forked from xianggebenben/GraphSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
93 lines (74 loc) · 3.05 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from GraphSL.GNN.SLVAE.main import SLVAE
from GraphSL.GNN.IVGD.main import IVGD
from GraphSL.GNN.GCNSI.main import GCNSI
from GraphSL.Prescribed import LPSI, NetSleuth, OJC
from GraphSL.utils import load_dataset, diffusion_generation, split_dataset,download_dataset
import os
curr_dir = os.getcwd()
# download datasets
download_dataset(curr_dir)
# load datasets ('karate', 'dolphins', 'jazz', 'netscience', 'cora_ml', 'power_grid')
data_name = 'karate'
graph = load_dataset(data_name, data_dir=curr_dir)
# generate diffusion
dataset = diffusion_generation(graph=graph, infect_prob=0.3, diff_type='IC', sim_num=100, seed_ratio=0.2)
# split into training and test sets
adj, train_dataset, test_dataset = split_dataset(dataset)
# LPSI
print("LPSI:")
lpsi = LPSI()
# train LPSI
alpha, thres, auc, f1, pred = lpsi.train(adj, train_dataset)
print(f"train auc: {auc:.3f}, train f1: {f1:.3f}")
# test LPSI
metric = lpsi.test(adj, test_dataset, alpha, thres)
print(f"test acc: {metric.acc:.3f}, test pr: {metric.pr:.3f}, test re: {metric.re:.3f}, test f1: {metric.f1:.3f}, test auc: {metric.auc:.3f}")
# NetSleuth
print("NetSleuth:")
netSleuth = NetSleuth()
# train NetSleuth
k, auc, f1 = netSleuth.train(adj, train_dataset)
print(f"train auc: {auc:.3f}, train f1: {f1:.3f}")
# test NetSleuth
metric = netSleuth.test(adj, test_dataset, k)
print(f"test acc: {metric.acc:.3f}, test pr: {metric.pr:.3f}, test re: {metric.re:.3f}, test f1: {metric.f1:.3f}, test auc: {metric.auc:.3f}")
# OJC
print("OJC:")
ojc = OJC()
# train OJC
Y, auc, f1 = ojc.train(adj, train_dataset)
print(f"train auc: {auc:.3f}, train f1: {f1:.3f}")
# test OJC
metric = ojc.test(adj, test_dataset, Y)
print(f"test acc: {metric.acc:.3f}, test pr: {metric.pr:.3f}, test re: {metric.re:.3f}, test f1: {metric.f1:.3f}, test auc: {metric.auc:.3f}")
# GCNSI
print("GCNSI:")
gcnsi = GCNSI()
# train GCNSI
gcnsi_model, thres, auc, f1, pred = gcnsi.train(adj, train_dataset)
print(f"train auc: {auc:.3f}, train f1: {f1:.3f}")
# test GCNSI
metric = gcnsi.test(adj, test_dataset, gcnsi_model, thres)
print(f"test acc: {metric.acc:.3f}, test pr: {metric.pr:.3f}, test re: {metric.re:.3f}, test f1: {metric.f1:.3f}, test auc: {metric.auc:.3f}")
# IVGD
print("IVGD:")
ivgd = IVGD()
# train IVGD diffusion
diffusion_model = ivgd.train_diffusion(adj, train_dataset)
# train IVGD
ivgd_model, thres, auc, f1, pred = ivgd.train(
adj, train_dataset, diffusion_model)
print(f"train auc: {auc:.3f}, train f1: {f1:.3f}")
# test IVGD
metric = ivgd.test(test_dataset, diffusion_model, ivgd_model, thres)
print(f"test acc: {metric.acc:.3f}, test pr: {metric.pr:.3f}, test re: {metric.re:.3f}, test f1: {metric.f1:.3f}, test auc: {metric.auc:.3f}")
# SLVAE
print("SLVAE:")
slave = SLVAE()
# train SLVAE
slvae_model, seed_vae_train, thres, auc, f1, pred = slave.train(
adj, train_dataset)
print(f"train auc: {auc:.3f}, train f1: {f1:.3f}")
# test SLVAE
metric = slave.infer(test_dataset, slvae_model, seed_vae_train, thres)
print(f"test acc: {metric.acc:.3f}, test pr: {metric.pr:.3f}, test re: {metric.re:.3f}, test f1: {metric.f1:.3f}, test auc: {metric.auc:.3f}")