forked from letianzj/QuantResearch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhist_downloader.py
286 lines (260 loc) · 12.1 KB
/
hist_downloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import argparse
import signal
import time
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import pandas_datareader.data as web
import yfinance as yf
import pickle
from yahoo_fin import stock_info
from dateutil.parser import parse
from urllib.request import urlopen, Request
from bs4 import BeautifulSoup
class TimeoutError(Exception):
def __init__(self, value = "Timed Out"):
self.value = value
def __str__(self):
return repr(self.value)
# https://stackoverflow.com/questions/35490555/python-timeout-decorator
def timeout(seconds_before_timeout):
def decorate(f):
def handler(signum, frame):
raise TimeoutError()
def new_f(*args, **kwargs):
old = signal.signal(signal.SIGALRM, handler)
old_time_left = signal.alarm(seconds_before_timeout)
if 0 < old_time_left < seconds_before_timeout: # never lengthen existing timer
signal.alarm(old_time_left)
start_time = time.time()
try:
result = f(*args, **kwargs)
finally:
if old_time_left > 0: # deduct f's run time from the saved timer
old_time_left -= time.time() - start_time
signal.signal(signal.SIGALRM, old)
signal.alarm(old_time_left)
return result
new_f.func_name = f.func_name
return new_f
return decorate
def is_date(string, fuzzy=False):
"""
Return whether the string can be interpreted as a date.
:param string: str, string to check for date
:param fuzzy: bool, ignore unknown tokens in string if True
"""
try:
parse(string, fuzzy=fuzzy)
return True
except ValueError:
return False
def save(df, fn):
df = df[['Open', 'High', 'Low', 'Close', 'Adj Close', 'Volume']]
df.to_csv(fn)
def run(args):
current_path = os.path.dirname(os.path.abspath(__file__))
hist_path = os.path.join(current_path, '..\data')
end_date = datetime.today()
#start_date = end_date + timedelta(days=-5 * 365)
start_date = datetime(2006, 1, 1)
if args.sym:
symbols = args.sym.split('+')
if 'grp_all' in symbols:
print('Downloading stock group all .............')
df_stocks = pd.read_csv(os.path.join(hist_path, 'all_stocks.csv'), header=None)
df_stocks = df_stocks.iloc[4080:]
for idx, r in df_stocks.iterrows():
s = r.iloc[0]
try:
data = yf.download(s, start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{s}.csv'))
print(f'{s} is downloaded')
time.sleep(3)
except Exception as e:
print(f'{s} failed. {str(e)}')
elif 'grp_index' in symbols:
print('Downloading stock group index .............')
s_dict = {'^GSPC': 'SPX', '^DJI': 'DJI', '^NDX': 'NDX', '^RUT': 'RUT', 'VIX': 'VIX'}
for k, v in s_dict.items():
try:
data = web.DataReader(name=k, data_source='yahoo', start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{v}.csv'))
print(f'{v} is downloaded')
time.sleep(3)
except Exception as e:
print(f'{v} failed. {str(e)}')
elif 'grp_dow' in symbols:
print('Downloading stock group dow30 .............')
df_stocks = pd.read_csv(os.path.join(hist_path, 'dow30.csv'), header=None)
for idx, row in df_stocks.iterrows():
try:
data = web.DataReader(name=row[0], data_source='yahoo', start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{row[0]}.csv'))
except Exception as e:
print(f'{row[0]} failed. {str(e)}')
elif 'grp_sector' in symbols:
print('Downloading stock group sector .............')
df = pd.read_csv(os.path.join(hist_path, 'sectoretf.csv'), header=None)
for idx, row in df.iterrows():
try:
data = web.DataReader(name=row[0], data_source='yahoo', start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{row[0]}.csv'))
except Exception as e:
print(f'{row[0]} failed. {str(e)}')
print('Sector ETF downloaded')
elif 'grp_country' in symbols:
print('Country ETF downloading .............')
df = pd.read_csv(os.path.join(hist_path, 'countryetf.csv'), header=None)
for idx, row in df.iterrows():
try:
data = web.DataReader(name=row[0], data_source='yahoo', start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{row[0]}.csv'))
except Exception as e:
print(f'{row[0]} failed. {str(e)}')
print('Country ETF downloaded')
elif 'grp_taa' in symbols:
print('Mebane Faber TAA downloading .............')
symbols = ['SPY', 'EFA', 'TIP', 'AGG', 'VNQ', 'GLD', 'GSG'] # sp, em, bond, real estate, gold
for sym in symbols:
try:
data = web.DataReader(name=sym, data_source='yahoo', start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{sym}.csv'))
except Exception as e:
print(f'{sym} failed. {str(e)}')
print('Mebane Faber TAA downloaded')
else:
for sym in symbols:
try:
data = web.DataReader(name=sym, data_source='yahoo', start=start_date, end=end_date)
save(data, os.path.join(hist_path, f'{sym}.csv'))
except Exception as e:
print(f'{sym} failed. {str(e)}')
print(f'{args.sym} downloaded')
if args.corp:
df_stocks = pd.read_csv(os.path.join(hist_path, 'all_stocks.csv'), header=None)
df_general_info = pd.DataFrame()
for idx, r in df_stocks.iterrows():
try:
s = r.iloc[0]
ticker = yf.Ticker(s)
s_interested = {k: v for k, v in ticker.info.items() if k in ['sector', 'industry', 'fullTimeEmployees', 'city', 'state', 'country', 'exchange', 'shortName', 'longName']}
df_s = pd.DataFrame.from_dict(s_interested, orient='index', columns=[s])
df_s = df_s.T
df_general_info = pd.concat([df_general_info, df_s], axis=0)
print(f'{s} corp info downloaded')
except Exception as e:
print(f'{s} corp info download failed, {str(e)}')
time.sleep(3)
df_general_info.to_csv(os.path.join(hist_path, 'corporate_info.csv'))
if args.fundamental:
call_dict = {'balance_sheet': stock_info.get_balance_sheet,
'cash_flow': stock_info.get_cash_flow,
'income_statement': stock_info.get_income_statement,
'stats_valuation': stock_info.get_stats_valuation,
}
print('Downloading fundamentals .............')
outfile = os.path.join(hist_path, 'all_stocks.pkl')
dict_all_stocks = dict()
if os.path.isfile(outfile):
with open(outfile, 'rb') as f:
dict_all_stocks = pickle.load(f)
df_stocks = pd.read_csv(os.path.join(hist_path, 'all_stocks.csv'), header=None)
field = args.fundamental
func_call = call_dict[field]
for idx, r in df_stocks.iterrows():
s = r.iloc[0]
if s not in dict_all_stocks.keys():
dict_all_stocks[s] = dict()
if field in dict_all_stocks[s].keys():
df_old = dict_all_stocks[s][field]
else:
df_old = pd.DataFrame()
if not isinstance(df_old, pd.DataFrame):
df_old = pd.DataFrame()
try:
df_new = func_call(s)
df_new.set_index(df_new.columns[0], inplace=True)
df_new.index.name = 'Breakdown'
cols = [c for c in df_new.columns if is_date(c)]
df_new = df_new[cols]
# combine_first is convenient
df_new = df_new.combine_first(df_old)
dict_all_stocks[s][field] = df_new
print(f'{s} {field} is downloaded, having {df_new.shape} records')
time.sleep(3)
except Exception as e:
print(f'{s} {field} failed; {str(e)}')
with open(outfile, 'wb') as f:
pickle.dump(dict_all_stocks, f, pickle.HIGHEST_PROTOCOL)
print(f'Fundamentals {field} downloaded')
# This is adatped from https://towardsdatascience.com/sentiment-analysis-of-stocks-from-financial-news-using-python-82ebdcefb638
if args.sentiment:
print('sentiment downloading .............')
finwiz_url = 'https://finviz.com/quote.ashx?t='
outfile = os.path.join(hist_path, 'all_stocks.pkl')
dict_all_stocks = dict()
if os.path.isfile(outfile):
with open(outfile, 'rb') as f:
dict_all_stocks = pickle.load(f)
df_stocks = pd.read_csv(os.path.join(hist_path, 'intraday_stocks.csv'), header=None)
field = 'sentiment'
for idx, r in df_stocks.iterrows():
s = r.iloc[0]
if s not in dict_all_stocks.keys():
dict_all_stocks[s] = dict()
if field in dict_all_stocks[s].keys():
list_old = dict_all_stocks[s][field]
else:
list_old = []
if not isinstance(list_old, list):
list_old = []
try:
url = finwiz_url + s
req = Request(url=url, headers={'user-agent': 'my-app/0.0.1'})
response = urlopen(req)
# Read the contents of the file into 'html'
html = BeautifulSoup(response)
# Find 'news-table' in the Soup and load it into 'news_table'
news_table = html.find(id='news-table')
parsed_news = []
# Iterate through all tr tags in 'news_table'
insert_idx = 0
for x in news_table.findAll('tr'):
# read the text from each tr tag into text
# get text from a only
text = x.a.get_text()
# splite text in the td tag into a list
date_scrape = x.td.text.split()
# if the length of 'date_scrape' is 1, load 'time' as the only element
if len(date_scrape) == 1:
tm = date_scrape[0]
# else load 'date' as the 1st element and 'time' as the second
else:
dt = date_scrape[0]
tm = date_scrape[1]
if [s, dt, tm, text] not in list_old:
print(f'insert {s} {dt} {tm} at {insert_idx}')
list_old.insert(insert_idx, [s, dt, tm, text])
insert_idx += 1
else:
print(f'skip {s} {dt} {tm}')
dict_all_stocks[s][field] = list_old
print(f'{s} {field} is downloaded')
time.sleep(3)
except Exception as e:
print(f'{s} {field} failed; {str(e)}')
with open(outfile, 'wb') as f:
pickle.dump(dict_all_stocks, f, pickle.HIGHEST_PROTOCOL)
print('sentiment downloaded')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Historical Downloader')
parser.add_argument('--sym', help='AAPL+AMZN or grp_all, grp_dow, grp_sector, grp_country, grp_taa')
parser.add_argument('--corp', action='store_true', help='corporate info')
parser.add_argument('--fundamental', help='balance_sheet cash_flow income_statement stats_valuation')
parser.add_argument('--sentiment', action='store_true')
args = parser.parse_args()
run(args)