-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTensorflowUtils.py
613 lines (516 loc) · 18.9 KB
/
TensorflowUtils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
# Hide the warning messages about CPU/GPU
import sys
import scipy.io
import zipfile
import tarfile
from six.moves import urllib
import scipy.misc as misc
import numpy as np
import tensorflow as tf
import os
from functools import reduce
from PIL import Image
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# colour map for LIP dataset
lip_label_colours = [(0, 0, 0), # 0=Background
(128, 0, 0), # 1=Hat
(255, 0, 0), # 2=Hair
(0, 85, 0), # 3=Glove
(170, 0, 51), # 4=Sunglasses
(255, 85, 0), # 5=UpperClothes
(0, 0, 85), # 6=Dress
(0, 119, 221), # 7=Coat
(85, 85, 0), # 8=Socks
(0, 85, 85), # 9=Pants
(85, 51, 0), # 10=Jumpsuits
(52, 86, 128), # 11=Scarf
(0, 128, 0), # 12=Skirt
(0, 0, 255), # 13=Face
(51, 170, 221), # 14=LeftArm
(0, 255, 255), # 15=RightArm
(85, 255, 170), # 16=LeftLeg
(170, 255, 85), # 17=RightLeg
(255, 255, 0), # 18=LeftShoe
(255, 170, 0) # 19=RightShoe
]
# colour map for 10k dataset
dressup10k_label_colors = [(0, 0, 0), # 'black', # "background", # 0
(160, 82, 45), # 'sienna', #"hat", # 1
(128, 128, 128), # 'gray', #"hair", # 2
(0, 0, 128), # 'navy', #"sunglass", # 3
(255, 0, 0), # 'red', #"upper-clothes", # 4
(255, 215, 0), # 'gold', #"skirt", # 5
(0, 0, 255), # 'blue', #"pants", # 6
(46, 139, 87), # 'seagreen', #"dress", # 7
(153, 50, 204), # 'darkorchid', #"belt", # 8
(178, 34, 34), # 'firebrick', # "left-shoe", # 9
# 'darksalmon', #"right-shoe", # 10
(233, 150, 122),
(255, 228, 181), # 'moccasin', #"face", # 11
(0, 100, 0), # 'darkgreen', #"left-leg", # 12
(65, 105, 225), # 'royalblue', #"right-leg", # 13
(127, 255, 0), # 'chartreuse', #"left-arm",# 14
# 'paleturquoise', #"right-arm", # 15
(175, 238, 238),
(0, 139, 139), # 'darkcyan', # "bag", # 16
(0, 191, 255), # 'deepskyblue' #"scarf" # 17
]
# Utils used with tensorflow implemetation
DEFAULT_PADDING = 'SAME'
def decode_labels(mask, num_classes=18, num_images=1):
"""Decode batch of segmentation masks.
Args:
mask: result of inference after taking argmax.
num_images: number of images to decode from the batch.
num_classes: number of classes
Returns:
A batch with num_images RGB images of the same size as the input.
"""
label_colours = []
if num_classes == 20:
label_colours = lip_label_colours
elif num_classes == 18:
# label_colours = fashion_label_colours
label_colours = dressup10k_label_colors
mask = np.expand_dims(mask, axis=0)
mask = np.expand_dims(mask, axis=3)
n, h, w, c = mask.shape
assert (n >= num_images), 'Batch size %d should be greater or equal than number of images to save %d.' % (
n, num_images)
outputs = np.zeros((num_images, h, w, 3), dtype=np.uint8)
for i in range(num_images):
img = Image.new('RGB', (len(mask[i, 0]), len(mask[i])))
pixels = img.load()
for j_, j in enumerate(mask[i, :, :, 0]):
for k_, k in enumerate(j):
if k < num_classes:
pixels[k_, j_] = label_colours[k]
outputs[i] = np.array(img)
return outputs[0]
"""
load data from Matlab mat file
"""
def get_model_data(dir_path, model_url='http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat'):
# 1. dowload if needed
maybe_download_and_extract(dir_path, model_url)
filename = model_url.split("/")[-1]
filepath = os.path.join(dir_path, filename)
if not os.path.exists(filepath):
raise IOError("VGG Model not found!")
# 2. load data from mat file
data = scipy.io.loadmat(filepath)
return data
"""
Download and etract file if needed
dirpath: filename
url_name: network location to download
is_xxx : type of file (could check by extenstion of file)
"""
def maybe_download_and_extract(
dir_path,
url_name,
is_tarfile=False,
is_zipfile=False):
if not os.path.exists(dir_path):
os.makedirs(dir_path)
filename = url_name.split('/')[-1]
filepath = os.path.join(dir_path, filename)
# download and etxract it if not yet downloaded
if not os.path.exists(filepath):
# 1. download from network
def _progress(count, block_size, total_size):
sys.stdout.write(
'\r>> Downloading %s %.1f%%' %
(filename,
float(
count *
block_size) /
float(total_size) *
100.0))
sys.stdout.flush()
filepath, _ = urllib.request.urlretrieve(
url_name, filepath, reporthook=_progress)
print()
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
# 2. extract if needed
if is_tarfile:
tarfile.open(filepath, 'r:gz').extractall(dir_path)
elif is_zipfile:
with zipfile.ZipFile(filepath) as zf:
zip_dir = zf.namelist()[0]
zf.extractall(dir_path)
"""
Save image
"""
def save_image(image, save_dir, name, mean=None):
"""
Save image by unprocessing if mean given else just save
:param mean:
:param image:
:param save_dir:
:param name:
:return:
"""
if mean:
image = unprocess_image(image, mean)
misc.imsave(os.path.join(save_dir, name + ".png"), image)
def save_visualized_image(image_value, save_dir, image_name, n_classes=18, mean=None):
"""
Save image by unprocessing if mean given else just save
:param n_classes:
:param mean:
:param image_value:
:param save_dir:
:param image_name:
:return:
"""
if mean:
image_value = unprocess_image(image_value, mean)
msk = decode_labels(image_value, num_classes=n_classes)
parsing_im = Image.fromarray(msk)
parsing_im.save('{}/{}_vis.png'.format(save_dir, image_name))
# cv2.imwrite('{}/{}.png'.format(save_dir, name), parsing_[0, :, :, 0])
# misc.imsave(os.path.join(save_dir, name + ".png"), image)
def get_variable(weights, name):
init = tf.constant_initializer(weights, dtype=tf.float32)
var = tf.get_variable(name=name, initializer=init, shape=weights.shape)
return var
def weight_variable(shape, stddev=0.02, name=None):
# print(shape)
initial = tf.truncated_normal(shape, stddev=stddev)
if name is None:
return tf.Variable(initial)
else:
return tf.get_variable(name, initializer=initial)
def bias_variable(shape, name=None):
initial = tf.constant(0.0, shape=shape)
if name is None:
return tf.Variable(initial)
else:
return tf.get_variable(name, initializer=initial)
def get_tensor_size(tensor):
from operator import mul
return reduce(mul, (d.value for d in tensor.get_shape()), 1)
def conv2d_basic(x, W, bias):
conv = tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME")
return tf.nn.bias_add(conv, bias)
def conv2d_strided(x, W, b):
conv = tf.nn.conv2d(x, W, strides=[1, 2, 2, 1], padding="SAME")
return tf.nn.bias_add(conv, b)
def atrous_conv(input,
k_h,
k_w,
c_o,
dilation,
name,
relu=True,
padding=DEFAULT_PADDING,
group=1,
biased=True,
is_training=False):
# Get the number of channels in the input
c_i = input.get_shape()[-1]
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
# Convolution for a given input and kernel
def convolve(i, k):
return tf.nn.atrous_conv2d(
i, k, dilation, padding=padding)
with tf.variable_scope(name) as scope:
kernel = make_var(
'weights', shape=[k_h, k_w, int(c_i) / group, c_o])
if group == 1:
# This is the common-case. Convolve the input without any further complications.
output = convolve(input, kernel)
else:
# Split the input into groups and then convolve each of them independently
input_groups = tf.split(3, group, input)
kernel_groups = tf.split(3, group, kernel)
output_groups = [convolve(i, k) for i, k in zip(
input_groups, kernel_groups)]
# Concatenate the groups
output = tf.concat(3, output_groups)
# Add the biases
if biased:
biases = make_var('biases', [c_o], is_training)
output = tf.nn.bias_add(output, biases)
if relu:
# ReLU non-linearity
output = tf.nn.relu(output, name=scope.name)
return output
def make_var(name, shape, is_training=False):
'''Creates a new TensorFlow variable.'''
return tf.get_variable(name, shape, trainable=is_training)
def _upsample_filters(filters, rate):
"""Upsamples the filters by a factor of rate along the spatial dimensions.
Args:
filters: [h, w, in_depth, out_depth]. Original filters.
rate: An int, specifying the upsampling rate.
Returns:
filters_up: [h_up, w_up, in_depth, out_depth]. Upsampled filters with
h_up = h + (h - 1) * (rate - 1)
w_up = w + (w - 1) * (rate - 1)
containing (rate - 1) zeros between consecutive filter values along
the filters' spatial dimensions.
"""
if rate == 1:
return filters
# [h, w, in_depth, out_depth] -> [in_depth, out_depth, h, w]
filters_up = np.transpose(filters, [2, 3, 0, 1])
ker = np.zeros([rate, rate], dtype=np.float32)
ker[0, 0] = 1
filters_up = np.kron(filters_up, ker)[:, :, :-(rate - 1), :-(rate - 1)]
# [in_depth, out_depth, h_up, w_up] -> [h_up, w_up, in_depth, out_depth]
filters_up = np.transpose(filters_up, [2, 3, 0, 1])
return filters_up
def conv2d_transpose_strided(x, W, b, output_shape=None, stride=2):
# print x.get_shape()
# print W.get_shape()
if output_shape is None:
output_shape = x.get_shape().as_list()
output_shape[1] *= 2
output_shape[2] *= 2
output_shape[3] = W.get_shape().as_list()[2]
# print output_shape
conv = tf.nn.conv2d_transpose(x, W, output_shape, strides=[
1, stride, stride, 1], padding="SAME")
return tf.nn.bias_add(conv, b)
def leaky_relu(x, alpha=0.0, name=""):
return tf.maximum(alpha * x, x, name)
def max_pool_2x2(x):
return tf.nn.max_pool(
x, ksize=[
1, 2, 2, 1], strides=[
1, 2, 2, 1], padding="SAME")
def avg_pool_2x2(x):
return tf.nn.avg_pool(
x, ksize=[
1, 2, 2, 1], strides=[
1, 2, 2, 1], padding="SAME")
def local_response_norm(x):
return tf.nn.lrn(x, depth_radius=5, bias=2, alpha=1e-4, beta=0.75)
def batch_norm(x, n_out, phase_train, scope='bn', decay=0.9, eps=1e-5):
"""
Code taken from http://stackoverflow.com/a/34634291/2267819
"""
with tf.variable_scope(scope):
beta = tf.get_variable(
name='beta',
shape=[n_out],
initializer=tf.constant_initializer(0.0),
trainable=True)
gamma = tf.get_variable(
name='gamma',
shape=[n_out],
initializer=tf.random_normal_initializer(
1.0,
0.02),
trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(
phase_train, mean_var_with_update, lambda: (
ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
def process_image(image, mean_pixel):
return image - mean_pixel
def unprocess_image(image, mean_pixel):
return image + mean_pixel
def bottleneck_unit(
x,
out_chan1,
out_chan2,
down_stride=False,
up_stride=False,
name=None):
"""
Modified implementation from github ry?!
"""
def conv_transpose(tensor, out_channel, shape, strides, name=None):
out_shape = tensor.get_shape().as_list()
in_channel = out_shape[-1]
kernel = weight_variable(
[shape, shape, out_channel, in_channel], name=name)
shape[-1] = out_channel
return tf.nn.conv2d_transpose(
x,
kernel,
output_shape=out_shape,
strides=[
1,
strides,
strides,
1],
padding='SAME',
name='conv_transpose')
def conv(tensor, out_chans, shape, strides, name=None):
in_channel = tensor.get_shape().as_list()[-1]
kernel = weight_variable(
[shape, shape, in_channel, out_chans], name=name)
return tf.nn.conv2d(
x,
kernel,
strides=[
1,
strides,
strides,
1],
padding='SAME',
name='conv')
def bn(tensor, name=None):
"""
:param tensor: 4D tensor input
:param name: name of the operation
:return: local response normalized tensor - not using batch normalization :(
"""
return tf.nn.lrn(
tensor,
depth_radius=5,
bias=2,
alpha=1e-4,
beta=0.75,
name=name)
in_chans = x.get_shape().as_list()[3]
if down_stride or up_stride:
first_stride = 2
else:
first_stride = 1
with tf.variable_scope('res%s' % name):
if in_chans == out_chan2:
b1 = x
else:
with tf.variable_scope('branch1'):
if up_stride:
b1 = conv_transpose(
x,
out_chans=out_chan2,
shape=1,
strides=first_stride,
name='res%s_branch1' %
name)
else:
b1 = conv(
x,
out_chans=out_chan2,
shape=1,
strides=first_stride,
name='res%s_branch1' %
name)
b1 = bn(b1, 'bn%s_branch1' % name, 'scale%s_branch1' % name)
with tf.variable_scope('branch2a'):
if up_stride:
b2 = conv_transpose(
x,
out_chans=out_chan1,
shape=1,
strides=first_stride,
name='res%s_branch2a' %
name)
else:
b2 = conv(
x,
out_chans=out_chan1,
shape=1,
strides=first_stride,
name='res%s_branch2a' %
name)
b2 = bn(b2, 'bn%s_branch2a' % name, 'scale%s_branch2a' % name)
b2 = tf.nn.relu(b2, name='relu')
with tf.variable_scope('branch2b'):
b2 = conv(
b2,
out_chans=out_chan1,
shape=3,
strides=1,
name='res%s_branch2b' %
name)
b2 = bn(b2, 'bn%s_branch2b' % name, 'scale%s_branch2b' % name)
b2 = tf.nn.relu(b2, name='relu')
with tf.variable_scope('branch2c'):
b2 = conv(
b2,
out_chans=out_chan2,
shape=1,
strides=1,
name='res%s_branch2c' %
name)
b2 = bn(b2, 'bn%s_branch2c' % name, 'scale%s_branch2c' % name)
x = b1 + b2
return tf.nn.relu(x, name='relu')
def add_to_regularization_and_summary(var):
if var is not None:
tf.summary.histogram(var.op.name, var)
tf.add_to_collection("reg_loss", tf.nn.l2_loss(var))
def add_activation_summary(var):
if var is not None:
tf.summary.histogram(var.op.name + "/activation", var)
tf.summary.scalar(var.op.name + "/sparsity", tf.nn.zero_fraction(var))
def add_gradient_summary(grad, var):
if grad is not None:
tf.summary.histogram(var.op.name + "/gradient", grad)
def conv(
inputs,
filters,
kernel_size=[
3,
3],
activation=tf.nn.relu,
l2_reg_scale=None,
batchnorm_istraining=None):
if l2_reg_scale is None:
regularizer = None
else:
regularizer = tf.contrib.layers.l2_regularizer(scale=l2_reg_scale)
conved = tf.layers.conv2d(
inputs=inputs,
filters=filters,
kernel_size=kernel_size,
padding="same",
activation=activation,
kernel_regularizer=regularizer
)
if batchnorm_istraining is not None:
conved = bn(conved, batchnorm_istraining)
return conved
def bn(inputs, is_training):
normalized = tf.layers.batch_normalization(
inputs=inputs,
axis=-1,
momentum=0.9,
epsilon=0.001,
center=True,
scale=True,
training=is_training,
)
return normalized
def pool(inputs):
pooled = tf.layers.max_pooling2d(
inputs=inputs, pool_size=[
2, 2], strides=2)
return pooled
def dropout(inputs, prob):
dropout_applied = tf.nn.dropout(
x=inputs, keep_prob=prob)
return dropout_applied
def conv_transpose(inputs, filters, l2_reg_scale=None):
if l2_reg_scale is None:
regularizer = None
else:
regularizer = tf.contrib.layers.l2_regularizer(scale=l2_reg_scale)
conved = tf.layers.conv2d_transpose(
inputs=inputs,
filters=filters,
strides=[2, 2],
kernel_size=[2, 2],
padding='same',
activation=tf.nn.relu,
kernel_regularizer=regularizer
)
return conved