-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
280 lines (209 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import sys
import torch
from tqdm import tqdm
from os.path import exists
from os import makedirs
from data_loaders import get_data_loaders
from dummyWith import dummyWith
from kl_scheduler import KLScheduler
from model_from_config import get_archfile_from_checkpoint, get_model, get_training_params
from model.utils import device
import torchvision
from torch.utils.tensorboard import SummaryWriter
import torch.utils.checkpoint as checkpoint
torch.backends.cudnn.benchmark = True
def train():
makedirs("runs", exist_ok=True)
makedirs("saved_weights", exist_ok=True)
model_code_name = "logistic_mixture10latent"
model_code_name = sys.argv[1]
checkpoint_file = "saved_weights/" + model_code_name + ".checkpoint"
config_file = get_archfile_from_checkpoint(checkpoint_file)
if config_file is None:
config_file = "model_configs/" + model_code_name + ".yaml"
model = get_model(config_file)
learning_rate = 1e-2
weight_decay = 3e-4
regularization_constant = 5e-2 # prev wa 1e-2 #prev was 5e-2
kl_constant = 1 # prev was 2.5 #prev was 1
warmup_epochs = 30
epochs = 100
learning_rate_min = 1e-5
batch_size = 40 # prev was 20 # prev was 32
write_reconstruction = True
save_samples_during_training = False
# images_per_checkpoint = 4378 * 16 * 1000 # idem
# images_per_checkpoint += (-images_per_checkpoint) % batch_size
images_per_checkpoint = None
epochs_per_checkpoint = 2
training_parameters = get_training_params(config_file, checkpoint_file)
learning_rate = training_parameters.get("learning_rate")
regularization_constant = training_parameters.get("regularization_constant", )
kl_constant = training_parameters.get("kl_constant")
warmup_epochs = training_parameters.get("warmup_epochs")
epochs = training_parameters.get("epochs")
batch_size = training_parameters.get("batch_size")
write_reconstruction = training_parameters.get("write_reconstruction")
images_per_checkpoint = training_parameters.get("images_per_checkpoint")
epochs_per_checkpoint = training_parameters.get("epochs_per_checkpoint")
gradient_clipping = training_parameters.get("gradient_clipping")
half_precision = training_parameters.get("half_precision")
use_tensor_checkpoints = training_parameters.get("use_tensor_checkpoints")
write_loss_every = 320 * 3 * 3 * 2
write_loss_every += (-write_loss_every) % batch_size # to make sure the mod works
write_images_every = 4375 * 16 * 2 # idem
write_images_every += (-write_images_every) % batch_size
precision_opener = torch.cuda.amp.autocast if half_precision else dummyWith
model.set_use_tensor_checkpoints(use_tensor_checkpoints)
data_loader_train, data_loader_test = get_data_loaders(batch_size, model.input_dimension)
optimizer = torch.optim.Adamax(
model.parameters(),
learning_rate,
weight_decay=weight_decay,
eps=1e-3)
optimizer_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
epochs - warmup_epochs - 1,
eta_min=learning_rate_min)
# torch.nn.utils.remove_weight_norm(model.mixer.encoder_mixer[0].model[1])
seen_images = 0
writer = None
initial_epoch = 0
initial_seen_images = 0
scaler = torch.cuda.amp.GradScaler()
if exists(checkpoint_file):
save = torch.load(checkpoint_file)
initial_epoch = save["epoch"]
model = model.to("cuda:0")
model.load_state_dict(save["state_dict"], strict=False)
optimizer.load_state_dict(save["optimizer"])
optimizer_scheduler.load_state_dict(save["optimizer_scheduler"])
seen_images = save["seen_images"]
initial_seen_images = seen_images
writer = SummaryWriter(log_dir=save["log_dir"])
del save
print("Loaded checkpoint after " + str(initial_epoch) + " epochs")
else:
writer = SummaryWriter(log_dir="runs/" + model_code_name)
model = model.to("cuda:0")
kl_scheduler = KLScheduler(
kl_warm_steps=warmup_epochs,
model=model,
current_step=initial_epoch)
last_loss = 0 # only used to check for nans before checkpoints
last_reg_loss = 0
reg_loss_threshold = None
for epoch in tqdm(range(initial_epoch, epochs), initial=initial_epoch, total=epochs, desc="epoch"):
for images, _ in tqdm(data_loader_train, leave=False, desc="batch"):
images = images.to(device)
optimizer.zero_grad()
with precision_opener():
x_distribution, kl_loss = model(images)
log_p = x_distribution.log_p(images)
# we sum the independent log_ps for each entry to get the log_p of the whole image
log_p = torch.sum(log_p, dim=[1, 2, 3])
kl_loss_balanced = kl_scheduler.warm_up_coeff() * kl_scheduler.balance(kl_loss)
loss = -log_p + kl_constant * kl_loss_balanced
loss = torch.mean(loss)
if regularization_constant != 0:
regularization_loss = model.regularization_loss()
loss += regularization_constant * regularization_loss
else:
regularization_loss = 0
# we need to put it inside the autocast because checkpointing+autocast breaks otherwise
if half_precision and use_tensor_checkpoints:
scaler.scale(loss).backward()
if half_precision and not use_tensor_checkpoints:
scaler.scale(loss).backward()
elif not half_precision:
loss.backward()
if gradient_clipping is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), gradient_clipping)
if half_precision:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
seen_images += batch_size
last_loss = loss.item()
last_reg_loss = regularization_loss.item()
if (write_loss_every is not None) and (seen_images - initial_seen_images) % write_loss_every == 0:
if torch.isnan(loss).any():
raise ValueError('Found NaN during training')
writer.add_scalar("loss/iter", loss.item(), seen_images)
writer.add_scalar("rec_loss/iter", -torch.mean(log_p).item(), seen_images)
writer.add_scalar("kl_loss/iter", torch.mean(kl_loss_balanced).item(), seen_images)
if regularization_constant != 0:
writer.add_scalar("reg_loss/iter", regularization_loss.item(), seen_images)
kl_by_split = torch.mean(torch.stack(kl_loss, dim=0), dim=1)
for i in range(kl_by_split.shape[0]):
writer.add_scalar("kl_loss_" + str(i) + "/iter", kl_by_split[i].item(), seen_images)
if write_reconstruction and (write_images_every is not None) and (seen_images - initial_seen_images) % write_images_every == 0:
with torch.no_grad():
# model = model.eval()
x = torch.clamp(x_distribution.sample(), 0, 1.)
img = torchvision.utils.make_grid(x)
writer.add_image("reconstructed image", img, global_step=seen_images)
# model = model.train()
if (images_per_checkpoint is not None) and (seen_images - initial_seen_images) % images_per_checkpoint == 0:
if torch.isnan(loss).any():
raise ValueError('Found NaN during training')
create_checkpoint(epoch,
epochs,
model,
optimizer,
optimizer_scheduler,
seen_images,
checkpoint_file,
writer,
config_file)
if epoch > warmup_epochs:
optimizer_scheduler.step()
if epoch % epochs_per_checkpoint == 0:
if last_loss != last_loss:
raise ValueError('Found NaN during training')
if reg_loss_threshold is not None and last_reg_loss > reg_loss_threshold:
raise ValueError('Regularization loss spiked during training')
img = None
with torch.no_grad():
img = model.sample(2)
img_grid = torchvision.utils.make_grid(img)
writer.add_image("generated image", img_grid, global_step=seen_images)
create_checkpoint(epoch + 1,
epochs,
model,
optimizer,
optimizer_scheduler,
seen_images,
checkpoint_file,
writer,
config_file)
if save_samples_during_training:
with torch.no_grad():
for p in [0.2,0.4,0.6]:
img = model.sample(9,t=p)
img_grid = torchvision.utils.make_grid(img, nrow=3, padding=0)
torchvision.utils.save_image(img_grid,"local/samples/trained_"+ str(p) +"_" + str(epoch) +".png")
kl_scheduler.step()
writer.flush()
writer.close()
torch.save(
{"state_dict": model.state_dict(),
"model_arch": config_file,
},
"saved_weights/final_result_" + model_code_name + ".model")
def create_checkpoint(epoch, epochs, model, optimizer, optimizer_scheduler, seen_images, checkpoint_file, writer,
config_file):
torch.save(
{"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
"optimizer_scheduler": optimizer_scheduler.state_dict(),
"seen_images": seen_images,
"log_dir": writer.log_dir,
"total_epochs": epochs,
"model_arch": config_file,
},
checkpoint_file)
if __name__ == "__main__":
train()