-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_training.py
31 lines (25 loc) · 1.04 KB
/
model_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Dropout, Flatten, Dense
def create_cnn_model(input_shape, num_classes):
"""
Creates a CNN model for ECG signal classification.
Parameters:
input_shape (tuple): The shape of the input data, excluding the batch size.
For example, (140, 1) for 140 time steps with a single feature per step.
num_classes (int): The number of unique classes in the target labels.
Returns:
model: A compiled TensorFlow Sequential model.
"""
model = Sequential([
Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=input_shape),
MaxPooling1D(pool_size=2),
Dropout(0.5),
Flatten(),
Dense(100, activation='relu'),
Dense(num_classes, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Summary of the CNN model
model.summary()
return model