-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkNearestNeighbor.py
54 lines (42 loc) · 1.42 KB
/
kNearestNeighbor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import csv
import math
import pandas as pd
import numpy as np
global test_data, train_data
def load_test_data():
global test_data
test_data = []
with open('mnist_test.csv', 'r') as csvfile:
csvreader = csv.reader(csvfile)
for row in csvreader:
test_data.append(row)
def load_train_data():
global train_data
train_data = []
with open('mnist_train.csv', 'r') as csvfile:
csvreader = csv.reader(csvfile)
for row in csvreader:
train_data.append(row)
def get_distance_matrix_of_test_to_train(test_record,k):
pass
distance_vector = []
train_data.pop(0)
for train_instance in train_data:
distance_vector.append((get_euclidean_distance(train_instance, test_record), train_instance[0])) # sort alert
distance_vector.sort()
return distance_vector[0:k]
def get_euclidean_distance(first_record, second_record):
partial_distance = []
final_distance = 0
for col_index in range(len(first_record)):
if col_index != 0:
partial_distance.append(int(first_record[col_index]) - int(second_record[col_index]))
for distance in partial_distance:
final_distance += distance * distance
return math.sqrt(final_distance)
if __name__ == '__main__':
global test_data, train_data
load_train_data()
load_test_data()
candidates=get_distance_matrix_of_test_to_train(test_data[2],5)
print(candidates)