-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15-imp.hs
330 lines (275 loc) · 9.95 KB
/
15-imp.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
{-# LANGUAGE GADTs #-}
import Parsing2
import qualified Data.Map as M
import Text.Read (readMaybe)
import System.Environment (getArgs)
import System.IO
type Var = String
type Prog = [Stmt]
data Type where
TyInt :: Type
TyBool :: Type
deriving (Show, Eq)
data Stmt where
Decl :: Type -> Var -> Expr -> Stmt -- <type> <var>
Assign :: Var -> Expr -> Stmt -- <var> ':=' <expr>
Block :: Prog -> Stmt -- '{' <prog> '}'
If :: Expr -> Stmt -> Stmt -> Stmt -- 'if' <expr> 'then' <stmt> 'else' <stmt>
Repeat :: Expr -> Stmt -> Stmt -- 'repeat' <expr> <stmt>
While :: Expr -> Stmt -> Stmt -- 'while' <expr> <stmt>
Input :: Var -> Stmt -- 'input' <var>
Output :: Expr -> Stmt -- 'output' <expr>
deriving Show
data Expr where
EInt :: Integer -> Expr -- <int>
EBool :: Bool -> Expr -- 'False' | 'True'
EVar :: Var -> Expr -- <var>
EUn :: UOp -> Expr -> Expr -- <uop> <expr>
EBin :: BOp -> Expr -> Expr -> Expr -- <expr> <bop> <expr>
deriving Show
data UOp = Neg | Not
deriving (Show, Eq)
data BOp = Add | Sub | Mul | Div | And | Or | Equals | Less
deriving (Show, Eq)
lexer :: TokenParser u
lexer = makeTokenParser $
emptyDef
{ reservedNames = [ "True", "False", "if", "then", "else", "begin", "end"
, "repeat", "while", "input", "output", "int", "bool" ]
, reservedOpNames = [ ":=", "==", "<", "+", "-", "*", "!", "&&", "||" ]
}
parens :: Parser a -> Parser a
parens = getParens lexer
reserved, reservedOp :: String -> Parser ()
reserved = getReserved lexer
reservedOp = getReservedOp lexer
symbol :: String -> Parser String
symbol = getSymbol lexer
ident :: Parser String
ident = getIdentifier lexer
integer :: Parser Integer
integer = getInteger lexer
whiteSpace :: Parser ()
whiteSpace = getWhiteSpace lexer
parseAtom :: Parser Expr
parseAtom
= EInt <$> integer
<|> EBool True <$ reserved "True"
<|> EBool False <$ reserved "False"
<|> EVar <$> ident
<|> parens parseExpr
parseExpr :: Parser Expr
parseExpr = buildExpressionParser table parseAtom
where
table = [ [ unary "!" (EUn Not) ]
, [ unary "-" (EUn Neg) ]
, [ binary "*" (EBin Mul) AssocLeft
, binary "/" (EBin Div) AssocLeft ]
, [ binary "+" (EBin Add) AssocLeft
, binary "-" (EBin Sub) AssocLeft
]
, [ binary "==" (EBin Equals) AssocNone
, binary "<" (EBin Less) AssocNone
]
, [ binary "&&" (EBin And) AssocRight ]
, [ binary "||" (EBin Or) AssocRight ]
]
unary name fun = Prefix (fun <$ reservedOp name)
binary name fun assoc = Infix (fun <$ reservedOp name) assoc
parseProg :: Parser Prog
parseProg = parseStmt `sepBy` (reservedOp ";")
parseStmt :: Parser Stmt
parseStmt =
parseBlock
<|> If <$> (reserved "if" *> parseExpr)
<*> (reserved "then" *> parseStmt)
<*> (reserved "else" *> parseStmt)
<|> Repeat <$> (reserved "repeat" *> parseExpr) <*> parseBlock
<|> While <$> (reserved "while" *> parseExpr) <*> parseBlock
<|> Input <$> (reserved "input" *> ident)
<|> Output <$> (reserved "output" *> parseExpr)
<|> Assign <$> ident <*> (reservedOp ":=" *> parseExpr)
<|> Decl <$> parseType <*> ident <*> (reservedOp ":=" *> parseExpr)
parseType :: Parser Type
parseType = (TyInt <$ reserved "int") <|> (TyBool <$ reserved "bool")
parseBlock :: Parser Stmt
parseBlock = Block <$> (symbol "{" *> parseProg <* symbol "}")
impParser :: Parser Prog
impParser = whiteSpace *> parseProg <* eof
data TypeError where
DuplicateVar :: Var -> TypeError
UnboundVar :: Var -> TypeError
Mismatch :: Expr -> Type -> Type -> TypeError
InputBool :: Var -> TypeError
deriving Show
type Ctx = M.Map Var Type
infer :: Ctx -> Expr -> Either TypeError Type
infer _ (EInt _) = Right TyInt
infer _ (EBool _) = Right TyBool
infer ctx (EVar x) =
case M.lookup x ctx of
Nothing -> Left $ UnboundVar x
Just ty -> Right ty
infer ctx (EBin op e1 e2) = inferBin ctx op e1 e2
infer ctx (EUn op e) = inferUn ctx op e
inferBin :: Ctx -> BOp -> Expr -> Expr -> Either TypeError Type
inferBin ctx op e1 e2 =
case binTy op of
(ty1, ty2, tyOut) ->
check ctx e1 ty1 *>
check ctx e2 ty2 *>
Right tyOut
binTy :: BOp -> (Type, Type, Type)
binTy op
| op `elem` [Add, Sub, Mul, Div] = (TyInt, TyInt, TyInt)
| op `elem` [And, Or] = (TyBool, TyBool, TyBool)
| op `elem` [Equals, Less] = (TyInt, TyInt, TyBool)
| otherwise = error "Unhandled operator in binTy"
inferUn :: Ctx -> UOp -> Expr -> Either TypeError Type
inferUn ctx op e =
case unTy op of
(tyIn, tyOut) ->
check ctx e tyIn *>
Right tyOut
unTy :: UOp -> (Type, Type)
unTy Neg = (TyInt, TyInt)
unTy Not = (TyBool, TyBool)
check :: Ctx -> Expr -> Type -> Either TypeError ()
check ctx e ty =
infer ctx e >>= \ty' ->
case ty == ty' of
False -> Left $ Mismatch e ty ty'
True -> Right ()
checkProg :: Ctx -> Prog -> Either TypeError Ctx
checkProg ctx [] = Right ctx
checkProg ctx (s:ss) = checkStmt ctx s >>= \ctx' -> checkProg ctx' ss
checkStmt :: Ctx -> Stmt -> Either TypeError Ctx
checkStmt ctx (Decl ty x expr) =
case M.lookup x ctx of
Just _ -> Left $ DuplicateVar x
Nothing -> check ctx expr ty *> (Right $ M.insert x ty ctx)
checkStmt ctx (Assign x e) =
case M.lookup x ctx of
Just t -> check ctx e t *> Right ctx
Nothing -> Left $ UnboundVar x
checkStmt ctx (Block ss) = checkProg ctx ss *> Right ctx
checkStmt ctx (If e s1 s2) =
check ctx e TyBool *>
checkStmt ctx s1 *>
checkStmt ctx s2 *>
Right ctx
checkStmt ctx (Repeat e body) =
check ctx e TyInt *>
checkStmt ctx body *>
Right ctx
checkStmt ctx (While e body) =
check ctx e TyBool *>
checkStmt ctx body *>
Right ctx
checkStmt ctx (Input v) =
case M.lookup v ctx of
Just TyInt -> Right ctx
Just _ -> Left $ InputBool v
Nothing -> Left $ UnboundVar v
checkStmt ctx (Output e) =
check ctx e TyInt *> Right ctx
type Value = Integer
type Mem = M.Map Var Value
interpExpr :: Mem -> Expr -> Value
interpExpr _ (EInt i) = i
interpExpr _ (EBool b) = fromBool b
interpExpr m (EVar x) =
case M.lookup x m of
Just v -> v
Nothing -> error $ "Impossible! Uninitialized variable " ++ x
interpExpr m (EBin b e1 e2) = interpBOp b (interpExpr m e1) (interpExpr m e2)
interpExpr m (EUn u e) = interpUOp u (interpExpr m e )
interpUOp :: UOp -> Value -> Value
interpUOp Neg v = -v
interpUOp Not v = 1-v
interpBOp :: BOp -> Value -> Value -> Value
interpBOp Add = (+)
interpBOp Sub = (-)
interpBOp Mul = (*)
interpBOp Div = div
interpBOp And = (*)
interpBOp Or = \v1 v2 -> min 1 (v1 + v2)
interpBOp Equals = \v1 v2 -> fromBool (v1 == v2)
interpBOp Less = \v1 v2 -> fromBool (v1 < v2)
fromBool :: Bool -> Value
fromBool False = 0
fromBool True = 1
toBool :: Value -> Bool
toBool 0 = False
toBool _ = True
data World where
W :: Mem -- Current state of memory
-> [String] -- Strings typed by the user, waiting to be read by 'input'
-> [String] -- Strings produced by 'output' (newest first)
-> World
Error :: World -- Something went wrong
deriving Show
-- An initial world state, given user input
initWorld :: String -> World
initWorld inp = W M.empty (words inp) []
interpStmt :: Stmt -> World -> World
interpStmt (Decl _ v expr) (W mem inp outp) = W (M.insert v init mem) inp outp
where init = interpExpr mem expr
interpStmt (Assign v e) (W mem inp outp) = W (M.insert v (interpExpr mem e) mem) inp outp
interpStmt (Block bl) w = interpProg bl w
interpStmt (If c s1 s2) w@(W mem inp outp) =
if toBool (interpExpr mem c) then interpStmt s1 w
else interpStmt s2 w
interpStmt (Repeat cnt s1) w@(W mem _ _) = interpRepeat (interpExpr mem cnt) s1 w
interpStmt (While c s1) w = interpWhile c s1 w
interpStmt (Input v) (W _ [] _) = Error
interpStmt (Input v) (W mem (y:ys) outp) =
case readMaybe y :: Maybe Integer of
Just x -> W (M.insert v x mem) ys outp
Nothing -> Error
interpStmt (Output e) (W mem inp outp) = W mem inp ((show $ interpExpr mem e):outp)
interpStmt _ Error = Error
interpRepeat :: Integer -> Stmt -> World -> World
interpRepeat 0 _ w = w
interpRepeat n st w = interpRepeat (n-1) st (interpStmt st w)
interpWhile :: Expr -> Stmt -> World -> World
interpWhile cond st w@(W mem _ _) =
if interpExpr mem cond == 0 then w
else interpWhile cond st $
interpStmt st w
interpProg :: Prog -> World -> World
interpProg prog w = foldl (flip interpStmt) w prog
formatWorld :: World -> String
formatWorld (W m _ o) = unlines $
reverse o ++
["===================="] ++
map formatVar (M.assocs m)
formatWorld Error = "Error"
formatVar :: (String, Value) -> String
formatVar (k,v) = k ++ " -> " ++ show v
run :: String -> IO ()
run fileName = do
contents <- readFile fileName
case parse impParser contents of
Left err -> print err
Right prog -> case checkProg M.empty prog of
Left err -> print err
Right _ -> do
let inp = "5 6"
putStrLn $ formatWorld $ interpProg prog (initWorld inp)
run1 :: String -> IO ()
run1 fileName = do
contents <- readFile fileName
print$ parse impParser contents
run2 :: String -> IO ()
run2 fileName = do
contents <- readFile fileName
case parse impParser contents of
Left err -> print err
Right prog -> print $ checkProg M.empty prog
main :: IO ()
main = do
args <- getArgs
case args of
[] -> putStrLn "Please provide a file name."
(fn:_) -> run2 fn