-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresults[0, 3, 5, 7].tex
46 lines (38 loc) · 2.32 KB
/
results[0, 3, 5, 7].tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
\documentclass[11pt]{article}
\usepackage[left=3cm,right=3cm,top=2cm,bottom=2cm]{geometry}
\usepackage{proof}
\begin{document}
This is a report to paper ``Functional completeness in \textbf{CPL} \textit{via} correspondence analysis'' written by Dorota Leszczy\'{n}ska-Jasion,
Yaroslav Petrukhin, Vasilyi Shangin, Marcin Jukiewicz.
The rules presented here were generated by Marcin Jukiewicz and the report prepared jointly by Marcin Jukiewicz and Dorota Leszczy\'{n}ska-Jasion.
The present file contains all the schemes such that: scheme $(L_1, L_2)$ is present on at least one of the lists 0, 3, 5, 7 and $(L_2, L_1)$ is present on at least one of the lists 0, 3, 5, 7, where these may be two different lists. The lists correspond to 000, 011, 101, 111 (disjunction).
\bigskip
\begin{center}
\begin{tabular}{ccc}
$\infer{B\Rightarrow A}{A\circ B\Rightarrow A}$ && $\infer{A\circ B\Rightarrow A}{B\Rightarrow A}$ \\
&& \\
$\infer{\Rightarrow A, A\circ B}{\Rightarrow B, A\circ B}$ && $\infer{\Rightarrow B, A\circ B}{\Rightarrow A, A\circ B}$ \\
&& \\
$\infer{A\circ B\Rightarrow B}{A\Rightarrow B}$ && $\infer{A\Rightarrow B}{A\circ B\Rightarrow B}$ \\
&& \\
$\infer{A\Rightarrow B, A\circ B}{B\Rightarrow A, A\circ B}$ && $\infer{B\Rightarrow A, A\circ B}{A\Rightarrow B, A\circ B}$ \\
&& \\
$\infer{A, B\Rightarrow A\circ B}{A\circ B\Rightarrow A, B}$ && $\infer{A\circ B\Rightarrow A, B}{A, B\Rightarrow A\circ B}$ \\
&& \\
$\infer{B\Rightarrow A\circ B}{A\Rightarrow A\circ B}$ && $\infer{A\Rightarrow A\circ B}{B\Rightarrow A\circ B}$ \\
&& \\
$\infer{A, B\Rightarrow A\circ B}{A\Rightarrow B, A\circ B}$ && $\infer{A\Rightarrow B, A\circ B}{A, B\Rightarrow A\circ B}$ \\
&& \\
$\infer{A\circ B\Rightarrow A, B}{A\Rightarrow B, A\circ B}$ && $\infer{A\Rightarrow B, A\circ B}{A\circ B\Rightarrow A, B}$ \\
&& \\
$\infer{A, B\Rightarrow A\circ B}{B\Rightarrow A, A\circ B}$ && $\infer{B\Rightarrow A, A\circ B}{A, B\Rightarrow A\circ B}$ \\
&& \\
$\infer{A\circ B\Rightarrow A, B}{B\Rightarrow A, A\circ B}$ && $\infer{B\Rightarrow A, A\circ B}{A\circ B\Rightarrow A, B}$ \\
&& \\
$\infer{\Rightarrow A, B}{\Rightarrow B, A\circ B}$ && $\infer{\Rightarrow B, A\circ B}{\Rightarrow A, B}$ \\
&& \\
$\infer{\Rightarrow A, A\circ B}{\Rightarrow A, B}$ && $\infer{\Rightarrow A, B}{\Rightarrow A, A\circ B}$ \\
&& \\
\end{tabular}
\end{center}
\end{document}