-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_processing.py
43 lines (33 loc) · 1.05 KB
/
audio_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import pyaudio
import wave
import time
import whisper
import openai
import audioop
import os
openai.api_key = os.environ.get("OPENAI_API_KEY")
def transcribe_audio(file):
device = "cuda" if torch.cuda.is_available() else "cpu"
model = whisper.load_model("base").to(device)
audio = whisper.load_audio(file)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(model, mel, options)
print(result.text)
return result.text
def ask_gpt(prompt, max_tokens=300):
prompt = f"Conversación con un asistente AI:\n{prompt}"
response = openai.Completion.create(
engine="text-davinci-003",
prompt=prompt,
max_tokens=max_tokens,
n=1,
stop=None,
temperature=0.2,
)
print (response.choices[0].text.strip())
return response.choices[0].text.strip()