-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
66 lines (49 loc) · 2.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import time
from six.moves import cPickle
import tensorflow as tf
import logging
from model import Model
from config import Config
from batcher import Batcher
from utils import setup_logger
def train(params):
data_loader = Batcher(params)
params.vocab_size = data_loader.vocab_size
if not os.path.isdir(params.save_dir):
os.makedirs(params.save_dir)
with open(os.path.join(params.save_dir, 'config.pkl'), 'wb') as f:
cPickle.dump(params, f)
with open(os.path.join(params.save_dir, 'chars_vocab.pkl'), 'wb') as f:
cPickle.dump((data_loader.chars, data_loader.vocab), f)
model = Model(params)
with tf.Session() as sess:
summaries = tf.summary.merge_all()
writer = tf.summary.FileWriter(os.path.join(params.log_dir, time.strftime("%Y-%m-%d-%H-%M-%S")))
writer.add_graph(sess.graph)
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables(), max_to_keep=50)
for e in range(params.num_epochs):
sess.run(tf.assign(model.lr, params.learning_rate * (0.97 ** e)))
data_loader.reset_batch_pointer()
state = sess.run(model.initial_state)
for b in range(data_loader.num_batches):
start = time.time()
x, y = data_loader.next_batch()
feed = {model.input_data: x, model.targets: y}
for i, (c, h) in enumerate(model.initial_state):
feed[c] = state[i].c
feed[h] = state[i].h
train_loss, state, _ = sess.run([model.cost, model.final_state, model.train_op], feed)
summ, train_loss, state, _ = sess.run([summaries, model.cost, model.final_state, model.train_op], feed)
writer.add_summary(summ, e * data_loader.num_batches + b)
end = time.time()
logging.info("Epoch #{e} / Batch #{b} -- Loss {train_loss:.3f} "
"Time {time_diff:.3f}".format(e=e, b=b, train_loss=train_loss, time_diff=end - start))
if e % params.save_every == 0 or e == params.num_epochs - 1:
checkpoint_path = os.path.join(params.save_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=e)
if __name__ == '__main__':
setup_logger()
parameters = Config()
train(parameters)