22
22
from sklearn .utils .validation import check_is_fitted
23
23
24
24
import lightgbm as lgb
25
+ from lightgbm .basic import LGBMDeprecationWarning
25
26
from lightgbm .compat import (
26
27
DASK_INSTALLED ,
27
28
DATATABLE_INSTALLED ,
31
32
pd_DataFrame ,
32
33
pd_Series ,
33
34
)
34
- from lightgbm .basic import LGBMDeprecationWarning
35
35
36
36
from .utils import (
37
37
assert_silent ,
@@ -2049,9 +2049,7 @@ def test_classifier_fit_detects_classes_every_time():
2049
2049
def test_eval_set_deprecation ():
2050
2050
"""Test use of eval_set raises deprecation warning."""
2051
2051
X , y = make_synthetic_regression (n_samples = 10 )
2052
- X_train , X_test , y_train , y_test = train_test_split (
2053
- X , y , test_size = 0.5 , random_state = 42
2054
- )
2052
+ X_train , X_test , y_train , y_test = train_test_split (X , y , test_size = 0.5 , random_state = 42 )
2055
2053
gbm = lgb .LGBMRegressor ()
2056
2054
msg = "The argument 'eval_set' is deprecated.*"
2057
2055
with pytest .warns (LGBMDeprecationWarning , match = msg ):
@@ -2061,10 +2059,8 @@ def test_eval_set_deprecation():
2061
2059
def test_eval_X_eval_y_eval_set_equivalence ():
2062
2060
"""Test that eval_X and eval_y are equivalent to eval_set."""
2063
2061
X , y = make_synthetic_regression ()
2064
- X_train , X_test , y_train , y_test = train_test_split (
2065
- X , y , test_size = 0.25 , random_state = 42
2066
- )
2067
- cbs = [lgb .early_stopping (2 )]
2062
+ X_train , X_test , y_train , y_test = train_test_split (X , y , test_size = 0.25 , random_state = 42 )
2063
+ cbs = [lgb .early_stopping (2 )]
2068
2064
gbm1 = lgb .LGBMRegressor ()
2069
2065
gbm1 .fit (X_train , y_train , eval_set = (X_test , y_test ), callbacks = cbs )
2070
2066
gbm2 = lgb .LGBMRegressor ()
@@ -2073,8 +2069,8 @@ def test_eval_X_eval_y_eval_set_equivalence():
2073
2069
2074
2070
# 2 evaluation sets
2075
2071
n = X_test .shape [0 ]
2076
- X_test1 , X_test2 = X_test [:n // 2 ], X_test [n // 2 :]
2077
- y_test1 , y_test2 = y_test [:n // 2 ], y_test [n // 2 :]
2072
+ X_test1 , X_test2 = X_test [: n // 2 ], X_test [n // 2 :]
2073
+ y_test1 , y_test2 = y_test [: n // 2 ], y_test [n // 2 :]
2078
2074
gbm1 = lgb .LGBMRegressor ()
2079
2075
gbm1 .fit (X_train , y_train , eval_set = [(X_test1 , y_test1 ), (X_test2 , y_test2 )], callbacks = cbs )
2080
2076
gbm2 = lgb .LGBMRegressor ()
0 commit comments