-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPretraitement.py
229 lines (183 loc) · 7.54 KB
/
Pretraitement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import copy
#import time
import cv2
#var toujours présente / constantes
choix_Morphological ={0:"OPEN",1:"CLOSE",2:"CLOSE_OPEN", 3:"OPEN_CLOSE"}
#list_morf = {0:"MORPH_RECT",1:"MORPH_CROSS",2:"Morph_ELLIPSE"}
_list_structurant_element_ = {0:"RECT",1:"CROSS",2:"ELLIPSE"}
_list_choix_ = {2:("CLOSE",cv2.MORPH_CLOSE),3:("OPEN", cv2.MORPH_OPEN),4:("DILATE",cv2.MORPH_DILATE),5:("ERODE", cv2.MORPH_ERODE)}
#var choisit optionnelement
rows = 4
columns= 6
class pretraitement:
def Morphological_eliminating_noise(img,Kernel, Structurant_Element,iteration, choix, Show_Me=False ):
#eliminating noise on external region contours
mask_1 = copy.deepcopy(img)
if Show_Me:
cv2.imshow('=',mask_1)
cv2.waitKey(0)
k = cv2.getStructuringElement(Structurant_Element, (Kernel,Kernel))
mask_1 = cv2.morphologyEx(mask_1,choix, kernel=k, iterations=iteration)
if Show_Me:
cv2.imshow('=', mask_1)
return mask_1
def Threshold_Binarisation(img_Blured):
cet, Thresh = cv2.threshold(img_Blured, 0, 255, cv2.THRESH_BINARY)
return Thresh
#=======================================#
#================Lissage===============:
#=======================================#
def lissage_gaussianBlur(img, Kernel = 7, sigma = 0, iteration = 11, Show_Me=False):
gaussian_blur = copy.deepcopy(img)
for i in range(1, iteration, 2):
gaussian_blur = cv2.GaussianBlur(gaussian_blur, (Kernel, Kernel), sigma)
if Show_Me:
cv2.imshow('=',gaussian_blur)
cv2.waitKey(0)
return gaussian_blur
def lissage_median(img, kernel = 7, iteration = 11, write_me=False, path="", name=""):
median_blur = img.copy()
median_blur_to_write = img.copy()
if write_me:
for i in range(1, iteration, 2):
median_blur = cv2.medianBlur(median_blur, kernel)
median_blur_to_write = cv2.medianBlur(median_blur,kernel)
cv2.putText(median_blur_to_write,"median blur stape k = "+str(i),(int(img.shape[1]/2)),int(img.shape[0]/2),(255,120,0))
cv2.imwrite(path, median_blur)
cv2.waitKey(0)
else:
for i in range(1, iteration, 2):
median_blur = cv2.medianBlur(median_blur, kernel)
return median_blur
#=======================================#
#================Eliminiation du bruit===============:
#===================================Entrée : l'image binaire original et ses dimensions
#=======================================Sortie :nouvelle image et nouvelle image avec edges #
def EliminateNoise(Img, Show_Me = False):
img_B = Img.copy()
_list_structurant_element_ = {0:"RECT",1:"CROSS",2:"ELLIPSE"}
_list_choix_ = {2:("CLOSE",cv2.MORPH_CLOSE),3:("OPEN", cv2.MORPH_OPEN),1:("DILATE",cv2.MORPH_DILATE),0:("ERODE", cv2.MORPH_ERODE)}
#erode :
elt_structurant =cv2.MORPH_CROSS
_Kernel = 3
__choix = cv2.MORPH_ERODE
iteration__ = 3
mm,_ = pretraitement.Morphological_eliminating_noise(img_B,_Kernel ,elt_structurant,iteration__ , __choix)
#open :
elt_structurant = cv2.MORPH_CROSS
_Kernel = 3
__choix = cv2.MORPH_OPEN
iteration__ = 3
mm,_ = pretraitement.Morphological_eliminating_noise(mm,_Kernel ,elt_structurant,iteration__ , __choix)
##dilate :
#_Kernel = 3
#__choix = 4
#iteration__ = 3
#mm,ll = pretraitement.Morphological_eliminating_noise(mm,_Kernel ,elt_structurant,iteration__ , __choix)
# close :
elt_structurant = cv2.MORPH_CROSS
_Kernel = 3
__choix =cv2.MORPH_CLOSE
iteration__ = 3
mm, _ = pretraitement.Morphological_eliminating_noise(mm, _Kernel, elt_structurant, iteration__, __choix)
#median :
_Kernel = 3
iteration__ =3
mm = pretraitement.lissage_median(mm, _Kernel, iteration__)
#gauss :
_Kernel = 3
iteration__ =3
sigma = 0
mm= pretraitement.lissage_gaussianBlur(mm, _Kernel, sigma, iteration__)
#threshold :
thresh = pretraitement. Threshold_Binarisation(mm)
#cv2.imshow('thresh=',thresh)
#cv2.imshow('=',thresh)
#cv2.destroyallwindows()
#cv2.waitKey(0)
return thresh, mm
def EliminateNoise2(org1, Show_Me = False):
#Show_Me = True
iteration__ =11#9#11
org0=org1.copy()
img_B = org0
_Kernel = 3
sigma = 5
_list_structurant_element_ = {0:"RECT",1:"CROSS",2:"ELLIPSE"}
_list_choix_ = {2:("CLOSE",cv2.MORPH_CLOSE),3:("OPEN", cv2.MORPH_OPEN),1:("DILATE",cv2.MORPH_DILATE),0:("ERODE", cv2.MORPH_ERODE)}
#close :
_Kernel = 3
iteration__ = 1#2
elt_structurant = cv2.MORPH_ELLIPSE
__choix = cv2.MORPH_CLOSE
mm= pretraitement.Morphological_eliminating_noise(img_B,_Kernel ,elt_structurant,iteration__ , __choix)
mm = img_B
#erode :
_Kernel = 3
iteration__ = 1#3
elt_structurant = cv2.MORPH_ELLIPSE
__choix = cv2.MORPH_ERODE
mm= pretraitement.Morphological_eliminating_noise(mm,_Kernel ,elt_structurant, iteration__,__choix)
#open :
_Kernel = 3
iteration__ = 1#4#6
elt_structurant = cv2.MORPH_ELLIPSE
__choix = 3
mm = pretraitement.Morphological_eliminating_noise(mm,_Kernel ,elt_structurant, iteration__,__choix)
"""# close :
_Kernel = 3
iteration__ = 3 # 2
elt_structurant = cv2.MORPH_ELLIPSE
__choix = cv2.MORPH_CLOSE
"""
#mm = pretraitement.Morphological_eliminating_noise(mm, _Kernel, elt_structurant, iteration__, __choix)
#median :
_Kernel =3# 5
iteration__ =5
mm = pretraitement.lissage_median(mm, _Kernel, iteration__)
#gauss
_Kernel = 3
iteration__ =5
#5
#sigma =# 5.8#5
mm= pretraitement.lissage_gaussianBlur(mm, _Kernel, sigma, iteration__)
#threshold :
thresh = pretraitement. Threshold_Binarisation(mm.copy())
#cv2.imshow('=', thresh)
#cv2.imshow('=d',org0)
# cv2.destroyallwindows()
#cv2.waitKey(0)
if Show_Me:
#cv2.imshow('thresh=',thresh)
cv2.imshow('=',thresh)
#cv2.destroyallwindows()
cv2.waitKey(0)
cv2.destroyAllWindows()
org = thresh
#cv2.rectangle(org, (0, 0), (org.shape[1] , org.shape[0] ), 0, 3)
return mm,org, org1
def EliminateNoise3(external_region, write_me=False):
# pretreatment:
external_region_copy = external_region.copy()
# 1 = close open median gauss
kernel = (7, 7)
external_region = cv2.dilate(external_region, kernel, iterations=5)
external_region = cv2.morphologyEx(external_region, cv2.MORPH_CLOSE,
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, kernel), 5)
kernel = (3, 3)
iteration_ = 5
ee = cv2.erode(external_region, kernel, iterations=2)
# iteration_ = 1
dilate = ee # cv2.dilate(ee, kernel, iterations=iteration)
kernel = 3
# iteration_ = 3
pretraitement_1 = pretraitement.lissage_median(dilate, kernel, 5)
kernel = (3, 3)
pretraitement_1 = cv2.GaussianBlur(pretraitement_1, kernel,3)
pretraitement_1 = cv2.GaussianBlur(pretraitement_1, kernel, 3)
pretraitement_1 = cv2.GaussianBlur(pretraitement_1, kernel, 3)
pretraitement_1 = cv2.GaussianBlur(pretraitement_1, kernel, 3)
pretraitement_1 = cv2.GaussianBlur(pretraitement_1, kernel, 7)
high_thresh, pretraitement_1 = cv2.threshold(pretraitement_1, 126, 255,
cv2.THRESH_BINARY)
return pretraitement_1