|
14 | 14 | + lemma `partition_disjoint_bigfcup`
|
15 | 15 | - in `lebesgue_measure.v`:
|
16 | 16 | + lemma `measurable_indicP`
|
17 |
| -- in `constructive_ereal.v`: |
18 |
| - + notation `\prod_( i <- r | P ) F` for extended real numbers and its variants |
19 | 17 |
|
20 | 18 | - in `numfun.v`:
|
21 | 19 | + defintions `funrpos`, `funrneg` with notations `^\+` and `^\-`
|
|
31 | 29 | notations `.-mapping`, `.-mapping.-measurable`
|
32 | 30 |
|
33 | 31 | - in `lebesgue_measure.v`:
|
34 |
| - + lemma `measurable_indicP` |
35 | 32 | + lemmas `measurable_funrpos`, `measurable_funrneg`
|
36 | 33 |
|
37 | 34 | - in `lebesgue_integral.v`:
|
|
46 | 43 | - in `probability.v`:
|
47 | 44 | + lemma `expectation_def`
|
48 | 45 | + notation `'M_`
|
49 |
| -- in `probability.v`: |
| 46 | + |
| 47 | +- new file `independence.v`: |
50 | 48 | + lemma `expectationM_ge0`
|
51 | 49 | + definition `independent_events`
|
52 | 50 | + definition `mutual_independence`
|
|
72 | 70 | - in `lebesgue_integrale.v`
|
73 | 71 | + change implicits of `measurable_funP`
|
74 | 72 |
|
75 |
| - |
76 |
| -- in file `normedtype.v`, |
77 |
| - changed `completely_regular_space` to depend on uniform separators |
78 |
| - which removes the dependency on `R`. The old formulation can be |
79 |
| - recovered easily with `uniform_separatorP`. |
80 |
| - |
81 |
| -- moved from `Rstruct.v` to `Rstruct_topology.v` |
82 |
| - + lemmas `continuity_pt_nbhs`, `continuity_pt_cvg`, |
83 |
| - `continuity_ptE`, `continuity_pt_cvg'`, `continuity_pt_dnbhs` |
84 |
| - and `nbhs_pt_comp` |
85 |
| - |
86 |
| -- moved from `real_interval.v` to `normedtype.v` |
87 |
| - + lemmas `set_itvK`, `RhullT`, `RhullK`, `set_itv_setT`, |
88 |
| - `Rhull_smallest`, `le_Rhull`, `neitv_Rhull`, `Rhull_involutive`, |
89 |
| - `disj_itv_Rhull` |
90 |
| -- in `topology.v`: |
91 |
| - + lemmas `subspace_pm_ball_center`, `subspace_pm_ball_sym`, |
92 |
| - `subspace_pm_ball_triangle`, `subspace_pm_entourage` turned |
93 |
| - into local `Let`'s |
94 |
| - |
95 |
| -- in `lebesgue_integral.v`: |
96 |
| - + structure `SimpleFun` now inside a module `HBSimple` |
97 |
| - + structure `NonNegSimpleFun` now inside a module `HBNNSimple` |
98 |
| - + lemma `cst_nnfun_subproof` has now a different statement |
99 |
| - + lemma `indic_nnfun_subproof` has now a different statement |
100 |
| -- in `mathcomp_extra.v`: |
101 |
| - + definition `idempotent_fun` |
102 |
| - |
103 |
| -- in `topology_structure.v`: |
104 |
| - + definitions `regopen`, `regclosed` |
105 |
| - + lemmas `closure_setC`, `interiorC`, `closureU`, `interiorU`, |
106 |
| - `closureEbigcap`, `interiorEbigcup`, |
107 |
| - `closure_open_regclosed`, `interior_closed_regopen`, |
108 |
| - `closure_interior_idem`, `interior_closure_idem` |
109 |
| - |
110 |
| -- in file `topology_structure.v`, |
111 |
| - + mixin `isContinuous`, type `continuousType`, structure `Continuous` |
112 |
| - + new lemma `continuousEP`. |
113 |
| - + new definition `mkcts`. |
114 |
| - |
115 |
| -- in file `subspace_topology.v`, |
116 |
| - + new lemmas `continuous_subspace_setT`, `nbhs_prodX_subspace_inE`, and |
117 |
| - `continuous_subspace_prodP`. |
118 |
| - + type `continuousFunType`, HB structure `ContinuousFun` |
119 |
| - |
120 |
| -- in file `subtype_topology.v`, |
121 |
| - + new lemmas `subspace_subtypeP`, `subspace_sigL_continuousP`, |
122 |
| - `subspace_valL_continuousP'`, `subspace_valL_continuousP`, `sigT_of_setXK`, |
123 |
| - `setX_of_sigTK`, `setX_of_sigT_continuous`, and `sigT_of_setX_continuous`. |
124 |
| - |
125 |
| -- in `lebesgue_integrale.v` |
126 |
| - + change implicits of `measurable_funP` |
127 |
| - |
128 |
| -### Changed |
129 |
| - |
130 | 73 | ### Renamed
|
131 | 74 |
|
132 | 75 | - in `lebesgue_measure.v`:
|
|
151 | 94 |
|
152 | 95 | - in `probability.v`:
|
153 | 96 | + `integral_distribution` -> `ge0_integral_distribution`
|
154 |
| - + `expectationM` -> `expectationMl` |
155 | 97 |
|
156 | 98 | ### Generalized
|
157 | 99 |
|
|
177 | 119 |
|
178 | 120 | ### Removed
|
179 | 121 |
|
180 |
| -- in `topology_structure.v`: |
181 |
| - + lemma `closureC` |
182 |
| - |
183 |
| -- in file `lebesgue_integral.v`: |
184 |
| - + lemma `approximation` |
185 |
| - |
186 |
| -### Removed |
187 |
| - |
188 |
| -- in `lebesgue_integral.v`: |
189 |
| - + definition `cst_mfun` |
190 |
| - + lemma `mfun_cst` |
191 |
| - |
192 |
| -- in `cardinality.v`: |
193 |
| - + lemma `cst_fimfun_subproof` |
194 |
| - |
195 |
| -- in `lebesgue_integral.v`: |
196 |
| - + lemma `cst_mfun_subproof` (use lemma `measurable_cst` instead) |
197 |
| - + lemma `cst_nnfun_subproof` (turned into a `Let`) |
198 |
| - + lemma `indic_mfun_subproof` (use lemma `measurable_fun_indic` instead) |
199 |
| - |
200 | 122 | - in `lebesgue_integral.v`:
|
201 | 123 | + lemma `measurable_indic` (was uselessly specializing `measurable_fun_indic` (now `measurable_indic`) from `lebesgue_measure.v`)
|
202 | 124 | + notation `measurable_fun_indic` (deprecation since 0.6.3)
|
|
0 commit comments