-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
117 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
__author__ = 'mcychen' | ||
|
||
import numpy as np | ||
import astropy.io.fits as fits | ||
from spectral_cube import SpectralCube | ||
|
||
import multi_v_fit as mvf | ||
|
||
# a place to calculate AIC values | ||
|
||
#======================================================================================================================= | ||
|
||
def fits_comp_AICc(cubepath, modpath1, modpath2, aiccpath, likelihoodpath = None): | ||
# a wrapper around fits_comp_AICc() to work with fits files | ||
|
||
cube = SpectralCube.read(cubepath) | ||
mod1, hdr1 = fits.getdata(modpath1, header = True) | ||
mod2, hdr2 = fits.getdata(modpath2, header = True) | ||
|
||
aicc1, aicc2 = get_comp_AICc(cube, mod1, mod2, p1 = 4, p2 = 8) | ||
|
||
hdr_new = cube.wcs.celestial.to_header() | ||
hdr_new['PLANE1'] = "AICc values for the 1 component fit model" | ||
hdr_new['PLANE2'] = "AICc values for the 2 component fit model" | ||
|
||
aicccube = fits.PrimaryHDU(data=np.array([aicc1, aicc2]), header=hdr_new) | ||
aicccube.writeto(aiccpath, overwrite=True) | ||
|
||
if likelihoodpath is not None: | ||
likelyhood = (aicc1 - aicc2) / 2.0 | ||
fits.writeto(likelihoodpath, likelyhood, cube.wcs.celestial.to_header(), overwrite=True) | ||
|
||
|
||
def fits_comp_chisq(cubepath, modpath1, modpath2, savepath, reduced = True): | ||
cube = SpectralCube.read(cubepath) | ||
mod1, hdr1 = fits.getdata(modpath1, header = True) | ||
mod2, hdr2 = fits.getdata(modpath2, header = True) | ||
|
||
hdr_new = cube.wcs.celestial.to_header() | ||
hdr_new['PLANE1'] = "reduced chi-squared values for the 1 component fit model" | ||
hdr_new['PLANE2'] = "reduced chi-squared values for the 2 component fit model" | ||
|
||
mask1 = mod1 > 0 | ||
mask2 = mod2 > 0 | ||
mask = np.logical_or(mask1, mask2) | ||
|
||
# expand of 20 is same as that used to calculate aic value | ||
chi1 = mvf.get_chisq(cube, mod1, expand=20, reduced = reduced, usemask = True, mask = mask) | ||
chi2 = mvf.get_chisq(cube, mod2, expand=20, reduced = reduced, usemask = True, mask = mask) | ||
|
||
chicube = fits.PrimaryHDU(data=np.array([chi1, chi2]), header=cube.wcs.celestial.to_header()) | ||
chicube.writeto(savepath, overwrite=True) | ||
|
||
|
||
def get_comp_AICc(cube, model1, model2, p1, p2): | ||
''' | ||
Acquire AICc values over the same samples, where BOTH of the models have none-zero values | ||
:param cube: <SpectralCube> | ||
The data cube | ||
:param model1: <numpy array> | ||
The 1st model cube | ||
:param model2: <numpy array> | ||
The 2nd model cube | ||
:param p1: | ||
Number of parameters associated with model 1 | ||
:param p2: | ||
Number of parameters associated with model 2 | ||
:return: | ||
''' | ||
|
||
mask1 = model1 > 0 | ||
mask2 = model2 > 0 | ||
mask = np.logical_or(mask1, mask2) | ||
|
||
chi1, N1 = mvf.get_chisq(cube, model1, expand=20, reduced = False, usemask = True, mask = mask) | ||
chi2, N2 = mvf.get_chisq(cube, model2, expand=20, reduced = False, usemask = True, mask = mask) | ||
|
||
# I need a way to double check that N1 and N2 are the same (just in case) | ||
aicc1 = AICc(chi1, p1, N1) | ||
aicc2 = AICc(chi2, p2, N1) | ||
|
||
return aicc1, aicc2 | ||
|
||
|
||
def AIC(chisq, p): | ||
''' | ||
Calculate the Akaike information criterion based on the provided chi-squared values | ||
:param chisq: | ||
Chi-squared values | ||
:param p: | ||
Number of parameters | ||
:return: | ||
''' | ||
return chisq + 2*p | ||
|
||
|
||
def AICc(chisq, p, N): | ||
''' | ||
Calculate the corrected Akaike information criterion based on the provided chi-squared values | ||
corrected AIC (AICc) approaches that of the AIC value when chisq >> p^2 | ||
:param chisq: | ||
Chi-squared values | ||
:param p: | ||
Number of parameters | ||
:param N: | ||
:return: | ||
''' | ||
top = 2*p*(p+1) | ||
bottom = N - p - 1 | ||
return AIC(chisq, p) + top/bottom | ||
|
||
|
||
def likelihood(aiccA, aiccB): | ||
# return the log likelihood of A relative to B | ||
return -1.0*(aiccA - aiccB) / 2.0 | ||
|
||
|