-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentation.tex
1520 lines (1203 loc) · 47.6 KB
/
presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Beamer Presentation
% LaTeX Template
% Version 1.0 (10/11/12)
%
% This template has been downloaded from:
% http://www.LaTeXTemplates.com
%
% License:
% CC BY-NC-SA 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0/)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%----------------------------------------------------------------------------------------
% PACKAGES AND THEMES
%----------------------------------------------------------------------------------------
\documentclass[serif]{beamer}
\mode<presentation>{
% The Beamer class comes with a number of default slide themes
% which change the colors and layouts of slides. Below this is a list
% of all the themes, uncomment each in turn to see what they look like.
%\usetheme{default}
%\usetheme{AnnArbor}
%\usetheme{Antibes}
%\usetheme{Bergen}
%\usetheme{Berkeley}
%\usetheme{Berlin}
%\usetheme{Boadilla}
%\usetheme{CambridgeUS}
%\usetheme{Copenhagen}
%\usetheme{Darmstadt}
%\usetheme{Dresden}
%\usetheme{Frankfurt}
%\usetheme{Goettingen}
%\usetheme{Hannover}
%\usetheme{Ilmenau}
%\usetheme{JuanLesPins}
%\usetheme{Luebeck}
\usetheme{Madrid}
%\usetheme{Malmoe}
%\usetheme{Marburg}
%\usetheme{Montpellier}
%\usetheme{PaloAlto}
%\usetheme{Pittsburgh}
%\usetheme{Rochester}
%\usetheme{Singapore}
%\usetheme{Szeged}
%\usetheme{Warsaw}
% As well as themes, the Beamer class has a number of color themes
% for any slide theme. Uncomment each of these in turn to see how it
% changes the colors of your current slide theme.
%\usecolortheme{albatross}
\usecolortheme{beaver}
%\usecolortheme{beetle}
%\usecolortheme{crane}
%\usecolortheme{dolphin}
%\usecolortheme{dove}
%\usecolortheme{fly}
%\usecolortheme{lily}
%\usecolortheme{orchid}
%\usecolortheme{rose}
%\usecolortheme{seagull}
%\usecolortheme{seahorse}
%\usecolortheme{whale}
%\usecolortheme{wolverine}
%Some nicer color definitions
\definecolor{crimsonred}{RGB}{153,0,0} % Neurtal red, good for dark or light bg
\definecolor{darkcharcoal}{RGB}{25,25,25} % Darker gray
\definecolor{charcoal}{RGB}{51,51,51} % Darker gray
\definecolor{ash}{RGB}{100,100,100} % medium gray
\definecolor{paleblue}{RGB}{0,102,102} % More of an `ocean' color
\definecolor{turtlegreen}{RGB}{51,153,0} % A more neutral green
\definecolor{paleale}{RGB}{204,204,102} % Only for dark BG
\definecolor{lager}{RGB}{140,110,10} % Use instead of pale ale for white BG
\definecolor{regal}{RGB}{90,0,120} % A more neutral purple
\definecolor{jeans}{RGB}{20,30,150} % A more neutral blue
\definecolor{Alert}{RGB}{51,153,0}
\setbeamercolor{block title}{bg=red!30,fg=black}
%\setbeamertemplate{footline} % To remove the footer line in all slides uncomment this line
%\setbeamertemplate{footline}[page number] % To replace the footer line in all slides with a simple slide count uncomment this line
%\setbeamertemplate{navigation symbols}{} % To remove the navigation symbols from the bottom of all slides uncomment this line
}
\small
\usepackage{graphicx} % Allows including images
\usepackage{palatino}
\usepackage{colortbl}
\usepackage[minnames=2,maxnames=3,style=numeric,backend=bibtex,sorting=none]{biblatex}
\addbibresource{bib/mybib}
\newcommand {\e}[1]{\mathrm{~#1}}
\newcommand {\E}[1]{\times 10^{#1}}
\newcommand{\backupbegin}{
\newcounter{finalframe}
\setcounter{finalframe}{\value{framenumber}}
}
\newcommand{\backupend}{
\setcounter{framenumber}{\value{finalframe}}
}
\setlength{\extrarowheight}{.8ex}
\usepackage{tikz}
\usepackage{amsmath}
\usepackage{verbatim}
\usetikzlibrary{arrows,shapes}
\usetikzlibrary{fadings}
\usetikzlibrary{tikzmark}
\renewcommand{\thefootnote}{\fnsymbol{footnote}}
\usepackage{booktabs} % Allows the use of \toprule, \midrule and \bottomrule in tables
\definecolor{darkgreen}{rgb}{0.0, 0.5, 0.0}
\setbeamertemplate{navigation symbols}{} %remove navigation symbols
\newcommand{\putat}[3]{\begin{picture}(0,0)(0,0)\put(#1,#2){#3}\end{picture}}
\include{pythonlisting}
%----------------------------------------------------------------------------------------
% & TITLE PAGE
%----------------------------------------------------------------------------------------
\title[$B \to K K \ell \nu_\ell$ decays @ Belle]{Study of $B \to K K \ell \nu_\ell$ Decays at Belle} % The short title appears at the bottom of every slide, the full title is only on the title page
\author[Matic Lubej]{Matic Lubej} % Your name
\institute[] % Your institution as it will appear on the bottom of every slide, may be shorthand to save space
{\large\underline{PhD Thesis Defense} \\ % Occasion for the title page
\medskip
%\textit{matic.lubej@ijs.si} % Your email address
}
\date[Ljubljana, November $22^{\mathrm{nd}}$, 2018]{Ljubljana, November $22^{\mathrm{nd}}$, 2018} % Date, can be changed to a custom date
\usebackgroundtemplate{
% \tikz[overlay,remember picture]
% \node[opacity=0.2] (label) at (9.2,-6.5){
% \includegraphics[scale=0.4]{fig/thesis_defense}
% };
\tikzfading[name=fade out,
inner color=transparent!20,
outer color=transparent!99]
%Now we use the fading in another picture:
\begin{tikzpicture}[remember picture, overlay]
\node[opacity=1.0,inner sep=0pt, scope fading=fade out] at (11,-8)
{\scalebox{-1}[1]{\includegraphics[width=0.6\linewidth]{fig/bc_1}}};
\end{tikzpicture}
}
\begin{document}
\begin{frame}
\frametitle{}
\thispagestyle{empty}
\begin{center}
\putat{-120}{-30}{\includegraphics[height=1.5cm]{fig/b2logo}}
\putat{-40}{-30}{\includegraphics[height=2cm]{fig/fmflogo}}
\putat{80}{-30}{\includegraphics[height=1.5cm]{fig/ijslogo}}
\putat{103}{-30}{IJS}
\end{center}
%\tikzfading[name=fade out,
%inner color=transparent!0,
%outer color=transparent!90]
%%Now we use the fading in another picture:
%\begin{tikzpicture}[remember picture, overlay]
%\node[opacity=1.0,inner sep=0pt, scope fading=fade out] at (1,-6)
%{\includegraphics[width=0.6\linewidth]{fig/bc_1}};
%\end{tikzpicture}
\maketitle
\end{frame}
%----------------------------------------------------------------------------------------
%\usebackgroundtemplate{}
\usebackgroundtemplate{
% \tikz[overlay,remember picture]
% \node[opacity=0.2] (label) at (9.2,-6.5){
% \includegraphics[scale=0.4]{fig/thesis_defense}
% };
\tikzfading[name=fade out,
inner color=transparent!80,
outer color=transparent!99]
%Now we use the fading in another picture:
\begin{tikzpicture}[remember picture, overlay]
\node[opacity=1.0,inner sep=0pt, scope fading=fade out] at (11,-8)
{\scalebox{-1}[1]{\includegraphics[width=0.6\linewidth]{fig/bc_1}}};
\end{tikzpicture}
}
\newcommand\tocforsect[2]{%
\begingroup
\edef\safesection{\thesection}
\setcounter{section}{#1}
\tableofcontents[#2,currentsection]
\setcounter{section}{\safesection}
\endgroup
}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Overview}
\only<1>{\tocforsect{1}{sectionstyle=shaded,subsectionstyle=shaded}}
\end{frame}
%----------------------------------------------------------------------------------------
\section{Introduction}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Introduction I -- Standard Model}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item The Standard Model (SM) is a basic theory which describes elementary particles and interactions between them
\item Quarks: can be grouped into baryons ($q_1q_2q_3$) or mesons ($\bar q_1 q_2$)
\item Focus of this analysis are $B$ mesons: $B^+(\bar b u)$ and $B^-(b \bar u)$
\end{itemize}
\end{block}
\begin{center}
\includegraphics[scale=0.9]{texfig/SM}
\end{center}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Introduction II -- $CP$ Violation}
\small
\vspace{-4mm}
\begin{block}{}
\begin{itemize}
\item {\color{blue}$C$} (charge conjugation), {\color{blue}$P$} (parity) and {\color{blue}$T$} (time reversal) symmetries were believed to be conserved individually (based on EM interaction, 1954)
\item Observation of {\color{blue}$P$} symmetry violation confused physicists (1956)
\item Observation of {\color{blue}$CP$} symmetry violation confused physicists even more (1964)
\end{itemize}
\end{block}
$CP$ symmetry? $\to$ A sort of a "physics mirror", stating that the laws of physics should be the same if observed through said mirror.
\vspace{-2mm}
\begin{columns}
\column{0.27\textwidth}
\column{0.43\textwidth}
\begin{block}{}
\begin{itemize}
\item $CP$ violation one of the necessary conditions for matter and antimatter asymmetry in the universe
\item This analysis is one of the many steps toward a better understanding of our universe
\end{itemize}
\end{block}
\column{0.3\textwidth}
\end{columns}
\begin{picture}(0,0)
\put(0,5){
\includegraphics[scale=0.35]{fig/cpv}}
\end{picture}
\begin{picture}(0,0)
\put(0,6){
{\tiny\texttt{\url{http://pprc.qmul.ac.uk/~still/homepage/Matter_and_Anti-Matter.html}}}
}
\end{picture}
\begin{picture}(0,0)
\put(250,30){
\includegraphics[scale=0.35]{fig/asymmetry}}
\end{picture}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Introduction III -- CKM Matrix}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item $CP$ violation is described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix
\item It is a complex and unitary matrix
\item Contains transition probabilities from one quark to the other (charged weak interaction)
\end{itemize}
$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}, \quad \vert V_{ij}\vert^2 \propto q_i \leftrightarrow q_j~~\mathrm{transition~probability} $$
\end{block}
\begin{center}
\includegraphics[scale=0.95]{texfig/quark_transition}
\includegraphics[scale=0.95]{texfig/antiquark_transition}
\end{center}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Introduction IV -- Unitarity Triangle}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item The most relevant unitarity condition of the CKM matrix for this analysis is
$$V_{ud}V_{ub}^{*}+V_{cd}V_{cb}^{*}+V_{td}V_{tb}^{*} = 0$$
\end{itemize}
\end{block}
\begin{center}
\includegraphics[scale=0.8]{texfig/UT_Triangle}
\end{center}
\vspace{-2mm}
\begin{block}{}
\begin{itemize}
\item By measuring the sides and angles of the triangle, we can overconstrain it and check if all the sides meet
\item CKM matrix elements are not determined by theory or experiment alone, but by their joint effort
\end{itemize}
\end{block}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Introduction V -- Unitarity Triangle Determination}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item The most relevant unitarity condition of the CKM matrix for this analysis is
$$V_{ud}V_{ub}^{*}+V_{cd}V_{cb}^{*}+V_{td}V_{tb}^{*} = 0$$
\end{itemize}
\end{block}
\vspace{-2mm}
\begin{center}
\includegraphics[width=0.9\textwidth]{fig/belle_rhoeta_small_global}
\end{center}
\vspace{-2mm}
In this analysis we focus on decays involving $\textcolor{red}{V_{ub}}$
\end{frame}
%----------------------------------------------------------------------------------------
\section{Motivation}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Overview}
\only<1>{\tocforsect{2}{sectionstyle=shaded,subsectionstyle=shaded}}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Motivation I -- Why $V_{ub}$?}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item The magnitude of $CP$ violation that we know of is not large enough to account for the matter and antimatter asymmetry
\item We are searching for new physics (NP) processes, which are not described by our current model
\item \textcolor{red}{$\vert V_{ub}\vert$} has the smallest value and the largest uncertainty of all the CKM matrix elements, precision measurements require better accuracy
\end{itemize}
\end{block}
\begin{center}
\includegraphics[width=0.6\textwidth]{texfig/fig_CKM}
\end{center}
%{
% \large
% $$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & \textcolor{red}{V_{ub}} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$
%}
%- why B mesons
%- why Vub
%- Vub determination
%- analysis decay
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Motivation II -- Why $B$ Mesons?}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item $B$ mesons exhibit a rich spectrum of decay modes, out of which many allow the study of the underlying physics processes
\item Decays are deeply connected to the CKM matrix
\end{itemize}
\end{block}
\begin{exampleblock}{}
\begin{itemize}
\item We focus on the charmless semileptonic $B$ meson decays of the form $B^+ \to X_u^0 \ell^+ \nu_\ell$ (inclusion of charge conjugated $B^-$ decays is implied)
\item Such decays are used to determine the $\vert V_{ub}\vert$ CKM matrix element
\end{itemize}
\end{exampleblock}
\begin{columns}
\column{0.45\textwidth}
\includegraphics[scale=1]{texfig/B2pilnu_short}
\column{0.55\textwidth}
Reliable \textcolor{turtlegreen}{experimental measurements} along with precise \textcolor{blue}{theoretical calculations} enable the determination of the \textcolor{red}{$\vert V_{ub} \vert$}
\begin{equation*}
\textcolor{turtlegreen}{\mathrm{d} \Gamma} \propto G_F^2 \vert \textcolor{red}{ V_{ub}} \vert ^2 \vert \textcolor{blue}{L^\mu \langle X_u \vert \bar u \gamma_\mu \frac{1}{2} (1-\gamma_5) b \vert B \rangle} \vert ^2,
\end{equation*}
$\Gamma$ is the decay width, $L^\mu$ is the leptonic current and $\langle \dots \rangle$ is the hadronic current.
\end{columns}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Motivation III -- Why This Analysis?}
\small
\vspace{-3mm}
There are two common methods of $\vert V_{ub}\vert $ determination
\begin{columns}
\column{0.49\textwidth}
\begin{block}{}
Exclusive
\begin{itemize}
\item $B$ decays to a specific hadronic final state $X_u$ (such as $\pi$ or $\rho$)
\end{itemize}
\begin{center}
\vspace{-3mm}
\includegraphics[width=0.5\textwidth]{fig/excl}
\end{center}
\end{block}
\column{0.49\textwidth}
\begin{block}{}
Inclusive
\begin{itemize}
\item $B$ meson decays to any hadronic final state $X_u$
\end{itemize}
\begin{center}
\vspace{-3mm}
\includegraphics[width=0.5\textwidth]{fig/incl}
\end{center}
\end{block}
\end{columns}
\vspace{3mm}
Both methods require different experimental and theoretical approaches, therefore yield largely independent results
\begin{align*}
&\vert V_{ub} \vert_{\mathrm{excl.}} = \left(3.65 \pm 0.09 \pm 0.11\right)\E{-3},\\
&\vert V_{ub} \vert_{\mathrm{incl.}}^{\mathrm{GGOU}} = \left(4.52 \pm 0.15~{}^{+0.11}_{-0.14}\right)\E{-3},
\end{align*}
\textcolor{red}{However, they agree only at a $3\sigma$ level} $\to$ The $V_{ub}$ puzzle
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Motivation IV -- Why This Decay?}
\small
\vspace{-3mm}
\begin{block}{}
\begin{itemize}
\item Primary: The decay has not been observed yet
\item The decay $B \rightarrow KK\ell\nu$ is similar to the $B \rightarrow \pi\ell\nu$ decay, so a similar analysis process can be applied
\item Kaons ($K^+(u \bar s)$) are usually present in $b \to c (\to s)$ decays, so a $K$-veto is used to remove such background cases in inclusive $V_{ub}$ studies\\$\to$ \textcolor{red}{but this is a charmless process ($b \to u$) with kaons in the final state!}
\item Secondary: Impact of not taking these decays into account?
\end{itemize}
\end{block}
\begin{columns}
\column{0.45\textwidth}
\includegraphics[scale=0.9]{texfig/B2KKlnu}
\column{0.45\textwidth}
\includegraphics[scale=0.9]{texfig/B2pilnu}
\end{columns}
\end{frame}
%----------------------------------------------------------------------------------------
\section{Experimental Setup}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Overview}
\only<1>{\tocforsect{3}{sectionstyle=shaded,subsectionstyle=shaded}}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Experimental Setup I -- KEKB Accelerator}
\vspace{-3mm}
\small
\begin{columns}
\column{0.6\textwidth}
\begin{block}{}
\begin{itemize}
\item Two rings ($e^+$ and $e^-$) with a diameter $ \approx 1$ km
\item Particles are produced in events when $e^+$ and $e^-$ collide
\item Energy in the center-of-mass frame is 10.58 GeV
\begin{itemize}
\item corresponds to $\Upsilon(4S)$ meson mass
\end{itemize}
\item B factories are known for abundant production of $B$ mesons
\end{itemize}
\end{block}
\column{0.4\textwidth}
\includegraphics[scale=0.2]{fig/setup/KEKB}
\end{columns}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Experimental Setup II -- Particle Detection}
\vspace{-3mm}
\small
\only<1>{
\begin{center}
\includegraphics[width=0.6\textwidth]{fig/sim_1}
\end{center}
\begin{block}{}
\begin{itemize}
\item Event -- collision of $e^+$ and $e^-$
\end{itemize}
\end{block}
}
\only<2>{
\begin{center}
\includegraphics[width=0.6\textwidth]{fig/sim_2}
\end{center}
\begin{block}{}
\begin{itemize}
\item Event -- collision of $e^+$ and $e^-$
\item Production of new particles
\end{itemize}
\end{block}
}
\only<3>{
\begin{center}
\includegraphics[width=0.6\textwidth]{fig/sim_3}
\end{center}
\begin{block}{}
\begin{itemize}
\item Event -- collision of $e^+$ and $e^-$
\item Production of new particles
\item Detection of final, stable particles
\end{itemize}
\end{block}
}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Experimental Setup III -- Belle Detector}
\vspace{-3mm}
\small
\begin{block}{}
\begin{itemize}
\item A cylindrically symmetric magnetic spectrometer
\item Wide solid angle coverage ($\sim92\%$)
\item Specialized for $e^+e^-$ collisions
\item Constructed from several subdetectors, each with its own purpose
\end{itemize}
\end{block}
\begin{columns}
\column{0.5\textwidth}
Belle II detector subsystems:
\begin{itemize}
\item Decay vertex determination
\item Tracking
\item Particle identification
\item Calorimetry
\end{itemize}
\column{0.5\textwidth}
\includegraphics[scale=0.16]{fig/setup/Belle_detector}
\end{columns}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Experimental Setup III -- Belle Detector Subsystems}
\vspace{-3mm}
\small
\begin{tikzpicture}
\node {\includegraphics[width=\textwidth]{fig/display}};
\node at (3.2,-3) {
\begin{tabular}{l}
Silicon Vertex Detector (SVD)\\
Central Drift Chamber (CDC)\\
Electromagnetic Calorimeter (ECL)\\
\end{tabular}
};
\node at (4,3.5) {
\begin{tabular}{l}
\textcolor{turtlegreen}{Neutral Cluster}\\
\textcolor{turtlegreen}{Charged Track}
\end{tabular}
};
\draw[thick, ->] (2.5,-2.3) to [out=90,in=0] (0.5,0);
\draw[thick, ->] (0.3,-3.0) to [out=180,in=270] (-1.5,-1.5);
\draw[thick, ->] (0.3,-3.4) to [out=180,in=270] (-3.8,0);
\draw[thick, turtlegreen, ->] (4,3) to [out=-90,in=0] (2.2,1);
\draw[thick, turtlegreen, ->] (2.6,3.7) to [out=180,in=0] (0.2,3);
\end{tikzpicture}
\end{frame}
%----------------------------------------------------------------------------------------
%----------------------------------------------------------------------------------------
\section{Analysis Procedure}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Overview}
\only<1>{\tocforsect{4}{sectionstyle=shaded,subsectionstyle=shaded}}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]
\frametitle{Analysis I -- Method overview}
\vspace{-3mm}
\small
\begin{itemize}
\item Initial state well known: $e^+e^- \to \Upsilon(4S)$ @ $E_{CMS} \approx M_{\Upsilon(4S)}$
\item $\Upsilon(4S)$ at rest $\to B \overline B$
\item Kaons $K$ and the leptons $e$ and $\mu$ produce tracks $\to$ \textcolor{turtlegreen}{easily detectable}
\item Neutrinos $\nu$ interact weakly and escape the detector $\to$ \textcolor{red}{missing energy and momentum}
% \item Neutrino 4-momentum inferred from missing momentum in event (assuming only one neutrino missing)
\end{itemize}
\only<1>{
\begin{tikzpicture}
\node (origin) at (0cm,0cm) {};
\node [left, text width=5cm,fill=blue!20,align=center] at (7cm,0cm){\large Reconstruction methods};
\node [left,text width=4.5cm,fill=green!20,align=center] at (3cm,-0.8cm){\large Tagged measurement};
\node [left,text width=5cm,fill=green!20,align=center] at (10cm,-0.8cm){\large Untagged measurement};
\node (img) at (1cm,-2.5cm) {\includegraphics[scale=0.27]{fig/decay_5}};
\node (img) at (8cm,-2.5cm) {\includegraphics[scale=0.27]{fig/decay_3}};
\node [left,text width=5cm,fill=red!20,align=center] at (3.7cm,-4.3cm){\small Example scheme of a tagged mode};
\node [left,text width=5cm,fill=red!20,align=center] at (10cm,-4.3cm){\small Companion $B$ not reconstructed};
\end{tikzpicture}
}
\only<2>{
\begin{tikzpicture}
\node (origin) at (0cm,0cm) {};
\node [left, text width=5cm,fill=blue!20,align=center] at (7cm,0cm){\large Reconstruction methods};
\node [left,text width=5cm,fill=green!20,align=center] at (10cm,-0.8cm){\large Untagged measurement};
\node (img) at (8cm,-2.5cm) {\includegraphics[scale=0.27]{fig/decay_3}};
\node [left,text width=5cm,fill=red!20,align=center] at (10cm,-4.3cm){\small Companion $B$ not reconstructed};
\node [left,text width=5cm,align=center] at (3.7cm,-2.5cm){
\begin{tabular}{l}
We opt for this method $\to$ \\
Neutrino 4-momentum is inferred\\
from missing momentum in event\\
(assuming only 1 neutrino missing)
\end{tabular}
};
\end{tikzpicture}
}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis II -- Particle Reconstruction}
%- particle reconstruction
%- ROE cleanup
%- loose neutrino reconstruction
%- control decay
%- final selection
\vspace{-3mm}
\small
\begin{block}{Part I: Final State Particles (FSP)}
\begin{itemize}
\item Charged particles like $K$, $e$ and $\mu$ are reconstructed from tracks, a quality selection is performed
\item Neutrinos are weakly interacting and escape detection
\end{itemize}
\end{block}
\begin{block}{Part II: FSP Combinations}
\begin{itemize}
\item Combinations of FSP particles $KKe$ and $KK\mu$ represent first $B$ meson candidates with a missing neutrino
\end{itemize}
\end{block}
\begin{block}{Part III: Loose Neutrino Reconstruction}
\begin{itemize}
\item Rest of Event (ROE) are all the tracks (charged particles) and clusters (neutral particles) which were not used in the reconstruction
\item ROE is needed to reconstruct the missing neutrino momentum, where all tracks and clusters from ROE are summed up together
\end{itemize}
\end{block}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis III -- $B$ meson specific variables}
\vspace{-3mm}
\small
$$\Delta E = E_B - E_{CMS}/2,\quad M_{BC} = \sqrt{\left(E_{CMS}/2\right)^2 - \vert \vec{p}_B \vert^2}$$
\begin{center}
\includegraphics[width=0.98\textwidth]{fig/mbc_de_pre}
\end{center}
Signal is scaled up. Correctly reconstructed candidates have $\Delta E \approx 0$ and $M_{BC} \approx m_B$
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis IV -- Control Decay}
\vspace{-3mm}
\small
\begin{block}{}
We define a control decay mode, similar to our signal decay mode.
\begin{itemize}
\item The decay mode is $B^+ \to \bar D {}^0 \ell^+ \nu,\, D^0 \to K^+ K^-$
\item The properties of the control and signal decay are very similar
\item Its purpose is to continuously check the consistency between simulation (Monte Carlo or MC) and measured data
\end{itemize}
\end{block}
\begin{center}
\includegraphics[width=\textwidth, trim={0 6.5cm 0 0},clip]{fig/res_bkg}
\end{center}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis V -- ROE Clean-up}
\vspace{-3mm}
\small
\begin{itemize}
\item Rest of Event (ROE) are all the tracks (charged particles) and clusters (neutral particles) which were not used in the reconstruction
\item ROE is needed to reconstruct the missing neutrino momentum
\end{itemize}
\begin{center}
\includegraphics[width=0.6\textwidth]{fig/recon_5}
\end{center}
\vspace{-2mm}
\begin{block}{}
\begin{itemize}
\item Why? Extra tracks and clusters should not be taken into account when calculating the neutrino 4-momentum
\item How? We apply machine learning in several steps of the ROE clean-up in order to efficiently clean it
\end{itemize}
\end{block}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis VI -- ROE Clean-up Results}
\vspace{-3mm}
\small
\begin{columns}
\column{0.6\textwidth}
\includegraphics[width=\textwidth]{fig/roe_opt}
\column{0.4\textwidth}
\begin{block}{}
\begin{itemize}
\item The procedure \textbf{improves} \textbf{the resolution} of signal distribution
\item It performs \textbf{better} than the standard Belle procedure
\item \textbf{The efficiency} of perfectly reconstructed signal \textbf{increases}
\end{itemize}
\end{block}
\begin{table}[H]
\centering
\begin{tabular}{c|c|c}
& $\mathcal{E}$ & FWHM\\
\toprule
Belle & $28.5~\%$ & $75.0~\%$ \\
ROE & $140.1~\%$ & $35.0~\%$ \\
\bottomrule
\end{tabular}
\end{table}
\end{columns}
{\footnotesize Perfectly reconstructed signal candidates are signal candidates from events, where all tracks and clusters are accounted for.}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis VI -- ROE Clean-up Results}
\vspace{-3mm}
\small
\begin{columns}
\column{0.6\textwidth}
\includegraphics[width=\textwidth]{fig/roe_val}
\column{0.4\textwidth}
\begin{block}{}
\begin{itemize}
\item We validate the ROE clean-up procedure on the \textcolor{magenta}{control mode}
\item ROE clean-up performs well on MC as well as on Daa
\item The clean-up procedure does not introduce differences between MC and Data
\end{itemize}
\end{block}
\end{columns}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis VII -- Background Suppression}
\vspace{-3mm}
\small
In order to further suppress various sources of background, we use \textit{machine learning algorithms}:\\
\vspace{1mm}
These algorithms take multiple properties of candidates as input and produce an output variable, similar to a signal probability\\
\vspace{1mm}
Boosted Decision Trees (BDT) algorithms are commonly used in the field
\only<1>{
\begin{block}{Continuum Suppression}
\begin{itemize}
\item Events of the form $e^+e^- \to q \bar q,$ where $q \in [u, d, s, c]$
\item Energy and momentum distribution of such events differ from $e^+e^- \to B \bar B$ events
\end{itemize}
\end{block}
\begin{block}{$B \bar B$ Suppression}
\begin{itemize}
\item Deeper look into the properties of the signal decay enable separation of signal from other $e^+e^- \to B \bar B$ events
\end{itemize}
\end{block}
}
\only<2>{
\vspace{-2mm}
\begin{center}
\includegraphics[width=0.8\textwidth, trim={0 0 0 8.5cm},clip]{fig/onres_control}
\end{center}
\vspace{-2mm}
Continuum (left) and $B \bar B$ (right) suppression BDT variable. Signal is more likely distributed on the right side of the variables.
}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Analysis VIII -- Final Selection}
\vspace{-3mm}
\small
Sample composition after background suppression:
$$N_{\mathrm{sig}} = 264,\quad \frac{N_{\mathrm{sig}}}{N_{\mathrm{bkg}}} = 1.33\E{-2}$$
\begin{center}
\includegraphics[width=\textwidth]{fig/opt_uBB_si}
\end{center}
\end{frame}
%----------------------------------------------------------------------------------------
\section{Parameter Extraction}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Overview}
\only<1>{\tocforsect{5}{sectionstyle=shaded,subsectionstyle=shaded}}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Parameter Extraction I -- Fit Method}
\vspace{-5mm}
\small
\begin{block}{}
\begin{itemize}
\item Define "templates" which describe distribution shapes (signal, background, $\dots$)
\item For each histogram bin define Poisson probability for it's content w.r.t. the measurement
\item Obtain the combination of template yields which maximise the probability
\end{itemize}
\end{block}
\begin{columns}
\column{0.4\textwidth}
Templates in the signal fit:
\begin{itemize}
\item signal
\item continuum
\item well-defined sources $\to$\\of background
\item other $B \bar B$ background
\end{itemize}
\column{0.6\textwidth}
\begin{itemize}
\tiny
\item control decay,
\item $B \to \bar{D} {}^* \ell^+ \nu,~D^0 \to K^-K^+$,
\item $B \to \bar{D} {}^{(*)} \ell^+ \nu,~D^0 \to K^-\pi^+$,
\item $B \to \bar{D} {}^{(*)} \ell^+ \nu,~D^0 \to K^-K^+\pi^0,~K^-\pi^+\pi^0$,
\item $B \to \bar{D} {}^{(*)} \ell^+ \nu,~D^0 \to K^-\ell^+\nu$,
\item $B^0 \to D^{(*)-} \ell^+ \nu,~D^+ \to K^-K^+\pi^+,~K^-\pi^+\pi^+$,
\item other $B \to \bar D {}^{(*)} \ell^+ \nu$ decays,
\end{itemize}
\end{columns}
\vspace{2mm}
{\color{red}Yields of all templates are floated, except in the well-defined cases, where yields are constrained by world measurements.}
\end{frame}
%----------------------------------------------------------------------------------------
\begin{frame}[t]{Parameter Extraction II -- Control Fit Results}
\vspace{-3mm}
\small
Results of the control decay fit to DATA
\begin{columns}
\column{0.6\textwidth}
\vspace{-2mm}
\begin{center}
\includegraphics[width=\textwidth]{fig/cs_fit_data}
\end{center}
\column{0.4\textwidth}
\begin{block}{}
\begin{itemize}