-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcode_from_part_1.jl
165 lines (131 loc) · 3.92 KB
/
code_from_part_1.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""
c::Array{Int} = crp_model(T::Int, α::Float64)
Computes seating assignments `c` for `T` customers,
following a chinese restaurant process with concentration
parameter `α`.
The entry `c[t]` encodes the table assigned to customer `t`.
Table identifiers reflect the order of their allocation, i.e.
the first table is labeled `1`, the second is labeled `2`, and so on.
That means you cannot sit down at table *two* before
someone sat down at table *one* first.
"""
@gen function crp_model(T::Int, α::Float64)
c = Int[] # cluster assignments
n = Int[] # cluster sizes
k = 0 # number of clusters
for t=1:T
pr = [n; α]./(t - 1 + α)
c_t = @trace(categorical(pr), (:c, t))
push!(c,c_t)
if c_t <= k # assign to old cluster
n[c_t] += 1
else # start new cluster
k += 1
push!(n, 1)
end
end;
return c
end;
"""
(c, phi, x) = crp_mixture_model(T::Int,
α::Float64,
F::Union{Distribution,DynamicDSLFunction},
G0::Union{Distribution,DynamicDSLFunction})
Defines a non-parametric mixture model.
Cluster assignments are chosen according to a CRP
with concentration parameter `α`, cluster parameters
are chosen from a base distribution `G0`, and the data
are generated from a family of distributions `F`.
"""
@gen function crp_mixture_model(
T::Int,
α::Float64,
F::Union{Distribution,DynamicDSLFunction},
G0::Union{Distribution,DynamicDSLFunction})
# Cluster assignments
c = @trace(crp_model(T, α), :c)
# Cluster parameters
phi = Dict()
for i in Set(c)
phi_i = @trace(G0(), :phi => (:phi, i))
phi[i] = phi_i
end
# Data points for each cluster
x = []
for t=1:T
x_t = @trace(F(phi[c[t]]), :x => (:x, t))
push!(x, x_t)
end
return (c, phi, x)
end;
"""
tr = relabel_tables(tr::Gen.Trace)
Relabels the tables according their allocation, i.e.
it changes `c` and the `phi` as if the were
constructed by the crp model without changing
the cluster memberships.
"""
function relabel_tables(tr::Gen.Trace)
updates = choicemap()
labels = Dict() # stores pairs `old_label => new_label`
ch = get_choices(tr)
T, = get_args(tr)
k = 1
for t=1:T
i = tr[:c => (:c, t)]
if !haskey(labels, i)
labels[i] = k
set_submap!(updates, (:phi, k), get_submap(ch, (:phi,i)))
k += 1
end
updates[:c => (:c, t)] = labels[i]
end
tr,w, = Gen.update(tr, updates)
return tr
end;
################################################
################################################
################################################
################################################
################################################
################################################
################################################
"""
G0()
Basedistribution over cluster parameters.
"""
@gen function G0()
mean = @trace(normal(0.,2.), :mean)
std = @trace(inv_gamma(100., 99.), :std) # Recall: E(inv_gamma) = b/(a-1)
return [mean; std]
end;
"""
F(phi)
Family of data distributions conditioned
on cluster parameters.
"""
@gen function F(phi)::Float64
mean, std = phi
x = @trace(normal(mean, std), :x)
return x
end;
"""
set_obs!(upd, x)
Adds data constraints given by `x` to choicemap `upd`.
Depends on the trace structure of the data models.
"""
function set_obs!(upd, x)
for t=1:length(x)
upd[:x => (:x, t) => :x] = x[t]
end
end
"""
get_obs(x)
Creates a choicemap with data constraints given by `x`.
Depends on the trace structure of the data models.
"""
function get_obs(x)
upd = choicemap()
set_obs!(upd, x)
return upd
end