-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathREADME.Rmd
171 lines (115 loc) · 5.35 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
output: github_document
---
<img src='logo/Hex.png' align="right" height="139" />
```{r setup, include=FALSE}
library(knitr)
opts_chunk$set(echo = TRUE)
`%>%` <- dplyr::`%>%`
```
# Structural Equation Modeling foR Psychologists
[![](https://img.shields.io/badge/Open%20Educational%20Resources-Compatable-brightgreen)](https://creativecommons.org/about/program-areas/education-oer/)
[![](https://img.shields.io/badge/CC-BY--NC%204.0-lightgray)](http://creativecommons.org/licenses/by-nc/4.0/)
[![](https://img.shields.io/badge/Language-R-blue)](http://cran.r-project.org/)
<sub>*Last updated `r Sys.Date()`.*</sub>
This Github repo contains all lesson files for *SEM - Practical Applications in R*. The goal is to impart students with the basic tools to construct, evaluate and compare **Structural Equation Models (SEM; w/ plots), using [`lavaan`](http://lavaan.ugent.be/)**.
These topics were taught in the graduate-level course ***Structural Equation Modeling*** (Psych Dep., Ben-Gurion University of the Negev). This course assumes basic competence in R (importing, regression modeling, plotting, etc.), along the lines of [*Practical Applications in R for Psychologists*](https://github.com/mattansb/Practical-Applications-in-R-for-Psychologists).
**Notes:**
- This repo contains only materials relating to *Practical Applications in R*, and does not contain any theoretical or introductory materials.
- Please note that some code does not work *on purpose*, to force students to learn to debug.
## Setup
```{r, echo=FALSE}
extract_pkgs <- function(fl) {
`%>%` <- dplyr::`%>%`
if (length(fl) == 1) {
txt <- read.delim(fl, header = FALSE) %>%
.[[1]] %>%
paste0(collapse = "\n")
pkg_lib <- stringr::str_extract_all(txt, pattern = "(?<=library\\().{1,}(?=\\))")
pkg_req <- stringr::str_extract_all(txt, pattern = "(?<=require\\().{1,}(?=\\))")
pkg_name <- stringr::str_extract_all(txt, pattern = "[a-z|A-Z|0-9]{1,}(?=\\:\\:)")
pkgs <- c(pkg_lib, pkg_req, pkg_name)
} else if (length(fl) > 1) {
pkgs <- sapply(fl, extract_pkgs)
}
pkgs %>%
unlist(recursive = TRUE) %>%
unique()
}
make_pkg_table <- function(pkgs) {
`%>%` <- dplyr::`%>%`
pkgs <- pkgs[sapply(pkgs, function(x) length(x) > 0)]
ps <- sapply(pkgs, function(x){
paste0(
glue::glue("[`{x}`](https://CRAN.R-project.org/package={x})"),
collapse = ", "
)
})
glue::glue("|[{folder}](/{folder})|{ps}|\n\n",
folder = names(pkgs)) %>%
c("|Lesson|Packages|\n|----|----|\n", .) %>% # header
paste0(collapse = "")
}
```
You will need:
1. A fresh installation of [**`R`**](https://cran.r-project.org/) (preferably version 4.0 or above).
2. [RStudio IDE](https://www.rstudio.com/products/rstudio/download/) (optional, but recommended).
3. The following packages, listed by lesson:
```{r, echo=FALSE, message=FALSE, warning=FALSE}
r_list <- list.files(pattern = ".(R|r)$", recursive = TRUE, full.names = TRUE) %>%
.[!stringr::str_detect(., pattern = "(SOLUTION|logo)")] %>%
.[stringr::str_detect(., pattern = "^./[0-9]")]
lesson_names <- stringr::str_extract(r_list, pattern = "(?<=(/)).{1,}(?=(/))")
r_list <- split(r_list, lesson_names)
pkgs <- lapply(r_list, extract_pkgs)
print_pkgs <- make_pkg_table(pkgs)
```
`r print_pkgs`
You can install all the packages used by running:
```{r echo=FALSE, comment = "", warning=FALSE}
pkgs <- pkgs %>%
unlist(recursive = TRUE) %>%
unique() %>% sort()
cat("# in alphabetical order:")
pkgs %>% {
capture.output(dput(.))
} %>% {
capture.output(cat("pkgs <-", ., fill = 80))
} %>%
styler::style_text()
cat("install.packages(pkgs, dependencies = TRUE)")
```
<details>
<summary><i>Package Versions</i></summary>
The package versions used here:
```{r, echo=FALSE}
packinfo <- installed.packages(fields = c("Package", "Version"))
get_src <- function(pkg) {
pd <- packageDescription(pkg)
if (is.null(src <- pd$Repository)) {
if (!is.null(src <- pd$GithubRepo)) {
src <- paste0("Github: ",pd$GithubUsername,"/",src)
} else {
src <- "Dev"
}
}
return(src)
}
V <- packinfo[pkgs,"Version"]
src <- sapply(pkgs, get_src)
# setNames(paste0(V, " (", src,")"), pkgs)
v_info <- paste0(glue::glue(" - `{pkgs}` {V} (*{src}*)"), collapse = "\n")
```
`r v_info`
</details>
## Other Useful Resources
### Other Courses
In addition to [`lavaan`'s toutorials](http://lavaan.ugent.be/tutorial/index.html), you might find the following online courses useful:
- Sacha Epskamp's [online course](http://sachaepskamp.com/SEM2020) and [YouTube lectures](https://www.youtube.com/playlist?list=PLliBbGBc5nn3m8bXQ4CmOep3UmQ_5tVlC).
- See also the [`psychonetrics`](http://psychonetrics.org/) package for psychometric network modeling.
- Michael Hallquist's [course](https://psu-psychology.github.io/psy-597-SEM/).
### Selected Quantitude (podcast) Episods
These are selected episodes from the [Quantitude podcast](https://quantitudepod.org/) related to SEM:
- [S2E08: **Mediation** and the Art of Squid Spleening](https://www.buzzsprout.com/639103/5817541-s2e08-mediation-and-the-art-of-squid-spleening)
- [S2E24: The **Equivalent Models** Problem](https://www.buzzsprout.com/639103/7983649-s2e24-the-equivalent-models-problem)
- [S2E26: MLM vs. **SEM**: Opportunities for Growth](https://www.buzzsprout.com/639103/8084578-s2e26-mlm-vs-sem-opportunities-for-growth)