forked from Abdul-Moeed/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDQN.py
172 lines (138 loc) · 6.05 KB
/
DQN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import fire
import gym
import numpy as np
import random
import tensorflow.keras.layers as layers
import tensorflow.keras.models as models
from baselines.common.atari_wrappers import FrameStack, WarpFrame
class DeepQNetwork:
def __init__(self):
self.env = gym.make('SpaceInvaders-v0')
self.replay_buffer = []
self.replay_buffer_size_thresh = 100000
self.env = WarpFrame(self.env)
self.env = FrameStack(self.env, 4)
self.episodes = 100
self.max_actions_per_episode = 100
self.epsilon = 1
self.min_epsilon = 0.01
self.eps_decay = 0.00025
self.decay_step = 0
self.learning_rate = 0.8
self.discount_factor = 0.99
self.rewards = []
self.test_eps = 50
self.test_rewards = []
self.model = None
self.batch_size = 64
self.model_path = 'models/DQN.hdf5'
def create_model(self):
inputs = layers.Input(shape=(84, 84, 4))
conv1 = layers.Conv2D(32, 8, 2)(inputs)
batch_norm1 = layers.BatchNormalization()(conv1)
relu1 = layers.Activation('relu')(batch_norm1)
conv2 = layers.Conv2D(64, 4, 2)(relu1)
batch_norm2 = layers.BatchNormalization()(conv2)
relu2 = layers.Activation('relu')(batch_norm2)
conv3 = layers.Conv2D(128, 4, 2)(relu2)
batch_norm3 = layers.BatchNormalization()(conv3)
relu3 = layers.Activation('relu')(batch_norm3)
x = layers.Flatten()(relu3)
fc1 = layers.Dense(512)(x)
fc2 = layers.Dense(self.env.action_space.n)(fc1)
model = models.Model(inputs=inputs, outputs=fc2)
model.compile(optimizer='rmsprop', loss='mse')
model.summary()
self.model = model
def save_to_memory(self, experience):
# experience = (observation, action, reward, done, new_observation)
if len(self.replay_buffer) > self.replay_buffer_size_thresh:
del self.replay_buffer[0]
self.replay_buffer.append(experience)
def sample_from_memory(self):
return random.sample(self.replay_buffer,
min(len(self.replay_buffer), self.batch_size))
def fill_empty_memory(self):
observation = self.env.reset()
for _ in range(10000):
new_observation, action, reward, done = self.take_action(observation)
self.save_to_memory((observation, action, reward, done, new_observation))
if done:
new_observation = self.env.reset()
observation = new_observation
def take_action(self, observation):
# take random actiom
if np.random.rand() < self.epsilon:
action = self.env.action_space.sample()
# take best action
else:
action = np.argmax(self.model.predict(np.expand_dims(observation, axis=0)))
# take action
new_observation, reward, done, info = self.env.step(action)
new_observation = np.asarray(list(new_observation))
return new_observation, action, reward, done
def optimize_model(self):
# sample minibatch from memory
minibatch = self.sample_from_memory()
x_batch = []
q_targets = []
# for each experience in minibatch, set q-target
for idx, (state, act, rew, done, next_state) in enumerate(minibatch):
x_batch.append(state)
if done:
next_state_q_value = rew
else:
next_state_q_value = np.max(
self.model.predict(np.expand_dims(np.asarray(list(next_state)), axis=0)))
curr_q_vals = self.model.predict(np.expand_dims(np.asarray(list(state)), axis=0))
curr_q_vals[0][act] = rew + self.discount_factor * next_state_q_value
q_targets.append(curr_q_vals[0])
# train agent on minibatch
self.model.fit(np.asarray(x_batch), np.asarray(q_targets), batch_size=len(minibatch), verbose=0)
def train(self):
# initialize deep-q agent
self.create_model()
# fill empty memory before starting training
self.fill_empty_memory()
for i in range(self.episodes):
print("Episode: ", i)
observation = np.asarray(list(self.env.reset()))
total_reward_per_episode = 0
for a in range(self.max_actions_per_episode):
self.epsilon = self.min_epsilon + (1 - self.min_epsilon) * np.exp(-self.eps_decay * self.decay_step)
self.decay_step += 1
# take step
new_observation, action, reward, done = self.take_action(observation)
# save to experience buffer
self.save_to_memory((observation, action, reward, done, new_observation))
# fit model
self.optimize_model()
# track reward per episode
total_reward_per_episode += reward
# update state
observation = new_observation
if done:
break
self.rewards.append(total_reward_per_episode)
print("Reward: ", total_reward_per_episode)
self.model.save(self.model_path)
self.env.close()
print("Average reward: ", sum(self.rewards) / self.episodes)
def test(self):
# test agent
self.model = models.load_model('models/DQN.hdf5')
for i in range(self.test_eps):
observation = np.asarray(list(self.env.reset()))
total_reward_per_episode = 0
for _ in range(self.max_actions_per_episode):
self.env.render()
action = np.argmax(self.model.predict(np.expand_dims(observation, axis=0)))
new_observation, reward, done, info = self.env.step(action)
total_reward_per_episode += reward
observation = new_observation
if done:
break
self.test_rewards.append(total_reward_per_episode)
print("Average reward for test agent: ", sum(self.test_rewards) / self.test_eps)
if __name__ == "__main__":
fire.Fire(DeepQNetwork)