diff --git a/GETTING_STARTED.md b/GETTING_STARTED.md
index 363aa1f9..0894d2d4 100644
--- a/GETTING_STARTED.md
+++ b/GETTING_STARTED.md
@@ -5,9 +5,9 @@ This document provides a brief introduction to the usage of built-in command-lin
### Inference Demo with Pre-trained Models
1. Pick a model and its config file from the
- [model zoo](MODEL_ZOO.md),
+ [Model Zoo](benchmark_results.md),
such as, `./configs/yolov7/yolov7.yaml`.
-2. Download the corresponding pre-trained checkpoint from the [model zoo](MODEL_ZOO.md) of each model.
+2. Download the corresponding pre-trained checkpoint from the [Model Zoo](benchmark_results.md) of each model.
3. To run YOLO object detection with the built-in configs, please run:
```
diff --git a/GETTING_STARTED_CN.md b/GETTING_STARTED_CN.md
index 807e5d6e..5daeb397 100644
--- a/GETTING_STARTED_CN.md
+++ b/GETTING_STARTED_CN.md
@@ -4,8 +4,8 @@
### 使用预训练模型进行推理
-1. 从[model zoo](MODEL_ZOO.md)中选择一个模型及其配置文件,例如, `./configs/yolov7/yolov7.yaml`.
-2. 从[model zoo](MODEL_ZOO.md)中下载相应的预训练模型权重文件。
+1. 从[模型仓库](benchmark_results.md)中选择一个模型及其配置文件,例如, `./configs/yolov7/yolov7.yaml`.
+2. 从[模型仓库](benchmark_results.md)中下载相应的预训练模型权重文件。
3. 使用内置配置进行推理,请运行以下命令:
```shell
diff --git a/MODEL_ZOO.md b/MODEL_ZOO.md
deleted file mode 100644
index 4e6cc49a..00000000
--- a/MODEL_ZOO.md
+++ /dev/null
@@ -1,43 +0,0 @@
-# MindYOLO Model Zoo and Baselines
-
-## Detection
-
-| Name | Scale | Context | ImageSize | Dataset | Box mAP (%) | Params | FLOPs | Recipe | Download |
-|--------|:--------------------:|----------|-----------|--------------|-------------|--------|--------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
-| YOLOv8 | N | D910x8-G | 640 | MS COCO 2017 | 37.2 | 3.2M | 8.7G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov8/yolov8n.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-n_500e_mAP372-cc07f5bd.ckpt) |
-| YOLOv8 | S | D910x8-G | 640 | MS COCO 2017 | 44.6 | 11.2M | 28.6G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov8/yolov8s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-s_500e_mAP446-3086f0c9.ckpt) |
-| YOLOv8 | M | D910x8-G | 640 | MS COCO 2017 | 50.5 | 25.9M | 78.9G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov8/yolov8m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-m_500e_mAP505-8ff7a728.ckpt) |
-| YOLOv8 | L | D910x8-G | 640 | MS COCO 2017 | 52.8 | 43.7M | 165.2G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov8/yolov8l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-l_500e_mAP528-6e96d6bb.ckpt) |
-| YOLOv8 | X | D910x8-G | 640 | MS COCO 2017 | 53.7 | 68.2M | 257.8G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov8/yolov8x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-x_500e_mAP537-b958e1c7.ckpt) |
-| YOLOv7 | Tiny | D910x8-G | 640 | MS COCO 2017 | 37.5 | 6.2M | 13.8G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov7/yolov7-tiny.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-d8972c94.ckpt) |
-| YOLOv7 | L | D910x8-G | 640 | MS COCO 2017 | 50.8 | 36.9M | 104.7G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov7/yolov7.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7_300e_mAP508-734ac919.ckpt) |
-| YOLOv7 | X | D910x8-G | 640 | MS COCO 2017 | 52.4 | 71.3M | 189.9G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov7/yolov7-x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-x_300e_mAP524-e2f58741.ckpt) |
-| YOLOv5 | N | D910x8-G | 640 | MS COCO 2017 | 27.3 | 1.9M | 4.5G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov5/yolov5n.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-9b16bd7b.ckpt) |
-| YOLOv5 | S | D910x8-G | 640 | MS COCO 2017 | 37.6 | 7.2M | 16.5G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov5/yolov5s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-860bcf3b.ckpt) |
-| YOLOv5 | M | D910x8-G | 640 | MS COCO 2017 | 44.9 | 21.2M | 49.0G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov5/yolov5m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5m_300e_mAP449-e7bbf695.ckpt) |
-| YOLOv5 | L | D910x8-G | 640 | MS COCO 2017 | 48.5 | 46.5M | 109.1G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov5/yolov5l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5l_300e_mAP485-a28bce73.ckpt) |
-| YOLOv5 | X | D910x8-G | 640 | MS COCO 2017 | 50.5 | 86.7M | 205.7G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov5/yolov5x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5x_300e_mAP505-97d36ddc.ckpt) |
-| YOLOv4 | CSPDarknet53 | D910x8-G | 608 | MS COCO 2017 | 45.4 | 27.6M | 52G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov4/yolov4.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-50172f93.ckpt) |
-| YOLOv4 | CSPDarknet53(silu) | D910x8-G | 608 | MS COCO 2017 | 45.8 | 27.6M | 52G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov4/yolov4-silu.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_silu_320e_map458-bdfc3205.ckpt) |
-| YOLOv3 | Darknet53 | D910x8-G | 640 | MS COCO 2017 | 45.5 | 61.9M | 156.4G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov3/yolov3.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-adfb27af.ckpt) |
-| YOLOX | N | D910x8-G | 416 | MS COCO 2017 | 24.1 | 0.9M | 1.1G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-nano.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-n_300e_map241-ec9815e3.ckpt) |
-| YOLOX | Tiny | D910x8-G | 416 | MS COCO 2017 | 33.3 | 5.1M | 6.5G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-tiny.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-tiny_300e_map333-e5ae3a2e.ckpt) |
-| YOLOX | S | D910x8-G | 640 | MS COCO 2017 | 40.7 | 9.0M | 26.8G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-s_300e_map407-0983e07f.ckpt) |
-| YOLOX | M | D910x8-G | 640 | MS COCO 2017 | 46.7 | 25.3M | 73.8G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-m_300e_map467-1db321ee.ckpt) |
-| YOLOX | L | D910x8-G | 640 | MS COCO 2017 | 49.2 | 54.2M | 155.6G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-l_300e_map492-52a4ab80.ckpt) |
-| YOLOX | X | D910x8-G | 640 | MS COCO 2017 | 51.6 | 99.1M | 281.9G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-x_300e_map516-52216d90.ckpt) |
-| YOLOX | Darknet53 | D910x8-G | 640 | MS COCO 2017 | 47.7 | 63.7M | 185.3G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolox/yolox-darknet53.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-darknet53_300e_map477-b5fcaba9.ckpt) |
-
-## Segmentation
-
-| Name | Scale | Context | ImageSize | Dataset | Box mAP (%) | Mask mAP (%) | Params | FLOPs | Recipe | Download |
-|------------|-------|----------|-----------|--------------|-------------|--------------|--------|--------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
-| YOLOv8-seg | X | D910x8-G | 640 | MS COCO 2017 | 52.5 | 42.9 | 71.8M | 344.1G | [yaml](https://github.com/mindspore-lab/mindyolo/blob/master/configs/yolov8/seg/yolov8x-seg.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-x-seg_300e_mAP_mask_429-b4920557.ckpt) |
-
-## Depoly inference
-
-- See [support list](./deploy/README.md)
-
-## Notes
-- Context: Training context denoted as {device}x{pieces}-{MS mode}, where mindspore mode can be G - graph mode or F - pynative mode with ms function. For example, D910x8-G is for training on 8 pieces of Ascend 910 NPU using graph mode.
-- Box mAP: Accuracy reported on the validation set.
diff --git a/README.md b/README.md
index 1c010b0a..da23fb7c 100644
--- a/README.md
+++ b/README.md
@@ -14,16 +14,20 @@
MindYOLO implements state-of-the-art YOLO series algorithms based on MindSpore.
The following is the corresponding `mindyolo` versions and supported `mindspore` versions.
-| mindyolo | mindspore |
-| :--: | :--: |
-| master | master |
-| 0.4 | 2.3.0 |
-| 0.3 | 2.2.10 |
-| 0.2 | 2.0 |
-| 0.1 | 1.8 |
+| mindyolo | mindspore | tested hardware |
+| :--: | :--: | :--: |
+| master | master | Ascend 910* |
+| 0.4 | 2.3.0 | Ascend 910* |
+| 0.3 | 2.2.10 | Ascend 910* & Ascend 910 |
+| 0.2 | 2.0 | Ascend 910 |
+| 0.1 | 1.8 | Ascend 910 |
+## Benchmark and Model Zoo
+
+See [Benchmark Results](benchmark_results.md).
+
## supported model list
- [ ] YOLOv10 (welcome to contribute)
- [ ] YOLOv9 (welcome to contribute)
@@ -34,7 +38,6 @@ The following is the corresponding `mindyolo` versions and supported `mindspore`
- [x] [YOLOv4](configs/yolov4)
- [x] [YOLOv3](configs/yolov3)
-
## Installation
See [INSTALLATION](docs/en/installation.md) for details.
diff --git a/benchmark_results.md b/benchmark_results.md
new file mode 100644
index 00000000..bb5ddbca
--- /dev/null
+++ b/benchmark_results.md
@@ -0,0 +1,63 @@
+# MindYOLO Benchmark and Baselines
+
+## Detection
+
performance tested on Ascend 910(8p) with graph mode
+
+| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Params | Recipe | Download |
+|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: |
+| YOLOv8 | N | 16 * 8 | 640 | MS COCO 2017 | 37.2 | 3.2M | [yaml](./configs/yolov8/yolov8n.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-n_500e_mAP372-cc07f5bd.ckpt) |
+| YOLOv8 | S | 16 * 8 | 640 | MS COCO 2017 | 44.6 | 11.2M | [yaml](./configs/yolov8/yolov8s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-s_500e_mAP446-3086f0c9.ckpt) |
+| YOLOv8 | M | 16 * 8 | 640 | MS COCO 2017 | 50.5 | 25.9M | [yaml](./configs/yolov8/yolov8m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-m_500e_mAP505-8ff7a728.ckpt) |
+| YOLOv8 | L | 16 * 8 | 640 | MS COCO 2017 | 52.8 | 43.7M | [yaml](./configs/yolov8/yolov8l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-l_500e_mAP528-6e96d6bb.ckpt) |
+| YOLOv8 | X | 16 * 8 | 640 | MS COCO 2017 | 53.7 | 68.2M | [yaml](./configs/yolov8/yolov8x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-x_500e_mAP537-b958e1c7.ckpt) |
+| YOLOv7 | Tiny | 16 * 8 | 640 | MS COCO 2017 | 37.5 | 6.2M | [yaml](./configs/yolov7/yolov7-tiny.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-d8972c94.ckpt) |
+| YOLOv7 | L | 16 * 8 | 640 | MS COCO 2017 | 50.8 | 36.9M | [yaml](./configs/yolov7/yolov7.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7_300e_mAP508-734ac919.ckpt) |
+| YOLOv7 | X | 12 * 8 | 640 | MS COCO 2017 | 52.4 | 71.3M | [yaml](./configs/yolov7/yolov7-x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov7/yolov7-x_300e_mAP524-e2f58741.ckpt) |
+| YOLOv5 | N | 32 * 8 | 640 | MS COCO 2017 | 27.3 | 1.9M | [yaml](./configs/yolov5/yolov5n.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-9b16bd7b.ckpt) |
+| YOLOv5 | S | 32 * 8 | 640 | MS COCO 2017 | 37.6 | 7.2M | [yaml](./configs/yolov5/yolov5s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-860bcf3b.ckpt) |
+| YOLOv5 | M | 32 * 8 | 640 | MS COCO 2017 | 44.9 | 21.2M | [yaml](./configs/yolov5/yolov5m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5m_300e_mAP449-e7bbf695.ckpt) |
+| YOLOv5 | L | 32 * 8 | 640 | MS COCO 2017 | 48.5 | 46.5M | [yaml](./configs/yolov5/yolov5l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5l_300e_mAP485-a28bce73.ckpt) |
+| YOLOv5 | X | 16 * 8 | 640 | MS COCO 2017 | 50.5 | 86.7M | [yaml](./configs/yolov5/yolov5x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov5/yolov5x_300e_mAP505-97d36ddc.ckpt) |
+| YOLOv4 | CSPDarknet53 | 16 * 8 | 608 | MS COCO 2017 | 45.4 | 27.6M | [yaml](./configs/yolov4/yolov4.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-50172f93.ckpt) |
+| YOLOv4 | CSPDarknet53(silu) | 16 * 8 | 608 | MS COCO 2017 | 45.8 | 27.6M | [yaml](./configs/yolov4/yolov4-silu.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_silu_320e_map458-bdfc3205.ckpt) |
+| YOLOv3 | Darknet53 | 16 * 8 | 640 | MS COCO 2017 | 45.5 | 61.9M | [yaml](./configs/yolov3/yolov3.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-adfb27af.ckpt) |
+| YOLOX | N | 8 * 8 | 416 | MS COCO 2017 | 24.1 | 0.9M | [yaml](./configs/yolox/yolox-nano.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-n_300e_map241-ec9815e3.ckpt) |
+| YOLOX | Tiny | 8 * 8 | 416 | MS COCO 2017 | 33.3 | 5.1M | [yaml](./configs/yolox/yolox-tiny.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-tiny_300e_map333-e5ae3a2e.ckpt) |
+| YOLOX | S | 8 * 8 | 640 | MS COCO 2017 | 40.7 | 9.0M | [yaml](./configs/yolox/yolox-s.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-s_300e_map407-0983e07f.ckpt) |
+| YOLOX | M | 8 * 8 | 640 | MS COCO 2017 | 46.7 | 25.3M | [yaml](./configs/yolox/yolox-m.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-m_300e_map467-1db321ee.ckpt) |
+| YOLOX | L | 8 * 8 | 640 | MS COCO 2017 | 49.2 | 54.2M | [yaml](./configs/yolox/yolox-l.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-l_300e_map492-52a4ab80.ckpt) |
+| YOLOX | X | 8 * 8 | 640 | MS COCO 2017 | 51.6 | 99.1M | [yaml](./configs/yolox/yolox-x.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-x_300e_map516-52216d90.ckpt) |
+| YOLOX | Darknet53 | 8 * 8 | 640 | MS COCO 2017 | 47.7 | 63.7M | [yaml](./configs/yolox/yolox-darknet53.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolox/yolox-darknet53_300e_map477-b5fcaba9.ckpt) |
+performance tested on Ascend 910*(8p)
+
+| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | ms/step | Params | Recipe | Download |
+|--------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: | :---: |
+| YOLOv8 | N | 16 * 8 | 640 | MS COCO 2017 | 37.3 | 373.55 | 3.2M | [yaml](./configs/yolov8/yolov8n.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov8/yolov8-n_500e_mAP372-0e737186-910v2.ckpt) |
+| YOLOv8 | S | 16 * 8 | 640 | MS COCO 2017 | 44.7 | 365.53 | 11.2M | [yaml](./configs/yolov8/yolov8s.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov8/yolov8-s_500e_mAP446-fae4983f-910v2.ckpt) |
+| YOLOv7 | Tiny | 16 * 8 | 640 | MS COCO 2017 | 37.5 | 496.21 | 6.2M | [yaml](./configs/yolov7/yolov7-tiny.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov7/yolov7-tiny_300e_mAP375-1d2ddf4b-910v2.ckpt) |
+| YOLOv5 | N | 32 * 8 | 640 | MS COCO 2017 | 27.4 | 736.08 | 1.9M | [yaml](./configs/yolov5/yolov5n.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov5/yolov5n_300e_mAP273-bedf9a93-910v2.ckpt) |
+| YOLOv5 | S | 32 * 8 | 640 | MS COCO 2017 | 37.6 | 787.34 | 7.2M | [yaml](./configs/yolov5/yolov5s.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov5/yolov5s_300e_mAP376-df4a45b6-910v2.ckpt) |
+| YOLOv4 | CSPDarknet53 | 16 * 8 | 608 | MS COCO 2017 | 46.1 | 337.25 | 27.6M | [yaml](./configs/yolov4/yolov4.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov4/yolov4-cspdarknet53_320e_map454-64b8506f-910v2.ckpt) |
+| YOLOv3 | Darknet53 | 16 * 8 | 640 | MS COCO 2017 | 46.6 | 396.60 | 61.9M | [yaml](./configs/yolov3/yolov3.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolov3/yolov3-darknet53_300e_mAP455-81895f09-910v2.ckpt) |
+| YOLOX | S | 8 * 8 | 640 | MS COCO 2017 | 41.0 | 242.15 | 9.0M | [yaml](./configs/yolox/yolox-s.yaml) | [weights](https://download-mindspore.osinfra.cn/toolkits/mindyolo/yolox/yolox-s_300e_map407-cebd0183-910v2.ckpt) |
+performance tested on Ascend 910(8p) with graph mode
+
+| Name | Scale | BatchSize | ImageSize | Dataset | Box mAP (%) | Mask mAP (%) | Params | Recipe | Download |
+|------------| :---: | :---: | :---: |--------------| :---: | :---: | :---: | :---: | :---: |
+| YOLOv8-seg | X | 16 * 8 | 640 | MS COCO 2017 | 52.5 | 42.9 | 71.8M | [yaml](./configs/yolov8/seg/yolov8x-seg.yaml) | [weights](https://download.mindspore.cn/toolkits/mindyolo/yolov8/yolov8-x-seg_300e_mAP_mask_429-b4920557.ckpt) |
+