diff --git a/book/_quarto.yml b/book/_quarto.yml index 5a2d660eb..d859e40a2 100644 --- a/book/_quarto.yml +++ b/book/_quarto.yml @@ -22,33 +22,9 @@ book: background: "#f8f9fa" chapters: - index.qmd - - chapters/chapter1/introduction_and_overview.qmd - - part: "Fundamentals" - chapters: - - chapters/chapter2/data_and_basic_modeling.qmd - - chapters/chapter3/evaluation_and_benchmarking.qmd - - part: "Tuning and Feature Selection" - chapters: - - chapters/chapter4/hyperparameter_optimization.qmd - - chapters/chapter5/advanced_tuning_methods_and_black_box_optimization.qmd - - chapters/chapter6/feature_selection.qmd - - part: "Pipelines and Preprocessing" - chapters: - - chapters/chapter7/sequential_pipelines.qmd - - chapters/chapter8/non-sequential_pipelines_and_tuning.qmd - - chapters/chapter9/preprocessing.qmd - part: "Advanced Topics" chapters: - - chapters/chapter10/advanced_technical_aspects_of_mlr3.qmd - chapters/chapter11/large-scale_benchmarking.qmd - - chapters/chapter12/model_interpretation.qmd - - chapters/chapter13/beyond_regression_and_classification.qmd - - chapters/chapter14/algorithmic_fairness.qmd - - chapters/references.qmd - appendices: - - chapters/appendices/solutions.qmd # online only - - chapters/appendices/tasks.qmd # online only - - chapters/appendices/overview-tables.qmd # online only bibliography: book.bib diff --git a/book/chapters/chapter11/large-scale_benchmarking.qmd b/book/chapters/chapter11/large-scale_benchmarking.qmd index d2fe3fef9..f1c0b3100 100644 --- a/book/chapters/chapter11/large-scale_benchmarking.qmd +++ b/book/chapters/chapter11/large-scale_benchmarking.qmd @@ -8,7 +8,7 @@ ```{r large_benchmarking-001} #| include: false #| cache: false -lgr::get_logger("mlr3oml")$set_threshold("off") +lgr::get_logger("mlr3oml")$set_threshold("info") library(mlr3batchmark) library(batchtools) library(mlr3oml) @@ -18,6 +18,11 @@ if (!dir.exists(file.path("openml", "manual"))) { options(mlr3oml.cache = file.path("openml", "cache")) ``` +```{r} +getwd() +``` + + In machine learning, it is often difficult to evaluate methods using mathematical analysis alone. Even when formal analyses can be successfully applied, it is often an open question whether real-world datasets satisfy the necessary assumptions for the theorems to hold. Empirical `r index('benchmark experiments')` evaluate the performance of different algorithms on a wide range of datasets.