5mDp+HNPTspCkeW3VF4s/xDCBhl2s/Kk+CFL0ZCyCE86sxKTFuMXYTUy6FKeU86e9PYqfMT/fTS+lT+HLoxBihiIGkGKkpcMgmCetpFiKKJHUgATWp52ojJUnjaMH8BbZxVeElzIkARVpPsfAvgYa8jxfeZ8ITw9MJpPw3iXA1auMLX49YL4IgE9xaCjfPC8Gziy+JeJGhgbTsAwpPa+HvoOyv78PX/3qV8Pvy+USxuMxfPjhhzAcDkMbtDeSU+en5ITzee91Fr2OdBG6jQDX0use3V2mTdfRH975dxvHRiIMmqATf35+Ds+ePYPf+q3fgizL4O7duzCZTOCHP/xhOJV4cXGxcloFwG+7U3CWFEQs6lh4dRf/7Anm3ESgIoZPispfSn7sG+kKG+2dTU8/ebEh/S6Ge6k98oyX5+SOxW8sPZXrTqcD/X4fZrNZeB8dg9i8PXTxIcsymEwmN6ZvimDxlMClNPdj4+wh7H96gkoKeHnmPi0TcYt0S4rWHq0d/KQWxSSa7Hl8Fi2d9NwGvYZSaq+0yEzz4DXHABA2DPD3BDUqg984ZVkW6h6Px/D8+XPY2dmBzc1NuH//PjSbTZhMJivXO6aWLxEdbzpn0eZymUvxCenfOFa0PvrvNtz6EJvv2ly7uLiAx48fQ7vdhl6vBxsbG1f0Pj+9LZWP/gR/g9wiDbuX6UcJY2CZ1vyVsBPnR4tpSTgKf5fkzvJ7pHo0wrgKPcEnlWvVH+MrZstxIZg/QaHpF5yXGi8p+MXS/9p4WBSTDz6PKNaR7Asv09JBEsbCG2joGGTZy+vfrRs4JD55OzVsz+1nil3l9RSxpxJ55rGVL1afVP5oNIJms3llMbbT6YQ8g8Eg+HGLxQJOTk5CWXThNs/zsBlJqpvaME9bPG2qiiS+bsIn4xSL/Uhy7pHlFJxQtg9SfWaJ71clFvIqk9XHEv6P2diUPBYvmu+RoitS5Kds/CO1bhpXkOyS1m/SPEnhg/sNMRznKZ/bLt6XVnnmYqxmFDXju06FUbVh8IBKqf0eoICOogS+POTN4+GjKrppowxQXgYkOZUmIXe+eXppUq9L9lOAbdG+qWpspTmF1//RgBg6GdjPsSCD15mrwtGX6pfKpJ9rtRpsb2+HN0eQTk5O4PDwMLzDStsrKX0avKYBIkvnSDKNV1nhFXkAl0E9vIosy7LwdpREGADgJxw0GUfeaB4eiNfa4dWRMVD+i0LSeHInzqMHb0JfW+BIwwhc/94GO5NC1tx89uwZvPfee/D48WM4OjoKgRcaYKcUm19eKnqFl0ZU7vBqSn5lmHWayDNXX7VxL0rSAivqS05F8aNGfK6VkROPTSoaiPM4b9zm0KAl9pt1vV6er15pvFwu4dNPP4VmswlZlsHe3h584xvfgMPDQ3j27Fm4FlbadFglaaefpKAn/mZ9LkperE372cMXdVil9uBJUAxqYlpMb50O0wKK0oY4/M0KqHA5tuSayhw91Rt7F7wMWQEKam/xZBf2I19U8xIuEmsB5+l0Gp7EiAXwaZmSDEl+l4UrOEkBJU2ePfKAv+MGD9QTqDu8C+RVUCxYhjcD4Fuws9kM/uiP/gh+9KMfwd27d+H58+fQ6XRguVzCYDAQnzHRSJqvnLB/1qUnrfZfXFzA8fExtNtt6HQ6KzaP/qPlaGXHYkESeX3V6yRsi8dWaHNA2xhm1Vk1SXG6WJv4ginvB6kPMDZBT8jijTbam71l41Kj0Ug8kRvLx9tAv6NyL9kFqe9S4k00nTcGRudRqoxk2csr/Gl9KTYAP+NvWN5gMAi2utfrhcXwxWIBo9EI5vM5PH78GJrNJjx48ADa7TZsbGyE2M7BwUF42gLg6tXXlm98G8jShTdJsZhPioxan2N2/zr7QqvvNozHL+n6qYhOflWI63Dq4wGst70p+sSK13EdFYs7aBRdjOUFaGCtDPjyBG9SB8Xihwe3rXQcuFl5aJ1eR6SMsKWAGs2oeerXwF6RsopSDHhRivHBwSktk19VxcFjEQczJt9WQEjjm1MZkIv5U4K/ltPJHYJms7kSRKMnxmMORSofPOCs8ZjiPFh50Gnr9/shAIB84Mk3fK/Iur5NC/J6gwCU0KmjJ5EXi0U4gZxl2cqiMScpgGk5PFKwQwpkSG1JAcExnX4TpAWAAdIdAE3HaQEEb70pVLYf+RhLARRel9YPrwJZMn12dgZPnjyBo6MjODs7C/M79S3NIs6gFCDRAgPWGPH0tVoN2u120CfXHaRcp2Ocap+Lli3ZEal/tICfJ6/2m3cOxtJQmdDq8NpYqZ34vxRE5Hn5fOL2iPKrte3i4gKOjo5ga2sL8jyHbrcLb775JsxmM3j48CF0Oh1oNBpr1U0ahqOBYfobn+OW/BbRHym/S/Ze0yXalblZ9vL0pYaFeH2xOavhe4lvWo8HP0rl4MIndcjr9Xp0MdY7VzjPllxr86roJgzeFmxfo9FYWeCVNvnFMBE/re4hC+vz8iVe+O8WxqVp8jwPmyuR+ObrIjaqCrtGeUDdOJ/P4Z133oFPPvkE3nrrLRiPx2GxlG7YLFKXRtINRyn+rIc02zMcDmGxWFxZEI7d1GCVi9/zujQeUv02jx1OsT0xjEFtLMcW14W/NRuv8RwrB8AeO+t0O28/91dxgda65aAMpsWr6Ol3mv6O1Us332hzT6NYG2I60sKC0pzwyD1N6/WhJVst1YGLppPJBGazGeR5Dq1WC1qtVtjQ0mg0YDabwcnJCfT7fXjw4EF4XxbLHgwGcHJyIraNUxV++m2idfpkRcnCalo6ba5I/ggly8cuQ6k+WRX13bZxXCelxmAoVR3ziPFi+f+0bA+G9dQn5fHmk9JaON2y+zxW5eVFm4daTKXo2Ei+RCz+oZWnLsbyYH7IwJwQSvxKJjwJchvJM5m4QudXyWkr4N4J8SqQBM65My9dT7yOcS/ar5hPCxLQQAl1IovyI6WreuyrLM+j6CylFQt04jWA+F2qo0rLo04V57UsQOHATOKRn3x47bXXVk7+AgCcn5/DkydPwuIn6ooyhDJKdyhrit5yqLvdLjSbTTg9PYXhcAh5nodrAbMsuxII9Y63Vq80n4o4/L9oDoxGqYHFlN+roFhQtepybzNRXYY7qc/Ozq6c0vvwww/h008/hYuLC2i1WkknUYr0B/YlX/RICcTz4BaW0Wg0YHNzcyVIgYEk7IN10m2UjxRHQXqXWyMa4OfBNWlhTuONB8Sk61u9mE1yPrS83uC3VAfHG1mWXbn+kPKBiw4AEE6veKndbkOWZfDhhx/CeDyGH/zgBzAYDGA8HocyU4OaqaThK/78AQ+gczxkBQA9jucv6ZKuIzDFsTDHiHzhE/nim/qkYKEkpxhspjYLqYhcb25uwhtvvAF/9+/+Xbhz5w5sb2/D06dP4f333w92AUnDrSn+Fie66MAp1RegizB8Zz7tVzwRiyfZut1uyBPTd1LgN4X43NfSUL6R3/F4LPpOAGljQOWN1wUA4fYdgKvX1a6L+CLbYDCA4XAI5+fncHFxAc1m08yf4o9wuaJyU8b/jOkb7kPSejU+6TM1Whup30ZlPSVYK5V9XTbGwi5WDEOai/g9fa91c3MzXEO7XC7h5OREfEOWUirGxrIpJovxKZVF53csIAyw+v5vWaLlSDoC4wyU6OlRKUbAy62SePm1Wg2GwyF88MEHsLe3B7u7u+H3119/HWazGTx9+hQ6nQ588YtfhNlsBi9evAhvcI/H4xXfD6/2xg180tvAUhu9c89q1y8qvrPkhFLV7bf8Zk3nv4rjQNtyk7zfdP23lW7DutJ14Tlu+2JUFlt7y/eOgYW3NFpZjOWGQlpk486K9E7ObacyAW9aBlcannIlMF+Ul9hglx0LizeNfws8cn4k4KHlifGS4kxy/mnZFKBadUvtTnH8tXK07zTyyF9VisoKeuDfknPEF7vpCZOi8sr70JNX63dJkWrAhOrFLLs8YYqLsfjv4uICBoNBSCMpZg2Ia3zz/uLOFg8IUEJ9jZtjMJiEi7FaQNAab+k3bUxTxyYWlJD+lnhcB3F58PDK9YgVQNHkJYXKBIW8RPuhDHDCsqS/pbRVUSygmdoeTE83oM1mMxgOh3B6egonJyfQ7XahVquFNHShJeakpwQnpLGx7IwmL/x7POGP+huDK3gayhOQvm3kce6t9GXrtIIJkt6nYxmzgZoelnS4V6d5yYNvrd+5XbLsA/YJfyPWSyjHOFePj49hMplc2UyqzcGq5N2yC/z3GBaTeON6YR1UJChVtv+kuYHkweUpWEzLy7/jGJKnlYLX/MYY/J7rC1peim9FdbN0cjHWRtpPiOObzSbcu3cPHjx4AG+++SZkWQYfffRRsj/GcazVjhifvHxLJiz9i3/Tz7gwMx6PryycWDxJGEkaR6msoj4ijlOtVgubVaSrpDFdmQ2jWNZ8Pl+RZ0vGUrEMzyvJJQCEK2Xxf+0kfhniOF2aiyn2wqMjPb6PVa5nHsTsA9dhRdviSSeVW4VfpNlJrotwIR9vu0J8YfWB17eR0lGfwLJpXtLsGtWzqT4qJcnm4P+4kYhvTJX4ob9LPMVwjcZXyhxBfXF+fg69Xg+Wy2Wwl+12O9jLer0Om5ubMBwOYblcQqPRgI2NDej3+9Dv90O94/FY7aMYRpL6wEovtf06SZLlqnzrWD1FqWo/DimGt1OxjDQ/UsopQjchQ7epfoB4HKrIWFQxfpINqVIXFiELY9DvU/pQswVavfRzDCcV1ak8jVWPhAtiY3DlZCy+v8Qz4kLDzs5OuOIST4JwJ4oaMsyLZa9TKKoi7jjR9y1pGinwI/WdB9ha6dZBReriQQOpLM1x9DpeqXlSyLp6FduGIDw2ebxjqpGltK6LrMClFDywSALY0pVwXDd4gwp0bGh59O9UGbPSUCNATxBIvLVaLbh3717Yhc7nx2KxCNdmxYLFXK9gWTyfNOcajcaVdJ1OB7a3tyHPc3j69Cn0+31oNpvwySefwHA4FG8/wPpS+uq65DZWj2Y4q6J1lImBzW63C51OB05OTsIV11X1a9lyPIE6LzgsG1SpgqxxTB3jPM9DELLX68F8PofZbAY//OEP4ac//SkMh8OVsmnAhevKlH72Eu9zKyhEv6M81et1eP311yHLLjdyTKdTOD8/D+/D0ZOJv6gkyXfqWMTGmcqHdcqYv0lVhqit5ydwi7Q55njR74rwTwMc2A/L5RImk8nKm24SJsGApxff1Ov18PbgbZRvjz1cl66lgV2sg25UowFm6R0gXACiefDNWH7Ch25cofXQNFRmsywLJ+L4FbIalcEMvP2W446Ev7daLajX6+HKWLydBGUbT2pJbdAC2+sgxN/tdhv6/T6cn5/Dw4cPIc9z2Nragm9+85uwtbUF//t//28YjUbB7y8TfKVBGSpPGBivkiRdh3EPfOf9rbfegnq9Dj/84Q+TFy8leeCxE/q7d+56ZWA6ncJ3v/tdqNVq4dp11Je0j4u2h+en2KDojRkxnMb1DNbLeeH8Yd6UYKU2h+lYaoE+yZ6mzAuce55r1ouUb6VF28dllmMFraybwvraQoZG9EQO7W+88aVer8Pdu3dhNpvB4eHhinzz0zx0vL0xsTzPwy1i9G1UyebROujtCSn+MZfJGH8eqtfr0G63odfrwWg0gvF4vPIOLuVbC6ZT/lDHW3Oal5EypyU6PT2FyWQS7DLAy5g20tbWFnzlK1+Br371q/CNb3wDHj9+HK4pHgwG8O/+3b+Dw8PDwFOz2bwSW4z5ydrv1xknLkJV+tbXSVaf0zgcxx4o35KNs/yQIvz9ktZPNx2bKkKWf7FO8sQCKDbTypDmXpETsrw8L66roq+4beI+K/1bqk9cZcjzy91AW1tbIdN0OoXlcgnNZnPl2hfJIZdAL2eGkgRgilIZJSc5RjEAwdN4gYbGexHh4/VUqUxSgnBSniL1FC0r1bmR2hZzrFKpCpnm+cvKR2paL8D31qMpyar63KqX/g9QbOEF4PK6MhrMwBNjAJeLoq1WCxaLxZWdobxuryMb41OTX3QmAS53rQ+HwxD404LLqfNI+jslnyddKsD3gISqiNuPGM/893q9HuwqLqjTd+essmK/0frwb29/pY6nJ/gcA0pV6oDrAtV0PPGphnq9Hq5qpG3CvyUnLcuylbfzLJL0hBTw0/JoMiHJG6bFJyrwxKBng4kH99x28swvyaHQHHH8OzbOHvtrzVs6llJg0sKoGl9SHirTFnnntkdmpL7EYFcKUcyPAb+DgwOYTqcwGAzCFdwevb5u8swfj24vG6zUSMMCUhDVsmseG8WDs1zHAry8rhpP6Uyn01LX4nIepb/pd5a8S2MSwxHWBg6pfv79a6+9BlmWwfHxsTtQodWHNzxQDNPr9aDT6YQFdt7X2jzy6DcNK3vnRJG8FK8gtdttaLfbsL+/D9PpFObzuTtoFJN7+r3WbknOpfJ4TAL/TafTsMHE4iNGFpaQ/rZIa0fMN5J+k+wcJZRJuiHOa78oT9TeU7muAqdbvHhxdhGK+SuWfUXsamGcMn63J59Wj2feceJl4L9erydujObz36PbLHmRfovJqGaHKD9SGV5ZSyVcrMbNRVz3W3Y+xTZ5fKWU8uiNKOiPo9zP53M4PDwMG6c7nQ7s7OwAAMD29jbM53M4Pj6GRqOxYgfxxjRN30jYskjfe2zaXzaS+taDOawYhpTeKr/oXPrleK6PON62yPL9NOzlrVv67CGP7dd0jBU3SCGLB6+d4flieWM2s2xfxrC55M9a/Gjl83rUI1+f+9zn4P/7//6/YDR+8IMfwKNHj0RGcVc6EgaVU6msYqkquGCd/NTSWMSFv4wjfJ3E+ZTAtpVeSqPVk5qnCrLaVrQcK811Gk5PfeuWQWmOpDgf/HdeznXNIYm3/f192NnZCUFBepqjVqvB/v4+DAYDODs7U8uU2mQpfGm+0aAX1o//49WhNP3BwQGMx+PoW1sp5NFnOF6pp6JpHUX4uo45h23jOyM9TiJeg9Xv90N6vP4PF/KKXL1J+ULyvC0okTeI4rlRQONtHVQElKWSJGN4dTluxsBd1RZmoDvwY+XHnMoUfMEDVVI+eltKvV6Hfr8fTvtjoEEqV+L3JsgK+tA02nexspG4Hk4lfmoW7QHX6ylzDDcM1Wo1mM/n4ZYXGpDW+LWcDCyf8uPhyxqLsjg5z/OwOAKw+mYyPz1CHTfsk16vB9PpFP7Lf/kvVwJp10XcNnqcvpuiFOeXnzryygF/DxLztVotuLi4WDmxhenm8znUajVot9tBFw+HQxgOh+LtIUXbjX/zIDNtI+WLzxuUsdiblkX4A3j5bt1sNoNmswn/6B/9I+j3+/D7v//7cHR0BMfHx5Bl6SdM0RYU6Uc+9tTvovqI4lqMJeD1uin+Fl+0l2RVusZW0kdIGxsb8Pf//t+HZ8+ewR/8wR+EhejZbKa+k4o6KNbfnsCe1n7aNuxD+m5orVaDjY2N0vLvJZyfEl2HLuOn8fFEMM63PM/DUy2Ypixfml6j77NLcgawehOGxosWCFwHxpLkCecl7Vv+HrQHU66L5yIk+dycZ9xgub+/D6PRCJ4+fXolj0ao47TTnRSLxfikvEqnpC3f2tJpVcgR5p3NZjCfz6Hb7cLOzg6Mx+NwRboXG3M+tD6U5EtqizWfsFyafrFYhJtWut1u+P7k5AT+8A//EO7evQtf/vKX4bOf/SwMh0Po9/uwvb0Nz549C/nxX7vdho2NjWAfkCx5+CVVSx676imD4wc+p+j8k94JlhZibhuuT6Ffymu1VGXMyvLfr2vMeAxD+s3KW4aoP1H1HPPEt1Jt6sqK6ec///mgRO7duwedTgfOz89hMBgEBxfBPV5xSU9/oVHj14B5O8MT0I/9XlWna52dWr4WYEoJVsbAbGq7qzBMnCxQqgWTrXqrUkqxgKL2ndSnHNx5+fMGrLR6Y6QB71Q+vXxo4FeqL9anPB//2ypfCnDFKGXeSToM68Xr9AAg7IJcLpcwHA7FxU5Nh0j9E5MB3ge8fVwvTKfTUB4PyEv5YvVSvlPmPc/nJWseWkT7swqKyY5llC0ecAfxbDYLu4jL8CGlrRKMeOdqSr0p89eS/5Q6yxKfq/wksycYQH+n//N6pDKtslLmiFanZjuKBm5uymmT9FaKTcb0KbJMbYV3zDg1m81gV1L5xTKzLAsbAqjtonViOo+u1IKuUjuKzkMtOMXHgH+WsLVVNi2HvmXP/RVJ/qu0KbFxpe2Kzb2UMbwOsnix9ApvB5U7+j290pvrUHo9Ko6xVO+6KVZfp9MJi3noZ9N8Md0TKx8XEp4/fw4bGxuwt7cHAADHx8fh99SABcYJ5vN5uI6y2+2GTWWIaXA+xcriFJMbqrM0PavpqpR28hNduNnjzp074X9+QlZqRxH/vChG1mxcij2yeCsyf7wxB2/ZqX499ePwylnsC8mP5HbE8v3XFaOgfMXqiOl93k6pDv6dVXeKzyfZbU+6qihV3rEvcQPbeDyGLMvCbTd0g4GEVSzskNJGy9ZL8ykVF0r8aXbX8k848Sfq6NWuGv6Mzec8z8MNUthWfvOY1kbarhS5RT4xzoOEi6zL5RJevHgB7733Hnz2s5+FO3fuwObmJuR5Dn/rb/0t+Pjjj+E73/lOKL9er6/Eini9sfHz2IUiWOGm/LLrpJgOS+kDy8cvQkXsPdJNj2csdvCLRBqGsXzg1DKl8lMoRb9506TykWLftDo9/eLJ69WpUvn8dzpPOTaTMCT+JmFLSU+vLMb+vb/3964w9vjxY3jnnXdCxna7DRcXF/DJJ5/AdDpdSYvGkn7Osgwmk8m1O8BVUuxEKCUrHXd46Qk2jWKGtYrgl1SuR8lboNNbT1nyKJkYn7EJ6a1HIhoE0uq3+CkKGIqk9+SRHDRvPTHjleqwlwksaI4A/Zu/C4GBslqtBsPhMID0VqsFDx48gMViAY8ePRIDgBbg4n1pyYi2I5nmp3wvl0s4OTlRT+bxtms7dK1AV4xP1Cc3YQOuCxTyeY7EA4HSb7VaDVqtFoxGI/UkNaZPIS0YWQXdFNjWQM9NkXTamM/B2Jy2gi1aEMuyY/RWklQwSgNxkszgm4bL5XLlzTAa7HuVsZ5ERTBW2T6o1WrQ7XZhuVyGzT24OJuC+/I8DwHEdrt95RQLXYT08F2kXSn4QAqC0/Zqb6fn+dVF1BhP+A83meKb77VaDZbL5crJdq1OL/6MOY6ag6b1Cf4Wa+Nt0pWUNEeW/0a/k/rBOtWIb7Dim78YyNXopvrozp07sL+/D2dnZ+GtVRqwpSdoLMzL+wfnRLvdhkajAX/0R38EGxsb8Fu/9Vuws7MD77//fsAeuLE6hSaTCUwmE3jx4gUcHh7CvXv3YDAYhPnU7/dhOp2u3JoFcFWfUnmOtZGWQe2NFHznfZLqr+Z5Hq6sRHt3fn4OW1tbcP/+fdjc3ISvfe1r8Omnn8JPf/rT8NRE7BaMKklrE30/FSC+Id7yta7D79TKiek6bh848bGnp/bw1ggA+d1Nis8p0flY1B5ymfeQFNRLIe2deeqjYtmW/FKdTfsdy6enGDmvsROgMawco6J5eT6Ui/Pzczg/Pw/4q9lshtsYJJmLbeQC0E9ESvyUja1IlGVZwHz8GSX83/JJJH7p9/QmHSoDaH8xHiyd7JXiDCiLzWYT+v1++A03vkv8WXjLIyNZlgU9ThffcWMTysd7770HP/vZz+B3fud34Jvf/CY8ePAA3n77bfjmN78JP/nJT+Af/+N/HOwfPmWF7+hyXqWF5TIxvLI+SNUxg5smbb6VaaO2WOPh4RepbylZ7bqtMuXBGVVTrC9i/fiqkObbVlm2RWXqluwq4iTvLY/SMyZS+pXFWH4tEABceSNWWgCgTPIgpNY4+nuRAFcVk4PX73XQNIDlWcjiRlhbiNJ4lH6z8sX4KZO/KHnrlZxyy6mkE6cqpaqNjwaerTI0sKml5fXG8krllKUUJaYtIKTy6QmaxJxv7buUfNImDNzdiI4E7vw8Pj6Gi4sLmEwmIYiL781RGaKf0WGR+LBkxqs3aVCIv1tShXxoepPPmZTxLBLgsMZX461K0nSz1c/0qi90+FDe8Fpbrz3i9eL3/F8skKvROoBUmfJoEPY2EA088WvLrXHE9Lhbmr5VJKXlnyWQy+cegkYtAC6VzeUG5RTfm+Nl0TZac35dmKKoPpN0ryegoxFfNPE65ZxarRY0Gg3odrtXrnnUQD0/IYi84E0IUv301JcUlEtpf9EAkGUrtLTS9xxbS0TbFQs2AlzFmpod1uopQ0UdcWybpB9RF/DyYxhU40GaLzHd7NFvKfOZyo83yOr5LkYU+8QWLng9VP4QM56fn4fFUN63dLMEzVsEJ8VwgIe4D/vRRx9Bo9GAxWIBR0dHsLm5CVmWwXg8Nq/qs/ikRE9WcXuj5U3xlTC91DfYZ2j3Tk5OoNVqwWAwCAsBRfuyyhgG8qr9hu2iN5xJ/keVPFYd35HalzIHqPxPp9OwMEsxTowv6TPnmbcjtQ+LzPUi8SOrbq0sinM1rMT9wlT/lY6rhk15Wfz/WFuKEOUJY6K4ccuz+cKDLyW/P6bTqN3lZWhtQNIwaxFMrelmvsltPB5fKV+b29g2bnPyPIdGowGdTidcf+zlOQVbaGXOZjM4PDwMv/385z+HRqMB29vb4Sr4brcLb731Frx48WJlkzXaE9qmMrJaBTbg5VF5WJffVpaqxN9aDIf/RvUP9g+9CRRlVZt7Vl9WMXZVU9Xjb43ZTcmZ1e9V8KS1zSMLWnlFeKBlp+DxqniR8FqZ2FCKj6mtWxYZ81SfU6uL13PlYdcsu3yPB6ndbkOn01ELpISBRSltEeUUI+9geJR2CsBOcQSp8uZKmgc2NX41gYmBtaJEDQsH1pysfks1ljwPB/zYl2UdixRH3QI4KbxoZXkVBOc7Ni6Y3tsHEkntswyLpOQ99Vtykqosaf9Kc1Y6sakRfwMTT89Q/dhsNsMVcBcXFzAajWCxWKzcGoCOCP6NQSXrJILkXPK28N+5A0fLx12ZeA2u1m66q9mq1/pO+z3m6FUBQtcF6mIBFktOJT1N7eRyuQwOZZZl4mksL1/0e64vJQc4Npe845viBMd0Fm/Dq0CNRiPwvlgswiJarF8ajQa0222YTCbhpL11Op2OWWx8OACljiLXg1K/87dLx+NxeOOYpuWBqOt2KqsA8pZuk2wV12sUq9RqNdc7rFIQBeDy2tJWqwUbGxswnU6v1C/xQE/4oI2Zz+dXrlijdWMwXjoVxNsbI0mGOPGyNP2YUh+1VR7d79VXKNex9J52U6pqbnC+PDjB0heefkG9YJVDNwVgniqDZhalOseppOkI2nf8M90Mp+mR4XAIABA243C9gPrEGmtebpn2WWXQ96uRv3feeQeOjo4gyy5PI+/u7sLFxQU8efKk0JvLvJ9x4xoGsPnVwbzfMY/Hf6XtlfQstZdZlsHBwQEsFgs4PDx0YzReduyazpRYBC9by4dpcIMovWWh7JwpInMpPrhGKViflo9PzFD5wXchPf3BTzp44wf42Uqv4XmtnVoaK/4i2SvPXJFO0NJyKP6hVOTZlRT/sKy/5/GDKOF75NguiqG4ryXhaq6bpLq08bDG1PPuLL3OH/UqHx9PfEEi7UaAVqsF7XYb6vU6LBYLOD4+ds13rZ/wc6vVgmazufK0j0cnpGAw2qdU308mk/BucJZl8MMf/hBOTk7gV3/1V+H1118HAIButwtf+cpX4IMPPoDHjx+H+rrdLrTb7bABO2Z3vfxKdsEaS+lvWhfK6rpiKtdFVv9STIsk+SmYTnoOA+e59tniq0y/rhvvYh3XQddVTww7eflI4bfqtkm+XKrvTPlK9SU5L7G0tJ6i/RbDTJKOLBpf0PRF0fmq9TPnZ2UxttVqBeNzcnICn3zyCZycnAAAwMbGBrRaLfjggw/g7OxsZcc+ghPqdOV5Hg38SwxzigUPrDRe8jo3GniKORaoyL2BIInWOaE9YO86KOZ80KuXqtjVu25Dpp2Wthw+j4zFHEYOqIqQlJc7Glb9kpNHedM+I1V9zVdRuea802trsiyDdrsNeZ6H9z7xRJwkyzxgTxc18FrEojJLx4YGADkPVhlesgxzrJ4Uub9J4oul1NmT5rV1YwQSzUMXyjVZ98oC/Z8uTGi63dIP0vil2AePnHmB1W0lyj+ekkfdgAvpFxcX4jVtGkkAG7/38GF9p+WV9LR1GhDfxkNdR+eIxsdtH0uNiugjenLL024toDsajcJ7hIvFAs7Pz2E6ncJwOBR1D9ofgJc6fzabhWvdOp0ONJtNODo6gslkEoJwngCkNo6SDkntM6l+7rhpfcSJBlVigRD+G9e/1ltkvE7pf14HD8LSuWbxuA6bGHPiUW9hWso/x3/0n7RIR/PGfKRU4sFvrsuQl8ViAePxGObzeak+tXSt1TYtwIFparVa4A/fsqR+eBnCvsdrFcfjMTQaDdjZ2VkZQwySe8ujbavVavDkyRMYj8fw67/+61fyYBrpRHasfEzP5zb/LVae5sdwfvhik1Rfv98PJ59qtRrs7+/DYDAI+dEGpBCdVx5s5MUUFxcXK/iE1kNPYdOyb4LWGVSm+mmxWECv14NOpwNf/OIXodvtwne+852wGYLjH9rXKUFaqg/LxL6qzEd5Su1vqqus25XofIvZ4FQqE8uIlYv/W3G/PL+8ZeTg4AAuLi7CJjl+wtEq09MfFpbitlTTlUjWaSCNL5STmO8W8/OyLAvX8aIOwhuAcJ7RU/qSTHI+F4sFDAYDaDQa0Gw2g75GfIvPEljjWEYm+cLsdDoNm9zxuz/90z+Fd999F772ta/BaDSC/f19qNfrsL29DQ8fPoSf/vSnoQy8Vc26EUkiS/9rtg771xtT4Dj8F4Es3JvSTp6W6yb8m/qDRcmaZ+uymb+o9IvWX1Xjpts216vmx7ILXl4oT+jbeHF7jK4sxmKh5+fn8NFHH4XPnU4Her0enJ+fw9HR0Uoh6EDyhlknfKTgjmRkYh1l/V4W5HqBtMfAadcTp/BDy/PyFys3BkKrqCeVJ+1vBL/UadICIl7Q4SELGGuEE1VTmBqAlb7nQf1YvZb8pshdqoLR0mt1llGOFmlBnTJEg6gYyEDHJcuysEBBg1pcfuk4Zll2ZTEDA4bSWyrS31q7qPNspbO+18hyNLUAYlV6SiuviBxp84nqGRoI5MFKHrCh8hGrG2B1l22RxVitP2KBvaLjbQUVigZe1jX/r4Nw3qNDjW1J2YBGydLb1hy3gi2afuayTz9rb+ACQNiEgqdr6BthGp+3mWJ2mesF/E4bK/zO+2SFhncx0Le5uQkAADs7O3B2dhauOpNOmqHt6HQ6sFwuw7t429vbsLW1Bd1uFwaDAQyHwyCzqUTlIQUj8/z8sybvXr3i0XUaTgS4qn+535KKJbkt4N9rJ6c5j0Wd7Vg+rd81266VIeEUHvzjJJWtpdX6MM9zc7Gcto/fOkHbWYakeW/xwvnCz7VaDabTabhJBd8mtMbQyz+tp16vh2tZe73eyhW7KRszOO4BADg8PAxtSBlLi/gcsDBS0fGk85TLM8V0lNrtdjgVV6/XYXNzM2yqtPrSaxvL6FOpHN4u/J6e8PH6p0XJGqOYrkuN72h+CZ7aww1KX/rSl2Bvbw9+8pOfwGg0EvGUhXljPHltTxWYqSz21nSslCd1w5lEZWMv68jD8/G2IabHwykAL3FYapwsBXd68ms2lf6vlcvTST4CTSvpf6nsLLu8En0+n4dnN/DNWKqDAF72Y0ye8IpjevCnXq8HfYw2VMPVVj9oZLUXMTfOieVyCT/4wQ+g2+3CxsZGuLa41+vBgwcP4OLiYmUxFvUyLsZ6cZvEX+x7T/lSXdItDla9t4GK2jXaRx7/iM576cpp7h+n8k//1sbvVfO5qySPn5JCltzc1n6m+FWi1HmPebBsWo+VlvMk/VZGd8TyavZLSsPTx3SoNQdj/S+VpfF45WjDdDqF58+fw2g0CtctAAA8fPgQDg8PV+6+z7Is7OKlzjG//owT7xTNyJRR+Cngmaf11OsNFGFaz8KIRJZwpRJ3yqzrSbwkCWeRPDRfq9USx8Qb3CnCt/R7VQpYAjJWAFHqm6qcthg4L0qSnK4DsKX2gwUiPUZK63s8/XZychLdHYNzbXd3NwRulsslDIfDcKUxBoA97fPqBBrI4lcuW3m0+vB3a8GG56k68Fkmr8dg4o5bmrZWq0Gr1bpyDROOubQ4Qk9LYjpeP5YLcHkajl9bJLXBap/UXqy3rA4pYrO837+qlOeX7xbR5wboIi1NZ5XB05TV9ShvnkVBeqKN1h0DsxLfVTtHN0lFF5itQCaWS/WBdh38xcVFOAmLi6f01KIHH7/99tvw27/927CzswPdbhf+43/8j/Czn/0MhsNhKIuOmWd+Stf8VzHmMceNBkhSeI451tTBGo1GAPDSfym7yUCThRhWoDYlFvDkn3Exj16VHqvzOkji3etnSek8m1txDOmTEa8K5fnlpgwcTyoTlh+E/UXny3g8hslkAv1+H5rNJvzxH/9xWIy9uLgIb7uWmcfj8Rh+7/d+DwAAnj17BsvlMryriGTZFotw84923TGVEc2eFg0E8U15k8kEDg4O4Pd///fDlf3Hx8fhhBzejGPRuuYh9Qtw7NHeYDusG1xuUj9ItrDImKUEDev1Orz11lvQ7/fh008/Dfif2mjJvvHgHC9f09k8mEc3a6+j73ndnrRWW9Hnxed6kG9uJ1P8lRhPKf75Om0c1oHvd3s2A10nSX6gxQcdb4pNPXVI80K6jUuiWq0Gm5ubsFwuYTKZhLw4/zkPKbLl8XG5nHtjKdr8Xi6XMJvN4OOPP4anT5+GG2p+8pOfwL179+B3f/d3YT6fw8OHD0Oe6XQaTunzp+qsYL1GRW1bjGh51Pd41UjS1/iZE6bh8iz5I/R/CZ+sG3P/ovjaRalKv5PPwVeJLF8qFXNruudVie0U4dFzuhXJkpei+ZEaPOFyuYTBYAB5nkO/3w/fD4dDePbs2UpmVEDcGcLr+nha63/emDJKLLZAoKXX0sQmbCyQJPGiCY2Vrqo+oY5GFWQ5QJ7JQUEUgjIaeANYfW/XUhQpkzE2hlWCfEl2eP2avFht0oJQsfQeYGLROhQzb781JrH8PJ9VLk/jIVyYQ/BN9aDWx+12G7rdLuR5Hq7PA1g9TRcL1Hq+09KkOsKpfVJGpsoYNEsvpBDKlxTcswKh2ve0LKkvKYDHawpTdlHG5rkUnMPPUnqrDJ7GAoASb1XMudtI9MpXOtaSPEvzg853q78peQNrWIann6XgDP9eyuMZ5yqprFOQGrjg4yfVr423Vh5iZOsmAbQR/OS1xEuWZWEDG+Vld3cXvvzlL4cNk5ubm9DtdsNJIE3uLJLSan3C+8MbZIrhrqLjH5tP9OrOKrGxd45YGDCWl+bBhSHJjln5POl42hg2jQUKYjIh9Yenn2h+XGi8bnuj4RT+G28LzndczNTSxuwvthnlut/vQ5Zl8Omnn4aF+jx/ecLH0xbpM9bx4YcfhrHBaylpGk4emaNjLelLTb7K2gksG+37fD4POnk+n8PZ2Rk0m03Y29sLi+YAoC7SpNibmDx75hX+j/0nBYqrIslPK1MH578sb9hn9KQS3ua2v78PFxcX8OjRoxWbzJ9BkvQU118x//W6KEXWUvU9ypJ2u4O3nBRMqn1fhT6XZFWTP5x3VT+hZJGG5WOxgDKxHS8/Fu6T0uLnRqOxMh+576FhPlof4hvpOnBPe6vQK8gHAIRDSpPJBJbLJTx+/BiOj4/hd3/3dwHg5QIs5uFvkWtzw4uVPe2KyVLKeHrq0HhcB6XoMW96b50U80h96iFvH3n8rKJUBWa6yfJj5Okraz6l6GKpvHXiAa8cpPDD9XKsPE+ZUp51kdVWDbNqaaV2VolTAdhibGowOIVQWVm/V9GglIHWHEQpYFqUpAl83SDdc31oLKgi5SlCqfkxmMKvwkbnWOMzlYeUcYmlk3a7IXneupXquy4Fhs6qRqnzK+ZQpZapUVX6QyvXEwChwQ/8jhIuxuIJnM3NTRiNRnB2dlapjvHsYEwNvnoMtydAVCUV0V9SfgxgZ1kWrjSkRHUPfsYApDXeFnGdiraX2uAiAXLpexpUpOms63QtoIFlVukIvEpk9TXV/R77hAFeS8do+j/W7/RtL+r8Y15LN2sg+7qcC42suVyVjtECXVKwFXUDfsZ3w7kelvij40PTS+834il61BXIT7fbhW63C1/96lfh4uIC3nvvPRiPxzCdTqHb7cLdu3fhP//n/wx/8id/EnVIsF1UBvn/GmZOJd5meopzneSRE48PpAVbsE3aPMY0KYRlSptcabmo43ExFvNIskvL5e3QAj78PVhKXK9UNRdvwl+qmiwbS08q4omze/fuwc7ODnzta1+Dp0+fwp//+Z+HAK6kx7EsxO44BnTRpGwfcjxA60WZ63Q6kOeXJ3p5EKsKeaDPg2j8caJ1SzaPfqanSbFd+Cbg2dkZLBaLUBaekDs6Orp2+eRjQT97sVlRXVQ1afyhDvW83e2hTqcD7XYbxuMxHBwcwN27d+FrX/sa7O3twaeffgrvvPNOuMJ7NpuFjbISv1rf0Tko4UA6TlL+65CjmL/Cf+MBWSpveJ36eDxOwoexwG5KP2gYu2hfamPD0+BGGaoTbiNxPUwJ7QnaCX5TCubBOUhtMepIXFjlddC6cLM56m8sj26OwHqQDwuD4cZlPlY8BiHF4KqIR9G01F/nsbMnT57Av/pX/yrogsFgsPLmMhI+LYInhYtQFboj1l/cflLf5abnQBGc6OHZg12wXslWYUygCgy2blq3b31TMlIV/3Rue24dA1iP/5Kiq9ZBVfp3lMqU6b2ZoQh5+UoZa6nMlcXY0WgUgtHYuPl8Ht6a4YVxxwzJC8K4I8nJI3Qp36c4cTepODgPVU5mLYjknWBFeLLySL9JTg6Xt1j9lmHx5vG0UXIGODipYhzpuBWd9BJQ1T57ypQCtWWco1i7ioxp0TpjOk0bY/45zy+vvmo2m9BoNFYcHvqZlmn1g9a/Gq0TAMZ0Bm+HZ35ZAYIiYFsLPNCgMf6jb0vxciwwTeckD4zFiDqjZQE7d4o5L9TRla6ajpVLg8Be0uYR769Xkag9kgIDnvxWWsnx9WCtMvaGj4lXP1rfXccYpwBmJMn2edtFiV8Jien5lZDe/sHPo9EI6vV62FWP31M9gQsGu7u7IdjV6XRgZ2cH7t69C71eD05PT+Gjjz6CO3fuQLvddmEnLfCCgYUqdBWWByAvQNO+kIjrEo+s0XnqGWsLx8VsMdVxXnvOf9NkwyqH2jRLZ1j+kIVttDycDw9OL0uS/rXmmYensjxL80b6nQd06Pyu1+vw2muvhXdYqwjq0LZr//P0sfmHmIBuAqha38f8djovPfNF0vsWPuQnXii2024AS8XpFn/S75avJaWPYdcqyeI/1W/n/V50DqCdvLi4CBu5a7Ua7O3twWw2gzfeeAPOz8+vPDMhPeXkxfWSLuWfi7SJ6/qifVI2H7Ux9CaGFJ/U4z9q81qLYcQoNndSMYdWDq+ryrnmwfge7Cn9L9Vl6RBqnzS8QecRLqR6fUmpPL4Y6xkzzrP2WyrR/sP3YwEudcfjx4+h0WhAp9OBxWKxchqY94vEn5fK6pHUMrlMl627inmRwocHR2vfWXhXwhEafquizevG1wA3txZSFXl9KAB9rCUdlCJrXtxT9XjG7KuHivBk2XirvNi89MTMyvZlmX7R2irJD0+7shj7zjvvAMCqg/Hw4UP46KOPVhZjsyyDdrsNAL4d7ejMSO9NcaEuA1hS8knvz8QmWMogSwo4NThRtC94PlqnN4hWNWjEv/kkpb/jbn4qKxywTSYTmM1mKwGNIjxZwJLSdQSTNJJOsqWWWwTUabJzHUTHhgJ8CwBZRANGUh0AEHaGIuFJNYvwbVEpLTr+eKXZ/fv3YX9/X33zCnngb2zFKAaULXmJ6RbptyInpjVwir9dJ/jA+qkertfrK9fpSYS7VnFRHXf60jKx7izLouXRfKjLNFvoJT5HJAe6Xq9DvV6H8Xi8cspEui5Ks1tcJ1GwUda2VRmsWEeZku3Cd34RD3kJ3wKsGoRnWSbqkZhD4glY4Oeyb2nedtLGggflPXM2pY/wxCueuvrxj3/ssuNZlsH29jZMp1MYDAbwta99Df75P//ncO/ePbh37154bmQ0GkXfNOR6BHXDYrGARqMB/X4/1IP6RGq3h7Isg42NDQB4eUqjzEkoOhZURi3Z50GloiSVSYPVPHjssd08XxmybC1/AoTbEfwsvdlL00lUFIcWIe5fcirzBIAU/LdIWsTBcni5+PtisYDFYgE///nPYTQawd/5O39n5UaOooRzGG0VLkrR65tj8wR5xLGv1+uwXC5hsVjA5uZmKPMmyDt3KSaSbBrGMnDuLZdLE8tl2eX18HgbAurD6/AZrWAXT4u61fLFbyOhnAG81FFFNgHRPsC++/jjj6Hb7cKXvvQl+MIXvgD/7J/9M3j33XfhP/yH/wCtVgu2trZgNBqtnJD12mK64bHoglNK22I8cf48dXFfwLrqXcJBZUjSs9xvrDpGGPuetg/7A3/X9I/WV1UGwbXxpLzG+ML5kULWe8cp+IrOcYvnFPLEr6gsAaRhA6vefr+/YjPoTXiNRgPq9Xo43DSZTFbes/eetquCPHIBsPqeIs477V1f/r7qTVDV/nSRujlJNmsdMYkqy31VaR0xJK0eaVMJ3ZiN/3N8zfmjN2QV4aNquq4+LOtve9t+nT6ohw8A+RT9iqch7U5fLpfBSSmibDVBtAxvTMFUpXC1YCPlQzNa0gKMp45USgHOWF9VQW6Ld08w1ypTIvo+mhXc8RggPqYpixxWuz2AUQtscV4lpzql3bw+TjEnXSPafknWiwZeed4UuawaZPHABC3b6mccI0lOaXukE5YIzDEQNp1OV8A48oKBIKlcT3uk31JkxBvY4n+n5vNQGVnDv625g2OxtbUFrVYL+v0+LJfLEGgcDAaBDxqELMszd/LpP0ufae30kqSPtLll6Vm+w9dDXr1bJa0LgPG5nxok5Lom1pcp7aCB11jQVgsmXRcgv06ielDDA0UCvbHfis5Tfi0nHSv8d+fOHdje3g7BHVxs2d7ehn6/H941fPDgAQwGg3CFstYXVltqtVpY2EW9SHmysLKGbbgepPpa6j8aDPIE3SxK8UU8zl8V80WyV9j3Ek9S3fx3i3evvpFkJtbeWH8VxXIWlqzCJkq4XMqT2qceyvN85RrGZrMJ29vbcHp6GhaGUtpI20LnTZ5ffUe0CK9U1jgmuC57HvNzOG7Rxs7CP1z+ef1V+ycp5PFTJXxxW+078qmdsvbgY64PcbEdN8E9efIEGo0G7O/vw+bmJuzt7cH29nZIa8UPrHql74uWkUJl5pslE1RmaB00D+oRj18Ui4lw8thdWr5WhpQmJlseXEgxi7f/rwtbx+RN0lsappDiHKnzkH7njU15MBctL+bvW+VUQRj3wQVZqss4aRiXp+E8emxXEXtE5VLSA7GyPbELTzsppYxLFTbYU5/VT+uisr5OFfQqYIeq+eJtLuPTSPqUzxmPDKfIuaWPtXK8c8BLXptgkebfenThdVPR+qNHeOr1unjqwzo9xo1jmXucY0CtqjJxUvATct56vGluWlA8AKqKOixjTr+j329sbJQOEMSoCEjz5uHvOHnk3lJUWlD9uijFybitxpkTtkeSM/5mp5SGngbilGWXpyJxoRVpOp3CcDgM9S8WC5hOp/D06dMrDiwGi6SAgEaa08S/q0qG1nEvv4e8gJTrH8tW4amGL3/5y3D//n0AuJSD4XAIp6en8KMf/WhFHlqtVlislQgdr9jiHPKnveln6WnPXOPXEEu7bjU5lpxhuvmAXklY9rrS6wpMVE14NSN95xMD6DRAQ4kHs+jmN6+8YF6L+EaOGPGgTCygnuo8VElVyIsVpEqZYxJ580lvdXKiuDvP85VxRV30zW9+E+7evQsPHz6Ew8PDK+/aNJtN+PrXvw7n5+fwP//n/4RPP/0UNjY2oFarwWQySXLE2u02vPHGG3B4eAgvXrxYyeOVXYny/OUNAXiyTNJfUr6UcZKCCVzurXxlAyIWvzgH6ftjHEfG8mIe3PSFi2NVvbtoEdcDsWv9r4uqDGLx8buO4NTGxga8/fbb8MEHH8DBwQE0m80wR7SgNZUHeoJrPp9DlmXhyvNOp7NyIrQMZdnlwvF8Pg92LfWml3UQt1WIXbA/6Mklqwx+xS2eekSZ8N6Gkkr8pAUlCWdQXEnLuC5fsqx9Rt7ou5IUv3LfyEt46rzT6UCv14PvfOc78L3vfQ86nQ68+eab8Ku/+quwtbUV6p5Op1G9qW0K8mIuirOui7zBZJQ7qQ9QlvA69VarBRcXFytvx2rE7biEka+TOPblxMdIi23x72IYOQVnrts/0nihp/y5XZfazHEbL1OKvcTGW4vF0Hz0fWYA/ckLzs86aDKZQK1WCxgbqVarhQ3eFONVwdO647dUBhBXUv0l8aPNKfxt3bYoNdbuiVdrefgcuY4YnEZl7G9K3qpk91Ui6QCCJjfczsXWsaz5ZOVLlaeq421S/dcpEyl9kBLr4PlS0mo6MUYrHsSjR4/C3xhoPD8/VwN1lDj44MEOJCnYoFFMgLEc+r+URgJG2neS0rQCNp7ApFZWGfLmj7WHfqZ/p06oFAOkgVLav2j0kSiQ4RPQGhMrnUZaebwPvYqIt0uaQ1p/l3FWJH6rGFepbFqHhx9Mr8kNl03efzF+pWAV1ifNd4CXi3bWnNbq9wSc0VmZTCawWCyg1+uZckH/t+YXr0eaHx7wFGuD1C8e0vjE38roQj6WXH/RvkPdoZ0yqtfrsLW1BY1GA2azGbRarZC21WqtBNys9ls2SUpbFaCSZBftOO0fydnS5gotqwqHhX//qhLnX7u62srD08f0szRGsXQaD9qbwdJ8jDne66AUnVeUpECRxyZz4pi2DI88L58/dBF3Pp+HK89wkQEAYDabwfHxcQguUx1A+ZTqpnM/zy8Xc2q1GmxtbUG/318pp4wNaDQaYeNSLLiOdlPrG8q7h6QxKoKLeDnSZ/p/bGwtfmO8INGrnqmu92BaXqflO8T48uANizx+lVX+Ou2LpCeqsHN0Xs7nc3j+/PnKkyxIGNj18EnxjjZeqTyirmk0GlCr1aDdbkOz2YTNzU2Yz+dwdnbmuvaxKtsh4RWNLH9D8rVwoVpatOX43DtPq2q3JIfrwlleu5bqz2l1xerw6ExJJugG+zzP4b333oPT01PY2tqC09NT2N/fF6/yj8UcNB5wgx4uGEkyVNYHWjch/2hbqJ9Kn9ug7bD0vyQDWr9oeWPl8bJSyOO/Xee8KoMpvTEXybfwxg143ELjPWXuY1r+vBQtk5cXkw2OadaFES4uLmA6nV5ZkInZxBT/T/oskebTxMYg5l8W8QGk/J60GsXiESn2VoqdeO1Qqt/otdFFfFEPVeVb8znvxWAWDzdBMTmR5Czmk8TmiKeuWJqUeIxVbkoc6bpxCm9rig9Ytq5Y+VXL8Mpi7Lvvvhv+xh1vvDLJKdEmobQLDgMrMSrqxMby0wCFlzRnjZZ3nbTOCREzcOsiHnDjhnE+n8N4PDYDTLy8dZPkZFKiC8ecH2sH4TooRXF4QExZB7LIvNHmoDcvAIQFNR6ooulip7Ot0ysWj3ii8vz8HAAAdnd3Qx9MJhMYDocrJ3NpXTHDLhlbTfaqCJCWJQ/oSC1H+w53tOF8pIuqPHj9xhtvhHcMu90uZNnliQ/8LtYG7zyzHFhanpckPcTbivJOT3QCXL2+kKaXnGKvDad0HU7wukmbg3meXzldJAUfubzweWqR9OabxIvGdwykx2xZlq1eD5vqwKSShkPKlLsuexZbhPdSrG30lNB0OoX5fA7D4RCGwyE0m82A1/HWhb29PbEcnL8x3ZNlL0/R3blzB3q9nsljSh/iAg49SafxgmXG7LInOBejon6E9kYo1ZVFbn3BE3jSeEm6lF7HGXs6hfJplSsFXST99arq9bIUkxEAvZ85lsR00+kUPvrooytjTzdWxfocZaDRaECWZeLCbhHCMrvdLrTb7fD5tddeg/l8DgcHB9G3qaukKuQO7RvqVxyLyWQCs9lMzFMEB2FdZcZB029SYLgqSu3jdesCHCMkb8B9Pp/DfD4PtvLb3/42bG9vw8bGBsznc/jMZz4DJycn4eYHCRd59DDSYrEIC5YAst9Px+269KjHx0fCDRe48Ytv5Nvc3Cx8W5Ikr1XIr9WP1vdYd2xec3/Iw7M2Nz1jXpVcWHEX2g7qL3tkJdZftE4JD2m4i89zqQ3It4SvOO9V+BExyvM8xCrR9lpEeczzvPBcwrK0+eSJlVD5l+JjGt9a+RpZfmPK/K9SX2JZHFtZPgFPuy65kuooqier9K25LfD6ON4Y2avgU1j4wMu/NJaeuVBGFtbVv+vAn+sgTe69OjSGL1Lj7tG7daS3D63CLaOnBYBSBYKDn9jgawFmjQcPKKbBGM+EiA0M7zeNL40Xz3cp/Fj1xUgDQFrZ+LA9BWAAV69b5GNngcoYxQBe0fKo3FtXq0iktS11HCynMTYXUpS7JsPe8jz56W9e5cYDhfg/gmNO/PoYqWw+z/l4S7xjMAyvg8R/GGAFeLmLcrlcht3HmnOHPKBOtmRW4pu3LcVB8ebxjBE3dl5ZpzzwuYL9QhdW+fVF+H273Q5vLGL6vb09uH//vnglf57nYZHcsodeR15qjzetls8KaODV2nzDAJ0bVD6lOpFijmKsTR4786oA8DzPV67AtoIyVr949XsV4FmrS5vXmp2MzdmyDqNWXpVktSHFiSq6GMv7nC62AsCKnsd6JGd3sVjAJ598Aqenp+G6wE8//RQ2Nzdhf38fjo+PkxdHcIyRF7yCsF6vw2w2cy308e9o38xms2BzpSs0cRHKQ1RmOYa07Iwkx5IjZtlP+o9jDe00HR13Pp+KyrknX4ojSW1CrEwJG9BxkPCSl+dY3fR/bg9T5rDVHzGfEf/nV8PGdKBkvxGjzmYzeOedd0L/HR8fR9vhqY+PRcoJVky/XC5hPp9Dp9OBLMvCExy9Xs/ER7E6UnVnyvii7sqyDDY2NqDT6cDp6SlMp9Ngw3HBjGJJxH5U76bKbdH0uMhd1c0LKXg/hdaJ16SbsHjd3rgLTYsbgKS8y+VyZeO35E9avOT5y6s8O50O5Hke3mpHOaLj6PGFqsZ9lt/K2wTwchyazebKhuE8z8P155jeklHut2objSQePKT5MFI8QPrf8r15PdLf0ndlbTrHNxI+0cbTU7cm23SsONbBMbOu44z5QmX9ZG6XKX5GPnEDfFV+iJeQLzwZz0/40iugtTEqyrM2BikyyTEcfpfKU0w/c968+ojzKKWx+tdTz7rGB/MW0QuethUtMzUd1Q2oD7xxySr5KktaX0r+DNUvnjL531hGrG3WvNEwTYyfoji0at0p9XdMntfFC5bJ/Vjer6lzxLLDWlnRxVjJYdMUIlfWGgDkZVmTQEqv/cbLkIChF0xrYBn/pjvPPe2M8Rprh8Uz/d8DylLBpsWjpKClfFYb8co6JPrWFc3P+7sM8PSQ1PcpSlKrLwVwePJ4x84qN+YYxnjwEJ+HsTal9hOduzQNnSN0gQ4BBAaXaPrY+HnmB+6Ins1mwRnn8xUdf+kqSU+7PTKf6khqabXfLd3iAf2p9VrgmJ6yQuDEHTZ895WO+c7ODrz22mthjGiAgDp1nnfEPfNEc3y1dJYdiNVXr9dX3m/j9k1zjjlIkfjWqGrdcV3ktbfYnut4nyilHI+Txuc/x2/afObyIpVxXbSuOouUqb3HV9QBou8QYzmabUOd9/jxYxgMBmFzz7Nnz2B7extee+01OD09TVqMleb7dDqFPM/DQpF3sUlrPz9tRrG3xwZrPPO8/DpXCVdQPyFFT0l2gvJi+UMWVizieKYEZ7RggGST+G9cNnhZHK9rfcHLLdpWXrdWj1YGbxP/jrZRG2dp4wDPQ+v16Nf5fA7vv/9+WJBLfffXmpO0j6jce7Eg8oJ5x+MxLBYL6Pf7SbwVwa6x72NlZVkGvV4Ptre3w2Y8PP2PPijvH/w/pc6YX+wto+pAuKSDrtt2S8RxLu13zqeGQzhZ/juPLdB/+GZss9mERqMh4iKrTtR99Xoder0eLJdLGI1GYS5bOCvV/1sXcX7oYix+RsLFWO5r8bLwb24bYu1J8SFT8FcR+fESx9Vl+JDkXsMwKeVK+SjPOOZ0AwESHUeNX02GJX8z1aeQ2so3XyM247cWafZe0rHeMdTy8BOmFN9aupl+rnK+p+oxpHq9ri5qp85frYyyuC0VT0j1WTx42q6NmTUnUuat1v5UbFCUJN+BbsDDgya3AVNUSXTeaP6AlAfT889VjBf3xbjNsfJ5cKCGn2LlcyprRyXeLIrxaPnevBzLhsX0tzY/tTJXFmNbrVYAowDxQKMEmPE3adKmXL9QRli5kGLdWZatOLXUSFoOOX0nQ+MP+4orolQDY5EGnKqmdSh2y+GnRl5S9DhmFiAoy1vq95ZilcAmEt8FyueJB7h4KJaPt8FD6zAiRfNJ/WTxxq9cj819/D42lyVDi4uwfDckOgz7+/vQbDah2WzCZDKB0WgUFgdRZriupBsUeJnrkJGyxlbS/x5KbQ8GQvnJZoDV65CyLAsn8CX+z8/P4eTkBO7duwfz+Rz++3//7/D8+XNYLBbiaWqpHuTfoliwwttnHAhq8jKfz4Pc0M0HUlnSKSaNX8/CjnS18XU5DUWprE29SSfECiRoJG0o08ZdmtM3NZ5lwb23/NS5qTlpmu3CvsbgLb4HqdkznL84bu+88w40Gg2YTCZX0n7ve9+DP/7jP4bT01MYDocwGo2g0+mouJ4HjDjNZrOgEyVZKBIc4OnoSYJY0KoIfpFIeruZppeuJCzilNIysHxNzvjtMNzGWL5IVddm0/ok/q06uCxIc6FqXRnDgFYe6YQPHR9tvBHrLZdL8TrbIjxJRP1KDH7RcimWRTzUarWg3W5Dp9MJV5vT0/VV6W769AcAhFM/FMtK/WDZmSoJxxEXXvEkLG7KG41GYl/QU3ucf3oKq0pcw+WtaNnU38iybOUGj9tMnrHnciP5YN66Wq0WzOdz+NM//dPwhMxsNgsyrcUbUL41+UW8PZlMIMsy2N7ehsVisbLxlpd9k9iR9yHvS7xuuV6vh6dcBoMBTKdTODk5WTk9XmXMK5U0XUPrTelnT/oYFqqKPH1WJB5g5aH+IvYFv8FLi6XEeLH6yCtDVE5xwzt+9lyx66WyMSt6klyLjWhpy1JK3J2OGY9FFYltp9RrxYhjvq3WT0VjK6n9rmEbTS9I7YzVmWrfqiatXrzGHgkxlnQz3atE6+JdO/RQZGMLT2utS2A9qTGQslRlP5bxuy2yMEMsZlsVrUSZ0YmSgkkSU9rAWoF4qzPLgDirw2hwRwpEaTxh+7TgBv2bO55lFkk4X7HvJN410sbLyl+0Hd58PNCEATksA4OPMVBRxlgVBWce+bcCZzytZazL8KwFgzW+rHKk9hTpv1hQzyozFdRI8kMdCG2uxYIiHEDTAC62kQaWa7Ua9Pv9lY0v6JjzU53ecfICZE0OYzrFKt/SnV6AbDmCPJ1WrnY9Cg98SzLQaDRgsVjAZDIJp1B+/vOfw9HRkcpPik7k/VgFIOek2Wa6mYVeLxazzxr/NDDJ+4ODQcsR8dZ90+SZJ5rM3TRZzm3R8pBieug2URW8pszLLMtEh0srB/US2gntqk8+vwAADg4OIM9z6Pf7K7h9uVzCp59+Cj/60Y9C/m63GxZu0S5heg+2uri4gPPz8xU8rRGVPf63lp5fWYzOfAwTpQZPNAyjpaX/F5lLEn+8XZyoHxErW/s+ldeYjNK/vf5bGV0f63NPIM6qR7JfUnkxOcfgdKyOVOJ9TjFlLD22p9FoQKvVWslbRJatMUDe6BzX+tIz16R8vL4ihFgIsXy9Xg8nFa3bvzjf2D7a7hil9DUfxzI23NrUcl2UGvzTxrisP6zp2YuLC/j444/D77joCKC/BU4/S/MJ7dh8PodGowGbm5swnU7DpimUOY6X14WrvPOQY0bKE36/sbEBd+/ehXq9DqPRCE5PT8WYl+WveXktMt+9su7VhUViHDyPx4/gv0vj4MFcnrhJjG/tOwu/aT6oVk5snDzxB0r8mQCvbo6VW5Qsvr1xGumzhcVi8QSvfsF0/H3fIr5ubJy57KzTTmk4r2idXvnlsm/5MVo+qQ0SD2V8FY0sf4W+iY6+Jz0hW0R/3gQVsTVFsZ81Z605qvmSKXrOa189WL2MjEl2RZMVS6+l+JgpepinsfziKubaymIs3z1pBWi0YFHZCVelAqGCxk8DWbs2Yu2QFmY8b8p4QZiHqtoBuC4F6RlH6igCQHjsPmWsUkgDgGXKvkkntyhVwa/llErk7eMyjo/1u/XQPL8i2Jr/vC4tCMfr47p0uVzC8fFxOHm5WCxW5F66cge/p+Vy8sgj7Q/ppCimof97y035nfa3pMukunme2WwGrVYLXnvtNWg2m2GHXp7n8OLFCxiPxyE9no6mff3lL38Z3n77bdja2lqpG99Zxfqm02lye6X0VetbT3m4UxFJu14fy+MnQjTi80rjBzfXrMNJ8FCV/X7bdL1l/3F86BvVMZKAPn7HF/JTToRbtI55QUmz+amBMq2v+dtaUj5sI30PVuLJs8hJiV4bmOeXi6rD4RDeeecdODk5UcvhbaL6ldaBJ4Ssa45jTg/VIzRI5g3k4P/Yz9apfCnQopGHB3rNHLVT2E9oP6ntpr/z/k0hrJfzGbOT+L90whr5ssYA0/CgCj359KoEWK6LOMaTbGNqWbhQyDenSoRjgr9j3tlsBs1mc+WNulTi8oPtHI1GK28/P3ny5Ep6b51eP2pd8pZlWbjNBk8R43Xs9BQj1s/fJ5Sukb4pvAPwcuNdlmXRm10A1m+DqyaqV7nNkvCJVU6WZbC5uQmLxQJGo5Grfu5DcruAdhmvO/7c5z4HWXZ5eu/Zs2fw6NGjK3zHbPF1Efc76VXpuJjcbrfh7t27oT30yRd6chJAf/8ddaQn6FuUpLL51bGYTrKTmn/jjX9c57wq2o9am2K4Liaf0hzxUmpQntpJ1Mno8+K723QspRvI1hV7jhHXARSbWWOSElNLwcWc+Bwocg2tFMPR+JHGPGZLNX4kDG75ausgrd2ar1hV7DM2f8sQvYmu1+vBvXv3YDwew/HxcbjefzabrdiFZrO5Mo63LZayDpLGXpvT9KYMbY6lxCcsWxUrK1bmdVOV/ua6cHnZcldQuhSU0hqvBfcspeilIgLAB0tqC1fGFgjRgihWcEWqJ5ZG+11rn5XGU05qGamCpRmYGB+WA58iO2X6RjOERSZZaj9YfMXyrNuoWXXE+ox/luaPNZc0Sg3cUGeZfyc59Cn1xHjGOvCaXHQc8FpivjhWdu5qfY/OZaxN3jGS8sS+q4ooaKnX6ytX8uH7rtwBoFc/IpDsdDqws7MTAnH8XdgU4G4BLol3C5B6dI7HVvDvvDxac6GInrrJYF8Rp7WK+tYZXPaUTeXL0zYv33w+rEtvalS1LGF7UoJpGi6Ufot9b5FUv/QZxxp12OnpKUwmkys4XeMzxhs/tcp5S5EdGpylMlqr1cKGGWwTvVY1poer1i9WEIjyLI0R1ZWp84n/JtXP6+H80u8sfKOV5w2SSX9L9UvfX4c9KOtLUPm2xohvMtD0bgp2sxYxpLK4TkY+KMbUdJ2Ezy0ZyLJs5ZRpnudhwxo90W7pVqnsdfsyABCwN19gpePoGYdUfKhRatDNkxbHHf/HdKlxhyKkxWAkv6Ko7deemPGWR3nE8vCZAOkUuVUGlkOJbroCuLyVol6vQ7fbhePj46jPeV1YWatHwnhUlritBljdlMZxAYAdZ+P8cFlJ7Q9v/ECzYXT8rfiE1qaqdRkv09IZ1hxP+c3Lv2WHNOLy7/GXPWVK/1vYzFtulfJnlZfiO2r5Y5jHihtoeJJif2nuaLxYvBW1ex5M5/W9Pf4ElxePrEp5PfoP88R48/5WlR2RdAPHinjTCKXFYrHy/JpmD9bB87pI6guPvUkZ0+vEACn2yoMfi8Y5pLKkdEV05Lr9irJ6G4AtxnpOTyBwbbfbV9LPZjPx3RxN6WqKqAxV2elUicSIXzHq2Y1K08d+48JuXYtV9SSuAlhK+VPeT6U727wT3xv4KAr4OXhJOUkuvVGVQl4nsSylBI/KUBH5il25SgkDL/Qk0WKxgNlsFpVND2jUdljmeR5OYu7u7kKv1wuLhVK9eCKTt7Eo1ev10GaAy53a0i5+zrNXj8TGTXNkYwaXE71mOs8v30LF93f56d7Dw8Nw6hjgchc3plksFjAYDEIdx8fH8PHHH8MXv/hF2NzchNPTUzg7OxP7yNtmD3F7UWS3aVGeYqeiLYoFJ/BvbBMFet6NAFXqlLJBzSrSeqls27ld5DJcxGmlWIMHUFKuAfOQt/1evZQ6nlowSiurKgfSCo54iKar1+uwXC7h5OQkXI+IaSg+1+qkpyH5zSWIa72BDpoP5Qi/Q3yMiyLz+Rw2Njbgc5/7HMzn87DLml6LnKI/+Ml+Hsjk16pyLOdpH/YXJ4pL+Ilayicthwbv1/G2Nh9vrX+onqb9jjzjuNLxxP7Gcmk+etsSLnZU0RYsk57c9VCKjqH/aL00QAkAK4s40+kUptPpFTwYwzwSn3SxsAp7w08mAKzekhHTZ7xN/CatInjiJujk5ARGo1EYT9QF6O+3Wq2QFvsBMbT09qoWHOZykiqjVAakejxlTqdTyLIsXFVd1p8oQrw/iug2mrfZbMLGxkbQQdPpVH0H3UN5noc5u7W1tfL+cyqvVD/GqNlsQrPZvHLrhMc/uo5ALeUjFgtDfIFXVmbZ5Ukoy65yjGrp8aqD9bwMbgtpOj6eFD9I9l/TqUWJz38pJkgpFhvSeOIbCGLk9eFj8RPsS23jkZTWkqnFYrFiuzXM4R0fSyaLymLV8uwhKbbK2x/Dnmgn8e8sy1Y2X2lEN8J7+dRwuTR3+W/eeccx3TrimbwOqX4pfxW8FI1tx8pC3T6bzWA8HsP7778PW1tb8ODBg5Ae2/bhhx/CcDiMlk033qbwdF3zB+vjdJ31W1QGX/FYx21pk0RV2tR1UNFxWFkx9AwAdTylAIJmZDiDMYemSuI8eTqLK0nqvFLjLjlnqRTr95QgKk/LA7Qp/HgBQxUKkdfJQVSRQBn/WzN62u9SX9K2WmNglauVn5rWcnJjZfN+iQFmi7cYpfZXSr9oeazyKD8xmShKtE1cd9DFWAxYUpAq6UpJjr1zjjqU3NBKfFati1P4leagBA6wLb1eLwC4fr8P29vbcHx8DPP5PPQ3vhWGp5L5dUXz+RwODw9hMplAlmUwHA5LBXdS2peaLlXP0nfgU8aXBycsgBYDb97gFKatisqUFcMG9P+Y86rZI63cIpSCIbj+swKIlkNclX7ytqGqssry5Q3gWHi4CB9S/VoZNKhC5z9/W5vjLc9CoDb2UtBQkjtNn9frdej1eiHYg5tm1mWXeFs0KopvYzLI9YiGybxBQ1q25F/FMLzVz6kygYuk3W43fMcXF73+BU+DZUgBL54ulbQ5aul87DtpAbYMlQmkYX/gTR9chuhYxfwszQ/S6pX+1tJr/VS0/6R8XMdhf/AnPzR9LeEfKuMSWViJ8pTSrpS0+GRHo9GAWq0WFvxSsFhRStUV+J30u5QX4OXTF3iiFWNQ/BS4hy+Kg2I220NSvZRfyp9kC1OwXFEqIoeYdjqdwmAwgCy7fPKl3W7DcrmE8Xi80pdSnamyV1Rey+QD0DGtlh7/5thKwtoxWtf89Pg0lu3XfAipHC+VkfUYnkml1DmR0lZJnqq2BR7cl2LLeR6qvyieS6FYfRJ/ErbjlNKfqdgiRZdYY0Cxr4fvKjDkugnbhZtqAV7eVoe/9Xq9sEnn4uJi5ekwgFX94sGfnIrkiZW1jn6PyShvv6ZbpTJSyrX4o3xSLFTFGBTBGkV9gCqoDPaTxi7Gl3p8UwOJrVbryu6F5XIpvrVhKU7puypBiFY3fQcQHSp+Gg1/4x14cXEB3W43nDYAADg9PRXfE6yS56poXY6YN5Ci1a29Ces9IejttzLKQSqj6pNBSKmAykspxi42d1OCZx6ifWnVTfm3TllgGbE00rsxKWCREwY88IQSl9s8z2EymQQgO5/P4ezszAwUVEn4LjM3tAikytZn9XdqkIMHLzg1Gg24e/duOGV17949+PznPw/n5+fw6aefhmAU2iZcCJf4+va3vw1HR0dBF+Hu2rJt4MQXO6S2xerwOh31ej28oQvw8p2P+Xyugj7J7mFZqY7zuoN+10Vl7PJ1O1OIaVLzUKc3hhM0/HYdgd6yxE9f8KCwRTywZqWTwLi3f3ha7sRpzjwn3ISCm30020/1rGfnukbcfmK53jnQaDRge3sbFosFdDodODs7C+VKb7d5356lgVAtUIpl0jyUpCsYi8o63cxKT6HS+vmiOSVLjngbuHxXrY/49bwU12xtbcFnP/vZsOHs4OAAzs7Ogg+p3UpShpeU+UyJ9jX/n1/xS/PgyTwMQF0HaXLKZRPnvoZllsvllYWhqvxw7mNrsuwlb2DSSkNx+Xw+D1g4lg9/p320WCyuXGeLc9mDlWJ1FQnEIo5fLBawu7sL+/v7sLu7C81mE7773e/CYDAIV8texwlZTb9iP0q+EU1D5zL+jYvpp6en0Ov1oNfrBZx/fn4Oi8UijCvVs/T5EY1wrsTIOkHI5QTTnZ+fQ7/fD0+iSHkkuk0BeeTz4OAAzs/Pw3d3796F5XIJH3zwgRi74DqK+z9en7sqW6bZb35bBk2r+Tb0VKAUn+DfSbZe4kX7rgyl+K4WxuffSTbIevfUSxqPMZ0t6Q3U/UhlcG4R4rxavoSF74rqAwtH0t8sbIsn+THecnp6uqIvaV9rOo2ekJXaLZGkbzX59Miali6GHbR6U9LyfsG/122P1+WX07YsFgs4OzuDbrcLvV4v1PmZz3wmpB0Oh/Dzn/8cAGDFDkpPiAG8OretrIPW5bN56CZuUEEq226vXlk3STrf6lf1zVjMzAtsNBpXwKRWgfZ9zKBbaVNIcgYkAKYBr1ardcUA4BUsCNy5UdEWDywF7QF/SNLJhdsifJyK8sWvJJWuM5YmrAZ4pN9ifci/iwFDmoeD7xTyBpOKggNP0IH+XRRQS8HPWH9K33n7QfqOB3EpTxSIehzBWH9zICrxTwPj2rVUlsKOtVUqr91uw87ODozHYxiNRlE9K80rHlzy3oLA+aLkkScMcDabzXCamN7CgO3s9Xqwt7cHu7u70O12YW9vD9544w0YjUbhOmPJlmVZBuPxGA4PD0Nafu2h1paYk261iQeaUsiaI5Zzmud5qJsvxkrp+XhaziPnL+bUrMsxiFFKwGdd9ayLUuq09LA0Ph47ymXkuik2B8oG7rAO+pliFE851vykOjVWHm8r/4zBMLQlWpn0/XLUm4hrcZMhBralxVAJQ0nfSTbUClQg//gGkXdBV7PnHp2j9SX3Hfj3XsdR4yHGG/aVtqDllWvJjkmYmvYh/o7BN3oFsTWG3B/iWLAsFdEzHkxSlKR5i3Jrzb8q67f0uNeP8fKo+WL4m/YES5kgS1HZScE5KN94ygN/429lc7+I/67VX0b+U/QMbi5HHcrxe9l5WKZNVH8UCfjhmNFTNjgO2GaP/fTybdkSzecDWL3C/OLiIvgYeKoUYHVBCNMVjZkUpZR5j2O3XC5hOp2u2Gdue+lnaf5gGvoZSZIviUcpxsD51fJWOReljWxS23gfeX3HIvhFyyfhMSmfxY9F0hhYTz5p/FjlU3zL65T6WKqbYxzO802SNGZIHvmx5IX3FSfap9jP9DeKg3FTnUePp/g1nBeNt3VgKg1LUf60ucbLkX7T/OWb9J1TScL3eX65QW04HAYMgrS5uRk2X9KFdYqxkCT/Kqbnr5NiPiylIrZcSkPlnf5v2b2yOKIK3Mrni1VOTF+VtUm8T7R+tn7nv3lkwLL/nPwPm/7/qd1ur7ypgpVwynP5GgME0vg3T5PiLKY62BwY1mq1EGigZSGop4vOVPizLIPJZALD4fBKvSlvxUrtoN9xpxYVXhlKBd+8/qqJKhf8TPsdT3KllplS97rJoxhTHMTrIKpw+MLhdREHjkXGiju49LqomBNnkTY3tJ1ceZ6HE/TS+9IUfJTdlUR10ObmJnz2s5+FJ0+ehCCARHT+8f5oNpuhXXn+8m0tuijKy0klaQxqtRq0Wi1ot9swnU4hz/Mr7ysBAGxtbcGv/dqvhbrffPNNyPMcvv/978NgMIB+v39lXBAwnpycwMnJyRW9ar0z4yHej/g3nkwAWNVtHuMvlW3xQ+V7uVxCo9EI/SCNHc2njSm/Tpv+Q6riXcB10W10vsuQF0BqDl/qSfZYX71KfVkkAEWdA+pYxvLxxVGpzKI2jhNiKHR4tRM8rVYLFosFTCYT2NzchC9/+ctBV/zgBz+A4XAY3hqUrtGX2uDBNrydmsw0Gg1ot9sruorm094YWwfRMZICedxBplTUkcT0VjBTqo/6OKkYnuIPGnRD/MLfwH0VgkfXRbQ/Wq0WNJvNgJXoczZV9pknGGDNzaJ1cVnXYgCch+smT938uSUcK75oKM3v2A0qFj6uuk+Q56reZvbWmSpXiEFTr7nEsWg2m9DpdGAymYQTmgAA29vb4SYcDy5OqRfzcb2nlYVpGo0GLJdL+Pjjj6HRaEC32w1+4Hw+h/l8Hp5a4TcF3EYslWVZ2FCMV9DT3yQ775ERzGv1LQ+C5vnLU+hFY1pF0/D0dGMb/026scGjk70xTwtzFMUeZYLfmE9aMEAdxdOmlMtvoZAOa0j14m/0/5S3mm8DxeSGxlMtm8yxG+I6vvjKPwO87DM8/Xh+fi7eckDzSIeWrPbxOvn4SjqlrD2tCichSXYf+51vMJX036tA9Mrq2WwGs9lsZayzLIM7d+5Ap9O5cooanxKj8UrsB9Sj0iZUbZyKYJF1k6W/U8vRsHzMTsR4KkpVz791koc3qle8OKGoXZVIXDmUjFmn0wlBeapg8X09uoCGDihnlO/QtILB3gZYaWLAloMnDFZLg4GGyeNMFQFzPB8fA8lxkeqPBU1TnZSyoMwibKNHBih5FE+R9nuATkp5WhlaOamgVOPPIyeUrIVJiay0UrC0iiBQipNKg4laPu2kD1WwUrDVIm3u4QYWdL75m6W0Dq19MXnmY9FqtWBvby8sRPZ6Pdjd3Q1p8V1Vfs2SVRcGq3AB0TqxRMvKMv20rzSX0bmlV+Lw3/FqssPDQ9jY2AAAgLOzMzg8PITz8/NwgwENpmEbKNGrzDxy5pVlzfbx+Y9XBcZOG3nr5DJLbS5eUyzJvkSWrdOCLNjfVJ5ii1XrBtDaHOG/3zZnPOZQYxquZzWQHNNrmqMulRn7vmhQkctUajk0vfQkhUSaPeMOdKwPpMBODI9RvlHv0cW01CAj51ni25JzvPYRrzfXxoKeCvbqLK4TOM1mMzg6OoLxeAxnZ2fiZsfU+SmdlKJ2nvaX5PfQenm/eeSGEt66gJuvtFOTnDeJijqLfD5ZMt1ut6Fer0O32w1vAgK8nFfSdax0YavRaEC/3w/4Zzwew8nJiZv/mOxbMubRndJvPD8dH82O4IIcnoRFPnAzGWImvkgu4Y0UnJk6N2h9WfZywwbd7CrhtZgOs/yOMva0quAa14l0gwl/W1vK4+FTCuJI/aFdS66Vq8lxjDA4ur+/D3t7e/D06VN48eIFHB8fmyd5PSThBe98pjLIT45bdj/P87BBPs8vn3q5f/8+vPnmm/Duu+/CkydPVtpOy8OFMqlcD7+SbeX9wbEuX8TAxSNciEW9kOcvYzteWbspjMrrxcD7wcFB4Et6N1t7gsjT/zyt1kca5o3VEysvZe7xtnM51Oq25ji3CR68jZ9jaTXZ9tohrW4sD/9Z18ym6jdMj36zZEdjfHow3HWRB0NKfRTDhpbektqqnV6ni2G4UQngUtY3NjYCxptOp3B8fLxSpjUu0lhoabzfW2liOpx+5rx5dY7nN/ye376WilWL0LpsB7VvAJd24fT0FLrd7oof2e12oVarwRe+8IWwkWo6ncJ0Og16gtp6XofUnliaouSRzxg/0u9VxsSlcmLlWrE4z9zQ6uM+E/3d05eW/ZY+W8TxvlWPVD7nV+oXLz8puCe6GIvU6XTCTjisYLlcwtnZGdRqNfFtOl4mnbBesKQ1IlVRSW1Co47UaDTEk62oKKRdQt66Oc90kDyOGV2MtSZTapDD0/dWXxcRfPp76gm0WB1esEqpyElECnhiYJDLsGVYPH0m5bPI6jNqBDGt1p5UcK4popiCjrXJ42RYbZYMhlR3Sh9YuqnT6UCv14Pj42OYzWZX8vG3alINNTfyeX4ZcHrjjTfCBpper7cS+MDFWG3+SQ4ZXhXMd7RZQJKeqKVlW4Rlt9tt1RHpdDpQq9Xg8PAQdnZ2IM9zODs7gw8//DDocel9EtT3FBRTnT+dTs1Fm1T9in3I3yXHcUgNjFkyDnDV4cW5nWUZTKfTK/InkWYr8beYvqM6xJpP63AMLJ48VES/esorWk6RgIilizyfY3NV0lNcrxchKtupsiHVTReLpE0IUj1F8IM2JxAzxtpC5xbFmXRTkUXcaZDyeDAIAEC/34ft7e2V22+ktPS7Im8UUxnCsubzORwdHcHZ2Rm8ePHiyubPIkQDSbRezgttk2b3LdvPT89xDETrwXcr+W0MFE9qfNC0lGfpd0+/SfKP/3ADbq/XW7GLPFhC+aRvrtfr9fBO4u7uLjx69OjKuFehX6U2eJx5LgcWptfsgoS9cB6jzV8ulzAYDMJivOeKRam+mC1JwdS4sDWfz2EymYTvm81m9FQl7x9rLIvo8nUSYuN2uw3D4TC6GOstk9tErS/wtgKOO62yi9BisYDZbAZ3796Fz33uc/DJJ59AvV6H4+NjWC6XQb/HsJxFXO9Z/NM6aIAfy7DsMOat1WrhZOlgMIAHDx7A3/7bfxtOT0/h6dOnIS3aesTb3mvuuQzTcbWeJJB8Z14fbrKazWZB/vBJAIpNYrGB2zKX8vzyZNNsNoPBYABZlq3c+sP1PD8tRf9P0WcxG83zWvxrFMM7Gmnvp0vlxOIMKfVq5MEPvA4JS8bKkojKqnSbBpcTqy7OH/WbNext9Ztkt8rikLJkYUuOC2N5LZvLxx0/cwxPn6bAtFRP1et12NjYCGsC5+fncHJy4pZrjcfYvJbawP8uOpa0L6RNnBq2l3iUdBHnlduU2LzgabX6tH5Yp+1AW5tlGcxmMxiNRlCv11cWYzudDnQ6Hdje3obz83N4+vQpnJychLQanzFcxdNeB1HskkIput6rw/D/KnSYZYu981XLp80n/ltsfnnaGesPDZ+nluMlj/+24g1IYA8nEO5IxMKm0yksFosVAIYOAL/SzAuGMb03nXdQUsqV+KCKYjqdwnA4vBLUjgWNPAEWrJf32XUC8KKTrgqi1yshmOU7tMvwIU3uosrdO568LAlYpCgGjVLTW0RBsxbg0YBJESXo+Y2ni42fxQeXg5ii5/Mw1q/oLCCfk8kE5vP5leArrTt1rkvpsM6Li4twqoUHTY+Pj8OONJ5XawO2A9NQna/xJO2GjRHlFU+V4GniPM9XnDosezwew2AwgOPjY5hOp9BsNuHx48dwcHAAJycnkGUZ9Pt9aDabwYZhvtPT0+B00A1EVV3xhn13cXEBm5ub0Ol0wtWgBwcHojxgPloGJ36NJM2L/OMuRLyWG2XBssc8SMZlp0odc92UElygDj/PX0V7+VjV63VxA1uM6NyUAlxFbWVKGzEtvVXk4uIiXCsupS/Cl+RsIsXK43qMnmCTyIsJPO3AOUUDw1y2NB5QP+A1sdpVwVbwhfa35eTy+a4R1R/c/mv1aN/TMvG06GAwgPl8HhYL8Hp1GujkVwFa5JlTyJel/1Mxg1YPLoJtb2/Dzs4OPH/+HA4ODsL8KbIRSJPHmw4wTqdTeP78OeR5HjZPdbvdYNO5DKWSdw5Y+blsUj1Bvy9yWr0q8tRn4W/ez3hScDwew+7uLnzta1+D8/NzGA6HcHx8DOPxOPn6T8qDdE12VUGNMoT144bCFHvL/SFKRTBBSoAxhZDH+XwO4/EYRqMRTCYTePDgAbRaLfj5z39e+qkjrV4k1HOpPnKsH7Xf3377beh2u/DTn/4UBoMBdDodALg8oYOn1rUr7VOxBOdFwiXUvtN4Rpa9fIKJ3x5nxQVuE8bm7cU2WTGjVCyq6WItjXSV5XURjVNp14PTccR/nqctLN1ZVOdwnjxUhX6SfBStfClOx8sCgLChDbFhTJ9rWJji89tgpzTyjDmdc570rVYrYG/EBFqcFL+XZLxer8PW1lYYg8lkApPJpPS8jPmQMVnRyLK9VKdoZVvXMkt+VpV0G+WT8oTYcTwew3Q6hfF4DK1WK8TA7t69G9LSK/oRl+R5HuIHfMGa+qlFDlFVTbdJX3jwZCwNtielXZK/xGOY122btTUCy45K8Qz8XTqpXfW4ryzGSgAa37ngDcJFV7pQiU4OZZgHfz0NKAqQNcKO1AKVkuOoKeLFYgGj0egKv7yNUpneN65osIumqQJAWWVowf0i9VgkgUwERLTN9BSbFWwowlcR54B+LuJgWA6L5zut7Vw+UpQyL8cTXKVlaMBI4l37HOPVQ0WCJNQ54uOpKW0tiCK1Eb/D4KNWP6/D64Tz9HQxFp0UXv5wOBSvCpTai2XxUz+NRkPkWzJs3uuJafn4d71eX1nElvQGXrM3Go3CBpmTkxN49OgRAFwCQ9yJjkEa5IuOOT2xoPV7Ef2L/+M7VxiMxneXaNu9ei3mmONNFahD+RXJ9B8vV7OBVQQDpLZUXRaSJZ9ee8r5i9nGIjYFF2NR/qzyeV56JZ6VpwhA9uI1TCctxlp5OP5KxYWp9iOGe6zvyjrYll2mtgdlAW0FBgRSFiF5X2oyzNuFPMRwDdfRUp0aWWOOC0STyQTy/PKtPfrOJt+kV4a47HNbRTf98P6JtdX6ndrPfr8Pr732GgyHQ3j27JnJb0wX87qLOL9UJ3rmvkd3LxaL8Gb7bDaDLLsM3I/HY1gsFuHmi1hdKW3wtlubz5ZtSOXR4yN45w6WJ+FozZ/ln6nNwWts2+02vPnmm3B0dARHR0cwGAxWMEORcdFkowo7XwVRWwsQHwNtHC17ZBHOZ1xAqLJfkE9cqBiPxzAej2FrawvyPA8bHHn6Kupd5/hqeK5Wq8H9+/eh1+vBhx9+CLPZLJzWms1mK1drSmUW4VvDk5aOxnoQ63kWxOn8rqpvq8TxEi7i2CM2r7y2TaufllM1xWwCxeH42bsYSxcPpfiNpDuLzlU+dzxxyFR9xsuQ5gjHmzStx1bS/qnVamEDq+X/SN9L8uL1J27ChsXq1Hi12ol58Dko/A5vQInNawC4Ehuit2PiBvqYjdSwuFa35XPEcDf/LpbP8ts0snRRqs+aklbC7VXEKbzEY0e4wIpPWeKG842NDdjb2ws8YGzu/Pw83NBiLXTz/zU7q/FokSaf0m+07pjP561f48GiVNuHc0HaDBTDMTGdoOEiqxzvHFuXjY+VK/nFHor1AU2DJN6TkwKovO/PaeUX6eAigI0Tdcba7XY4SUTT02sukXh76YkjShIo45OWL7ridzTvfD6/ckI0pZ1IXiFf93ho9WCQTZuUHrCWytd17KzhCgpJa0/M6Y+lp+XGQAiXv5TTQlUY+pTAmfWm5joodU4gbxKP2MdeMEf/9tSN40ivRcLTn1mWiU4LXkfnDZjVarWwo+3w8HDluhrtVgDunHraj9ff0E0+lPCU2Gg0gs3NTfid3/kd2NraglqtBk+fPoXvfOc7MBwOAQBge3sbOp3OynVwk8kEDg4OriyOI68avx79iQsKeZ6HxdatrS3o9XrB4cFdqFgfnjKWAJJ3kQ3TIg845ngKS9NBFmE7pIBBTG9d1xytktYZTNR0eqPRCG8x0pP0+HuM+CYzJOt0HU9jzVuPfazX69BoNKDX60Gj0YCTkxPXVdgAL/sF5TzFHqN+0ILqln0qu5jHy8P/PWNH20h39C+XS/jCF74Ar7/+Ovzf//t/YTQaheAGBjaQrLalvqOF5Q2HQ3j48CHMZjOYz+dhMR1PMHptF+XBwnJ8rOm1khaflPgpY8lmF9FFFIfyduA/btM571IAoSq8qY0/BvpxzKyTzp4gAS5moJ6SniV4FXX9dRDdDMevvdMCF3xMtJspNJ29DvLMfeSd4p918VMVZVkGGxsbkGUZnJ+fhyc48Df6P6ci8Qu0981mM1y1iyeHigQJPWnzPIdvfetb8N3vfhd++7d/G/b29uB3fud34OnTp/Ctb33LpXOxHE23ct3o4VWKGXnyZdnlZg4cp62tLXjzzTfh137t16DRaMDyb0i+AAEAAElEQVT3vve9cF2xlp/rROtdTym9Zdd4OpoG//dgD7rZVbrO/qYIF1+wDzS/j9/cY8m4xw5Jek8bA/osTlHbJMkDH0evX0bz4HzjODwW8+FB/5hPnap7Y23y4j+aXoorSOUU4RXjtbiAg6ffrWeTND5uq52qIr6G6S28gHi/0+mEZyUwD/qmtM/Qf7q4uIBPPvkEGo0GbG9vq/XTDaUx4ro1Jeatxdy8sstlltszCc+nxPMwPea3NmHx/n5VSFtEpTSbzeCTTz4JmwG3t7dhb28PDg8P4ezsDEajEeR5Dt1uF5bL5coNW7hZWaMiuLMMVrXyeWWuLFm2kaexYhSaHUmNGdK8dAO1tQHIW8e6/Iqic8zThym0shjLO5MrMwoquEMeA+NlGJWUrmbUPROEKzkElhq/NDDNlahnV5YFRDnfkkGKAXivg1AleetLmUCpxqesMrTyVlW25kBoyk8D/UX40QAK/Sy9WxAjnpbO/7JgWyLL0JQtD8Dn0FiA1huc9JTJSZNF6uhywit50QDiwiC/FivWr7iQh8HpTqezogs9sskdHw/A5tdeUWBKgxQAAJubm9BqteD8/BxOT0/h8PAw5EOnDeDl27BZloWreLj+TbFdHFxL+fM8D2/f4sILv37eGzCnfEhjz/mQ3tSRZMlyKqQ5LQG7ddqc2Bzx1u1pN8U8qXWmBOY4D5p99wRJPGTpLus3T3noIOE7zYhXpH6MOcf8txhu4vIsfeak6T+LOFbUeIqlkfjEv/Garzt37oQNGri4QW8G0LAeb7uly6S2440vZ2dn4XQu1SMa/945Q/NSnWLJg1anZRORKH/avONpeTmxOjT9oY0L/o4LADhn0N6l9gmvQ5oX2vzgMiRhN5zLeKWmZ0Mc73fMP51OVxa7yjwFwOfwdfk8WKcH42LbaTst3eTFUNrvFkm6AT8jLmo2m9BqtVY2+HBZ8vgIXj0Q4xfL4vqqqrHO81zdSJ1ShqY7AGTMgTe1pC6weXjk/FxcXMCLFy8gyy4XnPv9Puzt7YXbB1Kxk2ZjiuhvT/kaL5im2WxCv9+H119/Hfr9fvBPNN8Ey/du7I3ZNe+8lOaNhT+1W9ZieLAIeTATT0//9thiADu2kUqW3HE7avFkkQfjp/gBmgx4yDs/LPtu8Sbll3jwzBcvSbqR8sH54mnxJh6+8c+jjzn+1Hyg68AVHhygybsXQ1jzhG+2pnFw3k88H771iQu5tBxJz3rshQfLxNJqsqXNhZiekPRJrC1SGZpv4Jk3Hv/Aq1e1ueaxv16S+MONovSJEpSfTqcT/AzERovFYuWGLc3eaHaU/yb1P/6v9WnqnNJ+08ryjr1VbopN0fRhWR48eT38xcjCkVb9Vejy1PmVgqUAjMXYVqsF29vbwTnDE5q4W5oG1fF7zUlOGWwPSUA6z/Mrji/yQPmw3mrgVwXSgZ/P53B2dha9kkTjV1qE4EJKT3DRvDdBKc6aRRpQp99zh7jsCQKvc2hRilKLpeMGN6XsKg1krM4U54KDOCttrF6LrqPtXvLwwnVCioEvQ1hmq9WCt99+O7zRhuN0cnICh4eHMJ/Pw9upfBEIy0BA9Pbbb8P9+/fh+fPnMB6PodFohFNveNUi5qEnCyTyzGkMXtKTSQAQ2pHnL6/RwesO/9t/+28hLb8atd/vh12bjUYDXn/9dTg6OoKHDx8GEMjHIrZgLY2d9IYF7cvlcgn9fn8l2EnTSWPBSbOlUjARy8O08/l8xT5zHq2yeP0WLx7+Oa1zLli/U36w3bhoDrD6zmiMUkEhziEqryhbHnvJf0t96zjLXr5dxtvgdQ6xXizLcoypI59lLxejUk5+F5ET3DFvBehiPMdkQAo6aA4jTVOv18PO383NTdjc3IS9vT3Y2dmB+/fvQ7PZhKOjo7AI5iUPXtDeNgMA+Oijj+DHP/4xLBaLKzKChPah3W5Du90Oc2U8HpsbC7gcINHP8/l85W1rzBvrB8np5gEkWp4UZOIb06qkWq0GnU4HLi4u4Pj4GHZ3d+HevXsAANDpdOCTTz6Bk5OTcHVvlae3Y0SDHFTucQPX2dlZSBuTLdRFeM3006dPYTAYwMHBAYzHYwCAcOKb2qibIsmWcdnE3+gNJBphH2Lgib6DRevkMqgFEKsgWhfdlAZw+WbX/fv3YW9vD8bjcbiuuNVqQb1eDwt3VRMPCGq+h9UPqbflUFuAV/hSe4S3lqT4n5at4EGZ5XIZTnKt41Ym2ld8A+Zf/MVfwObmJty9exfOzs5C3+IGKi8/WCa+420FnqygcUqAjLZrMpmYN2/k+eW743jrDBKP20gHCgBWbxvh89PTRymxLmnOS5i83W6H+Nu6/GHcKIpzwYOXqCwArPYhn0carqWbRjlJOsLCyDRfVQFYjaT+oTdQAcj9wNtB08R0j6dNWZat4DvtVr1UOUrty9iTP5wHTSdY9fb7fej1etDtdiHLMnj27BnM53PxhCy36d6TmjEeqibeDxou4LilqF7w+HuIBfnCt4aDLi4uoNPpQKvVgvF4fOVmHy/R20SQD6sdMeLyxXV+TIdwPKLpIW1MrisWWJTK8iLFVajMDAaD8DdupELa3d0NN9nhwv7Z2Rl8+9vfDrfYIW7jmzA8eJwTzxOLjXnoumL1Ur2WbcRx0fSh9LkqnuiNfQC+OPBN6N0YWTgFSZvv3r69svrHASh1HBG004UY7ljSylMH2KO8YnljHcDLpG/jaI4DbbsnaKkpaUmRS5OC92tZRRHrxyJKRJvYkrHT2ujhzzKGnDQ+6G9FZCrGU2oZWh5PP0hgLJbP6jPP1RKc1qUsixqzonxYQFfjxXKI+JymZcTksQxQ47oCT6PQnWaxIAblB4HSxsYG9Ho92NnZgU6nE64gRSPLg9ue8Yul4faGBge4zsnzPASKOXDH7/BNlGazGRYP8D1ViWdrbmp88wU8euUsb89sNoPpdCrWKTmiVN5ic53n5Xms/B5ZK6L3PA6UpWdTAU3RQAwNjiDRt1yrcFSQcFG+1WqFjWwAtr3kv9O+44HFGC6h+alsxIJiFj6KgX2NH65zLb55Hs6HRKk8afVrc1NKE6uHtxkXSPDKd9RXqDNi+MlDXHbwCnP8HheGx+MxjEajEGzXysL2o2Ms6TDeJx5Zo2XzNFyXpVBqsIbXL82BVHmib/8i7mq1WtDv98MpaBwb7/vAEh8ee0bTxfBjqs3BslF3TqdTGA6HYUFhY2MDGo1GWKwcDoeFsZ/Fg0Sxvinqu/IyuP2nZXrGxEpfFndTnnB8+ElNae5ZvHrrLZo3pWyLuB6S+OL4netbOr7eOrE8XKTvdDqwtbUFs9kMFotFeF9NaldRn4jKHb4FvLm5Kb7nZ9kuzf7RMjSbJPUdrS+VKNaZzWahXa1WC770pS/BaDSC09NTmE6ncHp6Ko4hbau2kVLy4TgVxZj4t4VZ8Df0YXjcDctIIdoWXje3d/x32u+IU6yDDRYPtM6Y3PE83vmg2Wuvvyf9FosP4PymaSVe+ZNBGhay2sXbovkGKOPS5nmrzjI2hvubqdiLlyPZRHpohmJVCa9Y5Ujp6O9lbW0RsuZpFcRlU8KPuBkLMRy9nYfziJsQ6Lij3pI27FQtd975zPkvkobXldI2iargVypT061V4WyNJB2LeohviFosFitP4uBcbjabYbPy7u4ujEYjGAwGK22gdUlkzXkPHqd9GLNTRcc+lrfo2PP8Uvkcu0n5JbL63ENaXZ65pqWV2rYO8sydMnpbfDMW4KWTFmMO7/T27DTCgIP0ZoiHNPAn1e3pjEajEXZVUWeUvuuQ53kIIiD/Fs/aneY0vfbWBiVcTInRTTm1RUnilzuh3ICXUXYSXTfAonzztwE5P1pgQKKUAISn37W8nnqkOmL5YkrVU6enHoC0E6tegETTppxKq5roCYz5fA4/+9nPREMsgW5KuHB7//59+NKXvhT01Be+8AUAAPgf/+N/wNHREeR5vvJmIwXjMZn1tp8GabGePM9XTnXQ4ABec8IXnGu1Guzv70Or1QpXBr/22mswGAzg6OgoXBXJSXqvjQMzfjIQwaW06I1tOT09Dbv7tPki6YM8l0/PSnk44UIPBl2xLdxW0X7FBUgNqFqfU4Il6yasx3ojVcpTr9eh2+2GN3XKXGdIqdFowN7eHmxubsKDBw/g8PAwvNWJt454+KMnnLSnDOh40t36SFSuKXkCNjTIM5vNVja1ee0WOuvWyRw+16X3ZRFTavUWxQ9YntY/Ke+T8UXVWJ48z0OAvtPphDLoXObXoMYI62s0GtBqtWBnZwfG4zGcnp7CcDgMJ8WojtXKwf7HK6oBAM7Pz6+cYC3iKGlBZ47/pc2RKdhOsvdYDrefKNe4oOrVI1q62WwGJycnAHD5tjme4qK7yWO6V1owR92Ff6eeilkXPhmNRmFz2Je+9CW4c+cOzGYzOD8/hx/+8IewXC7Vk9hFiNtqjaTgosfhvg4fgp78lOrUdB1vB9U1qK/RXhwfH8OPfvSjoIuHw6HIy3W1OYWK8sPxnEW0LynWknwAr25bLBbw+c9/Hv7KX/kr8PTpUzg5OYHHjx/DaDRSb6spSohNB4MBzGYzePDgQTSP1C/Yfmp/cc7GdG+sDUVvJDg4OIAf//jH8NZbb8GdO3fgX//rfw2DwQD+8A//EN5991349//+38N8Pg8n8en77Ij7cY7h0yWIizEYzG0DlR1ue2ga3n6OHzXdzrE/bh7FMhAjFpELKw+2GQCu4DF6dSTA5Wn6fr8fTnlbJ70lHSSR9HtqkJhvpEQ/xoNnixCdJ1wHUH7oSWz8H/tb88mt224k/S7xhvVw/U/zrpOwvfymEyvuZOlS9HkuLi5W7BSewkTCG3GkK3djt6vwhXKA22H7Yrq1qI/DT7sCXOLKu3fvhr4aDAZwfHwM0+l0JSaN/YKbXrDv6NWzNG1MF3j8KKk8/n3qWEm+I+9PLV4Y02k8vZRGs7dSfRovWt2ecqsmTx2LxSIssFJ9cHFxAf1+PxwG+Rt/42/A06dP4c///M9FW8yJ+qaYTord0PxWWTydh7is0/814jJQZJz4/OG+LF9/s3Ce1h7Km/emECmv5dsWlVGvX+6hlLkWI2989Mo1xRiMoTu1EdTQwDutxOvEegBZlcSBrUTSxKFgN8/zcOUPpqd5rb85aOf10r+ltztTDJP0Ny3PS2Uc3NhvmjGiVGYSWIovdaJKAL5o38Tya7+nKH/vvMJ+SGmTxgcNUmrpYuObEhgsC4qlwBvlpez4St9r7Syr63g/UidD2uXNAwacaGB7Z2cH3n77bRgMBjAajaDVal25thXthKXjUtuIoAkdfB74oPVge7UTXFmWhZNeSCcnJzAcDl2BEYswPb8uBfU4PSmGJx/xHUh+nTOXPa+Twvnnv1PQJc0jTWYlm6nZ0bK23KPfJP1i9RW2zTOneTrEPRiMQqxj9ZdFlF++KxQXsbrdLmxtbcHp6SlMJhNTh2oOWow32n8osxhc0wB1kfHTxop+H7OB2m9SH3CdEMNZNB/+VsT2xnR5zIHH3/B06nK5hNFoFP7h9562SHzExq7VaoVr3lHmqP7yYoOYTdH49ugQa7ylz9o4l3XOPO3j8qQ5tDQtz1eWaLmxRTwpDyfJPtK+0GSb6jkqT3Suou7DDa63lSy/MEZU51vlS3ab/ibhA45jJVxrzQcug9L7pR7+rXZdBxXxZShJG2MBdNtVpA5KdIGPLgpi0JrewJFSj6XneBwDnyqRNhLFdJ2Gb+kCBs4RyX+OtcGThm7KPD09hZ/+9Kewv78PJycn8I1vfAO2trag2+2GBdgsy4KNpXKOY4A+jDQXtQ280pwti2Xp71TflPUTY+TFj/QkLPcpES/z04k8PsDLpP97sAbXfRIW8PonnI8i/ay1z+vTSQuVWKYVMOf1S+VS26thEguXe+TZi3M9mN/C8Vr/YRndbje8HT2bzcImAer703yaP0E/U7+vChypURHd6MFzKXic4jaMTSwWi5UNK6gD0I5ocw/LwY3pALCy2Z2esLXa5dFJ2rzzjpWFjTWqShY8vqokp9rnqniQ0qT0Z0rdeZ6HDZl4WII+ZYInZCU7TOcnv5mJy5EkF1z3WD6bxLs2Vla5KXNSKrvI77Hxs9pi8UnbFuu3GAbANBJvmM6Sd4/NT50vMb/Akg1P2bQ8pCtHgmq12spd3kiTyUQ8Kat1svR9le8gpQi217HkBgXg0ijj6V+LtNO5HoecGisJVKbQOoFDWYoZEmmHbBFjKRFXxFUbIi95QEbVxOXJsxiVaoAtPRCTZw1UWfWkyIW3zyVnrigQWacTjQAEnWN6ZTAABBBMHTKLEGBjnjfffBP+9t/+2/Duu+/CJ598AgBX32PFt4w87015+wJPZE0mkxVnlC4Eow3B9z2tYC5eYfbmm2/CYrGADz/88ErfUP4kPqUTeJiu3W6v1I/OCgZ4AF6eWt7e3l5ZYOEBC6ufJFASIzou9PQafpb0oTVOVcpzKjjEPF4HnwaJYnXS/u90OtBsNmE4HMLFxQWMRiMA0G+7iBHWiSfCkCjv+GbfbDaDw8PDIFNaII7vdOcOSUw+sHz+vqd2zZcGfmP4i+vpVEfZkx71QUw2taAPwOpJW6lOqS80nZrqjOJV1dPpFAaDATx//jwslPb7ffd1tZRimweyLIPNzU0AAHj06FE4XUsXyDRZ9bYR89DFK/p/zFZajo7kdHud0Zie9VAM01D9g2liT6GUJa4r6GlzihUoaU601Vf0d0+AwIs/XgWitl+6SUNK7/FFAGTdy/NSvBAjK3jhlT/+duRtJWwr3+Dm6SeKeak8080MRfjRvqebFyeTCZyenkKWZdDr9cKmvU6nc6U9VRHemoPYneLpWMALqdlsQrfbDfP66OgoXLsMcFUXefSFt5/xVHetVgvvbD98+BC+853vwO7uLvybf/Nv4Otf//pKnlqtBt1u98pV3HzTiEToV9G3d1N5ltJLviyf9zg2RTdEVEU4l9rtdrhOm/+O1153Op3gS3J5SsHktGxPOkzLD0ysS3dxfSHxgvZCw4lon5vNZjjxieS5lZCWRfng5aLvwm/ZS8XjZYjikHXQ/v4+7O/vw2c/+1mYzWbw7NkzOD4+hg8//DD0LY6JB7PQ08v4/W23g0hFfDOAlzecTafTsEDW6XRgY2MjpMHF2fPzc/VNYJyHk8kk2AXcGMP9tdR+9cY/eDoN69L/MV2qTuJtKBMH9OKWKsjL1zr4oX04mUxgMpnAzs4ObGxswMnJCZyfn0O/3w91cyyEBxrwuSd6owPqXVoXncu0XZI98uhF/pskS7E810GSH468cCwjtYn72nxeSdhb4wHTp/B902TNR89cTcUhK14lXodCgQAWJO2elYSQBiMwPx1MD2Mxg2l9lsqSFDEF2lJ5OKm9YJgOjvQ+A5YdC0ahovFc5Wx9V0XgycpfRLlIwun5O1a3R+itgF/Kbx7+aDkpgCO1T6X0sbo4T6lgSPpOC0pK5WvBPen31PI0Hj1lcz1l1c31XYzHFF48xHUa51daPOJ80gVcfg0Vjgu+FwsAMB6Pwy61Xq93ZWGR/i3p/xTCnZd0EVYrQ9LP+OYiBtXOzs6gXq+Hq2Cn06lo4yhpINurD3j7MRhkBXWwTiugR/+PEdov/IegNDbnPPqhqF2IOVSeuqWx8AIjmk8CpZTHGOBKketarQavv/46dLtd2NzchLt378Jf/at/FZ4/fw4///nP3eVgWfTKPUtnSYTzn88r+tk7vhcXF+EaZ77ozMuVrsSK9SHHjXzXf6zNKQ5uzJ56bDnvP+vKWU7Pnz+H2WwG4/E4BD1xnOncL4MTKAZttVrhFoKUsuj8wMArP+FB67X0De8vaU5qYy31a2wMpXGI6REvRrEoz/MwP/A62A8//DD8PplMVq6Rug6H1IMfpbbTceWYSes/PBVI27a5ubkyjilzlWOxGLaL/RbjH+Dlla88oCjxJsmrZF+09FWR1H66SWs6ncLjx4+DTZlMJuEqSAvTVM2jVa6E+S2M7rXZkhxrdWo8e38v4qt5yeKFbs7JspdPasR8CF4+tb+LxQI+85nPwJ07d+AHP/gBHB0dufgqgtsoUR54GxeLBTx//hzu3LkD3W4XNjY2Qpul0zUSr1l2dVMWn+8S3x4dyNuRoufQBjYaDfNK4BSS9DptN930x9PiaW68yvSTTz4JpxHRx/Doc+l3qZ+9+ElLV5Xe4uUUKVfCvmjz6Tzlp71issXL1fCS9lQcJ49d5HVb/UDlQdPVlk3F3+kiIM7LR48ewdnZGXzmM58JefE5ovF4DKPRKPQp3aSm6ScNV14HJouRF+dofenR+xcXF3B2dgbz+TzoHNpfdPzomNK4E6ZBnYAb7akuxvGU2mXxaMkb93WkNmvtxrSSTGKe1LiHV264n2tRqix6216WJJnT+pL/Nh6Pgx9ar9dhc3MTer0ebG9vQ7/fh1/5lV+B0WgEZ2dnIQ+1yzGZ5roDv+P6yNtGrR5ME5NNS94xLeezjP7hmEark6fl6WJ8U34tKtqesrbcGrPUvB79E7OJlFYWY7vdLiyXyyuPJWuVSkpSCvLxK/o4Q14nzEtceCShQ+NAJzRfxJCuKfTwqrWJLoDQvqPAaLlcXtnFpgEiD+j3UBkB9abzOKNWOR4DIo1TEeMWA9seA8PnR1VAzpqL1lwCWJU/TGuBbm+fS3x5ghke5Wb9TnmXHBfOY0q5klLVAK7V9+sC8ZYzRa8gk/jJsixcAQKg78Tt9/uwv78PeZ7DaDQKQHpra0u9wgv/LvoOVJ5fvQbHIho8wXFrt9vhhMHFxQWcnJxAlmXhCqPT01OzTG0OUx75Z2vs8zwP7zF6bkqwrgr16hWsFzf3zOdzaLVaV2TDcs4sJ0ZzVjV9kuoAeGyBR8don61+854mT6m7Xq/Dm2++GU4lfvazn4W//tf/Ovz4xz8WF2O18nHXe6PRCAEwfjLewx89WY/lxkhz3HFRGPGU1BZ+EsXSi1yG+Byn5Wg8ltG5UhkxOeb8UT45JtZ4e/z4MTx79mylDgyecR688qn1EZ4ums1m5mKsNE6YH8cdN3hI+J5jMo47OL/U9nIdxduC/cplVzvlzfniaTw6yoNRpPKoXavVajAYDOC9994Lb8fhtXDXfRKKjg8/TSu1Af/HNHS+azgUd6/z4ML29vaV4Byv0yJp7CkvtC7Pb5afhbgCF9LptZwaacENzU+pwt/l9Uu/4RjjtXA0wIUn8/m4VkFcluhnbo9ivoE2dtZ8tvS5hXs0bKf9Xqa/uGyUKYvKFs4/tCd4mjGVLzydev/+ffjKV74CH330kboYK5VRBSGu5bb1yZMnsLGxAf1+H3Z2dgLPnpsJJBvFv5fyxGy6xLtWl5YedU2tVhM3kVbRr9inWB59c5WXj6ejP//5z4e3Y4+Pj+Ho6AjyPL9yLTTtp5gvrVHMj/bMGw/+18oukxb5kWSJ+mmokym+4qeaNByEJJ3GpT4lypN02COlT8rga47bLLuLddF+Anh55ftisYCPPvoIWq0W7O/vQ7fbBYDLW47u378PBwcHcHZ2FjZna1fTSzxySu2jMqT51xZZskcJZUS6IQvgMh50enoKs9ksnIjXntGj/hy/ahsxL+bH23ewDP5kU6wvUv1+5E9KL+mfWPmSb8LLsPjR2mKNtRZHwzQazxZPVr4qicoEbyeVmzzPYTgcrsztdrsNm5ubsLm5CRsbG/D1r38dDg4Owk19eX55yILf1CD5xpKuQeK6M2aLvRQbLw++5eTBs5qsS79r/ovmt/D8qfrIsvkx/jEN70cPHx5K9SWkejnO4TzH+F1ZjB2NRqUb5nFcpA69SaLG3lKSGhVthySsVTp266KqwD8vs4iBs0CKZACqpKoU9zrJ22ZtPsYcG2ueVAHuy4KGlPZrnz1OvFSG9t26KbVObB9eT/z5z38+bES5uLiAb3/722H3KQCEIDwuBlEqM8ewrJgOzLLsyvta1JnFxeXd3V3odDrh2lfMKy1wIHGAgo6jFJRA0q71pICazxePfos5IVQusUzkX7pdATce8Xf8LB48QRCJx1gbvQ4xdfDwn+bAeW03lhMD39ICZ4pDLp0E7fV68Gu/9mvQarXg3XffhZOTE3jjjTfg4OAAAC5PHTSbTZhOp+pCAz3JnjLfKM6JUeo85mV6dt5rc0H6jn+WTqdpPGtOBZ8zGo8SUKflFl1AQyexVquFYJE3D/ISC2BJefGWA/o9LZeXoxEG5lGnWFghxSbRdtF2SKeMeR+UxXiWXvLgvdQrTmlgNLWfUMdrY0XtDpZddJPUbSUp0HAbfaYYebEj6itvUFkimgevrF0sFmu5GjfGA7bBgzUkoniDl10FcflKsTH89/l8HnDk0dERLJfLgE8xYM1v1bqOOAnFt1owE4n/9sYbb0Ce5/Ds2TNYLBbmRtB1UJ5fbnREP+XDDz+ELMvg4OBgZRFByoebFDnW9vQ3l1kL19O+SLmqFeWBvuvO5aMq2eAnMylRnNLpdGA4HMJsNoM333wzPGmGp5kWi0V4ZsYzb1JIsnOviq7X4glow/GaYipHks9YBO8DrPqxHv4A4ng6VncMl+F32kKJlBbLxrndarXCxpLBYBDdyI0LkPwqYq0Nt4li2DIlVqZhJhorWSwW8OLFC2i329DtdlWMgDpQu5Yb4KWcU3lEvwcXZS27g589viEnbdOmVEeMJP8vFqeReJRwS0xPeuYJr/M2ybDlp+OmTIw7Hh0dwfn5OZyfn6/c4Eep2+2GZ6Vi7fSMDcXWHkrp21QbmGrjaBs0Oa/aVqJ8vSo2uAjFYkuUPPjPopXF2Ng7BVUIEzUmkrL1BKlTefCAiligMmYAPWksMMWDbFqaWPuvS/mmGH5Mp+XRBNjqL/6bBCar4FuilDbfJHFFwo2zFgDSQLT0t2a4tDkupdH4pp81vj3AJzb/NaBGf+OyJsmf10nxkrd/LErRF/v7+/Dbv/3bYdcptundd9+Fd999FwAg7GxcLpcwHo+jc9mjH5G0xTEtQMDHD08Z4SJBs9mEXq93JT29AipWF3Xc8jwXgymcFxqg4acspXkRk1dLB2p1SwF+bl+0sfOCijJBVI+dzzL56iOLPPpGsyu8H3l/pIJOBPe0nFarBV/96ldhNBrBd77znfCeML6rg7uHcZFLkh3pBFHM5pUBzTEHVHMsNaLtoP1qyZE2/1NkQitDwqH8syUzsbGwbBTdRBKbQ1gXzmPp9KJVJ+afzWYh+Ed5TnX26aYA6UQs/+zRERyz8P6VnE3e7yn4LBYMoTqVfucp26Pj+PXxKYEAlB2+sE7LlzDgdZI07nTeeTBojKrG+7wP6fyvwjnn/EkyZqXXMJVVl4brUX5wg911ELet/DtOsX605n0Zu8fLj30XKwM3XuDp6uFwCJubm9DpdMIVeqkBY6tt3nZTH4frE/xdG7Pd3V1YLpfw/Pnz8I4b6iZPvTFerfHD/NPpFObzObz33nvw5MkTqNfrK+8aWuNHFwFi8YYYNrEwCf1e04n0N4qr8Z1cgOIbvyyifGuLU2ij6vU6TCYTGA6HYcMg5uv3+zCdTmE4HKrt9JLUh7w8TRdK9Xr0h5Y+1gaNV5pXww8U01FZ9dgN7XvuEwKsLsZ6sDn/XESHSnZTsq2xOjTcjvKIbRqNRuKpX14W2jsNf/C6LN6qJkvHeOQ6hne0+UJ/pzem4S2Zm5ubK8/iSPxqfZVlqxuoUZfhgizFspS0Nmj+FvfXaX0xvOklKstavEoao5R6NT0m9a9nnK+baP/H/BGqnwBeLtojPjo+Pg758cYLJLzdL3aI0JIrCd979IJFVfkjMewq4fmYbo/N/1QqahcwbxEcrc17Xr5EMSzpSevhj/s1HqzbEL91kGYEylCVCiSmpLizUIXTplGWXX3jjE/4PE+7nrMqvtaZ3ksxgFFkbKRTHlXSdY5TCnkUHJe9lP7hafk1D7weTxk0rfTmnETe/ve0jQN47kBIdd8k2ClLeX75hgdel6jpnY2NDWg2m9BqtSDLMtja2gr51hW48/Y5/Yw7LLnhe/r0KRwcHIR0uMBVlA/+HT3pAABX+pECO6te5B+Jy6NnHqF9wXde3njjDWi1WtDr9eDo6CicvOREAzEcKFsUC1xJQLEoNRqNlRMXMYfbOz+RT5Tp8XgcdvVXEfSigOzi4gIeP34cAgHI36NHj+BHP/pROMmN15TxcZFkwHr/SOIDF88Qa0inS6XgES8/pW/om0AeJwffRpMWByy7wdMUcVgpf6knWFAu6Xfe4JLGg0Xrwm441tIJHK0MXJDl7xdrQRuJH0+/I0/SojGVW83hLIrZqOzy+UFtEPabNneQN9Q3eCIu5c1ejTdaPtcf9ESxdK0w/SxdRxc7OY54ggfdaLvx9EqtVoMXL17AdDqFyWQSNgZc9/XMtA0Autxhn+V5Dm+88QZsbGzAYDCA6XQKp6enZkAO+5cG2XnwkQcKufzy+VjUlsbyoUwC2Bss1+VLWVcUa3V75nYMx3n0bWqbtWCsdKNB2f60cDElrjvp9+12G1qtVgiESu+SNhoN6Ha7MJlMwpvmi8UC7t+/D1tbW/DTn/4UJpOJeQKP48zUE3ESRkGdYtkm9HGwDAnjcD7pLTIAsOLzcH1u8R3DqbQdyBu/7hPLkfSzVGYZmdI2Oknpvv/978PGxga8/fbb0Ol0YDwew+HhIRwcHAQcJ93Qw8uJ4VcP8T7kbSjSL0XyFEkv4SWAVUwhxVZiOJLKK4+r8LxSv3H9mqpnU4nrB4kXSnRzS5Zl8PDhw8Bjr9eDe/fuhbTo79CrealdTcH7N0lUHwG8bIP2XASAvoiHuobaQEkWR6MRPH36dOU3XASXiMfS0PbF7B6XaelmqpittmSIf+e5kcY6OS3VI/WphWs0/q18KVh5HXjNSxKeBbB5sjDoZDKBFy9eXIkHlYlFVmV/NJLwSxVknZJPvZ2palqnn3CT8sxJ4yVlvlNyLcZqk8lrNIuSFSyLpY2VqznQVVEsyCHV7a0/JbBGy+e/ac6tVY8GHL18eMtIVWKWg20BXh4w9DiGkqGwHLQifZZC1rgVdfotgGLliQGFIjqDAxQ+tvxzal1SmVYZKXQTBjHGM+5IxGtBKJhB54YucKLuwrcqr8PQW3NI0l3SlYx4fRn/zXK8YnqR/oYBGwSGkhPiDfZRJ5FenaY5yRbArdfr0Ov1oN/vw97eHsxms5VF6Rh5xpbrFcpv1eDWYz+RUoNUWDbOhVigzqqL9gV3iAEAzs/PYTAYrAQARqMRfPLJJ+GtM6/MYP0pABX1M/4vyZVUr9e51fjzEE1Hr7wtg9Ok/FROY3zw7zUcQec6fk6lKvQpt1s04MLr0k4GaJjRwlCxUwZaUMKaP1Y59LPV1xzb8d+sPrcCWBIPEj7h80byCSQ9HsPFfG7E0kv2TOs3aWw0udbkgxPVU1mWhZ3suACEfcE3IMXmqpdSfRWuV3G+4OYmvIWD6nKrPG4XJDwR80Nin2kZRfwNlEVpg45VZ1XE6/T2izXHLbJ8Y/47/84Tg/DwQjfxFNX/MVzMSeovvO4TfQHtKkp8PgHT5PnlogfFZ576y8gRHwPaHrx2GBeUca5JmzClfqD/S4uSMSyeiinwN1qvhqvxd2rLvXJLv9f6gWMY/I7rL/r/4eEhnJ+fw9e//nXY3NyEZrMJ4/H4Sv4yJNkAbRzwf83epc6xVH/Ju6DH22LZdMmfitlGCYtIY6vxpsl4rP+kftfyxsaTt0NKS/s9yzI4Pz9f+Q11AeVFeteUz+112rlU0vqN37iEv3F7YM13mo6Wz9PgLWh4lSyvi+bTypf0jIZhiupTDUNQHmla3m/aRhQLa3GyMIDU11ZZPE8RHSbxJtnOdci+pKckufT6EYg7lstlOLzA9ZqXL0qSnFTRz9JnSd/QNDHeYnzGMGgK/rIwQ4wvD3l1vpa3iJ9TtW9j+SOWjZP6MPlk7LodsqrKt8rh9WggtKyCyjL92pdXmSxDlKJMihB9R5DWUWZnfRnFy+mmgFwM7FZRNoJZDXRrvFh8eurV+Jd2UWkAylOvtcOalo+BwypO51VJnjq73S60Wi3xSrTZbAZHR0ewsbEBGxsbV/JOJpOVK2zWTVJ7LCcUf8ff+ImjlN2vWA8u0NFyaeCyqlOUWCe9ugedSat8bNN8PodarQavv/56OMl89+5d+Jt/82/Cn/3Zn8H777+/sqOQk+RIWSQt8FjkCQRIddA5iYFA7SS39p0V7JIodpWXh2/pqr/BYAAnJydwcHAA7XYb7t27B48ePVpJNx6PV06RSbtsce6lXGmKGyno1bIobyllYb5UICw5WdguC5RLwRf+faxeng/7wdpURRfMKZ+pjgY90VLWycPyUnUO5QHlkI6fB6Pi+NF2oJyn9o1WPvKjBdvodzHSZAqxYoxfHqhLbUssYITpsA9T6qhCjlJI2j3O5y2/Zo7OGdRjePpyOBzC+fk5HB4ehrwAevBVoiKOOOWN/83biFec0k1Ai8UC5vN5uIpVCqrweqgNWy6XMBqNrti1VKJ+pXSqWpNtLahY5mR2UaJ9R3EHvUKyCtIwJP0/9dSxNwgWw1N5nofr+MqQNt5FdTIGPLnepYsbZfmtmvI8h48++mhFpprNZuCb2hJK8/kcAK6ePMXvcONFzFYAFPez+VXKnBcqb0X638OXFnCl2ID2R6fTgdlsBvP5HH784x/D1tYWvPXWW2LdqSd1UDd4+U6x0ZJtKWNLKFmnLD02m+pi3i4JO0vYlv4O8NIuo061/HbuW6f0h9X/XGa1Jy08Y0llkuM4Ot9HoxG8//77oT/xSmPeLiprVHdYvuJ1Yi8kHEeM3VDieosTH88UO4cb8pEHfBec3uaF/cZPmkr9hptksJxWq3WlXgn/W3x7YwsU/1PynNwvcnLamp88Hbe1kj2QytTIwidWuipJq9Pyuy1cXCUupGVRP4XG4GJxoLJ+mKRntTmBNnQ6na6kj23OkqgqX/0mKTbPAa5fT6foVylNqZOxKeQNnHnTesgyop5gjPS3Vb7FR6y8dQtOioDEePEamdRyNeLAiJfHjVfZvqzacK3b4MUMrxWQkMqjZVqBphSQWlXwDMtKkb8YcUBeRbk3YbC8c5wDy0ajAXt7e9Dv9+H4+DjskMcrySaTCQC8BFGaY12102LJKCdNxq0xpc5XbM5zR5cDZ0u+PXaIBn65rrPknbdhY2MDOp0OdDod2N3dXXmPVOKF8mM5+GXGMiUv70v6Tg0Gg1LL86Th/wCq0ys0cI7/ms1mePMEecC28kBokfZIgRnaVppOCsQh/1J+y5ZIgW1vP9KFvpjdKWpHuE6Q5N0TNOOkBW60dLSclPkm9Y3HuaJjqi0+eMaJliNhslg+jTR5jZVRRA7oGHv4lvB7bHFdsj1WOo0/ziPl+zoCKTEcyPmjJAXVcBMYXoWaZVm44rgIb2WwYGr/UTvrXWDg2DL1alapfq7HJP1cJuByHdi1iH2QcBSdh9x2WNipCttexfxDPCNtMvZQkXnJf8/zPATHG41GON1I+49jo9lsBsPhEJrN5srJU8+cKEsaZkGdgrfhaIF+j63heaS0XK68/o+Er6R5XGYOa+TB8zGdz3XPaDQKNybV63Xodrsrt2VUJRNeWef1eX0Yrb+5r6fVa/EW8xG18rV0Wh1WuR6cy2VyXWT1o9XfWh6AlwsW0sIFtwUSjpXKXHc/cLJkRBsvyc7FyqPt0vCnNo+0zzHifZ+iG1J0ttev8trwMrorBdt4x16SY6kcrYyYrijCv1WXp1wuj5oelmSoLHFcHUvLefHodW3uaP3C+4DrtiqvIpb4KzJPqiCP/Fm4xJu2KkrxPa15C8AWY72g5ToopcOLkvd9jKpIGog89915XiVv6wT4ZcrW8lpl8itW+SnJqtt6G+aGRJrCTAm8WqfdpOCiBGxTlJNEnvwW+MQyUmSRnkDj9XCerMWg6wbuRYgacJSNu3fvwj/5J/8EhsMh/MVf/AW0223o9Xrw4x//GD7++GMYjUYr+aWTiZps3ARh3Y1GI5yCi/HDwbDm6OE/fv1xKlG9VavVoNvthkVwfnU0nj6L2Yl6vQ6f+cxn4LXXXoOvfe1rYjAK09G2zmYztUzLsaFpvOA+RrTs+XweNgIAwMou3RhpjinfHZ1l2cpJVImPVEL5aLfb0Gw2od1uw8XFBZycnKh5cAzoNeH4WRuDmANO8/B34PiboLH20DGOOXw4f7LMt2Mb4FImNzY2YLFYwHA4rNTZkvjDOlPKx931eEKIB3GsK9w1h0yyoRrfsXZZ+Xm9Md6k9KiDcFw9dVXhMBZ9L7Oo7sH+4P2C8zrLMuh2uwBweVtElQGCFMeX94e0iQN5pp+5/0HnaVHeY5jsF43QbvJ36DxE/RTtlBBNi/VR+dJuqMH/bzsOpfJSVkdwbFaGqC/AdbxHB1Pbx9NLAbTrujlLw7S1Wg1msxmMRiN46623YHd3F0ajEcxmM+h0OgDw8vQopUePHsFkMoH9/f0VDDWbza5F9vi4LJfLcGoMx240GoVTnPRGFQ0zaXxb+pPzEvuej4Nkc3j6sqThthSfiPOq9cPm5iZ89atfhYODA/j444/Db3grgudkL5Zdxr/y4CFuB/F/Tx7eL5JNXTd52kjfikb/pwo9qdUj4Q9O2vyR5iCP52m3dND87XY7tBHnPU0b07887lMUf1ZBVkweT6dS304bV6+v0el0gg7F64mR6Olii7zyjxv+Y5TS79QG0/xavJPjY/obzZP6tnCZWFgqjvbYoxT/8LrJ6zfR+E3sNhc+z7kM8CcicMO/ZBOssotsoONEx/vi4gKm0yk0Go1w8pymQ0wGcNkHk8lEtZNFbj27SfrL4DviOEljIp6MLbIoplFVQVqNJJ5SwUAKUaUWU4KSIS0bqCmSRlNKHl4sWYg5FlL9sXq9QUEvaXk8BsBTX1XGrSiA52NLwUgRB0EaT/63VDcvo4icpwaJJYrNNUtf8L701mOVU4TKOHOxvPRUCj1xOBwOYTKZhN+n0ymMx+OwMCKBeYD1bewomzbmeMQWPSRQL6WN8WvNBXSmGo1GSCsFxfm8pv8oHwhWW60WbG5uwnw+h8PDQ8jzHO7evRuCbPw0JtbJnRNP8JH2VWrfWOVSoMzL9Do6MXucqiOLOkh4nfX29jZsbGzAwcEBtFotGI/HcHZ2FtLxoJ9WXkwv099i+tDjAKF88OtEPeTtYy7XWrAvxrtH7qw2a3rdAtFlSbPZVRIv27JVyI+kg3g6T7lVY3CtLCl4LOl/j8zHeO50OpBlGYzH41I+jsfOcN6ssr0BBfpbzBbyNJq+j9VF68MFTG7LvFQUa/H02glnLke1Wg2m0ykMh0Oo1WorV596eG00GtBqtWBjYyNcoyjxRGWhiP6TypHy3jaK+YwAVxeD8G96RbZ3TGh9mmxLGzQ1foqQJ38ZHCXVpdVBT6nv7u5Cu92G8Xi8gg8xANpoNGA6ncLZ2VnIh79JiyUe8uiiGIbnC0J4nWZsM2aKb2uRZi8luU6Jq0j8pPRTKnFfT+sflIvZbAbj8RiOj48hzy9PJNZqNdjZ2YHxeAzT6VTV8x4fowyek9KUHVuJrxjW5r6alLbMuFll8Lq4LdbKqQKjaXED/jv3Z6X0KTqC/h9bMNHiP1X6tKmUglfxqYsiN0fR8jke45uReFr6Oeana3V6fvfoTJ42NpZSXvqdJI+0Do8+9s4hTf6kuqX6iswTL5XVTTE9Y+XhFOPB0n2aL8P1kyTzXkrRmV57TtNLeJWXVaZ+S95TyDvWqXZbKltKW9bvScH1XpvA56uUJ/nN2KLMeMt6VSgmJFJQ3VIy62z7ugCExzhWWVfqO4Uxovmr2OFShooqDU1xlu0bdGSRUt+pu+7gT1WOA/1fS4P9rhn4qvhYR975fB4WW3FxZTgcwne/+13odrsrb8ViANHz3gzAzetvboustyk40SASOiI0PXdYMA8NSqRSs9mE3d3dUBY6VXgSQXNeMR2tl55urdVq0Ov14OnTp/CDH/wAAAB+4zd+A370ox/Bo0ePwtuxWA9+bjabMJ/PV66d0yi2cEjnUmrAhb5rKtWJi9eWPtIcKomXWNC1LA2HQ7i4uIBvfOMbsLm5Cd/97nfDDsinT5+upKXvIGkOnkQaDtP6X5Jr/hvygP3N5z+v04tvLL2J8p3iGEk6mdep4Qc+l5HorlI8YY9XTMcCDZQnj26wgmPIAy0zVpbEi1a2hyRHEOvxnnThvFQRgMRyJNm39Dz+XqRurGt3dxeyLIPDw8MgI/g7TcupigBJjD+U0dRTMFqgDckaa/o2G5Ikd3mehxPkdJOHl0/sfzo/PYst2u94mg5tHqaj/hueIDw+PobT09PwNp1nfuPVr71eD7a2tuDLX/4ynJ6ewscffwxnZ2dwdnYW6qU2SpLnsvP4tpLUfvqblB4JNxbSK/899dE+5HKI33kW8jhJc0e6RcE7husca253UJ6/8pWvwGKxgG9/+9swm82g1+vBxcUFjMfjcA3teDyG8XgMDx8+XLkpZz6fr7wnKNVJ/8e/vYFWayxQ7+GcxutyEed6rvYrqodpG7g8e+qwgqH8u5h/WgVRXCTpOexnAIDBYADn5+cwHo9DH29vb8OXvvQlePjwITx9+jS0j9okrR+4HiwyJkVwUiyfNS4SDo7hdw27eOrjZdDyrXpTNlRKabx2lvvSlk7n9XjmqORT4Ge6uRlPZKM/YREdD+6H3DRx3YJ/A1zqtXa7DfP5PNzaQ3m2MApvM5clensQf6MXqUz/WHMFf0O9juNKibcN5ZvGc7g8WSedtecCqD6k/Fm+ulQHl2ttbDx6j9sM+k8rl+NbqX+ukzx96CWpzbgRHuvS/ETedxbWjunAWBr+u7fdmq2wbGlR8rajTD2c75teg+Hk6QOv3ecktbXQm7He37zkNdQpACIFxFkBxSoFWgJSWtoi5VtptHq9eYrUnVqvlVZyViwnXgIXqVS1gquSvM5raj4A+aoZdLhj19lZc0mqP1XZx+ZUVaTVqbWvrKx5yqhCF9G21Go12N/fh1arBU+ePIFGo7Hyvujp6WkldV8XpQLLKgMzKXVKZIFRGiTkhI4X5j0+PoaNjY0VB+r09BSOj4/h/PwcAF46HDiX6cIuLvQiiPUGJzwBNWyn9h06vvV6Hfr9fnj7Fn87OjqC6XQq1u8lT4DDS1YQJcuyFccQv1ssFnBwcBD69/z83P0+rBWw499betY7TsiX5ISnBrMkHcrTatfYWWWm2miOGayTcdTG8OuivZiYjkeqvcBgEC8vRRdbgTpJ/1HnWMovlW3h9xjhAgp1mCnGsMaFk2TjtHS0LdrGG618/ncK0b6l7+p5y5R4wz7E0xG4MKrJSmrws4hel+rgNy5ImzusOmk/YZtrtVq41j9lnuBvdGNTnr88ZSnl5eOl8WnViXYX5RgDjd78SFpgSbLJHBfdNixH+ZOeDvL6CHRTlaTXsKzYPLf8dK4fOQ9aGfx3q/7rJMrDdDqF0WgEW1tbK88rUNvH2yhtYuLPPaRi8rLySXHrOmQ+Ja4k2UYNb3jqq6odKTxwzES/o39PJpOwqbPVasHOzg6cnp7CcDhcedpBqjuGW71xLC1dar958lD9WrQMmk6bY2XHnGNZqgdjssxxexGdFdO31m9andYCIJczqz+92IfbFc2HWSdRfUs3lkg4QPKltDgWLR83N9FF2JjdkuQJeS3iq2g6QsJf0njEdIvXTkt6T6PY9dmcH+s7S59IpPlq1ryTNohhWmt8i5KnD8viIS4//G+JrNiC9pn/nYrrPLgT/Th+6KLRaKz4LnhLj/SUREp/Wrg2hSxcoflOGmYvekjCwllFSJurmg0qKnOlT8bGSOsQS2lq5cS+8xpIDfgUIW+dUlu9Tqan/FeZirSRGmZpknvKqsLI3FYq0ibsC+lELDpTzWazsnvysf/LXA3BywTwgf4YIKNlIjCVdslXFVDx6Kyy5fMyGo0GfO5zn4Plcgk/+MEPrpxGTDltcN1k6X4cK4tSA0Ravfi71+nm6fFErJXfOpHMA9FPnz4Nb+YgvXjxAt57773wGQPQuNMUTzHg3Kfv7FqglLfLSuMhdAY7nQ689tprsLu7C/v7++G3733ve+JirAaUOU8a6FsH5XkeTqFT/TabzeCDDz6A+XwegDVe2RmTWQ34ewJYKXiHykGWZTCdTkMAgJal5fWQ5CziYlIKxUCv5LyjnkMeLJmhizS8nKJz3kvUzqboK56H9q/Em5RHC4hI6csQvTKd1iuVTZ3QonOZjzktJza+ZW0wdxJxQ4blH3mcOnTY6entVCqCwbz+F/YtP1WAdk068aAR9hXNo9l7bQwpn/gOWqPRWHlfTjpFz4OB9HRBEVoul8EOFMHUnqCDNseRbsL34fXzAG4RwnGVsDq1A7S9KXVxXcp1lZdHzHsbCZ9NeP3116HZbEKv14M8z6/Yf42yLFu5IeCm/Gq+MYMH9crGf2L6mpcv+Yzeeq3AZlH+tbIskhZ2+Aa18Xgc3rprt9tw584dGA6HMJ1O4cWLFzAajVZOTHt9cIu8uizF1/PIupc0LO6ViZRYZuy3Mlg0NT1vd2xsvO3gf0v5rNPcnC9v30lpr1O/Yd309D/nieMSKmfcR9baPZ/PIcsu36ZMiaNJsobj6r0dKPY71+sAVxdBNV8Yf5PsvzWOXO9ZN15qc5yXX1S3xPwiz1zj+b0+7Lpl3ZqHXpIWxGP+PbfZnvrKYnXtN0r0kAX1M1qt1koZnU4nbHYqQ5pMpMQAUuIhXFYlm4jjUubkvYf/ImUiecv29M2KF7zOiWl1On4fy2t95xlcLb+nQ71leduZ0gdl+rtqSuk3T8BMGjf+uzQptf5NMUSe9Led+HhosugtZ7lcriz+8CAEJy1gHDP4Ep9WelpHLG2ZecSdeCqffJG6SEAmpf51EI4RLrR88skn4f1YyoNn4eWmCIM+VL5xPHiAANN7KNVZ9eoayUkBgHBVLQ0G07GgABEDBPg3P2W0sbEBtVoNBoMBnJychDfpdnZ2wunSVqu1cm0TXs24WCygVqsFB0/SKd4+9DoEKXkGgwGMRiOYTCaBX62MFEp1SoqWjbL66NGjK/xTWaCfPTqRyxd3frWFHpSlmJzzU1wx3UvHkdpqT+AD4OXGgpht579LQRYNhLdaLej3+8HZmc1mK1cPW31SFHNI+WNXh5WVR2uRj9ahjQmVJQ+OSJlLVH8XmYNSHs6jpLNSbJkk21l2GaTCkz8AlxtZ6EK91+agLMSuWvfwiVfUo0zxxU1pfkhti23Akea0h3ePn3BTOGM2m5nBGoB03xTgpe5stVrQ6XTg9ddfh52dHbh79y60222YTqcwm83g8PBwxcfR5j7Hy9aubKTYHL8pKqPbUHfgBtG9vT3Y29uDyWQCs9kMTk9PYT6fhw1OHtmSxpkHU61yYnJiYel1YhAP0TaORiNYLBbw8OFDaDab6lMRNA8+cUHl11NfFTxrny37HUvjqVezK5Kc0Pksze/U/qiiDZbvXYRwQxXihdlsBmdnZ/Dpp5/CYDAQ88T64LbFZcryqPU76vHYtaL8My9L8zVjc8GDU1JjShoWT1nE4Po3FZNz0rCmpPM1+3qTtpTzSzfy4UY8jWi7eHk8DcDqJjO0tTS+gr9Zek2rJ4WK+FU0X8xOaPZYWvTleVJkQfLTpbkgzWFpnDT7wzepevxIza/39NV16OhYG/hY4/jR363nCTTfiH+X0v5U38cqEzfzU17xqQhMq12tzfNppNkP7lt72iTJjcd+WDzGYjoeXoq0IZZHa4u0KYDm0eRG1eBVKtdY0KcsWQ20yONkp/LnMQRl2+wJhEhKyluuxCsNGHjLi6XzjpukTD3OcQqfrwrFDJOmWHl+TVFp7zVSQt0gjZ9l9KS/JQVn8RhzRpE3K/DB81kBNY1vagg9ZIG7VN1VJA/NiwY9z3N49uyZOAb0xNJ1UKqhpadJqGPikT+LLPlJKVNzjulnDCjid4vFQt3hJulfCrY6nQ7U63V49uxZ2I2e5zlsbGyEq6fpNdR5/vJKIjydQ9/a4e1IkbeiaaV5mWWXQcLj4+PQV5KTnjonPLYjlTTwhgtPz549U3fjpoBDSca5o6fNA9pPXH9z3YqOjJZXIuv32LzyvP/IeeXOVAxTNBoN2NjYCKfS5vM5LJdLUfZTeECSxkjqY+uaKPo/r6+ovPP6OV+cZyTtGucyhPYly66erpH48pRnfRdzwr11ZFkG7XYbWq1WeDcUT/poV3lqZNmqGB+cqA2p1+vhZgQuY15/x9IREg+ewI31m7awWIXMxXhBeyu9cVmkfuw7vH2i2WxCp9OBO3fuwO7uLuzu7kKz2YTJZAIvXrwI+Ty+UJHfU/w/yv9tpSzLwgnwi4sL2NragjfffBNevHgBZ2dncHJyEjaXldEjFF/hZ04UK0p6mf/Pde91+6bW2GZZBpPJBCaTSehj7bQ5DTahHkd/AjeGYJnrphTdUxVpOlXzHTy4KWY7uAx5N0lJfFStV5EXxIqLxQLOz8/h+fPnaiyhaBwpJlNazIDLvtdGc6pKpqVx8PiT/HNKf0i/pcpjqvzE4jU0HdejGp/Ig4axLR4kXqiNlDCZVLfG2zpI8g1QNy+XS2g2m1duCqGk9ZHVd9gujANJT0p4ZVhKE8OQmMar36Vx0GQpRlQWrfH28peq4zj/1neavpP4pek038PrL1RJMVtg9TlvP38vmT5BUqT+2ByRyqFyw3WUFRPg3/H2ZNnlM1eNRiMcsMDvpVuvtLe6Y3ZQwrUeipXP+8VLVF8UlcmivlyMNB2Q5/kVjBbrS3Uxdh0Gxpps11F/1eSZoB6qqv1V9pnlUJShsgFED2CKlVGUD17ebZZRLwjG373Kjp6io+VKO+e0uqTTtFp6zzWu9GoybIsV1PeOHX/PDgDCVXaobIuQxzm3SDLa/DNvOw3M0p2PuDhHjTk/KXtdVHQ+4QlTDICmGvsqeJCI88BBIZcfCrxi/GMb8drws7Mz6Ha78A//4T+Eu3fvQrPZhOfPn8P3v/99ePz4MQDAygIUB63L5TJcI4YLDo1GA2azWalrQrxEFxRQv2xvb8P9+/dhMBjA8fFxSMtPYqBsx+b1TTgalOjVTxJYBtCD8pg+RedYQDB1TCnf3Kng/RrrW7QBKU5qaiBNKgM3bUiEmzu0t1esdmm2k8qlRZrDjzxlWQbz+RzG43FInxL0wKtYrbenOeFuW7QLaPOqIGwflQFpFy+15anla7eo0L7T3myV2qnpZexXyV5ybKMFV/jc8lKZ67Jo/fiPn+CTcCFP59l9TdvHv8uyy6u38jx3XbWF+RqNRpjTPAhSVLdhGQBX353U9J1WHs4dDAbhiWpcRKTPfeDJFmoDb4quy6eRZIJ+1vio1WrQ7/dhPB4HfRgjbcy0wBC9WSI2x7Q5K+l0a8f8dVBqvdg39KYW+j+df54rjMvIdopu9Fw/WYS8PnLRtmrBTBrY825Ws+rwYOQidViL9xsbG+FKRYrDtLnjpdscg+Gk2V6rr73j4OkHT31a/WXjdqllWBtKvXVbMQx+IhnnGNbJ7T/l/zbIHI91UewQ81c8ZU+n0+A70BO4WZat3F4k+dRldb3kU9LfKHnqoXJPeeYyZsUspd+pDyPZ9xgmjsUjsFwvzk8Zc8qjdgr8puMllBf6v0X8im5rs68Hx8fScYzHY9vShj7rFgSPn7FcLuHs7AwajUa4oandboebxbT6sVwqe1obaZxHknve9ipIilF5/S2tjLLkkQGPDac4Thv/tb0ZGwN9mjMGEJ8s3slRJk2MrIBYTFhjSi418BgLzHnbW1XfeZwVTFekPA3kxRz8Kuk2ADIA/3hYMomyTK8w5WODSp4CGi2oaVGKcuXgUmoTBz9e8sw7yXnBhUpPAELjqSrZkeRdK5sDOwpIceyR8LTYOskC8t78CDTo4nHsjVtLRq2+w99TABptoyWjXFengGoM+OJC6ltvvQW7u7swn8/h/Pwcnj17Bufn56FsXITFgDCtd7FYhP5DuahCVj1lUIcPZbTZbMLGxsaVjR/S5gwKeLDOMoGEFIrJAvKGi8gAoC4McsdRKi/FiZBkUOKd9x/Pp/3G+9hj+y1wH3O8Y22X+EDeqYzleb4yHlTutH5PIQ++pbxJfNMFndT3DWn52Dbr2mrer5hHCljwoAb9PpW4rHN5lGwwbyPNp/2ukZZO0h1UN0vXtWllaHNQ6zNrLkl84cKktmnNGpuYk2lhIksf8LK5fqHlSfIdGz9qpxCPpWAHy2ewZC3FliBPuNhK28mfwND4T8W0qfrxumykRJL8SMR1Al3kxtPH7XYbut3uypWpFgZI0Q9F+8Yzj28LSXqO3lRBZVXzz6S4RUxPF+EvhjW0+cr1zzp40+ry2kdJ3qge8cpNTPak/rT418qybB/6ZRcXFyG2MBqNVuxnzF+TyvXwqqX1UKoNTUljURldLPnS0m/XwVeKnGjpMY/Vn9JctvwnrY/4XLjNC7GSH5bneXQRhubHNDQ9J3q7BO9byY9IkXsrrYQ5tXHkekwr14rTeeespS95X/I2xMr3/C7JnXcMtPl43XohRrFyvDJGfV1JD2Bd1tz2+Jsp/Z3yeyxfnucwnU7h4uJi5WYS6fS6VAaPOVj1WRg6xmcZudDmeKqNTeFFikF402h5YrqO0toWY9dltGIgskx5AL6JUoUS08qosn1lJz3lI8W4aGWkknWvvoeu2+Et47gXrS/2naY0AFYDQv1+H7761a8Gh280Gq0s4nzyyScwHA5D3mazGfLO53P1HUdq6Gh96KhpAT2PoaPBdFontkFaUIzN9yy7PC1KeaUOo2T0LLpumYgRgnT65ir97bpOZ5R1OIfDoRhIBbh6ApVT0eCqx7B7A4yYBueO1O/cCaKE1wqjjsSrKf/kT/4Ems0mTKdTmEwmK3lwkf1zn/scbG9vw/7+fliEf/78OXz3u99dSYsnaGmbJR7pHC8j6+12Gz7zmc/AdDqFDz74APr9PnzhC1+AXq8H+/v7cHh4eOU0rzbO2uL8dZzyxT5A/nCxoN1uq/2jLaRg+4qewk9xNulYYkACFxEAwLy+3lsHzk266xHbjldr04AKLR8DAQByf2hBNPpGcqvVgv39/RDQ//nPf66esNKCD1VjUIuyLINms1lolyi2cT6fw2QygVardWVBiNrh1LZ4ggRF+ofqUIoFJH3PZYWOWYyobFiYg/Y7vjF8eHgY+q8KKuLwzmYzqNfr8JWvfAU2Nzdhd3cXDg4O4P/9v/8H9Xo9nDjVeMQbCKy2W5TqF9AgJ537/K0rWj7Vf6hLm80mdLtd2NnZgfv378MHH3wAH3zwwUrZqQER7VTXdWA37IdYmtQxwnG9TfgTiQePvbRYLODk5ASazSa89tpr8KUvfQl+8zd/E7a3t6Fer8O//bf/Ft5//33Y2NgAAIDz8/NSeJb2oSTr1F6+qoRtQDvM7aHH7szn8xAULKpPipBm8yXS/IUydeO8jJVJ+zCWnm/0QR15G+exRFmWwXA4hOFw6D7Jmxro5fli+jFW/jr61grqWvV6ZOkmaB1zWrP3VCel1k3nWkz+LMwn+R+3jRAT4S0ORf1Ei1Cve5/ikPpK62dqN+mNFPRzigxYvkfMN7DGuMwCUxm5ofaFj23Z+ajFFqRyPbrsNlHMN/GMp9ZmK492ErUKor6ctIkJryvHuF273YaLi4uVpyOwHN43XBas8aY2V0sTI2lOa3XxeEtsDhehVH/RG9/laVBXS2sXrsXYMobI09kSpYBsrWxvGipU3uCCxZ8HTMWMhrdOjYoIpTZW3JGQyk8Fu0UCC1a9mrLV2qGVb/Eco3WCNU3eYvMrRlQJb2xshNNy6FSj0sRFG9yNLgXMOa+0v/FvyyH1zE/+vfSbJ6iqpeN8Svx55mdMZ64L3FgOROw3fnXtbSEOROlJWDwVFLve1wMqYuml31OC0dJ8oQsBHv0RA5XHx8eQZVnYSMGDFRcXF9DpdGBjYwN2d3fDqVoK7uiCmZc8ATvKM09LT+Lh27boAOLpF6++o7pfm7OSPfPgC8mOWXqB81tkvnvArwX6pXwefGVdVx6T/9R5gfXFAifcafA6VXSONZvN8O4nfRs7JWiojXURzBCrO3ZKPeY803GU5gHy7Z0Dkh0ugp88GKAMvtHaY82fGM8oo/i2Yuq1kd65IOXT8Mvm5ibs7e3BgwcPAODlJrUydsXDr1V2yjyI4S3pu1qtBu12G7a2tsxNLhal2BL62dufVDbwiYDJZBI2OuICFq2HziVL10g4WvOxyvjvUnmcXy2N9LtGUnBIkwm8wQPxwWw2gzt37sDe3h7s7e3B06dPwwYWT70xuyjx4pV7rx+QShq2T/FBOB/4j25y8/hM/HuPT5ZqL1L7URuHov4NtZFa3XwOx2TLKpP+zuvS7LC3DVWShh3ocz6U6CZg75zyktWXvHxtXCS/IEYpslkEJ0lpvTYoli6mv6XvUSfE9KbGS4rcxsa0bH5Lt5epdx1kYVSv/2Lp5JhP6MUj+H/qfI5hLQsraVgxhuuL4LvUfub8W2nodykL62Vl9bbKfFGiuCVVT1XNh1Qux1eWLGj2A30MWheNFWA+6VasMv5SGczKKVXuJGxVVHZT4gOx/JY/xHUQ6uor2MhTaYqhlSg1qOulFIVf1En8y0brUsbSO6EWSUKdqkxSJ/irQKkgR2oXLnrgVQcAcGX3DNLm5iZ0u1348MMPIcsy6Pf7Idi3XC7D6TstoMYJ00mnSiS5iF0xQhUdBmekt8fodQ5I6DBiWbRdNHjdaDRguVyGk1seukn9wg22JN+8jdapt9tA2A56hXKr1YL79+/DZDKBp0+fhjbR03waxYJp+L+0003jT0rHd7TzxS0cG3r1tfaeEq1jNpuFk1F8jsznczg4OIAsu1x4yvMcut0uzGazK/UPBgP40z/9UxiPx5Dnl1e3ttvtMIf4VUWUbwxueec+7xvapl6vB3mew0cffQSf/exn4R/8g38Q3sPgFLPl2I+YtkrdXq/Xw8aUPL9clMlz+V0XDoxT3gTm7fAQd0w9ASIr+DIYDMK8433qIcuJkAiDd9optVg9KTLYaDSg0+mE0+WLxWKlnFTHo0gQQnME6FuFRewIfYMS5dPiG+ewVCd1HFIwGC1PGk/+7EFRR09zYrUgTRH8JOnho6MjALiKa5FiQaRUonnQvqHN6PV6cOfOHfjmN78J29vb8P3vfx8GgwGcnZ2F3dJaUAr1POeXzkPu3FvX1P0i+lUpzj495T+ZTGBrawsuLi7g+PgYBoMBPH36FI6OjuCDDz6Ai4sL6PV6AVtiXdYck+YmpevwY67LV6K2h9NisYCzszP41re+BX/2Z38G//Jf/kv49V//dfhrf+2vwcbGBnzwwQcrN/lwojKN2Bc3oErvIHuuJZf4p//z78vMFa+v5SVLZ2rpaR0aXq6KqtIr/z/23qzXkuS4D486+7l793TPxhlxZiguokGRhkABpiHBhO0/bMCAPoHf/WbA38bwowE/+dG2LFiSLVuwKFEmRYriPpyN0z293+XsW/0fLqI6TtyIyMisrHNvj+YHNPqeqqzMyMzI2HJL9fVjdXqoHEmmeOwrzXcOIdU+8fICz5OeykF9DtRZ6GvH3g3KaeJl4/uQnSLp59zIZYen0JdbRmObSvJP+i2V77mHPdRXVkCfl4P/YnfrU9+d6gNpB+Gu7R0rJhBaGEjbxdsWtM44ZjGOEJJBnvaxTqZBn4xeoQUg+2eh+khyNkWG8skv7ufQNFh/Ktet9tDqINVxlzbYiwLOE5S3UmIENE8JqbaEllcMHavVClarVeU3AFyebsljZkVxeSIb9TEwP6lMT7yTynGepk57aPEQ6VpAGlPLWV4TkNqaxt8RVyZjUxRM7krlNrw9Cjwmz+uCx7gLDQbJmA2l5+m0AJj1vZaXlZ6XyQ1sLb8YgaC15U0NKml0WX3CjV0UcChUj4+P4datW7C/v18FknB3GgaV6OQMD0CG2ooaxprhFRqjUt9rwlv6ngtzeh8SPQZKClqigdWEEx9jaKXypMYb12nkxQL75uDgoJpoxR2TNKCMQQCcmNfu5aT/a4hx4DA9p1d7rz3jv0PjnfJmWV4eL46LDHAXO+ffXq8Hw+EQjo6OAACq8d3r9aDVasFisYCyLF33OfGxLdHpDRyWZbl15Pl8PofJZAKnp6dwdna28wUDvD+p7ON3qWngssoT8Kw7BiX5FfMt56069zADbNscmqxJ1dnaWJbkOMDzo9j5IoJU3g3pICu9Vn+ui/BoXC9Qvw+HQ7h9+3b1fDwew3K53DrZQqIv1C68LK7bPcE5Kpe1dtZkoSQzeX08/C+lCclfrAsd/x45L9HreafZRZJt0+v1qqOovYECLM/SdVLQif7P7Uv6LlQ/gKv3Z/MgFqUDZdF0OoXlclmlwUVYMbzL5RK3kUPf4ndSYBCfrVYrWCwW1YkVZVnC2dkZTKfTSj9r7dIEPLxZ530OGiRIfivK8sViAU+ePKkWoOFiMuQPPraxf5BfaLBXksmpNqBUhxcBliyWxpcly2L7OqaNPHEQaUxL8kGyI1Jp57wq/bbyl+RP6rjz6oGc31NZxq+M0ewOKQ/pmxy2sYeW2Ho35TfnkBnSWNDS8L+t/HhetI8sfzAE6VvtmUWjZLvhO82uCv3tLT9ETx19H/JZrN/0e+tbasdRn4DaZSnyXaIjVI+Q/V7H3q4zviife3RgikyJsUljacZ88bmEXOVeJ2L6PtZv8toLMWNOSk/5AMcg+vkIXLxAY/uesuvYPByp/OJpH+m3FyFbNYedRMtJwZXJ2NwOg5XfdTgnXmNQ+i4mrbdTduWES+WGntFBH7sCgSvuOkCFJq1Kor81Bf6iOMFNgQccaHC33+/DN77xDbhz5w689dZbMJlM4P79+7C/vw97e3vwwx/+EN5///0rq2EwX+QPS8jh0ccA27tRAeID8lgXL1/R408Rm81m6z5N666Nsrw8Fi3mntibiJBBwg3r6xozlJd4AKjVasEXv/hFODk5AYDLXT0PHz6svu31erC3t1f9pju/KTx1S518l+qh5YdtzuVkyIiiQL5crVaw2WxgMplU7zBPDAjjs5deeglef/11+NKXvgRPnz6t7he8desWTCYTePLkCQyHQxgOhzCfz03eD+nTFD6aTCbwwQcfwGw2g/F4DPfv34enT59e6UvpbmBveZJDoqXBwC3ey4tBYLy/EOD5/bAh5wzTeuEx8qQTBni9QmOb1pXeQYQLG2g6TCtNSIf4gcv7GIdey1t7Jj1fLpdwfn4OvV6vuldQAuq7VJlI20mjl9cdf+NuRlxQgjuUvcBVsG+//TZ885vfrOTAH//xH8PHH38Mt27dquyBxWJx5W5pCtpHkvxKdeQsW47nF2tD0vwku4WnpeXtSgfGBMk83zYF1E14YsJms6nuOKc7qnFii97PHALKEFyxTY/TonZbUTzfvTgYDGCz2cD9+/dhb29v6zQUlFWxMoXytxZotOQaHQeU/qIoYDKZwGQygY8++mjLBtjlHZCSPZWC3Hzn0Ulef/2HP/whbDabyk44PT2F6XRa2YMYqMIFepvNppKzuJuA2k5/n4GLOehOHx6Qt3hB0hc30QfXAp5e8GA5gH59Aj99IhaxMu06IMkX7b5buqCHtgutpyavYgOf1xVjo+UjNFnc1KSHVA6nSaIzlB+i6XgxjwGEJuYoJBuT8xbNn/Mp/o02RR3UlTWhfGl9Qv4XtUEsuYK2WafT2Yrh4WlbfDLIMxml2b3atxh/02IkIUjt0cSkC5ZDy8K2STk9DPOkNmkuGaH5bVrcaZf+RhPILVtz6BNN/nI+4b8xLjAYDGC5XG6d/jKbzbZ8eTw1j+8sx7Iob1l0huoa4p9cuIlX6HnhaRPzmOIUppOElTQY6nScJ7gSG+jT6AyVbQWR8G8rYJWipHMbRB7HKgaaMEHHjqehNEjtpZ13rrWDJ9B1E51DCVrglhvxVlCRfsOft1otuHXrFhwfH29dKo336mGwiwMnfygtXkiGTCroOJf4BOtA76rBADQ1wCXj3GtApfBSXePAy/uSc8HTpYzxXYH3AQaGO50OdDodODk5EY/NCDlt1riK6c86QXVaXsiBiqGD5kkdzLt378Lx8XE1wdNqtWBvbw/efPNNuLi4qHbV4pixaKb/czq0ukjvqJPMeXI6ncKTJ09gPp9fCdjkAgYdAeRjqBDr9braMcydWamO3vEVYxvQ5yHHl+oFmp7yvZb/wcEBDAaD6jgqPJ7dsyJaq4/F33ynXSjfkLPI3+NEOY4F5H88xlcKFmrygZYp6Q0LUh088kMLSkrf4fG19IgvvmAKA6R0AYFUZsj+l9osdWxaPkIO55fmx/Pm73ibaH1kved5xtAWakMMgqGcvn//fmWn9ft9eO211wAA4PT0tOIJz9Hf3vFqyaUUaP1L2zhGpjaBOnUD2N79S/UdtVklvSrpE03/SuOH82iusaQB5WsOm8b6Dtuy3W7DcDiE09NT+PWvfw2vv/463L17F/7yL/8SZrNZdUSbdH8lpdlLjyaLQ7LgpoPypOZr0ueSHW3Bq8OaApcdCMuWTS3HoxskWkJpJB9Hk9m75kfJvuS0cH0eYzvVsSvo/970MfZcCm2SPotBaDzVscUsaHpa+h1rE/PnUvtY/BUqm38TE4fS6uj9Pie8sT18zr+JtQHQ3kS9TuOEmh2t6Q/NnvP4Q9JpRjTWobW/p189Pq3lM0jl8/gAp99TtkQLbUdKS4h+Dw9INqXWN9ely0OQxrnGbxJo2hi/LOS3h+RPiDbOb7iJAoFjlPczXSAq6VyPvE71ZWm+KTrJU27M2MkNy3fj6ULlm5OxIWcqlHmI+VMax/uNJuBydYjV6E2UlwMptNQ1MLhTbuUnBQz4UaOSoxMSrLGG+E2FxluSoejdfdVut+GVV16pdhsiBoMBHB0dQb/fv/IN3c0QMo45/SEHxCt8uVJBgxGBAefBYAC9Xg8Gg0GV93Q6hfPzc2i1WtUqPylYSVcUhQy+XSLF6ORIMQR3BTqupfFbFEV1pC4erW3lg99oaXg6y7Hx8AAvS5tkigkUeMcK5VlcGYfp3nnnHfjN3/xN+OCDD+CTTz6Boijg6OgIvv71r8OHH34If/mXf3lld3GovJg0mg1QFJcBXC6zRqMR3Lt3D7rdLnS73S1D06NHvLTSnTKag7VcLrfu3BgMBtBut4PHx3ocfomnvHrL+x134jRaAC4n7V999VV4+vQpjMdjePjwISwWi+ApGZKut8YgvsM2rBOw1copy7I6xrzb7VaTkI8ePYLJZFId583z4RPPFm2hwI+EGCfPC5SLnFc5cAfhYrGojqHmNNDJjlCZWvvU1VNcR4XaPsbW4+XQwI6HPtouOfWnFfxAWnG84AK6n/70p3B+fg7L5RIODw/hq1/9KpRlCR988EF1lL81GeUNUnyGvJDuDy+Kq/co8v9DQUD6jr7H/1N3avC8LdDxRJ/R/1OBbbPZbGA4HML+/j48evQI5vM5/PN//s/h5OQE/vN//s8wHo9hOBzCcrmE6XTqypu2mSbXy9J3hcNNRSh2g3d0cfsU7SS0KaneRNsth/zQeNoTc4pF7jy578JtWq+Nw8eN5APF+Pk54NWNMXEZbl9p+cXGD+vKt11A88Hr0k3tGU/A32Oroo+WEyH/V+IPGhOIGbuanySdKsTLou+47tXyvy7QPuc7SbUTlELgEzz9fl/Ufx6ZZtkumn3Ar8eg32k8FPK76dizvrV4k9fL8kVoHNvrQ1rtqemEJviwqXxzw9IT9B3tG+mO1JAPxtOmIkafSvVqt9uwv79f/Z7NZpVPT/NFG4GPo9T4u0VnKI+bKDMRTfN5SF+Zk7EWtEa1go05jSNNgGrGnaREY4PqHhpyM7gX3rpITr6Vp+RUa/lLdzzRbyUFGRJ2OKFAv7GgTdzG9uVNh9TeCCoUcWdMq9WqLv1er9fQarXga1/7Gty9excAoNohBABwdHQEjx8/hp/85Cfw4MEDALgMZKfcb0XHI+7Eoc95nej/HPwuPV4OdUx7vd4Vo3Gz2cBoNIL5fL61I1bjKX6PWSxieEobk3z8WPJVy8fiEyl902PBIyORv/FYxN/+7d+Gz3/+83Dnzh3o9Xrw5MkTGI1G8P7778Pp6WnFk5TPY5xHyltYfijQL8l//j3PIyTvMJ8QeNl0EhZ3D2OwBtvh4uICHj9+DF/4whfg+PgYhsOheJwktiG/y48jh+HCnaJutwvz+Rzee+89uLi4UNPXhSTDUD7xOzVp8BeB99Fhu8e2k2W4avKNvufpJVhyg4976W5hnlen04Gy3D6CVHJwNLoxnUf2YlrNZrBsEjrZUJbl1oIEKS9aD41uC5KswDxi+ZUGTXBHsucb6X+UA8fHxzAYDMSFVRy8T0JHlNdBKGDIy7H0hhSgsaAdX1xXz1+Xs4llob4M6T6NNmtsUVlXls+Pj8PvcEELlS3UBwjJIS5L6D+cTKZ0zedzePr06ZWJtpBckeov9ZvXd+D5cL+H+jE8QMptN639c/MS9R+8cpDWhx4pTd/HBGRy1Gm9XsN0Ot0KSg2HQ/j2t78NH330Efzt3/7tFX1F2329XsNkMgnGDOrQe9N8S66fPDKYjj1cwEN5iPp2vBwpL40m+tubX4huq1wpf4+NrpWj6QKNl2L96BAdoTw4PPoqdbxy2R5rU4Xee9vDop/3g+aH54LHJgzxkpRWSq/V1/JxJT6jdrRHt3J6PONdqo/13rL/pTIk3Rprn4f8fYnOWKT4DLw83u4SjVb6EF38aHHqI0h5eeoU8rdp3nxSlvMClTd08ZBWv9QYh6SzrHfWYmar3WLkQR1bw6PDdunTxCLkz1k2Ps9H0gu8/tKiRs84DJUvXWnA5e58Pt868VGS2fidtiPbQ4tULwoPv6XIxtA3KXwoyWvNxmySz7U2c0/GSgK1SYKl8izGp8805R9q6BQj3POtlEZTUCnKOKYfLGOqzqCU7gbR+ooHH2ha+g3ND9Pxy6k1UKeb09ME36YaUZ58OTRDVBIsvV6vSrtcLqtdQu12G772ta/B5z73Obi4uIDZbFZNXB4cHMAvfvEL+O53v1vlhbvTAOT79Gj9+d/4z7pfwmtca0eJciOn0+ls7YYFuOSds7OzykDDukj5FUX8StCQgSSNvdBvqZ218mIcSUqLREMTvByiB+Cq8YfB5S996UvwrW99CwAu+Rh59uc//3kVbEMewiNlY+SYxFsh49cyxjUlryHG6JXyQqMMA+S4k5QG5nEy9lvf+ha8+eabAABXJmMx7/V6XcmKEGKcbfoNdaZoPebzOXz44Yfm97HOvGVMUievLMtqAQt/R4F6qN/vQ1EU1RHGsaBBDl6vGKPVksVWm1BZbjnARXE5GavdpWrZV1Jay0HWbD+A546/tjOJyjT8Rkprjc9QUIKnx9+xY55/x/kwZScClyOdTgeOj4/h5ORkazLWO04se7oOpH7yfmfJ3RQatN+xoGPlOnQowGUd+GQsDVhRe4zSHMoTdQqC7ihHPY0+AOcZLDt0VDKlicsJnhfA88lYfudxqB89/BzS/ZodxoMeXAbRRS/0GzqxiWk9NocELx9rx5ZpwLJpP0tpvHxPZR/vewpLriKvo14oyxL6/T78/u//PvziF7+Av/zLv4T5fL516gXyFfYD8g+VjzF6ONXWazJ+grDkkLefLNvJe/dxTJ130S5WuRat3r6OHadWeiq3NTqssrVvOY976pZL10rvpXiNx07x2GJa2hBCsiiUZw5etnwd3odeWix9J+3g84wJLY3UH7H+Lf/W6/+F/KPYsiR+4NeAUN82FinjKzRGpLqGZIlWH/wfT0/Ak4ZCtPDy+XM+/iUbictBD5+FYI1nqxytHpq8oDawtDMRFzpqfVGWeU7jkOiTZAhvg1z8nFO3p/iOnKaQbW+ls9JL33j0Pfa1Vd5ms4HFYlFd1Ubz4zxIYzx0MxWAvkknBpotQZ95ZAL3ST3jMpVeSd5oaSzE+Dk8fwnuydi6gYW6RtB1BDY0aELX6rxYh+06kRLM0L5BAcB3efD0m81m615PKX9UZHRlrgYa0AnRmANN9KdkTEn1ApB3cYZomk6nMJlMtia3MZin7YiRjOpQ30urpnNAqnO/34e9vb1q4mB/f7/a1StN0DXt+HuVvfRdyFnW8q+DmyCXLKMTefOll16qjk7tdDowHA4rmeAxaCTgdykGfawTgvRZ95SG8qCgk2Q4CYsTqjhOnjx5AtPpFD7++GNotVrw8OFDmEwmMJvNknfApY4fzJPvYlwul1AU24H/WEdA63t0IhEvv/wy3Llzp7pT7te//nUVmMU2fPnll6tjP9EIXi6X8NOf/nRr5y533EI0I33Y/7GB8VhwQ5bfVdjpdGC5XEJZlnD79m1455134ODgAM7Pz+HJkydXJua5TsKgrHb6AToD0pFT3rvHi+LyWO2iKKrdTB5QGmazGTx69KiyIzwGdyhYEfpOSuuxsejYoA5ELHBh0jvvvAObzQbu3bsHy+Wy2unsCbRhnSQ0oTMkOf4i2dBNgsvOsrzcrf7++++7eLppmjQ+1Z5RvYXggTjkBdwh2+12YTabwQcffADj8bjSF55jO6ns0mSuZUPzb3Ic+5sKa+ziBLk2biQfzDu55oW3XVNlG+L09BTm8zn8+Z//Ofzyl7+E09NT+OSTT6pTgHq9XjVpS4OblP9CoH2cGhjaNY/kKi+kB7Sd0lJgNxc9dXSiBznoprzFg8DaggZaZg5+C10v4YHV/6ntI/lNKcF1KbDaNE9404ZkS13ekvKTyrT0WYi36Le8Tt5YUyq4/PC0lyUTeF287W/ZvjSv67C9NDShx9EGQ3+uSUjXpwD47DYK7kdpedFn9F1sbEcqH7G/vw/9fh/Oz8+3rpLhVwNIqMtbFr97eaUJXZ6KHPwtyYqQ7Ag989JW16/tdDpwcHBQ/R4MBrDZbODs7OxKvIbHvmL6OyUemmIjWLzVtK2n0ZODz710Jx1TfJ3OvoY6AjOHQ5WzTTSmTBm0uxSekjFMV8pTGqS/0XGQgM6EN4DapCO4a3BnQxJ0Fm9wwwUnsPBuOZp2vV7DbDbbEubeYC0H0kzvK6srlLU6IXBiDvmk2+1Cv9+HsizN46415eEx3qxvvAJdosdyQryGpbc8nk9OxCpRenwex3q9hvV6DXt7e9Xdpq1Wq9rVYAUerT6mgVWeT4xDLfWJZvDzPrQMO06/pBvomMB2ogbYZDKB+XwO5+fncHZ2Vk0+4sSjVrZlWGlt43HSKb10xxA9/lfLKzQGpXpg/linvb09uHPnTuVgPnjwAGazWZV2tVrBYDCAt956q8pnPB7DdDqtjlHWaIqRc/S3pN/qjEfNVrGCpnt7e3D79u3qKGbqFEs08wC+FKih98ylBgaLoqhOO5hOp0FHXar3crmsjuS3dqB58vTINYsWz7c4Njx08vJQDhTF5WT7Sy+9BOfn5/Dhhx9uHe3ptTctGngenrEaqodHR+W073L5Cbuytak8W61W8PDhw60j5nMDeTakCy3elp5rOlriAbrKe7VawbNnz7bGiFeuWL4BH0NSWsn+1OpRR357fB0rHaXT0uNSOqldYmzbkM2SkoeWZjqdwmKxgF/+8pfw9OlTWK1WcHp6usUvkt5DPWAtZuV1iOlPjx10k+Cx1yT+0Oxcnqf1PqaNUr6R6KF0STqsab3SRBma/EktS/Nr6btUaL6EJausvFLbWhrzli/pBR8XIf8kB0Jl8XShNGX5PHZCfVEqT3PaYTRPznPoH4X6htLolRGavgv5v/RvrdwmbUKr7ZvQO6gr6WSs1B8hf0LSGVrbxuQrwdOXKYht3263C/v7+zCZTKrFz1Z+obaJ6Xtt3HrbJWWM30T7R5JZHn9lF7wi6Qqt3VutVnXiC00zHo+vxO8l29dDi7f+qX6/V394fE8LKbblLmU4QMJk7C4CDViOZnCnGEMp5Wr5UTS9El0LSqUIN74LKQSp7fi3RVFUOw/5lnkpPcDVOuGOGfodX/UxGo3EOwQ1mmMH3674OoQYAYZ/WwZ+u92G5XJZ7YAFAPjGN74Bb775JpRlCY8ePYKTk5NqJ+m9e/fgr//6r2E0GgHA5d2reOQpHmmqlckd2phdCto7yQHkgRN+nxgvd7PZwOPHj6ujHYqiUI9gjVVYFlIVkzfPOtACKk1AkiEIyRjt9XqwXC63JlxWqxXM5/PKiOU8ELrf16tDJB7j33O9lEN+hILIsX2Dsr7X612ZlKWYzWbwi1/8AqbTKfR6vepZaKdsbnmJ9A4Gg+qZJdskcLlI+wd3wSyXS7h16xZ8/vOfryb2Dg8Pod1uV4Yt7qKhx1/iEe8//vGP4de//jWcn59DURQwHA4BAMRjiiX7RTM6sa4p7Up1uleGYPv0ej0oy8tgNufB4+Nj6Ha7lV7HiVRrRwfmz8tB0AVV+D+/jsAbTMKdTth3mHeqbUThuaceacX2D7VLCNypisVms4HlclmN3cePH8OPfvQjOD4+hldeeUWtg3VPsMdhlfKU0ofswhA839wUO65plGVZLRwZDAawXC7hD//wDwHgUlcul0sYDAZQlpe7Zum4sNqR23D4Py7Y0fTjZ7gE3RmMvlGr1arGJV30pI0nyzbhcpIfp2/5zXXAg5lIIz9iP0ZOIFB20rJ4wFD6nwLb4Yc//GFFEy5KoAu7MC3m0+l04Itf/CIAANy/f786+ULzIZGu2F1BNJi068Ckp0xaX2tsU1sD9S/tl1A5fAct9ddjbJgmoLVTjK6iMjOkz7kfRE8NCcloBOVlqy6S7Aj1VdO8inY5He+0HTCNFpzmtGpptL+b4rPY2JOHFildav9ofgr9LfknIXuuCdQ5dYLSrC3wlmwd/i5UBp6+QBd44vco7/h1QLvSA7nKkXgCY2ihWAqF1Z8hv0+qC+oqbROP5HNofJxbHlDeQ9k2Go1gNpvB3t4eHB8fV3XA+AIu8OaLH5C+3Dzj1QUc3njaiwIP/ZaNyuGJ+UhpQ7qO5jGdTuHBgwewv78PR0dH1fPhcLh17HVZXi5CH4/HwTpq9EnxGYkmLY21wcaLXDxm8XusPs6J6MnYlCBKCkJGsScYiH97G1gaCHUaPeXbGCEXYzh489Ho0ZwJNEJoUIAHX0N9JhkxGGBFp88LyWEPGfE5+bmOwox1+KxvuINLJ1cODw/hpZdegsePH1fHR+O/6XQKDx8+rOqBfYt3JGplWsaVRp/1rZZWypMHg+j9Zfh+sVhUu4BjaQ3BIy9i8/e2nUYHf245XLsODvGyuRxDWYJ3cuIRxIvFAlarFaxWKxiPxzAej6/IFj6eY+vo1W+WY0qfeZx/z3i2ytfGhBToArjc3XlxcQGTyQQmkwmcn59XuyBRVniM9LpyU+JTukM2p1ymZfV6PTg5OdlylinfcF1G78oej8fw5MmTSmdpRynxciV+4ROHIbnqkZlWf3FdjnoWJ+s7nQ70+/2qvjip47WbpLGj1U+zXbTxhwu+kDb8H/lWsj14OZwuLa1lM2pBMYA8Docl2z0yjI4bvFPz7OwMzs/Pq53xmFeKnIsBLcdrj+WgJzSOvPZLKI1HPubSrVJeOBGCCyoePHhQ1a3T6VTP+fFUGl3Wc8wn5EvlsqetAFSM3+MBtolHP1t58PRU9uM/7Uj2UNAtJNdi/PJQXpZs9qSpEyPw6Ajtd1EUcHZ2Jh7HxvsX07fbbbh79y60Wi2YTCYwHo+v3EGcC1we8rGUm6+byktrU3wv8RPnixx6Jfab2LzryjGPnpX4wZLRWh6hdyG/mZYr1SFUviVDPHTmhtWPofrSdJYsvu46evoFQJ7ADY1Dyz6g+YZo8NjP9LelY3LYFan5hOiW0qN/2RSfeOSU1b+x7cDtJEtfWfxlycWQDZZCs1Y+fW/xcsjGp+kkmYrpyvL5ArHDw8Nq4TldfOO9x9PTDhYt3vx2Kc9i4PXzLVixCppGep5qb4dsPEtWc+Aplrh5AMHvhqV/Sz5GTB/H+A43CVJshyL0LNbmTInjJB1TvEvUuWQ4tyDJceGxhZSAUM68Q6CKuNVqwd7e3hUngpc3n8+37pGTdlx1u91qV1ZRPD+KEOByl9azZ8+2jsbwGqFNIDQod+1waDTs7e2p/Hp6egoPHjyoVvRRtNvtakcFliEF5K0VaXWcWUtYeoza5XIJo9EITk5OYH9/H8ry6s4QXlbOACLmGVK0sbCEO77nbXRTDSkAvxP4jW98A7797W9Xd53eunULAAD+63/9r/Dw4cNqtzPA5eQR7lCMkRGWoa/xTE55mjN4LQGP6p7P57BareBP//RPt+4I5fRYi1+aNra045JDCNFFJ6nweJfhcAiDwQC+//3vw8cffwzT6RQAYOvYwv39fXjrrbeqdvnJT34CAAC3bt2qjj+n+s0TnAjt4qaINQBj+4fe0/75z38efud3fgcODg5guVzCd77zHfjggw9gMpls0Ys7h6jRz3e7UCBf8XHDf3P7AhdgrNdrePvtt+HWrVtVcAOP3P3Vr35ltkdRPD/ajO4WD4EeDYwnL9BFIlpZWI8ckOwpL9rtNsznc3jy5An8n//zf+AHP/gBvPfee3B2dgZlWVYnZuwClqzHd1qb3mTktkNTA0J1QBe/aHYX8jzKAU1nabailCeml2jh8kIKKtDfnvHGy/QEESRbiso6uuAPQD6+b7VaiScSUbkk1TM3NHuUtp9kE6G/hTqRyozY+2XpeEc/UJKbXJfwnXIx5eH1FXyCFWXg3t4e/O7v/i4cHR3Bw4cP4b333oP/9t/+WzDvmxp08iJkI3PeR37lwWXPDmEp6Km1H13QpI3VpvVCbOANQJ/0l97zWEZqWU2gaTmklRkTXI/lB49fZ9GWA6F2zW07WuD8zQPz1CbwQLJTc/m1mJelL0LfSr4HT1MXmD9e+zMcDq+0S9N9uwsek+wWCXzSh6fj8UO6e9RCyF4JfUu/85ap+SmcFuRRfhIHt++08rrdLty+fRtms1l1MiEvXxq7tE4e8Lgn7Yub7nNdBzR9Y7WVtAM8JS7M/TLJj6G7XtHmLYpi67QzLs/pAvyQHYj/pFN4JJq0evA6aNiVLrTGTmw/eWHVfUtqxBjoqfAoi9C3Xuc7xkiLrZtFi9W5Wpl0gOfsdF6GRq9WptVGtI2l/1EA0JU/NA+6u4jeKdfpdLYccAzQe4SgVf8c2IUjSMvi5XnrZfH/er2uBDiOeewD6R5Ea/LAMux3Aak8GkgCgK1gPH2fWp40bvnfEj110JRyCJXRBHifUeOYB3dw0ozfYzwajbYMEH6ftMYTXsUb8z6UFmWfJGdjdFoqUBYgbdhuKHNxl6HkmITa0ypzF8FlrQxLV+CKQjx5YTabwXg8hk6nc2WxDwYC+v1+dWQ7AFSBeJzg1qD1e2x9PAi1BU3DeQLgcsfwwcFBFVQYjUYwGo0q/YCnI0gy3+MU8qBPDHBBAcBz/YWLiSTbQqo/rTMN0mgI0RoKSGj5pb73AGnCXc77+/uwWq3g7OwMJpPJ1lH9dccn5yXO61p9YmRJKOCSarffRKT2P/Iyncy0Fo56x6AWQLP6N6V9aX6a/tG+i9WfOfley5+nTQ0e7hqaDgrJuJiAoNTXHh9a6zeaB+d7LuulOpVlCc+ePQMAgJOTEzg8PKzedzqdSudhemvxqYQYnyDGZrXK8nyXImu08W7xdeg9zx//5fDVvJB4Q/JRvLYc5snlbExdQuNDKysFTcWbUr7PRdMufFmvvMtlH2IaL//xfHksL8Zms/JNQaweDrVjU3LC8oklUPmF6bgO8eblBe3fFPuG931MjITzkZVGKk+LBcXKWKn8mLy0dvPyOLdDqC1C2xXTLZdLmM/n1dVING1o05dUV94WEv1NxBZ29T1AnD1Txw/xlBnjA0lpLVvbG4NDrNdrWCwWVQwfT4bkvke329064bIOOE2xspx+q30fy7upNkgoTmH5pzntjK3J2OtQdiFwIZObjtgBmIMWzankzOdJ1xS4QgjV1VIiGr14BCn9jTsz8Rs8WtY7GDVD4iYGP5oE3a0lCd/NZgM/+9nP4NmzZ9XEAt8RS7/jx4ZaPJhybx/nfVo234GAwJVofMWOBDxyE9OEjpSMkYWc9/nYTVlhar2LlT2WwbALWeIpsygud8Tzvry4uICPP/74Sn3xyFJsd9z9zPOk5cbQ6el/j1OGkIwjgOe80UQ/hOjs9XpQFMWWrNDy4bt+YowjLc8m62zJhPF4DB999BHcvXt36y7Ew8PDyjlC2YI7st9880147bXXqqOFcEJwNBptrdqWaJHe0eeSkZ5ab29aTaYCXI658XgM8/kcAJ7zyWg0ctkBNJiKz2KNba0dcLfsL3/5S1itVtVRrHzBlgR6DDdNG7IPrHGEfLxLOWphtVpBp9OBvb09eOONN+CLX/wifPLJJ/D06dPqBBJtJ7fkfEjQxi62o+e4Zi7/PNCOfPPKEkn+piBWdoWCJ3WB8mtvbw8Antt+3I6iwIUodX2qXfkjVvmfFoTaEfmfX/0iybGYCYBcfmyIl+h7uoiG50VPIPDoUDpxh74jthP6j9T+ovlMp1P4T//pP8Hdu3fh3/ybfwPHx8dQFJcTsfv7+zCdTreuN8HFWKgbLbpSgKdt4Ckd3tO4kL5cQVOvTsN25gteY3UipseAIgYNpZO0vMghm7h+xDxD7WztNtK+57aEpy+lOlpxEPod/f+m2C8WeLuF6mjZl5LdlmPsUB5JydfDW6l+LQfXIbw9uc+am1di+ZzalinyLtVnxXiWJIt521D5zW0v3HjS9FgLtQt974k/WH5AKA0itLjGGo91J480eSid7mfZzDStdToSXZyNOg1tBzwp5fT0FFqtFrz66qvQ6/VgMBhUi8SlMqUTWDg8PqxE84tsQ+/S/wjpfm6LW+8tWDu2pWfz+RwWiwXs7+/DYDCobFPKh51OB27dugXT6RQuLi6CNHDwmA4+k+yjVNxkWySXzrXgOqY4hYAcRFvBTc83dWiQDNw6eTZpYIUUqRYItQQ0QgqSosNklcdXYEh3ANLBjPniro31eg3T6bRySjUnRVK0HqFwkxRQaNJESgsg9xM9+ggnGjabTXXMWFmWcHZ2BkVxeYwBHlfAFb6XX2n6kBC1lFioHO+kFTWIJpNJZVyhU+/heQseWmP6M6Z8j4zQ8rEc2abHgiZ/+DukcblcVrtgR6MR3L9/v3KG6L2xoTJy0InPPbrI6kMpGGD9zmmQoDzGICOtz3XJwbr1o3R7nRBab7rLk6fB3YPvvPMOvPrqq2IQF4/P5XLJMqC9Du8u+4TWfz6fw9nZGSyXyyu7zIvi8vgbPKpSq6/mhOC7mGAazwP1GABUAWD6PsZexDpJzhP/O2QP5RirmjxMAY73i4sLuHfvHjx79gwuLi7cR4B75FhIj3qD1jmRUl5MG1syJzaYldK3oaAYDXhZzjzneQ8tWt09No80fjif0LRacFijy2MT8vag5YTyxbR4Yg9OdtPFgFp7o46gE1Yh3avJG1qGJEtTA1Mh/wkDiUVRwGKxcNn5qYEVa/JRG3OxPgLPZz6fw3w+h9lsBgcHB/CP//E/hkePHsHHH39cazKwDrxjQJMtUh+k2JghXvX6rBbfU3lF09JxJd0DvEt4dYtnbFs2YmyZkt2i2UE5bAueZ4wfEZIJoZhUTPtb5dPf3Ab0xI0s+kM0SGXwNuRpUmWpRp9HNkjfcVjyJMaelfQPL8eyF1Lpp+95vpqM0sA3D7zyyiuw2Wzg0aNH6n2OVtvEjCfpmdUumo1elvKJKjxPr97wjCX+jUQbzcvLV145kGo3eccEPqPlSDtmAS75Bo+YBbi8WmE+n1/Rn7F+Tkimch7g7z3Yha+XSw42VaZnfMT4zzG0lGV55dohzwlYnsVzsTR5+SDkC9G8PXKe6/OQ/6t9x6HpHolW7dsQ7QDGZGyqY5cL12Vwe597laWnMywFmAOWorecLMlIxB2Uof7hxzdKTi03hLvdbnXe/mKxgPv37yevtH3RUNdRwvbBXUwAUN3zhUcW4iTXRx99BB999NGV8vmdQJyuUPmhZ5bAld7hBDE1XC3jEv9utVrVRD5ORmvlphoRnHc1pI7jXLz+oowZbE+cRMB2e/ToEfzgBz/Ykg3r9XrrHkuAekaBlU/dAADmwfOVVpml6BTre2xTDATjUa8YFLYmZ0J18t63EqK7Djxl8wlXbUcoBvzKsoTz83O4e/cufPvb31bvF8U7Xai8tWjUHN3rxmq1qnTzaDSCDz/8EA4ODqodwIh2uw2Hh4ewWq3g9PS0eh4yjq3nMTyBC2pwZ5JWDs0P+1NazSzJb+oU4/tQYI3LGytAZeXD6+H9lgLrWpYlzOdz+Oijj+C9996r3vd6vdo8mGKPhZydOmgqABArr67bX5KccS0d/o+2UkzQzNIxWrCABnz43zRPbsfF6GANlL7lclldhSAF+aS64bFfZVlCv9+vdhSv1+tKB9DjoTnoHboem9ryNdFGR+TUJ5Yca7VaMBwOYT6fV3aXxeupp31gX/HyJZuOynXpmxCoTEK78/T0FF5//XX4d//u38Ef/uEfwr//9/++2s1002DpnhzjRiqPlsXLteS7pe/xHV9YRRd8p+6QTZXHnE5PPlgPXAwdu5vLYydqYyKGPpqe9+OL4isiOL1W/I62L2+LmPGdg6c8vt519FGML6fB2yf8fahNuN+cyz7g+Vt5WSe+4aYGtBN++7d/G9brNfzZn/3Z1g5MymtoG9TxESioLObP6f9cb3I7yPpWshktOy5UD64/0N7i39DvuL1Jn1s6SLOtUObGjK1Y3pPK4WXiiUYAAC+99BJ88sknMJ1Oq+9wco3atJ5yKb2e+lA+uck6Ydc6KxTnidXDCM9JUp58p9NpZZ+3Wi24detWtXgU03A6MTao3R3L7Qxp3Esyv25dUhEbl6TlecZIrK8Rw6PqZGyMQJUIiEFIgUv51R2EWoOG8s1piEhpYh11DVw5SfXlg0Yy8L2BQsyf/tPQ6XSqyZWieD4Ji0JJumPBo2hDPJvTOW0aFi9ZfcF3LdGjXBE8wKDdCavxRswzzanQvufPNV7S+Fniea29Qo6A1eYSpCBFCCEBT9vKGluhvuIG83WD1gvHPt4DWZZlZZjiPZH4zWQyueLEaHwgtZfEeyHZptEtfZPazt70Xp6U5D59Jp1UYOVTV99eh1Ev1Q/vPp1MJvDo0SMYj8cwm82uGKPL5RKePHkCt27dgldffbW6T3swGMCdO3eqHaQA9RcA1PkOUceOwDE4m83g3r170O/3odPpwHQ6rYKioZMw+N+xTqr2Dv8/Pz+H9XoNg8Fga/xbfBwbsMFgAKbHvKkzI+kOzcaSghxe27nuuEPdj+0lnQxh2XscUl1ogIGnpe/r1EOiIzbQLdUzRFNueeVxylJkwHXrc97HNJAD8Ny2DN3pjsAxKMnUkI3D86Hfd7td2Nvbg/V6DavVKmgXUJ8CZQHWC3UI5sGPDcZ8YoM3qfwRkvVan1j2r+U38vchSDJVai+en9SGXMfw96vVamsCXaOzLC9PwKBppXI7nQ70er2KZ+jOFbyqQJKBXtC8iqKA4XAInU4HDg8PYT6fw/n5eTUmQm3N28PSSyF6qO3Mg/dSPpzvY/1tOsYwn5TAmoYUekLjM9bGkfhZql+KL0C/C8VKYvOl33rbICXeYsl5Lo+9elyiW2rvXH6OBo+st9oWafTYEZiXp/3r2qshGqxvQz40pyvUb6lygvMYp80ao9RnAHg+Kfv+++9Dt9uFL3zhC9U7PPnv8ePHcHZ2diWvGFolWjTaLB+JTwRpd9vycjx8Ecs7VGdL1+QhbVJ9Y/Svlgf+r9U9Rvbx95K9U5aX8azZbAZlebkAaW9vr7I5KDR7Jta/5WlDNmooDc8/pz+i2aTab+ndrvyjOnpD0nuYZ6gNpHcor6bTqSjT9/b2qhMG6Tfa2Od6x+Nv5OYFqY6hNB69wZ9r+fD3sbakB66dsU0ZKDRvy1jlaT0ICZKQY2vVPcYI1+Dp6JiAQ4gGypTSAOX5eh0R+lxarSR9j/fxIPr9fqV8yrKsduvQoIzUlppBbrW75fg0yeceWryweJLfV4A7ieg33W53a4cR3VFhGecefrRo4wJaChLwPCxnXBOyVhm0LOm3JXClttDqG+NQWwazx1GXlEgduZUbIT2CCwbG43E1adDtduH4+BgAtukej8dbR5dL49fiIa5vJCNZgubQh/hGU/ypxopEp8bfaGBx8MA4z4+XE3JCME1I7sbKV69M99KCYw13NeHOprIsxcnYhw8fQr/fh1u3bgEAwNnZGQwGA3j55ZdhOp1uyU38lgYQQzR7ZKoFq01jxn+r1YJerwfT6RTOz8+r551Op5qMtcrh48gjr+k3/D5iCaenpzAej7fuNQd4fuKGJM9xxxpNE3K6+YIwfhctHxe0D7nDzGHJliZkc6/Xg/39/S2Hn9MXa+NLcpU6cTS/2N3/Hlsvpp08zruWrybvLUjfSO3rlYU3yR7V6kHHblE8v2sb5SDVQ1wuavKPypTQ2PC2Ubfbre5MQjtDOqaeynFKB06W4VFy9Hspn1h4fT7pGw28z6TxwGUX98O1enn81bIsqwC0dKy8RKvmf0u2vQR+2oeUL/6Nd2tZeXa7XRgOhzAej2G1WkG/36/0ymKxqO6TtRAa7ygri+Ly3ufhcAjD4RDOzs7g6dOnW4tnQ/XH/uJB9hj+ojzh/RbrKC2k8PI0He90XN0USOPHM+5pGnpXsmds0XJC6TiNu7Y3aJmx9n7IZpTkgZZGy9PS9VK6nJDaI7Zcrwz05mfRaPmUMWWH6ui1sbjNQNvC4+tY5XCdx/ML3SHKNzYsl0v4xS9+AScnJ/B7v/d7V2Jw6/V6azKW1y8ETqckJ1EHcF3O8+HvUX/iKWQckm6R0kh0SnYWBbaztIGE2pqS3Uj9Ni1/Cs7L3C4Npbfy5XxJ8+X3D2MMYr1eV3bScDjcmoylOrzO/blS+4fGnObDeOz2phDiI06T9F1qmR5ZY9Eg8VFIj2v5a7oW25+fHoi+y3A4rHwa/o0Ug+GyVzqlRKJRGsOhukh5Sm0fGo/SAlCeN5cjXjvCQoxO52mTdsbGEBPzzU0yvGONyZsGDxNIdfQwIg1Co7ONwJVhdEW81q94/BAeH4bf466jVF4KCcybxmcUllEYyoPmhQEDbFucgOXGI0eqIEoxsrni1pSBlw4skwZkuPGiGZIeR4inleoY015UWfEghhbYTzEGbjLK8jKohX8jVqvV1sQQAmWPxVOeoBHNw2o/zxgMOSXWatM6sAwSbkBZDhR/Z+XLj2ryGPU03XXAkqdeR+fjjz+GDz74AH75y1/C48ePoSzLysmmd5lK5TaFHPlbdaYGerfbhcPDQ1gsFjAej8XJfMmYTdEf3DHGiR6NRk9wRvsW4LINer0etNvt6hhvXPAR+hbg6tE43gARhcfZ99QN09BjHq0yc0MKanCbpq6+8gSu6h79VJeHpTxi7bpUePiEBrZeVPvhJvtnXN9bi59CetcKZnr0bkz/anILr/ugRzKH+JvKItzxeXp6CvP5PHonqSTbJTkTi6Ioqp2v3/nOd+Dtt9+Gl156CbrdLnzlK1+BZ8+ewdnZWWVDXVxcVEcGeuvg9S1ibETqK+Fu4F6vt7WAyPo2JojJf3uCVruScTH6PnYsIJ/TncHc1pCg7ejNEVPjba/JBE43TYvvpYDkTYFkW4bGmxbj4fWjC4W0fGJ5K4TUfHLrZ6/ekBDjJ0v6IMaX9th4Gg115VCMfETdSI8nx/LX63V1+gI/nng+n1d+FeaTej8551XqL9Ex7pnI8xzZTWMAKXZyCPR6GVoOX5AkxZapjODvLJ5K4TcOHhfh7c1jDUVRXImd0w0JrVYLjo+Pq12MnkXLOWCNZStd08jRRzcBdWzyUEyY2ijSeF+tVjCdTqvFpfitdZUfL0NL10R8M/ReG+M56NF8MfQFJBsvBpw+dTI2JbMcCt478DWjwuvMptInwauQYpyGXO815uRHAnnpKoqrKyM6nc6WAWJNhtHycDKWfrNarWAymVwpI2ZgoSLnzkeTsHgshv80A9YTqKV54G5L2o4p9x+hURETJAjtaObppTTad56AtmZ0UuXjkRvS81TjU5NpXJEirF1WknIO9ZE1Bq7buJGCR/xeWFzgEbr30OvwWXwQK2us8mN423ISYkGdMHrMrOWQeYOGOYMUofIsw5W/02iSAk6efsHdPMvlEh4/fgw/+9nP4PHjx9UiATyuUoNFz3UgxF9aG6HTiHfFdzodWK1WatA3FKTlwfwQXXwy1jNmvTxKA5cYHNlsNjCbzVzf5oA38Bdjp0lHB1u2iTdf/jcPnvH09F8KYmWNFSS6Tmfe48w2XRZtS3rk2y7sYwu8X3L3D82f2sZexPCvFiyR7ATa7iFd4UmrfetJx+nh32OAlB7RjOB2AQ1U4O9+vw+DwQAuLi5cNFntSNvTo/8l/UOBO1J++ctfAgDA06dPoSgK+NznPledKjAYDKDdbsNsNoOiKODw8LC2bKO0afl48sc8ut2uqZcxLZfdXj2J/9M+0OxobxnS9yl+shcx/ptUT8xDozfF5gvRYdnAVn6ct3jded+EfJkYePz/mBiBJAvoO0uHSfXy1O26/WJv+8TmZ8VBPHlY30hjRaLBGu8hXRfyHaTnlr8XKsMqh/oPkk2M8U2Mu6FuXK/X0O12tyYYuV6l5YbsYNoe6O/zXaIp/oVH1nl5KWa8bzabKz4MjWFQm0UrI8V2stJJ+Un0Wfnyv6lvu9lsqtM68PlwOKzSzufzygaTaMsRV7LGjaZPPLZYiv6y3od4KUbPN4065Wt+rCX3kBe0U/Fw84tnMaFVlmRXh9o91XeJ4dcY3SaNd8suojLPI1c8tiGi1mTsLhDjKHi+9aT1NGwsYoNKTcOrlCzgYKY7ZbUgBxoIuGNjsVhAr9erzsgHgK37IDWavH0T69xdFzx858mDHu1RliXM53N1tYvluMSmS6WXH5VK+QMArhyhoOVjGU3SszrHfOQcv7hbmdJFFydobW/JNO04UZoXVyBNy6QYpxcdCbr7Aidh0XGJ5cldyVyPocQRG2Sx8uF0SODHKXqNMfr/rnVY7kCVZETxo3jxGJef/OQn8Ktf/Qq+973vwWQygYuLi0oucTmCKw09NN8k8LsQB4NB9U6aaMY0s9kMZrNZJbc9TiwHl0OW4bpcLmG1WlUOKabRgizUYaS6LMTz6ASjrMFyPCshJd7KNcY9QLpxMnk+n8NkMqn6iO5uq1NGv9+Hg4ODahHdZDKBxWLhyjd3W2i8RY/NRT3yGZ4jxr7zBAH5EbTSGMXxgGMQ+YWe3oJAXvXIBou2srzcudLr9eC1116D2WwGk8kEHjx4AGdnZ9UOR6RZWtR2eHgIvV4PZrMZjEYj6Ha7UJaXJyNoR3ahDOLtS8fILuUCwFWdhQFPKuso7fgtLoyTfCwtKBmys60TaqTgnoVQcIqn4fevou09m83gpz/9KfyH//Af4PDwEE5OTsxy2+027O/vw2q1gsViUdueLsvLU2I6nQ4Mh0NYLpfQ7/evBNZCOgjrJ+3MiZH9deyZVN8Rx99yudyZPZWqoy3/WgLvk5T6WTzG86GTMTch9pQiwymk6xB4vk2U+2kAr7dkz9aVXXXykPQAQL14jbdcTS56yuaTH+hL8pjoYrGA1157Dd566y1YLpfQbrfh3r171dUrlBbM1yovpm4x8PZjk2MK6cY7LXnfoI6j8tPa9CPlLU0m8jQA/hgJ9xUBYMuuounoM6rnaDoJdBe1BIk3rP73xhc9eb5IMY8XGTFjLeb0mRi7kNuXFk2aXG8SGl9L4zyWHq8dngLXZGzMAM9hQPNGkvKMCSJ4hY5GSywkBuTlhepkCdYQg3vbRsvHI8ClYCe+5/Wgyo9OthXF82MacAfSarUylY3126I31Ca5hEQocBUyYjxBBfxN86NBFT7Ryb/VjBeOGN6nY9YjH/j//I6u0Pf4t3eM03R1HYcUSIJfW03JBX7K+JbS87GZooxSINEvyXjKE2W5HUBH2RE6go3LIyxPokODJ7hH6+H93hM0oPIyBSHDyMs7McGO3PDUP0bWhEAdKACoVhWfnp4CAMCDBw+qNPT4V02+estsEp425PTzdkA9widccaJLci4Rmn2RYovRMujkMbcttHpLupPmzeUQ1lcK/Fl1SK2fN40GHgigshMnovhdxtY9wCHQ45zX67U6QR4T0AnBq9/p77p90iR2pXtDNKTao/RdyObnuh3/5wFh6Y4h/l0MkA4M4g+Hw+oZnTDkPML7ptvtwmAwqO4Jp5MClGYpH/q/V5bwNvDAGnOS/ON2sNa+mAYDo167wOKNOn1qIcTLEn2UxuVyCYvFAs7OzuD111+Hg4ODK/em0m/QJpV8rRQURbG1kwr/4YJET51QNi8Wi6QFYnzMpcrOuvEfKc6QG5rNUFcvNWkva3TG1oEe1euRQ6mw8k5t5+vWm7lB/T6AuPrF+EGSHx7blqE4T4zPpeVRFzH8nOqr8/JoXtS2WSwWWzb37du34eWXX4Znz57Bs2fPYDqdqvEZTZdb9HK7i9sgPH0dGz3VhvX2vUQ75eWisI9e1uqOzyT/IVZW0T7z+ChUJ9PvpWf0qj+Aq/fiSvR5bLRQn1K6tXbxjA+P/e6NHYTo9OTbFJqUZVI5u04fI+dD+iGWBi+f8Tz4eLDGbyoPSb6eJ71WnjgZm6qkc6JucCqlU63vJeQyClMYLidyBIZQeXA6pdUZ9F4buoJsNptlXQnHjZubgFyCezgcwvHxMUyn0+roLIDLNsTdIEVRVLsvtaACfWYpcQ+PoOCjdz5Y9NNL6uv0vbYSHGmisBxYCdr7OvJFAj9axkOHVmePod1UgMMDpFu7C5K2Ae74xmCZBZ4XTiZJ7zg9obzqgveJ9jtUdgpdmmyOzYP+H7PqLla/7IovqaG2Wq2q4/Ynk4l41zQeZ4iB6ZuMOk42vsdxeHh4CMPh8Mqx99a39D47i0aqm6x7PpF/O53OlnHN70Xz0EbTY35audJzLP86ZWgd0OAQ/vZ+s1qttvhif38f5vM5jMfjSod5ZG4svVrg/EXFp6EOu0LqRMmLPD4B7EUkCG+ggX8rBf9yAPVGURSVvpxOp9UR97gLCP0UXBRi3fUmoSi2J0K5/YT14yfsePnh/PwcfvWrX1X3xXK9T6/QCPk6HqCfdnFx4bbV0M/COwv39vbg+PgY7ty5A++99x589NFH5n3rCO4bxizUqasHeXCd26o3afzG8A8Pwnsn07Ec+lsb49JzSx5gG7fbbeh0Olv+N55usStIdOdGqt7YJfgkmgTP5MR146aM09TYNV9sVKc+RVFUixV/9KMfVcfPdrtd+MY3vgG/9Vu/BW+//Tbs7+/DBx98AO+++241Kct1IQJta+26IbS7N5tNNbbn8/mVa+M4tHtIvfy2C75Ee0Ly9bDeKXR4rurj7WzJZDqxqtlb/Dv8TWX+crmEs7OzahEWvu/3+5X81mJ/qGewrTR+qetHcZ89No4Vwosg864LWt9xm4Omz1Emz5e+o7ajdTKOND60OQktLuONbWljMMSjofbiOiIXn4qTsVqn8mfe4FUqYgPo9LumjQMPQ9VFrEL0BPEtxzvUplJ6HDRavlyo0nRUoYQmDGKD+buaiE2ZZPDU0RJEnU4Hut0udDqdaqcWVbr8eCKr73nf0L/rOsQhB4MeO0vpl4IrngkzKcDkEdwhxcbT8zR0DPB0Eo2SwY307sJJpXTsAlY/8J0l/B3SaS0m8PSVhdSAZi6EjBHP9yGd7UGMAZwamMqZb6g8T15YZ8lJog6q5CBb8uc6UbcNuY6mR2/h6RUhR1ZzVmn6UPCJGu5WWl4G/57LVeo48DpL+sdbrlbvXQJ3Mu/v70On04FOpwOLxQJWq5V6l7uXZtqmaIPQo/YlxDg7Fk0pTr7FZ3VtG6mcFFwHr3h1qMbjFNT2BLAnvzyyGP/32nxelGW5tUjQSxemR3ubLiSlabTfTfvIEmL1kjYWqF2Ovz3tz/PjY9fKk+viOv6g9S3alLR8ulMbj1/HCWNeruSj5ACeEDWdTrcmx6Q+4j4D3nk+HA6rE6dofWkeoYWvMfxpydIcNmJOWW2VnWNMSrYkLYOmk55rtFnvY+mmNhX9F+Jn75jz2GqSzOQyWfOLvHakVX6Ttnqq/c15J0Svp72kfD3fhPLTvuF0aTad12fX6LbGbOo4TpEzmm2JOmM6nVbXqzx58gR+/etfw/7+PvT7fdjf34fDw0PY29uDsixhNptVeXKfR/OBJFuDnmiEz6k+1Rbw17GtJBmi9SXnE6u/PH5YyF7wyMg6cQ+PrxJ6xvPCEzJCp+RpNNK0IbnggWT38P6U/OZY/Zbil2pI4Wntm5sS2wGwZadXJ2jfx5Rn6WirX5ui05tOk6PePq5rJ2p6pvadsU05lanMv4tBo3VmrraoqxTrlOWpA9/14i0T707odDpbd9PFIKfjxPPcJWIEEFXIg8EA7t69e4VmdMBHo5FqmHh4FA0BSqcHNLjhTQ8AVaAY7+7iu9IsRWCt+qJ/N8EzGjy09/v9K5M7q9WqMsatbzkkx+emGA7UKJRowhXaCFxRhatUO50OrNfrrfu4NMcMJ/br3g0o7dCo46hoCPFkqDy66xfA3s1AnR+Pc4N0eWRFU+2S4xvLeZV4Et8NBgNotVrVSlSASzlFx+dNhqcNOS9wucXzWK/X8PTpU1gsFjAej7faUVsJie9oAACfYfkemYzjGxEKEuHqYH7Mk5SejnEaEIkBXSXsrVOOsUNlK70r9tatW/DlL38Zbt26BXfv3oW/+qu/gp/+9KdwcHAAnU5H3Pmt5c/HS1leTs4fHBxs7azx5EX/156l6moecKQ7Ca5rp1UT8jEVWnvyCXopWCZ9j23a7/eh3+9Dr9eDsizh6dOn1U4G/KctAsAy8Bku+uh0OtV1JXg0PE6kpmK1WsFoNKp8D5Qn0okkSCvWcTAYwK1bt2Cz2cBkMqnqSK9Y4TKT02othPAGpptAWW7vCgrJMMnGt8astPPVA6of6JimdKMNJLW/5YsgTy2XyyqforjczUTzvri4qCbicwRgvLJgsVjA+++/v7WbUhqXHn+LjkPav1KauqenpCDULlLfhvLR/t4F0AehMk1KQ+0hT/1oH+FvDy0AzxdoIXDCf71eQ6/X27qru66eTAnue/OyJi94+/A03gB2DtTJL4Ye7dQ5LUBOYZUR4y/GIAdv0b6U4lvWtzHPU4HtL/nj3/ve9+BHP/oR/KN/9I/gq1/9KgAA3Lp1C770pS/BxcUF/PSnP92yKwCu+uFUF1I5QoGn5eFd9/T75XK5daoDpfu6YucauBxHu5Ke9oD2G9qL1k5WKf9coGNF2m3s9XMpnZIP7okvUhp4/hzIq3WBfBqKI9D00jsuc+rIoJyxJMRN8ukkcPqa5Hsef6c2Ob3OC9PweBO1Rzmdudo4Nb4ak2dqzIJDnYxNZeS6BEmMJCkj67tQWk/5XsUuBZTq5p8TvDzNoJXeeYMEsQLKc9xhrsHinXyIQcw3VoDGyof3FwYLBoNBFRxAodftdmG1WlX3WQFs71iwgtcpxpGXL6Sx3G63Kwew2+1WF9iHeNAS1qE+1ng/pLTwGymdZxxrzgf/zVfo83Q8KG7lxfPhQepdGBKSfNDkDm9bHlCzJg0430jjnuevBYP5u1j5nCITOM1SP9XtL4/8kQJ9njFF2+6mgbcr/Z/+rY07aijSo1k/TdCCXdTRBYAtR5eOSc9xhppNyINoMeNNSi/1d4ohHrJtNDnh0SVeGiSaNMdVS4tHlfX7/WqhE8ob5G1ehxh66C5Diw+8MpXLE4snNJnmrQftszo+Qkq665KXKWPMm64oiuoY2tPTU9fiBy5/i6Ko7Fl05Kl+x/9TJiNwsvX8/By63S70er2tHY9SntheVO7hJB7yvzTRQsv2+KSegJRVN+sdrQMdU5Id77ExY8Yat7kXi0UVNLUCiiF5K5VBf2snrWBa5DF8b8lt2lZ14eVX/Id3DWoBWFp3rPNkMoH9/X0AuDx+fzgciosYUm3VHLDyo3aH5BNZPozWj7n9+5Ct7GmnmAUmdfUTlWE8OLrZbCobYbFYVJO0lvzWyvHSY+VnfePpe8nPD/lRHn5sUmd7ZL1kc1r18tq9Ht5KsZGkvtLGsqccq+80PyDUXxqNFn0xwDFHv1+tVtUuWfQnW60WDIfDakEUfifpZxzD3C6S2o3bLaH0WpvwtkgZy6H8vTQhD1kLdDSeiI1veOrhyc87xrTn3J5J9VmQlpw+ieWDW88A7PHE2zS3DVIHVvvdJDopLLkb8602bjWelPRnSF57/Zq6kHg+ld9y2Qe1dsbmYD7J4ZZAHRVevoVcA0NyYCldqXnuEp628wj7uoFpnDhE8KPONLq8uGnCMBXUmOt0OnDnzp3KeVqtVrBYLKDX60Gv14MHDx7AaDQCgMu2oscHajwaY8gjeABKctysvhwMBnD79u3qNz/WLkQf5h/iB/7esxPIk49FV2w+AHBlcgNhGTohg9ha5diUUxmCJbtRrlL5GlqwwXnMuxLQ4/SFxkAKL8XoKo8jSdOGeFRqe248flpkZip/a9+tVisYj8db6a5rDO0SVIdMJpPKCUbQHUOx44EHBurIU423AXynFFiwAiD4fheoy284MYsnk6AOT90JtV6vYTqdVouq8LoEgO1J1VjnyTMRk9oW0o4wL+/VCYBIeVloMvCbE3QstFotODk5gU6nAw8fPlSPKuaTAtim9KQdnCzFBQQI7RQUC5i20+nAfD6HDz/8EAaDAQwGA1gsFtDtdtX8UN7hmJnNZlCWV3cR3BS96QmyoQzDE42oLY8LjuhEeN26Uflyfn5e7TRFhNoyhgZtgoIuQsH+pHyHE8RNgPO+Na7p8fhFUWxNxoYmrfD47EePHlV3Fe7v78OdO3fg6dOnMJ1OXXbLTZA7mv7OGYhLBQ880uC4ZkNLk1C9Xg8Gg0HwnlY+EREDWibKYxoTQLl2eHgIh4eH1Ukwp6enrrtjc/UDrVuoj6Wg8i70adM8l9K/dSeTYr7PoQu0CYGYtrX83Jw+bAx9Gh+iTqF3d0q+UlEUsL+/vyVb0EanO9apLUPtJ7RTeKykKIpqYQU94YnT4NH1VC9dt46gE7GSH8bbuQl72opjUX6wJo219qbf8HuCEdjXUgxI0p0ckt6SbFvrW9q+lA5qb10H3+Ts7xj/8CYh5DN7+dHbb5wntDIxTYot4/1G0zNNI0dZ6mRsTPDfE5yyDCyLWWjnhRQGzydnZ3A6PQxS19CIgWfAad+kBLw4f0j8IgW/tDaz+E0KgnoMiJyI7Z/U/uTGJT3yggY9KbR2jaGBKk2p/6Rxao1Lnkco0ILHJsUYBlrZtD4e8HFt5Su1j0c+UR6mx/hZ4wjztGhJGbvXYTxwg5mv1gSAK7smJGh95e1vqa8s48Sj3DUnkabngTkrPwuUH3CcWPX2OKnUgE+hrQmHR4Jm9IVoteiT5Bq2w2w2+1TuiI3FfD6v5BadnJR4i0+0xBwRy8cLfybZAZ58JJmhfYeBSJRFfCI2hF06AADPgyk4kfX222/D5z73OfjmN78JFxcX8OjRoyoYn4KQ7W+923VbcBpy2/91aEmxRXJAs82QJhyvqY4yzbOpoIvHv/R+n8oX3m/opD/v97p60uOT04V4kh/lsRclGxT/D9lAkgyX0qYGWGi+vJ7cNqfPJf+Gg7evZ9Gnl+5YX8x6p/kIMfTGtD+mD9Hm+d6CR1fz8RTyUVNolOrIYw6UhzW/TcsLQXfae2DZNdJzKx5m6QVqX1u7/1NglUvThHxe3hdNy/Um4LVjtZgMynraRyH71gOJt2L0hMfP5eM8h78ZEw9IKdNaPBTS9bjbvygKuH//PgAAjMdj2Gw28Nprr4n04XUN2mkgtA6aj1WWlyc74eRur9eD/f19WC6XW4suvDIj5mSSphATh/F+a+UX0sd0fGp85ZG99G9t/IW+5c+kCTKL9z3lxMpMyW711IOn9fRvTr6UYn8pNGh2uxQTbAqW7xCyYTT9Q/OS5B9fjCC1oVa2lL9UF6k+9HmoXZvgdy94vuJkbKhxLMMnVtiFGtLa8SQZcTmdJ83QTxUKmjKtK0A8hpMnjZW/t89D+cYytlYXafDHIsZx9QqwnKC7JsuyrHahSEKvLh3ccOSCkwaltYCABk+Ahk58hIwbT35e2lIDJjFlINCYp0fU1B0vtD80+YTteV33gvCxggsLeB/jbgANoUADN4yl73PC0l2e8jWjwvpecnAtg0hKJxn+sTLkOpwxvCtG00WSPUDfSeklYxHbYj6fb6WzcJ3OaZPAdqBtaR1/jzKN7vTh762ypN9SIIRCswdS+BnrKt1PJOkiWiYNVOwqyIf0zWYzGA6H8A/+wT+AL33pS/D//X//H3znO9+BH/zgB9WJGbGg9YitE5dVnjEk5REDzgdIw676wqLrJoD3J//n+Z7iutv1JoLbyKnOfsjHkfxGyuupPMePNaTlSvlrfrEVP4j1PSmkNrBsQp4PleccKPPpYsHruEeVQ9IxFNSuDi1i5W0m2Ygp+iuW32JtNenUIM2+rQut/p6xpdVL+gbveee7ny25wOnR+kuLLWGbaYtekd+p/ZMTWttyu16qD5cv2jcxffAiA/156kvjM2tsecZ3bJtpvBaDOnLW0j1SPESK34XaReM/Xi7nS/wOZdivfvUrePfddwHgcrf6rVu3rshtXKih7XrFvOmR7hrwmpnBYACdTgf6/T6MRqNqMpa2B5ezoZgFb5cQco3BEH/SHZp14bVrpDTcDtR2D6be26rFNSRIY9TzXQy0Ng+V/WmGpot5HK4pO1Maw1LZEg2Sve+hE/nAG+NuSi54xi6m89LRVF+Jk7FahSzhFiP4LAESE/S0yktpLMlo0crXgo2cRv4sZCjEwttunIbYwJqUl8ULHnj5QEsnOWV1ypbeWenqDkgrKEDvzLlz5w4MBoPKOMPjRzabDYzHY5hOp5VhxQ1zL0J8zIMemuPD+Rz/73Q6cHh4CO12G+bz+ZbTF9M2XkdVokEDN55DeWqODqVPo5f+ppPPljNtKQkrIKGVvWt4xzQGCbQ21PRRjB7w9LHE0zH8WEf3SBNdUn15Gfyoa42uorg8fpbubozd/dk0H1F+5Tu36PvQ9x7E2Bt10rxoKMuyClzzYxw1uWLZBHQxjzSOJcQEd3ha7oxrMpLnMRgMqvR4FYC2g0WzvZpyqrxAOXp4eAhvv/02nJ2dwSeffALD4bA6stWj7ySZhkdiXlxcwGazgfl8Xu2c5t/E5AuwLWc1+yIEavugzLDy8vJeHdykQITVntj++D507FSr1YLlcgllWcJkMoFer1ftwMBrSCz/RBqT6/W6OiUF00gThCFodZzP55X9rNmHVNegvXp6egrL5fLKEb8azyLowjutLA2hdzGBEQqUjYvFAvb39+Gll16CxWIBy+USzs/PYT6fby18ksDvoPRCOqaRPg/J0lh5INkMeD/fTRmTFJwu6bc1Ls/OzuDnP/85zGazanFjt9u9cnS45I9of3uQIuNieJ/HXTQakI5ccRUNmt9lyVa0Kfb39+Ho6Kjy88/Ozqo7W7WyaB4WTfRvS/bis8ViAaPRqJqw2d/fh16vB5PJROSRugjZcNTf5e3B2zuUl6brX3SbXhqnCJTbNIYEoE9O5bRNaLwi5pvYtJb9LskxXscYvqkbO+InVWD/YPxuvV7D+++/Xy2kwatfULdSHwz7k48L/G69Xm/Jefqbt12v14PDw8NqzE0mE1iv11t2Vu7xr+WTyn8x/qCWxiNPrZia57lWjqRnJXuS/82PAuY00LpJfnCIVz00cLstJ67bf7YQo0MoNP9H4i1eVhMI2Sk8LecN6XvpuWbHhXQz59PYcRoqj5fhtRmpPsndP8E7Yy3Fh7AGuOd7SwBYeUkGp9dYtWjzwBPM8hoAdZEjSOH5rg4DaoPXcjw9+XFFUxcSDTHGSGpwBd+j4EMjqt1uw61bt6og8Xq93jpeZDabwfn5efU7FETJCc3wkN7jZOxqtap2wXrv9EPjVQr+hOqp8V0ojUdZeca/JQNCzjenV6I7JhjHaWna4fTIfgrarlTpo1GpGTRS3l7+9+gdi/4c/Of5hr6z+DVk9JVlWe1Mxt/aHX8WDZYRmQtFsX1UIAaMNBq9feEdBx55/WmCpPe89wfy8aql4ZMSoW8kukI8KsnLkJxAGdPr9SoaZ7NZ8IjfXTpQHlAnfX9/H1577TX42c9+tnVU2Ww2UydFLGAwabPZwGQyqe6dWywWYtDLQyv9Xyov1YamO0Sacp68eJHkBA2yhPylVqtV2XF4ikC73YZ2ux28d5D2Bx2LdLGhlh7TprQr5s13EUryCOXVYrGA9XpdBURxHHDaJP7ii6Q4NJ7kQYJQX8TYIdhvq9UKOp0O3L59u1pUMZlMYDqdqvRy+zd2vGvBw5T+pHxj2ZSa3c2vy5C+9Zavfe+hkb+nbRx7R/FoNIKLi4uKv9HW0yYxcWeVRiPnvRQ5GtuvUt09dsIufBpKX8x79GFR9gyHw+rddDp1XdESQxvXx1qgcrlcwmQyqdq63+9Dt9uF6XSaNV5G8+B6X4oBWWPKuwjkputdTRZK6aQ4p/QN3dFPge2Ku7B31TYhu1vyI2PkizbWuF3v/Ta3jUhtCer/0HcPHjyodBHKanrXLOpr/IYuXMI8pTtp6TdcfuIpe/h+NptV/rUEvgNXkzOpbaQhJlaixW1jy9TSSmPQQwc+s/wc3p68fElG8v6V6o/5aZPyvByMD/G68PpJdiClw2PXau/qQLNhUvJvWk5640u79ls1HqQ0Se9i3of4w5vGKjPGVo2RQVzmpdjDEm8FJ2NzwhIYHHRnoJVfHYQMGkzjwU03/OoiNShW5xutTdHYDA2gmDJvav+hoaQFLtGAo+lj8racNTRk+XjQDGCrDdfrtejg4U4FekQY57XU4E9deJ0l+t5q/9B9G7yuqfC00a7bUTNQrXbDMczvHuBp6P8x0PQOpceSQSlBGSmNxPda2TydRh+9f1lLg7uaQkf6xIyD3CjLciuA7gnKUXjoxTaiK493bQDfFND2wpXVyJ+hY865IR3SCdTGkwJIKXR7xmRRFFs7+LCem80G+v1+VLl1jPKUMjiwzTqdDiwWC/jrv/5r2Gw28M/+2T8z80vd2RYDjwPnaTPJ8Q9924ScymF/7NqGkRArQz9Ds8B+wPHoWShhBUt4ej7WOp1OlrFv2bH43mu7h3SFhxZNLoRsNf5drt0eHjtNeh9qK22ClvIRlfGWDYu6ndo9sb5zXUi+ZchuwLq1Wi0YDofQ6/VgPp9Xiwx2AY1Wy6/odrswHo/hgw8+gJdeegkODg5gb28PWq0WPHv2DNbrNfR6PQCArUWSIRo8NjzuCMfxXxSXO+7Oz8+rNkTaMSCv7ejPqce0duR8zn29WNuBlyf9vm7dnAJPTNVaFGTpDm/5yE/oJ3DeleSKFeSuK3+a6MfQSSEA8kISDmyrbrcLAM/HGq0zLnSkvhH6wjzmp4G242q1gtPTU2i329Dr9aDb7UK3273i66K/x+uTamtf93jKqcukeKlk32hth+2ag57UCaCYvK14G/07lE5qh6aQM29vXp8Wv7AJaNeMeo4R9x41rrVdbJtqMWgJEn/HQMp3S6JrgyXGmAkR4DEcOC08yEe/9cCij+dH/3nzCgnhXUJyRK+LFgke5pae5xLkluMUMrAQUtA5B7Q+Wq1WW/e4cuS8b0BKExI8UhtK41Rykler1dbz0MSvx1j38nyMQPU6CSHZ6aEhpo1DAZ/rGPexipH3c8x4ih17ocCJ18HPDa+hjoYMwNUxRtsxtLMI05Tl1ZXDPIgqlUX/bwK8LrizzyuzrN9WeZLM2UV9byJ4cNQav5ocswJomD9Nk+JkWr8lOpHn2+321nFu+B7/efVqioyNsRtCdQJ4vnL9wYMH8PTp062dNlaANlZn8H72OEseW1qSwzE2OP2GBvVC38QgZFdY72NkyC7ljNTOmvyzvpECsLE0cN9L8/skmrR0scgZvJPy20VASoIly1HWcf1KadfaxeMbpPiknrysvuJ0aTweksO5+CHWT4zx2zUavfI5lI9GW27EtDXVe91uF/r9fiV/pB1euWmObSdK73K5hOl0CoeHhwBwuTii1+tBWT5feCr5m15+53RKsQOUAbgQrdfrVRPcWLa0MzlUngYP/3v6TJNPEjx25U2Ji4VQV29Q/qPPYmIpVrwB+QXzp1cweU7Z0Hheq4eH3qbHfEhvUPCFrEVRbJ3OgWOflkXrQH3hsiy3rknQeIPbHfP5vFqIod0FjeXmXKgZo8skemLGfB3E5B0b4/J+p8nYkO2lpeFpJR7mzzTf6UWPfzTpM8RA4hOPLNmlrrJsyhBNMf5jiLdSbELpWxoXiIVEI9czMflqckJcXuMJ/uDfTTBIU4PGAiogjxJq4pz0WOxaMFLDNvaeTwqpfesEqDTjy6O86mDXRvxms4Hz8/OtAGudABiALlC9x+dq+eHfOKb29/e3jHJ6ZEas8dMk38cKVIB69NAdn5aTHSpDWv3OjXt8dl0GFe5spKuvEXhfEg/Ehla4hwyGOqB3lebkPcmBldJo8ssywHGMUUiLGzAfPP6I7rzndW1Kx2vACTJ65+Cu9S0NDLyI8Aa+vPXLyQPSxIQESy6mBLVD5aH86fV6MBwO4fj4GE5PT+H09DRY/xRnKSdvId24mn48HsO7774L5+fnW3fRoU6IobPb7VY2H22H9XoN4/EYRqORqx8RXF5JbVeH1/BbOhHxogRcm4DHyZeCgPQ97z8pePPo0aPgSmbsb54f7sbAO2cleyaXDuDHE1O68D21nfBvqjP5CSfUd+RjLHTXrScw0ST/4i6b4XAI3W4Xnj59Cufn51t3DyJCASSJd2JgraKXgvUe21gLDGE+deiN0aGxOqvb7Vb1Xi6XMJvNrlwZ4Kk72lEaP96EWEYIdEzhWNN2hmFaOkZjFlWl8kHKGEX/3ZocQWA9+H2BWrn0OU72npycwHK5hHv37kFRXO6QRXlI78NGpEzIaG34otjSWnA1hv5d+w64W1LiIR4fk+wtOlmvTQbFAK/74HeY5moXS/55y6gblOfxFU1nc1lLTyvgNi8uIpH0GrVLUK5Tm8WzU5YCx3u/39+SA9qpHKE2195JqGvfxE5+aPJIszdCtGEa7Ef0jTw0YN+mtLOWJx27oe80m0ma1/HI/06nI8YaJTp3jeuO4bzoulBCrjaNiUN4YjjSuMlBqxSX4H6xFquKlWtBCS4R4ylEawSp0SShYtGhlRNqjBhB5zFycwbncwSgYt950nocXkwn/U3zlYI72jex8AZdY43q0N+efL19rAXCcGcY3e1CHU4PDRZCxk1dIUONT1pHzeFJkQOeNKnjPtR/oWAb/1vjVWqISwEnqb28/eYdx6ngjopFBz7jPOEdwxQenolBKNgnKfsUoyJkEHtkpBaY8wYrNceA560hJiho9a3WFt1utzqyDWD7WNu6/azRxml6EQ3nOnoAEdJ3kvOmjY1YemKcGK8DKkG6MxCDWniUF58IoHnGyuMmQHUG0odXAtCJWBznsYu3eN5YJpZDg0seOUDz5eXEwup7r66uax/XRao9yu2C1IAYbUPLNpNood/hpE+323XZ37QcSjuOP+k+11B9vLpBO2XG4iVuu/LvNIfcst+8oGM8lA/XW5rsxjzxjl7cMUPlodYesWOO14PzjpUnr1NIDmsymX6XS043aRvQOwRjZDblQ1p3KR3/zeXLdegy/luSE5Q+1Gmr1erKKReYzovrsPUk/R2Cp2+oXU95Ce1qOiYsHyAW12kvS32uyRuP35zDjs4Nzd8LxS00e5rnZ/nuHto8/Bzyfb1lWXrIsvO0tkqJ/XjosdLSRV8ajZI+lmScxOe8bvgd6hRcHI931S4WC5FeqXwvPOPJI8+s31ZeEi96/AMtDY+vaH6uNeZi4itaXhI9FkI2ljT2tfbgMrZO2U3Ba2N65FEOXRjjc9wE1BmvWlqv78D5y1u+JPeaauOU+AMF/9a9nKaOktZWWEjPtQvmvYLJA0679wz+m4DUoJX3Wy3gAxC3moEjZpVlKCgSSufNz4NdOqToVOJ9duhEjUYjAGjmLiPv+5ATo/EJOsxa/yOP5V6xXaffcsoaCaG7Y2PKjXHidwEua/iuG358Ef2GQ+ILmldRPN8Rhvef5oA3OEKPGIoZHzn7ixvR9Jgoaox6xhPdDUyf8UB07PhIre+rr74KX/ziFwHgko/+9m//Fp4+fQqDwQCKosh2N5gW8HuRETJCYwIHofc0CMP5JIUGHjyXQGWox75BWYL5t9vt6n5Y3BnC69put2Fvb68K9HKZcBPkrodnO50ODAYDWC6XVT3r2kR4dQIGeAG2JwLo7ybRpLPVJHLQje27qzsSY0D1Px17VtqyLKHX68Hx8XG1GxCf0/+tfOrKb+7jYJ7S0ac3ATRQGwoM4P/IL+12G6bTKbz//vtwdHQER0dHsFgsgrt5Y+nDHTfUDqH3v1P6U9uY9psUvAbYngy+yUAa2+027O/vw2azgclkEvyG74yjutlj/2F7aXfSNgVKJ90NTH0FKT6DJ6jgLjHO503fiR4L2g+x9zaj78THpjb5gv/j8/V6DU+ePIFutwtvvfUWXFxcwL1796419pUyuSPFgPiY5rpVaiP6m8tOiZamYwJ1QXkLZW6r1VL1VsxkkNQ2vE1Rz2Osh8oi6pNi39QJYtO0uX3pEB9wvvK2oXRqCLfb0JbGu525PyXli2noSVIa3Ug72lUAl5OxvV4PDg8PYb1ew+npaUUXyhxJn2p9aI0xC9oYbRLIl/wIaYsu3u7ayQY01qXlS2NgWnn0mQSPrxyCp+25XexdgEvz/wxh8L68if7tddvPlO+uI2ZHbVVOlzRuvfRdscIkB0b62/omBE3paUonpBQleOiOgZVHTKM3NbBCwlsy0EN18gZSPUGSupCMcKn8WH6Joc0y+K18tfbhz+kkEP1HnVWp7+q2r0SHJx0HF0btdrsyUtBZoP/T+lgCNrZ+HiM6pl70m1hZYhlzGg0eR1LK4yZCcl64DAo5D7ye0thApBgvOeSX5ARZ4yhW7khtYTlqUjp+R00of824SEGojalj1O124fDwEI6Pj6HX68F4PIbpdFo5iVxWhGjzOoQWPI7nTUJKXa128gZmQjaih/dTx0YI2hil/IQLorRAnSWPr4sf0PFHB2E6ncK7774Ls9kMRqMRjMfjKl0qjVhvujtdS0N/pwRhPN945B7P1yq/KeSwO3PQoNlUls3FA0/Se66nNX3s5Ts+Hr3fNAGvDS/Z5aFvJd0aCqxJPq01DjV/gfcrTnxJC6E1urRyNdvDK3s02i0e5PC0If+ujo0Q4wt786HPPJPj0ni2IMkCSTc2rdM8sQj0GWlbhOzgoii27kBO8QssSPZnTFsVxeUimsViUelvfC4t1rX8P0t3Il10B/ytW7dcC+ub6ntJR6fYAallSuXF8IcmK5Avcy+at2xNmkabVNJ4M8Szmi7Q0kq0h9rUakst7xBSbE7+ntstHvq8/j9Na/lT2jeeunj7CWWQVL6kf+u2rfaNVxZ52jT0nMcPNNkQqktIVll6VSo7ti/pOw8tFv+E8tee83w9duKLgF3RHbJfvbGHFxEx+o1/o33H85D8LM+3Xmh2oKcc/m5rMtbDgCmKkTMX3YGD+Wnn79c5PiU3017nIIgRDh6jQHLOaXopaJ+Dtth8Yts8ReHElpXTYeB5dbtdNW2d+2FpGbxcT9qUcT8cDqvJWH4ECh677EEdRzpGpsU4UTn7vakycueTUi4tm68kqrPTHsfJfD5PJ5Aghcd3GayQnAZ6lx2+s3iYHvub467pnHzV7XZhs9nAeDyGk5MT+If/8B8CwGU9P/zwQ/joo4+q+tIFHinIHZiz8m6yrF1BM5bLstwKFFv94Q1WcpmRithgTrvd3tqBFBtQkyYKdoXNZgPz+RyKooDBYAAPHjyA//gf/2NFT+wuHArkXzzGDFfg4x1W+F4LTGIeIbssJZht2bDeIMWLDI/Osups6RlpB5bkIGNa5K+cJ1RcFzzBJGwr1MP4Pz1mGdssFKiOmRiwAnU5dY1mc6DMp+MfIbUbvRczhTZsV/ob86ftmyp/vUHm6wSVv3VplWQy9fevAx55gTyEx2oChGXbYDDY0o03rY/H4zEsFouqTviPnzoh3VFNYQXa6TicTCawt7cH77zzDnS7Xfj5z39+Ja001mjZu0RItkjjnqcNTYTwOtfhk263C51OB2az2c7vYi5LeZee5TOG8tP0PdVTXGdROcLL8dh4sXag9H1OxPoRGrTJBSkNynprxybmVbe+4/EYxuOxeI8tp02yF5EOShN/XxeetotByoSM9Y2WD7/nV6Jfq5Pm33j4J6YMC9zWorJSkw/47qbp2s9wMxDSKU2Wuyue5LJCqp9UX3UytglHn0MLmHiDN6H8Q6BCBjvLUkZa2Vb+IeRQ8DG0aAEsK+Aq5RMqx5vGE4Dw5mfloQWeLCXnUbyhoImVr8bjPNCjpaXpY9vdk9ZrtGjOETUmPc6Jx7ny5KHRZ6UJOX4WLbz9pYBHiKbY91o6zluewEUdeGRQiMbQd9RxRtB737z5WTR5+pnTEJKfXki8F+KhkDzQ3gFs3zcdcvh4nho/pThh6LwXxeWxdHRyvtVqwXA4hOFwCL/61a9gs9lAp9PZ2u0Qi1hZH8pHgoePrhOarqDPY3QxTct5j9tX2njVxlqKbAnRSidLVqsVLJfLKviJvLhareD8/Bxms9kVGqksatqBSEVZPj/qTDoeDWHZSvgPg2t4X70VeJFkg9eOl+zvptrX4xyljNsm+UEaV01Dcio12urUnfIYPUobj7eV+I7KFG08SvarZddimfQd3ZGnXb8xGAyg3+/D3t4ezGYzmM1m1f2VWKbWhk30Y8xY32w2sFqtYDweV8e+oszwBP68PNLpdKqFYGVZVjsCY3wMzUf3+OwW7fjsJulq5Ht6rHNonNGJFo0H+AQfwit3JVve24cecNtgMBhc2eHKcXBwAIPBAF5++WXodrvw9OlTmM/nMBqNai9gDvFFSt3xG6QNbY9erwftdrsaG9wfjuVRze9qtVpwfHwMX/nKV+Dp06fw9OnTaiIRTwW5qbYNRUhn03Fu+ejUbknxYxAoS7E/sR0pD6b69V7wsS35lrG+juX7STYbpQEXOUryxbI/Pf6t1P88VsB5gKfX6hyCN3ZhvbNiMxYvajZEqpyQytDojtHXPJ3V/nV9cg0aj2i/JVixGPwebUFLBkn00HdSeSFIfW/lY8nEkK+ojTspvcaDMe1g5Z+CUF/E8GDK+IqJGcS0z01DiH+leJHWNpau0OJOlszh+kFL57EDqJ7jslzSmSG7Sr0sogmDLEZZpDBjqIGl9NI9eTF5NIWmBp7F8BSeID1HXZo9jk8dI0gqL+bbnLzgCSCEJjAtY25XoDTgMWcIzSmQvpW+4e9ywmrnJmST5NRoyDGOaD675A/LwUJ4Vw1bedHgVN1x6WknzRiwjFeAsMyIcfyswIFEp5Y3TnzyPL10hZyoGKOz0+lAURQwGo2u8MXx8TG8/vrr8JOf/AQAAPr9fnW/VZ0+lwy0FyH4lANWX1NeiG0Pie/4OMV3vL1T5BNdjBHKA9+hwzwcDgEAYLFYwHw+h9VqBYPBYGtS6OHDh+I9hNSYv+k8g3fP06C+t61xwhrbGQPE1j0p2Da4MyMmEM6DA1bAzYuQDLvp/UfBHVcrcJKzTIDtID7CE5CheVhlYJrFYgHtdht6vV61y4cfnRvSe6ntIY1zHP84GUT1fVleBtnb7TYcHh7C7du34Y033oBPPvkEHj58CBcXF7BcLquxUJe+mHp4bDCafrFYwHQ6hbIsodvtXpl4lr7x2rKIwWAAe3t7VRs+fvy4krvYlpgflyeSfRZro0vt30Sf5JIrq9UK2u121S44qaHZztgn2F6cV/EZ6gM84UDLS6ub51nMe5qG2wZFUcDR0RH0+/1q8dTZ2dkV+m7fvg0vv/wy/O7v/i4cHR3BD37wA3j48CH84Ac/qLUr20t/an54NDjqzL29vapv6JjIVR7F3bt34ZVXXoG/+Zu/gYcPH0K/34dut1uVqwUxm0RTsjFkJ0oyJoUWPOkLbUlckKP1oyYr6rSzl29i6hfaTctlDYJei4N8TmW7ZUt65ShP7/Xhb4LMD7VpSOZLyF0v7md5yq8zlnLqZJqH5Fsg/8XWUcqP65miyHdceQjIR1pMx6qbZFt7bT+pLImuz/D3G5bdmCLzpXxidUUsvVp+krzT8gmNLXUyNoZQaeBLzpC2csQb+NXKp8/RibbAjX/8u67gyCV4QspMai/NqJPqan3HvwnRGHrGywo5elzQc7qsARvjoHuDSdo7r6LxCpdYQzGG10LjUwtyaGNZy1vqG+rc0fwsIcbzblqhe4J7miDH39qx3qGgssTjHucRv7VkXZPtFisbEKnHf6JjxwOjsfA4a1qfa7or1F/Su5C88chKnl7iTap3ceW2FPSi/1tyUpIVVp1DfUR3PQyHQ/jiF78IR0dHsLe3V028IhaLBaxWq2p3R4oTVQe7LCsEq1/4cyvgI+2QwXf0uDOpPI8ul+S+ty4eoxnp4AGjkOGNd8Ni/aWjAfEfzYsHnnLyRA4bFOvT7/dN21mSIfQdPVorVg7xa0hibaBQuZxe+m2Mc2aV4XXcbhpCciEkz73t59VzKWlS7ftY5Az8pZQjySrNH7P8Ivo/TYO6P1dQEOWidDqFpX/owoG7d+9Cr9eDs7Mz8ZoSy5aiMpfni+nr9mkOXtDsPMvnovXyyL/QuA59y9tOopO2Z90xHfrG0+5lWVYLHIbDIZTl5UKCt956C77yla/A0dGRmD9OMl43NL5AO0SyyTnQzompD027XC7h0aNHcPv2bXj99dfhnXfegaIo4OOPP4Znz55Bp9OBbrd75R7JXSMUX/LYBlIeMXYzt/VC32C62WxW2ZJF8Xw3unYnd4hGC9K4pzZYCiybSJNbPB1OCNMYBZU7MeV6bXqaj+W7p/J0yBaOzbeOjYn8GWtja9BshBj7UYOWh9VH3ryl/Kx0UptLvFGHRxCod/AfLszQTqXQ6q/pZi0N/vb2leV3chsAxy8/WU2SN5YsiuH5ujLSi5tgI1i46fRxhMYz5S2A8OYtLX/Kv/xvCdrYsMYA/z6Ub4reuTIZG9MIMSjLUgzuac5KKjwGLU8f05G5UcfoDKWxhG8MPdbzFLpCShjTeJRJbH/lcrZTjN06ZddxdFPpqNtW+D1dqRlybGINMg8vh+oR006aEKdlWYERKzCnjQP+rq7BWAcpZVrGnpUvNWRxzNH7D2NoqcNXFv0h/pMCW7T/LKcgFESV+EySS/iMr7LF7617P6X6pcgiDXRyfTgcwm/91m9Vxxl2u92tsnA3B223FCfYg5x1zIVcQQSvA03vEbKONbTKknhY4rGYoK9Vntf2oztQAKAKlOECAHSauT2ptQelJxWp33KHptVqbe1ySYE36CsFg6jOsuSu5WRrARutbGvXplZGLOrYIrlBdWNMevqbguseqndD+ebyDbztW1c2U77O5XNivpYd580jlIY/CwXmPMihR7UxSu21W7duweHhIfziF7+A6XQaRQe3XSQZTHdiSQjZcjn0vmXzUVj2fmxf8PEbqgedjKWyQYuf5Bp7FkJtVZZltWO41+tVE4ZvvvkmfO1rX4Pz83MYj8db4xB9BmuHYm76Y9KijsbFYZ586tgey+USnjx5Ant7e3B4eAi/8Ru/AcfHx3B+fg7379+Hw8PDyia/Dv9SgzSWvLafxU/ePtPGhOSzYT/u7e1VC4jr8p8nFkbTSbHMWPvFwwNWjITvAkKZw9tBoy9HLJbK05jxyWnyxGRTxj+lUaJbA/fzNf7wjAWrPil9IPlLVplSjMvTlpY9G/MtlhereyWfmsZUcDEGwPNTEGLs9tjxF+orSW7Sbzztb9kNvL+b1B+e8Wh9Q3+n0JlqK15HmTcFvM70fnNuz8eO/xifKzRmPLFinrc2nrx6G0DZGSsJi5xOiidN00z3IjN1LGKYMgVSYDw2UMQDijz/WEXN87d+W8hhEFr0eIylOoh1qrwCnxtq0g4i7z2xUkAX80lFarvGGtTaEVi8j1OMKm/6TyOQH/CoTBrQ22w2sFgsRP7SnBANNFhIy9UWEFBe9TplmrMVolNaRRwTqJGcKe4cW+BtkxvYhrxOw+EQXnrpJej1etDr9eD27dvw2muvVXeB0e/rlv9ptAPq1gnHG8p0bZxpEw8e2iR5l5qXBMrvdByt12uYz+fqJDHylzWJvAvZW9fZQ8ef33OpOd8a6PGhqcEZCk6DtLAmpZ3rjOVPuy71gLc51XPaMYWWrc/TWsdk077DY8OpjqVXptSdJNDykejibcCDhhhIODs7gzt37sDnPve5KsAwn89hMplUi8donWLs45zQxi+1ryS5TnnCWrgVY3PhLka8l9sbCOTg/oMlB7z2WhOIDfIWRQHL5RIuLi6u3B+r2Y7c/5bst+l0Wh2Ju1qtRHuK9i/neY3WnMAjXgEuj3w9PDyEz33uczCdTrfopWi32/B7v/d7cHBwAF//+tfho48+gm63Cw8fPoQPP/xwa1Ls0yzvJT6jxw7PZjN49913YTQaQVmW8NJLL8GdO3fgtddeg9FoBGdnZzCbzW60XcxlhTfWxHWbJONC/EzLQllIj5um6Siv8lNX6sIz7nLwObfNvfFZWk8eI4mxIamujA1uU1pSJ2JwcSP/Nlc8SQvaa7TF9kNdNBGPlGIolp0ZC6vdKHDM1hlHlLdWqxUURbG16YwDT3ijC4FDqGvzeqGNLT5+Wq0WDAaD6tlms9mSdZLtn6NfNZqbinHfNLyINMcAr7SiqKMvY/2AVL7QZLHlb0jvtiZjpSCIZPiEiLLehwimFYtpmJBjLT2/qcxtGQq5DCxrIiP0TMsT4TWOJXAe5IEC+s5LS+w3oXdeA9CiR8rPw8MpkBwWKzDraSs6PrmDi0EAbnBpCAXzJLnTRGAl9C2lQwpacbpi+1MyLG6qjIoFDepobaR9Q1dP4T967ymH5kDSZ/S3J9DEaU41EGLlYmz/S3X1yEBp/En9FVN+CHyMY2Cj3W7D8fFxtZq83+/DwcEBnJ+fq8G4GMTKOk+66wY3CDW+tXQZzaPdblcTCNK3NNAbw6M5bLPYvuBtoN2Xp43rphxJCzkCElLg2WOD8zwkemibaLwWgxi9kFpGrjw0p82jR0J57BqajsPfdPxrNGs2LbcP6TOuk/D9er2ujiKliyhi+DYVks2pBT9pkBgnL46OjmA8HsNkMqkCC1bwkdZL0rPSmPMGnySZJY1XTMcXpGn01NGHVLYOBoOtu2o9i75CYyjWvuF5pugVzicazd68aZ4Y5JT8N5rWKouPQ9R93W4XAODKcbQ0jxA/as9iYMnSorg84nUwGMCdO3dgMplAv9/fWpyBaLVa8NZbb8Err7wCBwcHcPv2bfj+978PRVHAhx9+WKXhY7Ap+r1I+TaGp7jcWa1W8PTpUyiKAg4ODmBvbw/29vbg4OAAjo6O4PT0FBaLBfR6PZfOiq2/Z6x4UFcX5LIv6diiOovKdLxaRbuLW5PTfBzTfpTkTmzsgY95KY86tq/md4booemonK7jh9LvrfGjtWGKXy3pGEzvbRNPfhp9Fm1Svlba2PaX8gvpqlSk5oH9EHOnuNUOND+pjwGe6yC64Ih+nwN1bBr+vYZut1vF5dbrNSwWi+AY0eSaBa9+8coUKW0qL3ry1pAynj6NoDJZarvYO7MpYvReiMaYtBYNFq+Jk7EWUo1Hq2FiBqeFXa80lpBqnIe+SREYIeVaF5pRUFfIaEZQjvw0aAGRFKPpJsA6w3/XsHZFNI1QfaXjXjxGJF0kAADV0UShMUfzkuQVf2atsrtpwKAedRw1GcF3UuP/kuPiletSP2nvJZqk3zHfcCOY0k2PCg45gSF4v/eO9+sYn4PBoDpKdbPZwNHREfR6Pfjggw9gs9nAb/zGb8D7778PP/7xj6sAkRSEy4FdysQcAcCUMnngwKKh3W5XRyzhLnSen6dMjtz1rtNv0kkOWp5FUVSTKzfZgUp1Wmk70N0eZVlG6R+pDW9ye6Uilo9zT2JwOWiN6euQN58hDTzYiv1K7+WS7nKmfYy7/6SdlDQfHOM5QXdCIXASYrFYwGw2g8lkAsPhEPb29mC9XsOTJ0/E3UcSQhM51O6k9hb9Pies4LgEaZxK49g7ZqVTBWJOMul0OnBwcADT6RSm0+mW7V5nEiYGmr3f7/eh0+mo+ofS1+/3YX9/HwCe7wJ96aWX4F//638NP/3pT6HVasG9e/fg/fffh263C51OJxvvv0iyFW26VqsFk8kEfvKTn8DJyQl8+ctf3koXIyNy6EILmt2qxWswrdcWovxu+ZkSn3KcnJzA/v4+lGUJvV4PvvKVr8BsNoP//b//d3DiLhVcF+TOGyA8+ReCtkPWWz5F6uRs6HSP0LcAz2UrvTezzkQgwhtHlSa0YnySXcYy65QVO1lSB5Y9QWnh76Td0tzWmM/n0G63odvtVryPC8xRt/EdsnXmQjQ/o67fSscaloH2wnA4hHa7DQcHB9WkLIKPD+nES0/Zdd7vEin99Wn0j73Aq6DoQiWOoiiqayZyze+lXHPHaZK+98g8q0zxmGJtNldDqFKSw+FNH0LKhKP1vO7gyCFAU5VrDB25hFjKJHFMnb3GV8jI8n7rMdZi+TmUJmZMpPBnriByjCErOR/cSQoZPE0jpgxJJlL6JUEcEs5eQ0lrn+tQ5BoPSI6OlpbXWXIypO+9dbYcda0fpQmrUD280IJ2XmM0JButibaYYDxPW4e/QjyLx8bhIgYMFI1GIxiNRjCbzeDs7AwePHgAi8Viy2nJyfe7HkMpcq0ujSnf47jIKYe5E0uPz+PQ5ICm12Mcu9igd1O6qI5Ot+DRy3XrVGcCMKXPciDULimBmVD+sb5MarDam6aJOqZACn7ftOAEpYcGvSV9joEoeppADLR80S6R/CBJz3OZHdLDUr2kdN46SGVhoGW5XG4t8qATbbwszTaW2kKjnf5v6ZncOk4LrqYi1d6U7EJ8h5MTeD9oDC1aW+esKx7rijvlMSi3t7dX2YMoP8bjMTx9+hQuLi5gOBxCq9WCvb09ePvtt2E+n8Obb74J4/F4a1KlyeOKdzXpIY3bUJwDx+N6vYbpdArj8Rim0+mVa1l2iVAcQBpPMbJKy5/LES4XY+lEn6bdbsNwOIS7d+/CdDqtTgFAWRWyf7RYgtYOktzUaA9Bkh0e20ii2ypDaudcMcum4m1a/CqUr+azaM9C9eS8mgu7an+aVw7ZyPvK03ccMW2p8YAUR6L1RJtXi09Z8i+lnaSxqfGsp+9pvajvjrq5LOVrZ64TMe0mtVds/Cy27LqxxdzIbQ97ypPsfIQ2VjSE0lLZoOkuTz/WjQlIeYqTsbkgOYYhgykFORg4R3CqCSbe5cCoA6tvveD3HdbdFajRJAUtOPixXXXhGeAhw9cDvmLLu5okNRAorZyts4Il1C91EMrb48Sg08XvzuJBMquskBGGZaDx5qGd0nEdQJq1MecJUFnjjN69lhJI8bZLKJhalvL9yLF0xBhqdCWuRZc3v1D6JvUY/o9BNpyExWd4hNrf/u3fwsOHD2GxWMDp6elWMK0umnJmbwp2qdc8tCDvdrtdGAwGcHBwAP1+Hz755BOYzWbufAB8gQ0OTxp+LyX99ibwiUe2xwR0QrAC+rnaQws6arQ0iZQycuvbJuop2Sb4XNJhnsC3RDf+s3ZSWYEHlEsYzKb6Tgu2pYC3Bw0eUXsW7ZlOp1PZHPhcarfz83P4xS9+AfP5HObz+VY+PC1tD36PJZYLcHVXZ8rY88gMvOsM20PjB+176VmsTYR9zu9epGXwnb38vda+NF8pQNtEUFvy5VL5lgesvH0D8Hx3Ck669no9ALicwMRdOzE7AneJzWYDH3/8Mezv78Pv/M7vwMnJCXzrW9+C999/H/7iL/6iGmP/5b/8F/izP/szGI1G8PWvfx2++c1vwv7+fuWn/ct/+S+hKAr4/ve/X9WZTz6+KHEWjlh/luPjjz+Gv/iLv4DRaLRlG87nc2i1WhW/hHbIeiY7crYxPx0CZZbHR9BkMaWV/m8FYwGe66yzszM4PT2FV199FYbDIQBc7tr+whe+AE+fPoVf//rX1Tjmi1GaQuyJAzT4bV1lhv83ff8tvgvJPK/dwvvWAo/j4DeoS6S25fEDyW6WbGtNT2j+Du0nKX+ah2ZHNQVJp/L60fshQzEjjTe88QyanssIqWwtpuO1g3kcW8ub96GVL9JK6Y6Rpzn8folWjN/kPmXlpujkJn2ym5YXgK++uctcrVawXq+rHeQIjHuu1+vKlsPdtLtGiu8p6QFLHwcnY2MFXh3EBJtSvq+TdwgeQS2V5zH4eNqUQHqqIg4xYa6gvpZP0waEh0atHySkBoy4UWD1Y1NtsWsFmDPwKhmzMcFpb1puqFn9ZjkDTeA6jBfunFnQjElP3+A/elyFt77WWKI0eBw9iX5ehuQUxQblOJ/VCepJMilmjGiOVUr703J5vhg4XC6XMJ/Pq92wUmA+Fry/vOMwZbzmlGupCPWvl9dpPtpY4WXge8kRxQDfcDiEXq9X7ZbyHlVZV/+FxlGqzRLbv5yO3LatFdyQHHMp6BQKZlk0xQS96Dep9lOTCNmmTZcda0fETtpIfGwF0ySEaJSCkZKcoL81GeKph/ZNyLbzlsnLwp2x0m7/OjatFdjVaKVjWTvaX/JHQ76jBS1ozMf0eDyGTqcDk8lk60g7yY6W6h4rT0J9WUfexI7NlLKp7WvlFaKTf6flK31bhy88tEm6EG2+1WoFs9kMHj58CMfHx3B4eAjHx8dw586d6hQV3Nn59OlTePbsWWVLdDqd6ghjnFSUaM8RgNR0OJd1N0G/IQ3tdhum0yk8fPiwsgkGg0F1D3bMWEvRD570Hhq4vojV19K4lHxV/F/TX8izuCBnMBgAAECv14N+v1/t6l4sFlf8Owtc7nvT8vpp8lTKV4pzSM8lve6xTbwI+SOSTozN04LXV+f5arIe/w7pghhflfJhrH6UaM0BSX/X9bdiywyl0/jVGkP8b54vz68stxeY0WsmAEBceBfK06LByoNCq3NM/hirwYVedIEJtS9C8qAOX+zaN7PqYo15mibWn+PpYm2X3GiiTC7HeR1j7VZPOdJvzzf87xSZK6HRnbGhwgHqd2xqp2jfxjipu4R3xd8uwMtJoS0k1HLXxeMs0DR1V/qE+EYyjC3atG95OsvIyIFUIaRBM/JzQTJuNRpCkFay0pWQMfc1aeA7NW46iqK4snNTa2uuSEOBHn4nb1EU5tGmVtlSOs/KZMnZ9hr8WIdYRS/9pnnS7zRodyFL+VKes/ouRJ8ELR0G2trtdsU/GtrtNvR6vVpHyzVpnMcGRq/bgNbakI9PepxfbBDIkoXD4RCOjo7g/PwcAABOT09hs9lsOXJWPYrCtwOCg9LEjfsY1NWv121P0sAAfRZ7L67GyzG2DSJ2bMcGnl5UxNjNHNfpu2h8JAWiENIRbp7AQ+oYpt9x3cp3aFJdfh0rsykdVn1pUAyPxqTfUXutqaAOtQNxoU1RXB5l9+6770JZltDv96s02KbURuF8EAJ+S+89pXZmE6jTZryuUp6e8Sv5ezwPj3/Jj4wGuKofmoBm567X68rWn0wm8Ed/9Efw6quvwh/8wR/A5z//ebh79y788Ic/hP/3//5fNdH1+PFj+PDDD+H8/Bx6vR4cHByY5Wr3lHnp9H5Hy8q9gygWZXm5Ex7v+zs7O4PHjx/D66+/DicnJ/Dqq6/CcrmE999//8p9hruiL+QL5Yod8fFiyRvPWOx0LsOpT548gcViAa+99hq0Wi34m7/5Gzg4OIAvfOEL8OjRI7h37151pHETdo8kV7R0Vt0kv8wKlAPYscCQfynRTeU6BddnAFBdecPLSxm7Hj6U4JUp3hiCR3bTtqOxGB7fuG57WeIdyefgY4L+bcWL6P+W7pd4QuLzUJm4W09Kh3Var9cwmUyupMUdpRjXmM/n2eLATYLHws7Pz6Hb7cLx8fFWnAbrtFwuk6/u+AzPUUeWvQiQbGDkGW6bFkUh8lTT/q4UQ42NBVn2+NZkbI4JCy2vmAC6p6w6gzvW+KmL2MCRR6GEvvW8zyEgraCA9sxjTHvT0jRcgVuKWHKCtTItGmLecePfayh4ypP6lbeBZWBYZUrvJCciJX9pbMT0vYQYwajlG8PX/HmszIhxHm+iMrbGGr6nQTcJWrvT56HAkiXbLCdQSi99E6qn9XcogGrRTx1PiXaaRpoEk9rOks9aGTGI5VMM2m42G7i4uICPP/4YRqMRTCaTLSd7l0FBjlQHnQaWU+mPka0eGcXzRt7Bf1RXIU9Rx98LLBPzRCM6Vz9y/WGNIQ6Pfgzp6ro2VMz3Me0WCrRxUB618uNpNJtGS0P/9tIVQlOOfsgviXXEmkYqP8bUUxtfvI9z+mfXyQMW6BGwi8UCHj58WE0i4Y4BDFppdi4N0vEJSZqOg+sTT/BQQ4ys4wvuLPtdogt1PN+x6+m/XPKCp885jiWfyLq+g9PC8wjJY/w71r6l41XaPe2x55vQXbwN6ETLbDaDR48eQbfbhaIoto4Cp3KH1q3T6cDBwQEcHh7C4eEhFIUcyMsJWs/Yo7V3DaRtOp1WtOBCFHqU6C7h4T0JoXFs2S38f2vMamOF3r+MdA4GA3jnnXeqO47LsoR79+6JNHvkg8emlfKW3vPvLD9Cy4OfshKS6Vq757BbaJ955aOUn5cWKgepHon1GTzt5qWHliPZHbuUN1ZZtM5W3T1xEF5eyE6VdH6K7UxtNcle4+VSuqjO5e/od3SBIi9boofSYOmYUH1j9FNZlrBYLKDdbm9dO4X6g1/zweuj0eHlH4t+b35a2lgbJ1Re6ti+bjuhKXBbiYNfm0JtKa29Y3yiHP0s5S/RFiqj8Z2xn6EerHsbYhASXjFMGTLuLKPOAg66ujsMQ4attSOuKefDG2ywgjChiSwtbc46YV45dwc0qWhieY/+DtUxVxt4DR6aNmRINSEjLLos0DEdWhkuGehYToyTxPPT0mnjRDIW6wRQtNWeWn3xG3znKZOvvuSOaQr9ocBGjrGLxvx6vYbZbAYXFxfwySefVPl3Op0s94fXpTX1e8n5y4VcsrMsLycV8Gg1CmmXdUz5NBC5WCyS5Kan/7R2thYo8LSYjwdYHj96qil4A0pSQCplzNP/6d855EfoxAAPYnY2vcjw8j7+7w1EWEEaGmTSgkYU0p3LTdnS1w1sI7Rler0ejEYjePr0aZWm2+1Cp9PZGjtSALDVakG3262ODOUnf2AaaSw2KW+47YFjDZ/T8UvpofyCaevKRqm+ockDD3igJ3XXIqfFChTlQqxs5/TgogFc6OaRL3yyIyW46QXSi2NosVjAdDqFX/ziF7C/vw/Hx8cwnU6D+QwGA3j55ZfhlVdegVdeeQVOT09hNBpF67BY+jEQPZ/PKxv2JqLT6UCn04Hz83N48uQJAFz2Vb/fr+4Tvg453uQEEpeh3LegeixUf25ndjodmM1m1bPDw0P4/d///WqBznq9hh/+8IdbZRVF3J2Lqe2BOkvzJyV5GoqDSDpA+q094+VoddMmpSikHbISH3ntaO37OtAm3eh7T6yDT+bx/LE9Y0832IUfA7C9SAXAnqyo0wfcdpXysMq2gOMJd7kj+ElxEjzx2VC9Q3yktZU0JmNB89hsNjCZTKDX61V6DnUeykNqT+a4K3sXPPoZbOSOM6NNyn1Ovvu83W67746VdEYOe0aKL9XN13VnrLeQ1EEeW4lUwWl1ShODOyYoYTG2RmddZ4jT5w3iaGkt+rRVa6FyLFh0h2iSytMmL6yyvc+lNFJa70XrddqrCV7PodS1dzF5e74J5adNXuHv0GIB+h3n91CQxjOuYvg9BnWcPC1QxscebcuYIFIuGSq1o9bfFriSt77htEvOk8d4pgYtdy40ntQMdYCrAdU6ejVFh282G1gul+I4ofSlOksUoT7V+j5FJ+awfUL8pOnzGD7kwKOjOU9oAQSLX6Wy+v0+DIdDWK1WVVB0Mpm4J9SoYY72BA1ixfZxqG+1/ozR8Rr/5uDpVKTIO09+Wv6hMri+5O+sAN+nBd7gCU+fqy1CchzldazPIfUnz0fSZ1TnSXW19JqHLsyLyg9ut0gBPK6naHo++RpDkwcxckda7MDrLPl/WhvnmJShdoo0eS+l58cYSvRp9aT8J/UZ5ls3OKjpYm9/URo0vo4Z7xrfSrR67HD8ttfrbe1yiUHI79F0MpaFgV0JnU4Her0ePHv2DO7fvw8PHjyojuG1FjAXhe/I8Rz6EY/8xftsc1xpkwouWwEu5UWv10s6mtjry+WAZZ+lBF2pPuLySLNFQrwMADCfz+F//a//BXfu3IG33noL9vb24OTkpHqPi24GgwG02233Hb0e/xb/1nhb019a/lqc0PJ/JZ4I8UjID5ag2ZixsSOPrSrRxp/RiTguXzztEVP/UN0t2X9dNrTGe9z24mmt76V30nsJVh68LK9vjWnpySiok9H24jrAe3oGp9tKb8UJcrQtTUPvd8d6dDodaLVaMBgMqklZOjao3aXRk5NPU/iDI0aufJr9VYA8ceZQn5RluRWTQr8GT6Hgk7Jav9B+8+hwK+bjsTOseJlGY/CY4hgDIdaIyx1IsN7T/5umx6LBU34OOj2CJxTciIGl6HlwJQQpACfl6+lXLDvGwOE0xg5Eqe2lQIeWzksnp8kSIBqsQEjouxSeoQpKcwC8is6ikeYvGVgSHTSNZFx5Ajv8mZQf/9aDVBkbAw+NmlyxDD/adtJ9ZVp5McYp/SZmvEtleZxP/B2qh2dMSrKB54X0ae2v8TFC2t3Ix4h313Jd0DKXy6Wapii2dxSkypwY1DWyU+nL4UhKAb6iKK6s3NNoxMlxGjC3aJRosegeDAZwcnICs9kMJpMJnJ+fw3w+r77zyDiaju4iC9k3nnpwGmg6PoFh5S/RoAViQvxSxyGto1+90GS0FXSR0lEbqQ59Xt3Cy+ffNdlmFm0h+lMCNl5o+VLdQ/WG1p6hccd5I+TMhvRjim1F73/lZUj+SsjOw+Aa3Y1SJxij1cnqe/RdMFDB/yGk3VFan4RsWC+wPOlOV54Oy0ux43g+WBbvRywjBRqPc58ixpagtPJ3/FlIvmkTAJ6xKT0vy8vAarfbFW02r+3CZb30jeZnWZOx3W63moztdrtw//596HQ68Oqrr6ptkXOhXwi8zehVEBJfxuad+i21nzBwLu048cQCcsBr/1FI4yUWfJeedeKGZNdImM1m8Kd/+qdw69Yt+Pa3vw2vvPLKlcnY9XoN+/v70O12t3bTpkCyXaiM1U634fohZBtb/Kr5DbkQ0lExPkAIGp9Z7YP/x9hpvN1T5JGlD4piN7uuvZD6itdXWmhL06G9ZcVlpO8sOih/W7qQ5y/1H68Hjge8M7wsy0qXSnWWxmIOW1LKNzTuQ/YmxWq12qIfZepgMIDNZlOdfoYLkrj+1frJqrPXj/bWzeun57AjbyLq2BOp5SGkNsXxg+/wlDz8p50QIJVj+TzWsxDNKf6nBNfZKTeJ2XJVPCdCDMwVc4jeXA7wdYIyfkz/hNoxNi+uOGMc/JBy8ASF6HPLcaAro738ARCeEPA6yjHI4QCllEVRx3kNvfMEvDQaaGBPy89zNEsM3TcNtF7YRvz4vdR8ER4DO4QYYzcn7aH8kIdCgbeQfK0TzNTgkU2pZeJuBjrGXmTQ4DN9FhNs8kAKSmi2Q4ivLMQspKJBIHRCtaAAvwMO64D/WwZvHafIcqo938XYdFIeMWU1CRxv0upsKosoPalOcO7gt6RnU/g7ZHfuCiF7jqbh/9OV+PhcCszSPOl7SV+k2NzS7+tsw10HGCzw/uCnXeA4ROAznHDCoy61oCEPYmo78IqiqIIZ3mCt5j95xrTGwzEykC8qwnIlGYCr6XMciafRo0HzC6leTrHNKB9Leo8GqDUgv9EdxzF2c7vdhn6/X/3GawekvsmN+XwOH374IbTbbej1elCWJbz22mswm83gyZMn8Morr1z5pizL6tjSTqcDx8fHsLe3B8+ePYP5fF5N8KYeUU1B7b2UMZFaZk50Op2tBSrXgZAOrGuD4LdW/EbTnZYuwckIPLaU8lSv14Nbt27Bt771LXjjjTfgpz/9Kfz617+Gi4sLWCwW0fRrddLqMhgMrkwyL5fLrSN9Y8vAcnLxYEw+VlxoOBxWv1erlbrgl3/H7SNODz2in6ax/FWLhzyxhhxty+3667SFaHugnNFO8bBiJjF14XLCOvJak9sWn1u0aHzqPWaVl8/pCMlAjTZJVki8GhsPo+n5qTOh45vr+PKfIQ+uUzbw2BT+TX0Y7bo3hCTHNXkrpeV55myPkE1Y6yKLFGOoTuViykkZzKmdEBuA0BxT+j62TXdZXy09VxKxZ2l7hHFMXnwAagpYU74aYtKHjH5OF+/7FIddgycAUDcoGTMWLGPLW56Hhpi0HqNGEtpSeosnYg2PJgKKueUpGlz0t9dZCZUXw5eetrIUOi8zl2FIgzRe3rFos+7ypOk8dMWMPStPT3la3xZFUa0YxePwPGPNixie4t+kyEVJ/9AxIeXDdUEMQnnz/62xF+NY8vSSUY2BKnxH2xUD5hgY8hwDLwWlOY11dJ2UVnJaeT4pOjI3vMFgDikIG2uLUhpC70L5amNPC0jE0nHT4OFdzb5CfcAXinHHlpdDf1vfSGVK416jPdVHkejkf0t5W/zh4TutbnUhBQY5jVK70wkoaYxiepwYozv5vfqJv5O+s3ZYWXlwmc/9ndAYD5XB2w93aODR0Va+uaD5Bpper0OHJUM9Poz0vadt8F5MxGKxCMoT/Ftqm5ixuVwuYTweV2leeukluHv3LkwmExiPx5XNiHfhLpfLasKpKC4naXq9HqzXazg9PYXVaiUuBKsDyS4H2B43N1kn0Z3rORDjk0h8keLbWbB0F/qv9DnVqZLtTNPyexHxN90N99Zbb8EXvvAFaLVasFqtYLFYVPcK16mPVj+kudvtirKbXhMj5Rcqj+fnhWXD1eE99CFpfnQyVpKBFHxxlESXZEtp+krz9y1fTUoXSoPlSaC2wU2SPbRdtEVTWhtKfWDpRN7WVruG/HOtLjFyU4qHYV0t31biS68Olez8UNtZvBUqh0+cSTvnU33opmDZytr7mzSmPg3Q5CWAflc2gM1D3rSxvGfFKKTn2jOAmpOxn3Z4DT8rXezqFw1eOuoitc4hx5kbOXXKxrSxeVgKBY8X24Ui4Iagpfw1R/664DF8LFgBoCYhBYM8Qt2TbwjXVefrQNP8WddRiy3LExDUvk0tF0GPUsR8NENdKldDu93eWsHf6XTMnYtWeVL53NBJaffrlnNIB/3bUw+6610y0GLrFmv8UxlHV6J6yi1L+X4OrfzYPhqNRlfsIdyhI0HaqUmPlIsNHNFjRKX+4Y6/Zi94eYHrdRqozXFSgFUuPWnD6ntKk3YsdVP6S2ofXjb+nUN2p+C65BDyN8pmz+6OOkA5wQM19Nhb615LnpcU9KaLM+k4orpIy48Hu2J9BS6zcLKOjw8pyIqQfBoqZ2k6Xh/eDlw2Nw3afnS8428tcMb7yhv4C4HzhEQrP2LWun9PQrvdhqOjo6qM8XgMFxcX1ZGsiFwTcV7wewUlncMDryG7j4LyrjYJyHmXTjhx3xT5YzweV8fDee48lfJK5Rccr/v7+9XddLysx48fw3q9hv/5P/8nHB0dwR//8R/D4eEhvPbaa/Dmm2/Cv/23/xb+5E/+BL73ve8l0eClE2UmYjgcVhNwm80Gnjx5Ag8ePKiO3LsJp8Dw3faSjSfJ3Fx6Ngap7RXymax64BiUfDEt/f7+Pmw2G/i///f/wve+9z34kz/5E/jWt74F/+Jf/Iuq3NFoBOfn59Ux4Fg/j0yyyqcyfrPZwGg0gk6nA3t7e1v1LsvnC1e89xjTPudHPGNbxt6BqSE2FrPZbGA+n0O73a4mZelYRLvbigUi3dpmEsl/CNGpnTqj2bxN4Drvqbag2UGeY6+1seuJv/CxTP9J9ITiGnTnNNXX9MSa0O5QL3LGSKherqOjeb1Wq1V1SgDA9qkLlu8n/ebl/H2Jp/59B+onBOUngKt6mT7zjBFu51j+Xw5YfKtOxlrExAwEr7KRHOYUpHyr1cdbz5CR51EMPJ23HK/w9BicnvdSuhijJLaPvXRr5XvbO0a5edKltLNV19DYiaUvhp46sILAMYjhG0nRh+7B8Rh1+DtEuyYzNRnHg951Za6HplQ5EArQ0zpqfVZHBnqhBQ9jytLkrfXeC24Aa2msdFbghIOmxWAw/e0ZpyGekNLEBm9yOO9NO7UhmyZn0For1yODYu00aq+k8HboGwyi4uQOLzeUVw4HzJNHDl1ojWk6weGlyYIkky3+k+RxSF+GyqbfNoE646fOWMwtT2LGFu1LyjdWH1vyKLYenCe4jIjJRwtsptgGsXJKG898HHJ6tPHJ24HTQYN6Gp1SHpw+HlDAiTAMUFAbxxPk1Z5LeVg2Rc4xoeXFafH6uLwfut1uNXk4n8+DfV5XfnlsJOu9pRc9cswaI9L39J5MTS/h/3hyBQbDYuSYt/70b8qDWA+60xl3iw+Hw2pX7Gw2g48//hiePHkCnU4H7t69C/v7+/DSSy/Byy+/DPv7++pCqBjZbKXleXc6HTg5OakmY3FRmjZ+Y1HHjgjZslpa7Zl3nMamyW1nhNpckt1e/qC8ipPvyMO/8Ru/AdPptBpLuDuW3vNNTzZIrRvSgaDHEeP70P3dofxpfTWbMtRmGk9ZPoGk6+g7bDucjPXaHhxef5rT4qFbK6Mp39XLt960OVGW8tVfHh+XptPaTrN78Fup3t4YhdWnki4P+b3S9yEaPLDagJZVl/+kaze4X1p3UUDsGEuBZfvzNJ827FIOaP3GbT9Km6UbKDSfiuefI94TA61dzZ2xuQmKVcrXheuiJaa9+XGgljPeJKQgBBe2OYKN3gFI6dB+Y551gcZsjOHsXVEMYNdP+0b7nWvsxdC0a0hGN98FwEEDEB5nsw6sABy+4+VpOwfq0pED/I46/o47ZDnGXGpgjr+T/vZ8izRowUsPcHXXZrOpnGTeVilOcgg82MaPc8oZZE1BWZaN7wCz4NERNJABYO+q4XIlNMEl6Skrb+tZKB9POfR+OfxGC7xoQQm6+0rTfRLd2hhEWmLv3OH0pn5Xd0zyMRhKG0srTe/dES3d1dsUND1ngfPHrmVWzjJCegXHCE4cYVC33+9XR29SO7ssy62jQvlxtjQdQN6Jp8+QB6vVSrRB8e/VagW9Xg9u375dnWDx8ccfw3w+h36/v7Wz1TrGy4IncC59Q/8P2c8huysGEj/jb/psvV5Dp9OBwWAA4/G4VpkhekL2phb0tfQ+70spHd9BxANZqH8lurB9cOJos9nAcrk079UDuJQznU4HptOpSK9GKy0b/08Nzt69exe+9rWvVVcgjMdjmM1m8NFHH0Gn04F33nmnSvvee+/Bd7/7Xfi7v/s7ePLkSXUPc2i3dYpfKOkovGd3Pp8n1dVCE3L8RQ80e+gP2ZoA23Y+9XUtnqVlt9ttODw8hOVyCZPJBD788EP40z/9U3j48GEl9wEAZrMZtFqt6r7TXJMLuHiB+pm4axSPHJ9Op7BYLLb4NqZcj5+dCk1mWvnjc/Sz8XQRLUaq6RKNBitmYPESb1+v3vS8q6O/bwIk2rl/Z+22DtU9VFcphp6KOrteQ7FfmiYlb+rLhGSeJ15h0USPaeffNRGPzwnPOLrOeFnMWI+VCzfZL0QblQJ9ZACbj3g8i+dBQeNMTYHT2rFeelGn827qIPQYGKnB/rqQaPSWE0s/TxNyGiWDjreHRWtsAIHTwAWPJIik/ok1PqWytfy0Nox1GELPQ/l5HWUvbTwvzUik6WJ4tk4gmhscWt1TguuaMeihy8ozJVDtyTcWnokc72RPDrlUtz28zhumDY25unS0Wq0qEERXLKfC42hYkAwcil0bZ3V1ptfJjqHHIzs940Kj0TueYt5T2Se1QSi4kIMuKZCBxzVZ9Eg0S7ouVLeieL7LM1QnKUCD6SXZHNJ3Ur4xiP2Gt4lUd2/eHkezrr+g2VGpgVRNh8Tqa6u8JsDpRpsE/0l3ffE2pLLOao+YMVCnDiGExpM2piXZoNFs8QMvN8Xv0OxeTXZosO4kpL/p7ineflKbcFpC9eHlWfC0mdWfll/WxFiTdLNUXioNXl1gpdfS1JFVIT6g9fXYLyiP6P9SuVIZmMbiBY+tCnAZLFutVjAej+Hg4AAODg6qhQrj8RharRaMRiN4+vQpfPTRR3B2dgaPHj2q7oq16KU05eBFzAcnvXu9XlXGro8p/7QgxHeczyxZrY3dmBiJlHa9XleTgQAAvV4PNpsNnJ+fVwuoBoMB7O3twWw2S4pFeMD5GP/GSVlpgYDHh7J0ap24gyWrPDKG50kn8ShfxOrGkOySnnntWy32k2KbaP6KRM91Qmojqx+t9/jOanfLp4xtZ4sGie6YbyVbPcZXD6WVZIFUttf31/x1Th/9LiRPUuHl91h9qPXNdSGG9ib0/k2yJ7j/60kvIUZWeuse42Nc2Rmbi8ma6qwmmSBnvjEz6paC53e+WAzTpDObCmwH71n5dfmPMz13qqS29qxkyuWYpSJkhHoMGm+eHoQCUlJZTbYfz1u7U9DaUS6lAfCtdNOMC3QGisJ/9GMIuQzHWGCZ6FxSaEFV6XgkmpdVjpdnJMcb252WK7W/N/gT+50GdICPj49huVzCYrEIToZ6Vypa4E4H5oVHu9VxImJwk3RTCDEBZ16vnGOd5x8r35sKblNoDhneR4UrDTmv464uDs2x9rQrPQa5LMvqCMOyLKvdAClBHes9TScFfnYBGlDHYHUOe6pukC2Up/S+TjCP//0iYRf8EgpIa4EsKz3fMUTTSAFGmpY+5zYZtZ+kvKz6Wf6QdW2FFmTn7SKdGMDtcc1fo2NVuq8d27TJ+ySRXn7vH6UTIY1ZLeAbU772DO1llNkcdWQS7yN+ykWuY/Skoxdj85DGmsafVh5UJ+E7zrPa9xSbzQYWiwWs1+vgcaq5ZBnlzeVyCa1WCw4ODuDXv/41vPfee/Ctb30LvvCFLwDAZR8+fvwYFosFzOdzWC6XcHFxAd1uF/r9vns85fCNOY6OjuD111+H8XgMP//5z2G1WsFqtap2KTYp+19UfVgHKXUuy+07VLU8pB3VfJzOZjPodrtwcnICe3t7cHx8DIeHh1vfvfXWW7BYLODHP/5xNSnKx3dokiNUT5Sh1I/Eo5EHg0E1TlAW1JV/1oQXImaiR4rjWeXRNK1WC3q9HqxWq0rXajTlhGdiivONx8e47kmY64aH11OQyg8ar4fy8pys5SnzJsb8ObgM85wu0DRucnu9CNh1+6Hs1+xVaVML6jz+jWQDcv+HPtf8lNxtEDymODXA0ZTQjA2ixeblNRI0GnIFqzxlarseYmE5Yyl97lVIXjpSvqcGjjWIc/CNNdHsMR5pWi89MZOvXofdKoPyQszEjcbLlrHqaTONBsmw1QIYHqM3lT+o8+ANHDUh4HmZlMc8dZTamU40eAOXsUjlWXzvDd56x5zUlxTWmKD92uv1oNPpwGKxqAwIlB30Dp860PpEMzi8eisXb3rbcFcTWTxAXlePS9/SvL0Ipff2R0rZFCk6ictA/iwVPJBuQTqml4+1WGjj2qI1FVIgPtX+lQL6WsBf+kYrj46XOrazB5J+aUqHe8D5O6Uc3m7Im7dv34ZOpwPdbhcWiwWMRiMA2F4IhfbmcDisZHtZllccUw9v7Er2ptoc0t+Y1sNXnN8tmm5KwJMHEKRJAmschGwS7TuOGPveoiGkgyyfJnaMYXq89gCvhaDXZ1wnYuqh8a4WxOeymZcr+WRF8fyoN3pVhDb2qMzX7mSMAZWlEo3U5wB4vohrsVhUtvT+/n71HZ46s1gsYDKZbB3nzRc55OAFSY4DPOe7p0+fwnK5rMbwb/7mb8LDhw/h/Pzcned1wmPrNO27htJ4xkgoXykv7jNbY4rbA5SvW60WTCYTuHfvHkwmk2ryFRcL0rwsXRVqE6tuuJjB8gli7H3L57f6g3/jsUGoLR/iNX7qFJ8AwkkwyQamclSLX0mw9C2Hlq+Hd7V8YnS5Rw/XHc8emZDiQ6XY2ylyJGeeCK8vbI2LWFqa8lFj+T1ki8Tk59U3uW09TV7eFD39IkPqq1yxIo+ckcZ/rHxNoQ9hTsb+fWKwXHVNWclsOUjWN02unI5tD+qUpeSTI3BJy8OgFqUpdD8Mhze4iCvkF4uFmMZjPGiONYW00jpVCedC7jJS85OM2LIsr9wVwsvi40wLSscGgXjQTKNV+lajIwdSDAc6trAtqPKSUOf4LS3oY7VljNMkjR8tvcchskANgna7DQcHB1AUBTx+/HjLAaeB1tzBIeyzdrstymjsq5DOuS7Ejr1U8ACFtGOI0uQNgFs8VIdmzDt0xDQf8x69Jo3BUAALYPtEAingE2qDUF/H2Dt4lxwP8q9Wq2qiC9+HeJ++T9nxRHkKvw3VNUamecBtCyloeNPRpHMUixztRW3IoihgOp1Ct9uFL3/5y3B0dAS3b9+Gjz76CP78z/8c+v0+DIdDWC6X1a6qoijg5Zdfhn6/D71eD0ajEXz00UfVUfh07IZsxSbaM3aMUH0ZylcLXMcGsl4ErNdrmM1mMBgMtnb2c7lCIdlOXB/soo28QdmUPLlNikA7ajQaQafTgeVyCcvlsjoqtMkdxyG6Oe34HACidQzX6ymyvCiK6q7pdrsN0+m0ki0htNvtKhZB66jRKIHXXbPzy7LcmkhCLBYLmE6n8Oabb8Jms4Ferwez2UzMAydv0RYOyUUvuF7CiSC0MX72s59Vab7xjW/AH/zBH8D/+B//A374wx+68rxuxPDhTULI9vSAx41CNre16+3evXvwd3/3dyLPUT8DJ/G1ybkUnt1sNtUR3mgbSHUJtVlMm3r9Dm6jW3XAvCT/gqabTCbV73a7XZ1KBXB5R68UD9QmjDQ5a9UF5ZWGuotYuF6n/OLRAU3rfs9409Jo7ZvT5vb473XK1PQgzc97Cl8oTmWVlwqrnVLy4rZN3fxuCm4SLS8qvG0oxWmsWFwM72K8j8t6SUfG2tee51nujI1B07PLHmhBriYHVSjQF/M8VxvGBgOlZ96gibRLRSsjBG4MWkaRx2DS6Ea0Wq2tI8kQ3AGltHBn2wP+vUZfyNCygrhW/4UM4lyTRKH8YgwOAP1IYi1PyWDl73l/xtBD+44a7qFgKKfDchCkenmMHV5OqA+oIorlZw0xfORJK/G7h07eL95vpLIlmaTl12q1YG9vr1q1bx1VQ3nQ4wRrdZHSr9frnd1ZlYpYXskRNLL0sSY/6+pKTT7R9962kHZOeejR9A/Pg/7znM4RExTIYYvheDo4OIB2uw39fh+WyyU8fvwYAKAKxFpBKOm3RX8oDw9/5EBsID41T6/+sOwvrU087c7HCB2b0viJkfE3BbE2ZFEUFb/T7wG2F0d5ZSBtx5BM0uyonAEdica6abz0SfJQs9VDtjO32Txts1gsqrsGu92uetd8Cn9b8ouni9FDqZBkAw2KWzJHkyshO53+rgukgQdaJR8xNl8KOr41Prb0Tqyupb5MjN0o1VfqRymdJN/X63V1VDKnj7YDLnDc29vb0vepp2KkgC7ow7pMJhN48uQJAAAcHh7CfD6vjn3eFV5EfVgXsXKL+4aU/+nY0XQe/sYjgLvdLvR6PTg4OIDZbLa1A50ulPX4pV5Zx+10ngbpKooClsululCFxzQ4nZL95UWMTuHle/1gKg+k8qVvNFp5GSF6pW95nlZ8SOtjXn/ejlLZls93k+DhpRTaPflqdh0+q2PThvzxWNs8pT5S2RJ9Unk54LU7Ps06qkm/6EWGd9zTNNI3dWxsPimbElPxpOd1NHfGxmT8oiIm2EERozhzIqS069Yl1WCw3gGEz8aXFJMHISVkTUx5HFd8jgYr/Y7eRcfz0PpCci5D9EmGOTWAeeAsBdr3mvHhcQI85cXQpkFyrrW+1QS2FkCz6qHxPP2OL0LwBLu0OnjbQQuUUH6x8qOBJO54hhAKRGqQHDz+TvpG67uQ0xQKKHmeh/hGqwPeeTWZTODs7Ewsx1MHiz7tKENKGwYJQmWHyvIgxvj3lBcjXzQnRAs6YPvQicZQAM+SmxpN1vtUp6gont/PGtLJnBbNgOV0890plm6XdnqH6pkKpAeDXEdHR3BwcAC3bt2C0WgET548qXQ5Bp0sGYL0pdp0u3S0NPmZSvsugjSeAIL23DPepLyarNNN8JPa7Tbs7e3Ber0WjyuWZGGoTfC9tijLa8vyNFy/1bUp60IbM5o8lCZaOK9JtgC3O6WxRvNrtVrVvX6DwQC63e5WIJ9+U6eNtHEi+TQa3bx+dWnxnLbE6x07xmN8spg86T3ptL1iyqDfWf5qyK+g/9O0MROTkr6n97NbdZDy4vWS2kayZ9frdTVxZJW5Wq2q02hWq1V1LCz2i0ZbXUi6mPLWaDSCe/fuAQDAyckJPHr0qFpksWsdskv52hRy+Sp8PPFxQvPhNjDva5oPyupOpwO9Xg96vR48e/ZsS4bjvcH4jXbSgRZf0vSHp22QpslksnVkMi9Tyk+KoVi6gae1nmnvLTnIgWnpyVP8u1AdLZqs5zF2OPe/OC/x77GPqA/D4zYU0u/rHu9S20h9wu2SEO97yqwDq+0smzoka6V61aGXt6/WpjE05gDlaU/9PPadRavXz9klQjLsJtF6U8BtaM7X+Jvb2wB+n47mR9NiXt5d3Sny1TUZ+xnCCA0er+DRlK9UXpOOhFSeBn4HRV3hmYJcBjnmZaWlqweLorhyFKKlVENKnNMqBXd4GZqRaqFO8KIucpanBfD4+LCMD08wJpdC1wJ3nCZerkYT/yfl45EpdcZPXT4MtQMGJD0ODU8n8QJ97qXR84wDlXdZlnDnzh0YDofV/X7SMWoA9tFFMTIzZHwAQCW3rssxq+NEWTTHjlFclS4FCHmeXh3uHRMhuRKSSSF5ovG/h37+DQZeQwHykNNHjWaaRpNjdYD3b/b7fTg+Pq6OKeT10PgLrzqw7oV/0cD71mtz8jzwf+/Ofk+elqyVnK0moV1x0RQo/w+HQzg5OYGvfvWr0G634a//+q+h0+lAp9OpAovYBvv7+3D79m348pe/DI8ePYK/+Iu/aJzWGFiBKUtXe2Vt7mCcx3+5buDxsFKbxY4LyksIrc9i8rYCHKH0dcY2rwcuSqB+W84jalMhtTmvt+faCsnPCfmbFOv1GubzeSVf8ChPj9+K0MahRJtkm2p9b5Xb7Xah2+3C06dPYbPZwGw2q2yUfr8vlkP1+C77ni7KffjwIUyn052V/Rl88PgUmpyVZCe9JgvHWLvdrsbYcDh02zJ15DvSQnUF3re82Wyg2+1uLVDwQou90P+tb3ka+gzpDE0uhmIDXMZLsTlerpY2Fp44oqcMSy9yvvDYQzfNnrF0TKg+WOfc9rnFT7E2J80vFAfgaVLKshAjP5rmk1i7/TpiVJ/hZkGSFZL9yO17yj91TiCxdJ70PIZng5OxHkURQ2AMQgIsVSDWgRXwzAXPXQIxThLPy0urh5l44LnJQIonP5537IDwGJhozFLjBwOSkrEnGZ2hMiUBI91xoU0eWOXETBaE3mnlNSUXQs6SxIsxhrqnfM3w845FKxCkOQVSXvxfqFwvfbx86bdGW0z/hspLke+S7AwdR+ql0XqmvUNne39/H46OjqpndfL1OLp0HGj9z++Yod+nGr+5DeYmHQKsZ6vVgk6nU5WnlSndG6EFVKlcDsl/Ds/Y5/+H5HeKDJfKk3SHJuc9vNC0w9dqteDw8BBarRbs7+9DWZYwnU6vHAunAWVKq9Uy7x8P5SOl8ejsXLBsjtgyY/kvBIlX6DiqY2PWRaiOuYIEtI5Fcbl7++DgAN5880149uxZdZ8jDzwWxeXEw9HREXz5y1+G4XAIf/VXfxU8iQZpl/720Ir/W3ZWyFaTnnsCiZo+C9mbmhyODQqlvMuRnoIG+i07MqfPa9l6njT4PqW9vbxEdTLVv4vFokqPYyi23ZoMCGp2mJdHNZkoyU0Oel1FURTQ6XSgLC939Hl8U16Oh2Yq37Vnkm1F0el0YDAYwGg0gslkAq1WC3q9XnUnpgRNnjfRt7ztN5sNrNdrOD09hdPTU7h16xbs7+9nLbMOrLHk/b6OPyghVodI36T4kVJ5Hr+Llkd5GSc/e71eteih3+9v7USt01ahMYe0oA2L4x2Px46djNV8Hw4uD7w+AZVnsXEkPq5D45zqC/p9qjzQ+sIqW6I99K30TYxvKcng60bqGJDaMNa/ipVzli1j+dGeb0JjRZI1OfyhFJvYgxz2aJP213Wjrp38aYOHD7U0ODb5grsYm0FL7/GBYvKjqL0z9kUdHLsKejWBXQbxQggZqdIK1Lq0eg06XAkdOkpJM4aKooBerycGfbTVFViuFxJdvV4Put0uDAaDykjGO+92uTOnTj/l5EdNMWEfaJMkAFcVOP+b93fMinlPGr76UWoXrAcPbmrQDGh+B2iuPrB2heUwnq28sE9C49fj+ITg+aZum85ms61d9QBQBY80Pg0ZER4jnhou/OjsF02H13GScUcRgK6bkN+sybeY+50wHZUB3jpoE/ecZjQ+aXnS36F8PI5iu92G9Xqttg9tX0nu1eU3L996ZCm+j5XBvHzvNzFIkWGUp3PbCjnrxwMmqGP4MXl1y8gt2yx7YpcoigIGgwEURQHvv/8+LBYL6Pf78Oqrr8I3v/lNuH//Prz33nvVOKXBIy6LQmNesqVeNJ3RFLg+5e0jLQTTFodJjj6ddC2KAhaLxZUjWpvoC0m2aeNyF0EjjxwP8SatB44H1PPWd4gYnQ0A1QIK1M2TySQqH6l8K/jjnaCQbMuYnaKtVgv29vag1+vBdDqF1WoFq9Wq4ldeHi0L09C+wvtcQwtIuI5dr9cwnU6h3+9Dr9e7kh7zpDqG276I65Bn0+m0og8XA1rw6LPcOs/K66bowqZhTZDxCS1pjC4Wi8q2mc/nMJvNqvS4wAp378f4/7HxB21MLhYLWK1W1U5ZL7wyx+Mb8fyo7UHlSiy4b8RjJFJa7tPR99rvGP3E4Z2Mp20jxaliY4+ImzLxw9vIn4xxswABAABJREFUw1tc53Oes7BrecV9zV3g0yaTbwKfflrQhH/cZL4WLNufy0nv/BH9H78LxVbp97Ft0MgxxV6nACBeWEgVT0VM2THlSU61N601WWQFTUJGc5PwGBoAce3NjTH63BoQdKIDJ2M99w7RtuZGj8VzktEWy+PcWMa7RQaDAXQ6HfM4k9S+rcMTmvCh76xytLQpskDiD0nwSsGa0NiT8rSMPcmRCNVNMyattLxMyvsS78XIo5iyJRrqwkO/Nw9vPWOCcFremkyivIPBIe4w0YCrVn6uuiAdFv3YnzHOqBeWfmsKoXEvpa8r06VveeBGS6c9t2SIJItzOKScL/hxzhqtvM4epKYLySbafjzgI8loKz8vz3oDKxZS2yM1KGPBy8MaQkEWbNecx0fGOF2hPud/N+1w4qQbwGXAtt/vX7F1cKHexcUFXFxcVOmOj4/h9PQU2u22OYEW4mXJ7sHnli1aR2dr5ae2dQ4do9VLk3U0HV94hek8p2NIcovuYIzVQVreUhrNxvcerdgEco85Xneaf92y8HvcdebZqS59T2mVbJIQjd40+D9fzMnbBf/HxcKLxWLrugsN6I9Lz7VxJdEo5Ud3+eFiHuRTyrOekzAs5OI/pAuPrkW7SiuTfufJe1fwjJWmbPzc/mZKfMXTN9jPm82mWrBQlpeT79ImgZx2YYhOfI4Ltui4SUHdvrbiJx556KGN+wM8jVSulZanl36H4OUxLFfzXyx66fcpNO4akt3JbVbLVrHy9frgoXxT42havjFlS+k89vxNhEZzSozF48fddN7PDY0vmuKHXfCZVR/6P55olqMMyc7xyAhKj8V7L9ydsTkM4iaYJUeenhUzniBfCi25vmkiEBhCp9OB4+NjmM/n8OzZs+o5Hj/JAyPelUlSW9O6LZfL4NGFmuKnz9rtNgwGg+r3cDiEfr9freR9+PAhzOfzKm2KAS+Vm0sp5QhOpyBVyCL4UW8hh9JbHg1gWOPKs0jAA2tlJQ1CSGm5AtPyz9l/UvtogV8eDJLy4mlDZWtBIet3CBqNuOJ9sVjAZDJRA00e2iVQY8DjZNLgcMhhuy40oUP4bgwaqKN3gpbl85XsEmLazSsXY+samrynecc6Z6kOi8SHFl1SGR6+i7VvyrKE+XwOm80Gbt26BWVZVjYC5YNQHlKQ2oMm9G0seAAgV9AspvzQOysQx9PnCvCmBPOaAgZDcfHdd7/7XXj69Cn803/6T+G1116Df/JP/gn87Gc/gx/96EcwGAyg3+9v3YGJePToEfzRH/1RtomDELQApjTxoQXTLNBdoQDb9wVr8oP/j3abFpS2nGUaxJVkP5dlTbd7zIQSpZ0/R2j047+QbemlxUNr7GSIlg9+x/uT2sK0XfC0DNxB7vEJcgLLpDTltoE8Y240GsF4PK58zF6vVx2vGlOOpG88cpvShuPcmqSkMmG1WsH9+/ehLEs4Pz+H9XoNnU5na/EY/z5GDsWk04C0cHvzRQkS72o8XAd4P3AZSXkl1AYeW2G1Wm3FEzw+tqa/UviGb5KQ4gCevo6xizAdH9NavULlcZ8j5BNZNgP9zfWmtx14XaznFKh/tJONKPipDnxHfaze0NrupsoijwzKLU8lvonVHR5odmZMfTT79NMqtz/D309w20mLZUljB/WudDQ/93s4+Glvodi0pF+0caxOxuYWMjGwAuMpQetYAyMWOYx5KyAQk1+IltjgrFeYhwIk2jNL0WgBAGo4oEHS6XRguVxGB3h5+bS+PPAhKeRQe3qDDHSyoNPpbN15s1wuYbVaXTmu1QpYWr+1b2P6OkRD6F0s6gZDebtJBg8GIfC4Hul43FwOfOxzDV4esMAVGld0XjpSZWvdvuX51KGDQpM/Ev/TbzHQgn/jb35EEgb/aD6SY+qRaZKDynncCqjGIFbG8m+bcBhCOl5qC62NQoERS6d5eMjz3tvG3u8txDh7mi6k763gSgxdoQkATjcNdgJcBrxwwRQAVLsRpPzob0n+1eH5OsGBGHkmjSPN/vDaBBK8Np30PiRTvTZkzPscqNP/MWVg/UejEYxGIyiKy/tjj46OoNfrVbtruG1ZliXMZjMYjUbVHbP8PkJMj/xtBaDpNzHBUk8dvbAcbYte/D/VpwqlzWmLcuTS0U3SaIHLIIunLHvNq4ty2Xq5xzPWjfoROLlJJ2HomERQHcvrKKW1bAOJD7Q8kS60Wbl8obID07Xb7UqnarxrtS0Pbnl1B9fN1LamOxBDejyEOjwm0c/lNqcpp89cF16d59XPHlu4Cb1ax/7C7zWfT9OfHj5O7XfKR1oeMfI/xcaMLUMqz6trPc+0cug3mvyIyc+SRdp48eh0zQ8J0SH5Vyn9kjvek+rTe8aEVUduU4T8Y68dkMrrlm0T0tu5yklBjMzUfHxrjHjql8JDls7KaQ/vQk/X1Vs0j9z8sSt4xrFko0p5WPnwdrL6O+S7aPTRsiQ61MnYVMNoFx2cGjTaRdAmBpZBYDFN3cBgjsASOpp18wmVwfMfDAbVRGVRFNUOUt6W+JvSyFd/0YHHA/CYL4I70B5YypbuqOXp+v1+FUhbr9fQ7XarO0UQuBqYOsO7xq6Fed0AE4A8SYU4OjqCfr8P9+7dg9VqBf1+P1uwJ0RP6HnI8PU4ujSdpaTpN/RbS6nlCFjQu2ljg7Z8Bw1AvjsT+U5EPNaJAtuo0+nAcDiE5XIJy+US9vf3YW9vr6rbs2fPrhxXJcl+bshq7es5Bp72303RgVL/em2OWNuE8gfAc9npoSlEBx1PfOIdn0tBmBhnBPPRwPncy/exQRikJ3QaBM075n6cGHqkMYMnYeBq8SdPnsBkMoEvfelLqn2Fu2dwNzSXQdc9XqzgANotHJz/PLD6k/I4XYnPd2YiTTFOZKxzLukdTebX6TspoIC/6+r22HwkFMXzxWNFUcB8Podf/vKXcP/+/SvlIF/jNwCX9xVKziv9LflP1z0eXhRo9lFIRwNs736NaW+qf3Z9OlEsaHukjIWQbkzxE3LpKswH74Y8ODiAbrcLr732GkwmE3j8+HFFN98laYG3FT8CG8cnzYcf0Uu/kWzM0BjfbDawXC6h1WpV/tFisYDpdLp1JZCUB12kSG38xWJRXc1j8S6nDf9GW1vy16guTznhJzbY5uFl1Jvou1N/4EVCrC4M4bp1i3QEOx8nlr3C3/HxRW0nehJGbL2lbzUd7kHo2hoKzYeJqQOVSUhrDh/Vw4+euIcmZ1LK83yDbYq2Gdr10klsVH5yuc/p5/djW/otxg73pMthe4fSUN7hG3S8/kwMUuKPqXa+dL1FCq5bpn7asOuYwE20CW5CXISD++tcHtBYicfO5zJVivfyNuD50ms0PDplazKWKnZPY8cEXTRQwegxfL2gjokUVIilj/72KqIUA1QLUmvfaMaFVba3nbmTEULIoAsZQFJedNICA6d05S4OgPl8Dsvl0mVsaeXSelvOETdyrHx5/tyYxXrRv/H3dDqtjlik31O+rhPEkH7zd00JXUswxfByKA/r23a7XTlIRVHAer2G2WymTjZ45U8MD2pppOd15K0WyOZppO8sOrW86sJqQ94OdFwgrGC6lJdFA/+ej0HMk47dXq9XLRrBI8bLstw6nkqjLcR7sQEQ6VspwBDK2+PgADw/mjl0rHedMYaow3eS/NTK94xpq/+agFaO1rex+Xralqe1ZNQu26UsS+h2u9DpdOD8/BwALschTsLzQAZ3tGNtH/wm1Vn3tjWlNxWpY4yW3Wq1qvv56Ls64PZX6vfa75T8LL7Q0nvSau/ohMV6vYbz8/PqeHupPpjPZrOB6XQaPFI0xbay6MV3oXwkmeLxQ2IDiPgN8qglI732Ged/iy/qtpMHsfawV29L9cpBi/UtbV/aJ5rvLiHG1+O+XarMssaRZrNK1wtQexKvpcHnki7V7Dc+rrzjUaKzLMtqslD7juuCUFk0vXUcJ5dzHrlB5WVRFNWxn1YZUj4piIlxcBqwnSUaY/Oj+Tb1TZ2xrvlSu0Qd+Wt9G+Mz8XystvfKY83m1uSQJfNjeId/w8eut120Onr7SxqDli3o1dXWbylf613I7uI0UX1g9WuKzZxqE0m8I9FUBxZtMTxq+aF1YLUBpy02TqO989bXM/6bgBQD4HJFG+/c/muKtpj0HrnQlD7L3RZNjFGP35ab9zxxJS4XNf1ngfsg9JlHp0jvvOWLO2ObFqy7zLMppvAiZTCkGCA5EWNc8u9y9zk6LJ1OB/b29qrn3W63cgKXyyU8ffp0a7WYlpfk+Gtlaliv17BcLtX3lnNKjatWqwVHR0dV8Ghvbw9OTk6qtA8ePIDz8/MqPd3N1Wq1to4yroO6xkBqgC+2HKksb3qJpn6/v9X+n3zyCVxcXFwpx+NkNDUec+Rb987XkCOa2ichwyMmX77aliKXTMLVqpIB2W63YW9vr3q+v78Ph4eHcP/+fXj06BEAXNan2+2K9GnOqAUrkJXSL7mApwpMJhNVju46ECOVjTspAeTdpNLqOp4HR8qubu7ceQxOycmRvqnTzjFBOhpw1dJwNOWE4THzr776KnS7XXj33XcrGqfTqUuf0UCI1A5NOjaWI0GD36F2o7LQ28ZaenpsZbfbhX6/D9PpFFar1Va/p7YL16/XJbvqoA7N2Ocoj+bzOcznc/jVr35V7aSy+nCz2cBkMoHZbJbdkbd4iAdgeH14oLYsyy1e0vKl+RfF1ZNrQvTiEaplWQYX12nBXHyOk7p01x+XC0inZCtqdd0Vj3tlOP7Pg2lN0RySqVwOpOz2DemwOgFMrc+xTGvyFYF8jbvc0a9EOri/6KWP87C3D3G88DyoT+ylg7ZNWT4/BcaySyTf22NfAEDVdoPBAAAg6q7b60BosSLAc1lG2zGUPhYvoq7NjZD9Qsd6CDH6l/K7x8a06IzZYU/p1PSgF6l+hqQnsT34DnvN9qD2sHZKDP/GS5MGapPgN5od7/XHeR5F8fwUE0tOxPS3Z7dlKIa6a3h5S/PRvGMiBl45EIO6MdibCqmtbnJ9bipddbHLet2ENvT4rta3vA7aiUMWL2snsWpQjym2CLQybSrAFoLXOdhF2aGghZUHd+qkv6W8QgGN0HuNfq0MKY03WBLKmwZBW60W9Hq9rSNe0HlFY4U6rJ4AAi+XpueBIkzD73rUIAWnuFNsBR7pb3p3LB6tKbVhnYBCHWhBLE/a2PcpoG2ORub+/n7Vx/SIa412/FbaAXRd7a7BKxc0OnM7mhosvpHGg0aDFdCxYO2Y0egNOTDtdht6vR602+1KZvEyPePFS1dMX1nOdmx/Sv3k0T1cPqcgJhDp+U6SybytJF6kjjgaXJ7dIdLfnA78bekvKy/6PJaXtPbg5dMjfK0gSYw8pGVTnvHYmpRmPnGFea1Wq2pnLI7Vfr+/VRfpugPe1jnHkFQP6bdUR/xNj3qjNNYJrHnpiU3j+QbrwvtWo4nWNYZvYsdGakAoBZjHeDyGv/mbv4GyvFxE8OTJE+h0OrDZbGCxWGzVd7FYwIcffgjj8biylXHnMqUL9RKdtN2Fr7ZrfzAFlj7LbdtJY5T7It588FuA7aCBpfdTaaa00v9zw5IN9G+tzyQd6fVB+ORXnfZD3YMnCaDvyhcXeP1pS99q9dGeae3ikZ94NDHVR1paTjOmx8WLZVlCr9eD4XAI4/F46yQATgu3E2ImKq8bIb9R62/JPrspqCNjrG+armMdGSvllRIDs+x6yQ7SximXid66pfCTRJcnj5DNxWmX/DBPGR5aaNo60Pw0D594aUIZZ50moPUJjWtZfozFkxqNnPdy2xq0PKs9LRrp36E8Ynwcj93hyS+2Xh5o/ZpKS6rO8Y4Fr1/F8961LvT0aw6a6tZHsw8l+m+iPVEHIb8tJEtSx46UXopfhOS/ezI2t5BtOt9PCzQDvel28zgAMUo8ply6A7Tb7cLBwcGVMtvt9tZEpRQ4pbRJQqgoiiv3nuFkCgUGv0KwyqF0UQNGSoMrqgeDQTXxi0fohoSthF0El64THqWyWq2g0+nA0dFRNYkvrVynwL7SJt930YbesY5GO//2uuEx7rlxy3d+aYFLDsmZs4JXXqeNB/614NJwOIRutyvuWOe8FgrM8HepvBYrF3LC4wjuCla5mkyWwO854hN4Upvyeyzptxyagy/RZAXqvH1rORm8TZDe0GKksiyvHHEo8btWNtbL69jSoCw9OpdivV7DxcVFdaLEcDiE/f19GI1G1cQWn9iUyuHYpYwtimLrmHMAqO7Jix1jHrlj8V4s3XVg9UcuGmPK1ZCbhrOzM/jjP/5jAIBqp2e324XNZlMdfY90zmYz+PGPfwwAlzZzWZZVGsofg8GgOrUA756juAk2w6cdkj1jBTbpbhWuT7mthBN9NG0TQRdOh1Sn3JDazKIptQxNl0rleeqMOzYXiwWs12vodDpX5HhKUJLT64XlD3rtB/RFU05nwsWL1BcbDodweHgIjx49gsViIS48Rjq5X4C0W3fZ04DYiybjcKegxweycF22dwq8/lkKcstBgHjd7wnqx9pwseWn6gbJ5/HYaKEyNN+AtkeoLP4tz1ezGSV7OESvFA/Q6optzesi0Y/p0UfkV4Lw9xptHJKPkENf5hxPnkkLCaFxKNGZOnZz0ZQ7ZvuiyHYE7+cmZb5V7qcdTfH5i9SOKfrO226hdvDqc/dkrEaE9ixmUMUYHd7Ob4pJchpd9L3XSQgFfmPSxzpgkgMeKtPKywuatt/vQ6fTqYIOZ2dnsFwuodvtVscHexWZlI47dFq/SPlZ9cZ8ceDu7e1t3S95eHhY7azD4+bQicfAWVEUWxOJofI9yt4yCL3jMpaHtfxD9HMnQFuRTenBgCMPYGFQvtfrwbNnz+Ds7KwKXuKEPM/f2+e7UFKhMevpi9gJD162FAiS+EniD80Is3hCUqRcHll1jtUzRSEfe4y/rYCRVb4mk0Pf0aObpGMbNb7jQStetpdXQ/yER8dr/eAJhkk0efU/dTClOpfl9o4hybnV6JFOTKD8iMe14nGDdfgwlD7FxvKAtluKXPEESTRj2AruxPJpp9OBsizh/PwciqKodC/frc7Lp/zp2bl0U8HlFtbNClZr4Pdv4s5itMHwKFhNrku0eevQtGOuBX6sgFnTwAka3AGLCxNTgjNeUN7Hib9Y2w+/kWwmavda/CFNOvLJRiqPtXLo9zFON88PQe1Bacepp60kWzW3HEnJj44Bye/hbdqE7LN0gZUuBpa/pPGUBxLP8SM2PceMa/AEeXJA0sv8WEva/zHyAX1W/KbX60FRFHBxcQGdTmdrsTX68HiFBD0ymdIk0Y3/+DHLnN5Yub4Lfy5UNi7GQV7istKDJusQa6N50JT+1dotdvzXrXOqLSTRH0NDrF2m+VPS91xPS2Owjj6RxjvmI91xbdHF00m6LtQuGo28blJfafaP9B3KAOvaH6p/JD9O8yM99eN10uqWQw7wb70nmXE7RrNNU2zCUEwjBI+sltpbo0fKN1YfeBCrJzld9O+c7VRHJ9fhTY/MzdEPMbovtY9oWbH50O92idh24Rsh+N916mzJvRTd7JqM9QpxrvBi8sTvtMqm5Od5VydfDoveWAczJHyt9LEOk1UefRdKE6JN4iOv8KWOXL/fB4BLx+38/BzW6zUMh0MACN8TE1Jy1GnWgjkeo5SXx53Evb29ynjsdrtwcnJSpZ1Op3B6elrRMJvNqp2d3CiONYS4MRsDi1djjZIUoEFKyw0pF7r7g7YdHgE9HA7h4cOH8OzZs+p7bGceCLD+zlVHC7yuVn94jT6v0tAcBI+8Tg1Chejx1lHKM0ST5nzy+nrvMQs5MZ7vPfIz5ACG6NMg0cplfqfTqY7I9PSNZgPwd7E6WPuWOqz42xvU4rKHl4VHEdLAY6wO90CTtXUdsBjnhvOVFHyQ0oeCA1L+KU4X9tPFxcVWoGY4HG7pYUqDxCcWPPKD55sD3vyovMDgTEhWSXyF+WAgGCd0kdfp3boAeYMxdXhaCxxpZWnPY5y/HEDexEUdOBkr0RnSkVpwSsvHy9NSGbytY8Y8TWP5gBJvSqD1tuxDni9vJ/wfFx3g4kgtH60NqZ1g2RMaPOXE5kP7SZLfms+XoidCPBqTVyotnA7pb8k+lIIsIf6U0sTERiQaY+AZ75wWiS5tMjZVH2NeuHN/NBpBr9eD/f396t1ms4HlcgmDwSB4nLNGNy5cprTztFzm8LQUdXV4yK60vqH1oO2Ycn/yi4gctkBsfly+avorNH7wuUcHp0KSgZp+02D5lVZ6HgeQZJwWK5DK8tpaXLfj/2gzcRpj66fRb73naXidPD4N+qLoQ8b47/i95h/y9o+VqZqdoEGyv1PHsMVfUrnatxb9krz1+qEevk3xYzldqXnwvDA/ipg+8qQN2U1anvR3U22aCxp9OWhqwufUdNAu/dsciOFVr9716gNNhubA1mRsDuauQ+B1DqzrhubUpUJzBmO/x29zMF4oD7pzA4OnaJj0er3qiDV0RDabDfR6PfHYRFTCUqBIShuiDXeAWKBHNtEADM8Hj4mjwR4KviOCBvlvGq5jzErGrYVWqwV3796Ffr8PvV4Put0u7O3tXZlcwd0+Hn7PpXC9hm1MwCCnkqLpedDKS7sHUiDMSms5G16DUnKUJKfFkoFFUcDR0RF0u91qd2Sv14OLiwt49uwZzGYzsfyYna08DecHS355jeHQtxIdGCDidVkul1u7Qbz6zMPjUl01+gCu7n6VZHKMbsPdvxcXF7BcLitau92u6eRpkAw9DEo2hdigByImqEjHVh3nPSTvKI38Ht9QeRj8wB04dW2cGFmXWtatW7fg+PgYptMpzOfz6phlXEBEd8Ret7OaA1oduLynOqkpWzU2IFUXrVYL9vb2qklwSS6UZVktTrQmblEWU57Hb2gAMAZUrqfsKvy0oA6/WbqL21mhACceX03HAR4Jm2tcUHAfURsT/F2uOIOlm3KOT6nd+fsQVqsVnJ+fb41BKqtj9X2dYKqWB8KTx3K5rE5JQEgyhNaXl4f1x8nXN998szqKfTQabR3FLtFHJx9S+/smBSLrTlr8fUQOWULHYGhMeCZypLy15yl9LZXHdUZd/4HaOvg7Vs9zvWD51vic3gFt5Yv50d+IXJMNdWIkGvDIcQn4LcYzpfw87c93zlvlYRmeU+AkXxXzzxUj9sCirUnbPOSPavXnYyl32Z40N12nSGOtCZv1M3w64gKxsPx57/eazZ0LW5OxfCDkQCif1HKaFLhWWalGlKbILAEek57Ca4zETHpI9FgMmmpkUqFMjxVst9vQ6/W27njFQINUHzT8pOPMaFoPH2mBPl4eX7kqtQG9AwK/4/dB0DrSSQ8Kj7Ea8y7WyciJ2ACH11in+e/v78NgMACA5/cN83JxB0To+NldyUZEqL48YOfNk38r0SXxe0z9Y8cZ/UaTgda3dWE5jFr6wWBQHSuJaefzOZyfn6s0pshxhHbkYU6nNKa/ONbrtXjcO35j5U3HmDfAKjnn0niQ+CoEyRnGY3DpzhFciIN0h/gmttxc8Mow6qgjYutC24L3p+VoSWVj+R4blQZopWAtPqdBcW0yVqI7VF/rPdKXiuFwCLdu3aoWDo1GI1iv19UiL2qr1C3Lg9x86tEXOXSBN5AnvduFI4uBT6pXOC3I2yiP8FQYKfiG45BPBKU45p8FSLbhacNQEC8kN6wAPP2NwV6cbNfyqRsYpLTEBkI1Ga75VlLZoW9SA5deHRWLzWYDs9ms8v8Atu/79fj7+DffaeqFJltDOl7iT5wwoKcHedpTKhf119HREYxGIxiPxzCfz8XJWJqfNbFR13eN0Quf4fpQp180/yjVfgqlbSqeQu1rKVaVawzwZ7FtZPl2VB7XlbsenyVHH6T6kSE9adHsaRuPPrZ0DLdzNT6QYiVSGqlMLd8YaPSh7SyVE8OzGp/yvLTf/Dtv/1nQbK9QX4XySaEhR9rQWPDYJjzddSOlf6V28PJqCk+l+H0vOqS4oBSbQoT8m5C9G8qPo9adsTcNLwqDeZ13q2Ol1ab8d+rqOG/Qm6ePaXuvIluv19XOD5xMAwAYjUbVDqyyvJz8sFY2xsI6Dpc61Jz2siy37ofF9zRYimi323B4eAjdbhcePXoEy+USFotFdRzaYrG4cszuTUWTATps75gAy2q1qvqBr9jGACYCd12XZbk1ESuV5+2DXLJI2gkTQ4dEV0zQKiZfDSEFpk2WhMrRAkA8b35nFQ1M1wGVAa1WC/b392Gz2cB4PIblcikeK07pijVq+X112r15XngcNSlvGsyn6XG80V1YvA4xgQ4eYAghZszRcSDJFlpXbdcrTcuPKW5SHoaA7ZXC37TeloGKaaVAEIDP9kgJeHlsDcwPJ8gpjaGyQvK/SeAONrrYDJ/jaRmeo4ZRX9IdlfweQwCfo4xtR+9tWq/Xlb0l7YyPQb/fh6IoYLFYuPrn04Zd+ixlWcJ4PK4WH3B7WdIpFFZwivMsv+sVn6UGuumdxSF9wPWPhz8p3VymcZuD1xG/0RZJ4eI/3LmKdefBuVx2GZ3El04NsuCxsWnaJuxhj7+TGvCSAs84Dvi7OvDYr9o7HkyW0nnbMkYfc/BrWqzgk/QO+Q99X/o8RM9isYDpdFrdL8tPWZHK5OOQjmEP6gbJm5TjUlwhJY+bHkNomj6rDEuepegsWib/m4+pFBtYGnuSLskNbxtaelfSrzTf2B24AJfyCm1fyTfBcnPA47t60mnfpn4nfct9AAn4DvuMxzctHt4VtDa1xq3U95JdF1vmriDZhzdZhnvA+4HiunXAdeE66KnbDjexHVMQinOlpqXfeNpJ3RnrJYQ/j3US6qbxpPcKMY/AldLUNdC056H6SIZdXSPAKkdLmzogNUOMB3joKn50tlar1dZRvtL9njxfrS5a3bTvJMOGBsA1h0kyojHQv1gsYLFYwHw+36qndnyIJ/8Q33sVfQ5DpK7QtgJXvAxsP25AlmVZ7X7Fvloul5XxSYPddY33HEoqFLjx8LU2pq00UlpLocQ6gLwfQ7vXrXw85Ws8rfF8jD6jYx7T0nsVeR/VkZuh+knOrZRO+h1r6Et5oczi5daRHzEBXwu0frGBD1o+TrjiqQ0p9d6VEavVNcYRjWkrT71y6BevnUMDDNR+wO+oruY6g4/THEEub5tr7Y76azgcVvYOnRDSZItmj0hpQ3QhQhNcHnlSFNsLZULt00RA5LqdSat8yY6x0kn58TFJF/fF2MIhhPyZFHvK0lf8t1T/WNmF/9MArscWoLJFojEUCI2l1fNdrN7U5HKKDpAm4unvGJ4KjY+649eS63Xp96JuQCw1D0uHemxH6zs6JkLtiCep4EIovCrGOylv6T2P/+NByPbOFauyyueyiLej11/KiZy2bEh3NVFG7DchPedJj/WqK5+l8vm4rNOG3jJ5elo/ixbP+xCkGE+oHh4fJUX2a74Dp9MDy6YIfWPp7JB8jEWKPPV8Y7W3ZYdJeWh8F7JtQn2X0n6SnNDkuNeW1fg7Vj/kSivJhZh24rIsVg5INIae5UBufRXTf6lyxiMvQ2XmRKy8w29i8o9FDjngKfdTtTP20wzrTP9YYRdTprWCVSpXEswhYwidsE6ns7UDYzabwXA4hLt371YO/mw2q3aP8tX4EnIJSI8Bh0FS3OXB33PnVHI2y7LcmmjOcRdXTBt40+46iKkFi0Jot9vQ6XSqI8JeeeWValfs6ekpfPTRR1t3dFAD7qbe08sRo2BSg6vad1IwyxPAvA4gXXzlrJVWalsMaOPO1+l0GtyxY+XH4TUymghW1DV+Aa5O1KQ4ot4yLWMyREOM3sTg4HA4hMPDQzg+PgaAy3um5/M5vP/++65di7l0UVHo9/x4jHZvkJ3S7AlESadThJxnzWHyOu3edLh7udVqVXfe0YBwyI7A/739mKqztPLX6zXcvXsXvv71r8N8PofZbAZnZ2cwnU6rHaZ4qkYsXXVoa0rGa864Nr5vkq7JAeRZq18wDYBuK6YEfz20fYbm4LUXNB8Cd8Pgjlwul732XQy9uFMer5PBY7O938eWZ9kDtL6pgSqer6XHvHljX9BTNGge3nxoWlpPaRIkFlIQsCzl3bqSv4/8Z4Hy5tnZGezv78OjR49gvV5Xp0V5QY9e99TrRUBoQgXrGrvzPTea1Lmpeee0BSTbI2QHe4Oz1sRkDPjkBac3Bp6YnvZMsuepDEGdJJ1UFtN2/BuEZsNrbavVIaUf+AI3XsdQzCFk49XhZ832k/qLHj8fkqnSCSGUZvpPW6AVQmrdJb0kIcYPrqs/Uuui+ftNIkd9PWVw5LZLd4kXidabik9zG4bs+6TJWBQqOQx+gJvXATkC0k0jFKDSnHlvoNQqN2R0aflrBgHPD3kLHVfq3NHjZ/GfdMyUVU/LkNTqLP3mR3VKdyXy8vDvbrcL7XYbFotF1Qa4M9MTFA69k2gItQFPWyeIkRqsltJwYz1mEqHb7VaTr9QopEdCIw/F0pYCSbZozyzUNc5z5JNq4NaZnIttJ05Tjn6lQS8uqwCeyyhedp3yAMIBSP63hRTnL+TUxgQTpfws49zbb7nGEaeN0oELPIqigIODA5hOp1U66/5RzKfO+KgTwLHaUOrzOsGwVOTUOTFjhdoTND8qNyS9rPGnV9fScqTgN/IbPbIYd2UDPA+AaAGX1LFJv0f5Rnk3doellK4sS1gul1XbhmyW2Px34VfkDPxq+efMw1osIY09q36c9z200vy8sp3abdpdYFo5mgzgdqVlH1D+p6ABRlonPvbLsoRutwtlWVa2AdcRlizn9rgHkmwLyX+kg38v0UbzjO1PCaH687SYPrZMy7bh6ay8NX1J5a1mt3r9F6nesXabRYeWR0z+Gm8AXI4POqlK2waBdjM9Upsfaeyhm9NkwWOD5YTFW1Ka0Hijz24a6siAXMgVe+BpLRmZoy/q8mSsLSLJqzr2jKfvKe+H6qr5hhKdlg7mabRype9DaT358u/q8orH3rJsNqt/NPp4mSG/J9XXSKXZeubxvzz0WPaxNw8PQrxrxSz4b88Y24WfH+snW32aUq6W53Uhpt1j6hsb//KUd5PaDWB3dk+MLePxhUN0J03G5u6cpgMasbguWqTOkiaJQkFT7x1esfXE411TvrVA7+/kWC6XMBqNqt98ogNXX1v3NsXAUqxF8fw+tqIooN/vV7TjCl9tpSo1QlutFpycnEBZlvD06dPqWQ5ch4OWu0zaTnSFIZ3w8gQNut0uHB4eQr/f33q/XC7h2bNnMJlMoCiKrZ3IANt8nhueQBCAXr/UFYaeMjVw3pSCCbuGd2U4pTN0H570jVY2503EcrmEs7OzLeXMA7+0PMtYpLI21OYxDkdT45UeGy+VHyvjYunMYYhK+Uj6FO8B/NznPgfj8Rh++MMfQlk+P2KPT8aH6PIGkKw7aes4wvhdjCzi70IOaRO2g4VcfE6d4NiAgWdc4uQ+X3i2v78fLe9pepofPXHEC6wvDZR3Oh0oyxJGo1ElA2PzRVmG+SDdeNdlyI7jPOeRj03hJvktGiiNuNM2dLx1bMCDXykSSk//5zpSGkv4vtfrbfG2VUZsEEObyJJ23KD9DwDVbnQu84vicqd6u92Gg4ODanJqOp3C2dkZAGwvpqBtkhPYFtJEvJRWgjZBtNlsKns5ZiesB6EArDRJYukg/Efv1KbBVCnAr9GhPaPtJO3Y5LZBqG5afT18wseZRncI1sSD1A+I4XAIJycnMJ1OYTabVbIH03viFLhYeTgcVt+EaEUbibbzTQ3KhoDtRXdUX6e++/uCmEBsTsRM1uXSGVROSHIwt26iekiSURqNnCYquymd2vc8BudBqP+pzKfyTNMlWn1ywVOm1Z/cnpfGAX+P/SnxjEafNVmh+VEvktxuApp947FTUsZuij+L34V4KKbMTyP+vtTzRcV16H/XZGyMg5aCJirscdB4WglNOcmeNg0FbZsMsGvlhQKuoTy0d1x4o1OFxgE1eKhDpjmGnrIlWixjBR1rmo63j7RyX3IE6d2wtM5SuR66re9i2wAR4/CnlBXKizuc0m9eLhei9CjKsiyrI2UnkwnM5/Mr/XhTlaTE1zFjLqZeltxJCXLyvK1nOYMM0jiVArkaz1NHS+JzHliaz+dbx0qGZHmMg1a3/zzvYsvR8o0NYlrjmP9tfSOV5XHyQ7Qiz6zXa+j1enBwcAD9fh9arRbcu3cPLi4uGj9CiMuooihcR9Sl6F78H68NQB08n8+vfC/pbV6u1FeazmoywEjHKn/uGRchnqRlhGiQxjovA38vFgvo9Xrw+c9/Hu7cuQP9fh/u3bsHn3zyCUyn02pigU/E0nrSYFTIhgvxDOURHoDytAEvk9pVHjolmjmNFmLkgie/FwlWsNAjK1JRV6+gP4C8TmWRJl84P+aULZofJvkFnK5YW44GUbktoulTmo6P2dS+CLUjToLRBbJUPsTIRi89vD6SfpFkKg0g17FnvbTz9xoNlh0s6Vfer3X6FyepMU9tstR6hhPzm80Ger0eHB8fw3q9htlsppbbbrdhNpvB/fv3q3ZZLBYV/2jg8ovSAPB8MrZJGyNG56XyWYpevW7kprkJGa6Vo40hTaanxkCko9SvG1yOpLa7ZF/w99a3AOHYgaePtHI0f95KF5KvIXlVF1w3ePkulrc8ukzTTWVZbi0w8/IN/T6URnpO6Zbe8b9j2oS3h6R7vflqfh/PR6OB5sPfS/6jRbe3LK1MizZv32sxg1B5KXrgRdSjdZFDb9axKXOjaf1vlelpS4nHJD9Mwo25M/YmdfiuYClTr7KVBFhqoFBK7zUWcwwSmker1YLBYHClbFo/VPxa2XyVfkjZhYJRVpqiKKrdLQCwtZtEyuf8/HzrmVQ//t1Nwy4Eo7SKMqbs+Xxe7VzodDpwdnZW7YxFaLscc4HKthQ5F+LN2LwoXbkgBQpD5Wu0xBqLWpti8JZis9m471UMOaP02Wq1qo68xu/ROcP7V3K1fWo+3nYNyUErLwymATwPisXw73UYWwiLRrwLfG9vD+7evQsHBwewXC7hv//3/17tcsJTEjz1jZEDRXH1niUe6A7l7xl39FlZltWOzf39fQAAePLkSTDYkBLESXWuYoFtRk9B4AFcDdTZTdXPvF08dV6v1zAej+Hk5AR+53d+B1577TXY39+Hd999F773ve9V9aLHnpZlKco4WqZmN8boGTrW64LuiLUCCvQZPr9OJ3sXfosW+Pr7ALrjtt1uQ7/fh9VqVU3uWHYV12e7kDE5bTWAqz6RZyFZWZZXJqKa5peiKKq7YieTyZb/RhdENlEu/xv1JZeD6A/iQhW8aiCVL+oGd/mOIo8faI39FP+IpudXutDrFzwoisvTiNbrNSyXS9jb24OXX34ZZrPZlr9LgeP64uKiOiUKALYWYofKpJMT1Fby2Pkx2LXc3aXcQvx90i0aND2Cf+eIz6TKjl1A44EYWYlppW/q6KQU/pRkKW9/D01an9G/vSfQ1O1zz7VaoZiDpz81GUS/xf/pzn2q46y25/nRfHOdFqiVWRe8DVJjHCm8wL+hsW6rffnfoXylOEKsDLDyk3BTdFDTdNyUer5I2FWsCMHHjMf2luwHrl+kOgQnY62K52gUTwDYgxQDyUN/Sv21QJcFrtClFcWhtgoZHTxQGoKULsaQ8qQJtQtOniDd0k4M/NviAU8Q1TLC6dG1nU6nchYBLleCU7r4/Wq03zgd3gBtrnFYR5HSd3URykNrl5Aw5sEN/Le3t1cFXwDgSvBaGrO5YPFYqDzNoK4b9EsJ1mjBIQmeOofeaWk5D6QGXbENtfFIYU1i8DIlOZACTkuoTUMywhMA8LShFDTkY7TueKrjsMfWQSobg3pUhnC0Wi04PDyEsny+a5QexedxQiVaJPqlow6t8ag55x56pO/KsgzuOAl9X5b1jsrMCYlXpX7w8hJPF2vXSv2Gx6NKtGp9j20sPef5c3tE4nMeVKF8Z/GY1B70ePdXX30V+v0+3L9/H+bzOcxmsyqNVAcLdFewB03p9l0htkxJ7lvtFZJTkk6T+F2Sf9a3+DfnxxzBK0qPxJtIFz82WKoL1oP6BDg+yvL5zhA6HheLRbW4hX6nyXjMU6MBITn6mLZp+xDbC/XBG2+8AZvNBn71q1+p6euWmQPcr5B8CyqLOH2SHWr51pQvaL4ef0+S0XhiBdoafNFvHb9N4stYu5rjzTffhDfeeAN+8pOfwNOnT6HX6221AT0Cn5/oQK9l4LZ2bHyhrqwO2YzecrxjS0or+Rs5cR367CZAk/f8udc+SfFFpW93IRNDMRVKE4B//MX4qJZNYKW35LcES65p9mzIj+O6NlTvVPvNajuPr+L1ZTQ7yUsrXWRk2YMh+rR+CfErb+tYP9nLo3XkeGw+MflrtrjHftfy96Sl76UxSWmhaSUZi+kk+2tXaFoXxsYGYr+Tvkltwxibq2l45Jzk30o6u65+liDFWzy+2ZXJWC9xuxwYUuW9glALRMUipb4xHU07TVJkVqAMy+LH0tVFqkMf803I0MEdSUVRbK2U9QrqlHaQ2pkOblyhj/kvl8utADX+zftVcsBDRlTsu1QejzE0Ut7FBAJC6UPGpHQP2v7+/taqb88Rn00iNLYkIZ6rvJgx4TWmJYMhxsDzlB+ipw59+D50550VbKN/W8E5CzwYSPvMu+rWMt4433kcr5DjwnWPtsswRQ9bzpLH4fbmKcGzW/Lo6AgAAM7Pz2G9Xm/tuvTAUz9uD/B70/l3HliBHk3XIP9pE8ESUO95bbHrcLiobtfkTUjnWLo4VCfJHsAxpU3IaPoa+0YLVkllhmRVUTxfBIf0hJx0qc54J2y324W3334bjo6OYLlcwunpKYzHYyiKy51VUr01ULm7S0cxprymaIulAaHxq2VjAsDWBIpFR4gmjd/p/7nbi+tkzVnG99LdywgMNtLFOnxxHy93sVhAt9utJqK0IBSWyxdycfnprbMGS+9IPor0PdKL/tnrr78O6/UaPvjgAzPwIckuL//wdLH6ImQ/cj7gfS/xDeUtqQz6PfYv5xfpbnCNVpzQx3y81xWk6LaYdBreeOMNuHv3Lty7dw8eP368tZAZd9EWxeUk82q12tIxtB84YuWqx9blqFt3/NYrE0PlWfZ5E8itu3atp73wxlCo/qB9VrcPLHksPc/FwyGbTWoXzfbU0qXGpzw+KX+mfSP1kWUXe8ehJvdD8PjCVO7F2GmhcrQxqPWj1gZamXSHrFW21y/y2oMpY9DTD9w2pQiNhVDZkt0Ta7fx/PjCbZ5v6hhMlTkxuo/74pptk0Mvv6jQxqkHXl1glVcHu9D/lI94HMRqO289Lb2m+RQePZF0TPF1DwBv+ddNp4cGSXhKR1HlYOAUYyEFOQbcer2G6XSqGiExxokVxKAOn4ay3J680/LSVtVL5eVEXWfgJjpHKZDatiwvJ8sfPXpUOfy7moi1xoFXCXgMVm//xSgbKyhaxwClkFbAeduCj2kpkCgpRq9jR50JbWJAu5PRQ38IMQZvbN5aeR6jmcoarc5NG1xe457+HTI0y7IUJ+JxMRDKjPPzc3j48CHcunWrujc2F7x97hmTUt7SmA6V2Wq1YH9/H4qigIuLC1N2xjqWPK33fjgK3tdWO6zX62ohFbbDdDqF5XK5dWoCp58H3mi5MbI3JSiF9uF0OoX333+/qsNgMIA33ngDHjx4APP5HLrdrlgm/63xTqxDx9sntl4S8GhT3PFFeZbuwKN6I0cglJZPy0wNitRJa0EL3ljpcvpA2qk0sZDsh1DQEyfoqb1OecTDg5RvcXch5hsb+AshZAukgtcdf0uLNnbl71GcnJzAv/pX/wo++eQT+O53vwvtdhv29va2Fqxy5PRtsR44UY72/nw+V2V4CiRblB87HJsf/c678A5A9v9i6oi0Y7lHR0dQFAU8ePBgSxZ7gEdS7+3twXw+hw8//LDy5b/85S/DW2+9Bd///vdhNBpt6WGsA14tgjSF7CukC09coFfO4LHZ/LjiXQQEKV5k/7qJWMVNBx/bsXe7Un4O2RFUvwH4jmbdVRtS2jzj0BProPlq8MTjPHR4ZZ9EI6fHW34oD6q3Pem1BXCYhtvCGurY6NwvxhN7vHXg5fP3/B23w3k5Mf5rTjtMouOmx12pHALw+4S7AqeH21CSr+eRH03Y3p+hPnbBa1SXcpsa4KrO9UDSE1694B1jW5OxWmZa4KUppCriEHIHwzliGY0aePg333VC33GB6p1YiKUxxYjxGqn025BRRXcZSQrY4lftqAMpP48DLTnf/Dl3LPm30jsNTQTTPOUhpADXLmlKMRIofTTAX5YljEYjAICtoHXTiiHXWLO+5QarxHdeWihCYyKVF7i8wECiV5HRcUffaflwQ1TKT+I1zfkMGbZ1oMkNniYWUv003ZHi6MTqnJDu0GSnBzE2iiTDJecAg3lFUcByuYTpdAqdTgcGg4GpZ2Lb0gvLOZXSxvCpVAcaNLXKibHbNB7QZJaUv9XeWvlFcbn7End10SC9lBc9ftSSp5yHNH2qBRhCwazFYgFPnz6Fw8NDODk5gV6vBycnJ/D48WPTDvLaGpY8jwmkWGVQ4C5Zukuq1WpV+hl3f4faJSQvvfRYfNg0vLItxN+SPM1ZH87DMfnSvrL8AKmOZfl8gar2PkQ3zbsoiorvcFcePtdseF6XUPlIM/0do5u8/hSlvY49UieARWVlv9+Hr371qzAcDuE73/kOtNvtare7dxFkrM6XgPI9NY8U/8ObL4DO5xRo01rpQjRKNojlKxRFAcPhsBofGHgPgfJAu92GXq8Hq9UKnj17VtlJX/jCF2Bvbw/+7u/+bitPSg/2m+f0DapL+T8AqCbi6YRyXb9FoqFpeOTNTUXucXQd+tmy2zhd9O8YmeqZ3AqVqyHFPpTiXaEFIthGkr7lPjinn36TWifL37LsWo9/HGNLS99yWa61lZQfp4nzWqy/y78JyTZ6YgcAmHpc6ntPfCDGl/Pk6+FrTzmSzkht/xA8+Xhs0lAaT983YftosNpY8tOkKxw5PGPrRUFI56Xo2Jj0N7X9rHbh+pT6dCljNiQ7Ldtay4O3a/TO2JzC59ME3rCeOyUkZ5EbI17DROqT67pHKzf4zuHUAFxddLtdGAwGsF6vYTKZbPVNq9WC5XK5ZeBRo6VOYIAjl3MWS09TAYpYGjxpsO2Xy6UayLPqE1tXb3qqDKSx7zVcUdmEzsav019SsNSiS/qey7LQ0a8emkJGFgaSaDsBXF3oQvPEb7hRi4EcXr7lDHoDqZifBh5AstJJf8fSEou6Rg3+ThkHqeB5Y5BBkg30OODj42O4ffs2fPWrX4U33ngDDg8PYb1ew97eHkwmE3j48CFsNhvodrtRQXeLTk6Phw+8gVpun2C7WI5cv9+Hsry8H1eTPXz1oZRnHSeJBn3/f/be7cey4zoP//a5n9P3mZ4rSQ1JUyRFXUhHtmRLSuzYiR9sCIgDw0De8pLkT8hb8pTXvCVAgBgBHCSAX/zgBE4ix7EdSbCt2KJESiIl3obDufZMT9/P/fJ76N+qWWf1qqpVe+/T3aT0AY3u3rt21aqqVetWN6vTGRpr7XYb9Xodg8HABZI53doxYbIcDZb+4nTRjld6PpvN5uyJEIhXebCsrDEkHWVLsEyrO9lOR0dHGAwGePXVV/HpT38aS0tLuH37Nh4+fJiLPqLHZxMtyl4J6fFQ+kXBmje1VWjHBfBELnLQTlLNqbSUL4/dP6+gRQHT6dQtCJ1Op273PC3goKO1adJK+ikA3DdHR0duR/toNFLvwqzX627ykvI/TV9H2i8xPUaysdFooFqt4s6dO6hWq3jppZfmJrmL0sSPbvbRSvSm5s3HJfG2dmRwCnienD5+/K5Vrmu6k2ySkA70QbvPj3i4LPk0mUzQ7/dRq9VQq9Vw9+5d3Lt3D5/+9Kdx/fp1fOUrX8H9+/fx+uuvYzweo9VqqTtYgXAfSHr5jq0sO94VrbXfWfuwPpxXusrGee6DFFhljzWYLv29kJxItT+KQtr7tMDi6OjoxKlxVrs3pWyrnOO2jSUGmyI/y27vlLxCMT8+0cDtMc3HA+YnKizlc72o8XxMX/KyfP4UvdPsTuuJE3n0dWp85bzLLckDEh8H+9sa94rhvPfVz7BYSJ0l5SGPRccWflvL439r14aG8o9OxmoKK6QYJCxEWIVhquIsglQDgP+2OhBcYFoEvi+oKb89TUGboqgsdEn6pWEaCxhreWhpfLRpfcLfUeBlMpmccGrlMW6+/grV3fetL6222s7yne//2FjLE/AI/R/7TgajYuX7glc+48TXZiE+SUnvQ1mGQswh5E5bHhpS+CDU1zL4k8JHckIgBu6c8G987aPRR/Dd2eiTUfKZlWb+HS8j1laWMSHzLxMpgcUUeooaRaEgnJVmLs9pt8fy8jLW1tYwHo8xGAzmdnJI5NXDMdkjZdyiHCy+axF4Mpmi8b5mg1jldZ6+5nn7xh0HN45Jj9MuzCzL1B2yqWNLo1HSFaqrxqM8DzpukyY0+Y5tWZ5Ggw8p7S/ps/gHwJNjJGkyYW1tDZcvX8bFixdxcHDgAmjSprLQmeKPaGny8F9efa+1lcVHIljaOoWmmCyUfKvpeCuPkaz0TSLF+kSTKSG9Iu+e5Ho1thOJ+FHyJZeBtACCt40mH7PsyZ2ydCemNr4pfbVaDdJXFu9qNpIcexb5TcfD9vt9DIdDLC8vY2VlBUtLS66t89Ia+06OH+l/xRbBpvgE/L383tcnef2YEHib5v2e0yd9WHnnX6xuPF9Kyxcn0FUAwPHip4sXL2I4HLp6kF6w0i35U445WthUhq0b4wXeRkV8W8s7K02p+Z02Un3rRcDar5b3PnucpyvbDrbYkzEU8U/IN9D0OR+TedpR+07TqzG7JWab+nSeBouNlqc9pfwK2bI+XWLhAfmtJa7j43FL32jl87qGygnVKY8889kIHBovxPzsRcmqPHW02IQ+W8dKUx7+Dsn6kO1OaSzj0mofFsVp6icNFj8/D31nXa+iiLWL1Mc+/WKBbGeffvHFRnx0AjnvjM2DIg1A31vyPG0UDYZw5HGwtHaJ7Yj1BQL4+9iOOx8tvvaw3Ikh3/n63BI8SgGvV8h5H41GJ1arh2jVwI2NFOXoa9uQIZcXeYI9ZSo9bkinjAkZ9Mmy7MRdekWCGDxvH1KdPJ/BK/mQ6I7terWOGW0chhwB+U2sb6QC1HbEyiPQQu2Wer6/lj5F4abc2ZUyXiyGdl6DKpTPaQRjNJmWEsziv/OCB8v5j5VeH/b29nB0dIRr165haWkJt27dwuHhIQaDgZqvdOSskPTIu0y1extDAQeJEC18sgSAC6hPJpPgLk3eh7y9LQEo/rc1IOtLG6s3/+7ixYu4evUqbt26hcePH0fLtYB4XZOtdCRvo9FwJ2tYg1X1eh3j8RiPHj3C9vY23nzzTVcG32Xn+57/JjqLQI6bFFkZQqVSQbPZdIH0Xq+H4XDoyrPueEgF0Z5nR1xRm+s8+DAhZFmGRqMBACdOiUhFvV5HvV5Hv98/ISdi+pAmM/v9/txkpkzHbQ1aIMOfj8djjEYjx1d0dyyng35owQaVeZ7A28wajNVkgSWoTeWl4PLly/iN3/gNvPPOO3jzzTfRbrextLSEfr9vuju2CJ/RLku6SgDAHE+k6H0fuA8n9V1K3qFgJX8fag8uv/jdyr6dTL48+v0+BoMBlpaW3G7ner1+YtGPFXn6MHQSRagczVcqC1Y9fVo4z/qiCIr61tY0lrJ8eZP80E6W4HIgzwSBps9oYc5pTCiEAszT6RTD4dDZsQT+Nz9JQitP2uCh+IU2KSbbLaa7Yvaiz1YvArkAzIdQEJ//DsUJiR8J5L/RO4s967PBtHahvqRJeLIH+ZjgdZF3DftkNOkpvrCZn1Ikvw35oZZx4vPPU2WLjOOeRozlrKHZ6mXoI8mz2r2f9JuP65/p3eL4pNaLTrbj11IRpF6Qsoc/p/T0m+SHxSYk3WmBdzI2j0MRC0BqFbAorFgQ0Jqfjwb+rVWgSoeW52+hN4+xRvlbgtsxBZFHaVlpCCElOK85uqFv+P/SaEuhIaSoQzvl5I9WZmyM+MD79bSFp2VclGWISMPdml7SYglCL6IdY3yVd6KE+kDyT5E6SGOyLMi218pIKTOV96idQmWmyBMrHSn5aXlphn3RPg7RlFpGTG8W6ecURwpIn4gk2mK6wfcdBXhHoxEmkwn29vawu7uLSqXiAvuawRayBYqO3RjdoXQhg5Le0er38XjsfuSRUVabpkhdikLLv1arodFouB/eX1rdCFI/aTylpacAho8nLDKOgl2TycQFy1OcAks5vrL5OODtEwtk+PiDAoztdhvtdvuErpATCVbeKoOXUttqUTLaCk32anJR05O+/GTevvKsMlv+5KGDxoBF5of6ULPZtTScByngKI+apcmvkC7l72R6ykv6PXxhDJUdahsrNP/Q14++Ppb/8/t3h8Ohm7xbXl5Go9FQA2u87BAsclHzE6V8tvKqhlSbg9crj00j3/nsW83OjfnWdNUABfG5/CbepFMi6JhfmhCSdbOA097r9XBwcDB3dYxW75hOsZYZ8sHPQl5b/Y8ycVrl+FBmOxfxUVLhG4uhd5pMtthFPj5dBGL0hOpG+ovkKT85R5sYKUO+S5otdk0RWGS79lz7NkWOkb1h0Xc+3R/yN1PytKTz6VSLXUHpQjaT73mof3xlavo4RFuoLaTdtkjk1Rcp8imWh8WOCcnKVPjaV/vbMvbPWv8tAkV8+U8ytHaROsuijzlC/q9FPsXy5ljIzthFKseiCAXa8pQp8wmtwiLII3S01U2++w1jzlbsGTFnCqSythhYloBJyvvY6sAU4a+lDd1nRYYnQdaP9xU5uvQNT1tkJY8WbIspyLIdodMQ/lSOb/V8al6EMvIrijwyx2JAybEZWhEaUkgyT18QTctT+5vDtzM29E0K5HHdWqCKQyppQpl3O58mLONzEfWy5snpi/FSmXKG+MJyV7HkF/qfdjPygOTdu3dx//59t/NeO8JXwjr2JE30bSyN1fnndBDNoXu1aQfw0dHRiRXLFsRkUojGReuc1dVVVKtV7O/vo9/vO9uMAtAxvUFt5qOVjudtNpsAgMPDQ28bpDjAhNOSVdqER+r3vJ3oSNMbN2649i5DRxcN5OfBWeuLFBlM0E6k8N0Ha93toZV31m1TBuhIerormxYP9Pt9ACd9Pt/doNPpFL1ez/1PNkqz2XQ7EEm+ZlmGVquF4XCI4XB4YmX3abQr93v4PaVSFrTbbdRqNTx8+BDtdhuPHj2aq2co/7KQNxDNv/flV3Zb55WfBNqRRHxCk6axNqjVarh69Somkwm2t7fd5Lm8juDx48eo1Wq4fPky2u02AGA4HKLX650Y01ZdNZvN8OGHH2I0GmEwGKDX681N8Fh1HS8v5v9SO/HTPs5CP/hgtYl/2lF2LKMMyFMXeIC2SJ9y+Vqm/kxpQ82WpW/pZImNjQ0nG8bjsTvphesF365TbWJMK5f8BoK0WXztHDqFT7uPVMujKDTaOK/44joxn0fKytACT56njyZ6HktD7+j4eeqbmF8q6aWTnur1uncnNa8rADX2GhobVr8xj3/5cZHXmhxK8St9oHYv84RBORY43SEZQnwheeiTivOoB604S9ppIwFfwA7oJ3ppslHTZdb6pIw102SsRmDewkOC9DQme2KwKCWZlqe35K0FfDksbajREKOXvg0xYFED0Ee7lmeMBywGhvbMykfWepIR4qNX9ocMdpcJax1DBnWMrlR+tOSh0Z3Cu3nb0UJ7Cp+lKJW8CkgLOPj4zFeW1rY+erT687QhnovxuXbMiLY7xAdtoinWpqkBY82pIBpD34V4uQjy6sEyaOBBBd87WV4qny9Cv9CkF3cWLIE+jc99+WdZhsePH6NaraLb7TrHVC7kKdP5kbRyviwqlzUZwfueJgHkTpaY/SLz9/EMf5Zi86Tqd+KH6XSKZrOJy5cvY2VlxR25lqefQvqV27j0wydw+J3zofy0MmmHbSgYFdOjXKZa7TL53Np/sbFH9aF8uHyXkww+2U/lxxyr04JFHsb6Tuo97e8QD6TQ6LMJUn2L0Hvej/K5dpwerxf/li989PGd5s+Q7KzX62i322i1WqjX69jd3XVyjrdHrVbDZDLBcDjE5uYmbty44cbt9vY2hsPhibYiOVMUVt7Jm6+Fx0L2oyyfTougBUuz2Qz1eh2XL1/GrVu3AMzr5xRaUyD5gp8kwPmI33dI9KfENCyyWsLq/+T1V6Qs4H2dZdncqRa1Wg2dTgeDwWBukp3TNJ1O0e/353haymcLnZQ/X9zkkwOp+ld+J3VbaLFnqq6IxTWK+nqWss9KnxVBGf7yeal3HvvC4iNKvpXpU+SNTzaktqFMz/tmNpu5xRS1Ws3pVFo4FMrHamuH/KnQ9z4ZGMs7FTE9GbKfZFtKWNuoUqmgVqu5tPwUDZ9tqLWh9izUNrHvYpC6SX5Hz2ihc8wWToEsT46t0Bj3xUR4XYr4+jG/TaMhZv/KtLE+tdITg0VWxtqLeFqOY8k3Rdv944JUf+w84TRp9Y1Z4qdQ2izLTtyDzn2fReLU7ozlCAUBOMoYYKEgjkZTrFxffhYn3HcPpLx3QdshUJQZfMEQjca8SAlGxAyE1HItkIZdijHNV9/IlcSSFr76IkRDEZStgE5D2IRg4bs8NPomEfIiJY9QWp9RxY+n42nkqlDiPz6uYytRrfRwWiwGYiiNvPMSeLJSKfatRlsRWmR6akdt1RMdtRfLw+pUUr6WdKFnobys4yNGc8jgt/CDBUWdYIlareZWagNwwUd5z2HIGAuBAsnvvPMO3n777VyBw6Kgo5JTwfV+LCDO9eLh4aHb4RSa1C6qh6wB6Lw6lR+ltrq6ildeecWlj+3yzRMQo/R8BfmFCxdQrVbdPah0FCS1Nw/iyLLp7yzL3P0nw+EQ4/HYbMdIB1YGOFLkpwyA0+/UgLpGIwXtK5UKWq0WWq0Wjo6O3N24mmwq224pO6hioZHzAf9Og6/vzgNkXTVn2Be4406vNg7oCFUAcxP4PJ1ms5BfMhwOsbq6iitXruDatWtYWVnBt7/9bXS7XbTbbbdSulKpoNFo4PDwELu7u/ilX/olfPnLX0a328Xh4SH++I//GI8ePSqjuU4VGp9osmA2m5lPkgCAg4MDAPOnz6yuruJzn/sc7t69CwDuvuzQjlkexM4zBvn44XcMU59SfnREfb1eR5Zl2N/fL3WnR9F8fOPC8q3cPU3jgfdNrVbDxsaGW1BGkyh0fzLVZWdnx+kcef+fhRYar3QXuPX7PG0pJ0BoYYBPP1qCxRKhEwIWJYM/7kHmFF14nvRYCDEbrYgdpPnyclyfxZ3IEjs7O6hWq3jqqafcfeDdbhd7e3sATt61Fysf0MdVKLYR8ku5XUo2pe+kMElDyLeWOspHi5RHWpn0t+U0RQ2VSgXLy8tOZh8dHeHw8ND971tEE7Ib6R1faKylIRvBRz/vN34ygawf7xtOZ7VaxfLyMoDj4+21uHhZE4h5fLuzQBFdIL8N3XlN8NWzTJ2kjXcO6nNul3xcT6/7Gc4ONMa5HOIxdEpDczvD4fDE2OB6aBH8NzcZGyvAGhywQCoGSzkWhIJLPuWjKVWLwcjr4HOiNNr4e2sQTL6XkzMxei0GoqSFT/TEJhJS2ovAGTwk+H3lx/rWl97X7lqgTwYeubMXMmZC/J0CrU/ot+S5soPiZdXBkkfMIQgF8Hz5+8oss14aUpybGM9JSKNaSxsKlmtl+miJvfM5QNIxsQYurP2h1deSv4R0nKXTZw2AWcvm7+QRGT5H1DImYmVLmWGlVysj9b2EJTCmpdfkHD/6ltfRKgusOoMcTr6jmybxtaMjY3InRpfvfVnyigKsAFyw2nf8MG9fLdCUOtZiafjfId3sg2VMZNnxDtV+v4+HDx9iZ2fHrei32Ek+pBroWoAklI4mI2mnsg957HHL+ODyI0XHAcf2Eqd7d3cX29vbWFpacryolW3RVaE05y1wkhr4obyK2izc1g6NXy7baEKDB8FibVq0vTX9JPtayom8OihFdvEfWkzG79/k9paVHn4lDf1UKhW3yCKFRiusfBSSIVRH/huAm2z9xje+gfX1dVy7dg1bW1tz5eaB3LUp7dsiMlvmx5+lINbvKbLI5yfzYCTp5Vicg++GzbIMu7u76HQ6uHr1KpaXl7G2toatrS08ePBALbsszGbHVzvs7u66hRFEF6cxNGmSZU8mpfKcDhLrI83H5s9brRYAnNj9l1I+z1dDGTZeHpm4KGjyuoz8Fl3HVH9B2qop8ShfLIfn4+NNCyQfh2iP0cpPZZE2er1ex4ULFzAYDNyxxZZ7UDUaOM007mezmZMR2sScNnFo6TOfzxCydUO+u6Uftby1dDHI9l9aWnILNS1xVS3uoNWDyuLPQjLYx6dygYyU6TxP6lO6JojraWlzaTSHxrDs+5QxwPOPxVPK9ME0mac9i/keKTagrGMeO1eW5WszTQ6G6KK/+cTyedF7P8P5gGYLc/tBk+O+8ZTHJ0vx2807Y0MC11pYSn6LgNaovPGtgzmmxGPlE6xH5GnM4WMin/AM1YPnwb9JEW4hBeBL47unLkSDZjxo/4fugggZIBLajkS+6pYbpxYDXgYSLJB9kzf4lFomlScRcjZCijaGmBER+84qj/I4BykIfWsxNLTgE8+b85vG5yl3vFn7xeqcWnkzb/tajcmY88SfS74J8XZRHcX7RK4I1VC0PKtM0sZtTKbnkWMp6TS+88kjei6PwObjJUXuc1pIn/BdqbRDMbZK3SoPY/2fMgZjyLLMTSQcHh7OtZXvbufQuLMGNVLHj9WOCcH3Xa/Xw/b2Nu7du4fHjx+bv/PRl4dWzlsh/iQ7g46MlrujT8MBzeuEEygAT7z0+PFjbG1t4YUXXkCz2TyRb0gOS5qILv67TKTKubJRVO9ogQpfnWazJ8e4kiyVO7DlhIjMk9P9ScNsNnPBzqWlJUynUxwdHQHwB/p8qNVqqNVqbrc8ADfGQycYLJLHJeSEH8krTbbXajUcHR3hD//wD3HlyhV86Utfcjtj85RPfC9PkJJ8XFT+aUeSlQWel9wtFtP5Pl1Av/lpTXx8cv+A5CgdZ7m9vY3JZIKXXnoJzWYTzWYTk8nETcYuCrPZ8Z2x/OjgVqvlbCg6cpNONNHqTUddU50sd4zzttROHLLSTic10GKJPLsTTzNQHPJ/UvPI62ctAlbZd9o62yrzQ2Oaf8/lXpHT6lKhxQC5XOGnzEi66vU6Ll26hN3dXbdDk77TbIOQzUyyi189Q+XLa1MIml2i2Ygh3qCxzmW1r0+1fEL+qk+3yO95Oov/SDTW63U0Gg3s7e25xS4abTJeGYtXhcq02Oj8O1pwRnzEaaQFabwsmoyl6wboHY+dxPrT1wbym6I2tkZDUfkYs6klv/jyCMW8LGX7/Ks8babFZmTevjgPpdN2ffMNUqepayWN58nv8cU9fxrBdcps5r960vct561UO8SCwscU5w2unSW0xkxx6ooYtr53pGBiefucAM148n2jBf1Cipt+x454jNEu25gcpCIK0dePWjv4gp3WIBIN4KKBYd9gXoQgL5Kfr56LpDE0ie77LmXcFqX9tJStvIeSEOJNa9tpxluK0uYGYFnGbAiLCpDJADPJuDICfJR/XtrKgDUvK52pxkhofJZhxGugoGOv18sdNJNlzmZP7kaSE5NF8y4ToeA9Oa+NRsPtkuHtyZ+RLKFJmFgwjoIkFCAu6xg1Pg5l4IevoI71BS2eAoBut4vbt2+j1+u5+1uBJwvjKEgQum/Oqndms+NdrLSTLssyNBoNzGbHx2f68tfy4XLJuttA5qGBbDCrzAvtWirKz5PJxN1FRmOOJqt42XmD6iHw+pedt7V8IH1Cr0yQDizLvpG0092ilgCTpMvne2h2DMkEbcU8Pb9+/Tqefvpp3L9/H+12G1tbWxgOh+44Ve045WvXruHSpUtu8QAFCc8D8urTRfPXpz/9abz88st47733cPv27blFrMD80cb8SMOUQIkEz18LShPa7Taq1Sr29vZME3uUN4cct0Vtg1hQlfInXUW6gdfZNyZioCC5tHFSeZzXn/TCZDJxO+7p6ojhcIhqtep2u8krJbS65EEoFpAn3tDpdNzxzqcxhlJwXmJseVCmb100vhLSv9JOlvKlzAke7tPL42dlWq38opB1kf8fHR25qwMajQZWV1fnbGgKfseOGQ6BB86ljeLLg7edpZyQLOB2RKhvZR9YZa51QS+3/YnvuJ6ktmm326jX6+j1ephMJs4n5nlxXcEXV0mbKaZbLDRL8L7h4Pohy44X6zQaDQDAYDBwPpPMi5enQfZdyE+W+YbSnCfE+E22geZDlh1nKwJJC/9bytzzQjNg9+dPi49C8eLzyssWFKHftwGG85G83oP40XcaTRmITsZaB2hqgPY0YZlcsATWykConWIrzWN0agaZ/IYrVg6piCxKTpZjgaTFpwDztncscKyltxpRWvuHvvUZIhb6YgGqlLbKOy5TlXNMwGnlxYIbVnpTnZFYQNBabl74nDz+N28jrX5SXshjGBYBHqAsowyL0Zu3rBRZQHIxdgRoLB8q19cHMSclL1/moZPKtMqHRfG+rw1DtPjypV1d3W63lEA50VGtVt1kbOzumlgfLxIaX3Pnmq9K5mn4ineikRx9iyzmR5um6JuYHKQ0Ft3ia1t+/NVgMMCjR49cgIffSUM/9E7SYmkHSQPxIAVF6vW6GnTW8pJ1k7oxZgvG2qtsHZHC29QncjU83/VL90xqO8rKsFdCtPE8F4FQvpLnitjCKXKb33FsyTuVFn4UryantHxT2p/bJvStzJfqt7GxgaeffhpXr17FYDDA1tbWHG2aLt7Y2HA7+ADMBTlTaJR9wnf8WXbkWKHxTlF+tga2geNxdOXKFbzwwgvY39/HBx984OrPdzHxvqnVahiNRlG7JGQ30g/xHOUrQQuT5D1QoTGX6pekwKrPeFlZ9mSHLNfzVl9MyhrS4Ry+uETIvuX/853NFOCivpnNZnOTsal2ZoxHfHIlNLEVK4+OzeQLzyz+uGZLlGkPLkqfl9Ufi/yWwyc7FqHLrfZrjDZf3nIsh2Jm8tmibBdeTr/fn9NZ5H/R/7QII9XHk+m4buSwxOtkm2s2Af8/Fv+UciPEA6G+9+kbXyyL0km7htKT/9JqtVzfhO6jpYlgbaGbtKVS5VTMbpU2NreBSP/QTl9KL+ufyueaPvD5y2UjJc9QLDMWF4mVQ20QsgtjcYsy5UqsTzT+43yw6HjKIrBoufxxoaEIUn0DyVOkq3z8o12BxvNeRPsV2hlrFYjnqeNTnXtremuADHiyAsin6FNW/vNyfY5MKLiiKXXN4EtpC54v/15zNkO7bUMKQP5vWQUXc5g0mkOwOL5lBFVknhacpzEXgs9ADSFP3Rbh/EqkjhEOKQ94QCuV5tgqRss40ORCCh31en0uD6qHZWd5isyV+kcG4ywguvgOOit4n1t2mNG9U7TbyyezZZvz+pUJS9CC11HjCwtixnyqruW8FHNQFoE8d5ZxpIyBvA5xqNxareYmH+g518dau+Xd8erT/xKW1fPaznWfDWrhKZoglTu1Uu3E1G/kt3khx5WUe1KW89/c4Vg0nTRWKfjz4x//GLu7u7h16xYODg5OHL0cA9nJMhiVV19+XOwlDTHfK8ueTEbRbi4OajPyS5rNJqrV6onJBsnnH8dASNnQ2oVg9Y9/8Rd/EdevX8ft27ext7eHmzdvujtpp1P9Lu/TRCjwxWUKjeFms4lut4vvfve7AIAXXnjBmzdvFzrKnHiQjiaUci0WLExBlh3fny7vq0u1IS2w7IDylRfy61P5YzweY2dnB6urq+h0OoVknzX4CzypP+0sJ7mTIvtTZY/00fkJGFmWqfJQlkX5HBwcoFqtYmVlxUzvJx1FfN5FlVMmPb4xeVoTAZrdzHfEA3a7vMy+ItkzGo2QZZmbNCP6Op3OXLm+PKR+DG1IiR1Ly2MOk8lkTq7wbyy+aGjHs9SHoXa1+CRUTko/Uh273S5qtRoajQY2NjZw6dIlAMdt1e12MRwOMRqN5haRaTSG7BTytX0xqhAs40TmSXxx//59NJtNXL58GY1GA5ubm27SdmtrC4PBwBvb5vrbF8OK2c1aWhkL8cWrzwqW9k6VAxpvxPjFmm+Mn0K2njzG/Wd+yc+QArkgROM/uUCE0mooql/npPMijapQ3mUOnpTJHIuSkGlSAm8+IUYKR6MhNLEXg085hPLT2iLVuPCliSkqre5FAuuhMihvS71kgMXS/lpw+DwgNu6KjPmy5IXkR80BKRLoTvk2NaAvjbMYLbGyLeMrNuZ8E2YWg5/n4zNiLZAyjgfi8+RnKS8EXyDZ11Y831AbpIwvCgKFvvf1kcyrrPaT7WAdK2X2X968fBOHsf9T4NP/KUHTUH7ac58MSGkni20jd4HJwKU1L0oj80j5ntPF8/OVk5oX/54WXci7COW30g5IKVNCLvaI1TNWRsxOsth+lrxC3/rSaG3A78Wt1WrY39936ehoYvk96QyNp3jdyrBjQsFAer9oZ79IvlJ+87wogJVlTyYfQvYuHR3K5YMsR6N7EfZgatqQv0ZBPn5cMi3G0PKlb/mRpFl2HHjmE3j0XMpOK1+urq7iypUr6Pf7yLLMlVev19U8LPJV2nH8mfwm1N68biHwMUp3fz569Ag7Ozs4PDx0gfGQbU+ymYLL1qODJR2xehENFGDmu3I0my1WntbWMdpCfqiVjli5UpYSptMpBoNBrp2oRUA00JUIpA/z9LMvf22scP4nOcDvovS1kwQtTpH5pU6i0Lf8dyitD0X92jJQ1La2+MynwaMhWmJjVUvr8ze1d1b6eBkpdpvMp2hbSvuMyyz6nxYS0fj2bbqQOknWS9aR61uZhsccgPnj1aV9GRvzPvlrkeGhb7S8eXqLrcXT0GKl2ex4MR0dvT+bzdBoNObuZpX118rUyvb5dSGktJNW9mw2Q6/Xc/xTq9XQbDZRq9XciTm1Wm2OLjmuuHyWPOUbp7x8X/9rPoFWb0vbyHr70qbKegt/p+bLv9XGrZY/p0l7H+KTkG7U+shXdl6UISs/jvi41ds65qw8qulaS0y2aJvl3hlb1r1gZ43QEQ0xpCgmi5NmOfaqzICHRQn7jhVLpS80EPLUKXakMzcQrceuldG2Md4p4kClwmos+lCWUlsUrLtgivRJ0Tb0fRNz4kN1404PNwh949QSMAoFMULQxo1mAFuQ1znl36fwtLXfQ23GHWMeVNICCbHAA8/rtMdeyEG0BKpC+RalgdMiUavVsLS0hNnsyR1k9GOR+1YaZCDutBFaxReiiU86xtpDBjMs+dM3dP9q3nsnreM2ZDDH8m40GhgMBvjoo49cHjHbxmLEa5O50vbY3t6eW2VZhm5P1X2cD6xtpuWj8V9obGRZ5o51vHr1KtbX1+cmwCqVCtrtNkajEbrdLhqNBjqdDvr9Pg4ODjAYDDCdTk/c603tWK1WTxy3ZmlfLcCySIQCejJYKGlbFD1c5xRFrA1lGVzWaIu0eF58YZfWjrz9pB6eTCZoNBpYX1/HYDDAe++9h8997nO4ceMGnn76abTbbbz99ttOf0ynU+zv72M8HqNSqeCjjz5ClmW4fv06rl27hi984QtYW1vDD3/4QwyHw+R2kvjLv/xLfOc738Hzzz+vTgxLlCVbQ7xVJFjH8cYbb+C9997DcDh0d2fTWKbdOtRH0+kUo9EIm5ubuHz5Mj766CPs7++foEk7gYR4WPPnSWZkWeauGuj1etja2jLd2ReDtK/Lku2pMkkbD1KOxOIQcvFLUblQlmzRQDwk77gF9GCvjz6yYTj/xHQj8dJoNHK7uT9OAcwULEo3LsK3zouyy9J0uEXO+HTbbDZziyd8x/6eBfjd3LPZDA8fPkSz2cT169exu7uL/f39uasouI9hsT99k2VyrM9mT45MbrVa7je9J/3jy5/XR9MtPD3lU1S2hXSs5B3fEc3cXqHfTz/9NNbX13Ht2jWsr68DOL6e5c6dOwCg2hhaDIfTCDzxJfl1Lj76LaDv5b20ZBPQu8ePH6PVamFtbc2Vd+nSJWxsbODOnTs4PDx0efgW1vL2k7pBq7uvX2U+3F63xPVOCxZ/2pcmNd6zSFnEjzzX7BerXM2D8yJjTxuf1Ho3Gg1kmX4aii9+G4rtWOK6KTBPxi7SqC4DIYUm4TPUY+l9+WsdG6PTVzYXOFqbWw1YK00y+BP7xlI3La2si0X5WwO0KQgZECn9WISe1AmHUBkx55q3axlBgiLvfektAcdQADP2nJ6FZMSinM0iY9laBv3WHJTQNyF6yqRVGlKp4yokV2K0pfCVJT+ZzsI/POBDToxFn8acnVj/Fg3oh4LeFljT5nXqZCAtNQ9NJsRkiPY7D+0+WB27VD3P24rSaXmn2Hmc/2kFMz0L6ZuQIauNbWt7h/qO08mPL6OV1j46Lc/ke41euoua+jTWf3l1aR66fbYZPZc2qfwuj3yh4NjR0ZE7Ro3ahgdi+FG5BHmvb2q9ZBpCzJYqw4by0bEoUFkUwOX6R6aJ9aPkgby6IORzSJp8z2PyWZPrtVoN/X4f/X7f8VWz2US73T4RZKPJwSzLMBgMcHR05O6/63Q6aLfbLsgsg+Op8vPw8BDj8RgvvfQSlpeXT9zd65MJsXLy+uwxeyrFbun1ejg8PHS7ieX3mh6gnS/NZhPNZtN7h6zGxzE/l/9Pkxv8XjptUYnPdi9iO4baQBsrvvprCMk9etfv99Hr9dDtdl07kE1gtdPz2uFyN52WVmvfvLpGQ8h2l3zi0xuWdDH9E2vDRekKCy2LpiGGmL7No4cWhVA/xuRwTK/GeD6vnM+DkHydTCYYDAYndmNyn0COB6sMtfhpXH5xH8qXpwUWm0/aM5a+8On0FJ+Jp6XTDgA4fdlqteZ8yGazOWfXaLagRuOi4bPbiD9osQv5ULTol05Y4PnIfrfYrD5+8/k9oTrI/zXd7uN7S1/k4eMUvixLpsboTNWVMdsulu9Z6bDTouGnoY5Fofmd9L/P7rXK8pidYskneWesLzjoc4BPE6FG8TkyqU60L4hgamwW+POlJ2VDR4WRYvXREtvtwoW/FFpcUdCl791ud65t8t5XFBOQ8p217ywOAxllEpYdQnmVUIiuouMghSYpaLS/yxKaZQpfzeEIGSZlOeRWaMGc1Lr70ssdIlrdfCv+ZRo+nohGy53R2nNrG4cCEZQPX5UaysdCX8xgLIs/QjSl0kVH7LRarblj4igQxvsoFExbNIiWs9gFmsJvwPyq7GazieXl5aS2sqa1pLOksdSPdvSS3h0MBnPfxXSXj45Go+GOrcqy49WBtMo5RhfnR2s9+UrlvPysObIW8MkRChKFaE0JKmvgu2m4QR+z20LHZ6VCyv288Mk27Q6tFNBxsHt7e9jb23MT4nfu3HG7myygHQ8UVNLsWv67DBAP0f2d1H8W2zWUZxEard/TGFxeXnY7ueieN5mO9DQP1tHOC87XZR0r+kkA7eqWd9T5wHmGeJl2fn/2s5/F5uYm/t//+38YDodYWlrCaDRyQdZQXilISc/lvjUwwe+oK8Ivly9fxvr6Om7evIl+vz93J6DPl021WyqVCtbW1pBlmZNLw+FQDdpY9CSHJpd88soK7suTTa0dJ+4DxRTef/99LC8vY2dnBwcHB2i32xiPx042LFI2yXFiiRuRTKK+4TvYQvWW+oC+pWPYyb6iPGq12olJeWoPOnElVO+fJmj9HPMFLfloQdOidBVFLM+YfUT8o8WmYrSSDPXd2amdDLJI+HwBusOU5AiN83q9jlqt5nwOjpjdKtu0yKSU5TvuW/K+isVRivCc5VsezyHQ32RHjMdj7O/v4+joCMvLy2i1WqjX6zg8PESz2cSNGzdwcHCAO3fuOD+T6hTTmyH9EtJ7VnCfkdcXgFs8R7ES4DieQvYsp0Pa5aG7fzXa+fMsy5zt4osdUxnSR/f5Bhova2WH3mv5LgKh/EPjMCV2GMpfswt8uiWE04yfpdJQVj+eZh19NJ+Hdg6BbMdms+nGcaVSQaPRcIsTJUI6lWRUnvi61obeO2O5821BSKiFiCjTgLUI2dB3MjAWQ0rb8B/+reZUho680eoYa0/tGVfEWZZ5HZCUvgoZ4r66yPS+4LAMdObBIoRFLM8iiikmqH1BZAtNlrJ9z1ICnhb6UwLIVoMw9M7i/KfmYf1O1lmOL+v4teRPv62y2VpmLJjEjeCikwOp9PvGmy94VwRaoMdHLy2u4Tu9pCwPBZesBn0ZjpFWdhEZVuR9CNSP1GZ0XJ107CxlWR1iC/LUSdoIWpun6mNJEw/o+PiQ/o/xFTB/tOjq6irq9fpcMKZMWOWItLH4d1R3CopR+iKI9Qe95878aQdtqU1CjgWXYaFggK++IRnBxxbZmTSRQBM3PD/avSx3xWp2tK8OVsR0mXzuCxKkIqZ7y7DhZPoUGylPGbHytb9D4zqmd0LfanYQ56fDw0M8evQIw+FwbsGrPKa1Wq2i3+9jZ2cHDx48QLPZdEHlVBki6yPbpFarod1u4/nnn8fu7q5bsJWKvHZdCNaAl2x3krUkf6TO1oLAXH/zhTU+W7OoH8L97Zgu9MnEMsaKRRaFYIljUD/QsfG020ijJW+dUmWJ1b7UxpvkNyvNVGeafKVxFvO1SI7wPEL08W8pTUxXyvR5kMcPyKNTrHkU8c9TcZpxHt9zOX5k/6eUq8lHWbZPNoZojJXL89DgkzMkXyxxghDd8jtt3MfsVeBJrDNFT2v0xHyQmJ4IoQy9TPQdHBygVqthdXXV3bVK6cjW4To2FqeJyds8usIS5+K8L3168iPotA3yN/l1JqH888qIFD0VK8enByw+/qLtjVj7hdKGdFyKXvPJUAtN5w2+MVKWripir6UiVY7G7NFUFO1zrjOITyuVytzx7VrsoUxe0+od3BlbliFofbcIFDFqUwWvVjY5lJbdmFmWzU2SannlEZqas1Wv1x3zzWYzHB0dnVgFJssLGTsy8OlDqP9D53Nb8/M5ljTgtHcWxPhoUXxtcQ4teeQ1hq3IW/88O/BSjKqi72NKLo8S9O0UsBr9BF+5KUECHw2h9Jb8TmtnpTTWuHNh+aZo2SEnncsMvjMs1P+WCZPY+7w6z+KQWe7UyoOiAdXxeIxer4fRaDR3P1GqfD9tUJvXarXkO+O1/tIcmCw7nnzlR2rSbiyZN3fMeV9repZPuH7mM5/BtWvX8KMf/cjxeCjgmBqAI3nis4183/Djk2k3DO3YssgoLdhj5VX+LQVwT/u+L2nLybs5LcEsLU9KT31ZxM4GMLfLi3anUV5nseOjSCAzlL+1rUJ6pUhQicaDRdbEEKKRQ9Zbo4m+0+SCJuNSgqLE9/1+38ms27dvo1KpYH19fW4hKt9xTQuotre38eDBA/zt3/4tHjx4gN3d3TnZl8LzMZ3U6XTw9a9/HVtbW/if//N/ot/ve+uY0vdnpd/I7qHFFbTbejabv3uPy/XxeOxWsReFHMdlj2sfX+f1afLacFKuhE4NsNKS8s2iUXa/0Q7gZrMJAC7+EbMJZrPj08OIZ7VFfzEsQreUhdMM6p5mWR9n+Gx+frXDWcFyYhcwTzefBMxz17KM50l9wkH2fr1ed4suYvaIrAu3mX32G7eFy4SUxdJG1SY67ty5g/v37+Nzn/scNjY2sLGx4dqK2oiuWKBdyz749CavqxZfLRKDkDpQ/s2xsrKC6XTqbDJa3ElXD3D6Qvn4aJDPeeyGn2Al+cTnq2r1OcsJxRSeTeXtlPiLDxb6Pg46ZNE0fhza4KwQkiPT6RTD4RC1Wg0rKyvu+cHBAYbDYTS/GFLG15wU1gQ7/ztloi1GQFkCKDZhEEojg4+p0NrFp+SlcvK1KacnFhi30s2VAk32yqP8+DEn1onYPMI59p2vbtb2CNGoBWli9FrGQRmC0MLHKd9Z0mjjNc84yFN/attUQ4CMHl8fWPi0zCBWaKxb8tYMFqsRoxl82nc+A9eXPlSeBumgpPCsNr7yyBWLvLLkI2HtB60emnNCfUtBX1rJaaXHV75FtsZAeqFerztnLaaLYtB43OfM+hzdEDh9VjslFacZNCK+4MeoZFk2F2gIyYeYPKIVf/xuJd93PnBbgZz9yWSCra2tuRXKwJNACXdirQ5xCmSQgPRELDAk7b8yHEhJk6/8MgI4ReQ5z0PSIseSJXil0SPpyrKTixNjRwFJ0OI/CobLFawpNFrGUZZl6HQ6c0f20u5Ia1Av9NyqL0P6kfpOpmk2m+4KEm0Bhibf6chdbUInj45O8QtD35cR2OF/+xZu+r6NHQVp8Xmlz8l17N7eHnZ2drC6uopWq4XDw0MMBgM0Gg2nF7SyLP6UBaGx65MLWh4xmZZqH1N5MX2VZU+Or7VOUMxmMzfhLdtY0ptlWe4jl6WtHuJlqcusNqhVl/MJ8V6v5ybJ+ZGVZUDyewiWmAnPl9OYkrecWKHJWF96zfaVY4DrhRRZVbZducg4BEdZdJ+WTX1W0HRlaCxYYxpFr4yw2BFWaDRy+8G3uIHKsV6Vwr/RbHbeHnScLd/cQfeQE32a7R2zC0Pf5PVXUmCRc1zHPHr0CP1+H9euXZu7osYXcwqVkRIbKcNe0/warnvJBm+1WifiLNIO1uIMMTtWji/iUb5IVKYLxUl848oXC/G1QxGE+qWoXS+fh9rflzYPYry2qLb8GeKwynSg3L6hXa60AUHmT7FNbkPyq3myLEOj0ZjbZEhpZBxO1kO+479j7XFiSUyIqS0OxGmiSFBPNlJZdZNptW8tzo4MmFocfR89XFnV6/UTuzO0gEzIIZH0pDhbKW0phbhGn6QjpGg1Gq2BNIuSle2gDdaiyieGIsGu04bWh75giMZvIePG+n9RFMmPnAXfvRZ5+STEhyEHLGa4+MaPNcgUgmYwx9LxtPzI9TKQ0v5agDtkqAKYOxrR166+fHzpi/APOa90YgLlxR1XH40xaPwRctApb186CW1Cuwi9Mm1Rnkopl3YQAcfttry8jNnMdueyhU7tvrYY30iHk09KXLlyBS+99BJ+8pOf4O7du+4bkmk0sW/ZceJ7FrPPJCiwHAqo8LryOvuMaolY4MZir1nL8iEkI1IhZX/M5rPSR3nTD927V6vVkGUZer1eLjkFPJno12xkjY+LtNXy8jKWl5fd7nsKNsYCEjHdWwY4D8vy2u02VldXcXBwgH6/bxqHlkAq5f8zHINsEOtEVpZlzrmndn706BGWlpZw5coVtNttd8LAyspK8O7Y00AooCaRR1b48rEsVKPyeLkpk7FHR0cAMLdryldWCu0Ebt9z2ZpHHmk2eko+RAPx6sHBwYkF2qn6NlRW2ZB6OoVOqpc8OSXkR8pytH6l60d4vqHd/pKm0/DZrX7EIsr+aQXnmTLjPj6bpwwUsfEI0+nU6SottsiD21mWuZNrrOVJv0De0Um7I/lkLJ08RN/6JmQ5fHRrtqa8tqCs2I0PlIZf8SH15d27d1Gv192d6L77rvl3pAO1974rBQgpiwR8/j3/XvoP3HclW7ZarboFNUQnl+taORaZS9+STmw0GnM7q1MXRPh0DKdlkXFhrdzTKkPzs4vSI/3v06jTz5CGWDw5L2J9Tde99Pt9dfEk+VxcnlAMkU4KaDabaDabcye80b3VC6M7lkHIMM/TwGUNGE2AhZQqQSokrmBCwTGZd0q7cAdAg9yJSgaKjwZrUNN3F06WZVhaWkK9Xnerp0ig+Y5UDrVF6EjCEH2cNql4LZAC2Rok0pztUEBVU96pQSqfk3saTlJZAYYywY0lS59L3g/RH6vraRs/VJY0/rV607PYQgyfg+drH5+RS0hZDa/JFFlH7b0vryK7TWT5cvdK3j720eTTO1Q2L3cymaDVaqHRaJxw2Og76/3gPF/exj55ktKfs9lsbuWwvC/BRws9L0NehZw8H3jbyQk/X8AihV6LPeF7J8e4T1+Qzp3Njneukd5vNpvuyFZyBmX+0uFJrYcG6w7Wp556Cp/5zGfw6quv4rOf/Sy++c1v4t1338Vbb72FXq/n6C8C3pch/ov1k7SvYvKB58cXeaQcvS75L9ZPqfqYBwQsaXhwIY989NmRIfvFWidfEEvTl2XoCqutwcvMI+N8NnPoWg9rIC5W15DcyQur7NQCTHzs8R14If/N6uf47CP6TTYBydJWq4VHjx7h6OjI7Rqm3ZHc7iIdTj7RO++8gzt37uDo6AjD4dB7pcyikKprNd6y2tt5YZHTGl38GPrDw0NMJhNcvHgRrVZLzS82BmRbabLSF5yOgZcd8iXyxkc0uyW1v2I+j8UHOmsfkVCUDh+vzGYzJxP4ffJ8B4TFxykSs8iLUEzivPTbz3AMOabljhtCzE6MyTu+APE0YxtUfllpffXQZC5/T34U6RK6soaP8dBpGNbx47PtZX6xPDjy+qg+2un/8XiMDz/8EK1WC8vLywCAl19+Gdvb29ja2koqU/KtL73mt/n8X63NpY+rfU/92ev1MBgM3OJ2Te9JPvGVJWmXtl2lUkGr1cJkMsFgMMBsdrxImiZsif/4DmS6FkRrH2uMJWbr5oE1tpHir/rGZaw83zjiaTSbSOYd08VWmsqGxV/7OJWTB9KvJ/js0hgs8oo2lVBampyl8Vmr1ZxvSNecDQYDVCoVdxIWl3mVSgXtdtvlzzdOWHzXGJ97jyn2NYD1fV5jwMpQPuFuoZEHBnyBFotCtiKkDLgjwPPVlErImdX+9wkvAGi322i1Wnjw4IE7G5sYVCIkAK2BqlDfUBtQOt/A1ZxgLZ0FPJ+YY2pxXEOwjqs8QRLLWMk7nrR8FmEY+Mq3yJOU8X7ajoo2LrmRpxmj5EzwldUSvnEdaiMLn/u+pW+0MSPptvJ6HlpixpSVBks5efLQ5Fa9XncBRc0RpICghb99cjEES7CQ+rZWq2EymXhXx+ZBjE+tjqemH3neoWPiTjswIRGqLzlxw+FwLmhQr9dRqVTQ7/eRZcc73LhjZzVeU/pNs1N8QYJLly7hy1/+Mr74xS/i1Vdfxe7uLsbjMd5++20MBgOsrKyYjx/z1Yec2dS6cDkfcuJCZfP/U3lf0s3pkG3is4ti/ZvHTqD+K2qnazKc8i0iz2O2L5VjdbaLQLPJpB5NQaw/Q89TZDHvh6K60MKnnJ6YzPXZQ76y84w77X9qD7ort16vY2dn50QwkgdruX9DTvnt27fnnG95RF5R8D5L8YNTZTxHyLfTeDbGT5o9S/+H6ORX5HS7XRwdHWF5efnEMbKhoI5sC83ul/0VokmzfTWdktJfIYRiBCnfx/RWXll0XhDiQR//+fqHdtHxOIw89UB+Jyf2NTnG5bbVVtMQst+L2uhFYyjy2/Mir84SIZlpGZc+fe+rI/+fH9FeZAxLX18rV0LWV+pen26WZfCFk9ze076XY5t+SIfSccVA+LScUP197yUNZcnMkBzR3sdonU6nePDgAWq1GtbX13HhwgU8//zzmM1mzv5JGTdWfkgdi6n2JfUlbSQi8AVWeXwSSRMvP8uOF0WPx+O502PIh5e+O/DkSFRJgzYRq7VBaLxz2hYFn01SJB/fu5iMs4y7PP1dVh19iMn7RZdznlG2/OSgE7ionF6vh8lkMmfvAXBxNb5ogh/rTmnoLmr+jPxBy7iM8WV0Z+xpY1EM5duBZAkG+AxAOYgttMfSEGOkMGkoqEHodDrY2NhwdO7t7eH+/ftuRTjPq6w+sApGvsKcjEkOeQSIZujKozC1culoPGncWFcoES2+tJoiPQ8OghUWWhc1Pi2BAW6ca0gJ/qfQouXp40MJi4yw7ujL68z7jokto60ojzImQReNvG0ood2pHcNwOHRGvDz1gMugPAEV/mP9hsqVfVapVFCr1RydRfqU5Do3iKTRo9XF4uidJa+lGlrS0QqlfeWVV7C5uYk333wTh4eHzvhLOR7FqsNTeI1WBY/HY3dfZgi0k7fb7SbvKJX8HLrHj77hz4jPUsB5j5dtaSNNvob4mIx6vrLSuktLkxUxW9WKGH/mDfbywBrRzu/uS8Fs9uTuU8vuf62N8uDChQt46qmn0Ov10O/3cXBwgNFoNHcPWajss8B0OnW08vtis+zk0YC8r3gfycUQcmf1xzEAUCZ40JeOK7WeSkFHmxJvvvHGG7h58ya63S6GwyE2NjbQ7XZxcHCg6nepUxbVF3nGKJ1UQceSy/cWWnd2dpz+0BYJc9q0k6SstMp7zmU+RdtW6rM8+aX0gdXWkJMdMf8qtezzAF/sxmLD+2IOMaTYX+fdZ4pB81VDOE+8cdrgk6QWf8GSH4BSFwRR+UXB+cJ3F7WUiVwWEeQuWcvxsPz6Cl/dKI3PT7DY8ZyWssaxbIMiMR9qO/Ll9/f33ULrvb09p1O1a354XkSXpMVCY6xdrG3nk+O+/uNjTd4jr21+0r6XmyIollGtVtHpdDAajZwvPJvN5iZvCGQfEvhEEOfR86Y3Y4jNTyxKt2m+vqRB88dTTorzoWx/LjZuPk78UBRl1nc0GuHo6AiNRsP55xx8kY6vLw8PD9Htdufoq9Vq6HQ67hlN2PIT7YrAOxlbdGKmjMEYUqaxbzTFITsgJX9LoCpGm0VpacG2VCEgjSDgmHGWl5ddv2xtbWF/f99Mn0xjUbJanqF+0RBzDmNKgZdDilDbtULQFLWPXzTapXFpQZ5xkldwnScBLycq+f+acA61aRnB6CLQ6E9ByFGh/33lhsrTvgsFXbQ2jyEP/1rpLdOgK6sNfTJLBvD4D903IC+Ozxv8In7jgb5QPXx8IOvD9YbFIdXylvlK45gbLpr85uWFxrO2e0ELROaVCRaHg6fjz2WbxfiaHLnLly/j2rVr+OEPf4jxeOyOReG7lS26Lo/t5EtP9aGJGGpjHtDkd85RWrJlijpCKXTzuqeMK8lH/LeWj+yLFLnF2yxGo+Z8hhyXGL08ja+dQnwraapUKid2a0t65DspG7X8tfYkuvlYSLGJY2X4MJvN0Gq1sLq66u7UJpnGV8D7ygrlm0pLKsbjsZuI1ewTzc6gcavJtTJoDQX2UqHxV0peXIZZ5KpsA2ory+SOfCfb+OHDh9jf38f169fd4hcK+PFV3lp+0vYIlW2VOSnQ/J7ZbHbCluBlxGRYv993xw+GJhyK2oih47K1MZAKjdc1O2XR8OkoHnMouwz5/LTqGoNml9Iz+glNzstnMh96H5K5KbI0ZoNLGrTvLWXE8smTbwwp9JZh1y4Kckxrss/iR4VkjmbfSj7S+C7Gq4sA16uafLX2sVbnmM+p5SPpkr5oqB6+vELPU9rWpx9jekIrQ9ozZC8Ph0NkWYbd3V1nU3A7XPoFKbaMVg+r/8zThr4J+QQaDXJMaGl9/iL9TfwxHo/dZh7ydfmCUjneZf9rY9UyTlPstkXrWJ9cylNuUbuK97FsU5lvjE98zzTfyPdd2TgLeV02fL5/CBbZE8qf/h+NRicWgXIZIL+hE5MIdPS5zJd/S3YinSybtx6OhtDLmOL7uIKUsFW4yW+lkZ4SfOFpSbjTO+14yFRkWYaNjY25vAGcuHuH051lmbqqJwZpyKR+T8d/0Xd8lbg1T+mk876Rq7K1QSgNMl9/puzCsOCTNqbKhGYcaf/z+/wWSUcKygpqaPeRxRw5n3FhdeQtBrYlYGl5Xha/55FbRSEN9ZBDRneL0OpU3xHAlvbQDMUU/SNBjsXy8rJzMKRelEauhb+J5+jOBvmO3vN6l7W6exGBxRQjWNsFpIHopDuNXnjhBTz33HNYX1/3pregbD2SZZmbEN7b23M83263cfXqVWxubmJtbQ3Xr1/Hzs7OiWMlrWVkWfjuaHmySR5nLmX1onSs5U5C6/fy2FHa6Zy6kjIUWIqB71KjcUnBGS1wEAIPYjWbTbTbbTdpwncF5pVJXDbINiwi63xlabRS2bVaDcPh0LVTWYgFWFJl2Hlz0EPBKC3g5wvqyABWKFAVgnTC+W70p556Cu12290Ddu/ePQDHi1cpPfFfu91GlmWOz8tYDX1aoHr4bI2UoF8K6CgvbcJT+mM07uRCh1RI/5HXnZej+YOxfOmOYb7TvAxovg4FeFNs+E+qH2kJhOaVg9PpFIPBAM1mE2tra66c/f19HB0dnSgjJSirpU3Nw4rYuP4ZFg+uu7n/w/WFdSxbQbJNxkPyBIQXCS7LgPmdpQRt96IEb2Ofj0YxTdI7tCg0Fi8I6Ue5eENbrBGLZWo6LbQ712fzhPiH6CJflPtktKCrXq+7XV10apeWL9c9PjvNVz5Pa0GuCYxabW6ShPOPz68hX47ah9sIBNnXg8EAWZZhfX3dvdvb20Ov15vrc/Lna7UaNjY2HI+PRqO5E33K3s1+FjiryUGNT8hWOg1YTuFcBM6LHF8UytZX0rdcWVnBeDzGwcHBCdv9tddew9e+9jUAxwsv/uiP/gi3bt2aSzMej7G7u+vybLfbueJdPkSPKdYa5jxNfiyqLIviKRIMl99qK9FjThgPVnBGrtVqc9uz6Rx7CiSQc8zp9h215yvT917Sq+XF21YK1DwC3meQyeOPpeD0CdJYGklzkckQWd5pw+pQpkzIFaFBGwOSDh8vUXrJcylOc5nQAo6SRgDOachztKbluQxuWvNN5UvrWMgzkeJDGf0W4rnY/yH5wScu+KSMhtQ298lQ/t7K97VaTV3Y4OtPqyzgzicPascQk8lW2mJprUgJ+lvAd9PRncJra2u4cOECOp1O1LGwBCRTxm6sfWgF9Xg8RrVaxcWLF7GxsYFGo4F6vY5arYZmszl3hyLtLEkZ60QH32FLd/PkqZu0J+hvPjZi+t0XDEkFp4X/xGy7suxvnwPL20G7TzHGa3xBnWXc+p758peyVtIfy7eIbSaDhBTMkwsdQ/IwJfCa148IgQcifZNHkjc0+4G/Sxl/Mf0Q+tuiLy3lc7uRB92yLEOz2XRHzsnytGAPyUIAc/fHWnxBH39KP48CfLSAK6+PGaKhbJ8jNPZSr7DIG1QL+QY+XgvJF5l3Edp4Plof+GRdKI0VFt7R8i5qN5UFK/38t9XOlLKGxjnFUPgxlFb9WIavHNL/5xll8Uyq/XqewMcuyR6+09rXtyF9FyqL8pIyI6+8yAs59nxyLi9C7eaLAVIbcFq097IeeWIUvnI120DSa/XV6RsLeNkcsaOZZV20/08DMb6x2JZW/yqm+7gdTfqhXq+7yZjZbOZ8VUpLfhHtuKNYkDZRH6qDtR4pfBEqKxVFfDzLN6G+tOjJsuoWkxuh9D/NsI5FnraM/GkckgykuJJ2nczKygqeeuopAMd+3eXLl9Hr9VCv1zEej/Ho0aMTMXo+lrl9KO14a728k7FWQVHWQExBilIKrbCS+cVQ1kpYHvyO0RASnMQEPNAiDbpqtYqlpSXUajXUajU8evQI9+/fVxXybHYccKWggw+kSPjKP3n8prznVXNiY4E2Otvb6gDL3YShNpUDi4KKGv0+UFvL4NzHacU8cHaTlSk0kLDzHXvG0y0yiMCDe0Ud5ul0ikajgbW1NXS73RPHhluhOXExeWJpbwktTx7cTM2vLJCRG4K1j8qgk2QCv+xdIsbHZdIjYdGfPDiVZeFdi7GyaIcZ7RL2lReD5uRrQTIqV+Z7WsZxKKiSZZm7e3U0GuH69et47bXX0Gq10Gg08PTTT6PdbrvdqD69WaQ/ZF4hmmUg4VOf+hT+2T/7Z1haWgqW0Ww2T9gAIdAYbjQa6HQ6qNfraDQa2NnZwcHBQdQG4DI/Rf9KPk+Z+NDSWhzoarWKer1+YoFGWWNdOoqkN8le046t9dW5SECPJpLkEa6h8ZGiu0M2WtnjfjAY4PDwEBcvXsTS0tLcMdw+SBm0CPkTChZUq1WMRiN33BIP2PJ7rlLoP83g7scJpOdisoe3pZQVdDLF66+/PhdIaDabpdibeZDHltYCz0WCcym2QR5wPxp4EjOgscHfaad9+PLkO5S4z6CdHkBtJuXJafZ5meN7UT4Y97+KgMYp9Wer1cJ0OsW9e/ewvLyMCxcuYG1tDevr67h//z6Ojo7cYjNLbEDuTvPVBTh/k4kW+Pr3pyEArdWd25H0/2AwcMfNVyoVNJtNZ/eX3U6SJosduihIu4jKl3Eyyf/aPZq+/LX21+63l6AAOu0QpZ2V/F5PjTb+t6Xv+D2lRK/0M3haYP4EmFD9Zb19NEn9Axzfp9jr9U7UVeqfULzW5ydxf9xn4y8yNgdgbrerLI/Xkfslmg0v60qnJ9y6dQsrKyu4du0aVldXsbKy4tLfuXNn7p5JoqfT6aDRaKDVauHBgwd4/Pixl/5Qf1rH9GmOfd+ViqnI469JXgrxrnZHdCzGKeUQ8U1Ip/+0oeh4LpM/Zd/1+30MBgMsLS25WGy1WsXa2prb5aqVX61W8fWvfx3Acbzr/v37+Df/5t/g8PBwLl2v10O/33d8QXq+3+/nqldwZ6xFKZzGwE/pbE3Zy3qEAqU8jfzfR4/MLyZItcCUte1k3twxoF0qlIb+55O/dGyUPJaSC9VYe0tlHKt/KMibt97yGafHJ1C5UI0J/xBdkjes31nTlh1IXEReIYSUXJ7+1gS+hcdiZZXVHhqPhcqkI8OHw6G7f04ajNr48NGbKndD49XqYPvGQEw5l2GM+2RUzLiKwdKOki9D9ZGOpUVPpJSvlZcHXP7H8vC1cdGAaSiYEMpDkwvnKbilyT3Ov41GA6urq+7Ik52dHWxtbWEwGJzI56yDKsBx8GJtbQ0rKytYXl5GtVrFwcEBarWa+5/oTXGqgCdHZ5GjHFtIF+IFSyDnNNpT0p96RyWQFpTi32rtw4NCmuNv4TPiC3JuarUaptOp20WkHeMUq6u1L6RDLelPySsFvM6xI7PLKi+Ut8X2tvaltD2s36fwHi8v9K1MZwXna/rbNwbonuPZbOYWRjQaDXWHN6fXoiPz2ja87fmx2Pyu2FTbWdocVn/N+s6Xp88H98kcmR9PY6HVaoP67Avf95IPSN4RD9EiaOuYsdI5m80vMDstvy0VMb6J9XVMf4X6KMZ3VpC+ookyfv8XxUh8fpi20zEllmOBbMNUO7AMf0vDeeTJRdVVwloG6RM6UUZeS1ZGGRKLskWkTonJYW0syKPii8QJUuwIX2xILojmNFnyL8JrqXZdEWh14f2o6UVpF/J8Qm2jfa/pPd93WhqLLom9k9B8IH5fOG0ukvKWrpqio4j5xFy73cZsNnMTNIPBwO2gJdqazSaWlpYwHA6TrvkL8UUZMi9Fj2q6ODZefePKNzZTYgcaf2i2A/d/Q/mlIGZH+tIuGudBF+aRYWW3GcULSAfzeS+OnZ0dvPvuu7h06RLW1tbQ6XRQrVbRarWwurqKz33ucycWsdy5cwePHj2ao5XkCC/f2g7RY4qpECvKNgZiOyp9kI1CSN01kVJmiBbtb8pXuwDYl4/8ngdL19fX3Y6aLMuwurrqXcXRarVQr9dxeHjoVotlWeYcf06fhHbXrVY3es+f01FvsbtcgfCRULJNQ2n5PYgymJcnuOajt4x74IoqpzxIdfDKQEp51p3RRXeuW2jypbHupK5UKrh+/Tqq1Sp2dnZOfKMdg2hFTDGGFEOK8SPzLIvGFEj5UUaZMRlAsmI2ix+5Ox6P5+4IOi2kBIrlylCrPLKUTbrK4rDllT0+uWB13spGbIxpqNfrWFtbw6VLl7CxsYH//J//M15//fW5O0o53+UN9uVpB34nsvz+0qVL+MIXvoDt7W2899576HQ6eP7550/cTR8D2Q+VSgVra2vnMshHSAnU+IIJ0vaxlufLzwKSV1qeMdvJl99kMpnb9VGv19Hr9TCZTHKvHJbBHl8aspfL4hUt8LQIcHkX678y76M8LVgnpbT0ZZRL5fEgmgz+ytNVms0mVlZWcOHCBRweHuKdd97x3p9GO4w/rpATh2cBX7ClLP/D5ytpk5vEEyljjeQd3ZFNE+cp7Sp1ufSPJZ0+nFbA7SzAF5DPZrPo2MvbDmRnra2tuT6N7WYl2SLjCMRLoYA56WKNH09LXn5SoU0EnSUtnU4H0+kUBwcHbmMEh6SziAzUbMSyIPOK5e0bC3LDhzbO5Lc+21TrY2nbphyPz/3VohMCmp8m78ct2lcpelOe+NBoNNx1dZxmnq+8h5iD2jZ0/65vt6/Mh95ZfCmut612RMgOHY1GzncBjn0zOpVqd3cX/X7f+93BwQHa7TY6nY4r+9KlSxiPx7h58yYGgwEePnyIdruNS5cuuRNq6NSFO3fu5D4JT6u39X1KjDMPXy7SjvP15VnJe+5jyDY77Xi6xFnrvyIguVDkShBef7oXe3l52ZvnG2+8gR/84Af47d/+bXzpS18CcGwb3rlzB81mE//yX/7LE9/+3u/9Hv7oj/7oRLk8BiYX+IVgmozlBQHlM1psgiBPuVwZhozjGB15lCb/ht/FpxnyskzrZAk/FpjubpOrOLmSGw6H6PV6GI/HaDQaQUUaUmxZls1NFskJB26IcEXr6wPNcNGcVEubAE9WuoaOAZVBI1lfXx+kPk+hu0j6FGWUQmuqEZ63XJ9hJfsplNZSr0UpqFBwlfP+8vIyms2mc8qy7HjVLCkLehaik+cXa1NtTGr5ad+ed6QaYHmM0lDZKbIglraIM2alIQTelqRXZIAy5NTI5xRIkxMPvj4r0o/a+6LOdN6ygbD+pnaRO+Hpd6VSQafTwcrKCg4ODjCZTNxRZ1o5qWM3lt4XGOJ/j8dj7OzsoNvtzjnc3//+9/Hhhx9iNBphdXU1yC8+Gmaz451qjUYDk8kER0dH7qqClLYvouN8efjK586Y5HfgSSCk1Wq5/qfgsrwPUtN3McTkoFXG8Pf8fjP+juzWarWK1dVV1090HJBcjBYa74vWMbzeReQsodvtYnd3F51Ox9m/dNc7laeNn7L0Th57mNve0h4PBcdiu/JkAMJHQ1G5a/GFiupxagvLdTaW/Kx2qMYXRE+j0XBjzXqdQZkoy8+38muqLSWDsnn8RK1snm+Ij3k633HlMR61+rghxGypPPnLce2TY6G+s/irMcgJBCtdFvp86ekbOuWBdjXRD/UzjUntOE6SJT79yelflD+qwWLPSDpTbH5fXnm+LYrTbFetTE2mkC1P12MRn+QtS+ujPHZOGbaRD9q4pTKljC0S15HpLXEjGsuxfvOVw78payzLttLqlDLutDpTGs5/cqJY5iPpo3xCE7YyH4uut/p41j6WdMv0Gp2EZrOJLMvc3ZKj0cjlMZlM3HHEdKoCHXct24J2yFL+dALL0tISKpWK2wzlq6uVD33P+HOLXPflZ4k1LlKWSJpCfCR5hH/DN1MUkTGUFz2TuyH5BjD+3JfnTwu0sZhqY6S0Ge+z8Xg8pytbrRYmk4k70Ws6neL9999HlmV47rnn3BHk0+kUR0dHaDabWF5ednk+/fTT+PznPw/gWCbcu3fPnXbJ+YKur9EW73EkTcamIq8zoP1N+aWUnXIMQMxYlUrH53iHhD4FYiVTxCA7jpQDgQK4ofz6/T62trZc+jygbd58MpYUFvW1xnQhuiRCAQ2Lk0dlhwwEcqC1PLUdJD5I4XxWsIyx0xD6FqFqNbjO0lFN/TbEr1mWOUF/4cIFN05pVSKdXW+lycJzqUaA1egK0fPTAnnPI0eqfgo5PGXD2k8UNEgFp5kcDoI2uVsEZxGgLoose3KnBKCfopBlGS5evIhnnnkG7777LrrdLrrdrluxK9OWAYsDxdt5MBjgzp07uHLlytz7//bf/hv+z//5P3j66adx6dKlE3fIW0B3xq6srGB3dxc7OzsAwveucfpksEFzQmV9ZFoZRI21ixYk5mObnLKNjQ23Ans8HqPb7bq7q7Rj6nlelrpr9qqsqwV88aDWbsPhEKurq7h69SpGoxEGgwH29/dP3JXE6eML5IrKTQ2humqBpjzY29vDZDJBvV5Hu912x9tqd41xfiwStM6TTqan3xRUooVgoROHfBNLvD6nbaP5cJY0SLupjJNZsixzx93RHeuL1nOpfWn1N/LKIMs3PKCcJ7Dmyy9EjxYjqNfrTtdJ/cPp0Wzy1ODlom3zlDYs2t6xvCiOQHd9ke5IPX0qD8bjMXq9HjqdjtspNRqNMBwOMR6PXbCNjufnOkAGZ319cJq2axFZvSh/5JMGPuY1HuUTOABO7JItWrY2SXUasJTpkxWh+K60x1PsJKmXtfIpX99uZW6Tkw1flo0doz10h6kPmu+jLY7k6fg1dVrdLPHWkM6TNqhWF983oTrKby3Q/BlAt4PJBmu32zg6OsJoNHIxDJL3tFgagFtArPUbjXsqk3bNXbhwAdPpFDdv3vTGyxc5llPleix9qi1TFCF65EIu+R2Xl7G85LcA5hZJEmhuBJj3BX6mO+PwtT/XaWXw1XA4nFtIt7q6OrcRCgD+9m//Ft/73vfwu7/7u3juuecAPIl5ra2tYXl52aV9+eWXsbS0BOB4fu0P/uAPsLe3Nzc/VqlU0Gg0MBgM5ubstJiW1yJIMSJ9DqMW8I+lC5VtgYX5U9NoCj7mJMtv+NFZMqghvwuVTUGVkGKi1ftUrlYOHcnDy9DanX9HR+wRjUQLpfMFYDU+4OlC7cG/kUEhGQQlA0MKSr4aRuaZouCLrGSM4TQCLlb4jKhY+pTAUaz9tWCGZvDF+C1UD86L8ggdq1Eo68yFLK2C5XdCkqFPyiDLMmxvb7uz7ENHr2rlaXTFxrHM0/c+BWcRFJVywGJUWfRPnrESexYrT3NQYnlZg6I+8PtRgJOTplp7as4Xf0fOpHRoU1CkPxYJacRr72OYzWbuhAoAODw8xK1bt9DpdHD58uUT45/ulM7TBlY+4rRpfBj6djQauR2s9D05q7SaOHU8yHcar6UGaYB8Ky1jgQUfuI1WqVTQ7/fdLl+6w2Q2myWPEe5MpoKv1tVkf0rduO1HkHducoeEPw/ZXCH7mK/kl9+mtofc1ST5lAf+tbtEJd38Ox898lj4UD4pSA3c5G2zPPC1m0/Gp/idWj0ssoZPlPB7IbltVgRWX9cyjlNluDUvjb4i+Vva3SdzUmWrr2xtDGtlSVpCwSBKRwt4Dw8PXfCV0tApB5Iea518Pg6g+65a3cuAVQ/E3mt+eYjXpf3O0w2Hw7kxm0p7yMehduU2MAXLNVrlLmhNlsfoKwN55Lelb2Wa82J3fxzAZQW1W7VaxcrKCn7xF38R29vb+N73vjfXxnwyjJAn5kL/y3EXSisXy+ZFzI70yWbgyRHhoaOIQ+CTLho9Mp1GX+go45Cvq8WnUn0di88fagNpK8tFyjG/UfroPj3s4yvfs1DMTqtnqH80hGxsCR8v8ryIByj+MRqN0G633eLZLMvczle+8Ibam3a80w7Zy5cvo9/vY3d3F7PZ8aI6un6s1+thOp1ieXnZLeicTCYnjuGXulD2Tars99miMf7S7KQYf4bkWUxu+fLh32p0hL73+WJ8/KT41Jxvib+Jh8iXqNfrzk9OaeNPEny8aok9xNpM+yYGfvT9bDZz9zbTCV++hX7T6RT9fh/Ly8vodDruzujNzU3U63U8ePAA4/EYP//zP49er4dGo4G9vT388Ic/dLxA83F8YYfE3GRsauVigt6CULpUwZPHqLFA7oi1GC+agRE6FoMjpJh9d6dwBUyKhHe6VHi00pNfWh5rbz4ZS0f58PItq1alAtbqIOutvdcMANq1y99zR1BOAMdolPSkCIxQPULlWL5bBEJOrC9tilGk5eGrt8Vh1MrNG0TgxgopVAukkUMOFn9Phtfm5qZ7TmlWVlbmHBJaUaMpaD5uFu0khwJaobSLRsjR4mnytk9KHfMaxzH+TkFRPiA+5HfkaffcWo1lekZ8X/TuyBSZJA3qsvmyaICSMJ1O0e12Hd8eHR3h9u3beOaZZ05cHZBlmdsZ4nOoYjQVCaz5eFUGS2kyluo3mUzmVg5byvC1n/Ze9nNszIfeW3WNzybzgd+VlGUZhsMhRqORo6WMo+pSIXWH5hhb89Hs0NBKZIIMIPn6VZPrWrAoNSghvw+lpUApPypTy88C3teLuA920TZBEcjxZ5Hjvneh71MCOwR+hzPZb75FC3lRxC8t2q+xYJjl2zLHmO++VIuusergFB6QssQnE4k+Op5/c3NzLgiXsmBKSycXg2p0ntYYl3aD5mtbZWgR8OA3LWTl+fr4JSV2QPYK6WM6uk4LjtNOWHlnecqYjqUN0V/EltPy89GzKNnw0wJqk1qthvX1dfy9v/f38O677+KNN96YW+BFiwCK6AfeD1qfaKcIaXanLzam6Y9Yn2vyUKsX7TCTtPhiDlIm8XSW2I7Mn+S37ztKo9ltZYwRX/24/I3Fe6Rck30f6688ekvmSeVaJ9VDPMV9plAePpp9p2bx/LiuJTuf9MBoNEKv13NH1FM6iqdLnp7NZu6alnq9jkajgc3NTfT7fRwdHWE4HLqjS2u1GrrdLnq9npu4pclYfrqkVkcZ3/C1pQZL22nt7fPRQvnIb8q2o306N9Xup7HhW0QXiyfItNyf146m9dkfZcepJKy22iIR6itr/CX0PuQPyvQkp8iOoxgbTczKtIR+v4/JZIJWq+ViORcuXMDGxgYODg7Q7Xbx6quvuvQ3b97Ed7/7XbfggvxMmpPT6rbQY4rLhFUYlwnNYMnrcOUZEFL4SsOh1WpheXkZs9kMR0dHjua1tTUXYBiNRtjd3XXbsflxC6FAIC+X7piVq6joHhVffWUgNRZkicEyOFOOGbQgVfifZyxKMPt4IAWynTV+WlSbxwJCHJY2lDuHGo3G3NHgdE/snTt30Ov1ooqfl50SyLUqs48TZKDImtaKMng4NY8yjLPUMn2GZxl14CCjRzuhQQskWOj2GfwxpzVv25ahR4DjiUsy8lqtFq5evep2YhDIKfQhZoNQ+4ScOs1x1vJstVqoVquu/8iZ/O53v4tms4nPf/7z2Nvb89KR0ma0+jDLMvT7fUynU7dikdeHLxYIOYk+p15COrlF+loL/KR8m1fHhejNU58ybQSus7ieDQXI6Ecb59bAgjUIoPEQfU883+l0cOnSJayuruLx48fo9XpuhTun2UdDiNZFQQtuyUllolELMNHfvrqFkGVP7tLktHzSoAVkYidLaP6E9PFosmdR7VZGvtagHKX12TihcarxZlHQuJ7Nniy6JF4lm533kfw/BVpAUuomS555bbJFIq+eojYNBVZDZVrKtfBUqEx+2sfjx49dwI7f8e7j+ZBes9B+1oHTnyE/pM4FgP39ffzpn/4pOp0Ofvd3fxePHz/GgwcP8OjRI+zu7qpHXaeUZ4lF8LT8mhTS03xB0mw2M59o4wO3N4gGn53GaSPZIN9rNhqnj3QvTSymyFatntJforbRTlMhmnx6XualXZuh+SvWtvfRpLUDpbPo1FD5Vt+K0xPKtyz/GtA3PMm8LdccEf+2221MJhPnm9IOWZq45by9urp6Ih++QWgwGKBWq7n/syzD+vo6hsMhHj9+7MYkyQNffIOfPHYaCMmCvD7raSBEd8oxwpodJ/ORz4Hjvuc7ZDldReRrCj7O9kRR2n12oHaignz/l3/5l/jxj3+Mr33ta+5qwd3dXfzt3/4tNjc38dRTT7kyXnnlFXS7XfzoRz86cV3TeDx2c3O8bA3Rydg8RqRmlKYomZgiSP3Wpxit31H6FKHjG2whJ5W/5wrDF9SgQFG323WXhNPsO303Go1weHiI8XjsVmr4jvjz1Y9m92UavqpKC9j4jCLtm5hwsra/dJ5ln8cUcOh/SX8IeQwVC4oIqLIEs9UR5WVaeE1Lk4dmzYixyh1LoFH7m39PxhqVz1fZ0bvJZILHjx+fcMIkv1rHqEZPUZRtZMUCeNY8ZB8U0TUWhGjVHJPUAAwhprt8sjbGEzEatPazfBMLEnIdFOLrkJyNjbdQ+VpaX/qQs2FZbWsBlwn1et0tmiKdTccd+mSpVQf66uqzy3y8RY4jrRqk++7v3LmD+/fvY3d3d+5OHV5GHgebjn+hVcJyJSGn1Xc0mWbjxejg9Q+dEBKyVyxjiOsHHx15ZIbPvvX1ga+NYkGakP2sQdbHYtf7dnIAfkcmlr+UIVo/ajqDFiw2Gg20220sLy/j7t272NnZOTGhIL9N1d2WesTy0nhStr/kF+1v+b8WjLD4YRRYOg3wfrTSRn/Lk4HouUXv8//lLqdQ+fw7mScPxOWBpf4+vzPmB1vz095LngrZNL48LTrfYpfQbzqmmgdV+biRv3keoXpbbF1LUFjmWaZNbrEtfUgZb6GyfbYzvQsd459ars/+4XnROKaTwwBgfX0dzWYzaJdZwOVh2b5aXqTYwj9DHNKe6Pf7+MlPfoIXXngBv/Irv4I7d+6gWq2i3+/j4ODgxC49zW7wIWWs8m9msyfHc5MM5LKI7wovIm+sMRfeZpqtoeUn7TT6xmpvyvJlemnrSL0Vy1OrQ6x/U+wrH70ptraWj++Zpu9i9m1KP1gWB1sRG0PWuEGWZW5Xm4yv83g65UPPqJ24XUlp+bUD0+kUrVYLtVoNBwcHrg1CR9tKHZSqt32Q+VjHjvzeSpfP79Dy0mjV7EUfHan5++jWxqfsC9k//NQdS9nWdB9nWGzjsm2QkM8lMZvN8OGHH+Lhw4d47bXX0Gw2UalUcHh4iMPDQ9TrdTz33HMuz6tXr2I4HOLmzZvOZqRd8rSLVtKhxWbUY4pjTkwIKUEaWe5pgYShLJ9+pxwnZnFUqUzrN5I+YF5AZ9mTI3P4cYCbm5vodDpoNBoYj8e4d++eY4YQ08cGhxQw3HGdTCYYDAZqn8aMDhkk0tKE6AL8F7Dz59YgyVmgDLpSDPjThoU22V/8Oc8nb/mzmX70MO1C8/G8pFsLDND3NKlCx2n1+/0TtNOkBV+J6gNfUGFFzABN4ZPzOl4WjbICXjxQZXVgyh7HmnPLQXqDgr9Fy+Z3HtMOnzL5KKQviuYXgtaPRdHtdvHuu+/ixo0beO2113D37l2899572NnZKa0MDh4IsNosNDlMgZuVlZUTcuuHP/wh/uZv/ga3bt3CbDbDwcGBc1itdFkcEH4yB989nBK4kv1odXw0xytWNp0mQrbX6uqqs9kGgwF6vV7wjnAgvOo2D+SRSXllz2g0wsHBwRyddMR+WbTyHQSxALoVVpuU0tBRU3QMES1GWDTy6IHzav8RZAAjNeCcMuHhS08Bskaj4YJrV69exac+9Sm0Wi08evTI+VmdTmduQuaTgNPmEc23pH4h2UfP+Gp17odrvnAeOsoC0dfv9+cmMfgpUan+ps9vLiPAmpoHjRHyyWYz/yIDmb9vsoGeW3byUJn1eh31eh1PPfUUqtUqPvjgA3UshoKtFjuH9Bad8EG+3IULF3B0dDTnx9F70gGNRsNsF/JAbZn8eJ59/48LymzDLMuwsrIyd0fc/v4+9vf359Jcv34dFy9exNtvv43d3V20221kWTZ3KkLZ/UpjmSaVJpMJhsMhWq2WOjZT7F2tHJIjfNctT6P9T/JPxj80GalNjvjyt0LLq4w4cOgbywRSLB++oIjnq7WBvCpAo0nbwUvvJd2+iSuffrD68T7aeB/JxbMptgJvB2pDokku9m23267MwWDg/AG+iIF2vNORxNeuXUO/38fW1tbcpCzF5mu1Gq5fv37Cp5bXwPiO8rZedVNWHDWU72khr00j/5Y2lsZrFr9TPqOjb3mfSp7U7F5LP54GTtue8MmORYPbccCT6z35ccX9fh9//Md/jKWlJXeNGHB8ZcZrr702l1+9XsfXvvY1R/vt27dRrVbx4x//GH/91389V660EQjqzthYA/kaK9VhtpRVNnx5a0pHU1Y+4yClTE1Jad/4HFnuKNE9ZCQAaFs8nX3P7wP01TsUwPA5VhykFHj6Mh3KECyKxmKYpRiai0QRo+60YZEJ8r02zorAwp8Wuqzl+OilCVZuHNJ45EEl7nBY6lAmv1mCE3ne+QIiviBJKsrIJ/RNGW2cEjS2pPHpH0s+IV7V5CUPluXlEc7XnK68x2qHHLWYzC9LHvoM0zJk1nQ6xdHREabTKZaWlrC9vY27d+/OHWmT14kiuvM49fxv6SyQ3UH33Ozu7mJra8sdtw7AHfVo1Qe8LHqufU/lEw2W+2jzwmKP+dJzPUcBr+l06hx0fj8Q76dYOVqAJSZzQk5j6BtLvvz+W0vbcH7U5ISPbk5TTPbwevryt8hpKcvomLLpdOpWycYQqp9GT4yGvLDqZgs0XpXvY9+nlmf5NlUHcF5qNptot9toNptucgXAibtjU2Bt31D7aTx9GkGKEMoM1MhxKmVhij9m9S1CsQZNVtJzyYekvzlkYFcelxiDlI++8lOQp3z+v/X7kA6LtaUvv2q1ilqt5oJWIXvYZydZ2o5kuQx+12o1F3zjVzuRfRLipRh87ZBnfKfyRqrMzitzUsdxWcgzXsqmkXbbA08WpdLkJF1ZVKvVnC1Bix25vi+jXyw2OC1s5BOmPn6M0eX7LtVu5rInVAfNNpL2pi+dlrc1ZmHxS0PvY347pyVFNoTsM4v9lGonhsa4j45U+Rwr16enfP2o2QSyrbVFSHxybTweq7GSwWAA4HiRDt0JKxepkj9Ii7mGw6HzC0mvcBuCaI/xb6gtNd8x1i4WWH1IbfxZ5EisnFRY84n53yFoV9f4xqF2B3XML02hWfumbB/tPMBi/2tpZL/IMT2dTvHgwQN3KhZNnj5+/BiPHz92MR0a6xcuXHALOgDgpZdewng8xu3bt9HtdtHv992VX9oCi+AxxSEDOC9SjIxYuXmMWM2J0gZ/kUCKzKtIGnpHx5xSufx/chwODg5weHgI4OTdc6RcUpws2modEvLExDLQRu8tsDpNlsvmqZ5yB0MqTdru6JhgO+tgyVkhZlzGFL7FyU6hheelCT2elsrxBQl844WMJ+Jd2gnFceXKFdy4cQPT6RTdbtcdecJBDhrBN5FxGrxVJEgbe1aWc24xWs4SFEgC7JOLWh4SqfWVKzt9DumioRmlMQcv1lbnnQc0UOADOL6LlU6UkHj8+LG7Y0LuvLA48ZTON5a1Poi1N92p9+jRI6ytreG5557Do0eP8B//4388sXMkBVp96I57GQANgWwQ38pwiwMi9X3IsKf2ih2bmxdlOp+W8SS/oXbntFAetVqtlBW8qYGfEL0c3E6czWZu4julDSzw+R68beTRp9bgWF5aNPByiWe5nT6bPdmxJmnU7svMo0fOSvcUBY0FC+9Q2/H+5m1mmZyjcshvo6B+s9l0R7jzcsoaQ1acZqCG60spb0LBxRTwkwL4OCB+TZ1Q5bRrdPL8Q8fhx5B6vHHZ0OSYVmeeRpN/KTppOBxiOByqvGDh+xivSJ1xdHSEyWSCer2Ofr+PwWAwt1svJnP5GPbVVT4/bzLyvNFjQRkyqqgcpV1zy8vL7lmtVsPa2hpWVlbw7LPP4kc/+hFu3rw5912WZWg2m3P3hpcJilPIsUBjC3iyQwiA6p8ULR+w+YH8blvp//j8HX5aDvfDU+Rs6EQWrT7WGLUsX9oHljwsZfHYQ6idY/f5Spq1ukqfSdNLkgZZF6t9JfP1QcbX5Dex/wmHh4c4OjpyentjY8PtPm40Gtjc3ES328XBwYGbdOW8OhqNcO/evRP14z7jdDrF7du3nc1HcX2SHYPBwOkdfvoQ+ePUdzQ5HDttr6i95MtTYlGxP63svHla2iGFJ0NjVMbAfGXLk7BO0972oUyfwppXaJ6gTPA+oTHGxyAAVQ+//vrr7uqBZ555Bq+99houX76Mo6MjVKtVLC0tYXNzE7/1W7+Ff/gP/yH+xb/4F/jTP/1TfPOb38QPf/hDbG1tYW9v70Q9o3fGcvgaI0UhyWdaoDGUn6YUfJ0XKoPeyyCbRoM1CGpBjCaZL08fCojwYKQWyAwFgkL1CwkZ3/2zZQwmn+MW6qOQoJOCwNoGMWj9E8NpOTl5lGDMydSe5alP0fYuCmmEhoLvwLxTTcbTbDZzu2G580BCvVqtotFouOM+adx2u11n6IXGWOpziTxBUMv4yaugiyjiRZQl4ZP5Wl6pYytv4LQsnRvLp0xdxgNWFkfPWlZIZ35cQOOdnKfBYICtrS3s7u66u9+1nbFaPj55nEqPZktwWUf58l2ek8kEh4eHGI1G7vh1S5DYYkvJ43R5GrJztO8WAYv9FALpBupvOs4y1dnyBXLyfA+EdUPIJvc5lZax7tOxFp7lafiiPF+5lgCXFpjx+Sr8CLNYOXn0rgZruxQZA3nlvrV+efhikfRQmaelQyx6KxSUlXJYfkP5WuWJz39aNHibU5sQLaRvQj6c1VbSZErIbtXkmAVykW6IZmu8gufH05YdzJT55ZWhlFdKfWJpSFfSYvJ2u41Wq4XV1VVUq1V0u91k+iRC/ULPZP/KiViLzPHZZ5L/fWk+qfC1f14bq2z4/L2U+A6PwQHHE7Q3b97ExsYGLl68iI2NDXS7XbcQezweu9O1Qv5mURDvaZOcAOaC0vKY+Ly+rkRInmky3Oc7azapfF8mH8XksMW38dnxKbawBVabSGunFDvC1wepNlne70MyI29bcn1Of5OPS23Fx6m0begZnbYg25b/L49KjfGYzCu1jUJpLLZGqm+v2alWmuQ3Fjq0/FP5IDQuLfRb+kXGVmSeZcsDAq+HtS5aHkXihZY0sow87eCz92U5Wptw3wQAer0eGo0GGo0G+v0++v0+lpeXUa1W3VUawPFikKOjIzSbTayvr7t8Lly4gHa7jdXVVe9CK/XO2LJgNZYtzkbIobJATr7IVSRW4ZMaRIvRZAUvU+56pSAfYTAYBHeHaogJWe6EZNnxSu9er5dbWFgEwWw2i674Ce1cTQF3Bk/DETiNQMii6xELaqXw1GmCHwUK+BcS8L+r1SparZb7fzKZuGABHV9A98sR304mE7cjlpyu0WiEd955B91u101ghIJQnJbUoE6ZSDXWgXKd65Tvi5aVEmShvg7Rwnm9DBotBjvnKx9Sjnr17Z6SdPkW6JSBVAcvL3xORZHyqU8I1WoVnU4H9+/fx0cffeTalU65yGvjxGiwgO5ro7qG7snc3d3Fo0ePMJlMnIzL44Rb9ECWHa/sp2OeAP/JJvSuTFhtVU5vu912u9uazSY2Nzexv7+PBw8e5KbBAp9dpDlhqTp4Npup+rMMuctpkqv3OZ38XeqdkjwP6Rdo/kWWHe9YqVar7hju84BQsP/jgrJoteZDtt956cMyYK27PArzNBa1aLYt/58mIBqNBobDIXq9XjItIbm8qHrxo+bpSN0itonPDyA5x0+fSgkMakjhF2D+FCAJote608oH4kc6Nnxvbw+DwQA3btzApUuXMJvNsLW1he9973u5dyxrkLv/Y7YX10v8zr6Yrc1B6fiklyzjZzhfyNMndJIBALz77rv4t//23+LXf/3X8Tu/8zv47Gc/i89//vP4/ve/jzt37qDb7aJarc7tpl0UptOpd9frbDZztCwtLbkYRpG4mDbZEEpr8Uv5eKPxw21SykcbX1bIgD2VF8o3JeYhZacvTV5YfRTtJK8UOrRThbidoelnSyzEch+spQ1TIW3o6XSK3d1dZFnmfONOp+PeUyyQX0nGaeJ1IHuH72qV4BupeFoJefpZDNTXoba05nVaOCtaLPE6adPydLyNpaygNBQ3JltS5m3tD5n/on2bMvvEF1PTyig6OZsHNK92584dLC8v46mnnnLvbt26hTt37mA8HuPy5ctzNF67dg2/9mu/dmLu6oUXXsDP/dzPqWV5J2O5EC3SCNJhSFHMGl2+wFtKHta8YpMjvmcpNKW0g2w7mqgkATsej51ikAMypAS1SR6+WlmjW+Yl32mg/Hz9KcuSyjgmoGICM1SerJPGp5b8iyDWdkWREqgrW9j5+tGXLvYspUzLOy0t5z/ugGvjC3hSt3q9jqWlJbTbbcxmMwwGA1ff0WjkgoHyCGXJayHetdSRv7fIsrL63GdYaEH/szb8ynJ2NLkh9WeM58vg81g/++R5iMZQn+V14KwoEmjMWz7n1bL4U44B3t4yiKB9mwqtz0L8R84j7fTnz0le0QTtgwcP3L30tKhE0moJSvie87FjkYG8XWVgVLNpQyBbKiW4SmVMp1O3MI6O8+V9ze0qoifkOKUEdniaFN0aKjPlXYwmyfMhPskz5qRNDDxxSok/Uuwf/p2PphT7PdXWT4XVDgD8fg7xps++SUVeH0/7n+cZSxtrC05Xr9dDt9vF8vIy2u026vW6s9FCQeHYOOH8pvkW8u8sy9yVMLTIVV4zs2hY5YOUZ8QrRXjGp2ulfNBkSB771SJ/QpNkMhCn2X2cPqlPUvwwLjv470UHxfizWBvH2j5Ud+1bsjU+/PBDHBwcYH19HfV6Hd1uF3t7e7h//76T9bG4QOi5j1apm0N2h0yTZceLd7Isw3A4VP06yT+yfUNjIYXf89gCpyFrYrD05yLo5OWW4UsAcCfJDAYDbG9v44MPPsAzzzyDixcv4gtf+AJarRbeeOMNDAaD4ORLKnw8lWXH103QpM/q6io6nc5cfWnCVh7lzvPxwcfbvrS+2IC1DEKKzZCnLvK5z46S5WqyT7aRRCzWY/lGK8MSE0uRGXl0b0zPa2li/BHrixgtofbk+pwm4mmhBdc/kkbNL5Z1CJ3yk2WZ6sto+cTepcKnrzW5a7GFTwtl6oRQe6bEy3g6yScpOjzUD9Iuj9kKIflzFv1VxH8tmr/PJuPfzWbHV2Xs7+/P2YaVSgW9Xu+ErzgajZw+B46vLPziF7+IDz74ADs7Oyod3mOKqUDpTFrv8PLlaUEZzJAqzCXOyvlNcWpqtdrcCp1er+fuVfE5CRbweyx9hhI54jGjQiIkMKTzw1cVyN2M2gpWool/E1MUBO3y5k8aFiFkLU6RFKR5HMQUemJ5Sd71KVtauQQ8CcyMRiP0ej33XAZiAGBpaQnPPvusS3NwcOCO16Id61k2f+9z3mDNaSKvYUVGLAVPitQtr+5ZBHxyUQbjUvLjSJGnIZo4XSmBwRSdWfbK1NDuB6JdLmSw2h1Wp46P/zJAdbLkK/WqRY/lsW+4vKQdnDIdLSZZXV3FZDLBj370IwDH7U/35fhoTwX1fWoeWhAt5jRq7UU7nPjOAYujQHTTkYrcYA/RrK2yL9v2TBnHWtlSv6XCNwEtA3x5ZTeXacST5KvwhVC8DkX1RJ5g8KICyLEyOXz9O5sd78qnaxX4zr88WFQ9y9Tvs9kMu7u7WF5exrPPPovxeIxOp+OOi085OULLm49rPmEp5RMtyut0OqhWqxgOh64P6Ki7Wq02Zy+eJahudIoDLdbh7VV2PwGYC0xK+yUPv8mdPPQ3MH90cl5fUJ4QkldPk1zLG3C2ItaOvB6yTilBxdDdgoROp4PZbIZvfetb6HQ6+Kf/9J9ieXkZzz33HH784x/j7t27aDQaaLfbc1c7FKkfQfKy1F/8bkqZP435CxcuoFar4eHDh258yHaTbXfauuHjjkXqU2mT5dUFdAcrLVy8e/cuvvWtb+FXf/VXcenSJfz2b/829vb28K/+1b/C3bt33cTtImMB1WoV7XYbw+EQg8EATz31lDtqkcrqdrv40Y9+5PQP8X2K/26pA/f1YndecvC+1/xBwB/DC01i8Oc+fyGPzJN5yDS+OGsq8k5alIm8caIYQqdzaf5yLEZtoZH6hHiJy3IAaDab6sK92ezkrley83i5kme5jeDbeV32/IjFrghNBPJvyrb7zjoOGqLBatctIrYr7QiyEYlftTifhCYfz7q9rShT92vxImobrpMGgwHu3r0755dVKhV88YtfPJHneDzG4eGh+/5zn/scvvjFL+L3f//37ZOxkmm0TvdVJvQs1HhWZk/5NjVNTMFaJnnyKGdfORbaJpPJ3MRQ7PgeqfCtdeblhb7hzqtvokJL71OuXMH5diLScwrA0XMZ6NPKl3ktWhB9HJyuEG0WPvEZn9pY1oIg8u8UxPo7pBQl3WRwhSYQeZ2Gw6Hj19FoNHdBN62O7vV6biKWhLRFdqa+XxSKBMs1ULtajyUKlR8yhEL/W9+F3pfRH9opAFbIscP5PyavU/KnPtDGuG9882ex8ix9E0sTcxok3Ra6rPmlYDY7vlMmyzJ0Oh23G40fR2ihh+fneyef+epQr9exvLzsnMadnR30+/0TdgXnA9LBvv7RZLCPJo3vaacu/eaBFy2oEqtjjBd9fZx3jFPb0N13RGej0YjuvtPo5v9zWmM2NDB/TCkA9U6jslEkb+5UEng/89MqrLA41/R7Op3OLTbIM/ZTZWBR8ACUHE/n2e48K/js0fMGshn5kWYpfi2HvHfbUrYvL196zZbhgSI+Sa0FKVMhF7MsgtdDOiX16NyQXarp9dMeuzyYzI82LGIjhwKS9P9kMsFwOJyTwXniKnl4yacbJP/6Auih8rkuy7Is9wT/z3AMbgeUMTa08UiyKcsyd0WRdeEJjR95zRaV8+GHH2I4HOLll19Gq9XCz/3cz6HVauHo6Aiz2QydTgej0cjtwCtqR3Ga6Fh1n69Efw8Gg7md3UX9pFg/ycUrllirL+bD+cPid6b4jb7vUhEqJ1a+1T/Mm3/oG2usRYtDWNtL6xNJg7QttDEcsgV4Gb64hlYvjT7gpK6SpzRxmcLz1/LWfB5fWkmvBbGYjlZGqh2olVf2N3ntkaLgulwrM9UvT7VZLeNJ62NrfERbMHcW8MUVi8pe61iXel6z/d566y1sbW0BANrtNj7/+c+j2+3inXfewfr6Oq5cueJs6RdffBGdTgcPHjw4cVWAd4uG5lAtomNCQUPf80UxSMiR8Cl77dtFOPRaUGU0Gs1dBiyPPeXpfbRqdPsCSPyuJZ8zSXySEkzW7u0CcGKFIK8L/SaDlzvz8h4xS5A29s76TUxppvJJSprTDEDEaInRrQm2sseNZkSE6qMdS0VBsBCd5LjQ98Ph0N0xATyZUKAdF41Gw3tPh9YuZaAsp5UQGuNWfiRHNW/AxVeulrZI3WOGS16+5TzGAwsWXavV1TemfLLH985KtwxS5TUoF5U+hpRgTsjpywPatddqteYCL3IHhY9uTr9voVJIn2t1oOPVm80marUatre33WIvn50WOsrPZzP52k/bcULH/tLCDeIx33HEob6RPKrtNgohhV94nbLs+O5YOrYegNuBnLrjIu+YpW9p5+hs9iTY7ms7S/4xfV9ENsrdadrJKWWMRTmegPkJFj5xXoaeitFh/V4bb/wH0G1oDWftdJ93nHX78PFQNB/OHxw+eyZv3TV7Q1sQUnQylufLj9WM0ZQXWh40yZFiu4fiDb73RW1OK108cNxsNgvdzc1/h3RMpVJxx7mGrknS6PU9swYr+XcajbPZzPlscuLft/icl8NjFpr9kof+MpA3qGkdR2UFTRfdDlq5RHuWHU/Gkg9PVxXxtBp9cuE1T//+++/jww8/xPXr13H9+nV8+tOfRqfTwQ9+8ANMp1N0Oh30+323YK4s8JNYtAUsRO90Oo2WH+qb2FiX38n2juUvv9FoCsmdUF20WGSKTE6JMebxJ0O6W7ZHTP5p19nJeoRotsT5tDys0L7X+ts3Bq1HzWsxDF+Zsmz+P39Gfpa0SXxXCGr5pNgx0r+2yEzNR/flbcmXt2dZNrOWTxk6ReZlodk3tnw2hCbLuK1Lv60ny0h+l3ZSaPzzMrUjtDnyTBAXQcz3kG2dyl957EGy7Qja/NpsNsMPfvAD9//Fixfx0ksv4ejoCG+//TZu3LiBK1euuNOOXn75Zbzwwgv4/ve/j/39/bm8TOfwpayk9QmtIp26aMcjVmZsYJwFtDaVDkHI+NGQZdncpdJamVY6FgEqqyg/acKyqNEg8w/1w8cFMUMnD2LB27OA7J96vX7iwvXxeDx3dB1NEJAS5YEYvuuVzpSnFab1ev1E3Ysch3dWsPbfZDLBysoKXn75ZTx+/BjvvfeeO3KvrEnn88JL2r0esbFfNAjpQ1n6NsXZKlPOhfIKBb58ecSMPQsNZdgxZAhXKhUsLy8jyzK3q17uMI0ZjrE28OUh60AyzCeHWq2Wm/jKsmxuUjHUJmRP8ECu1YjmTgoFtSqVilv0ouXBTzOwgOfRbDadDKf7cC22oUbDeDxGs9lEo9HAwcGBa9fxeIytrS10u130er05eREL6FrrQ3nIla0pfKsFaeh5UYQCHClBBF/e9EOT3d1uNymgcV5Rhg3Gxx7nt9nseGK+3W67cUCn7qTu+DttpLYLTU5Xq1VUq1W8//77ePz4sbtW4umnn8b29jY++ugjF5jOI/elnetb+JFlT+7ordfrqNfraDQaqNfraLVaGAwG2NvbSyp7UaB24HXjAYqiAThaKEL6Qgb1tKOeU3kzFNSVvqUMnMVA+scXzPUFfUO0+safxedOHRta4DAEGRdKCWRq8NE7mUywtbWF6XSKzc1NrK6uLsRmJuS5soh4hY6w297eRq1Ww/LyMqbTKQ4PD6N6qMwYRNkoMwbwcQD1J10rJMdyvV4/EUDXMJsdL9TOsgxLS0sYDoe4ffs2NjY2sLq6Opd2Op1ib2/P7Zg5rd3T9+7dw/7+Pp5//nlcvHgRX/7yl7G3t4fXX3/dTcaSPqLj8wkxH4XzjS/AH9MbMVlnec99rxA0nzGUdxlI0WW+NLwNZV199eAbAmL+dqhdqDy+sF7TffzbRbSjtE00/53TFMuLp5MTXnyRo4+n5OLiVB8spC9icxJF5ixS6OW85rN7Pu6w8KyvzeRYIN7h4490jUyXV+da7EoZa5CLi7Trk87baR5lzbHwdpb5cJ1FsR1Kr5V5eHiIP/mTP3FXyjz11FP4yU9+gi984Qv4zGc+E6RjbjI2RSCH0sm8rEotpGh8eUpFlodGnzJPCUpzpCicmGGREkjKE8yT6fkEU6wPfcLXsuNR4ydNYUsjg+gK0aO1Q8yYCNUzhbdiwc+ylFPZSi7GZ1bFEEtTNOCcBxblxHmnVqudmIydzWZzu9BpxxZNDnC+58GpSqXi7ovhO2J9ZS+qbU7LseB5k5HWbrdx48YNZFmGd955Z84QKVoGR16FXFbwI0/A9rT6PDVQGqJJGnNFnblYOSm00XvfaQvy21BgVBppRfmEt1mWZe6+meFwGN0dLvVgyq7OkLFJ9aIJAY1eklv0vl6vu+94oEprY3lnoqxLCJSOO/j8dA6tnqlODNFRr9fdQjRyRPh7K6gt6f7do6MjR/N4PHZHP8sdBz4doDm2vkADD37lpd8y3srIU3uXamuEaKK+jNmCljylnA5973PUisr4su1GXjcaY2T7kHzp9XpefkrVJ4tCHj6ZTCbuvtOHDx9if38fh4eHaLfbuHDhAobD4dxxjlKPWPSP/K35nLztgWNZSXIoyzKsrKygVqvh8PDQe+JRnjYoC3xcWGiI+bbEf/z4dNLlMr3WD9JflGlDeooHXLh+oWPKrfo/pMc1OaLJd01fa+0b6/88fMHbW2tf+bdPDsRoSpEd0+kU+/v76HQ6WF5eRrvdNpVVBJyXQm2vpZ9MJjg6OkKtVsPGxgZmsxmOjo5OtG2IHxeN1DIX1caclhBS6M1jP2i0UX/RD5fBMfuby5zxeIxarebs/Z2dHbRaLSwvL2M8Hjsbmk7LoZiCPOK4bBD9u7u72N/fxzPPPINms4mXX34Zu7u77sSe2WyGRqPhdshz21WTWRw+f4uXnyoTYrG/EHy2dawMS/4xvvPJDEs6X9kh2zZko1HZtKAm5Cv79KdGHy1g4N9xWjQ/J6UfYs8lXbHvNbvMl4bnp006+8qw+uoWPZriI+XRK74+9+UreVPStyidljLe88RJ+DOfz+Oru0YnB48Xc5uQp7WeFugrIwY5/rTy+Yk1IX6w0FeUD0JjwyeXeBqZj2bLhnx2Pu7pnVbeYDDAj370I/f//fv3sbe3h/X1dbzwwgsAoE50A56dsZwIbWIu9g2vQJkOO+UnBWaRHVYWxRdSeKmwGgOW8qQznMfRkXRZj0XhQQTtXWjwceEjBR3932q1cP369bkdh7PZDHfv3sXu7q7Lq9FonFi9YTVINLot98F80vHTWGcC8WCWZd7dm1mWuQC75LVGo4HpdIqjo6M5g03yKf+Gfsccm48LqtUqXnzxRSwvL6PVaqHX6+Gb3/wmut3uXDq5Yw74+PCeL6BWVr5F4TNMNH2nGZg+WqxOUKqe8/V/0bal/rHYCCFjOq8RCsR3P8eOUpLgTm+K0R7ThbPZcSCx2WxiZWUFS0tL6PV6bjU8TXBZVpdb7UFpA6RAOn6pDrome3q9XnBiWqaPYTQaodfr4ebNm8iyzC3o4TsrLE5rnjElQd80Gg0AUHcZp/bBIvQU2ZbynmAtjc9RtsIX6OL2Le2inM1mODg4cFdjnLWO5vIFeHIsIi0mI5o/jidvnFecdp9fvnwZr776Kj766CO89957ADAXQE2hh/vPi7CzaMxo955zmbuINuQTF9yX9NGRCi0vKksi7+QCz3+RgcwYZODdEv+x6HDZLjGbyMqntIDBsqgtVF6WZd4TKqx2Cp2YRPfeLi8vuwn9o6MjbG1teSf489pB5wXnxW8tm4bZbIb9/X1kWXZCl1rHKU3Q1+t1NJtN3LlzB3fv3kW9Xsfm5iZ2dnYwmUzw5S9/Gdvb2/jBD37gFvSFFiBKOq200KkXtVpNtQ+uXbuGf/2v/zW2t7fx7rvv4sMPP8Tbb7+NZrOJer2OXq/n7A0q2+dn+Xy6s+AV6q+8esjSxnlt0VRokzjA/KknfDKF9zM/RUjbIZvSNimn+vjsbQ0+WkI+Of9G0hSKV9NvX5sWgdysEYLmi+X19bR4oi8G5ItnWdvCcqytNZ502nokxXaJQbal7wqp2WyG0Wjk4swA5naWE79Iu1P2E49hFJFLciORL42vTmeNssarb8xp/E1p+TzBbDabuwt2Z2cHP/zhDwEAH3zwAYDjBZ6/8iu/gueee26ujOgxxaEBFhtcRYI8Wp4hWlI6wyfMpdOmBaa1b311k4NcDlQL3bH38g6eWLA1JnB8DkIKUoUaPeOCgALC/OhA2nFCIEOC777h9PsES+okg6WP8vC3jxdigtVnnKQgZRz5AhBlC8A836QaDjLQEKKDB1xl3/iUEr0bjUZzx8/RREaoLhynYZCU0X8yDzpmb2NjA2tra1heXsbDhw+xtbV1wunjhkfZzktRGRZCbPyl1KeMPl5EHnnz9AWytL+18hbJB2XVMQ98Y1yjz6KfrO2VIkdIplWrVTQaDbd7jIIuFpslNp4tNoj2jXRKtDSh55otp6WNBb58NoWvfLJbDg8PkWVPTgSQk4zc9grRSumsMkZL51twJssNBTsoTZFxq9mbWjk8vUwj2yImX7Q8tInVkB0Zo62oDMvTpjR2OV/JgJRFVpTpX51H+HQR3Y1NdwOXBWuAUgZXCO12G9evX8fe3l5pR5mX4S9wmSzz5WMyRCt/X8aY0QKwspzQ9yQLaKJM7oaLoSx7+qz8ASoHSNczHEX7VJPlg8EA/X7fLSCi49Spz3i5edtJ6sE8NjzpeOJDOnq83W7PTRbn5VOt3LLkbUx3pqbLS0NqPmW0gy8PPtGv2eA+v15rM4pfTadTdLtdd2Rxt9t1pyJcuHDB2dsUkLdeE5di5/MjVMn+GY1G6Pf7ODo6Qrvdxhe+8AU8fPgQ4/EYvV4Pt27dwmAwwHA4VO/Po7w1W0hrXz4ONL0c0x2UJmQ/WvUvfWORAWXqrRT4fFmtDbhdG/OZfDZiSlyDt4mvPzXaU+DjkRQ5nce+le0UShvjC19f+cpNiVlo/iT/xuejSB6R/G3l9RRfI+Qv+eqcd6zJ7335xdrb174+umOQNnSI5lAelu+0sanxgNaHPrlD7yy2tRUptoWFH6x6wDKmZTp6Tj4DgDkfnHTq7u4ubt265TY0tNttfOUrXzlx6sWcJSEL1e4NTUEeQ15COsZS6Fs7OmUHgC8II9NwRyCGMh0pafDnzcPCoFZmjuUXc5QqlQqefvpptFotAHBHhFH6hw8f4t69e27nbrPZNO04srSPJlBS+PY0nOSzKOunAdzJ4UfEzWbzxxJzB0ka78QrdL/MZDIx7TC3rDg/7+D35mRZhpdeegmXL1/GxYsX1ftx6Rt5D88ioBk6ZcvhWPkx8OC5tiMvFSltWkb7h+i15F9Eh/nyK4qUXW+0qhGI20xycQcdA3pWIHqtwQ+Sh1bDlf7nu/RknrE8aAzTKtIQv/l4yWKr8WNJ5Ti08APVk46aa7VaueV7XufT51zl3S1UFLy9pSyWd9qWBRp/tHtVTk5Kesou/+Omz8n2pbs6+/2+cxLpHunUCSltrJThC6aA6kSBZ1k2H+Oj0Qh//ud/jnq9jvF4jG63O7cIVAsgp9BBdY8dYXt0dOQmbBZ5PGUqfOOEFq4U1bnT6dRNhgNPdv765HlZ9gL1JW/rtbU1fPrTn8bh4SEeP36Mo6Mj9Ho9NwZ898CFZDa9o0CNlf4se3I3pRa7OAtZI30gC2QwO8XXrtfrmEwm+Mu//EtsbGy4HXm//Mu/jFu3buGDDz5Ap9OZs8PyQN4NJid4Y+BH2ab0r6Yjz7OPv2ieK2Oipgjo+qHhcIjBYIDPfOYzuHjxIr73ve9hf39/Li0PwgL+oyV57Gs0GmE4HKoLk4fDIXZ3d0/cL0yLIkejUem7krLs+Dj8RqOBd955Bzdv3kSlUsGNGzfwm7/5my7dc889h6tXr+Lb3/423nzzTayurqLRaMydFOKzqVJlRUpclfL3TdT5oNmfKePPOtkUmsCRssJij/r0TUgn0LPQPcfcP5N0cBq1ST7+N+lTfrw3h2x3bSLQR7+kLRZTluC2mA+c/7i/6bNDKL8Yz6fQSHTQ7xR9aZ3jCEHqpNCOYt+Rqxw+XtXoPG0fYdHl0bjyje3ZbIZ+vz+Xnk5X5HIw5sOHxk2ovUmnNBoNL7/QUfra6Y7nxVax7MxOQV4bO8sytFotVKtVtNtt9Ho9HBwc4N69e3j06BGef/551Go1/OEf/iHq9Tp+/dd/3X17YjKWC4EYoRryKGJtMPoGiqYANBpiAkyjM6SIfYrKqrytnRsSECntHvvO0j6+PLW20xRjrK9I0NPRJ61Wy03G0jcUUJtMJnNCiysAX9+cN4Ta3EJ3GYLP2qd5aDhNwZzadhy+sSgNQ35XlW+ca/Igr0F/nh1xbSxLemezGZrNJpaWltBqtZyjyoNdmkGcalxa26iIU6ihrL6RQanYJJOv7JCeixliKWPGp+8seVidVu3/FBp9PGkpk575HERL2Rbdw2kk3ZcnyCp5JxaI0Bx2/jcFlZrNptO/tJikWq2Wskgg1qYaH/iccC0N1SnWhiH7yhLECYG+045YlPT5bKYyYBkDMo0WcMmrw2R+Ennkt9ZvKfaplibk60g7QAuc+fI+bRAt/L7X1DbmMixVxltRpK3y2EZWf2k2Oz5+mo4PDd0ZXaQOvm+p7fmx5QDcbqzl5WWsrq66yajBYJCso4Dy7UvJK1JuaG0odSzXhSky0WcnaLouBlkmHd+5vLzsFlhajgqNyRECBY4qlcqJCW1NJkvbJFT2acgji27h6ULtovlL3B6mutMCifv376PVajkfg+6vL2M3u2ZPWOMgPh1Di8jk8yLXs5x2jOO8xlQ0WVIUXAaRPJ5MJlhaWkKlUsHy8jJGoxG2trZU3pW8r/U9LXDKsuPrjvr9vgt0c1ubJrPyyPoUkP1Psu727dvu7u5qtYq1tTU0m00XpyP6afEigFI37ljqKtvc59PlgcZHZdkBmowJ0eHz8zhNPjveF9+SeaX6CkWhjZE8Y9dXh5id5fOZQ99o6VLbUeaRh99T9YQlnhKqgyU+YbV7tG8s9MXKtyJUtxBdVoRiDr403Nah9/x0MkLqwv0YT1Mabn/TO/4j6eLfLVovcVjGWYocKYOHuFzgepr74LS4C4A7YYIWMAV3xhLOaiU9lR2DxSGhH2sgURPS/B1nRt+3VljpSYVFGMQCU5ay5cDQDE++gsLnjNAuwqeffhobGxvq6pp6vY6lpSU0m80gTUWNQUnfaaHMYM+iwfv6vNDNebcoDeTQ89Wus9n8DtmQc06QR/j4Vo357sM7z8iybG7H63A4PDH2sizD6uqqm9jpdrtOMXED4zSxCP4sotD5rv+8+Uh9VwZtlJ9WVooTaaUhhU5LgDakp2N55b17noJusTT0O2VXuKZrydAL3WOh5eOTXc1mE1evXsXGxgYuX76Mo6Mj7O7uIsuOV/lZ75EP0a5B0prizEpH3hJAofS0WtU6wVxUv3D65L27FrvFF2iKBYt9tNBOQeKhsnZbhHiMwAOdMchV/Hy3EullPibK1KXEJ3ynsyazT9Mh1WgE4I4/XF9fB/BktfMn4eQNwnm2i8tElmXunsC7d+/i6tWrePXVV3Hx4kVcunQJ3/nOd/CTn/wES0tLqNVq6Pf7SbpkEbtu+VjwXZsjA0A0lso6EprykRMkKfxfrVZxdHSEN954A1evXsVzzz3nJiAePXqE4XDobN+8OoFsv1qthnq9joODgxO7ba15pgaCzzOkTUkTUcSrdE/ld77zHTcmVlZW8NRTT2F7exuHh4eF7/G22iucZ0PyfzqdYnd3F41GA81m0+VPk/vNZtNNgn1S5PQiUPZkUApot+hrr72Ga9eu4Zd/+Zdx//59/Lt/9+/c0dl0opa1D8mubjab2NnZwcHBAZ5++ukTMa7xeOzumS2y8zvUfpx/V1dXMZ1O8eabb2J3dxcHBwe4cOECvvrVr+LmzZvu7jv+LS1Y2dnZSao/0cWf0Wl/8l1RhHgnNMGUdwLMUibpYlr4o73nEx6SBm4/87bj32qxMdI/vh2yPE9en9jElS+GLPMhuvP62j7EZERe+eFrf/leg+++UGu5RRCbC+B1or7T+oR4i+CbG7LIaO77+dotZUKtDGhxszLbXotx+I5354t/Ll++jCtXrgA4bq9bt26h2+1G6ffRo9noHDzGQ3eVS/A0JEdOCxa5Wjbf+OJH8h3NY/HdxfyO+M3NTffNgwcPcOfOHbzyyitYWVmZy3uuNTUhbiEyrwItwvS+gcyRGqiSoIFpycc3AKXQsShp+SxUBqfRl2eoXE2B+vJIzdtXbxkoolV2JCj43+PxGFtbWzg6OnL5pATdfW1mqV9ZyJO/1dnPYyhaEePbou1WxEACTho7PkXqey4Vo1Zfy/iI0anBErAu2zDQ8o8hNBHAsbS0hKWlJXfEBgXabt++jQcPHjgZSu+0Xe0W2kM0psqvPGWUlS4FPp6W//t41mLg+oxS33dlyNCUb1LGdYinUvK2IDWQZrUnKPgyGAycoyQDFj7E2oXTwlfoj8djjEYjDAYDdLtd8xGUku94vjJInpoX/605Nlq9fDT5vgee9GOKzSj7UuZHR47KccRpkX/H6mOli/LR6m0duxYdFeJnX5/FbDieJgXcLqAdSUXs/yJ2W5E8LOB9zO3oWOA1BFogyXmW/y4TUl+VmT+1CS10CPEA2SG0QGY0GrkrKWJ0Lwqcj2ezmZu4o91TmrxJoauoX1wmNB87Zgvyce3zjzX45AHtfOeLL2j3F19Ymdf+9/n1Vt1KR2Zz+1lC2mtFfSueb0gvpvgSMt/QM7IhpC07mUzQ6/Vw//59DAaDhR13H4LFLib7h7dbrVbDysqKu3cz1d7ISyunq6y0qeVb08ZsnxB/x+ycFNC4I1uCFhIvLS1hc3MTr776KnZ3d/Hw4UN39LC1jbMsc7qWsLu7644jPjg4mKuDhUdCcjDUB2T786tEyBfgPnun08G1a9ewtLQEAG6BerPZnJNzciE7cHLiMJXGIiiD/zRoccVUujQfRyvH4odJOSnHCT3jtjW3M6QPEqJH1iNUR18+vjx931j6hfzkWBkW2ix6lNtcqfETSUfsfRH5bbUJpK2j5SP1ssa71jpptIbqYc3fijz6wsoPWr4+f0er73A4xOHhIdrtNmq1GpaWllCtVt3EH98glGIDyzT8GGRCtVrF8vKyy5f0QbfbdROyZ+U/5I2NFLWL+bc+30NbqECLTkkWkI7d39/HYDCYT8v/oczKvpegCFIajwvi2MqfUDn8b+3ceytdJLhSy5eKNWSMhhwzy523KXT53sfqKB1PHijhqNfrqFar7kgYALhz5w6+//3vO1rJMQXmj5G11iOmJE9LyKSUs+jgj6X8vDSUHdAjfiOHJk/fE6wrqYsEdYsYlxrPngde0HD9+nXcuHHDOXez2QxHR0f4xje+gYODA1ff4XCIWq1W+srIRYLzf6jfUoOheQ11Hy+lOD0WWOgsmx9jBrI14Ch1dt7AdQiz2czddRe6cyMVWZah0+kgyzJ3PA0FaiyrEVPooBX9BwcHqFQqaDQa7t4qC7SgI3DcHrPZzB2pmTreZX7W8SJlZshO4qDJuzx9qC0w6ff7bpWr1SmnHz7BH5IBoTylzqC/U237kPOTp63kqRHkkEi9XGSXOukeTVZY7d6fRpCjDzyRs4vS05I3y8oTOB7Ls9mTndO+u+vJOQaAfr/v7u2TQWWtDAtOk9dS6JJHwFrz53ZGWX1GMokmwCVNmo1fJLAiT5OYzZ4ccdtut91kfJlyMg+t1MbVatXp/X6/r076pARC80DGUWQZPECbx8bUQOOSxjKV02g0sL+/j7/927/FxsYGLly4kFReDKHAJv3PJ8blt9QGZK9xtNttPP3009je3sbW1lZpu8LLxKLl1aJ92KL5U7/SuKPFkBxXr17FP//n/xzvvfce/uzP/gy3b9/G7du352JTPtBYoTtpl5eXAQAffPDB3MLF08RgMMBgMEC73T6xAGI8HmNvbw+rq6v40pe+hG9+85sA4PyFzc1NV2cK4hModjoYDNTTs846lqEhdNpQSr/4+FCzSUOTrURLqL24Dgv5x7TAiNtDFCfnkwYy7zz1tELz72MoEo+zgtqdZHgeHtDsGS2NLNeSry8tlZkSGyfwO0GJp+TJopJH5IJHa/8B+s7hs44LFuFln4+hgY8b7VSn3d1d7O3t4ZlnnsHGxgauXLmC6XSKg4MD9Pt9PHr0KNcYkPKE/Byu55rNJq5fv37i7uCbN29iZ2cnWN/TQMjezTNO80Ab19oiXulHLi8vYzab4aOPPjpx4tyJydg8yFNxHtDhyk9TJlqD+4xm/o2cnI3VIdV58ilbSaOsY6x+Gm38tyxLPg8dERzKX4Msg6flk1laf1Awh+fBAz6rq6tYWVlxqz54QDLkFOU1jmL19T3PO8BDxlOe/PIij8FUJOBaZj7amCSHydp+su8lf8m/LUF0TkuobvK9JSjve3aenBd+lxbwRN6urKyg1WrN3YXTaDRc0N3K+yGFK/tQG9tlja08ba4FpUK6hdLH+JSe56HHhxjvWuCT/anlyXzy5EHvaez6nNg8MjEUBI2liznbhEajEd39qsm/1AC1TM95kPKnoHQKH9D3XC74ypPfas95vr6xQLLHar+FeMtHgxV8FxMPnPOFjvyYaQ6rrZZ3PFvylvZrasBY6kzu/EkaY4EYnpeWZ6hcLX/rO8lv4/HY7XLmNm3MTl00ePnVahWXLl1yzt/jx49x7949N5HDd37Tt5zmIkGhIvQvCim6Q/bhWdhZWZY5HuNyYTKZoNvtotFo4Nq1a+h0OgDgjq6kSWTKI0+5eUHyTI5t37iQfrAvzxS6pHwNBWdS6lqv17G6uopqtYqVlRUcHh6i2+26hYR8kjAETdZRf9HYpNXysTz4/YzaiQupsLbJoseEtEHkGNDomc2OFzzt7e1hNBoVWrxDNEh9I+M3Prrl3zzvfr+P0WiEfr/v0vT7fZUWS8xjEfC1QVl5x9opb3xFQ9F2ms1mzvfPssydUHP//n0cHR1hPB7j8uXL+Dt/5++cOJJd2qG+HaH8GxrLmp2dZU9OwpHvY35UyF7Wnsm0e3t7+B//439gfX0dly5dwo0bN/CZz3wGv/ALvwAA+Na3voV79+7N1ZX4nY5hJ8iFFbLNiA7+zsqHMd5J0Sd5dYUlT185hFS950MoFiLzlpMtvP3z6OwQZJ5F8gohVobkN0t+FvmU4s+GaEqBlAeSf7W2CNn/dAIATcxrOlXebyrpSZE9sToVQUxfa7DaQr60IRlkiUHx65M0Xy3LMncSAU3qUb9ZTmYI+cjcBh2Px3j48CE6nQ5WVlZc+Wtra6jX62i1WphOp3j48OHc/ec8P6uussI3RoqMGZ5vSp4W+cX1O23YAJ7E99rt9omrB04cU1wUMSUqDVzeecRcvjO16Vt+pAYwv0OS5yG33FvqJxWUpD1mBNFvbdcdH2hUViyYE6M5JnRCeaYKSGlcWujnbTaZTOa2Zl+4cAHPPPNMtNw8A4aXb0mf972F36396nNaQsLcSm/K2JbGcqoBYy1Dg3QMNcNdC4SkKn9tLNPYJ8WmTYrI73wGr0ZfHgOhCMp26LnMnk6nalDhwoULWF1dxc7ODnq9HjqdzoljNTT68vCYj8djC29iMkumDY1xy7iUfKyll7owBh8fSrqkcybHkg9WeRgaCyn5S4PO52jEaJDfWPtPpsmrD/I8l0fENJvN4F2e8ph/Xx9rxrxPXmk0DYdDd/9kDDwoAzzZacp3zmrl8G81Pcf7L8TLsfG1CB3GaSTQ7mJqOyqLAnz8XnJNx/kg7eQQHby9LDJf9g9vc2temu0iaY7d6yrLkPKc25GcTl89ioB4dzabObuVVrLK1fKc1tME33lVr9fx9NNPu7vo3nnnHXz44YfumCuqR8xO+aQixL/WccLTc1gCLT7wsUbHl8r7JQ8ODtBut/Hss89idXUVwHF/N5tN9QSD0+pbTU/zOlGaPD6Epf14PiQT+KJejU5rPzebTayvr7udl7du3cL29rbbPWK561vSSP9zWukI6tjkbpZl7m5KukIgpT6+PK3Q+tnyLpaP5FVua8QmWLvdLnq93twCKAstIT8splslL4XqO51O0e12T9h4vgVOmp0TQhnjPFX2nUf46pCnfWh8Ek/RiTc3b97EZDLB9773Pbzwwgv4whe+cOJbfsWWrx/pnTweX0tLRyP7TucLIdQesr7a88ePH+P3f//3sbm5iddeew1f/epX8ZnPfAa/+qu/ir/7d/8u7t696yZjs+zJZHG320Wr1XKTsVxuDYdDtwtTo4MvVORtFauj1s/82zw2cKi8onGckB/G8w75gNb8tQUB9Df/n1+JwOmoVqsnruKx+Mo+P44jJHtCbR3zIbTyQ2WG+j7m+3AfyZeftIVCOiYWTwnlofnEVsxmx4uH6USALJu/K5bS8B8N2i7vFDms2dZl2bMab1h9uKKyRf7P+5Z8zUqlcmInsqS71WqhXq/PpTk4ODgRX/Xxua+evK/H4zHu3LmDixcvuntNsyzDxYsXsbm5ifX1dYzHYzx69MhNxmp1k/RrbVEGQno25dtU2qSe0mzy8Xg856PRAk867p+j9Bt4JZPF0vG/Y8YzZ1opEGgnBzeINGhnZMfoi3VS7D1f+RYT+jEQ/bG2TXGKNGgBtZT8UpUBML8rqNvt4ubNm+7+jFDf5x3gUkn6kCKkU74tAitNqQgZUdzoluWlGqMafI66/KYob/tokbtHQmlleTzAEqIpNSiUF4vgO22Byfr6Oq5evYparYatrS2sra1hNpvhvffew/7+/lzQisawVVGGEHJieHn8twYLLTIAU8b48umfPHlrOtdnEMV2HVhpsbRtnnx95RTJI9Uok/2tpaV2pKO5t7e33W5xST8/vsznxNJOp2az6SbqALh7qzQafLIqZGPI98TPo9EI+/v7GI1G0d2QJJutfa/pyCyL77qkMrjOzzv2rI6/rz1ns5kq/zj4jifqN9rtRkF8i50RosfKy5Je3l+p975o8iUlsKKBVvhyfivqeBMNWrCL/o6Nl0Xr5Y8jPg5tQvJkNpthbW3NTaaNRiPcvn3bax9Q8IhkND9y3CpvJO9z3uM7GBflC6QgDx2L6H+6kqbVarndv9r9rNQX9KysNtQCylogLAT5vS+YmmIzyu8ppgHA7aL17aw8LaTKev4dgdpE6hNup2qB3VS7ryjvWvqO20OW4yHljsqfoTjK6GsOvtOey6nBYIBms4lnn30WGxsbqFQq+L//9//io48+crtcfcfih0A8Ua/X5/wL4IkMXMT1cTymQzKYdj7xHT39ft8dUTmZTOaOWKxWq07XHh0dATiO5dEpeNpx3rFYijZGfLawZSxxPQLox9/T8xh8MimPP8Sfad+X6V8TX8ndbFQO5wWiJ0ZrqCxp9/h86Vh8hn7H6CrS/r6yLb5Bqo8mY6oWaLaPz88pAmnTSNuL7GJaROKbT/H1z3mxga2xf9/3HEW/D+Hx48fodrvY2NhwOyllW5MvfXR0NLfZTYs3WGOitVoNg8EA9+7dw+rq6tzx88CxfH/xxRedLDk4OMC9e/ei9SlbT4fKWQQ0HpbyLVQ/OilFQ+mTsUBacENzWHwNSYYRpeECigQEBcI0WgD7ZKwsN/QuJqRJCYbSyDxDbVA0YGWFVZn6vtUC0Pw9vaM60Qo64Jhpb926NReo03YtxxRzasBRy8NXP+07n6FmUdCp9FneaeliRp9PgPtQVLj62j4UPC8qbLkDTfmFVqDG6sgD8T4UpdmnyBah4LT8tOMolpeX8cwzz+Dhw4fY2dnB4eEharUa7t69i729vbn8SH6HHKwQNP6VxqOsQ97xGEKR8UDvfBNsMm1Ijml19wWGfXn48rSklY6S9TsLNMMmxudlBOp8AV/5jO6VunLlCrIsw8HBwZwhTLST3vIF9+n/Wq3mJmL5qR9y4lz2Z2p7++o2Ho9dMIV21/kg5WbePg8Ztrwc+jtUhxCk3ODfa+1bxK7iATwKbIzHY7RarejRi0SjpFOj3yrvNb1u3dVlyTOlvXi6er1+Qp8UsW1l+0nfwGKnlalDT8PhlAjZd9bvfO1QxOfQystDY8geBJ5M4CwtLWFlZQXPPPMMut2um4zVxgIPMgHzd/xofqyv/iF9EqtX7D0PHBdpf6Ix5jv5INuMP0sBycd6ve5OETg6OvLW0WfDpZbJ/9b0jmUHWkiHh77JAyqLLxgguamhrDG1CFmotZnkRc5f1A/a6Vtl2Zg+WrW/rfEBS8wk5tv6ypOQ8qks2Xxa0PjMOtbz2kDW+hH/kT6gHarD4RCNRgNXrlzBxYsX0Ww28f777zt7bzweu6PMreB+MZ2K4NuNuIj+ofLozrv19XXMZrO5o7WHwyH29vbc7i1+lHOlUsHS0hL6/T4ODg5cfTi9JMNCvE+00G+NN0L1D73nC30o/1Q5LstK/UYixcfOC6mzaTIWmD/hhdqOL5DlfaDZQvR3aIyG4g/auJTlcf8vy55MFstyfXLbirL0nbVP5TgItVPMf0nlwVhd5djjixS5HJpOp+7UndD3RektYu9Z9Eco/1Q9nEpfLI+DgwMcHh66+7yBk7HDRqNx4soS4MldtLKs0LwMoVqtYjQa4fHjx6jVaid2clarVTz11FMu7/v37+PevXsqHy/aljxt+GiwxC+0EyIJ6mRsXmeZE1UmSJHKfOWqen4BtaQpZhyVdXE0DwwQ5OCJDQYSdpL+WLta2z3GzJZyUvp4Njs+govaYX19HdevXwdwvPJjc3MTnU5HncgiYw/wH7mRF2UM6hSHwBIUPGtwQ4H3cxmrMn2Of0zeaHeT5jW46NihkHMTkgX8zmOO0G78spRHzIE/LdAK4Eqlgm63izt37pxQMr1ez62Snc1m6tFEMeQ14KwOX15a5LOU/ELjKGZoWCZwU9/n+SZV/odgOemBl8v/tjjmFqM89F6mpcVeN27cQLPZxNbW1omjfCkYwVcZz2ZPVpP68qYxVa1W3S5Vrc/zHFtGdFFZFoNcymb67fuWpw3JaN4mvjIsDiOvhyw/9i2VIY+WSRkveYJjFMjS7v0L0S6DKkXGoGZfhspMhW9sFqFbBrgl79A70s2pwdAYtF3vZ+0U8l1Y4/EYOzs7TjZtb29jZWUF0+kUg8HA2U3a2CNoQa5FwGcHWvg/9bvTQhk0kJ/LfaXd3V28/vrr2NzcxOXLl9HtdgHApVlE/VPy5PpTCzKG5OpsNnOrxDc2NjAYDNDr9U4sXrLK9KJykaPb7eLBgwdYX19392ZRsJqXkzJWuB87GAzcuM2yJzviyEaIjQXtyPfUekv72qp7OVLsp9C3KT4dTUrL3bN5ZVfK5ALwpB+1hVx80kB+k8deSKW/jLxOS68Vpfs0ZD/FGJeWlrwLrb/yla/gxo0b+O///b/jzTffxMrKCur1OnZ3d6Onv1hAvoHF10vVoVrc9vDwENVqFWtra25H1K1bt3BwcIBXXnkFzzzzDF544QUXTxkOh3jrrbdOLEal0yZWV1fRaDTw4YcfotvtOpnH21PaJ2X1K+VDO3T5MfZlnbiQR+5Ke96XrszYEZUlT4CLxUqsfoKWzvfOEivLo4dSvrH4fBY/NBU0njkPamny+kkcFj+fg64fo+uSCHRalzw5S/O3Qn2dytOLlPFF7Seeh4VPYvETesdPVtBiRmQvUqyI7oyVoAUzFHuVtpIP8l2328X29vbcu1arNXef7HQ6ndvxSTSHNiedV4Tizlp/lyWj1Qh5kcGj5aHBJ7h9ZUkGJqXCV1DGdsT6HIcUYz5WL4uS1cqKpZUK3FduTMml1C9kJKQEPbkBADy5j+fg4MBN2NAWfHJI5fGmZxH4SilTtoe1b7VvUxDKO7XN5LjXxpzMvyjtWt6yv/lqPgDBY4B8wpPy5UeGyrsXeTrfWCNDSiI0GSvzlvktIphW5H2IRqo/KXZ5Jv54PHb3JcoxrOVnpUlL65NVKYoyxcH1yaEUvREL9KS0S0gPxL615BWDVqdUWe3TJXnlvcWZs7Rx6FsKVLTbbTx69Aj9ft/JMh5Y5G1B70InZBCv0Z108jiTMh1zCz9qbcnrpem4mB1CgUrrsUY++ORmijO/SJuCt0foNBcrTSHdmypLYzTEYNFZnL+kTLDqu5AjJMcW/ZZpQnTJZzK91Hl8bGv0LTowLMuQ448m6DqdDtrtNhqNBvr9vrunzeKIa3mnwhqg4Mjbdlqf8fvP6E5OX1BD2rwES/3Ltt2It8ivpT59+PAhqtUqOp2O0wn8riZLUDEFMVtNIua7aun4mKLA33Q6xdHRkdOBXCf68oyVH6KX+zcyKDoej3F0dDQXcAJOLgj2yWWuIyWfkT9MATQpz3je8llMruVF2T6orz6+9CljqVKpoFarndjFZYVFd/l4j6eR4y7mK/j4RaMtT39Y4kOWdipTnixaJy7Cf+bgC174OCX/djKZ4OrVq7h27Rr+6q/+CsCT+7xpQWbKJgLNLpFywIei7UAykO6vppN6JpMJHj9+jO3tbVy8eBEbGxvY2NjA008/jdFo5O4sHA6HJ+y+SqXi7JFWq+ViexbbSbMjYrwZiwv57Oa88iMl5uOrsyYXYzGHIuB+iEUm+fLgdMq/U/JLKc8CjbY8/kfe9PybmD+XV37l5YmQj0OguJ2cvKP7g+UuWSB8gpdGQ2p/+sZDTA6klMXLyWNThvpRa3efnuY71kl/8JgrpSE7iC/ipz7iddDqlFK/0WiEbrfr5DmdmLC6uur6vVqtolaruUXmIeTxDznK9nfKyj9vXIOQ+5jiVGWYB1mWOWOAVgRz+HaNDIdD54hLyMmX0M6cPHWRNPEBxOEbGKcRIPQhZBCF0sj3XDBTMIjn0+/38ejRI7X/BoMBfvCDH8wNfouB6nNSF22sp6CIQVBWPVIURihdKj0UfImVxScgpFCk43/ICWo2m3MTq6m7xfhOBFqpTs8lfbQzxjeG+MSjXBgSwiJ4s2wDnmik+msT2OScvvXWW6hWq26RRVGE6hEKOqTmJ3mtLAPZJ/tD5WjBuzIgg5ykH6Xx9tOAMsfddDpFt9udW71uPa7cOlZp3GljLwQtaBjDYDDAcDj08jMdVUb32aXoDYJlnMlxogWofd/F8lsUJpPJ3OT82toaKpUKDg8P3Y4ASZPPNiwii3wyh+thGTjzLSgK5VUEVKa0DXg55GguwvbxBUR4+9C4k3btz1AcZdvmpM/29vYwm83w/PPPYzY7Pm7x4cOH7jhJmpjmfUoL/MiODO1oknLovPgXVmgyNZY+pY7S5+Xfkv3B7yekY9D4ziVKK2lOheYjUkDx+vXraLfbODw8xGg08t7llAriK98uV85nfHGopJPLnkajgaWlJbRaLRwcHBS+N3aRfrHW77xcK3xBdbKBaBcJ2UWp0IKveWwznk6751YrNxRXOU8xixh89stZ0X8aZe/v7+Ov/uqvUK/XMRqNsLq6irW1tbk0lUoFFy5cwHA4xKNHjxy/An6+ms1m6PV6qFaraDQaXruoLPCYBgXXa7UaHj9+7NJ0u13cvHkTvV4Ph4eHeOutt7C0tITf+Z3fwT/4B/8A3/72t3FwcADg2Odpt9vO/282m2g0Gq49bty4gX6/j/fffx/D4dDZw5pdJWOivE99E0rat/I5tymB+dNFUvKywicDiR+4T+6TYdZYAOXn20XN5bIv3hGaIJL3yVJ6S0zYx+8+GkNptVMhUhCz24rKD+vEJNfvfMEu0eDTRZJ+3p/a/INGUwyTyQS9Xg+1Wg2NRmNuZzldqTSZTHBwcHDCR5J2paSB3ltlm+Q57T1Hkf4ryleWskNXMMj8uE/T7XZx4cKFE/NadL0j9cmdO3fU+TKpf3z08n4EnpxM2Wq1UK/XsbOzg+FwiM997nNot9sAgNXVVbTbbXz00Uf48MMPXV7cvg3JOF7n82Q7+OQiT+vzV7QNB6G6eSdjQ8I5xLBlNyRVShu4pOhpJRel04J48rmP5pSJjJhwkMJUS2PJP9SmcmDlCRBYGDAl4Mq/54ZBlmVzxx2QAJnNZm6V8GAwwOHhoTtaTdJBsLRfSAlKmlMQMgwttGj9GlM2KTSGhGzMsJO0LSp47aNRGuEA3MIKyeepPC7rT881uRDjOVIy5MyUGZjLo5Dk+JewyDVrEEHWlQcw6e4vi9ItQkvou1jfpbSvHA9lBZiK0JJapvze97tIn6TQEwre+HT0omHRdZzfW60WlpeX0el05pwS7V4iX8BKy9dCn6QpT3uFxoNPnvl4X5OpPhvC4oBbna4YtLFmsV199oFlnEojnJxXeqfp4Bh/pCLUfkVkVehdjH6uZ3kATNPJqeVLe0CzIcpELP+yfKBUvUCLKPgEDi2q4G1t4QM5VstsR984KNJuvG40OdNut5FlGTqdjgtu87TyWx8vxvReWXqRf0O6hHaL7u3todVqYTAYuGCkJZhladO8/k9sfIbylUclkj2t9YH0p61+NecJmWY2m6Fer6PVarm7tmhBJi026na7ODg4mNt9oI0dn/6K8be0p+kbrV1pgSff4Z4CWX5RGRXzV8sog6Dxm2/Ss0jcI2YbpI7l1G9S7AxLPhwp8ZIibSifnaZ/Q3kU1SU8HwLp1Nls5iYUV1ZWsLq6CuD4tLd2u41Op4Nmszm3uMeXP3DSluB+fFFfKNQGGu/TxAvpTYqv9vt9dLtdHB4e4vDwEJVKBTs7O7h8+TJ6vZ5bfEj5kg6mydZ+v49KpYJGo+F2DFtiDZxWad/l7V+uQ0J+hxwLi/JJpUwO2ZMhH1CDz96R73keVpmVKis0ezJEUxntXlafhfR9TGZZ2pOP89Q8NB7OEyuQ7U1jWNsMJe8alot7+Xj1tZ3PX7PC0qacxpRvi6AM3cNB9JO9TFdXcTuV4uO0YMJ3fQLlR8802nmZ/DnFd6lPR6MRBoMB6vU6lpaWsLS0hM3NTezv76PT6bjFNjLPmM9SZtvlRaoM8tlA8vtY3XLvjC0bssLEWL1ez+ucPP3006jX63j//fcdc0jQ5caHh4fm1ZMxI8Zy/4cUUHmhGS4aU3N6yljBrzFi0bo0m01cunTJCfONjQ1cuHABOzs72N/fBwAXTNLoIeFjoSmk7BcZQPMhppRDDozFcC3L0c6ybG7lDT8KnMo6bVy8eBHXrl3DrVu3sLOz4wx6grzLTUOr1VJXoRNSlej6+jo6nQ62trac3MmyzB23nQpNYabgtJVYpVJxd0ocHBy4QBqN3xQ+KYunLG1gCdZROp8TE8rTB8udP3nyDZVHhrNciCSPrKRgY9Hgbl6jmueZuhK8aP9YAh58RWi/38doNMJnPvMZPPPMM+h0Orh//z52d3fdJK00xLgtQDpM0kXHu7TbbWdY06kgPvpozNF7yWOarOPBEl8anpZ+E59EDcr///QCqp/F5ioaVJVHyVmgyYFQMITnLe8NTHUqSU/II314P54VqF6pMpxDc855202nU4zH41z3iGuTF/J3mQ4xnZ4hx1bZEw55kWUZms0msizDhx9+iOl0ihdffBG1Wg3PPPOMu+tN7tT3+VSyryitVc6mtkdo3J6XNi4C7Ug3H4i3qd3b7TZ6vR6++93vOj4E4I57HI1GSTKvCHg/0cQgn/gv2y6Q3xedmIiBTrfIsgztdht7e3t4/fXXsbKygk6ng6OjI3dMND8iOgTa9S+v6+Df0qRF6OoVHzhPxcZeUR7RxmKZfcLtpBC4rs27IzYVVKa86sp36lkIfCFFKFD9SYJVjpelt7Xge5F8Z7OZu4pnOp3i/v37+L3f+z187nOfwz/+x/8YGxsbeO655/DZz34We3t7zl54+PChiVZpz1Dck/OWRX9YQX4h/eb3QNZqNbz00kvuTkK6O5tjOp3iv/7X/+oWs5A9N51OcXh4iEajgVarhaOjI7czuFar4fnnn3d3YxNoHBepq+Sv0Pe+Y+ZDJ7SEypPj33f9isUGkDRofGvhY9IvsfvHufwm+oiGFLlqiafy+lv6NhTjLUvvhGLEeWQx1U/uBNVsBcknVn88Jktj7RyyszVMJhM36ab5a5pP5KMp9f5arayQ78d1M39+XiDpJB7gk9v8vcR0OsX29jZms5lbZJtlGS5evIgrV66o31BaOkVEe689o1PP+A+d/ra2toZ+v49vf/vbuHjxIr72ta+h0+ngmWeeQaPRwOrqKt555x08ePDAlU0+KuehPKdZLhqpvCPtYf6Mj2VL/HdudFmMpVTCYml9lee7XAm0sorS03GlMgBJwUy+2jZGb+hZDLKuKcaBLw+NJilsUmiLCeaUNuL5aYqS+k0LYHFFT0dDkUPa7/dPHI8Y4imLIxQylKx5+PLj8PVJyKhILcOabx5lJw3LGM+mBOhkOTwwqAWj6X4syr9araLb7Z5YaePLPxRo5N/Sap/ZbH5Hm+S56XSKer2OlZUVFwSr1+vqQokUg4O3YSyYVVYwRUNqIC3khKQayr78Q/Iqb/6p40LjNdkX1oBK3rLzGq6xtirCT6dp5IaMozzyR76LjQvqb9JbV65ccceS0TFcZOSSwcvlio8OyeOcFkufS90d0o0WW8xnj1lsBOnQy/rIdFr+1kBdWQEpCYv9Y+EV+psmHdvtNtrtNur1OobDIR4/fqwu1PP1vWxTa3tpNFt40NLGMrAU4ouY8+9zBvmRpZZxYaHHB41PrTqxDN1cBNx24fexkeObSttp6AWLTNHehfhpNps5n498iuFwiHq97u7PpTy1Y+4oD58+L4pUm4XGGL9bFIC7x4+nK1KW9k2KT6XlY6GJ0kwmE7eQmiYtqR9SFxVb/CDJe75gCl13RDuRaeLNZzNoMs3iW1Janr8Gy+KYkCwqKqfy8Jkmj0N15Hzva09LuUUQaycfj2m+QSjf06iLFXn1phVlxj1C8NUjb7tLW5b34Wg0ws7ODn7yk59gc3MTtVoNzz77LA4PD3Hr1i3s7e2h3+87+QE8mYiP+WQyzSL7hQLtvDyKvZJfQycGkA4FgF6vN3eVGB0XTpOy5APJOw9JT5Ntwq9e0cY+h9a/vnYK+ezat5bnsu18z612qqWcMuIgso2070NtK30OK92+71J8l5R+yytTU/3KPLpUtquvzFDdtHJj8ZFYH8fKJl+MFkwAmDslhI97LQ+t3vx5qE4yj1Q/zZfGYicWQSiG4ksfspH43yQr+QK/wWDgroWbzWbutNFerxc8mSFmH0vZyXXfdDp1Jx7cu3cPy8vLboPSxYsXsb297a79yLLjUxbolJ+Y/y/p8GHR/RiDlKshXrPEJ9Sl6XkqmddgoLz5ZMlsNpu7w5Fw4cIFtwJgOp3igw8+ONG59Xr9xP0NGiyOnu8uA43B5bMyDCgtD9/gijkCPqTU0RKooG+Hw6G6+odWGFLZNGBnsxkePnzo+l0KJ3mPk+QXCzT6YwZgqK4fF/iCDgTr/aYyTyt4edVq1S2oAPSd0K1WCz/3cz/n6Lp//z7eeeedE3SH7o7gBi/vZw66mJyv/tHyGY1GuHjxIl555RXs7u5iZ2fnRL2A4zahyRjLbt3TclLLBjlg9He1WnVHJGqLX1KcHs14K8tJJ8TuqLHml1fuLBpcpvkWoJSJPPU7bzytgfPeaDRCv9/Hb/3Wb+HLX/7ynO4iVCoVtNtt9Pv94J1uJLfynmDBx58VsQABv7fI6kTw4LQc96GV1Sm0cwewyLhLCcjJgAX/ofe+OnB+GQ6H2NzcxLVr19DpdNDtdvEnf/InGI1GczrQB9mmIR3uA6fbJ2/zyqeUQIk1Lx64a7VabndgWfc5Eo2aQ2ixb88LeB1+Wu6yDfk3s9nM3WlEtsjBwQGWlpZw+fJl53dQ4JgmbClPkld8l70s97T1+KJhCY6m1j3WRzJdv993O01pp2+ekw5SaKPfNHlfpAxNfvJdZpa8ZXCN2gCAmwj2nRiVQudZIWXcUJ/LXainRX8suM3TEFLuvrPaVmeF80rXeUG1WkW9Xsf6+joePnyI//Sf/hNarRa+9rWv4dd+7dfw1a9+Ff/+3/977OzsuHjW0tKSa1daMBWCJVBeBmiskQwkufPo0SM0Gg1cvXrVTTq3221cuHABwDEf7+7uukVClUoFq6urGI1G2N/fdzETTV6Rj8SPQKY7Z1PrKnXKIhGiJ1U+cb+J01+GHeeb3Ir5m3KBqI//pF+0aPAJIW1iY9EoYvtZdIlMmzK5GoI2qcbzsNq3FBPgsaQsy9zphLRBZXd316UNxVI5H2q+faxOMl3ou9O0G1LKl89oIV7o1Ea5i5aDrnWkvK9evYpGo4H3339fPS2W0xFrP96f9Xod9Xod3W7XyfZut4tvfetbePbZZ/FLv/RLWF9fx9raGqrVKq5evTqX39HREd5+++1TOc2kbPjGiGbT+cZwLH5zYjJWG8QpAsCSVgoH/ps6/+LFiycEf6fTmdt5JgMSfJcK0UK7Z+XxFLKu9L/2jAtKrT18k3xWyDuAOH2xfLiy0uqkQabNE1RLqWOWZXP3ftbrdXevxmx2vIJjMBioq399bRFy+imtbwCltK/2Hc+zjIkIX9CY/1+G8RMan7LN+NGmRcrNsid3j0wmE6dM+OrJyWSClZUVVKtVTCYTp+jl/YsUPCHnIbZa3DcuqY7abllZ90ajgc3NTayvr88d49dqtdxxbQDcbvzzhjKMSS1PUtS8H8uAHAtyjNL41sZMTNnJOvjy89EUao/Qs/MUxJV6l/ROnuNCtAmNFPicRu39WU2UyHL4saXT6RQbGxtuhaDlex/IdplMJi5AzfV6ipzzvY/JQ06vfMedOOnYcfAd8iFY28XqpGn/+74N6Vv5jAdOYtCOwecBL3pH9xMC87slQmVodYoFq6XtaoEvCGN5nmIr8LtvisJi+5YpL7R6l12GD5p+nE6naDabeO6559But/HOO+/g8PAQjx8/xmAwmDv+Tusji54968CGDz6dEdIlvnw4Unwb+b3mQ6f6g2TfApjbkcTvhsqTf6o96Bv7pAf5UdbWYLKkQYsHpNKY932lUsHm5iZ6vR52dnbm2pOub6CJUN91Lb424rEJLuNTZJ5mI2VZ5myQsnCa45vbEhodPJ32Lq8vk7d+PKYA+O+rtZQV8zeK+GsWxHyds4TWbin27yL4N+Rnkg/85ptv4g/+4A/w7LPPuo0gdO8qyQ/aDarBN8bpx1o/yachaEdsczm3vr6Ol156Cffv38dbb72F8XiMbreLRqOBWq02d6y61m9cH8j45NLSklvcSrTwb0J97rNV+HufLJYxHk0OhexsLZ2Wf9ExbJEPGg2SlhgdKXLIZ+dY6rgIeaOVXWY5efVFqE98aX22qsbjFvvI13f0LCZTrPEw/nej0Zi7NsBaNy2WkNKGZSDPeE3RoyH5EfLnffYRyUn6ezqdYjQazR0nzBfKkN/HJ1ZT6dc2wtHc2tHREXZ3d+eO5a/X67h48SIODg7c4iP6hi9Gslz56aPJZyvwNHnh8ylT4JPVPhvQe0xxngayQlaUO3F0fwrdB0vpY6vJKpUKVlZWTjDxYDDAYDCYe+4b7L4jjanhZJukBDZ8yLIn5/Tz/GK0kKHH87bu9rUomZiiTnH+q9WqM06z7HhVzfr6ukuzt7c3t2PWl0+sfrGACEELmMb66JMO6if6W06w5XWAq9UqlpaWMJsdr5Yk3qXjyWhcr62tod1uA9DvSQYwt9gCsB3dJcEnTGkyVeZBdALA8vIyXn755RPjZnl5Ge12G7dv30aWZe6uyI8jrIYnT0cyeRE6gstAgqbMOLhszxO0iQXUYt/GvvHlb3GuLPDpCs3YkX8X2XVWtP/P65jx1YsmYWky6fr163MTtBwWnUVotVpYXl7G3t7eidWMFt5MdQwIsWscJP0xJy22KMMSUKJ03O6KIWbb8fylfCk6Bsk54kehhkB3gtVqNTSbTXXXbygPS7/HvrfKrFg5/H3K5ADZ5GXrD+KbsiZ6tfyBxQUGLKCyyU4aj8dot9v48pe/jIcPH+LP/uzP5myj2J3g0mfhY0TqUzlWzrIdzpqGkNwkaLaI1oZcfpFNOhqNUK1W0Wq1XHp+dDfpoUX3i2Z7yfuFebqyyuZ8GPPP8ta5Wq3i+vXr6PV6eO+991yAKcsytzhKs4/kbgZN/0tdxndf0/MUcL3FYwaEsu3HVFj9iFCQiuej9Wle3tL0XUqdScfHvueBNp9NHqOR67BFYBHjtAz+OU1fIMW2ieEv/uIv8Bd/8Rf4R//oH+HVV191i8vJ9+r3++qdiyGfME9bWL/hAX3+TbfbdXpndXUVX/3qV/GTn/wE/+t//S8Mh0MMh0Osrq6iVquh1WrNyTNtITrXZVQn2kVLR8BrdmNoUbsWx5U2s4+/ZfyCyxtfTFDa2la7PPYuJNvKGJ+8zaVPZvExtLZNiWtY802Bhe4yUUb8SOZTxFbh3wPh06esyKOzOWjstlot0+kdIR6S7eKL8521z0Gw0JIy1iynq/ITUyjeQr5drVZDpVJxu5QBuIWbFK/lpyBoddDolXF2vrlqMpng4OAAjx49ws2bN913zz77LK5evYoPPvjAxfhpYRL9X6vV3CR+ap+ehgwIxZnz8KBsa5n3iclYrhzzBKIlQgpHEyyXL19Gq9Wa20FHjbK5uYnNzU386Ec/wr179+bu0pH08PtIfYE67txY7paVTGsxpHg6WlVGgVyCZEaiWd4/ydP4HDpJK/9Gc6BDdfEh1Oe8Lll2vCtSCoButzsXcOZHOuZx7jXHhX+r1Zm/DwWpOPIOQImUfCzBiFCZUuhqhoHPOU6FDOLROOZCiFaI0tiUgah6ve52o+7u7uKDDz6Ym6iP8QTRwAOR/M4nrY58XGhGAYGOTtzY2MDu7i7u3buHXq93grbTdCol8vCsld6YQZGiqCSv8Oe+fH358DxiAYwUJyMGTbFqhk2MllgaTmMsKGl5R0acxZgsSzbwsrUyfJMnVuPbyueyPlJ3SJlIMokC3xyDwQDf+c53sLW15QLnRIsMUIT6L8syDIdDHB4enlh05qu/zE+zs0KOkW/Bi8UG4jpeBih9efj0r6TZAktevjytY0R+GzKiOSh4v7a2huXlZdRqNQwGA1y6dAm1Wg0XLlzA/v6+ejRbKl15g6CavNXKSMlbCzLEZHeINnIuaZHTeDzG/v6+u6+oqJ3Cd4ak2P3nAbL/KpUKer0e/uZv/ga9Xs/kp1A+/EeTJSG+D+V7miDa6X5VkunvvPMO1tbWsLm5ubBygZNjRdq09Ey+13wT7o+QjCbdwvWJtgtB0hOSfVa9ugjwehMdNBGQJzCTUi7g94M1kB8ux5HcwSXHjjVv+h2Lk2ggGkI2b0iO59UfPqTqC+1ZHn83D0Iy31qPkA/K62KVm1wnaXI71I+h9yk0aN+U4cek4jR1r+wrCmDzmAF/T3ffjcdj786eer3urjV69913TWXzZxwx30HCZx9q+U6nUzQaDVQqFXciD8dTTz2Ff/JP/gmOjo5wcHCAe/fuYXt7ey4/OumFfB5Nrs1mx9eQkS9FVzlp/o6vrhqkX0LyWqbh99VqsModq8zUfEutPEvecnzLOvMy5QJ2Los0W87S3txe5gtYU3V1yF6KQYvXxPohD22xb3n9tXFb1IfVbAktDadFpvXZ7D65YJEr8voOit/yk0hpcTHxPo/v8jK0eAuny9e/eXVCLD/5f8oiKGufSxosckaLWctxwOtAMSo+31KpVNyJpIB+tZ/P/qS85cmt4/EYWTZ/Jd/R0RFu3ryJ9fV1bGxsYGdnB71ez91bm2WZO73p4OAA9+/fn9vRW6vV5uRJih3tQ1k+jtZ3Mm+NXp8N76NrbjI2ryEcYzDfYOfChJTKxYsXsbS0BODJLhTCxYsX8cILL+AHP/jB3JZojYbxeDx3jralDr5G4qtefY4uz0MTrMDxZCxdrsxXlUkm5D8Eq7MWEsqhfrKu1g0ZC/Q31Y12i8hJ5cFgMDeJRRNmPP+iBn7MmQ3xuKVs3/cxhykEzXCWyjm1XUL9zoMSWpq8So/QbDbdalAu2OmIGy2YVK/X3f0kh4eHuH//frAMjQaehh8P5FtkQg6Y7x3Pu9lsotFo4M6dO462RTijIVj4oEigJSTfKG/tXYph4nNGZFkheigfiyEt+1GrS8hxDeUdQ1GDQLZtLD/fWObGZui+ZV9+Rfg8pL+4oXca0IxwTh+3S/gdgxLD4RB/8zd/g0ePHgHAid0qWp19/DYcDoM7lEP9r40DXpa2O9fnyPnGAC9bBgB8NITq4vtepvPRlgpOm4+fY06sBZPJBIPBAMvLy3jmmWcAHDuu7XYbrVYLa2trmE6nboGRtU5yTKc4gLF6ae2Ql64Q/6T032w2c/fLV6tVdx+ZbxdGSr4a/ZZvrPQX0b0xaG2aZRkGgwHeeOMN12Y8TczWtfoPFtry2IxltBXZk+T4T6dT3Lx5ExsbG9jY2JhrqzJo05xxbSz4bCbpR8qgCtmkFOwAcGIylq90j8EX1NFoi9Vd5hvy+7l/4Rt7s9nMLciV/oilTlp+IfgmY0PPpM7ji8V5fS3Q2tanu31yn2iQtpPMO9SOVtlXxI/gNKem9Roj6boAAOnXSURBVI3ZmH2fF2XKh1i7hfyZvPrNV6aUTWfhrwJ6APm8gGijwDA/9UnqwdnsePEIMH8MJB+39XodL7zwAh4/foz3339/7vsYHUVh0Uv8PS2A5/e8kly5fPkyvv71r+Px48e4f/8+vv3tb2N7e3vO3ufym8d7JB10DDzprXa7HT3x0Fc/TV5qdy9abVufjArFHmT+VrmrIcXW4nzp86slrOM/JkN4+4ZOn0nVO0VjJIvMT/artNVSIXmH2lSLHfh0n7ST+FxJzLbwIWa/8zFPC1FqtZqjg1/FI+UhL1vGJjR/PDTmFo1QOxSVzzHbxfdes4/4WOQyULaptinAQoOMmVC7EJ81Gg3nn/R6Pdy5cwdZlmFjYwN7e3vY29tztFSrVTQaDTzzzDN4+PAhHjx44HiWfPxFnGaVYoPmzZsjZOvwNtTomZuMTV0RkBfU8Hxn6+XLl7G8vDwXSFhZWcFzzz3nGG5lZUXNj3Zf8vwsW/iJmTmzawb5eDxW73PlDaqt1qeVIgQ6nk62szyPm9/HANidD62TNWFuYUyfwxjLzydEaTcwVxq0I1kGhlMuspflp3zro7dspDijRdOkgBtXXGjxPiraPlmWubuBK5UKhsMhtre33cTDhQsXsLS0hM3NTXQ6Haytrc1N4HMQD8nJfQvq9br7jt/L6EOr1cLP//zPY2VlBevr6xgMBupuJn6/LTkamjIrE6fFKzHnWcqDPLzC5agvGKI5xZoxl4KifB0yakIKN4XW1OCQNb/TCobkMYQsDm0e+lODbGQ8jsdj7O3tnZAVfGdStVp1uyBj+cbey7Fg1dWELDt5LBV/x523VF6QxrLF4U7pe00OpPJAKFCRkg/RYLGJQ7Lo+vXrWF1dRavVmluAxssoEsTR6OY0lY0y5Afn0ZQgVAyW8WVJl4qUsXpWkHyhBXP4+6LlFE2fYjvJOlC99vb2MBqN8NZbb2E0GuHGjRs4ODjA/v6+d1ehXHRLf5NO4LpdLiaktBzyfiZL+5INeZq6muCri3zOA9+LOhKc86pv8Vje9qHJgX6/j5WVFdRqNbzyyis4OjrCw4cPMRqNMBgMTvinVpp54JJf/8KfW0H88OjRI+zu7mIymbgJIwnOs2X5AGWgqI9+HmRrKg2WPpB6I+Q7xGCxlWL0aJMAZeq2UPmL8pfzgHx6ioVIm5pPntAC7e9///t4//338Qu/8Au4fPmy20HKv0mdvDkN22IwGGA0Grl67O/v49GjR/gP/+E/4MUXX8TXv/51l7bX62F3d9fJfzqOmXQpTdJIee2rAx3DL3ci++xYjUf4ohTpQ8nvNb8nNm4sNPggJ0tCkLRLfuG6w1K+r8xYPnIShp4R+Mkd2jU2cqyUNaZPUzZY21fanLE8NfnK/7feoRniwVjMTpafR7bQWOMnXNL1CVrZvrgY33GrjcmQzVdEJlpiF4RYOSlxmlB8Mw+0+CnnS0DfDWu1pUNzO2R/8jkuGQPzyXSeFy0CorvIZfllHMedB2XIG6qrxeZVd8b64BMgPoHvy4MYhjfy0tISNjY25gJa7XYb165dc84M7XaVq1RpZyXfYWoxekjh+epF9fAdxxBT6BTQJfR6vTkHijpK5s1XMvhW3uYd1KmGfqiOoYEqn9OEduhYDSstvnI1hRiqax7nKhV527pM4zvEu7LNNKM2NX+eJwUjKL9+vz8XlKYJ2KWlJbTbbaysrKBarbpdDtwg1QJloTpy8KCKXAjC86B86vU6nnnmGbdLHwAODw/nzugHjpUPKSCpBM/SsSzCPzE5UxY0uRsyMLX/Q/JjUbSH+F1zQGPGmiWIIstPaSueX2og7CwQCgQV6VOrsU+go1MoKEuLpPiiIuoLOk7V6rj7nDItkOCzryxtIWW7DA7EgmPy/1S5Yg3+yW+s/exrW9l2MedLG9Nl6ODl5WWsr6+7QJU87cUaKA0FtorKOc4HRXjNAp9DxmWl7ztr+1j63AqZbyofnSZS5QEhL82naRvE0nJ+Ip+Ojk58+PAhms0m1tbWXOC5Xq87uxQIL97lspIf2SVtkJAsS+ENnjf5t5yOEJ3asyL9JG0NosEahMzDWz5/3CcjYm3rkwe9Xs8tzGy327h06RKazSZ2d3edrE7pN5k2pFNS2oX4gWIH7Xb7xPUvMVr4cws02mN5FelraffIfrbEPhYhj2I+uUUPa2l4va3tWKZes8BiIy+ivKIoo524zNbkN28b2nRx//593L59G5///OfdfdN0pCPPM49taxmPWjr+zPcNLSxtNpsuTkLXHkwmE/zmb/6m00Pk//AFQ/KaJ81mCvlG5GdZoMX7KG8et5I6I6U9+LvQWAz5bjIfjf5Y/eh7H/2xfKxlheSp1Ln8G42ftRivRYemyBotbepYL0KTpsM1OykG2f70vW9xm0/++PL2pSnDXyTw+YxarTZ3R7QGS4xE0l2GDZn3O6tNHbLtpBxPscFiNp7vO423uM0eqpfGN1p6so/5BGyWzR9fzk+c5HnwY4kpJsJPSOU0n9VkrIRs0xS+tKQNb+UoCF8H8t1jHJVKBS+88AKWlpbQaDTmdrMBwPe//328/vrr2NnZCZbJj8nl5XKQYcEhFctoNDIJbKmMarUalpaWXPmj0QjD4dDlReeq7+/vz9Gq0WSBVfFamNqnoLkDTpBChh+vRfn47vXVVtCkGKqawxYzUGOO1Vmg7EAGQVuxRpB3+FrKjSkR/s3a2trcfbGho2hWVlZw8eLFOYF+eHiIt99+G91uFxsbG+j3+3P3ChOkUOT8ScE2Opee8z5XSvy+aLpcXFvI0Wg0cOHCBbz77rt49913T9BjNb5Oy5FeNIrWIyXIFULI6ORlAbaj2C3OA733rQKUq9KItrz1lYGqMhEz+PIENmJprXJYOtRljR3SP/J+8xCef/55vPLKK+h0Orh16xZWV1dPpBmPx+h2u8Fdp74go2+FqAbipdCucFpxTu8Hg8FcAEUDyUMCLTwJHZvH9XAR22XR+thXb/mMn57A2yMvfbu7u+j3+7h79y729/dx+/ZtDAaDXIY8b2eaFCo6Los4vFr+eeWF7ySMbreLTqeDRqOBlZUVDAaDuSNNy6RdBhM5b2pBwPNiQwLHNNHCz/OyICyET5IttEiQrppOp+j3+3M8n7qwiutTyqNMhAKIvncp1yUA+kRtXr+ObP333nsPS0tLePbZZ71ppR4oupPcYoNSOVbdGttVkzre8shyC/jJWJbyU3AacrlocNs6/s6bjvmkgvcH2bw0sSARC2iPx2N84xvfQKPRcPEEkuHAE7tcxiQIvliVNhFTJijPSqWC9fV1jEYj7O3tOdv10qVL+NKXvoR6vY4XX3wR//t//2989NFHrk4bGxvuuEop87mPwE+K6PV6qNVqcxtWtDpb6huybXlMssgpDhZ9K+nW7q+1xoq0kzckJI/G/DtKkweWmCtdTWfZpeyj0TchptVN842syOuv0rd8Rzjnb0qnxRGtelzOKWiQ8Sx51KvVxpb9mbJ7n7cHyc56ve52OdIVM7zv5bwMbyt5xO6irq8qIlt831rpTfF9pK2UZwxLOVLUZuW26Ww2c/e+VqtV7Ozs4PDw0J1i+fzzz2N5eXnOjl1dXcXnP/95bG1t4c6dOy5/WijL41Z5cd78S8kzmi6JTsbmNeB9z6WQarVaaLVabmfc8vIylpeX0Wq1HMGDwQDdbhdbW1u4e/fuHG2cwfiPxdkJBecon1RhQJM7cmKV6i+FtU9IWRBydMtiRJ53aBDLdg8NfF/7h4wImY/POA0ZrVZjQCJP4HRRRkGKQNXS8mCuhAxEptDI612v193RBdzBod8AnLKmo3H4EReTycQtVKD7GmPjWaOXH6Gm7W7nBhXw5N6FTqeDpaUl9x2NaTq2lB9XHGozjc6PIyQfxcZVrJ4pQQZLoC3VuLA4LFa6Ynx5mpD9E2uXIk5ZXoScLXrPf8vnRWlIyYeP7U6ng0uXLqFSqWA0GuHw8NBNqpHMopXwWjmx8i3BBy3IId+TTKtWq957sK0IBXY15OV3TT/lydfC76FAQsqzECgoTovwsux44R0FtyhA55ODoQCGZmNZsAhZpMnRspwobj9TMI0fzWlxtooE80N6PY+NdxqIHeXqaw/Ji6n6PARfP1l0VNH2pe/p6MThcOgWWRTNNxT4yztGQ+C+qDXvEC+chjyw8hGnif8dko3atzH7VOoZsu+Pjo4wnU7R7XbdbuqQH6nRQvmF6IiBj4mQjZy6Y1fSexZyyyKDtPd57I88bROCxS4rQ+/xMix+T1Gk2g+LosNaPkfMbioCi90r42I8Tvjo0SP3d5ZlbvNF2eOvLFuL/z+bzdykDgC3CGg2m6HRaODq1auYTqf4zne+M3edGh0vyY929tEr79nV6IrJCR98sYrQd1q/lMHrPt/OmrdVrvjsq6J1sI4B6VNxG9pCU4zWkG0q6fHFPPMgZL9IXZNi61h0oNUWkOk53dwm8dGlydUivCN5XV7TIcvNsvwTrprNxfOW/8f6yOL7Sz608FZZcj9kQ1n6LNVO0fjRly+VPRwOMRwO3WRsr9ebu6aDYlMrKys4OjqaW5hE9rhmR6fyo5UHQgj5E6H4je/bWDsuZGesj0Bth9yrr76KV1991W1RlmdGA8B7772Hb3zjG3PnkwNwx2rQgO73+yfysBhWmmNtZQCef6VSccescvBVdrPZDAcHB45ZLfnGyl8kLIqG3yEQgu/+nRBj+5jXsqK66AD+uCEWBPIJA+pj33Hclu99x2kDx/zf7/fx8OFDl+6pp57Cpz71KWfQr6+vu0nZUJ9bFiyQPKB7aSWtMi1HvV7HV77yFWxsbDgl0W63vWXRJHOs7Xj5Hxc+k3JxUbJGrvri5Uuk7GZMeZ9HWUuQE8vvSSgCaYxI/WmRl/xuN9mXi1p1qNFn6QtNDxflOXnsSYgWGWDhi0cIKysraDab+PM//3PcuXPHHWF8eHjorW9MpvoCElpwMWSIj8dj1Go1rK2tAXhyHHtoJyaVIxel+FbtyzayOqEWEA18FXsKUgIAPvDxYqWBtz/dH3x0dISPPvoIS0tLc3eqAMdyot1uYzabqSeH8Prkac8y+6Rsma85s5zvxuMxWq0WVlZWsLS05BZlpgSwQs+4rVmWjP646HMfaFHcYDBw/FhWvU6zbWRZdHXNgwcPXL9XKhU0m00n42L0cZlCtker1Zr7PxZI5Dy+aH8tBbHAYEhnhE67yUMHP4pZ7jixnGhihRa4pJN3vvvd77pgUZ76SX3Nj+/Uyo7lRW3AA5qkM0hPnhXovkDNRgqBt1HRUycWBdnewHzfafaJZrtqsAQ2Y7GoT4LO0XDW9QrtLKc+167ZGo1GbvdXvV5XT/6bTqduoYd1tzvRwmVSkbESa19+8oIc01tbW3j8+DE+9alP4ctf/jL+6q/+Cnt7e96xH6OTX/vCTwcM6VPuG/AfkiPye20c8e9TYd3Rz5FyxCaX+T7wq7boG5kHxcno5AfNH4hNJlhAfEzx9lg8Qk6yhNL56mahKYYUGZPS53xXPfAkHh6zX8r0RWJ+vqUcyRt5eYTb3IDeN5qcBDB3kkDID8/DI1rZRfxs/m2ormVC8ycs41njNf7MGlsFTo4J2rhEMmE2m+HmzZsnaNzY2MCLL76IS5cuYWNjAzdv3sSDBw9cGrlLmo78Py/HFQP5x2woNjw3GZviKBBBnLgULC0tYX19HZubm1hZWXlC0P8/KcuPgByPx9jf358rnyteGqxc2ISEvqYg5LM8AogYh0+8ksPP24wHO6XA8tGttbUlGF8ElnYIDV7JsEUDi6EgozX4LRFzjM4ClnJ9wpj/1r4pu76cR+j+VDIo5VjUJtJowpP+39/fx8HBgRsn4/F4zgmR9fYZmin1orKIX+v1Our1ulv8MZsdX1S/v7+Po6OjE+XkkReLcDwXkWeRIKKvHxYtt3yyyJrWB4v8CY2xlLK0tFbnyTImfGlDNMi0eXlCGn8+g7qIE2AxtLnTweULObP8Wb/fx/b2trtvcGdnB/v7+3MryGW+VloJWuAvBTI4wU8FIHuKDFyfYcvbw9cPRZ14mac2dnjbL0JuhBb98LxT6kltT/qPAnSz2ZO70ssKhFghbYKYHVm2/tAQqjfxHY1BHrAfj8cn7OYiMiIlrRwTMp/T6s8YNNmnjSXtO58+8+E81DcEGodc1tGJLDJd6H8Oa/CD+5UWOcNt5uXl5bnj0mmCPKbD84zdGE9o9QlBoyUUIJd0SB4swmPWb4m+0WiEarWKZrN5Qk6m+pcp9hvlb9VvlE4G/MoYj1a7yfc8T0xIKzOPTiprEaSEZpdpYyFkt0oZnGofWtqjiBzQytSel8VjvvHhe3YWuialPTl9NBlD/Mhjk5ostNaxzPbn5fLnUrb0+33cunULa2truHDhArIsQ6vVmotzUpyGxzpDfK6VG5L7IXr590X53jfGpA2VN++Qraj5wxadGbLZuF2h1ctHSxFofF5G/nnlQOrY9ZUVkr/kr/Dd3lq/xOgPxVesdpd8ltq/kg8t9Mr2ms1mbhEZcPKqLtk20sfPM97KGJdafjF7JlVHxMa2j899NpKPd610hPK38G1MlmubDnu9Hvb29lw6GYviixcWYc+dJkKxM1m3UnbGakwRw3PPPYe///f//tzqzizLsLKycsJZlncKNBoNVKtVDAaDuVVV2t0DHFk2f9kwPZPw3ecQQ5ZlaLfbrozRaIRer3cinWwruXPCgkUbp74+DQkAKVRjSHVwrSjbwFgEQg5VEdrlaml5f6W2U8wKTfDyFeSrq6tYXV3FeDzGaDQ6cSE3x+HhIR4+fOjo2tzcxGw2wxtvvIFer+dWku7v77v2iK1OI6Mo5qxK0NEKlMfh4eEJOXH//n389V//tZMLdC9CKjRFd9YIOSEp3+ZBTOGSYUd/U3kpbW89di4FvB9DfFmWHOLlpNxFIndn5Ck3D0L1TuWxFOS5R4/LF75im95Xq1Xcv39/7nhyuhdDy4+3d0yeU5m+3aha3imgfBuNhrOPaExZgj/SmY8hJdAoy9F2H2j5c4RWHfuC23yiz3qigZUeDdPpFPfu3cPu7u7cYqUiwXSfU2fpU05XLE0KQnaXdLpTQPxKR4NzO38Rth7lyXdJ812QPgf6LBGyeTR5VPTOy5+hPNAuQzrS68UXX0S73UalUsGjR4/w1ltvubv1aIV4mTwXGkMWea75cTyopk1AlAVLIDUPUnR4HhTNk/teRGco6J4HtVptTlYsCtrklFWu836iwB8tPCs7mEd9pgWZYz7Mz/AE50FfcoQC7nxRTAjEr1mWYWlpCbVaDYPBwN2jKk/sS5lk8MnPPDI19A1/R/b43bt38V/+y3/BL/7iL+I3fuM3TnxD8SY6GYhfLyFtXBnHiflFPhlJ9NFORDkeZV+FbLZUGZMXWvmxCY5QmRY/l+wKfmcnbXTiNOTxHXzvq9Wqu1oMOBl74eXmLacoQj5TLC7LYzDcl+Tp+Lu8NPHneXhV2vd8TBJtqTH6EA28HNpA02w23fUy0g7kdatWq3N+OD89IE+MddGQsinVB88DyX/8GS9bQ+p4KuLj8viNT37v7e3hzTffnPuGYzgcuhOMFtmmZ4GQrRjldO1jyYS+hiKjWJsdJ+NkNBrh/2vvT34kS5L7cNxexh6RkUtV1tLV23T3TPeoySGH0FASFx34BXTQRbrpqP9Bf5UOEnQQIUCASBEEKIrCcJkeDme6p5fptfaqXGJf3++QP/OysDRzN/f3XmRWd36AQkVG+HO3525um7ubT6dTl/6PnogdDAbw6aefwv3792F/f9+1g7uw6HFm3wXHPsOcfh8b2KHM1uv1vGlW8/x85y2mjqDt83K+9rQyMRPO976hv33Q6CtLuVoDrhYhVYXC1/grZHSl1h0qK40DN+a5sV80QCAFy/Eupjw/T+PT6XSg2WxCnufQ7/c3NjDgXYfSxe/U0KG0Ss48fxfJybKcjgIAZ1xIqctC89VSPze4qgiGx9aDtFAaKWJkkI//JeeSP0vHWRqzWIVdlnPG67AscIXqpTRKOsxHq2X8q1pYsxqDvjqLOr2WZ32BAHweg91oWKJzQ++rLDrWEixOOP5O5wTXd81m0zkyfMGYpn7EsYhxGqkDv40gZEg3cRp8c8Nnm2F/oOMYmkshpxQdkkePHrm7YiV5yuV+EUfIB8tc5nLN4niXNcY0AIhXjuD1HmVtdrG82zZRVv/56i3KOz5bPoV+3xzG+UnvndPaD/Eg/Y7fWUTngtWnoN/Tk06+PqB8HQO0f7WgWdExjRk3zZ+2wGIbh2w+axsxfaL5RVwXWuQlp9fSt/icJV1p6ljH6K5Q+/zdtPTRKbJMs2F530p+gnV8rM/R+c0zo/jkUKwvYfG5y5LfGiTe5e1JNkqRtooghQbNxrLAmkpYAj6HMQ2agl2LWXCa+W/aWEi85+Mr/oxP/+HmyMViAU+ePIEPP/wQdnd3odfrwb1792A8HsPnn3/uFmKpTOCn4ULQ/DH6ntpY+O7Qlvoz1tcP0a3RyO192r5lbFJpC8kOn48kfe8rk+fnm4J4PG1nZwfq9fqGz8zlXsy7SbI4xoYJvVNsnVhWy8YQku8heulzXB/SMrS9GLpD9Uh+qVZe+41uigjJL9yoQmO+VJ5QWzrW5wuVl2REGbZMEYT8CixTlX0QshGt74p2FP6PPCHFIWnWNi5XkIaifVyGHUG/T61PepfgYmxI0PiAi5Pz+VwNAo/HYxgMBnB4eLiRrhjg/J6C//Jf/gt0u1145ZVX3Pf379+H8Xjs6KMnWTidCC0Qp91XaAW+18HBgbtLSMNkMhFPyiJCxgRtL9VIREj9QScL/u2blDGBjLKEhmTwcKNHcuAuE3zibZMu7txyWE5kWUEXLBDL5RKePn3q2uh0OnD37l33+507d+Do6AgAznfEtNttR6t0RyYf2xRDn+9S1YCyAS8kl+Bb3PKNMzfOLc9cBqrcFe9zXvh3OO542pqfCvDB4lzE0GyRnbGQ6OBpvaX0itRIDcGqt/kzRXnSEgwpalhanw85xBh8oI5ADA1Fob2Hr26+Ma3X6znjd7FYbFzxgBvZuJ6PuX8u1ijWAi2W53wLMlqdkvGM81Z7HlPhSymqre9Ky+HmnV/96lewXC432veBy5YizkdsYCeWf0NBn1B79N3o/VPr9RrOzs4cTZ1OJ8rWtLRddK5eJfvyMpHiIGvlMYDXaDSczcXLSgEuyY6iug43p2TZi7TFfD5y3egLOvF0jFQPc/qovVBmsKYopMBWKLjrK5MCastTeuhGIWlsNfpiaJPGp6w7WH2BK2yHnhrzlY/N9EHbKYPfpPm3Wq2cP0TTlWK70nNSvSHfCQNzvjp8Y56iR7XgurU/uc0RsiF9Ps+3Ub9cpt6MaRfnJz/5xuHjCdxMBrCZbh6fQ3vTZ9uEaK6iP7Hter3u+uHLL7+Ep0+fQr1eh263C7/9278N77zzDvzn//yfYTgcuucwgE5PtGnZZyxzSjtkQ9+Zbg7Jss37x6VnQyjSn9p4lDWnLfUgb6XqM6utTa/owZNsCNxQBrAZxyvzrvmywPkjZnFOGg/8LjZtvq+sRY9Y/WQsz2m26lJejwZ6rQzWocU6W60W1Ot1GAwGG++qPR+ri7XfJHvdCmnMLfZqTP2a/4P1Y6yCZ8CktkeKLqH6qQhwUyn69bhuJ6HRaMDOzo7buL5YLDZOyOI7XSU/KhXSO5R6BpwKYAAQg5q9Xg/eeOMNODo6grOzM3cvI8ALZpnNZvDJJ5/Ao0eP4PDw0AWhx+OxO2UHsJmC0SdQJVAjCP/HIKVP8HFmkBZV1us1zOdzMV0G76+QQeILEsQKT/4s7TOeTkQL3Gu0SIqA94vP6bSAC3PJ2AotOKQI26KC39pukQC3bw5IvxVVFnQeNBoNd48IDabg4qz0XpgaeD6fw3K5hOfPn8NkMoHVauXuiJ7NZhv3L1v6OCYIgff64Tw9ODiAbrcL8/kchsMh9Pv9C23SIF6Rhcqr7Ghb+1rrZ6nPUhQoD8hJdfvowzr4d1xn0PYsdfJnND6w9g9/hssxmi2Cfi+9g4+OokZMyvOx41VmvSHnRjN0KfD6gyzLXDBFGnPOo1qaLR9PWDeGYR1YHgMgBwcHG6lduA7Gf5h2FQA20opp7Wh6NkRfCD6nIWYuxui3o6Mj+P73vw8PHjyA+/fvb9iBqfODpwL3BWS0uWjlf835t75DyEbw0WhBjKyPeecsyzZODNLfUtpJkTeSTVsUqbqxrHbRPkPfhy40XiZS278sukPtUn0g9S/lq1qtBu12G27cuHEhJXHIB6qKflouJbBeBZ9rdGi/WWEN+Pja5+UkX1iybS19W8Y7asiyFwugvgA0jXXk+YtNkpIPHsObRXTwwcEBZFkGp6enF06vW9qlek86GWnRO1z3a/o2BEkfbwN83MqQp7H+igU+eVKWTOT1hQLjCIxpxNSN2KY9oPE5/T3LMreonOc5fPzxxzCbzeBHP/oR9Pt9uHv3LqzXa7fhXgre8wUDukgVMz9o2fV6Dc1mE+r1Okwmk2B/aza5NqdDMlbrL/q/9G5lzueQD0E3EqxWKzHW7ouBcBmPv/viIJj5ka4FcL+xrPe3zhWrrA6V0XxMqw9C2/LFDnmMR6pfG3v6veYXWuu0QIsJSH3F34v+jxs26PVveZ7DdDpV27SgyNj7oPnfPvp8fa4946tL4z9fnbG+A7Zj4bcQ7VmWbVwxxA8FYByLb+6TbLmiMsQn9zRosRf6XRG6LizG+ozoUMfXajW3OybPc/FetX6/D++//z7UarWNExu0/tlsBr/4xS9gPB7DzZs33ffj8RiePn3qymu71iyBLr4rGgDcQpAEqoz4IisfCLzvUqMHIaVgkyaWxUDGCaMJX8kxoWVS7i/zCbQsK/cuRVqfpNCrdFAttMUqZg00YBMqy+vU+kcaC02AW8DnQLPZ3DjVTjc0aPNpNpu5O+AWiwU8fvzY7bBcLpfw7NkzAPDfDSrxgE9xcCyXy415enh4CIeHh7BYLGA0GkGv1xMNXL7zMgQ+L8tyEnkbEiQZ7uNVC32ajElBiO6QHNHq8NWrnWz1KVtfuzEOmw+0PnpqQlqMTal7m7Ixhr4Uw0iDFPiRDCZpvKV2MTBO75Wm40Ofp//HBFVwPLVnNPooL2dZBjdu3HALx5r+52k6+WIs532fg8X1VKyBjnytBWl8cjz2Ph589tatW/Cv/tW/gr/927+FBw8eJGdG4bTEOogSn1qe459DMigFmkNvhTR2ZdCJ9w/Rdni72EaoHYsjysta7qO3OuJV2ABWIM+hv0PtoCx7kWmoKp5KeTZljpRRXxmgspd/T/9HoM555ZVX3E5yTV+V9R5SXRbbR6Kfg/umITp836fQGCubearNGPj8UirrNV6w1KmV98nDGMTcPYubBfBUg2Uhm/OCL7hlAc6tw8NDd7qGZqPwxShom5xGWi6Wd/nc1mwpjS5fn1QpB6T6rP4QR9k6hNJSlS+j1U/9rlDb9ARslm0GoDk0nqH8Yn3XWJ+DPyuVoXMbAOCjjz6CTz75BO7evQv7+/vwyiuvQJ7n8Itf/GJjMVbyhfg/utE+5j3xtG6z2YRer+euf5Pg413tnXlZnw+E30k+kfQ+fPE7xQ7V/DsOXBDFdMHIl7ysFjfUbHiNVhr3azab4sncWP706bkYW883r2m9mi7w8UqIrjzPL6xV+HwUKmus7yr57ZKtJM0H3pblnfC3kKzS7DXsE/wb9TVeVQnwYgOB1nbMWEk0UPqssQvpPa26N1WPcoT0EJWvUsxGosdHV6xvoAF1IdbFDyzi4my73d448IR6BfkNY0Yan1tQlo1T5BkO78lYqxDCS7t9zkun04Ef/vCH0O/3N8odHh7C/v4+tNttNzD8NN1kMoGTkxOYz+cbAj6UQgRAV1TU4UDlHjrpJqXbODg4gE6nAwAvmIuXmc1mMJ1OL+TW9zERZTbtvQD8k4sKWV+QKJaRYhzBqsAnD+/3ywh2UUFBESMwJKOuKqSMvQQpBQ8HpgbO8xxOTk7g6OgI3nnnHTg8PHRl1us1nJ6eXpjnHNQIiIXvJBjW3e/3XYp1vBdlMBio6dBD0IR+GYjlE05LrHNdBqxGgCS3+H1VPj6x8LfFQbPQWgaoo5plGXS7XciyTE2RjaiKZmu9ZQeC6P8pz2q/aYYm/57P8+l0qtoG3P7gu4F9sAT5YvQGpndBYzY0NhhoqdfrbhNdlmUwGAy81ylIwYAYoA1kySyAbYXsGP4M/X+xWECr1YJXX30Vbty44crlee4CORgkoWmKU+c5ncPNZtPpvaJz0BdI0OiQ6kltP9ROmfqhVqvBbDZzdh3e5VsU0jiEAmxVQWtjG21fBXDZyYO5eBonJoAnzRcaAOV+FXX6aRCj1Wq54AB+j34bBo6k9q8SQgEb6buYQGcZoO3wse50Ou7kU5ErIHx6sIr3LCoPqQ9Zlo+WQkO73Xa2wXQ6hePj440U0iFYYhMWOiR5LenCk5MTqNfrcHR0BKvVCk5OTsxjoQWp6bz3IcaPsOifGFxGrCOEq0iTFaGAfKgMr4um25cWMGhZbrtqbXIZEfMOGp2+9vL8PIsGvgtd/Ox0OvCTn/wEnj9/Dh999JHT3WhHa9nRQva/1BcU4/HY2fYYP16tVs538R3UscxPTcfj+GF6Xl98xzIOsfpCkp2S/MKsb41GAxqNBhwdHTn+m81moo9n8RmoP8af4aDXSlE7HvV5WQtUZcFnM1nHxxe3Qn6xZNej9mtsnMoSo+ffa75ILLjc0NZocA7Rk9SUZ/HKJVyQw5PXUiYqK72azI2JY8VsVqsCobG1xAV8vMDHT+ufGLmFPhON1+KmU64LuTxFP1DyAaqMa2wbG4uxFsdN6jTptBjv4EajAa+//jq0Wq0NR3h3dxdu3rzp8ovTeyex3Hw+h9PT0wtpkLUUc3wwaRn8TE9hWO7NRMFBgQHzfr8Ps9nM7TLn/bhYLGA6nbpAH30HX4DYYhT66qFlNeajJ7BilKEmELbB5Hw8tbHx/W1BrHFAjccYI6wsGnxlpfmReieipNAWi8WGPJCexXTjk8kEut0uvPbaaxuKdr1ew2g0cgpXMw5iHF3+rEYb5aNmswnNZhPW6zVMJhO4f/8+rFYrpxSuEsqcb5JCr2I+SwpfK8cdMmrAWQyvmGBkioFbNmi/Y8pZXCwK0UR1L/8tFlZZHtMGH/eUAGnMu0k8RnfZcb2B70wzVtD70SS6uS4KOaiabRILqf7lchl99ytupMMNZXmeexdi8bki44h2kBakkdqj/yxAWY9jXKvV4ODgAHq9nvu9VqvBdDp144vPxNpCGjD4gHMYabG+M6/L97f0fKwDn4qydAWV1zs7O7BYLGCxWEC73d5oJ0QH/TslOFYUKeMb+r4ItH6g/I78ovGZ5ENRmlN8BzqfUafzoLX2PiFw2U99Bf4e9N3xd5Sjkt61bASLpZfXT/si9uQ9hfSc1U/woeic52MhyapGowHNZlNMVcdpKXve0Dpj6o+ZP5qMpt+F/Fr+fZnyDRdid3d3Xd18flbR9xwWfy/PcxiPx1Cv191pPXr/XEwsBctbfAduf8fySUzfSbxEkcKvsTRY+Yzbw1WgKt0e0mex70RjbHTeSODyAb/ztY+LgiHw+mLeA/1t3LxIr5ja2dmB119/HRqNBvzqV7+6MPbaQReNDqkPJKB9ePPmTbd5arFYbNxL6JPHqTqM2gpcT2gIxTxi56yvPLaFcTVcEMXN3QDgYls+un1tWOMq6OthBgW8L73I5qoUpNinIV3u+43XQXlFimvRMtJzUntS7Mf3PtKzIdki8ayF3328Tr+nd3NTnsXFWJzXdCNIqs3h86GL6KkUesrUiz4+8I2ZNi6afrL63yGfg/o1luu8NN+U/l4mqrZnNRS6MzbLso07yhAY4JIE7mw2g+fPn8Pdu3fhrbfeglar5QJVy+US/v7v/x6Oj4/d4uZwOITpdLpxoi3FyPMpfv63pe5erwe9Xs/t4OcnbfGULP5LvUwdIeXf5+Df8fu1sEzoTlwAUCcJhRSUKQt0HOhuom3tSrEob75DJyXVM5YLKUUNNOgstWdJ4x0LNKrwPkXp7mYAcPPCd6L0ww8/hEePHm3MF1+7FsfcZ0DSUw04Xjdv3oTDw0M4Pj6Gp0+fwhdffCE6EmUGOspGbEC0yLtYlXIZdTUajY3U9xhgkWSbhjIMt9jfU4BOE97RwzckUNnMnXqNHusJRKyjCplq6auyykjPWJ9DB0DqAy57QgZwkfukfaBBAL54QTEej+Hx48cAALC7uwt5nsN8Pvc6eZPJBM7Ozi5shitib1lQlOdS+OLWrVvw/vvvw69//Wt48uQJtFqtpBOx1FGg76Et+PNnU+CzOfB3a8pIBOWrGGwj6JoCaV5INlYKX1+1d5Ug+QlUZ8znc+h0OvC9730P7ty5A++88w588skn8Pnnn8Px8bHbPBqjY6lseRn6qCi0uUf7gp641eYKylvs7y+++ALOzs7g4OAAlsslvPrqqzAYDOD09NTZCJcFLiP4WMfaoSFk2Yu02RiMkzZqhmz/ENA3oHVJ46Xxdui9sd/onMqyLEpGc2ipjsvs/9VqBcPhELIsg9dffx3Ozs7g+PgYDg4OYHd3F7rdLgAAfPHFFzCbzZyt7rN/JN1VRIcUHfsQNFvb52fSu7djdDCvly5gXAX/M/Z9th3kLhuhQHEqyrCncXO47+Rcqs+E/1O5RU/z/emf/in87//9v51s2Nvbg/F47GyL09NTaLfb0Gq1Lmwu0iDxljQnUIbyOjEedXBwAIvFwl17hb9ReckPoUib0kIxOXpii5dN0dG++3sl8NiA9Gye5zAajVz8GDfYcJ2GfUk3oWn+AB8Tyb7BeJ6Wrli6N7gq+OS1RZbj/5axCcksyVekv0k+fcxcpjT6fB/eLi+P4BspNJ/A5zvzsdbmMsZ+d3Z23AZcilqtBp1OZyMd9mWAvmvVtkcKOL/4+J4/IyFUNsYeoBkVQplt0Ya6TH9nm4hejJUMRQQyJ797tV6vQ71ed5MId+TgnYzr9Rqm0ylMJhN4/PgxHB8fA8CLnOG4+0qiI8XY8D2rMRovW6/XncCgqaxoH9BTNSkKltPFlV8Ilkko/R4jWEKTmNMdA24kYXs8GBBDEy/j62+L8UjvWyjaJi9nQVEHNmZMeGAPF440pU93PXHeXSwWLv3406dPg4trZRhCtH06h9BAnc/nGwY8wAsD/2VFmQ6tRclbaaL/a8AsAlLWBR8/SPX7DH+p3DYgGTl4UpHem0HLS8aJRR6m6gutzjJQliHrG7/Qb3R+8KwV1DnneozPBT7PNB5PfWepPm1cUL6ORiNotVrQ6XRgsVh4FwUxfRS9QzsWMUZ5WQa+BVg3bhBEZ29vb8/Jdhx7HuCx0IFjz3kAbVtt0cb3d4hvte98tpIEn8NuHROLjRcTxOX1oKMesvVibBreV1XJOCu25dTT963VatDv9+HWrVvw5ptvwsnJCTx69AhOT0+DgcEYvvm2gs45nyym/1sCguPxGJrNprsvq9PpwGQyKX1BxlqXNahHZaAv6OhrA2UmBQ3aFH1/H02xNlLKnKXP+GihC85cH1nGIBWS/4bZgrrdrovdNBoNlxUM34EucND6Yv3ZlHGgPIeLJI1Gw2UrC71rKm2+OjS5uA1dY5XJMfxSlLdiEatHfPPaEhcIfV+2XpP4IdY/LeKTW2WhJHPu37/vPtdqNZfZEDcB8mxOKXyjvRP/m8eZms2m6mNI8zcki0P8Y7V5LWMj+Zo++mkZ7nvgb3jYCbPX0QyNeZ57F15jwHVHnufezWOWvtmWvJF8eq2MRbb66oixQVJ0Bo91xegozksSX/Bxi21HklnUtqWZ7+i1jtQGtC7GWnSWNK6x8YhYO6cqpM6jVPpj9Y4UW6E8ZvU1itBwVVHoZCzA5iDO53N3bxmiVqvB9773Peh0OvDkyRO1jr/+67+Gzz//HMbjsZtoy+USJpOJOvljaNS+1wx1Cks6vfF4rAaMEDG002CRJBgs6YtS0tD6diEUSZeFSFGuPpr42FzmhCzLWYkRjBYhS1Hl+PHT8FI6N9yg8PHHH8Pnn38Oi8XCLbZJRrcvvU0MaN14ch3TYBwfH8Px8fFGOtIse7EjvyyD8DIUdhnt0bStMYaQDyE5ialTQ4a8ZgjT32Pk1jaDDbHQsitQHVFG+p+qeTTFQS0LIccewa9eCAXhqKyTgqgcPueEluHBW5QhGi+sVis4OztzJ9vW63VwgbXVasHdu3ehVqu5k7G4K1FDKDDgw3w+d6fbY20KqwzN8xenUzA18YcffgjNZhN2d3eDG2yK8hxuSOSB6ph6aWovK2i6Jw2Uj6qQd2UGdfI8h7OzMwDYvm13GbbkVXHqr3G1gXOY2kexQTca8Ao9X4ROze9F+UM3PGbZi1SYqe3R/7eBMuYsj5l0u11YrVbuvnq+sMHHHpFlmdv4ntoHaPfgqTfcqIV61Po+dCxS+0cKLGt2B8YCDg4OXHrlk5MT+PTTTy9stAu1yQPEFPy+P8u7WRfeQjTxOq5hw1XSq0U2K1TRFrUHNVqoPdtqtcTNnY1GA27cuAHT6dTJDokWSRdpix+hvlmv13BycgK1Wg1u3LjhZJeG1Ow3Enz10NhtbHshGjT5RzfQcZpXqxUMBgPY3993m1CbzSYMBoONtM7UZ7FC6lP8G1NZN5tNyLLzE7Oc7pjFQ44yF3GlZ1Jo4rxL/Szqm21LHnEfUtNrPNZgWWTmGwAs/SQt/vPPw+EQ6vU63LhxA7LsfIPFYrGA2Wzm4ga+67skun2y1nIqXaOX1r+NU5yxOsPHj6ntlwHp1LXUVqov4MNVsgcQquYKCSHLImGr1YJms+n+X61WUK/XYX9/H3Z2dtwJ2PV6DcfHx3B6erpRDx+s2IXYkDAJLQhI5ehpQLp4Q4/O48SUBJd1xwVXULSsdTKkGDm+iZqyEE7bjC3ja0/rY3xO+uz720JjkWelcmU7VVqAP2TIpdbPHWQpaACwmaYCy85msw3FqsGyIBDiSS0QhMDFB/qblAq2KHy8nDKvQnNV+y6W10OBECv4woRUPxqOdKEGeUsKMNFFBZ9Mk95dexdpHlWtuCnPYSYJmv4+ZCRa6bPqn6KICTrFBJFTadHeW9KHNNgW2t0dmhOh33xzkjtxWl1Sqh9ui0g04bzgqbF9+lN63gdNJ+FirFRO+jsEaYzx3XDnPl6fIS0A4w7cohtNqDzi71GUz2Pl/TYQE4iW+sUnj5B3kadpFo6ybakUG6IoqnoXC3DTCG4i7XQ60Ov1YHd31wU0qf4N+Q0xkOQezlUA+Y45zZ6V6o6hg9Yf8iWkd+D8ym1GtH2tthPye0gObYNHaFtFxp0/L/E91yX4DD3BU9R3SfVfrfVL/j7+RmkIAd+b0sxlp9RXvI6U/uI6Gu0KaofiPF2tVtDtdqHRaLgsZ1q7MfLDKos1uVmv1931JriQjP8ojVq/+eiI8aFS5k1KXIa256sjFdZ6i8qJGGhxsZj2U+VJyGYJ6SrNh7XUmzKP6DM+X8AHKt9obITGQ9F3xSxnKEOq9uFoZsIsy9zC3+7urrvblkLrx5i4SIp/ItUj0WORQRYZS8eLjgVm32q1Wi7zJKYVxue0mIkGzRaishe/z/N8YwE3VW74bDNLOfpbyPaT/DnLsxp/SbYilpfaikFIVvDftHYkGkPv75NhPno5qM1B/QJ+sCcV2vxPnd8UVp6S6Imp3wdNXvrkHZdBRfjPSqf0HKW16BzQEPIhrbSXafOYT8ZyBSHdFcvLv/rqq7C3t7ex2HJ4eAi///u/D19++SX8xV/8BQCcvxA9NZvnuTthG1JMVlAHgrYjgaZWWK/X7q4aAIBOpwOHh4fufjVKG52E8/kcsizuVIMPqLQsd7Gk1h9bp0/w4m+WFH1a3Y1GQ62/SN74ogIXjVCtHsupZUQZQj8WRY1jOv/z/EVKbt4G/qM7W6xtWw2q2D5AOnFziHRqDN9tW/f0FBXmZdPIc/kjfZYMAbGgcwmNLQzsUIxGowtZEng9VsQYiNvY6YapmBuNhtsN2Gw24YsvvnBp4ST6fO+BeidUrkpYjDIfbUUdNKov+feSIYrf4cmSwWCglsP6ipxAKQpsF4MPk8nE3auiAWUaTQEe2k3O2+Ofrc8A2BfmU2QvtxfxPnMLsB+orZfadio/IK9SnrUGpnm5lBMAUr38u9j6tCCjJBuK2q+pTuB3Ccinu7u7sFqt4Ne//jXcu3cP3nzzTZhOp5BlmcsUgunyMV1u2XTQOYNB1NVqBePxeMO+5mlqabBAO3FuCSbyQCEPUvGgMn2O0kK/w3bxOd+ubomuPM9hMplAp9O5NL0SC0tAIjbAsVqtXHaURqPhrhDJ83xjXK4icPyRTrpYECPbaX2YQp/yO+W9MoNCPuDC62q1gslkAm+//Tbcvn0bZrMZPH36FO7fv3/B/0X6pKumYu0I+s74vOW9abrler1u8mWkU+dWPqd2DK/L0t5VgC/ILuGy9W5s+1XIEIs9Q3VOiK8kHeVrMxaxcgNlM8ZI2+22esUUPz3LD9ZIQLnoi+357qCt1+tw8+ZNZ/8+fvwYvvjiiwvl+L3jRWxHKsuRbp7VxnqoKGS3WGwafkcnbkihh4eazSY0Gg0nz589ewbT6dS8wOXjQ+mUIS6I8/gb+luY4vqyZQhC8qcA4rIhSHWG4h0+Pc/H3sez/Dd+appvcNPmAqeJ63KJr60yVeJlH38jv+LvNINXqE1NrsT47EX9+20iRl9bY6pVvzePV9A7uWkZn67U4iExiHm2THl1IQrnq5wGzulA4okMLshpahgsN51O4eHDh3BycgKLxcKlJELjWFpk8wkbH7Tgoc9xp+0hLdxZx3SskoNAHaNUunl5a0COf05pT6s3VEYKWltgEaLW+kO8G3qe97XFYLIgReDHIFSvxEMpfEGdX18faH2LdXCH2uJghMbfJ4RDTmXofaqC1REqSzlY5owlSK4pvZCRaA2Y4veSrgnRxr8P9UcVDnkMcAG6VqtBq9WCdru9sRmIB4KxXygsTr9vDCVYeS62DyXjP0aOWGnmhp21fl4XD6r56sCxinFGyuI9dJrQ3uIBAu4oYVASy9RqNWg2m9DpdFwa97I2klF6siyDO3fuQK/Xg4cPH8J0Ot2wEWNhGWd6bxzaoDs7OxunAMtAbGBLkn2SnvM5S9I8suhTXoek/zSZUYRnpfexBCm0Z7U2XnbEBsLpc5oelmww9GPo5oxUh9Zn58YGMqwBghi6pL/L0oMxz1n6Yj6fw6NHj2A6ncJkMnH3vdHnqK9ZBqr2UxBc3vnGmtvm1sBdLHx+ZhmBLV4nPsPfH4OMuEm0Xq9vZLy4DPCYDH1XlBmYVQPTmUo2h4Qi84vqI9qXuGlzvV5Do9GAmzdvwmQy2UjHKdWFCAX8Qu+ilYnhLc1XSuV1zQ+wPFeGzL3GC0g+UMyzlOcBwn1t5UvJrw7ZXJQvce7z6zm0mIyml7mdKdmd3JahWTzm8znU63VoNptOLkmHJ1LsFS3uRP+W6Axtjoy1ca2ygPfzfD6H4+NjaLfb0Ol0XN/hAYTRaOQWuGJjYhJNKIc5r4Z4qoicpWW0cqH3kuZXzJzz8Qm33/B3rW46x8qwrTW/0Ve3jz76XiEfUmrTV99sNnMHFbh8woVZ3CyqyRkfUv0sjUdTeI2WKepbW/k6xZbwPRNrX3BaJb0W6stvm42xEYmyBHH4hdyogKfTqbchdDKePn0Kz549cx09Ho9hNBq5cpiasexdMtJuTYAXu66lXYk8TSQ9MYPgCitmJ6QVIWeVl40JLmgM7xNSlvrLuFfSihCf8LGwBHq4UHjZhUBZAUqLgRYykuhdjFoZfsdB6ASaxvecD6V5ydPibuu0W5lBtKJBTloX/SyNt4/uGIOQnojloPeI4d/4v7XfQmVDBnvVQAe20WhAs9mEvb096Pf7ALCZZpae1sNFM4Q2H7clf1P6MDXgaQU6gFZjOQS62zmUVh0X/awBEqyfjyOnk5/M4jt0syyDdru9UQfuLOT1Z9n5yTiUsZhqrNvtws2bN2G5XMJwOBRPIFFjXnsvyRGlffbjH/8Y3nvvPfhv/+2/wZdffulOsEqnyEKyJrTbfr1ew3g8duXm8zmcnp5CrVaDO3fuQLvdVusvCzEOoQQpmIH9aZH9PhkeGs8U+BzVUECB0ovjK+kJa1DkuwbsM1xAwcWSsmXsNarFeDyGDz74wNkIeHIEQF5wv2qw2AX4bkWxzROFMQHHEKR7YLE/5vM5tFot2N/f30ghGaIthR5NNqAMppuZfMCNTlhWi6vE0GENUlIb7fnz5y7teq/Xg/feew/u378Pn3/++YXnLDEvC62hgLlvUUprs4pY0ncVL7vu88XkpDmSIgNSFzQAwG3gPDs7c/4E6q2Qz2SlT3pnjBXRLAS42IgnZHmGvSI00PkqLbBq8VU8XYgLnVJ5LIuyQuszarNb/Hxqd49GI/jss8/gzp078Nprr7kye3t7LisJj3nHgvoTWBeOD/0ebXtJZqYsFpUNaYEoZl7he2mb5+kJWN7PtF0al+SIiTNYyml9znW5xndFTg5zevI8h9PTU2i1WnB4eHihTK/Xg/V6DU+fPr2QwliC5pOW6f9SObptnWNtr4gvGBvv09ZRNDtPqt9qA77sCEpaSbnwQDEXEhgA4IIdg4W0U1erlUthwDu/KmYOBRJpKj8E3V1FlZs26TRlkqJkNIXv6yfrRLF+b3VALQudPmB/0sAD/u8L5mlthCa0pS7az5qx5Qsyam2WKVysArZIm2j40r7kKTWk/pBS3mqf+TtYT5qlyAp8H75zsiiKBj5jlGroGa7cKD9Kz9B+KMpPPueRziX8jIsy1PCbz+cuwEONLd9c9JWRsG1l71ssRNmHKaBQP1Jeleqj/8fQ4futjPnA+S+kc2LHK/TOdBGftkXnAfYrDYZaeUmS7z6+5PWEFq2scxADoVheC95i+5PJBFqtFty7dw+azSacnZ1tPK/BYgcgr67Xa1gul9Dr9eD27dvuTspbt25FBWdSAks8mLG7uwvvvvsu3L17V9xsU9bpI9+Yad9zWyeUGcZie0n2k1TW17dlyEPujCFCfZEKra9CgcayfY2QTKDf44mysmRuGcA5jGmKOVJ5g/pP+K7L5RKazaZLnYz3vM3nc5GPffyk8btka/p8KpQF3Eah8t63yZP7KlTuW/uO29Nl2iloY+T5+WJbUftX8rOsvi4GzDFV/Hq9htlsBovFAmaz2YZ9zvtAm98pfjavz/c7/8zL0H94F7mvf/E3Gpyu1WrQ7XbdBvjJZOLGyicny+AP3g8YqEc7HDOaDQYD2Nvbg9deew16vR4MBgMYDodwcnJirpvTzudizPvkeQ4nJycu40a9XodWq3WhTKqtbJkjNAVqbExAemepT7S6QyhD3xWloQhSdORV0akA/pgbfzc6VqG5EvObjzYar5V0KI/vYAYduuBJ/ahQbMXHS5IfpcUm8jx3GW8Azm3oTqcD9Xod7ty5A8PhcOPQj68d6Tdf3FCKsXDw+Sy1G/IludzSZItEH9pzOMaY9h/j9+gD7+3twWw2g+FwuOFDWdrW3pnafL53k55NgUVv8DGw8GEo3uRDyPfx+Xw8xTD1E0P2pcRr2kKq73leR6iPY/WMr3/QHkSgrcjLYj+FfHCLbecDbyPEBxa/9zL0KCJGT9B31vSD1i+pepjWa5U7V0nnWxG97YXu0NXuXMSTPsPhEIbDofvu9u3bF5wImpIHYHMxINSpsUzOHWsKPqlx1w49gcADupJQ0+5P4IxkZVRu1FPaixil1PjzTTDf7ixaJ9ZD88rH0ol10FRpPKhBF/9iBH2o/0N04f98QV5aiOTvoxnSWjv0s5VPfEECqyFpAV+M5fnceQCJP8PpoEEIzi/a3SBaP0v1h9rkQZ4ycFUVQciopPxN+yXG8LY4I5wfsL1Op7ORZhUAYDqdwsnJiQvUhYLWkkzTYAkqVKXYfQs/2D/dbhfyPHd3pUk7fFMCSyHEGJo+hOqw8pZWr2VXMA8ESO1hmj28g0STzdIdYpQe/Bw7Z/h3XK9Y+A8XY0P8jnWNx2PIsgzu3r0Ly+USHj58aKLZOheQh9frNXS7XXjrrbfg7t278Oqrr17QG1aExlEKiuB3+/v78Md//MfqCVy8JqOMuWStA8vRk59UjuI7pJwuokF9bqvFvqMU2CkqFzQbvAxZK/UX1X3bdnwlSPZzEf6r4p3wzljJdvaNk9VnQyyXS2i1Wu50BqbSWywWboMWtys1HsLfaXm+qVaaD5Sv8/x8kzHNlsJ9Qfxf8p34HA71ybaB74N3ZC+XS2dfFbWDUvgQ0yRimnwMBs9mM2cHxcr+MmAJAGkyjPKL9UQzldsYIN/d3XUL0vP53J0Aqfq0JKcPF16RbwaDgcsycXBwAG+99RbcuXMHnj9/Dk+ePIHT01P3TrH2n8RrXD7y+YpYr9fw/PlzaLVa0Ov1oNVquQV+rLsIf/ie9dHNUcS+xjpj69DmcEw91nlWld9UlP4QOH/5ymj0WOr3tZtSn2SX8THQ5gwtH5J5tD5c1EOZQOtB+VXkGhCpT6hO5/Yy+jQAL2yKbrcL9+7dg/v378NoNBJjR7ReDVKfcPvcJ9uxbyndvo3v3Daxwidr6N2fKLvx91arBbVaDQ4ODmA+n7uFaxorK5IxTltspPVr9EvP0c8pYxfbRqhcSBbS8lJZ2j9oO9BYep7nG3qfH4LB53ibtG0ff0rvJNHOyxX1W7j9LPnweD89ls+yTDwFy+ngMpHzHC8fM9e0fuLfpczdq+QrcMTweej7FFjquMr954NZU/qcX+p80HvL8Ld+vw9ZlsHjx483Uq9kWaamN6ZGgeZw03JaHVKdFDxYK9UlKQpJqfP+kQRgjOAqYvSF6rPUKfV/lmViWkWpHTQ4Qm0gpEW7PN9c9I5VqpzOshz1suvSUHbwsGhd3PGVfkcjgqcm4eW4QUqBxgjeP6IZMtQYln7nZbV32sZYVoEynV7el1g/vzvbRwv9n9bLy1kDe1mWXUiN74Omp3ggjAfINHleNdDYHI1GsLe3B/V6HUajEcznczU1nIXHywhQWJ6lYxkrq8qac1Ze4uWRXlwYbDQaoj0Q4xjH8EwKf8U8w09ohOgfj8dwenrq7larQibmeQ6//OUv4auvvnLXVWCwOZS+XqoLEeqX8XgMv/zlL10bZ2dncHZ2Bo8ePUp8k+qhbWJClCWjqrCPYuu02Ilcvkgy7rIdsW3bEqjL8jx3i2q7u7tOl4/HY5hOp26DI9LXbDZdX81mM3j+/Dm022148803odfrbY3+a1wEjstisQCATTtI4q+rxP9XAWXYPvR5X5+WaX/HQIpF0MUBzhNly6R2uw2NRgM++ugjePDgAfz+7/8+NJtNuHXr1kaa4kaj4Ta5SdBsdUne+0DlIF8c8oHbd9brPbY95mUENC+D5pdZHlno36au575d0brKop1uBMWND9rVQ1hegi++qpWVFlso5vM5DAYDWC6X0Gg0Nq78obDYq1wmafWEFqgs4xhaBAstfGjf4We8Z7PdbkOr1boQH8H/F4uFi+v74vCXAdqPIbmN8cRYlCF3tbUM+ncM74faCdHAv7fWzWM9FEXlCd1wSbOIoMygfIjXNmCsBjPqDAaDDRro5snQaeCi0GyYGB3oi3FfRWzD/37ZbYgYqBarFJDUdq/gb3jRMi2DJ57W6zXcv3/fnL4C6/ApyZDiCUEL3EvlAODCTiwK7V248tboC9GtKWULfEYDL6MpXO604GJbUWXsC3yH3kGqg39vXaiLQYrRWKT92AUAy7xIXTTgPCy1hfNEW0TjdfhOsoTuz5CekxSvj7euElIXllLq0cryv3Ex1vesZuzF0kTrwbH3ndiQ6pdklcS3mtNk1QtlAPkV7yev1WownU7VlEqIkMPoK1MWfE6pVrYqaLqX06Dpt/V67U7IcqSeQonh2ZhFHAtfch723aGL30+nUzg+Pr7wewgxZbIsg6+++gp+/vOfu+8w9SK3Hemz3Am0ZsegwYevv/7abRZ89OjRlVyIpe/jsym53QSg23lW29Iiw6uCz4aR3tVShw9lBFm0Oi8Lq9UK6vU6tNtt54th4ALlGtJIdepisYDBYOAWU3haz6uKlDGMGaMYeVzW2NN3oQtY9LQEpy81GEKzn/A5RvVCKAAcQqxNG1unzxZKDebE6mItqFq0r6z+peSTpdjm1vduNBrQaDTgm2++gQcPHsD3v/99ODg4gP39fRgMBs5nq9VqwSwYRWIb/Lkse3Gdh2T3a89oKCMwGtO3vviQte2iAUxtnlc1l6rys6x2MoC/32Pq0xAr3+gYSPavT+aFIMnOovYQbhxCO0PK7MP/lxDD//w9uIzL89xtBKGZDnl2LYnP+bhz/SjpYS5vtfeR4hTaO/Py0ve8D3i7Eg14DzimcUcfmJbP8xcblfnBCuwjX7w2ZZytkHghJKulMjF8XySuovWVNl6+WAV/1tq+1p6vfKgeitT+1eQR5TfKhzinUc/j+tJoNNq4XkSyabV2i0AbJy6T+Gf6vj4UkfVVYhtxRqve+zZAXIzlTCwFI1Gh+XYgYlod3I1EF1awDUxlsVgsok5fxUJjXDrYy+XyQhpcrnglGkJK1QrLpCtTgFgcWvq7VkYzTCRjKaSgNWFucaw4yhRWPH02pSVGyKc6JkUcrCICTOM9nM8oB6ghZzkRy0H7d71eb9w3bUUKj7zsKOp4a4gNMNJdrz4HxAdMDdhsNje+R/7SxtbXB7HvsQ1gwCgETNVIrwbQ6iuTB8rmJ0v/x7RpTWlE27cs3mFaRC09Oq+T1mdxnjjdPlpSFoAlJ06TiRisfPLkiZO3NKASupcuBsvlEobDIdRqNbh58ya8/vrrMBgM4MGDB+7uWut1CBZgXXj9Bc/WQkHvnynjzthUZNn5Dt9arQanp6cbGSFSA2Voa1PbO0UeUvkSus82FdhGlmUueJZlm1dWVIGq9CeFlG1CoqOqYMFVguZ3YOCP2o8+xIybJBc1nYkLnnhaH2mhm4dpwIcuOF2m/LAAZeBsNoN+vw/vvvuue9fHjx/D48ePodlsujtBEVXOEdzQiyerUF7hKab1eg3tdlvVrSG6Yngk5R0l/4gGsWl8Ad/Vyid44izlRE+ZwDmBaUB5kNRqJ2jyzZdpy2fz03p4nGaxWMCDBw82TudKfLRarYL2ONJQVWrokNzfho6SwBcQXjZ9VEbMZNvvrMW/fGVj+cX3O9WVKe+Oc7nRaFwIoBfx0S20UDkyn89dtg+a6QMPCNCU7xIsi17UdvEdKNDqlRBrn/MFn1A93K/Dz+hv4IZY6TqHVLpj9LQ1VpAyP7V4/jYQ4iEL+PoJvQMY68Lf+cJ6bFsWWiionRMbo7MA+RFjhHTeop/f6XRgtVq5dRzc5I3/qooPS+/Ms5MA2PrgqsUqLaDvX5Wt9DLaH7HYWEmVHAvNcabphinoJMUJQR07FBYI6uRalF4R+IwBrJ/Sb1VCvK+0RcWyJppFcaUE3SQFF6ojZmxijEReL+0/67j46LWAjisPSFqNx1gjU3suxLtF4WtPaoMujvG0NHyOS/XzuukzKDd87acYukXmn7TIUUbfF62nTAUVEwwJQXovSafQv3H3qtQ2n/+0/jIdbsl4rcIIoMYhNbBp+/P5HObzuZdGhFVml+H0hp6vwqDUbBMteMF/s9CEQVJrsDTksGsyNURXjMFO54LPGZbawCA4ylu+yJAKrBvbxQ15WZa54Mje3h48efLEOZVFUitq8oTugKd9T+8+QseuyH1IGqw2EdKMp4343ZQUKXovBj49LfGzVV5oDjrWw+ssEhC0BNLKRMgOj/m+LLvCl1oO2+Hzk+sgn+4v2sc+Pg5lTKLlfeX4b7y873dJRmhZdmJS4Fl0hibPioLbWQcHBy7AdXp6emETMtdTVcwl2t90QRuDpuhfcFlQVkygDGg+Gw9MxfYf3ezK25LaqwKUF6hdxHlksVi4qzUsG9mK6A2JRl4OF7LRvsCsJ1ymxehoSnvKfKjKNk5BjG9TtT7ltKTKmpS4kCVmYI3llIHUvtb8IK2elPe28go/uMChzYMy+pfaNNPpFHZ2dqDdbju6fDFGS73a96H4lqUuqRztK58/YOFrXpbaAwi0ZWh8QoMvbhKyvXg9ZYw9lx/SHLDqEwm++qz1x/B9iP6Q7au1VaVP5OsHyf6OHXfOm2hrZNmLjbv84AbnU41GyTcI0Rfy0SW5XBa/x8jlMqH5UVwG0MMHRf05X8zvZYT0ruY7Y6lTwDsDUxQvl0t3ByydKLxsq9XacMIwf32soEgxvhBSoIIHIS0K1hI40JSahanKCIry+riw0ARGCL4AhNSuj04fYicf3/2F73jVJ7GlH4oK3tT5RU8FaHOb0hn6HgNcmjGJbUoONP0d69XKxDj9MYG9ssZq24pUA09jCACmwIoPkuEova90V+disYDRaHSh/VgH1cc3EqoeD4mefr8PR0dH0Gw2YTQaXdiIQO/3kwzIbS44xPJ0mU4WD4jH0EGB8gv7rgyekkCdf3QStDp99Go0cPnnAw2epjiMFmDgM89zmEwm5gUK1APafU4SpAC9ZSwHgwE8efIEAM7vvQMA9W7mqpHnuTux0+v1ou6543IxdhOhFchjMaf+NH4uokcsjjMF9oclA8G2QIMG9Lsy6wc416fdbhf29vZgMBjAycnJRvt5nm+k9Hr27Bn87Gc/g8PDQ9jb23N3Ri+XywsBj2vIQN+R2yo+u4f3qfQsrUM6jVC2TzObzWA+n7tU17gZzIIqeCTPczg9PXX9G1t/DE2pdqYGLpOl8QrZBhLoM5LvTu9TKxMa/cvlEv7u7/4Out0uHB0dwenpabAuLdBM51EMb0vzT4K0cRjAZgPQAwjc1qhCjl8FeXsZtGwjDnKVEOIja3ys7D7h2YSkfpdsPFqOygz0WTCt6GQyMdMSK8exrdFoBMPhEPb29mB/fx9Go9GGTsMTodROxL/pok6obas/yWPMWhnaZ74FH8vikm9BaDweb1yJhDG3o6Mjd7rYirLtkdB7aWWrlg2XLXv4opcEyodowxeBxU6x9AuNh0jg2cP4/MQYNN201263L/h5mBFDs7ukd0tZg6J1aN9L88/3zFWH711Dn1Pq/TZCelf1ZKzEQBpT0cUQGrTB3zudDgCcn/TBgCq2RRd5NUWvCR8ucEJltOd8EzCkCDQa6N+872KZMyaoRRVtqF7fIpYluGspZ4U2jpS+UL9pAsCa/tpq9PLPRcuGxjekwKxtSrxq4RNaJ/8nlbXMJckopfVKxrxWdxk8WEXgwgeN32KNgRS6NZnG5b9kxGmGcJEx4AFHNLYwGMznPzWcfLTFBnT4s1UZB5QudBrx3ha6IEWdu9Q+tsrpGNkqyZkifWV5NhT8sjpsmjzxycWUuYzt+OR2Wc5ryB6Q/sb0vPQqCW2BMwTp3VFuoKM0mUzcyRlMRU5PDPE57XNgQoEKrR9msxnMZjOYTqfuTs0Y+6IqoLNJeVGzhSmK8I7lnS12Z5mOqwbf3JZkQpkBoW2gLBlAxxQ3yEoZFwA2FyWWyyWMRiNot9vQbrc3gpBXqS998jLG3q4KXIbF6NTYdgAuvnNsfdS263Q6cHBwAKPRyGWy8tkdEg1F5CfGDvBaBgqe8jdmfKuyS2h/+/xnn80iyXnu/6A9eNlzMWR74cbJfr/v+EeimevxkJ6jcyrWFuG2c6htX53Wvo+NI1hjNSH6eL1FbJqY97XMSeu8TRnj2HrKtPW4nxajm0LxnDJtUaut56O/bHmPNq+1vtQ4B2b9oXfHStfOhXgvhm+KzGefbuc0cJq1MhqN6KfR/uDxeJqtLuTL0vas/jinPaZ/Nf8kNFYSr6fIhVS7iJexyEfJ/w3B1+epctAq50II9Z2m92lsAcvyv3lMhz4rzREfQj6w1B63e8rWp1cRlviE1JeXFXO5ivBuxbfspsDAOb9jxjVQr8MPf/hD2NnZgc8++6zQvToWh8Q3WQA2T8Tmee7S5/mcDQmaYtKEfOg7Tmvqidiiga6ykfIe0h20VUPrN7rjRhL8ljp42ZBBY/3e0lZZ5aQUntgfuAsphUY+jzD4gIFyn7ywBCm2KfC/DcollX5tHPj8wT6S2sHFVwzISeMbctgsMjn0fdXI89y9K8ALeTefz12WCADYWLCKCcbFGH9FENtGWXTxdHk+w16jAx1Nn34KOaAAcX3A02RZwB0U6aRiLH/v7OzAnTt3AADg/v37G+l8+X3NRdDpdODtt9+G4XAIH3/8Mdy6dQveeecd6PV68Prrr8Pnn3+u0i3ZUdY5wAOvOzs7sFgs4Msvv3wpnBzcnc6ze0j3HlttVVq2SB+EZHHqHOcp6qX2tDZTsC0Z6QOOaZFd6y+7vWGFZbx4ejI8gXzZd25uCzH8TFNTAwB8//vfhx/96Efw//7f/4Mvv/yyKhI3QHUr2j6np6el3ldeFZDP6D1uReQJXzCs1WqwXC5dKn/UYRTaHbTS4mOZCNlEiPV67U6hYfpLq/1DN1BrgVkN+BxucMR/eN8cZnGLsad5ENjXbp7nF074SGVpELdMXVTVuHNsM3AcYzdvUyfyOIbVPsVnOKxzK2VRJdSHKeMpte+z0/P8PGtOrVaDbre7kU0x5UR8CDs7O9BsNmE4HMLZ2ZlLZYq/SXOa28laH0tZFHnZWN9UogXliZUvQv4glkGbu16vbyzCUr3TbDZdfJ/f1RnivRjepHyvHQCgsjw21iO1tQ27kNJZFl/zfuVpewEuZgSS4nCxbfIYBMCLseI0+XzUGL7QNpPSujCTDwA4uYL2LQLbwn6QMmHgWMWOlyRXJb9V6wde7ruC79K7WnBhMbZowCbLMuh2u9BqtQDghVPBBSgKDl9wR1OKtCz9TmNuyagPPZsS5JIQ049ckBUR4r4dIKExLtpuClL4LmTMlu0kWGiMaZvSL42RpNBCyi7GGYgtJykYGjjxGUf0WWpYauMlBRR8/YXPX6aAT1lkqbodCzT+sfC5z+iyLmJxg67ovKWyL4ammDJFoBmX8/kcJpNJ1OJfTHBKoyUFRewDSY/HLjBZYdVxoTZDDqevjKUey3OxwShJfmM9uOhPU/6UkdoQ22w2m1Cr1WA8HkO9Xoc333wT9vf3XfCaborD7/g7xOpQbSxxwUva2LONQKLUpmT/0vSHPhvQp5e1sQ/ZJTTQgeUpv2DaNnpKrQzZodURotcyH7Xnyw5+a3TE9s82bRfkvVqtBvP5HJ48eeIWwyaTCdTr9eh7UGPkE+U3DCZhUBbpS+mPouO6Xq+hXq9Dr9fbyM6xWq0uzMuyeYjbLanvH3oO5/KzZ8+g0+m4FOk03VtKwK4oUE7H+quXDUtf4bhwOR6y9XiZbcmIkB7Bz/g3zhUKnDfawrqmuzW/nvcH+p6+zFfWOJEG+nxM38eWl+xiySbCustAkfqtZcvyya11SHGTVL+cy53QXJXGrGqZxedjrK/nk7WhfuP9Is0xX39g/AhtDW6D+uiOBdrb6/Xa+R5ajI1/luiXeCzWX5H+9rVrnXMWWnwxEoAX9heOS9mLwfzvFNkWsu19cYZtzsvLgNY3/DefvpXq4WPF5wGWD21GovVZfDyLrQTwIrOe5LtIdMfaVz7+4fyWwmOpz1TlK6RAqzck1630bGsOW1BmH4onY32MbMG9e/fg3r17AHC+A+HTTz+9cD+AZLxT0MnFISkGn9BASLvQqZAu635E33chaEEun3DV/vYZ96F3TWF4jW5LwK0MIYRBQ/p7kd1PkjOciljhHBpbCVZjMNTfll3paEhr9Glt1Gq1jVO0tB4pkKo5ORpNIVSlgKy47PZ94PPFYkjR/+kzOGa+98Wyy+XSu6BfVn9dhdMWvncZj8fw9OlTd4euBaHg1VWBb1x9fRIKzGnlNceeIuaezSoCLZqdJele66lBTQdjWdwZ/vjx40L2jgQafO33+7BareDzzz+HH/7wh/Dv/t2/U98B74XxBXck8L6i74l6Jc/zjdPmtN3LOjGX5/mFXbuYujn2XmQOa1oxjS7JZsyyDBqNhlu453aWFVU4UUiftrGTnybehu7lPEi/T7V1y0Se5zCfz939baenp/C3f/u3rm9arRa02+0LKfOLtkmBYwYALgvKs2fP3HiuVit3srVof0mnFjXbZbVaQb/fh3fffReOj4/h4cOHLsU68j3KKh6wlKAFe7VyVevtLMvc2P7iF7+Au3fvwg9/+MML5fgGucsCjgniqtrOmrylfCLN/Rh/gOoGOj6XYevhu1Idy+mgix/8TkbNZwi1R0/XNhoNaDabMJ1OL5wa9j1LdYK134roUmuAN/RdLJCGon7PVZ1zHNJcKlNvabEI2s90c7ovvXpZMSWt3iLyIDUWZ1nk4ajVatDpdFxmBGmDYio4PRJ4f/loDr2Tbx7HyPkYmaQ9w/0pqU56opLKSFonnojFjEmaDuP0aO9UlizhdPArbyy+ndYvZcfoyn73quu1gvs3q9Vq4ypKWo7SKK3BWHjeN4dxzNfrNYxGI7fJQ+sbuumQZ+Gg9Vrap79RO57yIeWpIrK5zBhUVXyTWu/LYmdQlEmzN02x1jAy8M7ODuzu7rrfm80mtNtt2N3d3RCOKDipU6UFQrXUbFJZWi4ErQx+HwqS8EkamhSxk4RPYksdPmFsERxS+7RMjPBJQazSs5YtwznVAr2UXyT4+ECjP6UPY/gtJRBJ+1AL0vL6Y/uclsfdTNiWFlwN9T9/B8t320SKY74NcN6WxlyC5PzGBjikgKgvmBEKdPDfU53VKo2Ver3u+Hw2m8Hz58/dhiXJsbXSfBmwOKg4zlpQnIM6iBKf0HL0f61O2n5It2H5VqvldlpadJVkkIfKWiHJYis92m9lB4ekdvHzzs4OnJ2dwfPnz2EwGMB4PPYGUEOwBkdxrknfS5+3CTyNFkoNjU6vJbiE5fGdpIWiVDli6SeNxlSbzBcwiaWrauezLPlsdbh5wK3RaECWZe40OqYIbTabGz4bh8W23cYcseqGorDKDauMqRIhfRVj29CUurTusumtEpcdgERIdmVR/zQmmB0KTFp1RWz9WpsA55sqnz9/DtPp9IL9ZqnTapv5nqf0aHTi5zJ4NdW3oM9b+SaGBzRZKn1v+U6joWxo9Vt0YhGaYvon9AyCLnZpNpjm01h4VesDzSfapv/o8+vQFuHltPcpg3Y8wCMdIPCNTYze1cDHI8Z3keS4Rb7F8DGWp3RRX9naBv6ekm66DN60yN/Y+IOljph2uM1Oy8bQb+E5PqaaPPC9qyZ36TP0f/S16VoP9zmk+IivX3ygtix/J8neleqnf+Nmck5jrD0llavSB30Zcd0fmzAtxkodtlqtoFarwcHBgWP2/f19ODw8FOvI89x7EhbB09fRZywnYun3oUmdGhzyBYVT6vUFb60GN33WsoCt0YBtWgJ4VgHuQ5kGYpkT27cpoMygUcj40Z6x8ltZQSWkjc9B63ykv0upyBaLxcYuIuvd0qGghJWu7zo4fxfpL6tzQmU9/Y3riVj5RXfPX0Vln2Xnd7HgvRaTyeRC5giE5FgXbfsy5gJ10mJPJHInmsPyPrgT0noaFO8emc/nMBqNTDxt4bXU8cR+iwmGWdsI9W9ZePToEfzyl78EAHCbEKyQgnNWudBsNi+U1dIWl4nQXGu1Wqq9TMGDevxuTK1tmgnGx3dF5b1WL7ZdJm+lOsLfRtAARJZl7o7EwWDgTr1m2flJyNlsVjm/X6NcIA9bT3mEUMV8/C7D5wdZYY1NoO8VoqUIHUVt5eVyCQ8ePNhYaKF2Vwwt+HwROR5jKyFi2kxNpY5Ioc+Kovyg4bsUQKW6NbS44styo12PIcVT6O+0He15To+GlHFL5c+Qbc5T/vsQSndqna/WTC6xi5ixiO1T6zxOWdyVaKPxQi0OZ6UldjF223LFsj7wMsg6zacDkMcKx5fGE2LelfqU9NAdZgVYLBYbMTzcJErbtyBUTttYge+1XC7NmaaoHNdkE4/Ra3LbR7f0e+w8oW2/DPxZFS4rllkVNhZjNYOZ7xzIsgz29vZcOsVmswm7u7vQarUgyzJ4++234fbt2/CXf/mX8M0338BkMlEXYrX7I5fL5QV6LAusnF4NZQxikTR/mnCiDGah37roRPtEEyg+w0+qj7ZtUfIp4HRLtPJgMk9HlIIqJ7kUWI5BTJCdP2dZuAUAMeArjXXM2FLFiIobZUrsfA5tDrheiL2IkGywQFrUiHUMOejiaagea2pXTVFLc6Bqg4bLaq09Ksc4r0vBOQTfzRczT1LeI6Yu/k5lLfpIDgXtW032+Rwv7ENfmmh61yKWj9E1Gl9S3rDYAL739OlxPI2KTrYvlU8RzOdzJ9cHgwH8+te/hmfPnkGe53B2dgbj8RjW6/UFRw3fCcfDt7FCsw189xtRZ60IQg4VD9aFsF6vYTgcbiwSp9hNXH9T2lKcPjxNiRtntF3G9DnNNvX1CZ1DZaSP5rJQShdcFfD9LIHUKukom8d9ddIx1eaGNkckXuB9xK8xoL/xuS/RjP80udloNGC9XsN8Podmswl37tyBw8NDuHPnDnzyySfw9ddfO/6nz+KGYcud1FXboVa/AuVys9mE+XwO33zzDYxGI9jb24PFYuE2ilUxD32gp5ckWRHbfyH+leRUjG9lLVvGuNNA4GUH4LSYg8UWtPiTvnfEOjAOhSm3F4vFRn1UBsf0F22b3peo0cufDdXJ34P+bqWziB+XMp+K+HapsPJU0fpD0HR5SL/js1qd0mcfraE5wdvW6pH8ZF99IcS+CwLTidbrdWi1WrC7uwuHh4fODnz27JnL7EHr9vnBPlje11KXVI+FV2P0hS8OYmmD2+AhGjV7HMB/7Qk/Act5NGV++HxqXx9q9l1Z8QZOR6iMVk/ZvFI2tPHTfCbsc8wihlcOUfAYDbehfXNKAvVNpZhPzDtwG7BWqzn7AqFt5JDGVJq7Ph6itso14vFt6ruNxViLkYkTYHd319392Gg0YH9/3zHYq6++Cu+++y782Z/9GTx8+NBbd5ZlF+4GyvPzXQ0pnRwbBLPWxyEpC197FkfFWhd9hgoAn6DXgheaI+rrP9quRr/2HG8n9Ju1Tyk9ZQQSYgynIs/zsrF8GxqjGLp8fRh7Mo3zIio6Wl+tVtu4bD1lvoYMwG+LoI5FWe/tc0JRloQ28YS+981XKw9zGXgVgYEdrV/oBgUpaKjVqZWrsi/4nNPGRNJPGnxyhH7mDqG2m5G3HWofZZR0kpLSgPeg0fr5yfLYgAY6KTHl6d8AF+/H5HQDwIZdhbaXbw5bIPHdfD53dY5GI/j888/dhrzhcAgnJyfQarXEFMJIW8hx0p7z/V70XaX6yqgjz3MYj8cuAFU0mBBjm/rK8FRP/J4pXz0+Wafp6ZjTmxoNqcFEiZ6YuqTnuNONn7kjfxVhDY7g776+ssp+nw/KfRVeVpr3kt8jBW/q9boLGjUaDbh586azV589e+YWY3nAhfqqEo3aO0l8UTa0ulE2YCrrR48euTv7lsul+57qOUtbMTRI4Ite9Pmy+knzdav2G1LlSdl1WNvQENKtsXEO7Tvf87jxIcvON85xHpX0k09ucNql99DiJKl8Itk3RXV+Cnw6VLK/NBottJc5x8qK71nbouCyg//G9YCvrhBiY0Gh+n02Nf5v7VvNz/DVQX2V6XQKrVYLWq0WdDod2N/fd3UMBoMNW7hq/96nv0Lfx8g8bhNIcgZB7xqnv/G5psmlkA+lPUtBF2OlrHhZtnnyW5IRvC0OPl/ws9VP43NO4r+QXJLGM5YnLHTS+iU6sJxGkw8hX4aWC70bHw/NL8PyjUYDlsuleOiOzlvpsIHPZqe/a3Y15xvfu2qHOejzNCaNNGuyTvrbN6dDZbW6tfpifLSriDJs2suwm6qAN00xCkScYFmWwf7+PjSbzY2FlTt37sC/+Tf/xk20n//85/Bnf/Zn8MUXX2zUJ01UHoDEdKW8Y61HzUNIGTAtkJIKq2ANTcgqnTKERSj5UIbz6auzipRb2xBwKUI4pV5r/5fFS5agG03vhKcKaDCWCujQKacyab9slP0e1v4pK7gQG1RBWWqZ577fkKcsuEoKe2dn58JiVIwT7HP6L/M9y5L51Oj2LTTSsinyTuqr9XrtUkc3m01YrVYwm80u9Ld2qt8aPLY6xZxm33f8d0wdFMpAUBQ+fqSo1+tuwdu3YBFqBz9bnkUeuqx5wZ3cWq3meKxerwfTqOE4cv1I/7dCc+aKoihdIZThdMXyGW+bBnsAimXHKQJJBi0WC6dTJpOJW2TD0/BSWi/MqoApjQFeLDBeY7ugPEbloqSrXiab9yrZXEVB536M3cnrQFB/CGV8bIwBeUTaKFN13/PAOdKB91Snwmo/AQB0u11otVqwWq1gtVrB2dkZrNdrdaOX1h6ATcdI121YfSyuU6y2i6UNK6ztatBOJH2b5rkFfEz5xjU8rIJlitrfvgUUbtOVNRb0fQBs9g4+o5XFDaAAL2wSzJ64u7sLzWZzw0cA2I4ci5mL9LlYcBkt1SUtOGkyUZMtGs0SpDiqxFN0UU6jJcYno/Xw+RMDbDP0bIxeqRLWOE9Rvtf4NcRrAJtp+KVT0Ag85V6r1aDdbrvMKpPJxK3noL5AHgqNM48D+eI+/PoNSiu/SoBuLqB1+GKgSC/66D4bjc7tbfNZmXL/GtvHBWtVmpB0MrXbbWi32243Yr1eh4ODA3j77bcdk/7lX/4l/N3f/R3UajWo1+tu57DFcZFOScU4o75AUwyjUsb2KR1rXZbvtDJSO9wpDCE16FmkTa0+qQ5en3WBRgpghGgILfJw+sowwKTnrH3JnesiQj7UZsq4UllhAVWUXC6E7ju28oXUZll9mIpt0KAZCJa2YuUjfYYbH766pDnG528V8zr03TbHA4FpUQA20zVbIRl9KYE8S7mY3/jiBS0XS68UbMDvJR1SdBwxuIiLG81mE5bLJaxWq41TGDGOp9SGhtDcsdSBv2s6m6aDiqFNg9b31AHDHafo2IT6rkyZRduqUvZbg7LoFCKPoaOnBVTwGWsAOEUear/5xqkI/6SORxG+jW2T9iOdT0UC0Sm2OAWnndpR1OfiG90k2YHP0CskMIAitWWBVVekykBr+1IwUWtD0iWW4F5Z8AXJNB6LsSVDZfC0YZlZAyh4/2t8UIZs5n2Yokc0W9YaZAv5jD5+9Mm3IvMiFE+wgstEDnr6hcqRWNotdiFeddBoNNxddZK+8vmNXB7jGMfaJviMb5763kWLM/meCdGk1S+9n2anS/PWqkexnar97RjfGn+XysXqc98cposDdFGgDH9WareqPua+uJUHfHqLy1dMNY6LOdwmDi0Ca/I01SYM6d7YNkJt8/Z97cT64lb45g/6xBZo42D1/1P6VLMtfO1QpI5hEfvfEgcJ1R+yDflvfJ5oeo7TKOkGKgfwmgD0P/A739UdnC9CSBlXTrPVP+ffoS+gzRGfHkiBr+7Qc0X9yiIyJBVFbJnYdqq2RVIhLsbytAMAAPv7+9DtdqHRaEC9Xocf/OAHcPPmTfid3/kd6Pf7ovB+7733oNfrwc9+9jMYjUabDf//7wrAXVDYFr0nAKCak49WlD1oVsM1pR6rgUfrCNHD+15zQPjOOb4bxYpYI1UymCxGW9k0VQHN4Y1VJjTopoHfp0Yd6DKDI3ihupQGNDRukhPgg0+4X5YwDtFQlqIog2etdGj3P8RA2q0mGaqXNRdTIdGrpdRF+Pq9Cr611ikFrUJ10PtAkbfLOEmGC3mz2WyDLzT9BPAi/SnXaRIt7XbbLcYuFgsYjUYXnL3ZbObKAshZP7T6LeD8rukDqWwIOzs78Morr0CWZe4aiUajUer8ms/nkGXnm/dmsxl89NFHjk4L71O5EpO6FuCFHJFSIlUNbg/FnIbg/RNzskeqB+nx0crtfa2++Xx+IdCI7RTtX+qU893xsQ57qB3fPNoWrMHMEKo+6V42+HuH5icP/GBABH/jc43amXmeu40zWJbej815DReuAQBmsxk8evQIbty4Abdu3drwT69if1v4R7M3cZPMkydP4MmTJxfm+GUAZb/VVrDqFOm3kE7yoQz/COvgPhcuRKBslhYwrPVfBUiBvlj5h+XwOo/xeAzT6RQODg6g2+2q5fFkS1GE7Ey8did2bLi+tgRFQ5uWJbqRz1PkhS9IbV0wqBKaby3N7SriepbYXr1ed/KWy7iyaUTZbbWdNRmY5+dZMnDO4cYtet0Jf5betew7IYv0jcdjx0v9fv9C+zwm5eMzHuOU3qdMxI6Tj36uA6h+4mXK0s20HfodR0xMVZMVWt28HN2wCwAX1iN8cgzvLKVXHnB6LO96VfQmhTXu4kPsJktfX/h89CzL4NatWy47wHK5hIcPH5oz7vhO4mr6RrItOCwbCjhv+VIba+1rNJTNVz65fdk8zG2DsugpUo/l2Rhay3wvMdojMRHN6d9qteDWrVtw+/ZtePXVV92Ew3tnsiyDXq8H/X4fdnd33cRC4O4JTM+WkppHgtYpZSrgqmgs8ryPJosS9QV9eRnL+29LCPgcvCLYVsAl1kjAMj6DThIOsUohxmnT6ve1Jzmh0vzXyhWl57IU1VVQkBZYAwK0LDWSQ0ajZlhZZVtM8EZzGGPrKhshw03qQ9xxSAN0vmcuG9RY56lqAOxzmQd9JLlQBd0YfKDpxjDAP51OzamTQ6Dv5ZOHfH5Z52ie587WwiAJfuYbIIr2p8S3mOIZwa+5oGWlvy26ylKuTFjtKqk/+BjjBjZf0JTOAx+k+WWxK0LgfOJziCV+LopYW0SSjZIuSOmPmHfife+TfbG08PnL66LBXkv9MXI5FSl1h+wmy1jyACevn/LHer2G+XzuguZa4NNCl9U389WVOh7W8QYAd4qh0WiId7da2rLIJt4u/VvyO61tp6IMf7yK8cF6JZ0oteeTw1q7ReeiNdCm+X78NyuobMOMJaEgq08vlIEY28NHA+1Ln48f0z5/NiRnfH6YVaaVHYSN4ZdYuzuWBkud3FZL9T236beGxorapTG6LdQmbmBAewb9FbzH3WLDlDGPY8fX8p30rKUtX2wzRobF9ovvHWJjOyntSv6tVG9INnJeDulNSUfxMfD5cikI8bSl/qL9HfotpK85jbQcxk5wk1Kz2QSAi4vrse+vPWPtKyq/rPxsmfeab8H5WOJrn86XaOJ18I2tZdrEZdi3RXWt5fkYu9ZiH1tQph7eWIz1OUGvv/46vPXWWwBwfhrkD/7gD2B3d3dj9/4XX3wBv/jFL6DRaMC/+Bf/wl3qTNFsNmF/f/+CwBuNRhd231sQG6QpA9sOMNHympIvyzCy0IaMTAOqvsBQFaDpIikNGixOAf29ynRdVQLrp2NjVWpVpaaTgGn0aACMInSHHqLq/rQ6KN8GxMhSzQDgdWjzyNpvksFUpM8va6xCPBQKwjQaDTg6OoLJZALHx8eV0ekD1dkWWVHW3ECHnJ60leiSvgvd6Rq6B73f78PNmzc30njmeQ6ffvrphWwfKeB2UOwcpOWlRQMMVt67dw8ODw/dad8HDx7AfD6H9Xpd2i5rtAGy7PxEbJ7nMJlMooJjNNDKs6RI7eH/3PC39iOOK9VFljZpWxLwBIQE1Mfr9Rpms5lL8eSzOfCkttYufefLlI0+Z53SWMTWwOe00x/SggF+XwQ0WIg78NvtNmRZFn16u0xIfNNsNqHb7cLp6SkMh8MLdzTz57dpu8fiqtlX0sYJBNcp1P9NfY+iAZZt2agxwcmYwElRWN4fy1h94BhYA0mxfjraABLt+HuqLxf7nJRxRNOVRcc8yzJoNBpO5mKGFEt2D95XFlpQNtKYQ5ZlG4tFZSCmnpi+5GVjroqQ6rHEm/D3y8xsVyUs8gRtBB8wzqGdHk0JYhfRF5JPUa/XYbFYwHw+d5kMcWMwt5slvow5pbtarWC5XMLBwQHs7e3BcDiE+XzuYsPSpt6rCMtCW1XtpfCR1S631EPlSpExwjmh1cHtfM3PR0gZ2Ky4CrzG55aPx7SYnO89pLmb5xfveKV9jX2J8mAymUCj0YBms+kyV+zt7UG9XodXX30VZrMZPH782MV/ffGX2DUNqT9CelKz9yS+8fV3zFoEvrN1UTrUlvb7VeDZbaLMPoytrwxsLMZKBgGecO33+9BqtQDg3NFvtVrQarWgVqvBdDqF58+fw/HxMUwmE8iyDFqtFpydncFoNLqwIMuPt+PORkugS5poUlk+ySwCnddThtMgtUd/1wQgfT5FWFlok9q0lCnK8KF2Y+uz1GMRYCEhFjMxq5rEMcF6+j7aWFqCECEDz2L80fa4kcVp4HOw6Hj45ngIVsWXUpck7H0KwCcfy+BZ+ow2RzWZHDKENVidet6e729fvSE9USZ8dMbKKzyhYzX6tmlI+N7LwhdFZbe1vM+ewOAaprKksgh3d+7s7MB0OnWLmEUR0u8h+rV+o84DLkbv7Oy4E74og/EOXFq+SCBHohX5MDYoV9S2ia3LF6CtYh7R/vHx0lUMOmmyRZOlMXraB85TIVicUloXBvpwBzedD/z01WWOCbaNm1Mw+DWfz92p99AmkzLtGiu931bwwFeqrckhzX2LzrDYR2XBN8e4D1JVO9ZnQ7DWzYPAVT3rG2vJhortmxg7KaaeWDpifB7aHs41Hvjnc1CrU9P3tJ0YncTb9tkRWDd9hxBSYiWx9GM/ajxH+77qOW3VUSE6th1URdCFQ2kuV01XkfHh2QyxPvQbirYhxZ0AzrMrjsdjF1tGvxc3XywWC2fbXBXbOGbuSrIpJnYSq8tCctAiJ332jCbj6LNcNvto0/jCAi1uVWSOWekIxZVCPohUl+RPpeiqWL9Joo3LfS1WgDEH3EidZRns7+87X4Uu7FY5jyUbOKTvLbFGX1sS7xbxwTS6YuKdFsT4gldF3oZieViuCLZtM2wsxtKd94i33noLfud3fkcMptVqNej1evDkyRP4y7/8ywtK+le/+hU8evTIG2yaTqduATfm5cvqqNBkiQ0cp7SDiLlPL/XuAN7PVkOClqOnodFA4wHXmH4qOmlQAaRim5NuW45B6G5KXlZDkXv3pLZx84WksDSHRavb2o+X4YhZUDZdZStKPu9j6I1ZrNKckW0p/stw1vkdplL79HS4lAkA9ZM01y+L532Gos8p0PQs6pXQSfmQPAjpySzLYG9vb2PBktKMePTokbtbrwwnwrdo4gvsScBTrlQ/Yyo/re1utwt5nou2X1nY2dlxd+sCXFzYqgrWu162gSLtSvM+9nk+58qwuaQAS2r9oXvqeQA+tR1OI61rtVpBvV6Hvb29jV30q9UKzs7OYDqdqqfztwUMaKzXa7h58yZ0Oh24ceMGrNfrDV/LmllkG7gqQdNvA3z8Hzs3qrZ7YgJZLwv4AgvydsxdoSHfjI5LjH8v3bedar9rKFpHql7Ati39wReSYmwobvfhnZdWZNmLu2MtZWPpk2gNgfehRkee5+7ubMykINXFeV+7v7bKWFksqpR12oICLjygPU5T3kunrVPbRmiLCbEL/UivxMOYWYeWpW1Q3gB44ZOE6Ma5fXx8DCcnJ/Dqq686n6FWq8H+/j5MJhOYTqfuuyI+WJn84KtLsotD9rzme9K/tfhvbNxEit36aNDqkGihdGMZTff5Fpws8oTXFxP/tCBVplEZX4YNXKQeyT70LUD62uGpw6m/MZ1OnYyo1WrwxhtvwO7uLpydnW20Qa9/kvSIlRYrKB9S/U77gX72XU/C6ePtWMaJ118kJlK2nXeV8W19P/HOWACA3d1duHPnDhwdHUGtVoPFYgF5nsObb74JBwcH0Ov1NgITNO//8fGxOxVLmb/VarkJKKUgCHVyyIGhddDJkKqsfX8XBRUyfKdJiBZah2YI+N7dJ+AkYR0qt63Jge8q9Z2vPH6m0BY2pLKhuouiyoXrIkHY0PtZ5m6o/2OViNWQ/TahLEPEWpfViKBBD998KgNVGBvbXPDV2pTmJ/19Z2dnQ2/iYlsoPVpVwYfUAC/Sy2mW6tPawMAFBsgswUwAm4yg383n8wsLmPV6HVqtluN5eqK0CvD5o+knn+7DwBrA+dUSe3t7btfq119/XckCLNfN9A5CH73W33lb+C82NRa1P4vILmkux75jWXOV1hPSk7FAPkqVl5bgDrftYoMpIdtQCgBq9WCZxWIBs9nMyYOYsYoJaKWCBtLw/Xd2dtw8L2uOF9Xnmq8ijZn0Oz5L5zmvq9PpQKPRgMFgsJE+kT6L9S0Wiw0dgvIgyzKYz+cbadyHw6GT+3QeWHhZW5Qp6pOG2o5tg+pWHkyS3rUK3qZzlgbLyr7XHOvBNiU6Ytuh5YsGbrV6L8O30Wgq8ryvLH9HGizV4hC44QwXhhA8palVduM8D8WSuD6hz1B5ked5pbaiRJfPLuTzyxc/KoOelGdDfFe2fxmip6znsux8cTZm80ZRhGItnA6+kIW2j0S3xUbD8r5rzbgdjRkVa7Waiz9b4lhW2Rurt0K2Y9n+tmbH+8pLMtJCF5UJqbqL1kNpkuqyyEOfrRM797lelp6nZax9QPvWQo+lrKVfNPp9/U3b5zRZaJf0G12Qla6Zw3jP8+fPYTabQafTgU6nAzdv3oTZbAaDwUCkl9ImvbMmV6V35r9bZRV+lniHl9f60DIePt/HQqOPJitibHlLLK0KbMOXvmyoi7G3bt2CP/zDP3R/T6dTWC6X8N5778Hrr7/urfTLL7+E3/zmNxvf1Wo16Pf7G7s2MViYwgRWxDD5tlBkR0RIOEhlrfVyw8rad+h4oGMUixjlyp2HUIq/WFjp1+ou2ygrE1qwS0JsINRSp1bmqs3Pbysk48DHr9q48FM3IePIynNVQQs2bJPvkAbfjnmeGQGdFnpSCxdnZ7OZ23ldNGBmhaXPfLykndDk5TTU63VzUEsLvmnOIjobq9UKxuPxBT3QarVgf3/fpTDF1MVlweJg8HL4WeqT1WoFk8nE/d3v9+H27duws7MDs9kMPvzwwzLIVulF3ux0Oq5/Qydi0RbkgRof8LQB3lmDgdmQ8Y5jjeVw0Tg2EwR1EJHffHzhC5L66I0BLqqUJeNw7Gj9ReqSZBbn4dQ2cJMELrbRXfs8MB+iE+cQBg00YH/z3eK0LiuK2o84F6bTKZycnCTXkwof/dj3dPwxOE3lA93Ayxea6b2QvK39/X3o9/uwXq9hPB67uyTxeQzsYqCI8jTKgnq9DuPxGH71q1/BwcEBPH78GJ4/f+4WgS2n+pFuny5Mne9VBCWwX62ytyofh2/Yws1P3D+sYiEmJoBpAbe1i9rAlkBkjM66qj4qB857KTUqzmnMttRqtS7EBjR9bJH/tH3Oc3meX1hcwmsf6DO+zRg+2yTW/6b0hsaX2ru1Wm0jk4pWbywdMfD5pVeVTyX5YJFLqH9ww2eZfmhIDlj7Em13TA08m82g0WhAq9W6sMGL6zmpbWpjY9n1eu1SmdJyOOYnJydQq9Xgtddeg52dnQ3f8SrGdMsEXzT08RXnw9R+4b5kSqZBrqNDi4YUfLGNPifJb8tc87XFY9VSXKAq+BbvLH4D92NibBUtZhCyK/Afznf0lfGQHp2ftVoNms0mzOdzWK1W8NVXX0Gr1YLf/d3fhX6/DwcHB3B8fBz0q1IR6jcAUMdeqwffPaY9qX3aNs2KEBObt6BK+fgy2Y8vE1QrbLlcwmg0cn9/73vfg6OjI9jf33cDMZ/P4cmTJzAajeCVV15xZT/55JONurrdrnOAkUmWy+WF3ckaLAuPHLEKW1NmZTA1N9jKqj9WAXMF6XPwJIROuOD48pRzsYs9Vviet9TNHTdLuZg6i9RTBFogwGcocx7l4+YL7nJFLdGAnyV+KGJIWg0RqwIpatRK7YbaKqNuTZFLhpvFQLb0F6/LZ2RyGmP62SqTfXJ2W3NPekfNIcD/LUHb9Xq9cUJLqmvb0NqV7iyk76KlrfLJJwo8seTjf41e32lu/g67u7vQbDa9tkSZd8f6rinQaJD4nPb90dER3L17F27evGleyC5qZ1UtZ4vwOw34xwSviyK1DkmGSEGPMtqxBDg0ecX1DAAEbXuNByQ5HmurpiLLzhcH6T2sAOcLQ81mc2PxH09NAvjTzWvtxHxPgX1cr9eh2+3CD3/4Q/f9dDqF6XS6sXmHyuPY4E0stqmLttGWZT5YyvnKSvyPZfm44T/rJuZvCzQbsmp5oPks/NQlf4bSqNXryxISG+Cj9jqlOWSPV8VDqTpJCgBbMZ1O3TtbYkaWoK0PyAO4QYTzSoh2y++x8SJ8xje2mk7Nsov3pVvsct88jOExX7+F7IhU39Jap1ZGmnO07Tx/sVCRZS82BGn1xdKtxW+4PJDa4XRLNhbe1wpw7nft7e1Bt9uFp0+fwmQygeVy6WyMPN/ctMfjQbjIa03NvF6v4eTkxD2Li8DYp3TzJO+PsqDFRayxNA0hn4n2mzUWg31L7W9L277fLLpMi/Xhbz77hctpiTYtG4nmh9A6tHY0SLSl2hwarb7xlO6ZpllbYnwm6d3o7753sdiqoZiIxg8A51ls7t2753zxs7MzGI/HXp3v04Wh+aT9bv2e1ynpew3a3EZ5SRe46fvH2k1V28K0Lf657La1ORJrT6TSVaVtrCG4GIsEvfnmm/Bbv/VbAPCi4zGd02q1gldeecV93+12XT1Zdn46AlNN0Pp9KbQoo1fdKdtiKKuh7hOEIUHrq1MSJryOkIPCT45wgUiDnHmeq7uaLDT7oNEfQqj/Qn1cJi+WxW9c0aX0C4U05/C7UHqdFP5M6YdYJzXkzJXRXgxfhwxbaz1SOU1mxoxBLH2xfehz3ml5Sx9o8zI2CFAEVgOSfm91DADODdzJZLI1gysEH+08XRxCcvxjkee5W4zV6vfRrN2nxlGr1dyJZF+5Ku4+jXH2pPeld5bdvHkT3n///WiHwQqrDNAclxQ5HkMr1438RGwqrDKe85llzkvlQnKXvp+VPitN1rI4NjQFdMhh9QW1aKDNEjgoA1l2HlzHU/jj8RgAztN893o9V6bf78NyuYSTkxPI8xxarZZYXyhAZwngUblG+7Ver0On04F3330XdnZ24MmTJ3B6erqR0o+ffLoq+gNR1AdAVOkjlm27hiAFO+iJUUl34fzYdgChLMTafdbgalng8w8/azKK/maxdfl3vmCURJelH6RgbBFYaCli5/ENUyEZOZvNvLRYwGNOoblPs3KgzWXhXWvANcVm9skBqqOxLOULzBCCfYl1hfSUjz6LjuN1aXXw95B+u0o6Ls8vZgQqK6OOFF+U+toa+5Ds1Z2dHWg2m7BYLGA+n0O/34e7d+/CcDiEyWTiMkXgO0npSpFWunDL6dXe7/T0FLLsfIMcvSpiW7rOJzOLyDZet2+OxMRy+LwIxQYtdXL7k9ZHZZM0D2ncmMpImrXA9868Xsu4F4kv8DakfivKdz5fQOIDyu+W8YuxBUI0+Wj0laHZqaRnMWUxrgMtFguYTqfiiWyJ9yw0aM8DgGibxcYitHLWvuR3LdM54quzKtkXq6cpLPKFtlOE/pj+jqHLWmdVuLAY2+124e2333aBB47VagXL5RIePXoEk8lkQ/n++te/hg8++AC++eabC8/E4mV1KhFWgRg74a1BfE6LJNx9ZSzgR/15mrayx1AKSJUNq+FqwbaDI2UYDNq4SUYRfUZKy4Z1lXlv1lVBqpDfJsrmPTScre8cazSlwOq8SGUuY376TidaHGjcIUx3S14mfO1To1JKC6MFlDWs12vnzPvkCg+oAYALmElyDP/G1GHT6dSdiG02m7C3t+d2h3c6Hdjb24PFYmFKu5wK6gyGdF2MDfHRRx/Bs2fP3MJ+im0WAx5AscBaljvz1AaJ1YV4YqGoPEJHFHVizAlcWofvTttYlBFAKut5BJ/r0m50KQgUC+k5HmjRAj8S2u02ZFkGT548cZtCUoIf/Lcy7U6tjcuwVaR342PK5TKVefx5GsCgp2UAwKVQrNfr0Gw2YTqdwnq9drKfB4hCung0GrlUa1TOhDbobBtlBDZQtxbdXBQbCMW+XC6X0Ol0oN/vu1Pojx8/htFoZD5JVYTeogFcKrsk2Z1av5aR6CrYfinwLTz43okG/TU/U5Nx25yruGmCLzhZAp1FeMX3DL1GylovTVGL9Vv9KgB5wUn6XQO1TfkJy9DiTVFwHrPaT9pvtN/X67Xz3+gzRQLg+JkufKbYnbQutF8pjfT3e/fuwdHRkXufhw8fOl3LNw5RaBssLLTWajVot9uu/qso/1JoSuEBiSe1uVYGDVSfafOPbjKgWRKpP+6ThVimzGxT/B3ob8jf9HocrS6LHy61p9Hh03OUJm77liHnpPnsq9OiW3x+Ftp3n332GfR6PXjjjTcubEg5PDyEbrcL9+/fh8lkIqbO5/KuiIyjhxxCY0GfkWJLqXF3LMuvYEi1YSR7qiio3VCWvI2xI75L2OD4Wq0GnU4H7t696yYDTXMFAO5OruPjY2eo4XcPHz6En//85xsNlCVcQ4gRUkWDJ7E0afX6JrGvnO9d+XOS4NAEp1RvaILzgAp9TrsHTHs3H7hxmFIHR+i5soKgqUKSByN9Y1S2sy7xjI9uyUjztX8VglllBEBT37GIE2aFZd7H1pdilFIaKF1l8UBqH6Y4LTHg8zfUFp9DKPNof6NhWzZ9oXKUJg4pAMONZU1vxNKb53kwGI5laOpQXGjji4N0XHCX93K5dM5CvV6HXq/nHMt6vQ7tdtsFVKypf32gxm6sXLAEtSidjx49gocPH7o2qg6+V3VymDvU+L3moEmBCko78ou0ycEagMP6VquVejrcUg/9LoYWSgP9OxVlykWfrNFkBP89VD/A5kYMnxMp8YFPr+FvzWYT6vW624yaYmdpgbQy7E1NP5eh/1Npwvbp3xSS76DxMJ2veFckAv+mp9VoPZgmkV6j4qN5Pp/DZDKBRqPhNuNY5qNVXlhRxbhJvkWRBQJeV4xfh3IbrwbY3d2FTqcDz58/39DFse/lo5OXL9LHIb+naP0cV8F3kpBCV6zM43I+pk1tnCx6R+IbKQbBbUo+L7T2QjwT8r2lZ/hvobro92hj0/vtpGe5vyLVR989xvejthi302gd1jqtOrZo3EaiDb/TUq4WBeW1Ij46rUuLK63Xa9jb2wOAFxmbHjx44Pwj/D6mLcvCSpZlbrGX+8A+vvTVh8+WIaOL2vuh333xCm5DVxXb0OiWYheUB6gvrs2rsmgNxeQk/8DHAxbZqckgaZ6H7E7J7wu1b0Vonmj8Y9FZPpt9vV7Ds2fPYDabwb1791wZfM9utwvtdhseP3688f5l+bISuH6y6nufvqX1WuxQzY5IRYx+1SDZL9a+L9vWtSBF9l9FbCzG/uQnP3H3JSHeffddeP/99+Hw8NBd1szxxRdfwJ//+Z/DycnJxvedTsel+8rz8/SCVsVXpEOLMqJFWPrgC/5Yng8Fpyh8F1Fjm6H7ULPs4sIpF0zcOKegARGpLgk+h2Dbk6ksI75s+BydIo6CBul0a2x7VIDzdAtlLFx8m1FGMJYidMdzbN2+MZeMUAlS4NXStlSnZNhb6tumsZC6gzfLMjg4OHDpmdDRRVlrlbOhNsoE1Tc06JCaFpa+Iy5whcBTv0inapAmbAMXWKRF3jw/X8B9/vw5PH36FKbTafR7SO+FwDuZcCGB61fr7s8sy6Ddbl/gifF4DI8ePYLbt29Dv993th2moysDIXvHilgeWa/XMBqNNhZfQsDUrr1eD3q9HpycnMB4PDYH/EOOewh8c0VR5wXrKiP1XRE7h/M0n2O8nSKgC92YdhrrrdVq0Gg0oN/vQ57n8OTJk1I2BOApyd/7vd+DV199Fd577z04Pj6G//N//g/MZjOYzWbQbDah0+mUemreOib1eh3u3LkDi8UCHjx4AFl2nkpZkimpdFwVXGVnG30k1F1UXnBwnxD7mD5PfS5fIDMWVffhZQRlsN0q66GLBwCbY1UFaDpH6VQZ7eeq70+MhaV9Pjf4wp21Dh5kD7XPF2Ji6QR4oXt8GTWkuzRDtBWFz49H8CAr1ROoQzm47xbi+bLmIvZdWel9ywLnO/q9D1JZHgCPnTsoG3CxGmWSdC+1ld/n87mzrfGZhw8fwvHxMbzxxhvQ7/c3nlmv1zCfzy+cYOX1UpnGY4rYp/gO2C5mm6mCB66yPUFhHTssQw9Q0d+Qv1JlkBZn9i0g4m/SmHNIdG8bml73nQQtCkn3baMPLOsNWozPZ9dK9U0mE/inf/onaLVasLu7C/1+Hw4ODlzWmtdffx1msxl8+eWX7rAfTW1OIW3EjoVEq2X9hy9UlrWR0QrezmWtUVyjPGxENw8PD2G9XsN0OoV2uw39fh9u3rzpdjLgjqT5fO7+AQAMBgP44osvLjATGgYovPiiXYgJQ45nrOGtoazFAevzUlnLYgZvl5Yp4pRbDXepDcsCCS+bOlbWBZ/YekNliwq5yw5KWIV9arCHOsExTolvPEMK0VfXZSmlsgJj1np8MqKqPuAyJ2a+poAagZqTWlRml4UyeJC+a71eh3q9DrPZTExb46ujyjnAAwf4mf8uyftY491Xv0ST9Dx1QKX2qZ2CC8f4GYNU8/kcBoNBaY6YJjO5oyz1ndY+BjBo0Ha5XMJsNnMLVdRRL4NHpDmZUq/FNsDfaT/QO4ik+iRdjqebe70ejMfjjbvmfLAGifl48vLWYFsouBzTzzGOdojPpAUBnw6TApax9OLf9GQM/Y2ON95zlioHMYhI20G50Ov14MaNG9BsNjcyBmHbtVpt4/S9tX2fvcN5Gd8R0/RiO+12G2q1mkuz3mq1LlwdUhTb0KPfFvj6PWQ3+XinDHlQFiTepN+n1BfjH8a2U4RvLX5wmWMQqtNqS5VBG9e7RevT6qb1W57j4PrSanta2vUtNljqj6071RfX6veVxb6iixA7OzsbOsTXflmySGojtOhbtU8n2echWmJiZhIsNqI0fvQEYtH4JLersiyD2WzmUvejnQUA0Gq1IM9zl8mAn14OyaMQvTxFq9VGLSseIsmRGD9Aq0NrJzauUqYsjiknvWOKnR8b70sta7GdNF+0iO0RE9ukPB9Tv/RuPj7z8a+Fx6z6lbazWq1gMBi4TRutVsvFWPI8h06nA41GY+MZi270wSKTtWe09orqHI2mMuzn2N8tNoMvfqbVd1k+oiarNZpS4wRFILV54ajJYDCAf/zHf4Sf/OQn8B//43+EVqu1UcE333wDp6en8Nlnn7kg1qNHj8QG8Q62WJRpyKUihQarc5QCulMMjeYQHSFDAY1uCqlenyGOAagQpHqtfVzmCT+Olz2oZFGIHOhohU6sIa/RMjy4R0+r+doO0RX7DtewAR2kKurdZiAM4TMgUZ6F5GPZ4MZzGY4f3teEC4IxfXdZ84e3y2WF5fQIX9wAOD/FmXJvXJ7nsFgsIMvOT7/ShRxpTgyHQ3cKOcsyeP78OeR5Djdv3nRlptPpRoaPVNBAF25qo3Tz3cwh5HnuFl3xLksfMJjybcpWgDIJnTvUTVbniwaz8CQSpja1zj+8exZgUz9Op1PIc9sJVgxm0RMJRQPpVQfQywIP2lEbhAdMcK7G6hXNsUbdMRgM3GZUtG9986ler8Pu7q56LUeIFpSNkr0l0YkZh549ewbj8dil0t02LsOJvcYmeED7ZQPyNGY2wI3gVx3cJ+UbzVNAFxIptOCwD5INzAO2ZQe6Y2HRSfS+U/5s1fweo/dRfiMf4Ek+LZuLb9HR4ltp93n6oMV28HQvbiTK8xwODw9dBhGM9wHE9QkF5ztfjIqeqKzX63Dz5k3I8/xC5r1UWlLo9oHPz9BiC44v7wteRxnvV9Ypw0aj4TYGL5dLaLVasLe3B7/927/taHz69KnjE2x7Z2fnwl3ti8Viw76ldjradBx4opLeEX8ZkBaFyliYscq3kNxLictUAT72lgxhsT5Kat/zZ1JOu6Ys7BXRVz67wNcmf5bLoKJ0+RYR8TstOwTA+XrTeDyGTqcDrVZrY72JwkIj9a2LxACttsVVmGcUfCxS1p587/4y+heIbbxXjE0qlduwFE9OTtzkyPMc+v2+E1TD4RAmkwkcHx/DYDCA2WwGk8kEzs7O4Pj42BFCBZsk4HwLltLLhVBkQhSdTNbBtQpNrSwaZqHFrlhlYpm0oXcpIrQs9FYpAK6aMPWBT/QUQcuN/tBCbOg3X6BYUspF+EBDGWNoXQiOmdchbEuxWd7NN6ctRmBKYCTUlz7+sQQgfWWs422Fxgcpi4f4Pw3M80Um3/MxbVocO993If2hBRw0WJ21kD7lhjgNnPLFGyxLT8HiYhjtbyyDgSLrO/mAz+OCH+3PUN/j31ym09R5eFIO06jOZjO3uCTVVxZSA6UhenidtVrN3ecLABuBnFD73W4Xbt++7RbWB4PBxmlIKmuKBB99Mteqa6R0b1VAsjFi313SJRbbVXoWv7PYDTzAi59pqj76vc8Pof0dorvRaIhyycrLPjp8eqVWq22cjI1BWfN+mzYMDyJJ/bdardwGYC5TaV3S3Oa6F3/nG1b4nJDmiOb3av5V6niU2f8ptgOloWhgj849DPTv7u7CZDJxm9FSfJ4QrHX5bMYY/z4FKTGUWF1aBl1WaHNGo0uTlUV5ln5npTVkg6LM8J0mtcY9eFtlxX98sghRq9VcBpHFYgH9fh9ms5n5mg5pbHx+Av4uxRbwnlBuH1tiZ1VAeo+QbR4TeymLvtRFJsmvkMplWeZ8jTt37kCWZfDgwQPnh/jsPo2ned9a7GTL+1lkhUW/SHqvLD/Qihhda9EdVrpi+sVCi6X9mNhKDA3WfvDFO3x0aXJfeidfDCtFToRkkUZXFfDF4RaLhfO18Joo3JSHG9XxwB+/ugPp1uouKl9j7NuQf6rxRFl9HqNrtedjy6TE87aln7U2q26/6HhuLMb+9Kc/vRDIRPzyl7+Ezz77zCn39XoNg8EA/uqv/sqd7Gg0Gs54q+I0FiJmQlw2itLF707wIaQk6O/aiZiyHfwyhGIViiKGLqpEy6bFWqdPYVue5Sn36Bznu3d9bdHdR1q5UGq8bQpIbGNbgcMYFDWStN8sd2vG9Im2u9bnaJUZhNICNDxoqukuTHsC8CLVfhk0Yp1l3g+o0bRardwmqbJkd5HAqZYqNMYxtjobdEHURxOWwYXVLMs2dlquVit3QhHpAAC3SImLcfRuVcRisYDRaFS6LFkulzAej6HZbG6c3rUusiA/cJr6/T68/fbbMBqN4NGjR9BsNmG5XMLOzo4Lclcpe7chc7vdLrz++uswHA7h2bNnG3dWhU78fv/734d//a//NXzwwQfw5ZdfwgcffODujsUgkwbK5z5dGQpEWRb81uu1m/caqpz3KQEBlIdaH1A5XdbJ7Hq97k6H4qnvLDs/EY/jieNWVoruWq0Gh4eHMBgM4OzsDGq1GjSbTS/vXOMFkD+kLADS/d0AL06cId/QE8Gj0Qgmk4nT73QhFeUR6gbKA1wf4P94TYD0mxRkovRKJyX5XKLz4yr4r5y2y6LplVdegffffx8AAPb29uDTTz+FyWTi5nIVCL0rlR1WUBlX1lhL9VSZ3eKq+k4URfozZaFTWwjM89yd9sOrRWj9Vvs4lU+orONp9rU2LAsMe3t78P7778M333wDv/nNb0T7vwiwX/B0LuoELkMxUA/wws5Pze5S1iKatuiCv4fkaNlzi8doUjZrUZryfDOzFtXVq9UKfvWrX0Gv14N//s//OTx9+hSOj4/h+PgYHj9+DK1WKzljB9KMftxVuy94G6hi8Yb63jEyKVQnpS80JxCh+WGhsQydyuunNNF7tMuE1B9SnFnrH+5bhRYEeVv8d80u1dq1XgtEn6NxydVqBcfHx9DtdqHf78NkMnGxmUajAffu3YPpdApffPGF22RJM0WFwGXGNjYz035LyZJXlS9wGbZ8lWsm31ZsRO1XqxXs7e3Bb/3Wb8Gbb74Jjx8/dr9hCj8s9+jRIzg7O9twemnqU18gqooFrbKRMjFi3iukXOjfFqFrpTe0OCY5HrGw0mB1TCTHx4oYQRRa8CyycFY2QkqWIqTYtTroO2ntaZ9DdBVxEGKfDwXFi9RRpF6f0WNFqI99hrElEEHLWdr3tWeBZBxqxij+HwqkIKSUlr66U1CGDKjX6+7kU56/uLvUOl5lIGV+FpWzWvuUj/FzqC0ebKcnFUJzgvb1eDyGJ0+ewHA4LK3/sa/m8/lG2i2JPi5fLboVFzJmsxns7OzA/v4+NBoN8XTBywCuf+l4ot3ps2voZoxms+lSImHqNX5SWJJB0t8WSDKnCl3CYbWxNGc8pm3t/Sx2U6heKWCjLdRlWebG1BegDQV/lsslzOdzGI/HsFgsXJotAHCyuNfrufvRKH1lzinN7qcbitbrNTx+/NhlLRqNRq485b2iwaoY284Cy/M+u00LZlE5L/kyVQS/se7YZ6S/NZkTM5fKDq6WXX8IGLijizNVIMX/9MmOKuZ+qk1VFj0W3yBlfKzzP5YXeSCb9mMRm1YbD5Q5+HvRoD1tR+O9GNlptRlpebqoi5vbqE7d2dm58J4WfrWMJd3AQNPb4rUeq9VqY3FQGlcfLUX0AQ8uF7GZJBqKxDjoM3Szkc8/tsoIOm4ok0ejERwfH0O/34d2uw31eh36/T6888478ODBAxiPx85O0RZCpLHTZK01BsFtA8ucCcVENdpDKNtfj3mXVNs9VD+F5S5nqa6Qripqp1meD+lxa/uxejZGJsXGVCS+5+1Y38vns0r1pMiqLMvcBnn8u9frQaPR8Pr1dIw0/0ai16fLNRmgPcPjMhKNFhSxJ2Psc5/uCj1vkY+aT+Prp6r8iNC4XlVcOEL16quvwn/6T/8JTk5O4Be/+IV7sdPTU1dmPp/Dz372MxiPx9Dtdt0l7svlMpjTv4zOsTLVywhuPPH+suy4oAIjJDSqYtwygj9l0bONCZnSRhXBIYR1t2jIMULHS0qVmBJsvSrzNdVILxOh+mMNQwQaEWWd0Ikx7MsYX6sRQgMH0u/0c56Xd3euz7kto85utwuNRgNGo9HGia5vC5CvYxxaCgtf00U2ALhwb5Gvvfl87sZjNpvBs2fPgs/FADetjcfjC7/xrAW+QL2ELDtfkFqtVvD06VO4desWvP766+rzVeqgMsHnOd5d5QPqr3a77Z7vdDpwcHCQdC9hSqANUzEBvLDHiizcFIFmU5UpszWZXEa9+D9uLMC+pTzc6/Xc2MbqPzx5M5lMXErGPM9dKmK8x3s2m8H3vvc96Ha7ld+5LM1/TMOLffDLX/4S2u22W5AFeLFgG3vfeIiGa5QLKbCE39NUj5Kt7QtkXwWEZF0qX5Xl+8fKYgTXzyjziqST532RkmKU17eNGMk2fCT6LpZrOvhc0QK2ZdAGsHlaPyXrQijWkWozaLpJ833pYhvKn+FwCM1mE/r9vitXq9WcjVnmiSOeshJpzfPzU7O7u7swn89hMBiY3kdC0XiXFnROBb4fvq+Fz33AzWLNZtONY1m8lefn6UPr9To8ffoUTk5O4L333nO/Hx4ewp/8yZ/Ahx9+CMPh0J2URZ7iddFNDKE5GrpzVHqPl8W3AdgurVY/MvQMl3USz3L+sy4+hRZyJb/AV38MrHM81jeXUGb83TdmMe2EFjYBLm52R1/Lyseoa5bLpZPnWZbB/v7+hXJlyC9uD/n4EFGEl2J1kfUZK6RxSLV3r2FHETm+sRj7k5/8BG7fvg3ffPONS2M3n8/dCY71eg1fffWVOxGLJw6sk69MaIKGtqUJ6BgH0aKUioIvHmgBsxhBF/ouVJflPbUTCiG6LIstZSvZMgWftvNEK1PF4o2vLSlwg+Vo2ZDj6DtxJDl6PiWXYgCmIFYJhow+bVx98od+F/tOUr2cRv5Z23zhqzv0fZEgc8xctS680r+tMhADJNhHdFHE127M3NXGJmXc8Rl6l8ZVMZ5CAZ7QcwAX+yrUzzh+OHaW4OT+/j50Oh23I3s6nQbTG2Pb1lMNqXPbx7vozKCTIi3IFrFzzs7OYDgcwng8dm1VvZAU208WZ0EKAPb7fdjd3YVvvvkGptOpC4rScrVaDTqdzoW0af1+H46Ojtz3KC/oQl7KHOS8TlO9h+wH5PdQun+t3VSakT8tMjlkQ0u8SuevxssWJ9ny22g0gvl8fiGjQIyzVLXs5XoJAFwqLj7/Q/pKko1XRXcApC0oSPrBVwdNTZ9lmVtMp6etJJuK21D4Oy5o0xTYeZ47nYInpuk/q32CiPFLqgzWboNXNF8iy15ssBgOhzAajWA0GkGr1YLDw0N4++23YTwewzfffOPuKJTqLfMdkK4YeYGLSGi/SbbPZc3JVJulDKS+t0Yr1oUnNumGJ4AXCzd8foeC1TG+k4+2lBSFUhu0jpDNEIpbAcCGLe3za9brNZyenjq5t7e3B/1+f+PKD6wPy2s6VpvzvnemQJnQbrfh6OgIAAAODg7g+Pj4wiZJ2q6V34oETwH0xSEA8NrZoTZT5kwolkNthFSZiToRMzd9/fXXMJlM4Ec/+pGTfzj3aBur1eqCbcNjmr7xC9mF3FawxGQsuraoLWytM4UHLfX46AvZlKG66D2e9HftvmCqAzX7S4OPlir0vwRLXEj73UKbZiNo/ePTQZb2+RhZNjpJ7VtoC+lP5Imzs7ONq6QODg7cBhyUIyEbm9qHkq6xjk3ZtpKFz308ZolZxvBljI7UaIopUwYtsYjxr8pAkfo3FmP/6I/+CAAAPv/8c/cSdCfaer2Gzz77DJ48eQK9Xs8ZZ6HATJngDB2jpMtGWe9mceCtBn6RQEDMZKcGFxXiZfS3b5KWYfikwtI/2wYPbkp3YfEAE35HnQTJmQottkvKoshOWU1wliW0Y3jH56ymGLf0eQv4uEo0cWc4dJeolX+LGFkWpChr/DtkDNDfeYo72k9FjQpajs+TIo5VlmWwWCxchonLkisUdB7i6TG6eFh2O1SWodOvnYLk4354eAh37tyBk5MTd3+glq2Dy0B6p4nm3BcZD99iL+5ox5RflhNtfD74yh8fH8OjR49c4DJ1IxVvqyz+tPKRdAfW/v4+3Lp1C8bjMTx69MjxDeUZPFnBZeT+/j7kee7uI+R3RCJiHBdcqKFAmYM0aboOnVLLZgyLDMNyFrtRsgc0xC7kU36xOkipej/PcxgMBm7RrKhs5nVbYdW7dKwbjcaFzRjfFmh8GBMMsdi2rVYLarUazGazjeCgZs9ogQy8l7DRaLiNx3meuxSMNL055etYH6zqAME2kWoPNhoNmM/nMBqNYDAYbCzAHB0dwXA4hPv374uLsVWBB0dD49RoNKDZbEKeb2bXoPXFAOcLD15LdaXwXtVI4QVL8BSBJzT5iWTsL8onvO8kPaTNRUu8CeG7CiLGD6Oy0hdIt+pIKVbjo+H4+Bh2dnag1+u5e/1oNhH6jvyEo9aHGq2cz/lzZ2dnsF6vHQ3dbheyLIOnT59emJ9SPETrG6SJ93OKfSKVQR+JX4OhLWpQ4GZCSc9ptPDYHP0NbQq6mJEyP/EUONb/5ZdfwmAwgNlsBq1Wy2VJpECew/Sj1MaV6MbfpPGw8rwmNzVw/o2x98uIiZQFjc8ppLiaVpcvzou8RBfgcbNsaAOCRaZq8xNhuYqkCK9rdSJidK30DlJ9nJ98vK5lz+Djq5Wx0m/Ri6HvfXOE0nl6eurobbVa8L3vfQ8mk8nGYqzvnnD6G/KjJEPp+3NZo+lWiy9u1d8SLPEeX3lJF4Z0V+y8sMyBlHmSSk9sXUXmcNW4kKYY4JzgxWIBk8kEvvzyS/j888/d97PZbCPtG37vuxuA112kA0LCTCsbwrYHBQWpj5nLDCKFECMwQvf4FBUqqfV+V5HaL1K6LV4vN4x95coen5cxUGXpA987SQ6lBGqISQ4s7buiQRGJRmvZqkDfW5Ohs9ksuFHEZ7Bq7UkbHorAZ9RetszD9/TJfOv8l3S3by7g2FntCh/oqanVahW8TgHrjAl2WcYKbaterwc/+MEP3J0pz58/h5OTE++zvsAwbxvrffjwIZycnMB4PDbbaFcdu7u78Md//MfQ7/dhf38fFosFzGYz7zPz+Rzu378Pb731FvzBH/wB3Lp1K+k+Qi3Qap2nRdNPaigi42OCulbw4KoUgEzR7RhQzPN8oy8x8DkcDk0prK3A+lHm/+Y3v4HhcOjSNt6+fRuyLIPj4+MLNOHz28BisYCvvvoKZrOZWzgs65qCa8RDsyt8AR4tYPey2cBlAVNtzufzje/LkqEhe49C0rdljkuKPUntLhp0Liv4bKWhrH5IjXfggkAZNFWVLSRWv/J3iAmc88+hBQnalrTwguj1enD37l0X8D4+PobZbGZKzUz1qOUd8jzfuI5AKkPjEtoGDSk4LfnLtExZwI2rdAHTugAWSw+3s6Sxx+tREGUF5IfDIfzP//k/4dVXX4U//MM/hIODA/jxj38M0+kUZrMZfPDBB/Dw4UNXnp7QLgtcFhbFNmXotmHtIyuv4iYN6oNJC+3S8/hb2f5H1eC8VoRfNL3H9Zq0Qdsai9PitrQOrkN98Ro+drjZg/o9MfNQonu5XMLDhw9d6vrQNRAoU/gmAZrBBmnWroLyIWbOxG52LwNSn4fGocw45jWKYWMxlgYw5vM5DIdDePToEXz22Wfue7xgGeDFAOIEsKAKw12q38pcmsEbqj8GXJBpOy/4M1xIp0yckBK00G2p0/eMFIjz1Z8iyC07NC4DV2ERnSpIzfHI81x0aHzBJAsdmuMTA8szRTYHhJ4vUm8qQgs/PNgtPRta2L1qitgql2hZ33stFosNvYRpkvA5rR1ts4FGg/R9kXm/7YCaBJ9TwBEbGI2RFTELChrNaKTv7Ow426WKk8ehMaP2UrPZhDfeeMPZWdPp1C3GWoznkD2wXq9hPp+7RdhGo7Fx8jfmnYrCMq9jxqHT6cCPf/xj2N3dhTw/P8Vx//59tXyWnZ9IPT09hR/84Afw/vvvm9rkzjZ/h1j5WeW8DumBIvVQpNIvBRF8p1Z89hy/gxd/wztdedpKCz2+cjSI/PjxY7dTu9PpwP7+vrvShdKu9ZP0Xj5fQLLTJBrn8zk8e/YM8vx8RzkNXHxXF/MuA5aAO5cb3F6InWPbthNiF8okhPQknjzmGQ5Qbmj302l1W+SaVM5ny0m/ldE3VnC/jl7JUZQnygrYV9U+l5GhE5BYTvJlpfgMLePzf7lsttpuVr/dZ+eF5hD+bjlJrtkKtB5MG47fHR8fO9vS8k4xfjjGI3Z2drzZRGgKes1m8PU7votPbqf6cxiQx1PyVvs71jfln2kZeugjVmZaMZ1O4YMPPoDBYAC///u/D71eD9566y0AOLfVvvjiC7cYK8UurP2r2c9YV2g+aH3ns+nLirnG1uFDil1vgYX/JX5rNBqQ5+eb36XxtehlzWb2/W7thxh7ICRDtN/K8Is4f1vvH/eNDf6u+RdaGSkrk09Oog7m1/tY5o/222q1gtPT0424jebXUVlCs6dY/XWrzR6imZbFsZTarSr2ynmI0yDRWYQGS19WJa9CiLVJLttP3rAO/vt//+/uM94NMBqNxAdpuriYwEaZwb2ikCZq1bAoDt/7lbmrLLYfuXLQJmIMg8c4JRp8gbsqUBYfl4mQM+HjK58joz1jvX8zFZfVv1d9XH0GWhkyIeb9Y5xry+8WxcmNc/67dBKWn2RdLpculWkMsE0etKnCoCpDLlYB1Ps0+BeCxRiT3jnm3Q4ODuDOnTvQbrchyzJ44403oFarwf/9v/8X5vM5dDodyPMcJpNJKSdtU4Ku8/kcWq0W/N7v/R40m00YDAYXaMFUhwCwkb40dO9tkb5LQVVyX0Oz2YSdnZ2NU1LT6RQePXp04eRUs9mEZrPpHMNWq+VOJyCGwyGcnZ1deBZhnX/Sd3yx0CdntE0OeZ67DQMxfZ1KtxVc5pXlaEn3THE5W8ZJT+vJJ9QTVQDHc71eu/mOm1wfP34M0+nUpfTDd8dFKUwDl2WZC4J//PHHLghR1smuq2jjXuPlB/IUlZG4cQjnw6effgoPHz6E3/3d34W7d++W0m5VASFqt9TrdZdCdT6fw2QyiZZZWJclRX3ohLDkh0s2sy9QZ6W5jH7V9BzXqQCb/VOv16FWq124woDeTYn9xekN9TEtZ9Wtsfo1pe+o/vUFyAFe9AMubvoWtPB3TLc9GAxgb28PAM5t7E6nA48fP97I4qItYGl0U17kCzdIL7cDVqsVPH/+HPb29qDb7cLdu3eh3+/D559/Dk+ePBE3bmwTsfawb/GJ9k/M1RHWdnk7KUB7Gu+JpbZHrVaDTqcDi8Viw77GeZo6RmjjILj/qc3p74It43tHa5witOgoPY8LZvV6HXq9nrvHG68aoM9TWrT5EhMPkiD5J7Fj79OJmn5KnZucXuoH8Wu18IQnnpClJ0Cl+orwPa03dBpV+pzSHsAL/wzfEXX/YrFwPg+W9y3MhjbpYF+WdTqf87ekC7cVL/kuyLsQXsY+2FiM/eqrr7yFqeFkcRb4RL0qC7GcDp8hy4NO9DdfmVDbZbyHZdEzpR3Loh1vO8QLUv0hZcy/s/adj54UY3Tbge4Y2vBduVLmCAXzJRr4Z0mxVCn0isyVVEMu9C6aMWapO5YO7mj76NPmWApSgzMxCwGSExUDKXCPOonLF0xHSoMzqYsb1v5PqRu/i5n7VYPLXulurlRYgmLWIEen04Hbt287Huj3+85wx0CBZYHF4sjH9jtdTMqyDG7cuAE7Oztwenrq7oqlzgMGzWKDO9r3V9kotQYIsF/ou2Aq5vl87u4HxXK0D+kdnOjEYmrj6XTqTjZKJ4u0oJmPfv48hyTPpXp898/5aPHZVam61BL0sj4fqiNFN9B3D9l+IViDy3l+vmDOF/rxGXxvXz/hvYfdbhdarRY8fvwYVquVu8OY638KtPfOzs5Kd/Svgsyw2vH873q9DvV6HVqtFuzs7MBkMrlQX6zu4kFya1n6XeidiuJlCkDwPqB30A8GAzg9PYW33noL9vf3YT6fb5yO475nlX0aAqcFeS/PX1yTkXJC3WJ3+nxZS2wghiaLLIyFphd8Phb3Qal9gDzET+dwxOqvmPK+MtZ4B7eLNbkj+eAWXkBfiMcE6HN4+ny5XDo7CRfZkL+tSPFNJTt8Npu5Kwjw7thHjx5tvJdV75aB0JzA79EPwWdi5qMWY/TpIpwXVtvaAl6WyjS0r9frNUwmE3cCWIs5SWNjtRH559jYIC0TGoei/LNNnVTWu/hkiVYPLrjX63W3uXA2m234a3xjTMj+l/jDR3NZsMzPorG1WLuTPptlL64fKRrD8sVfqJ7gdjOvx9K2VebRdunzmCnFKuPz/OKd1BotZel3XsZn2/jGhMPnS2jPcD6OHbcisIy5hiJxCqmeGFhs7iphzltHU4ZIuctD8BmLRfGyOKCxQCeDvh/faVukP6UJK9WFd4TwxVju9Gxzwl81FOXrmGAPB1U4Ur2huSrtRJWe42N+1ZDihJUhtLXvfM+HjJPQYkwZp/toeyF6ypjPVSg7zrcAcCEAtre3B1mWwcnJyYV+owEdS5CVPu/b/IBjGNq05HufVBRxsjlwcavX60Ge5+4ECz3tJznEVufJ0jeWOf3qq6/Cn/zJn8Djx4/h+fPn0Gg0gvfC0rGn9IdoscLCUycnJ/DVV1+Z7rBFnqII9Qs6xxY9YIXPASqbf7Vg02q1gl6vB9///vfhgw8+gL/4i7+AWq3mFro1TCYTePToEbRaLTg6OoL/8T/+B/zTP/0TAADs7e1dSLUktV0GrKfKfZAc9TLok+ooeuJSSi2MbeW57S65EFA+bQuz2Qw++eQTODs7c/JwPp+7zQBIEwLfe7VaQaPRgE6nsxU7OWVeVuGnxYDOfylohLKQ6iHMevDmm2/C4eEhrNdrODk5gb/9278FgHNZSDe/4OYNX9AC+ZMHg7T5JgUwATb9NurXlTVny4TVL6wKOH/+8R//ET766CPY39+HPM/dyUd+B2OZfajxQgq63S6sViu3WQIXKcrWw1Xdc0rh8y+L1CnJxxCvZdn5ovdyuYTFYgG7u7suG8Z6vRYzjvD6ebA31J5k26YEcX0LDRLvxcw7Hui1+DMIX9knT57An//5n8P+/j7cvHkTZrOZGAOUTmrzeummwxSMx2P4/PPP4datW3D37t0LWUfoPa0atHFL4WXJVqX932634dVXX4XhcAhffvnlBZ0l9XvROBLKysVi4TYkIZ14D28ojqPpMfo7//7Jkyfwp3/6p+67H/7wh/DOO++438fjMezs7ECv19uwsyX9wtOOS/OnCp+G0lHW3eRVIkY3F9XhWbZ5N6g0j3B9oNPpQK/Xc78/ffrU2eaSfPDxmxQ3KjPeFosy7I2YGEhInvv8NT7PY+c0ta/4groE372zGq1SXXTDD24Kkp7j8kBq2xqzKwPavEBa+d26KfVzWPUZn2s+3XWN7UNcjJVSY3CDlP6P4IEWyaHzCcWQ0PQxStnOYkhYcoFsNeqt4M4mtpHSjm+SWoLRnA5f3bQe3wRPNXx98PWv5vgVac/Xdiw/+voeaQkpMs3IqUrA+vhMazPGkInl9VQjKSVQWVa9kgMnPa8Fnnx8kyovOS3S3I/tZ6vByelLkXetVmvjzggM0tDy2wqEam3EtlukP1LKUuMR00tpeiOmzRgZHpKJCExv2O/3YTgcun+j0cg5I9o9cxb6y3C86JxqtVoumHhycgKTyQR2dnY27jROaQPr532YsinA2h5vW0JZupC3v7Oz4xaaz87OXFCWpncGgAufF4sFNJtNqNfrMB6P4fnz53BwcOACVb6TTKn6yyfnt4Gyx16zKyyBD8mXwO8twPHhPK3pEMkPiQF9BgMDp6enAHC+AIh3wuHv6D/5eAXnJW5y1YIEFhuabtzSeDYWRfqobFj8Eto/rVYLut0uAMDG4rzP/9TGSrK3rO8pBT8QqXxI69Xa056NpdtSbwq0IBqdr3l+fqXAdDp1p8S18vhZW4BDWUXrKFNXYf2r1crxGz0VxGVlqA1f8Nn67DZs27LbiZ0TNEAsbaqIiYMgpPeJjRX44h8p+i7UHq2vDFuV0oW249nZmUtFyhdiue0Zoi1WBqNuxLvgcUMN+ifafYISP2jxktDfkl9C5VFIR9XrdXdVio9OH2Jsbm0MrDwSOw8BznXt06dPnT0zHA5hOp1Cq9WCfr8P4/F4w7ami51SHNI3D8uQOZpO4N9J+lt6f4lOjpQ56rMBY3R6aruWOvP8xfVPeMcnvW4H/6d97LNVfX2eMvbSGFvqCumkkM9RhE8t/MljC0Xa8v0t1W+dn7H2DoKnX/bJYPxOeg+NrqrsI0l2WJ7R5oTPh+TP+96J0iLpLksdRRDLp2XI+yLzMMUOLIILi7G1Ws05sgDnO12sOf5DRkkIVb9sLCwDaDVsYt4NDRVJ+IUYBJ/1PRMDrI/WqRnjVlQ52UOG0FWBJARToQlwyfAH0HcHbWOHNUCxhUINKX0oKffLQkhp0IUabVGJn1zXglMho8pX1oqY51IWitCwl+5jfO211+DevXsAcC6r7t+/7+4+z7LM3ceH/RV7Ek4yDLcR+NomsH+63a67m5DuZKbBEA3YJ5Yd8xQh3sH7QwHA3WvP0yf/wz/8A3z55ZewWCycc8hT7qS0nVJ+sVi4vms0GvDaa69Bt9t1NP/qV7+CTqfj7pujiL0jHuUgjh+OVRWogueL6kKAFwtk2AdWGzbP842AEUWs/VbGe3Da+N8+B47S4qsnhQ5pLvMAQdmgjuJ0Or3w+zb0d5ZlLk3iX/3VX0GWZYVP4na7Xdjd3YUsu7iYRAOWVN/xfsYTtvQuKY4y7U0Jl20/XXXQ+74sKNumuCrjg7KC90fV9JURsKSgchcD0aenpzAajeDmzZvQ7Xaj7owt4+4yfupQyq6T2g9VyIwYUN8npPPwdBbaraiv8LoK6Vl+BQIdD+smOWsfIf2WYKOk531ywXqaL8vOFwh5umJq2+MpxuVyCePxWK0L7/PDxReNrtirN5DORqMBeX5+uq7dbsONGzfc7/1+H46OjuD4+NjZBShfylyc8PGdJMfw/9lsBp9//jn0+3344Q9/CKenp/D06VNnR0h0xvhKVvh0P75XigyitC6XSzg+PoZ2uw39fh+Oj4/hiy++gFdeeQVu3rwJf/d3fweDwQAAzvmh3W7DcrksNZuJtkjjoz9UhtrzZdjPl4Uq4hTURj09PYVWqwW7u7sXyq1WK+eD4ZyOaQMgvu8sz1n6RJLBtO4UnRriUypveBs8JqDJptSxDr2PpF+k2LFVx1FIcSWqW0J9HBpPOpYA5d8dG2ozVZZbFwZD9V+2HWfFy0BjEUjjsLEYi5exS0IHK/Ch7A4suohYBb28b6w0SsJXEsQSTVpKHT42vpRbMX2J70V5warYKGLblJCy0Jsq9LZpKFH6LMbiNtrkAqKqoKqGmKBy7O++shZ+0QLNsTImpER9i3+h+eWbpz754oPVEE6Z675FWEl2+XgWnVpceKvX6+4+ST52Pqc6JpjiW8RGB91iiMU6kNsC5TvcjY5Gsi/FFD5bNi2UJgB5o1iz2YRerwfr9Rrm87k7ARk6Gau1F7PAJDkoNDD66quvwtHRETSbTZeKkaYz1YIwUtsxur0sOV40KJFik2Ef8rt1tWfp87R/Q8/giQvurMUEQsvg+aLOUmrAoggsgSwOi3NZlQws2scoW1KCywDg0pXO53OXLnsymcBsNoP9/X1oNpswnU435K0PVE5rOsRqbyKqdtp9utNi6/ns1Pl8DvP5HPb29qDdbm/IrVRaaWpcpMFKu9WGii37MkPrR/59lmUwnU6TdQ6vl+uv2HmhlaN30qOeQnu0KDitIR5B371Iexa/Zdv+srU91OE8oI2/0f8t7fFsB9Y4B7fRfLy2jXlP3z3E63xhv1arwXK5hOFw6OzpVqsFeX5xc5SvfuzXlAUMpGsymbhrPXCOYbAeF/boXNHem+uFUL9IssPir6Ofi/0GABubqvg1URLwPaWFEF5O+47SX7avKflnmHWm0+lsbIzQTrMjtD6VfrfYO7HgPIH1WX2fquZwmeNUVWwP/Si8zgjHHTcMTiYT7/Nl0eub52VD0i9a2xpvxbYHYDs8I/GrtS80OwD9Zak8p9H6vdY+f0Z7VrPvtHpiY91X0R6n72C1SfhzUtmYukL0herzjZtGU2rsKfVZqd3Q/An1qfT8xmIsPREbiyod96vSpmSI+wwy6TPCyhQ85R6vkxuHtK0iuz3Q+KPBYs3QuwxBVXWwqIq2YuuxBq6tgU2LAKlqLLc5XjEoOh4+/re8c5n94jOeeLkibfhgbSvLMndikDqpsXRioKTdbrvv0DF/9uwZDIfDjfqyTD/NGUO7T+7v7OzAYrFw6Suz7MVO0Kto1Fkwm81gvV5Ds9mE1WrldaoQNBjBEQpOSXXRzUHr9RrG4/GF/tzb24NWq+WC8Pv7++ouXOu8C+l3rUy9Xod6vQ6z2QxqtRr8f//f/we3b98W26UpDiXdbqWramxb3+NdcKenp+Yd9Gi3dDqd4GIWll0sFrBcLqPlsRSEirW7pEDxZepKyfGx6hYrtIBgTMD9KtoTFPwd8zx392/PZjM4PT2F9957D95//3348ssv4fj4GN555x2YTqfwj//4j24zSdU0+gK4Vbfta0+Sschz0sZT/DccDqHdbsMbb7wBeZ67IDZ/JuTP4e+4EQQXZAE2g+lF5sHLjtR5SPsMxw3HFfsVx+vk5OTCPXWxbeEpwNBJ3JSgD83AsFqt3H2NePVATF0+bIvPrjIv0z5AftGAaTPxZCtdCAII2/fIc/g/3fCZ5y9OQ1pPo1r5N8VfswT2+b3VWlyKvjui2WzCZDKBs7MzODo6gr29PTg8PITVagUPHjxwi6PcXsB+4ePEbZ6QXYk+1HK5hCdPnmycjgU4PyG7Xq/h6dOn7nQV9dOs2U5CY8R/l8aen3aV4jPoG+CmK+0QDNV5+J10Xy8HzfwkgfZH0VPE2B761mhzHx8fw8nJCbz55pvQ7/dd2fl8DrVaDVqtlrdOS2De93tZfkqKTvg2gttr3LZFW4nGBg4ODqDdbsPR0REsFgv46quv3PzU2qhC//jq5Pyi0SDJWOwHqT/oBp4UekM0U9/WJ+OoHLboCQq+4Efvcqbv67sLnPYRrdfXpoUPeJsaf/rq0vot9FwKisTXrTz6smLb/mYZdRWhWXp+YzGW/oiOiyWwxA2IIgTGIiVwJrVnUeDS875ArSZ8YgKsVgOfG2xcQcQEUbmywfo4L5TlYG7zOQ0x4+6DRelbaLC0GTIaaF1lzVGpDgtvxwT8rnLAwTqPQ2V8skQzmLhBReuSjK7Yd5RojZEZnG5NNmIgQ3qPULu+d+p0OtDr9eDevXvwyiuvwGQygfV6Dc+fP4fZbHahT2LSI/uMOQpNb0rjEfr7MoHyHu+MxXHDe5sQoXnNeVoqY3GutTIHBwfw3nvvwZtvvukW93n5PM9hNpttOIEhp8Sn1/nfMUFbHoSQFootczwEGkRMQRk6LxTUisXOzg68/vrrcPPmTRgOh25hK5QqezqduoXW8XgMX375JfR6Pej1ei59uY9+yfaJ1fPSPLDIO58MjYGPn2N0ha9tbY7H8G2oTl73tsDlBfINngBIBZ/Xz549g/F4bL4aRqIxtv1tILadlGAR/S6lzTLh49sYP4B+V3aQuQyk2pgpY0M3BtM6suzFSQ1q+5Y1/r4AWNE2MJBo1dUhHuDvLcndGJqrDvpp9iP2C19AlLBcLmE6nUK73XapdReLRXDDIPeJY3gHadR8Mq0tGpeR9CJv17oJQQp2x+h06bNG12Qy2ZgToWteQjaDFpvwjcdoNILHjx/DdDqFWq0W1MHUN9biW2WBnorP89zp8t3dXWf/n5ycuJS9PnqL0omHOeg1KVm2maI6ZJuGwMePL8hRW4b6/nzcQrYenWeajV1UVoX49WVHGXFOKr/4s+v1+sLdsZ1OBwDO9TfdtETlfNWwzB+fLOZxv5CO1dqS2vDRxOP3XG9IdITicL6YTcj2RGjXJ2nzR/M1tXfnMtRHvyXGJP2W0k9Su6k2YSgmFqLPJwtD/O6zZVPisj6EZHZMHT46QyhbrltihFJZzb68cGcsYr1eu91uPmiGVJWwtikxtIaQs8snCneeLBMyhhFCBj43YqVdcJZJFOuYcaWUAkmRXGMTRfuW/p3az0UdeV+dlzX2lnZjhHZKUFyTDaG6qPFDZRXdVcsNpG3LZV97+Lt2h6NmZNHffDK61+vBK6+8Au+88w68+eabcHx8DPP5HL7++usLdx5JhqQFof6ketPXH1dd9qHTXK/XodVqwXA4dOk5U2VTrCyhY6715a1bt+Df/tt/C7VaDWazmTq38C7Qqpy/UFANgcFC/J2e6KbgdfGd8ymy4mVHvV6Hf/bP/hkcHBzA6ekpZFkGr732mvf+ofV67XgXAODs7Aw++ugj6PV60O124fT0NNgulxWch0IyD+koE5INHDMvfbI2Fj7dRXk2tQ9CwQvaF1Z7P5UOHPvT09ONgAE9AYf8kmIbfPPNN3B2dgYAYEpRTJ+t8t6ja8RDGn9+soDruG878L1jeBtRr9edXSLZBHTOcT0Z27c4r7UrgnjZmHrpZ2q388CrpS6fr0d9rSL+5DaB/Y6Be4tcm8/nsFwuodlsQqPRgH6/D4vFQrxbnIOeXsLFKd+JQk6nhT6uo1P8X+szlI8sz6SM72g0urCJTbO7Q/OQf8/nM4CsBweDAXz99ddOJ/uCzgDg5rKUulp7JhX0xFae5+5Kg/39fTg4OIBXXnkFfv3rX4uLsXSxJUSLZezwnafTqVscw7mFG2uRZ8qynfhGCO7r85T/COsilw9lxJauY5NhaLZ2np9vPqCpzDHjJr17my7YhuqX2iiDbu136X9pwc+ypiDVzWmx8rnPtqHZGjT+tbRjiflyfyvF76T/a5nTuCzUkBqrLeJDl7moh/DdSx6io0x55eOTIrZk0bZfhvqLYGMxlqYaCeUER5TlRKascseWCwlhTbBITp9EQ5F+kNql3/G7+nx18Lq4gY60+hYK0CGhhlqZTFyWgH2ZUVV/aoZSCn9qTlYRVBUotbQb6g/JQZDmU1FY65QCA9J8DL0Lf3ct1REGIyz3T2t9KcmhkNFNF8qkU2ja+7VaLWg0GtBut+H27dvw/vvvw2QygZ/97GcbCy1ZlkGz2dyQa5xG6V0ppAWxkDGEZfC0LE0JZXG4QzQVhRQUBji/sqDT6ZSSJhMDIRrP00UODVmWuUBClmUX9CAPbCKWy+WFAEyqreHTq5QvcHGGvlOe53B6egrdbhf29vbg+fPn8Dd/8zdw//59b5uWlGQ+h1FCCi9JPL8N0LtckYZmswmvvPLKxqI2wPlYYzrtLMvcaVh85tatW26XtgYpcBoTEOO2c4p9TPta0usW2U/p8dUfg5ixT9HxXBb5HMIy271M4Dvv7e05GZdlGbTbbRc0la4qoYEKSV9+F+znq4iUvvf5Yd9W8FSFaP+V5VvwYB5+pvZXygJEKCCaZZnTQb1eL0gnAp+lJyG5jA/RGLLXU3BZCxM0NTCepgoB7xLF+wnp6T8A2W/R7H/N1qM6WNPNFFXIYnoi17LhTvN3LONK66cxKKpz6CILzoNQLE3rR14WwctNJhN49uwZ9Ho9l2mG+pK44Cel4I0NevMxtMgM/tvp6Sn8/Oc/h1u3bsG9e/dgd3cXbt26tZHimfYNBb5TTCwHfU7qg+B9uyGafeNi6TPsd5zDX3/9NTx9+tR0tY02r7S/Q3RYYZkXdNy/jfZVrC60lDs5OYHpdAo3btyAnZ0dODg4cPy+Wq1cxjJOhyRHqR4v0v/W5zU/RJqHtE7ptLfWpvZ9yBYK8avkI3LfKsXu5LJB2pAkzWGN9hhwHZbqx6Y84+OZWJ3qq9Ma69HalWxG6yZdHsuy+N8x/eibRzH1leEjVCW/rfRL5TYWYzHoVZYhXxQ+gRE7ASwBNa1OKUAXY8yl9iGdSNpChaUtaxCNG9RS8C9UT6pgkp4PleP1V9WexSEtyoMp2JaTHDMmvt9SAx5lw8c3ZSqDMuQDXzzE8hYlzmUYd8x8cl66h0H6WzOIJDlA/+dGrI8W7qRS/sDF2EajAYeHh/C9730Pfvazn8Enn3xyoY5Go1E44Bejj+i44eJhGffzFIHPoKR0dTod2Nvb23gmNG/4OEvf0We5oRjqF1yMlYD8TRfvADYXM2MMUx9CQTd6Uo4+MxqNYDgcQp7ncHJyAn/91399IYUX1hVyNGh7vKwWvEjlu9jnyuRvDCpRXqrX63Dnzh1oNBobwVa8dxffFxdj8zyHRqMBR0dH6p03Eu3cybTQGutcWerktmYV8ktqM1SPz5nXAnmaHcnlfxFH+6rCJ3u73S7UarWNxVjtHnWr02yl6TL1EaUDQF7ksj5L/7b6PCHEBlck+N6lalu3aqTwD5UBfMOSVp91EYDWIz1H7QdtY3PsnKJ6P8/PT8ItFgu3oUJ7htvnmn1CbfdQQLAsPUHb3jYoH6AdhQuAvjk2m81guVy6xTkpBbQWGJb0vqSDYuM/sbEDOjd88yA20JqqJ+jCJY4Ht4u4T4N0afYV7TvND+Xl6G8A56eh5/M5NBoNaLVaF/wMXIj0zT9aXoPmv3B6QnWNRiP49NNPIcsyuHfvHnS7XTg4OICnT5/CeDwO+lixekKys1A2IWj/SPwh8aCVn7FevONX66sYOy9GtmnzXAK+k2R3avQVtbteRqToxcFgAKPRCPr9PrTbbej3+07vTiYTl80qJPeK9j8fTwvfSTEdrc6QLR5jJ4XKSXRJ7fJyNNam9UOMTOP1Sm3H2G0S3dLf/Dlu68fKSO0ZyUaj7xWyxXjdWizG2nc+HpSekdq1tFOVLam1L9FQBSS+l2jZBh1Se2qa4hCsxmgRpDpl0jNWZR9ikNB7lxVEwkUYn7HEDdZY4RD6TkNZgY4i2KaTmBJs2NbcuEyhgu2lKNxvG2LnT+xzljnHF7YkR5SesuHGTKh+C2/5yuzu7sLt27edM//gwQM4Oztzu98laP2DJyl8Aa+bN29CrVaDjz/+eCNlmS+g4zOAkG7N0V0ul3BwcABvv/02nJ6ewvPnz2E0GpnSpV0GfAbzarXayJTBUwppi8ohXVuv1zcWKvkdtBJ4MHIwGGycekR6Wq0W/M3f/A188MEH8M0333jr3AZms5lLoedLpZtlmTvB22w2RX6WUuOWcZIoBlclDepkMoGf/vSnMJlM4NGjR+6EhAXD4RAeP37sNnAMBgPIskxNfUmBv1F5xQOTVpShD8vSqVzGaUG4VFgCW2ViG/aX1Cb9rJ1mBTiXgZYrYPL8/I7uKud4jC7cBqzt4iIBlZX4+auvvoLnz5/D3t4eLBYLuHnzJsxmM5hOpxuLLL5FAfyd/k/TUgNcvM8ypPsuq0+rRJXvg7IIxxV94lar5ewTbB/tE0smCQ7N5qPByxTax+PxRpYZLciF9lWoPo3esuXDZfKprz98sgppTrVRLGnlqY0gbZLVgO9jHSfKJ3jqlKaTxd8o+KYGXo/UhnUjpFS2Xq8nzTUp9XCeb94760sTvbOzs5Gth9ZDT96dnp6KQXp6YrNshOwcjiw7X5i9ceMGfPPNN7BYLDbeB3mNj30MPWg/SM/iplGkF30Q+g6xkE4F8tNzzWbzUvwXDZbFCPr3VYh/XnXQq6hwkzSm6l4sFjAYDKDZbMLh4aHbpOyLAwFsVy9xHoiJ6/sWv0KxdxqL03xRviDIr9CR7CCLXkxd1AzVR68CoP9b+tKXxYDqOa2/aNyK6xleD4dvrEJrLTF9J9Up1Z+6bsM3oH9XZddV9702FmNDzEBRdDE2ZdEyZRE09hnrO1kN8SII7YZFOigtvKzUHz7n0/es9P1VmNh0HK/ChKvaWfYZiZbyVlgNj6rBjeBY2RGzWByaR1UEPjgdmuERajsk+7AOKeVRSG5Y2gzJqVarBfv7+669Z8+eud8sc1hqC08TNRoNt2sbnW5c+OPGLv8cMqDo99rJBWyz3W7DzZs3Ic/zCwuxlvpDcziV/6zjS4NaaLjid9SottDM6cc6MOAQM3/p+8/nc1itVm7M6anjJ0+ewIcffggAempsWm+VwIBxvV6HZrPp5h7dDEHfiztQPl5IMfpTEJKLZYPPf97earWC6XQKx8fHcHZ2Br/5zW9gvV5fSElIgfXhs6enpxunl7ns0exBHojF72JlSuyYSW0Vtb8l+HSMJJdj7K2yaOX6v4z+TQH2v0RLyOn13ZVFwWWCJcBjGT/LuF0FO5pDek86Z3E8zs7OYDabuY0WnU4H1uu1uzde8nesPiANLqWA0snlRmyfXwXfqypQXqV2B8ptPsdCYxYqo/lUsfRSYKpU/N3CYxY7z/KbxNtFZLXEn9bApFRnyMaP6Svp2aJ9JI0b1ksXkfB36ptq/Z2is5Hnfe/kGxeLPxWKV0i8iz5CiHatTf5daLxoXXyxltrUuNBHx4U+Z6FHeo8ifhfnITzlnee5S7P84MGDoL0v/R7iJ2oTZ1nmssmgbLJuArHIE+l7Oo/oZiaepStUTyy0+Ux/056L9W2rRpm+Xox+Kdr/ND38arWC1Wp1IUZTq9U2NslJ40VpSrGTtgFOl9bPtJzP7wzVw+ukZS39o8lh6bsU26iIbWvxM7U4ia8PUQZZ39NKn9RuiGZel288NL/NR4dme/iuC/PRq9Fp4U8LtHq3hasg88XFWB8xVQWBQrAGXSSGKmpIxdCU0hZ10LW6pZNAoTqlu6Q4+Hf8Tp2rchrGghBfXlVFboWF9iKOw7ZQZBz4HKniXTWeL9MoDgHnIbal7TilTo2lP0IOugUxcg8XSujdPvw5ekoIjXSNPmnB5c6dO/BHf/RH0Gg0YDQawe7uLrz22mvws5/9DB49egSDwUBszxrM8yHLzheZu90uvPXWW7BYLODTTz+9cMdVq9VS7yu7CkCHCYF9jAufnP9idlCjE9Zut93zi8ViQ6fRAIoFvV4PfvKTn0C/34cvvvgCbt++DW+88Yb7vdPpuMCDdP1CWfDdrQxw/l4/+tGP4OjoCKbTKTx8+BCOjo5gNBpBr9eD6XTq0q3hPbM0uOdLzfeyImRfUiDvoRPxySefQK/Xg4ODg436JJmN33U6HcjzXJyXGpBn6R2zeMqZ1q+9Cw3c+uy6WNu3Kp1X1E6W6ooJDljq5XVdxrxAnmq3247vtiHLpfpjbPOq++1lt60vC1TWA1wMCpTVp9/W8UH9gKdqtEATQBrfY708VT6FZcFMAq0Pbfl2uw3r9RpGo5G5HktAryiq4h0taIl0o92M48xPtnB9SPuOpinmC1rS+6CfslwuL5wo1MbWGtjU3t06L+n94TE2gzWGk8IndFMl2jpWSCdh0c7jsTCt/jzP4ezsDE5PTze+p/Xw8gC6r0G/k+JxKXFRnNN4hcbp6Sn85je/cfxM7Uv+DpTmMrC/vw//8l/+S3jy5An8/d//PSyXS1itVmo2nqLg8QntVFrsHb4hlBWn+bbpzG2+D8ZxcC5+/vnn0Gg0YH9//8JJSQTOCV8WKYC4OVHUX6J95vP1sC20BQBk+9wnK2No1caR6zhffZwWTjddlwjR5bN/qJ6T5rl1cdPXNqWb1kvvns+yF2n2sU7tqgoNmh8V6mdevmpodi/lT4Crk+3suwbR/qR/WI28MgL5dEIUwWWuoGvwGXlSmdAE50KOB7lilZP2nWQES59932ltxNIXE7BNwVV3UmPak/htm4jtyxB92wq4WpWp5fnYOmL4XJKVobmnBThiAzZF5wnufqQLkWh07+zsQKPR2EjFGDLUsFy9XodareZS1R0eHsJisYDxeOwWSMfjMZycnFxIFVdW8BzrxPfY29uD4XAIk8nEBY7ond9SKjGOFJmu1WldNOeBKlputVq5RVMe1MLPXH/wIBPtJ/yNB15i53mtVoP9/X3odrviglds2kKLo8r1uEY3n6/tdht6vZ67xwqDIJQnuJEsBQKL8Ebqc2Xo4RSbCZ/j/TCZTFy6KyudyAeTycRELwXKrVDQ2AKf3WYJ9uEzRfSOVKcErR1OR0h3xOj6qw46fjxrTcwY0JPxi8UCJpOJC9b6grC+YNBl92PqHI8F3QSkyUP8Hm2BxWIhbsjRbI7L6k/erpWGsufZVeCnEK9we0LzkaU6Y37z+cshGn1BUclu4jaABTE2gWSzlYEiQWRfUBl/52Ptew5gM52wFkyW5EeWnS8gYJCWbzgsK2bAwcdDs/V88RmKmPGw0of18nZ4OV+sS/NNpTGS3l/qF3rKlJfT6PP1D/1N4o+UmBelZblcbmRL0k6FavXHzDPuW9XrdTg4OIDpdAqtVmujLt/dvbHgcxfBF+G4bU9p5+/CyxRByH6O0adVyQQrYmS5Zluk+DCx7z2bzdw96o1Gw8lZXhf3dVPaioHlfWLb98mQUJ1cxoTmoU82xdgpsbEP6fcQPfy3GBkT0kFa/AB/o+/IN2lJz/B2+W+Svg7pPem5KuGzI+jvVtuRP1slNF4us36tztBcKwqt/uQ7YylSjfsqgki07ioYhjoG0mm1GKDTQO/Q4wYMP5WkIUVhUGDQ0fdOVfXptnDZAYZYxAa4Xpb3szqUFEVlha9vrHxdliLiypk7L1mWubQuPno1uUAXPlFeLRYLmM/nXpq0YFDs+yJ9Ozs70O/3L9Q5mUxgOBxCu92GO3fuwOPHj2E2m11IKUxpo9jZ2YGjoyPI8xwePXoEu7u7MBwOYTwew/Hx8YU50ev1XJ/E7IQLOdi+HcXj8RgGg8GFvrtKO9FQb/sCgMg39GQIdaQANvkWYNOxr9Vq0Ol0LvQlLla3Wi21fZrSWEO/34d3333XlcO01ev12gXhLbDITjpXkVelQDC2jWP9/PlzqNVq8O6770Kv19vQ9/QZpDVEi+SwfpdBZWFsn3AHDeuLAT0tKwUBY2lBGmLGuExHgTvLZUEL0vnKXjX4sjaEgDw2m80gz3Not9vw7Nkz+NnPfuZkwmQygTzP3SYjPg5XtV9CKMNmyvPc2TB8gxcth3cK/sM//AMAvLizDP2t2J3hWnBfo5P7UUUQExguUkdMfUUh2eRS4MxHB27Gm8/nXruWt4v2C/rw3D4oY35RO4i+R2wAktLkC6rFoCq7wRrUKwIcL2zHmu4dQd+70Wg4v8jng1oDl8hX2snVmKAn/lutVhfuS+aQTiRdhl2I9FL5GsMTPppp8Bz9SgTqAb6hl99JG2ojlk5L3IL66Zo+oJk1UL/h5l6EltbXp2OazSbU63WYTCYb93cCnGcVolmEHj9+DGdnZ967elNBZTmeAkb9SDNi0bIWpMqbovLvsuyv2IUDDWXI/6J9kOe52+CNm72rwmX5ydSPSnmOn07VYFks5OV8dVgWXH2g+khboLTYxpqcpf3he1/JzsdsV/R5GovxyWmLDR7rN/P+KSu+TBGyC1L59GXHVYydmRdjQ4HpqsGFkjT5eHkNFqaX2tLaxHpCDC0ZzbxuSfj46uNlNFosAt1Xn4+W72JgeFtB0lSHu2hdRRc/tXpiAku+eRqzeKrNX+u85bTEyBoLJDmgQXMsQ3LFV19s/2rBIS0I0Ww2od/vQ7fbhW63C9Pp1BnhdNGKnl7V2kXHFO/ifO211+DWrVsA8MKYOj09heFw6HYgUwM3xhDk30k6aGdnB3q9Huzu7kK9XodGowHtdtvdg6K9RyysPGqt2ycj0KDGsUEDWhtf3rY05+v1utuNjXVzZ1yiDceOBwpWqxWcnZ1Bs9mEJ0+euN9Go1G0XvbRwIMrIXDjlgZjMMBy//59ePz48cYCt9QOpcEqF64yrE4fAucslVGLxcLd+zqbzWC5XJrnNAbhcTMBlTuULk4bPoMnF1EOpQQby7STQm1fJZuM9utVoisWnIdjnG/+HJ7Yns/nhWTVtwFc/mkyj/aTFPShsh8X6RqNRrIN6aMz5BNTmjTZR+WCZnfw52Lnz8s033y+JI43ZpXA++L5KXUfQj68RoNk/1nfx/J9ihzR8DKNtwRNr6IdqKWG5wFRX2yF2pUALzZUoW0gbbin4LLfYgtItiGlj9eP/2Ma7nq97mxJ38a9GD7yxdF89n6M7WGdN1QGWvxPWjaUwrksHyCmLsmOXK/XMJ1OoV6vb6TM5KDvJvFziAbkGyonEc1mE27cuAGz2Qym0+mFRQSaftryfj55zX9PiUFpsjiljtS4XVGZyudAjC4pU56XUZe1/zX5zH/f2dmBZrPpfDnO72UgJFc0uefzwSUdHsOrGm+WYWeUZafE0KPZqpZ+kurhtn1M+5q9xu/QtlwzZW031Z+gdIb8FEmWarYQfd7nW8TQLflZUntlQ+sDX/my7WCLHZBqKwCUtBj7bQffZaflgg+BG4tSbvzQnSBIi+8+WMtdsbys7266lyno97Ij1Vi8qrDyVKrBHtuuj4YqEDLG0FnyOf60PCoZaUc4n8PavRS0vjIWDLVAI2J3dxd+/OMfO9k1n8/h+fPncHJyAqPRyL0T7lKTUsuiEYVpaZ8+fQpHR0fwH/7Df4Ber7fxXr/+9a/hV7/61UZ/5HkO0+k0KaCJCznSYm69Xod33nnHLcjWajW4desWLBYLePbsmbmNbcI3trhoulwu4ezsTDSkObAvfYvd3W4XXnnlFfc3pue00IT3qWIbAOenyz7++GP46quv4OOPP3Y0PHr0SKyjyFzHOeybnzgntftwEMPhEP7X//pfMBqNHH82Go0L5WNOcF+l09YhxASdMfBO+2IwGMBgMIAHDx4AwIt+D51Y3NnZgU6nA61WC/r9vrtrjJ+8lvq91WpBr9dzpwyazaYog0NjX5WdVIYeq9qGqyLAsm3keR7cxR8TPLjGy41Qqmpua1HZR2UF7ta3ptR/WVAkAC3VhTp4uVxCq9VyJ6ABXtznXUbQXDpBzQN3seMU8oOWy6ULSsfQinVrQTrLs1cRkhzNsszZpvw0NB0vHD96TxzyDQf+hvW1Wi03H2naeA6LLpDAF3lDcwJt6k6n4666WK1WMB6PN9IxSxnNUoLYMbBmI5EWMrRy0sYKy7PSCVlLe7wta3uxcoBu6Hv8+DEcHh5Cv99X6+Yp2PGUtHWskJ8xKxFm4wA498e///3vw8OHD+Gbb75xz6A/0m633TNlAHkc+UXLdlS2LEqVcTyeEZs6XoK0SPddAM59lMcS2u02tNttGAwGMJ1OnVxFP0uq8yraSThXtTtYsQz9v0w+4PZlrE3gq7PIqfkyx0tb8AV48c4oa+hVUPg91em1Wg3a7fZGfbF6JwacP3g71jUkqz7lbXOUwR9XFS+jfA0uxpa1SMIHO3XQqXCXwJ1erUyITtoW/Z7Sb32HUBDXUs5yaoz+r7UjGZ5SX2qT17IwW9Tp9tVdFNsSNqm7ZELvGBq/bbwfH98Y54XWwRWftqskNfAh1VemDEstg+Bzmn7miluTN1RmaAaTxciI5aHQ2GCaJHpf6Gw2g9PTUxiNRsG2OI24M5y/IwZThsOhOy3LgxM+SPKKf5YWXfB0LqaUqtfrMBwOYT6fb/CyZaGIoor56+tjSldssNHCa7VaDbrdLrRaLciyDEajEYxGI3dqmZYPtUnTDlODG0+XTSYTt8BbpRwMzRV+X/BgMAAAgA8//NDdGSUZ1dKmhipSh20bKTYTgs4/ypvSqVapTV5XSMeiLGi32xsyxwp6ggWDaD69Y7WLY/rNYkP4dIBVJlv1aUoAwNfuNhDSlyk2kAUYVJZSEWrzh9vlKYEefJ+iNtJ3CbS/Ung8JaiCz74MCAWgL+M98LSYBXxsfTKc+hxUlmsBL1/8gtdDv5d+01A0wJYiC0K0WfqSPk/ve7bob9oO34zJ66bzFzfGD4dDd9UFbpJFu157FwtiZHLIvkR6d3Z2NrIqpNIW8s1D9Urv5ntfOhY00E/HVnve1waXqbG+TBm2V2ickcbJZALr9dr5Rf1+H1qtFpydnW3QRPtJsosku1FrezabwWeffQZHR0fwve99D2q1Guzt7bmF39FotLEZ0SpntPGXYptZpm86Cs0NiTfK0CEhPrlq+laiN8Xm89UXqjMmFkbrm81mzndHOYu/aXG7okiNH2r9wctZ2rCUtXwvyUNJBlhjKj46pXpCvjOvxzJXfXLcaoNI/UKvoqBxSJRBmCqdx8Akeevr9xAtljJSH2iIkcm0vZC+LEvOVW3nF5F1ZaKILSf1ycZirKZML1s4IiyGeErAT2vLd19dTDvoGPjaCtWHJ4O01I4AcSdksC1poSBES0gIVTlJQo6szyD8NoLfJ6Lt1k3tB6kPU4O9qe3HoCrauOzBOcLr4ounmkLPsuzCaT/6HAbzfYqS1y+dsKNlfO9t6TcrsizbuBsT6z47O4OPP/7YXA9tGxd3JVpmsxk8fPgQ2u22ux82BtwYo8C6aBlMMXV2dgbr9drdHfv48eMLMrjRaIgZEFKh8W+KzuN3leM9bBb4ZD3N7tBqtWB/fx9arRYAABwfH8NXX321QbeV9ul06oxnrrfG4zE8fvxYrDfk+MfIBLo4St+TPr9arTZ2lT99+hSePXsGn3zyCeR57hb4pJOUdO4D6LvIvwvAcZHu2LU+T+uxPlOr1aDf77tnYhZj6/W6uxsL4HwhHjdtpMKXtSQFRQI2HFUFqq6KwwUQlh+0XBF6McjebDY37HxqA1iCvZbArEZ3mfbTd8H+pigrOLxNXKbPlBowDMEXACkrPkDboYFDjhT/CYOGlGbrs0XAaQ0FXmPfKwVoR+GiFe2bEKgtrgUd8btWqwWr1QqePn0K/X4fjo6OoNVqQaPRgOl0CpPJ5EK7WgDVl7XIGsDDBQsNzWYTVquVu2PcumkvRnYDhG0f2pfWcZH86FAbtO9874DB9BjwuVuVDKRtDAYDODk5cfr+jTfegDzPXaYoBE2/zHnIwicUw+EQfvrTn8L7778PP/nJT+CNN95wJ2dXqxV8/fXXMB6PS3nPUBD6ZdKT0sLGVcZVtbvyPIfxeOwWwTqdDhweHroFMwpJD2n+nHVxKqZPeJ0+Hcx/S11A5L9ZZZLUF2XbDfQ0qcUukOyhFPtYq8fyHGZKWC6X0Gg03EZpGmOhm6xQFuN9xvR9YmkLrZH4fkOZHlqDQb2v0eJ79irKh287QmOkRrmsRjnAdgaX7p6rAiFBRxVGUYcOBZoU1EXwRbbQnX34OVY4UFicVd5GjNIp0mcWQ3wbzqFWbxnvZkGtVttIZUX5ogzlW4bhqckO5B1tESNES0qboXo1AWkdY/oeVoUoOc7UsQo57qF5SvmBntLzBSP45xSEeKfZbMLBwYEre3p6CgAgnnjVMJvN3Pssl0t49uwZNJtN6Ha77lQsAu+IxD7Vxi8UzMDv0ZjDk5iSEzwej+Hp06fuNCRtJwV8bvucFCvoc8izvr7R2uIBLrrrsFarweHhIbTbbW+6P6nPaRnUu8jLACCONX0f6/tLf0tOWJ7nLn0znsSV+ozSSO+D0mQJ7X/LWNL6ywwqa21J/eKjswp9y+vE1HztdnsjQMXp5NjZ2YF2u+0WdjE90WQygcViIW5kwfnOF8RxwxOmR8dTDnQBDe9EDqWbljIb0FMEl+U0aTqiKM9pevJlCs5pCI0Vvjc6+5jRYTabOZ9AOoGV2l4V9RQpq8lDn52DwN3tR0dHAHCehnG1WomL1vhZSvkqBbl8tPLAOOomjU7p7yIow7e2BvKkvy8DVDdSUN1TRh+jfUhldBmLBVLwmP8WW5cEn31B+TzGH6LPxPCN1raFVl/9WlBUigfxtLlWX9ZKE88cI9n/IVkW4ivJNvfZCFIbWE9McLYMlBF/8NHN7RA85c7lvubTULkSmjMWSPan9JmetpLsWby2B2Bz86VFL/p+Rz7BKzpWq5XLSETx1ltvQbfbhbOzM7cYm2Uv0nvHXoMSO8eLIGXMrHbaVUHIbgr58byuKu2J0HMUi8XCnQTH+EGv13OZo0JprRHW8YrxWa3+uCZLaB9x+kJ2cUxch/OAT/ZZoNGCkOSd7304PbG6WXqG1++rD/0q9LuwrNQfNK5H41nS2PH+ln7T+lzqD/7+VGdI7yfBxzchP4ePY4yOkb6X6LLW/W2Gz65OOnKgDbZm4PBnKEFWJgsFpiThU4bjQydDrFGivRs6gQD6PXt4lyTWs1gsLjgbFqMiRrBbnVxLu6koMxgQw2MW+PijaD2+7ykwqIyYz+diAE+6ryAFZRhvUp0UoeCWhG0Ejfj88Rk5aDBaHEm6u4wqNbobnv/NEbrjGZ/BxVirgyvVZYFFJzSbTdjf33dl8cQoptyiNGntzudzF4BdrVZwfHwMu7u7sLe3d4EOTPnoWxDRjBEJWN9sNlPv05lOpxv38PB2aJ+EDH3pM0JzzEKQDCNt7DjPS21yY5QGrG/evHnhVDAvo9FIHTC6AJplGXQ6neTTkhI0Gcd5qdPpwGQyUecTDbhY7oGm/Rarny3zuShS9WaVxjfKvVarBXmeu3mo8ShiZ2cHut2u62s89TKbzdzOWckhkhZ00KnDVMYAm3IJ4DzQIAW+KELz2iKT+DOh9rahNyVQm1Xj95fBSfP1oRSckd6J3m05Go02spnwzSs+xNr3GmL4IrVsSJ/x5wA2fUfchHHjxg0AOM+yQdPSA7zQz4hGo+F8J6mvtAAO/50vhvg2y1n52ho4KWO+hvxmzq+XJSMoDfR/gIt2ahmygtrs0ma9IjEEqz63BCFD9Wl8bIEvYBh6jgeWUmSRZCuE3pvakDzYC3DxLmdaryWWpMGyGOuDj28l+4X7nvhdltlOQ/rsypT3t/qKId9EmmeSzPfVLfknvudDSOkPLqd8cR1tzDD+d3x8bLrSJtRPUv0A53bFcrkU/dbXX38dXnnlFfjpT38KDx8+dN/jxmMrn2vyWgKlP1Q2NDcs/pNkm8WA+2qXqSN5f0jz0joX6XO+uSf1fVEsl0sYDoeuzn6/D+1228W6Q1fRUFh1ZRnQ+pbzP+e5GF61tm2hxQqJr32yGuDchiqrvy08a7WrAF5cEYbp/C0bo33ZNKx9HEOvxhN0bsfaDbHtSb65VbdZZBFHWXM19t2vCjR6vRHNKl8y1cnxQTLOUuqWAkYxBgmtjy6g8hOxFPV6HbrdLiyXywt5zCkwEECDDinvzemwvN/LECyj4ALtZQU6ga1Wyxkmq9UKlsvlhV3dWs77VBSRAWUFk2Lb5JAUnc9x8oH3rXaiMuQsZdmLBRscR7rhgpf1jaV096y1H6pAnudwdnYG3W4Xfvd3fxf6/f6GvHry5Ak8efJkY1ckgCyD8HRalr24a6bRaMBv/dZvwf7+/sai3FdffQUfffQRPHny5EI6WY1ODXinCS7GcLm+s7MD77//PhweHrpUKO12G5rNpgsWYWoUCouTKgUjLc9oTqJV/mE5DHxT8D7EYJTvlCtdnMK+9O1yleqRDODhcLjh7JycnHjT94egtWfpM76xQgu45Pl5qm2aRk0LOCEdNIBjleeXHSioCtgfmFZtsVgE+wP7AU++HhwcwGKxcAGAEHAuYJrC5XIJzWaz8Aany0KM7CmjrRRZdtXtNF8fXoatU8aYxdBdVdnvEui44b2BuBlkvV7D2dkZ5Hle6oYjHy3a31dZl+T5iw3K1N610IsLDFJ2Dakd+r+vHdTtsdcFod+2Xq9dOtx2u+1OavDyPn+Dy4SQH2KhL9ReleCbiqXAPA8iWvp/uVy6De9Zlrn5hwtQZ2dnsLe3t7GZEDfRlD0vLUHF8XgM8/kcdnd33eZVyxUWlBdirkoIBfuxvpQYGdZL5xZmPqD+BM/opPm0Pjtaa5silYclXwHnMv1Oqh8XCWhKTA30NHTMogDACz6n/vPp6Sn8/Oc/h3v37sFrr73mrpDBujBTR7fbBQD/1WgSLDJ1W/KDt3eV6rpKiBmzMiCdup5MJu4O7JBs29Y4cBknyZpYm8lis9N6rAtjEt2xawIhWjhNXC9LPh+1zzSaNHvFFwvyAeNvuJEfM1zRuEGn04E33ngDBoMB3L9//0IdrVZr4yq5lBiThWZpYVR6H03Xxc4DyzNoj15jexCtSj4BUgx5qxNgCX76FtW4oCxD+NBAaMrCLhVGyPhoaHKDGNuq1WruXhQagOXvJU1ciU7LYpDv5F3M+4Zw1QNsGspS9inCkj6H/EFPEGIwQnumrFPcPvh4DPlaMihSjfGQErE6KViPZERpdSDdXMaE5pEv2FWr1dyCFhoNVnAZTWkocj9hLHgfYh9Mp1NoNBpw69Yt6Ha7G4GS4XDo7vfkRhqX5xgw4WlrXnnlFdjb23P9tlwu4fj4GD799FMAuLiLPQZ0LtHTE5S+LMvg9u3bcOvWLXj+/LkL7qHxRjMbaPXHwDJPynQ4eX0xcwm/xwAL1XGUN6Vn6Zhpiw3osEm7GH2BQyu0wBP9h3M1NNdokBDTcUtpsyW9Ljk2/LOEbTiqlrlVpt7HscXgKD11GnpXHCtcyEXaQrQjjy0WCxiNRgDw4jRVKK055+nU8SgrqL4tSPquSppTeV2SL9vqWx/fWMv6yl11HrHC9x6absDnXpaAKdo4aNvT+wEvG0X6UBuDsngT7QtNb2o0UP/DyicxvrWPL0Nt4Ljz7EdS2xZowdzYejRbLBQcTuEf2gaXab60wDF0AbyImaBNiid8cA5Op1Po9XoAsLnZ1SdvLDGX0Hfas3jtQbvddgvHsTZBTHn6vtJz0lzj78F/840H961CdVGE0lNr7fF3iZmzlFY6v7R3lmSIJiuk+A/nP58/RunCf/QE23g8hm+++QZarRbcuHHDxZboffU4F3h7lJZUm7Sobpb6LMYfCcmrWP5JQUhGbJOWIkjhASq7qExfLpewXC5Nm6SwTSmGFwNtnmoxCUtd2nex9cS8j6bbU3nD+pz2fpIMo8+k8LfmR2t2GM1ig/KPbn5pNBpwdHQEtVoNHj165L6ncUa6GIvPWvSZ9Lv1XSUf2ldHiizWbGPans83tvCl5f1T+ogjhbariAvR4qv2IlJKT46URVMOzvC0viKOsS8VI6bN4+1T0BzmACAqKm6cVDGG21b4VoG3bVQd6OHjqPEPvy9LWujH7zUnsipIShOdaUpH7KKhr9+tQt23s1oCBn18dfK6tMABprXEtqSdVvwuJGnsfLTS32hq16rHH4MaeKcrxXw+h+PjYxgMBvDs2TO3sIEnR6UxoYaRtkg9Ho/hn/7pnyDPz9OOnpyciOX47kZaP+9vNN663e4FumazGUynU3dydDAYuMAI38mp8YBGW8jJ9iHFGaY8wVNES46IlYd4YKrRaDiHn5fDIEGoPp6yiPdryuYDqxzHjBX7+/twcHAA0+kUZrMZPHjwAKbT6YVT2xJddFFe44kUB6oMp+u7iuFwCMPh8IIMxvEcjUbuxBoC+fDg4ABarZaT5ZgyeblcQrfbhX6/75w3X4p4DVwmlG1vFAlaVIVU+7VI31CHPba/y7IDMQCKQH3HN3jRE4DSfYmXgSptYT4WOEZoM6DeOD4+3niO2l+Y/rlqObkN+8qHouNQxTj6At60r7bVb5J/gCfvyrjKBW1C6SRNiqxFG5lCW7yRng/FTIospEi2dCgmUQZoMLWMDach+lAWHx4eQr/fh8FgEK3T+UIhhWWM0MbQ+DSlj61jHwqkcxp8fpxVHmjg9gH3l4rIL98YFamP6nDtHTE7Fvc/JVr4aVrpNJpGA8VgMIAPP/wQhsMhnJ6ewu/93u/BG2+8Af/+3/97ePLkCfzX//pf4fT01JW3BNHLQNWxtbLwbQn+S6hSH/Px5dfAoD6OyUBA6yxzHDRe9LVBsziEFhBTFlktv1fBi2Xr8jIW4EJYLpdidjvpSr+DgwP4nd/5HVgsFjCfz+Hhw4fu/my8xxg3yC2XS/e9FLuqWoZVEc/H+q6CT/myInbcpfIb0k4KwlqQ+pylXs4g2s4Aa32h7630Wxz8UF38jiMJNKgv9YfWlmZwW97PtzC9rcma4rzE1KcZmNyR1fo1tr2UsiHhaF0ctJa11mUpJ5XlAc8yeCklCBD7TFmLI/S0pG8DicWJs7TP+1qTnTH87pN1Gq/l+XnqI7zfmJ4qDN2168NqtYLT01OXhkS7x5W+h8+xpL/RRWIaEKcBXkwpL903GQPqiMfC129FdUAZMgMdriLBM2ospura1PI4ZxuNhkvnReeTjy66eALgH19ax7fZIK7SWYmpd7VaifIC68B7ZClwvCkv4IYCajug7CjDBqgCRdsq06bQ6uafq4BWv2UelkUb14F0AxW2QwPPNAB72dBsPJ89kQo6Jthf2hUAfAGb01pVYGmbC7JSEDK1vy+Ll3y6fBuL5mUuCnM7wCJD+HjRcUQb+SrM81hUOSeK2EipeqvZbEK9XofJZLIxNkXakcpo/pclZaB17nNZEfKHYnyF2HkbyycpbcSA1l92/EmDFAeJiTtJfRiiD+/qPDs7g9PTU1gsFlCr1eDu3bvu5HXsO5SBkD1RVp0xzxUZ6zLr2BZS52Rs3fQ7aU5v05ayIjaGhH/z2JgUZ76qqErmISyLzamyGBdjaRxPqguzAsxmM5jNZk7+0fuy0e9A/ywlDhU7t/g7Wp4vMl5VxmYkv9A3j+hzLwNi7HytfJa/LG97jWtc4xrXuMY1rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjWtc4xovEbZ3ueA1rnGNa1zjGte4xjWucY1rXOMa17jGNa5xjWtc4xrXuMY1rnGNa3yHcL0Ye41rXOMa17jGNa5xjWtc4xrXuMY1rnGNa1zjGte4xjWucY1rXOMaFeD/B1pzCcVDFr3SAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data" }, { - "attachments": {}, - "cell_type": "markdown", - "id": "766de19f-200c-4dce-8678-b36cc3c3dc93", - "metadata": {}, - "source": [ - "## Next steps\n", - "\n", - "We've only explored the basics of ray tracing here, but you can add shadows,\n", - "reflections and so much more! Fortunately these are explained in [the C++\n", - "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing),\n", - "and we leave the corresponding Mojo implementations as an exercise for you." - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Mojo", - "language": "mojo", - "name": "mojo-jupyter-kernel" - }, - "language_info": { - "codemirror_mode": { - "name": "mojo" - }, - "file_extension": ".mojo", - "mimetype": "text/x-mojo", - "name": "mojo" + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] } + ], + "source": [ + "fn cast_ray(\n", + " orig: Vec3f,\n", + " dir: Vec3f,\n", + " spheres: List[Sphere],\n", + " lights: List[Light],\n", + " bg: Image,\n", + ") -> Material:\n", + " var point = Vec3f.zero()\n", + " var material = Material(Vec3f.zero())\n", + " var N = Vec3f.zero()\n", + " if not scene_intersect(orig, dir, spheres, material, point, N):\n", + " # Background\n", + " # Given a direction vector `dir` we need to find a pixel in the image\n", + " var x = dir[0]\n", + " var y = dir[1]\n", + "\n", + " # Now map x from [-1,1] to [0,w-1] and do the same for y.\n", + " var w = bg.width\n", + " var h = bg.height\n", + " var col = int((1.0 + x) * 0.5 * (w - 1))\n", + " var row = int((1.0 + y) * 0.5 * (h - 1))\n", + " return Material(bg.pixels[bg._pos_to_index(row, col)])\n", + "\n", + " var diffuse_light_intensity: Float32 = 0\n", + " var specular_light_intensity: Float32 = 0\n", + " for i in range(lights.size):\n", + " var light_dir = (lights[i].position - point).normalize()\n", + " diffuse_light_intensity += lights[i].intensity * max(light_dir @ N, 0)\n", + " specular_light_intensity += (\n", + " pow(\n", + " max(-reflect(-light_dir, N) @ dir, 0.0),\n", + " material.specular_component,\n", + " )\n", + " * lights[i].intensity\n", + " )\n", + "\n", + " var result = material.color * diffuse_light_intensity * material.albedo.data[\n", + " 0\n", + " ] + Vec3f(\n", + " 1.0, 1.0, 1.0\n", + " ) * specular_light_intensity * material.albedo.data[\n", + " 1\n", + " ]\n", + " var result_max = max(result[0], max(result[1], result[2]))\n", + " # Cap the resulting vector\n", + " if result_max > 1:\n", + " return result * (1.0 / result_max)\n", + " return result\n", + "\n", + "\n", + "fn create_image_with_spheres_and_specular_lights(\n", + " spheres: List[Sphere],\n", + " lights: List[Light],\n", + " height: Int,\n", + " width: Int,\n", + " bg: Image,\n", + ") -> Image:\n", + " var image = Image(height, width)\n", + "\n", + " @parameter\n", + " fn _process_row(row: Int):\n", + " var y = -((Float32(2.0) * row + 1) / height - 1)\n", + " for col in range(width):\n", + " var x = ((Float32(2.0) * col + 1) / width - 1) * width / height\n", + " var dir = Vec3f(x, y, -1).normalize()\n", + " image.set(\n", + " row, col, cast_ray(Vec3f.zero(), dir, spheres, lights, bg).color\n", + " )\n", + "\n", + " parallelize[_process_row](height)\n", + "\n", + " return image\n", + "\n", + "\n", + "var bg = load_image(\"images/background.png\")\n", + "render(\n", + " create_image_with_spheres_and_specular_lights(spheres, lights, H, W, bg)\n", + ")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "766de19f-200c-4dce-8678-b36cc3c3dc93", + "metadata": {}, + "source": [ + "## Next steps\n", + "\n", + "We've only explored the basics of ray tracing here, but you can add shadows,\n", + "reflections and so much more! Fortunately these are explained in [the C++\n", + "tutorial](https://github.com/ssloy/tinyraytracer/wiki/Part-1:-understandable-raytracing),\n", + "and we leave the corresponding Mojo implementations as an exercise for you." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Mojo", + "language": "mojo", + "name": "mojo-jupyter-kernel" }, - "nbformat": 4, - "nbformat_minor": 5 + "language_info": { + "codemirror_mode": { + "name": "mojo" + }, + "file_extension": ".mojo", + "mimetype": "text/x-mojo", + "name": "mojo" + } + }, + "nbformat": 4, + "nbformat_minor": 5 } diff --git a/examples/notebooks/environment.yml b/examples/notebooks/environment.yml new file mode 100644 index 0000000000..45a48799ef --- /dev/null +++ b/examples/notebooks/environment.yml @@ -0,0 +1,14 @@ +name: mojo-notebooks +channels: + - pytorch + - https://conda.modular.com/max/ + - conda-forge + - defaults +dependencies: + - python>=3.11,<3.12 + - max>=24.4.0dev6 + - max = "*" +pip = ">=24.0,<25" +jupyterlab = ">=4.2.5,<5" +matplotlib = ">=3.9.2,<4" +numpy = ">=1.26.4,<2" diff --git a/examples/notebooks/magic.lock b/examples/notebooks/magic.lock index 5d068575a5..9782182c18 100644 --- a/examples/notebooks/magic.lock +++ b/examples/notebooks/magic.lock @@ -8,40 +8,39 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.11.9-py312h178313f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/argon2-cffi-bindings-21.2.0-py312h66e93f0_5.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-common-cpp-12.8.0-h736e048_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-files-datalake-cpp-12.12.0-ha633028_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/backoff-2.2.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/brotli-python-1.1.0-py312h2ec8cdc_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-h4bc722e_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.3-hb9d3cd8_1.conda @@ -50,72 +49,72 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/debugpy-1.8.9-py312h2ec8cdc_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/httptools-0.6.4-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.30.0-pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/jsonpointer-3.0.0-py312h7900ff3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.1-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lcms2-2.16-hb7c19ff_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda @@ -140,99 +139,96 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multiprocess-0.70.15-py312h98912ed_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhff2d567_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.2-py312h1d6d2e6_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/protobuf-5.28.2-py312h2ec8cdc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/psutil-6.1.0-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyinstrument-5.0.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda @@ -240,51 +236,51 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/pyzmq-26.2.0-py312hbf22597_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/re2-2024.07.02-h77b4e00_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/regex-2024.11.6-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.21.0-py312h12e396e_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.22.3-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/safetensors-0.4.5-py312h12e396e_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh0d859eb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241003-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241206-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/uvloop-0.21.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/watchfiles-1.0.0-py312h12e396e_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.8.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.11.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.8.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/websockets-14.1-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda @@ -292,49 +288,47 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda linux-aarch64: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aiohttp-3.11.9-py312hcc812fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/argon2-cffi-bindings-21.2.0-py312hb2c0f52_5.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-common-0.10.3-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-compression-0.3.0-h4c7db1d_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-sdkutils-0.2.1-h4c7db1d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-checksums-0.2.2-h4c7db1d_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-core-cpp-1.14.0-h1887c18_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-identity-cpp-1.10.0-h47b0b28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-blobs-cpp-12.13.0-h185ecfd_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-common-cpp-12.8.0-h1b94036_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-files-datalake-cpp-12.12.0-h37d6d07_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/backoff-2.2.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/brotli-python-1.1.0-py312h6f74592_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/bzip2-1.0.8-h68df207_7.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/c-ares-1.34.3-h86ecc28_1.conda @@ -343,73 +337,73 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/cffi-1.17.1-py312hac81daf_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/debugpy-1.8.9-py312h6f74592_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/frozenlist-1.5.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gflags-2.2.2-h5ad3122_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/glog-0.7.1-h468a4a4_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/httptools-0.6.4-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/icu-75.1-hf9b3779_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh3099207_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.30.0-pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/jsonpointer-3.0.0-py312h996f985_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.1-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lcms2-2.16-h922389a_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libabseil-20240722.0-cxx17_h5ad3122_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h86ecc28_2.conda @@ -434,99 +428,96 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libiconv-1.17-h31becfc_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libjpeg-turbo-3.0.0-h31becfc_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnghttp2-1.64.0-hc8609a4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libprotobuf-5.28.2-h029595c_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libre2-11-2024.07.02-h18dbdb1_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsodium-1.0.20-h68df207_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libssh2-1.11.1-ha41c0db_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libthrift-0.21.0-h154c74f_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libutf8proc-2.9.0-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuv-1.49.2-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lz4-c-1.9.4-hd600fc2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multidict-6.1.0-py312hcc812fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multiprocess-0.70.15-py312hdd3e373_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhff2d567_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.4-py312h470d778_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/orc-2.0.3-h90de224_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pandas-2.2.2-py312h14eacfc_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py312h5ab5af3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/protobuf-5.28.2-py312h6f74592_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/psutil-6.1.0-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-18.1.0-py312h8025657_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-core-18.1.0-py312h66f7834_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pydantic-core-2.27.1-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyinstrument-5.0.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-xxhash-3.5.0-py312h52516f5_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda @@ -534,51 +525,51 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyzmq-26.2.0-py312h2427ae1_3.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/re2-2024.07.02-h2d3a13d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/readline-8.2-h8fc344f_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/regex-2024.11.6-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/rpds-py-0.21.0-py312ha4e36d7_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/rpds-py-0.22.3-py312ha4e36d7_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/s2n-1.5.9-h636ded1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/safetensors-0.4.5-py312h8cbf658_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh0d859eb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py312h52516f5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241003-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241206-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/uvloop-0.21.0-py312hb2c0f52_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/watchfiles-1.0.0-py312h8cbf658_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.8.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.11.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.8.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/websockets-14.1-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda @@ -586,49 +577,47 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xxhash-0.8.2-h31becfc_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yaml-0.2.5-hf897c2e_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zeromq-4.3.5-h5efb499_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstandard-0.23.0-py312hb698573_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda osx-arm64: - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.11.9-py312h998013c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/argon2-cffi-bindings-21.2.0-py312h024a12e_5.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-common-0.10.3-h5505292_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-compression-0.3.0-h5d7ee29_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-sdkutils-0.2.1-h5d7ee29_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-checksums-0.2.2-h5d7ee29_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-core-cpp-1.14.0-hd50102c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-identity-cpp-1.10.0-hc602bab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-blobs-cpp-12.13.0-h7585a09_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-common-cpp-12.8.0-h9ca1f76_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-files-datalake-cpp-12.12.0-hcdd55da_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/backoff-2.2.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/brotli-python-1.1.0-py312hde4cb15_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-h99b78c6_7.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/c-ares-1.34.3-h5505292_1.conda @@ -637,70 +626,71 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/cached_property-1.5.2-pyha770c72_1.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py312h0fad829_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/debugpy-1.8.9-py312hd8f9ff3_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/defusedxml-0.7.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/freetype-2.12.1-hadb7bae_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/frozenlist-1.5.0-py312h0bf5046_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gflags-2.2.2-hf9b8971_1005.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/glog-0.7.1-heb240a5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/httptools-0.6.4-py312hea69d52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipykernel-6.29.5-pyh57ce528_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/ipython-8.30.0-pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/jsonpointer-3.0.0-py312h81bd7bf_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.1-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lcms2-2.16-ha0e7c42_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lerc-4.0.0-h9a09cb3_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libabseil-20240722.0-cxx17_hf9b8971_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlicommon-1.1.0-hd74edd7_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlidec-1.1.0-hd74edd7_2.conda @@ -708,7 +698,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcrc32c-1.1.2-hbdafb3b_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.10.1-h13a7ad3_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libdeflate-1.22-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20191231-hc8eb9b7_2.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda @@ -723,97 +713,94 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.17-h0d3ecfb_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libjpeg-turbo-3.0.0-hb547adb_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-25_osxarm64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.64.0-h6d7220d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.28-openmp_hf332438_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libpng-1.6.44-hc14010f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libprotobuf-5.28.2-h8f0b736_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libre2-11-2024.07.02-h2348fd5_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h9cc3647_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libthrift-0.21.0-h64651cc_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libutf8proc-2.9.0-h5505292_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libuv-1.49.2-h7ab814d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libwebp-base-1.4.0-h93a5062_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxcb-1.17.0-hdb1d25a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lz4-c-1.9.4-hb7217d7_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312ha0ccf2a_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multidict-6.1.0-py312hdb8e49c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multiprocess-0.70.15-py312h02f2b3b_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/nbclient-0.10.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhff2d567_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h7bae524_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py312h8442bc7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjpeg-2.5.2-h9f1df11_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.4.0-h39f12f2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/orc-2.0.3-h121fd32_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/overrides-7.7.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.2.2-py312h8ae5369_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pandocfilters-1.5.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pillow-11.0.0-py312haf37ca6_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pip-24.3.1-pyh8b19718_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/protobuf-5.28.2-py312hf02c72a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/psutil-6.1.0-py312h0bf5046_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-18.1.0-py312h1f38498_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-core-18.1.0-py312hc40f475_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pydantic-core-2.27.1-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyinstrument-5.0.0-py312h0bf5046_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-core-10.3.2-py312hb9d441b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyobjc-framework-cocoa-10.3.2-py312hb9d441b_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-xxhash-3.5.0-py312h024a12e_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.2-pyhd8ed1ab_1.conda @@ -821,50 +808,50 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyzmq-26.2.0-py312hf8a1cbd_3.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/re2-2024.07.02-hcd0e937_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h92ec313_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/regex-2024.11.6-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/rfc3986-validator-0.1.1-pyh9f0ad1d_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.21.0-py312hcd83bfe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.22.3-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/safetensors-0.4.5-py312he431725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh31c8845_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh31c8845_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/soupsieve-2.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/terminado-0.18.1-pyh31c8845_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tinycss2-1.4.0-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h5083fa2_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.4.2-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241003-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241206-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/uvloop-0.21.0-py312h0bf5046_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/watchfiles-1.0.0-py312hcd83bfe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.8.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.11.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_3.conda - conda: https://conda.anaconda.org/conda-forge/noarch/websocket-client-1.8.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/websockets-14.1-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/wheel-0.45.1-pyhd8ed1ab_1.conda @@ -872,9 +859,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxau-1.0.11-hd74edd7_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxdmcp-1.1.5-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xxhash-0.8.2-hb547adb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h3422bc3_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py312h15fbf35_1.conda @@ -929,18 +915,19 @@ packages: - kind: conda name: aiohappyeyeballs version: 2.4.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda - sha256: 4282838f468f75f0c1746cbc6cdd3365b9f6d449bf5af8a74b234e396d847bf0 - md5: 8d6f8a679aa0272ba8d6092ce4824870 + url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda + sha256: 95d4713e49ea92ae50cf42393683ede706b7875af5f7cb14c253438180afa732 + md5: 296b403617bafa89df4971567af79013 depends: - python >=3.9 license: PSF-2.0 license_family: PSF - size: 19310 - timestamp: 1733135584059 + size: 19351 + timestamp: 1733332029649 - kind: conda name: aiohttp version: 3.11.9 @@ -1016,91 +1003,95 @@ packages: - kind: conda name: aiosignal version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - sha256: 575c742e14c86575986dc867463582a970463da50b77264cdf54df74f5563783 - md5: d1e1eb7e21a9e2c74279d87dafb68156 + url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + sha256: 9c7b639ea0cc796ef46c57fa104ec1f2ed53cd11c063518869a5a9d7d3b0b2db + md5: d736bd1b8904d7593dce4893e58a7881 depends: - frozenlist >=1.1.0 - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 12730 - timestamp: 1667935912504 + size: 13157 + timestamp: 1733332198143 - kind: conda name: annotated-types version: 0.7.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - md5: 7e9f4612544c8edbfd6afad17f1bd045 + url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + sha256: e0ea1ba78fbb64f17062601edda82097fcf815012cf52bb704150a2668110d48 + md5: 2934f256a8acfe48f6ebb4fce6cde29c depends: - - python >=3.7 + - python >=3.9 - typing-extensions >=4.0.0 license: MIT license_family: MIT - size: 18235 - timestamp: 1716290348421 + size: 18074 + timestamp: 1733247158254 - kind: conda name: anyio - version: 4.6.2.post1 + version: 4.7.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - sha256: 4b54b7ce79d818e3cce54ae4d552dba51b7afac160ceecdefd04b3917a37c502 - md5: 688697ec5e9588bdded167d19577625b + url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + sha256: 687537ee3af30f8784986bf40cac30e88138770b16e51ca9850c9c23c09aeba1 + md5: c88107912954a983c2caf25f7fd55158 depends: - exceptiongroup >=1.0.2 - idna >=2.8 - python >=3.9 - sniffio >=1.1 - - typing_extensions >=4.1 + - typing_extensions >=4.5 constrains: - - uvloop >=0.21.0b1 - trio >=0.26.1 + - uvloop >=0.21 license: MIT license_family: MIT - size: 109864 - timestamp: 1728935803440 + size: 112730 + timestamp: 1733532678437 - kind: conda name: appnope version: 0.1.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_0.conda - sha256: 45ae2d41f4a4dcf8707633d3d7ae376fc62f0c09b1d063c3049c3f6f8c911670 - md5: cc4834a9ee7cc49ce8d25177c47b10d8 + url: https://conda.anaconda.org/conda-forge/noarch/appnope-0.1.4-pyhd8ed1ab_1.conda + sha256: 8f032b140ea4159806e4969a68b4a3c0a7cab1ad936eb958a2b5ffe5335e19bf + md5: 54898d0f524c9dee622d44bbb081a8ab depends: - - python >=3.7 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 10241 - timestamp: 1707233195627 + size: 10076 + timestamp: 1733332433806 - kind: conda name: argon2-cffi version: 23.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_0.conda - sha256: 130766446f5507bd44df957b6b5c898a8bd98f024bb426ed6cb9ff1ad67fc677 - md5: 3afef1f55a1366b4d3b6a0d92e2235e4 + url: https://conda.anaconda.org/conda-forge/noarch/argon2-cffi-23.1.0-pyhd8ed1ab_1.conda + sha256: 7af62339394986bc470a7a231c7f37ad0173ffb41f6bc0e8e31b0be9e3b9d20f + md5: a7ee488b71c30ada51c48468337b85ba depends: - argon2-cffi-bindings - - python >=3.7 + - python >=3.9 - typing-extensions constrains: - argon2_cffi ==999 license: MIT license_family: MIT - size: 18602 - timestamp: 1692818472638 + size: 18594 + timestamp: 1733311166338 - kind: conda name: argon2-cffi-bindings version: 21.2.0 @@ -1161,189 +1152,173 @@ packages: - kind: conda name: arrow version: 1.3.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_0.conda - sha256: ff49825c7f9e29e09afa6284300810e7a8640d621740efb47c4541f4dc4969db - md5: b77d8c2313158e6e461ca0efb1c2c508 + url: https://conda.anaconda.org/conda-forge/noarch/arrow-1.3.0-pyhd8ed1ab_1.conda + sha256: c4b0bdb3d5dee50b60db92f99da3e4c524d5240aafc0a5fcc15e45ae2d1a3cd1 + md5: 46b53236fdd990271b03c3978d4218a9 depends: - - python >=3.8 + - python >=3.9 - python-dateutil >=2.7.0 - types-python-dateutil >=2.8.10 license: Apache-2.0 license_family: Apache - size: 100096 - timestamp: 1696129131844 + size: 99951 + timestamp: 1733584345583 - kind: conda - name: asgiref - version: 3.8.1 + name: asttokens + version: 3.0.0 build: pyhd8ed1ab_1 build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - sha256: c8d51a32f3530e3ca176d8f7bf5621c68c7c1c03fe9cc5c3c49d8ba4a1248f43 - md5: 21187c8276f87b6aedfe63c267a6eed7 + url: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_1.conda + sha256: 93b14414b3b3ed91e286e1cbe4e7a60c4e1b1c730b0814d1e452a8ac4b9af593 + md5: 8f587de4bcf981e26228f268df374a9b depends: - python >=3.9 - - typing_extensions >=4 - license: BSD-3-Clause - license_family: BSD - size: 26436 - timestamp: 1733215704904 -- kind: conda - name: asttokens - version: 3.0.0 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/asttokens-3.0.0-pyhd8ed1ab_0.conda - sha256: 92072fde775e62c427d05a76784404f6a2d7ccf232aa05a95a33d86c943614b5 - md5: 454950e9fa3a0c59880de0ac7a6bc8c4 - depends: - - python >=3.8 constrains: - astroid >=2,<4 license: Apache-2.0 license_family: Apache - size: 28137 - timestamp: 1733175735190 + size: 28206 + timestamp: 1733250564754 - kind: conda name: async-lru version: 2.0.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_0.conda - sha256: 7ed83731979fe5b046c157730e50af0e24454468bbba1ed8fc1a3107db5d7518 - md5: 3d081de3a6ea9f894bbb585e8e3a4dcb + url: https://conda.anaconda.org/conda-forge/noarch/async-lru-2.0.4-pyhd8ed1ab_1.conda + sha256: 344157f396dfdc929d1dff8fe010abe173cd168d22a56648583e616495f2929e + md5: 40c673c7d585623b8f1ee650c8734eb6 depends: - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0.0 license: MIT license_family: MIT - size: 15342 - timestamp: 1690563152778 + size: 15318 + timestamp: 1733584388228 - kind: conda name: attrs version: 24.2.0 - build: pyh71513ae_0 + build: pyh71513ae_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - sha256: 28dba85a7e0f7fb57d7315e13f603d1e41b83c5b88aa2a602596b52c833a2ff8 - md5: 6732fa52eb8e66e5afeb32db8701a791 + url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + sha256: 8488a116dffe204015a90b41982c0270534bd1070f44a00b316d59e4a79ae8c7 + md5: 2018839db45c79654b57a924fcdd27d0 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 56048 - timestamp: 1722977241383 + size: 56336 + timestamp: 1733520064905 - kind: conda name: aws-c-auth version: 0.8.0 - build: h9b725a8_10 - build_number: 10 + build: h35eccd0_12 + build_number: 12 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - sha256: 63cb8c25e0a26be4261d4271de525e7e33aefe9d9b001b8abfa5c9ac69c3dab3 - md5: 17c90d9eb8c6842fd739dc5445ce9962 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + sha256: 40ca48aee5f3ff0d3ffd64625dacb019104a9a2ee24cd54052cde6fe4cbc8349 + md5: 1109d5293b724ca16b61452accfdb442 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 license: Apache-2.0 license_family: Apache - size: 92355 - timestamp: 1731733738919 + size: 92279 + timestamp: 1733611476546 - kind: conda name: aws-c-auth version: 0.8.0 - build: hac900a4_10 - build_number: 10 + build: h89ba3c0_12 + build_number: 12 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - sha256: 85c8500ae0570f0d39e6661a120c653e43f0f5f984e2954c44fd358a87776892 - md5: 9ecaef75ebd666dda7caa79154183b02 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + sha256: 021451014fb5ee24601052d84db8d5babbce5085959ba777b540db4e33bde360 + md5: c0e2e6c3aa8c309af0ba09fc7d949407 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 111853 - timestamp: 1731733547677 + size: 112242 + timestamp: 1733611425746 - kind: conda name: aws-c-auth version: 0.8.0 - build: hb88c0a9_10 - build_number: 10 + build: ha4f867e_12 + build_number: 12 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - sha256: d2837a84e6bd7d993a83e79f9e240e1465e375f3d57149ea5b1927c6a4133bcc - md5: 409b7ee6d3473cc62bda7280f6ac20d0 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + sha256: b9355bedf43c857a2d1986ebe7d61e615218f2171d163b509633d6c0c988d2dc + md5: d889de56d3be691063b71eb826470e29 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 107163 - timestamp: 1731733534767 + size: 107663 + timestamp: 1733611397256 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h35473ba_2 - build_number: 2 + version: 0.8.1 + build: h35473ba_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda - sha256: 3327a9e65ec531b0c55d17bbcdc436b4e641af1f293d1c2f50e0f16aa79fde60 - md5: 48dc0b3576513622673d3f5f3d163b62 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda + sha256: c2d59d74e167b6df3c1a7addf0d37080b69a6b3dee2a30b3f2171a5d26c5a691 + md5: 97c0ccb4d43d880b38f237e746c29ead depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 49714 - timestamp: 1731678553709 + size: 49808 + timestamp: 1732038238504 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h5d7ee29_2 - build_number: 2 + version: 0.8.1 + build: h5d7ee29_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda - sha256: 2a8c09b33400cf2b7d658e63fd5a6f9b6e9626458f6213b904592fc15220bc92 - md5: 92734dad83d22314205ba73b679710d2 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda + sha256: 42d5e9fb695bc3b280ed7e625dcda110b6780ee471e227f1b92afce71ae4972c + md5: fc51a61831a676fe6f922450f51ab6af depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 39966 - timestamp: 1731678721786 + size: 40047 + timestamp: 1732038304022 - kind: conda name: aws-c-cal - version: 0.8.0 - build: hecf86a2_2 - build_number: 2 + version: 0.8.1 + build: hecf86a2_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda - sha256: 220a37955c120bf2f565fbd5320a82fc4c8b550b2449294bc0509c296cfcb9fa - md5: c54459d686ad9d0502823cacff7e8423 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda + sha256: 12cc2087503f4f0d3a5db84e791fb5e585866da728f888aa76e14330a092a681 + md5: 8350795be14a92d68847c0d4f3c1d59f depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 @@ -1351,8 +1326,8 @@ packages: - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 47477 - timestamp: 1731678510949 + size: 47569 + timestamp: 1732038156682 - kind: conda name: aws-c-common version: 0.10.3 @@ -1448,291 +1423,294 @@ packages: - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h13ead76_7 - build_number: 7 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - sha256: 386965fab5f0bed4a6109cdba32579f16bee1b0f76ce1db840ce6f7070188f9f - md5: 55a901b6d4fb9ce1bc8328925b229f0b + build: h873f81a_8 + build_number: 8 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + sha256: 589f9a04c4c7a919410dde75ce93a6986efad6ed522ecd8e5c9c587ac18f0d34 + md5: 32bdd50b43fcc435a8dc5a3c66aafef0 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 47528 - timestamp: 1731714690911 + size: 54020 + timestamp: 1731839177415 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h1ffe551_7 - build_number: 7 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - sha256: 3b780d6483baa889e8df5aa66ab3c439a9c81331cf2a4799e373f4174768ddd9 - md5: 7cce4dfab184f4bbdfc160789251b3c5 + build: h8ec3972_8 + build_number: 8 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + sha256: 81b98fc39e64d090af23b11621e467b4f943a19f61dda0fed5ad6397f06de5c7 + md5: ced9c97ddf61e4222d548e8bcc863b87 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 53500 - timestamp: 1731714597524 + size: 47491 + timestamp: 1731839300212 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h9bacb8c_7 - build_number: 7 + build: hba6c15e_8 + build_number: 8 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - sha256: 2b7bb475330942d94bc359171df19d0cf8b326f15c0c7903a59da54a8add621e - md5: 694020125b66632d6577456d2d9d3c74 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + sha256: d3b74580045ee9d54a134ab1e5e00082d5d8a466980e94acc153188ee7375d08 + md5: 102f8b54630d79aff5e0c489f40f926e depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 55054 - timestamp: 1731714599360 + size: 55354 + timestamp: 1731839242373 - kind: conda name: aws-c-http - version: 0.9.1 - build: hab05fe4_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - sha256: 90a325b6f5371dd2203b643de646967fe57a4bcbbee8c91086abbf9dd733d59a - md5: fb409f7053fa3dbbdf6eb41045a87795 + version: 0.9.2 + build: h48c6dea_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + sha256: cb68d557af1bdcbef668574836fbf39c4df0e4f377258e4d5bd14196acf9b992 + md5: a28dd36a1da76042bfb5579005cc6728 depends: - - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __osx >=11.0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 - - libgcc >=13 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 196945 - timestamp: 1731714483279 + size: 152660 + timestamp: 1732110368931 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf483d09_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - sha256: fca9ed0f0895bab9bf737c8d8a3314556cb893d45c40f0656f21a93502db3089 - md5: d880c40b8fc7d07374c036f93f1359d2 + version: 0.9.2 + build: h697be72_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + sha256: 4d6557a00e74649301da78d7de7d108882ce89eb9d6c87efce30789b53a617cf + md5: a8b1a2c11a93e615f6e8f33175ff8ff0 depends: - - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 + - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 153315 - timestamp: 1731714621306 + size: 190344 + timestamp: 1732110425530 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf4e072c_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - sha256: b9a262451fc91d2fd4ccfcb6dc11ac61d0152c0db765bfe8d089e3e1b70c2150 - md5: fddc197912c16cb95276077f6c7917c5 + version: 0.9.2 + build: ha5a3ca8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + sha256: 8ecb3d8411f58db4686635aedfe5d60b2b8870f9f9cafb471f3878dc61d21596 + md5: b2e017f8a4781ad3af9166edf10b65a8 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 190363 - timestamp: 1731714613945 + size: 197338 + timestamp: 1732110324356 - kind: conda name: aws-c-io - version: 0.15.2 - build: h10eb1bc_2 - build_number: 2 + version: 0.15.3 + build: h0155602_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - sha256: b8e4206ee1fa58453535c1c08c6aca5bdc92cde026bf7ec20d038786f813239b - md5: 7cdf478bb4feae1a93319f6e3381b8a9 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + sha256: 7b8d97d51e5bb80191e07f16cac6f59068be30bf5906925a8f4159b3aab9093c + md5: 431c201b11eee90fd120844557a62b02 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 162624 - timestamp: 1731702570075 + size: 161664 + timestamp: 1732097310449 - kind: conda name: aws-c-io - version: 0.15.2 - build: h39f8ad8_2 - build_number: 2 + version: 0.15.3 + build: h30cefa2_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - sha256: b14e32f024f6be1610dccfdb6371e101cba204d24f37c2a63d9b6380ac74ac17 - md5: 3b49f1dd8f20bead8b222828cfdad585 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + sha256: d6f8d42259ca11507bd912b3cd3ff1a65d6d8c7ff67ae9ee9df1686c9bebbbcc + md5: 8b8dc361de09e5b6227165a876e55cb7 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 license: Apache-2.0 license_family: Apache - size: 137610 - timestamp: 1731702839896 + size: 136662 + timestamp: 1732097382517 - kind: conda name: aws-c-io - version: 0.15.2 - build: hdeadb07_2 - build_number: 2 + version: 0.15.3 + build: ha35c7d9_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - sha256: 1636136a5d882b4aaa13ea8b7de8cf07038a6878872e3c434df9daf478cee594 - md5: 461a1eaa075fd391add91bcffc9de0c1 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + sha256: 2e9e13ed54f6da22ee5d06622f4165bcca253411997dad62225aecc54b25c0db + md5: 97960f380abe1ba3157fe63312e35b07 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 159368 - timestamp: 1731702542973 + size: 158012 + timestamp: 1732097264673 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h28a5e6a_8 - build_number: 8 + build: h2cca791_9 + build_number: 9 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - sha256: aad8c9a5c24953cdebf17efa7ec06b5639e14072d4fa70c5c0607d7ad913ba88 - md5: 5250ce3b5154c0347b7576015a7c6cef + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + sha256: c0ad176bab176a2983fb052de71037fc9357afd13b073511a7a440c1a8c6eff2 + md5: 090674d608454e979ce77bc8ee735868 depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 169040 - timestamp: 1731734203264 + size: 169690 + timestamp: 1733688313938 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h68a0d7e_8 - build_number: 8 + build: h3aaadf4_9 + build_number: 9 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - sha256: 837c24c105624e16ace94b4b566ffe45231ff275339c523571ebd45946926156 - md5: 9e3ac70d27e7591b1310a690768cfe27 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + sha256: 3cc99239c8dadfe55e4b9ba37d03c5d3308ddd8fe00792fab7c6b47c97655c07 + md5: ddb5dc7ac1ae424ca2b7a847765a0cb9 depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 134573 - timestamp: 1731734281038 + size: 135051 + timestamp: 1733688394116 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h7bd072d_8 - build_number: 8 + build: h56e9cca_9 + build_number: 9 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - sha256: 51d3d87a47c642096e2ce389a169aec2e26958042e9130857552a12d65a19045 - md5: 0e9d67838114c0dbd267a9311268b331 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + sha256: c93c29b58482ca72d3f9a5710ad92194e809a9de988bcdcbae9ddd0f8ed484a6 + md5: f75642fe24ae4131f554cbacd6df53e3 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 194447 - timestamp: 1731734668760 + size: 194705 + timestamp: 1733688770217 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h29aef15_0 + version: 0.7.5 + build: h3c51cf6_2 + build_number: 2 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda - sha256: 57aa8b28890efd82c479e902125ea8a37782b163f13ae0856b259ec527a52879 - md5: e09cd76e50ce09ec14c17109da5c6502 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda + sha256: 98a2df8a5068183e55b4c6914a3513d403300be20c960842a9a229546b8e8e52 + md5: e326ddae95b3ec96a31aded04c834175 depends: - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 117467 - timestamp: 1733098782199 + size: 117896 + timestamp: 1733694002769 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h3a84f74_0 + version: 0.7.5 + build: h6ad95d4_2 + build_number: 2 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda - sha256: db17a15e5e01f19700bf9be961e1c4e002ccf8dc4d9caa3a24a0ab54f00f2c2d - md5: 171850b890600458ae6c990e78f1fa23 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda + sha256: 103a478b18ead8f79aae9a4966b2879e9fbcfb0aa3b2e6c9b2811a76ba34610e + md5: 682c079ec089d47bb7142f12b3275e4f depends: - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 113536 - timestamp: 1733098705479 + size: 113741 + timestamp: 1733693956970 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h840aca7_0 + version: 0.7.5 + build: hca3a6f1_2 + build_number: 2 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda - sha256: 18972a91f32f6b0edb58eb71cb2f5b56654183fd6ba611b3b0d6cc484017aeff - md5: 893e668d99fa4b31eef9dc5b19c21b9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda + sha256: 53c4dc6e360ed6e1242c20fa43f7bfe67a41215e51cafab27dbd8aa91333040c + md5: 0b4e647cae3ce85ec991c6e3b8d12bda depends: - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 license: Apache-2.0 license_family: Apache - size: 97145 - timestamp: 1733098874599 + size: 97530 + timestamp: 1733694097526 - kind: conda name: aws-c-sdkutils version: 0.2.1 @@ -1833,118 +1811,118 @@ packages: timestamp: 1731687193373 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: h7939e66_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - sha256: 3d0b1996d28a2647ced83ed8052ee331df70b2c1a68fb6db0fe4e743a88be54d - md5: 5e573a52a1cd20f81d7fdf1db4f4583a + version: 0.29.7 + build: h318f0b1_3 + build_number: 3 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + sha256: 35100ad81adf31aa4e73ac2956e9a8ff277cc57d0db2db2f0e9c51012175eadd + md5: 9748d0527695a64aa2eb45e891ea188d depends: + - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 283670 - timestamp: 1733150929992 + size: 355045 + timestamp: 1733744656604 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: ha226bf8_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - sha256: f645e2a8015d8e71ed785c81a14a202ebce2f5dcca8982cd7ec5f8000f9be5c3 - md5: 81da0b5f65ab08e3919d6eadf08b5776 + version: 0.29.7 + build: hacb6b83_3 + build_number: 3 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + sha256: 6c0ece3ca494c2220fc052e608d52ea52bb361e536a14a1b3b36ebeede9de8b9 + md5: 27ce3ed5b7e55370a9fea2dda2b3245a depends: - - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 236505 - timestamp: 1733151090562 + size: 283993 + timestamp: 1733744571881 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: hdec8b0f_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - sha256: cd09f1d5d854607ce7acafc76c74e864f296d296e60b54054a10f757ecc3d2dd - md5: 40647232fad98f92be8c6050a7e0c2bd + version: 0.29.7 + build: hc2c2bbc_3 + build_number: 3 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + sha256: 6a519151e7fa71fbc9d1cd3a526ea7591638af058a6cc0534e1cd418fd48b354 + md5: 5450324f7b48dff1f6ed5484bf830972 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 354710 - timestamp: 1733150818238 + size: 236331 + timestamp: 1733744737078 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h3b64406_4 - build_number: 4 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda - sha256: 10ce9c203d31229432421a841d8d135d3e942637571aae4bb2d3c7d5242e7f05 - md5: f9e46a4bb5a04cbca08355f166ce87c8 + version: 1.11.458 + build: h5e41cbe_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda + sha256: b45305787a78f2bf7ecabc401b5bfe451509b434dd041a0a554572a70302d2f3 + md5: 1861b1fb86b336f1f53faaac5a76046c depends: - - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2722689 - timestamp: 1732812825640 + size: 2910575 + timestamp: 1733576378398 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h5558e3c_4 - build_number: 4 + version: 1.11.458 + build: hac138a2_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda - sha256: 4881f7b4f5e3c797332cffb990df246a422346b220a9c16014f274beb2a276f5 - md5: ba7abdc93b0ade11d774b47aaab84737 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda + sha256: fdb9c94d7524c52837643428b1aab4f35bed3ba2862a57e1b03e63038c7c146f + md5: bbdd9589b1a32a80b0e3f98a2a482542 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - libgcc >=13 - libstdcxx >=13 @@ -1952,31 +1930,31 @@ packages: - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2945541 - timestamp: 1732812288219 + size: 3071464 + timestamp: 1733576251149 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h7085e57_4 - build_number: 4 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda - sha256: 0908a82e7c50c51d5ee0ca543dbe70cbe1963e6e8f80ffa58ea6d26e5c68251e - md5: feec198cb18a5e90aa36c97328567d63 + version: 1.11.458 + build: he4d6490_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda + sha256: 61abc03dfbe372b258b8b6790bf3ad3a3265e02ce24b6b22bfe8f2fcab94954a + md5: 2941213b750689ace0862a6d695bb740 depends: + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2813856 - timestamp: 1732812337182 + size: 2847256 + timestamp: 1733576733615 - kind: conda name: azure-core-cpp version: 1.14.0 @@ -2255,19 +2233,20 @@ packages: - kind: conda name: babel version: 2.16.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_0.conda - sha256: fce1d78e42665bb26d3f2b45ce9cacf0d9dbe4c1b2db3879a384eadee53c6231 - md5: 6d4e9ecca8d88977147e109fc7053184 + url: https://conda.anaconda.org/conda-forge/noarch/babel-2.16.0-pyhd8ed1ab_1.conda + sha256: f6205d3a62e87447e06e98d911559be0208d824976d77ab092796c9176611fcb + md5: 3e23f7db93ec14c80525257d8affac28 depends: - - python >=3.8 + - python >=3.9 - pytz >=2015.7 license: BSD-3-Clause license_family: BSD - size: 6525614 - timestamp: 1730878929589 + size: 6551057 + timestamp: 1733236466015 - kind: conda name: backoff version: 2.2.1 @@ -2286,35 +2265,37 @@ packages: - kind: conda name: beautifulsoup4 version: 4.12.3 - build: pyha770c72_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_0.conda - sha256: 7b05b2d0669029326c623b9df7a29fa49d1982a9e7e31b2fea34b4c9a4a72317 - md5: 332493000404d8411859539a5a630865 + url: https://conda.anaconda.org/conda-forge/noarch/beautifulsoup4-4.12.3-pyha770c72_1.conda + sha256: fca842ab7be052eea1037ebee17ac25cc79c626382dd2187b5c6e007b9d9f65f + md5: d48f7e9fdec44baf6d1da416fe402b04 depends: - - python >=3.6 + - python >=3.9 - soupsieve >=1.2 license: MIT license_family: MIT - size: 118200 - timestamp: 1705564819537 + size: 118042 + timestamp: 1733230951790 - kind: conda name: bleach version: 6.2.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_0.conda - sha256: 01be7fb5163e7c31356a18c259ddc19a5431b8b974dc65e2427b88c2d30034f3 - md5: 461bcfab8e65c166e297222ae919a2d4 + url: https://conda.anaconda.org/conda-forge/noarch/bleach-6.2.0-pyhd8ed1ab_1.conda + sha256: ffc8e4e53cd92aec0f0ea0bc9e28f5fd1b1e67bde46b0b298170e6fb78eecce1 + md5: 707af59db75b066217403a8f00c1d826 depends: - python >=3.9 - webencodings license: Apache-2.0 AND MIT license_family: Apache - size: 132652 - timestamp: 1730286301829 + size: 132933 + timestamp: 1733302409510 - kind: conda name: brotli-python version: 1.1.0 @@ -2608,65 +2589,69 @@ packages: - kind: conda name: charset-normalizer version: 3.4.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - md5: a374efa97290b8799046df7c5ca17164 + url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + sha256: 63022ee2c6a157a9f980250a66f54bdcdf5abee817348d0f9a74c2441a6fbf0e + md5: 6581a17bba6b948bb60130026404a9d6 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 47314 - timestamp: 1728479405343 + size: 47533 + timestamp: 1733218182393 - kind: conda name: click version: 8.1.7 - build: unix_pyh707e725_0 + build: unix_pyh707e725_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - md5: f3ad426304898027fc619827ff428eca + url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + sha256: 1cd5fc6ccdd5141378e51252a7a3810b07fd5a7e6934a5b4a7eccba66566224b + md5: cb8e52f28f5e592598190c562e7b5bf1 depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 84437 - timestamp: 1692311973840 + size: 84513 + timestamp: 1733221925078 - kind: conda name: colorama version: 0.4.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - md5: 3faab06a954c2a04039983f2c4a50d99 + url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + sha256: ab29d57dc70786c1269633ba3dff20288b81664d3ff8d21af995742e2bb03287 + md5: 962b9857ee8e7018c22f2776ffa0b2d7 depends: - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 25170 - timestamp: 1666700778190 + size: 27011 + timestamp: 1733218222191 - kind: conda name: comm version: 0.2.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_0.conda - sha256: e923acf02708a8a0b591f3bce4bdc11c8e63b73198b99b35fe6cd96bfb6a0dbe - md5: 948d84721b578d426294e17a02e24cbb + url: https://conda.anaconda.org/conda-forge/noarch/comm-0.2.2-pyhd8ed1ab_1.conda + sha256: 7e87ef7c91574d9fac19faedaaee328a70f718c9b4ddadfdc0ba9ac021bd64af + md5: 74673132601ec2b7fc592755605f4c1b depends: - - python >=3.6 + - python >=3.9 - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 12134 - timestamp: 1710320435158 + size: 12103 + timestamp: 1733503053903 - kind: conda name: datasets version: 2.14.4 @@ -2753,18 +2738,19 @@ packages: - kind: conda name: decorator version: 5.1.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_0.tar.bz2 - sha256: 328a6a379f9bdfd0230e51de291ce858e6479411ea4b0545fb377c71662ef3e2 - md5: 43afe5ab04e35e17ba28649471dd7364 + url: https://conda.anaconda.org/conda-forge/noarch/decorator-5.1.1-pyhd8ed1ab_1.conda + sha256: 84e5120c97502a3785e8c3241c3bf51f64b4d445f13b4d2445db00d9816fe479 + md5: d622d8d7ee8868870f9cbe259f381181 depends: - - python >=3.5 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 12072 - timestamp: 1641555714315 + size: 14068 + timestamp: 1733236549190 - kind: conda name: defusedxml version: 0.7.1 @@ -2783,19 +2769,20 @@ packages: - kind: conda name: deprecated version: 1.2.15 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda - sha256: 48182a27a8fd855db3a402ed914823802f94c3344c87b0d074facc51411296ee - md5: ca75e235b44ab995655fae392f99595e + url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda + sha256: a20ebf2c9b02a6eb32412ceb5c4cffaae49417db7e75414a76417538293a9402 + md5: eaef2e94d5bd76f758545d172c1fda67 depends: - - python >=2.7 + - python >=3.9 - wrapt <2,>=1.10 license: MIT license_family: MIT - size: 14182 - timestamp: 1731836933516 + size: 14297 + timestamp: 1733662697343 - kind: conda name: dill version: 0.3.7 @@ -2814,73 +2801,77 @@ packages: - kind: conda name: dnspython version: 2.7.0 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - sha256: 3e2ea1bfd90969e0e1f152bb1f969c56661278ad6bfaa3272027b1ff0d9a1a23 - md5: 0adf8f63d500d20418656289249533f9 + url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + sha256: 3ec40ccf63f2450c5e6c7dd579e42fc2e97caf0d8cd4ba24aa434e6fc264eda0 + md5: 5fbd60d61d21b4bd2f9d7a48fe100418 depends: - - python >=3.9.0,<4.0.0 + - python >=3.9,<4.0.0 - sniffio constrains: - - cryptography >=43 + - aioquic >=1.0.0 - wmi >=1.5.1 - - h2 >=4.1.0 + - httpx >=0.26.0 - trio >=0.23 + - cryptography >=43 - httpcore >=1.0.0 - - aioquic >=1.0.0 - - httpx >=0.26.0 - idna >=3.7 + - h2 >=4.1.0 license: ISC license_family: OTHER - size: 172740 - timestamp: 1728178868478 + size: 172172 + timestamp: 1733256829961 - kind: conda name: email-validator version: 2.2.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - sha256: ea9e936ed7c49ea6d66fa3554afe31ba311f2a3d5e384d8c38925fda9e37bdb9 - md5: 3067adf57ee658ddf5bfad47b0041ce4 + url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + sha256: b91a19eb78edfc2dbb36de9a67f74ee2416f1b5273dd7327abe53f2dbf864736 + md5: da16dd3b0b71339060cd44cb7110ddf9 depends: - dnspython >=2.0.0 - idna >=2.0.0 - - python >=3.7 + - python >=3.9 license: Unlicense - size: 44157 - timestamp: 1718984716782 + size: 44401 + timestamp: 1733300827551 - kind: conda name: email_validator version: 2.2.0 - build: hd8ed1ab_0 + build: hd8ed1ab_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - sha256: 2cbbbe9e0f3872214227c27b8b775dd2296a435c90ef50a7cc69934c329b6c65 - md5: 0214a004f7cf5ac28fc10a390dfc47ee + url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + sha256: e0d0fdf587aa0ed0ff08b2bce3ab355f46687b87b0775bfba01cc80a859ee6a2 + md5: 0794f8807ff2c6f020422cacb1bd7bfa depends: - email-validator >=2.2.0,<2.2.1.0a0 license: Unlicense - size: 6690 - timestamp: 1718984720419 + size: 6552 + timestamp: 1733300828176 - kind: conda name: entrypoints version: '0.4' - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_0.tar.bz2 - sha256: 2ec4a0900a4a9f42615fc04d0fb3286b796abe56590e8e042f6ec25e102dd5af - md5: 3cf04868fee0a029769bd41f4b2fbf2d + url: https://conda.anaconda.org/conda-forge/noarch/entrypoints-0.4-pyhd8ed1ab_1.conda + sha256: 80f579bfc71b3dab5bef74114b89e26c85cb0df8caf4c27ab5ffc16363d57ee7 + md5: 3366592d3c219f2731721f11bc93755c depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 9199 - timestamp: 1643888357950 + size: 11259 + timestamp: 1733327239578 - kind: conda name: exceptiongroup version: 1.2.2 @@ -2899,27 +2890,28 @@ packages: - kind: conda name: executing version: 2.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_0.conda - sha256: a52d7516e2e11d3eb10908e10d3eb3f8ef267fea99ed9b09d52d96c4db3441b8 - md5: d0441db20c827c11721889a241df1220 + url: https://conda.anaconda.org/conda-forge/noarch/executing-2.1.0-pyhd8ed1ab_1.conda + sha256: 28d25ea375ebab4bf7479228f8430db20986187b04999136ff5c722ebd32eb60 + md5: ef8b5fca76806159fc25b4f48d8737eb depends: - - python >=2.7 + - python >=3.9 license: MIT license_family: MIT - size: 28337 - timestamp: 1725214501850 + size: 28348 + timestamp: 1733569440265 - kind: conda name: fastapi - version: 0.115.5 - build: pyhff2d567_0 + version: 0.115.6 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda - sha256: da2833cc2ea5789abc2a6899be02ba0a769386d4913ff182bd1a9458bea40c34 - md5: cfe0f8cd904ab19c36ba50eb5179ebe0 + url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda + sha256: d7826d537c667093c9de96411a09585a8d620c84a830a0195e58e9a0df45f018 + md5: 1b1e0c97830cdf75f1f371bd467ab657 depends: - email_validator >=2.0.0 - fastapi-cli >=0.0.5 @@ -2933,8 +2925,8 @@ packages: - uvicorn-standard >=0.12.0 license: MIT license_family: MIT - size: 73541 - timestamp: 1731452895466 + size: 73084 + timestamp: 1733362427885 - kind: conda name: fastapi-cli version: 0.0.5 @@ -2956,33 +2948,35 @@ packages: - kind: conda name: filelock version: 3.16.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + sha256: 18dca6e2194732df7ebf824abaefe999e4765ebe8e8a061269406ab88fc418b9 + md5: d692e9ba6f92dc51484bf3477e36ce7c depends: - - python >=3.7 + - python >=3.9 license: Unlicense - size: 17357 - timestamp: 1726613593584 + size: 17441 + timestamp: 1733240909987 - kind: conda name: fqdn version: 1.5.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_0.tar.bz2 - sha256: 6cfd1f9bcd2358a69fb571f4b3af049b630d52647d906822dbedac03e84e4f63 - md5: 642d35437078749ef23a5dca2c9bb1f3 + url: https://conda.anaconda.org/conda-forge/noarch/fqdn-1.5.1-pyhd8ed1ab_1.conda + sha256: 2509992ec2fd38ab27c7cdb42cf6cadc566a1cc0d1021a2673475d9fa87c6276 + md5: d3549fd50d450b6d9e7dddff25dd2110 depends: - cached-property >=1.3.0 - - python >=2.7,<4 + - python >=3.9,<4 license: MPL-2.0 license_family: MOZILLA - size: 14395 - timestamp: 1638810388635 + size: 16705 + timestamp: 1733327494780 - kind: conda name: freetype version: 2.12.1 @@ -3084,18 +3078,19 @@ packages: - kind: conda name: fsspec version: 2024.10.0 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda - sha256: 40bb76981dd49d5869b48925a8975bb7bbe4e33e1e40af4ec06f6bf4a62effd7 - md5: 816dbc4679a64e4417cd1385d661bb31 + url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda + sha256: 790a50b4f94042951518f911a914a886a837c926094c6a14ed1d9d03ce336807 + md5: 906fe13095e734cb413b57a49116cdc8 depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 134745 - timestamp: 1729608972363 + size: 134726 + timestamp: 1733493445080 - kind: conda name: gflags version: 2.2.2 @@ -3212,51 +3207,54 @@ packages: - kind: conda name: h11 version: 0.14.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085 - md5: b21ed0883505ba1910994f1df031a428 + url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + sha256: 622516185a7c740d5c7f27016d0c15b45782c1501e5611deec63fd70344ce7c8 + md5: 7ee49e89531c0dcbba9466f6d115d585 depends: - - python >=3 + - python >=3.9 - typing_extensions license: MIT license_family: MIT - size: 48251 - timestamp: 1664132995560 + size: 51846 + timestamp: 1733327599467 - kind: conda name: h2 version: 4.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a - md5: b748fbf7060927a6e82df7cb5ee8f097 + url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + sha256: 843ddad410c370672a8250470697027618f104153612439076d4d7b91eeb7b5c + md5: 825927dc7b0f287ef8d4d0011bb113b1 depends: - hpack >=4.0,<5 - hyperframe >=6.0,<7 - - python >=3.6.1 + - python >=3.9 license: MIT license_family: MIT - size: 46754 - timestamp: 1634280590080 + size: 52000 + timestamp: 1733298867359 - kind: conda name: hpack version: 4.0.0 - build: pyh9f0ad1d_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 - sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8 - md5: 914d6646c4dbb1fd3ff539830a12fd71 + url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda + sha256: ec89b7e5b8aa2f0219f666084446e1fb7b54545861e9caa892acb24d125761b5 + md5: 2aa5ff7fa34a81b9196532c84c10d865 depends: - - python + - python >=3.9 license: MIT license_family: MIT - size: 25341 - timestamp: 1598856368685 + size: 29412 + timestamp: 1733299296857 - kind: conda name: httpcore version: 1.0.7 @@ -3331,13 +3329,13 @@ packages: timestamp: 1732707871414 - kind: conda name: httpx - version: 0.28.0 + version: 0.28.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - sha256: cb7895446cd93091300accea6afbc8d9811a3c5899922ccfeeff97d9b55909dc - md5: 22878824a87f1af2ad48665f9d5bfcc8 + url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + sha256: cd0f1de3697b252df95f98383e9edb1d00386bfdd03fdf607fa42fe5fcb09950 + md5: d6989ead454181f4f9bc987d3dc4e285 depends: - anyio - certifi @@ -3346,17 +3344,17 @@ packages: - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 63183 - timestamp: 1732831049776 + size: 63082 + timestamp: 1733663449209 - kind: conda name: huggingface_hub - version: 0.26.3 + version: 0.26.5 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - sha256: 66ffed967463e4a25f1dc4ca699d85dd55d1d150fed214c6380f11a981e0acb7 - md5: 997fc223fbc616c262f2a32a22d433a4 + url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + sha256: bdbf614d87155c7f9b8fe9c3d039528298119832e9f52959b15c522a9841eef7 + md5: 37236111cd92068e5af2f98cbb476642 depends: - filelock - fsspec >=2023.5.0 @@ -3368,24 +3366,24 @@ packages: - typing-extensions >=3.7.4.3 - typing_extensions >=3.7.4.3 license: Apache-2.0 - license_family: APACHE - size: 274858 - timestamp: 1733170279930 + size: 274900 + timestamp: 1733637007500 - kind: conda name: hyperframe version: 6.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 - sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330 - md5: 9f765cbfab6870c8435b9eefecd7a1f4 + url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + sha256: e91c6ef09d076e1d9a02819cd00fa7ee18ecf30cdd667605c853980216584d1b + md5: 566e75c90c1d0c8c459eb0ad9833dc7a depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14646 - timestamp: 1619110249723 + size: 17239 + timestamp: 1733298862681 - kind: conda name: icu version: '75.1' @@ -3401,6 +3399,20 @@ packages: license_family: MIT size: 12282786 timestamp: 1720853454991 +- kind: conda + name: icu + version: '75.1' + build: hfee45f7_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda + sha256: 9ba12c93406f3df5ab0a43db8a4b4ef67a5871dfd401010fbe29b218b2cbe620 + md5: 5eb22c1d7b3fc4abb50d92d621583137 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + size: 11857802 + timestamp: 1720853997952 - kind: conda name: idna version: '3.10' @@ -3436,21 +3448,22 @@ packages: - kind: conda name: importlib_resources version: 6.4.5 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_0.conda - sha256: 2cb9db3e40033c3df72d3defc678a012840378fd55a67e4351363d4b321a0dc1 - md5: c808991d29b9838fb4d96ce8267ec9ec + url: https://conda.anaconda.org/conda-forge/noarch/importlib_resources-6.4.5-pyhd8ed1ab_1.conda + sha256: 461199e429a3db01f0a673f8beaac5e0be75b88895952fb9183f2ab01c5c3c24 + md5: 15798fa69312d433af690c8c42b3fb36 depends: - - python >=3.8 + - python >=3.9 - zipp >=3.1.0 constrains: - importlib-resources >=6.4.5,<6.4.6.0a0 license: Apache-2.0 license_family: APACHE - size: 32725 - timestamp: 1725921462405 + size: 32701 + timestamp: 1733231441973 - kind: conda name: ipykernel version: 6.29.5 @@ -3538,65 +3551,69 @@ packages: - kind: conda name: isoduration version: 20.11.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_0.tar.bz2 - sha256: 7bb5c4d994361022f47a807b5e7d101b3dce16f7dd8a0af6ffad9f479d346493 - md5: 4cb68948e0b8429534380243d063a27a + url: https://conda.anaconda.org/conda-forge/noarch/isoduration-20.11.0-pyhd8ed1ab_1.conda + sha256: 08e838d29c134a7684bca0468401d26840f41c92267c4126d7b43a6b533b0aed + md5: 0b0154421989637d424ccf0f104be51a depends: - arrow >=0.15.0 - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 17189 - timestamp: 1638811664194 + size: 19832 + timestamp: 1733493720346 - kind: conda name: jedi version: 0.19.2 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhff2d567_0.conda - sha256: d37dad14c00d06d33bfb99c378d0abd7645224a9491c433af5028f24863341ab - md5: 11ead81b00e0f7cc901fceb7ccfb92c1 + url: https://conda.anaconda.org/conda-forge/noarch/jedi-0.19.2-pyhd8ed1ab_1.conda + sha256: 92c4d217e2dc68983f724aa983cca5464dcb929c566627b26a2511159667dba8 + md5: a4f4c5dc9b80bc50e0d3dc4e6e8f1bd9 depends: - parso >=0.8.3,<0.9.0 - python >=3.9 license: Apache-2.0 AND MIT - size: 842916 - timestamp: 1731317305873 + size: 843646 + timestamp: 1733300981994 - kind: conda name: jinja2 version: 3.1.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 + url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + sha256: 85a7169c078b8065bd9d121b0e7b99c8b88c42a411314b6ae5fcd81c48c4710a + md5: 08cce3151bde4ecad7885bd9fb647532 depends: - markupsafe >=2.0 - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 111565 - timestamp: 1715127275924 + size: 110963 + timestamp: 1733217424408 - kind: conda name: json5 version: 0.10.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_0.conda - sha256: df01c5253bb5f8c68526c8bad92b8e832ed58a0d4c40d08a65c81c51821bc23d - md5: 165cbd1d80be88dafadeabfaae6fa588 + url: https://conda.anaconda.org/conda-forge/noarch/json5-0.10.0-pyhd8ed1ab_1.conda + sha256: 61bca2dac194c44603446944745566d7b4e55407280f6f6cea8bbe4de26b558f + md5: cd170f82d8e5b355dfdea6adab23e4af depends: - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 32030 - timestamp: 1732666224221 + size: 31573 + timestamp: 1733272196759 - kind: conda name: jsonpointer version: 3.0.0 @@ -3650,49 +3667,52 @@ packages: - kind: conda name: jsonschema version: 4.23.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_0.conda - sha256: 7d0c4c0346b26be9f220682b7c5c0d84606d48c6dbc36fc238e4452dda733aff - md5: da304c192ad59975202859b367d0f6a2 + url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-4.23.0-pyhd8ed1ab_1.conda + sha256: be992a99e589146f229c58fe5083e0b60551d774511c494f91fe011931bd7893 + md5: a3cead9264b331b32fe8f0aabc967522 depends: - attrs >=22.2.0 - importlib_resources >=1.4.0 - jsonschema-specifications >=2023.03.6 - pkgutil-resolve-name >=1.3.10 - - python >=3.8 + - python >=3.9 - referencing >=0.28.4 - rpds-py >=0.7.1 license: MIT license_family: MIT - size: 74323 - timestamp: 1720529611305 + size: 74256 + timestamp: 1733472818764 - kind: conda name: jsonschema-specifications version: 2024.10.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_0.conda - sha256: 82f8bed0f21dc0b3aff40dd4e39d77e85b93b0417bc5659b001e0109341b8b98 - md5: 720745920222587ef942acfbc578b584 + url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-specifications-2024.10.1-pyhd8ed1ab_1.conda + sha256: 37127133837444cf0e6d1a95ff5a505f8214ed4e89e8e9343284840e674c6891 + md5: 3b519bc21bc80e60b456f1e62962a766 depends: - - python >=3.8 + - python >=3.9 - referencing >=0.31.0 license: MIT license_family: MIT - size: 16165 - timestamp: 1728418976382 + size: 16170 + timestamp: 1733493624968 - kind: conda name: jsonschema-with-format-nongpl version: 4.23.0 - build: hd8ed1ab_0 + build: hd8ed1ab_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_0.conda - sha256: 007a0a506a0d1805b099629cb0ee743ad0afe7d9749e57339f32c168119e0139 - md5: 16b37612b3a2fd77f409329e213b530c + url: https://conda.anaconda.org/conda-forge/noarch/jsonschema-with-format-nongpl-4.23.0-hd8ed1ab_1.conda + sha256: 6e0184530011961a0802fda100ecdfd4b0eca634ed94c37e553b72e21c26627d + md5: a5b1a8065857cc4bd8b7a38d063bb728 depends: - fqdn - idna @@ -3705,46 +3725,48 @@ packages: - webcolors >=24.6.0 license: MIT license_family: MIT - size: 7143 - timestamp: 1720529619500 + size: 7135 + timestamp: 1733472820035 - kind: conda name: jupyter-lsp version: 2.2.5 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_0.conda - sha256: 2151c2c63e0442a4c69ee0ad8a634195eedab10b7b74c0ec8266471842239a93 - md5: 885867f6adab3d7ecdf8ab6ca0785f51 + url: https://conda.anaconda.org/conda-forge/noarch/jupyter-lsp-2.2.5-pyhd8ed1ab_1.conda + sha256: 1565c8b1423a37fca00fe0ab2a17cd8992c2ecf23e7867a1c9f6f86a9831c196 + md5: 0b4c3908e5a38ea22ebb98ee5888c768 depends: - importlib-metadata >=4.8.3 - jupyter_server >=1.1.2 - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 55539 - timestamp: 1712707521811 + size: 55221 + timestamp: 1733493006611 - kind: conda name: jupyter_client version: 8.6.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - md5: a14218cfb29662b4a19ceb04e93e298e + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda + sha256: 19d8bd5bb2fde910ec59e081eeb59529491995ce0d653a5209366611023a0b3a + md5: 4ebae00eae9705b0c3d6d1018a81d047 depends: - importlib-metadata >=4.8.3 - jupyter_core >=4.12,!=5.0.* - - python >=3.8 + - python >=3.9 - python-dateutil >=2.8.2 - pyzmq >=23.0 - tornado >=6.2 - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 106055 - timestamp: 1726610805505 + size: 106342 + timestamp: 1733441040958 - kind: conda name: jupyter_core version: 5.7.2 @@ -3767,15 +3789,16 @@ packages: - kind: conda name: jupyter_events version: 0.10.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_0.conda - sha256: cd3f41dc093162a41d4bae171e40a1b9b115c4d488e9bb837a8fa9d084931fb9 - md5: ed45423c41b3da15ea1df39b1f80c2ca + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_events-0.10.0-pyhd8ed1ab_1.conda + sha256: d7fa4c627d56ce8dc02f09f358757f8fd49eb6137216dc99340a6b4efc7e0491 + md5: 62186e6383f38cc6a3466f0fadde3f2e depends: - jsonschema-with-format-nongpl >=4.18.0 - - python >=3.8 + - python >=3.9 - python-json-logger >=2.0.4 - pyyaml >=5.3 - referencing @@ -3784,17 +3807,18 @@ packages: - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 21475 - timestamp: 1710805759187 + size: 21434 + timestamp: 1733441420606 - kind: conda name: jupyter_server version: 2.14.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_0.conda - sha256: edab71a05feceac54bdb90e755a257545af7832b9911607c1a70f09be44ba985 - md5: ca23c71f70a7c7935b3d03f0f1a5801d + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server-2.14.2-pyhd8ed1ab_1.conda + sha256: 082d3517455339c8baea245a257af249758ccec26b8832d969ac928901c234cc + md5: 81ea84b3212287f926e35b9036192963 depends: - anyio >=3.1.0 - argon2-cffi >=21.1 @@ -3808,7 +3832,7 @@ packages: - overrides >=5.0 - packaging >=22.0 - prometheus_client >=0.9 - - python >=3.8 + - python >=3.9 - pyzmq >=24 - send2trash >=1.8.2 - terminado >=0.8.3 @@ -3817,36 +3841,37 @@ packages: - websocket-client >=1.7 license: BSD-3-Clause license_family: BSD - size: 323978 - timestamp: 1720816754998 + size: 324289 + timestamp: 1733428731329 - kind: conda name: jupyter_server_terminals version: 0.5.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_0.conda - sha256: 038efbc7e4b2e72d49ed193cfb2bbbe9fbab2459786ce9350301f466a32567db - md5: 219b3833aa8ed91d47d1be6ca03f30be + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_server_terminals-0.5.3-pyhd8ed1ab_1.conda + sha256: 0890fc79422191bc29edf17d7b42cff44ba254aa225d31eb30819f8772b775b8 + md5: 2d983ff1b82a1ccb6f2e9d8784bdd6bd depends: - - python >=3.8 + - python >=3.9 - terminado >=0.8.3 license: BSD-3-Clause license_family: BSD - size: 19818 - timestamp: 1710262791393 + size: 19711 + timestamp: 1733428049134 - kind: conda name: jupyterlab - version: 4.3.1 - build: pyhff2d567_0 + version: 4.3.2 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.1-pyhff2d567_0.conda - sha256: ff1035eb0020dbaf4e332ef4b81a7068b595dfc57dde3313e9c4a37583772644 - md5: b4f3d579fc21a44518d52c52507461b4 + url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab-4.3.2-pyhd8ed1ab_0.conda + sha256: e806f753fe91faaffbad3d1d3aab7ceee785ae01bf0d758a82f1466164d727d6 + md5: 5f0d3b774cae26dd785e443a0e1623ae depends: - async-lru >=1.0.0 - - httpx >=0.25.0 + - httpx >=0.28.0,<0.29.0 - importlib-metadata >=4.8.3 - ipykernel >=6.5.0 - jinja2 >=3.0.3 @@ -3857,42 +3882,43 @@ packages: - notebook-shim >=0.2 - packaging - python >=3.9 - - setuptools >=40.1.0 + - setuptools >=40.8.0 - tomli >=1.2.2 - tornado >=6.2.0 - traitlets license: BSD-3-Clause license_family: BSD - size: 7101932 - timestamp: 1731776859245 + size: 7396800 + timestamp: 1733261150800 - kind: conda name: jupyterlab_pygments version: 0.3.0 - build: pyhd8ed1ab_1 - build_number: 1 + build: pyhd8ed1ab_2 + build_number: 2 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_1.conda - sha256: 4aa622bbcf97e44cd1adf0100b7ff71b7e20268f043bdf6feae4d16152f1f242 - md5: afcd1b53bcac8844540358e33f33d28f + url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_pygments-0.3.0-pyhd8ed1ab_2.conda + sha256: dc24b900742fdaf1e077d9a3458fd865711de80bca95fe3c6d46610c532c6ef0 + md5: fd312693df06da3578383232528c468d depends: - pygments >=2.4.1,<3 - - python >=3.7 + - python >=3.9 constrains: - jupyterlab >=4.0.8,<5.0.0 license: BSD-3-Clause license_family: BSD - size: 18776 - timestamp: 1707149279640 + size: 18711 + timestamp: 1733328194037 - kind: conda name: jupyterlab_server version: 2.27.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_0.conda - sha256: a23b26d1a35bccdb91b9232119e5f402624e1e1a252b0e64cc20c6eb5b87cefb - md5: af8239bf1ba7e8c69b689f780f653488 + url: https://conda.anaconda.org/conda-forge/noarch/jupyterlab_server-2.27.3-pyhd8ed1ab_1.conda + sha256: d03d0b7e23fa56d322993bc9786b3a43b88ccc26e58b77c756619a921ab30e86 + md5: 9dc4b2b0f41f0de41d27f3293e319357 depends: - babel >=2.10 - importlib-metadata >=4.8.3 @@ -3901,14 +3927,14 @@ packages: - jsonschema >=4.18 - jupyter_server >=1.21,<3 - packaging >=21.3 - - python >=3.8 + - python >=3.9 - requests >=2.31 constrains: - openapi-core >=0.18.0,<0.19.0 license: BSD-3-Clause license_family: BSD - size: 49355 - timestamp: 1721163412436 + size: 49449 + timestamp: 1733599666357 - kind: conda name: keyutils version: 1.6.1 @@ -4175,30 +4201,32 @@ packages: - kind: conda name: libarrow version: 18.1.0 - build: h654e1bb_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - sha256: 925dcb034f36536eed21d9323f096bf2ebf1111d14c61e1ae0b90e5de131f1e1 - md5: e69934ff9dd8745fea8927028d1603ee + build: h3b07799_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + sha256: 8837dc6e60522eef63554654c45d18143006324c43391c6e8dc5d2b20997466d + md5: 27675c7172667268440306533e4928de depends: - - __osx >=11.0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 + - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libcxx >=18 + - libgcc >=13 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 + - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -4207,41 +4235,40 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: - - arrow-cpp <0.0a0 - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 5475725 - timestamp: 1732947802614 + size: 8793521 + timestamp: 1733607374384 - kind: conda name: libarrow version: 18.1.0 - build: hc7b0e1d_2_cpu - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - sha256: 3201944d1f97b9207e566ccf388c8376bb2ce7e461534cda63a28975b6790901 - md5: 4a46bd0be8e7f56a217d26b79d290a0e + build: h86d57b8_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + sha256: fe6b5eb4d6e71418343b62a0d322ede7be69999b28d9e492164c12e613cf3fa0 + md5: 23431b3fdbb32858d1533da5bc8fcc86 depends: - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __osx >=11.0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 - - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libgcc >=13 + - libcxx >=18 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -4250,26 +4277,25 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: + - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu - arrow-cpp <0.0a0 - - parquet-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8026783 - timestamp: 1732950110265 + size: 5482797 + timestamp: 1733605365656 - kind: conda name: libarrow version: 18.1.0 - build: he15abb1_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - sha256: afc81af2e533cc35295aebae4fb382e770310d9b1ac31837456b440d35c54cf7 - md5: bd3e35a6f3f869b4777488452f315008 + build: ha2aff55_4_cpu + build_number: 4 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + sha256: 795950b73029fd4d3b7fee3427c39c7357287fd94244dd5a125ac0931d31aaa3 + md5: c4d60278cb00053df1a4f0600fd2ac2a depends: - - __glibc >=2.17,<3.0.a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 @@ -4286,7 +4312,7 @@ packages: - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - libstdcxx >=13 - - libutf8proc >=2.8.0,<2.9.0a0 + - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - orc >=2.0.3,<2.0.4.0a0 @@ -4295,189 +4321,189 @@ packages: - zstd >=1.5.6,<1.6.0a0 constrains: - parquet-cpp <0.0a0 - - arrow-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8780597 - timestamp: 1732863546099 + size: 8035987 + timestamp: 1733607600970 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - sha256: 3de5719a7035baad7e665116dce7bb3d069f0c1916e163c553e2e491bbe8b614 - md5: 6197dcb930f6254e9b2fdc416be56b71 + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + sha256: fe8cb6feeed0858cb8e7cc8889ae20165527934778adb8f7b1f2f5d1f7ade16d + md5: e4ed6162593fbb01f4d742db4215f70c depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libgcc >=13 - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libcxx >=18 license: Apache-2.0 license_family: APACHE - size: 611272 - timestamp: 1732863586114 + size: 483574 + timestamp: 1733605591770 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - sha256: e6c8988d1d79163d6d13dda21f9e401f5df4b3af7e0d221718522c600894adcf - md5: 14fede66c995f3cf958797e9fb567e22 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + sha256: 9e88f04409da9ca2fedc5f7bf0987ff28e96d08742e59672f744ec4624a4c991 + md5: d532c42abe13841806d97f4d9cd6dcf5 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 577510 - timestamp: 1732950190684 + size: 578174 + timestamp: 1733607685962 - kind: conda name: libarrow-acero version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - sha256: cfe32f1b0712b77d2c792a839fe4ea2790cabd99d47cd8e1b20ba2d3c8b113b2 - md5: 60351279d7dfd7c254c46aabf9aa35a6 + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + sha256: b3b4ddb2718c96c93d9b50dbf8f66265af9198b55852b4d3424c13a79ec3f84d + md5: 82bcbfe424868ce66b5ab986999f534d depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libcxx >=18 + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 483362 - timestamp: 1732948000606 + size: 610772 + timestamp: 1733607505368 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - sha256: 7b3db3d5a7e411f8897e8d74403c1d871f3054300f5009c4bdf75da011bc3f42 - md5: 77501831a2aabbaabac55e8cb3b6900a + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + sha256: 862fb21b871666495b4bb5e63f5fcb66b93c08893e92412b01e2717e081836eb + md5: bb940b4c583e4c8e5a9f193fabdb5840 depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libgcc >=13 - - libparquet 18.1.0 h6bd9018_1_cpu - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libcxx >=18 + - libparquet 18.1.0 hf4cc9e7_4_cpu license: Apache-2.0 license_family: APACHE - size: 585458 - timestamp: 1732863686753 + size: 489457 + timestamp: 1733607417337 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - sha256: 53cdae2150c22ef9b5d6de8d0ee8ac52eeacc50fdfa2fa3ea644b52436d1eeb1 - md5: c54d83f012a40fef8a2dc4856e4340a0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + sha256: 4a9ffedc5570ce57a6864e46dcf36ec108557791b50fd43e82eb739f3717ff2f + md5: 1a6c409f45857d30f581a1a53abb2298 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu - libgcc >=13 - - libparquet 18.1.0 h23a96eb_2_cpu + - libparquet 18.1.0 h34a048e_4_cpu - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 559143 - timestamp: 1732950272727 + size: 561495 + timestamp: 1733607973097 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - sha256: eeae9e8d382c482076f4739455b53f16851d7f99be219b6f96dd4e765132b446 - md5: b5fcaddabf47aa15e50feff072a55ada + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + sha256: 9c898ab7377953b8c7218347fdb63376d4f977cabfb8fa6bd1b421a75b8cb335 + md5: fa31464c75b20c2f3ac8fc758e034887 depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libcxx >=18 - - libparquet 18.1.0 h5168bdf_2_cpu + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libgcc >=13 + - libparquet 18.1.0 hf4f6db6_4_cpu + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 489769 - timestamp: 1732949732423 + size: 585517 + timestamp: 1733607943984 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h14ec2bd_2_cpu - build_number: 2 + build: h3644d33_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda - sha256: e8923d62cfaadc4a8af1735e717fd4980cad693419e63aed04380566d9fd46df - md5: 4fd0103449cf40214fd348643aa78fff + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda + sha256: ac053b3efd1a2701e6f34195d90a0da21dca22d70916ae6b10a019c2be6cd44c + md5: ce3062cd5caa0bdafa7976535862e648 depends: - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu - - libarrow-dataset 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu + - libarrow-dataset 18.1.0 h512cd83_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 515352 - timestamp: 1732950311471 + size: 513745 + timestamp: 1733608111290 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h5c8f2c3_1_cpu - build_number: 1 + build: had74209_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda - sha256: e77a354bfc0ba7b04c856f1bb16e7b08950bcde54026087bafec46090380fcc1 - md5: 5d47bd2674afd104dbe2f2f3534594b0 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda + sha256: 29e44d6070d64cd4b357e02afeae233d2e90d917a008a2724c9cd463015f0319 + md5: bf261e5fa25ce4acc11a80bdc73b88b2 depends: - __glibc >=2.17,<3.0.a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libarrow-dataset 18.1.0 h5888daf_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libarrow-dataset 18.1.0 h8bbc2ab_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 520681 - timestamp: 1732863726954 + size: 519919 + timestamp: 1733608152065 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h9b432b6_2_cpu - build_number: 2 + build: hf3d3107_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda - sha256: 6dde802134bd2e78581eb838c049b2e7e378899706b471f7072222a6b1284b90 - md5: 49e7c0460532a73f34bd127fff009224 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda + sha256: 9d9ebd042b9e8561b64f057d2adb24d331a772ccf1af3ed2d8b5b1566729f236 + md5: c093b05dc6d1b6057342d3dd6f3bd0d8 depends: - __osx >=11.0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libarrow-dataset 18.1.0 h605b82c_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libarrow-dataset 18.1.0 h1dc2043_4_cpu - libcxx >=18 - libprotobuf >=5.28.2,<5.28.3.0a0 license: Apache-2.0 license_family: APACHE - size: 451127 - timestamp: 1732950194322 + size: 451982 + timestamp: 1733607898511 - kind: conda name: libblas version: 3.9.0 @@ -4849,18 +4875,18 @@ packages: timestamp: 1726659794676 - kind: conda name: libcxx - version: 19.1.4 + version: 19.1.5 build: ha82da77_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda - sha256: 342896ebc1d6acbf022ca6df006a936b9a472579e91e3c502cb1f52f218b78e9 - md5: a2d3d484d95889fccdd09498d8f6bf9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda + sha256: 7918cc0bb7a6554cdd3eee634c3dc414a1ab8ec49faeca1567367bb92118f9d7 + md5: 3c7be0df28ccda1d193ea6de56dcb5ff depends: - __osx >=11.0 license: Apache-2.0 WITH LLVM-exception license_family: Apache - size: 520678 - timestamp: 1732060258949 + size: 519819 + timestamp: 1733291654212 - kind: conda name: libdeflate version: '1.22' @@ -5681,6 +5707,49 @@ packages: license_family: BSD size: 15823 timestamp: 1729643275943 +- kind: conda + name: liblzma + version: 5.6.3 + build: h39f12f2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda + sha256: d863b8257406918ffdc50ae65502f2b2d6cede29404d09a094f59509d6a0aaf1 + md5: b2553114a7f5e20ccd02378a77d836aa + depends: + - __osx >=11.0 + license: 0BSD + size: 99129 + timestamp: 1733407496073 +- kind: conda + name: liblzma + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda + sha256: d1cce0b7d62d1e54e2164d3e0667ee808efc6c3870256e5b47a150cd0bf46824 + md5: eb08b903681f9f2432c320e8ed626723 + depends: + - libgcc >=13 + license: 0BSD + size: 124138 + timestamp: 1733409137214 +- kind: conda + name: liblzma + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda + sha256: e6e425252f3839e2756e4af1ea2074dffd3396c161bf460629f9dfd6a65f15c6 + md5: 2ecf2f1c7e4e21fcfe6423a51a992d84 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: 0BSD + size: 111132 + timestamp: 1733407410083 - kind: conda name: libnghttp2 version: 1.64.0 @@ -5832,61 +5901,61 @@ packages: - kind: conda name: libparquet version: 18.1.0 - build: h23a96eb_2_cpu - build_number: 2 + build: h34a048e_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda - sha256: 83b8fa4a90e214fcd6018f890947666f055f79563fff2b7c3d5f37d894f3a000 - md5: ce205782960a580fa43cfcccca22ad8d + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda + sha256: 488d82356fc4e6dfd6c10a4100c36af17db1b7eb72cce0bd8973014220dc3066 + md5: 46db27c16b29f48a37a40e3b2c9dcfe3 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1115906 - timestamp: 1732950250848 + size: 1117278 + timestamp: 1733607904359 - kind: conda name: libparquet version: 18.1.0 - build: h5168bdf_2_cpu - build_number: 2 + build: hf4cc9e7_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda - sha256: 454487d113974b923b4214a65aab780fd90c4914390d0b1f4640b1bf60537bff - md5: f995df7ee206617a3e858fd932d7bd2d + url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda + sha256: ccadab6395090b3cbc54243fcf5c6e49eaee46aaaa4221ca8ca7803a34bdc25d + md5: b462d962b5254923c5f65ce1c68dfc17 depends: - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu - libcxx >=18 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 872333 - timestamp: 1732949558028 + size: 873584 + timestamp: 1733607239103 - kind: conda name: libparquet version: 18.1.0 - build: h6bd9018_1_cpu - build_number: 1 + build: hf4f6db6_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda - sha256: 0df119f4c1a2387d910e132c670b29ee5b29dd79384549de6f1a43067515c8ba - md5: 1054909202f86e38bbbb7ca1131b8471 + url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda + sha256: f957b6ea5c4023448891f63f7b184a663d85aa5b2717b0e0ebfbfcf97b542751 + md5: f18b10bf19bb384183f2aa546e9f6f0a depends: - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1203523 - timestamp: 1732863665743 + size: 1204859 + timestamp: 1733607834047 - kind: conda name: libpng version: 1.6.44 @@ -6087,50 +6156,47 @@ packages: timestamp: 1716828607917 - kind: conda name: libsqlite - version: 3.47.0 - build: hadc24fc_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda - sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 - md5: b6f02b52a174e612e89548f4663ce56a + version: 3.47.2 + build: h3f77e49_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda + sha256: f192f3c8973de9ec4c214990715f13b781965247a5cedf9162e7f9e699cfc3c4 + md5: 122d6f29470f1a991e85608e77e56a8a depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 + - __osx >=11.0 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 875349 - timestamp: 1730208050020 + size: 850553 + timestamp: 1733762057506 - kind: conda name: libsqlite - version: 3.47.0 - build: hbaaea75_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda - sha256: 5a96caa566c11e5a5ebdcdb86a0759a7fb27d3c5f42e6a0fd0d6023c1e935d9e - md5: 07a14fbe439eef078cc479deca321161 + version: 3.47.2 + build: h5eb1b54_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda + sha256: 885a27fa84a5a73ed9779168c02b6c386e2fc7a53f0566b32a09ceca146b42b4 + md5: d4bf59f8783a4a66c0aec568f6de3ff4 depends: - - __osx >=11.0 + - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 837683 - timestamp: 1730208293578 + size: 1042182 + timestamp: 1733761913736 - kind: conda name: libsqlite - version: 3.47.0 - build: hc4a20ef_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda - sha256: 73e143fdb966b61cd25ab804d416d87dfce43ac684e0fac3ad8b1450796331ab - md5: a6b185aac10d08028340858f77231b23 + version: 3.47.2 + build: hee588c1_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda + sha256: 48af21ebc2cbf358976f1e0f4a0ab9e91dfc83d0ef337cf3837c6f5bc22fb352 + md5: b58da17db24b6e08bcbf8fed2fb8c915 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 1041855 - timestamp: 1730208187962 + size: 873551 + timestamp: 1733761824646 - kind: conda name: libssh2 version: 1.11.1 @@ -6297,86 +6363,70 @@ packages: - kind: conda name: libtiff version: 4.7.0 - build: he137b08_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 - md5: 63872517c98aa305da58a757c443698e + build: ha962b0a_2 + build_number: 2 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda + sha256: d9e6835fd189b85eb90dbfdcc51f5375decbf5bb53130042f49bbd6bfb0b24be + md5: 8e14b5225c593f099a21971568e6d7b4 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - lerc >=4.0.0,<5.0a0 + - libcxx >=18 - libdeflate >=1.22,<1.23.0a0 - - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 - - libstdcxx >=13 + - liblzma >=5.6.3,<6.0a0 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 428156 - timestamp: 1728232228989 + size: 370387 + timestamp: 1733443310502 - kind: conda name: libtiff version: 4.7.0 - build: hec21d91_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda - sha256: 14ecb9e129b1b5ffd6d4bee48de95cd2cd0973c712e1b965d3ef977cca23936d - md5: 1f80061f5ba6956fcdc381f34618cd8d + build: hc4654cb_2 + build_number: 2 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + sha256: 18653b4a5c73e19c5e86ff72dab9bf59f5cc43d7f404a6be705d152dfd5e0660 + md5: be54fb40ea32e8fe9dbaa94d4528b57e depends: + - __glibc >=2.17,<3.0.a0 - lerc >=4.0.0,<5.0a0 - libdeflate >=1.22,<1.23.0a0 - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 464938 - timestamp: 1728232266969 + size: 429018 + timestamp: 1733443013288 - kind: conda name: libtiff version: 4.7.0 - build: hfce79cd_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda - sha256: 97ba24c74750b6e731b3fe0d2a751cda6148b4937d2cc3f72d43bf7b3885c39d - md5: b9abf45f7c64caf3303725f1aa0e9a4d + build: hca96517_2 + build_number: 2 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda + sha256: d736d840d1f2446234195adfcb51b132c85797730b6f42ebf058d350fa9d20e8 + md5: 278dcef6d1ea28c04109c3f5dea126cb depends: - - __osx >=11.0 - lerc >=4.0.0,<5.0a0 - - libcxx >=17 - libdeflate >=1.22,<1.23.0a0 + - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 + - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 366323 - timestamp: 1728232400072 -- kind: conda - name: libutf8proc - version: 2.8.0 - build: hf23e847_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda - sha256: 104cf5b427fc914fec63e55f685a39480abeb4beb34bdbc77dea084c8f5a55cb - md5: b1aa0faa95017bca11369bd080487ec4 - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - license: MIT - license_family: MIT - size: 80852 - timestamp: 1732829699583 + size: 464857 + timestamp: 1733443105529 - kind: conda name: libutf8proc version: 2.9.0 @@ -6407,6 +6457,22 @@ packages: license_family: MIT size: 81526 timestamp: 1732868466862 +- kind: conda + name: libutf8proc + version: 2.9.0 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda + sha256: 9794e6388e780c3310d46f773bbc924d4053375c3fcdb07a704b57f4616db928 + md5: 1e936bd23d737aac62a18e9a1e7f8b18 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + size: 81500 + timestamp: 1732868419835 - kind: conda name: libuuid version: 2.38.1 @@ -6607,60 +6673,62 @@ packages: - kind: conda name: libxml2 version: 2.13.5 - build: h064dc61_0 + build: h0d44e9d_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda - sha256: 7ab7fb45a0014981d35247cd5b09057fc8ed3c07378086a6c7ad552915928647 - md5: fb16b85a5be1328ac1c44b098b74c570 + url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda + sha256: 306e18aa647d8208ad2cd0e62d84933222b2fbe93d2d53cd5283d2256b1d54de + md5: f5b05674697ae7d2c5932766695945e1 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 constrains: - icu <0.0a0 license: MIT license_family: MIT - size: 689363 - timestamp: 1731489619071 + size: 689993 + timestamp: 1733443678322 - kind: conda name: libxml2 version: 2.13.5 - build: h376fa9f_0 + build: h178c5d8_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda - sha256: d443703d324f3dbd628d58ea498ab0e474c06d5771e7f55baf215fdbc11ceb87 - md5: adea92805465ed3dcf0776b428e34744 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda + sha256: d7af3f25a4cece170502acd38f2dafbea4521f373f46dcb28a37fbe6ac2da544 + md5: 3dc3cff0eca1640a6acbbfab2f78139e depends: - __osx >=11.0 + - icu >=75.1,<76.0a0 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - constrains: - - icu <0.0a0 license: MIT license_family: MIT - size: 582076 - timestamp: 1731489850179 + size: 582898 + timestamp: 1733443841584 - kind: conda name: libxml2 version: 2.13.5 - build: hf4efe5d_0 + build: h2e0c361_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda - sha256: bb5033bd79371e82886f9e83ef86babae8e0f50b77d7f9302210345b9205d939 - md5: 5650ac8a6ed680c032bdabe40ad19ee0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda + sha256: dc0e86d35a836af6e99d18f50c6551fc64c53ed3a3da5a9fea90e78763cf14b4 + md5: 63410f85031930cde371dfe0ee89109a depends: - icu >=75.1,<76.0a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 734453 - timestamp: 1731489860751 + size: 732155 + timestamp: 1733443825814 - kind: conda name: libzlib version: 1.3.1 @@ -6715,20 +6783,20 @@ packages: timestamp: 1727963148474 - kind: conda name: llvm-openmp - version: 19.1.4 + version: 19.1.5 build: hdb05f8b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda - sha256: dfdcd8de37899d984326f9734b28f46f80b88c068e44c562933a8b3117f2401a - md5: 76ca179ec970bea6e275e2fa477c2d3c + url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda + sha256: e7ba0d8b718925efdcf1309f5e776e3264cc172d3af8d4048b39627c50a1abc0 + md5: f2c2e187a1d2637d282e34dc92021a70 depends: - __osx >=11.0 constrains: - - openmp 19.1.4|19.1.4.* + - openmp 19.1.5|19.1.5.* license: Apache-2.0 WITH LLVM-exception license_family: APACHE - size: 281554 - timestamp: 1732102484807 + size: 281120 + timestamp: 1733376089600 - kind: conda name: lz4-c version: 1.9.4 @@ -6776,27 +6844,29 @@ packages: - kind: conda name: markdown-it-py version: 3.0.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - sha256: c041b0eaf7a6af3344d5dd452815cdc148d6284fec25a4fa3f4263b3a021e962 - md5: 93a8e71256479c62074356ef6ebf501b + url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + sha256: 0fbacdfb31e55964152b24d5567e9a9996e1e7902fb08eb7d91b5fd6ce60803a + md5: fee3164ac23dfca50cfcc8b85ddefb81 depends: - mdurl >=0.1,<1 - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 64356 - timestamp: 1686175179621 + size: 64430 + timestamp: 1733250550053 - kind: conda name: markupsafe version: 3.0.2 - build: py312h178313f_0 + build: py312h178313f_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda - sha256: 15f14ab429c846aacd47fada0dc4f341d64491e097782830f0906d00cb7b48b6 - md5: a755704ea0e2503f8c227d84829a8e81 + url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda + sha256: 4a6bf68d2a2b669fecc9a4a009abd1cf8e72c2289522ff00d81b5a6e51ae78f5 + md5: eb227c3e0bf58f5bd69c0532b157975b depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 @@ -6806,16 +6876,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 24878 - timestamp: 1729351558563 + size: 24604 + timestamp: 1733219911494 - kind: conda name: markupsafe version: 3.0.2 - build: py312h74ce7d3_0 + build: py312h74ce7d3_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_0.conda - sha256: 997baf7f46bce112f6e0390efaa7fbb892b8f31567d3c554f08ac636774d74f7 - md5: 8992b90e8374193d53118f7651db0b73 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda + sha256: 1d500158262f30b9c23e37d1c861fe76e127a3926d69b3b38c25d20d3faa6f9f + md5: bc8607ab678073a0441808a31465f4fb depends: - libgcc >=13 - python >=3.12,<3.13.0a0 @@ -6824,16 +6895,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 25013 - timestamp: 1729352489213 + size: 25079 + timestamp: 1733220639175 - kind: conda name: markupsafe version: 3.0.2 - build: py312ha0ccf2a_0 + build: py312h998013c_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312ha0ccf2a_0.conda - sha256: 360e958055f35e5087942b9c499eaafae984a951b84cf354ef7481a2806f340d - md5: c6ff9f291d011c9d4f0b840f49435c64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda + sha256: 4aa997b244014d3707eeef54ab0ee497d12c0d0d184018960cce096169758283 + md5: 46e547061080fddf9cf95a0327e8aba6 depends: - __osx >=11.0 - python >=3.12,<3.13.0a0 @@ -6843,96 +6915,97 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 24495 - timestamp: 1729351534830 + size: 24048 + timestamp: 1733219945697 - kind: conda name: matplotlib-inline version: 0.1.7 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_0.conda - sha256: 7ea68676ea35fbb095420bbcc1c82c4767b8be7bb56abb6989b7f89d957a3bab - md5: 779345c95648be40d22aaa89de7d4254 + url: https://conda.anaconda.org/conda-forge/noarch/matplotlib-inline-0.1.7-pyhd8ed1ab_1.conda + sha256: 69b7dc7131703d3d60da9b0faa6dd8acbf6f6c396224cf6aef3e855b8c0c41c6 + md5: af6ab708897df59bd6e7283ceab1b56b depends: - - python >=3.6 + - python >=3.9 - traitlets license: BSD-3-Clause license_family: BSD - size: 14599 - timestamp: 1713250613726 + size: 14467 + timestamp: 1733417051523 - kind: conda name: max - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - sha256: 2aae2a8286dca29453e8cc8cfe13511aa016a521ac0c9201ceb24d1ba6c4138e - md5: 9c25081ace6ad2c13675cf0123109cb9 + url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + sha256: 37a6103a6b2c7886ed5837d41a819f1a127eef7e810b2b5ecfb03f7caf263514 + md5: b13d61319f43570ce681408a1b27d9d5 depends: - - max-core ==24.6.0.dev2024120306 release - - max-python >=24.6.0.dev2024120306,<25.0a0 - - mojo-jupyter ==24.6.0.dev2024120306 release - - mblack ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release + - max-python >=24.6.0.dev2024120905,<25.0a0 + - mojo-jupyter ==24.6.0.dev2024120905 release + - mblack ==24.6.0.dev2024120905 release license: LicenseRef-Modular-Proprietary - size: 9929 - timestamp: 1733209293577 + size: 9911 + timestamp: 1733721408716 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - sha256: a82534696c6e078fb4e14b4b0f058336ffd0a647f7404e85aaee18eec25be067 - md5: c249d77d8e5885dd0eacd9028131413f + url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + sha256: 0f94138601ceab2c8b277c7d175d762840072cfdfd0ead7264fbd1ff9f70442d + md5: 00617be1a2fef13b5630d9cbe92f9d3c depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 254711372 - timestamp: 1733209193854 + size: 247639885 + timestamp: 1733721408714 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - sha256: bd0858a3e2069a86cd71370322e7ac26ad3948225e4f0811e4fbf8771d44d0ea - md5: e5b6ae7316dc2b08a52cee8f27b4f484 + url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + sha256: 1aaf2ffb09d6a2aa6b65d76c381476eb88947470580a0d56909bfd578d5eb385 + md5: c7ff53814f0c254c75dc7ab8f0c66b38 depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 258488596 - timestamp: 1733209293575 + size: 251498878 + timestamp: 1733721396377 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - sha256: 88b5f2cbb2724067d33b10515613ec845f134c3758fd063852ac191a276d7812 - md5: 05acbd2d9cf25aa913a979aa9802c194 + url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + sha256: 00cc8ce6adc131b858df51423201b8f028aa944ac09e56c563a1108c22eaccd2 + md5: 71554a4c0e81a1034908bc1cb716b30b depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 220248523 - timestamp: 1733209020078 + size: 212030191 + timestamp: 1733721567995 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 78dc00af885799e8c1f92185a505aee022f2ffd7191d24fa94ef428457f53e15 - md5: 4bdce0c1dd562e22566551d578103d2f + url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 43245b47050208329e85a69f2af24d42c622e92e1542334a6106eaadb6cbf0ff + md5: 9a6037de6672120d1d6d53673b699d5b depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -6942,7 +7015,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -6955,18 +7027,18 @@ packages: arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 128537272 - timestamp: 1733209193862 + size: 123751303 + timestamp: 1733721408724 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 3910ceb9135f2258df30dd7a5d87b8f80a284645d6da48daa0e9bb145a49744e - md5: e7d3ebeaaeb2bd99167fda861a7e7aba + url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: fdedbc8a2ca34d0593e8b2175ca07c07d6d0564f138f535ebff02975ef463f55 + md5: bc9f6ce493d2beb1089e1e409bb373ba depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -6976,7 +7048,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -6989,18 +7060,18 @@ packages: arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 132223349 - timestamp: 1733209293584 + size: 127400047 + timestamp: 1733721396388 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: ddafa4f7201fca06f38e8a0232cdbbb918d6a24c03cb25a0137d4fcc0ca9f354 - md5: 9859f8c88c81c18baaddd15be03d259c + url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 0cd6b2e3bdc78483665045e91b8db7a8a3d6c85fbf4b8a44d6eb742a46361af1 + md5: c1b7eb7d1a43e28224bf41220ece9b58 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -7010,7 +7081,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -7023,17 +7093,17 @@ packages: arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 119113363 - timestamp: 1733209020082 + size: 112450493 + timestamp: 1733721567998 - kind: conda name: mblack - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - sha256: 35b22caab89b65a52b9e7877762a58bba8cd21137ac1383e268b8a2ae45173ac - md5: f77eafd932de3ae309643ea716ba3c3a + url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + sha256: e302e262a58592b5b8614829237760967d685cb20a44e54981916eb6c2b6b7a2 + md5: b34a59910660011ad1f42bfc1ae4ae54 depends: - python >=3.9,<3.13 - click >=8.0.0 @@ -7043,55 +7113,57 @@ packages: - platformdirs >=2 - python license: MIT - size: 130649 - timestamp: 1733209293580 + size: 130740 + timestamp: 1733721408720 - kind: conda name: mdurl version: 0.1.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - sha256: 64073dfb6bb429d52fff30891877b48c7ec0f89625b1bf844905b66a81cce6e1 - md5: 776a8dd9e824f77abac30e6ef43a8f7a + url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + sha256: 78c1bbe1723449c52b7a9df1af2ee5f005209f67e40b6e1d3c7619127c43b1c7 + md5: 592132998493b3ff25fd7479396e8351 depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14680 - timestamp: 1704317789138 + size: 14465 + timestamp: 1733255681319 - kind: conda name: mistune version: 3.0.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_0.conda - sha256: f95cb70007e3cc2ba44e17c29a056b499e6dadf08746706d0c817c8e2f47e05c - md5: 5cbee699846772cc939bef23a0d524ed + url: https://conda.anaconda.org/conda-forge/noarch/mistune-3.0.2-pyhd8ed1ab_1.conda + sha256: 0a9faaf1692b74f321cedbd37a44f108a1ec3f5d9638bc5bbf860cb3b6ff6db4 + md5: c46df05cae629e55426773ac1f85d68f depends: - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 66022 - timestamp: 1698947249750 + size: 65901 + timestamp: 1733258822603 - kind: conda name: mojo-jupyter - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda - sha256: dd1fcd4298ef08be4507931babe70d6b335dc28d5ead602460747edc4f10c2dc - md5: 8bb40dfabe84757d93d3053fdf4b0a58 + url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda + sha256: bb71277508a55875b6011651bc825599e26a47145ab1e9c4e7c2abd853200a00 + md5: 4fc85c9cb1efe841b69d339d4da5b3a1 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python >=3.9,<3.13 - jupyter_client >=8.6.2,<8.7 - python license: LicenseRef-Modular-Proprietary - size: 22940 - timestamp: 1733209293581 + size: 11366 + timestamp: 1733721408720 - kind: conda name: multidict version: 6.1.0 @@ -7204,18 +7276,19 @@ packages: - kind: conda name: mypy_extensions version: 1.0.0 - build: pyha770c72_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda - sha256: f240217476e148e825420c6bc3a0c0efb08c0718b7042fae960400c02af858a3 - md5: 4eccaeba205f0aed9ac3a9ea58568ca3 + url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda + sha256: 1895f47b7d68581a6facde5cb13ab8c2764c2e53a76bd746f8f98910dc4e08fe + md5: 29097e7ea634a45cc5386b95cac6568f depends: - - python >=3.5 + - python >=3.9 license: MIT license_family: MIT - size: 10492 - timestamp: 1675543414256 + size: 10854 + timestamp: 1733230986902 - kind: conda name: nbclient version: 0.10.1 @@ -7238,13 +7311,13 @@ packages: - kind: conda name: nbconvert-core version: 7.16.4 - build: pyhd8ed1ab_1 - build_number: 1 + build: pyhff2d567_2 + build_number: 2 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhd8ed1ab_1.conda - sha256: 074d858c5808e0a832acc0da37cd70de1565e8d6e17a62d5a11b3902b5e78319 - md5: e2d2abb421c13456a9a9f80272fdf543 + url: https://conda.anaconda.org/conda-forge/noarch/nbconvert-core-7.16.4-pyhff2d567_2.conda + sha256: 03a1303ce135a8214b450e751d93c9048f55edb37f3f9f06c5e9d78ba3ef2a89 + md5: 0457fdf55c88e52e0e7b63691eafcc48 depends: - beautifulsoup4 - bleach @@ -7264,31 +7337,32 @@ packages: - tinycss2 - traitlets >=5.0 constrains: - - nbconvert =7.16.4=*_1 + - nbconvert =7.16.4=*_2 - pandoc >=2.9.2,<4.0.0 license: BSD-3-Clause license_family: BSD - size: 189599 - timestamp: 1718135529468 + size: 188505 + timestamp: 1733405603619 - kind: conda name: nbformat version: 5.10.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_0.conda - sha256: 36fe73da4d37bc7ac2d1540526ecd294fbd09acda04e096181ab8f1ccd2b464c - md5: 0b57b5368ab7fc7cdc9e3511fa867214 + url: https://conda.anaconda.org/conda-forge/noarch/nbformat-5.10.4-pyhd8ed1ab_1.conda + sha256: 7a5bd30a2e7ddd7b85031a5e2e14f290898098dc85bea5b3a5bf147c25122838 + md5: bbe1963f1e47f594070ffe87cdf612ea depends: - jsonschema >=2.6 - jupyter_core >=4.12,!=5.0.* - - python >=3.8 + - python >=3.9 - python-fastjsonschema >=2.15 - traitlets >=5.1 license: BSD-3-Clause license_family: BSD - size: 101232 - timestamp: 1712239122969 + size: 100945 + timestamp: 1733402844974 - kind: conda name: ncurses version: '6.5' @@ -7335,34 +7409,36 @@ packages: - kind: conda name: nest-asyncio version: 1.6.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_0.conda - sha256: 30db21d1f7e59b3408b831a7e0417b83b53ee6223afae56482c5f26da3ceb49a - md5: 6598c056f64dc8800d40add25e4e2c34 + url: https://conda.anaconda.org/conda-forge/noarch/nest-asyncio-1.6.0-pyhd8ed1ab_1.conda + sha256: bb7b21d7fd0445ddc0631f64e66d91a179de4ba920b8381f29b9d006a42788c0 + md5: 598fd7d4d0de2455fb74f56063969a97 depends: - - python >=3.5 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 11638 - timestamp: 1705850780510 + size: 11543 + timestamp: 1733325673691 - kind: conda name: notebook-shim version: 0.2.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_0.conda - sha256: 9b5fdef9ebe89222baa9da2796ebe7bc02ec6c5a1f61327b651d6b92cf9a0230 - md5: 3d85618e2c97ab896b5b5e298d32b5b3 + url: https://conda.anaconda.org/conda-forge/noarch/notebook-shim-0.2.4-pyhd8ed1ab_1.conda + sha256: 7b920e46b9f7a2d2aa6434222e5c8d739021dbc5cc75f32d124a8191d86f9056 + md5: e7f89ea5f7ea9401642758ff50a2d9c1 depends: - jupyter_server >=1.8,<3 - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 16880 - timestamp: 1707957948029 + size: 16817 + timestamp: 1733408419340 - kind: conda name: numpy version: 1.26.4 @@ -7532,21 +7608,21 @@ packages: - kind: conda name: opentelemetry-api version: 1.28.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda - sha256: e267ed59ea8f357c3471defef796ce4f4555eacd9ee0ed2d47d3dd539ee7ee2f - md5: f1307fb38a8fd2220def45ec1691a21c + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda + sha256: 780dbc942a6075db7bdbaf556023be50c34a6111a99e465878d7bab0e5e0d7f4 + md5: a06f1e9d97c98d26f06675236c9ea554 depends: - deprecated >=1.2.6 - importlib-metadata >=6.0.0,<7.1.0 - - python >=3.8 + - python >=3.9 - setuptools >=16.0 license: Apache-2.0 - license_family: APACHE - size: 44014 - timestamp: 1731985724169 + size: 44242 + timestamp: 1733734361129 - kind: conda name: opentelemetry-exporter-otlp-proto-common version: 1.28.2 @@ -7604,66 +7680,6 @@ packages: license_family: APACHE size: 14721 timestamp: 1695214221489 -- kind: conda - name: opentelemetry-instrumentation - version: 0.49b2 - build: pyhff2d567_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - sha256: ee20ad159bc040642fcbce1b25f8a9fc1d788b53c6bf593a0891bf7887ec7c5f - md5: 13d714acd504cd0141688c908521c0b9 - depends: - - opentelemetry-api ~=1.4 - - opentelemetry-semantic-conventions 0.49b2 - - packaging >=18.0 - - python >=3.9 - - setuptools >=16.0 - - wrapt <2.0.0,>=1.0.0 - license: Apache-2.0 - license_family: APACHE - size: 31616 - timestamp: 1732070359772 -- kind: conda - name: opentelemetry-instrumentation-asgi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - sha256: 7b2b4da037baa506a82c5e3e711905f34448441e069a6e3affb0e4917b3ee5e0 - md5: 482ad6cdc507689d5c33eb22aa16d83e - depends: - - asgiref ~=3.0 - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 23749 - timestamp: 1732086813641 -- kind: conda - name: opentelemetry-instrumentation-fastapi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - sha256: e853f62b4c56e308f349a3f360cf4d6aa814a9dc926e727c25effcf4121af68c - md5: 59c01fcead989ba58c5dc79e3ac3aab3 - depends: - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-instrumentation-asgi 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 20288 - timestamp: 1732093785486 - kind: conda name: opentelemetry-proto version: 1.28.2 @@ -7698,39 +7714,24 @@ packages: license: Apache-2.0 license_family: APACHE size: 78017 - timestamp: 1732070451972 -- kind: conda - name: opentelemetry-semantic-conventions - version: 0.49b2 - build: pyh10f6f8f_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - sha256: 5e3869ad66082b16d56bab8219fad0c8c09090ec93eb866327eed788fe5c9340 - md5: d95dd6e8a70417e394bb16dad5cff408 - depends: - - deprecated >=1.2.6 - - opentelemetry-api 1.28.2 - - python >=3.9 - license: Apache-2.0 - license_family: APACHE - size: 81534 - timestamp: 1732067304518 + timestamp: 1732070451972 - kind: conda - name: opentelemetry-util-http + name: opentelemetry-semantic-conventions version: 0.49b2 - build: pyhd8ed1ab_0 + build: pyh3cfb1c2_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda - sha256: 73bb1cbb640b0732c1a04764a9704bb048ab77d6cb9c6439eb50ec0ecf926ede - md5: f267c60fc629a9bd1aa388f6ed8ea0ab + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda + sha256: 28180ffa6611f117c782c7d72066b50332c1df0bdcfed0dea4e446a20c4b7d10 + md5: e0ada55d18e6bd5a8e61943b4b5d3a8f depends: - - python >=3.8 + - deprecated >=1.2.6 + - opentelemetry-api 1.28.2 + - python >=3.9 license: Apache-2.0 - license_family: APACHE - size: 19241 - timestamp: 1732081026829 + size: 81099 + timestamp: 1733749104727 - kind: conda name: orc version: 2.0.3 @@ -7913,64 +7914,67 @@ packages: - kind: conda name: parso version: 0.8.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_0.conda - sha256: bfe404eebb930cc41782d34f8fc04c0388ea692eeebe2c5fc28df8ec8d4d61ae - md5: 81534b420deb77da8833f2289b8d47ac + url: https://conda.anaconda.org/conda-forge/noarch/parso-0.8.4-pyhd8ed1ab_1.conda + sha256: 17131120c10401a99205fc6fe436e7903c0fa092f1b3e80452927ab377239bcc + md5: 5c092057b6badd30f75b06244ecd01c9 depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 75191 - timestamp: 1712320447201 + size: 75295 + timestamp: 1733271352153 - kind: conda name: pathspec version: 0.12.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - sha256: 4e534e66bfe8b1e035d2169d0e5b185450546b17e36764272863e22e0370be4d - md5: 17064acba08d3686f1135b5ec1b32b12 + url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + sha256: 9f64009cdf5b8e529995f18e03665b03f5d07c0b17445b8badef45bde76249ee + md5: 617f15191456cc6a13db418a275435e5 depends: - - python >=3.7 + - python >=3.9 license: MPL-2.0 license_family: MOZILLA - size: 41173 - timestamp: 1702250135032 + size: 41075 + timestamp: 1733233471940 - kind: conda name: pexpect version: 4.9.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_0.conda - sha256: 90a09d134a4a43911b716d4d6eb9d169238aff2349056f7323d9db613812667e - md5: 629f3203c99b32e0988910c93e77f3b6 + url: https://conda.anaconda.org/conda-forge/noarch/pexpect-4.9.0-pyhd8ed1ab_1.conda + sha256: 202af1de83b585d36445dc1fda94266697341994d1a3328fabde4989e1b3d07a + md5: d0d408b1f18883a944376da5cf8101ea depends: - ptyprocess >=0.5 - - python >=3.7 + - python >=3.9 license: ISC - size: 53600 - timestamp: 1706113273252 + size: 53561 + timestamp: 1733302019362 - kind: conda name: pickleshare version: 0.7.5 - build: py_1003 - build_number: 1003 + build: pyhd8ed1ab_1004 + build_number: 1004 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-py_1003.tar.bz2 - sha256: a1ed1a094dd0d1b94a09ed85c283a0eb28943f2e6f22161fb45e128d35229738 - md5: 415f0ebb6198cc2801c73438a9fb5761 + url: https://conda.anaconda.org/conda-forge/noarch/pickleshare-0.7.5-pyhd8ed1ab_1004.conda + sha256: e2ac3d66c367dada209fc6da43e645672364b9fd5f9d28b9f016e24b81af475b + md5: 11a9d1d09a3615fc07c3faf79bc0b943 depends: - - python >=3 + - python >=3.9 license: MIT license_family: MIT - size: 9332 - timestamp: 1602536313357 + size: 11748 + timestamp: 1733327448200 - kind: conda name: pillow version: 11.0.0 @@ -8065,120 +8069,119 @@ packages: - kind: conda name: pkgutil-resolve-name version: 1.3.10 - build: pyhd8ed1ab_1 - build_number: 1 + build: pyhd8ed1ab_2 + build_number: 2 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_1.conda - sha256: fecf95377134b0e8944762d92ecf7b0149c07d8186fb5db583125a2705c7ea0a - md5: 405678b942f2481cecdb3e010f4925d9 + url: https://conda.anaconda.org/conda-forge/noarch/pkgutil-resolve-name-1.3.10-pyhd8ed1ab_2.conda + sha256: adb2dde5b4f7da70ae81309cce6188ed3286ff280355cf1931b45d91164d2ad8 + md5: 5a5870a74432aa332f7d32180633ad05 depends: - - python >=3.6 + - python >=3.9 license: MIT AND PSF-2.0 - size: 10778 - timestamp: 1694617398467 + size: 10693 + timestamp: 1733344619659 - kind: conda name: platformdirs version: 4.3.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - md5: fd8f2b18b65bbf62e8f653100690c8d2 + url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + sha256: bb50f6499e8bc1d1a26f17716c97984671121608dc0c3ecd34858112bce59a27 + md5: 577852c7e53901ddccc7e6a9959ddebe depends: - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 20625 - timestamp: 1726613611845 + size: 20448 + timestamp: 1733232756001 - kind: conda name: prometheus_client - version: 0.21.0 + version: 0.21.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - sha256: 01f0c3dd00081637ed920a922b17bcc8ed49608404ee466ced806856e671f6b9 - md5: 07e9550ddff45150bfc7da146268e165 + url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + sha256: bc8f00d5155deb7b47702cb8370f233935704100dbc23e30747c161d1b6cf3ab + md5: 3e01e386307acc60b2f89af0b2e161aa depends: - - python >=3.8 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 49024 - timestamp: 1726902073034 + size: 49002 + timestamp: 1733327434163 - kind: conda name: prompt-toolkit version: 3.0.48 - build: pyha770c72_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_0.conda - sha256: 44e4e6108d425a666856a52d1523e5d70890256a8920bb0dcd3d55cc750f3207 - md5: 4c05134c48b6a74f33bbb9938e4a115e + url: https://conda.anaconda.org/conda-forge/noarch/prompt-toolkit-3.0.48-pyha770c72_1.conda + sha256: 79fb7d1eeb490d4cc1b79f781bb59fe302ae38cf0a30907ecde75a7d399796cc + md5: 368d4aa48358439e07a97ae237491785 depends: - - python >=3.7 + - python >=3.9 - wcwidth constrains: - prompt_toolkit 3.0.48 license: BSD-3-Clause license_family: BSD - size: 270271 - timestamp: 1727341744544 + size: 269848 + timestamp: 1733302634979 - kind: conda name: propcache - version: 0.2.0 - build: py312h024a12e_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda - sha256: 0f3a04675c6c473398f0aaa95c259e0a085d5ec106b4fa89a7efeb7cc73d5dd2 - md5: 6693e523bc43c38508efe14ab3374f0c + version: 0.2.1 + build: py312h66e93f0_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda + sha256: 5771311fb5ded614ca349c92579a0b752af55a310f40b71fc533e20625965391 + md5: 55d5742a696d7da1c1262e99b6217ceb depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 - python >=3.12,<3.13.0a0 - - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 47796 - timestamp: 1728545963127 + size: 52747 + timestamp: 1733391916349 - kind: conda name: propcache - version: 0.2.0 - build: py312h66e93f0_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda - sha256: be7aa0056680dd6e528b7992169a20dd525b94f62d37c8ba0fbf69bd4e8df57d - md5: 2c6c0c68f310bc33972e7c83264d7786 + version: 0.2.1 + build: py312hb2c0f52_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda + sha256: c7f62c11ed929ccf1f3d4a1e200e28be01e8d0e0786bf8f76c5893f2ea681e1b + md5: 50ab8953e7ff1333a4a47cda32e68123 depends: - - __glibc >=2.17,<3.0.a0 - libgcc >=13 - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53498 - timestamp: 1728545927816 + size: 52484 + timestamp: 1733391993461 - kind: conda name: propcache - version: 0.2.0 - build: py312hb2c0f52_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda - sha256: 50dad7604b6c20440baf081700b5d6829097121e65f34fd1a15508b20fbecc07 - md5: 8a258196d6f79ad32d3ea4dd4572f721 + version: 0.2.1 + build: py312hea69d52_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda + sha256: f8c266c494aa1e4cfb8bf0b6fca060044b2f3d65afe4c5062ebeea382e77aa6d + md5: c84e3dd97fe25a17322c4a0f670c6750 depends: - - libgcc >=13 + - __osx >=11.0 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53507 - timestamp: 1728546155066 + size: 48225 + timestamp: 1733392308901 - kind: conda name: protobuf version: 5.28.2 @@ -8339,32 +8342,34 @@ packages: - kind: conda name: ptyprocess version: 0.7.0 - build: pyhd3deb0d_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd3deb0d_0.tar.bz2 - sha256: fb31e006a25eb2e18f3440eb8d17be44c8ccfae559499199f73584566d0a444a - md5: 359eeb6536da0e687af562ed265ec263 + url: https://conda.anaconda.org/conda-forge/noarch/ptyprocess-0.7.0-pyhd8ed1ab_1.conda + sha256: a7713dfe30faf17508ec359e0bc7e0983f5d94682492469bd462cdaae9c64d83 + md5: 7d9daffbb8d8e0af0f769dbbcd173a54 depends: - - python + - python >=3.9 license: ISC - size: 16546 - timestamp: 1609419417991 + size: 19457 + timestamp: 1733302371990 - kind: conda name: pure_eval version: 0.2.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_0.conda - sha256: dcfcb3cee1ae0a89729601582cc3edea20ba13c9493967a03a693c67567af0c8 - md5: 0f051f09d992e0d08941706ad519ee0e + url: https://conda.anaconda.org/conda-forge/noarch/pure_eval-0.2.3-pyhd8ed1ab_1.conda + sha256: 71bd24600d14bb171a6321d523486f6a06f855e75e547fa0cb2a0953b02047f0 + md5: 3bfdfb8dbcdc4af1ae3f9a8eb3948f04 depends: - - python >=3.5 + - python >=3.9 license: MIT license_family: MIT - size: 16551 - timestamp: 1721585805256 + size: 16668 + timestamp: 1733569518868 - kind: conda name: pyarrow version: 18.1.0 @@ -8513,13 +8518,13 @@ packages: timestamp: 1733195786147 - kind: conda name: pydantic - version: 2.10.2 + version: 2.10.3 build: pyh3cfb1c2_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda - sha256: 47368f0eeb63b2dd4c9c54ff35b216d01ae1c27b90d3c7a2066ef8e005f32103 - md5: e661b732b4d7514ace55a01873f03201 + url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda + sha256: cac9eebd3d5f8d8a497a9025d756257ddc75b8b3393e6737cb45077bd744d4f8 + md5: 194ef7f91286978521350f171b117f01 depends: - annotated-types >=0.6.0 - pydantic-core 2.27.1 @@ -8528,8 +8533,8 @@ packages: - typing_extensions >=4.12.2 license: MIT license_family: MIT - size: 316818 - timestamp: 1732689481710 + size: 317037 + timestamp: 1733316963547 - kind: conda name: pydantic-core version: 2.27.1 @@ -8610,18 +8615,19 @@ packages: - kind: conda name: pygments version: 2.18.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - md5: b7f5c092b8f9800150d998a71b76d5a1 + url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda + sha256: 0d6133545f268b2b89c2617c196fc791f365b538d4057ecd636d658c3b1e885d + md5: b38dc0206e2a530e5c2cf11dc086b31a depends: - - python >=3.8 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 879295 - timestamp: 1714846885370 + size: 876700 + timestamp: 1733221731178 - kind: conda name: pyinstrument version: 5.0.0 @@ -8714,107 +8720,110 @@ packages: - kind: conda name: pysocks version: 1.7.1 - build: pyha2e5f31_6 - build_number: 6 + build: pyha55dd90_7 + build_number: 7 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - md5: 2a7de29fb590ca14b5243c4c812c8025 + url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + sha256: ba3b032fa52709ce0d9fd388f63d330a026754587a2f461117cac9ab73d8d0d8 + md5: 461219d1a5bd61342293efa2c0c90eac depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 18981 - timestamp: 1661604969727 + size: 21085 + timestamp: 1733217331982 - kind: conda name: python - version: 3.12.7 - build: h5d932e8_0_cpython + version: 3.12.8 + build: h1683364_1_cpython + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda - sha256: 25570873d92d4d9490c6db780cc85e6c28bd3ff61dc1ece79f602cf82bc73bc1 - md5: e6cab21bb5787270388939cf41cc5f43 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda + sha256: 85573582d5b0f79923fed0a8365d3d74d21eee9f0a5fa1b9345f191e006363ab + md5: 09ec612ea05370989eaa3d81abf0f369 depends: - bzip2 >=1.0.8,<2.0a0 - ld_impl_linux-aarch64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libsqlite >=3.47.0,<4.0a0 - libuuid >=2.38.1,<3.0a0 - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 13762126 - timestamp: 1728057461028 + size: 13760816 + timestamp: 1733407890896 - kind: conda name: python - version: 3.12.7 - build: h739c21a_0_cpython - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda - sha256: 45d7ca2074aa92594bd2f91a9003b338cc1df8a46b9492b7fc8167110783c3ef - md5: e0d82e57ebb456077565e6d82cd4a323 + version: 3.12.8 + build: h9e4cc4f_1_cpython + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda + sha256: 3f0e0518c992d8ccfe62b189125721309836fe48a010dc424240583e157f9ff0 + md5: 7fd2fd79436d9b473812f14e86746844 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.6.3,<3.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.47.0,<4.0a0 + - libuuid >=2.38.1,<3.0a0 + - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 12975439 - timestamp: 1728057819519 + size: 31565686 + timestamp: 1733410597922 - kind: conda name: python - version: 3.12.7 - build: hc5c86c4_0_cpython - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda - sha256: 674be31ff152d9f0e0fe16959a45e3803a730fc4f54d87df6a9ac4e6a698c41d - md5: 0515111a9cdf69f83278f7c197db9807 + version: 3.12.8 + build: hc22306f_1_cpython + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda + sha256: 7586a711b1b08a9df8864e26efdc06980bdfb0e18d5ac4651d0fee30a8d3e3a0 + md5: 54ca5b5d92ef3a3ba61e195ee882a518 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - bzip2 >=1.0.8,<2.0a0 - - ld_impl_linux-64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libgcc >=13 - - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 - - libuuid >=2.38.1,<3.0a0 - - libxcrypt >=4.4.36 + - liblzma >=5.6.3,<6.0a0 + - libsqlite >=3.47.0,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 31574780 - timestamp: 1728059777603 + size: 12998673 + timestamp: 1733408900971 - kind: conda name: python-dateutil version: 2.9.0.post0 @@ -8829,38 +8838,40 @@ packages: - python >=3.9 - six >=1.5 license: Apache-2.0 + license_family: APACHE size: 222505 timestamp: 1733215763718 - kind: conda name: python-dotenv version: 1.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - sha256: 2d4c80364f03315d606a50eddd493dbacc078e21412c2462c0f781eec49b572c - md5: c2997ea9360ac4e015658804a7a84f94 + url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + sha256: 99713f6b534fef94995c6c16fd21d59f3548784e9111775d692bdc7c44678f02 + md5: e5c6ed218664802d305e79cc2d4491de depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 24278 - timestamp: 1706018281544 + size: 24215 + timestamp: 1733243277223 - kind: conda name: python-fastjsonschema - version: 2.21.0 + version: 2.21.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.0-pyhd8ed1ab_0.conda - sha256: 09ae0acccbfc325b9b65946795c0055e0a40374e4e73b264f3b7e8cd8ae0a95a - md5: 4c849126120d1b3d61cf0eac8120ea70 + url: https://conda.anaconda.org/conda-forge/noarch/python-fastjsonschema-2.21.1-pyhd8ed1ab_0.conda + sha256: 1b09a28093071c1874862422696429d0d35bd0b8420698003ac004746c5e82a2 + md5: 38e34d2d1d9dca4fb2b9a0a04f604e2c depends: - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 225949 - timestamp: 1732805566866 + size: 226259 + timestamp: 1733236073335 - kind: conda name: python-json-logger version: 2.0.7 @@ -8879,33 +8890,35 @@ packages: - kind: conda name: python-multipart version: 0.0.19 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - sha256: ff5964cd5eafc118f9d9a15fd31cd88a7ecc756ef83b6095c69b1891a53e2177 - md5: fe524346d3a9aa0aaf353dc39f7d1715 + url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + sha256: e6f6bc3d2a51f45ca26d556c5a416efdacf49a918fefcd0b7c340121e608aa5f + md5: c74333aa447ed2b94d49e5db23da5de6 depends: - python >=3.9 license: Apache-2.0 license_family: Apache - size: 27780 - timestamp: 1733062326577 + size: 27768 + timestamp: 1733323160772 - kind: conda name: python-tzdata version: '2024.2' - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda - sha256: fe3f62ce2bc714bdaa222ab3f0344a2815ad9e853c6df38d15c9f25de8a3a6d4 - md5: 986287f89929b2d629bd6ef6497dc307 + url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda + sha256: 57c9a02ec25926fb48edca59b9ede107823e5d5c473b94a0e05cc0b9a193a642 + md5: c0def296b2f6d2dd7b030c2a7f66bb1f depends: - - python >=3.6 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 142527 - timestamp: 1727140688093 + size: 142235 + timestamp: 1733235414217 - kind: conda name: python-xxhash version: 3.5.0 @@ -9020,6 +9033,7 @@ packages: depends: - python >=3.9 license: MIT + license_family: MIT size: 185890 timestamp: 1733215766006 - kind: conda @@ -9236,20 +9250,21 @@ packages: - kind: conda name: referencing version: 0.35.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_0.conda - sha256: be8d6d9e86b1a3fef5424127ff81782f8ca63d3058980859609f6f1ecdd34cb3 - md5: 0fc8b52192a8898627c3efae1003e9f6 + url: https://conda.anaconda.org/conda-forge/noarch/referencing-0.35.1-pyhd8ed1ab_1.conda + sha256: f972eecb4dc8e06257af37642f92b0f2df04a7fe4c950f2e1045505e5e93985f + md5: 8c9083612c1bfe6878715ed5732605f8 depends: - attrs >=22.2.0 - - python >=3.8 + - python >=3.9 - rpds-py >=0.7.0 license: MIT license_family: MIT - size: 42210 - timestamp: 1714619625532 + size: 42201 + timestamp: 1733366868091 - kind: conda name: regex version: 2024.11.6 @@ -9320,24 +9335,26 @@ packages: constrains: - chardet >=3.0.2,<6 license: Apache-2.0 + license_family: APACHE size: 58723 timestamp: 1733217126197 - kind: conda name: rfc3339-validator version: 0.1.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_0.tar.bz2 - sha256: 7c7052b51de0b5c558f890bb11f8b5edbb9934a653d76be086b1182b9f54185d - md5: fed45fc5ea0813240707998abe49f520 + url: https://conda.anaconda.org/conda-forge/noarch/rfc3339-validator-0.1.4-pyhd8ed1ab_1.conda + sha256: 2e4372f600490a6e0b3bac60717278448e323cab1c0fecd5f43f7c56535a99c5 + md5: 36de09a8d3e5d5e6f4ee63af49e59706 depends: - - python >=3.5 + - python >=3.9 - six license: MIT license_family: MIT - size: 8064 - timestamp: 1638811838081 + size: 10209 + timestamp: 1733600040800 - kind: conda name: rfc3986-validator version: 0.1.1 @@ -9356,29 +9373,30 @@ packages: - kind: conda name: rich version: 13.9.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - sha256: c009488fc07fd5557434c9c1ad32ab1dd50241d6a766e4b2b4125cd6498585a8 - md5: bcf8cc8924b5d20ead3d122130b8320b + url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + sha256: 06a760c5ae572e72e865d5a87e9fe3cc171e1a9c996e63daf3db52ff1a0b4457 + md5: 7aed65d4ff222bfb7335997aa40b7da5 depends: - markdown-it-py >=2.2.0 - pygments >=2.13.0,<3.0.0 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0.0,<5.0.0 license: MIT license_family: MIT - size: 185481 - timestamp: 1730592349978 + size: 185646 + timestamp: 1733342347277 - kind: conda name: rpds-py - version: 0.21.0 + version: 0.22.3 build: py312h12e396e_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.21.0-py312h12e396e_0.conda - sha256: 6a2c3808b0922e453b450cc092f5e5da9d2466f48acce224da90432a94146c12 - md5: 37f4ad7cb4214c799f32e5f411c6c69f + url: https://conda.anaconda.org/conda-forge/linux-64/rpds-py-0.22.3-py312h12e396e_0.conda + sha256: e8662d21ca3c912ac8941725392b838a29458b106ef22d9489cdf0f8de145fad + md5: bfb49da0cc9098597d527def04d66f8b depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 @@ -9388,16 +9406,16 @@ packages: - __glibc >=2.17 license: MIT license_family: MIT - size: 336759 - timestamp: 1730922756033 + size: 354410 + timestamp: 1733366814237 - kind: conda name: rpds-py - version: 0.21.0 + version: 0.22.3 build: py312ha4e36d7_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/rpds-py-0.21.0-py312ha4e36d7_0.conda - sha256: 5573bd19cd90ddb1b446ecd5a3b2c52923d030c91581fe2e63b014d47973a86c - md5: b5758e481b8a8e6f8342836f66fb0bdf + url: https://conda.anaconda.org/conda-forge/linux-aarch64/rpds-py-0.22.3-py312ha4e36d7_0.conda + sha256: bd8215aea86b57f7d036d53eee813a544736e94783faeb7b928931fca45715f8 + md5: 4d41b57d0d3933b9cab7ac8c05745123 depends: - libgcc >=13 - python >=3.12,<3.13.0a0 @@ -9406,16 +9424,16 @@ packages: - __glibc >=2.17 license: MIT license_family: MIT - size: 340149 - timestamp: 1730924593615 + size: 348424 + timestamp: 1733368364148 - kind: conda name: rpds-py - version: 0.21.0 + version: 0.22.3 build: py312hcd83bfe_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.21.0-py312hcd83bfe_0.conda - sha256: a3d885b49b03259ff7306855466933f9ba06e3f4c327cd0122e9a43b68910555 - md5: 8ea53395d5403ae5ec1adabb1a74719a + url: https://conda.anaconda.org/conda-forge/osx-arm64/rpds-py-0.22.3-py312hcd83bfe_0.conda + sha256: 0a8b50bf22400004a706ba160d7cb31f82b8d8c328a59aec73a9e0d3372d1964 + md5: 2f7c4d01946fa2ce73d7ef3eeb041877 depends: - __osx >=11.0 - python >=3.12,<3.13.0a0 @@ -9425,8 +9443,8 @@ packages: - __osx >=11.0 license: MIT license_family: MIT - size: 295817 - timestamp: 1730922974629 + size: 318920 + timestamp: 1733367225496 - kind: conda name: s2n version: 1.5.9 @@ -9518,36 +9536,38 @@ packages: - kind: conda name: send2trash version: 1.8.3 - build: pyh0d859eb_0 + build: pyh0d859eb_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_0.conda - sha256: c4401b071e86ddfa0ea4f34b85308db2516b6aeca50053535996864cfdee7b3f - md5: 778594b20097b5a948c59e50ae42482a + url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh0d859eb_1.conda + sha256: 00926652bbb8924e265caefdb1db100f86a479e8f1066efe395d5552dde54d02 + md5: 938c8de6b9de091997145b3bf25cdbf9 depends: - __linux - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 22868 - timestamp: 1712585140895 + size: 22736 + timestamp: 1733322148326 - kind: conda name: send2trash version: 1.8.3 - build: pyh31c8845_0 + build: pyh31c8845_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh31c8845_0.conda - sha256: f911307db932c92510da6c3c15b461aef935720776643a1fbf3683f61001068b - md5: c3cb67fc72fb38020fe7923dbbcf69b0 + url: https://conda.anaconda.org/conda-forge/noarch/send2trash-1.8.3-pyh31c8845_1.conda + sha256: 5282eb5b462502c38df8cb37cd1542c5bbe26af2453a18a0a0602d084ca39f53 + md5: e67b1b1fa7a79ff9e8e326d0caf55854 depends: - __osx - pyobjc-framework-cocoa - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 23165 - timestamp: 1712585504123 + size: 23100 + timestamp: 1733322309409 - kind: conda name: setuptools version: 75.6.0 @@ -9567,94 +9587,99 @@ packages: - kind: conda name: shellingham version: 1.5.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - sha256: 3c49a0a101c41b7cf6ac05a1872d7a1f91f1b6d02eecb4a36b605a19517862bb - md5: d08db09a552699ee9e7eec56b4eb3899 + url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + sha256: 0557c090913aa63cdbe821dbdfa038a321b488e22bc80196c4b3b1aace4914ef + md5: 7c3c2a0f3ebdea2bbc35538d162b43bf depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 14568 - timestamp: 1698144516278 + size: 14462 + timestamp: 1733301007770 - kind: conda name: six - version: 1.16.0 - build: pyhd8ed1ab_1 - build_number: 1 + version: 1.17.0 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - sha256: 761b96fe7bea080b9c35dd2f87f788eb94b61d462645bd16f361e80ae0ff017c - md5: a516da6cfe1ec0a55e49737f017b4965 + url: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + sha256: 41db0180680cc67c3fa76544ffd48d6a5679d96f4b71d7498a759e94edc9a2db + md5: a451d576819089b0d672f18768be0f65 depends: - python >=3.9 license: MIT license_family: MIT size: 16385 - timestamp: 1733216901349 + timestamp: 1733381032766 - kind: conda name: snappy version: 1.2.1 - build: h1088aeb_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - sha256: 79f5d0a9098acf2ed16e6ecc4c11472b50ccf59feea37a7d585fd43888d7e41f - md5: e4ed5b015f525b56f95c26d85a4ea208 + build: h8bd8927_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + sha256: ec91e86eeb2c6bbf09d51351b851e945185d70661d2ada67204c9a6419d282d3 + md5: 3b3e64af585eadfb52bb90b553db5edf depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 42888 - timestamp: 1720003817527 + size: 42739 + timestamp: 1733501881851 - kind: conda name: snappy version: 1.2.1 - build: ha2e4443_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - sha256: dc7c8e0e8c3e8702aae81c52d940bfaabe756953ee51b1f1757e891bab62cf7f - md5: 6b7dcc7349efd123d493d2dbe85a045f + build: h98b9ce2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + sha256: 4242f95b215127a006eb664fe26ed5a82df87e90cbdbc7ce7ff4971f0720997f + md5: ded86dee325290da2967a3fea3800eb5 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __osx >=11.0 + - libcxx >=18 license: BSD-3-Clause license_family: BSD - size: 42465 - timestamp: 1720003704360 + size: 35857 + timestamp: 1733502172664 - kind: conda name: snappy version: 1.2.1 - build: hd02b534_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - sha256: cb7a9440241c6092e0f1c795fdca149c4767023e783eaf9cfebc501f906b4897 - md5: 69d0f9694f3294418ee935da3d5f7272 + build: hd4fb6f5_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + sha256: c4a07ae5def8d55128f25a567a296ef9d7bf99a3bc79d46bd5160c076a5f50af + md5: 2fcc6cd1e5550deb509073fd2e6693e1 depends: - - __osx >=11.0 - - libcxx >=16 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 35708 - timestamp: 1720003794374 + size: 43032 + timestamp: 1733501964775 - kind: conda name: sniffio version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda - sha256: bc12100b2d8836b93c55068b463190505b8064d0fc7d025e89f20ebf22fe6c2b - md5: 490730480d76cf9c8f8f2849719c6e2b + url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda + sha256: c2248418c310bdd1719b186796ae50a8a77ce555228b6acd32768e2543a15012 + md5: bf7a226e58dfb8346c70df36065d86c9 depends: - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 15064 - timestamp: 1708953086199 + size: 15019 + timestamp: 1733244175724 - kind: conda name: soupsieve version: '2.5' @@ -9691,39 +9716,41 @@ packages: timestamp: 1722520112550 - kind: conda name: stack_data - version: 0.6.2 - build: pyhd8ed1ab_0 + version: 0.6.3 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.2-pyhd8ed1ab_0.conda - sha256: a58433e75229bec39f3be50c02efbe9b7083e53a1f31d8ee247564f370191eec - md5: e7df0fdd404616638df5ece6e69ba7af + url: https://conda.anaconda.org/conda-forge/noarch/stack_data-0.6.3-pyhd8ed1ab_1.conda + sha256: 570da295d421661af487f1595045760526964f41471021056e993e73089e9c41 + md5: b1b505328da7a6b246787df4b5a49fbc depends: - asttokens - executing - pure_eval - - python >=3.5 + - python >=3.9 license: MIT license_family: MIT - size: 26205 - timestamp: 1669632203115 + size: 26988 + timestamp: 1733569565672 - kind: conda name: starlette version: 0.41.3 - build: pyh7900ff3_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda - sha256: 33986032cb0515f7e9f6647d07006b7dc49b3f373b73d5a1826e6979c661b27a - md5: 0889c5a3e95d8c382cff7556757aedb0 + url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda + sha256: b74fc76107487eb26624c01fc55bfab7eed03ae82e003333c86d8a1eeac53672 + md5: 0207dac04ae2200701fab697f0aaaac4 depends: - anyio >=3.4.0,<5 - python >=3.9 - typing_extensions >=3.10.0 license: BSD-3-Clause license_family: BSD - size: 59069 - timestamp: 1732037161800 + size: 58838 + timestamp: 1733344472634 - kind: conda name: terminado version: 0.18.1 @@ -9824,12 +9851,12 @@ packages: timestamp: 1699202167581 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312h8360d73_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda - sha256: 7b59759739b5426e17825b26d6ce9df487d1dc254d4e6a92b14a97107eb6daca - md5: 035c6de3c821559bf1af5ec072593bfd + url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda + sha256: 4f504a5e9d77c6d88a8f735c4319429d8bf40b742384f908a2efe0a09acc3cc5 + md5: f953aa733207f3d37acf4a3efbedba89 depends: - __glibc >=2.17,<3.0.a0 - huggingface_hub >=0.16.4,<1.0 @@ -9842,16 +9869,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2259332 - timestamp: 1732657962717 + size: 2258007 + timestamp: 1732734202127 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312ha0d6ea1_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda - sha256: 6dbb7e5f3f152210817e8658bc454056e464dee16fd9757508f2417edd44d8b8 - md5: b135e3d9178b255993ea4d72741192f8 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda + sha256: ef0f4d4e2c798b1821187ea0ba4c86484e48abaa0e9a19fe68030fa7ff5dde84 + md5: 077f48c9e0c08a30d842e15c51df4143 depends: - huggingface_hub >=0.16.4,<1.0 - libgcc >=13 @@ -9864,16 +9891,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2330899 - timestamp: 1732658129796 + size: 2331194 + timestamp: 1732734303196 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312hf3e4074_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda - sha256: fd86f8a5d41622e8f5092913dea48f41de86258583ee449045905a725672fdc2 - md5: 40e8bc575721b4da76712e90e4a9b7fa + url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda + sha256: 5d395333fcb22dc611140286c1f2ea8b3fa220a4931c583587cb612238091555 + md5: 4c732c74b485ef7ac8ec1c548dd45e8e depends: - __osx >=11.0 - huggingface_hub >=0.16.4,<1.0 @@ -9885,23 +9912,24 @@ packages: - __osx >=11.0 license: Apache-2.0 license_family: APACHE - size: 1933005 - timestamp: 1732658406859 + size: 1931389 + timestamp: 1732734727624 - kind: conda name: tomli version: 2.2.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_0.conda - sha256: 706f35327a1b433fb57bb99e9fef878e90317fd6ea8cbcd454fb4af1a2e3f035 - md5: ee8ab0fe4c8dfc5a6319f7f8246022fc + url: https://conda.anaconda.org/conda-forge/noarch/tomli-2.2.1-pyhd8ed1ab_1.conda + sha256: 18636339a79656962723077df9a56c0ac7b8a864329eb8f847ee3d38495b863e + md5: ac944244f1fed2eb49bae07193ae8215 depends: - python >=3.9 license: MIT license_family: MIT - size: 19129 - timestamp: 1732988289555 + size: 19167 + timestamp: 1733256819729 - kind: conda name: tornado version: 6.4.2 @@ -9970,27 +9998,28 @@ packages: - kind: conda name: traitlets version: 5.14.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - md5: 3df84416a021220d8b5700c613af2dc5 + url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + sha256: f39a5620c6e8e9e98357507262a7869de2ae8cc07da8b7f84e517c9fd6c2b959 + md5: 019a7385be9af33791c989871317e1ed depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 110187 - timestamp: 1713535244513 + size: 110051 + timestamp: 1733367480074 - kind: conda name: transformers - version: 4.46.3 + version: 4.47.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - sha256: 6ae73c0d1197812d8fd6a2c64309fe9abe822feb66b2d330cc61ce9fa60dee0c - md5: 457af723774f077a128515a6fdd536a2 + url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + sha256: b9cf6ae5fcd6c78dcaa24ebfd41580a4a10b0649ac726a44d3521f70fdece218 + md5: 495745078b8e18fe2dcc3267f4baae0d depends: - datasets !=2.5.0 - filelock @@ -10002,80 +10031,80 @@ packages: - regex !=2019.12.17 - requests - safetensors >=0.4.1 - - tokenizers >=0.20,<0.21 + - tokenizers >=0.21,<0.22 - tqdm >=4.27 license: Apache-2.0 license_family: APACHE - size: 3622494 - timestamp: 1731981383171 + size: 3721837 + timestamp: 1733708797762 - kind: conda name: typer - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - sha256: 4d7f1c77b928a66ae3b0089e288e7fdeb826bf0dabba9799488017e6a9b84f38 - md5: 9eb8a3f5d36ca3e7f686e7a5d85aff72 + url: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + sha256: ef695490e895c2ad552c77ec497b899b09fd4ad4ab07edcf5649f5994cf92a35 + md5: 170a0398946d8f5b454e592672b6fc20 depends: - python >=3.9 - - typer-slim-standard 0.14.0 hd8ed1ab_0 + - typer-slim-standard 0.15.1 hd8ed1ab_0 license: MIT license_family: MIT - size: 54637 - timestamp: 1732848384457 + size: 56175 + timestamp: 1733408582623 - kind: conda name: typer-slim - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - sha256: 883969c10b9837bb18a340ffb01a984ef6b4655fc72ff05aeb7bc659c9a1229d - md5: 3674a4cd7fd8e8a7277af2b30965925d + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + sha256: d4965516f35e0805199de6596c4ac76c4ad3d6b012be35e532102f9e53ecb860 + md5: 0218b16f5a1dd569e575a7a6415489db depends: - click >=8.0.0 - python >=3.9 - typing_extensions >=3.7.4.3 constrains: - - shellingham >=1.3.0 - rich >=10.11.0 - - typer >=0.14.0,<0.14.1.0a0 + - typer >=0.15.1,<0.15.2.0a0 + - shellingham >=1.3.0 license: MIT license_family: MIT - size: 43504 - timestamp: 1732848371202 + size: 43592 + timestamp: 1733408569554 - kind: conda name: typer-slim-standard - version: 0.14.0 + version: 0.15.1 build: hd8ed1ab_0 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - sha256: 0e09e393e75028a0e827c7177e0fb1a070c87756e47b5ae6418423e22b10dfac - md5: 9e1e1f9c84add9637ca715f8fb71a83f + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + sha256: f31c56fe98315da8b9ce848256c17e0b9f87896b41a6ccf0c9cc74644dcef20f + md5: 4e603c43bfdfc7b533be087c3e070cc9 depends: - rich - shellingham - - typer-slim 0.14.0 pyhd8ed1ab_0 + - typer-slim 0.15.1 pyhd8ed1ab_0 license: MIT license_family: MIT - size: 49180 - timestamp: 1732848371718 + size: 49531 + timestamp: 1733408570063 - kind: conda name: types-python-dateutil - version: 2.9.0.20241003 - build: pyhff2d567_0 + version: 2.9.0.20241206 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241003-pyhff2d567_0.conda - sha256: 8489af986daebfbcd13d3748ba55431259206e37f184ab42a57e107fecd85e02 - md5: 3d326f8a2aa2d14d51d8c513426b5def + url: https://conda.anaconda.org/conda-forge/noarch/types-python-dateutil-2.9.0.20241206-pyhd8ed1ab_0.conda + sha256: 8b98cd9464837174ab58aaa912fc95d5831879864676650a383994033533b8d1 + md5: 1dbc4a115e2ad9fb7f9d5b68397f66f9 depends: - - python >=3.6 + - python >=3.9 license: Apache-2.0 AND MIT - size: 21765 - timestamp: 1727940339297 + size: 22104 + timestamp: 1733612458611 - kind: conda name: typing-extensions version: 4.12.2 @@ -10111,18 +10140,19 @@ packages: - kind: conda name: typing_utils version: 0.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_0.tar.bz2 - sha256: 9e3758b620397f56fb709f796969de436d63b7117897159619b87938e1f78739 - md5: eb67e3cace64c66233e2d35949e20f92 + url: https://conda.anaconda.org/conda-forge/noarch/typing_utils-0.1.0-pyhd8ed1ab_1.conda + sha256: 3088d5d873411a56bf988eee774559335749aed6f6c28e07bf933256afb9eb6c + md5: f6d7aa696c67756a650e91e15e88223c depends: - - python >=3.6.1 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 13829 - timestamp: 1622899345711 + size: 15183 + timestamp: 1733331395943 - kind: conda name: tzdata version: 2024b @@ -10138,18 +10168,19 @@ packages: - kind: conda name: uri-template version: 1.3.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_0.conda - sha256: b76904b53721dc88a46352324c79d2b077c2f74a9f7208ad2c4249892669ae94 - md5: 0944dc65cb4a9b5b68522c3bb585d41c + url: https://conda.anaconda.org/conda-forge/noarch/uri-template-1.3.0-pyhd8ed1ab_1.conda + sha256: e0eb6c8daf892b3056f08416a96d68b0a358b7c46b99c8a50481b22631a4dfc0 + md5: e7cb0f5745e4c5035a460248334af7eb depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 23999 - timestamp: 1688655976471 + size: 23990 + timestamp: 1733323714454 - kind: conda name: urllib3 version: 2.2.3 @@ -10173,44 +10204,46 @@ packages: - kind: conda name: uvicorn version: 0.32.1 - build: pyh31011fe_0 + build: pyh31011fe_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - sha256: a310c494c817a9f6c985fc6d2772acb953a20170d03b0eabfae0e9d8c76c97ee - md5: fa77fc8110207b3bfc5ccc9d316744f4 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + sha256: ad1d8470c629679ea3db52351a522ae44eee0111d8d8b254e8c863c4a292e5c4 + md5: 7832640e5e302059e844d56f410487a6 depends: - __unix - click >=7.0 - h11 >=0.8 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0 license: BSD-3-Clause license_family: BSD - size: 49393 - timestamp: 1732185242260 + size: 49340 + timestamp: 1733332048141 - kind: conda name: uvicorn-standard version: 0.32.1 - build: h31011fe_0 + build: h31011fe_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda - sha256: 52545f7c88a7c779376900de5f9d81ce36738cd8770b543e89592ad7d1003c40 - md5: 49c2820e0f39cb710becd856ff14d683 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda + sha256: 378903c51b2b1136fa48b01c0a2a8dd4634136d038a4a56561c0856fdcbfcabe + md5: 0c233d5c71d398cf01d0281e72194005 depends: - __unix - httptools >=0.5.0 - python-dotenv >=0.13 - pyyaml >=5.1 - - uvicorn 0.32.1 pyh31011fe_0 + - uvicorn 0.32.1 pyh31011fe_1 - uvloop >=0.14.0,!=0.15.0,!=0.15.1 - watchfiles >=0.13 - websockets >=10.4 license: BSD-3-Clause license_family: BSD - size: 7136 - timestamp: 1732185243035 + size: 7094 + timestamp: 1733332049165 - kind: conda name: uvloop version: 0.21.0 @@ -10328,49 +10361,50 @@ packages: - kind: conda name: wcwidth version: 0.2.13 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_0.conda - sha256: b6cd2fee7e728e620ec736d8dfee29c6c9e2adbd4e695a31f1d8f834a83e57e3 - md5: 68f0738df502a14213624b288c60c9ad + url: https://conda.anaconda.org/conda-forge/noarch/wcwidth-0.2.13-pyhd8ed1ab_1.conda + sha256: f21e63e8f7346f9074fd00ca3b079bd3d2fa4d71f1f89d5b6934bf31446dc2a5 + md5: b68980f2495d096e71c7fd9d7ccf63e6 depends: - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 32709 - timestamp: 1704731373922 + size: 32581 + timestamp: 1733231433877 - kind: conda name: webcolors - version: 24.8.0 + version: 24.11.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.8.0-pyhd8ed1ab_0.conda - sha256: ec71f97c332a7d328ae038990b8090cbfa772f82845b5d2233defd167b7cc5ac - md5: eb48b812eb4fbb9ff238a6651fdbbcae + url: https://conda.anaconda.org/conda-forge/noarch/webcolors-24.11.1-pyhd8ed1ab_0.conda + sha256: 08315dc2e61766a39219b2d82685fc25a56b2817acf84d5b390176080eaacf99 + md5: b49f7b291e15494aafb0a7d74806f337 depends: - - python >=3.5 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 18378 - timestamp: 1723294800217 + size: 18431 + timestamp: 1733359823938 - kind: conda name: webencodings version: 0.5.1 - build: pyhd8ed1ab_2 - build_number: 2 + build: pyhd8ed1ab_3 + build_number: 3 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_2.conda - sha256: 2adf9bd5482802837bc8814cbe28d7b2a4cbd2e2c52e381329eaa283b3ed1944 - md5: daf5160ff9cde3a468556965329085b9 + url: https://conda.anaconda.org/conda-forge/noarch/webencodings-0.5.1-pyhd8ed1ab_3.conda + sha256: 19ff205e138bb056a46f9e3839935a2e60bd1cf01c8241a5e172a422fed4f9c6 + md5: 2841eb5bfc75ce15e9a0054b98dcd64d depends: - - python >=2.6 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 15600 - timestamp: 1694681458271 + size: 15496 + timestamp: 1733236131358 - kind: conda name: websocket-client version: 1.8.0 @@ -10634,43 +10668,6 @@ packages: license_family: BSD size: 97691 timestamp: 1689951608120 -- kind: conda - name: xz - version: 5.2.6 - build: h166bdaf_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - md5: 2161070d867d1b1204ea749c8eec4ef0 - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 418368 - timestamp: 1660346797927 -- kind: conda - name: xz - version: 5.2.6 - build: h57fd34a_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - sha256: 59d78af0c3e071021cfe82dc40134c19dab8cdf804324b62940f5c8cd71803ec - md5: 39c6b54e94014701dd157f4f576ed211 - license: LGPL-2.1 and GPL-2.0 - size: 235693 - timestamp: 1660346961024 -- kind: conda - name: xz - version: 5.2.6 - build: h9cdd2b7_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - sha256: 93f58a7b393adf41fa007ac8c55978765e957e90cd31877ece1e5a343cb98220 - md5: 83baad393a31d59c20b63ba4da6592df - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 440555 - timestamp: 1660348056328 - kind: conda name: yaml version: 0.2.5 @@ -10716,64 +10713,64 @@ packages: timestamp: 1641347626613 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312h66e93f0_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda - sha256: 8a1e51303ecac64f10dd0ec548d472c49954c3e2f38023ef28899191580795e1 - md5: 601d2b19a54fd9346ba18c07c2516339 + url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda + sha256: a0d93c3bef723e384cff8a29a82a2c6b7a73b39328088f3a2d97c901f56e9a63 + md5: 91df2efaa08730416bec2a4502309275 depends: - __glibc >=2.17,<3.0.a0 - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 151247 - timestamp: 1732220988648 + size: 151393 + timestamp: 1733428897813 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hb2c0f52_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda - sha256: 2ead24d5c50a2edd6348be5888677100b12b98921d1b6fe2f4cd980b0b85ffb2 - md5: 7dbbd950a7f762c2c8ab835932b12001 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda + sha256: 470b5b0f3ac89acd143095281167dc2ac1a56d4fa22e1794bd8f3b00bb604540 + md5: 0b3c640697bca798d0ab428f530ed24c depends: - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 149149 - timestamp: 1732221057827 + size: 150004 + timestamp: 1733429056665 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hea69d52_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda - sha256: 4c90de12b1569f85126a12dbbb89f3dc10cee5838335b9c9993ead8bf1594cd3 - md5: f538709098e1642d50f4a01707e7dfdb + url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda + sha256: 69c7863809e11bc90c0d935c16e7f151dcc925add08b3894f06059263a8cb9ba + md5: f32f9b16361866a62d6e061fcd7eb400 depends: - __osx >=11.0 - idna >=2.0 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 141452 - timestamp: 1732221306526 + size: 141556 + timestamp: 1733429104990 - kind: conda name: zeromq version: 4.3.5 diff --git a/examples/operators/magic.lock b/examples/operators/magic.lock index cdc8aa7faf..8f6f1771af 100644 --- a/examples/operators/magic.lock +++ b/examples/operators/magic.lock @@ -8,26 +8,25 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.11.9-py312h178313f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda @@ -40,37 +39,37 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ca-certificates-2024.8.30-hbcca054_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/cffi-1.17.1-py312h06ac9bb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/httptools-0.6.4-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda @@ -78,10 +77,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda @@ -106,80 +105,77 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multiprocess-0.70.15-py312h98912ed_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-he02047a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/protobuf-5.28.2-py312h2ec8cdc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-core-18.1.0-py312h01725c0_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pydantic-core-2.27.1-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyinstrument-5.0.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -189,31 +185,31 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/regex-2024.11.6-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/safetensors-0.4.5-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/uvloop-0.21.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/watchfiles-1.0.0-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/websockets-14.1-py312h66e93f0_0.conda @@ -221,35 +217,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda linux-aarch64: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aiohttp-3.11.9-py312hcc812fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-common-0.10.3-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-compression-0.3.0-h4c7db1d_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-sdkutils-0.2.1-h4c7db1d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-checksums-0.2.2-h4c7db1d_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-core-cpp-1.14.0-h1887c18_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-identity-cpp-1.10.0-h47b0b28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-blobs-cpp-12.13.0-h185ecfd_1.conda @@ -262,38 +256,38 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ca-certificates-2024.8.30-hcefe29a_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/cffi-1.17.1-py312hac81daf_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/frozenlist-1.5.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gflags-2.2.2-h5ad3122_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/glog-0.7.1-h468a4a4_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/httptools-0.6.4-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/icu-75.1-hf9b3779_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda @@ -301,10 +295,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libabseil-20240722.0-cxx17_h5ad3122_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h86ecc28_2.conda @@ -329,80 +323,77 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libiconv-1.17-h31becfc_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libjpeg-turbo-3.0.0-h31becfc_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnghttp2-1.64.0-hc8609a4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libprotobuf-5.28.2-h029595c_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libre2-11-2024.07.02-h18dbdb1_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsodium-1.0.20-h68df207_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libssh2-1.11.1-ha41c0db_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libthrift-0.21.0-h154c74f_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libutf8proc-2.9.0-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuv-1.49.2-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lz4-c-1.9.4-hd600fc2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multidict-6.1.0-py312hcc812fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multiprocess-0.70.15-py312hdd3e373_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ncurses-6.5-hcccb83c_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.4-py312h470d778_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/orc-2.0.3-h90de224_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pandas-2.2.3-py312ha2895bd_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py312h5ab5af3_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/protobuf-5.28.2-py312h6f74592_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-18.1.0-py312h8025657_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-core-18.1.0-py312h66f7834_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pydantic-core-2.27.1-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyinstrument-5.0.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-xxhash-3.5.0-py312h52516f5_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -412,31 +403,31 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/readline-8.2-h8fc344f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/regex-2024.11.6-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/s2n-1.5.9-h636ded1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/safetensors-0.4.5-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py312h52516f5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/uvloop-0.21.0-py312hb2c0f52_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/watchfiles-1.0.0-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/websockets-14.1-py312hb2c0f52_0.conda @@ -444,34 +435,32 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xxhash-0.8.2-h31becfc_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yaml-0.2.5-hf897c2e_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zeromq-4.3.5-h5efb499_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstandard-0.23.0-py312hb698573_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda osx-arm64: - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.11.9-py312h998013c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-common-0.10.3-h5505292_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-compression-0.3.0-h5d7ee29_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-sdkutils-0.2.1-h5d7ee29_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-checksums-0.2.2-h5d7ee29_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-core-cpp-1.14.0-hd50102c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-identity-cpp-1.10.0-hc602bab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-blobs-cpp-12.13.0-h7585a09_1.conda @@ -484,46 +473,47 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ca-certificates-2024.8.30-hf0a4a13_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/certifi-2024.8.30-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/cffi-1.17.1-py312h0fad829_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/freetype-2.12.1-hadb7bae_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/frozenlist-1.5.0-py312h0bf5046_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gflags-2.2.2-hf9b8971_1005.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/glog-0.7.1-heb240a5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/httptools-0.6.4-py312hea69d52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lcms2-2.16-ha0e7c42_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lerc-4.0.0-h9a09cb3_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libabseil-20240722.0-cxx17_hf9b8971_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlicommon-1.1.0-hd74edd7_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlidec-1.1.0-hd74edd7_2.conda @@ -531,7 +521,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcrc32c-1.1.2-hbdafb3b_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.10.1-h13a7ad3_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libdeflate-1.22-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20191231-hc8eb9b7_2.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda @@ -546,76 +536,73 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.17-h0d3ecfb_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libjpeg-turbo-3.0.0-hb547adb_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-25_osxarm64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.64.0-h6d7220d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.28-openmp_hf332438_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libpng-1.6.44-hc14010f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libprotobuf-5.28.2-h8f0b736_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libre2-11-2024.07.02-h2348fd5_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h9cc3647_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libthrift-0.21.0-h64651cc_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libutf8proc-2.9.0-h5505292_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libuv-1.49.2-h7ab814d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libwebp-base-1.4.0-h93a5062_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxcb-1.17.0-hdb1d25a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lz4-c-1.9.4-hb7217d7_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312ha0ccf2a_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multidict-6.1.0-py312hdb8e49c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multiprocess-0.70.15-py312h02f2b3b_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h7bae524_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py312h8442bc7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjpeg-2.5.2-h9f1df11_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.4.0-h39f12f2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/orc-2.0.3-h121fd32_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.2.3-py312hcd31e36_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pillow-11.0.0-py312haf37ca6_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/protobuf-5.28.2-py312hf02c72a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-18.1.0-py312h1f38498_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-core-18.1.0-py312hc40f475_0_cpu.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pycparser-2.22-pyh29332c3_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pydantic-core-2.27.1-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pydantic-settings-2.6.1-pyh3cfb1c2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyinstrument-5.0.0-py312h0bf5046_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-xxhash-3.5.0-py312h024a12e_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python_abi-3.12-5_cp312.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pytz-2024.1-pyhd8ed1ab_0.conda @@ -625,30 +612,30 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h92ec313_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/regex-2024.11.6-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/safetensors-0.4.5-py312he431725_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h5083fa2_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.4.2-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/uvloop-0.21.0-py312h0bf5046_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/watchfiles-1.0.0-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/websockets-14.1-py312hea69d52_0.conda @@ -656,9 +643,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxau-1.0.11-hd74edd7_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxdmcp-1.1.5-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xxhash-0.8.2-hb547adb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h3422bc3_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py312h15fbf35_1.conda @@ -713,18 +699,19 @@ packages: - kind: conda name: aiohappyeyeballs version: 2.4.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda - sha256: 4282838f468f75f0c1746cbc6cdd3365b9f6d449bf5af8a74b234e396d847bf0 - md5: 8d6f8a679aa0272ba8d6092ce4824870 + url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda + sha256: 95d4713e49ea92ae50cf42393683ede706b7875af5f7cb14c253438180afa732 + md5: 296b403617bafa89df4971567af79013 depends: - python >=3.9 license: PSF-2.0 license_family: PSF - size: 19310 - timestamp: 1733135584059 + size: 19351 + timestamp: 1733332029649 - kind: conda name: aiohttp version: 3.11.9 @@ -800,193 +787,176 @@ packages: - kind: conda name: aiosignal version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - sha256: 575c742e14c86575986dc867463582a970463da50b77264cdf54df74f5563783 - md5: d1e1eb7e21a9e2c74279d87dafb68156 + url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + sha256: 9c7b639ea0cc796ef46c57fa104ec1f2ed53cd11c063518869a5a9d7d3b0b2db + md5: d736bd1b8904d7593dce4893e58a7881 depends: - frozenlist >=1.1.0 - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 12730 - timestamp: 1667935912504 + size: 13157 + timestamp: 1733332198143 - kind: conda name: annotated-types version: 0.7.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_0.conda - sha256: 668f0825b6c18e4012ca24a0070562b6ec801ebc7008228a428eb52b4038873f - md5: 7e9f4612544c8edbfd6afad17f1bd045 + url: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda + sha256: e0ea1ba78fbb64f17062601edda82097fcf815012cf52bb704150a2668110d48 + md5: 2934f256a8acfe48f6ebb4fce6cde29c depends: - - python >=3.7 + - python >=3.9 - typing-extensions >=4.0.0 license: MIT license_family: MIT - size: 18235 - timestamp: 1716290348421 + size: 18074 + timestamp: 1733247158254 - kind: conda name: anyio - version: 4.6.2.post1 + version: 4.7.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - sha256: 4b54b7ce79d818e3cce54ae4d552dba51b7afac160ceecdefd04b3917a37c502 - md5: 688697ec5e9588bdded167d19577625b + url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + sha256: 687537ee3af30f8784986bf40cac30e88138770b16e51ca9850c9c23c09aeba1 + md5: c88107912954a983c2caf25f7fd55158 depends: - exceptiongroup >=1.0.2 - idna >=2.8 - python >=3.9 - sniffio >=1.1 - - typing_extensions >=4.1 + - typing_extensions >=4.5 constrains: - - uvloop >=0.21.0b1 - trio >=0.26.1 + - uvloop >=0.21 license: MIT license_family: MIT - size: 109864 - timestamp: 1728935803440 -- kind: conda - name: asgiref - version: 3.8.1 - build: pyhd8ed1ab_1 - build_number: 1 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - sha256: c8d51a32f3530e3ca176d8f7bf5621c68c7c1c03fe9cc5c3c49d8ba4a1248f43 - md5: 21187c8276f87b6aedfe63c267a6eed7 - depends: - - python >=3.9 - - typing_extensions >=4 - license: BSD-3-Clause - license_family: BSD - size: 26436 - timestamp: 1733215704904 + size: 112730 + timestamp: 1733532678437 - kind: conda name: attrs version: 24.2.0 - build: pyh71513ae_0 + build: pyh71513ae_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - sha256: 28dba85a7e0f7fb57d7315e13f603d1e41b83c5b88aa2a602596b52c833a2ff8 - md5: 6732fa52eb8e66e5afeb32db8701a791 + url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + sha256: 8488a116dffe204015a90b41982c0270534bd1070f44a00b316d59e4a79ae8c7 + md5: 2018839db45c79654b57a924fcdd27d0 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 56048 - timestamp: 1722977241383 + size: 56336 + timestamp: 1733520064905 - kind: conda name: aws-c-auth version: 0.8.0 - build: h9b725a8_10 - build_number: 10 + build: h35eccd0_12 + build_number: 12 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - sha256: 63cb8c25e0a26be4261d4271de525e7e33aefe9d9b001b8abfa5c9ac69c3dab3 - md5: 17c90d9eb8c6842fd739dc5445ce9962 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + sha256: 40ca48aee5f3ff0d3ffd64625dacb019104a9a2ee24cd54052cde6fe4cbc8349 + md5: 1109d5293b724ca16b61452accfdb442 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 license: Apache-2.0 license_family: Apache - size: 92355 - timestamp: 1731733738919 + size: 92279 + timestamp: 1733611476546 - kind: conda name: aws-c-auth version: 0.8.0 - build: hac900a4_10 - build_number: 10 + build: h89ba3c0_12 + build_number: 12 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - sha256: 85c8500ae0570f0d39e6661a120c653e43f0f5f984e2954c44fd358a87776892 - md5: 9ecaef75ebd666dda7caa79154183b02 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + sha256: 021451014fb5ee24601052d84db8d5babbce5085959ba777b540db4e33bde360 + md5: c0e2e6c3aa8c309af0ba09fc7d949407 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 111853 - timestamp: 1731733547677 + size: 112242 + timestamp: 1733611425746 - kind: conda name: aws-c-auth version: 0.8.0 - build: hb88c0a9_10 - build_number: 10 + build: ha4f867e_12 + build_number: 12 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - sha256: d2837a84e6bd7d993a83e79f9e240e1465e375f3d57149ea5b1927c6a4133bcc - md5: 409b7ee6d3473cc62bda7280f6ac20d0 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + sha256: b9355bedf43c857a2d1986ebe7d61e615218f2171d163b509633d6c0c988d2dc + md5: d889de56d3be691063b71eb826470e29 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 107163 - timestamp: 1731733534767 + size: 107663 + timestamp: 1733611397256 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h35473ba_2 - build_number: 2 + version: 0.8.1 + build: h35473ba_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda - sha256: 3327a9e65ec531b0c55d17bbcdc436b4e641af1f293d1c2f50e0f16aa79fde60 - md5: 48dc0b3576513622673d3f5f3d163b62 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda + sha256: c2d59d74e167b6df3c1a7addf0d37080b69a6b3dee2a30b3f2171a5d26c5a691 + md5: 97c0ccb4d43d880b38f237e746c29ead depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 49714 - timestamp: 1731678553709 + size: 49808 + timestamp: 1732038238504 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h5d7ee29_2 - build_number: 2 + version: 0.8.1 + build: h5d7ee29_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda - sha256: 2a8c09b33400cf2b7d658e63fd5a6f9b6e9626458f6213b904592fc15220bc92 - md5: 92734dad83d22314205ba73b679710d2 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda + sha256: 42d5e9fb695bc3b280ed7e625dcda110b6780ee471e227f1b92afce71ae4972c + md5: fc51a61831a676fe6f922450f51ab6af depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 39966 - timestamp: 1731678721786 + size: 40047 + timestamp: 1732038304022 - kind: conda name: aws-c-cal - version: 0.8.0 - build: hecf86a2_2 - build_number: 2 + version: 0.8.1 + build: hecf86a2_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda - sha256: 220a37955c120bf2f565fbd5320a82fc4c8b550b2449294bc0509c296cfcb9fa - md5: c54459d686ad9d0502823cacff7e8423 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda + sha256: 12cc2087503f4f0d3a5db84e791fb5e585866da728f888aa76e14330a092a681 + md5: 8350795be14a92d68847c0d4f3c1d59f depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 @@ -994,8 +964,8 @@ packages: - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 47477 - timestamp: 1731678510949 + size: 47569 + timestamp: 1732038156682 - kind: conda name: aws-c-common version: 0.10.3 @@ -1091,291 +1061,294 @@ packages: - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h13ead76_7 - build_number: 7 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - sha256: 386965fab5f0bed4a6109cdba32579f16bee1b0f76ce1db840ce6f7070188f9f - md5: 55a901b6d4fb9ce1bc8328925b229f0b + build: h873f81a_8 + build_number: 8 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + sha256: 589f9a04c4c7a919410dde75ce93a6986efad6ed522ecd8e5c9c587ac18f0d34 + md5: 32bdd50b43fcc435a8dc5a3c66aafef0 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 47528 - timestamp: 1731714690911 + size: 54020 + timestamp: 1731839177415 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h1ffe551_7 - build_number: 7 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - sha256: 3b780d6483baa889e8df5aa66ab3c439a9c81331cf2a4799e373f4174768ddd9 - md5: 7cce4dfab184f4bbdfc160789251b3c5 + build: h8ec3972_8 + build_number: 8 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + sha256: 81b98fc39e64d090af23b11621e467b4f943a19f61dda0fed5ad6397f06de5c7 + md5: ced9c97ddf61e4222d548e8bcc863b87 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 53500 - timestamp: 1731714597524 + size: 47491 + timestamp: 1731839300212 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h9bacb8c_7 - build_number: 7 + build: hba6c15e_8 + build_number: 8 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - sha256: 2b7bb475330942d94bc359171df19d0cf8b326f15c0c7903a59da54a8add621e - md5: 694020125b66632d6577456d2d9d3c74 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + sha256: d3b74580045ee9d54a134ab1e5e00082d5d8a466980e94acc153188ee7375d08 + md5: 102f8b54630d79aff5e0c489f40f926e depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 55054 - timestamp: 1731714599360 + size: 55354 + timestamp: 1731839242373 - kind: conda name: aws-c-http - version: 0.9.1 - build: hab05fe4_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - sha256: 90a325b6f5371dd2203b643de646967fe57a4bcbbee8c91086abbf9dd733d59a - md5: fb409f7053fa3dbbdf6eb41045a87795 + version: 0.9.2 + build: h48c6dea_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + sha256: cb68d557af1bdcbef668574836fbf39c4df0e4f377258e4d5bd14196acf9b992 + md5: a28dd36a1da76042bfb5579005cc6728 depends: - - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __osx >=11.0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 - - libgcc >=13 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 196945 - timestamp: 1731714483279 + size: 152660 + timestamp: 1732110368931 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf483d09_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - sha256: fca9ed0f0895bab9bf737c8d8a3314556cb893d45c40f0656f21a93502db3089 - md5: d880c40b8fc7d07374c036f93f1359d2 + version: 0.9.2 + build: h697be72_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + sha256: 4d6557a00e74649301da78d7de7d108882ce89eb9d6c87efce30789b53a617cf + md5: a8b1a2c11a93e615f6e8f33175ff8ff0 depends: - - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 + - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 153315 - timestamp: 1731714621306 + size: 190344 + timestamp: 1732110425530 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf4e072c_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - sha256: b9a262451fc91d2fd4ccfcb6dc11ac61d0152c0db765bfe8d089e3e1b70c2150 - md5: fddc197912c16cb95276077f6c7917c5 + version: 0.9.2 + build: ha5a3ca8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + sha256: 8ecb3d8411f58db4686635aedfe5d60b2b8870f9f9cafb471f3878dc61d21596 + md5: b2e017f8a4781ad3af9166edf10b65a8 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 190363 - timestamp: 1731714613945 + size: 197338 + timestamp: 1732110324356 - kind: conda name: aws-c-io - version: 0.15.2 - build: h10eb1bc_2 - build_number: 2 + version: 0.15.3 + build: h0155602_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - sha256: b8e4206ee1fa58453535c1c08c6aca5bdc92cde026bf7ec20d038786f813239b - md5: 7cdf478bb4feae1a93319f6e3381b8a9 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + sha256: 7b8d97d51e5bb80191e07f16cac6f59068be30bf5906925a8f4159b3aab9093c + md5: 431c201b11eee90fd120844557a62b02 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 162624 - timestamp: 1731702570075 + size: 161664 + timestamp: 1732097310449 - kind: conda name: aws-c-io - version: 0.15.2 - build: h39f8ad8_2 - build_number: 2 + version: 0.15.3 + build: h30cefa2_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - sha256: b14e32f024f6be1610dccfdb6371e101cba204d24f37c2a63d9b6380ac74ac17 - md5: 3b49f1dd8f20bead8b222828cfdad585 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + sha256: d6f8d42259ca11507bd912b3cd3ff1a65d6d8c7ff67ae9ee9df1686c9bebbbcc + md5: 8b8dc361de09e5b6227165a876e55cb7 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 license: Apache-2.0 license_family: Apache - size: 137610 - timestamp: 1731702839896 + size: 136662 + timestamp: 1732097382517 - kind: conda name: aws-c-io - version: 0.15.2 - build: hdeadb07_2 - build_number: 2 + version: 0.15.3 + build: ha35c7d9_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - sha256: 1636136a5d882b4aaa13ea8b7de8cf07038a6878872e3c434df9daf478cee594 - md5: 461a1eaa075fd391add91bcffc9de0c1 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + sha256: 2e9e13ed54f6da22ee5d06622f4165bcca253411997dad62225aecc54b25c0db + md5: 97960f380abe1ba3157fe63312e35b07 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 159368 - timestamp: 1731702542973 + size: 158012 + timestamp: 1732097264673 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h28a5e6a_8 - build_number: 8 + build: h2cca791_9 + build_number: 9 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - sha256: aad8c9a5c24953cdebf17efa7ec06b5639e14072d4fa70c5c0607d7ad913ba88 - md5: 5250ce3b5154c0347b7576015a7c6cef + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + sha256: c0ad176bab176a2983fb052de71037fc9357afd13b073511a7a440c1a8c6eff2 + md5: 090674d608454e979ce77bc8ee735868 depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 169040 - timestamp: 1731734203264 + size: 169690 + timestamp: 1733688313938 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h68a0d7e_8 - build_number: 8 + build: h3aaadf4_9 + build_number: 9 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - sha256: 837c24c105624e16ace94b4b566ffe45231ff275339c523571ebd45946926156 - md5: 9e3ac70d27e7591b1310a690768cfe27 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + sha256: 3cc99239c8dadfe55e4b9ba37d03c5d3308ddd8fe00792fab7c6b47c97655c07 + md5: ddb5dc7ac1ae424ca2b7a847765a0cb9 depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 134573 - timestamp: 1731734281038 + size: 135051 + timestamp: 1733688394116 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h7bd072d_8 - build_number: 8 + build: h56e9cca_9 + build_number: 9 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - sha256: 51d3d87a47c642096e2ce389a169aec2e26958042e9130857552a12d65a19045 - md5: 0e9d67838114c0dbd267a9311268b331 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + sha256: c93c29b58482ca72d3f9a5710ad92194e809a9de988bcdcbae9ddd0f8ed484a6 + md5: f75642fe24ae4131f554cbacd6df53e3 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 194447 - timestamp: 1731734668760 + size: 194705 + timestamp: 1733688770217 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h29aef15_0 + version: 0.7.5 + build: h3c51cf6_2 + build_number: 2 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda - sha256: 57aa8b28890efd82c479e902125ea8a37782b163f13ae0856b259ec527a52879 - md5: e09cd76e50ce09ec14c17109da5c6502 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda + sha256: 98a2df8a5068183e55b4c6914a3513d403300be20c960842a9a229546b8e8e52 + md5: e326ddae95b3ec96a31aded04c834175 depends: - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 117467 - timestamp: 1733098782199 + size: 117896 + timestamp: 1733694002769 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h3a84f74_0 + version: 0.7.5 + build: h6ad95d4_2 + build_number: 2 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda - sha256: db17a15e5e01f19700bf9be961e1c4e002ccf8dc4d9caa3a24a0ab54f00f2c2d - md5: 171850b890600458ae6c990e78f1fa23 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda + sha256: 103a478b18ead8f79aae9a4966b2879e9fbcfb0aa3b2e6c9b2811a76ba34610e + md5: 682c079ec089d47bb7142f12b3275e4f depends: - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 113536 - timestamp: 1733098705479 + size: 113741 + timestamp: 1733693956970 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h840aca7_0 + version: 0.7.5 + build: hca3a6f1_2 + build_number: 2 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda - sha256: 18972a91f32f6b0edb58eb71cb2f5b56654183fd6ba611b3b0d6cc484017aeff - md5: 893e668d99fa4b31eef9dc5b19c21b9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda + sha256: 53c4dc6e360ed6e1242c20fa43f7bfe67a41215e51cafab27dbd8aa91333040c + md5: 0b4e647cae3ce85ec991c6e3b8d12bda depends: - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 license: Apache-2.0 license_family: Apache - size: 97145 - timestamp: 1733098874599 + size: 97530 + timestamp: 1733694097526 - kind: conda name: aws-c-sdkutils version: 0.2.1 @@ -1476,118 +1449,118 @@ packages: timestamp: 1731687193373 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: h7939e66_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - sha256: 3d0b1996d28a2647ced83ed8052ee331df70b2c1a68fb6db0fe4e743a88be54d - md5: 5e573a52a1cd20f81d7fdf1db4f4583a + version: 0.29.7 + build: h318f0b1_3 + build_number: 3 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + sha256: 35100ad81adf31aa4e73ac2956e9a8ff277cc57d0db2db2f0e9c51012175eadd + md5: 9748d0527695a64aa2eb45e891ea188d depends: + - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 283670 - timestamp: 1733150929992 + size: 355045 + timestamp: 1733744656604 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: ha226bf8_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - sha256: f645e2a8015d8e71ed785c81a14a202ebce2f5dcca8982cd7ec5f8000f9be5c3 - md5: 81da0b5f65ab08e3919d6eadf08b5776 + version: 0.29.7 + build: hacb6b83_3 + build_number: 3 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + sha256: 6c0ece3ca494c2220fc052e608d52ea52bb361e536a14a1b3b36ebeede9de8b9 + md5: 27ce3ed5b7e55370a9fea2dda2b3245a depends: - - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 236505 - timestamp: 1733151090562 + size: 283993 + timestamp: 1733744571881 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: hdec8b0f_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - sha256: cd09f1d5d854607ce7acafc76c74e864f296d296e60b54054a10f757ecc3d2dd - md5: 40647232fad98f92be8c6050a7e0c2bd + version: 0.29.7 + build: hc2c2bbc_3 + build_number: 3 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + sha256: 6a519151e7fa71fbc9d1cd3a526ea7591638af058a6cc0534e1cd418fd48b354 + md5: 5450324f7b48dff1f6ed5484bf830972 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 354710 - timestamp: 1733150818238 + size: 236331 + timestamp: 1733744737078 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h3b64406_4 - build_number: 4 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda - sha256: 10ce9c203d31229432421a841d8d135d3e942637571aae4bb2d3c7d5242e7f05 - md5: f9e46a4bb5a04cbca08355f166ce87c8 + version: 1.11.458 + build: h5e41cbe_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda + sha256: b45305787a78f2bf7ecabc401b5bfe451509b434dd041a0a554572a70302d2f3 + md5: 1861b1fb86b336f1f53faaac5a76046c depends: - - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2722689 - timestamp: 1732812825640 + size: 2910575 + timestamp: 1733576378398 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h5558e3c_4 - build_number: 4 + version: 1.11.458 + build: hac138a2_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda - sha256: 4881f7b4f5e3c797332cffb990df246a422346b220a9c16014f274beb2a276f5 - md5: ba7abdc93b0ade11d774b47aaab84737 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda + sha256: fdb9c94d7524c52837643428b1aab4f35bed3ba2862a57e1b03e63038c7c146f + md5: bbdd9589b1a32a80b0e3f98a2a482542 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - libgcc >=13 - libstdcxx >=13 @@ -1595,31 +1568,31 @@ packages: - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2945541 - timestamp: 1732812288219 + size: 3071464 + timestamp: 1733576251149 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h7085e57_4 - build_number: 4 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda - sha256: 0908a82e7c50c51d5ee0ca543dbe70cbe1963e6e8f80ffa58ea6d26e5c68251e - md5: feec198cb18a5e90aa36c97328567d63 + version: 1.11.458 + build: he4d6490_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda + sha256: 61abc03dfbe372b258b8b6790bf3ad3a3265e02ce24b6b22bfe8f2fcab94954a + md5: 2941213b750689ace0862a6d695bb740 depends: + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2813856 - timestamp: 1732812337182 + size: 2847256 + timestamp: 1733576733615 - kind: conda name: azure-core-cpp version: 1.14.0 @@ -2171,49 +2144,52 @@ packages: - kind: conda name: charset-normalizer version: 3.4.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_0.conda - sha256: 1873ac45ea61f95750cb0b4e5e675d1c5b3def937e80c7eebb19297f76810be8 - md5: a374efa97290b8799046df7c5ca17164 + url: https://conda.anaconda.org/conda-forge/noarch/charset-normalizer-3.4.0-pyhd8ed1ab_1.conda + sha256: 63022ee2c6a157a9f980250a66f54bdcdf5abee817348d0f9a74c2441a6fbf0e + md5: 6581a17bba6b948bb60130026404a9d6 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 47314 - timestamp: 1728479405343 + size: 47533 + timestamp: 1733218182393 - kind: conda name: click version: 8.1.7 - build: unix_pyh707e725_0 + build: unix_pyh707e725_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_0.conda - sha256: f0016cbab6ac4138a429e28dbcb904a90305b34b3fe41a9b89d697c90401caec - md5: f3ad426304898027fc619827ff428eca + url: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda + sha256: 1cd5fc6ccdd5141378e51252a7a3810b07fd5a7e6934a5b4a7eccba66566224b + md5: cb8e52f28f5e592598190c562e7b5bf1 depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 84437 - timestamp: 1692311973840 + size: 84513 + timestamp: 1733221925078 - kind: conda name: colorama version: 0.4.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_0.tar.bz2 - sha256: 2c1b2e9755ce3102bca8d69e8f26e4f087ece73f50418186aee7c74bef8e1698 - md5: 3faab06a954c2a04039983f2c4a50d99 + url: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda + sha256: ab29d57dc70786c1269633ba3dff20288b81664d3ff8d21af995742e2bb03287 + md5: 962b9857ee8e7018c22f2776ffa0b2d7 depends: - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 25170 - timestamp: 1666700778190 + size: 27011 + timestamp: 1733218222191 - kind: conda name: datasets version: 2.14.4 @@ -2246,19 +2222,20 @@ packages: - kind: conda name: deprecated version: 1.2.15 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda - sha256: 48182a27a8fd855db3a402ed914823802f94c3344c87b0d074facc51411296ee - md5: ca75e235b44ab995655fae392f99595e + url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda + sha256: a20ebf2c9b02a6eb32412ceb5c4cffaae49417db7e75414a76417538293a9402 + md5: eaef2e94d5bd76f758545d172c1fda67 depends: - - python >=2.7 + - python >=3.9 - wrapt <2,>=1.10 license: MIT license_family: MIT - size: 14182 - timestamp: 1731836933516 + size: 14297 + timestamp: 1733662697343 - kind: conda name: dill version: 0.3.7 @@ -2277,58 +2254,61 @@ packages: - kind: conda name: dnspython version: 2.7.0 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_0.conda - sha256: 3e2ea1bfd90969e0e1f152bb1f969c56661278ad6bfaa3272027b1ff0d9a1a23 - md5: 0adf8f63d500d20418656289249533f9 + url: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda + sha256: 3ec40ccf63f2450c5e6c7dd579e42fc2e97caf0d8cd4ba24aa434e6fc264eda0 + md5: 5fbd60d61d21b4bd2f9d7a48fe100418 depends: - - python >=3.9.0,<4.0.0 + - python >=3.9,<4.0.0 - sniffio constrains: - - cryptography >=43 + - aioquic >=1.0.0 - wmi >=1.5.1 - - h2 >=4.1.0 + - httpx >=0.26.0 - trio >=0.23 + - cryptography >=43 - httpcore >=1.0.0 - - aioquic >=1.0.0 - - httpx >=0.26.0 - idna >=3.7 + - h2 >=4.1.0 license: ISC license_family: OTHER - size: 172740 - timestamp: 1728178868478 + size: 172172 + timestamp: 1733256829961 - kind: conda name: email-validator version: 2.2.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_0.conda - sha256: ea9e936ed7c49ea6d66fa3554afe31ba311f2a3d5e384d8c38925fda9e37bdb9 - md5: 3067adf57ee658ddf5bfad47b0041ce4 + url: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda + sha256: b91a19eb78edfc2dbb36de9a67f74ee2416f1b5273dd7327abe53f2dbf864736 + md5: da16dd3b0b71339060cd44cb7110ddf9 depends: - dnspython >=2.0.0 - idna >=2.0.0 - - python >=3.7 + - python >=3.9 license: Unlicense - size: 44157 - timestamp: 1718984716782 + size: 44401 + timestamp: 1733300827551 - kind: conda name: email_validator version: 2.2.0 - build: hd8ed1ab_0 + build: hd8ed1ab_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_0.conda - sha256: 2cbbbe9e0f3872214227c27b8b775dd2296a435c90ef50a7cc69934c329b6c65 - md5: 0214a004f7cf5ac28fc10a390dfc47ee + url: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda + sha256: e0d0fdf587aa0ed0ff08b2bce3ab355f46687b87b0775bfba01cc80a859ee6a2 + md5: 0794f8807ff2c6f020422cacb1bd7bfa depends: - email-validator >=2.2.0,<2.2.1.0a0 license: Unlicense - size: 6690 - timestamp: 1718984720419 + size: 6552 + timestamp: 1733300828176 - kind: conda name: exceptiongroup version: 1.2.2 @@ -2346,13 +2326,13 @@ packages: timestamp: 1733208916977 - kind: conda name: fastapi - version: 0.115.5 - build: pyhff2d567_0 + version: 0.115.6 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda - sha256: da2833cc2ea5789abc2a6899be02ba0a769386d4913ff182bd1a9458bea40c34 - md5: cfe0f8cd904ab19c36ba50eb5179ebe0 + url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda + sha256: d7826d537c667093c9de96411a09585a8d620c84a830a0195e58e9a0df45f018 + md5: 1b1e0c97830cdf75f1f371bd467ab657 depends: - email_validator >=2.0.0 - fastapi-cli >=0.0.5 @@ -2366,8 +2346,8 @@ packages: - uvicorn-standard >=0.12.0 license: MIT license_family: MIT - size: 73541 - timestamp: 1731452895466 + size: 73084 + timestamp: 1733362427885 - kind: conda name: fastapi-cli version: 0.0.5 @@ -2389,17 +2369,18 @@ packages: - kind: conda name: filelock version: 3.16.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_0.conda - sha256: 1da766da9dba05091af87977922fe60dc7464091a9ccffb3765d403189d39be4 - md5: 916f8ec5dd4128cd5f207a3c4c07b2c6 + url: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda + sha256: 18dca6e2194732df7ebf824abaefe999e4765ebe8e8a061269406ab88fc418b9 + md5: d692e9ba6f92dc51484bf3477e36ce7c depends: - - python >=3.7 + - python >=3.9 license: Unlicense - size: 17357 - timestamp: 1726613593584 + size: 17441 + timestamp: 1733240909987 - kind: conda name: freetype version: 2.12.1 @@ -2501,18 +2482,19 @@ packages: - kind: conda name: fsspec version: 2024.10.0 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda - sha256: 40bb76981dd49d5869b48925a8975bb7bbe4e33e1e40af4ec06f6bf4a62effd7 - md5: 816dbc4679a64e4417cd1385d661bb31 + url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda + sha256: 790a50b4f94042951518f911a914a886a837c926094c6a14ed1d9d03ce336807 + md5: 906fe13095e734cb413b57a49116cdc8 depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 134745 - timestamp: 1729608972363 + size: 134726 + timestamp: 1733493445080 - kind: conda name: gflags version: 2.2.2 @@ -2629,51 +2611,54 @@ packages: - kind: conda name: h11 version: 0.14.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085 - md5: b21ed0883505ba1910994f1df031a428 + url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + sha256: 622516185a7c740d5c7f27016d0c15b45782c1501e5611deec63fd70344ce7c8 + md5: 7ee49e89531c0dcbba9466f6d115d585 depends: - - python >=3 + - python >=3.9 - typing_extensions license: MIT license_family: MIT - size: 48251 - timestamp: 1664132995560 + size: 51846 + timestamp: 1733327599467 - kind: conda name: h2 version: 4.1.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_0.tar.bz2 - sha256: bfc6a23849953647f4e255c782e74a0e18fe16f7e25c7bb0bc57b83bb6762c7a - md5: b748fbf7060927a6e82df7cb5ee8f097 + url: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda + sha256: 843ddad410c370672a8250470697027618f104153612439076d4d7b91eeb7b5c + md5: 825927dc7b0f287ef8d4d0011bb113b1 depends: - hpack >=4.0,<5 - hyperframe >=6.0,<7 - - python >=3.6.1 + - python >=3.9 license: MIT license_family: MIT - size: 46754 - timestamp: 1634280590080 + size: 52000 + timestamp: 1733298867359 - kind: conda name: hpack version: 4.0.0 - build: pyh9f0ad1d_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyh9f0ad1d_0.tar.bz2 - sha256: 5dec948932c4f740674b1afb551223ada0c55103f4c7bf86a110454da3d27cb8 - md5: 914d6646c4dbb1fd3ff539830a12fd71 + url: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda + sha256: ec89b7e5b8aa2f0219f666084446e1fb7b54545861e9caa892acb24d125761b5 + md5: 2aa5ff7fa34a81b9196532c84c10d865 depends: - - python + - python >=3.9 license: MIT license_family: MIT - size: 25341 - timestamp: 1598856368685 + size: 29412 + timestamp: 1733299296857 - kind: conda name: httpcore version: 1.0.7 @@ -2748,13 +2733,13 @@ packages: timestamp: 1732707871414 - kind: conda name: httpx - version: 0.28.0 + version: 0.28.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - sha256: cb7895446cd93091300accea6afbc8d9811a3c5899922ccfeeff97d9b55909dc - md5: 22878824a87f1af2ad48665f9d5bfcc8 + url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + sha256: cd0f1de3697b252df95f98383e9edb1d00386bfdd03fdf607fa42fe5fcb09950 + md5: d6989ead454181f4f9bc987d3dc4e285 depends: - anyio - certifi @@ -2763,17 +2748,17 @@ packages: - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 63183 - timestamp: 1732831049776 + size: 63082 + timestamp: 1733663449209 - kind: conda name: huggingface_hub - version: 0.26.3 + version: 0.26.5 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - sha256: 66ffed967463e4a25f1dc4ca699d85dd55d1d150fed214c6380f11a981e0acb7 - md5: 997fc223fbc616c262f2a32a22d433a4 + url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + sha256: bdbf614d87155c7f9b8fe9c3d039528298119832e9f52959b15c522a9841eef7 + md5: 37236111cd92068e5af2f98cbb476642 depends: - filelock - fsspec >=2023.5.0 @@ -2785,24 +2770,24 @@ packages: - typing-extensions >=3.7.4.3 - typing_extensions >=3.7.4.3 license: Apache-2.0 - license_family: APACHE - size: 274858 - timestamp: 1733170279930 + size: 274900 + timestamp: 1733637007500 - kind: conda name: hyperframe version: 6.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_0.tar.bz2 - sha256: e374a9d0f53149328134a8d86f5d72bca4c6dcebed3c0ecfa968c02996289330 - md5: 9f765cbfab6870c8435b9eefecd7a1f4 + url: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + sha256: e91c6ef09d076e1d9a02819cd00fa7ee18ecf30cdd667605c853980216584d1b + md5: 566e75c90c1d0c8c459eb0ad9833dc7a depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14646 - timestamp: 1619110249723 + size: 17239 + timestamp: 1733298862681 - kind: conda name: icu version: '75.1' @@ -2818,6 +2803,20 @@ packages: license_family: MIT size: 12282786 timestamp: 1720853454991 +- kind: conda + name: icu + version: '75.1' + build: hfee45f7_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda + sha256: 9ba12c93406f3df5ab0a43db8a4b4ef67a5871dfd401010fbe29b218b2cbe620 + md5: 5eb22c1d7b3fc4abb50d92d621583137 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + size: 11857802 + timestamp: 1720853997952 - kind: conda name: idna version: '3.10' @@ -2853,40 +2852,42 @@ packages: - kind: conda name: jinja2 version: 3.1.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_0.conda - sha256: 27380d870d42d00350d2d52598cddaf02f9505fb24be09488da0c9b8d1428f2d - md5: 7b86ecb7d3557821c649b3c31e3eb9f2 + url: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda + sha256: 85a7169c078b8065bd9d121b0e7b99c8b88c42a411314b6ae5fcd81c48c4710a + md5: 08cce3151bde4ecad7885bd9fb647532 depends: - markupsafe >=2.0 - - python >=3.7 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 111565 - timestamp: 1715127275924 + size: 110963 + timestamp: 1733217424408 - kind: conda name: jupyter_client version: 8.6.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - md5: a14218cfb29662b4a19ceb04e93e298e + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda + sha256: 19d8bd5bb2fde910ec59e081eeb59529491995ce0d653a5209366611023a0b3a + md5: 4ebae00eae9705b0c3d6d1018a81d047 depends: - importlib-metadata >=4.8.3 - jupyter_core >=4.12,!=5.0.* - - python >=3.8 + - python >=3.9 - python-dateutil >=2.8.2 - pyzmq >=23.0 - tornado >=6.2 - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 106055 - timestamp: 1726610805505 + size: 106342 + timestamp: 1733441040958 - kind: conda name: jupyter_core version: 5.7.2 @@ -3172,30 +3173,32 @@ packages: - kind: conda name: libarrow version: 18.1.0 - build: h654e1bb_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - sha256: 925dcb034f36536eed21d9323f096bf2ebf1111d14c61e1ae0b90e5de131f1e1 - md5: e69934ff9dd8745fea8927028d1603ee + build: h3b07799_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + sha256: 8837dc6e60522eef63554654c45d18143006324c43391c6e8dc5d2b20997466d + md5: 27675c7172667268440306533e4928de depends: - - __osx >=11.0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 + - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libcxx >=18 + - libgcc >=13 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 + - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -3204,41 +3207,40 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: - - arrow-cpp <0.0a0 - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 5475725 - timestamp: 1732947802614 + size: 8793521 + timestamp: 1733607374384 - kind: conda name: libarrow version: 18.1.0 - build: hc7b0e1d_2_cpu - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - sha256: 3201944d1f97b9207e566ccf388c8376bb2ce7e461534cda63a28975b6790901 - md5: 4a46bd0be8e7f56a217d26b79d290a0e + build: h86d57b8_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + sha256: fe6b5eb4d6e71418343b62a0d322ede7be69999b28d9e492164c12e613cf3fa0 + md5: 23431b3fdbb32858d1533da5bc8fcc86 depends: - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __osx >=11.0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 - - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libgcc >=13 + - libcxx >=18 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -3247,26 +3249,25 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: + - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu - arrow-cpp <0.0a0 - - parquet-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8026783 - timestamp: 1732950110265 + size: 5482797 + timestamp: 1733605365656 - kind: conda name: libarrow version: 18.1.0 - build: he15abb1_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - sha256: afc81af2e533cc35295aebae4fb382e770310d9b1ac31837456b440d35c54cf7 - md5: bd3e35a6f3f869b4777488452f315008 + build: ha2aff55_4_cpu + build_number: 4 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + sha256: 795950b73029fd4d3b7fee3427c39c7357287fd94244dd5a125ac0931d31aaa3 + md5: c4d60278cb00053df1a4f0600fd2ac2a depends: - - __glibc >=2.17,<3.0.a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 @@ -3283,7 +3284,7 @@ packages: - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - libstdcxx >=13 - - libutf8proc >=2.8.0,<2.9.0a0 + - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - orc >=2.0.3,<2.0.4.0a0 @@ -3292,189 +3293,189 @@ packages: - zstd >=1.5.6,<1.6.0a0 constrains: - parquet-cpp <0.0a0 - - arrow-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8780597 - timestamp: 1732863546099 + size: 8035987 + timestamp: 1733607600970 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - sha256: 3de5719a7035baad7e665116dce7bb3d069f0c1916e163c553e2e491bbe8b614 - md5: 6197dcb930f6254e9b2fdc416be56b71 + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + sha256: fe8cb6feeed0858cb8e7cc8889ae20165527934778adb8f7b1f2f5d1f7ade16d + md5: e4ed6162593fbb01f4d742db4215f70c depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libgcc >=13 - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libcxx >=18 license: Apache-2.0 license_family: APACHE - size: 611272 - timestamp: 1732863586114 + size: 483574 + timestamp: 1733605591770 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - sha256: e6c8988d1d79163d6d13dda21f9e401f5df4b3af7e0d221718522c600894adcf - md5: 14fede66c995f3cf958797e9fb567e22 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + sha256: 9e88f04409da9ca2fedc5f7bf0987ff28e96d08742e59672f744ec4624a4c991 + md5: d532c42abe13841806d97f4d9cd6dcf5 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 577510 - timestamp: 1732950190684 + size: 578174 + timestamp: 1733607685962 - kind: conda name: libarrow-acero version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - sha256: cfe32f1b0712b77d2c792a839fe4ea2790cabd99d47cd8e1b20ba2d3c8b113b2 - md5: 60351279d7dfd7c254c46aabf9aa35a6 + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + sha256: b3b4ddb2718c96c93d9b50dbf8f66265af9198b55852b4d3424c13a79ec3f84d + md5: 82bcbfe424868ce66b5ab986999f534d depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libcxx >=18 + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 483362 - timestamp: 1732948000606 + size: 610772 + timestamp: 1733607505368 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - sha256: 7b3db3d5a7e411f8897e8d74403c1d871f3054300f5009c4bdf75da011bc3f42 - md5: 77501831a2aabbaabac55e8cb3b6900a + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + sha256: 862fb21b871666495b4bb5e63f5fcb66b93c08893e92412b01e2717e081836eb + md5: bb940b4c583e4c8e5a9f193fabdb5840 depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libgcc >=13 - - libparquet 18.1.0 h6bd9018_1_cpu - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libcxx >=18 + - libparquet 18.1.0 hf4cc9e7_4_cpu license: Apache-2.0 license_family: APACHE - size: 585458 - timestamp: 1732863686753 + size: 489457 + timestamp: 1733607417337 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - sha256: 53cdae2150c22ef9b5d6de8d0ee8ac52eeacc50fdfa2fa3ea644b52436d1eeb1 - md5: c54d83f012a40fef8a2dc4856e4340a0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + sha256: 4a9ffedc5570ce57a6864e46dcf36ec108557791b50fd43e82eb739f3717ff2f + md5: 1a6c409f45857d30f581a1a53abb2298 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu - libgcc >=13 - - libparquet 18.1.0 h23a96eb_2_cpu + - libparquet 18.1.0 h34a048e_4_cpu - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 559143 - timestamp: 1732950272727 + size: 561495 + timestamp: 1733607973097 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - sha256: eeae9e8d382c482076f4739455b53f16851d7f99be219b6f96dd4e765132b446 - md5: b5fcaddabf47aa15e50feff072a55ada + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + sha256: 9c898ab7377953b8c7218347fdb63376d4f977cabfb8fa6bd1b421a75b8cb335 + md5: fa31464c75b20c2f3ac8fc758e034887 depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libcxx >=18 - - libparquet 18.1.0 h5168bdf_2_cpu + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libgcc >=13 + - libparquet 18.1.0 hf4f6db6_4_cpu + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 489769 - timestamp: 1732949732423 + size: 585517 + timestamp: 1733607943984 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h14ec2bd_2_cpu - build_number: 2 + build: h3644d33_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda - sha256: e8923d62cfaadc4a8af1735e717fd4980cad693419e63aed04380566d9fd46df - md5: 4fd0103449cf40214fd348643aa78fff + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda + sha256: ac053b3efd1a2701e6f34195d90a0da21dca22d70916ae6b10a019c2be6cd44c + md5: ce3062cd5caa0bdafa7976535862e648 depends: - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu - - libarrow-dataset 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu + - libarrow-dataset 18.1.0 h512cd83_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 515352 - timestamp: 1732950311471 + size: 513745 + timestamp: 1733608111290 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h5c8f2c3_1_cpu - build_number: 1 + build: had74209_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda - sha256: e77a354bfc0ba7b04c856f1bb16e7b08950bcde54026087bafec46090380fcc1 - md5: 5d47bd2674afd104dbe2f2f3534594b0 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda + sha256: 29e44d6070d64cd4b357e02afeae233d2e90d917a008a2724c9cd463015f0319 + md5: bf261e5fa25ce4acc11a80bdc73b88b2 depends: - __glibc >=2.17,<3.0.a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libarrow-dataset 18.1.0 h5888daf_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libarrow-dataset 18.1.0 h8bbc2ab_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 520681 - timestamp: 1732863726954 + size: 519919 + timestamp: 1733608152065 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h9b432b6_2_cpu - build_number: 2 + build: hf3d3107_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda - sha256: 6dde802134bd2e78581eb838c049b2e7e378899706b471f7072222a6b1284b90 - md5: 49e7c0460532a73f34bd127fff009224 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda + sha256: 9d9ebd042b9e8561b64f057d2adb24d331a772ccf1af3ed2d8b5b1566729f236 + md5: c093b05dc6d1b6057342d3dd6f3bd0d8 depends: - __osx >=11.0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libarrow-dataset 18.1.0 h605b82c_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libarrow-dataset 18.1.0 h1dc2043_4_cpu - libcxx >=18 - libprotobuf >=5.28.2,<5.28.3.0a0 license: Apache-2.0 license_family: APACHE - size: 451127 - timestamp: 1732950194322 + size: 451982 + timestamp: 1733607898511 - kind: conda name: libblas version: 3.9.0 @@ -3846,18 +3847,18 @@ packages: timestamp: 1726659794676 - kind: conda name: libcxx - version: 19.1.4 + version: 19.1.5 build: ha82da77_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.4-ha82da77_0.conda - sha256: 342896ebc1d6acbf022ca6df006a936b9a472579e91e3c502cb1f52f218b78e9 - md5: a2d3d484d95889fccdd09498d8f6bf9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-19.1.5-ha82da77_0.conda + sha256: 7918cc0bb7a6554cdd3eee634c3dc414a1ab8ec49faeca1567367bb92118f9d7 + md5: 3c7be0df28ccda1d193ea6de56dcb5ff depends: - __osx >=11.0 license: Apache-2.0 WITH LLVM-exception license_family: Apache - size: 520678 - timestamp: 1732060258949 + size: 519819 + timestamp: 1733291654212 - kind: conda name: libdeflate version: '1.22' @@ -4678,6 +4679,49 @@ packages: license_family: BSD size: 15823 timestamp: 1729643275943 +- kind: conda + name: liblzma + version: 5.6.3 + build: h39f12f2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda + sha256: d863b8257406918ffdc50ae65502f2b2d6cede29404d09a094f59509d6a0aaf1 + md5: b2553114a7f5e20ccd02378a77d836aa + depends: + - __osx >=11.0 + license: 0BSD + size: 99129 + timestamp: 1733407496073 +- kind: conda + name: liblzma + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda + sha256: d1cce0b7d62d1e54e2164d3e0667ee808efc6c3870256e5b47a150cd0bf46824 + md5: eb08b903681f9f2432c320e8ed626723 + depends: + - libgcc >=13 + license: 0BSD + size: 124138 + timestamp: 1733409137214 +- kind: conda + name: liblzma + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda + sha256: e6e425252f3839e2756e4af1ea2074dffd3396c161bf460629f9dfd6a65f15c6 + md5: 2ecf2f1c7e4e21fcfe6423a51a992d84 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: 0BSD + size: 111132 + timestamp: 1733407410083 - kind: conda name: libnghttp2 version: 1.64.0 @@ -4829,61 +4873,61 @@ packages: - kind: conda name: libparquet version: 18.1.0 - build: h23a96eb_2_cpu - build_number: 2 + build: h34a048e_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda - sha256: 83b8fa4a90e214fcd6018f890947666f055f79563fff2b7c3d5f37d894f3a000 - md5: ce205782960a580fa43cfcccca22ad8d + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda + sha256: 488d82356fc4e6dfd6c10a4100c36af17db1b7eb72cce0bd8973014220dc3066 + md5: 46db27c16b29f48a37a40e3b2c9dcfe3 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1115906 - timestamp: 1732950250848 + size: 1117278 + timestamp: 1733607904359 - kind: conda name: libparquet version: 18.1.0 - build: h5168bdf_2_cpu - build_number: 2 + build: hf4cc9e7_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda - sha256: 454487d113974b923b4214a65aab780fd90c4914390d0b1f4640b1bf60537bff - md5: f995df7ee206617a3e858fd932d7bd2d + url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda + sha256: ccadab6395090b3cbc54243fcf5c6e49eaee46aaaa4221ca8ca7803a34bdc25d + md5: b462d962b5254923c5f65ce1c68dfc17 depends: - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu - libcxx >=18 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 872333 - timestamp: 1732949558028 + size: 873584 + timestamp: 1733607239103 - kind: conda name: libparquet version: 18.1.0 - build: h6bd9018_1_cpu - build_number: 1 + build: hf4f6db6_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda - sha256: 0df119f4c1a2387d910e132c670b29ee5b29dd79384549de6f1a43067515c8ba - md5: 1054909202f86e38bbbb7ca1131b8471 + url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda + sha256: f957b6ea5c4023448891f63f7b184a663d85aa5b2717b0e0ebfbfcf97b542751 + md5: f18b10bf19bb384183f2aa546e9f6f0a depends: - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1203523 - timestamp: 1732863665743 + size: 1204859 + timestamp: 1733607834047 - kind: conda name: libpng version: 1.6.44 @@ -5084,50 +5128,47 @@ packages: timestamp: 1716828607917 - kind: conda name: libsqlite - version: 3.47.0 - build: hadc24fc_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda - sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 - md5: b6f02b52a174e612e89548f4663ce56a + version: 3.47.2 + build: h3f77e49_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda + sha256: f192f3c8973de9ec4c214990715f13b781965247a5cedf9162e7f9e699cfc3c4 + md5: 122d6f29470f1a991e85608e77e56a8a depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 + - __osx >=11.0 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 875349 - timestamp: 1730208050020 + size: 850553 + timestamp: 1733762057506 - kind: conda name: libsqlite - version: 3.47.0 - build: hbaaea75_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda - sha256: 5a96caa566c11e5a5ebdcdb86a0759a7fb27d3c5f42e6a0fd0d6023c1e935d9e - md5: 07a14fbe439eef078cc479deca321161 + version: 3.47.2 + build: h5eb1b54_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda + sha256: 885a27fa84a5a73ed9779168c02b6c386e2fc7a53f0566b32a09ceca146b42b4 + md5: d4bf59f8783a4a66c0aec568f6de3ff4 depends: - - __osx >=11.0 + - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 837683 - timestamp: 1730208293578 + size: 1042182 + timestamp: 1733761913736 - kind: conda name: libsqlite - version: 3.47.0 - build: hc4a20ef_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda - sha256: 73e143fdb966b61cd25ab804d416d87dfce43ac684e0fac3ad8b1450796331ab - md5: a6b185aac10d08028340858f77231b23 + version: 3.47.2 + build: hee588c1_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda + sha256: 48af21ebc2cbf358976f1e0f4a0ab9e91dfc83d0ef337cf3837c6f5bc22fb352 + md5: b58da17db24b6e08bcbf8fed2fb8c915 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 1041855 - timestamp: 1730208187962 + size: 873551 + timestamp: 1733761824646 - kind: conda name: libssh2 version: 1.11.1 @@ -5294,86 +5335,70 @@ packages: - kind: conda name: libtiff version: 4.7.0 - build: he137b08_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 - md5: 63872517c98aa305da58a757c443698e + build: ha962b0a_2 + build_number: 2 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda + sha256: d9e6835fd189b85eb90dbfdcc51f5375decbf5bb53130042f49bbd6bfb0b24be + md5: 8e14b5225c593f099a21971568e6d7b4 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - lerc >=4.0.0,<5.0a0 + - libcxx >=18 - libdeflate >=1.22,<1.23.0a0 - - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 - - libstdcxx >=13 + - liblzma >=5.6.3,<6.0a0 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 428156 - timestamp: 1728232228989 + size: 370387 + timestamp: 1733443310502 - kind: conda name: libtiff version: 4.7.0 - build: hec21d91_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda - sha256: 14ecb9e129b1b5ffd6d4bee48de95cd2cd0973c712e1b965d3ef977cca23936d - md5: 1f80061f5ba6956fcdc381f34618cd8d + build: hc4654cb_2 + build_number: 2 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + sha256: 18653b4a5c73e19c5e86ff72dab9bf59f5cc43d7f404a6be705d152dfd5e0660 + md5: be54fb40ea32e8fe9dbaa94d4528b57e depends: + - __glibc >=2.17,<3.0.a0 - lerc >=4.0.0,<5.0a0 - libdeflate >=1.22,<1.23.0a0 - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 464938 - timestamp: 1728232266969 + size: 429018 + timestamp: 1733443013288 - kind: conda name: libtiff version: 4.7.0 - build: hfce79cd_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda - sha256: 97ba24c74750b6e731b3fe0d2a751cda6148b4937d2cc3f72d43bf7b3885c39d - md5: b9abf45f7c64caf3303725f1aa0e9a4d + build: hca96517_2 + build_number: 2 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda + sha256: d736d840d1f2446234195adfcb51b132c85797730b6f42ebf058d350fa9d20e8 + md5: 278dcef6d1ea28c04109c3f5dea126cb depends: - - __osx >=11.0 - lerc >=4.0.0,<5.0a0 - - libcxx >=17 - libdeflate >=1.22,<1.23.0a0 + - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 + - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 366323 - timestamp: 1728232400072 -- kind: conda - name: libutf8proc - version: 2.8.0 - build: hf23e847_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda - sha256: 104cf5b427fc914fec63e55f685a39480abeb4beb34bdbc77dea084c8f5a55cb - md5: b1aa0faa95017bca11369bd080487ec4 - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - license: MIT - license_family: MIT - size: 80852 - timestamp: 1732829699583 + size: 464857 + timestamp: 1733443105529 - kind: conda name: libutf8proc version: 2.9.0 @@ -5404,6 +5429,22 @@ packages: license_family: MIT size: 81526 timestamp: 1732868466862 +- kind: conda + name: libutf8proc + version: 2.9.0 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda + sha256: 9794e6388e780c3310d46f773bbc924d4053375c3fcdb07a704b57f4616db928 + md5: 1e936bd23d737aac62a18e9a1e7f8b18 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + size: 81500 + timestamp: 1732868419835 - kind: conda name: libuuid version: 2.38.1 @@ -5604,60 +5645,62 @@ packages: - kind: conda name: libxml2 version: 2.13.5 - build: h064dc61_0 + build: h0d44e9d_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda - sha256: 7ab7fb45a0014981d35247cd5b09057fc8ed3c07378086a6c7ad552915928647 - md5: fb16b85a5be1328ac1c44b098b74c570 + url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda + sha256: 306e18aa647d8208ad2cd0e62d84933222b2fbe93d2d53cd5283d2256b1d54de + md5: f5b05674697ae7d2c5932766695945e1 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 constrains: - icu <0.0a0 license: MIT license_family: MIT - size: 689363 - timestamp: 1731489619071 + size: 689993 + timestamp: 1733443678322 - kind: conda name: libxml2 version: 2.13.5 - build: h376fa9f_0 + build: h178c5d8_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda - sha256: d443703d324f3dbd628d58ea498ab0e474c06d5771e7f55baf215fdbc11ceb87 - md5: adea92805465ed3dcf0776b428e34744 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda + sha256: d7af3f25a4cece170502acd38f2dafbea4521f373f46dcb28a37fbe6ac2da544 + md5: 3dc3cff0eca1640a6acbbfab2f78139e depends: - __osx >=11.0 + - icu >=75.1,<76.0a0 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - constrains: - - icu <0.0a0 license: MIT license_family: MIT - size: 582076 - timestamp: 1731489850179 + size: 582898 + timestamp: 1733443841584 - kind: conda name: libxml2 version: 2.13.5 - build: hf4efe5d_0 + build: h2e0c361_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda - sha256: bb5033bd79371e82886f9e83ef86babae8e0f50b77d7f9302210345b9205d939 - md5: 5650ac8a6ed680c032bdabe40ad19ee0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda + sha256: dc0e86d35a836af6e99d18f50c6551fc64c53ed3a3da5a9fea90e78763cf14b4 + md5: 63410f85031930cde371dfe0ee89109a depends: - icu >=75.1,<76.0a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 734453 - timestamp: 1731489860751 + size: 732155 + timestamp: 1733443825814 - kind: conda name: libzlib version: 1.3.1 @@ -5712,20 +5755,20 @@ packages: timestamp: 1727963148474 - kind: conda name: llvm-openmp - version: 19.1.4 + version: 19.1.5 build: hdb05f8b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda - sha256: dfdcd8de37899d984326f9734b28f46f80b88c068e44c562933a8b3117f2401a - md5: 76ca179ec970bea6e275e2fa477c2d3c + url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda + sha256: e7ba0d8b718925efdcf1309f5e776e3264cc172d3af8d4048b39627c50a1abc0 + md5: f2c2e187a1d2637d282e34dc92021a70 depends: - __osx >=11.0 constrains: - - openmp 19.1.4|19.1.4.* + - openmp 19.1.5|19.1.5.* license: Apache-2.0 WITH LLVM-exception license_family: APACHE - size: 281554 - timestamp: 1732102484807 + size: 281120 + timestamp: 1733376089600 - kind: conda name: lz4-c version: 1.9.4 @@ -5773,27 +5816,29 @@ packages: - kind: conda name: markdown-it-py version: 3.0.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_0.conda - sha256: c041b0eaf7a6af3344d5dd452815cdc148d6284fec25a4fa3f4263b3a021e962 - md5: 93a8e71256479c62074356ef6ebf501b + url: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda + sha256: 0fbacdfb31e55964152b24d5567e9a9996e1e7902fb08eb7d91b5fd6ce60803a + md5: fee3164ac23dfca50cfcc8b85ddefb81 depends: - mdurl >=0.1,<1 - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 64356 - timestamp: 1686175179621 + size: 64430 + timestamp: 1733250550053 - kind: conda name: markupsafe version: 3.0.2 - build: py312h178313f_0 + build: py312h178313f_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_0.conda - sha256: 15f14ab429c846aacd47fada0dc4f341d64491e097782830f0906d00cb7b48b6 - md5: a755704ea0e2503f8c227d84829a8e81 + url: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda + sha256: 4a6bf68d2a2b669fecc9a4a009abd1cf8e72c2289522ff00d81b5a6e51ae78f5 + md5: eb227c3e0bf58f5bd69c0532b157975b depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 @@ -5803,16 +5848,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 24878 - timestamp: 1729351558563 + size: 24604 + timestamp: 1733219911494 - kind: conda name: markupsafe version: 3.0.2 - build: py312h74ce7d3_0 + build: py312h74ce7d3_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_0.conda - sha256: 997baf7f46bce112f6e0390efaa7fbb892b8f31567d3c554f08ac636774d74f7 - md5: 8992b90e8374193d53118f7651db0b73 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda + sha256: 1d500158262f30b9c23e37d1c861fe76e127a3926d69b3b38c25d20d3faa6f9f + md5: bc8607ab678073a0441808a31465f4fb depends: - libgcc >=13 - python >=3.12,<3.13.0a0 @@ -5821,16 +5867,17 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 25013 - timestamp: 1729352489213 + size: 25079 + timestamp: 1733220639175 - kind: conda name: markupsafe version: 3.0.2 - build: py312ha0ccf2a_0 + build: py312h998013c_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312ha0ccf2a_0.conda - sha256: 360e958055f35e5087942b9c499eaafae984a951b84cf354ef7481a2806f340d - md5: c6ff9f291d011c9d4f0b840f49435c64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda + sha256: 4aa997b244014d3707eeef54ab0ee497d12c0d0d184018960cce096169758283 + md5: 46e547061080fddf9cf95a0327e8aba6 depends: - __osx >=11.0 - python >=3.12,<3.13.0a0 @@ -5840,80 +5887,80 @@ packages: - jinja2 >=3.0.0 license: BSD-3-Clause license_family: BSD - size: 24495 - timestamp: 1729351534830 + size: 24048 + timestamp: 1733219945697 - kind: conda name: max - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - sha256: 2aae2a8286dca29453e8cc8cfe13511aa016a521ac0c9201ceb24d1ba6c4138e - md5: 9c25081ace6ad2c13675cf0123109cb9 - depends: - - max-core ==24.6.0.dev2024120306 release - - max-python >=24.6.0.dev2024120306,<25.0a0 - - mojo-jupyter ==24.6.0.dev2024120306 release - - mblack ==24.6.0.dev2024120306 release + url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + sha256: 37a6103a6b2c7886ed5837d41a819f1a127eef7e810b2b5ecfb03f7caf263514 + md5: b13d61319f43570ce681408a1b27d9d5 + depends: + - max-core ==24.6.0.dev2024120905 release + - max-python >=24.6.0.dev2024120905,<25.0a0 + - mojo-jupyter ==24.6.0.dev2024120905 release + - mblack ==24.6.0.dev2024120905 release license: LicenseRef-Modular-Proprietary - size: 9929 - timestamp: 1733209293577 + size: 9911 + timestamp: 1733721408716 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - sha256: a82534696c6e078fb4e14b4b0f058336ffd0a647f7404e85aaee18eec25be067 - md5: c249d77d8e5885dd0eacd9028131413f + url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + sha256: 0f94138601ceab2c8b277c7d175d762840072cfdfd0ead7264fbd1ff9f70442d + md5: 00617be1a2fef13b5630d9cbe92f9d3c depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 254711372 - timestamp: 1733209193854 + size: 247639885 + timestamp: 1733721408714 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - sha256: bd0858a3e2069a86cd71370322e7ac26ad3948225e4f0811e4fbf8771d44d0ea - md5: e5b6ae7316dc2b08a52cee8f27b4f484 + url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + sha256: 1aaf2ffb09d6a2aa6b65d76c381476eb88947470580a0d56909bfd578d5eb385 + md5: c7ff53814f0c254c75dc7ab8f0c66b38 depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 258488596 - timestamp: 1733209293575 + size: 251498878 + timestamp: 1733721396377 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - sha256: 88b5f2cbb2724067d33b10515613ec845f134c3758fd063852ac191a276d7812 - md5: 05acbd2d9cf25aa913a979aa9802c194 + url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + sha256: 00cc8ce6adc131b858df51423201b8f028aa944ac09e56c563a1108c22eaccd2 + md5: 71554a4c0e81a1034908bc1cb716b30b depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 220248523 - timestamp: 1733209020078 + size: 212030191 + timestamp: 1733721567995 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 78dc00af885799e8c1f92185a505aee022f2ffd7191d24fa94ef428457f53e15 - md5: 4bdce0c1dd562e22566551d578103d2f + url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 43245b47050208329e85a69f2af24d42c622e92e1542334a6106eaadb6cbf0ff + md5: 9a6037de6672120d1d6d53673b699d5b depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -5923,7 +5970,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -5936,18 +5982,18 @@ packages: arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 128537272 - timestamp: 1733209193862 + size: 123751303 + timestamp: 1733721408724 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 3910ceb9135f2258df30dd7a5d87b8f80a284645d6da48daa0e9bb145a49744e - md5: e7d3ebeaaeb2bd99167fda861a7e7aba + url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: fdedbc8a2ca34d0593e8b2175ca07c07d6d0564f138f535ebff02975ef463f55 + md5: bc9f6ce493d2beb1089e1e409bb373ba depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -5957,7 +6003,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -5970,18 +6015,18 @@ packages: arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 132223349 - timestamp: 1733209293584 + size: 127400047 + timestamp: 1733721396388 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: ddafa4f7201fca06f38e8a0232cdbbb918d6a24c03cb25a0137d4fcc0ca9f354 - md5: 9859f8c88c81c18baaddd15be03d259c + url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 0cd6b2e3bdc78483665045e91b8db7a8a3d6c85fbf4b8a44d6eb742a46361af1 + md5: c1b7eb7d1a43e28224bf41220ece9b58 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -5991,7 +6036,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -6004,17 +6048,17 @@ packages: arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 119113363 - timestamp: 1733209020082 + size: 112450493 + timestamp: 1733721567998 - kind: conda name: mblack - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - sha256: 35b22caab89b65a52b9e7877762a58bba8cd21137ac1383e268b8a2ae45173ac - md5: f77eafd932de3ae309643ea716ba3c3a + url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + sha256: e302e262a58592b5b8614829237760967d685cb20a44e54981916eb6c2b6b7a2 + md5: b34a59910660011ad1f42bfc1ae4ae54 depends: - python >=3.9,<3.13 - click >=8.0.0 @@ -6024,40 +6068,41 @@ packages: - platformdirs >=2 - python license: MIT - size: 130649 - timestamp: 1733209293580 + size: 130740 + timestamp: 1733721408720 - kind: conda name: mdurl version: 0.1.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_0.conda - sha256: 64073dfb6bb429d52fff30891877b48c7ec0f89625b1bf844905b66a81cce6e1 - md5: 776a8dd9e824f77abac30e6ef43a8f7a + url: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda + sha256: 78c1bbe1723449c52b7a9df1af2ee5f005209f67e40b6e1d3c7619127c43b1c7 + md5: 592132998493b3ff25fd7479396e8351 depends: - - python >=3.6 + - python >=3.9 license: MIT license_family: MIT - size: 14680 - timestamp: 1704317789138 + size: 14465 + timestamp: 1733255681319 - kind: conda name: mojo-jupyter - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda - sha256: dd1fcd4298ef08be4507931babe70d6b335dc28d5ead602460747edc4f10c2dc - md5: 8bb40dfabe84757d93d3053fdf4b0a58 + url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda + sha256: bb71277508a55875b6011651bc825599e26a47145ab1e9c4e7c2abd853200a00 + md5: 4fc85c9cb1efe841b69d339d4da5b3a1 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python >=3.9,<3.13 - jupyter_client >=8.6.2,<8.7 - python license: LicenseRef-Modular-Proprietary - size: 22940 - timestamp: 1733209293581 + size: 11366 + timestamp: 1733721408720 - kind: conda name: multidict version: 6.1.0 @@ -6170,18 +6215,19 @@ packages: - kind: conda name: mypy_extensions version: 1.0.0 - build: pyha770c72_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_0.conda - sha256: f240217476e148e825420c6bc3a0c0efb08c0718b7042fae960400c02af858a3 - md5: 4eccaeba205f0aed9ac3a9ea58568ca3 + url: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda + sha256: 1895f47b7d68581a6facde5cb13ab8c2764c2e53a76bd746f8f98910dc4e08fe + md5: 29097e7ea634a45cc5386b95cac6568f depends: - - python >=3.5 + - python >=3.9 license: MIT license_family: MIT - size: 10492 - timestamp: 1675543414256 + size: 10854 + timestamp: 1733230986902 - kind: conda name: ncurses version: '6.5' @@ -6394,21 +6440,21 @@ packages: - kind: conda name: opentelemetry-api version: 1.28.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda - sha256: e267ed59ea8f357c3471defef796ce4f4555eacd9ee0ed2d47d3dd539ee7ee2f - md5: f1307fb38a8fd2220def45ec1691a21c + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda + sha256: 780dbc942a6075db7bdbaf556023be50c34a6111a99e465878d7bab0e5e0d7f4 + md5: a06f1e9d97c98d26f06675236c9ea554 depends: - deprecated >=1.2.6 - importlib-metadata >=6.0.0,<7.1.0 - - python >=3.8 + - python >=3.9 - setuptools >=16.0 license: Apache-2.0 - license_family: APACHE - size: 44014 - timestamp: 1731985724169 + size: 44242 + timestamp: 1733734361129 - kind: conda name: opentelemetry-exporter-otlp-proto-common version: 1.28.2 @@ -6466,66 +6512,6 @@ packages: license_family: APACHE size: 14721 timestamp: 1695214221489 -- kind: conda - name: opentelemetry-instrumentation - version: 0.49b2 - build: pyhff2d567_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - sha256: ee20ad159bc040642fcbce1b25f8a9fc1d788b53c6bf593a0891bf7887ec7c5f - md5: 13d714acd504cd0141688c908521c0b9 - depends: - - opentelemetry-api ~=1.4 - - opentelemetry-semantic-conventions 0.49b2 - - packaging >=18.0 - - python >=3.9 - - setuptools >=16.0 - - wrapt <2.0.0,>=1.0.0 - license: Apache-2.0 - license_family: APACHE - size: 31616 - timestamp: 1732070359772 -- kind: conda - name: opentelemetry-instrumentation-asgi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - sha256: 7b2b4da037baa506a82c5e3e711905f34448441e069a6e3affb0e4917b3ee5e0 - md5: 482ad6cdc507689d5c33eb22aa16d83e - depends: - - asgiref ~=3.0 - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 23749 - timestamp: 1732086813641 -- kind: conda - name: opentelemetry-instrumentation-fastapi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - sha256: e853f62b4c56e308f349a3f360cf4d6aa814a9dc926e727c25effcf4121af68c - md5: 59c01fcead989ba58c5dc79e3ac3aab3 - depends: - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-instrumentation-asgi 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 20288 - timestamp: 1732093785486 - kind: conda name: opentelemetry-proto version: 1.28.2 @@ -6564,35 +6550,20 @@ packages: - kind: conda name: opentelemetry-semantic-conventions version: 0.49b2 - build: pyh10f6f8f_0 + build: pyh3cfb1c2_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - sha256: 5e3869ad66082b16d56bab8219fad0c8c09090ec93eb866327eed788fe5c9340 - md5: d95dd6e8a70417e394bb16dad5cff408 + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda + sha256: 28180ffa6611f117c782c7d72066b50332c1df0bdcfed0dea4e446a20c4b7d10 + md5: e0ada55d18e6bd5a8e61943b4b5d3a8f depends: - deprecated >=1.2.6 - opentelemetry-api 1.28.2 - python >=3.9 license: Apache-2.0 - license_family: APACHE - size: 81534 - timestamp: 1732067304518 -- kind: conda - name: opentelemetry-util-http - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda - sha256: 73bb1cbb640b0732c1a04764a9704bb048ab77d6cb9c6439eb50ec0ecf926ede - md5: f267c60fc629a9bd1aa388f6ed8ea0ab - depends: - - python >=3.8 - license: Apache-2.0 - license_family: APACHE - size: 19241 - timestamp: 1732081026829 + size: 81099 + timestamp: 1733749104727 - kind: conda name: orc version: 2.0.3 @@ -6748,18 +6719,19 @@ packages: - kind: conda name: pathspec version: 0.12.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_0.conda - sha256: 4e534e66bfe8b1e035d2169d0e5b185450546b17e36764272863e22e0370be4d - md5: 17064acba08d3686f1135b5ec1b32b12 + url: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda + sha256: 9f64009cdf5b8e529995f18e03665b03f5d07c0b17445b8badef45bde76249ee + md5: 617f15191456cc6a13db418a275435e5 depends: - - python >=3.7 + - python >=3.9 license: MPL-2.0 license_family: MOZILLA - size: 41173 - timestamp: 1702250135032 + size: 41075 + timestamp: 1733233471940 - kind: conda name: pillow version: 11.0.0 @@ -6837,87 +6809,85 @@ packages: - kind: conda name: platformdirs version: 4.3.6 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_0.conda - sha256: c81bdeadc4adcda216b2c7b373f0335f5c78cc480d1d55d10f21823590d7e46f - md5: fd8f2b18b65bbf62e8f653100690c8d2 + url: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda + sha256: bb50f6499e8bc1d1a26f17716c97984671121608dc0c3ecd34858112bce59a27 + md5: 577852c7e53901ddccc7e6a9959ddebe depends: - - python >=3.8 + - python >=3.9 license: MIT license_family: MIT - size: 20625 - timestamp: 1726613611845 + size: 20448 + timestamp: 1733232756001 - kind: conda name: prometheus_client - version: 0.21.0 + version: 0.21.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_0.conda - sha256: 01f0c3dd00081637ed920a922b17bcc8ed49608404ee466ced806856e671f6b9 - md5: 07e9550ddff45150bfc7da146268e165 + url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + sha256: bc8f00d5155deb7b47702cb8370f233935704100dbc23e30747c161d1b6cf3ab + md5: 3e01e386307acc60b2f89af0b2e161aa depends: - - python >=3.8 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 49024 - timestamp: 1726902073034 + size: 49002 + timestamp: 1733327434163 - kind: conda name: propcache - version: 0.2.0 - build: py312h024a12e_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda - sha256: 0f3a04675c6c473398f0aaa95c259e0a085d5ec106b4fa89a7efeb7cc73d5dd2 - md5: 6693e523bc43c38508efe14ab3374f0c + version: 0.2.1 + build: py312h66e93f0_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda + sha256: 5771311fb5ded614ca349c92579a0b752af55a310f40b71fc533e20625965391 + md5: 55d5742a696d7da1c1262e99b6217ceb depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 - python >=3.12,<3.13.0a0 - - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 47796 - timestamp: 1728545963127 + size: 52747 + timestamp: 1733391916349 - kind: conda name: propcache - version: 0.2.0 - build: py312h66e93f0_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda - sha256: be7aa0056680dd6e528b7992169a20dd525b94f62d37c8ba0fbf69bd4e8df57d - md5: 2c6c0c68f310bc33972e7c83264d7786 + version: 0.2.1 + build: py312hb2c0f52_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda + sha256: c7f62c11ed929ccf1f3d4a1e200e28be01e8d0e0786bf8f76c5893f2ea681e1b + md5: 50ab8953e7ff1333a4a47cda32e68123 depends: - - __glibc >=2.17,<3.0.a0 - libgcc >=13 - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53498 - timestamp: 1728545927816 + size: 52484 + timestamp: 1733391993461 - kind: conda name: propcache - version: 0.2.0 - build: py312hb2c0f52_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda - sha256: 50dad7604b6c20440baf081700b5d6829097121e65f34fd1a15508b20fbecc07 - md5: 8a258196d6f79ad32d3ea4dd4572f721 + version: 0.2.1 + build: py312hea69d52_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda + sha256: f8c266c494aa1e4cfb8bf0b6fca060044b2f3d65afe4c5062ebeea382e77aa6d + md5: c84e3dd97fe25a17322c4a0f670c6750 depends: - - libgcc >=13 + - __osx >=11.0 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53507 - timestamp: 1728546155066 + size: 48225 + timestamp: 1733392308901 - kind: conda name: protobuf version: 5.28.2 @@ -7172,13 +7142,13 @@ packages: timestamp: 1733195786147 - kind: conda name: pydantic - version: 2.10.2 + version: 2.10.3 build: pyh3cfb1c2_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.2-pyh3cfb1c2_0.conda - sha256: 47368f0eeb63b2dd4c9c54ff35b216d01ae1c27b90d3c7a2066ef8e005f32103 - md5: e661b732b4d7514ace55a01873f03201 + url: https://conda.anaconda.org/conda-forge/noarch/pydantic-2.10.3-pyh3cfb1c2_0.conda + sha256: cac9eebd3d5f8d8a497a9025d756257ddc75b8b3393e6737cb45077bd744d4f8 + md5: 194ef7f91286978521350f171b117f01 depends: - annotated-types >=0.6.0 - pydantic-core 2.27.1 @@ -7187,8 +7157,8 @@ packages: - typing_extensions >=4.12.2 license: MIT license_family: MIT - size: 316818 - timestamp: 1732689481710 + size: 317037 + timestamp: 1733316963547 - kind: conda name: pydantic-core version: 2.27.1 @@ -7269,18 +7239,19 @@ packages: - kind: conda name: pygments version: 2.18.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_0.conda - sha256: 78267adf4e76d0d64ea2ffab008c501156c108bb08fecb703816fb63e279780b - md5: b7f5c092b8f9800150d998a71b76d5a1 + url: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda + sha256: 0d6133545f268b2b89c2617c196fc791f365b538d4057ecd636d658c3b1e885d + md5: b38dc0206e2a530e5c2cf11dc086b31a depends: - - python >=3.8 + - python >=3.9 license: BSD-2-Clause license_family: BSD - size: 879295 - timestamp: 1714846885370 + size: 876700 + timestamp: 1733221731178 - kind: conda name: pyinstrument version: 5.0.0 @@ -7335,107 +7306,110 @@ packages: - kind: conda name: pysocks version: 1.7.1 - build: pyha2e5f31_6 - build_number: 6 + build: pyha55dd90_7 + build_number: 7 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha2e5f31_6.tar.bz2 - sha256: a42f826e958a8d22e65b3394f437af7332610e43ee313393d1cf143f0a2d274b - md5: 2a7de29fb590ca14b5243c4c812c8025 + url: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda + sha256: ba3b032fa52709ce0d9fd388f63d330a026754587a2f461117cac9ab73d8d0d8 + md5: 461219d1a5bd61342293efa2c0c90eac depends: - __unix - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 18981 - timestamp: 1661604969727 + size: 21085 + timestamp: 1733217331982 - kind: conda name: python - version: 3.12.7 - build: h5d932e8_0_cpython + version: 3.12.8 + build: h1683364_1_cpython + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda - sha256: 25570873d92d4d9490c6db780cc85e6c28bd3ff61dc1ece79f602cf82bc73bc1 - md5: e6cab21bb5787270388939cf41cc5f43 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda + sha256: 85573582d5b0f79923fed0a8365d3d74d21eee9f0a5fa1b9345f191e006363ab + md5: 09ec612ea05370989eaa3d81abf0f369 depends: - bzip2 >=1.0.8,<2.0a0 - ld_impl_linux-aarch64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libsqlite >=3.47.0,<4.0a0 - libuuid >=2.38.1,<3.0a0 - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 13762126 - timestamp: 1728057461028 + size: 13760816 + timestamp: 1733407890896 - kind: conda name: python - version: 3.12.7 - build: h739c21a_0_cpython - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda - sha256: 45d7ca2074aa92594bd2f91a9003b338cc1df8a46b9492b7fc8167110783c3ef - md5: e0d82e57ebb456077565e6d82cd4a323 + version: 3.12.8 + build: h9e4cc4f_1_cpython + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda + sha256: 3f0e0518c992d8ccfe62b189125721309836fe48a010dc424240583e157f9ff0 + md5: 7fd2fd79436d9b473812f14e86746844 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.6.3,<3.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.47.0,<4.0a0 + - libuuid >=2.38.1,<3.0a0 + - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 12975439 - timestamp: 1728057819519 + size: 31565686 + timestamp: 1733410597922 - kind: conda name: python - version: 3.12.7 - build: hc5c86c4_0_cpython - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda - sha256: 674be31ff152d9f0e0fe16959a45e3803a730fc4f54d87df6a9ac4e6a698c41d - md5: 0515111a9cdf69f83278f7c197db9807 + version: 3.12.8 + build: hc22306f_1_cpython + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda + sha256: 7586a711b1b08a9df8864e26efdc06980bdfb0e18d5ac4651d0fee30a8d3e3a0 + md5: 54ca5b5d92ef3a3ba61e195ee882a518 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - bzip2 >=1.0.8,<2.0a0 - - ld_impl_linux-64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libgcc >=13 - - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 - - libuuid >=2.38.1,<3.0a0 - - libxcrypt >=4.4.36 + - liblzma >=5.6.3,<6.0a0 + - libsqlite >=3.47.0,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 31574780 - timestamp: 1728059777603 + size: 12998673 + timestamp: 1733408900971 - kind: conda name: python-dateutil version: 2.9.0.post0 @@ -7450,23 +7424,25 @@ packages: - python >=3.9 - six >=1.5 license: Apache-2.0 + license_family: APACHE size: 222505 timestamp: 1733215763718 - kind: conda name: python-dotenv version: 1.0.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_0.conda - sha256: 2d4c80364f03315d606a50eddd493dbacc078e21412c2462c0f781eec49b572c - md5: c2997ea9360ac4e015658804a7a84f94 + url: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda + sha256: 99713f6b534fef94995c6c16fd21d59f3548784e9111775d692bdc7c44678f02 + md5: e5c6ed218664802d305e79cc2d4491de depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 24278 - timestamp: 1706018281544 + size: 24215 + timestamp: 1733243277223 - kind: conda name: python-json-logger version: 2.0.7 @@ -7485,33 +7461,35 @@ packages: - kind: conda name: python-multipart version: 0.0.19 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - sha256: ff5964cd5eafc118f9d9a15fd31cd88a7ecc756ef83b6095c69b1891a53e2177 - md5: fe524346d3a9aa0aaf353dc39f7d1715 + url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + sha256: e6f6bc3d2a51f45ca26d556c5a416efdacf49a918fefcd0b7c340121e608aa5f + md5: c74333aa447ed2b94d49e5db23da5de6 depends: - python >=3.9 license: Apache-2.0 license_family: Apache - size: 27780 - timestamp: 1733062326577 + size: 27768 + timestamp: 1733323160772 - kind: conda name: python-tzdata version: '2024.2' - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_0.conda - sha256: fe3f62ce2bc714bdaa222ab3f0344a2815ad9e853c6df38d15c9f25de8a3a6d4 - md5: 986287f89929b2d629bd6ef6497dc307 + url: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda + sha256: 57c9a02ec25926fb48edca59b9ede107823e5d5c473b94a0e05cc0b9a193a642 + md5: c0def296b2f6d2dd7b030c2a7f66bb1f depends: - - python >=3.6 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 142527 - timestamp: 1727140688093 + size: 142235 + timestamp: 1733235414217 - kind: conda name: python-xxhash version: 3.5.0 @@ -7909,26 +7887,28 @@ packages: constrains: - chardet >=3.0.2,<6 license: Apache-2.0 + license_family: APACHE size: 58723 timestamp: 1733217126197 - kind: conda name: rich version: 13.9.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - sha256: c009488fc07fd5557434c9c1ad32ab1dd50241d6a766e4b2b4125cd6498585a8 - md5: bcf8cc8924b5d20ead3d122130b8320b + url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + sha256: 06a760c5ae572e72e865d5a87e9fe3cc171e1a9c996e63daf3db52ff1a0b4457 + md5: 7aed65d4ff222bfb7335997aa40b7da5 depends: - markdown-it-py >=2.2.0 - pygments >=2.13.0,<3.0.0 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0.0,<5.0.0 license: MIT license_family: MIT - size: 185481 - timestamp: 1730592349978 + size: 185646 + timestamp: 1733342347277 - kind: conda name: s2n version: 1.5.9 @@ -8036,94 +8016,99 @@ packages: - kind: conda name: shellingham version: 1.5.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_0.conda - sha256: 3c49a0a101c41b7cf6ac05a1872d7a1f91f1b6d02eecb4a36b605a19517862bb - md5: d08db09a552699ee9e7eec56b4eb3899 + url: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda + sha256: 0557c090913aa63cdbe821dbdfa038a321b488e22bc80196c4b3b1aace4914ef + md5: 7c3c2a0f3ebdea2bbc35538d162b43bf depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 14568 - timestamp: 1698144516278 + size: 14462 + timestamp: 1733301007770 - kind: conda name: six - version: 1.16.0 - build: pyhd8ed1ab_1 - build_number: 1 + version: 1.17.0 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - sha256: 761b96fe7bea080b9c35dd2f87f788eb94b61d462645bd16f361e80ae0ff017c - md5: a516da6cfe1ec0a55e49737f017b4965 + url: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + sha256: 41db0180680cc67c3fa76544ffd48d6a5679d96f4b71d7498a759e94edc9a2db + md5: a451d576819089b0d672f18768be0f65 depends: - python >=3.9 license: MIT license_family: MIT size: 16385 - timestamp: 1733216901349 + timestamp: 1733381032766 - kind: conda name: snappy version: 1.2.1 - build: h1088aeb_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - sha256: 79f5d0a9098acf2ed16e6ecc4c11472b50ccf59feea37a7d585fd43888d7e41f - md5: e4ed5b015f525b56f95c26d85a4ea208 + build: h8bd8927_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + sha256: ec91e86eeb2c6bbf09d51351b851e945185d70661d2ada67204c9a6419d282d3 + md5: 3b3e64af585eadfb52bb90b553db5edf depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 42888 - timestamp: 1720003817527 + size: 42739 + timestamp: 1733501881851 - kind: conda name: snappy version: 1.2.1 - build: ha2e4443_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - sha256: dc7c8e0e8c3e8702aae81c52d940bfaabe756953ee51b1f1757e891bab62cf7f - md5: 6b7dcc7349efd123d493d2dbe85a045f + build: h98b9ce2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + sha256: 4242f95b215127a006eb664fe26ed5a82df87e90cbdbc7ce7ff4971f0720997f + md5: ded86dee325290da2967a3fea3800eb5 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __osx >=11.0 + - libcxx >=18 license: BSD-3-Clause license_family: BSD - size: 42465 - timestamp: 1720003704360 + size: 35857 + timestamp: 1733502172664 - kind: conda name: snappy version: 1.2.1 - build: hd02b534_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - sha256: cb7a9440241c6092e0f1c795fdca149c4767023e783eaf9cfebc501f906b4897 - md5: 69d0f9694f3294418ee935da3d5f7272 + build: hd4fb6f5_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + sha256: c4a07ae5def8d55128f25a567a296ef9d7bf99a3bc79d46bd5160c076a5f50af + md5: 2fcc6cd1e5550deb509073fd2e6693e1 depends: - - __osx >=11.0 - - libcxx >=16 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 35708 - timestamp: 1720003794374 + size: 43032 + timestamp: 1733501964775 - kind: conda name: sniffio version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_0.conda - sha256: bc12100b2d8836b93c55068b463190505b8064d0fc7d025e89f20ebf22fe6c2b - md5: 490730480d76cf9c8f8f2849719c6e2b + url: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda + sha256: c2248418c310bdd1719b186796ae50a8a77ce555228b6acd32768e2543a15012 + md5: bf7a226e58dfb8346c70df36065d86c9 depends: - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: Apache - size: 15064 - timestamp: 1708953086199 + size: 15019 + timestamp: 1733244175724 - kind: conda name: sse-starlette version: 2.1.3 @@ -8145,20 +8130,21 @@ packages: - kind: conda name: starlette version: 0.41.3 - build: pyh7900ff3_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda - sha256: 33986032cb0515f7e9f6647d07006b7dc49b3f373b73d5a1826e6979c661b27a - md5: 0889c5a3e95d8c382cff7556757aedb0 + url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda + sha256: b74fc76107487eb26624c01fc55bfab7eed03ae82e003333c86d8a1eeac53672 + md5: 0207dac04ae2200701fab697f0aaaac4 depends: - anyio >=3.4.0,<5 - python >=3.9 - typing_extensions >=3.10.0 license: BSD-3-Clause license_family: BSD - size: 59069 - timestamp: 1732037161800 + size: 58838 + timestamp: 1733344472634 - kind: conda name: tk version: 8.6.13 @@ -8207,12 +8193,12 @@ packages: timestamp: 1699202167581 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312h8360d73_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda - sha256: 7b59759739b5426e17825b26d6ce9df487d1dc254d4e6a92b14a97107eb6daca - md5: 035c6de3c821559bf1af5ec072593bfd + url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda + sha256: 4f504a5e9d77c6d88a8f735c4319429d8bf40b742384f908a2efe0a09acc3cc5 + md5: f953aa733207f3d37acf4a3efbedba89 depends: - __glibc >=2.17,<3.0.a0 - huggingface_hub >=0.16.4,<1.0 @@ -8225,16 +8211,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2259332 - timestamp: 1732657962717 + size: 2258007 + timestamp: 1732734202127 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312ha0d6ea1_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda - sha256: 6dbb7e5f3f152210817e8658bc454056e464dee16fd9757508f2417edd44d8b8 - md5: b135e3d9178b255993ea4d72741192f8 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda + sha256: ef0f4d4e2c798b1821187ea0ba4c86484e48abaa0e9a19fe68030fa7ff5dde84 + md5: 077f48c9e0c08a30d842e15c51df4143 depends: - huggingface_hub >=0.16.4,<1.0 - libgcc >=13 @@ -8247,16 +8233,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2330899 - timestamp: 1732658129796 + size: 2331194 + timestamp: 1732734303196 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312hf3e4074_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda - sha256: fd86f8a5d41622e8f5092913dea48f41de86258583ee449045905a725672fdc2 - md5: 40e8bc575721b4da76712e90e4a9b7fa + url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda + sha256: 5d395333fcb22dc611140286c1f2ea8b3fa220a4931c583587cb612238091555 + md5: 4c732c74b485ef7ac8ec1c548dd45e8e depends: - __osx >=11.0 - huggingface_hub >=0.16.4,<1.0 @@ -8268,8 +8254,8 @@ packages: - __osx >=11.0 license: Apache-2.0 license_family: APACHE - size: 1933005 - timestamp: 1732658406859 + size: 1931389 + timestamp: 1732734727624 - kind: conda name: tornado version: 6.4.2 @@ -8338,27 +8324,28 @@ packages: - kind: conda name: traitlets version: 5.14.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - md5: 3df84416a021220d8b5700c613af2dc5 + url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + sha256: f39a5620c6e8e9e98357507262a7869de2ae8cc07da8b7f84e517c9fd6c2b959 + md5: 019a7385be9af33791c989871317e1ed depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 110187 - timestamp: 1713535244513 + size: 110051 + timestamp: 1733367480074 - kind: conda name: transformers - version: 4.46.3 + version: 4.47.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - sha256: 6ae73c0d1197812d8fd6a2c64309fe9abe822feb66b2d330cc61ce9fa60dee0c - md5: 457af723774f077a128515a6fdd536a2 + url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + sha256: b9cf6ae5fcd6c78dcaa24ebfd41580a4a10b0649ac726a44d3521f70fdece218 + md5: 495745078b8e18fe2dcc3267f4baae0d depends: - datasets !=2.5.0 - filelock @@ -8370,66 +8357,66 @@ packages: - regex !=2019.12.17 - requests - safetensors >=0.4.1 - - tokenizers >=0.20,<0.21 + - tokenizers >=0.21,<0.22 - tqdm >=4.27 license: Apache-2.0 license_family: APACHE - size: 3622494 - timestamp: 1731981383171 + size: 3721837 + timestamp: 1733708797762 - kind: conda name: typer - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-0.14.0-pyhd8ed1ab_0.conda - sha256: 4d7f1c77b928a66ae3b0089e288e7fdeb826bf0dabba9799488017e6a9b84f38 - md5: 9eb8a3f5d36ca3e7f686e7a5d85aff72 + url: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + sha256: ef695490e895c2ad552c77ec497b899b09fd4ad4ab07edcf5649f5994cf92a35 + md5: 170a0398946d8f5b454e592672b6fc20 depends: - python >=3.9 - - typer-slim-standard 0.14.0 hd8ed1ab_0 + - typer-slim-standard 0.15.1 hd8ed1ab_0 license: MIT license_family: MIT - size: 54637 - timestamp: 1732848384457 + size: 56175 + timestamp: 1733408582623 - kind: conda name: typer-slim - version: 0.14.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.14.0-pyhd8ed1ab_0.conda - sha256: 883969c10b9837bb18a340ffb01a984ef6b4655fc72ff05aeb7bc659c9a1229d - md5: 3674a4cd7fd8e8a7277af2b30965925d + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + sha256: d4965516f35e0805199de6596c4ac76c4ad3d6b012be35e532102f9e53ecb860 + md5: 0218b16f5a1dd569e575a7a6415489db depends: - click >=8.0.0 - python >=3.9 - typing_extensions >=3.7.4.3 constrains: - - shellingham >=1.3.0 - rich >=10.11.0 - - typer >=0.14.0,<0.14.1.0a0 + - typer >=0.15.1,<0.15.2.0a0 + - shellingham >=1.3.0 license: MIT license_family: MIT - size: 43504 - timestamp: 1732848371202 + size: 43592 + timestamp: 1733408569554 - kind: conda name: typer-slim-standard - version: 0.14.0 + version: 0.15.1 build: hd8ed1ab_0 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.14.0-hd8ed1ab_0.conda - sha256: 0e09e393e75028a0e827c7177e0fb1a070c87756e47b5ae6418423e22b10dfac - md5: 9e1e1f9c84add9637ca715f8fb71a83f + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + sha256: f31c56fe98315da8b9ce848256c17e0b9f87896b41a6ccf0c9cc74644dcef20f + md5: 4e603c43bfdfc7b533be087c3e070cc9 depends: - rich - shellingham - - typer-slim 0.14.0 pyhd8ed1ab_0 + - typer-slim 0.15.1 pyhd8ed1ab_0 license: MIT license_family: MIT - size: 49180 - timestamp: 1732848371718 + size: 49531 + timestamp: 1733408570063 - kind: conda name: typing-extensions version: 4.12.2 @@ -8497,44 +8484,46 @@ packages: - kind: conda name: uvicorn version: 0.32.1 - build: pyh31011fe_0 + build: pyh31011fe_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - sha256: a310c494c817a9f6c985fc6d2772acb953a20170d03b0eabfae0e9d8c76c97ee - md5: fa77fc8110207b3bfc5ccc9d316744f4 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + sha256: ad1d8470c629679ea3db52351a522ae44eee0111d8d8b254e8c863c4a292e5c4 + md5: 7832640e5e302059e844d56f410487a6 depends: - __unix - click >=7.0 - h11 >=0.8 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0 license: BSD-3-Clause license_family: BSD - size: 49393 - timestamp: 1732185242260 + size: 49340 + timestamp: 1733332048141 - kind: conda name: uvicorn-standard version: 0.32.1 - build: h31011fe_0 + build: h31011fe_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda - sha256: 52545f7c88a7c779376900de5f9d81ce36738cd8770b543e89592ad7d1003c40 - md5: 49c2820e0f39cb710becd856ff14d683 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda + sha256: 378903c51b2b1136fa48b01c0a2a8dd4634136d038a4a56561c0856fdcbfcabe + md5: 0c233d5c71d398cf01d0281e72194005 depends: - __unix - httptools >=0.5.0 - python-dotenv >=0.13 - pyyaml >=5.1 - - uvicorn 0.32.1 pyh31011fe_0 + - uvicorn 0.32.1 pyh31011fe_1 - uvloop >=0.14.0,!=0.15.0,!=0.15.1 - watchfiles >=0.13 - websockets >=10.4 license: BSD-3-Clause license_family: BSD - size: 7136 - timestamp: 1732185243035 + size: 7094 + timestamp: 1733332049165 - kind: conda name: uvloop version: 0.21.0 @@ -8880,43 +8869,6 @@ packages: license_family: BSD size: 97691 timestamp: 1689951608120 -- kind: conda - name: xz - version: 5.2.6 - build: h166bdaf_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - md5: 2161070d867d1b1204ea749c8eec4ef0 - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 418368 - timestamp: 1660346797927 -- kind: conda - name: xz - version: 5.2.6 - build: h57fd34a_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - sha256: 59d78af0c3e071021cfe82dc40134c19dab8cdf804324b62940f5c8cd71803ec - md5: 39c6b54e94014701dd157f4f576ed211 - license: LGPL-2.1 and GPL-2.0 - size: 235693 - timestamp: 1660346961024 -- kind: conda - name: xz - version: 5.2.6 - build: h9cdd2b7_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - sha256: 93f58a7b393adf41fa007ac8c55978765e957e90cd31877ece1e5a343cb98220 - md5: 83baad393a31d59c20b63ba4da6592df - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 440555 - timestamp: 1660348056328 - kind: conda name: yaml version: 0.2.5 @@ -8962,64 +8914,64 @@ packages: timestamp: 1641347626613 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312h66e93f0_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda - sha256: 8a1e51303ecac64f10dd0ec548d472c49954c3e2f38023ef28899191580795e1 - md5: 601d2b19a54fd9346ba18c07c2516339 + url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda + sha256: a0d93c3bef723e384cff8a29a82a2c6b7a73b39328088f3a2d97c901f56e9a63 + md5: 91df2efaa08730416bec2a4502309275 depends: - __glibc >=2.17,<3.0.a0 - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 151247 - timestamp: 1732220988648 + size: 151393 + timestamp: 1733428897813 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hb2c0f52_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda - sha256: 2ead24d5c50a2edd6348be5888677100b12b98921d1b6fe2f4cd980b0b85ffb2 - md5: 7dbbd950a7f762c2c8ab835932b12001 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda + sha256: 470b5b0f3ac89acd143095281167dc2ac1a56d4fa22e1794bd8f3b00bb604540 + md5: 0b3c640697bca798d0ab428f530ed24c depends: - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 149149 - timestamp: 1732221057827 + size: 150004 + timestamp: 1733429056665 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hea69d52_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda - sha256: 4c90de12b1569f85126a12dbbb89f3dc10cee5838335b9c9993ead8bf1594cd3 - md5: f538709098e1642d50f4a01707e7dfdb + url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda + sha256: 69c7863809e11bc90c0d935c16e7f151dcc925add08b3894f06059263a8cb9ba + md5: f32f9b16361866a62d6e061fcd7eb400 depends: - __osx >=11.0 - idna >=2.0 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 141452 - timestamp: 1732221306526 + size: 141556 + timestamp: 1733429104990 - kind: conda name: zeromq version: 4.3.5 diff --git a/examples/reduce.mojo b/examples/reduce.mojo index 8e213c6b86..9babfd91a0 100644 --- a/examples/reduce.mojo +++ b/examples/reduce.mojo @@ -17,7 +17,6 @@ # Reductions and scans are common algorithm patterns in parallel computing. from random import rand -from time import now from algorithm import sum from benchmark import Unit, benchmark, keep diff --git a/magic.lock b/magic.lock index c480f42504..23716422b9 100644 --- a/magic.lock +++ b/magic.lock @@ -8,26 +8,25 @@ environments: linux-64: - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aiohttp-3.11.9-py312h178313f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-common-0.10.3-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-compression-0.3.0-hf42f96a_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-c-sdkutils-0.2.1-hf42f96a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-checksums-0.2.2-hf42f96a_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-core-cpp-1.14.0-h5cfcd09_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-identity-cpp-1.10.0-h113e628_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/azure-storage-blobs-cpp-12.13.0-h3cf044e_1.conda @@ -44,33 +43,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/freetype-2.12.1-h267a509_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/frozenlist-1.5.0-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/gflags-2.2.2-h5888daf_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/glog-0.7.1-hbabe93e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/httptools-0.6.4-py312h66e93f0_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.1-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda @@ -78,10 +77,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.43-h712a8e2_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lerc-4.0.0-h27087fc_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/libabseil-20240722.0-cxx17_h5888daf_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.9.0-25_linux64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlicommon-1.1.0-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libbrotlidec-1.1.0-hb9d3cd8_2.conda @@ -106,38 +105,39 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.17-hd590300_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libjpeg-turbo-3.0.0-hd590300_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.9.0-25_linux64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.64.0-h161d5f1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libopenblas-0.3.28-pthreads_h94d23a6_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libpng-1.6.44-hadc24fc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libprotobuf-5.28.2-h5b01275_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libre2-11-2024.07.02-hbbce691_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libsodium-1.0.20-h4ab18f5_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hf672d98_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-14.2.0-hc0a3c3a_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-14.2.0-h4852527_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libthrift-0.21.0-h0e7cc3e_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.38.1-h0b41bf4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libuv-1.49.2-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libwebp-base-1.4.0-hd590300_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcb-1.17.0-h8a09558_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/lit-19.1.5-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/lz4-c-1.9.4-hcb278e6_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/markupsafe-3.0.2-py312h178313f_1.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multidict-6.1.0-py312h178313f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/multiprocess-0.70.15-py312h98912ed_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda @@ -145,25 +145,21 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-1.26.4-py312heda63a1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openjpeg-2.5.2-h488ebb8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.4.0-hb9d3cd8_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/orc-2.0.3-he039a57_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pandas-2.2.3-py312hf9745cd_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pillow-11.0.0-py312h7b63e92_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/protobuf-5.28.2-py312h2ec8cdc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pthread-stubs-0.4-hb9d3cd8_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyarrow-18.1.0-py312h7900ff3_0.conda @@ -175,11 +171,11 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/pyinstrument-5.0.0-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python-xxhash-3.5.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/python_abi-3.12-5_cp312.conda @@ -190,31 +186,31 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.2-h8228510_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/regex-2024.11.6-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/s2n-1.5.9-h0fd0ee4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/safetensors-0.4.5-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h4845f30_101.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/tornado-6.4.2-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/uvloop-0.21.0-py312h66e93f0_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/watchfiles-1.0.0-py312h12e396e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/websockets-14.1-py312h66e93f0_0.conda @@ -222,35 +218,33 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxau-1.0.11-hb9d3cd8_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xorg-libxdmcp-1.1.5-hb9d3cd8_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/xxhash-0.8.2-hd590300_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h7f98852_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zeromq-4.3.5-h3b0a872_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstandard-0.23.0-py312hef9b889_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.6-ha6fb4c9_0.conda linux-aarch64: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/_openmp_mutex-4.5-2_gnu.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aiohttp-3.11.9-py312hcc812fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-common-0.10.3-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-compression-0.3.0-h4c7db1d_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-sdkutils-0.2.1-h4c7db1d_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-checksums-0.2.2-h4c7db1d_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-core-cpp-1.14.0-h1887c18_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-identity-cpp-1.10.0-h47b0b28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/azure-storage-blobs-cpp-12.13.0-h185ecfd_1.conda @@ -267,34 +261,34 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/freetype-2.12.1-hf0a5ef3_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/frozenlist-1.5.0-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/gflags-2.2.2-h5ad3122_1005.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/glog-0.7.1-h468a4a4_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/httptools-0.6.4-py312hb2c0f52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/icu-75.1-hf9b3779_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/keyutils-1.6.1-h4e544f5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/krb5-1.21.3-h50a48e9_0.conda @@ -302,10 +296,10 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/ld_impl_linux-aarch64-2.43-h80caac9_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lerc-4.0.0-h4de3ea5_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libabseil-20240722.0-cxx17_h5ad3122_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libblas-3.9.0-25_linuxaarch64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlicommon-1.1.0-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libbrotlidec-1.1.0-h86ecc28_2.conda @@ -330,38 +324,39 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libiconv-1.17-h31becfc_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libjpeg-turbo-3.0.0-h31becfc_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblapack-3.9.0-25_linuxaarch64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnghttp2-1.64.0-hc8609a4_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libnsl-2.0.1-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libopenblas-0.3.28-pthreads_h9d3fd7e_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libpng-1.6.44-hc4a20ef_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libprotobuf-5.28.2-h029595c_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libre2-11-2024.07.02-h18dbdb1_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsodium-1.0.20-h68df207_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libssh2-1.11.1-ha41c0db_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-14.2.0-h3f4de04_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libstdcxx-ng-14.2.0-hf1166c9_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libthrift-0.21.0-h154c74f_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libutf8proc-2.9.0-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuuid-2.38.1-hb4cce97_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libuv-1.49.2-h86ecc28_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libwebp-base-1.4.0-h31becfc_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcb-1.17.0-h262b8f6_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxcrypt-4.4.36-h31becfc_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/libzlib-1.3.1-h86ecc28_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/lit-19.1.5-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/lz4-c-1.9.4-hd600fc2_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/markupsafe-3.0.2-py312h74ce7d3_1.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multidict-6.1.0-py312hcc812fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/multiprocess-0.70.15-py312hdd3e373_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda @@ -369,25 +364,21 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/numpy-1.26.4-py312h470d778_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openjpeg-2.5.2-h0d9d63b_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/openssl-3.4.0-h86ecc28_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/orc-2.0.3-h90de224_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pandas-2.2.3-py312ha2895bd_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pillow-11.0.0-py312h5ab5af3_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/protobuf-5.28.2-py312h6f74592_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pthread-stubs-0.4-h86ecc28_1002.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyarrow-18.1.0-py312h8025657_0.conda @@ -399,11 +390,11 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/pyinstrument-5.0.0-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python-xxhash-3.5.0-py312h52516f5_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/python_abi-3.12-5_cp312.conda @@ -414,31 +405,31 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/readline-8.2-h8fc344f_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/regex-2024.11.6-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/s2n-1.5.9-h636ded1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/safetensors-0.4.5-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tk-8.6.13-h194ca79_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/tornado-6.4.2-py312h52516f5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/uvloop-0.21.0-py312hb2c0f52_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/watchfiles-1.0.0-py312h8cbf658_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/websockets-14.1-py312hb2c0f52_0.conda @@ -446,34 +437,32 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxau-1.0.11-h86ecc28_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xorg-libxdmcp-1.1.5-h57736b2_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xxhash-0.8.2-h31becfc_0.conda - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yaml-0.2.5-hf897c2e_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zeromq-4.3.5-h5efb499_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstandard-0.23.0-py312hb698573_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-aarch64/zstd-1.5.6-h02f22dd_0.conda osx-arm64: - - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aiohttp-3.11.9-py312h998013c_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/annotated-types-0.7.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-common-0.10.3-h5505292_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-compression-0.3.0-h5d7ee29_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-sdkutils-0.2.1-h5d7ee29_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-checksums-0.2.2-h5d7ee29_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-core-cpp-1.14.0-hd50102c_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-identity-cpp-1.10.0-hc602bab_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/azure-storage-blobs-cpp-12.13.0-h7585a09_1.conda @@ -490,42 +479,43 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/click-8.1.7-unix_pyh707e725_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/colorama-0.4.6-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/datasets-2.14.4-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dill-0.3.7-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/dnspython-2.7.0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/email-validator-2.2.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/email_validator-2.2.0-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/exceptiongroup-1.2.2-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/fastapi-cli-0.0.5-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/filelock-3.16.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/freetype-2.12.1-hadb7bae_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/frozenlist-1.5.0-py312h0bf5046_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/gflags-2.2.2-hf9b8971_1005.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/glog-0.7.1-heb240a5_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/googleapis-common-protos-1.66.0-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/h2-4.1.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hpack-4.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/httpcore-1.0.7-pyh29332c3_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/httptools-0.6.4-py312hea69d52_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/hyperframe-6.0.1-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/idna-3.10-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/importlib-metadata-7.0.2-pyha770c72_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jinja2-3.1.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/jupyter_core-5.7.2-pyh31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lcms2-2.16-ha0e7c42_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lerc-4.0.0-h9a09cb3_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libabseil-20240722.0-cxx17_hf9b8971_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.9.0-25_osxarm64_openblas.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlicommon-1.1.0-hd74edd7_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbrotlidec-1.1.0-hd74edd7_2.conda @@ -548,34 +538,35 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.17-h0d3ecfb_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libjpeg-turbo-3.0.0-hb547adb_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.9.0-25_osxarm64_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.64.0-h6d7220d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.28-openmp_hf332438_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libpng-1.6.44-hc14010f_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libprotobuf-5.28.2-h8f0b736_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libre2-11-2024.07.02-h2348fd5_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsodium-1.0.20-h99b78c6_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h9cc3647_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libthrift-0.21.0-h64651cc_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libutf8proc-2.9.0-h5505292_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libuv-1.49.2-h7ab814d_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libwebp-base-1.4.0-h93a5062_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxcb-1.17.0-hdb1d25a_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda - conda: https://conda.anaconda.org/conda-forge/noarch/lit-19.1.5-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/lz4-c-1.9.4-hb7217d7_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/markdown-it-py-3.0.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/markupsafe-3.0.2-py312h998013c_1.conda - - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda + - conda: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + - conda: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mdurl-0.1.2-pyhd8ed1ab_1.conda - - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda + - conda: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multidict-6.1.0-py312hdb8e49c_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/multiprocess-0.70.15-py312h02f2b3b_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/mypy_extensions-1.0.0-pyha770c72_1.conda @@ -583,25 +574,21 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-1.26.4-py312h8442bc7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openjpeg-2.5.2-h9f1df11_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.4.0-h39f12f2_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-common-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-otlp-proto-http-1.28.2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-exporter-prometheus-1.12.0rc1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-proto-1.28.2-pyhff2d567_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-sdk-1.28.2-pyhff2d567_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/orc-2.0.3-h121fd32_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/packaging-24.2-pyhd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pandas-2.2.3-py312hcd31e36_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pathspec-0.12.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pillow-11.0.0-py312haf37ca6_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/platformdirs-4.3.6-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/protobuf-5.28.2-py312hf02c72a_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pthread-stubs-0.4-hd74edd7_1002.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyarrow-18.1.0-py312h1f38498_0.conda @@ -613,11 +600,11 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/pygments-2.18.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/pyinstrument-5.0.0-py312h0bf5046_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/pysocks-1.7.1-pyha55dd90_7.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dateutil-2.9.0.post0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-dotenv-1.0.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-json-logger-2.0.7-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/python-tzdata-2024.2-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-xxhash-3.5.0-py312h024a12e_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python_abi-3.12-5_cp312.conda @@ -628,30 +615,30 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.2-h92ec313_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/regex-2024.11.6-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/requests-2.32.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/safetensors-0.4.5-py312he431725_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/setuptools-75.6.0-pyhff2d567_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/shellingham-1.5.4-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sniffio-1.3.1-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/sse-starlette-2.1.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h5083fa2_1.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tornado-6.4.2-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tqdm-4.67.1-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.0-pyhd8ed1ab_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.0-hd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing-extensions-4.12.2-hd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/typing_extensions-4.12.2-pyha770c72_1.conda - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2024b-hc8b5060_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/urllib3-2.2.3-pyhd8ed1ab_1.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/uvloop-0.21.0-py312h0bf5046_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/watchfiles-1.0.0-py312hcd83bfe_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/websockets-14.1-py312hea69d52_0.conda @@ -659,9 +646,8 @@ environments: - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxau-1.0.11-hd74edd7_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xorg-libxdmcp-1.1.5-hd74edd7_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xxhash-0.8.2-hb547adb_0.conda - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h3422bc3_2.tar.bz2 - - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zeromq-4.3.5-hc1bb282_7.conda - conda: https://conda.anaconda.org/conda-forge/noarch/zipp-3.21.0-pyhd8ed1ab_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstandard-0.23.0-py312h15fbf35_1.conda @@ -716,18 +702,19 @@ packages: - kind: conda name: aiohappyeyeballs version: 2.4.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_0.conda - sha256: 4282838f468f75f0c1746cbc6cdd3365b9f6d449bf5af8a74b234e396d847bf0 - md5: 8d6f8a679aa0272ba8d6092ce4824870 + url: https://conda.anaconda.org/conda-forge/noarch/aiohappyeyeballs-2.4.4-pyhd8ed1ab_1.conda + sha256: 95d4713e49ea92ae50cf42393683ede706b7875af5f7cb14c253438180afa732 + md5: 296b403617bafa89df4971567af79013 depends: - python >=3.9 license: PSF-2.0 license_family: PSF - size: 19310 - timestamp: 1733135584059 + size: 19351 + timestamp: 1733332029649 - kind: conda name: aiohttp version: 3.11.9 @@ -803,19 +790,20 @@ packages: - kind: conda name: aiosignal version: 1.3.1 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_0.tar.bz2 - sha256: 575c742e14c86575986dc867463582a970463da50b77264cdf54df74f5563783 - md5: d1e1eb7e21a9e2c74279d87dafb68156 + url: https://conda.anaconda.org/conda-forge/noarch/aiosignal-1.3.1-pyhd8ed1ab_1.conda + sha256: 9c7b639ea0cc796ef46c57fa104ec1f2ed53cd11c063518869a5a9d7d3b0b2db + md5: d736bd1b8904d7593dce4893e58a7881 depends: - frozenlist >=1.1.0 - - python >=3.7 + - python >=3.9 license: Apache-2.0 license_family: APACHE - size: 12730 - timestamp: 1667935912504 + size: 13157 + timestamp: 1733332198143 - kind: conda name: annotated-types version: 0.7.0 @@ -830,166 +818,148 @@ packages: - python >=3.9 - typing-extensions >=4.0.0 license: MIT + license_family: MIT size: 18074 timestamp: 1733247158254 - kind: conda name: anyio - version: 4.6.2.post1 + version: 4.7.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.6.2.post1-pyhd8ed1ab_0.conda - sha256: 4b54b7ce79d818e3cce54ae4d552dba51b7afac160ceecdefd04b3917a37c502 - md5: 688697ec5e9588bdded167d19577625b + url: https://conda.anaconda.org/conda-forge/noarch/anyio-4.7.0-pyhd8ed1ab_0.conda + sha256: 687537ee3af30f8784986bf40cac30e88138770b16e51ca9850c9c23c09aeba1 + md5: c88107912954a983c2caf25f7fd55158 depends: - exceptiongroup >=1.0.2 - idna >=2.8 - python >=3.9 - sniffio >=1.1 - - typing_extensions >=4.1 + - typing_extensions >=4.5 constrains: - - uvloop >=0.21.0b1 - trio >=0.26.1 + - uvloop >=0.21 license: MIT license_family: MIT - size: 109864 - timestamp: 1728935803440 -- kind: conda - name: asgiref - version: 3.8.1 - build: pyhd8ed1ab_1 - build_number: 1 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/asgiref-3.8.1-pyhd8ed1ab_1.conda - sha256: c8d51a32f3530e3ca176d8f7bf5621c68c7c1c03fe9cc5c3c49d8ba4a1248f43 - md5: 21187c8276f87b6aedfe63c267a6eed7 - depends: - - python >=3.9 - - typing_extensions >=4 - license: BSD-3-Clause - license_family: BSD - size: 26436 - timestamp: 1733215704904 + size: 112730 + timestamp: 1733532678437 - kind: conda name: attrs version: 24.2.0 - build: pyh71513ae_0 + build: pyh71513ae_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_0.conda - sha256: 28dba85a7e0f7fb57d7315e13f603d1e41b83c5b88aa2a602596b52c833a2ff8 - md5: 6732fa52eb8e66e5afeb32db8701a791 + url: https://conda.anaconda.org/conda-forge/noarch/attrs-24.2.0-pyh71513ae_1.conda + sha256: 8488a116dffe204015a90b41982c0270534bd1070f44a00b316d59e4a79ae8c7 + md5: 2018839db45c79654b57a924fcdd27d0 depends: - - python >=3.7 + - python >=3.9 license: MIT license_family: MIT - size: 56048 - timestamp: 1722977241383 + size: 56336 + timestamp: 1733520064905 - kind: conda name: aws-c-auth version: 0.8.0 - build: h9b725a8_10 - build_number: 10 + build: h35eccd0_12 + build_number: 12 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h9b725a8_10.conda - sha256: 63cb8c25e0a26be4261d4271de525e7e33aefe9d9b001b8abfa5c9ac69c3dab3 - md5: 17c90d9eb8c6842fd739dc5445ce9962 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-auth-0.8.0-h35eccd0_12.conda + sha256: 40ca48aee5f3ff0d3ffd64625dacb019104a9a2ee24cd54052cde6fe4cbc8349 + md5: 1109d5293b724ca16b61452accfdb442 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 license: Apache-2.0 license_family: Apache - size: 92355 - timestamp: 1731733738919 + size: 92279 + timestamp: 1733611476546 - kind: conda name: aws-c-auth version: 0.8.0 - build: hac900a4_10 - build_number: 10 + build: h89ba3c0_12 + build_number: 12 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-hac900a4_10.conda - sha256: 85c8500ae0570f0d39e6661a120c653e43f0f5f984e2954c44fd358a87776892 - md5: 9ecaef75ebd666dda7caa79154183b02 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-auth-0.8.0-h89ba3c0_12.conda + sha256: 021451014fb5ee24601052d84db8d5babbce5085959ba777b540db4e33bde360 + md5: c0e2e6c3aa8c309af0ba09fc7d949407 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 111853 - timestamp: 1731733547677 + size: 112242 + timestamp: 1733611425746 - kind: conda name: aws-c-auth version: 0.8.0 - build: hb88c0a9_10 - build_number: 10 + build: ha4f867e_12 + build_number: 12 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-hb88c0a9_10.conda - sha256: d2837a84e6bd7d993a83e79f9e240e1465e375f3d57149ea5b1927c6a4133bcc - md5: 409b7ee6d3473cc62bda7280f6ac20d0 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-auth-0.8.0-ha4f867e_12.conda + sha256: b9355bedf43c857a2d1986ebe7d61e615218f2171d163b509633d6c0c988d2dc + md5: d889de56d3be691063b71eb826470e29 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 107163 - timestamp: 1731733534767 + size: 107663 + timestamp: 1733611397256 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h35473ba_2 - build_number: 2 + version: 0.8.1 + build: h35473ba_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.0-h35473ba_2.conda - sha256: 3327a9e65ec531b0c55d17bbcdc436b4e641af1f293d1c2f50e0f16aa79fde60 - md5: 48dc0b3576513622673d3f5f3d163b62 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-cal-0.8.1-h35473ba_0.conda + sha256: c2d59d74e167b6df3c1a7addf0d37080b69a6b3dee2a30b3f2171a5d26c5a691 + md5: 97c0ccb4d43d880b38f237e746c29ead depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 49714 - timestamp: 1731678553709 + size: 49808 + timestamp: 1732038238504 - kind: conda name: aws-c-cal - version: 0.8.0 - build: h5d7ee29_2 - build_number: 2 + version: 0.8.1 + build: h5d7ee29_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.0-h5d7ee29_2.conda - sha256: 2a8c09b33400cf2b7d658e63fd5a6f9b6e9626458f6213b904592fc15220bc92 - md5: 92734dad83d22314205ba73b679710d2 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-cal-0.8.1-h5d7ee29_0.conda + sha256: 42d5e9fb695bc3b280ed7e625dcda110b6780ee471e227f1b92afce71ae4972c + md5: fc51a61831a676fe6f922450f51ab6af depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 39966 - timestamp: 1731678721786 + size: 40047 + timestamp: 1732038304022 - kind: conda name: aws-c-cal - version: 0.8.0 - build: hecf86a2_2 - build_number: 2 + version: 0.8.1 + build: hecf86a2_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.0-hecf86a2_2.conda - sha256: 220a37955c120bf2f565fbd5320a82fc4c8b550b2449294bc0509c296cfcb9fa - md5: c54459d686ad9d0502823cacff7e8423 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-cal-0.8.1-hecf86a2_0.conda + sha256: 12cc2087503f4f0d3a5db84e791fb5e585866da728f888aa76e14330a092a681 + md5: 8350795be14a92d68847c0d4f3c1d59f depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 @@ -997,8 +967,8 @@ packages: - openssl >=3.3.1,<4.0a0 license: Apache-2.0 license_family: Apache - size: 47477 - timestamp: 1731678510949 + size: 47569 + timestamp: 1732038156682 - kind: conda name: aws-c-common version: 0.10.3 @@ -1094,291 +1064,294 @@ packages: - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h13ead76_7 - build_number: 7 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h13ead76_7.conda - sha256: 386965fab5f0bed4a6109cdba32579f16bee1b0f76ce1db840ce6f7070188f9f - md5: 55a901b6d4fb9ce1bc8328925b229f0b + build: h873f81a_8 + build_number: 8 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h873f81a_8.conda + sha256: 589f9a04c4c7a919410dde75ce93a6986efad6ed522ecd8e5c9c587ac18f0d34 + md5: 32bdd50b43fcc435a8dc5a3c66aafef0 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 47528 - timestamp: 1731714690911 + size: 54020 + timestamp: 1731839177415 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h1ffe551_7 - build_number: 7 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-event-stream-0.5.0-h1ffe551_7.conda - sha256: 3b780d6483baa889e8df5aa66ab3c439a9c81331cf2a4799e373f4174768ddd9 - md5: 7cce4dfab184f4bbdfc160789251b3c5 + build: h8ec3972_8 + build_number: 8 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-event-stream-0.5.0-h8ec3972_8.conda + sha256: 81b98fc39e64d090af23b11621e467b4f943a19f61dda0fed5ad6397f06de5c7 + md5: ced9c97ddf61e4222d548e8bcc863b87 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 53500 - timestamp: 1731714597524 + size: 47491 + timestamp: 1731839300212 - kind: conda name: aws-c-event-stream version: 0.5.0 - build: h9bacb8c_7 - build_number: 7 + build: hba6c15e_8 + build_number: 8 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-h9bacb8c_7.conda - sha256: 2b7bb475330942d94bc359171df19d0cf8b326f15c0c7903a59da54a8add621e - md5: 694020125b66632d6577456d2d9d3c74 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-event-stream-0.5.0-hba6c15e_8.conda + sha256: d3b74580045ee9d54a134ab1e5e00082d5d8a466980e94acc153188ee7375d08 + md5: 102f8b54630d79aff5e0c489f40f926e depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 55054 - timestamp: 1731714599360 + size: 55354 + timestamp: 1731839242373 - kind: conda name: aws-c-http - version: 0.9.1 - build: hab05fe4_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.1-hab05fe4_2.conda - sha256: 90a325b6f5371dd2203b643de646967fe57a4bcbbee8c91086abbf9dd733d59a - md5: fb409f7053fa3dbbdf6eb41045a87795 + version: 0.9.2 + build: h48c6dea_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.2-h48c6dea_1.conda + sha256: cb68d557af1bdcbef668574836fbf39c4df0e4f377258e4d5bd14196acf9b992 + md5: a28dd36a1da76042bfb5579005cc6728 depends: - - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __osx >=11.0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 - - libgcc >=13 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 196945 - timestamp: 1731714483279 + size: 152660 + timestamp: 1732110368931 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf483d09_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-http-0.9.1-hf483d09_2.conda - sha256: fca9ed0f0895bab9bf737c8d8a3314556cb893d45c40f0656f21a93502db3089 - md5: d880c40b8fc7d07374c036f93f1359d2 + version: 0.9.2 + build: h697be72_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.2-h697be72_1.conda + sha256: 4d6557a00e74649301da78d7de7d108882ce89eb9d6c87efce30789b53a617cf + md5: a8b1a2c11a93e615f6e8f33175ff8ff0 depends: - - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 + - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 153315 - timestamp: 1731714621306 + size: 190344 + timestamp: 1732110425530 - kind: conda name: aws-c-http - version: 0.9.1 - build: hf4e072c_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-http-0.9.1-hf4e072c_2.conda - sha256: b9a262451fc91d2fd4ccfcb6dc11ac61d0152c0db765bfe8d089e3e1b70c2150 - md5: fddc197912c16cb95276077f6c7917c5 + version: 0.9.2 + build: ha5a3ca8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-http-0.9.2-ha5a3ca8_1.conda + sha256: 8ecb3d8411f58db4686635aedfe5d60b2b8870f9f9cafb471f3878dc61d21596 + md5: b2e017f8a4781ad3af9166edf10b65a8 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-compression >=0.3.0,<0.3.1.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 190363 - timestamp: 1731714613945 + size: 197338 + timestamp: 1732110324356 - kind: conda name: aws-c-io - version: 0.15.2 - build: h10eb1bc_2 - build_number: 2 + version: 0.15.3 + build: h0155602_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.2-h10eb1bc_2.conda - sha256: b8e4206ee1fa58453535c1c08c6aca5bdc92cde026bf7ec20d038786f813239b - md5: 7cdf478bb4feae1a93319f6e3381b8a9 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-io-0.15.3-h0155602_1.conda + sha256: 7b8d97d51e5bb80191e07f16cac6f59068be30bf5906925a8f4159b3aab9093c + md5: 431c201b11eee90fd120844557a62b02 depends: - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 162624 - timestamp: 1731702570075 + size: 161664 + timestamp: 1732097310449 - kind: conda name: aws-c-io - version: 0.15.2 - build: h39f8ad8_2 - build_number: 2 + version: 0.15.3 + build: h30cefa2_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.2-h39f8ad8_2.conda - sha256: b14e32f024f6be1610dccfdb6371e101cba204d24f37c2a63d9b6380ac74ac17 - md5: 3b49f1dd8f20bead8b222828cfdad585 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-io-0.15.3-h30cefa2_1.conda + sha256: d6f8d42259ca11507bd912b3cd3ff1a65d6d8c7ff67ae9ee9df1686c9bebbbcc + md5: 8b8dc361de09e5b6227165a876e55cb7 depends: - __osx >=11.0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 license: Apache-2.0 license_family: Apache - size: 137610 - timestamp: 1731702839896 + size: 136662 + timestamp: 1732097382517 - kind: conda name: aws-c-io - version: 0.15.2 - build: hdeadb07_2 - build_number: 2 + version: 0.15.3 + build: ha35c7d9_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.2-hdeadb07_2.conda - sha256: 1636136a5d882b4aaa13ea8b7de8cf07038a6878872e3c434df9daf478cee594 - md5: 461a1eaa075fd391add91bcffc9de0c1 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-io-0.15.3-ha35c7d9_1.conda + sha256: 2e9e13ed54f6da22ee5d06622f4165bcca253411997dad62225aecc54b25c0db + md5: 97960f380abe1ba3157fe63312e35b07 depends: - __glibc >=2.17,<3.0.a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - libgcc >=13 - s2n >=1.5.9,<1.5.10.0a0 license: Apache-2.0 license_family: Apache - size: 159368 - timestamp: 1731702542973 + size: 158012 + timestamp: 1732097264673 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h28a5e6a_8 - build_number: 8 + build: h2cca791_9 + build_number: 9 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h28a5e6a_8.conda - sha256: aad8c9a5c24953cdebf17efa7ec06b5639e14072d4fa70c5c0607d7ad913ba88 - md5: 5250ce3b5154c0347b7576015a7c6cef + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-mqtt-0.11.0-h2cca791_9.conda + sha256: c0ad176bab176a2983fb052de71037fc9357afd13b073511a7a440c1a8c6eff2 + md5: 090674d608454e979ce77bc8ee735868 depends: - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 169040 - timestamp: 1731734203264 + size: 169690 + timestamp: 1733688313938 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h68a0d7e_8 - build_number: 8 + build: h3aaadf4_9 + build_number: 9 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h68a0d7e_8.conda - sha256: 837c24c105624e16ace94b4b566ffe45231ff275339c523571ebd45946926156 - md5: 9e3ac70d27e7591b1310a690768cfe27 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-mqtt-0.11.0-h3aaadf4_9.conda + sha256: 3cc99239c8dadfe55e4b9ba37d03c5d3308ddd8fe00792fab7c6b47c97655c07 + md5: ddb5dc7ac1ae424ca2b7a847765a0cb9 depends: - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 license: Apache-2.0 license_family: Apache - size: 134573 - timestamp: 1731734281038 + size: 135051 + timestamp: 1733688394116 - kind: conda name: aws-c-mqtt version: 0.11.0 - build: h7bd072d_8 - build_number: 8 + build: h56e9cca_9 + build_number: 9 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h7bd072d_8.conda - sha256: 51d3d87a47c642096e2ce389a169aec2e26958042e9130857552a12d65a19045 - md5: 0e9d67838114c0dbd267a9311268b331 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-mqtt-0.11.0-h56e9cca_9.conda + sha256: c93c29b58482ca72d3f9a5710ad92194e809a9de988bcdcbae9ddd0f8ed484a6 + md5: f75642fe24ae4131f554cbacd6df53e3 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - libgcc >=13 license: Apache-2.0 license_family: Apache - size: 194447 - timestamp: 1731734668760 + size: 194705 + timestamp: 1733688770217 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h29aef15_0 + version: 0.7.5 + build: h3c51cf6_2 + build_number: 2 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.3-h29aef15_0.conda - sha256: 57aa8b28890efd82c479e902125ea8a37782b163f13ae0856b259ec527a52879 - md5: e09cd76e50ce09ec14c17109da5c6502 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-c-s3-0.7.5-h3c51cf6_2.conda + sha256: 98a2df8a5068183e55b4c6914a3513d403300be20c960842a9a229546b8e8e52 + md5: e326ddae95b3ec96a31aded04c834175 depends: - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 117467 - timestamp: 1733098782199 + size: 117896 + timestamp: 1733694002769 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h3a84f74_0 + version: 0.7.5 + build: h6ad95d4_2 + build_number: 2 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.3-h3a84f74_0.conda - sha256: db17a15e5e01f19700bf9be961e1c4e002ccf8dc4d9caa3a24a0ab54f00f2c2d - md5: 171850b890600458ae6c990e78f1fa23 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-c-s3-0.7.5-h6ad95d4_2.conda + sha256: 103a478b18ead8f79aae9a4966b2879e9fbcfb0aa3b2e6c9b2811a76ba34610e + md5: 682c079ec089d47bb7142f12b3275e4f depends: - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - libgcc >=13 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 113536 - timestamp: 1733098705479 + size: 113741 + timestamp: 1733693956970 - kind: conda name: aws-c-s3 - version: 0.7.3 - build: h840aca7_0 + version: 0.7.5 + build: hca3a6f1_2 + build_number: 2 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.3-h840aca7_0.conda - sha256: 18972a91f32f6b0edb58eb71cb2f5b56654183fd6ba611b3b0d6cc484017aeff - md5: 893e668d99fa4b31eef9dc5b19c21b9a + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-c-s3-0.7.5-hca3a6f1_2.conda + sha256: 53c4dc6e360ed6e1242c20fa43f7bfe67a41215e51cafab27dbd8aa91333040c + md5: 0b4e647cae3ce85ec991c6e3b8d12bda depends: - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 license: Apache-2.0 license_family: Apache - size: 97145 - timestamp: 1733098874599 + size: 97530 + timestamp: 1733694097526 - kind: conda name: aws-c-sdkutils version: 0.2.1 @@ -1479,118 +1452,118 @@ packages: timestamp: 1731687193373 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: h7939e66_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.6-h7939e66_1.conda - sha256: 3d0b1996d28a2647ced83ed8052ee331df70b2c1a68fb6db0fe4e743a88be54d - md5: 5e573a52a1cd20f81d7fdf1db4f4583a + version: 0.29.7 + build: h318f0b1_3 + build_number: 3 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.7-h318f0b1_3.conda + sha256: 35100ad81adf31aa4e73ac2956e9a8ff277cc57d0db2db2f0e9c51012175eadd + md5: 9748d0527695a64aa2eb45e891ea188d depends: + - __glibc >=2.17,<3.0.a0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 283670 - timestamp: 1733150929992 + size: 355045 + timestamp: 1733744656604 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: ha226bf8_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.6-ha226bf8_1.conda - sha256: f645e2a8015d8e71ed785c81a14a202ebce2f5dcca8982cd7ec5f8000f9be5c3 - md5: 81da0b5f65ab08e3919d6eadf08b5776 + version: 0.29.7 + build: hacb6b83_3 + build_number: 3 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-crt-cpp-0.29.7-hacb6b83_3.conda + sha256: 6c0ece3ca494c2220fc052e608d52ea52bb361e536a14a1b3b36ebeede9de8b9 + md5: 27ce3ed5b7e55370a9fea2dda2b3245a depends: - - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: Apache - size: 236505 - timestamp: 1733151090562 + size: 283993 + timestamp: 1733744571881 - kind: conda name: aws-crt-cpp - version: 0.29.6 - build: hdec8b0f_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-crt-cpp-0.29.6-hdec8b0f_1.conda - sha256: cd09f1d5d854607ce7acafc76c74e864f296d296e60b54054a10f757ecc3d2dd - md5: 40647232fad98f92be8c6050a7e0c2bd + version: 0.29.7 + build: hc2c2bbc_3 + build_number: 3 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-crt-cpp-0.29.7-hc2c2bbc_3.conda + sha256: 6a519151e7fa71fbc9d1cd3a526ea7591638af058a6cc0534e1cd418fd48b354 + md5: 5450324f7b48dff1f6ed5484bf830972 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - aws-c-auth >=0.8.0,<0.8.1.0a0 - - aws-c-cal >=0.8.0,<0.8.1.0a0 + - aws-c-cal >=0.8.1,<0.8.2.0a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - - aws-c-http >=0.9.1,<0.9.2.0a0 - - aws-c-io >=0.15.2,<0.15.3.0a0 + - aws-c-http >=0.9.2,<0.9.3.0a0 + - aws-c-io >=0.15.3,<0.15.4.0a0 - aws-c-mqtt >=0.11.0,<0.11.1.0a0 - - aws-c-s3 >=0.7.3,<0.7.4.0a0 + - aws-c-s3 >=0.7.5,<0.7.6.0a0 - aws-c-sdkutils >=0.2.1,<0.2.2.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 license: Apache-2.0 license_family: Apache - size: 354710 - timestamp: 1733150818238 + size: 236331 + timestamp: 1733744737078 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h3b64406_4 - build_number: 4 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.449-h3b64406_4.conda - sha256: 10ce9c203d31229432421a841d8d135d3e942637571aae4bb2d3c7d5242e7f05 - md5: f9e46a4bb5a04cbca08355f166ce87c8 + version: 1.11.458 + build: h5e41cbe_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.458-h5e41cbe_1.conda + sha256: b45305787a78f2bf7ecabc401b5bfe451509b434dd041a0a554572a70302d2f3 + md5: 1861b1fb86b336f1f53faaac5a76046c depends: - - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libcxx >=18 + - libgcc >=13 + - libstdcxx >=13 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2722689 - timestamp: 1732812825640 + size: 2910575 + timestamp: 1733576378398 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h5558e3c_4 - build_number: 4 + version: 1.11.458 + build: hac138a2_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.449-h5558e3c_4.conda - sha256: 4881f7b4f5e3c797332cffb990df246a422346b220a9c16014f274beb2a276f5 - md5: ba7abdc93b0ade11d774b47aaab84737 + url: https://conda.anaconda.org/conda-forge/linux-64/aws-sdk-cpp-1.11.458-hac138a2_1.conda + sha256: fdb9c94d7524c52837643428b1aab4f35bed3ba2862a57e1b03e63038c7c146f + md5: bbdd9589b1a32a80b0e3f98a2a482542 depends: - __glibc >=2.17,<3.0.a0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - libgcc >=13 - libstdcxx >=13 @@ -1598,31 +1571,31 @@ packages: - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2945541 - timestamp: 1732812288219 + size: 3071464 + timestamp: 1733576251149 - kind: conda name: aws-sdk-cpp - version: 1.11.449 - build: h7085e57_4 - build_number: 4 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/aws-sdk-cpp-1.11.449-h7085e57_4.conda - sha256: 0908a82e7c50c51d5ee0ca543dbe70cbe1963e6e8f80ffa58ea6d26e5c68251e - md5: feec198cb18a5e90aa36c97328567d63 + version: 1.11.458 + build: he4d6490_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/aws-sdk-cpp-1.11.458-he4d6490_1.conda + sha256: 61abc03dfbe372b258b8b6790bf3ad3a3265e02ce24b6b22bfe8f2fcab94954a + md5: 2941213b750689ace0862a6d695bb740 depends: + - __osx >=11.0 - aws-c-common >=0.10.3,<0.10.4.0a0 - aws-c-event-stream >=0.5.0,<0.5.1.0a0 - aws-checksums >=0.2.2,<0.2.3.0a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 - libcurl >=8.10.1,<9.0a0 - - libgcc >=13 - - libstdcxx >=13 + - libcxx >=18 - libzlib >=1.3.1,<2.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: Apache - size: 2813856 - timestamp: 1732812337182 + size: 2847256 + timestamp: 1733576733615 - kind: conda name: azure-core-cpp version: 1.14.0 @@ -2184,6 +2157,7 @@ packages: depends: - python >=3.9 license: MIT + license_family: MIT size: 47533 timestamp: 1733218182393 - kind: conda @@ -2216,6 +2190,7 @@ packages: depends: - python >=3.9 license: BSD-3-Clause + license_family: BSD size: 27011 timestamp: 1733218222191 - kind: conda @@ -2250,19 +2225,20 @@ packages: - kind: conda name: deprecated version: 1.2.15 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhff2d567_0.conda - sha256: 48182a27a8fd855db3a402ed914823802f94c3344c87b0d074facc51411296ee - md5: ca75e235b44ab995655fae392f99595e + url: https://conda.anaconda.org/conda-forge/noarch/deprecated-1.2.15-pyhd8ed1ab_1.conda + sha256: a20ebf2c9b02a6eb32412ceb5c4cffaae49417db7e75414a76417538293a9402 + md5: eaef2e94d5bd76f758545d172c1fda67 depends: - - python >=2.7 + - python >=3.9 - wrapt <2,>=1.10 license: MIT license_family: MIT - size: 14182 - timestamp: 1731836933516 + size: 14297 + timestamp: 1733662697343 - kind: conda name: dill version: 0.3.7 @@ -2353,13 +2329,13 @@ packages: timestamp: 1733208916977 - kind: conda name: fastapi - version: 0.115.5 - build: pyhff2d567_0 + version: 0.115.6 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.5-pyhff2d567_0.conda - sha256: da2833cc2ea5789abc2a6899be02ba0a769386d4913ff182bd1a9458bea40c34 - md5: cfe0f8cd904ab19c36ba50eb5179ebe0 + url: https://conda.anaconda.org/conda-forge/noarch/fastapi-0.115.6-pyhd8ed1ab_0.conda + sha256: d7826d537c667093c9de96411a09585a8d620c84a830a0195e58e9a0df45f018 + md5: 1b1e0c97830cdf75f1f371bd467ab657 depends: - email_validator >=2.0.0 - fastapi-cli >=0.0.5 @@ -2373,8 +2349,8 @@ packages: - uvicorn-standard >=0.12.0 license: MIT license_family: MIT - size: 73541 - timestamp: 1731452895466 + size: 73084 + timestamp: 1733362427885 - kind: conda name: fastapi-cli version: 0.0.5 @@ -2509,18 +2485,19 @@ packages: - kind: conda name: fsspec version: 2024.10.0 - build: pyhff2d567_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhff2d567_0.conda - sha256: 40bb76981dd49d5869b48925a8975bb7bbe4e33e1e40af4ec06f6bf4a62effd7 - md5: 816dbc4679a64e4417cd1385d661bb31 + url: https://conda.anaconda.org/conda-forge/noarch/fsspec-2024.10.0-pyhd8ed1ab_1.conda + sha256: 790a50b4f94042951518f911a914a886a837c926094c6a14ed1d9d03ce336807 + md5: 906fe13095e734cb413b57a49116cdc8 depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 134745 - timestamp: 1729608972363 + size: 134726 + timestamp: 1733493445080 - kind: conda name: gflags version: 2.2.2 @@ -2637,19 +2614,20 @@ packages: - kind: conda name: h11 version: 0.14.0 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_0.tar.bz2 - sha256: 817d2c77d53afe3f3d9cf7f6eb8745cdd8ea76c7adaa9d7ced75c455a2c2c085 - md5: b21ed0883505ba1910994f1df031a428 + url: https://conda.anaconda.org/conda-forge/noarch/h11-0.14.0-pyhd8ed1ab_1.conda + sha256: 622516185a7c740d5c7f27016d0c15b45782c1501e5611deec63fd70344ce7c8 + md5: 7ee49e89531c0dcbba9466f6d115d585 depends: - - python >=3 + - python >=3.9 - typing_extensions license: MIT license_family: MIT - size: 48251 - timestamp: 1664132995560 + size: 51846 + timestamp: 1733327599467 - kind: conda name: h2 version: 4.1.0 @@ -2758,13 +2736,13 @@ packages: timestamp: 1732707871414 - kind: conda name: httpx - version: 0.28.0 + version: 0.28.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.0-pyhd8ed1ab_0.conda - sha256: cb7895446cd93091300accea6afbc8d9811a3c5899922ccfeeff97d9b55909dc - md5: 22878824a87f1af2ad48665f9d5bfcc8 + url: https://conda.anaconda.org/conda-forge/noarch/httpx-0.28.1-pyhd8ed1ab_0.conda + sha256: cd0f1de3697b252df95f98383e9edb1d00386bfdd03fdf607fa42fe5fcb09950 + md5: d6989ead454181f4f9bc987d3dc4e285 depends: - anyio - certifi @@ -2773,17 +2751,17 @@ packages: - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 63183 - timestamp: 1732831049776 + size: 63082 + timestamp: 1733663449209 - kind: conda name: huggingface_hub - version: 0.26.3 + version: 0.26.5 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.3-pyhd8ed1ab_0.conda - sha256: 66ffed967463e4a25f1dc4ca699d85dd55d1d150fed214c6380f11a981e0acb7 - md5: 997fc223fbc616c262f2a32a22d433a4 + url: https://conda.anaconda.org/conda-forge/noarch/huggingface_hub-0.26.5-pyhd8ed1ab_0.conda + sha256: bdbf614d87155c7f9b8fe9c3d039528298119832e9f52959b15c522a9841eef7 + md5: 37236111cd92068e5af2f98cbb476642 depends: - filelock - fsspec >=2023.5.0 @@ -2795,9 +2773,8 @@ packages: - typing-extensions >=3.7.4.3 - typing_extensions >=3.7.4.3 license: Apache-2.0 - license_family: APACHE - size: 274858 - timestamp: 1733170279930 + size: 274900 + timestamp: 1733637007500 - kind: conda name: hyperframe version: 6.0.1 @@ -2829,6 +2806,20 @@ packages: license_family: MIT size: 12282786 timestamp: 1720853454991 +- kind: conda + name: icu + version: '75.1' + build: hfee45f7_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/icu-75.1-hfee45f7_0.conda + sha256: 9ba12c93406f3df5ab0a43db8a4b4ef67a5871dfd401010fbe29b218b2cbe620 + md5: 5eb22c1d7b3fc4abb50d92d621583137 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + size: 11857802 + timestamp: 1720853997952 - kind: conda name: idna version: '3.10' @@ -2875,29 +2866,31 @@ packages: - markupsafe >=2.0 - python >=3.9 license: BSD-3-Clause + license_family: BSD size: 110963 timestamp: 1733217424408 - kind: conda name: jupyter_client version: 8.6.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_0.conda - sha256: 4419c85e209a715f551a5c9bead746f29ee9d0fc41e772a76db3868622795671 - md5: a14218cfb29662b4a19ceb04e93e298e + url: https://conda.anaconda.org/conda-forge/noarch/jupyter_client-8.6.3-pyhd8ed1ab_1.conda + sha256: 19d8bd5bb2fde910ec59e081eeb59529491995ce0d653a5209366611023a0b3a + md5: 4ebae00eae9705b0c3d6d1018a81d047 depends: - importlib-metadata >=4.8.3 - jupyter_core >=4.12,!=5.0.* - - python >=3.8 + - python >=3.9 - python-dateutil >=2.8.2 - pyzmq >=23.0 - tornado >=6.2 - traitlets >=5.3 license: BSD-3-Clause license_family: BSD - size: 106055 - timestamp: 1726610805505 + size: 106342 + timestamp: 1733441040958 - kind: conda name: jupyter_core version: 5.7.2 @@ -3183,30 +3176,32 @@ packages: - kind: conda name: libarrow version: 18.1.0 - build: h654e1bb_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h654e1bb_2_cpu.conda - sha256: 925dcb034f36536eed21d9323f096bf2ebf1111d14c61e1ae0b90e5de131f1e1 - md5: e69934ff9dd8745fea8927028d1603ee + build: h3b07799_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-h3b07799_4_cpu.conda + sha256: 8837dc6e60522eef63554654c45d18143006324c43391c6e8dc5d2b20997466d + md5: 27675c7172667268440306533e4928de depends: - - __osx >=11.0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __glibc >=2.17,<3.0.a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 + - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libcxx >=18 + - libgcc >=13 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 + - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -3215,41 +3210,40 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: - - arrow-cpp <0.0a0 - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 5475725 - timestamp: 1732947802614 + size: 8793521 + timestamp: 1733607374384 - kind: conda name: libarrow version: 18.1.0 - build: hc7b0e1d_2_cpu - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-hc7b0e1d_2_cpu.conda - sha256: 3201944d1f97b9207e566ccf388c8376bb2ce7e461534cda63a28975b6790901 - md5: 4a46bd0be8e7f56a217d26b79d290a0e + build: h86d57b8_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-18.1.0-h86d57b8_4_cpu.conda + sha256: fe6b5eb4d6e71418343b62a0d322ede7be69999b28d9e492164c12e613cf3fa0 + md5: 23431b3fdbb32858d1533da5bc8fcc86 depends: - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - __osx >=11.0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 - azure-storage-files-datalake-cpp >=12.12.0,<12.12.1.0a0 - bzip2 >=1.0.8,<2.0a0 - - gflags >=2.2.2,<2.3.0a0 - glog >=0.7.1,<0.8.0a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - libbrotlidec >=1.1.0,<1.2.0a0 - libbrotlienc >=1.1.0,<1.2.0a0 - - libgcc >=13 + - libcxx >=18 - libgoogle-cloud >=2.31.0,<2.32.0a0 - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - - libstdcxx >=13 - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 @@ -3258,26 +3252,25 @@ packages: - snappy >=1.2.1,<1.3.0a0 - zstd >=1.5.6,<1.6.0a0 constrains: + - parquet-cpp <0.0a0 - apache-arrow-proc =*=cpu - arrow-cpp <0.0a0 - - parquet-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8026783 - timestamp: 1732950110265 + size: 5482797 + timestamp: 1733605365656 - kind: conda name: libarrow version: 18.1.0 - build: he15abb1_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-18.1.0-he15abb1_1_cpu.conda - sha256: afc81af2e533cc35295aebae4fb382e770310d9b1ac31837456b440d35c54cf7 - md5: bd3e35a6f3f869b4777488452f315008 + build: ha2aff55_4_cpu + build_number: 4 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-18.1.0-ha2aff55_4_cpu.conda + sha256: 795950b73029fd4d3b7fee3427c39c7357287fd94244dd5a125ac0931d31aaa3 + md5: c4d60278cb00053df1a4f0600fd2ac2a depends: - - __glibc >=2.17,<3.0.a0 - - aws-crt-cpp >=0.29.6,<0.29.7.0a0 - - aws-sdk-cpp >=1.11.449,<1.11.450.0a0 + - aws-crt-cpp >=0.29.7,<0.29.8.0a0 + - aws-sdk-cpp >=1.11.458,<1.11.459.0a0 - azure-core-cpp >=1.14.0,<1.14.1.0a0 - azure-identity-cpp >=1.10.0,<1.10.1.0a0 - azure-storage-blobs-cpp >=12.13.0,<12.13.1.0a0 @@ -3294,7 +3287,7 @@ packages: - libgoogle-cloud-storage >=2.31.0,<2.32.0a0 - libre2-11 >=2024.7.2 - libstdcxx >=13 - - libutf8proc >=2.8.0,<2.9.0a0 + - libutf8proc >=2.9.0,<2.10.0a0 - libzlib >=1.3.1,<2.0a0 - lz4-c >=1.9.3,<1.10.0a0 - orc >=2.0.3,<2.0.4.0a0 @@ -3303,189 +3296,189 @@ packages: - zstd >=1.5.6,<1.6.0a0 constrains: - parquet-cpp <0.0a0 - - arrow-cpp <0.0a0 - apache-arrow-proc =*=cpu + - arrow-cpp <0.0a0 license: Apache-2.0 license_family: APACHE - size: 8780597 - timestamp: 1732863546099 + size: 8035987 + timestamp: 1733607600970 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h5888daf_1_cpu.conda - sha256: 3de5719a7035baad7e665116dce7bb3d069f0c1916e163c553e2e491bbe8b614 - md5: 6197dcb930f6254e9b2fdc416be56b71 + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h1dc2043_4_cpu.conda + sha256: fe8cb6feeed0858cb8e7cc8889ae20165527934778adb8f7b1f2f5d1f7ade16d + md5: e4ed6162593fbb01f4d742db4215f70c depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libgcc >=13 - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libcxx >=18 license: Apache-2.0 license_family: APACHE - size: 611272 - timestamp: 1732863586114 + size: 483574 + timestamp: 1733605591770 - kind: conda name: libarrow-acero version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h5ad3122_2_cpu.conda - sha256: e6c8988d1d79163d6d13dda21f9e401f5df4b3af7e0d221718522c600894adcf - md5: 14fede66c995f3cf958797e9fb567e22 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-acero-18.1.0-h512cd83_4_cpu.conda + sha256: 9e88f04409da9ca2fedc5f7bf0987ff28e96d08742e59672f744ec4624a4c991 + md5: d532c42abe13841806d97f4d9cd6dcf5 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 577510 - timestamp: 1732950190684 + size: 578174 + timestamp: 1733607685962 - kind: conda name: libarrow-acero version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-acero-18.1.0-h605b82c_2_cpu.conda - sha256: cfe32f1b0712b77d2c792a839fe4ea2790cabd99d47cd8e1b20ba2d3c8b113b2 - md5: 60351279d7dfd7c254c46aabf9aa35a6 + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-acero-18.1.0-h8bbc2ab_4_cpu.conda + sha256: b3b4ddb2718c96c93d9b50dbf8f66265af9198b55852b4d3424c13a79ec3f84d + md5: 82bcbfe424868ce66b5ab986999f534d depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libcxx >=18 + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libgcc >=13 + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 483362 - timestamp: 1732948000606 + size: 610772 + timestamp: 1733607505368 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5888daf_1_cpu - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h5888daf_1_cpu.conda - sha256: 7b3db3d5a7e411f8897e8d74403c1d871f3054300f5009c4bdf75da011bc3f42 - md5: 77501831a2aabbaabac55e8cb3b6900a + build: h1dc2043_4_cpu + build_number: 4 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h1dc2043_4_cpu.conda + sha256: 862fb21b871666495b4bb5e63f5fcb66b93c08893e92412b01e2717e081836eb + md5: bb940b4c583e4c8e5a9f193fabdb5840 depends: - - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libgcc >=13 - - libparquet 18.1.0 h6bd9018_1_cpu - - libstdcxx >=13 + - __osx >=11.0 + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libcxx >=18 + - libparquet 18.1.0 hf4cc9e7_4_cpu license: Apache-2.0 license_family: APACHE - size: 585458 - timestamp: 1732863686753 + size: 489457 + timestamp: 1733607417337 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h5ad3122_2_cpu - build_number: 2 + build: h512cd83_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h5ad3122_2_cpu.conda - sha256: 53cdae2150c22ef9b5d6de8d0ee8ac52eeacc50fdfa2fa3ea644b52436d1eeb1 - md5: c54d83f012a40fef8a2dc4856e4340a0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-dataset-18.1.0-h512cd83_4_cpu.conda + sha256: 4a9ffedc5570ce57a6864e46dcf36ec108557791b50fd43e82eb739f3717ff2f + md5: 1a6c409f45857d30f581a1a53abb2298 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu - libgcc >=13 - - libparquet 18.1.0 h23a96eb_2_cpu + - libparquet 18.1.0 h34a048e_4_cpu - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 559143 - timestamp: 1732950272727 + size: 561495 + timestamp: 1733607973097 - kind: conda name: libarrow-dataset version: 18.1.0 - build: h605b82c_2_cpu - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-dataset-18.1.0-h605b82c_2_cpu.conda - sha256: eeae9e8d382c482076f4739455b53f16851d7f99be219b6f96dd4e765132b446 - md5: b5fcaddabf47aa15e50feff072a55ada + build: h8bbc2ab_4_cpu + build_number: 4 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-dataset-18.1.0-h8bbc2ab_4_cpu.conda + sha256: 9c898ab7377953b8c7218347fdb63376d4f977cabfb8fa6bd1b421a75b8cb335 + md5: fa31464c75b20c2f3ac8fc758e034887 depends: - - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libcxx >=18 - - libparquet 18.1.0 h5168bdf_2_cpu + - __glibc >=2.17,<3.0.a0 + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libgcc >=13 + - libparquet 18.1.0 hf4f6db6_4_cpu + - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 489769 - timestamp: 1732949732423 + size: 585517 + timestamp: 1733607943984 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h14ec2bd_2_cpu - build_number: 2 + build: h3644d33_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h14ec2bd_2_cpu.conda - sha256: e8923d62cfaadc4a8af1735e717fd4980cad693419e63aed04380566d9fd46df - md5: 4fd0103449cf40214fd348643aa78fff + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libarrow-substrait-18.1.0-h3644d33_4_cpu.conda + sha256: ac053b3efd1a2701e6f34195d90a0da21dca22d70916ae6b10a019c2be6cd44c + md5: ce3062cd5caa0bdafa7976535862e648 depends: - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 hc7b0e1d_2_cpu - - libarrow-acero 18.1.0 h5ad3122_2_cpu - - libarrow-dataset 18.1.0 h5ad3122_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu + - libarrow-acero 18.1.0 h512cd83_4_cpu + - libarrow-dataset 18.1.0 h512cd83_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 515352 - timestamp: 1732950311471 + size: 513745 + timestamp: 1733608111290 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h5c8f2c3_1_cpu - build_number: 1 + build: had74209_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-h5c8f2c3_1_cpu.conda - sha256: e77a354bfc0ba7b04c856f1bb16e7b08950bcde54026087bafec46090380fcc1 - md5: 5d47bd2674afd104dbe2f2f3534594b0 + url: https://conda.anaconda.org/conda-forge/linux-64/libarrow-substrait-18.1.0-had74209_4_cpu.conda + sha256: 29e44d6070d64cd4b357e02afeae233d2e90d917a008a2724c9cd463015f0319 + md5: bf261e5fa25ce4acc11a80bdc73b88b2 depends: - __glibc >=2.17,<3.0.a0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 he15abb1_1_cpu - - libarrow-acero 18.1.0 h5888daf_1_cpu - - libarrow-dataset 18.1.0 h5888daf_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu + - libarrow-acero 18.1.0 h8bbc2ab_4_cpu + - libarrow-dataset 18.1.0 h8bbc2ab_4_cpu - libgcc >=13 - libprotobuf >=5.28.2,<5.28.3.0a0 - libstdcxx >=13 license: Apache-2.0 license_family: APACHE - size: 520681 - timestamp: 1732863726954 + size: 519919 + timestamp: 1733608152065 - kind: conda name: libarrow-substrait version: 18.1.0 - build: h9b432b6_2_cpu - build_number: 2 + build: hf3d3107_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-h9b432b6_2_cpu.conda - sha256: 6dde802134bd2e78581eb838c049b2e7e378899706b471f7072222a6b1284b90 - md5: 49e7c0460532a73f34bd127fff009224 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libarrow-substrait-18.1.0-hf3d3107_4_cpu.conda + sha256: 9d9ebd042b9e8561b64f057d2adb24d331a772ccf1af3ed2d8b5b1566729f236 + md5: c093b05dc6d1b6057342d3dd6f3bd0d8 depends: - __osx >=11.0 - libabseil * cxx17* - libabseil >=20240722.0,<20240723.0a0 - - libarrow 18.1.0 h654e1bb_2_cpu - - libarrow-acero 18.1.0 h605b82c_2_cpu - - libarrow-dataset 18.1.0 h605b82c_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu + - libarrow-acero 18.1.0 h1dc2043_4_cpu + - libarrow-dataset 18.1.0 h1dc2043_4_cpu - libcxx >=18 - libprotobuf >=5.28.2,<5.28.3.0a0 license: Apache-2.0 license_family: APACHE - size: 451127 - timestamp: 1732950194322 + size: 451982 + timestamp: 1733607898511 - kind: conda name: libblas version: 3.9.0 @@ -4689,6 +4682,49 @@ packages: license_family: BSD size: 15823 timestamp: 1729643275943 +- kind: conda + name: liblzma + version: 5.6.3 + build: h39f12f2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.6.3-h39f12f2_1.conda + sha256: d863b8257406918ffdc50ae65502f2b2d6cede29404d09a094f59509d6a0aaf1 + md5: b2553114a7f5e20ccd02378a77d836aa + depends: + - __osx >=11.0 + license: 0BSD + size: 99129 + timestamp: 1733407496073 +- kind: conda + name: liblzma + version: 5.6.3 + build: h86ecc28_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/liblzma-5.6.3-h86ecc28_1.conda + sha256: d1cce0b7d62d1e54e2164d3e0667ee808efc6c3870256e5b47a150cd0bf46824 + md5: eb08b903681f9f2432c320e8ed626723 + depends: + - libgcc >=13 + license: 0BSD + size: 124138 + timestamp: 1733409137214 +- kind: conda + name: liblzma + version: 5.6.3 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.6.3-hb9d3cd8_1.conda + sha256: e6e425252f3839e2756e4af1ea2074dffd3396c161bf460629f9dfd6a65f15c6 + md5: 2ecf2f1c7e4e21fcfe6423a51a992d84 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: 0BSD + size: 111132 + timestamp: 1733407410083 - kind: conda name: libnghttp2 version: 1.64.0 @@ -4840,61 +4876,61 @@ packages: - kind: conda name: libparquet version: 18.1.0 - build: h23a96eb_2_cpu - build_number: 2 + build: h34a048e_4_cpu + build_number: 4 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h23a96eb_2_cpu.conda - sha256: 83b8fa4a90e214fcd6018f890947666f055f79563fff2b7c3d5f37d894f3a000 - md5: ce205782960a580fa43cfcccca22ad8d + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libparquet-18.1.0-h34a048e_4_cpu.conda + sha256: 488d82356fc4e6dfd6c10a4100c36af17db1b7eb72cce0bd8973014220dc3066 + md5: 46db27c16b29f48a37a40e3b2c9dcfe3 depends: - - libarrow 18.1.0 hc7b0e1d_2_cpu + - libarrow 18.1.0 ha2aff55_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1115906 - timestamp: 1732950250848 + size: 1117278 + timestamp: 1733607904359 - kind: conda name: libparquet version: 18.1.0 - build: h5168bdf_2_cpu - build_number: 2 + build: hf4cc9e7_4_cpu + build_number: 4 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-h5168bdf_2_cpu.conda - sha256: 454487d113974b923b4214a65aab780fd90c4914390d0b1f4640b1bf60537bff - md5: f995df7ee206617a3e858fd932d7bd2d + url: https://conda.anaconda.org/conda-forge/osx-arm64/libparquet-18.1.0-hf4cc9e7_4_cpu.conda + sha256: ccadab6395090b3cbc54243fcf5c6e49eaee46aaaa4221ca8ca7803a34bdc25d + md5: b462d962b5254923c5f65ce1c68dfc17 depends: - __osx >=11.0 - - libarrow 18.1.0 h654e1bb_2_cpu + - libarrow 18.1.0 h86d57b8_4_cpu - libcxx >=18 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 872333 - timestamp: 1732949558028 + size: 873584 + timestamp: 1733607239103 - kind: conda name: libparquet version: 18.1.0 - build: h6bd9018_1_cpu - build_number: 1 + build: hf4f6db6_4_cpu + build_number: 4 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-h6bd9018_1_cpu.conda - sha256: 0df119f4c1a2387d910e132c670b29ee5b29dd79384549de6f1a43067515c8ba - md5: 1054909202f86e38bbbb7ca1131b8471 + url: https://conda.anaconda.org/conda-forge/linux-64/libparquet-18.1.0-hf4f6db6_4_cpu.conda + sha256: f957b6ea5c4023448891f63f7b184a663d85aa5b2717b0e0ebfbfcf97b542751 + md5: f18b10bf19bb384183f2aa546e9f6f0a depends: - __glibc >=2.17,<3.0.a0 - - libarrow 18.1.0 he15abb1_1_cpu + - libarrow 18.1.0 h3b07799_4_cpu - libgcc >=13 - libstdcxx >=13 - libthrift >=0.21.0,<0.21.1.0a0 - openssl >=3.4.0,<4.0a0 license: Apache-2.0 license_family: APACHE - size: 1203523 - timestamp: 1732863665743 + size: 1204859 + timestamp: 1733607834047 - kind: conda name: libpng version: 1.6.44 @@ -5095,50 +5131,47 @@ packages: timestamp: 1716828607917 - kind: conda name: libsqlite - version: 3.47.0 - build: hadc24fc_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.0-hadc24fc_1.conda - sha256: 8a9aadf996a2399f65b679c6e7f29139d5059f699c63e6d7b50e20db10c00508 - md5: b6f02b52a174e612e89548f4663ce56a + version: 3.47.2 + build: h3f77e49_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.2-h3f77e49_0.conda + sha256: f192f3c8973de9ec4c214990715f13b781965247a5cedf9162e7f9e699cfc3c4 + md5: 122d6f29470f1a991e85608e77e56a8a depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 + - __osx >=11.0 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 875349 - timestamp: 1730208050020 + size: 850553 + timestamp: 1733762057506 - kind: conda name: libsqlite - version: 3.47.0 - build: hbaaea75_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.47.0-hbaaea75_1.conda - sha256: 5a96caa566c11e5a5ebdcdb86a0759a7fb27d3c5f42e6a0fd0d6023c1e935d9e - md5: 07a14fbe439eef078cc479deca321161 + version: 3.47.2 + build: h5eb1b54_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.2-h5eb1b54_0.conda + sha256: 885a27fa84a5a73ed9779168c02b6c386e2fc7a53f0566b32a09ceca146b42b4 + md5: d4bf59f8783a4a66c0aec568f6de3ff4 depends: - - __osx >=11.0 + - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 837683 - timestamp: 1730208293578 + size: 1042182 + timestamp: 1733761913736 - kind: conda name: libsqlite - version: 3.47.0 - build: hc4a20ef_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libsqlite-3.47.0-hc4a20ef_1.conda - sha256: 73e143fdb966b61cd25ab804d416d87dfce43ac684e0fac3ad8b1450796331ab - md5: a6b185aac10d08028340858f77231b23 + version: 3.47.2 + build: hee588c1_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.47.2-hee588c1_0.conda + sha256: 48af21ebc2cbf358976f1e0f4a0ab9e91dfc83d0ef337cf3837c6f5bc22fb352 + md5: b58da17db24b6e08bcbf8fed2fb8c915 depends: + - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libzlib >=1.3.1,<2.0a0 license: Unlicense - size: 1041855 - timestamp: 1730208187962 + size: 873551 + timestamp: 1733761824646 - kind: conda name: libssh2 version: 1.11.1 @@ -5305,86 +5338,70 @@ packages: - kind: conda name: libtiff version: 4.7.0 - build: he137b08_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-he137b08_1.conda - sha256: 9890121db85f6ef463fe12eb04ef1471176e3ef3b5e2d62e8d6dac713df00df4 - md5: 63872517c98aa305da58a757c443698e + build: ha962b0a_2 + build_number: 2 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-ha962b0a_2.conda + sha256: d9e6835fd189b85eb90dbfdcc51f5375decbf5bb53130042f49bbd6bfb0b24be + md5: 8e14b5225c593f099a21971568e6d7b4 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - lerc >=4.0.0,<5.0a0 + - libcxx >=18 - libdeflate >=1.22,<1.23.0a0 - - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 - - libstdcxx >=13 + - liblzma >=5.6.3,<6.0a0 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 428156 - timestamp: 1728232228989 + size: 370387 + timestamp: 1733443310502 - kind: conda name: libtiff version: 4.7.0 - build: hec21d91_1 - build_number: 1 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hec21d91_1.conda - sha256: 14ecb9e129b1b5ffd6d4bee48de95cd2cd0973c712e1b965d3ef977cca23936d - md5: 1f80061f5ba6956fcdc381f34618cd8d + build: hc4654cb_2 + build_number: 2 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libtiff-4.7.0-hc4654cb_2.conda + sha256: 18653b4a5c73e19c5e86ff72dab9bf59f5cc43d7f404a6be705d152dfd5e0660 + md5: be54fb40ea32e8fe9dbaa94d4528b57e depends: + - __glibc >=2.17,<3.0.a0 - lerc >=4.0.0,<5.0a0 - libdeflate >=1.22,<1.23.0a0 - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 464938 - timestamp: 1728232266969 + size: 429018 + timestamp: 1733443013288 - kind: conda name: libtiff version: 4.7.0 - build: hfce79cd_1 - build_number: 1 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libtiff-4.7.0-hfce79cd_1.conda - sha256: 97ba24c74750b6e731b3fe0d2a751cda6148b4937d2cc3f72d43bf7b3885c39d - md5: b9abf45f7c64caf3303725f1aa0e9a4d + build: hca96517_2 + build_number: 2 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libtiff-4.7.0-hca96517_2.conda + sha256: d736d840d1f2446234195adfcb51b132c85797730b6f42ebf058d350fa9d20e8 + md5: 278dcef6d1ea28c04109c3f5dea126cb depends: - - __osx >=11.0 - lerc >=4.0.0,<5.0a0 - - libcxx >=17 - libdeflate >=1.22,<1.23.0a0 + - libgcc >=13 - libjpeg-turbo >=3.0.0,<4.0a0 + - liblzma >=5.6.3,<6.0a0 + - libstdcxx >=13 - libwebp-base >=1.4.0,<2.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - zstd >=1.5.6,<1.6.0a0 license: HPND - size: 366323 - timestamp: 1728232400072 -- kind: conda - name: libutf8proc - version: 2.8.0 - build: hf23e847_1 - build_number: 1 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.8.0-hf23e847_1.conda - sha256: 104cf5b427fc914fec63e55f685a39480abeb4beb34bdbc77dea084c8f5a55cb - md5: b1aa0faa95017bca11369bd080487ec4 - depends: - - __glibc >=2.17,<3.0.a0 - - libgcc >=13 - license: MIT - license_family: MIT - size: 80852 - timestamp: 1732829699583 + size: 464857 + timestamp: 1733443105529 - kind: conda name: libutf8proc version: 2.9.0 @@ -5415,6 +5432,22 @@ packages: license_family: MIT size: 81526 timestamp: 1732868466862 +- kind: conda + name: libutf8proc + version: 2.9.0 + build: hb9d3cd8_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/libutf8proc-2.9.0-hb9d3cd8_1.conda + sha256: 9794e6388e780c3310d46f773bbc924d4053375c3fcdb07a704b57f4616db928 + md5: 1e936bd23d737aac62a18e9a1e7f8b18 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: MIT + license_family: MIT + size: 81500 + timestamp: 1732868419835 - kind: conda name: libuuid version: 2.38.1 @@ -5615,60 +5648,62 @@ packages: - kind: conda name: libxml2 version: 2.13.5 - build: h064dc61_0 + build: h0d44e9d_1 + build_number: 1 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h064dc61_0.conda - sha256: 7ab7fb45a0014981d35247cd5b09057fc8ed3c07378086a6c7ad552915928647 - md5: fb16b85a5be1328ac1c44b098b74c570 + url: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.13.5-h0d44e9d_1.conda + sha256: 306e18aa647d8208ad2cd0e62d84933222b2fbe93d2d53cd5283d2256b1d54de + md5: f5b05674697ae7d2c5932766695945e1 depends: - __glibc >=2.17,<3.0.a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 constrains: - icu <0.0a0 license: MIT license_family: MIT - size: 689363 - timestamp: 1731489619071 + size: 689993 + timestamp: 1733443678322 - kind: conda name: libxml2 version: 2.13.5 - build: h376fa9f_0 + build: h178c5d8_1 + build_number: 1 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h376fa9f_0.conda - sha256: d443703d324f3dbd628d58ea498ab0e474c06d5771e7f55baf215fdbc11ceb87 - md5: adea92805465ed3dcf0776b428e34744 + url: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.13.5-h178c5d8_1.conda + sha256: d7af3f25a4cece170502acd38f2dafbea4521f373f46dcb28a37fbe6ac2da544 + md5: 3dc3cff0eca1640a6acbbfab2f78139e depends: - __osx >=11.0 + - icu >=75.1,<76.0a0 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 - constrains: - - icu <0.0a0 license: MIT license_family: MIT - size: 582076 - timestamp: 1731489850179 + size: 582898 + timestamp: 1733443841584 - kind: conda name: libxml2 version: 2.13.5 - build: hf4efe5d_0 + build: h2e0c361_1 + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-hf4efe5d_0.conda - sha256: bb5033bd79371e82886f9e83ef86babae8e0f50b77d7f9302210345b9205d939 - md5: 5650ac8a6ed680c032bdabe40ad19ee0 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/libxml2-2.13.5-h2e0c361_1.conda + sha256: dc0e86d35a836af6e99d18f50c6551fc64c53ed3a3da5a9fea90e78763cf14b4 + md5: 63410f85031930cde371dfe0ee89109a depends: - icu >=75.1,<76.0a0 - libgcc >=13 - libiconv >=1.17,<2.0a0 + - liblzma >=5.6.3,<6.0a0 - libzlib >=1.3.1,<2.0a0 - - xz >=5.2.6,<6.0a0 license: MIT license_family: MIT - size: 734453 - timestamp: 1731489860751 + size: 732155 + timestamp: 1733443825814 - kind: conda name: libzlib version: 1.3.1 @@ -5738,20 +5773,20 @@ packages: timestamp: 1733310809397 - kind: conda name: llvm-openmp - version: 19.1.4 + version: 19.1.5 build: hdb05f8b_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.4-hdb05f8b_0.conda - sha256: dfdcd8de37899d984326f9734b28f46f80b88c068e44c562933a8b3117f2401a - md5: 76ca179ec970bea6e275e2fa477c2d3c + url: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-19.1.5-hdb05f8b_0.conda + sha256: e7ba0d8b718925efdcf1309f5e776e3264cc172d3af8d4048b39627c50a1abc0 + md5: f2c2e187a1d2637d282e34dc92021a70 depends: - __osx >=11.0 constrains: - - openmp 19.1.4|19.1.4.* + - openmp 19.1.5|19.1.5.* license: Apache-2.0 WITH LLVM-exception license_family: APACHE - size: 281554 - timestamp: 1732102484807 + size: 281120 + timestamp: 1733376089600 - kind: conda name: lz4-c version: 1.9.4 @@ -5874,76 +5909,76 @@ packages: timestamp: 1733219945697 - kind: conda name: max - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120306-release.conda - sha256: 2aae2a8286dca29453e8cc8cfe13511aa016a521ac0c9201ceb24d1ba6c4138e - md5: 9c25081ace6ad2c13675cf0123109cb9 - depends: - - max-core ==24.6.0.dev2024120306 release - - max-python >=24.6.0.dev2024120306,<25.0a0 - - mojo-jupyter ==24.6.0.dev2024120306 release - - mblack ==24.6.0.dev2024120306 release + url: https://conda.modular.com/max-nightly/noarch/max-24.6.0.dev2024120905-release.conda + sha256: 37a6103a6b2c7886ed5837d41a819f1a127eef7e810b2b5ecfb03f7caf263514 + md5: b13d61319f43570ce681408a1b27d9d5 + depends: + - max-core ==24.6.0.dev2024120905 release + - max-python >=24.6.0.dev2024120905,<25.0a0 + - mojo-jupyter ==24.6.0.dev2024120905 release + - mblack ==24.6.0.dev2024120905 release license: LicenseRef-Modular-Proprietary - size: 9929 - timestamp: 1733209293577 + size: 9911 + timestamp: 1733721408716 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120306-release.conda - sha256: a82534696c6e078fb4e14b4b0f058336ffd0a647f7404e85aaee18eec25be067 - md5: c249d77d8e5885dd0eacd9028131413f + url: https://conda.modular.com/max-nightly/linux-64/max-core-24.6.0.dev2024120905-release.conda + sha256: 0f94138601ceab2c8b277c7d175d762840072cfdfd0ead7264fbd1ff9f70442d + md5: 00617be1a2fef13b5630d9cbe92f9d3c depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 254711372 - timestamp: 1733209193854 + size: 247639885 + timestamp: 1733721408714 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120306-release.conda - sha256: bd0858a3e2069a86cd71370322e7ac26ad3948225e4f0811e4fbf8771d44d0ea - md5: e5b6ae7316dc2b08a52cee8f27b4f484 + url: https://conda.modular.com/max-nightly/linux-aarch64/max-core-24.6.0.dev2024120905-release.conda + sha256: 1aaf2ffb09d6a2aa6b65d76c381476eb88947470580a0d56909bfd578d5eb385 + md5: c7ff53814f0c254c75dc7ab8f0c66b38 depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 258488596 - timestamp: 1733209293575 + size: 251498878 + timestamp: 1733721396377 - kind: conda name: max-core - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120306-release.conda - sha256: 88b5f2cbb2724067d33b10515613ec845f134c3758fd063852ac191a276d7812 - md5: 05acbd2d9cf25aa913a979aa9802c194 + url: https://conda.modular.com/max-nightly/osx-arm64/max-core-24.6.0.dev2024120905-release.conda + sha256: 00cc8ce6adc131b858df51423201b8f028aa944ac09e56c563a1108c22eaccd2 + md5: 71554a4c0e81a1034908bc1cb716b30b depends: - - mblack ==24.6.0.dev2024120306 release + - mblack ==24.6.0.dev2024120905 release arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 220248523 - timestamp: 1733209020078 + size: 212030191 + timestamp: 1733721567995 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-64 - url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 78dc00af885799e8c1f92185a505aee022f2ffd7191d24fa94ef428457f53e15 - md5: 4bdce0c1dd562e22566551d578103d2f + url: https://conda.modular.com/max-nightly/linux-64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 43245b47050208329e85a69f2af24d42c622e92e1542334a6106eaadb6cbf0ff + md5: 9a6037de6672120d1d6d53673b699d5b depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -5953,7 +5988,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -5966,18 +6000,18 @@ packages: arch: x86_64 platform: linux license: LicenseRef-Modular-Proprietary - size: 128537272 - timestamp: 1733209193862 + size: 123751303 + timestamp: 1733721408724 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: linux-aarch64 - url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: 3910ceb9135f2258df30dd7a5d87b8f80a284645d6da48daa0e9bb145a49744e - md5: e7d3ebeaaeb2bd99167fda861a7e7aba + url: https://conda.modular.com/max-nightly/linux-aarch64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: fdedbc8a2ca34d0593e8b2175ca07c07d6d0564f138f535ebff02975ef463f55 + md5: bc9f6ce493d2beb1089e1e409bb373ba depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -5987,7 +6021,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -6000,18 +6033,18 @@ packages: arch: aarch64 platform: linux license: LicenseRef-Modular-Proprietary - size: 132223349 - timestamp: 1733209293584 + size: 127400047 + timestamp: 1733721396388 - kind: conda name: max-python - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: 3.12release subdir: osx-arm64 - url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120306-3.12release.conda - sha256: ddafa4f7201fca06f38e8a0232cdbbb918d6a24c03cb25a0137d4fcc0ca9f354 - md5: 9859f8c88c81c18baaddd15be03d259c + url: https://conda.modular.com/max-nightly/osx-arm64/max-python-24.6.0.dev2024120905-3.12release.conda + sha256: 0cd6b2e3bdc78483665045e91b8db7a8a3d6c85fbf4b8a44d6eb742a46361af1 + md5: c1b7eb7d1a43e28224bf41220ece9b58 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python 3.12.* - pillow - fastapi @@ -6021,7 +6054,6 @@ packages: - opentelemetry-api - opentelemetry-exporter-otlp-proto-http >=1.27.0 - opentelemetry-exporter-prometheus >=0.48b0 - - opentelemetry-instrumentation-fastapi - opentelemetry-sdk >=1.27.0 - pydantic-settings >=2.4.0,<3 - pydantic >=2.4.0,<3 @@ -6034,17 +6066,17 @@ packages: arch: arm64 platform: osx license: LicenseRef-Modular-Proprietary - size: 119113363 - timestamp: 1733209020082 + size: 112450493 + timestamp: 1733721567998 - kind: conda name: mblack - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120306-release.conda - sha256: 35b22caab89b65a52b9e7877762a58bba8cd21137ac1383e268b8a2ae45173ac - md5: f77eafd932de3ae309643ea716ba3c3a + url: https://conda.modular.com/max-nightly/noarch/mblack-24.6.0.dev2024120905-release.conda + sha256: e302e262a58592b5b8614829237760967d685cb20a44e54981916eb6c2b6b7a2 + md5: b34a59910660011ad1f42bfc1ae4ae54 depends: - python >=3.9,<3.13 - click >=8.0.0 @@ -6054,8 +6086,8 @@ packages: - platformdirs >=2 - python license: MIT - size: 130649 - timestamp: 1733209293580 + size: 130740 + timestamp: 1733721408720 - kind: conda name: mdurl version: 0.1.2 @@ -6069,25 +6101,26 @@ packages: depends: - python >=3.9 license: MIT + license_family: MIT size: 14465 timestamp: 1733255681319 - kind: conda name: mojo-jupyter - version: 24.6.0.dev2024120306 + version: 24.6.0.dev2024120905 build: release subdir: noarch noarch: python - url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120306-release.conda - sha256: dd1fcd4298ef08be4507931babe70d6b335dc28d5ead602460747edc4f10c2dc - md5: 8bb40dfabe84757d93d3053fdf4b0a58 + url: https://conda.modular.com/max-nightly/noarch/mojo-jupyter-24.6.0.dev2024120905-release.conda + sha256: bb71277508a55875b6011651bc825599e26a47145ab1e9c4e7c2abd853200a00 + md5: 4fc85c9cb1efe841b69d339d4da5b3a1 depends: - - max-core ==24.6.0.dev2024120306 release + - max-core ==24.6.0.dev2024120905 release - python >=3.9,<3.13 - jupyter_client >=8.6.2,<8.7 - python license: LicenseRef-Modular-Proprietary - size: 22940 - timestamp: 1733209293581 + size: 11366 + timestamp: 1733721408720 - kind: conda name: multidict version: 6.1.0 @@ -6425,21 +6458,21 @@ packages: - kind: conda name: opentelemetry-api version: 1.28.2 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_0.conda - sha256: e267ed59ea8f357c3471defef796ce4f4555eacd9ee0ed2d47d3dd539ee7ee2f - md5: f1307fb38a8fd2220def45ec1691a21c + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-api-1.28.2-pyhd8ed1ab_1.conda + sha256: 780dbc942a6075db7bdbaf556023be50c34a6111a99e465878d7bab0e5e0d7f4 + md5: a06f1e9d97c98d26f06675236c9ea554 depends: - deprecated >=1.2.6 - importlib-metadata >=6.0.0,<7.1.0 - - python >=3.8 + - python >=3.9 - setuptools >=16.0 license: Apache-2.0 - license_family: APACHE - size: 44014 - timestamp: 1731985724169 + size: 44242 + timestamp: 1733734361129 - kind: conda name: opentelemetry-exporter-otlp-proto-common version: 1.28.2 @@ -6497,66 +6530,6 @@ packages: license_family: APACHE size: 14721 timestamp: 1695214221489 -- kind: conda - name: opentelemetry-instrumentation - version: 0.49b2 - build: pyhff2d567_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-0.49b2-pyhff2d567_0.conda - sha256: ee20ad159bc040642fcbce1b25f8a9fc1d788b53c6bf593a0891bf7887ec7c5f - md5: 13d714acd504cd0141688c908521c0b9 - depends: - - opentelemetry-api ~=1.4 - - opentelemetry-semantic-conventions 0.49b2 - - packaging >=18.0 - - python >=3.9 - - setuptools >=16.0 - - wrapt <2.0.0,>=1.0.0 - license: Apache-2.0 - license_family: APACHE - size: 31616 - timestamp: 1732070359772 -- kind: conda - name: opentelemetry-instrumentation-asgi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-asgi-0.49b2-pyhd8ed1ab_0.conda - sha256: 7b2b4da037baa506a82c5e3e711905f34448441e069a6e3affb0e4917b3ee5e0 - md5: 482ad6cdc507689d5c33eb22aa16d83e - depends: - - asgiref ~=3.0 - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 23749 - timestamp: 1732086813641 -- kind: conda - name: opentelemetry-instrumentation-fastapi - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-instrumentation-fastapi-0.49b2-pyhd8ed1ab_0.conda - sha256: e853f62b4c56e308f349a3f360cf4d6aa814a9dc926e727c25effcf4121af68c - md5: 59c01fcead989ba58c5dc79e3ac3aab3 - depends: - - opentelemetry-api ~=1.12 - - opentelemetry-instrumentation 0.49b2 - - opentelemetry-instrumentation-asgi 0.49b2 - - opentelemetry-semantic-conventions 0.49b2 - - opentelemetry-util-http 0.49b2 - - python >=3.7 - license: Apache-2.0 - license_family: APACHE - size: 20288 - timestamp: 1732093785486 - kind: conda name: opentelemetry-proto version: 1.28.2 @@ -6595,35 +6568,20 @@ packages: - kind: conda name: opentelemetry-semantic-conventions version: 0.49b2 - build: pyh10f6f8f_0 + build: pyh3cfb1c2_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh10f6f8f_0.conda - sha256: 5e3869ad66082b16d56bab8219fad0c8c09090ec93eb866327eed788fe5c9340 - md5: d95dd6e8a70417e394bb16dad5cff408 + url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-semantic-conventions-0.49b2-pyh3cfb1c2_1.conda + sha256: 28180ffa6611f117c782c7d72066b50332c1df0bdcfed0dea4e446a20c4b7d10 + md5: e0ada55d18e6bd5a8e61943b4b5d3a8f depends: - deprecated >=1.2.6 - opentelemetry-api 1.28.2 - python >=3.9 license: Apache-2.0 - license_family: APACHE - size: 81534 - timestamp: 1732067304518 -- kind: conda - name: opentelemetry-util-http - version: 0.49b2 - build: pyhd8ed1ab_0 - subdir: noarch - noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/opentelemetry-util-http-0.49b2-pyhd8ed1ab_0.conda - sha256: 73bb1cbb640b0732c1a04764a9704bb048ab77d6cb9c6439eb50ec0ecf926ede - md5: f267c60fc629a9bd1aa388f6ed8ea0ab - depends: - - python >=3.8 - license: Apache-2.0 - license_family: APACHE - size: 19241 - timestamp: 1732081026829 + size: 81099 + timestamp: 1733749104727 - kind: conda name: orc version: 2.0.3 @@ -6789,6 +6747,7 @@ packages: depends: - python >=3.9 license: MPL-2.0 + license_family: MOZILLA size: 41075 timestamp: 1733233471940 - kind: conda @@ -6878,78 +6837,75 @@ packages: depends: - python >=3.9 license: MIT + license_family: MIT size: 20448 timestamp: 1733232756001 - kind: conda name: prometheus_client - version: 0.21.0 - build: pyhd8ed1ab_1 - build_number: 1 + version: 0.21.1 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.0-pyhd8ed1ab_1.conda - sha256: 0215ecb6f134a66478e41292e25f43f161d5609ffe6f008d81cf048d54e6707a - md5: 0d061da74f3f1ce77cc805e40f59ca5f + url: https://conda.anaconda.org/conda-forge/noarch/prometheus_client-0.21.1-pyhd8ed1ab_0.conda + sha256: bc8f00d5155deb7b47702cb8370f233935704100dbc23e30747c161d1b6cf3ab + md5: 3e01e386307acc60b2f89af0b2e161aa depends: - python >=3.9 license: Apache-2.0 license_family: Apache - size: 48934 - timestamp: 1733302033341 + size: 49002 + timestamp: 1733327434163 - kind: conda name: propcache - version: 0.2.0 - build: py312h024a12e_2 - build_number: 2 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.0-py312h024a12e_2.conda - sha256: 0f3a04675c6c473398f0aaa95c259e0a085d5ec106b4fa89a7efeb7cc73d5dd2 - md5: 6693e523bc43c38508efe14ab3374f0c + version: 0.2.1 + build: py312h66e93f0_0 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.1-py312h66e93f0_0.conda + sha256: 5771311fb5ded614ca349c92579a0b752af55a310f40b71fc533e20625965391 + md5: 55d5742a696d7da1c1262e99b6217ceb depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 - python >=3.12,<3.13.0a0 - - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 47796 - timestamp: 1728545963127 + size: 52747 + timestamp: 1733391916349 - kind: conda name: propcache - version: 0.2.0 - build: py312h66e93f0_2 - build_number: 2 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/propcache-0.2.0-py312h66e93f0_2.conda - sha256: be7aa0056680dd6e528b7992169a20dd525b94f62d37c8ba0fbf69bd4e8df57d - md5: 2c6c0c68f310bc33972e7c83264d7786 + version: 0.2.1 + build: py312hb2c0f52_0 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.1-py312hb2c0f52_0.conda + sha256: c7f62c11ed929ccf1f3d4a1e200e28be01e8d0e0786bf8f76c5893f2ea681e1b + md5: 50ab8953e7ff1333a4a47cda32e68123 depends: - - __glibc >=2.17,<3.0.a0 - libgcc >=13 - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53498 - timestamp: 1728545927816 + size: 52484 + timestamp: 1733391993461 - kind: conda name: propcache - version: 0.2.0 - build: py312hb2c0f52_2 - build_number: 2 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/propcache-0.2.0-py312hb2c0f52_2.conda - sha256: 50dad7604b6c20440baf081700b5d6829097121e65f34fd1a15508b20fbecc07 - md5: 8a258196d6f79ad32d3ea4dd4572f721 + version: 0.2.1 + build: py312hea69d52_0 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/propcache-0.2.1-py312hea69d52_0.conda + sha256: f8c266c494aa1e4cfb8bf0b6fca060044b2f3d65afe4c5062ebeea382e77aa6d + md5: c84e3dd97fe25a17322c4a0f670c6750 depends: - - libgcc >=13 + - __osx >=11.0 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: APACHE - size: 53507 - timestamp: 1728546155066 + size: 48225 + timestamp: 1733392308901 - kind: conda name: protobuf version: 5.28.2 @@ -7311,6 +7267,7 @@ packages: depends: - python >=3.9 license: BSD-2-Clause + license_family: BSD size: 876700 timestamp: 1733221731178 - kind: conda @@ -7383,91 +7340,94 @@ packages: timestamp: 1733217331982 - kind: conda name: python - version: 3.12.7 - build: h5d932e8_0_cpython + version: 3.12.8 + build: h1683364_1_cpython + build_number: 1 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.7-h5d932e8_0_cpython.conda - sha256: 25570873d92d4d9490c6db780cc85e6c28bd3ff61dc1ece79f602cf82bc73bc1 - md5: e6cab21bb5787270388939cf41cc5f43 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/python-3.12.8-h1683364_1_cpython.conda + sha256: 85573582d5b0f79923fed0a8365d3d74d21eee9f0a5fa1b9345f191e006363ab + md5: 09ec612ea05370989eaa3d81abf0f369 depends: - bzip2 >=1.0.8,<2.0a0 - ld_impl_linux-aarch64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libsqlite >=3.47.0,<4.0a0 - libuuid >=2.38.1,<3.0a0 - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 13762126 - timestamp: 1728057461028 + size: 13760816 + timestamp: 1733407890896 - kind: conda name: python - version: 3.12.7 - build: h739c21a_0_cpython - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.7-h739c21a_0_cpython.conda - sha256: 45d7ca2074aa92594bd2f91a9003b338cc1df8a46b9492b7fc8167110783c3ef - md5: e0d82e57ebb456077565e6d82cd4a323 + version: 3.12.8 + build: h9e4cc4f_1_cpython + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.8-h9e4cc4f_1_cpython.conda + sha256: 3f0e0518c992d8ccfe62b189125721309836fe48a010dc424240583e157f9ff0 + md5: 7fd2fd79436d9b473812f14e86746844 depends: - - __osx >=11.0 + - __glibc >=2.17,<3.0.a0 - bzip2 >=1.0.8,<2.0a0 - - libexpat >=2.6.3,<3.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libsqlite >=3.46.1,<4.0a0 + - libgcc >=13 + - liblzma >=5.6.3,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.47.0,<4.0a0 + - libuuid >=2.38.1,<3.0a0 + - libxcrypt >=4.4.36 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 12975439 - timestamp: 1728057819519 + size: 31565686 + timestamp: 1733410597922 - kind: conda name: python - version: 3.12.7 - build: hc5c86c4_0_cpython - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.7-hc5c86c4_0_cpython.conda - sha256: 674be31ff152d9f0e0fe16959a45e3803a730fc4f54d87df6a9ac4e6a698c41d - md5: 0515111a9cdf69f83278f7c197db9807 + version: 3.12.8 + build: hc22306f_1_cpython + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.8-hc22306f_1_cpython.conda + sha256: 7586a711b1b08a9df8864e26efdc06980bdfb0e18d5ac4651d0fee30a8d3e3a0 + md5: 54ca5b5d92ef3a3ba61e195ee882a518 depends: - - __glibc >=2.17,<3.0.a0 + - __osx >=11.0 - bzip2 >=1.0.8,<2.0a0 - - ld_impl_linux-64 >=2.36.1 - - libexpat >=2.6.3,<3.0a0 + - libexpat >=2.6.4,<3.0a0 - libffi >=3.4,<4.0a0 - - libgcc >=13 - - libnsl >=2.0.1,<2.1.0a0 - - libsqlite >=3.46.1,<4.0a0 - - libuuid >=2.38.1,<3.0a0 - - libxcrypt >=4.4.36 + - liblzma >=5.6.3,<6.0a0 + - libsqlite >=3.47.0,<4.0a0 - libzlib >=1.3.1,<2.0a0 - ncurses >=6.5,<7.0a0 - - openssl >=3.3.2,<4.0a0 + - openssl >=3.4.0,<4.0a0 - readline >=8.2,<9.0a0 - tk >=8.6.13,<8.7.0a0 - tzdata - - xz >=5.2.6,<6.0a0 constrains: - python_abi 3.12.* *_cp312 license: Python-2.0 - size: 31574780 - timestamp: 1728059777603 + size: 12998673 + timestamp: 1733408900971 - kind: conda name: python-dateutil version: 2.9.0.post0 @@ -7519,18 +7479,19 @@ packages: - kind: conda name: python-multipart version: 0.0.19 - build: pyhff2d567_0 + build: pyhff2d567_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_0.conda - sha256: ff5964cd5eafc118f9d9a15fd31cd88a7ecc756ef83b6095c69b1891a53e2177 - md5: fe524346d3a9aa0aaf353dc39f7d1715 + url: https://conda.anaconda.org/conda-forge/noarch/python-multipart-0.0.19-pyhff2d567_1.conda + sha256: e6f6bc3d2a51f45ca26d556c5a416efdacf49a918fefcd0b7c340121e608aa5f + md5: c74333aa447ed2b94d49e5db23da5de6 depends: - python >=3.9 license: Apache-2.0 license_family: Apache - size: 27780 - timestamp: 1733062326577 + size: 27768 + timestamp: 1733323160772 - kind: conda name: python-tzdata version: '2024.2' @@ -7544,6 +7505,7 @@ packages: depends: - python >=3.9 license: Apache-2.0 + license_family: APACHE size: 142235 timestamp: 1733235414217 - kind: conda @@ -7949,21 +7911,22 @@ packages: - kind: conda name: rich version: 13.9.4 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_0.conda - sha256: c009488fc07fd5557434c9c1ad32ab1dd50241d6a766e4b2b4125cd6498585a8 - md5: bcf8cc8924b5d20ead3d122130b8320b + url: https://conda.anaconda.org/conda-forge/noarch/rich-13.9.4-pyhd8ed1ab_1.conda + sha256: 06a760c5ae572e72e865d5a87e9fe3cc171e1a9c996e63daf3db52ff1a0b4457 + md5: 7aed65d4ff222bfb7335997aa40b7da5 depends: - markdown-it-py >=2.2.0 - pygments >=2.13.0,<3.0.0 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0.0,<5.0.0 license: MIT license_family: MIT - size: 185481 - timestamp: 1730592349978 + size: 185646 + timestamp: 1733342347277 - kind: conda name: s2n version: 1.5.9 @@ -8081,69 +8044,73 @@ packages: depends: - python >=3.9 license: MIT + license_family: MIT size: 14462 timestamp: 1733301007770 - kind: conda name: six - version: 1.16.0 - build: pyhd8ed1ab_1 - build_number: 1 + version: 1.17.0 + build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/six-1.16.0-pyhd8ed1ab_1.conda - sha256: 761b96fe7bea080b9c35dd2f87f788eb94b61d462645bd16f361e80ae0ff017c - md5: a516da6cfe1ec0a55e49737f017b4965 + url: https://conda.anaconda.org/conda-forge/noarch/six-1.17.0-pyhd8ed1ab_0.conda + sha256: 41db0180680cc67c3fa76544ffd48d6a5679d96f4b71d7498a759e94edc9a2db + md5: a451d576819089b0d672f18768be0f65 depends: - python >=3.9 license: MIT license_family: MIT size: 16385 - timestamp: 1733216901349 + timestamp: 1733381032766 - kind: conda name: snappy version: 1.2.1 - build: h1088aeb_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-h1088aeb_0.conda - sha256: 79f5d0a9098acf2ed16e6ecc4c11472b50ccf59feea37a7d585fd43888d7e41f - md5: e4ed5b015f525b56f95c26d85a4ea208 + build: h8bd8927_1 + build_number: 1 + subdir: linux-64 + url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-h8bd8927_1.conda + sha256: ec91e86eeb2c6bbf09d51351b851e945185d70661d2ada67204c9a6419d282d3 + md5: 3b3e64af585eadfb52bb90b553db5edf depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 42888 - timestamp: 1720003817527 + size: 42739 + timestamp: 1733501881851 - kind: conda name: snappy version: 1.2.1 - build: ha2e4443_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/snappy-1.2.1-ha2e4443_0.conda - sha256: dc7c8e0e8c3e8702aae81c52d940bfaabe756953ee51b1f1757e891bab62cf7f - md5: 6b7dcc7349efd123d493d2dbe85a045f + build: h98b9ce2_1 + build_number: 1 + subdir: osx-arm64 + url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-h98b9ce2_1.conda + sha256: 4242f95b215127a006eb664fe26ed5a82df87e90cbdbc7ce7ff4971f0720997f + md5: ded86dee325290da2967a3fea3800eb5 depends: - - libgcc-ng >=12 - - libstdcxx-ng >=12 + - __osx >=11.0 + - libcxx >=18 license: BSD-3-Clause license_family: BSD - size: 42465 - timestamp: 1720003704360 + size: 35857 + timestamp: 1733502172664 - kind: conda name: snappy version: 1.2.1 - build: hd02b534_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/snappy-1.2.1-hd02b534_0.conda - sha256: cb7a9440241c6092e0f1c795fdca149c4767023e783eaf9cfebc501f906b4897 - md5: 69d0f9694f3294418ee935da3d5f7272 + build: hd4fb6f5_1 + build_number: 1 + subdir: linux-aarch64 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/snappy-1.2.1-hd4fb6f5_1.conda + sha256: c4a07ae5def8d55128f25a567a296ef9d7bf99a3bc79d46bd5160c076a5f50af + md5: 2fcc6cd1e5550deb509073fd2e6693e1 depends: - - __osx >=11.0 - - libcxx >=16 + - libgcc >=13 + - libstdcxx >=13 license: BSD-3-Clause license_family: BSD - size: 35708 - timestamp: 1720003794374 + size: 43032 + timestamp: 1733501964775 - kind: conda name: sniffio version: 1.3.1 @@ -8181,20 +8148,21 @@ packages: - kind: conda name: starlette version: 0.41.3 - build: pyh7900ff3_0 + build: pyha770c72_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyh7900ff3_0.conda - sha256: 33986032cb0515f7e9f6647d07006b7dc49b3f373b73d5a1826e6979c661b27a - md5: 0889c5a3e95d8c382cff7556757aedb0 + url: https://conda.anaconda.org/conda-forge/noarch/starlette-0.41.3-pyha770c72_1.conda + sha256: b74fc76107487eb26624c01fc55bfab7eed03ae82e003333c86d8a1eeac53672 + md5: 0207dac04ae2200701fab697f0aaaac4 depends: - anyio >=3.4.0,<5 - python >=3.9 - typing_extensions >=3.10.0 license: BSD-3-Clause license_family: BSD - size: 59069 - timestamp: 1732037161800 + size: 58838 + timestamp: 1733344472634 - kind: conda name: tk version: 8.6.13 @@ -8243,12 +8211,12 @@ packages: timestamp: 1699202167581 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312h8360d73_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.20.4-py312h8360d73_0.conda - sha256: 7b59759739b5426e17825b26d6ce9df487d1dc254d4e6a92b14a97107eb6daca - md5: 035c6de3c821559bf1af5ec072593bfd + url: https://conda.anaconda.org/conda-forge/linux-64/tokenizers-0.21.0-py312h8360d73_0.conda + sha256: 4f504a5e9d77c6d88a8f735c4319429d8bf40b742384f908a2efe0a09acc3cc5 + md5: f953aa733207f3d37acf4a3efbedba89 depends: - __glibc >=2.17,<3.0.a0 - huggingface_hub >=0.16.4,<1.0 @@ -8261,16 +8229,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2259332 - timestamp: 1732657962717 + size: 2258007 + timestamp: 1732734202127 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312ha0d6ea1_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.20.4-py312ha0d6ea1_0.conda - sha256: 6dbb7e5f3f152210817e8658bc454056e464dee16fd9757508f2417edd44d8b8 - md5: b135e3d9178b255993ea4d72741192f8 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/tokenizers-0.21.0-py312ha0d6ea1_0.conda + sha256: ef0f4d4e2c798b1821187ea0ba4c86484e48abaa0e9a19fe68030fa7ff5dde84 + md5: 077f48c9e0c08a30d842e15c51df4143 depends: - huggingface_hub >=0.16.4,<1.0 - libgcc >=13 @@ -8283,16 +8251,16 @@ packages: - __glibc >=2.17 license: Apache-2.0 license_family: APACHE - size: 2330899 - timestamp: 1732658129796 + size: 2331194 + timestamp: 1732734303196 - kind: conda name: tokenizers - version: 0.20.4 + version: 0.21.0 build: py312hf3e4074_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.20.4-py312hf3e4074_0.conda - sha256: fd86f8a5d41622e8f5092913dea48f41de86258583ee449045905a725672fdc2 - md5: 40e8bc575721b4da76712e90e4a9b7fa + url: https://conda.anaconda.org/conda-forge/osx-arm64/tokenizers-0.21.0-py312hf3e4074_0.conda + sha256: 5d395333fcb22dc611140286c1f2ea8b3fa220a4931c583587cb612238091555 + md5: 4c732c74b485ef7ac8ec1c548dd45e8e depends: - __osx >=11.0 - huggingface_hub >=0.16.4,<1.0 @@ -8304,8 +8272,8 @@ packages: - __osx >=11.0 license: Apache-2.0 license_family: APACHE - size: 1933005 - timestamp: 1732658406859 + size: 1931389 + timestamp: 1732734727624 - kind: conda name: tornado version: 6.4.2 @@ -8374,27 +8342,28 @@ packages: - kind: conda name: traitlets version: 5.14.3 - build: pyhd8ed1ab_0 + build: pyhd8ed1ab_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_0.conda - sha256: 8a64fa0f19022828513667c2c7176cfd125001f3f4b9bc00d33732e627dd2592 - md5: 3df84416a021220d8b5700c613af2dc5 + url: https://conda.anaconda.org/conda-forge/noarch/traitlets-5.14.3-pyhd8ed1ab_1.conda + sha256: f39a5620c6e8e9e98357507262a7869de2ae8cc07da8b7f84e517c9fd6c2b959 + md5: 019a7385be9af33791c989871317e1ed depends: - - python >=3.8 + - python >=3.9 license: BSD-3-Clause license_family: BSD - size: 110187 - timestamp: 1713535244513 + size: 110051 + timestamp: 1733367480074 - kind: conda name: transformers - version: 4.46.3 + version: 4.47.0 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.46.3-pyhd8ed1ab_0.conda - sha256: 6ae73c0d1197812d8fd6a2c64309fe9abe822feb66b2d330cc61ce9fa60dee0c - md5: 457af723774f077a128515a6fdd536a2 + url: https://conda.anaconda.org/conda-forge/noarch/transformers-4.47.0-pyhd8ed1ab_0.conda + sha256: b9cf6ae5fcd6c78dcaa24ebfd41580a4a10b0649ac726a44d3521f70fdece218 + md5: 495745078b8e18fe2dcc3267f4baae0d depends: - datasets !=2.5.0 - filelock @@ -8406,66 +8375,66 @@ packages: - regex !=2019.12.17 - requests - safetensors >=0.4.1 - - tokenizers >=0.20,<0.21 + - tokenizers >=0.21,<0.22 - tqdm >=4.27 license: Apache-2.0 license_family: APACHE - size: 3622494 - timestamp: 1731981383171 + size: 3721837 + timestamp: 1733708797762 - kind: conda name: typer - version: 0.15.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.0-pyhd8ed1ab_0.conda - sha256: 90503b2a518434fb554d621cc4e1c533dc524ef1c0f63fde39fdf4328163a0c8 - md5: cf9393f5733c7277b1a5f79145f8485b + url: https://conda.anaconda.org/conda-forge/noarch/typer-0.15.1-pyhd8ed1ab_0.conda + sha256: ef695490e895c2ad552c77ec497b899b09fd4ad4ab07edcf5649f5994cf92a35 + md5: 170a0398946d8f5b454e592672b6fc20 depends: - python >=3.9 - - typer-slim-standard 0.15.0 hd8ed1ab_0 + - typer-slim-standard 0.15.1 hd8ed1ab_0 license: MIT license_family: MIT - size: 56455 - timestamp: 1733279871129 + size: 56175 + timestamp: 1733408582623 - kind: conda name: typer-slim - version: 0.15.0 + version: 0.15.1 build: pyhd8ed1ab_0 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.0-pyhd8ed1ab_0.conda - sha256: f6a85917292aaea0577792090ac74dbdb0280a656934746f715bfa9feaa9b2dc - md5: 629fef89115de5a907fb9765cdd45b26 + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-0.15.1-pyhd8ed1ab_0.conda + sha256: d4965516f35e0805199de6596c4ac76c4ad3d6b012be35e532102f9e53ecb860 + md5: 0218b16f5a1dd569e575a7a6415489db depends: - click >=8.0.0 - python >=3.9 - typing_extensions >=3.7.4.3 constrains: - - typer >=0.15.0,<0.15.1.0a0 - - shellingham >=1.3.0 - rich >=10.11.0 + - typer >=0.15.1,<0.15.2.0a0 + - shellingham >=1.3.0 license: MIT license_family: MIT - size: 43480 - timestamp: 1733279858535 + size: 43592 + timestamp: 1733408569554 - kind: conda name: typer-slim-standard - version: 0.15.0 + version: 0.15.1 build: hd8ed1ab_0 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.0-hd8ed1ab_0.conda - sha256: df52ddd24439aff384a82d00a751947b12127ab571f4aa674a1053c703ce8ed0 - md5: a4746fc9efbff02c1a288d8fcd8ffba9 + url: https://conda.anaconda.org/conda-forge/noarch/typer-slim-standard-0.15.1-hd8ed1ab_0.conda + sha256: f31c56fe98315da8b9ce848256c17e0b9f87896b41a6ccf0c9cc74644dcef20f + md5: 4e603c43bfdfc7b533be087c3e070cc9 depends: - rich - shellingham - - typer-slim 0.15.0 pyhd8ed1ab_0 + - typer-slim 0.15.1 pyhd8ed1ab_0 license: MIT license_family: MIT - size: 50259 - timestamp: 1733279859017 + size: 49531 + timestamp: 1733408570063 - kind: conda name: typing-extensions version: 4.12.2 @@ -8533,44 +8502,46 @@ packages: - kind: conda name: uvicorn version: 0.32.1 - build: pyh31011fe_0 + build: pyh31011fe_1 + build_number: 1 subdir: noarch noarch: python - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_0.conda - sha256: a310c494c817a9f6c985fc6d2772acb953a20170d03b0eabfae0e9d8c76c97ee - md5: fa77fc8110207b3bfc5ccc9d316744f4 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-0.32.1-pyh31011fe_1.conda + sha256: ad1d8470c629679ea3db52351a522ae44eee0111d8d8b254e8c863c4a292e5c4 + md5: 7832640e5e302059e844d56f410487a6 depends: - __unix - click >=7.0 - h11 >=0.8 - - python >=3.8 + - python >=3.9 - typing_extensions >=4.0 license: BSD-3-Clause license_family: BSD - size: 49393 - timestamp: 1732185242260 + size: 49340 + timestamp: 1733332048141 - kind: conda name: uvicorn-standard version: 0.32.1 - build: h31011fe_0 + build: h31011fe_1 + build_number: 1 subdir: noarch noarch: generic - url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_0.conda - sha256: 52545f7c88a7c779376900de5f9d81ce36738cd8770b543e89592ad7d1003c40 - md5: 49c2820e0f39cb710becd856ff14d683 + url: https://conda.anaconda.org/conda-forge/noarch/uvicorn-standard-0.32.1-h31011fe_1.conda + sha256: 378903c51b2b1136fa48b01c0a2a8dd4634136d038a4a56561c0856fdcbfcabe + md5: 0c233d5c71d398cf01d0281e72194005 depends: - __unix - httptools >=0.5.0 - python-dotenv >=0.13 - pyyaml >=5.1 - - uvicorn 0.32.1 pyh31011fe_0 + - uvicorn 0.32.1 pyh31011fe_1 - uvloop >=0.14.0,!=0.15.0,!=0.15.1 - watchfiles >=0.13 - websockets >=10.4 license: BSD-3-Clause license_family: BSD - size: 7136 - timestamp: 1732185243035 + size: 7094 + timestamp: 1733332049165 - kind: conda name: uvloop version: 0.21.0 @@ -8916,43 +8887,6 @@ packages: license_family: BSD size: 97691 timestamp: 1689951608120 -- kind: conda - name: xz - version: 5.2.6 - build: h166bdaf_0 - subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/xz-5.2.6-h166bdaf_0.tar.bz2 - sha256: 03a6d28ded42af8a347345f82f3eebdd6807a08526d47899a42d62d319609162 - md5: 2161070d867d1b1204ea749c8eec4ef0 - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 418368 - timestamp: 1660346797927 -- kind: conda - name: xz - version: 5.2.6 - build: h57fd34a_0 - subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/xz-5.2.6-h57fd34a_0.tar.bz2 - sha256: 59d78af0c3e071021cfe82dc40134c19dab8cdf804324b62940f5c8cd71803ec - md5: 39c6b54e94014701dd157f4f576ed211 - license: LGPL-2.1 and GPL-2.0 - size: 235693 - timestamp: 1660346961024 -- kind: conda - name: xz - version: 5.2.6 - build: h9cdd2b7_0 - subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/xz-5.2.6-h9cdd2b7_0.tar.bz2 - sha256: 93f58a7b393adf41fa007ac8c55978765e957e90cd31877ece1e5a343cb98220 - md5: 83baad393a31d59c20b63ba4da6592df - depends: - - libgcc-ng >=12 - license: LGPL-2.1 and GPL-2.0 - size: 440555 - timestamp: 1660348056328 - kind: conda name: yaml version: 0.2.5 @@ -8998,64 +8932,64 @@ packages: timestamp: 1641347626613 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312h66e93f0_0 subdir: linux-64 - url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.0-py312h66e93f0_0.conda - sha256: 8a1e51303ecac64f10dd0ec548d472c49954c3e2f38023ef28899191580795e1 - md5: 601d2b19a54fd9346ba18c07c2516339 + url: https://conda.anaconda.org/conda-forge/linux-64/yarl-1.18.3-py312h66e93f0_0.conda + sha256: a0d93c3bef723e384cff8a29a82a2c6b7a73b39328088f3a2d97c901f56e9a63 + md5: 91df2efaa08730416bec2a4502309275 depends: - __glibc >=2.17,<3.0.a0 - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 151247 - timestamp: 1732220988648 + size: 151393 + timestamp: 1733428897813 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hb2c0f52_0 subdir: linux-aarch64 - url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.0-py312hb2c0f52_0.conda - sha256: 2ead24d5c50a2edd6348be5888677100b12b98921d1b6fe2f4cd980b0b85ffb2 - md5: 7dbbd950a7f762c2c8ab835932b12001 + url: https://conda.anaconda.org/conda-forge/linux-aarch64/yarl-1.18.3-py312hb2c0f52_0.conda + sha256: 470b5b0f3ac89acd143095281167dc2ac1a56d4fa22e1794bd8f3b00bb604540 + md5: 0b3c640697bca798d0ab428f530ed24c depends: - idna >=2.0 - libgcc >=13 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 149149 - timestamp: 1732221057827 + size: 150004 + timestamp: 1733429056665 - kind: conda name: yarl - version: 1.18.0 + version: 1.18.3 build: py312hea69d52_0 subdir: osx-arm64 - url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.0-py312hea69d52_0.conda - sha256: 4c90de12b1569f85126a12dbbb89f3dc10cee5838335b9c9993ead8bf1594cd3 - md5: f538709098e1642d50f4a01707e7dfdb + url: https://conda.anaconda.org/conda-forge/osx-arm64/yarl-1.18.3-py312hea69d52_0.conda + sha256: 69c7863809e11bc90c0d935c16e7f151dcc925add08b3894f06059263a8cb9ba + md5: f32f9b16361866a62d6e061fcd7eb400 depends: - __osx >=11.0 - idna >=2.0 - multidict >=4.0 - - propcache >=0.2.0 + - propcache >=0.2.1 - python >=3.12,<3.13.0a0 - python >=3.12,<3.13.0a0 *_cpython - python_abi 3.12.* *_cp312 license: Apache-2.0 license_family: Apache - size: 141452 - timestamp: 1732221306526 + size: 141556 + timestamp: 1733429104990 - kind: conda name: zeromq version: 4.3.5 diff --git a/proposals/stdlib-insider-docs.md b/proposals/stdlib-insider-docs.md new file mode 100644 index 0000000000..1bf0abfef2 --- /dev/null +++ b/proposals/stdlib-insider-docs.md @@ -0,0 +1,136 @@ +# Stdlib Insider Docs + +Owen Hilyard, Created November 17, 2024 + +**Status**: Initial Proposal + +## Motivation + +For most languages, people who work on the standard library have the ability +to look inside of the compiler to clarify questions they have about the +semantics of particular operations or compiler builtins. For Mojo, that is +not the case for many people working on the standard library. As a result, +the exact semantics of some important compiler builtins, such as +`lit.ownership.mark_destroyed`, are not fully known to a large number of +people working on the standard library. For example, the fact that +`lit.ownership.mark_destroyed` still runs the destructors of fields was a +surprise to many at the stdlib meeting. This creates issues where Modular +employees have to catch misuses. These language-internal dialects are, like +Mojo itself, subject to enhancements, breaking changes, and even complete +removal. This presents a problem since the stdlib is correctness-critical code, +and when people who don't understand the API contract of a construct use it +in correctness-critical code, issues are bound to happen. + +## Proposal + +In order to help address this, I propose the creation of a "stdlib insider" +document, which contains information on MLIR operations/types, WIP features and +other parts of the language which are either intended to only be used in the +standard library/MAX drivers or language features which are still subject to +change and evolution. This can be substantially less polished than the Mojo +manual, including "X is like Y in C++ but ...", links to academic +papers, links to LLVM docs, pseudocode, and other ways one might explain a +concept to a colleague. This document, likely maintained as a markdown file in +/docs, is intended to be internally facing to core Mojo developers. This means +that a large "everything in here is subject to being totally rewritten in a +bugfix release or security update, do not use outside of the standard library +or MAX" warning, which will hopefully dissuade people from using what is +documented there in ways that will get them stuck on old Mojo versions. + +For MLIR operations, I'd like the following information documented +for each operation used in the standard library; Operation name, +arguments (potentially as Mojo function syntax), a description of the +operation, pre-conditions, post-conditions, and clear hazards. Clear hazards +would ways in which the operation can cause UB (ex: is what happens with a +null pointer well defined?), conditions under which the operation will force +the program to abort or other like "`lit.ownership.mark_destroyed` +still runs the destructors of fields" which may be surprising behavior. + +For MLIR types, information about what a type is intended to do, what +parameters the type has (and their types), the size of the instantiated type +(for alignment), and any non-trivialities in the type (is it ok to copy/move +it?). MLIR attributes should have similar information. + +For features, a short description of what the feature is intended for, and +then syntax examples that show the capabilities of the feature. Ideally, some +differentiation between the design and the current implementation should be +present, slowly moving parts of the documentation over as they are available +on nightly. Documenting known sharp edges or limitations is also helpful, for +instance if trait objects could only represent a single trait (ex: no Movable +\+ Copyable + Formattable trait) or if some part of the implementation has a +high time or space complexity (ex: O(N^2) compile time overhead in the number +of traits in a trait object). + +## Current State + +At present, the majority of MLIR operations are things which I think +are reasonable to explain with a link to LLVM or C++ docs. For example, `pop.max` +is mostly self-explanatory, so unless there are extra semantics I don't +think it really needs more of an explanation than "see C++ std::max". + +What I consider the important things to document: + +### `pop.external_call` + +Lots of people want to call into OpenSSL to get basic HTTPS working, and that +needs to be done correctly. There's also a lot of ABI issues around this, +for instance whether Mojo structs are C layout (for now) or whether we need +a mechanism to force that behavior. + +### `co.*` + +This area is WIP, but some community discussion around the direction would be +helpful. Information about the API of each of the types would also be nice +since it looks like we would need to use MLIR to implement future combinators +like Rust's `FuturesUnordered`. Documentation around synchronization +requirements is also important for correctness as people move towards async io. + +### `#kgen.param.expr LLVM type conversions, +Documenting limitations is also helpful, for instance, can is `@call` ok to +use? Can I directly write phi nodes? I had a lot of difficulty interacting +with anything that returns a `!llvm.struct` or `!llvm.vec`. + +### `pop.inline_asm` + +A lot of CPU functionality doesn't have LLVM intrinsics and we'll need to use +assembly (CPU time stamp counters, poking MSRs for runtime capability +discovery, etc). I personally ran into difficulties doing multiple return +(ex: x86 `cpuid` returns results in 4 registers). Information on the asm +dialect, how to create clobbers and scratch registers, and rules for control +flow (ex: can I implement computed gotos, jump into the middle of a function or +return from the current function?). + +### `!lit.origin.set` + +This is used in Coroutines (presumably to store capture origins), but it looks +like it may be useful for storing collections of references. + +### The backing allocator(s) for `pop.aligned_alloc` and `pop.global_alloc` + +Time spent in GDB has led me to believe this is tcmalloc, but knowing for +sure means we have information like the minimum alignment the allocator will +provide (storing information in the lower bits), what kind of caching it does, +information about how it handles memory overcommit being off (db servers), and +what kind of instrumentation we might have access to. diff --git a/stdlib/benchmarks/algorithm/bench_elementwise.mojo b/stdlib/benchmarks/algorithm/bench_elementwise.mojo index 322b66ad9c..2a302ec80f 100644 --- a/stdlib/benchmarks/algorithm/bench_elementwise.mojo +++ b/stdlib/benchmarks/algorithm/bench_elementwise.mojo @@ -23,9 +23,9 @@ from buffer import Buffer from utils.index import Index, IndexList -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark elementwise -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_elementwise[n: Int](mut b: Bencher) raises: var vector = Buffer[DType.index, n].stack_allocation() diff --git a/stdlib/benchmarks/builtin/bench_int.mojo b/stdlib/benchmarks/builtin/bench_int.mojo index b65cd5abaf..2d65c690c3 100644 --- a/stdlib/benchmarks/builtin/bench_int.mojo +++ b/stdlib/benchmarks/builtin/bench_int.mojo @@ -17,9 +17,9 @@ from benchmark import Bench, BenchConfig, Bencher, BenchId -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmarks -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_stringify_small_integers(mut b: Bencher) raises: @always_inline @@ -32,9 +32,9 @@ fn bench_stringify_small_integers(mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): var m = Bench(BenchConfig(num_repetitions=1)) m.bench_function[bench_stringify_small_integers]( diff --git a/stdlib/benchmarks/builtin/bench_sort.mojo b/stdlib/benchmarks/builtin/bench_sort.mojo index 0872012f78..a44fc3a150 100644 --- a/stdlib/benchmarks/builtin/bench_sort.mojo +++ b/stdlib/benchmarks/builtin/bench_sort.mojo @@ -26,9 +26,9 @@ from stdlib.builtin.sort import ( sort, ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Utils -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -78,9 +78,9 @@ fn heap_sort[type: DType](mut list: List[Scalar[type]]): _heap_sort[_less_than](list) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark sort functions with a tiny list size -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn bench_tiny_list_sort[type: DType](mut m: Bench) raises: @@ -157,9 +157,9 @@ fn bench_tiny_list_sort[type: DType](mut m: Bench) raises: ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark sort functions with a small list size -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn bench_small_list_sort[type: DType](mut m: Bench, count: Int) raises: @@ -209,9 +209,9 @@ fn bench_small_list_sort[type: DType](mut m: Bench, count: Int) raises: ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark sort functions with a large list size -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn bench_large_list_sort[type: DType](mut m: Bench, count: Int) raises: @@ -262,9 +262,9 @@ fn bench_large_list_sort[type: DType](mut m: Bench, count: Int) raises: ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark sort functions with low delta lists -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn bench_low_cardinality_list_sort(mut m: Bench, count: Int, delta: Int) raises: @@ -314,9 +314,9 @@ fn bench_low_cardinality_list_sort(mut m: Bench, count: Int, delta: Int) raises: ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): diff --git a/stdlib/benchmarks/collections/bench_dict.mojo b/stdlib/benchmarks/collections/bench_dict.mojo index b50d97a98d..e93406f837 100644 --- a/stdlib/benchmarks/collections/bench_dict.mojo +++ b/stdlib/benchmarks/collections/bench_dict.mojo @@ -24,9 +24,9 @@ from benchmark import Bench, BenchConfig, Bencher, BenchId, Unit, keep, run from bit import bit_ceil -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Data -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn make_dict[size: Int]() -> Dict[Int, Int]: var d = Dict[Int, Int]() for i in range(0, size): @@ -34,9 +34,9 @@ fn make_dict[size: Int]() -> Dict[Int, Int]: return d -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Dict init -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_dict_init(mut b: Bencher) raises: @always_inline @@ -50,9 +50,9 @@ fn bench_dict_init(mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Dict Insert -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_dict_insert[size: Int](mut b: Bencher) raises: """Insert 100 new items.""" @@ -68,9 +68,9 @@ fn bench_dict_insert[size: Int](mut b: Bencher) raises: keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Dict Lookup -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_dict_lookup[size: Int](mut b: Bencher) raises: """Lookup 100 items.""" @@ -96,9 +96,9 @@ fn bench_dict_lookup[size: Int](mut b: Bencher) raises: keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Dict Memory Footprint -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn total_bytes_used(items: Dict[Int, Int]) -> Int: @@ -121,9 +121,9 @@ fn total_bytes_used(items: Dict[Int, Int]) -> Int: return amnt_bytes -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): seed() var m = Bench(BenchConfig(num_repetitions=1)) diff --git a/stdlib/benchmarks/collections/bench_string.mojo b/stdlib/benchmarks/collections/bench_string.mojo index 85ee5050ee..3cee895b73 100644 --- a/stdlib/benchmarks/collections/bench_string.mojo +++ b/stdlib/benchmarks/collections/bench_string.mojo @@ -25,9 +25,9 @@ from benchmark import Bench, BenchConfig, Bencher, BenchId, Unit, keep, run from utils._utf8_validation import _is_valid_utf8 -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Data -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn make_string[ length: UInt = 0 ](filename: StringLiteral = "UN_charter_EN.txt") -> String: @@ -61,9 +61,9 @@ fn make_string[ return abort[String]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string init -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_init(mut b: Bencher) raises: @always_inline @@ -76,9 +76,9 @@ fn bench_string_init(mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string count -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_count[ length: UInt = 0, @@ -97,9 +97,9 @@ fn bench_string_count[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string split -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_split[ length: UInt = 0, @@ -124,9 +124,9 @@ fn bench_string_split[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string splitlines -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_splitlines[ length: UInt = 0, filename: StringLiteral = "UN_charter_EN" @@ -143,9 +143,9 @@ fn bench_string_splitlines[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string lower -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_lower[ length: UInt = 0, filename: StringLiteral = "UN_charter_EN" @@ -162,9 +162,9 @@ fn bench_string_lower[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string upper -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_upper[ length: UInt = 0, filename: StringLiteral = "UN_charter_EN" @@ -181,9 +181,9 @@ fn bench_string_upper[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string replace -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_replace[ length: UInt = 0, @@ -203,9 +203,9 @@ fn bench_string_replace[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark string _is_valid_utf8 -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_string_is_valid_utf8[ length: UInt = 0, filename: StringLiteral = "UN_charter_EN" @@ -222,9 +222,9 @@ fn bench_string_is_valid_utf8[ keep(bool(items)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): seed() var m = Bench(BenchConfig(num_repetitions=5)) diff --git a/stdlib/benchmarks/hashlib/bench_hash.mojo b/stdlib/benchmarks/hashlib/bench_hash.mojo index 0c6873f109..6d2ba54044 100644 --- a/stdlib/benchmarks/hashlib/bench_hash.mojo +++ b/stdlib/benchmarks/hashlib/bench_hash.mojo @@ -49,7 +49,7 @@ alias words_ar = """ تحت, الأشياء, معه, يريد, أننا, أنظر, لما, اعرف, إلي, ثلاثة, انتظر, الرجال, الذين, حصلت, أني, سعيد, لابد, عزيزتي, الشيء, فكرة, انهم, الله, الباب, سيدى, دائما, رأيت, مشكلة, استطيع, تكن, تذهب, ليلة, شيئ, أظن, طوال, - جميل, وهو, الشرطة, او, دولار, السيارة, وهذا, كبير, مني, بسرعة, النار, الأمور, سمعت, أشعر, يعرف, + جميل, وهو, الشرطة, او, دولار, السيارة, وهذا, كبير, مني, بسرعة, النار, الأمور, سمعت, أشعر, يعرف, أعني, لدى, بهذه, أحب, سنوات, بأس, الأفضل, بالنسبة, أنتم, عظيم, يقول, جميلة, جون, جاك, بسبب, الوحيد, أمر, بل, بالفعل, الشخص, الي, دعني, خارج, اجل, الخير, ــ, حالك, للغاية, فحسب, كانوا, أردت, فتاة, بشأن, يعني, كبيرة, ترى, آسفة, دقيقة, أنهم, يستطيع, احد, بأنك, تعمل, @@ -80,7 +80,7 @@ alias words_ar = """ غدا, ظننت, ولن, المرأة, لهذه, تحرك, يهم, تبقى, الطبيب, اسم, انظري, تبا, أتذكر, فترة, ساعات, تفكر, تحصل, بأي, النقود, لعبة, زوجتي, الكلام, ستفعل, أسف, فهو, الملك, مدينة, بكم, الوحيدة, أمام, عدد, اخرج, بول, سأعود, جئت, لأني, تحدث, السلامة, الماضية, أمك, اعتقدت, مره, مساء, بطريقة, الرب, ابدا, أهذا, وفي, وكل, أتيت, منكم, - انتهى, بوب, بعيدا, ضع, وجود, تعود, زلت, اللعينة, نقوم, كلنا, أحصل, يريدون, تأخذ, المحتمل, الشمس, بدأ, + انتهى, بوب, بعيدا, ضع, وجود, تعود, زلت, اللعينة, نقوم, كلنا, أحصل, يريدون, تأخذ, المحتمل, الشمس, بدأ, ارجوك, المسيح, جاء, كهذا, سنذهب, تعالى, إثنان, فعلا, حتي, سيحدث, الجيد, وشك, القادم, معرفة, صورة, أعود, اسمي, طلب, آنسة, الثانية, فقدت, حفلة, تنظر, مثير, اننى, وصلت, أنتظر, السماء, يقولون, الهراء, معهم, ابي, وعندما, مجموعة, العاهرة, ماري, حسن, الزواج, نحو, دعيني, الجديدة, مهم, أمس, اتصل, ابتعد, هراء, ستة, @@ -91,7 +91,7 @@ alias words_ar = """ الدخول, جين, امرأة, متأكدة, هيه, تخبرني, مدى, إلهى, احب, عما, نرى, بيننا, تعيش, قتلت, الأحمق, تشارلي, بيل, عليكم, سؤال, طلبت, الهواء, وهذه, صوت, انتم, ميلاد, ماكس, - تعتقدين, الحديث, الجانب, صديقك, ذا, خطر, أطلق, الشارع, عملية, ببعض, تتكلم, مختلف, تحمل, مساعدة, + تعتقدين, الحديث, الجانب, صديقك, ذا, خطر, أطلق, الشارع, عملية, ببعض, تتكلم, مختلف, تحمل, مساعدة, بضعة, المناسب, المنطقة, قم, بالداخل, البداية, لأجل, زوجتك, مقابل, يحب, هاري, ممتاز, قريبا, سنكون, فعلته, بتلك, التفكير, أسفل, للعمل, العجوز, امي, الكلب, انتظري, مازال, إننا, اشعر, الجيش, شرطة """ @@ -256,13 +256,13 @@ alias words_he = """ לגרום, המשחק, שרה, לעצמך, במיוחד, המשטרה, צוות, אחזור, שאמרתי, גברים, קורא, בראש, רחוק, למקום, לשלם, להפסיק, מיוחד, הז, שמו, שמחה, כיף, אגיד, למי, ניתן, מאחורי, תמשיך, כיצד, להוציא, מתים, כולכם, אצל, חבל, האישה, לעצמי, גברתי, תוכלי, רואים, דוד, להציל, שצריך, - בעלי, דוקטור, חג, לעבודה, בוודאי, תעשי, הוד, מילה, ברצינות, הארץ, עשינו, לאנשים, רצה, + בעלי, דוקטור, חג, לעבודה, בוודאי, תעשי, הוד, מילה, ברצינות, הארץ, עשינו, לאנשים, רצה, עזוב, יצא, נתן, שניות, בעיר, סי, חשבת, שאלות, אלינו, ידע, תנו, לשים, שאולי, בכך, יכולת, אן, היד, שאוכל, מין, דקה, לדאוג, שמה, תרצה, ראה, הצילו, נוסף, החרא, אופן, כשהוא, צעיר, הפה, עולה, עובדת, שמך, לתפוס, נמצאת, כלבה, האקדח, עדיף, הטלפון, טום, פול, חכו, קר, תלך, במקרה, יעשה, שניכם, הארי, זוז, יקירתי, בהצלחה, לשבת, אנא, דין, מכיוון, יד, הקטנה, לבן, בנו, בעצמי, יין, תוריד, - למישהו, מייק, מול, נזוז, ככל, הלוואי, בעצמך, לרגע, קשור, בשקט, האל, ישנה, מעמד, כזאת, + למישהו, מייק, מול, נזוז, ככל, הלוואי, בעצמך, לרגע, קשור, בשקט, האל, ישנה, מעמד, כזאת, רד, אחורה, איכפת, איתם, ממנה, חם, מבקש, שש, מידע, השנה, אכן, אהבתי, בשעה, בסוף, שקרה, לכו, אליה, לבחור, תחשוב, ספק, המים, הפנים, לכולם, תדאגי, קחי, שתוק, לברוח, מתוק, ארלי, התיק, שים, מישהי, לקרות, לטפל, לחפש, הידיים, ח, במצב, ואל @@ -270,313 +270,313 @@ alias words_he = """ # Source: https://www.101languages.net/latvian/most-common-latvian-words/ alias words_lv = """ - ir, es, un, tu, tas, ka, man, to, vai, ko, ar, kas, par, tā, kā, viņš, uz, no, tev, - mēs, nav, jūs, bet, labi, jā, lai, nē, mani, ja, bija, viņa, esmu, viņu, tevi, esi, - mums, tad, tikai, ne, viņi, kad, jums, arī, viss, nu, kur, pie, jau, tik, tur, te, vēl, - būs, visu, šeit, tagad, kaut, ļoti, pēc, viņam, taču, savu, gan, paldies, būtu, mūsu, - šo, lūdzu, mans, kāpēc, kungs, kāds, varbūt, tās, jūsu, cik, ak, daudz, jo, esam, - zinu, mana, zini, visi, būt, tam, šī, var, līdz, viens, pa, pat, esat, nekad, domāju, - nezinu, vairs, tiešām, tie, vien, kurš, varētu, dievs, neesmu, prom, tieši, kādu, aiziet, - šis, manu, protams, vajag, neko, vienkārši, tāpēc, gribu, varu, nāc, atpakaļ, mūs, - kārtībā, iet, kopā, viņiem, pats, pirms, domā, vienmēr, gribi, nekas, bez, tava, - vienu, ej, viņai, vairāk, notiek, nevaru, pret, tavs, teica, tavu, biju, dēļ, viņas, - laiku, neviens, kādēļ, vari, labāk, patīk, dari, mājās, nebija, cilvēki, ārā, viņus, - ejam, kāda, piedod, laikam, atkal, šķiet, trīs, sevi, ser, laiks, laika, nekā, manis, - iekšā, labs, tāds, darīt, harij, nevar, viena, lieliski, kuru, šīs, sauc, šurp, teicu, - laikā, tos, pagaidi, neesi, tevis, draugs, pārāk, tēvs, šodien, teikt, dienu, visiem, - tātad, notika, hei, zināt, bijis, sveiks, atvainojiet, tika, naudu, varam, savas, citu, - tādu, manas, redzi, šajā, kam, tajā, jābūt, vecīt, tiem, runā, cilvēku, taisnība, saka, - visus, mīlu, lietas, grib, tēt, izskatās, tiek, noteikti, nozīmē, kamēr, divi, it, tāpat, - tāda, ilgi, katru, dēls, noticis, jauki, redzēt, pareizi, lūk, kundze, aiz, iespējams, - pateikt, nebūtu, gandrīz, vīrs, cilvēks, ātri, žēl, pasaules, rokas, liekas, palīdzēt, - līdzi, visas, saki, negribu, vietā, gadus, starp, skaties, tomēr, tūlīt, džek, nevajag, - sev, vajadzētu, būšu, dzīvi, droši, gadu, priekšu, skaidrs, gribēju, nāk, paskaties, mazliet, - tikko, nebūs, augšā, ceru, joprojām, nevis, ātrāk, ļauj, gribētu, liels, zina, vārdu, reizi, - pasaulē, savā, sveiki, dienas, miris, dod, priekšā, galā, klau, cilvēkiem, tavas, patiesībā, - visa, vārds, gatavs, durvis, velns, nedaudz, naudas, redzēju, velna, manā, drīz, pāri, dzīve, - vēlies, nemaz, priekš, bērni, vieta, pāris, darbu, vajadzīgs, tālāk, rīt, roku, klāt, grūti, - beidz, laba, klausies, dara, varat, sveika, biji, vismaz, kopš, redzu, saproti, kura, draugi, - zemes, šovakar, patiešām, kaa, vietu, dieva, vajadzēja, mašīnu, lejā, saku, ceļu, gada, tādēļ, - cauri, runāt, ņem, oh, divas, lieta, tikt, šie, teici, vēlāk, vaļā, nogalināt, redzējis, jāiet, - nespēju, savus, atceries, ūdens, šejienes, labu, diena, mīļā, atvaino, doties, atrast, saprotu, - abi, reiz, jādara, nesaprotu, meitene, darbs, nevari, tai, nedomāju, pilnīgi, nakti, nekādu, - pati, gadiem, vēlos, taa, kādas, cits, ejiet, pirmais, a, būsi, mamma, lietu, slikti, pašu, - acis, diezgan, pasaki, gadā, puiši, asv, sava, nost, cilvēkus, džeks, manuprāt, mājas, o, - bērns, leo, otru, nopietni, vecais, laukā, caur, dzīves, izdarīt, sieviete, vienalga, - nogalināja, dzīvo, kādreiz, čau, sirds, paliec, gribat, vēlreiz, kuras, mazais, vietas, - piedodiet, laipni, palikt, brauc, ei, the, paliek, apkārt, sievietes, tālu, garām, pirmo, - dzīvot, nāciet, runāju, kuri, tiks, jüs, ceļā, nauda, nevienam, māja, vienīgais, īsti, - sapratu, gluži, svarīgi, atvainojos, i, sen, iespēja, tavā, pavisam, nāves, māte, citi, - viegli, zem, notiks, darba, nepatīk, daži, galvu, dienā, hallo, bērnu, neesam, kungi, beidzot, - nedrīkst, vajadzēs, māju, sieva, kādam, puika, kļūst, prieks, esot, iesim, daļa, pasaule, - pietiek, visā, saviem, rīta, pagaidiet, tētis, mājā, mieru, vīru, palīdzību, dzirdēju, - tādas, dzīvs, strādā, tām, vēlas, nakts, īpaši, jūtos, nolādēts, meitenes, pusi, mammu, mees, - aizveries, vispār, dzīvību, kurā, kādā, vārdā, mašīna, būsim, vispirms, vinji, nevienu, šos, - tiksimies, džeik, vinjsh, vaina, turpini, kādi, jaunu, tuvu, atradu, vēlu, varēja, citādi, šim, - satikt, neuztraucies, pārliecināts, liec, diez, liela, doktor, nevaram, palīdzi, uzmanīgi, dažas, - šiem, atgriezies, gribēja, priecājos, parasti, valsts, asinis, tēti, you, mierā, piemēram, - jautājums, atā, bijām, zemē, pasauli, spēlē, blakus, izskaties, pirmā, nomira, paši, šobrīd, - daru, gaida, tādi, iešu, labākais, jauks, maz, pieder, jauns, nezināju, uzmanību, skaista, - prātā, brālis, patiesību, mierīgi, šai, dr, patiesi, jēzus, mārtij, zināju, suns, juus, sievu, - dzirdi, tepat, mamm, tēvu, tēva, frodo, sasodīts, desmit, stundas, tavi, mazā, džon, cita, - vajadzīga, forši, minūtes, mīlestība, nebiju, saprast, izbeidz, šoreiz, labā, dāmas, kurienes, - problēma, šādi, spēj, gadījumā, tiesa, kuģi, pēdējā, tici, esiet, atceros, katrs, nee, palīgā, - mister, liek, likās, domāt, vīri, pēdējo, traks, reizes, vienīgā, tiesības, skolā, turies, beigas, - karš, pīter, uguni, pietiks, vienam, vienā, pakaļ, jauna, zemi, puisis, ziniet, negribi, labrīt, - ap, cilvēka, draugu, atver, nezini, sāra, vēlaties, gadi, dažreiz, rokās, dabūt, nomierinies, - istabā, agrāk, ieroci, savām, meiteni, paņem, meklē, pār, seju, ziņu, dzirdējis, zinām, gatavi, - braukt, sāka, sāk, dievam, neesat, dzirdēt, spēle, bērniem, izdarīja, muļķības, doma, pēdējais, - dīvaini, atdod, ziņas, bankas, darāt, vakar, ceļš, neviena, brāli, otrā, atgriezties, galvas, - pietiekami, gulēt, uzreiz, iespēju, bijusi, karalis, bobij, šrek, tikpat, palīdziet, durvīm, - vecāki, atrodas, smieklīgi, kuģa, bail, godīgi, pēkšņi, nedēļas, māsa, skrien, ceļa, džeims, gars, - lielu, mašīnā, bojā, kurieni, ļaudis, dārgais, vecs, ūdeni, kūper, eju, mašīnas, ideja, kājas, - spēles, galvenais, citiem, jātiek, skaisti, nāvi, vinju, problēmas, vērts, drīkstu, domājat, visur, - bieži, manai, citas, apsolu, zelta, strādāju, dzimšanas, jūtu, naktī, dārgā, atbildi, noticēt, - klājas, izdevās, dok, redzat, gana, divus, ģimene, runa, stāsts, braucam, brīnišķīgi, ģimenes, - kuģis, čārlij, hey, kä, sheit, ved, atrada, mirusi, meita, paklau, nevēlos, bērnus, boss, kaptein, - nekāda, roze, nespēj, vīrietis, brīdi, īsts, dzīvē, tādā, manī, jūras, jaunkundz, iemesls, sakot, - manam, daudzi, varēsi, pateicos, jaunais, policija, pilnībā, nekur, jauka, nedari, kurus, zināms, - jautājumu, seko, re, padomā, pusē, visām, mīļais, dolāru, gadžet, katram, izdarīji, šīm, vienīgi, - mirt, apmēram, spēku, jauno, mr, celies, iepriekš, prātu, vēlētos, četri, lietām, redzēji, nevajadzētu, - donna, jaa, ticu, minūtēm, sievieti, nāve, jūties, nezina, parādi, malā, redz, uh, gredzenu, uzmanies, - kara, drošībā, sapnis, bijāt, grāmatu, slepkava, vinja, paga, pieci, pilsētā, drošs, pateikšu, gāja, - spēli, beigās, hanna, princese, jebkad, dakter, veids, palīdzība, stāstu, izmantot, spēlēt, gaisā, - darīšu, došos, dodas, kreisi, negribēju, mazāk, pastāsti, tak, devās, sirdi, misis, vis, patiesība, - veidā, harijs, cenšos, tuvāk, kurp, klausieties, sāp, ļaujiet, neticami, kungu, sīkais, iedomāties, - daļu, mazs, iedod, mazo, meklēju, parunāt, jādodas, sevis, pārējie, veicas, otra, mīlestību, zēns, - dodies, galam, sem, bīstami, zvēru, iespējas, maza, ellē, virs, nekādas, maniem, skatieties, šonakt, - svēto, kapteinis, iepazīties, pazīstu, turp, gredzens, nepareizi, lieliska, īstais, pagaidām, kājām, - mirklīti, pašlaik, d, poter, saprati, aprunāties, paša, šejieni, interesanti, nevarētu, pašā, paskat, - bailes, skolas, vārdus, aizmirsti, gaismas, kāp, zēni, darīsim, pašam, beidzies, sauca, māti, akmens, + ir, es, un, tu, tas, ka, man, to, vai, ko, ar, kas, par, tā, kā, viņš, uz, no, tev, + mēs, nav, jūs, bet, labi, jā, lai, nē, mani, ja, bija, viņa, esmu, viņu, tevi, esi, + mums, tad, tikai, ne, viņi, kad, jums, arī, viss, nu, kur, pie, jau, tik, tur, te, vēl, + būs, visu, šeit, tagad, kaut, ļoti, pēc, viņam, taču, savu, gan, paldies, būtu, mūsu, + šo, lūdzu, mans, kāpēc, kungs, kāds, varbūt, tās, jūsu, cik, ak, daudz, jo, esam, + zinu, mana, zini, visi, būt, tam, šī, var, līdz, viens, pa, pat, esat, nekad, domāju, + nezinu, vairs, tiešām, tie, vien, kurš, varētu, dievs, neesmu, prom, tieši, kādu, aiziet, + šis, manu, protams, vajag, neko, vienkārši, tāpēc, gribu, varu, nāc, atpakaļ, mūs, + kārtībā, iet, kopā, viņiem, pats, pirms, domā, vienmēr, gribi, nekas, bez, tava, + vienu, ej, viņai, vairāk, notiek, nevaru, pret, tavs, teica, tavu, biju, dēļ, viņas, + laiku, neviens, kādēļ, vari, labāk, patīk, dari, mājās, nebija, cilvēki, ārā, viņus, + ejam, kāda, piedod, laikam, atkal, šķiet, trīs, sevi, ser, laiks, laika, nekā, manis, + iekšā, labs, tāds, darīt, harij, nevar, viena, lieliski, kuru, šīs, sauc, šurp, teicu, + laikā, tos, pagaidi, neesi, tevis, draugs, pārāk, tēvs, šodien, teikt, dienu, visiem, + tātad, notika, hei, zināt, bijis, sveiks, atvainojiet, tika, naudu, varam, savas, citu, + tādu, manas, redzi, šajā, kam, tajā, jābūt, vecīt, tiem, runā, cilvēku, taisnība, saka, + visus, mīlu, lietas, grib, tēt, izskatās, tiek, noteikti, nozīmē, kamēr, divi, it, tāpat, + tāda, ilgi, katru, dēls, noticis, jauki, redzēt, pareizi, lūk, kundze, aiz, iespējams, + pateikt, nebūtu, gandrīz, vīrs, cilvēks, ātri, žēl, pasaules, rokas, liekas, palīdzēt, + līdzi, visas, saki, negribu, vietā, gadus, starp, skaties, tomēr, tūlīt, džek, nevajag, + sev, vajadzētu, būšu, dzīvi, droši, gadu, priekšu, skaidrs, gribēju, nāk, paskaties, mazliet, + tikko, nebūs, augšā, ceru, joprojām, nevis, ātrāk, ļauj, gribētu, liels, zina, vārdu, reizi, + pasaulē, savā, sveiki, dienas, miris, dod, priekšā, galā, klau, cilvēkiem, tavas, patiesībā, + visa, vārds, gatavs, durvis, velns, nedaudz, naudas, redzēju, velna, manā, drīz, pāri, dzīve, + vēlies, nemaz, priekš, bērni, vieta, pāris, darbu, vajadzīgs, tālāk, rīt, roku, klāt, grūti, + beidz, laba, klausies, dara, varat, sveika, biji, vismaz, kopš, redzu, saproti, kura, draugi, + zemes, šovakar, patiešām, kaa, vietu, dieva, vajadzēja, mašīnu, lejā, saku, ceļu, gada, tādēļ, + cauri, runāt, ņem, oh, divas, lieta, tikt, šie, teici, vēlāk, vaļā, nogalināt, redzējis, jāiet, + nespēju, savus, atceries, ūdens, šejienes, labu, diena, mīļā, atvaino, doties, atrast, saprotu, + abi, reiz, jādara, nesaprotu, meitene, darbs, nevari, tai, nedomāju, pilnīgi, nakti, nekādu, + pati, gadiem, vēlos, taa, kādas, cits, ejiet, pirmais, a, būsi, mamma, lietu, slikti, pašu, + acis, diezgan, pasaki, gadā, puiši, asv, sava, nost, cilvēkus, džeks, manuprāt, mājas, o, + bērns, leo, otru, nopietni, vecais, laukā, caur, dzīves, izdarīt, sieviete, vienalga, + nogalināja, dzīvo, kādreiz, čau, sirds, paliec, gribat, vēlreiz, kuras, mazais, vietas, + piedodiet, laipni, palikt, brauc, ei, the, paliek, apkārt, sievietes, tālu, garām, pirmo, + dzīvot, nāciet, runāju, kuri, tiks, jüs, ceļā, nauda, nevienam, māja, vienīgais, īsti, + sapratu, gluži, svarīgi, atvainojos, i, sen, iespēja, tavā, pavisam, nāves, māte, citi, + viegli, zem, notiks, darba, nepatīk, daži, galvu, dienā, hallo, bērnu, neesam, kungi, beidzot, + nedrīkst, vajadzēs, māju, sieva, kādam, puika, kļūst, prieks, esot, iesim, daļa, pasaule, + pietiek, visā, saviem, rīta, pagaidiet, tētis, mājā, mieru, vīru, palīdzību, dzirdēju, + tādas, dzīvs, strādā, tām, vēlas, nakts, īpaši, jūtos, nolādēts, meitenes, pusi, mammu, mees, + aizveries, vispār, dzīvību, kurā, kādā, vārdā, mašīna, būsim, vispirms, vinji, nevienu, šos, + tiksimies, džeik, vinjsh, vaina, turpini, kādi, jaunu, tuvu, atradu, vēlu, varēja, citādi, šim, + satikt, neuztraucies, pārliecināts, liec, diez, liela, doktor, nevaram, palīdzi, uzmanīgi, dažas, + šiem, atgriezies, gribēja, priecājos, parasti, valsts, asinis, tēti, you, mierā, piemēram, + jautājums, atā, bijām, zemē, pasauli, spēlē, blakus, izskaties, pirmā, nomira, paši, šobrīd, + daru, gaida, tādi, iešu, labākais, jauks, maz, pieder, jauns, nezināju, uzmanību, skaista, + prātā, brālis, patiesību, mierīgi, šai, dr, patiesi, jēzus, mārtij, zināju, suns, juus, sievu, + dzirdi, tepat, mamm, tēvu, tēva, frodo, sasodīts, desmit, stundas, tavi, mazā, džon, cita, + vajadzīga, forši, minūtes, mīlestība, nebiju, saprast, izbeidz, šoreiz, labā, dāmas, kurienes, + problēma, šādi, spēj, gadījumā, tiesa, kuģi, pēdējā, tici, esiet, atceros, katrs, nee, palīgā, + mister, liek, likās, domāt, vīri, pēdējo, traks, reizes, vienīgā, tiesības, skolā, turies, beigas, + karš, pīter, uguni, pietiks, vienam, vienā, pakaļ, jauna, zemi, puisis, ziniet, negribi, labrīt, + ap, cilvēka, draugu, atver, nezini, sāra, vēlaties, gadi, dažreiz, rokās, dabūt, nomierinies, + istabā, agrāk, ieroci, savām, meiteni, paņem, meklē, pār, seju, ziņu, dzirdējis, zinām, gatavi, + braukt, sāka, sāk, dievam, neesat, dzirdēt, spēle, bērniem, izdarīja, muļķības, doma, pēdējais, + dīvaini, atdod, ziņas, bankas, darāt, vakar, ceļš, neviena, brāli, otrā, atgriezties, galvas, + pietiekami, gulēt, uzreiz, iespēju, bijusi, karalis, bobij, šrek, tikpat, palīdziet, durvīm, + vecāki, atrodas, smieklīgi, kuģa, bail, godīgi, pēkšņi, nedēļas, māsa, skrien, ceļa, džeims, gars, + lielu, mašīnā, bojā, kurieni, ļaudis, dārgais, vecs, ūdeni, kūper, eju, mašīnas, ideja, kājas, + spēles, galvenais, citiem, jātiek, skaisti, nāvi, vinju, problēmas, vērts, drīkstu, domājat, visur, + bieži, manai, citas, apsolu, zelta, strādāju, dzimšanas, jūtu, naktī, dārgā, atbildi, noticēt, + klājas, izdevās, dok, redzat, gana, divus, ģimene, runa, stāsts, braucam, brīnišķīgi, ģimenes, + kuģis, čārlij, hey, kä, sheit, ved, atrada, mirusi, meita, paklau, nevēlos, bērnus, boss, kaptein, + nekāda, roze, nespēj, vīrietis, brīdi, īsts, dzīvē, tādā, manī, jūras, jaunkundz, iemesls, sakot, + manam, daudzi, varēsi, pateicos, jaunais, policija, pilnībā, nekur, jauka, nedari, kurus, zināms, + jautājumu, seko, re, padomā, pusē, visām, mīļais, dolāru, gadžet, katram, izdarīji, šīm, vienīgi, + mirt, apmēram, spēku, jauno, mr, celies, iepriekš, prātu, vēlētos, četri, lietām, redzēji, nevajadzētu, + donna, jaa, ticu, minūtēm, sievieti, nāve, jūties, nezina, parādi, malā, redz, uh, gredzenu, uzmanies, + kara, drošībā, sapnis, bijāt, grāmatu, slepkava, vinja, paga, pieci, pilsētā, drošs, pateikšu, gāja, + spēli, beigās, hanna, princese, jebkad, dakter, veids, palīdzība, stāstu, izmantot, spēlēt, gaisā, + darīšu, došos, dodas, kreisi, negribēju, mazāk, pastāsti, tak, devās, sirdi, misis, vis, patiesība, + veidā, harijs, cenšos, tuvāk, kurp, klausieties, sāp, ļaujiet, neticami, kungu, sīkais, iedomāties, + daļu, mazs, iedod, mazo, meklēju, parunāt, jādodas, sevis, pārējie, veicas, otra, mīlestību, zēns, + dodies, galam, sem, bīstami, zvēru, iespējas, maza, ellē, virs, nekādas, maniem, skatieties, šonakt, + svēto, kapteinis, iepazīties, pazīstu, turp, gredzens, nepareizi, lieliska, īstais, pagaidām, kājām, + mirklīti, pašlaik, d, poter, saprati, aprunāties, paša, šejieni, interesanti, nevarētu, pašā, paskat, + bailes, skolas, vārdus, aizmirsti, gaismas, kāp, zēni, darīsim, pašam, beidzies, sauca, māti, akmens, grāmatas, diemžēl, tevī, kļūt, endij, patika, nabaga, tuvojas, tēvoci, dienām, plāns """ # Source: https://www.101languages.net/polish/most-common-polish-words/ alias words_pl = """ -nie, to, się, w, na, i, z, co, jest, że, do, tak, jak, o, mnie, a, ale, mi, za, ja, ci, tu, ty, czy, -tym, go, tego, tylko, jestem, po, cię, ma, już, mam, jesteś, może, pan, dla, coś, dobrze, wiem, jeśli, -teraz, proszę, od, wszystko, tam, więc, masz, nic, on, być, gdzie, będzie, są, ten, mogę, ciebie, -bardzo, sobie, kiedy, ze, wiesz, no, jej, jeszcze, pani, był, mój, chcę, było, dlaczego, by, przez, -nas, tutaj, chcesz, jego, ją, ich, nigdy, żeby, też, kto, naprawdę, przepraszam, bo, mamy, porządku, -możesz, dobra, mu, dziękuję, ona, domu, panie, muszę, nawet, chyba, hej, właśnie, prawda, zrobić, te, -zawsze, będę, moja, gdy, je, trochę, nam, moje, cześć, bez, nim, była, tej, jesteśmy, dalej, pana, -dzięki, wszyscy, musisz, twój, lat, tobą, więcej, ktoś, czas, ta, który, chce, powiedzieć, chodź, dobry, -mną, niech, sam, razem, chodzi, czego, boże, stało, musimy, raz, albo, prostu, będziesz, dzień, możemy, -was, myślę, czym, daj, lepiej, czemu, ludzie, ok, przed, życie, ludzi, robisz, my, niż, tych, kim, rzeczy, -myślisz, powiedz, przy, twoja, oni, oczywiście, nikt, siebie, stąd, niego, twoje, miał, jeden, mówi, -powiedział, moim, czasu, u, dziś, im, które, musi, wtedy, taki, aby, pod, dwa, temu, pewnie, takie, cóż, -wszystkie, mojego, dużo, cholera, kurwa, wie, znaczy, wygląda, dzieje, mieć, ile, iść, potem, będziemy, -dzieci, dlatego, cały, byłem, moją, skąd, szybko, jako, kochanie, stary, trzeba, miejsce, myśli, można, -sie, jasne, mojej, wam, swoje, zaraz, wiele, nią, rozumiem, nich, wszystkich, jakieś, jakiś, kocham, idź, -tę, mają, mówię, mówisz, dzisiaj, nad, pomóc, takiego, przestań, tobie, jutro, robić, jaki, mamo, kilka, -przykro, wiedzieć, ojciec, widzisz, zbyt, zobaczyć, która, ani, tyle, trzy, tą, sposób, miałem, tato, niej, -później, pieniądze, robi, kogoś, kiedyś, zanim, widzę, pracy, świetnie, pewno, myślałem, będą, bardziej, -życia, długo, och, sir, ponieważ, aż, dni, nocy, każdy, dnia, znowu, oh, chciałem, taka, swoją, twoim, -widziałem, stanie, powiem, imię, wy, żebyś, nadzieję, twojej, panu, spokój, słuchaj, rację, spójrz, razie, -znam, pierwszy, koniec, chciałbym, we, nami, jakie, posłuchaj, problem, przecież, dobre, nasz, dziecko, drzwi, -nasze, miło, czuję, mógł, żyje, jeżeli, człowiek, powiedziałem, gdyby, roku, dom, sama, potrzebuję, -wszystkim, zostać, wciąż, dokładnie, mama, którzy, mówić, zamknij, mów, twoją, chwilę, zrobił, samo, idziemy, -nadal, jesteście, zabić, były, sobą, kogo, lub, lubię, the, podoba, minut, bym, chciał, bądź, czegoś, gdzieś, -mówiłem, chodźmy, znaleźć, poza, spokojnie, wcześniej, został, rozumiesz, mogą, prawie, wydaje, miała, mały, -byłeś, facet, zrobię, macie, żadnych, razy, noc, ciągle, broń, moich, twojego, końcu, pomocy, czekaj, znasz, -oczy, weź, idę, halo, dość, innego, pomysł, jakby, trzymaj, jedno, ojca, porozmawiać, pamiętasz, lata, -powinieneś, którą, powodu, takim, niczego, powinniśmy, oto, napisy, jednak, świat, pokoju, żebym, sprawy, -dwie, samochód, swój, wystarczy, pewien, źle, pozwól, numer, jedną, miejscu, you, drogi, byłam, dokąd, miłość, -panowie, pieniędzy, którego, matka, rano, dwóch, całe, patrz, rzecz, nowy, idzie, wyglądasz, bóg, byś, życiu, -nimi, nikogo, całą, swojego, świecie, sprawa, dziewczyna, prawo, byli, zostaw, wiedziałem, jedna, widzieć, -swoim, kobiety, uważaj, najpierw, właściwie, dam, również, diabła, chcą, którym, zrób, da, jednego, dać, -musiał, ręce, powinienem, których, znów, powiedziała, wczoraj, czujesz, zaczekaj, sądzę, śmierć, mówił, -podczas, której, całkiem, pracę, żona, pójdę, pamiętam, powiedziałeś, mówią, wiemy, jezu, witam, cholery, -swoich, telefon, wielu, także, poważnie, skoro, miejsca, robię, śmierci, słyszałem, wina, zrobiłem, dobranoc, -parę, prawdę, swojej, serce, inaczej, dziewczyny, kobieta, powiesz, martw, rób, pytanie, pięć, innych, one, -gra, natychmiast, wrócić, szybciej, jednym, cokolwiek, wierzę, wcale, wieczór, ważne, człowieka, wielki, nowa, -dopiero, ziemi, gdybym, tata, poznać, stać, jack, myślałam, witaj, słowa, zrobiłeś, gówno, john, dolarów, -sprawę, inne, idziesz, miałam, wiecie, chciałam, zobaczenia, widziałeś, żyć, każdym, nasza, panią, wspaniale, -chwili, każdego, nowego, nieźle, takich, między, dostać, powinien, dawaj, dopóki, naszych, naszej, świata, -chłopaki, chcemy, poczekaj, jaką, człowieku, czasem, żadnego, inny, przynajmniej, nazywa, super, naszego, -szczęście, potrzebuje, godziny, zabrać, powrotem, syn, lecz, słucham, twoich, udało, boga, pokój, działa, -ogóle, naszym, szkoły, możliwe, wiedział, wyjść, wszystkiego, byłoby, daleko, wieczorem, skarbie, jaka, -mógłbym, ostatni, możecie, cztery, doktorze, zrobimy, mąż, przeciwko, zgadza, zrobisz, czasie, czasami, -brzmi, raczej, ciało, należy, miasta, miałeś, taką, brat, cieszę, rozmawiać, cała, czymś, wybacz, twarz, -mała, chcecie, dr, pojęcia, lubisz, głowę, najbardziej, dziwne, głowy, wody, pół, wiadomość, policja, -strony, l, pl, mogłem, mieli, widzenia, pewna, ruszaj, wracaj, ode, popatrz, końca, plan, kiedykolwiek, -wejść, została, rok, syna, uda, wrócę, zewnątrz, droga, uwierzyć, późno, zostało, zostanie, zły, kapitanie, -potrzebujemy, byliśmy, zobaczymy, gotowy, obchodzi, jechać, rodziny, widziałam, drodze, czeka, środku, film, -spać, człowiekiem, zupełnie, taa, pomóż, mieliśmy, pomoc, słowo, innym, ostatnio, and, zna, mogła, pójść, -chłopcy, wziąć, mógłbyś, tłumaczenie, potrzebujesz, słyszysz, blisko, godzin, miłości, góry, zabił, piękna, -napisów, pokaż, moi, lubi, robota, prawa, ciężko, kimś, dół, rękę, nazywam, wielkie, część, wkrótce, naszą, -jedziemy, zapomnij, prosto, radę, robimy, powinnaś, gdybyś, chociaż, zależy, stronie, wypadek, tydzień, byłaś, -nowe, małe, praca, drogę, chłopak, zrobi, widział, mieście, synu, oznacza, krew, mógłby, krwi, górę, joe, wasza, -robią, tędy, wszędzie, temat, pierwsze, zobacz, ponad, kraju, mało, racja, tymi, cicho, chciała, powiedziałam, -leci, powinno, mówiąc, serca, chciałabym, miasto, george, spotkać, mniej, e, przyjaciel, mówiłeś, kłopoty, -miesięcy, jakąś, żaden, zostań, roboty, zatrzymać, frank, nieważne, głupi, pa, koleś, sprawie, spotkanie, ojcze, -pewnego, spróbuj, drugi, znalazłem, pracować, całym, zostały, złe, niemożliwe, jakoś, zdjęcia, stronę, wiedzą, it, -dziewczynę, zaczyna, mogli, samego, sądzisz, rodzina, razu, trudno, samochodu, okay, boję, szkoda, wami, charlie, -dał, środka, ojcem, piękne, dawno, choć, panem, przykład, nagle, bracie, żadnej, drugiej, przyjaciół, otwórz, -myśleć, doktor, chwileczkę, pracuje, najlepszy, brata, czyż, często, http, powinnam, odejść, trzech, chodźcie, -nazwisko, szansę, ciała, policji, szkole, prawdopodobnie, serio, matki, org, wolno, sami, muszą, zabierz, -słyszałeś, siostra, uspokój, wystarczająco, początku, faceta, problemy, szefie, broni, me, zostawić, czuje, -będziecie, przyszedł, wiedziałam, kilku, inni, b, głowie, historia, według, www, wezmę, nowym, czekać, stój, -mężczyzna, mówiłam, pokazać, około, wracam, wieku, jakaś, pierwsza, niczym, zabiję, zdjęcie, zabawne, rodzice, -musiałem, całkowicie, sprawdzić, mike, przyjdzie, sześć, kupić, dobrym, żonę, dasz, pomoże, nogi, obok, ruszać, -trzymać, zadzwonić, panno, godzinę, boli, oraz, spokoju, walczyć, wróci, tom, wspólnego, zmienić, ostatnie, uwagę, -znać, jednej, dłużej, powie, pogadać, łatwo, większość, nikomu, michael, córka, niedługo, powodzenia, tygodniu, -włosy, niestety, górze, kochasz, prawdziwy, historii, ulicy, musicie, gotowi, chwila, samym, grać, zadzwonię, -strasznie, mieszka, kocha, rady, tyłu, jakim, obiecuję, tysięcy, pomyślałem, pracuję, jedynie, pozwolić, uwaga, +nie, to, się, w, na, i, z, co, jest, że, do, tak, jak, o, mnie, a, ale, mi, za, ja, ci, tu, ty, czy, +tym, go, tego, tylko, jestem, po, cię, ma, już, mam, jesteś, może, pan, dla, coś, dobrze, wiem, jeśli, +teraz, proszę, od, wszystko, tam, więc, masz, nic, on, być, gdzie, będzie, są, ten, mogę, ciebie, +bardzo, sobie, kiedy, ze, wiesz, no, jej, jeszcze, pani, był, mój, chcę, było, dlaczego, by, przez, +nas, tutaj, chcesz, jego, ją, ich, nigdy, żeby, też, kto, naprawdę, przepraszam, bo, mamy, porządku, +możesz, dobra, mu, dziękuję, ona, domu, panie, muszę, nawet, chyba, hej, właśnie, prawda, zrobić, te, +zawsze, będę, moja, gdy, je, trochę, nam, moje, cześć, bez, nim, była, tej, jesteśmy, dalej, pana, +dzięki, wszyscy, musisz, twój, lat, tobą, więcej, ktoś, czas, ta, który, chce, powiedzieć, chodź, dobry, +mną, niech, sam, razem, chodzi, czego, boże, stało, musimy, raz, albo, prostu, będziesz, dzień, możemy, +was, myślę, czym, daj, lepiej, czemu, ludzie, ok, przed, życie, ludzi, robisz, my, niż, tych, kim, rzeczy, +myślisz, powiedz, przy, twoja, oni, oczywiście, nikt, siebie, stąd, niego, twoje, miał, jeden, mówi, +powiedział, moim, czasu, u, dziś, im, które, musi, wtedy, taki, aby, pod, dwa, temu, pewnie, takie, cóż, +wszystkie, mojego, dużo, cholera, kurwa, wie, znaczy, wygląda, dzieje, mieć, ile, iść, potem, będziemy, +dzieci, dlatego, cały, byłem, moją, skąd, szybko, jako, kochanie, stary, trzeba, miejsce, myśli, można, +sie, jasne, mojej, wam, swoje, zaraz, wiele, nią, rozumiem, nich, wszystkich, jakieś, jakiś, kocham, idź, +tę, mają, mówię, mówisz, dzisiaj, nad, pomóc, takiego, przestań, tobie, jutro, robić, jaki, mamo, kilka, +przykro, wiedzieć, ojciec, widzisz, zbyt, zobaczyć, która, ani, tyle, trzy, tą, sposób, miałem, tato, niej, +później, pieniądze, robi, kogoś, kiedyś, zanim, widzę, pracy, świetnie, pewno, myślałem, będą, bardziej, +życia, długo, och, sir, ponieważ, aż, dni, nocy, każdy, dnia, znowu, oh, chciałem, taka, swoją, twoim, +widziałem, stanie, powiem, imię, wy, żebyś, nadzieję, twojej, panu, spokój, słuchaj, rację, spójrz, razie, +znam, pierwszy, koniec, chciałbym, we, nami, jakie, posłuchaj, problem, przecież, dobre, nasz, dziecko, drzwi, +nasze, miło, czuję, mógł, żyje, jeżeli, człowiek, powiedziałem, gdyby, roku, dom, sama, potrzebuję, +wszystkim, zostać, wciąż, dokładnie, mama, którzy, mówić, zamknij, mów, twoją, chwilę, zrobił, samo, idziemy, +nadal, jesteście, zabić, były, sobą, kogo, lub, lubię, the, podoba, minut, bym, chciał, bądź, czegoś, gdzieś, +mówiłem, chodźmy, znaleźć, poza, spokojnie, wcześniej, został, rozumiesz, mogą, prawie, wydaje, miała, mały, +byłeś, facet, zrobię, macie, żadnych, razy, noc, ciągle, broń, moich, twojego, końcu, pomocy, czekaj, znasz, +oczy, weź, idę, halo, dość, innego, pomysł, jakby, trzymaj, jedno, ojca, porozmawiać, pamiętasz, lata, +powinieneś, którą, powodu, takim, niczego, powinniśmy, oto, napisy, jednak, świat, pokoju, żebym, sprawy, +dwie, samochód, swój, wystarczy, pewien, źle, pozwól, numer, jedną, miejscu, you, drogi, byłam, dokąd, miłość, +panowie, pieniędzy, którego, matka, rano, dwóch, całe, patrz, rzecz, nowy, idzie, wyglądasz, bóg, byś, życiu, +nimi, nikogo, całą, swojego, świecie, sprawa, dziewczyna, prawo, byli, zostaw, wiedziałem, jedna, widzieć, +swoim, kobiety, uważaj, najpierw, właściwie, dam, również, diabła, chcą, którym, zrób, da, jednego, dać, +musiał, ręce, powinienem, których, znów, powiedziała, wczoraj, czujesz, zaczekaj, sądzę, śmierć, mówił, +podczas, której, całkiem, pracę, żona, pójdę, pamiętam, powiedziałeś, mówią, wiemy, jezu, witam, cholery, +swoich, telefon, wielu, także, poważnie, skoro, miejsca, robię, śmierci, słyszałem, wina, zrobiłem, dobranoc, +parę, prawdę, swojej, serce, inaczej, dziewczyny, kobieta, powiesz, martw, rób, pytanie, pięć, innych, one, +gra, natychmiast, wrócić, szybciej, jednym, cokolwiek, wierzę, wcale, wieczór, ważne, człowieka, wielki, nowa, +dopiero, ziemi, gdybym, tata, poznać, stać, jack, myślałam, witaj, słowa, zrobiłeś, gówno, john, dolarów, +sprawę, inne, idziesz, miałam, wiecie, chciałam, zobaczenia, widziałeś, żyć, każdym, nasza, panią, wspaniale, +chwili, każdego, nowego, nieźle, takich, między, dostać, powinien, dawaj, dopóki, naszych, naszej, świata, +chłopaki, chcemy, poczekaj, jaką, człowieku, czasem, żadnego, inny, przynajmniej, nazywa, super, naszego, +szczęście, potrzebuje, godziny, zabrać, powrotem, syn, lecz, słucham, twoich, udało, boga, pokój, działa, +ogóle, naszym, szkoły, możliwe, wiedział, wyjść, wszystkiego, byłoby, daleko, wieczorem, skarbie, jaka, +mógłbym, ostatni, możecie, cztery, doktorze, zrobimy, mąż, przeciwko, zgadza, zrobisz, czasie, czasami, +brzmi, raczej, ciało, należy, miasta, miałeś, taką, brat, cieszę, rozmawiać, cała, czymś, wybacz, twarz, +mała, chcecie, dr, pojęcia, lubisz, głowę, najbardziej, dziwne, głowy, wody, pół, wiadomość, policja, +strony, l, pl, mogłem, mieli, widzenia, pewna, ruszaj, wracaj, ode, popatrz, końca, plan, kiedykolwiek, +wejść, została, rok, syna, uda, wrócę, zewnątrz, droga, uwierzyć, późno, zostało, zostanie, zły, kapitanie, +potrzebujemy, byliśmy, zobaczymy, gotowy, obchodzi, jechać, rodziny, widziałam, drodze, czeka, środku, film, +spać, człowiekiem, zupełnie, taa, pomóż, mieliśmy, pomoc, słowo, innym, ostatnio, and, zna, mogła, pójść, +chłopcy, wziąć, mógłbyś, tłumaczenie, potrzebujesz, słyszysz, blisko, godzin, miłości, góry, zabił, piękna, +napisów, pokaż, moi, lubi, robota, prawa, ciężko, kimś, dół, rękę, nazywam, wielkie, część, wkrótce, naszą, +jedziemy, zapomnij, prosto, radę, robimy, powinnaś, gdybyś, chociaż, zależy, stronie, wypadek, tydzień, byłaś, +nowe, małe, praca, drogę, chłopak, zrobi, widział, mieście, synu, oznacza, krew, mógłby, krwi, górę, joe, wasza, +robią, tędy, wszędzie, temat, pierwsze, zobacz, ponad, kraju, mało, racja, tymi, cicho, chciała, powiedziałam, +leci, powinno, mówiąc, serca, chciałabym, miasto, george, spotkać, mniej, e, przyjaciel, mówiłeś, kłopoty, +miesięcy, jakąś, żaden, zostań, roboty, zatrzymać, frank, nieważne, głupi, pa, koleś, sprawie, spotkanie, ojcze, +pewnego, spróbuj, drugi, znalazłem, pracować, całym, zostały, złe, niemożliwe, jakoś, zdjęcia, stronę, wiedzą, it, +dziewczynę, zaczyna, mogli, samego, sądzisz, rodzina, razu, trudno, samochodu, okay, boję, szkoda, wami, charlie, +dał, środka, ojcem, piękne, dawno, choć, panem, przykład, nagle, bracie, żadnej, drugiej, przyjaciół, otwórz, +myśleć, doktor, chwileczkę, pracuje, najlepszy, brata, czyż, często, http, powinnam, odejść, trzech, chodźcie, +nazwisko, szansę, ciała, policji, szkole, prawdopodobnie, serio, matki, org, wolno, sami, muszą, zabierz, +słyszałeś, siostra, uspokój, wystarczająco, początku, faceta, problemy, szefie, broni, me, zostawić, czuje, +będziecie, przyszedł, wiedziałam, kilku, inni, b, głowie, historia, według, www, wezmę, nowym, czekać, stój, +mężczyzna, mówiłam, pokazać, około, wracam, wieku, jakaś, pierwsza, niczym, zabiję, zdjęcie, zabawne, rodzice, +musiałem, całkowicie, sprawdzić, mike, przyjdzie, sześć, kupić, dobrym, żonę, dasz, pomoże, nogi, obok, ruszać, +trzymać, zadzwonić, panno, godzinę, boli, oraz, spokoju, walczyć, wróci, tom, wspólnego, zmienić, ostatnie, uwagę, +znać, jednej, dłużej, powie, pogadać, łatwo, większość, nikomu, michael, córka, niedługo, powodzenia, tygodniu, +włosy, niestety, górze, kochasz, prawdziwy, historii, ulicy, musicie, gotowi, chwila, samym, grać, zadzwonię, +strasznie, mieszka, kocha, rady, tyłu, jakim, obiecuję, tysięcy, pomyślałem, pracuję, jedynie, pozwolić, uwaga, proste, zacząć, myśl, wstawaj, rany, prawdziwe, takiej, jakiegoś, umrzeć, złego, okazji """ # Source: https://www.101languages.net/greek/most-common-greek-words/ alias words_el = """ - να, το, δεν, θα, είναι, και, μου, με, ο, για, την, σου, τα, τον, η, τι, σε, που, του, αυτό, στο, ότι, - από, τη, της, ναι, σας, ένα, εδώ, τους, αν, όχι, μια, μας, είσαι, αλλά, κι, οι, πρέπει, είμαι, ήταν, - πολύ, στην, δε, γιατί, εγώ, τώρα, πως, εντάξει, τις, κάτι, ξέρω, μην, έχει, έχω, εσύ, θέλω, καλά, - έτσι, στη, στον, αυτή, ξέρεις, κάνεις, εκεί, σαν, μόνο, μπορώ, όταν, έχεις, μαζί, πώς, τίποτα, - ευχαριστώ, όλα, κάνω, πάμε, ή, ποτέ, τόσο, πού, αυτά, έλα, στα, μέσα, κάνει, των, μπορεί, κύριε, πιο, - σπίτι, παρακαλώ, λοιπόν, μπορείς, αυτός, υπάρχει, ακόμα, πίσω, λίγο, πάντα, είμαστε, γεια, τότε, - ειναι, μετά, πω, έχουμε, μη, ένας, ποιος, νομίζω, πριν, απλά, δω, δουλειά, παιδιά, οχι, αλήθεια, - όλοι, ίσως, λες, όπως, ας, θέλεις, μα, άλλο, είπε, ζωή, πάω, δύο, ωραία, έναν, καλό, απο, κάνουμε, - έξω, κοίτα, είχε, στις, πάνω, είπα, πες, χρόνια, ούτε, κάτω, είστε, ώρα, θες, σένα, έχουν, γυναίκα, - μένα, μέρα, καλή, φορά, όμως, κανείς, κάθε, ε, οτι, αρέσει, ήμουν, μέχρι, δυο, είχα, μαμά, χωρίς, - καλύτερα, πας, πράγματα, πάει, σήμερα, κάποιος, ήθελα, θέλει, θεέ, έπρεπε, λέει, μία, σωστά, αυτόν, - μπορούμε, συμβαίνει, ακριβώς, έγινε, πόσο, επειδή, λεφτά, πολλά, μόλις, εμένα, λένε, πεις, συγγνώμη, - γρήγορα, ω, έκανε, λυπάμαι, γίνει, παιδί, περίμενε, έκανα, φίλε, βλέπω, μέρος, στιγμή, φαίνεται, + να, το, δεν, θα, είναι, και, μου, με, ο, για, την, σου, τα, τον, η, τι, σε, που, του, αυτό, στο, ότι, + από, τη, της, ναι, σας, ένα, εδώ, τους, αν, όχι, μια, μας, είσαι, αλλά, κι, οι, πρέπει, είμαι, ήταν, + πολύ, στην, δε, γιατί, εγώ, τώρα, πως, εντάξει, τις, κάτι, ξέρω, μην, έχει, έχω, εσύ, θέλω, καλά, + έτσι, στη, στον, αυτή, ξέρεις, κάνεις, εκεί, σαν, μόνο, μπορώ, όταν, έχεις, μαζί, πώς, τίποτα, + ευχαριστώ, όλα, κάνω, πάμε, ή, ποτέ, τόσο, πού, αυτά, έλα, στα, μέσα, κάνει, των, μπορεί, κύριε, πιο, + σπίτι, παρακαλώ, λοιπόν, μπορείς, αυτός, υπάρχει, ακόμα, πίσω, λίγο, πάντα, είμαστε, γεια, τότε, + ειναι, μετά, πω, έχουμε, μη, ένας, ποιος, νομίζω, πριν, απλά, δω, δουλειά, παιδιά, οχι, αλήθεια, + όλοι, ίσως, λες, όπως, ας, θέλεις, μα, άλλο, είπε, ζωή, πάω, δύο, ωραία, έναν, καλό, απο, κάνουμε, + έξω, κοίτα, είχε, στις, πάνω, είπα, πες, χρόνια, ούτε, κάτω, είστε, ώρα, θες, σένα, έχουν, γυναίκα, + μένα, μέρα, καλή, φορά, όμως, κανείς, κάθε, ε, οτι, αρέσει, ήμουν, μέχρι, δυο, είχα, μαμά, χωρίς, + καλύτερα, πας, πράγματα, πάει, σήμερα, κάποιος, ήθελα, θέλει, θεέ, έπρεπε, λέει, μία, σωστά, αυτόν, + μπορούμε, συμβαίνει, ακριβώς, έγινε, πόσο, επειδή, λεφτά, πολλά, μόλις, εμένα, λένε, πεις, συγγνώμη, + γρήγορα, ω, έκανε, λυπάμαι, γίνει, παιδί, περίμενε, έκανα, φίλε, βλέπω, μέρος, στιγμή, φαίνεται, πρόβλημα, άλλη, είπες, φυσικά, κάποιον, όσο, πήγαινε, πάλι, λάθος, ως, έχετε, εσένα, πράγμα, κυρία, - χρόνο, στους, πάρω, μπαμπά, δικό, απ, γίνεται, εσείς, λέω, συγνώμη, όλο, μητέρα, έκανες, πιστεύω, - ήσουν, κάποια, σίγουρα, υπάρχουν, όλη, ενα, αυτο, ξέρει, μωρό, ιδέα, δει, μάλλον, ίδιο, πάρε, είδα, - αύριο, βλέπεις, νέα, κόσμο, νομίζεις, τί, εμείς, σταμάτα, πάρει, αγάπη, πατέρας, όλους, αρκετά, - χρειάζεται, καιρό, φορές, κάνουν, ακόμη, α, πατέρα, προς, αμέσως, πια, ηταν, χαρά, απόψε, όνομα, - μάλιστα, μόνος, μεγάλη, κανένα, ελα, πραγματικά, αυτοί, πει, πότε, εχω, βράδυ, αυτές, θέλετε, κάνετε, - σημαίνει, πρώτη, ποιο, πόλη, μπορούσα, ποια, γαμώτο, ήδη, τελευταία, άνθρωποι, τέλος, απλώς, νόμιζα, - ξέρετε, μέρες, δεις, θέση, αυτούς, καταλαβαίνω, φύγε, χέρια, εκτός, ήξερα, οπότε, λεπτά, μακριά, - κάνε, αμάξι, δική, λεπτό, μεγάλο, μήπως, κορίτσι, μάτια, ελάτε, πρόκειται, πόρτα, δίκιο, βοήθεια, - ήρθε, μιλήσω, δρόμο, εαυτό, καθόλου, ορίστε, βρω, πειράζει, μπορείτε, καλός, πέρα, κοντά, εννοώ, - τέτοιο, μπροστά, έρθει, χρειάζομαι, χέρι, ελπίζω, δώσε, διάολο, φύγω, ιστορία, όπλο, αφού, πρωί, - νύχτα, ωραίο, τύπος, ξανά, θυμάσαι, δούμε, κατά, εννοείς, αγαπώ, κακό, θέμα, εδω, αυτήν, τρόπο, - κεφάλι, είχες, μερικές, μιλάς, φίλος, άνθρωπος, φύγουμε, όλες, σκατά, ανθρώπους, βέβαια, άντρας, - κάποιο, πάνε, αστυνομία, αλλιώς, συνέβη, χαίρομαι, άλλα, περισσότερο, καλύτερο, εκείνη, πάρεις, τo, - νερό, ώρες, σίγουρος, vα, τρεις, εχεις, πρώτα, μπορούσε, σ, οταν, δρ, πιστεύεις, μόνη, ποιός, καμιά, - κανέναν, πέθανε, εχει, ετσι, αγόρι, ανησυχείς, άντρες, δωμάτιο, ομάδα, ίδια, εμπρός, βρούμε, βοηθήσω, - τέτοια, πήρε, τρία, λόγο, μικρό, αντίο, o, πέντε, πήγε, καν, ευκαιρία, είδες, έρχεται, δηλαδή, - αργότερα, ήθελε, πούμε, λέμε, όπου, αλλα, κόρη, κόσμος, γυναίκες, τηλέφωνο, εάν, δώσω, καρδιά, βρήκα, - γραφείο, επίσης, νιώθω, σχέση, θέλουν, ισως, τέλεια, είχαμε, κάπου, μυαλό, ώστε, καλημέρα, σχολείο, - θεός, μικρή, τρέχει, ψέματα, ξέρουμε, οικογένεια, εισαι, θυμάμαι, κ, ενός, φίλοι, πρόσεχε, - καταλαβαίνεις, αργά, ντε, θέλουμε, σύντομα, πήρα, σχεδόν, παιχνίδι, κύριοι, γειά, μήνες, μπαμπάς, - σοβαρά, δολάρια, τουλάχιστον, χρήματα, πείτε, πόδια, αίμα, κοπέλα, φαγητό, ειμαι, ποιον, μερικά, - δύσκολο, μπορούν, βρεις, όμορφη, φύγεις, τύχη, πλάκα, έρθεις, άντρα, κορίτσια, μείνε, αστείο, καμία, - είχαν, χάρη, άλλος, πρεπει, σημασία, φυλακή, νεκρός, συγχωρείτε, φοβάμαι, μπράβο, γύρω, κανένας, μεταξύ, - τ, χθες, πολλές, όνομά, τζακ, ρε, καληνύχτα, πολυ, φύγει, αφήσω, ήθελες, tι, ήρθες, ακούς, πρώτο, γιατι, - ηρέμησε, γι, πάρουμε, πάρα, άλλους, κατάλαβα, έρθω, συνέχεια, έλεγα, γλυκιά, νοιάζει, χριστέ, βιβλίο, - κύριος, μ, χώρα, αρχή, ήρθα, πεθάνει, γη, έτοιμος, εγω, άσχημα, συμβεί, αυτοκίνητο, ζωής, τελικά, φέρω, - τρόπος, κατάσταση, www, περιμένω, σημαντικό, όσα, σκέφτηκα, μιλήσουμε, αφήστε, τωρα, ακούω, γιος, σκοτώσω, - δύναμη, κα, κε, εκείνο, γονείς, μιλάω, σκοτώσει, ολα, μείνει, μείνω, αρέσουν, δεv, υπόθεση, φίλους, όπλα, - υποθέτω, εμάς, ενώ, έξι, σχέδιο, άρεσε, καφέ, σκότωσε, χρειαζόμαστε, φίλο, σωστό, προσπαθώ, κάναμε, - κοιτάξτε, μoυ, κου, ποτό, εσάς, έι, έφυγε, ταινία, μοιάζει, κρεβάτι, εχουμε, περιμένει, νέο, μπορούσες, - μάθω, αφήσεις, περιμένετε, χρειάζεσαι, υπήρχε, μισό, δέκα, αφεντικό, περίπου, άλλοι, λόγος, ξέρουν, κάποτε, - βρήκες, καλύτερη, υπέροχο, τζον, δίπλα, σκάσε, θεού, άκουσα, φύγετε, λέξη, παρά, επόμενη, λέτε, περάσει, - πόσα, γίνεις, σώμα, ν, πήρες, τελείωσε, γιο, ρούχα, σκέφτομαι, εσυ, άλλες, γυρίσω, βάλω, μουσική, ραντεβού, - φωτιά, έδωσε, πάτε, φοβάσαι, βρει, δείξω, γίνω, βοηθήσει, τύπο, σειρά, αξίζει, μείνεις, είπαν, άλλον, - κυρίες, λίγη, πέρασε, κάτσε, πήγα, δείτε, μιας, βδομάδα, έρχομαι, προσοχή, εύκολο, ερώτηση, υπέροχα, - σίγουρη, νοσοκομείο, τρελός, ενας, βάλε, πόλεμο, φέρε, δικά, τιμή, κατάλαβες, ταξίδι, οποίο, δουλεύει, θεό, - μικρέ, μάθεις, βρίσκεται, πολλοί, δες, πάρτε, παντού, πρόσωπο, μήνυμα, αδερφή, μιλάει, παλιά, πουθενά, - κράτα, περίπτωση, φως, επάνω, έλεγε, συμφωνία, οπως, ολοι, πρώτος, δεσποινίς, γιατρός, γνωρίζω, σαμ, - σκέφτεσαι, ει, φίλη, σεξ, έκαναν, προβλήματα, κάπως, ό, τελευταίο, ακούσει, τζο, καλώς, επιλογή, - σταματήστε, τόσα, οτιδήποτε, περισσότερα, άδεια, πάρτι, περίμενα, ακούγεται, gmteam, ήξερες, καιρός, - μαλλιά, καλύτερος, κανεις, φρανκ, μέση, συνέχισε, τίποτε, φωτογραφία, κατι, μεγάλος, περιοχή, άσε, καθώς, - είδε, λόγια, μήνα, μαλακίες, όμορφο, δώρο, στόμα, χάλια, εντελώς, μακάρι, τελειώσει, γνώμη, γιατρέ, ξερω, - πλευρά, μέλλον, θάνατο, νιώθεις, έτοιμοι, κομμάτι, μάθει, μιλάμε, ψηλά, αέρα, ερωτήσεις, αυτού, δώσει, - φεύγω, σημείο, τηλεόραση, κυριε, πραγματικότητα, ανάγκη, βοηθήσεις, προσπάθησε, γύρνα, άφησε, λίγα, κάντε, - είvαι, βλέπετε, αυτη, δείπνο, επιτέλους, κέντρο, περίεργο, ακούστε, πλοίο, κάποιες, δικός, σoυ, οικογένειά, - μιλήσει, πλέον, υπόσχομαι, περιμένεις, ήξερε, σκοτώσεις, ενταξει, δώσεις, εκει, ήμασταν, έρχονται, κώλο, - ρωτήσω, παίρνει, σιγά, σήκω, στοιχεία, αδελφή, βασικά, μένει, άκρη, πηγαίνετε, παίρνεις, tο, περιμένουμε, - συγχωρείς, μικρός, πόδι, δίνει, εκατομμύρια, ξενοδοχείο, αποστολή, ενδιαφέρον, χάρηκα, αεροπλάνο, γάμο, - χιλιάδες, υόρκη, οκ, ευχαριστούμε, καλα, κοιτάς, σα, π, χρόνος, ησυχία, ασφάλεια, εκείνος, a, βρήκε, - τέσσερα, βγάλω, μπες, συχνά, ημέρα, μάνα, εν, αγαπάς, άνθρωπο, γραμμή, φωτογραφίες, προσέχεις, ύπνο, - μυστικό, σχετικά, είδους, σκέψου, χριστούγεννα, κόσμου, τομ, μισώ, σύστημα, δουλειές, τελείως, πεθάνω, - αλλάξει, δεξιά, συνήθως, δουλεύω, μάικλ, εβδομάδα, νούμερο, λείπει, έτοιμη, τμήμα, βγει, ψυχή, έπεσε, - κάθαρμα, ματιά, οποία, πληροφορίες, μονο, κρίμα, τραγούδι, μαγαζί, δουλεύεις, μαζι, τέλειο, κύριο, - λέγεται, τσάρλι, πεθάνεις, σκεφτόμουν, καλησπέρα, συγχαρητήρια, φωνή, εκ, άτομο, παίζεις, σκάφος, - φαίνεσαι, ξαφνικά, παραπάνω, ατύχημα, θελω, ξέχνα, ήρθατε, εναντίον, τραπέζι, γράμμα, μείνετε, αμερική, - βασιλιάς, υπό, μπάνιο, ποτε, ίδιος, προφανώς, μαλάκα, αδερφός, άνδρες, nαι, χρονών, ναί, κλειδί, δις, - γιαγιά, παράξενο, πτώμα, βρήκαμε, μιλήσεις, υποτίθεται, ορκίζομαι, δυνατά, ποιό, θάλασσα, παίρνω, άκουσες, - παρέα, αριστερά, έμαθα, μάχη, μηχανή, σάρα, ζωντανός, όνειρο, παλιό, μπορούσαμε, πάντως, ανάμεσα, έχασα, - νωρίς, κάποιοι, άκου, παίζει, φτάνει, δίνω, βγες, υπέροχη, νόημα, έλεγχο, μέτρα, ξερεις, ζει, δείχνει, + χρόνο, στους, πάρω, μπαμπά, δικό, απ, γίνεται, εσείς, λέω, συγνώμη, όλο, μητέρα, έκανες, πιστεύω, + ήσουν, κάποια, σίγουρα, υπάρχουν, όλη, ενα, αυτο, ξέρει, μωρό, ιδέα, δει, μάλλον, ίδιο, πάρε, είδα, + αύριο, βλέπεις, νέα, κόσμο, νομίζεις, τί, εμείς, σταμάτα, πάρει, αγάπη, πατέρας, όλους, αρκετά, + χρειάζεται, καιρό, φορές, κάνουν, ακόμη, α, πατέρα, προς, αμέσως, πια, ηταν, χαρά, απόψε, όνομα, + μάλιστα, μόνος, μεγάλη, κανένα, ελα, πραγματικά, αυτοί, πει, πότε, εχω, βράδυ, αυτές, θέλετε, κάνετε, + σημαίνει, πρώτη, ποιο, πόλη, μπορούσα, ποια, γαμώτο, ήδη, τελευταία, άνθρωποι, τέλος, απλώς, νόμιζα, + ξέρετε, μέρες, δεις, θέση, αυτούς, καταλαβαίνω, φύγε, χέρια, εκτός, ήξερα, οπότε, λεπτά, μακριά, + κάνε, αμάξι, δική, λεπτό, μεγάλο, μήπως, κορίτσι, μάτια, ελάτε, πρόκειται, πόρτα, δίκιο, βοήθεια, + ήρθε, μιλήσω, δρόμο, εαυτό, καθόλου, ορίστε, βρω, πειράζει, μπορείτε, καλός, πέρα, κοντά, εννοώ, + τέτοιο, μπροστά, έρθει, χρειάζομαι, χέρι, ελπίζω, δώσε, διάολο, φύγω, ιστορία, όπλο, αφού, πρωί, + νύχτα, ωραίο, τύπος, ξανά, θυμάσαι, δούμε, κατά, εννοείς, αγαπώ, κακό, θέμα, εδω, αυτήν, τρόπο, + κεφάλι, είχες, μερικές, μιλάς, φίλος, άνθρωπος, φύγουμε, όλες, σκατά, ανθρώπους, βέβαια, άντρας, + κάποιο, πάνε, αστυνομία, αλλιώς, συνέβη, χαίρομαι, άλλα, περισσότερο, καλύτερο, εκείνη, πάρεις, τo, + νερό, ώρες, σίγουρος, vα, τρεις, εχεις, πρώτα, μπορούσε, σ, οταν, δρ, πιστεύεις, μόνη, ποιός, καμιά, + κανέναν, πέθανε, εχει, ετσι, αγόρι, ανησυχείς, άντρες, δωμάτιο, ομάδα, ίδια, εμπρός, βρούμε, βοηθήσω, + τέτοια, πήρε, τρία, λόγο, μικρό, αντίο, o, πέντε, πήγε, καν, ευκαιρία, είδες, έρχεται, δηλαδή, + αργότερα, ήθελε, πούμε, λέμε, όπου, αλλα, κόρη, κόσμος, γυναίκες, τηλέφωνο, εάν, δώσω, καρδιά, βρήκα, + γραφείο, επίσης, νιώθω, σχέση, θέλουν, ισως, τέλεια, είχαμε, κάπου, μυαλό, ώστε, καλημέρα, σχολείο, + θεός, μικρή, τρέχει, ψέματα, ξέρουμε, οικογένεια, εισαι, θυμάμαι, κ, ενός, φίλοι, πρόσεχε, + καταλαβαίνεις, αργά, ντε, θέλουμε, σύντομα, πήρα, σχεδόν, παιχνίδι, κύριοι, γειά, μήνες, μπαμπάς, + σοβαρά, δολάρια, τουλάχιστον, χρήματα, πείτε, πόδια, αίμα, κοπέλα, φαγητό, ειμαι, ποιον, μερικά, + δύσκολο, μπορούν, βρεις, όμορφη, φύγεις, τύχη, πλάκα, έρθεις, άντρα, κορίτσια, μείνε, αστείο, καμία, + είχαν, χάρη, άλλος, πρεπει, σημασία, φυλακή, νεκρός, συγχωρείτε, φοβάμαι, μπράβο, γύρω, κανένας, μεταξύ, + τ, χθες, πολλές, όνομά, τζακ, ρε, καληνύχτα, πολυ, φύγει, αφήσω, ήθελες, tι, ήρθες, ακούς, πρώτο, γιατι, + ηρέμησε, γι, πάρουμε, πάρα, άλλους, κατάλαβα, έρθω, συνέχεια, έλεγα, γλυκιά, νοιάζει, χριστέ, βιβλίο, + κύριος, μ, χώρα, αρχή, ήρθα, πεθάνει, γη, έτοιμος, εγω, άσχημα, συμβεί, αυτοκίνητο, ζωής, τελικά, φέρω, + τρόπος, κατάσταση, www, περιμένω, σημαντικό, όσα, σκέφτηκα, μιλήσουμε, αφήστε, τωρα, ακούω, γιος, σκοτώσω, + δύναμη, κα, κε, εκείνο, γονείς, μιλάω, σκοτώσει, ολα, μείνει, μείνω, αρέσουν, δεv, υπόθεση, φίλους, όπλα, + υποθέτω, εμάς, ενώ, έξι, σχέδιο, άρεσε, καφέ, σκότωσε, χρειαζόμαστε, φίλο, σωστό, προσπαθώ, κάναμε, + κοιτάξτε, μoυ, κου, ποτό, εσάς, έι, έφυγε, ταινία, μοιάζει, κρεβάτι, εχουμε, περιμένει, νέο, μπορούσες, + μάθω, αφήσεις, περιμένετε, χρειάζεσαι, υπήρχε, μισό, δέκα, αφεντικό, περίπου, άλλοι, λόγος, ξέρουν, κάποτε, + βρήκες, καλύτερη, υπέροχο, τζον, δίπλα, σκάσε, θεού, άκουσα, φύγετε, λέξη, παρά, επόμενη, λέτε, περάσει, + πόσα, γίνεις, σώμα, ν, πήρες, τελείωσε, γιο, ρούχα, σκέφτομαι, εσυ, άλλες, γυρίσω, βάλω, μουσική, ραντεβού, + φωτιά, έδωσε, πάτε, φοβάσαι, βρει, δείξω, γίνω, βοηθήσει, τύπο, σειρά, αξίζει, μείνεις, είπαν, άλλον, + κυρίες, λίγη, πέρασε, κάτσε, πήγα, δείτε, μιας, βδομάδα, έρχομαι, προσοχή, εύκολο, ερώτηση, υπέροχα, + σίγουρη, νοσοκομείο, τρελός, ενας, βάλε, πόλεμο, φέρε, δικά, τιμή, κατάλαβες, ταξίδι, οποίο, δουλεύει, θεό, + μικρέ, μάθεις, βρίσκεται, πολλοί, δες, πάρτε, παντού, πρόσωπο, μήνυμα, αδερφή, μιλάει, παλιά, πουθενά, + κράτα, περίπτωση, φως, επάνω, έλεγε, συμφωνία, οπως, ολοι, πρώτος, δεσποινίς, γιατρός, γνωρίζω, σαμ, + σκέφτεσαι, ει, φίλη, σεξ, έκαναν, προβλήματα, κάπως, ό, τελευταίο, ακούσει, τζο, καλώς, επιλογή, + σταματήστε, τόσα, οτιδήποτε, περισσότερα, άδεια, πάρτι, περίμενα, ακούγεται, gmteam, ήξερες, καιρός, + μαλλιά, καλύτερος, κανεις, φρανκ, μέση, συνέχισε, τίποτε, φωτογραφία, κατι, μεγάλος, περιοχή, άσε, καθώς, + είδε, λόγια, μήνα, μαλακίες, όμορφο, δώρο, στόμα, χάλια, εντελώς, μακάρι, τελειώσει, γνώμη, γιατρέ, ξερω, + πλευρά, μέλλον, θάνατο, νιώθεις, έτοιμοι, κομμάτι, μάθει, μιλάμε, ψηλά, αέρα, ερωτήσεις, αυτού, δώσει, + φεύγω, σημείο, τηλεόραση, κυριε, πραγματικότητα, ανάγκη, βοηθήσεις, προσπάθησε, γύρνα, άφησε, λίγα, κάντε, + είvαι, βλέπετε, αυτη, δείπνο, επιτέλους, κέντρο, περίεργο, ακούστε, πλοίο, κάποιες, δικός, σoυ, οικογένειά, + μιλήσει, πλέον, υπόσχομαι, περιμένεις, ήξερε, σκοτώσεις, ενταξει, δώσεις, εκει, ήμασταν, έρχονται, κώλο, + ρωτήσω, παίρνει, σιγά, σήκω, στοιχεία, αδελφή, βασικά, μένει, άκρη, πηγαίνετε, παίρνεις, tο, περιμένουμε, + συγχωρείς, μικρός, πόδι, δίνει, εκατομμύρια, ξενοδοχείο, αποστολή, ενδιαφέρον, χάρηκα, αεροπλάνο, γάμο, + χιλιάδες, υόρκη, οκ, ευχαριστούμε, καλα, κοιτάς, σα, π, χρόνος, ησυχία, ασφάλεια, εκείνος, a, βρήκε, + τέσσερα, βγάλω, μπες, συχνά, ημέρα, μάνα, εν, αγαπάς, άνθρωπο, γραμμή, φωτογραφίες, προσέχεις, ύπνο, + μυστικό, σχετικά, είδους, σκέψου, χριστούγεννα, κόσμου, τομ, μισώ, σύστημα, δουλειές, τελείως, πεθάνω, + αλλάξει, δεξιά, συνήθως, δουλεύω, μάικλ, εβδομάδα, νούμερο, λείπει, έτοιμη, τμήμα, βγει, ψυχή, έπεσε, + κάθαρμα, ματιά, οποία, πληροφορίες, μονο, κρίμα, τραγούδι, μαγαζί, δουλεύεις, μαζι, τέλειο, κύριο, + λέγεται, τσάρλι, πεθάνεις, σκεφτόμουν, καλησπέρα, συγχαρητήρια, φωνή, εκ, άτομο, παίζεις, σκάφος, + φαίνεσαι, ξαφνικά, παραπάνω, ατύχημα, θελω, ξέχνα, ήρθατε, εναντίον, τραπέζι, γράμμα, μείνετε, αμερική, + βασιλιάς, υπό, μπάνιο, ποτε, ίδιος, προφανώς, μαλάκα, αδερφός, άνδρες, nαι, χρονών, ναί, κλειδί, δις, + γιαγιά, παράξενο, πτώμα, βρήκαμε, μιλήσεις, υποτίθεται, ορκίζομαι, δυνατά, ποιό, θάλασσα, παίρνω, άκουσες, + παρέα, αριστερά, έμαθα, μάχη, μηχανή, σάρα, ζωντανός, όνειρο, παλιό, μπορούσαμε, πάντως, ανάμεσα, έχασα, + νωρίς, κάποιοι, άκου, παίζει, φτάνει, δίνω, βγες, υπέροχη, νόημα, έλεγχο, μέτρα, ξερεις, ζει, δείχνει, βρες, τού """ # Source: https://www.101languages.net/russian/most-common-russian-words/ alias words_ru = """ -я, не, что, в, и, ты, это, на, с, он, вы, как, мы, да, а, мне, меня, у, нет, так, но, то, все, тебя, его, -за, о, она, тебе, если, они, бы, же, ну, здесь, к, из, есть, чтобы, для, хорошо, когда, вас, только, по, -вот, просто, был, знаю, нас, всё, было, от, может, кто, вам, очень, их, там, будет, уже, почему, еще, -быть, где, спасибо, ничего, сейчас, или, могу, хочу, нам, чем, мой, до, надо, этого, ее, теперь, давай, -знаешь, нужно, больше, этом, нибудь, раз, со, была, этот, ему, ладно, эй, время, тоже, даже, хочешь, -сказал, ли, себя, думаю, пока, должен, потому, никогда, ни, тут, ещё, её, пожалуйста, сюда, привет, -тогда, конечно, моя, него, сегодня, один, тобой, правда, лучше, об, были, того, можно, мной, всегда, -сказать, день, сэр, без, можешь, чего, эти, дело, значит, лет, много, во, делать, буду, порядке, должны, -такой, ведь, ним, всего, сделать, хотел, твой, жизнь, ей, мистер, потом, через, себе, них, всех, такое, -им, куда, том, мама, после, человек, люди, слишком, иди, зачем, этим, немного, сколько, этой, знаете, -боже, ней, эту, который, отец, свою, деньги, два, под, твоя, мои, никто, моей, думаешь, друг, жизни, -эта, назад, видел, кажется, точно, вместе, люблю, мог, случилось, сам, нравится, черт, какой, людей, -папа, домой, тот, скажи, которые, должна, три, всем, сделал, возможно, прошу, будем, дома, парень, -снова, говорит, место, отсюда, можем, будешь, пошли, делаешь, совсем, говорил, понимаю, завтра, хочет, -простите, разве, давайте, хотите, отлично, сказала, туда, прямо, времени, вами, лишь, своей, хватит, -думал, можете, дом, дела, знать, дай, понял, помочь, говорить, слушай, свои, поэтому, прости, знает, -именно, знал, тем, кого, смотри, каждый, ваш, похоже, найти, моего, наш, мать, одна, имя, про, говорю, -будут, оно, свой, нельзя, извините, стоит, действительно, зовут, поговорить, доктор, перед, несколько, -нужен, происходит, ко, господи, возьми, мою, тех, нами, вижу, должно, наверное, откуда, понимаешь, верно, -скоро, уж, деле, твои, пусть, всю, хотела, при, более, ребята, нее, быстро, подожди, идти, надеюсь, чём, -работу, видеть, такая, этих, уверен, нужна, года, раньше, такие, руки, видишь, какая, посмотри, сын, -самом, ваша, послушай, равно, наши, другой, ага, мир, извини, минут, против, твоей, пор, жить, ж, жаль, -вообще, могли, хотя, человека, пора, ради, говорят, почти, твою, могут, над, весь, первый, чёрт, слышал, -собой, брат, вещи, дня, скажу, говоришь, нормально, своего, мое, ваше, итак, будь, ночь, хоть, ясно, -плохо, дверь, вопрос, господин, давно, денег, ваши, ка, мисс, одну, глаза, пять, будто, между, пойду, -опять, работа, самое, иногда, детей, этому, рад, здорово, бог, одного, ночи, готов, номер, которая, -машину, любовь, дорогая, виду, одно, прекрасно, вон, своих, быстрее, отца, женщина, достаточно, рядом, -убить, таким, пойдем, смерти, дети, такого, правильно, месте, никаких, сказали, здравствуйте, пару, две, -видела, долго, хороший, ах, кроме, алло, нашей, прав, вчера, вечером, жена, миссис, чтоб, друга, нужны, -кем, какие, те, увидеть, утро, смогу, неё, сама, моему, большой, сразу, работать, сердце, стал, своим, -сначала, могла, вроде, ними, говори, голову, дальше, помнишь, либо, ума, одной, вечер, случае, взять, -проблемы, помощь, добрый, год, думала, делает, скорее, слова, капитан, последний, важно, дней, помню, -ночью, утром, моих, произошло, которую, боюсь, также, вашей, ой, стой, твоего, никого, дорогой, убил, -насчет, друзья, самый, проблема, видели, вперед, дерьмо, понятно, чувствую, наша, будете, тому, имею, -вернуться, придется, пришел, спать, стать, столько, говорила, пойти, иначе, работает, девушка, час, -момент, моим, умер, думаете, доброе, слово, новый, часов, мире, знаем, твое, мальчик, однажды, интересно, -конец, играть, a, заткнись, сделали, посмотреть, идет, узнать, свое, права, хорошая, город, джон, -долларов, парни, идем, говорите, уйти, понять, знала, поздно, нашли, работы, скажите, сделаю, увидимся, -какого, другие, идея, пошел, доме, дочь, имеет, приятно, лицо, наших, обо, понимаете, руку, часть, -смотрите, вся, собираюсь, четыре, прежде, хотят, скажешь, чувак, дайте, сделала, кофе, джек, верю, -ждать, затем, большое, сами, неужели, моё, любит, мужчина, дать, господа, таких, осталось, которой, -далеко, вернусь, сильно, ох, сможешь, кому, вашего, посмотрим, машина, подождите, свет, чуть, серьезно, -пришли, оружие, решил, смысле, видите, тихо, нашел, свидания, путь, той, совершенно, следующий, которого, -места, парня, вдруг, пути, мадам, какое, шанс, сестра, нашего, ужасно, минуту, вокруг, другом, иду, -других, хотели, нем, смерть, подумал, фильм, оставь, делаете, уверена, кровь, говорили, внимание, -помогите, идите, держи, получить, оба, взял, спокойно, обычно, мало, забыл, странно, смотреть, поехали, -дал, часа, прекрати, посмотрите, готовы, вернулся, поверить, позже, милая, женщины, любишь, довольно, -обратно, остаться, думать, та, стороны, полиция, тело, тысяч, делал, машины, угодно, муж, году, неплохо, -бога, некоторые, конце, милый, the, рождения, трудно, добро, любви, больно, невозможно, спокойной, -слышишь, типа, получил, которое, приятель, хуже, никому, честь, успокойся, вашу, маленький, выглядит, -чарли, сына, неделю, i, девочка, делаю, шесть, ноги, история, рассказать, послушайте, часто, кстати, -двух, забудь, которых, следует, знают, пришла, семья, станет, матери, ребенок, план, проблем, например, -сделай, воды, немедленно, мира, сэм, телефон, перестань, правду, второй, прощения, ту, наше, уходи, твоих, -помоги, пол, внутри, нему, смог, десять, нашу, около, бывает, самого, большая, леди, сможем, вниз, легко, -делай, единственный, рада, меньше, волнуйся, хотим, полагаю, мам, иметь, своими, мере, наконец, начала, -минутку, работе, пожаловать, другого, двое, никакого, честно, школе, лучший, умереть, дам, насколько, -всей, малыш, оставить, безопасности, ненавижу, школу, осторожно, сынок, джо, таки, пытался, другое, б, -клянусь, машине, недели, стало, истории, пришлось, выглядишь, чему, сможет, купить, слышала, знали, -настоящий, сих, выйти, людям, замечательно, полиции, огонь, пойдём, спросить, дядя, детка, среди, особенно, -твоим, комнате, шоу, выпить, постоянно, делают, позвольте, родители, письмо, городе, случай, месяцев, мужик, -благодарю, o, ребенка, смешно, ответ, города, образом, любой, полностью, увидел, еду, имени, вместо, -абсолютно, обязательно, улице, твоё, убили, ваших, ехать, крови, решение, вина, поможет, своё, секунду, -обещаю, начать, голос, вещь, друзей, показать, нечего, э, месяц, подарок, приехал, самая, молодец, сделаем, -крайней, женщин, собираешься, конца, страшно, новости, идиот, потерял, спасти, вернуть, узнал, слушайте, -хотелось, сон, поняла, прошло, комнату, семь, погоди, главное, рано, корабль, пытаюсь, игра, умерла, -повезло, всему, возьму, таком, моем, глаз, настолько, идём, удачи, готова, семьи, садись, гарри, держись, -звучит, мило, война, человеком, право, такую, вопросы, представить, работаю, имеешь, красивая, идёт, никакой, -профессор, думает, войны, стала, стали, оттуда, известно, слышу, начал, подумать, позвонить, старый, придётся, -историю, вести, твоему, последнее, хочется, миллионов, нашла, способ, отношения, земле, фрэнк, получится, -говоря, связи, многие, пошёл, пистолет, убью, руках, получилось, президент, остановить, тьi, оставил, одним, -you, утра, боль, хорошие, пришёл, открой, брось, вставай, находится, поговорим, кино, людьми, полицию, покажу, +я, не, что, в, и, ты, это, на, с, он, вы, как, мы, да, а, мне, меня, у, нет, так, но, то, все, тебя, его, +за, о, она, тебе, если, они, бы, же, ну, здесь, к, из, есть, чтобы, для, хорошо, когда, вас, только, по, +вот, просто, был, знаю, нас, всё, было, от, может, кто, вам, очень, их, там, будет, уже, почему, еще, +быть, где, спасибо, ничего, сейчас, или, могу, хочу, нам, чем, мой, до, надо, этого, ее, теперь, давай, +знаешь, нужно, больше, этом, нибудь, раз, со, была, этот, ему, ладно, эй, время, тоже, даже, хочешь, +сказал, ли, себя, думаю, пока, должен, потому, никогда, ни, тут, ещё, её, пожалуйста, сюда, привет, +тогда, конечно, моя, него, сегодня, один, тобой, правда, лучше, об, были, того, можно, мной, всегда, +сказать, день, сэр, без, можешь, чего, эти, дело, значит, лет, много, во, делать, буду, порядке, должны, +такой, ведь, ним, всего, сделать, хотел, твой, жизнь, ей, мистер, потом, через, себе, них, всех, такое, +им, куда, том, мама, после, человек, люди, слишком, иди, зачем, этим, немного, сколько, этой, знаете, +боже, ней, эту, который, отец, свою, деньги, два, под, твоя, мои, никто, моей, думаешь, друг, жизни, +эта, назад, видел, кажется, точно, вместе, люблю, мог, случилось, сам, нравится, черт, какой, людей, +папа, домой, тот, скажи, которые, должна, три, всем, сделал, возможно, прошу, будем, дома, парень, +снова, говорит, место, отсюда, можем, будешь, пошли, делаешь, совсем, говорил, понимаю, завтра, хочет, +простите, разве, давайте, хотите, отлично, сказала, туда, прямо, времени, вами, лишь, своей, хватит, +думал, можете, дом, дела, знать, дай, понял, помочь, говорить, слушай, свои, поэтому, прости, знает, +именно, знал, тем, кого, смотри, каждый, ваш, похоже, найти, моего, наш, мать, одна, имя, про, говорю, +будут, оно, свой, нельзя, извините, стоит, действительно, зовут, поговорить, доктор, перед, несколько, +нужен, происходит, ко, господи, возьми, мою, тех, нами, вижу, должно, наверное, откуда, понимаешь, верно, +скоро, уж, деле, твои, пусть, всю, хотела, при, более, ребята, нее, быстро, подожди, идти, надеюсь, чём, +работу, видеть, такая, этих, уверен, нужна, года, раньше, такие, руки, видишь, какая, посмотри, сын, +самом, ваша, послушай, равно, наши, другой, ага, мир, извини, минут, против, твоей, пор, жить, ж, жаль, +вообще, могли, хотя, человека, пора, ради, говорят, почти, твою, могут, над, весь, первый, чёрт, слышал, +собой, брат, вещи, дня, скажу, говоришь, нормально, своего, мое, ваше, итак, будь, ночь, хоть, ясно, +плохо, дверь, вопрос, господин, давно, денег, ваши, ка, мисс, одну, глаза, пять, будто, между, пойду, +опять, работа, самое, иногда, детей, этому, рад, здорово, бог, одного, ночи, готов, номер, которая, +машину, любовь, дорогая, виду, одно, прекрасно, вон, своих, быстрее, отца, женщина, достаточно, рядом, +убить, таким, пойдем, смерти, дети, такого, правильно, месте, никаких, сказали, здравствуйте, пару, две, +видела, долго, хороший, ах, кроме, алло, нашей, прав, вчера, вечером, жена, миссис, чтоб, друга, нужны, +кем, какие, те, увидеть, утро, смогу, неё, сама, моему, большой, сразу, работать, сердце, стал, своим, +сначала, могла, вроде, ними, говори, голову, дальше, помнишь, либо, ума, одной, вечер, случае, взять, +проблемы, помощь, добрый, год, думала, делает, скорее, слова, капитан, последний, важно, дней, помню, +ночью, утром, моих, произошло, которую, боюсь, также, вашей, ой, стой, твоего, никого, дорогой, убил, +насчет, друзья, самый, проблема, видели, вперед, дерьмо, понятно, чувствую, наша, будете, тому, имею, +вернуться, придется, пришел, спать, стать, столько, говорила, пойти, иначе, работает, девушка, час, +момент, моим, умер, думаете, доброе, слово, новый, часов, мире, знаем, твое, мальчик, однажды, интересно, +конец, играть, a, заткнись, сделали, посмотреть, идет, узнать, свое, права, хорошая, город, джон, +долларов, парни, идем, говорите, уйти, понять, знала, поздно, нашли, работы, скажите, сделаю, увидимся, +какого, другие, идея, пошел, доме, дочь, имеет, приятно, лицо, наших, обо, понимаете, руку, часть, +смотрите, вся, собираюсь, четыре, прежде, хотят, скажешь, чувак, дайте, сделала, кофе, джек, верю, +ждать, затем, большое, сами, неужели, моё, любит, мужчина, дать, господа, таких, осталось, которой, +далеко, вернусь, сильно, ох, сможешь, кому, вашего, посмотрим, машина, подождите, свет, чуть, серьезно, +пришли, оружие, решил, смысле, видите, тихо, нашел, свидания, путь, той, совершенно, следующий, которого, +места, парня, вдруг, пути, мадам, какое, шанс, сестра, нашего, ужасно, минуту, вокруг, другом, иду, +других, хотели, нем, смерть, подумал, фильм, оставь, делаете, уверена, кровь, говорили, внимание, +помогите, идите, держи, получить, оба, взял, спокойно, обычно, мало, забыл, странно, смотреть, поехали, +дал, часа, прекрати, посмотрите, готовы, вернулся, поверить, позже, милая, женщины, любишь, довольно, +обратно, остаться, думать, та, стороны, полиция, тело, тысяч, делал, машины, угодно, муж, году, неплохо, +бога, некоторые, конце, милый, the, рождения, трудно, добро, любви, больно, невозможно, спокойной, +слышишь, типа, получил, которое, приятель, хуже, никому, честь, успокойся, вашу, маленький, выглядит, +чарли, сына, неделю, i, девочка, делаю, шесть, ноги, история, рассказать, послушайте, часто, кстати, +двух, забудь, которых, следует, знают, пришла, семья, станет, матери, ребенок, план, проблем, например, +сделай, воды, немедленно, мира, сэм, телефон, перестань, правду, второй, прощения, ту, наше, уходи, твоих, +помоги, пол, внутри, нему, смог, десять, нашу, около, бывает, самого, большая, леди, сможем, вниз, легко, +делай, единственный, рада, меньше, волнуйся, хотим, полагаю, мам, иметь, своими, мере, наконец, начала, +минутку, работе, пожаловать, другого, двое, никакого, честно, школе, лучший, умереть, дам, насколько, +всей, малыш, оставить, безопасности, ненавижу, школу, осторожно, сынок, джо, таки, пытался, другое, б, +клянусь, машине, недели, стало, истории, пришлось, выглядишь, чему, сможет, купить, слышала, знали, +настоящий, сих, выйти, людям, замечательно, полиции, огонь, пойдём, спросить, дядя, детка, среди, особенно, +твоим, комнате, шоу, выпить, постоянно, делают, позвольте, родители, письмо, городе, случай, месяцев, мужик, +благодарю, o, ребенка, смешно, ответ, города, образом, любой, полностью, увидел, еду, имени, вместо, +абсолютно, обязательно, улице, твоё, убили, ваших, ехать, крови, решение, вина, поможет, своё, секунду, +обещаю, начать, голос, вещь, друзей, показать, нечего, э, месяц, подарок, приехал, самая, молодец, сделаем, +крайней, женщин, собираешься, конца, страшно, новости, идиот, потерял, спасти, вернуть, узнал, слушайте, +хотелось, сон, поняла, прошло, комнату, семь, погоди, главное, рано, корабль, пытаюсь, игра, умерла, +повезло, всему, возьму, таком, моем, глаз, настолько, идём, удачи, готова, семьи, садись, гарри, держись, +звучит, мило, война, человеком, право, такую, вопросы, представить, работаю, имеешь, красивая, идёт, никакой, +профессор, думает, войны, стала, стали, оттуда, известно, слышу, начал, подумать, позвонить, старый, придётся, +историю, вести, твоему, последнее, хочется, миллионов, нашла, способ, отношения, земле, фрэнк, получится, +говоря, связи, многие, пошёл, пистолет, убью, руках, получилось, президент, остановить, тьi, оставил, одним, +you, утра, боль, хорошие, пришёл, открой, брось, вставай, находится, поговорим, кино, людьми, полицию, покажу, волосы, последние, брата, месяца """ @@ -586,7 +586,7 @@ fn gen_word_pairs[words: String = words_en]() -> List[String]: try: var list = words.split(",") for w in list: - var w1 = w[].strip() + var w1 = str(w[].strip()) for w in list: var w2 = w[].strip() result.append(w1 + " " + w2) @@ -595,9 +595,9 @@ fn gen_word_pairs[words: String = words_en]() -> List[String]: return result -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmarks -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_small_keys[s: String](mut b: Bencher) raises: var words = gen_word_pairs[s]() @@ -648,9 +648,9 @@ fn bench_long_key_new_hash_function[s: String](mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): var m = Bench(BenchConfig(num_repetitions=1)) m.bench_function[bench_small_keys[words_ar]](BenchId("bench_small_keys_ar")) diff --git a/stdlib/benchmarks/math/bench_math.mojo b/stdlib/benchmarks/math/bench_math.mojo index b7d4c1ae43..3e17eaf282 100644 --- a/stdlib/benchmarks/math/bench_math.mojo +++ b/stdlib/benchmarks/math/bench_math.mojo @@ -19,9 +19,9 @@ from random import * from benchmark import Bench, BenchConfig, Bencher, BenchId, Unit, keep, run -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Data -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# alias input_type = Float32 @@ -54,9 +54,9 @@ fn make_int_inputs(begin: Int, end: Int, num: Int) -> List[Int]: var inputs = make_inputs(0, 10_000, 1_000_000) var int_inputs = make_int_inputs(0, 10_000_000, 1_000_000) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark math_func -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter @@ -73,9 +73,9 @@ fn bench_math[ b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark fma -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_math3[ math_f3p: fn[type: DType, size: Int] ( @@ -92,9 +92,9 @@ fn bench_math3[ b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark lcm/gcd -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_math2[math_f2p: fn (Int, Int, /) -> Int](mut b: Bencher) raises: @always_inline @@ -107,9 +107,9 @@ fn bench_math2[math_f2p: fn (Int, Int, /) -> Int](mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): seed() var m = Bench(BenchConfig(num_repetitions=1)) diff --git a/stdlib/benchmarks/utils/bench_formatter.mojo b/stdlib/benchmarks/utils/bench_formatter.mojo index 818a0a2cff..12896f3c91 100644 --- a/stdlib/benchmarks/utils/bench_formatter.mojo +++ b/stdlib/benchmarks/utils/bench_formatter.mojo @@ -22,14 +22,14 @@ from builtin.dtype import _uint_type_of_width from utils.stringref import _align_down, _memchr, _memmem -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Data -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmarks -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_writer_int[n: Int](mut b: Bencher) raises: @always_inline @@ -54,9 +54,9 @@ fn bench_writer_simd[n: Int](mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): var m = Bench(BenchConfig(num_repetitions=1)) m.bench_function[bench_writer_int[42]](BenchId("bench_writer_int_42")) diff --git a/stdlib/benchmarks/utils/bench_memmem.mojo b/stdlib/benchmarks/utils/bench_memmem.mojo index 97925b2884..777557784e 100644 --- a/stdlib/benchmarks/utils/bench_memmem.mojo +++ b/stdlib/benchmarks/utils/bench_memmem.mojo @@ -23,9 +23,9 @@ from memory import UnsafePointer, bitcast, memcmp, pack_bits from utils.stringref import _align_down, _memchr, _memmem -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Data -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# var haystack = """Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer sed dictum est, et finibus ipsum. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nam tincidunt vel lacus vitae pulvinar. Donec ac ligula elementum, mollis purus a, lacinia quam. Maecenas vulputate mauris quis sem euismod sollicitudin. Proin accumsan nulla vel nisl congue varius. Morbi a erat dui. Aliquam maximus interdum orci, vitae pretium lorem bibendum non. Vestibulum eu lacus ullamcorper, egestas dui vel, pharetra ipsum. Pellentesque sagittis, urna a tincidunt sodales, leo sem placerat eros, vitae molestie felis diam at dolor. Donec viverra sem sit amet facilisis laoreet. Morbi semper convallis nisi, vitae congue velit tincidunt vel. Fusce ultrices, libero vel venenatis placerat, justo tellus porttitor massa, at volutpat tortor nunc id dui. Morbi eu ex quis odio porttitor ultricies vel eget massa. Aenean quis luctus nulla. Fusce sit amet leo at quam hendrerit mattis. Morbi sed quam nisl. Quisque purus enim, iaculis sed laoreet vel, pellentesque ut orci. Vivamus risus orci, varius eu pharetra quis, tincidunt non enim. Suspendisse bibendum lacus ex, quis blandit lectus malesuada a. Maecenas iaculis porta lacus, sit amet tristique ante scelerisque non. Proin auctor elit in lacus dictum egestas. Pellentesque tincidunt justo sed vehicula blandit. Pellentesque vehicula facilisis tellus in viverra. @@ -143,9 +143,9 @@ Curabitur auctor volutpat diam vitae vehicula. Vivamus est arcu, efficitur nec i var needle = "school" # a word intentionally not in the test data -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Baseline `_memmem` implementation -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline fn _memmem_baseline[ type: DType @@ -185,9 +185,9 @@ fn _memmem_baseline[ return UnsafePointer[Scalar[type]]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmarks -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @parameter fn bench_find_baseline(mut b: Bencher) raises: @always_inline @@ -218,9 +218,9 @@ fn bench_find_optimized(mut b: Bencher) raises: b.iter[call_fn]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Benchmark Main -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# def main(): var m = Bench(BenchConfig(num_repetitions=1)) m.bench_function[bench_find_baseline](BenchId("find_baseline")) diff --git a/stdlib/docs/internal/README.md b/stdlib/docs/internal/README.md new file mode 100644 index 0000000000..b80fd03dca --- /dev/null +++ b/stdlib/docs/internal/README.md @@ -0,0 +1,16 @@ +## WARNING + +Everything in this file/directory is subject to revision on any bugfix or security +update. We (the stdlib team and contributors), reserve the right to remove, +change the API contracts of, rename, or cause to instantly crash the program, +any operation described in here. These are **PRIVATE** APIs and implementation +details for the Mojo stdlib and for MAX to use. **WE WILL CHANGE IT WHENEVER +WE FIND IT CONVENIENT TO DO SO WITHOUT WARNING OR NOTICE**. + +## Purpose + +This directory contains internal documentation for the implementation details +of the Mojo compiler, runtime, and stdlib. You must always reference the +current version of this documentation on the branch nightly before using the +operations or behavior documented within. Any new files should contain the +above warning. diff --git a/stdlib/docs/internal/mlir.md b/stdlib/docs/internal/mlir.md new file mode 100644 index 0000000000..ca0c174c4b --- /dev/null +++ b/stdlib/docs/internal/mlir.md @@ -0,0 +1,10 @@ +## WARNING + +Everything in this file is subject to revision on any bugfix or security +update. We (the stdlib team and contributors), reserve the right to remove, +change the API contracts of, rename, or cause to instantly crash the program, +any operation described in here. These are **PRIVATE** APIs and implementation +details for the Mojo stdlib and for MAX to use. **WE WILL CHANGE IT WHENEVER +WE FIND IT CONVENIENT TO DO SO WITHOUT WARNING OR NOTICE**. + +## MLIR Documentation diff --git a/stdlib/docs/internal/runtime.md b/stdlib/docs/internal/runtime.md new file mode 100644 index 0000000000..6d4921138b --- /dev/null +++ b/stdlib/docs/internal/runtime.md @@ -0,0 +1,10 @@ +## WARNING + +Everything in this file is subject to revision on any bugfix or security +update. We (the stdlib team and contributors), reserve the right to remove, +change the API contracts of, rename, or cause to instantly crash the program, +any operation described in here. These are **PRIVATE** APIs and implementation +details for the Mojo stdlib and for MAX to use. **WE WILL CHANGE IT WHENEVER +WE FIND IT CONVENIENT TO DO SO WITHOUT WARNING OR NOTICE**. + +## Runtime Documentation diff --git a/stdlib/docs/style-guide.md b/stdlib/docs/style-guide.md index dc07d62088..82002c152c 100644 --- a/stdlib/docs/style-guide.md +++ b/stdlib/docs/style-guide.md @@ -111,9 +111,9 @@ structure of header comments separating the various kinds of methods that can be defined on structs. ```mojo -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # MyStruct -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# struct MyStruct(Sized, Stringable): diff --git a/stdlib/src/base64/base64.mojo b/stdlib/src/base64/base64.mojo index d9a3f7f71b..6a9d585fb5 100644 --- a/stdlib/src/base64/base64.mojo +++ b/stdlib/src/base64/base64.mojo @@ -26,9 +26,9 @@ import bit from ._b64encode import b64encode_with_buffers as _b64encode_with_buffers -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -59,9 +59,9 @@ fn _ascii_to_value(char: String) -> Int: return -1 -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # b64encode -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # TODO: Use Span instead of List as input when Span is easier to use @@ -106,9 +106,9 @@ fn b64encode(input_bytes: List[UInt8, _]) -> String: return String(result^) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # b64decode -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -153,9 +153,9 @@ fn b64decode(str: String) -> String: return p -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # b16encode -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn b16encode(str: String) -> String: @@ -190,9 +190,9 @@ fn b16encode(str: String) -> String: return String(out^) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # b16decode -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/bit/__init__.mojo b/stdlib/src/bit/__init__.mojo index e41c3ca52c..75004d3618 100644 --- a/stdlib/src/bit/__init__.mojo +++ b/stdlib/src/bit/__init__.mojo @@ -21,6 +21,7 @@ from .bit import ( byte_swap, count_leading_zeros, count_trailing_zeros, + log2_floor, is_power_of_two, pop_count, rotate_bits_left, diff --git a/stdlib/src/bit/bit.mojo b/stdlib/src/bit/bit.mojo index 5405411ab1..fb4170f825 100644 --- a/stdlib/src/bit/bit.mojo +++ b/stdlib/src/bit/bit.mojo @@ -22,9 +22,9 @@ from bit import count_leading_zeros from sys import llvm_intrinsic, sizeof from sys.info import bitwidthof -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # count_leading_zeros -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -66,9 +66,9 @@ fn count_leading_zeros[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # count_trailing_zeros -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -110,9 +110,9 @@ fn count_trailing_zeros[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bit_reverse -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -154,9 +154,9 @@ fn bit_reverse[ ](val) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # byte_swap -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -212,9 +212,9 @@ fn byte_swap[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # pop_count -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -256,9 +256,9 @@ fn pop_count[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bit_not -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -286,9 +286,9 @@ fn bit_not[ return __mlir_op.`pop.simd.xor`(val.value, neg_one.value) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bit_width -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -343,10 +343,30 @@ fn bit_width[ return bitwidth - leading_zero -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# +# log2_floor +# ===-----------------------------------------------------------------------===# + + +@always_inline +fn log2_floor(val: Int) -> Int: + """Returns the floor of the base-2 logarithm of an integer value. + + Args: + val: The input value. + + Returns: + The floor of the base-2 logarithm of the input value, which is equal to + the position of the highest set bit. Returns -1 if val is 0. + """ + if val <= 1: + return 0 + return bitwidthof[Int]() - count_leading_zeros(val) - 1 + + +# ===-----------------------------------------------------------------------===# # is_power_of_two -# ===----------------------------------------------------------------------===# -# reference: https://en.cppreference.com/w/cpp/numeric/has_single_bit +# ===-----------------------------------------------------------------------===# @always_inline @@ -391,9 +411,9 @@ fn is_power_of_two[ return (val > 0) & (val & (val - 1) == 0) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bit_ceil -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # reference: https://en.cppreference.com/w/cpp/numeric/bit_ceil @@ -447,9 +467,9 @@ fn bit_ceil[ return (val > 1).select(1 << bit_width(val - ones), ones) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bit_floor -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # reference: https://en.cppreference.com/w/cpp/numeric/bit_floor @@ -500,9 +520,9 @@ fn bit_floor[ return (val > 0).select(1 << (bit_width(val) - 1), zeros) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # rotate_bits_left -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -578,9 +598,9 @@ fn rotate_bits_left[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # rotate_bits_right -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/builtin/_format_float.mojo b/stdlib/src/builtin/_format_float.mojo index b46e9ce306..95d7e8a30e 100644 --- a/stdlib/src/builtin/_format_float.mojo +++ b/stdlib/src/builtin/_format_float.mojo @@ -28,9 +28,9 @@ from math import log2 from sys.info import sizeof from builtin.io import _printf -from memory import bitcast +from memory import bitcast, Span -from utils import Span, StaticTuple +from utils import StaticTuple from utils.numerics import FPUtils, isinf, isnan @@ -71,9 +71,8 @@ struct FP[type: DType, CarrierDType: DType = FPUtils[type].uint_type]: alias carrier_bits = sizeof[Self.CarrierDType]() * 8 alias sig_bits = FPUtils[type].mantissa_width() alias exp_bits = FPUtils[type].exponent_width() - alias min_exponent = FPUtils[type].min_exponent() - alias max_exponent = FPUtils[type].max_exponent() - alias exp_bias = -Self.max_exponent + alias neg_exp_bias = -FPUtils[type].exponent_bias() + alias min_normal_exp = Self.neg_exp_bias + 1 alias cache_bits = 64 if Self.CarrierDType == DType.uint32 else 128 alias min_k = -31 if Self.CarrierDType == DType.uint32 else -292 alias max_k = 46 if Self.CarrierDType == DType.uint32 else 326 @@ -129,7 +128,7 @@ fn _write_float[W: Writer, type: DType, //](mut writer: W, value: Scalar[type]): # - The significand (sig) is the raw binary fraction # - The exponent (exp) is still in biased form var sig = FPUtils.get_mantissa_uint(casted) - var exp = FPUtils.get_exponent_without_bias(casted) + var exp = FPUtils.get_exponent_biased(casted) var sign = FPUtils.get_sign(casted) if isinf(value): @@ -235,7 +234,7 @@ fn _to_decimal[ # For normal numbers if binary_exp != 0: - binary_exp += FP[type].exp_bias - FP[type].sig_bits + binary_exp += FP[type].neg_exp_bias - FP[type].sig_bits if two_fc == 0: var minus_k = (binary_exp * 631305 - 261663) >> 21 var beta = binary_exp + _floor_log2_pow10(-minus_k) @@ -293,7 +292,7 @@ fn _to_decimal[ two_fc |= Scalar[CarrierDType](1) << (FP[type].sig_bits + 1) else: # For subnormal numbers - binary_exp = FP[type].min_exponent - FP[type].sig_bits + binary_exp = FP[type].min_normal_exp - FP[type].sig_bits ########################################## # Step 1: Schubfach multiplier calculation diff --git a/stdlib/src/builtin/_pybind.mojo b/stdlib/src/builtin/_pybind.mojo index 24b0fdc619..5e1d8c874c 100644 --- a/stdlib/src/builtin/_pybind.mojo +++ b/stdlib/src/builtin/_pybind.mojo @@ -61,10 +61,13 @@ fn fail_initialization(owned err: Error) -> PythonObject: fn pointer_bitcast[ To: AnyType -](ptr: Pointer) -> Pointer[To, ptr.origin, ptr.address_space, *_, **_] as out: - return __type_of(out)( +]( + ptr: Pointer, + out result: Pointer[To, ptr.origin, ptr.address_space, *_, **_], +): + return __type_of(result)( _mlir_value=__mlir_op.`lit.ref.from_pointer`[ - _type = __type_of(out)._mlir_type + _type = __type_of(result)._mlir_type ]( UnsafePointer(__mlir_op.`lit.ref.to_pointer`(ptr._value)) .bitcast[To]() @@ -162,7 +165,8 @@ fn _try_convert_arg[ type_name_id: StringLiteral, py_args: TypedPythonObject["Tuple"], argidx: Int, -) raises -> T as result: + out result: T, +) raises: try: result = T.try_from_python(py_args[argidx]) except convert_err: diff --git a/stdlib/src/builtin/_stubs.mojo b/stdlib/src/builtin/_stubs.mojo index c116d52408..3b5a12fdac 100644 --- a/stdlib/src/builtin/_stubs.mojo +++ b/stdlib/src/builtin/_stubs.mojo @@ -13,9 +13,9 @@ from builtin.range import _StridedRangeIterator, _UIntStridedRangeIterator -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # __MLIRType -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @register_passable("trivial") @@ -23,9 +23,9 @@ struct __MLIRType[T: AnyTrivialRegType](Movable, Copyable): var value: T -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # parameter_for -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# trait _IntNext(Copyable): diff --git a/stdlib/src/builtin/builtin_list.mojo b/stdlib/src/builtin/builtin_list.mojo index be5ddaaa05..e74b93cad3 100644 --- a/stdlib/src/builtin/builtin_list.mojo +++ b/stdlib/src/builtin/builtin_list.mojo @@ -17,9 +17,9 @@ These are Mojo built-ins, so you don't need to import them. from memory import Pointer, UnsafePointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # ListLiteral -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# struct ListLiteral[*Ts: CollectionElement](Sized, CollectionElement): @@ -119,9 +119,9 @@ struct ListLiteral[*Ts: CollectionElement](Sized, CollectionElement): return value in self.storage -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # VariadicList / VariadicListMem -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -221,7 +221,7 @@ struct VariadicList[type: AnyTrivialRegType](Sized): struct _VariadicListMemIter[ elt_is_mutable: Bool, //, elt_type: AnyType, - elt_origin: Origin[elt_is_mutable].type, + elt_origin: Origin[elt_is_mutable], list_origin: ImmutableOrigin, ]: """Iterator for VariadicListMem. @@ -233,10 +233,15 @@ struct _VariadicListMemIter[ list_origin: The origin of the VariadicListMem. """ - alias variadic_list_type = VariadicListMem[elt_type, elt_origin] + alias variadic_list_type = VariadicListMem[ + elt_type, elt_origin._mlir_origin + ] var index: Int - var src: Pointer[Self.variadic_list_type, list_origin] + var src: Pointer[ + Self.variadic_list_type, + list_origin, + ] fn __init__( mut self, index: Int, ref [list_origin]list: Self.variadic_list_type @@ -260,42 +265,10 @@ struct _VariadicListMemIter[ return len(self.src[]) - self.index -# Helper to compute the union of two origins: -# TODO: parametric aliases would be nice. -struct _lit_origin_union[ - is_mutable: Bool, //, - a: Origin[is_mutable].type, - b: Origin[is_mutable].type, -]: - alias result = __mlir_attr[ - `#lit.origin.union<`, - a, - `,`, - b, - `> : !lit.origin<`, - is_mutable.value, - `>`, - ] - - -struct _lit_mut_cast[ - is_mutable: Bool, //, - operand: Origin[is_mutable].type, - result_mutable: Bool, -]: - alias result = __mlir_attr[ - `#lit.origin.mutcast<`, - operand, - `> : !lit.origin<`, - +result_mutable.value, - `>`, - ] - - struct VariadicListMem[ elt_is_mutable: Bool, //, element_type: AnyType, - origin: Origin[elt_is_mutable].type, + origin: Origin[elt_is_mutable]._mlir_type, ](Sized): """A utility class to access variadic function arguments of memory-only types that may have ownership. It exposes references to the elements in a @@ -433,13 +406,12 @@ struct VariadicListMem[ fn __getitem__( self, idx: Int ) -> ref [ - _lit_origin_union[ - origin, - # cast mutability of self to match the mutability of the element, - # since that is what we want to use in the ultimate reference and - # the union overall doesn't matter. - _lit_mut_cast[__origin_of(self), elt_is_mutable].result, - ].result + # cast mutability of self to match the mutability of the element, + # since that is what we want to use in the ultimate reference and + # the union overall doesn't matter. + Origin[elt_is_mutable] + .cast_from[__origin_of(origin, self)] + .result ] element_type: """Gets a single element on the variadic list. @@ -469,9 +441,9 @@ struct VariadicListMem[ ](0, self) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # VariadicPack -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# alias _AnyTypeMetaType = __mlir_type[`!lit.anytrait<`, AnyType, `>`] @@ -480,7 +452,7 @@ alias _AnyTypeMetaType = __mlir_type[`!lit.anytrait<`, AnyType, `>`] @register_passable struct VariadicPack[ elt_is_mutable: Bool, //, - origin: Origin[elt_is_mutable].type, + origin: Origin[elt_is_mutable]._mlir_type, element_trait: _AnyTypeMetaType, *element_types: element_trait, ](Sized): diff --git a/stdlib/src/builtin/constrained.mojo b/stdlib/src/builtin/constrained.mojo index 09d934ff1c..b50ca11e71 100644 --- a/stdlib/src/builtin/constrained.mojo +++ b/stdlib/src/builtin/constrained.mojo @@ -88,4 +88,4 @@ fn constrained[cond: Bool, msg: String](): "at least two cores are required" ]() """ - constrained[cond, StringLiteral.from_string[msg]()]() + constrained[cond, StringLiteral.get[msg]()]() diff --git a/stdlib/src/builtin/coroutine.mojo b/stdlib/src/builtin/coroutine.mojo index b1e7c4bd55..c2c0ee1d81 100644 --- a/stdlib/src/builtin/coroutine.mojo +++ b/stdlib/src/builtin/coroutine.mojo @@ -134,10 +134,10 @@ struct Coroutine[type: AnyType, origins: OriginSet]: fn force_destroy(owned self): """Destroy the coroutine object.""" __mlir_op.`co.destroy`(self._handle) - __mlir_op.`lit.ownership.mark_destroyed`(__get_mvalue_as_litref(self)) + __disable_del self @always_inline - fn __await__(owned self) -> type as out: + fn __await__(owned self, out result: type): """Suspends the current coroutine until the coroutine is complete. Returns: @@ -147,12 +147,14 @@ struct Coroutine[type: AnyType, origins: OriginSet]: # Black magic! Internal implementation detail! # Don't you dare copy this code! 😤 var handle = self._handle - __mlir_op.`lit.ownership.mark_destroyed`(__get_mvalue_as_litref(self)) + __disable_del self __mlir_op.`co.await`[_type=NoneType]( handle, - __mlir_op.`lit.ref.to_pointer`(__get_mvalue_as_litref(out)), + __mlir_op.`lit.ref.to_pointer`(__get_mvalue_as_litref(result)), + ) + __mlir_op.`lit.ownership.mark_initialized`( + __get_mvalue_as_litref(result) ) - __mlir_op.`lit.ownership.mark_initialized`(__get_mvalue_as_litref(out)) # ===----------------------------------------------------------------------=== # @@ -217,10 +219,10 @@ struct RaisingCoroutine[type: AnyType, origins: OriginSet]: fn force_destroy(owned self): """Destroy the coroutine object.""" __mlir_op.`co.destroy`(self._handle) - __mlir_op.`lit.ownership.mark_destroyed`(__get_mvalue_as_litref(self)) + __disable_del self @always_inline - fn __await__(owned self) raises -> type as out: + fn __await__(owned self, out result: type) raises: """Suspends the current coroutine until the coroutine is complete. Returns: @@ -230,10 +232,10 @@ struct RaisingCoroutine[type: AnyType, origins: OriginSet]: # Black magic! Internal implementation detail! # Don't you dare copy this code! 😤 var handle = self._handle - __mlir_op.`lit.ownership.mark_destroyed`(__get_mvalue_as_litref(self)) + __disable_del self if __mlir_op.`co.await`[_type = __mlir_type.i1]( handle, - __mlir_op.`lit.ref.to_pointer`(__get_mvalue_as_litref(out)), + __mlir_op.`lit.ref.to_pointer`(__get_mvalue_as_litref(result)), __mlir_op.`lit.ref.to_pointer`( __get_mvalue_as_litref(__get_nearest_error_slot()) ), @@ -242,4 +244,6 @@ struct RaisingCoroutine[type: AnyType, origins: OriginSet]: __get_mvalue_as_litref(__get_nearest_error_slot()) ) __mlir_op.`lit.raise`() - __mlir_op.`lit.ownership.mark_initialized`(__get_mvalue_as_litref(out)) + __mlir_op.`lit.ownership.mark_initialized`( + __get_mvalue_as_litref(result) + ) diff --git a/stdlib/src/builtin/debug_assert.mojo b/stdlib/src/builtin/debug_assert.mojo index 4d0f1bb23a..e66c968189 100644 --- a/stdlib/src/builtin/debug_assert.mojo +++ b/stdlib/src/builtin/debug_assert.mojo @@ -23,9 +23,8 @@ from sys.ffi import c_char, c_size_t, c_uint, external_call from sys.param_env import env_get_string from builtin._location import __call_location, _SourceLocation -from memory import UnsafePointer +from memory import UnsafePointer, Span -from utils import Span from utils.write import ( _ArgBytes, _WriteBufferHeap, diff --git a/stdlib/src/builtin/dtype.mojo b/stdlib/src/builtin/dtype.mojo index 1d1c37d16f..b8a7dff5d6 100644 --- a/stdlib/src/builtin/dtype.mojo +++ b/stdlib/src/builtin/dtype.mojo @@ -66,23 +66,65 @@ struct DType( alias float8e5m2 = DType( __mlir_attr.`#kgen.dtype.constant : !kgen.dtype` ) - """Represents a FP8E5M2 floating point format whose bitwidth is 8.""" + """Represents a FP8E5M2 floating point format from the [OFP8 + standard](https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1). + + The 8 bits are encoded as `seeeeemm`: + - (s)ign: 1 bit + - (e)xponent: 5 bits + - (m)antissa: 2 bits + - exponent bias: 15 + - nan: {0,1}11111{01,10,11} + - inf: 01111100 + - -inf: 11111100 + - -0: 10000000 + """ alias float8e5m2fnuz = DType( __mlir_attr.`#kgen.dtype.constant : !kgen.dtype` ) - """Represents a FP8E5M2FNUZ floating point format for AMD GPU whose bitwdith is 8. - This dtype only supports finite and NaN values. NaN is when sign bit is - set and all other exponent and mantissa bits are 0.""" + """Represents a FP8E5M2FNUZ floating point format. + + The 8 bits are encoded as `seeeeemm`: + - (s)ign: 1 bit + - (e)xponent: 5 bits + - (m)antissa: 2 bits + - exponent bias: 16 + - nan: 10000000 + - fn: finite (no inf or -inf encodings) + - uz: unsigned zero (no -0 encoding) + """ alias float8e4m3 = DType( __mlir_attr.`#kgen.dtype.constant : !kgen.dtype` ) - """Represents a FP8E4M3 floating point format whose bitwidth is 8.""" + """Represents a FP8E4M3 floating point format from the [OFP8 + standard](https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1). + + This type is named `float8_e4m3fn` (the "fn" stands for "finite") in some + frameworks, as it does not encode -inf or inf. + + The 8 bits are encoded as `seeeemmm`: + - (s)ign: 1 bit + - (e)xponent: 4 bits + - (m)antissa: 3 bits + - exponent bias: 7 + - nan: 01111111, 11111111 + - -0: 10000000 + - fn: finite (no inf or -inf encodings) + """ alias float8e4m3fnuz = DType( __mlir_attr.`#kgen.dtype.constant : !kgen.dtype` ) - """Represents a FP8E4M3FNUZ floating point format for AMD GPU whose bitwdith is 8. - This dtype only supports finite and NaN values. NaN is when sign bit is - set and all other exponent and mantissa bits are 0.""" + """Represents a FP8E4M3FNUZ floating point format. + + The 8 bits are encoded as `seeeemmm`: + - (s)ign: 1 bit + - (e)xponent: 4 bits + - (m)antissa: 3 bits + - exponent bias: 8 + - nan: 10000000 + - fn: finite (no inf or -inf encodings) + - uz: unsigned zero (no -0 encoding) + """ alias bfloat16 = DType( __mlir_attr.`#kgen.dtype.constant : !kgen.dtype` ) @@ -113,6 +155,16 @@ struct DType( """ self = other + @always_inline + @implicit + fn __init__(out self, value: Self.type): + """Construct a DType from MLIR dtype. + + Args: + value: The MLIR dtype. + """ + self.value = value + @staticmethod fn _from_str(str: String) -> DType: """Construct a DType from a string. @@ -511,9 +563,9 @@ struct DType( """ return 8 * self.sizeof() - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # dispatch_integral - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline fn dispatch_integral[ @@ -548,9 +600,9 @@ struct DType( else: raise Error("only integral types are supported") - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # dispatch_floating - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline fn dispatch_floating[ @@ -626,9 +678,9 @@ struct DType( "dispatch_custom: dynamic_type does not match any dtype parameters" ) - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # dispatch_arithmetic - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline fn dispatch_arithmetic[ diff --git a/stdlib/src/builtin/error.mojo b/stdlib/src/builtin/error.mojo index 1d19b5d201..e282d56ba0 100644 --- a/stdlib/src/builtin/error.mojo +++ b/stdlib/src/builtin/error.mojo @@ -23,9 +23,9 @@ from memory.memory import _free from utils import StringRef -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Error -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @register_passable diff --git a/stdlib/src/builtin/file.mojo b/stdlib/src/builtin/file.mojo index 136d1ea644..c23c4e2be2 100644 --- a/stdlib/src/builtin/file.mojo +++ b/stdlib/src/builtin/file.mojo @@ -35,9 +35,9 @@ from os import PathLike, abort from sys import external_call, sizeof from sys.ffi import OpaquePointer -from memory import AddressSpace, UnsafePointer +from memory import AddressSpace, UnsafePointer, Span -from utils import Span, StringRef, StringSlice, write_buffered +from utils import StringRef, StringSlice, write_buffered @register_passable diff --git a/stdlib/src/builtin/file_descriptor.mojo b/stdlib/src/builtin/file_descriptor.mojo index 8f7709d027..fef115e471 100644 --- a/stdlib/src/builtin/file_descriptor.mojo +++ b/stdlib/src/builtin/file_descriptor.mojo @@ -27,9 +27,7 @@ from sys.ffi import external_call from sys.info import is_gpu from builtin.io import _printf -from memory import UnsafePointer - -from utils import Span +from memory import UnsafePointer, Span @value diff --git a/stdlib/src/builtin/float_literal.mojo b/stdlib/src/builtin/float_literal.mojo index 906e8d40dc..6cee98bafa 100644 --- a/stdlib/src/builtin/float_literal.mojo +++ b/stdlib/src/builtin/float_literal.mojo @@ -17,9 +17,9 @@ These are Mojo built-ins, so you don't need to import them. from math import Ceilable, CeilDivable, Floorable, Truncable -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # FloatLiteral -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value diff --git a/stdlib/src/builtin/format_int.mojo b/stdlib/src/builtin/format_int.mojo index 0239369fbe..0598bb816a 100644 --- a/stdlib/src/builtin/format_int.mojo +++ b/stdlib/src/builtin/format_int.mojo @@ -24,9 +24,9 @@ from utils import StaticString, StringSlice alias _DEFAULT_DIGIT_CHARS = "0123456789abcdefghijklmnopqrstuvwxyz" -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bin -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn bin(num: Scalar, /, *, prefix: StaticString = "0b") -> String: @@ -82,9 +82,9 @@ fn bin[T: Indexer, //](num: T, /, *, prefix: StaticString = "0b") -> String: return bin(Scalar[DType.index](index(num)), prefix=prefix) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # hex -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn hex(value: Scalar, /, *, prefix: StaticString = "0x") -> String: @@ -144,9 +144,9 @@ fn hex(value: Scalar[DType.bool], /, *, prefix: StaticString = "0x") -> String: return hex(value.cast[DType.int8](), prefix=prefix) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # oct -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn oct(value: Scalar, /, *, prefix: StaticString = "0o") -> String: @@ -206,9 +206,9 @@ fn oct(value: Scalar[DType.bool], /, *, prefix: StaticString = "0o") -> String: return oct(value.cast[DType.int8](), prefix=prefix) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Integer formatting utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn _try_format_int( diff --git a/stdlib/src/builtin/int.mojo b/stdlib/src/builtin/int.mojo index 61a74df2dc..92cb98be75 100644 --- a/stdlib/src/builtin/int.mojo +++ b/stdlib/src/builtin/int.mojo @@ -760,9 +760,9 @@ struct Int( """ return __mlir_op.`index.or`(self.value, rhs.value) - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # In place operations. - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn __iadd__(mut self, rhs: Int): @@ -873,9 +873,9 @@ struct Int( """ self = self | rhs - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # Reversed operations - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn __radd__(self, value: Int) -> Int: @@ -1154,7 +1154,7 @@ struct Int( @doc_private @staticmethod - fn try_from_python(obj: PythonObject) raises -> Self as result: + fn try_from_python(obj: PythonObject, out result: Self) raises: """Construct an `Int` from a Python integer value. Raises: diff --git a/stdlib/src/builtin/int_literal.mojo b/stdlib/src/builtin/int_literal.mojo index 360ed0e9a6..3d50918458 100644 --- a/stdlib/src/builtin/int_literal.mojo +++ b/stdlib/src/builtin/int_literal.mojo @@ -373,9 +373,9 @@ struct IntLiteral( ](self.value, rhs.value) ) - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # In place operations. - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn __iadd__(mut self, rhs: Self): @@ -458,9 +458,9 @@ struct IntLiteral( """ self = self | rhs - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # Reversed operations - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn __radd__(self, value: Self) -> Self: @@ -717,9 +717,9 @@ struct IntLiteral( """ return -(self // -denominator) - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # Methods - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn _bit_width(self) -> IntLiteral: diff --git a/stdlib/src/builtin/io.mojo b/stdlib/src/builtin/io.mojo index c0b55f993e..bb15718f20 100644 --- a/stdlib/src/builtin/io.mojo +++ b/stdlib/src/builtin/io.mojo @@ -33,7 +33,6 @@ from builtin.file_descriptor import FileDescriptor from memory import UnsafePointer, memcpy from utils import ( - Span, StaticString, StringRef, StringSlice, diff --git a/stdlib/src/builtin/math.mojo b/stdlib/src/builtin/math.mojo index eb1b088242..428407f857 100644 --- a/stdlib/src/builtin/math.mojo +++ b/stdlib/src/builtin/math.mojo @@ -182,7 +182,7 @@ fn max(x: SIMD, y: __type_of(x), /) -> __type_of(x): corresponding elements in x and y. Constraints: - The type of the inputs must be numeric. + The type of the inputs must be numeric or boolean. Args: x: First SIMD vector. @@ -191,8 +191,16 @@ fn max(x: SIMD, y: __type_of(x), /) -> __type_of(x): Returns: A SIMD vector containing the elementwise maximum of x and y. """ - constrained[x.type.is_numeric(), "the SIMD type must be numeric"]() - return __mlir_op.`pop.max`(x.value, y.value) + + @parameter + if x.type is DType.bool: + return max(x.cast[DType.uint8](), y.cast[DType.uint8]()).cast[x.type]() + else: + constrained[ + x.type.is_numeric(), "the SIMD type must be numeric or boolean" + ]() + + return __mlir_op.`pop.max`(x.value, y.value) # ===----------------------------------------------------------------------=== # @@ -236,7 +244,7 @@ fn min(x: SIMD, y: __type_of(x), /) -> __type_of(x): corresponding elements in x and y. Constraints: - The type of the inputs must be numeric. + The type of the inputs must be numeric or boolean. Args: x: First SIMD vector. @@ -245,8 +253,16 @@ fn min(x: SIMD, y: __type_of(x), /) -> __type_of(x): Returns: A SIMD vector containing the elementwise minimum of x and y. """ - constrained[x.type.is_numeric(), "the SIMD type must be numeric"]() - return __mlir_op.`pop.min`(x.value, y.value) + + @parameter + if x.type is DType.bool: + return min(x.cast[DType.uint8](), y.cast[DType.uint8]()).cast[x.type]() + else: + constrained[ + x.type.is_numeric(), "the SIMD type must be numeric or boolean" + ]() + + return __mlir_op.`pop.min`(x.value, y.value) # ===----------------------------------------------------------------------=== # diff --git a/stdlib/src/builtin/object.mojo b/stdlib/src/builtin/object.mojo index 21b345b89d..fce05d2476 100644 --- a/stdlib/src/builtin/object.mojo +++ b/stdlib/src/builtin/object.mojo @@ -320,6 +320,7 @@ struct _ObjectImpl( self.value = Self.type(value) @always_inline + @implicit fn __init__[dt: DType](mut self, value: SIMD[dt, 1]): @parameter if dt.is_integral(): @@ -785,6 +786,7 @@ struct object( self._value = value @always_inline + @implicit fn __init__[dt: DType](mut self, value: SIMD[dt, 1]): """Initializes the object with a generic scalar value. If the scalar value type is bool, it is converted to a boolean. Otherwise, it is @@ -842,6 +844,7 @@ struct object( self._value = impl @always_inline + @implicit fn __init__[*Ts: CollectionElement](mut self, value: ListLiteral[*Ts]): """Initializes the object from a list literal. @@ -1861,7 +1864,7 @@ struct object( var impl = _ImmutableString(UnsafePointer[UInt8].alloc(1), 1) var char = self._value.get_as_string().data[index] impl.data.init_pointee_move(char) - return _ObjectImpl(impl) + return object(impl) return self._value.get_list_element(i._value.get_as_int().value) @always_inline diff --git a/stdlib/src/builtin/reversed.mojo b/stdlib/src/builtin/reversed.mojo index 352f6d10b4..9e1d778299 100644 --- a/stdlib/src/builtin/reversed.mojo +++ b/stdlib/src/builtin/reversed.mojo @@ -19,6 +19,7 @@ from collections import Deque, Dict from collections.deque import _DequeIter from collections.dict import _DictEntryIter, _DictKeyIter, _DictValueIter from collections.list import _ListIter +from memory.span import Span, _SpanIter from .range import _StridedRange @@ -142,7 +143,7 @@ fn reversed[ K: KeyElement, V: CollectionElement, dict_mutability: Bool, - dict_origin: Origin[dict_mutability].type, + dict_origin: Origin[dict_mutability], ](ref value: _DictValueIter[K, V, dict_origin]) -> _DictValueIter[ K, V, dict_origin, False ]: @@ -169,7 +170,7 @@ fn reversed[ K: KeyElement, V: CollectionElement, dict_mutability: Bool, - dict_origin: Origin[dict_mutability].type, + dict_origin: Origin[dict_mutability], ](ref value: _DictEntryIter[K, V, dict_origin]) -> _DictEntryIter[ K, V, dict_origin, False ]: @@ -193,3 +194,23 @@ fn reversed[ return _DictEntryIter[K, V, dict_origin, False]( src[]._reserved() - 1, 0, src ) + + +@always_inline +fn reversed[ + T: CollectionElement +](value: Span[T]) -> _SpanIter[T, value.origin, forward=False]: + """Get a reversed iterator of the input Span. + + **Note**: iterators are currently non-raising. + + Parameters: + T: The type of the elements in the Span. + + Args: + value: The Span to get the reversed iterator of. + + Returns: + The reversed iterator of the Span. + """ + return value.__reversed__() diff --git a/stdlib/src/builtin/simd.mojo b/stdlib/src/builtin/simd.mojo index bacee6e4bf..d93be3a050 100644 --- a/stdlib/src/builtin/simd.mojo +++ b/stdlib/src/builtin/simd.mojo @@ -50,9 +50,9 @@ from builtin.dtype import _uint_type_of_width from builtin.format_int import _try_write_int from builtin.io import _snprintf from documentation import doc_private -from memory import UnsafePointer, bitcast +from memory import UnsafePointer, bitcast, Span -from utils import IndexList, Span, StaticTuple, StringSlice +from utils import IndexList, StaticTuple, StringSlice from utils._visualizers import lldb_formatter_wrapping_type from utils.numerics import FPUtils from utils.numerics import isnan as _isnan @@ -94,17 +94,59 @@ alias UInt64 = Scalar[DType.uint64] """Represents a 64-bit unsigned scalar integer.""" alias Float8e5m2 = Scalar[DType.float8e5m2] -"""Represents a FP8E5M2 floating point format whose bitwidth is 8.""" +"""Represents a FP8E5M2 floating point format from the [OFP8 +standard](https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1). + +The 8 bits are encoded as `seeeeemm`: +- (s)ign: 1 bit +- (e)xponent: 5 bits +- (m)antissa: 2 bits +- exponent bias: 15 +- nan: {0,1}11111{01,10,11} +- inf: 01111100 +- -inf: 11111100 +- -0: 10000000 +""" alias Float8e5m2fnuz = Scalar[DType.float8e5m2fnuz] -"""Represents a FP8E5M2FNUZ floating point format for AMD GPU whose bitwdith is 8. - This dtype only supports finite and NaN values. NaN is when sign bit is set and - all other exponent and mantissa bits are 0.""" +"""Represents a FP8E5M2FNUZ floating point format. + +The 8 bits are encoded as `seeeeemm`: +- (s)ign: 1 bit +- (e)xponent: 5 bits +- (m)antissa: 2 bits +- exponent bias: 16 +- nan: 10000000 +- fn: finite (no inf or -inf encodings) +- uz: unsigned zero (no -0 encoding) +""" alias Float8e4m3 = Scalar[DType.float8e4m3] -"""Represents a FP8E4M3 floating point format whose bitwidth is 8.""" +"""Represents a FP8E4M3 floating point format from the [OFP8 +standard](https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1). + +This type is named `float8_e4m3fn` (the "fn" stands for "finite") in some +frameworks, as it does not encode -inf or inf. + +The 8 bits are encoded as `seeeemmm`: +- (s)ign: 1 bit +- (e)xponent: 4 bits +- (m)antissa: 3 bits +- exponent bias: 7 +- nan: 01111111, 11111111 +- -0: 10000000 +- fn: finite (no inf or -inf encodings) +""" alias Float8e4m3fnuz = Scalar[DType.float8e4m3fnuz] -"""Represents a FP8E4M3FNUZ floating point format for AMD GPU whose bitwdith is 8. - This dtype only supports finite and NaN values. NaN is when sign bit is set and - all other exponent and mantissa bits are 0.""" +"""Represents a FP8E4M3FNUZ floating point format. + +The 8 bits are encoded as `seeeemmm`: +- (s)ign: 1 bit +- (e)xponent: 4 bits +- (m)antissa: 3 bits +- exponent bias: 8 +- nan: 10000000 +- fn: finite (no inf or -inf encodings) +- uz: unsigned zero (no -0 encoding) +""" alias BFloat16 = Scalar[DType.bfloat16] """Represents a 16-bit brain floating point value.""" alias Float16 = Scalar[DType.float16] @@ -2287,7 +2329,7 @@ struct SIMD[type: DType, size: Int]( ](self, value, Int64(offset)) @always_inline("nodebug") - fn join(self, other: Self) -> SIMD[type, 2 * size] as result: + fn join(self, other: Self, out result: SIMD[type, 2 * size]): """Concatenates the two vectors together. Args: diff --git a/stdlib/src/builtin/sort.mojo b/stdlib/src/builtin/sort.mojo index 093cc41914..23429d9b4f 100644 --- a/stdlib/src/builtin/sort.mojo +++ b/stdlib/src/builtin/sort.mojo @@ -20,13 +20,11 @@ from math import ceil from sys import bitwidthof from bit import count_leading_zeros -from memory import UnsafePointer +from memory import UnsafePointer, Span -from utils import Span - -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # sort -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# alias insertion_sort_threshold = 32 @@ -260,9 +258,9 @@ fn _quicksort[ stack.append(ImmSpan(ptr=ptr, length=pivot)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # stable sort -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn _merge[ @@ -366,9 +364,9 @@ fn _stable_sort[ temp_buff.free() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # partition -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -501,9 +499,9 @@ fn partition[ _partition[_cmp_fn](span, k) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # sort -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Junction from public to private API @@ -686,9 +684,9 @@ fn sort[ sort[_cmp_fn, stable=stable](span) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # sort networks -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/builtin/string_literal.mojo b/stdlib/src/builtin/string_literal.mojo index 44754d3654..86d807edd5 100644 --- a/stdlib/src/builtin/string_literal.mojo +++ b/stdlib/src/builtin/string_literal.mojo @@ -19,16 +19,16 @@ from collections import List from hashlib._hasher import _HashableWithHasher, _Hasher from sys.ffi import c_char -from memory import UnsafePointer, memcpy +from memory import UnsafePointer, memcpy, Span -from utils import Span, StaticString, StringRef, StringSlice, Writable, Writer +from utils import StaticString, StringRef, StringSlice, Writable, Writer from utils._visualizers import lldb_formatter_wrapping_type from utils.format import _CurlyEntryFormattable, _FormatCurlyEntry from utils.string_slice import _StringSliceIter, _to_string_list -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # StringLiteral -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @lldb_formatter_wrapping_type @@ -89,7 +89,7 @@ struct StringLiteral( # for now. @always_inline("nodebug") @staticmethod - fn from_string[value: String]() -> StringLiteral: + fn _from_string[value: String]() -> StringLiteral: """Form a string literal from an arbitrary compile-time String value. Parameters: @@ -106,6 +106,33 @@ struct StringLiteral( `> : !kgen.string`, ] + @always_inline("nodebug") + @staticmethod + fn get[value: String]() -> StringLiteral: + """Form a string literal from an arbitrary compile-time String value. + + Parameters: + value: The value to convert to StringLiteral. + + Returns: + The string value as a StringLiteral. + """ + return Self._from_string[value]() + + @always_inline("nodebug") + @staticmethod + fn get[type: Stringable, //, value: type]() -> StringLiteral: + """Form a string literal from an arbitrary compile-time stringable value. + + Parameters: + type: The type of the value. + value: The value to serialize. + + Returns: + The string value as a StringLiteral. + """ + return Self._from_string[str(value)]() + # ===-------------------------------------------------------------------===# # Operator dunders # ===-------------------------------------------------------------------===# @@ -914,14 +941,3 @@ struct StringLiteral( A copy of the string with no leading whitespaces. """ return str(self).lstrip() - - -fn _to_string_literal[val: Int]() -> StringLiteral: - alias s = StringLiteral.from_string[str(val)]() - return s - - -fn _to_string_literal[val: SIMD]() -> StringLiteral: - constrained[val.type.is_integral(), "input type must be integral"]() - alias s = StringLiteral.from_string[str(val)]() - return s diff --git a/stdlib/src/builtin/tuple.mojo b/stdlib/src/builtin/tuple.mojo index 00bede563f..b18221e3b3 100644 --- a/stdlib/src/builtin/tuple.mojo +++ b/stdlib/src/builtin/tuple.mojo @@ -21,9 +21,9 @@ from memory import UnsafePointer from utils._visualizers import lldb_formatter_wrapping_type -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Tuple -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @lldb_formatter_wrapping_type diff --git a/stdlib/src/builtin/type_aliases.mojo b/stdlib/src/builtin/type_aliases.mojo index 5bbee8d763..762746f8c2 100644 --- a/stdlib/src/builtin/type_aliases.mojo +++ b/stdlib/src/builtin/type_aliases.mojo @@ -18,10 +18,10 @@ These are Mojo built-ins, so you don't need to import them. alias AnyTrivialRegType = __mlir_type.`!kgen.type` """Represents any register passable Mojo data type.""" -alias ImmutableOrigin = __mlir_type.`!lit.origin<0>` +alias ImmutableOrigin = Origin[False] """Immutable origin reference type.""" -alias MutableOrigin = __mlir_type.`!lit.origin<1>` +alias MutableOrigin = Origin[True] """Mutable origin reference type.""" alias ImmutableAnyOrigin = __mlir_attr.`#lit.any.origin : !lit.origin<0>` @@ -51,17 +51,41 @@ struct Origin[is_mutable: Bool]: is_mutable: Whether the origin is mutable. """ - alias type = __mlir_type[ + alias _mlir_type = __mlir_type[ `!lit.origin<`, is_mutable.value, `>`, ] + alias cast_from = _lit_mut_cast[result_mutable=is_mutable] + """Cast an existing Origin to be of the specified mutability. + + This is a low-level way to coerce Origin mutability. This should be used + rarely, typically when building low-level fundamental abstractions. Strongly + consider alternatives before reaching for this "escape hatch". + + Safety: + This is an UNSAFE operation if used to cast an immutable origin to + a mutable origin. + + Examples: + + Cast a mutable origin to be immutable: + + ```mojo + struct Container[mut: Bool, //, origin: Origin[mut]]: + var data: Int + + fn imm_borrow(self) -> Container[ImmutableOrigin.cast_from[origin].result]: + # ... + ``` + """ + # ===-------------------------------------------------------------------===# # Fields # ===-------------------------------------------------------------------===# - var _mlir_origin: Self.type + var _mlir_origin: Self._mlir_type # ===-------------------------------------------------------------------===# # Life cycle methods @@ -73,9 +97,23 @@ struct Origin[is_mutable: Bool]: # Span[Byte, __origin_of(self)] @implicit @always_inline("nodebug") - fn __init__(out self, mlir_origin: Self.type): + fn __init__(out self, mlir_origin: Self._mlir_type): """Initialize an Origin from a raw MLIR `!lit.origin` value. Args: mlir_origin: The raw MLIR origin value.""" self._mlir_origin = mlir_origin + + +struct _lit_mut_cast[ + is_mutable: Bool, //, + result_mutable: Bool, + operand: Origin[is_mutable], +]: + alias result = __mlir_attr[ + `#lit.origin.mutcast<`, + operand._mlir_origin, + `> : !lit.origin<`, + result_mutable.value, + `>`, + ] diff --git a/stdlib/src/builtin/uint.mojo b/stdlib/src/builtin/uint.mojo index dad8ed6167..9c3feb155f 100644 --- a/stdlib/src/builtin/uint.mojo +++ b/stdlib/src/builtin/uint.mojo @@ -398,9 +398,9 @@ struct UInt(IntLike, _HashableWithHasher): """ return __mlir_op.`index.ceildivu`(self.value, denominator.value) - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # In place operations. - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn __iadd__(mut self, rhs: UInt): @@ -511,9 +511,9 @@ struct UInt(IntLike, _HashableWithHasher): """ self = self | rhs - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# # Reversed operations - # ===----------------------------------------------------------------------===# + # ===-------------------------------------------------------------------===# @always_inline("nodebug") fn __radd__(self, value: Self) -> Self: diff --git a/stdlib/src/collections/deque.mojo b/stdlib/src/collections/deque.mojo index cdaf52332d..284fb630da 100644 --- a/stdlib/src/collections/deque.mojo +++ b/stdlib/src/collections/deque.mojo @@ -26,9 +26,9 @@ from collections import Optional from bit import bit_ceil from memory import UnsafePointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Deque -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# struct Deque[ElementType: CollectionElement]( @@ -139,17 +139,15 @@ struct Deque[ElementType: CollectionElement]( Args: values: The values to populate the deque with. """ - self = Self(variadic_list=values^) + self = Self(elements=values^) - fn __init__( - mut self, *, owned variadic_list: VariadicListMem[ElementType, _] - ): + fn __init__(mut self, *, owned elements: VariadicListMem[ElementType, _]): """Constructs a deque from the given values. Args: - variadic_list: The values to populate the deque with. + elements: The values to populate the deque with. """ - args_length = len(variadic_list) + args_length = len(elements) if args_length < self.default_capacity: capacity = self.default_capacity @@ -159,12 +157,14 @@ struct Deque[ElementType: CollectionElement]( self = Self(capacity=capacity) for i in range(args_length): - src = UnsafePointer.address_of(variadic_list[i]) + src = UnsafePointer.address_of(elements[i]) dst = self._data + i src.move_pointee_into(dst) - # Mark the elements as unowned to avoid del'ing uninitialized objects. - variadic_list._is_owned = False + # Do not destroy the elements when their backing storage goes away. + __mlir_op.`lit.ownership.mark_destroyed`( + __get_mvalue_as_litref(elements) + ) self._tail = args_length @@ -794,7 +794,7 @@ struct Deque[ElementType: CollectionElement]( return (self._data + self._head)[] - fn pop(mut self) raises -> ElementType as element: + fn pop(mut self, out element: ElementType) raises: """Removes and returns the element from the right side of the deque. Returns: @@ -818,7 +818,7 @@ struct Deque[ElementType: CollectionElement]( return - fn popleft(mut self) raises -> ElementType as element: + fn popleft(mut self, out element: ElementType) raises: """Removes and returns the element from the left side of the deque. Returns: @@ -995,7 +995,7 @@ struct Deque[ElementType: CollectionElement]( struct _DequeIter[ deque_mutability: Bool, //, ElementType: CollectionElement, - deque_lifetime: Origin[deque_mutability].type, + deque_lifetime: Origin[deque_mutability], forward: Bool = True, ]: """Iterator for Deque. diff --git a/stdlib/src/collections/dict.mojo b/stdlib/src/collections/dict.mojo index d35229a17e..99aa18c45f 100644 --- a/stdlib/src/collections/dict.mojo +++ b/stdlib/src/collections/dict.mojo @@ -61,7 +61,7 @@ struct _DictEntryIter[ dict_mutability: Bool, //, K: KeyElement, V: CollectionElement, - dict_origin: Origin[dict_mutability].type, + dict_origin: Origin[dict_mutability], forward: Bool = True, ]: """Iterator over immutable DictEntry references. @@ -120,7 +120,7 @@ struct _DictKeyIter[ dict_mutability: Bool, //, K: KeyElement, V: CollectionElement, - dict_origin: Origin[dict_mutability].type, + dict_origin: Origin[dict_mutability], forward: Bool = True, ]: """Iterator over immutable Dict key references. @@ -158,7 +158,7 @@ struct _DictValueIter[ dict_mutability: Bool, //, K: KeyElement, V: CollectionElement, - dict_origin: Origin[dict_mutability].type, + dict_origin: Origin[dict_mutability], forward: Bool = True, ]: """Iterator over Dict value references. These are mutable if the dict diff --git a/stdlib/src/collections/inline_array.mojo b/stdlib/src/collections/inline_array.mojo index bb8809612d..6901ed1327 100644 --- a/stdlib/src/collections/inline_array.mojo +++ b/stdlib/src/collections/inline_array.mojo @@ -25,9 +25,9 @@ from sys.intrinsics import _type_is_eq from memory import UnsafePointer from memory.maybe_uninitialized import UnsafeMaybeUninitialized -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Array -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn _inline_array_construction_checks[size: Int](): @@ -194,8 +194,10 @@ struct InlineArray[ var eltptr = UnsafePointer.address_of(self.unsafe_get(i)) UnsafePointer.address_of(storage[i]).move_pointee_into(eltptr) - # Mark the elements as already destroyed. - storage._is_owned = False + # Do not destroy the elements when their backing storage goes away. + __mlir_op.`lit.ownership.mark_destroyed`( + __get_mvalue_as_litref(storage) + ) fn __init__(out self, *, other: Self): """Explicitly copy the provided value. diff --git a/stdlib/src/collections/inline_list.mojo b/stdlib/src/collections/inline_list.mojo index 516be41287..f98e307940 100644 --- a/stdlib/src/collections/inline_list.mojo +++ b/stdlib/src/collections/inline_list.mojo @@ -24,15 +24,15 @@ from sys.intrinsics import _type_is_eq from memory.maybe_uninitialized import UnsafeMaybeUninitialized -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # InlineList -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value struct _InlineListIter[ list_mutability: Bool, //, T: CollectionElementNew, capacity: Int, - list_origin: Origin[list_mutability].type, + list_origin: Origin[list_mutability], forward: Bool = True, ]: """Iterator for InlineList. diff --git a/stdlib/src/collections/list.mojo b/stdlib/src/collections/list.mojo index 7cfc9e1293..983aa9b54e 100644 --- a/stdlib/src/collections/list.mojo +++ b/stdlib/src/collections/list.mojo @@ -24,15 +24,13 @@ from os import abort from sys import sizeof from sys.intrinsics import _type_is_eq -from memory import Pointer, UnsafePointer, memcpy - -from utils import Span +from memory import Pointer, UnsafePointer, memcpy, Span from .optional import Optional -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # List -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -40,7 +38,7 @@ struct _ListIter[ list_mutability: Bool, //, T: CollectionElement, hint_trivial_type: Bool, - list_origin: Origin[list_mutability].type, + list_origin: Origin[list_mutability], forward: Bool = True, ]: """Iterator for List. @@ -144,26 +142,28 @@ struct List[T: CollectionElement, hint_trivial_type: Bool = False]( Args: values: The values to populate the list with. """ - self = Self(variadic_list=values^) + self = Self(elements=values^) - fn __init__(out self, *, owned variadic_list: VariadicListMem[T, _]): + fn __init__(out self, *, owned elements: VariadicListMem[T, _]): """Constructs a list from the given values. Args: - variadic_list: The values to populate the list with. + elements: The values to populate the list with. """ - var length = len(variadic_list) + var length = len(elements) self = Self(capacity=length) for i in range(length): - var src = UnsafePointer.address_of(variadic_list[i]) + var src = UnsafePointer.address_of(elements[i]) var dest = self.data + i src.move_pointee_into(dest) - # Mark the elements as unowned to avoid del'ing uninitialized objects. - variadic_list._is_owned = False + # Do not destroy the elements when their backing storage goes away. + __mlir_op.`lit.ownership.mark_destroyed`( + __get_mvalue_as_litref(elements) + ) self._len = length diff --git a/stdlib/src/collections/optional.mojo b/stdlib/src/collections/optional.mojo index 95c78a9706..73518b55a5 100644 --- a/stdlib/src/collections/optional.mojo +++ b/stdlib/src/collections/optional.mojo @@ -43,9 +43,9 @@ struct _NoneType(CollectionElement, CollectionElementNew): pass -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Optional -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -383,9 +383,9 @@ struct Optional[T: CollectionElement]( return default -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # OptionalReg -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @register_passable("trivial") diff --git a/stdlib/src/collections/string.mojo b/stdlib/src/collections/string.mojo index 76415264a0..b0ed0c7faa 100644 --- a/stdlib/src/collections/string.mojo +++ b/stdlib/src/collections/string.mojo @@ -23,12 +23,11 @@ from sys.ffi import c_char from sys.intrinsics import _type_is_eq from bit import count_leading_zeros -from memory import UnsafePointer, memcmp, memcpy +from memory import UnsafePointer, memcmp, memcpy, Span from python import PythonObject from utils import ( IndexList, - Span, StaticString, StringRef, StringSlice, @@ -786,7 +785,8 @@ struct String( @always_inline @implicit fn __init__(out self, owned impl: List[UInt8, *_]): - """Construct a string from a buffer of bytes. + """Construct a string from a buffer of bytes without copying the + allocated data. The buffer must be terminated with a null byte: @@ -816,6 +816,37 @@ struct String( ptr=impl.steal_data(), length=length, capacity=capacity ) + @always_inline + @implicit + fn __init__(out self, impl: Self._buffer_type): + """Construct a string from a buffer of bytes, copying the allocated + data. Use the transfer operator ^ to avoid the copy. + + The buffer must be terminated with a null byte: + + ```mojo + var buf = List[UInt8]() + buf.append(ord('H')) + buf.append(ord('i')) + buf.append(0) + var hi = String(buf) + ``` + + Args: + impl: The buffer. + """ + debug_assert( + len(impl) > 0 and impl[-1] == 0, + "expected last element of String buffer to be null terminator", + ) + # We make a backup because steal_data() will clear size and capacity. + var size = impl.size + debug_assert( + impl[size - 1] == 0, + "expected last element of String buffer to be null terminator", + ) + self._buffer = impl + @always_inline fn __init__(out self): """Construct an uninitialized string.""" @@ -1890,7 +1921,7 @@ struct String( res.append(0) return String(res^) - fn strip(self, chars: String) -> String: + fn strip(self, chars: StringSlice) -> StringSlice[__origin_of(self)]: """Return a copy of the string with leading and trailing characters removed. @@ -1903,7 +1934,7 @@ struct String( return self.lstrip(chars).rstrip(chars) - fn strip(self) -> String: + fn strip(self) -> StringSlice[__origin_of(self)]: """Return a copy of the string with leading and trailing whitespaces removed. @@ -1912,7 +1943,7 @@ struct String( """ return self.lstrip().rstrip() - fn rstrip(self, chars: String) -> String: + fn rstrip(self, chars: StringSlice) -> StringSlice[__origin_of(self)]: """Return a copy of the string with trailing characters removed. Args: @@ -1922,29 +1953,17 @@ struct String( A copy of the string with no trailing characters. """ - var r_idx = self.byte_length() - while r_idx > 0 and self[r_idx - 1] in chars: - r_idx -= 1 - - return self[:r_idx] + return self.as_string_slice().rstrip(chars) - fn rstrip(self) -> String: + fn rstrip(self) -> StringSlice[__origin_of(self)]: """Return a copy of the string with trailing whitespaces removed. Returns: A copy of the string with no trailing whitespaces. """ - var r_idx = self.byte_length() - # TODO (#933): should use this once llvm intrinsics can be used at comp time - # for s in self.__reversed__(): - # if not s.isspace(): - # break - # r_idx -= 1 - while r_idx > 0 and _isspace(self._buffer.unsafe_get(r_idx - 1)): - r_idx -= 1 - return self[:r_idx] - - fn lstrip(self, chars: String) -> String: + return self.as_string_slice().rstrip() + + fn lstrip(self, chars: StringSlice) -> StringSlice[__origin_of(self)]: """Return a copy of the string with leading characters removed. Args: @@ -1954,29 +1973,15 @@ struct String( A copy of the string with no leading characters. """ - var l_idx = 0 - while l_idx < self.byte_length() and self[l_idx] in chars: - l_idx += 1 - - return self[l_idx:] + return self.as_string_slice().lstrip(chars) - fn lstrip(self) -> String: + fn lstrip(self) -> StringSlice[__origin_of(self)]: """Return a copy of the string with leading whitespaces removed. Returns: A copy of the string with no leading whitespaces. """ - var l_idx = 0 - # TODO (#933): should use this once llvm intrinsics can be used at comp time - # for s in self: - # if not s.isspace(): - # break - # l_idx += 1 - while l_idx < self.byte_length() and _isspace( - self._buffer.unsafe_get(l_idx) - ): - l_idx += 1 - return self[l_idx:] + return self.as_string_slice().lstrip() fn __hash__(self) -> UInt: """Hash the underlying buffer using builtin hash. diff --git a/stdlib/src/collections/vector.mojo b/stdlib/src/collections/vector.mojo index 1c9385c528..62196e6a15 100644 --- a/stdlib/src/collections/vector.mojo +++ b/stdlib/src/collections/vector.mojo @@ -25,9 +25,9 @@ from memory import Pointer, UnsafePointer, memcpy from utils import StaticTuple -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # _VecIter -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -54,9 +54,9 @@ struct _VecIter[ return self.size - self.i -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # InlinedFixedVector -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/math/math.mojo b/stdlib/src/math/math.mojo index 2c7ee78a5d..9d5f53e0e4 100644 --- a/stdlib/src/math/math.mojo +++ b/stdlib/src/math/math.mojo @@ -36,9 +36,8 @@ from sys.info import _current_arch from bit import count_trailing_zeros from builtin.dtype import _integral_type_of from builtin.simd import _modf, _simd_apply -from memory import UnsafePointer +from memory import UnsafePointer, Span -from utils import Span from utils.index import IndexList from utils.numerics import FPUtils, isnan, nan from utils.static_tuple import StaticTuple @@ -645,6 +644,8 @@ fn frexp[ type: DType, simd_width: Int, // ](x: SIMD[type, simd_width]) -> StaticTuple[SIMD[type, simd_width], 2]: """Breaks floating point values into a fractional part and an exponent part. + This follows C and Python in increasing the exponent by 1 and normalizing the + fraction from 0.5 to 1.0 instead of 1.0 to 2.0. Constraints: The input must be a floating-point type. @@ -664,14 +665,15 @@ fn frexp[ constrained[type.is_floating_point(), "must be a floating point value"]() alias T = SIMD[type, simd_width] alias zero = T(0) - alias max_exponent = FPUtils[type].max_exponent() - 1 + # Add one to the resulting exponent up by subtracting 1 from the bias + alias exponent_bias = FPUtils[type].exponent_bias() - 1 alias mantissa_width = FPUtils[type].mantissa_width() var mask1 = _frexp_mask1[simd_width, type]() var mask2 = _frexp_mask2[simd_width, type]() var x_int = x.to_bits() var selector = x != zero var exp = selector.select( - (((mask1 & x_int) >> mantissa_width) - max_exponent).cast[type](), + (((mask1 & x_int) >> mantissa_width) - exponent_bias).cast[type](), zero, ) var frac = selector.select(T(from_bits=x_int & ~mask1 | mask2), zero) diff --git a/stdlib/src/math/polynomial.mojo b/stdlib/src/math/polynomial.mojo index 8397218380..35384d33c1 100644 --- a/stdlib/src/math/polynomial.mojo +++ b/stdlib/src/math/polynomial.mojo @@ -21,9 +21,9 @@ from math.polynomial import polynomial_evaluate from collections import List -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # polynomial_evaluate -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -49,9 +49,9 @@ fn polynomial_evaluate[ return _horner_evaluate[coefficients](x) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Horner Method -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/memory/__init__.mojo b/stdlib/src/memory/__init__.mojo index b2faf4890a..2717a5127a 100644 --- a/stdlib/src/memory/__init__.mojo +++ b/stdlib/src/memory/__init__.mojo @@ -16,5 +16,6 @@ from .arc import ArcPointer from .memory import memcmp, memcpy, memset, memset_zero, stack_allocation from .owned_pointer import OwnedPointer from .pointer import AddressSpace, Pointer +from .span import AsBytes, Span from .unsafe import bitcast, pack_bits from .unsafe_pointer import UnsafePointer diff --git a/stdlib/src/memory/arc.mojo b/stdlib/src/memory/arc.mojo index d7b236af72..8680d06560 100644 --- a/stdlib/src/memory/arc.mojo +++ b/stdlib/src/memory/arc.mojo @@ -10,43 +10,17 @@ # See the License for the specific language governing permissions and # limitations under the License. # ===----------------------------------------------------------------------=== # -"""Pointer-counted smart pointers. +"""Reference-counted smart pointers. -Example usage: +You can import these APIs from the `memory` package. For example: ```mojo from memory import ArcPointer -var p = ArcPointer(4) -var p2 = p -p2[]=3 -print(3 == p[]) ``` - -Subscripting(`[]`) is done by `Pointer`, -in order to ensure that the underlying `ArcPointer` outlive the operation. - -It is highly DISCOURAGED to manipulate an `ArcPointer` through `UnsafePointer`. -Mojo's ASAP deletion policy ensure values are destroyed at last use. -Do not unsafely dereference the `ArcPointer` inner `UnsafePointer` field. -See [Lifecycle](https://docs.modular.com/mojo/manual/lifecycle/). - -```mojo -# Illustration of what NOT to do, in order to understand: -print(ArcPointer(String("ok"))._inner[].payload) -#........................^ASAP ^already freed -``` - -Always use `Pointer` subscripting (`[]`): - -```mojo -print(ArcPointer(String("ok"))[]) -``` - """ from os.atomic import Atomic -from builtin.builtin_list import _lit_mut_cast from memory import UnsafePointer, stack_allocation @@ -80,9 +54,34 @@ struct ArcPointer[T: Movable]( This pointer is copyable, including across threads, maintaining a reference count to the underlying data. + When you initialize an `ArcPointer` with a value, it allocates memory and + moves the value into the allocated memory. Copying an instance of an + `ArcPointer` increments the reference count. Destroying an instance + decrements the reference count. When the reference count reaches zero, + `ArcPointer` destroys the value and frees its memory. + This pointer itself is thread-safe using atomic accesses to reference count the underlying data, but references returned to the underlying data are not - thread safe. + thread-safe. + + Subscripting an `ArcPointer` (`ptr[]`) returns a mutable reference to the + stored value. This is the only safe way to access the stored value. Other + methods, such as using the `unsafe_ptr()` method to retrieve an unsafe + pointer to the stored value, or accessing the private fields of an + `ArcPointer`, are unsafe and may result in memory errors. + + For a comparison with other pointer types, see [Intro to + pointers](/mojo/manual/pointers/) in the Mojo Manual. + + Examples: + + ```mojo + from memory import ArcPointer + var p = ArcPointer(4) + var p2 = p + p2[]=3 + print(3 == p[]) + ``` Parameters: T: The type of the stored value. @@ -127,9 +126,9 @@ struct ArcPointer[T: Movable]( @no_inline fn __del__(owned self): - """Delete the smart pointer reference. + """Delete the smart pointer. - Decrement the ref count for the reference. If there are no more + Decrement the reference count for the stored value. If there are no more references, delete the object and free its memory.""" if self._inner[].drop_ref(): # Call inner destructor, then free the memory. @@ -146,7 +145,7 @@ struct ArcPointer[T: Movable]( ]( ref [self_life]self, ) -> ref [ - _lit_mut_cast[self_life, result_mutable=True].result + MutableOrigin.cast_from[self_life].result ] T: """Returns a mutable reference to the managed value. @@ -162,7 +161,7 @@ struct ArcPointer[T: Movable]( """Retrieves a pointer to the underlying memory. Returns: - The UnsafePointer to the underlying memory. + The `UnsafePointer` to the pointee. """ # TODO: consider removing this method. return UnsafePointer.address_of(self._inner[].payload) @@ -176,23 +175,27 @@ struct ArcPointer[T: Movable]( return self._inner[].refcount.load() fn __is__(self, rhs: Self) -> Bool: - """Returns True if the two ArcPointers point at the same object. + """Returns True if the two `ArcPointer` instances point at the same + object. Args: - rhs: The other ArcPointer. + rhs: The other `ArcPointer`. Returns: - True if the two ArcPointers point at the same object and False otherwise. + True if the two `ArcPointers` instances point at the same object and + False otherwise. """ return self._inner == rhs._inner fn __isnot__(self, rhs: Self) -> Bool: - """Returns True if the two ArcPointers point at different objects. + """Returns True if the two `ArcPointer` instances point at different + objects. Args: - rhs: The other ArcPointer. + rhs: The other `ArcPointer`. Returns: - True if the two ArcPointers point at different objects and False otherwise. + True if the two `ArcPointer` instances point at different objects + and False otherwise. """ return self._inner != rhs._inner diff --git a/stdlib/src/memory/memory.mojo b/stdlib/src/memory/memory.mojo index 266ac2c921..2639835437 100644 --- a/stdlib/src/memory/memory.mojo +++ b/stdlib/src/memory/memory.mojo @@ -44,9 +44,9 @@ fn _align_down(value: Int, alignment: Int) -> Int: return value._positive_div(alignment) * alignment -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # memcmp -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -146,9 +146,9 @@ fn memcmp[ return _memcmp_impl(s1.bitcast[Byte](), s2.bitcast[Byte](), byte_count) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # memcpy -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -258,9 +258,9 @@ fn memcpy[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # memset -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -303,9 +303,9 @@ fn memset[ _memset_impl(ptr.bitcast[Byte](), value, count * sizeof[type]()) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # memset_zero -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -355,9 +355,9 @@ fn memset_zero[ ptr.store(i, 0) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # stack_allocation -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -446,9 +446,9 @@ fn stack_allocation[ ]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # malloc -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -474,9 +474,9 @@ fn _malloc[ ](alignment.value, size.value) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # aligned_free -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/memory/owned_pointer.mojo b/stdlib/src/memory/owned_pointer.mojo index 3974daa99f..4dd473023c 100644 --- a/stdlib/src/memory/owned_pointer.mojo +++ b/stdlib/src/memory/owned_pointer.mojo @@ -21,6 +21,9 @@ struct OwnedPointer[T: AnyType]: system such that no more than one mutable alias for the underlying data may exist. + For a comparison with other pointer types, see [Intro to + pointers](/mojo/manual/pointers/) in the Mojo Manual. + Parameters: T: The type to be stored in the OwnedPointer[]. """ @@ -145,7 +148,7 @@ struct OwnedPointer[T: AnyType]: """ var r = self._inner.take_pointee() self._inner.free() - __mlir_op.`lit.ownership.mark_destroyed`(__get_mvalue_as_litref(self)) + __disable_del self return r^ @@ -168,6 +171,6 @@ struct OwnedPointer[T: AnyType]: var ptr = self._inner # Prevent the destructor from running on `self` - __mlir_op.`lit.ownership.mark_destroyed`(__get_mvalue_as_litref(self)) + __disable_del self return ptr diff --git a/stdlib/src/memory/pointer.mojo b/stdlib/src/memory/pointer.mojo index 4fa37a6e61..16a4eadd29 100644 --- a/stdlib/src/memory/pointer.mojo +++ b/stdlib/src/memory/pointer.mojo @@ -20,9 +20,9 @@ from memory import Pointer """ -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # AddressSpace -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -290,9 +290,9 @@ struct AddressSpace(EqualityComparable, Stringable, Writable): writer.write("AddressSpace(", self.value(), ")") -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Pointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -300,11 +300,14 @@ struct AddressSpace(EqualityComparable, Stringable, Writable): struct Pointer[ is_mutable: Bool, //, type: AnyType, - origin: Origin[is_mutable].type, + origin: Origin[is_mutable], address_space: AddressSpace = AddressSpace.GENERIC, ](CollectionElementNew, Stringable): """Defines a non-nullable safe pointer. + For a comparison with other pointer types, see [Intro to + pointers](/mojo/manual/pointers/) in the Mojo Manual. + Parameters: is_mutable: Whether the pointee data may be mutated through this. type: Type of the underlying data. @@ -316,7 +319,7 @@ struct Pointer[ `!lit.ref<`, type, `, `, - origin, + origin._mlir_origin, `, `, address_space._value.value, `>`, diff --git a/stdlib/src/utils/span.mojo b/stdlib/src/memory/span.mojo similarity index 92% rename from stdlib/src/utils/span.mojo rename to stdlib/src/memory/span.mojo index 3ec2b3030c..497a084c88 100644 --- a/stdlib/src/utils/span.mojo +++ b/stdlib/src/memory/span.mojo @@ -13,16 +13,15 @@ """Implements the Span type. -You can import these APIs from the `utils.span` module. For example: +You can import these APIs from the `memory` module. For example: ```mojo -from utils import Span +from memory import Span ``` """ from collections import InlineArray -from builtin.builtin_list import _lit_mut_cast from memory import Pointer, UnsafePointer @@ -48,7 +47,7 @@ trait AsBytes: struct _SpanIter[ is_mutable: Bool, //, T: CollectionElement, - origin: Origin[is_mutable].type, + origin: Origin[is_mutable], forward: Bool = True, ]: """Iterator for Span. @@ -97,7 +96,7 @@ struct _SpanIter[ struct Span[ is_mutable: Bool, //, T: CollectionElement, - origin: Origin[is_mutable].type, + origin: Origin[is_mutable], ](CollectionElementNew): """A non owning view of contiguous data. @@ -206,16 +205,9 @@ struct Span[ var step: Int start, end, step = slc.indices(len(self)) - if step < 0: - step = -step - var new_len = (start - end + step - 1) // step - var buff = UnsafePointer[T].alloc(new_len) - i = 0 - while start > end: - buff[i] = self._data[start] - start -= step - i += 1 - return Span[T, origin](ptr=buff, length=new_len) + debug_assert( + step == 1, "Slice must be within bounds and step must be 1" + ) var res = Self( ptr=(self._data + start), length=len(range(start, end, step)) @@ -225,13 +217,22 @@ struct Span[ @always_inline fn __iter__(self) -> _SpanIter[T, origin]: - """Get an iterator over the elements of the span. + """Get an iterator over the elements of the Span. Returns: - An iterator over the elements of the span. + An iterator over the elements of the Span. """ return _SpanIter(0, self) + @always_inline + fn __reversed__(self) -> _SpanIter[T, origin, forward=False]: + """Iterate backwards over the Span. + + Returns: + A reversed iterator of the Span elements. + """ + return _SpanIter[forward=False](len(self), self) + # ===------------------------------------------------------------------===# # Trait implementations # ===------------------------------------------------------------------===# @@ -358,13 +359,15 @@ struct Span[ for element in self: element[] = value - fn get_immutable(self) -> Span[T, _lit_mut_cast[origin, False].result]: + fn get_immutable( + self, + ) -> Span[T, ImmutableOrigin.cast_from[origin].result]: """ Return an immutable version of this span. Returns: A span covering the same elements, but without mutability. """ - return Span[T, _lit_mut_cast[origin, False].result]( + return Span[T, ImmutableOrigin.cast_from[origin].result]( ptr=self._data, length=self._len ) diff --git a/stdlib/src/memory/unsafe.mojo b/stdlib/src/memory/unsafe.mojo index 82e995de53..450c18d199 100644 --- a/stdlib/src/memory/unsafe.mojo +++ b/stdlib/src/memory/unsafe.mojo @@ -21,9 +21,9 @@ from memory import bitcast from sys import bitwidthof -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # bitcast -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") diff --git a/stdlib/src/memory/unsafe_pointer.mojo b/stdlib/src/memory/unsafe_pointer.mojo index 3f8db596af..047bb61ac7 100644 --- a/stdlib/src/memory/unsafe_pointer.mojo +++ b/stdlib/src/memory/unsafe_pointer.mojo @@ -53,7 +53,7 @@ struct UnsafePointer[ *, address_space: AddressSpace = AddressSpace.GENERIC, alignment: Int = _default_alignment[type](), - origin: Origin[True].type = MutableAnyOrigin, + origin: Origin[True] = MutableAnyOrigin, ]( ImplicitlyBoolable, CollectionElement, @@ -63,7 +63,17 @@ struct UnsafePointer[ Intable, Comparable, ): - """This is a pointer type that can point to any generic value that is movable. + """UnsafePointer[T] represents an indirect reference to one or more values of + type T consecutively in memory, and can refer to uninitialized memory. + + Because it supports referring to uninitialized memory, it provides unsafe + methods for initializing and destroying instances of T, as well as methods + for accessing the values once they are initialized. + + For more information see [Unsafe + pointers](/mojo/manual/pointers/unsafe-pointers) in the Mojo Manual. For a + comparison with other pointer types, see [Intro to + pointers](/mojo/manual/pointers/). Parameters: type: The type the pointer points to. @@ -84,12 +94,12 @@ struct UnsafePointer[ address_space._value.value, `>`, ] + """The underlying pointer type.""" # ===-------------------------------------------------------------------===# # Fields # ===-------------------------------------------------------------------===# - """The underlying pointer type.""" var address: Self._mlir_type """The underlying pointer.""" @@ -106,7 +116,7 @@ struct UnsafePointer[ @always_inline @implicit fn __init__(out self, value: Self._mlir_type): - """Create a pointer with the input value. + """Create a pointer from a low-level pointer primitive. Args: value: The MLIR value of the pointer to construct with. @@ -129,7 +139,7 @@ struct UnsafePointer[ @always_inline fn __init__(out self, *, other: Self): - """Copy the object. + """Copy an existing pointer. Args: other: The value to copy. @@ -144,13 +154,14 @@ struct UnsafePointer[ @always_inline("nodebug") fn address_of( ref [address_space]arg: type, - ) -> UnsafePointer[ - type, - address_space=address_space, - alignment=1, - origin=MutableAnyOrigin - # TODO: Propagate origin of the argument. - ] as result: + out result: UnsafePointer[ + type, + address_space=address_space, + alignment=1, + origin=MutableAnyOrigin + # TODO: Propagate origin of the argument. + ], + ): """Gets the address of the argument. Args: @@ -961,7 +972,7 @@ struct UnsafePointer[ /, address_space: AddressSpace = Self.address_space, alignment: Int = Self.alignment, - origin: Origin[True].type = Self.origin, + origin: Origin[True] = Self.origin, ](self) -> UnsafePointer[ T, address_space=address_space, alignment=alignment, origin=origin ]: diff --git a/stdlib/src/os/atomic.mojo b/stdlib/src/os/atomic.mojo index e2b8f1c65e..5eaac49644 100644 --- a/stdlib/src/os/atomic.mojo +++ b/stdlib/src/os/atomic.mojo @@ -284,9 +284,9 @@ struct Atomic[type: DType, *, scope: StringLiteral = ""]: Self.min(UnsafePointer.address_of(self.value), rhs) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/os/path/path.mojo b/stdlib/src/os/path/path.mojo index 3840a97fac..4e65dfbf34 100644 --- a/stdlib/src/os/path/path.mojo +++ b/stdlib/src/os/path/path.mojo @@ -24,7 +24,8 @@ from pwd import getpwuid from stat import S_ISDIR, S_ISLNK, S_ISREG from sys import has_neon, os_is_linux, os_is_macos, os_is_windows -from utils import Span, StringSlice +from memory import Span +from utils import StringSlice from .. import PathLike from .._linux_aarch64 import _lstat as _lstat_linux_arm @@ -229,11 +230,10 @@ fn dirname[PathLike: os.PathLike, //](path: PathLike) -> String: The directory component of a pathname. """ var fspath = path.__fspath__() - alias sep = str(os.sep) - var i = fspath.rfind(sep) + 1 + var i = fspath.rfind(os.sep) + 1 var head = fspath[:i] - if head and head != sep * len(head): - return head.rstrip(sep) + if head and head != os.sep * len(head): + return head.rstrip(os.sep) return head @@ -365,7 +365,7 @@ def split[PathLike: os.PathLike, //](path: PathLike) -> (String, String): i = fspath.rfind(os.sep) + 1 head, tail = fspath[:i], fspath[i:] if head and head != str(os.sep) * len(head): - head = head.rstrip(sep) + head = str(head.rstrip(sep)) return head, tail @@ -386,11 +386,10 @@ fn basename[PathLike: os.PathLike, //](path: PathLike) -> String: The basename from the path. """ var fspath = path.__fspath__() - alias sep = str(os.sep) - var i = fspath.rfind(sep) + 1 + var i = fspath.rfind(os.sep) + 1 var head = fspath[i:] - if head and head != sep * len(head): - return head.rstrip(sep) + if head and head != os.sep * len(head): + return head.rstrip(os.sep) return head diff --git a/stdlib/src/prelude/__init__.mojo b/stdlib/src/prelude/__init__.mojo index 5551b826ee..3cb066f0d4 100644 --- a/stdlib/src/prelude/__init__.mojo +++ b/stdlib/src/prelude/__init__.mojo @@ -136,4 +136,5 @@ from builtin.value import ( from documentation import doc_private from memory import AddressSpace, Pointer -from utils import AsBytes, Writable, Writer +from memory.span import AsBytes +from utils import Writable, Writer diff --git a/stdlib/src/python/_cpython.mojo b/stdlib/src/python/_cpython.mojo index 4a28b2d117..05426aa8eb 100644 --- a/stdlib/src/python/_cpython.mojo +++ b/stdlib/src/python/_cpython.mojo @@ -1348,7 +1348,16 @@ struct CPython: ", parent obj:", obj._get_ptr_as_int(), ) + return r + fn PyObject_HasAttrString( + mut self, + obj: PyObjectPtr, + name: StringRef, + ) -> Int: + var r = self.lib.get_function[ + fn (PyObjectPtr, UnsafePointer[UInt8]) -> Int + ]("PyObject_HasAttrString")(obj, name.data) return r fn PyObject_GetAttrString( diff --git a/stdlib/src/python/python_object.mojo b/stdlib/src/python/python_object.mojo index 4566b11501..a6b3a8a45f 100644 --- a/stdlib/src/python/python_object.mojo +++ b/stdlib/src/python/python_object.mojo @@ -1325,6 +1325,27 @@ struct PythonObject( """ return self._call_zero_arg_method("__invert__") + fn __contains__(self, rhs: PythonObject) raises -> Bool: + """Contains dunder. + + Calls the underlying object's `__contains__` method. + + Args: + rhs: Right hand value. + + Returns: + True if rhs is in self. + """ + # TODO: replace/optimize with c-python function. + # TODO: implement __getitem__ step for cpython membership test operator. + var cpython = _get_global_python_itf().cpython() + if cpython.PyObject_HasAttrString(self.py_object, "__contains__"): + return self._call_single_arg_method("__contains__", rhs).__bool__() + for v in self: + if v == rhs: + return True + return False + # see https://github.com/python/cpython/blob/main/Objects/call.c # for decrement rules fn __call__( diff --git a/stdlib/src/sys/__init__.mojo b/stdlib/src/sys/__init__.mojo index baf2af6fa7..b0777f5c6e 100644 --- a/stdlib/src/sys/__init__.mojo +++ b/stdlib/src/sys/__init__.mojo @@ -19,7 +19,8 @@ from .ffi import DEFAULT_RTLD, RTLD, DLHandle, external_call from .info import ( alignof, bitwidthof, - has_amd_gpu, + has_accelerator, + has_amd_gpu_accelerator, has_avx, has_avx2, has_avx512f, @@ -28,7 +29,7 @@ from .info import ( has_neon, has_neon_int8_dotprod, has_neon_int8_matmul, - has_nvidia_gpu, + has_nvidia_gpu_accelerator, has_sse4, has_vnni, is_amd_gpu, diff --git a/stdlib/src/sys/_assembly.mojo b/stdlib/src/sys/_assembly.mojo index 6cb2123393..2074afde29 100644 --- a/stdlib/src/sys/_assembly.mojo +++ b/stdlib/src/sys/_assembly.mojo @@ -14,9 +14,9 @@ from sys.intrinsics import _mlirtype_is_eq -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # 0-arg -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") diff --git a/stdlib/src/sys/_libc.mojo b/stdlib/src/sys/_libc.mojo index 6751a60e62..ca0104d19c 100644 --- a/stdlib/src/sys/_libc.mojo +++ b/stdlib/src/sys/_libc.mojo @@ -22,9 +22,9 @@ from sys.ffi import OpaquePointer, c_char, c_int from memory import UnsafePointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # stdlib.h — core C standard library operations -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -37,9 +37,9 @@ fn exit(status: c_int): external_call["exit", NoneType](status) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # stdio.h — input/output operations -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# alias FILE_ptr = OpaquePointer @@ -74,9 +74,9 @@ fn pclose(stream: FILE_ptr) -> c_int: return external_call["pclose", c_int](stream) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # unistd.h -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -86,9 +86,9 @@ fn dup(oldfd: c_int) -> c_int: return external_call[name, c_int](oldfd) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # dlfcn.h — dynamic library operations -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/sys/ffi.mojo b/stdlib/src/sys/ffi.mojo index 6d65ab7447..2d6926568d 100644 --- a/stdlib/src/sys/ffi.mojo +++ b/stdlib/src/sys/ffi.mojo @@ -404,9 +404,9 @@ fn _get_dylib_function[ return new_func -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Globals -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# struct _Global[ @@ -462,9 +462,9 @@ fn _get_global_or_null[name: StringLiteral]() -> OpaquePointer: ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # external_call -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -502,9 +502,9 @@ fn external_call[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # _external_call_const -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") diff --git a/stdlib/src/sys/info.mojo b/stdlib/src/sys/info.mojo index 2fe91f3b99..ee149ca72a 100644 --- a/stdlib/src/sys/info.mojo +++ b/stdlib/src/sys/info.mojo @@ -864,13 +864,23 @@ fn _macos_version() raises -> Tuple[Int, Int, Int]: return (major, minor, patch) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Detect GPU on host side -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") -fn has_amd_gpu() -> Bool: +fn has_accelerator() -> Bool: + """Returns True if the host system has an accelerator and False otherwise. + + Returns: + True if the host system has an accelerator. + """ + return _accelerator_arch() != "" + + +@always_inline("nodebug") +fn has_amd_gpu_accelerator() -> Bool: """Returns True if the host system has an AMD GPU and False otherwise. Returns: @@ -880,7 +890,7 @@ fn has_amd_gpu() -> Bool: @always_inline("nodebug") -fn has_nvidia_gpu() -> Bool: +fn has_nvidia_gpu_accelerator() -> Bool: """Returns True if the host system has an NVIDIA GPU and False otherwise. Returns: diff --git a/stdlib/src/sys/intrinsics.mojo b/stdlib/src/sys/intrinsics.mojo index dbc833dcc8..3eb81a505a 100644 --- a/stdlib/src/sys/intrinsics.mojo +++ b/stdlib/src/sys/intrinsics.mojo @@ -26,9 +26,9 @@ from memory import AddressSpace, UnsafePointer from ._assembly import inlined_assembly from .info import is_nvidia_gpu, sizeof -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # llvm_intrinsic -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -90,9 +90,9 @@ fn llvm_intrinsic[ ](loaded_pack) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # _gather -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # NOTE: Converting from a scalar to a pointer is unsafe! The resulting pointer @@ -176,9 +176,9 @@ fn gather[ return result -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # _scatter -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -254,9 +254,9 @@ fn scatter[ _ = base -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # prefetch -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @register_passable("trivial") @@ -500,9 +500,9 @@ fn prefetch[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # masked load -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -546,9 +546,9 @@ fn masked_load[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # masked store -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -588,9 +588,9 @@ fn masked_store[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # compressed store -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -628,9 +628,9 @@ fn compressed_store[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # strided load -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") @@ -668,9 +668,9 @@ fn strided_load[ return gather(offset, mask, passthrough) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # strided store -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline("nodebug") diff --git a/stdlib/src/tempfile/tempfile.mojo b/stdlib/src/tempfile/tempfile.mojo index 509c234ac9..48ccb1ddcd 100644 --- a/stdlib/src/tempfile/tempfile.mojo +++ b/stdlib/src/tempfile/tempfile.mojo @@ -24,7 +24,8 @@ import sys from collections import List, Optional from pathlib import Path -from utils import Span, write_buffered +from memory import Span +from utils import write_buffered alias TMP_MAX = 10_000 diff --git a/stdlib/src/time/__init__.mojo b/stdlib/src/time/__init__.mojo index 5d01e75fdf..6e5097653a 100644 --- a/stdlib/src/time/__init__.mojo +++ b/stdlib/src/time/__init__.mojo @@ -14,7 +14,6 @@ from .time import ( monotonic, - now, perf_counter, perf_counter_ns, sleep, diff --git a/stdlib/src/time/time.mojo b/stdlib/src/time/time.mojo index 7b68624fdf..0167c26548 100644 --- a/stdlib/src/time/time.mojo +++ b/stdlib/src/time/time.mojo @@ -15,7 +15,7 @@ You can import these APIs from the `time` package. For example: ```mojo -from time import now +from time import perf_counter_ns ``` """ @@ -25,6 +25,7 @@ from sys import ( external_call, is_amd_gpu, is_nvidia_gpu, + is_gpu, llvm_intrinsic, os_is_linux, os_is_windows, @@ -33,9 +34,9 @@ from sys._assembly import inlined_assembly from memory import UnsafePointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Enums used in time.h 's glibc alias _CLOCK_REALTIME = 0 @@ -46,7 +47,7 @@ alias _CLOCK_MONOTONIC_RAW = 4 # Constants alias _NSEC_PER_USEC = 1000 -alias _NSEC_PER_MSEC = 1000000 +alias _NSEC_PER_MSEC = 1_000_000 alias _USEC_PER_MSEC = 1000 alias _MSEC_PER_SEC = 1000 alias _NSEC_PER_SEC = _NSEC_PER_USEC * _USEC_PER_MSEC * _MSEC_PER_SEC @@ -68,7 +69,7 @@ struct _CTimeSpec(Stringable): self.tv_sec = 0 self.tv_subsec = 0 - fn as_nanoseconds(self) -> Int: + fn as_nanoseconds(self) -> UInt: @parameter if os_is_linux(): return self.tv_sec * _NSEC_PER_SEC + self.tv_subsec @@ -90,7 +91,7 @@ struct _FILETIME: self.dwLowDateTime = 0 self.dwHighDateTime = 0 - fn as_nanoseconds(self) -> Int: + fn as_nanoseconds(self) -> UInt: # AFTER subtracting windows offset the return value fits in a signed int64 # BEFORE subtracting windows offset the return value does not fit in a signed int64 # Taken from https://github.com/microsoft/STL/blob/c8d1efb6d504f6392acf8f6d01fd703f7c8826c0/stl/src/xtime.cpp#L50 @@ -115,7 +116,7 @@ fn _clock_gettime(clockid: Int) -> _CTimeSpec: @always_inline -fn _gettime_as_nsec_unix(clockid: Int) -> Int: +fn _gettime_as_nsec_unix(clockid: Int) -> UInt: if os_is_linux(): var ts = _clock_gettime(clockid) return ts.as_nanoseconds() @@ -126,17 +127,26 @@ fn _gettime_as_nsec_unix(clockid: Int) -> Int: @always_inline -fn _realtime_nanoseconds() -> Int: +fn _gpu_clock() -> UInt: + """Returns a 64-bit unsigned cycle counter.""" + alias asm = "llvm.nvvm.read.ptx.sreg.clock64" if is_nvidia_gpu() else "llvm.amdgcn.s.memtime" + return int(llvm_intrinsic[asm, Int64]()) + + +@always_inline +fn _realtime_nanoseconds() -> UInt: """Returns the current realtime time in nanoseconds""" return _gettime_as_nsec_unix(_CLOCK_REALTIME) @always_inline -fn _monotonic_nanoseconds() -> Int: +fn _monotonic_nanoseconds() -> UInt: """Returns the current monotonic time in nanoseconds""" @parameter - if os_is_windows(): + if is_gpu(): + return _gpu_clock() + elif os_is_windows(): var ft = _FILETIME() external_call["GetSystemTimePreciseAsFileTime", NoneType]( Pointer.address_of(ft) @@ -148,29 +158,28 @@ fn _monotonic_nanoseconds() -> Int: @always_inline -fn _monotonic_raw_nanoseconds() -> Int: +fn _monotonic_raw_nanoseconds() -> UInt: """Returns the current monotonic time in nanoseconds""" - return _gettime_as_nsec_unix(_CLOCK_MONOTONIC_RAW) @always_inline -fn _process_cputime_nanoseconds() -> Int: +fn _process_cputime_nanoseconds() -> UInt: """Returns the high-resolution per-process timer from the CPU""" return _gettime_as_nsec_unix(_CLOCK_PROCESS_CPUTIME_ID) @always_inline -fn _thread_cputime_nanoseconds() -> Int: +fn _thread_cputime_nanoseconds() -> UInt: """Returns the thread-specific CPU-time clock""" return _gettime_as_nsec_unix(_CLOCK_THREAD_CPUTIME_ID) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # perf_counter -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -187,13 +196,13 @@ fn perf_counter() -> Float64: return Float64(_monotonic_nanoseconds()) / _NSEC_PER_SEC -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # perf_counter_ns -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline -fn perf_counter_ns() -> Int: +fn perf_counter_ns() -> UInt: """Return the value (in nanoseconds) of a performance counter, i.e. a clock with the highest available resolution to measure a short duration. It does include time elapsed during sleep and is system-wide. The reference @@ -203,44 +212,16 @@ fn perf_counter_ns() -> Int: Returns: The current time in ns. """ - - @parameter - if is_nvidia_gpu(): - return int( - inlined_assembly[ - "mov.u64 $0, %globaltimer;", UInt64, constraints="=l" - ]() - ) return _monotonic_nanoseconds() -# ===----------------------------------------------------------------------===# -# now -# ===----------------------------------------------------------------------===# - - -@always_inline -fn now() -> Int: - """Deprecated: Please use time.perf_counter_ns instead. - - Returns the current monotonic time time in nanoseconds. This function - queries the current platform's monotonic clock, making it useful for - measuring time differences, but the significance of the returned value - varies depending on the underlying implementation. - - Returns: - The current time in ns. - """ - return perf_counter_ns() - - -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # monotonic -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline -fn monotonic() -> Int: +fn monotonic() -> UInt: """ Returns the current monotonic time time in nanoseconds. This function queries the current platform's monotonic clock, making it useful for @@ -253,16 +234,16 @@ fn monotonic() -> Int: return perf_counter_ns() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # time_function -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @parameter fn _time_function_windows[ func: fn () raises capturing [_] -> None -]() raises -> Int: +]() raises -> UInt: """Calculates elapsed time in Windows""" var ticks_per_sec: _WINDOWS_LARGE_INTEGER = 0 @@ -293,7 +274,7 @@ fn _time_function_windows[ @always_inline @parameter -fn time_function[func: fn () raises capturing [_] -> None]() raises -> Int: +fn time_function[func: fn () raises capturing [_] -> None]() raises -> UInt: """Measures the time spent in the function. Parameters: @@ -315,7 +296,7 @@ fn time_function[func: fn () raises capturing [_] -> None]() raises -> Int: @always_inline @parameter -fn time_function[func: fn () capturing [_] -> None]() -> Int: +fn time_function[func: fn () capturing [_] -> None]() -> UInt: """Measures the time spent in the function. Parameters: @@ -332,12 +313,12 @@ fn time_function[func: fn () capturing [_] -> None]() -> Int: try: return time_function[raising_func]() except err: - return abort[Int](err) + return abort[UInt](err) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # sleep -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn sleep(sec: Float64): @@ -348,17 +329,10 @@ fn sleep(sec: Float64): """ @parameter - if is_nvidia_gpu(): + if is_gpu(): var nsec = sec * 1.0e9 - llvm_intrinsic["llvm.nvvm.nanosleep", NoneType]( - nsec.cast[DType.int32]() - ) - return - elif is_amd_gpu(): - var nsec = sec * 1.0e9 - llvm_intrinsic["llvm.amdgcn.s.sleep", NoneType]( - nsec.cast[DType.int32]() - ) + alias intrinsic = "llvm.nvvm.nanosleep" if is_nvidia_gpu() else "llvm.amdgcn.s.sleep" + llvm_intrinsic[intrinsic, NoneType](nsec.cast[DType.int32]()) return alias NANOSECONDS_IN_SECOND = 1_000_000_000 @@ -375,7 +349,7 @@ fn sleep(sec: Float64): _ = rem -fn sleep(sec: Int): +fn sleep(sec: UInt): """Suspends the current thread for the seconds specified. Args: @@ -383,7 +357,7 @@ fn sleep(sec: Int): """ @parameter - if is_nvidia_gpu() or is_amd_gpu(): + if is_gpu(): return sleep(Float64(sec)) @parameter diff --git a/stdlib/src/utils/__init__.mojo b/stdlib/src/utils/__init__.mojo index 0f3b95ced0..fa6129cc1c 100644 --- a/stdlib/src/utils/__init__.mojo +++ b/stdlib/src/utils/__init__.mojo @@ -16,7 +16,6 @@ from .index import Index, IndexList, product from .inline_string import InlineString from .lock import BlockingScopedLock, BlockingSpinLock, SpinWaiter from .loop import unroll -from .span import AsBytes, Span from .static_tuple import StaticTuple from .string_slice import StaticString, StringSlice from .stringref import StringRef diff --git a/stdlib/src/utils/_utf8_validation.mojo b/stdlib/src/utils/_utf8_validation.mojo index e7ca5a5e3b..eb514733ca 100644 --- a/stdlib/src/utils/_utf8_validation.mojo +++ b/stdlib/src/utils/_utf8_validation.mojo @@ -28,7 +28,7 @@ https://github.com/simdutf/SimdUnicode/blob/main/src/UTF8.cs from base64._b64encode import _sub_with_saturation from sys.intrinsics import llvm_intrinsic -from memory import UnsafePointer +from memory import UnsafePointer, Span alias TOO_SHORT: UInt8 = 1 << 0 alias TOO_LONG: UInt8 = 1 << 1 diff --git a/stdlib/src/utils/format.mojo b/stdlib/src/utils/format.mojo index e5aa90209b..0dfe0e9299 100644 --- a/stdlib/src/utils/format.mojo +++ b/stdlib/src/utils/format.mojo @@ -16,15 +16,13 @@ from collections import Optional from memory import UnsafePointer -from utils.string_slice import Stringlike - # TODO: _FormatCurlyEntry and _FormatSpec should be public in the future for # people who want to write their own templating engines. This is not yet done # because the implementation is incomplete and we are missing crucial features. -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Formatter -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # NOTE(#3765): an interesting idea would be to allow custom start and end @@ -36,7 +34,7 @@ from utils.string_slice import Stringlike # a trait that all format specifications conform to) @value struct _FormatCurlyEntry(CollectionElement, CollectionElementNew): - """The struct that handles `Stringlike` formatting by curly braces entries. + """The struct that handles string formatting by curly braces entries. This is internal for the types: `String`, `StringLiteral` and `StringSlice`. """ @@ -141,7 +139,7 @@ struct _FormatCurlyEntry(CollectionElement, CollectionElementNew): return self.field.isa[Int]() @staticmethod - fn format[T: Stringlike](fmt_src: T, args: Self._args_t) raises -> String: + fn format(fmt_src: StringSlice, args: Self._args_t) raises -> String: """Format the entries. Args: @@ -176,9 +174,9 @@ struct _FormatCurlyEntry(CollectionElement, CollectionElementNew): return res^ @staticmethod - fn _create_entries[ - T: Stringlike - ](fmt_src: T, len_pos_args: Int) raises -> (List[Self], Int): + fn _create_entries( + fmt_src: StringSlice, len_pos_args: Int + ) raises -> (List[Self], Int): """Returns a list of entries and its total estimated entry byte width. """ var manual_indexing_count = 0 @@ -263,11 +261,9 @@ struct _FormatCurlyEntry(CollectionElement, CollectionElementNew): raise Error(l_err) return entries^, total_estimated_entry_byte_width - fn _handle_field_and_break[ - T: Stringlike - ]( + fn _handle_field_and_break( mut self, - fmt_src: T, + fmt_src: StringSlice, len_pos_args: Int, i: Int, start_value: Int, @@ -416,9 +412,9 @@ struct _FormatCurlyEntry(CollectionElement, CollectionElementNew): auto_idx += 1 -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Format Specification -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# trait _CurlyEntryFormattable(Stringable, Representable): @@ -713,6 +709,6 @@ struct _FormatSpec: res += str(item) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utils -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# diff --git a/stdlib/src/utils/index.mojo b/stdlib/src/utils/index.mojo index 29d74c2ebe..5e25021c90 100644 --- a/stdlib/src/utils/index.mojo +++ b/stdlib/src/utils/index.mojo @@ -29,9 +29,9 @@ from builtin.io import _get_dtype_printf_format, _snprintf from . import unroll from .static_tuple import StaticTuple -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -48,10 +48,10 @@ fn _reduce_and_fn(a: Bool, b: Bool) -> Bool: return a and b -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Integer and Bool Tuple Utilities: # Utilities to operate on tuples of integers or tuples of bools. -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -147,9 +147,9 @@ fn _bool_tuple_reduce[ return c -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # IndexList: -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn _type_of_width[bitwidth: Int, unsigned: Bool]() -> DType: @@ -454,9 +454,10 @@ struct IndexList[ @always_inline("nodebug") fn canonicalize( self, - ) -> IndexList[ - size, element_bitwidth = bitwidthof[Int](), unsigned=False - ] as result: + out result: IndexList[ + size, element_bitwidth = bitwidthof[Int](), unsigned=False + ], + ): """Canonicalizes the IndexList. Returns: @@ -767,11 +768,14 @@ struct IndexList[ @always_inline fn cast[ type: DType - ](self) -> IndexList[ - size, - element_bitwidth = bitwidthof[type](), - unsigned = _is_unsigned[type](), - ] as result: + ]( + self, + out result: IndexList[ + size, + element_bitwidth = bitwidthof[type](), + unsigned = _is_unsigned[type](), + ], + ): """Casts to the target DType. Parameters: @@ -798,9 +802,12 @@ struct IndexList[ *, element_bitwidth: Int = Self.element_bitwidth, unsigned: Bool = Self.unsigned, - ](self) -> IndexList[ - size, element_bitwidth=element_bitwidth, unsigned=unsigned - ] as result: + ]( + self, + out result: IndexList[ + size, element_bitwidth=element_bitwidth, unsigned=unsigned + ], + ): """Casts to the target DType. Parameters: @@ -823,18 +830,21 @@ struct IndexList[ ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Factory functions for creating index. -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline fn Index[ T0: Intable, //, *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False, -](x: T0) -> IndexList[ - 1, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: T0, + out result: IndexList[ + 1, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 1-D Index from the given value. Parameters: @@ -854,9 +864,12 @@ fn Index[ @always_inline fn Index[ *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False -](x: UInt) -> IndexList[ - 1, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: UInt, + out result: IndexList[ + 1, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 1-D Index from the given value. Parameters: @@ -879,9 +892,13 @@ fn Index[ *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False, -](x: T0, y: T1) -> IndexList[ - 2, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: T0, + y: T1, + out result: IndexList[ + 2, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 2-D Index from the given values. Parameters: @@ -903,9 +920,13 @@ fn Index[ @always_inline fn Index[ *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False -](x: UInt, y: UInt) -> IndexList[ - 2, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: UInt, + y: UInt, + out result: IndexList[ + 2, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 2-D Index from the given values. Parameters: @@ -930,9 +951,14 @@ fn Index[ *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False, -](x: T0, y: T1, z: T2) -> IndexList[ - 3, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: T0, + y: T1, + z: T2, + out result: IndexList[ + 3, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 3-D Index from the given values. Parameters: @@ -962,9 +988,15 @@ fn Index[ *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False, -](x: T0, y: T1, z: T2, w: T3) -> IndexList[ - 4, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: T0, + y: T1, + z: T2, + w: T3, + out result: IndexList[ + 4, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 4-D Index from the given values. Parameters: @@ -997,9 +1029,16 @@ fn Index[ *, element_bitwidth: Int = bitwidthof[Int](), unsigned: Bool = False, -](x: T0, y: T1, z: T2, w: T3, v: T4) -> IndexList[ - 5, element_bitwidth=element_bitwidth, unsigned=unsigned -] as result: +]( + x: T0, + y: T1, + z: T2, + w: T3, + v: T4, + out result: IndexList[ + 5, element_bitwidth=element_bitwidth, unsigned=unsigned + ], +): """Constructs a 5-D Index from the given values. Parameters: @@ -1024,9 +1063,9 @@ fn Index[ return __type_of(result)(int(x), int(y), int(z), int(w), int(v)) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utils -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/utils/inline_string.mojo b/stdlib/src/utils/inline_string.mojo index 224e200e65..d0b013719c 100644 --- a/stdlib/src/utils/inline_string.mojo +++ b/stdlib/src/utils/inline_string.mojo @@ -19,13 +19,13 @@ from collections import InlineArray, Optional from os import abort from sys import sizeof -from memory import UnsafePointer, memcpy +from memory import UnsafePointer, memcpy, Span from utils import StringSlice, Variant -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # InlineString -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -284,9 +284,9 @@ struct InlineString(Sized, Stringable, CollectionElement, CollectionElementNew): ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # __FixedString -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value diff --git a/stdlib/src/utils/lock.mojo b/stdlib/src/utils/lock.mojo index 3916cd92cc..6459952b4e 100644 --- a/stdlib/src/utils/lock.mojo +++ b/stdlib/src/utils/lock.mojo @@ -18,9 +18,9 @@ from time import sleep from memory import UnsafePointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # SpinWaiter -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# struct SpinWaiter: diff --git a/stdlib/src/utils/loop.mojo b/stdlib/src/utils/loop.mojo index c0a6aa3f5e..1d61112379 100644 --- a/stdlib/src/utils/loop.mojo +++ b/stdlib/src/utils/loop.mojo @@ -23,9 +23,9 @@ from utils import unroll """ -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # unroll -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -51,9 +51,9 @@ fn unroll[ func[i, j]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # unroll -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -84,9 +84,9 @@ fn unroll[ func[i, j, k]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # unroll _ZeroStartingRange -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -125,9 +125,9 @@ fn unroll[ func[i]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # unroll _SequentialRange -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline fn unroll[ func: fn[idx: Int] () capturing [_] -> None, @@ -164,9 +164,9 @@ fn unroll[ func[i]() -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # unroll _StridedRange -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline fn unroll[ func: fn[idx: Int] () capturing [_] -> None, diff --git a/stdlib/src/utils/numerics.mojo b/stdlib/src/utils/numerics.mojo index f7d99244fe..e1ec498345 100644 --- a/stdlib/src/utils/numerics.mojo +++ b/stdlib/src/utils/numerics.mojo @@ -84,41 +84,25 @@ struct FPUtils[ @staticmethod @always_inline("nodebug") fn max_exponent() -> IntLiteral: - """Returns the max exponent of a floating point type, taking into - account special reserved cases such infinity and nan. + """Returns the max exponent of a floating point type without accounting + for inf representations. This is not + the maximum representable exponent, which is generally equal to + the exponent_bias. Returns: The max exponent. """ @parameter - if type is DType.float8e4m3: - return 7 - elif type is DType.float8e4m3fnuz: + if type in (DType.float8e4m3, DType.float8e4m3fnuz): return 8 - elif type is DType.float8e5m2: - return 15 - elif type is DType.float8e5m2fnuz: + elif type in (DType.float8e5m2, DType.float8e5m2fnuz, DType.float16): return 16 - elif type is DType.float16: - return 15 - elif type is DType.float32 or type is DType.bfloat16: - return 127 + elif type in (DType.bfloat16, DType.float32): + return 128 else: constrained[type is DType.float64, "unsupported float type"]() - return 1023 - - @staticmethod - @always_inline("nodebug") - fn min_exponent() -> IntLiteral: - """Returns the min exponent of a floating point type, taking into - account special reserved cases such as infinity and nan. - - Returns: - The min exponent. - """ - - return -Self.max_exponent() + 1 + return 1024 @staticmethod @always_inline("nodebug") @@ -132,11 +116,9 @@ struct FPUtils[ @parameter if type in (DType.float8e4m3, DType.float8e4m3fnuz): return 4 - elif type in (DType.float8e5m2, DType.float8e5m2fnuz): + elif type in (DType.float8e5m2, DType.float8e5m2fnuz, DType.float16): return 5 - elif type is DType.float16: - return 5 - elif type is DType.float32 or type is DType.bfloat16: + elif type in (DType.float32, DType.bfloat16): return 8 else: constrained[type is DType.float64, "unsupported float type"]() @@ -160,7 +142,12 @@ struct FPUtils[ Returns: The exponent bias. """ - return Self.max_exponent() + + @parameter + if type in (DType.float8e4m3fnuz, DType.float8e5m2fnuz): + return Self.max_exponent() + else: + return Self.max_exponent() - 1 @staticmethod @always_inline @@ -306,14 +293,15 @@ struct FPUtils[ @staticmethod @always_inline - fn get_exponent_without_bias(value: Scalar[type]) -> Int: - """Returns the exponent bits of the floating-point value. + fn get_exponent_biased(value: Scalar[type]) -> Int: + """Returns the biased exponent of the floating-point value as an Int, + this is how the value is stored before subtracting the exponent bias. Args: value: The floating-point value. Returns: - Returns the exponent bits. + The biased exponent as an Int. """ return int( Self.bitcast_to_uint(value) >> Self.mantissa_width() diff --git a/stdlib/src/utils/static_tuple.mojo b/stdlib/src/utils/static_tuple.mojo index 7a907b7ed0..0788b54b43 100644 --- a/stdlib/src/utils/static_tuple.mojo +++ b/stdlib/src/utils/static_tuple.mojo @@ -21,9 +21,9 @@ from utils import StaticTuple from memory import UnsafePointer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline @@ -93,9 +93,9 @@ fn _create_array[ return array -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # StaticTuple -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn _static_tuple_construction_checks[size: Int](): @@ -218,15 +218,10 @@ struct StaticTuple[element_type: AnyTrivialRegType, size: Int](Sized): debug_assert( int(idx.__mlir_index__()) < size, "index must be within bounds" ) - # Copy the array so we can get its address, because we can't take the - # address of 'self' in a non-mutating method. - var arrayCopy = self.array var ptr = __mlir_op.`pop.array.gep`( - UnsafePointer.address_of(arrayCopy).address, idx.__mlir_index__() + UnsafePointer.address_of(self.array).address, idx.__mlir_index__() ) - var result = UnsafePointer(ptr)[] - _ = arrayCopy - return result + return UnsafePointer(ptr)[] @always_inline("nodebug") fn __setitem__[ @@ -262,6 +257,4 @@ struct StaticTuple[element_type: AnyTrivialRegType, size: Int](Sized): val: The value to store. """ constrained[index < size]() - var tmp = self - _set_array_elem[index, size, Self.element_type](val, tmp.array) - self = tmp + _set_array_elem[index, size, Self.element_type](val, self.array) diff --git a/stdlib/src/utils/string_slice.mojo b/stdlib/src/utils/string_slice.mojo index 368527f639..49129cefb2 100644 --- a/stdlib/src/utils/string_slice.mojo +++ b/stdlib/src/utils/string_slice.mojo @@ -27,10 +27,9 @@ from sys import bitwidthof, simdwidthof from sys.intrinsics import unlikely from bit import count_leading_zeros -from memory import UnsafePointer, memcmp, memcpy +from memory import UnsafePointer, memcmp, memcpy, Span from memory.memory import _memcmp_impl_unconstrained -from utils import Span from utils.format import _CurlyEntryFormattable, _FormatCurlyEntry from ._utf8_validation import _is_valid_utf8 @@ -170,7 +169,7 @@ fn _memrmem[ @value struct _StringSliceIter[ is_mutable: Bool, //, - origin: Origin[is_mutable].type, + origin: Origin[is_mutable], forward: Bool = True, ]: """Iterator for `StringSlice` over unicode characters. @@ -235,7 +234,7 @@ struct _StringSliceIter[ @value @register_passable("trivial") -struct StringSlice[is_mutable: Bool, //, origin: Origin[is_mutable].type,]( +struct StringSlice[is_mutable: Bool, //, origin: Origin[is_mutable]]( Stringable, Sized, Writable, @@ -614,13 +613,33 @@ struct StringSlice[is_mutable: Bool, //, origin: Origin[is_mutable].type,]( # ===------------------------------------------------------------------===# @always_inline - fn strip(self) -> StringSlice[origin]: - """Gets a StringRef with leading and trailing whitespaces removed. - This only takes ASCII whitespace into account: - `" \\t\\n\\v\\f\\r\\x1c\\x1d\\x1e"`. + fn strip(self, chars: StringSlice) -> Self: + """Return a copy of the string with leading and trailing characters + removed. + + Args: + chars: A set of characters to be removed. Defaults to whitespace. + + Returns: + A copy of the string with no leading or trailing characters. + + Examples: + + ```mojo + print("himojohi".strip("hi")) # "mojo" + ``` + . + """ + + return self.lstrip(chars).rstrip(chars) + + @always_inline + fn strip(self) -> Self: + """Return a copy of the string with leading and trailing whitespaces + removed. Returns: - A StringRef with leading and trailing whitespaces removed. + A copy of the string with no leading or trailing whitespaces. Examples: @@ -629,15 +648,103 @@ struct StringSlice[is_mutable: Bool, //, origin: Origin[is_mutable].type,]( ``` . """ - # FIXME: this can already do full isspace support with iterator - var start: Int = 0 - var end: Int = len(self) - var ptr = self.unsafe_ptr() - while start < end and _isspace(ptr[start]): - start += 1 - while end > start and _isspace(ptr[end - 1]): - end -= 1 - return StringSlice[origin](ptr=ptr + start, length=end - start) + return self.lstrip().rstrip() + + @always_inline + fn rstrip(self, chars: StringSlice) -> Self: + """Return a copy of the string with trailing characters removed. + + Args: + chars: A set of characters to be removed. Defaults to whitespace. + + Returns: + A copy of the string with no trailing characters. + + Examples: + + ```mojo + print("mojohi".strip("hi")) # "mojo" + ``` + . + """ + + var r_idx = self.byte_length() + while r_idx > 0 and self[r_idx - 1] in chars: + r_idx -= 1 + + return Self(unsafe_from_utf8=self.as_bytes()[:r_idx]) + + @always_inline + fn rstrip(self) -> Self: + """Return a copy of the string with trailing whitespaces removed. + + Returns: + A copy of the string with no trailing whitespaces. + + Examples: + + ```mojo + print("mojo ".strip()) # "mojo" + ``` + . + """ + var r_idx = self.byte_length() + # TODO (#933): should use this once llvm intrinsics can be used at comp time + # for s in self.__reversed__(): + # if not s.isspace(): + # break + # r_idx -= 1 + while r_idx > 0 and _isspace(self.as_bytes()[r_idx - 1]): + r_idx -= 1 + return Self(unsafe_from_utf8=self.as_bytes()[:r_idx]) + + @always_inline + fn lstrip(self, chars: StringSlice) -> Self: + """Return a copy of the string with leading characters removed. + + Args: + chars: A set of characters to be removed. Defaults to whitespace. + + Returns: + A copy of the string with no leading characters. + + Examples: + + ```mojo + print("himojo".strip("hi")) # "mojo" + ``` + . + """ + + var l_idx = 0 + while l_idx < self.byte_length() and self[l_idx] in chars: + l_idx += 1 + + return Self(unsafe_from_utf8=self.as_bytes()[l_idx:]) + + @always_inline + fn lstrip(self) -> Self: + """Return a copy of the string with leading whitespaces removed. + + Returns: + A copy of the string with no leading whitespaces. + + Examples: + + ```mojo + print(" mojo".strip()) # "mojo" + ``` + . + """ + var l_idx = 0 + # TODO (#933): should use this once llvm intrinsics can be used at comp time + # for s in self: + # if not s.isspace(): + # break + # l_idx += 1 + while l_idx < self.byte_length() and _isspace(self.as_bytes()[l_idx]): + l_idx += 1 + return Self(unsafe_from_utf8=self.as_bytes()[l_idx:]) @always_inline fn as_bytes(self) -> Span[Byte, origin]: @@ -1008,33 +1115,9 @@ struct StringSlice[is_mutable: Bool, //, origin: Origin[is_mutable].type,]( return output^ -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utils -# ===----------------------------------------------------------------------===# - - -trait Stringlike: - """Trait intended to be used only with `String`, `StringLiteral` and - `StringSlice`.""" - - fn byte_length(self) -> Int: - """Get the string length in bytes. - - Returns: - The length of this string in bytes. - - Notes: - This does not include the trailing null terminator in the count. - """ - ... - - fn unsafe_ptr(self) -> UnsafePointer[UInt8]: - """Get raw pointer to the underlying data. - - Returns: - The raw pointer to the data. - """ - ... +# ===-----------------------------------------------------------------------===# fn _to_string_list[ diff --git a/stdlib/src/utils/stringref.mojo b/stdlib/src/utils/stringref.mojo index e2a0303100..75e864b405 100644 --- a/stdlib/src/utils/stringref.mojo +++ b/stdlib/src/utils/stringref.mojo @@ -20,7 +20,7 @@ from sys.ffi import c_char from bit import count_trailing_zeros from builtin.dtype import _uint_type_of_width -from memory import UnsafePointer, memcmp, pack_bits +from memory import UnsafePointer, memcmp, pack_bits, Span from memory.memory import _memcmp_impl_unconstrained from utils import StringSlice @@ -35,9 +35,9 @@ fn _align_down(value: Int, alignment: Int) -> Int: return value._positive_div(alignment) * alignment -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # StringRef -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @value @@ -691,9 +691,9 @@ struct StringRef( ) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utilities -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# @always_inline diff --git a/stdlib/src/utils/write.mojo b/stdlib/src/utils/write.mojo index 2d9351036f..6d68951b9b 100644 --- a/stdlib/src/utils/write.mojo +++ b/stdlib/src/utils/write.mojo @@ -15,12 +15,11 @@ from collections import InlineArray from sys.info import is_gpu -from builtin.io import _printf -from memory import UnsafePointer, memcpy +from memory import UnsafePointer, memcpy, Span -from utils import Span, StaticString +from utils import StaticString -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# trait Writer: @@ -36,7 +35,7 @@ trait Writer: Example: ```mojo - from utils import Span + from memory import Span @value struct NewString(Writer, Writable): @@ -119,9 +118,9 @@ trait Writer: # To only have to implement `write_bytes` to make a type a valid Writer -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Writable -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# trait Writable: @@ -157,9 +156,9 @@ trait Writable: ... -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Utils -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn write_args[ diff --git a/stdlib/test/bit/test_bit.mojo b/stdlib/test/bit/test_bit.mojo index dee81507d1..1f1063eee0 100644 --- a/stdlib/test/bit/test_bit.mojo +++ b/stdlib/test/bit/test_bit.mojo @@ -25,7 +25,9 @@ from bit import ( pop_count, rotate_bits_left, rotate_bits_right, + log2_floor, ) +from math import log2, floor from testing import assert_equal @@ -497,6 +499,30 @@ def test_rotate_bits_simd(): assert_equal(rotate_bits_right[6](Scalar[type](96)), 129) +fn _log2_floor(n: Int) -> Int: + return int(floor(log2(float(n)))) + + +def test_log2_floor(): + assert_equal(log2_floor(0), 0) + for i in range(1, 100): + assert_equal( + log2_floor(i), + _log2_floor(i), + msg="mismatching value for the input value of " + str(i), + ) + + fn _check_alias[n: Int](expected: Int) raises: + alias res = log2_floor(n) + assert_equal(res, expected) + + _check_alias[0](0) + _check_alias[1](0) + _check_alias[2](1) + _check_alias[15](3) + _check_alias[32](5) + + def main(): test_rotate_bits_int() test_rotate_bits_simd() @@ -519,3 +545,4 @@ def main(): test_pop_count() test_pop_count_simd() test_bit_not_simd() + test_log2_floor() diff --git a/stdlib/test/builtin/test_sort_issue_1018.mojo b/stdlib/test/builtin/test_sort_issue_1018.mojo index e8cfb4e1f0..af50f5b896 100644 --- a/stdlib/test/builtin/test_sort_issue_1018.mojo +++ b/stdlib/test/builtin/test_sort_issue_1018.mojo @@ -15,9 +15,7 @@ from random import rand -from memory import UnsafePointer - -from utils import Span +from memory import UnsafePointer, Span fn sort_test[D: DType, name: StringLiteral](size: Int, max: Int) raises: diff --git a/stdlib/test/builtin/test_string_literal.mojo b/stdlib/test/builtin/test_string_literal.mojo index 2aaa26e063..28ca91a1af 100644 --- a/stdlib/test/builtin/test_string_literal.mojo +++ b/stdlib/test/builtin/test_string_literal.mojo @@ -474,6 +474,15 @@ def test_float_conversion(): _ = ("not a float").__float__() +def test_string_literal_from_stringable(): + assert_equal(StringLiteral.get["hello"](), "hello") + assert_equal(StringLiteral.get[String("hello")](), "hello") + assert_equal(StringLiteral.get[42](), "42") + assert_equal( + StringLiteral.get[SIMD[DType.int64, 4](1, 2, 3, 4)](), "[1, 2, 3, 4]" + ) + + def main(): test_add() test_iadd() @@ -506,3 +515,4 @@ def main(): test_split() test_splitlines() test_float_conversion() + test_string_literal_from_stringable() diff --git a/stdlib/test/collections/test_deque.mojo b/stdlib/test/collections/test_deque.mojo index 84b759eb91..fd2db54440 100644 --- a/stdlib/test/collections/test_deque.mojo +++ b/stdlib/test/collections/test_deque.mojo @@ -16,9 +16,9 @@ from collections import Deque from testing import assert_equal, assert_false, assert_raises, assert_true -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # Implementation tests -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn test_impl_init_default() raises: @@ -666,9 +666,9 @@ fn test_impl_imul() raises: assert_equal((q._data + 0)[], 3) -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# # API Interface tests -# ===----------------------------------------------------------------------===# +# ===-----------------------------------------------------------------------===# fn test_init_variadic_list() raises: diff --git a/stdlib/test/collections/test_list.mojo b/stdlib/test/collections/test_list.mojo index a7c202749b..d6d2f2a455 100644 --- a/stdlib/test/collections/test_list.mojo +++ b/stdlib/test/collections/test_list.mojo @@ -15,12 +15,10 @@ from collections import List from sys.info import sizeof -from memory import UnsafePointer +from memory import UnsafePointer, Span from test_utils import CopyCounter, MoveCounter from testing import assert_equal, assert_false, assert_raises, assert_true -from utils import Span - def test_mojo_issue_698(): var list = List[Float64]() diff --git a/stdlib/test/hashlib/test_ahash.mojo b/stdlib/test/hashlib/test_ahash.mojo index f1fdc69a62..c9f01c3a14 100644 --- a/stdlib/test/hashlib/test_ahash.mojo +++ b/stdlib/test/hashlib/test_ahash.mojo @@ -15,15 +15,12 @@ from hashlib._ahash import AHasher from hashlib._hasher import _hash_with_hasher as hash from hashlib.hash import hash as old_hash -from time import now from bit import pop_count from builtin._location import __call_location -from memory import memset_zero, stack_allocation +from memory import memset_zero, stack_allocation, Span from testing import assert_equal, assert_not_equal, assert_true -from utils import Span - # Source: https://www.101languages.net/arabic/most-common-arabic-words/ alias words_ar = """ لا, من, هذا, أن, في, أنا, على, ما, هل, @@ -580,7 +577,7 @@ fn gen_word_pairs[words: String = words_en]() -> List[String]: try: var list = words.split(", ") for w in list: - var w1 = w[].strip() + var w1 = str(w[].strip()) for w in list: var w2 = w[].strip() result.append(w1 + " " + w2) diff --git a/stdlib/test/lit.cfg.py b/stdlib/test/lit.cfg.py index 55976ecfe6..67d1f613b2 100644 --- a/stdlib/test/lit.cfg.py +++ b/stdlib/test/lit.cfg.py @@ -78,8 +78,9 @@ def has_not(): # with assertions enabled. config.substitutions.insert(1, ("%bare-mojo", "mojo")) - # NOTE: Right now this is the same as %mojo but we should start testing + # NOTE: Right now these are the same as %mojo but we should start testing # with debug info as well + config.substitutions.insert(0, ("%mojo-no-debug-no-assert", "mojo")) config.substitutions.insert(0, ("%mojo-no-debug", base_mojo_command)) # The `mojo` nightly compiler ships with its own `stdlib.mojopkg`. For the diff --git a/stdlib/test/utils/test_span.mojo b/stdlib/test/memory/test_span.mojo similarity index 92% rename from stdlib/test/utils/test_span.mojo rename to stdlib/test/memory/test_span.mojo index ebf04f8157..92c49210c6 100644 --- a/stdlib/test/utils/test_span.mojo +++ b/stdlib/test/memory/test_span.mojo @@ -14,11 +14,9 @@ from collections import InlineArray, List -from memory import UnsafePointer +from memory import UnsafePointer, Span from testing import assert_equal, assert_true -from utils import Span - def test_span_list_int(): var l = List[Int](1, 2, 3, 4, 5, 6, 7) @@ -138,19 +136,6 @@ def test_span_slice(): assert_equal(res[0], 2) assert_equal(res[1], 3) assert_equal(res[2], 4) - # Test slicing with negative step - res = s[1::-1] - assert_equal(res[0], 2) - assert_equal(res[1], 1) - res.unsafe_ptr().free() - res = s[2:1:-1] - assert_equal(res[0], 3) - assert_equal(len(res), 1) - res.unsafe_ptr().free() - res = s[5:1:-2] - assert_equal(res[0], 5) - assert_equal(res[1], 3) - res.unsafe_ptr().free() def test_copy_from(): @@ -204,6 +189,16 @@ def test_ref(): assert_true(s.as_ref() == Pointer.address_of(l.unsafe_ptr()[])) +def test_reversed(): + var forward = InlineArray[Int, 3](1, 2, 3) + var backward = InlineArray[Int, 3](3, 2, 1) + var s = Span[Int](forward) + var i = 0 + for num in reversed(s): + assert_equal(num[], backward[i]) + i += 1 + + def main(): test_span_list_int() test_span_list_str() @@ -215,3 +210,4 @@ def main(): test_bool() test_fill() test_ref() + test_reversed() diff --git a/stdlib/test/os/path/test_expandvars.mojo b/stdlib/test/os/path/test_expandvars.mojo index 4dccce1208..fead55656d 100644 --- a/stdlib/test/os/path/test_expandvars.mojo +++ b/stdlib/test/os/path/test_expandvars.mojo @@ -22,7 +22,7 @@ from testing import assert_equal struct EnvVar: var name: String - fn __init__(out self, name: String, value: String) -> None: + fn __init__(out self, name: String, value: String): self.name = name _ = os.setenv(name, value) diff --git a/stdlib/test/python/module_for_test_python_object_dunder_contains.py b/stdlib/test/python/module_for_test_python_object_dunder_contains.py new file mode 100644 index 0000000000..40ec598dee --- /dev/null +++ b/stdlib/test/python/module_for_test_python_object_dunder_contains.py @@ -0,0 +1,40 @@ +# ===----------------------------------------------------------------------=== # +# Copyright (c) 2024, Modular Inc. All rights reserved. +# +# Licensed under the Apache License v2.0 with LLVM Exceptions: +# https://llvm.org/LICENSE.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ===----------------------------------------------------------------------=== # + + +class Class_no_iterable_no_contains: + x = 1 + + +class Class_no_iterable_but_contains: + x = 123 + + def __contains__(self, rhs): + return rhs == self.x + + +class Class_iterable_no_contains: + def __init__(self): + self.data = [123, 456] + + def __iter__(self): + self.i = 0 + return self + + def __next__(self): + if self.i >= len(self.data): + raise StopIteration + else: + tmp = self.data[self.i] + self.i += 1 + return tmp diff --git a/stdlib/test/python/test_python_cpython.mojo b/stdlib/test/python/test_python_cpython.mojo new file mode 100644 index 0000000000..77d4bfdb59 --- /dev/null +++ b/stdlib/test/python/test_python_cpython.mojo @@ -0,0 +1,40 @@ +# ===----------------------------------------------------------------------=== # +# Copyright (c) 2024, Modular Inc. All rights reserved. +# +# Licensed under the Apache License v2.0 with LLVM Exceptions: +# https://llvm.org/LICENSE.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ===----------------------------------------------------------------------=== # +# XFAIL: asan && !system-darwin +# RUN: %mojo %s + +from python import Python, PythonObject +from testing import assert_equal, assert_false, assert_raises, assert_true + + +def test_PyObject_HasAttrString(mut python: Python): + var Cpython_env = python.impl._cpython + + var the_object = PythonObject(0) + var result = Cpython_env[].PyObject_HasAttrString( + the_object.py_object, "__contains__" + ) + assert_equal(0, result) + + the_object = PythonObject([1, 2, 3]) + result = Cpython_env[].PyObject_HasAttrString( + the_object.py_object, "__contains__" + ) + assert_equal(1, result) + _ = the_object + + +def main(): + # initializing Python instance calls init_python + var python = Python() + test_PyObject_HasAttrString(python) diff --git a/stdlib/test/python/test_python_object.mojo b/stdlib/test/python/test_python_object.mojo index 92180fb8d0..b1c6799157 100644 --- a/stdlib/test/python/test_python_object.mojo +++ b/stdlib/test/python/test_python_object.mojo @@ -576,6 +576,31 @@ fn test_py_slice() raises: _ = with_2d[0:1][4] +def test_contains_dunder(): + with assert_raises(contains="'int' object is not iterable"): + var z = PythonObject(0) + _ = 5 in z + + var x = PythonObject([1.1, 2.2]) + assert_true(1.1 in x) + assert_false(3.3 in x) + + x = PythonObject(["Hello", "World"]) + assert_true("World" in x) + + x = PythonObject((1.5, 2)) + assert_true(1.5 in x) + assert_false(3.5 in x) + + var y = Dict[PythonObject, PythonObject]() + y["A"] = "A" + y["B"] = 5 + x = PythonObject(y) + assert_true("A" in x) + assert_false("C" in x) + assert_true("B" in x) + + def main(): # initializing Python instance calls init_python var python = Python() @@ -593,3 +618,4 @@ def main(): test_getitem_raises() test_setitem_raises() test_py_slice() + test_contains_dunder() diff --git a/stdlib/test/python/test_python_object_dunder_contains.mojo b/stdlib/test/python/test_python_object_dunder_contains.mojo new file mode 100644 index 0000000000..5d4c722278 --- /dev/null +++ b/stdlib/test/python/test_python_object_dunder_contains.mojo @@ -0,0 +1,70 @@ +# ===----------------------------------------------------------------------=== # +# Copyright (c) 2024, Modular Inc. All rights reserved. +# +# Licensed under the Apache License v2.0 with LLVM Exceptions: +# https://llvm.org/LICENSE.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ===----------------------------------------------------------------------=== # +# XFAIL: asan && !system-darwin +# RUN: %mojo %s + +from python import Python, PythonObject +from testing import assert_equal, assert_false, assert_raises, assert_true +from collections import Dict + + +def test_contains_dunder(mut python: Python): + with assert_raises(contains="'int' object is not iterable"): + var z = PythonObject(0) + _ = 5 in z + + var x = PythonObject([1.1, 2.2]) + assert_true(1.1 in x) + assert_false(3.3 in x) + + x = PythonObject(["Hello", "World"]) + assert_true("World" in x) + + x = PythonObject((1.5, 2)) + assert_true(1.5 in x) + assert_false(3.5 in x) + + var y = Dict[PythonObject, PythonObject]() + y["A"] = "A" + y["B"] = 5 + x = PythonObject(y) + assert_true("A" in x) + assert_false("C" in x) + assert_true("B" in x) + + # tests with python modules: + module = python.import_module( + "module_for_test_python_object_dunder_contains" + ) + + x = module.Class_no_iterable_but_contains() + assert_true(123 in x) + + x = module.Class_no_iterable_no_contains() + with assert_raises( + contains="'Class_no_iterable_no_contains' object is not iterable" + ): + _ = 123 in x + + x = module.Class_iterable_no_contains() + assert_true(123 in x) + assert_true(456 in x) + assert_false(234 in x) + x.data.append(234) + assert_true(234 in x) + + +def main(): + # initializing Python instance calls init_python + var python = Python() + test_contains_dunder(python) diff --git a/stdlib/test/time/test_time.mojo b/stdlib/test/time/test_time.mojo index 985a0ec9f6..0148bfeeef 100644 --- a/stdlib/test/time/test_time.mojo +++ b/stdlib/test/time/test_time.mojo @@ -15,7 +15,6 @@ from sys import os_is_windows from time import ( monotonic, - now, perf_counter, perf_counter_ns, sleep, @@ -28,7 +27,7 @@ from testing import assert_true @always_inline @parameter fn time_me(): - sleep(1) + sleep(1.0) @always_inline @@ -50,7 +49,7 @@ fn time_templated_function[ fn time_capturing_function(iters: Int) -> Int: @parameter fn time_fn(): - sleep(1) + sleep(1.0) return time_function[time_fn]() @@ -60,7 +59,6 @@ fn test_time() raises: assert_true(perf_counter() > 0) assert_true(perf_counter_ns() > 0) - assert_true(now() > 0) assert_true(monotonic() > 0) var t1 = time_function[time_me]() diff --git a/stdlib/test/utils/test_static_tuple.mojo b/stdlib/test/utils/test_static_tuple.mojo new file mode 100644 index 0000000000..b2f46d55af --- /dev/null +++ b/stdlib/test/utils/test_static_tuple.mojo @@ -0,0 +1,56 @@ +# ===----------------------------------------------------------------------=== # +# Copyright (c) 2024, Modular Inc. All rights reserved. +# +# Licensed under the Apache License v2.0 with LLVM Exceptions: +# https://llvm.org/LICENSE.txt +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ===----------------------------------------------------------------------=== # +# RUN: %mojo %s + +from testing import assert_equal +from utils import StaticTuple + + +def test_getitem(): + # Should be constructible from a single element + # as well as a variadic list of elements. + var tup1 = StaticTuple[Int, 1](1) + assert_equal(tup1[0], 1) + + var tup2 = StaticTuple[Int, 2](1, 1) + assert_equal(tup2[0], 1) + assert_equal(tup2[1], 1) + + var tup3 = StaticTuple[Int, 3](1, 2, 3) + assert_equal(tup3[0], 1) + assert_equal(tup3[1], 2) + assert_equal(tup3[2], 3) + + assert_equal(tup1[Int(0)], 1) + + +def test_setitem(): + var t = StaticTuple[Int, 3](1, 2, 3) + + t[0] = 100 + assert_equal(t[0], 100) + + t[1] = 200 + assert_equal(t[1], 200) + + t[2] = 300 + assert_equal(t[2], 300) + + alias idx: Int = 0 + t.__setitem__[idx](400) + assert_equal(t[0], 400) + + +def main(): + test_getitem() + test_setitem() diff --git a/stdlib/test/utils/test_string_slice.mojo b/stdlib/test/utils/test_string_slice.mojo index 191d98a7d6..dfeb37b12f 100644 --- a/stdlib/test/utils/test_string_slice.mojo +++ b/stdlib/test/utils/test_string_slice.mojo @@ -14,7 +14,8 @@ from testing import assert_equal, assert_false, assert_true -from utils import Span, StringSlice +from memory import Span +from utils import StringSlice from utils._utf8_validation import _is_valid_utf8 from utils.string_slice import _count_utf8_continuation_bytes @@ -487,7 +488,103 @@ def test_splitlines(): _assert_equal(s.splitlines(keepends=True), items) -fn main() raises: +def test_rstrip(): + # with default rstrip chars + var empty_string = "".as_string_slice() + assert_true(empty_string.rstrip() == "") + + var space_string = " \t\n\r\v\f ".as_string_slice() + assert_true(space_string.rstrip() == "") + + var str0 = " n ".as_string_slice() + assert_true(str0.rstrip() == " n") + + var str1 = "string".as_string_slice() + assert_true(str1.rstrip() == "string") + + var str2 = "something \t\n\t\v\f".as_string_slice() + assert_true(str2.rstrip() == "something") + + # with custom chars for rstrip + var str3 = "mississippi".as_string_slice() + assert_true(str3.rstrip("sip") == "m") + + var str4 = "mississippimississippi \n ".as_string_slice() + assert_true(str4.rstrip("sip ") == "mississippimississippi \n") + assert_true(str4.rstrip("sip \n") == "mississippim") + + +def test_lstrip(): + # with default lstrip chars + var empty_string = "".as_string_slice() + assert_true(empty_string.lstrip() == "") + + var space_string = " \t\n\r\v\f ".as_string_slice() + assert_true(space_string.lstrip() == "") + + var str0 = " n ".as_string_slice() + assert_true(str0.lstrip() == "n ") + + var str1 = "string".as_string_slice() + assert_true(str1.lstrip() == "string") + + var str2 = " \t\n\t\v\fsomething".as_string_slice() + assert_true(str2.lstrip() == "something") + + # with custom chars for lstrip + var str3 = "mississippi".as_string_slice() + assert_true(str3.lstrip("mis") == "ppi") + + var str4 = " \n mississippimississippi".as_string_slice() + assert_true(str4.lstrip("mis ") == "\n mississippimississippi") + assert_true(str4.lstrip("mis \n") == "ppimississippi") + + +def test_strip(): + # with default strip chars + var empty_string = "".as_string_slice() + assert_true(empty_string.strip() == "") + alias comp_empty_string_stripped = "".as_string_slice().strip() + assert_true(comp_empty_string_stripped == "") + + var space_string = " \t\n\r\v\f ".as_string_slice() + assert_true(space_string.strip() == "") + alias comp_space_string_stripped = " \t\n\r\v\f ".as_string_slice().strip() + assert_true(comp_space_string_stripped == "") + + var str0 = " n ".as_string_slice() + assert_true(str0.strip() == "n") + alias comp_str0_stripped = " n ".as_string_slice().strip() + assert_true(comp_str0_stripped == "n") + + var str1 = "string".as_string_slice() + assert_true(str1.strip() == "string") + alias comp_str1_stripped = ("string").strip() + assert_true(comp_str1_stripped == "string") + + var str2 = " \t\n\t\v\fsomething \t\n\t\v\f".as_string_slice() + alias comp_str2_stripped = (" \t\n\t\v\fsomething \t\n\t\v\f").strip() + assert_true(str2.strip() == "something") + assert_true(comp_str2_stripped == "something") + + # with custom strip chars + var str3 = "mississippi".as_string_slice() + assert_true(str3.strip("mips") == "") + assert_true(str3.strip("mip") == "ssiss") + alias comp_str3_stripped = "mississippi".as_string_slice().strip("mips") + assert_true(comp_str3_stripped == "") + + var str4 = " \n mississippimississippi \n ".as_string_slice() + assert_true(str4.strip(" ") == "\n mississippimississippi \n") + assert_true(str4.strip("\nmip ") == "ssissippimississ") + + alias comp_str4_stripped = ( + " \n mississippimississippi \n ".as_string_slice().strip(" ") + ) + assert_true(comp_str4_stripped == "\n mississippimississippi \n") + + +def main(): test_string_literal_byte_span() test_string_byte_span() test_heap_string_from_string_slice() @@ -505,3 +602,6 @@ fn main() raises: test_combination_10_good_10_bad_utf8_sequences() test_count_utf8_continuation_bytes() test_splitlines() + test_rstrip() + test_lstrip() + test_strip() diff --git a/stdlib/test/utils/test_tuple.mojo b/stdlib/test/utils/test_tuple.mojo index f6ccb2ce3a..0748552be0 100644 --- a/stdlib/test/utils/test_tuple.mojo +++ b/stdlib/test/utils/test_tuple.mojo @@ -19,23 +19,6 @@ from testing import assert_equal, assert_false, assert_true from utils import IndexList, StaticTuple -def test_static_tuple(): - var tup1 = StaticTuple[Int, 1](1) - assert_equal(tup1[0], 1) - - var tup2 = StaticTuple[Int, 2](1, 1) - assert_equal(tup2[0], 1) - assert_equal(tup2[1], 1) - - var tup3 = StaticTuple[Int, 3](1, 2, 3) - assert_equal(tup3[0], 1) - assert_equal(tup3[1], 2) - assert_equal(tup3[2], 3) - - assert_equal(tup3[0], 1) - assert_equal(tup3[Int(0)], 1) - - def test_static_int_tuple(): assert_equal(str(IndexList[1](1)), "(1,)") @@ -72,6 +55,5 @@ def test_tuple_literal(): def main(): - test_static_tuple() test_static_int_tuple() test_tuple_literal()