-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
149 lines (103 loc) · 4.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import pickle
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from data_loader import set_transform, get_loader
from models import Model
import pandas as pd
from torch.utils.tensorboard import SummaryWriter
from config import *
# Load the character and map
data = pd.read_csv("./data/labels.csv",index_col=False)
ids_to_char = {i : char for i,char in enumerate(data["chars"])}
print(f"Vocab size: {len(ids_to_char)}")
def train():
# for watching in tensorboard
tb = SummaryWriter()
# load data
transform= set_transform()
train_loader = get_loader(train_corpus,batch_size=8, transform=transform)
valid_loader = get_loader(valid_corpus,batch_size=8, transform=transform)
## Define Model and print
model = Model(vocab)
print(model)
batch = next(iter(valid_loader))
# Adding Tensorboard
grid = torchvision.utils.make_grid(batch[0])
tb.add_image('images', grid, 0)
tb.add_graph(model,batch[0])
# Defining Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)
best_train_loss, best_valid_loss = 100000,100000
train_loss, valid_loss = [],[]
not_improved = 0
show_after_iter = 10
# Checking cuda is available or not
gpu_available = torch.cuda.is_available()
if gpu_available:
#print("Found GPU. Model Shifting to GPU")
model.cuda()
print("*"*30 + " Training Start "+ "*"*30 )
for e in range(1, epoch):
## Training Start ##
model.train()
for i,(image,classes) in enumerate(train_loader):
if gpu_available:
image = image.cuda()
classes = classes.cuda()
output = model(image)
#_,pred = torch.max(output.data,1)
loss = criterion(output,classes)
# backprop
loss.backward()
optimizer.step()
# loss move to cpu
loss = loss.cpu().detach().numpy()
train_loss.append(loss)
if i % show_after_iter == 0:
avg_loss = sum(train_loss)/len(train_loss)
print(f"Epoch: ({e}/{epoch}) Loss: {loss} Avg Loss: {avg_loss} Accuracy: {100-loss} Avg Acc: {100-avg_loss}")
del image, loss, classes
avg_train_loss = sum(train_loss)/len(train_loss)
# Adding value in tensorboard
tb.add_scalar("Training_Loss", avg_train_loss, e)
tb.add_scalar("Training_Accuracy", 100-avg_train_loss, e)
## Validation Start ##
model.eval()
for i,(image,classes) in enumerate(valid_loader):
if gpu_available:
image = image.cuda()
classes = classes.cuda()
output = model(image)
loss = criterion(output,classes)
# loss move to cpu
loss = loss.cpu().detach().numpy()
valid_loss.append(loss)
#print(f"Loss: {loss}")
avg_valid_loss = sum(valid_loss)/len(valid_loss)
# save if model loss is improved
if avg_valid_loss<best_valid_loss:
best_train_loss = avg_valid_loss
model_save = save_path+"/best_model.th"
torch.save(model.state_dict(),model_save)
not_improved = 0
else:
not_improved +=1
if not_improved>=6:
break
print(f"\n\t Epoch: {e} Training Loss: {avg_train_loss} Training Accuracy: {100-avg_train_loss}")
print(f"\t Epoch: {e} Validation Loss: {avg_valid_loss} Validation Accuracy: {100-avg_valid_loss} \n")
# Adding value in tensorboard
tb.add_scalar("Validation_Loss", avg_valid_loss, e)
tb.add_scalar("Validation_Accuracy", 100-avg_valid_loss, e)
# Saving training and validation losses so tha further graph can be generated
save_loss = {"train":train_loss, "valid":valid_loss}
with open(save_path+"/losses.pickle","wb") as files:
pickle.dump(save_loss,files)
tb.close()
# Start Training
train()