-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcherry.py
61 lines (48 loc) · 1.99 KB
/
cherry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
from model_from_config import get_archfile_from_checkpoint, get_model, load_state_from_file
from matplotlib import pyplot as plt
import sys
import torchvision
weights_file = sys.argv[1]
config_file = get_archfile_from_checkpoint(weights_file)
if config_file is None:
raise ValueError("config not found")
model = get_model(config_file)
load_state_from_file(model, weights_file)
model = model.to("cuda:0")
def cherry_pick(winners=8):
global model
with torch.no_grad():
# readjusting batchnorm
t1 = float(sys.argv[2])
t = t1
n1 = 3
n2 = 3
n = n1 * n2
iterations = 20 if len(sys.argv) < 4 else int(sys.argv[3])
for _ in range(iterations):
model.sample(n, t=t)
model = model.eval()
selected_images = []
while len(selected_images) < winners:
tensor_images = model.sample(n, t=t, final_distribution_sampling="mean").detach().cpu()
img_grid = torchvision.utils.make_grid(tensor_images, nrow=n1, padding=0)
plt.imshow(img_grid.permute(1, 2, 0))
plt.axis('off')
plt.tight_layout()
plt.show()
selected = int(input("selected "))
if selected > 0 and selected <= n1 * n2:
selected_images.append(tensor_images[selected - 1])
img_grid = torchvision.utils.make_grid(selected_images, nrow=3, padding=0)
plt.imshow(img_grid.permute(1, 2, 0))
plt.axis('off')
plt.show()
selected = input("selected ").split(" ")
selected_images = [selected_images[int(i) - 1] for i in selected]
img_grid = torchvision.utils.make_grid(selected_images, padding=0, nrow=3)
# torchvision.utils.save_image(img_grid,"../blog/mypage/images/nvae/pepe.png")
save_name = config_file.split("/")[-1].split(".")[0]
save_name = "images/cherry_" + str(t1) + "_" + save_name + ".png"
torchvision.utils.save_image(img_grid, save_name)
cherry_pick(winners=9)