-
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathDESCRIPTION
108 lines (108 loc) · 3.05 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
Package: mlr3viz
Title: Visualizations for 'mlr3'
Version: 0.10.0.9000
Authors@R: c(
person("Michel", "Lang", , "michellang@gmail.com", role = "aut",
comment = c(ORCID = "0000-0001-9754-0393")),
person("Patrick", "Schratz", , "patrick.schratz@gmail.com", role = "aut",
comment = c(ORCID = "0000-0003-0748-6624")),
person("Raphael", "Sonabend", , "raphael.sonabend.15@ucl.ac.uk", role = "aut",
comment = c(ORCID = "0000-0001-9225-4654")),
person("Marc", "Becker", , "marcbecker@posteo.de", role = c("cre", "aut"),
comment = c(ORCID = "0000-0002-8115-0400")),
person("Jakob", "Richter", , "jakob1richter@gmail.com", role = "aut",
comment = c(ORCID = "0000-0003-4481-5554")),
person("Damir", "Pulatov", , "dpulatov@uwyo.edu", role = "ctb"),
person("John", "Zobolas", , "bblodfon@gmail.com", role = "aut",
comment = c(ORCID = "0000-0002-3609-8674"))
)
Description: Visualization package of the 'mlr3' ecosystem. It features
plots for mlr3 objects such as tasks, learners, predictions, benchmark
results, tuning instances and filters via the 'autoplot()' generic of
'ggplot2'. The package draws plots with the 'viridis' color palette
and applies the minimal theme. Visualizations include barplots,
boxplots, histograms, ROC curves, and Precision-Recall curves.
License: LGPL-3
URL: https://mlr3viz.mlr-org.com, https://github.com/mlr-org/mlr3viz
BugReports: https://github.com/mlr-org/mlr3viz/issues
Depends:
R (>= 3.1.0)
Imports:
checkmate,
data.table,
ggplot2 (>= 3.3.0),
mlr3misc (>= 0.7.0),
scales,
utils,
viridis
Suggests:
bbotk (>= 1.0.0),
cluster,
GGally,
ggdendro,
ggfortify (>= 0.4.11),
ggparty,
glmnet,
knitr,
lgr,
mlr3 (>= 0.6.0),
mlr3cluster,
mlr3filters,
mlr3fselect (>= 1.2.1.9000),
mlr3inferr,
mlr3learners,
mlr3tuning (>= 1.0.0),
paradox,
partykit,
patchwork (>= 1.1.1),
precrec,
ranger,
rpart,
stats,
testthat (>= 3.0.0),
vdiffr (>= 1.0.2),
xgboost,
survminer,
mlr3proba (>= 0.6.3)
Remotes:
mlr-org/mlr3proba,
mlr-org/mlr3fselect
Additional_repositories:
https://mlr-org.r-universe.dev
Config/testthat/edition: 3
Config/testthat/parallel: true
Encoding: UTF-8
NeedsCompilation: no
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.3.2
Collate:
'BenchmarkResult.R'
'Filter.R'
'LearnerClassif.R'
'LearnerClassifCVGlmnet.R'
'LearnerClassifGlmnet.R'
'LearnerClassifRpart.R'
'LearnerClustHierarchical.R'
'LearnerRegr.R'
'LearnerRegrCVGlmnet.R'
'LearnerRegrGlmnet.R'
'LearnerRegrRpart.R'
'LearnerSurvCoxPH.R'
'OptimInstanceBatchSingleCrit.R'
'Prediction.R'
'PredictionClassif.R'
'PredictionClust.R'
'PredictionRegr.R'
'ResampleResult.R'
'Task.R'
'TaskClassif.R'
'TaskClust.R'
'TaskRegr.R'
'TuningInstanceBatchSingleCrit.R'
'EnsembleFSResult.R'
'as_precrec.R'
'bibentries.R'
'helper.R'
'plot_learner_prediction.R'
'reexports.R'
'zzz.R'