-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_emlp.py
164 lines (131 loc) · 4.53 KB
/
train_emlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# system imports
import os
# python imports
import numpy as np
# torch imports
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
from torchinfo import summary
# emlp imports
from emlp.reps import V, Scalar, Vector
from emlp.groups import SO
import emlp
import objax
import jax.numpy as jnp
from tqdm.auto import tqdm
# plotting imports
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib import animation
# plotting defaults
sns.set_theme()
sns.set_context("paper")
sns.set(font_scale=2)
cmap = plt.get_cmap("twilight")
color_plot = sns.cubehelix_palette(4, reverse=True, rot=-0.2)
from matplotlib import cm, rc
rc("text", usetex=True)
rc("text.latex", preamble=r"\usepackage{amsmath}")
def main():
def train_model(model):
opt = objax.optimizer.Adam(model.vars())
@objax.Jit
@objax.Function.with_vars(model.vars())
def loss(x, y):
yhat = model(x)
return ((yhat - y) ** 2).mean()
grad_and_val = objax.GradValues(loss, model.vars())
@objax.Jit
@objax.Function.with_vars(model.vars() + opt.vars())
def train_op(x, y, lr):
g, v = grad_and_val(x, y)
opt(lr=lr, grads=g)
return v
train_losses, test_losses = [], []
equiv_errors = []
for epoch in tqdm(range(NUM_EPOCHS)):
train_losses.append(
np.mean(
[train_op(jnp.array(x), jnp.array(y), lr) for (x, y) in trainloader]
)
)
if not epoch % 10:
test_losses.append(
np.mean([loss(jnp.array(x), jnp.array(y)) for (x, y) in testloader])
)
return train_losses, test_losses
def evaluate_model(model, loader):
@objax.Jit
@objax.Function.with_vars(model.vars())
def loss(x, y):
yhat = model(x)
return ((yhat - y) ** 2).mean()
return np.mean([loss(jnp.array(x), jnp.array(y)) for (x, y) in loader])
device = "cuda:0" if torch.cuda.is_available() else "cpu"
seed = 13
torch.manual_seed(seed)
np.random.seed(seed)
grid_size = 100
batch_size = 64
data = np.load("data_n=10000.npy", allow_pickle=True)
X, Y = data.item()["x"], data.item()["y"]
tr_idx = np.random.choice(X.shape[0], int(0.8 * X.shape[0]), replace=False)
mask = np.zeros(X.shape[0], dtype=bool)
mask[tr_idx] = True
X_tr, Y_tr = X[mask], Y[mask]
X_te, Y_te = X[~mask], Y[~mask]
# reformat to (N, C, W, H)
X_tr = torch.Tensor(X_tr).view(-1, 1, grid_size, grid_size)
Y_tr = torch.Tensor(Y_tr).view(-1, 1)
X_te = torch.Tensor(X_te).view(-1, 1, grid_size, grid_size)
Y_te = torch.Tensor(Y_te).view(-1, 1)
bs_tr = X_tr.shape[0]
bs_te = X_te.shape[0]
# generate gauge field
prod = 0.75
add = 0
# apply gauge
t = np.linspace(0, 1, grid_size)
sine_x = prod * np.cos(2 * np.pi * t) - add
sine_y = prod * np.cos(2 * np.pi * 2 * t) - add
field_x = sine_x.reshape(1, grid_size)
field_x = np.repeat(field_x, grid_size, axis=0).reshape(1, -1)
field_y = sine_y.reshape(grid_size, 1)
field_y = np.repeat(field_y, grid_size, axis=1).reshape(1, -1)
field_x_tr = torch.tensor(np.repeat(field_x, bs_tr, axis=0)).float()
field_y_tr = torch.tensor(np.repeat(field_y, bs_tr, axis=0)).float()
field_x_te = torch.tensor(np.repeat(field_x, bs_te, axis=0)).float()
field_y_te = torch.tensor(np.repeat(field_y, bs_te, axis=0)).float()
# EMLP expects (N, 2 * data_dim,)
X_tr = X_tr.view(-1, grid_size * grid_size) + field_x_tr + field_y_tr
S_tr = torch.cat((torch.cos(X_tr), torch.sin(X_tr)), dim=-1)
X_te = X_te.view(-1, grid_size * grid_size) + field_x_te + field_y_te
S_te = torch.cat((torch.cos(X_te), torch.sin(X_te)), dim=-1)
trainloader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(S_tr, Y_tr),
batch_size=batch_size,
num_workers=4,
shuffle=True,
pin_memory=True,
)
testloader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(S_te, Y_te),
batch_size=batch_size,
num_workers=4,
shuffle=True,
pin_memory=True,
)
NUM_EPOCHS = 200
lr = 1e-5
G = SO(2)
rep_in = 10000 * Vector
rep_out = 1 * Scalar
model = emlp.nn.EMLP(rep_in=rep_in, rep_out=rep_out, group=G)
tr, ts = train_model(model)
print(tr, ts)
if __name__ == "__main__":
main()